DOCUMENTATION OF SOIL CLEANUP AT **BOTHELL FORMER HERTZ FACILITY BOTHELL, WASHINGTON**

Prepared for City of Bothell

January 28, 2011

HWA GEOSCIENCES INC.

- Geotechnical Engineering
- Hydrogeology
- Geoenvironmental Services
- Inspection & Testing

TABLE OF CONTENTS

<u>1</u>	ago
1.0 INTRODUCTION	.1
1.1 SITE LOCATION AND DESCRIPTION	.1
1.2 AUTHORIZATION / SCOPE OF WORK	.2
1.3 Objectives	.2
1.4 HISTORIC PROPERTY USE AND PREVIOUS SITE ASSESSMENTS	.2
1.5 CURRENT AND PLANNED SITE USE	.3
2.0 ENVIRONMENTAL SETTING	.4
2.1 Physical Conditions / Topography	.4
2.2 Geology	.4
2.3 Hydrogeology	.4
3.0 NATURE AND EXTENT OF CONTAMINATION	.5
3.1 CHEMICALS OF POTENTIAL CONCERN	.5
3.2 EXTENT OF CONTAMINATION	.5
3.3 CLEANUP STANDARDS	.5
3.4 REMEDIAL ACTION OBJECTIVES	.6
4.0 SOIL CLEANUP	.8
4.1 PRE-CLEANUP CHARACTERIZATION	.8
4.2 Soil Excavation	.9
4.3 CONFIRMATION SAMPLING	.10
4.4 GROUND WATER MANAGEMENT	.10
4.5 ORC PLACEMENT	.10
4.6 Well Decommissioning	.10
4.7 SITE RESTORATION	.11
5.0 REFERENCES	.12
6.0 LIMITATIONS	.13

Page

LIST OF TABLES

- Table 1
 Summary of Site-Specific MTCA Method B Soil TPH Cleanup Levels
- Table 2Soil Cleanup Analytical Results

LIST OF FIGURES (FOLLOWING TEXT)

- Figure 1 Site Vicinity
- Figure 2 Site Location & Adjacent Properties
- Figure 3 Site Plan Prior to Cleanup
- Figure 4 Extent of Soil Cleanup

APPENDICES

- Appendix A Determination of Risk-Based Cleanup Levels for the Site
- Appendix B Laboratory Certificates of Analysis
- Appendix C Data Quality Assessment
- Appendix D Photographs of Soil Cleanup Action
- Appendix E CEMEX USA Release of Liability/Certificate of Disposal

SOIL CLEANUP REPORT BOTHELL FORMER HERTZ FACILITY BOTHELL, WASHINGTON

1.0 INTRODUCTION

This report documents the results of the soil cleanup conducted in September 2010 by the City of Bothell (City) at the Bothell Former Hertz Facility (Site). The City owns the Site, part of which will accommodate the realignment of State Route (SR) 522, which is currently under construction (Bothell Crossroads Project). Figure 1 is a vicinity map and Figure 2 depicts the future alignment of SR 522 through the Site and adjacent properties.

The soil cleanup was performed as an independent remedial action; however, the City may enter into an Agreed Order with the Washington Department of Ecology (Ecology) to conduct a remedial investigation (RI), feasibility study (FS), RI/FS Report, and draft cleanup action plan (DCAP). Tasks performed to date at the Site include:

- 1. Phase II Environmental Site Assessment (HWA, 2008b)
- 2. Preparation and submittal to Ecology of the *Limited Remedial Investigation and Feasibility Study Work Plan* (HWA, 2010a)
- 3. Preparation and submittal to Ecology of an *Interim Action Work Plan* (HWA, 2010b)
- 4. Completion of soil cleanup, described herein

Remaining tasks to fulfill terms and conditions of a future Agreed Order include preparation of a RI, FS, RI/FS Report, and draft cleanup action plan (DCAP) that address remaining ground water contamination at the Site..

1.1 SITE LOCATION AND DESCRIPTION

The City acquired the Former Hertz Facility from Odegard and Boseck, LLC in June 2009. The Site is located at 18030 Bothell Way NE in Bothell, Washington between downtown Bothell and the Sammamish River (Figure 1). The Site is listed by Ecology under Facility Site ID No. 11687976 as the AA Rentals of Bothell facility; the Site is also known as the former Hertz Rentals Property because Hertz Equipment Rentals Corporation was the last tenant. The latitude of the site is 47.75899 and the longitude is - 122.20927. The King County Tax Parcel number of the Site is 945720005004.

The 1.92-acre Site is an approximately rectangular lot located south of Bothell Way Northeast (SR 522). The property was formerly developed with a combined office warehouse and shop building that occupied approximately one quarter of the property, as well as three smaller buildings along the east side of the property, with asphalt-paved parking and storage constituting most of the remainder of the property. All buildings

were demolished in May 2010, in advance of the soil cleanup work and subsequent construction of a new roadway. The Site is being redeveloped as part of the City's overall Downtown Revitalization Plan and will mostly accommodate the new SR 522 roadway which will roughly bisect the property. Remnant portions of the property north and south of the new roadway may be redeveloped after the roadway is completed.

1.2 AUTHORIZATION / SCOPE OF WORK

HWA GeoSciences' (HWA) work for this project was authorized under an On-Call Hazardous Materials Services Consultant Agreement with the City dated April 2010. HWA's scope of work for this portion of the project included:

- Perform environmental assessments, prepare technical documentation and develop remedial designs for cleanup of contaminated downtown properties
- Provide permitting support
- Provide contract bid phase services
- Assist in coordinating with State and Federal environmental regulatory agencies.
- Conduct cleanup monitoring, confirmation sampling, backfill & compaction monitoring during construction
- Prepare this Soil Cleanup Report

1.3 OBJECTIVES

The objective of the soil cleanup was to reduce the threat to the environment and human health posed by petroleum hydrocarbon impacted soil in areas that were accessible to the maximum extent possible consistent with the requirements of Washington's Model Toxics Control Act (MTCA) cleanup regulations (Chapter 173-340 WAC).

1.4 HISTORIC PROPERTY USE AND PREVIOUS SITE ASSESSMENTS

Details of historic property use and the site assessments performed to date at the Site can be found in ECOSS (2006), DLH (1993a, b; 2007), and HWA (2008a, b). The following is a summary of those assessments.

According to historical information and interviews, the Site has been developed since 1918; businesses operating at the Site included automobile repair and dealerships, fueling, and equipment rental (ECOSS, 2008). In 1993 three leaking underground storage tanks (LUSTs) were removed from the property followed by site assessments (DLH, 1993a, b; 2007). With reference to Figure 3; these were:

- 1. A tank containing less than 1,100 gallons of kerosene located in the northwestern area of the Site
- 2. A 500-gallon diesel fuel tank located in the east-central area of the site

3. A 7,000-gallon leaded gasoline tank co-located in the same excavation as the diesel fuel UST

To the north of the Site across SR 522, Simon and Sons Fine Dry Cleaning (18107 Bothell Way NE) is listed on Ecology's Confirmed or Suspected Contaminated Sites List (CSCSL). This former dry cleaning facility had releases of chlorinated solvents to ground water with off-site migration of contamination in the direction of the Bothell Former Hertz Facility.

The Phase II Environmental Site Assessment (HWA, 2008b) did not identify any USTs remaining at the Site. Soils in the northern and eastern portions of the Site in the vicinity of the three former LUSTs contained petroleum hydrocarbons exceeding Ecology MTCA Method A cleanup levels, and associated volatile organic compounds (VOCs) below cleanup levels. Ground water in several areas of the Site, including near the LUSTs, also contained petroleum hydrocarbons and VOCs exceeding MTCA Method A cleanup levels. Petroleum hydrocarbons detected in soil and ground water at the Site appeared to be from multiple releases, as several petroleum types were identified (i.e., gasoline, diesel, oil). Some of the VOCs detected in ground water at the Site are typically associated with petroleum products, while some chlorinated VOCs detected in ground water likely originated at the nearby Simon and Sons Fine Dry Cleaning facility. Other investigations in the vicinity have also confirmed off-site impacts from the Simon and Sons Fine Dry Cleaning facility.

1.5 CURRENT AND PLANNED SITE USE

All buildings were demolished in May 2010, in advance of planned cleanup actions and subsequent roadway construction. The Site is being redeveloped as part of the City's overall Downtown Revitalization Plan and will accommodate the new SR 522 roadway. Remnant portions of the property north and south of the new roadway may be redeveloped after the roadway is completed.

2.0 ENVIRONMENTAL SETTING

2.1 PHYSICAL CONDITIONS / TOPOGRAPHY

Figure 3 shows the site plan prior to the soil cleanup. The Site is approximately 1.92 acres in area and vacant with all buildings demolished. Concrete foundations and asphalt paving remained in place prior to the soil cleanup. The property is generally flat with an elevation of approximately 30 feet above mean sea level. The surrounding land is generally flat or slopes down to the south towards the Sammamish River.

2.2 GEOLOGY

Surficial soils in the vicinity of the Site are primarily recent alluvium (Booth and others, 2004) most likely deposited by the adjacent Sammamish River. Per HWA (2008b), soil at the site typically consists of approximately two to seven feet of silty sand fill over alluvial soil consisting of interbedded silt and silty sand. Much of the fill material is likely dredged spoils placed on the property from realignment of the Sammamish River in the 1960s. Peat or silt beds with high organic content up to four feet thick are present in alluvial soils generally below 14 feet below ground surface (bgs). These organic-rich beds may not represent a contiguous layer. Interbedded alluvial sand and silty sand typically occurs below 15 feet.

2.3 HYDROGEOLOGY

The water table at the Site is approximately 5 and 8 feet bgs with a higher surface occurring in the wet season. Based on water level surveys of the area, ground water flow is to the east-southeast, toward the Sammamish River located approximately 300 feet to the southeast. The measured ground water gradient, i, ranged from 0.035 to 0.06 feet per foot. The estimated hydraulic conductivity, K, for the water-bearing zone ranged from 6.8 x 10^{-4} to 1.1×10^{-3} feet per minute (0.98 to 1.58 feet per day) based on slug testing (Parametrix, 2009). Assuming an effective porosity, n_e, of 0.2 for the aquifer materials at the site, ground water flow velocities in the water-bearing zone, based on the relationship $V = Ki / n_e$ are estimated to range from:

0.98 ft/d x 0.03536 / 0.2 = 0.17 feet/day	= 63 feet/year to
1.58 ft/d x 0.0576 / 0.2 = 0.45 feet/day	= 166 feet/year.

3.0 NATURE AND EXTENT OF CONTAMINATION

3.1 CHEMICALS OF POTENTIAL CONCERN

Based on the *Phase II Environmental Site Assessment* (HWA, 2008b), chemicals of potential concern (COPCs) present in Site soils were associated with the three leaking USTs and included:

- Total petroleum hydrocarbons (TPH in the gasoline-, diesel-, and lube oil-ranges)
- Aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes (BTEX))

COPCs present in site ground water were associated with 1) the three leaking USTs, 2) chlorinated solvent releases likely originating at the nearby Simon and Sons Fine Dry Cleaning Facility, and 3) arsenic apparently mobilized as a result of reducing conditions caused by the presence of organics in the aquifer. The COPCs present in ground water included:

- Total petroleum hydrocarbons (TPH in the gasoline-, diesel-, and lube oil-ranges)
- Aromatic hydrocarbons (BTEX)
- Vinyl chloride
- Arsenic

3.2 EXTENT OF CONTAMINATION

Soils in the northern and eastern portions of the Site in the vicinity of the three former LUSTs contained petroleum hydrocarbons exceeding Ecology MTCA Method A cleanup levels, and associated aromatic hydrocarbons below cleanup levels. Ground water in several areas of the Site, including near the LUSTs, also contained petroleum hydrocarbons and aromatic hydrocarbons exceeding MTCA Method A cleanup levels. Petroleum hydrocarbons detected in soil and ground water at the Site appeared to be from multiple releases, as several petroleum types were identified (i.e., gasoline, diesel, oil).

Some of the aromatic hydrocarbons detected in ground water at the Site (e.g., BTEX) are typically associated with petroleum products. Chlorinated VOCs detected in ground water (e.g., vinyl chloride) likely originated at the nearby Simon and Sons Fine Dry Cleaning facility; other investigations in the vicinity have also confirmed off-site impacts from that facility.

3.3 CLEANUP STANDARDS

Remediation levels proposed in the Interim Action Work Plan (HWA, 2010b) include:

- MTCA Method A Soil Cleanup Levels for Unrestricted Land Use (WAC 173-340. Table 740-1).
- MTCA Method B Soil TPH Cleanup Levels for direct contact and protection of ground water

In order to evaluate whether the standard MTCA Method A soil cleanup levels were appropriate for the Site compared to MTCA Method B risk-based soil TPH cleanup levels, results of petroleum hydrocarbon fractionation analyses (NWVPH/NWEPH analysis) were input into Ecology's MTCATPH11.1 spreadsheet model to determine TPH soil cleanup levels protective of human health via direct contact and via leaching to a source of potable ground water. HWA's evaluation of MTCA Method B risk-based cleanup levels for TPH-impacted soil at the site is presented in Appendix A of this report. Table 1 summarizes the results of the analysis. The calculated Method B TPH cleanup levels for diesel- and oil-range petroleum hydrocarbons, including kerosene, at the Site range between 220 to 13,263 milligrams per kilogram (mg/kg) depending on the mixture of hydrocarbon fractions and specific compounds, particularly carcinogenic polynuclear aromatic hydrocarbons (cPAHs). The MTCA Method A soil cleanup level for diesel- and oil-range petroleum hydrocarbons is 2,000 mg/kg. The calculated Method B soil cleanup level for gasoline-range petroleum hydrocarbons at the Site is 3,504 mg/kg; compared to the MTCA Method A cleanup level of 100 mg/kg for soil having no benzene present and if the total of ethylbenzene, toluene, and xylenes is less than one percent of the gasoline mixture. The MTCA Method cleanup level for gasoline-range petroleum hydrocarbons is 30 mg/kg for all other mixtures.

The resulting soil remediation levels used (i.e., the more stringent of Method A or B) are extremely conservative, as following redevelopment most of the site will be covered by pavement and buildings, eliminating the direct contact pathway, and reducing ground water recharge by precipitation. These remediation levels meet all the requirements of WAC 173-340-720 through 173-340-760 and should be considered the Site cleanup levels.

3.4 REMEDIAL ACTION OBJECTIVES

The following remedial action objectives (RAOs) were established for the cleanup (HWA, 2010b):

- Achieve MTCA Method A and B soil cleanup levels at the point of compliance, thus reducing or eliminating human exposure through direct contact and inhalation of vapors.
- Use permanent solutions to the maximum extent practicable (which includes consideration of cost-effectiveness).

- Properly manage contaminated ground water that may be generated during site development activities, and ensure that activities at the site do not result in exposure to the contaminated ground water that has migrated onto the site.
- Use confirmation sampling in excavation to determine remaining contamination at that portion of the site. Confirmation samples will be further analyzed for the purpose of determining Method B cleanup levels for the remedial investigation/feasibility study and other contaminants of concern. The location of confirmation samples above cleanup levels will also determine the direction further characterization and remediation must go.

4.0 SOIL CLEANUP

The cleanup for contaminated soil at the Site included excavation and off-site disposal of all accessible impacted soils. The following sections describe the cleanup.

The City engaged a construction contractor, Hos Brothers Construction (Contractor) of Woodinville, Washington, to perform the soil cleanup from August through October 2010; HWA personnel monitored the cleanup activities and sampled soil to confirm successful cleanup. Prior to site cleanup, the Contractor demolished all the building slabs and parking lots (Photo 1 in Appendix D) and cleared and grubbed the Site in preparation for the soil cleanup and subsequent construction of the SR 522 realignment.

4.1 PRE-CLEANUP CHARACTERIZATION

Prior to large scale excavation activities at the Site, HWA personnel conducted test pit characterization (i.e., "pot holing") to delineate clean overburden soils at the Site, and to assess the lateral and vertical extent of TPH-impacted soils with respect to previous investigations.

HWA's test pit characterization activities included collecting samples of TPH-impacted soil for analysis of petroleum hydrocarbon fractionation and other target compounds in order to calculate MTCA Method B risk-based soil cleanup levels for protection of human health and potable ground water (see Section 3.2 above). The results of the of the Method B risk analysis are presented in Appendix A and summarized in Table 1.

Twenty nine test pits were excavated between August 30th and September 16th 2010 using a rubber-tired backhoe operated by the Contractor's personnel; Figure 4 shows test pit locations. Test pits were excavated to a maximum depth of 10 feet bgs. HWA personnel collected 55 representative soil samples at various depths within the test pits for chemical analysis. The test pit data indicated that 1,302 cubic yards (approximately 2,080 tons) of soil could be stockpiled on site for later reuse. Subsequent sampling and analysis of the soil stockpiles confirmed that the soil was chemically and structurally suitable for reuse; the analytical data for the stockpiled soil are summarized at the bottom of Table 2.

OnSite Environmental Inc. of Redmond, Washington, an Ecology accredited laboratory, performed the soil chemical analyses; laboratory reports are presented in Appendix B. Appendix C presents a project quality assurance audit including verification of the analytical data; the audit found that with minor exceptions, all reported data should be considered valid as qualified and acceptable for further use.

4.2 SOIL EXCAVATION

The Contractor excavated contaminated soil at the Site between September 8 and September 22, 2010. HWA personnel directed the cleanup based upon prior sampling, as well as field screening information such as soil color, odor, and photoionization detector readings. When the screening information indicated clean soil, HWA collected confirmation samples for laboratory analysis to document that the soils left in place met the Site cleanup levels. Where confirmation sample results exceeded cleanup levels, the Contractor and HWA performed additional excavation and sampling until the cleanup goals were achieved.

Soil excavation generally proceeded from north to south. Contaminated soil was excavated generally down to the contact with a peat layer underlying the site (Photos 2 and 3 in Appendix D), which was found to meet the cleanup levels. The approximate limits of soil excavation are shown on Figure 4. The final excavation was approximately 180 by 180 feet in its maximum width and length. The depth of the excavation ranged from about 5 to 16 feet bgs.

A total of 11,182.41 tons of soil were excavated and transported to the CEMEX USA soil remediation facility in Everett, Washington. Assuming a bulk density of 1.6 tons per bank cubic yard, the volume of soil excavated and transported to CEMEX was approximately 6,989 cubic yards. A copy of the CEMEX Release of Liability/Certificate of Disposal for the soil is presented in Appendix E.

Four buried hydraulic lifts and their associated oil reservoirs were removed early into the cleanup (Photos 4 and 5 in Appendix D). The lifts and oil reservoirs were decontaminated, and the housings recycled along with rebar and other steel reclaimed during site demolition.

On September 13th a small old wooden catch basin was unearthed in the northeastern extent of the excavation at the location shown on Figure 3. The catch basin held lube oil floating on top of water (Photos 6 and 7 in Appendix D), and did not appear to have a functional outlet or connect to any other utilities. Nor did it appear to have been in service for many years as indicated by the limited extent of oil impacted soil surrounding the catch basin. HWA collected a sample of the petroleum impacted soil adjacent to the catch basin and submitted it to OnSite Environmental for analysis (sample P-PEX-11 in Table 2). On September 14th an industrial vacuum truck service pumped water and oil out of the catch basin and transported it to a petroleum reclamation facility. The Contractor subsequently excavated the catch basin components and the short lengths of associated drain pipe and transported them with petroleum impacted soil to the CEMEX facility for thermal treatment.

4.3 CONFIRMATION SAMPLING

HWA personnel collected 17 excavation sidewall and 21 excavation bottom to confirm soil cleanup (Table 2). Figure 4 depicts confirmation sample locations. Laboratory certificates are included in Appendix B. Ten pre-excavation test pit samples collected at the extents of the excavation, and in some cases beyond, are included in Table 2 as confirmation samples because the soils represented by those samples did not contain chemicals of potential concern at concentrations exceeding site cleanup levels. Table 2 confirms that the cleanup achieved the site cleanup levels. In particular, the calculated Method B TPH soil cleanup level of 220 mg/kg for kerosene-impacted soil was achieved in the vicinity of the former kerosene LUST (samples H-PEX-4, H-PEX-7, H-PEX-8, and H-PEX-17).

4.4 GROUND WATER MANAGEMENT

Minor ground water seepage was present at approximately 8 to 10 feet below original grade at the Site (Photos 2 and 3 in Appendix D). Ground water flow into the excavation was managed by creating sumps and ponding the water behind soil berms. Accumulated water was removed with a gasoline powered 'trash' pump for temporary storage and settling in an on-site 20,000 gallon storage tank. This dewatering effluent was stored, tested, and discharged by the Contractor under a King County Industrial Waste Division temporary dewatering discharge permit to sanitary sewer, for treatment at King County's wastewater treatment plant.

4.5 ORC PLACEMENT

To facilitate bioremediation of ground water following soil removal, the Contractor applied 1,416 pounds of Oxygen Release Compound[®] (ORC) along the excavation sidewalls and bottom. The ORC was prepared by mixing the powdered compound with water in an excavator bucket to form a slurry. HWA estimates that the ORC will slowly release dissolved oxygen to ground water for approximately a year following cleanup thus encouraging destruction of residual hydrocarbons in soil and ground water by naturally-occurring aerobic bacteria in the soil, and reducing the possibility of recontamination of clean fill.

4.6 WELL DECOMMISSIONING

Prior to cleanup actions at the Site, Slead Construction Inc, a Washington State licensed well drilling contractor under subcontract to the Contractor, decommissioned ground water monitoring wells HZ-MW-2, HZ-MW-10, HZ-MW-11, and HZ-MW-13 in accordance with WAC 173-160-381. These wells were decommissioned because of their locations within the cleanup excavation. Slead Construction personnel also

decommissioned monitoring well HZ-MW-08 following the cleanup; although not within the cleanup excavation footprint, this well was decommissioned because it will be covered by the new roadway.

4.7 SITE RESTORATION

After excavation of contaminated soil and receipt of confirmation sample analytical results, the Contractor backfilled and compacted the excavation with a combination of clean imported structural fill soils meeting the requirements of Select Borrow, per WSDOT Standard Specification 2-03.3(14)K, and 1,302 cubic yards of previously excavated soils from the Site that were tested and found to meet Site cleanup levels. The imported select borrow was obtained from CEMEX, who mined the sandy soils from a quarry in Granite Falls, Washington (i.e., not excavated or reused from any developed property).

The select borrow and native soils were compacted to Method B of WSDOT Standard Specification 2-03.3(14)C, i.e., 90 percent of maximum dry density as determined using test method ASTM D 1557 (Modified Proctor) below two feet bgs, and 95 percent of maximum dry density for the upper two feet.

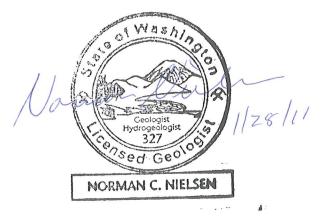
The backfilling occurred in stages as portions of the Site were confirmed to have been cleaned up. The excavation was generally backfilled from the northwest to southeast as contaminated soil was removed from the Site. The remediation area was then hydroseeded for erosion control.

5.0 REFERENCES

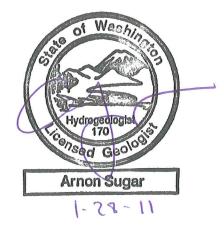
- Booth, D. B., B.F. Cox, K.G. Troost, and S.A. Shimel, 2004, Composite Geologic Map of the Sno-King Area. Seattle-Area Geologic Mapping Project. (http://geomapnw.ess.washington.edu/index.php?toc=maintoc&body=services/public ations/map/SnoKingDisc.htm)
- DLH Environmental Consulting, 1993a, Underground Storage Tank Removal and Decommissioning, WDOE Report Number N12100 for AA Rentals, dated May 14, 1993.
- DLH Environmental Consulting, 1993b, Underground Storage Tank Removal and Decommissioning, WDOE Report Number 005294 for AA Rentals, dated September 10, 1993.
- DLH Environmental Consulting, 2007, *Letter to Roger Odegard*, *RE: 18030 Bothell Way NE*, dated September 13, 2007.
- ECOSS (Environmental Coalition of South Seattle), 2008, *City of Bothell Revenue Development Area, Report on Tax Parcel History Through 1972.* Prepared for The King County Brownfields Program, King County Solid Waste Division, and King County Department of Natural Resources and Parks, January 2008.
- HWA, 2008a, *Phase I Site Assessment, Hertz Rentals Property, Bothell, WA*. Prepared for City of Bothell, October 8, 2008.
- HWA, 2008b, *Phase II Site Assessment, Hertz Rentals Property, Bothell, WA*. Prepared for City of Bothell, October 10, 2008.
- HWA GeoSciences, 2009b, Aquifer Testing and Permeability Estimates, Bothell Crossroads RI/FS, Bothell, Washington. Prepared for City of Bothell, October 6, 2009.
- HWA GeoSciences, 2010a, *Limited Remedial Investigation Work Plan, Bothell Hertz Property Solvent Plume.* Prepared for City of Bothell, August 2, 2010.
- HWA GeoSciences, 2010b, Interim Action Work Plan, Former Hertz Rentals Property, Bothell, Washington. Prepared for City of Bothell, May 7, 2010.
- Parametrix, 2009, *Bothell Paint and Decorating Remedial Investigation/Feasibility Study, Revision No. 0.* Prepared for City of Bothell, November 2009.
- Washington Department of Ecology, 1994, *Natural Background Soil Metals Concentrations in Washington State*. Ecology Publication 94-115, October 1994.

6.0 LIMITATIONS

The conclusions expressed by HWA are based solely on material referenced in this report. Observations were made under the conditions stated. Within the limitations of scope, schedule and budget, HWA attempted to execute these services in accordance with generally accepted professional principles and practices in the area at the time the report was prepared. No warranty, expressed or implied, is made. Experience has shown that subsurface soil and ground water conditions can vary significantly over small distances. It is always possible that contamination may exist in areas that were not sampled. HWA's findings and conclusions must not be considered as scientific or engineering certainties, but rather as our professional opinion concerning the significance of the limited data gathered and interpreted during the course of the assessment.


This study and report have been prepared on behalf of City of Bothell, for the specific application to the subject property. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

0+0-


We appreciate the opportunity to provide professional services on this project. Please feel free to call us if you have any questions or need more information.

Sincerely,

HWA GEOSCIENCES INC.

Norm Nielsen, LG, LHG Senior Hydrogeologist

Arnie Sugar, LG, LHG President

	Dothen	Former Hertz	2 Facility	
Release area	Former USTs	Form	er UST	Wooden storm drain catch basin Diesel and lube
ТРН Туре	Gasoline and diesel	Kerc	osene	oil range hydrocarbons
Sample	H-PEX-1-6	H-PEX-2-6	H-PEX-3-4	H-PEX-11-6
Calculated Method B TPH cleanup level for direct skin contact (mg/Kg)	3,504	4,035	2,505	2,954
Most stringent soil risk criterion for direct skin contact	Hazard Index	Hazard Index	cPAHs mixture	Hazard Index
Method B soil TPH concentration protective of ground water (mg/Kg)	13,263	220	100% NAPL ¹	100% NAPL
Most stringent soil risk criterion for protection of ground water	Total risk = 1E-5	Hazard Index Risk 1E-6	Hazard Index Total risk 1E-5 cPAHs mixture	Hazard Index Total risk 1E-5 cPAHs mixture
Method A soil cleanup levels (mg/Kg)	30 ² (G) 2000 (D) 2000 (O) 0.03 (Benzene) 7 (Toluene) 6 (Ethylbenzene) 9 (Xylenes)		2000 (D) 2000 (O) 0.03 (Benzene) 7 (Toluene) 6 (Ethylbenzene) 9 (Xylenes)	

Table 1Summary of Method B Soil TPH Risk CalculationsBothell Former Hertz Facility

Notes:

1 - 100% NAPL means soil containing free product would not produce a TPH concentration \ge 800 µg/L in ground water

2 - Cleanup level for gasoline mixtures with benzene

TABLE 2 SOIL CLEANUP ANALYTICAL RESULTS BOTHELL FORMER HERTZ FACILITY (all results in milligrams per kilogram (mg/kg))

		Confirmatio	on Sample ¹	1					(an results in	8												
Sample location	Sample Depth ft bgs	Sidewall	Bottom	Diesel	Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xvlenes	Arsenic	Barium	Cadmium	Chromium	Lead	Mercurv	Selenium	Silver	Total Naphthalenes ²	cPAHs TEC ³	PCBs	Notes
H-TP-1-3	3			<29	<58	<6.5	< 0.02	< 0.065	< 0.065	< 0.065										-		
H-TP-1-8	8			25000	<610	<71	<0.14	<0.71	2.1	9.4												
H-TP-2-4	4			<27	<55	<5.5	< 0.02	< 0.055	< 0.055	< 0.055												
H-TP-2-10 H-TP-3-3	10 3	Х		<33 <29	<66 140	<7.3 <7	<0.02 <0.02	<0.073	<0.073 <0.07	<0.073 <0.07												
H-TP-3-8	8	~	Х	<32	<64	<7.4	<0.02	<0.074	<0.074	<0.074												
H-TP-4-3	3	Х		<29	<58	<4.6	<0.02	< 0.046	<0.046	< 0.046												
H-TP-4-7	7		Х	<31	<61	<6.5	<0.02	< 0.065	< 0.065	< 0.065												
H-TP-5-4 H-TP-5-7	4			<27 <32	<54 <63	<6.3 <6.4	<0.02 <0.02	<0.063 <0.064	<0.063 <0.064	<0.063 <0.064												
H-TP-6-3	3			2700	11000	150	<0.02	< 0.054	0.055	0.23												
H-TP-6-6	6			1600	7500	200	<0.023	<0.12	<0.12	0.26												
H-TP-6-7	4			70	420	10	<0.02	<0.074	<0.074	<0.074												
H-TP-7-5	5			<28	<56	<5.7	<0.02	< 0.057	<0.057	< 0.057												
H-TP-7-7 H-TP-8-5	75	Х		<32 <28	110 120	<7 6.2	<0.02 <0.02	<0.07 <0.058	<0.07 <0.058	<0.07 <0.058												
H-TP-8-7	5	^	Х	<20	<60	<6	<0.02	< 0.058	<0.058	< 0.058												
H-TP-9-4	4			<28	<56	<7.3	<0.02	< 0.073	<0.073	< 0.073	<11	43	< 0.56	27	<5.6		<11	< 0.56				
H-TP-9-7	7			92	<60	<6.6	<0.02	<0.066	< 0.066	<0.066	<12	73	<0.60	42	7.6	<0.3	<12	<0.60				
H-TP-10-3	3			<28	<56	<6.5	< 0.02	< 0.065	<0.065	< 0.065	<11	46	< 0.56	31	<5.6	< 0.28	<11	< 0.56				
H-TP-10-7 H-TP-11-4	7 4	Х		1900 <30	<65 <60	<16 <7.3	<0.033 <0.02	<0.16 <0.073	1 <0.073	7.59 <0.073	<13 <12	53 95	<0.65 <0.60	28 29	<6.5 <6	<0.33 <0.3	<13 <12	<0.65 <0.60				
H-TP-11-7	7	~	Х	<32	<64	<6.4	<0.02	< 0.064	<0.064	< 0.064	<13	56	<0.63	39	<6.3	<0.32	<12	< 0.63				
H-TP-12-3	3			<28	<57	<5.9	<0.02	< 0.059	< 0.059	< 0.059	<11	70	< 0.57	30	<5.7		<11	< 0.57				
H-TP-12-7	7			<30	<60	<6.9	<0.02	< 0.069	< 0.069	<0.069	<12	40	<0.60	21	<6	<0.3	<12	<0.60				
H-TP-13-3	3			<820	2200	750	< 0.047	< 0.24	0.67	1.9	<11	44	< 0.56	31	7.1	<0.28	<11	< 0.56				
H-TP-13-8 H-TP-14-3	8			6100 <28	5400 <56	1700 <5	<0.1 <0.02	<0.52 <0.05	1.1 <0.05	2.9 <0.05	<12 <11	58 41	<0.60 <0.56	24 28	58 <5.6	<0.3 <0.28	<12 <11	<0.60 <0.56				
H-TP-14-8	8			<510	1200	2100	0.079	<0.03	0.37	<0.05 4.1	<12	41	< 0.58	33	<0.0 9.5	< 0.28	<12	< 0.50				
H-TP-15-3	3			<620	2300	<5.5	<0.02	< 0.055	0.11	0.38	<11	45	< 0.55	31	24		<11	<0.55				
H-TP-15-8	8			<110	280	120	<0.02	<0.051	0.7	0.18	<11	42	<0.56	26	<5.6	<0.28	<11	<0.56				
H-TP-16-3	3	Х	V	<30	190	57	< 0.02	< 0.076	< 0.076	0.15												
H-TP-16-7 H-TP-17-3	7	Х	Х	<140 <31	290 99	72 <7.5	<0.02 <0.02	<0.066 <0.075	<0.066 <0.075	<0.066 <0.075												
H-TP-17-6	6	~	Х	<31	<62	<7.3	<0.02	<0.073	<0.073	<0.073												
H-TP-18-3	3			<28	<56	<5.3	<0.02	< 0.053	< 0.053	< 0.053												
H-TP-18-7	7			<1600	2300	1900	<0.058	<0.29	0.95	5.7												
H-TP-19-4 H-TP-19-6	4			<130	450	<6.2 <5.8	< 0.02	< 0.062	< 0.062	< 0.062												
H-TP-19-6 H-TP-20-3	6			<55 <27	220 <54	< 5.5	<0.02	<0.058 <0.055	<0.058 <0.055	<0.058 <0.055									-			
H-TP-20-6	6			<1700	5800	18	<0.028	0.83	<0.14	<0.14												
H-TP-21-2	2			<580	2300	20	<0.02	< 0.061	<0.061	< 0.061												
H-TP-21-7	7			<29	110	<5.4	<0.02	< 0.054	<0.054	<0.054												
H-TP-22-8 H-TP-23-7	8		Х	<63 5400	300 680	12 <30	<0.020 <0.060	<0.064	0.27	1.39												
H-TP-23-7 H-TP-24-3	3	Х		<55	200	<6.4	< 0.060	<0.30	<0.064	<0.064												
H-TP-24-8	8		Х	<29	<58	<5.1	<0.02	<0.051	<0.051	<0.051												
H-TP-25-2	2			<28	<56	<6.3	<0.02	< 0.063	< 0.063	< 0.063												
H-TP-25-8	8			5400	1700	<16	< 0.032	< 0.16	0.31	0.42												
H-TP-26-4 H-TP-26-9	<u>4</u> 9			<28 3600	150 1800	<6.0 <28	<0.020	<0.060	<0.060 0.53	<0.060 0.72												
H-TP-20-9 H-TP-27-5	5	Х		<30	<59	<5.7	<0.030	<0.28	<0.057	< 0.057												
H-TP-27-9	9		Х	<31	<62	<6.8	<0.020	<0.068	< 0.068	<0.068												
H-TP-28-9	9		Х	<29	<59	<5.1	<0.020	<0.051	<0.051	<0.051												
H-TP-29-6	6	Х		<31	<62	<4.6	< 0.020	< 0.046	< 0.046	< 0.046	.40	<u> </u>	.0.0	25	.0	.0.2	.10	.0.00	0.494	0.000	-0.000	
H-PEX-1-6 H-PEX-2-6	6			220 <400	280 720	270 390	0.0013 <0.0014	<0.0053	0.015 <0.0014	<0.0011 0.0021	<12 <11	69 41	<0.6 <0.56	35 27	<6 18	<0.3 <0.28	<12 <11	<0.60	0.181 0.054			EPH VPH Analyses EPH VPH Analyses
H-PEX-3-4	4			2400 1800	7300	22	<0.0014	< 0.0055	<0.0014	0.0021	<12	79	<0.50	26	130	< 0.28	<12	< 0.61	2.893			EPH VPH Analyses
H-PEX-4-8	8		Х			<8.4	<0.020	< 0.084	<0.084	< 0.084	<14											
H-PEX-5-8	8		Х			<31	<0.31	<0.31	<0.31	<0.31	<17											
H-PEX-6-4	4	V	Х			<6.2	< 0.020	< 0.062	<0.062	< 0.062	<12											
H-PEX-7-5 H-PEX-8-6	5	X				<7.9 <10	<0.020 <0.021	<0.079 <0.10	<0.079 <0.10	<0.079 <0.10	<13 <11											
H-PEX-9-5	5	^	Х	820	<110	<14	<0.021	<0.10	<0.14	<0.10	\$11											
H-PEX-10-7	7	Х		600	86	<12	<0.023	<0.12	<0.12	<0.12												

TABLE 2 SOIL CLEANUP ANALYTICAL RESULTS BOTHELL FORMER HERTZ FACILITY (all results in milligrams per kilogram (mg/kg))

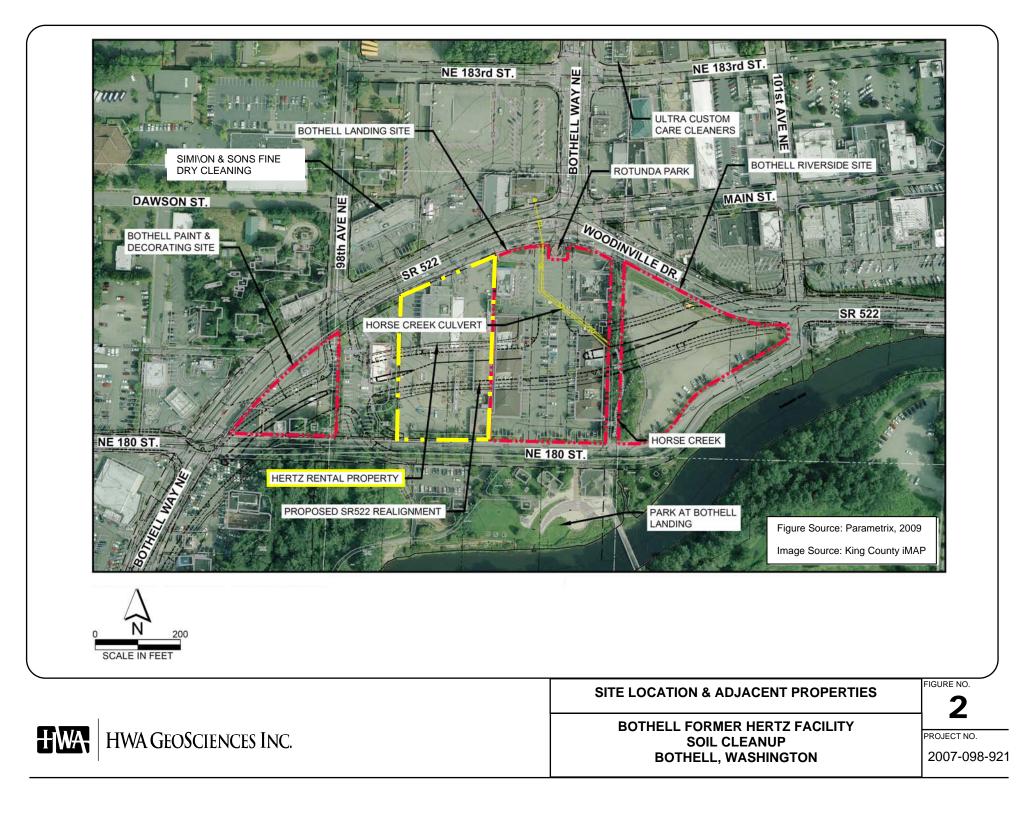
		Confirmatio	on Sample ¹	1					(an results in	g. u	ino per i		(g/ g/)									
Sample location	Sample Depth ft bgs	Sidewall	Bottom	Diesel	Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Naphthalenes ²	cPAHs TEC ³		Notes
H-PEX-11-6	6			1900	2700	<13	<0.027	<0.13	<0.13	0.38	<11	50	<0.57	23	37	<0.29	<11	<0.57	23.8	0.061		EPH VPH analyses of soil next to buried wood catch basin
H-PEX-12-12	12	Х		<31	<61	<5.7	<0.020	< 0.057	< 0.057	< 0.057												
H-PEX-13-14	14			<120	700	15	<0.029	<0.15	<0.15	<0.15												Removed
H-PEX-14-14	14		Х	<91	390	<32	<0.32	< 0.32	< 0.32	< 0.32												
H-PEX-15-10	10		Х	<33	<65	<7.2	<0.020	< 0.072	< 0.072	< 0.072												
H-PEX-16-14	14		Х	<130	980	30	< 0.053	<0.27	<0.27	0.94												
H-PEX-17-7	7	Х		<31	<61	<7.2	< 0.020	< 0.072	< 0.072	< 0.072												
H-PEX-18-11	11		Х	300	320	<6.9	<0.020	< 0.069	< 0.069	< 0.069												
H-PEX-19-6	6			320	740	<7.0	< 0.020	< 0.070	< 0.070	<0.070												Removed
H-PEX-20-6	6		Х	<32	<64	<7.3	< 0.020	< 0.073	< 0.073	< 0.073												
H-PEX-21-16	16		Х	<33	<65	<6.8	<0.020	<0.068	<0.068	<0.068												Over excavation of H-PEX-13-14
H-PEX-22-12	12		Х	<30	<60	<6.3	< 0.020	< 0.063	< 0.063	< 0.063												
H-PEX-23-9	9			<310	1600	12	< 0.020	< 0.061	< 0.061	< 0.061												Removed
H-PEX-24-6	6	Х		<27	58	<5.7	< 0.020	< 0.057	< 0.057	< 0.057	<11	49	< 0.55	25	28	<0.27	<11	< 0.55				Over excavation of H-PEX-19-6
H-PEX-25-6	6	Х		41	220	<6.5	< 0.020	< 0.065	< 0.065	< 0.065	<11	49	< 0.56	23	22	<0.28	<11	< 0.56				
H-PEX-26-8	8	Х		<30	81																	Over excavation of H-PEX-23-9
Stockpiles																						
H-SP-1				<28	<56	<5.5	< 0.020	< 0.055	< 0.055	< 0.055	<11	37	< 0.56	21	8.2	<0.28	<11	< 0.56	0.000	0.000		
H-SP-2				55	250	<7.2	< 0.020	< 0.072	< 0.072	< 0.072	<12	48	<0.61	25	31	< 0.31	<12	<0.61	0.710	0.081		
H-SP-3				<28	250	<5.1	< 0.020	< 0.051	< 0.051	< 0.051	<11	34	< 0.56	17	19	<0.28	<11	< 0.56	0.037	0.020		
HZ-SP-101110-1				<29	<57						<11		<0.57	31	<5.7	<0.29						
HZ-SP-101110-2				<29	100						<12		< 0.59	30	13	<0.29						
HZ-SP-101110-3				<33	230						<12		< 0.58	24	14	<0.29						
HZ-SP-101110-4				<52	320						<12		< 0.62	30	91	<0.31						
HZ-SP-101110-5				<31	220						<12		< 0.62	30	28	<0.31						
	MTCA N	lethod A Cle	anup Level ⁴	20	00	100/30 ⁵	0.03	7	6	9	20	NA	2	2000/19 ⁶	250	2	NA	NA	5	0.100	1	
	MTCA N	lethod B Cle	anup Level ⁷	2954 (220 for l	- 4035 (erosene)	3504	18	6,400	800	160,000	24	16,000	80	120,000	NA	24	400	400			0.5	
		В	ackground ⁸	N	A	NA	NA	NA	NA	NA	7	255	1	48	24	0.07	0.78	0.61	NA	NA	NA	
Notes:				-		•	•	•	•	•	•	•	•	•		•	•	•	•	•		•

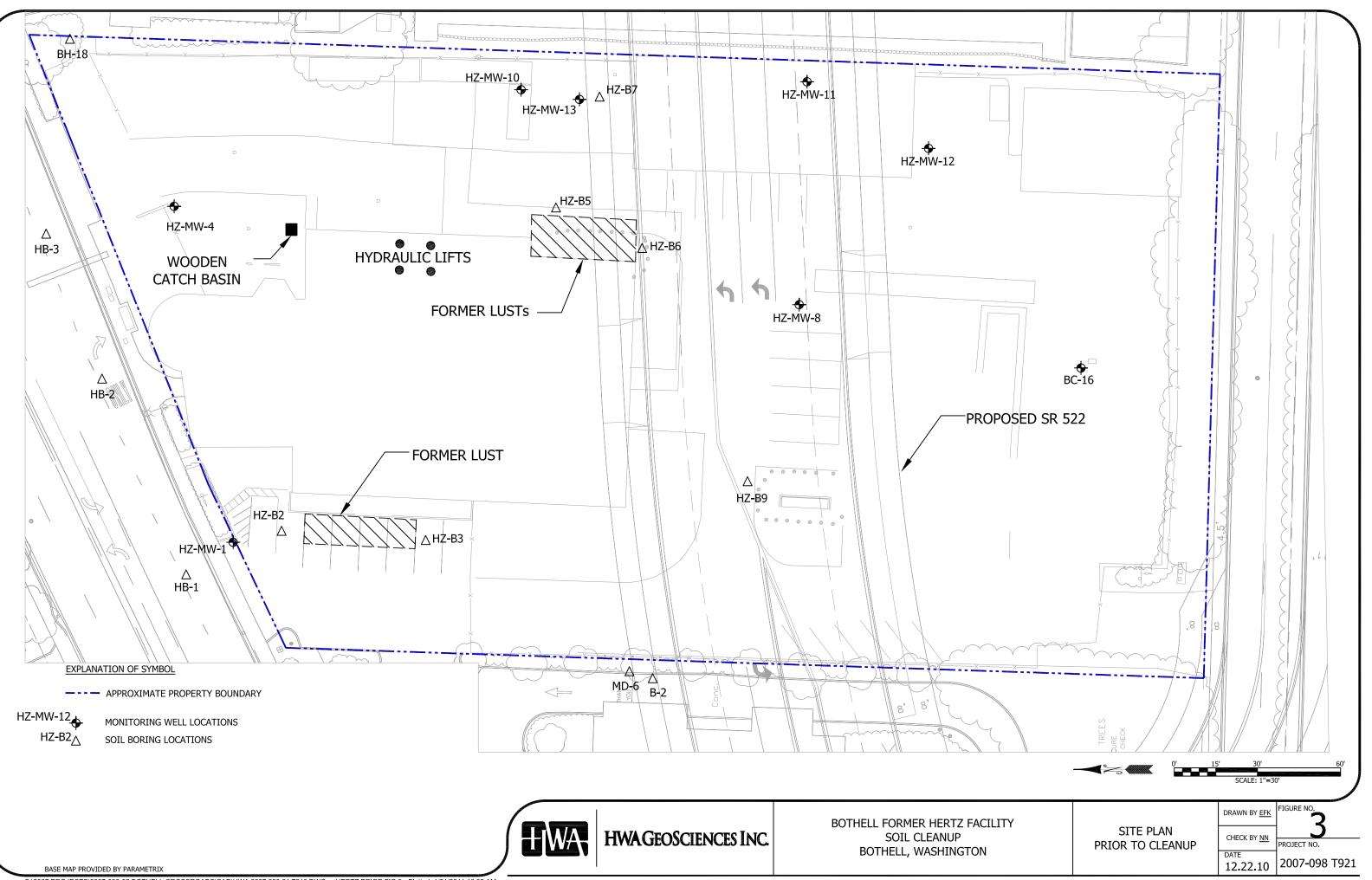
Notes: < - Not detected at laboratory's reporting limit

Blank - Sample was not analyzed for this constituent

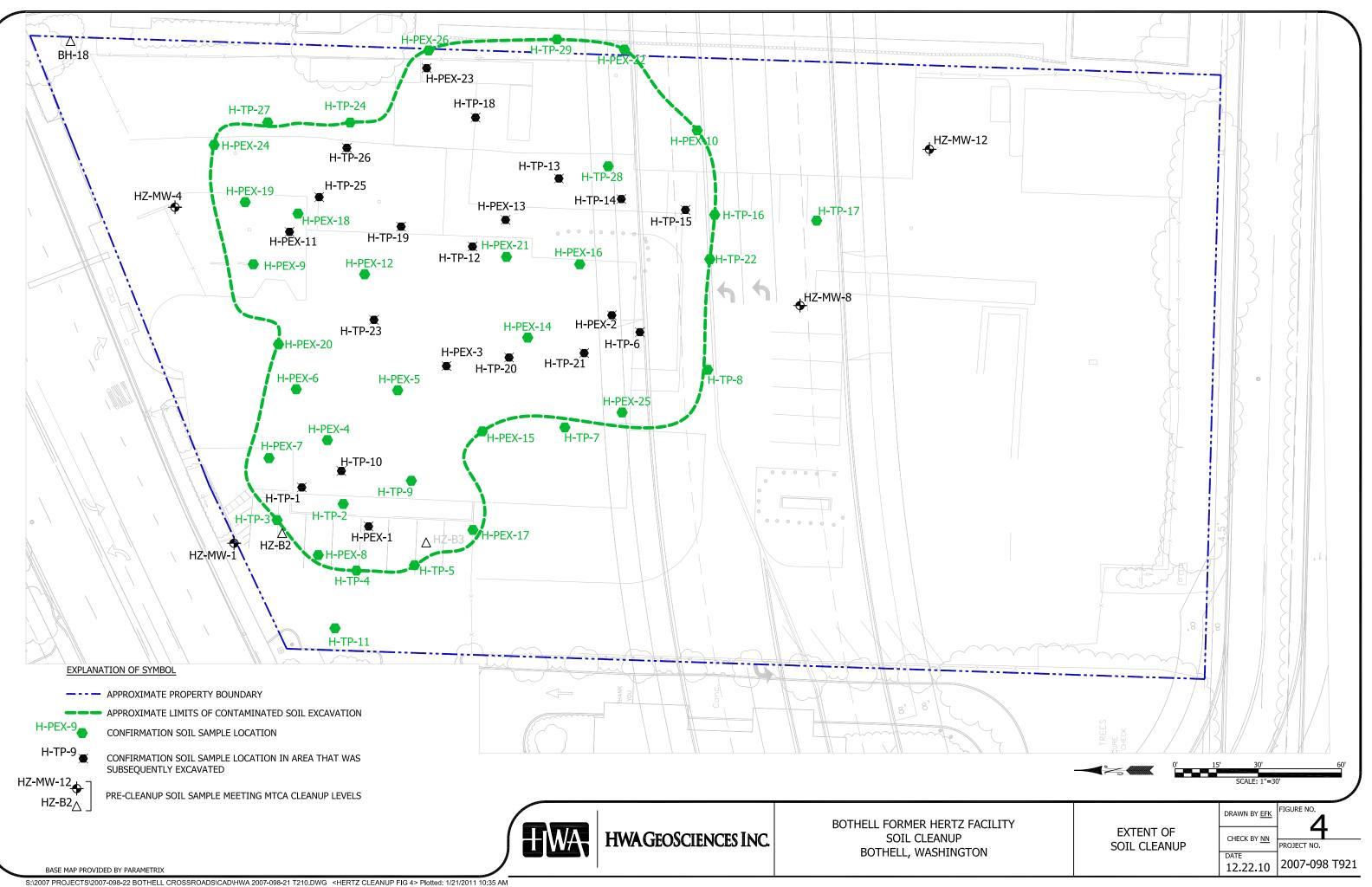
NA - Not applicable

Bold - Analyte Detected


Bold - Analyte Detected Bold/Highlighted - Sample in area that was subsequently excavated 1 - Contimution that soil remaining in place meets MTCA cleanup levels or was left in place at the limits of excavation adjacent to SR 522 2 - Sum of Napthalene + 1-Methylnaphthalene + 2-Methylnaphthalene


2 - Sum of Naphralement + I-Weitry/maphralement + Z-Weitry/maphralement
 3 - Toxic Equivalent Concentration of carcinogenic polynuclear aromatic hydrocarbons (cPAHs) per WAC 173-340-708(e)
 4 - Washington Model Toxics Control Act Method A (Table 740-1) soil cleanup levels for unrestricted land use
 5 - The MTCA Method A soil cleanup level is 100 mg/kg for gasoline mixtures without benzene and if the total of ethylbenzene, toluene, plus xylenes is less than 1% of the gasoline mixture. The soil cleanup level for all other gasoline mixtures is 30 mg/kg

6 - The MTCA Method A soil cleanup level for trivalent chromium is 2,000 mg/kg. Geochemical conditions on site would not cause oxidation to hexavalent chromium having a cleanup level of 19 7 - Method B TPH cleanup levels are site specific values calculated using MTCATPH1.1. Method B cleanup levels for metals are from Ecology's CLARC (Cleanup Level & Risk Calculations) database for non-carcinogens


8 - Background metals concentrations per Natural Background Soil Metals Concentrations in Washington State (Ecology, 1994) for the Puget Sound area

S:2007 PROJECTS/2007-098-22 BOTHELL CROSSROADS/CAD/HWA 2007-098-21 T210.DWG </P>

APPENDIX A

DETERMINATION OF RISK-BASED CLEANUP LEVELS FOR THE SITE

MA HWA GEOSCIENCES INC.

Geotechnical & Pavement Engineering • Hydrogeology • Geoenvironmental • Planning & Permitting • Inspection & Testing

November 4, 2010 HWA Project No. 2007 098-921

City of Bothell 9654 NE 182nd St. Bothell, Washington 98021

Attention: Nduta Mbuthia, Project Engineer, Public Works Capital Projects

Subject: CLEANUP LEVEL DETERMINATION Former Hertz Rentals Property Interim Action Cleanup Bothell, Washington

Dear Ms. Mbuthia:

This letter describes HWA GeoSciences Inc. (HWA's) determination of risk-based soil cleanup levels at the former Hertz Rentals property, per the Interim Action Work Plan dated May 7, 2010.

1.0 Introduction

The City of Bothell conducted an interim action cleanup at the former Hertz Rentals property (Hertz site) in August and September 2010, consisting of excavation and off site treatment/disposal of metals and petroleum contaminated soils.

In order to establish soil cleanup levels, selected soil samples were collected and analyzed for petroleum hydrocarbon fractionation (VPH/EPH) and other target compounds (BTEX, cPAHs, EDB, EDC, MTBE). The results of the VPH/EPH analyses were then input into Ecology's MTCATPH11.1 spreadsheet model to determine TPH cleanup levels that are protective of direct contact and ground water, per the Ecology approved Interim Action Work Plan. Information regarding the use of petroleum hydrocarbon fractionation data and Ecology's MTCAPH11.1 model to calculate the risk at a petroleum contaminated site is presented in *Workbook Tools for Calculating Soil and Ground Water Cleanup Levels under the Model Toxics Control Act Cleanup Regulation User's Guide* (Ecology Publication No. 01-09-073).

2.0 Method B Soil Cleanup Levels

MTCA Method B cleanup levels are the universal cleanup levels that typically employ a risk-based approach as outlined in WAC 173-340-708. Cleanup levels for a particular

21312 30th Drive SE Suite 110 Bothell, WA 98021.7010

> Tel: 425.774.0106 Fax: 425.774.2714 www.hwageo.com

site are determined after evaluating appropriate exposure pathway endpoints (e.g., direct contact, drinking water, nonpotable ground water, surface water, soil, wildlife, etc.) based on site use, contaminant distribution, etc. The actual clean up *standard* is then based on the calculated cleanup levels, measured at the point of compliance.

HWA evaluated Hertz site soils with respect to Method B cleanup levels for TPH. Under MTCA, once the source of contamination is removed, risk-based Method B (residential exposure scenario) TPH cleanup levels can be established. Method B cleanup levels must be protective for all exposure pathways, including direct contact with soil, leaching to ground water, and volatilization to air. Per the work plan, exposure pathways evaluated include:

- Direct human contact
- Protection of ground water

The vapor/odor pathway was not evaluated at this site, per the Interim Action Work Plan due to the absence of buildings over affected areas. The ground water to surface water pathway was also not evaluated, as the site remedial investigation indicated contaminated ground water was not migrating off site towards the Sammamish River.

Soil and ground water pathways (listed above) are discussed in the following sections.

Calculation of Method B cleanup levels is based on petroleum hydrocarbon fractionation analytical methods, collectively referred to as method E-TPH, that include Ecology methods VPH/EPH for volatile and extractable petroleum hydrocarbon fractions, BTEX, gasoline additives (MTBE, EDB, and EDC), and polynuclear aromatic hydrocarbons (PAHs).

Compounds composed of carbon and hydrogen are divided into two classes: aromatic compounds, which contain benzene rings or similar rings of atoms, and aliphatic compounds, which do not contain aromatic rings. The VPH/EPH method uses a fractionation approach to evaluate complex petroleum mixtures typically found in petroleum fuels and lubricants. The VPH/EPH approach divides petroleum into 12 compound groups (7 aliphatic and 5 aromatic) based on equivalent carbon (EC) number, which relates to the boiling point of a hydrocarbon compound. Hydrocarbons in the same EC group are assumed to have similar chemical, physical, and toxicological properties for the purposes of establishing cleanup levels. Each compound group is treated as if it was an individual chemical. Risks posed by site soils are calculated for each compound group and then summed across compound groups. Predicted ground water concentrations caused by leaching from the current soil concentrations are also estimated for each compound water concentration.

2

2.1 Direct Contact Pathway

In the MTCA Method B risk analysis, the human health risk level for individual carcinogens may not exceed one-in-a-million (1×10^{-6}) . If more than one type of hazardous substance is present, the total excess carcinogenic risk level at the site may not exceed 1 in 100,000 (1×10^{-5}) . Cleanup levels protective of direct contact with soil for individual noncarcinogenic compounds are calculated in terms of hazard quotient (HQ), and for two or more compounds having similar toxic response by a hazard index (HI) that is the sum of individual hazard quotients. A HQ or HI less than 1.0 indicates an acceptable noncarcinogenic risk under MTCA Method B. Adverse effects resulting from exposure to two or more hazardous or carcinogenic compounds are assumed to be additive.

HWA used Ecology's MTCATPH11.1 electronic spreadsheet model (available at <u>http://www.ecy.wa.gov/programs/tcp/tools/toolmain.html</u>) to calculate the Method B cleanup levels protective of direct contact with soil. Table 1 summarizes the calculated Method B cleanup levels protective of the direct contact pathway; Appendix A contains the MTCATPH11.1 spreadsheet summary printouts. Per Ecology guidance (Publication No. 01-09-073 cited above), concentrations of TPH compounds not detected at the laboratory's practical quantitation limit (PQL) were entered into MTCATPH11.1 as the laboratory's method detection limit (MDL) – a value typically 5 or more times less than the practical quantitation limit.

2.2 Protection of Ground Water

Protection of ground water was evaluated for two pathways:

- Leaching from soil to ground water
- Residual soil saturation (the TPH concentration in soil at which a non aqueous phase liquid (NAPL) will form)

2.2.1 Leaching from soil to ground water

Soil cleanup levels protective of ground water may be calculated by several methods:

- Partitioning models
- Leaching tests
- Alternative fate & transport models
- Empirical demonstration

The Method B analyses used to calculate risk-based soil cleanup levels at the Hertz site included evaluation of the soil-to-ground water pathway using Ecology's partitioning models (WAC 173-340-747) for two scenarios: potable ground water and the default MTCA Method A ground water cleanup level as the protective concentrations. Table 1

summarizes the calculated Method B soil cleanup levels protective of dircet contact and ground water; Appendix A contains the MTCATPH11.1 spreadsheet summary printouts.

Release area	Former USTs	Form	er UST	Wooden storm drain catch basin			
ТРН Туре	Gasoline and diesel	Kerc	osene	Diesel and lube oil range hydrocarbons			
Sample	H-PEX-1-6	H-PEX-2-6	H-PEX-3-4	H-PEX-11-6			
Calculated Method B TPH cleanup level for direct skin contact (mg/Kg)	3,504	4,035	2,505	2,954			
Most stringent soil risk criterion for direct skin contact	Hazard Index	Hazard Index	cPAHs mixture	Hazard Index			
Method B soil TPH concentration protective of ground water (mg/Kg)	13,263	220	100% NAPL ¹	100% NAPL			
Most stringent soil risk criterion for protection of ground water	Total risk = 1E-5	Hazard Index Risk 1E-6	Hazard Index Total risk 1E-5 cPAHs mixture	Hazard Index Total risk 1E-5 cPAHs mixture			
Method A soil cleanup levels (mg/Kg)	30 ² (G) 2000 (D) 2000 (O) 0.03 (Benzene) 7 (Toluene) 6 (Ethylbenzene) 9 (Xylenes)		2000 (D) 2000 (O) 0.03 (Benzene) 7 (Toluene) 6 (Ethylbenzene) 9 (Xylenes)				
Maximum value detected on site after cleanup ³		30 (G) 820 (D) 980 (O) <0.31 (Benzene) <0.32 (Toluene) 0.27 (Ethylbenzene) 1.39 (Xylenes)					
Cleanup levels met?	Method A Yes Method B Yes TCs Yes ⁴	Method A Yes Method B Yes TCs Yes	Method A Yes Method B Yes TCs Yes	Method A Yes Method B Yes TCs Yes			

Table 1Summary of Method B Soil TPH Risk CalculationsFormer Hertz Rentals Property

Notes:

1 - 100% NAPL means soil containing free product would not produce a TPH concentration <u>>800</u> µg/L in ground water

- 2 Cleanup level for gasoline mixtures with benzene
- 3 Compliance Monitoring Plan did not specify analyses for PAHs, as these were not a contaminant of potential concern at the site
- 4 TCs: Cleanup levels for all target compounds (PAHs, EDB, EDC, MTBE, benzene, naphthalenes) were met as indicated by laboratory analysis for the individual compounds

2.2.2. Residual soil saturation

Evaluation of residual saturation concentrations is also required. Residual saturation refers to the soil concentration at which a nonaqueous phase liquid (a.k.a., NAPL or "free product") may form on or in soil or ground water. Residual saturation may be evaluated under MTCA using default screening values or an empirical demonstration. Criteria for an empirical demonstration include:

- NAPL has not formed in soil or ground water at the site
- NAPL will not form in the future, i.e., sufficient time has elapsed for migration of hazardous substances from soil into ground water to occur and that the characteristics of the site (e.g., depth to ground water and infiltration) are representative of future site conditions.

Both of these criteria are met at the site, as no NAPL has been observed in soil or ground water, and the impacted soils have likely been in place for at least 10 years prior to removal from the site.

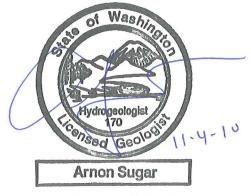
3.0 Discussion

It is possible to extrapolate the results of the risk calculation to estimate a Method B soil "cleanup level" for total TPH concentrations at the site based on the most stringent pathway. This requires the assumption that the hydrocarbon fractions in the soil sample represents the distribution of hydrocarbon fractions in all residual petroleum hydrocarbons at the site. In general, this assumption is valid for sites where the residual hydrocarbons derive from a single source, or single type of fuel, which appears to be the case at each of the three source areas at this site, based on analytical results. Using this assumption, HWA extrapolated the risk results to indicate an appropriate Method B soil cleanup level for each of the three known release areas at the site, as summarized in Table 1.

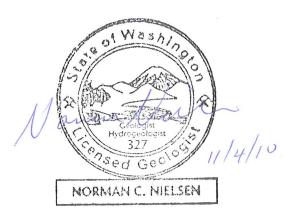
HWA evaluated the potential risk to human health and the environment based on TPH concentrations in soil. Based on the Method B evaluation, site confirmation soil samples met the Method B, residential exposure scenario TPH cleanup levels for direct contact (i.e., HI less than 1, individual compound carcinogen risk less than 1E-6, and total carcinogen risk less than 1E-5), and protection of ground water (leaching as predicted by partitioning models and empirical demonstration of residual saturation).

4.0 Summary

Confirmation soil samples met all applicable cleanup levels, including:


- Method A soil cleanup levels for TPH and all individual target compounds
- Method B soil cleanup levels for all individual target compounds
- Method B TPH soil cleanup levels protective of 1) direct contact, and 2) protection of ground water, calculated per Ecology's MTCATPH11.1.1 spreadsheet model based on the most stringent pathways

Residual soil at the site has been remediated to MTCA Method A or B cleanup levels, and therefore poses no risk to direct-contact exposure under a residential scenario, or to ground water by leaching.


We appreciate the opportunity to provide our services on this project. Please feel free to call us if you have any questions or need more information.

-0.0-

Sincerely, HWA GEOSCIENCES INC.

Arnie Sugar, LG, LHG President

Norm Nielsen, LG, LHG, PMP Senior Hydrogeologist

APPENDIX A

MTCATPH11.1 METHOD B SPREADSHEET PRINTOUTS

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date:	10/19/10
Site Name:	Bothell Crossroads, Hertz Site
Sample Name:	H-PEX-1-6

2. Enter Soil Concentra	tion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio	
	mg/kg	%	(Restore All Soil Concentration Data cleared previously)
Petroleum EC Fraction			
AL EC >5-6	5	0.51%	
AL_EC >6-8	5	0.51%	REMARK:
AL_EC >8-10	40	4.11%	Hertz site pot hole sample
AL_EC>10-12	110	11.30%	MTCA Method A cleanup level = 800 mg/Kg because benzene was detec
AL_EC>12-16	140	14.38%	in ground water in onsite monitoring wells
AL_EC >16-21	100	10.27%	
AL_EC>21-34	300	30.82%	
AR EC >8-10	47	4.83%	
AR_EC >10-12	40	4.11%	
AR EC >12-16	33	3.39%	
AR_EC >16-21	52.9984	5.45%	
AR_EC >21-34	99.9993	10.27%	
Benzene	0.0013	0.00%	
Toluene	0	0.00%	
Ethylbenzene	0.015	0.00%	
Total Xylenes	0.015	0.00%	
Naphthalene	0.064	0.01%	
1-Methyl Naphthalene	0.049	0.01%	
2-Methyl Naphthalene	0.068	0.01%	
n-Hexane	0.0603	0.01%	
MTBE	0.000017	0.00%	
Ethylene Dibromide (EDB)	0.0000266	0.00%	
1,2 Dichloroethane (EDC)	0.0000428	0.00%	
Benzo(a)anthracene	0.000338	0.00%	
Benzo(b)fluoranthene	0.00039	0.00%	
Benzo(k)fluoranthene	0.000308	0.00%	
Benzo(a)pyrene	0.000261	0.00%	
Chrysene	0.0003	0.00%	
Dibenz(a,h)anthracene	0.000342	0.00%	
Indeno(1,2,3-cd)pyrene	0.000373	0.00%	
Sum	973.2726864	100.00%	
3. Enter Site-Specific Hy	vdrogeological Da	<u>ta</u>	
Total soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground Wo	ter Concentation (if adjusted)	
If you adjusted the target TPH gr			
concentration, enter adjusted	800	ug/L	
value here:			L

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>10/19/2010</u> Site Name: <u>Bothell Crossroads, Hertz Site</u> Sample Name: <u>H-PEX-1-6</u> Measured Soil TPH Concentration, mg/kg: **973.273**

1. Summary of Calculation Results

E D-th	Mathad/Coal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	3,504	6.76E-09	2.78E-01	Pass
Contact: Human Health	Method C	49,041	1.48E-09	1.98E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	13,263	5.26E-06	8.26E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 800 ug/L	100% NAPL	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	3,504.28	49,041.15
Most Stringent Criterion	HI =1	HI =1

	Pro	tective Soil Concentra	ation @Methoo	l B	Protective S	Protective Soil Concentration @Method C				
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @		
HI =1	YES	3.50E+03	2.43E-08	1.00E+00	YES	4.90E+04	7.44E-08	1.00E+00		
Total Risk=1E-5	NO	1.44E+06	1.00E-05	4.11E+02	NO	6.59E+06	1.00E-05	1.34E+02		
Risk of Benzene= 1E-6	NO	1.36E+07	9.44E-05	3.88E+03						
Risk of cPAHs mixture= 1E-6	NO	2.30E+05	1.60E-06	6.56E+01		NA				
EDB	NO	3.98E+05	2.76E-06	1.13E+02		INA				
EDC	NO	2.31E+08	1.60E-03	6.59E+04						

3. Results for Protection of Ground Water Quality (Leaching Pathway)

Most Stringent Criterion	Total Risk = 1E-5
Protective Ground Water Concentration, ug/L	• 406.26
Protective Soil Concentration, mg/kg	13262.86

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B				
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg	
HI=1	NO	4.10E+02	1.06E-05	9.24E-01	100% NAPL	
Total Risk = 1E-5	YES	4.06E+02	1.00E-05	9.17E-01	1.33E+04	
Total Risk = 1E-6	YES	1.68E+02	1.00E-06	4.36E-01	1.05E+02	
Risk of cPAHs mixture= 1E-5	NO	4.10E+02	1.06E-05	9.24E-01	100% NAPL	
Benzene MCL = 5 ug/L	NO	4.10E+02	1.06E-05	9.24E-01	100% NAPL	
MTBE = 20 ug/L	NO	4.10E+02	1.06E-05	9.24E-01	100% NAPL	

Note: 100% NAPL is 72000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective	Protective Ground Water Concentration		
Ground water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 800 ug/L	4.10E+02	1.06E-05	9.24E-01	100% NAPL

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date:	10/19/10
Site Name:	Bothell Crossroads, Hertz Site
Sample Name:	H-PEX-2-6

2. Enter Soil Concentrat	tion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio	
	mg/kg	%	(Restore All Soil Concentration Data cleared previously)
Petroleum EC Fraction			
AL EC >5-6	5	0.62%	
AL_EC >6-8	5	0.62%	REMARK:
AL_EC >8-10	48	5.96%	Hertz site pot hole sample
AL_EC >10-12	180	22.36%	MTCA Method A cleanup level = 800 mg/Kg because benzene was detected
AL_EC >12-16	7	0.87%	in ground water in onsite monitoring wells
AL_EC >16-21	80	9.94%	
AL_EC >21-34	230	28.57%	
AR_EC >8-10	110	13.66%	
AR EC >10-12	40	4.97%	
AR_EC >12-16	11	1.37%	
AR_EC >16-21	23.9913	2.98%	
AR_EC >21-34	64.9993	8.07%	
Benzene	0.0000159	0.00%	
Toluene	0.000011	0.00%	
Ethylbenzene	0.0000096	0.00%	
Total Xylenes	0.000021	0.00%	
Naphthalene	0.032	0.00%	
1-Methyl Naphthalene	0.0088	0.00%	
2-Methyl Naphthalene	0.013	0.00%	
n-Hexane	0.0603	0.01%	
MTBE	0.000017	0.00%	
Ethylene Dibromide (EDB)	0.0000266	0.00%	
1,2 Dichloroethane (EDC)	0.0000428	0.00%	
Benzo(a)anthracene	0.000338	0.00%	
Benzo(b)fluoranthene	0.00039	0.00%	
Benzo(k)fluoranthene	0.000308	0.00%	
Benzo(a)pyrene	0.000261	0.00%	
Chrysene	0.0074	0.00%	
Dibenz(a,h)anthracene	0.000342	0.00%	
Indeno(1,2,3-cd)pyrene	0.000373	0.00%	
Sum	805.1142439	100.00%	
3. Enter Site-Specific Hy		1000 million and 1000	
Total soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground Wa		<u>f adjusted)</u>	
If you adjusted the target TPH gro	the second s	/1	
concentration, enter adjusted value here:	800	ug/L	

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>10/19/2010</u> Site Name: <u>Bothell Crossroads, Hertz Site</u> Sample Name: <u>H-PEX-2-6</u> Measured Soil TPH Concentration, mg/kg: **805.114**

1. Summary of Calculation Results

Exposure Bathway	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure Pathway	Wiethod/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	4,035	7.37E-09	2.00E-01	Pass
Contact: Human Health	Method C	67,575	1.64E-09	1.19E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	220	5.35E-06	1.32E+00	Fail
Water Quality (Leaching)	Target TPH GW Conc. @ 800 ug/L	2,618	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	4,034.80	67,574.75
Most Stringent Criterion	HI =1	HI =1

Protective Soil Concentration @Method B					Protective Soil Concentration @Method C			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @
HI =1	YES	4.03E+03	3.69E-08	1.00E+00	YES	6.76E+04	1.37E-07	1.00E+00
Total Risk=1E-5	NO	1.09E+06	1.00E-05	2.71E+02	NO	4.92E+06	1.00E-05	7.28E+01
Risk of Benzene= 1E-6	NO	9.20E+08	8.42E-03	2.28E+05				
Risk of cPAHs mixture= 1E-6	NO	1.64E+05	1.50E-06	4.06E+01		NA		
EDB	NO	3.29E+05	3.01E-06	8.15E+01	- INA			
EDC	NO	1.91E+08	1.75E-03	4.73E+04				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection			
Most Stringent Criterion	HI=1		
Protective Ground Water Concentration, ug/L	518.04		

Protective Ground Water Concentration, ug/L	518.04
Protective Soil Concentration, mg/kg	220.29

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B				
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg	
HI=1	YES	5.18E+02	2.22E-06	1.00E+00	2.20E+02	
Total Risk = 1E-5	NO	8.24E+02	1.00E-05	1.46E+00	7.32E+03	
Total Risk = 1E-6	YES	3.17E+02	1.00E-06	6.48E-01	8.85E+01	
Risk of cPAHs mixture= 1E-5	NO	8.36E+02	1.11E-05	1.48E+00	100% NAPL	
Benzene MCL = 5 ug/L	NO	8.36E+02	1.11E-05	1.48E+00	100% NAPL	
MTBE = 20 ug/L	NO	8.36E+02	1.11E-05	1.48E+00	100% NAPL	

Note: 100% NAPL is 71000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective	Protective Soil		
Ground Water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 800 ug/L	8.00E+02	8.39E-06	1.43E+00	2.62E+03

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

,

1. Enter Site Information

Date:	10/19/10
Site Name:	Bothell Crossroads, Hertz Site
Sample Name:	H-PEX-3-4

2. Enter Soil Concentra	tion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	Clear All Soil Concentration Data Entry Cells
or Equivalent Carbon Group	dry basis	Ratio	
	mg/kg	%	Restore All Soil Concentration Data cleared previously
Petroleum EC Fraction			
AL_EC >5-6	5	0.24%	
AL_EC >6-8	5	0.24%	REMARK:
AL_EC >8-10	84	4.09%	Hertz site pot hole sample
AL_EC >10-12	66	3.21%	MTCA Method A cleanup level = 800 mg/Kg because benzene was detected
AL_EC >12-16	45	2.19%	in ground water in onsite monitoring wells
AL_EC >16-21	120	5.84%	
AL_EC >21-34	1400	68.09%	
AR_EC >8-10	5	0.24%	
AR_EC >10-12	7	0.34%	
AR_EC >12-16	18	0.88%	
AR_EC >16-21	47.8039	2.33%	
AR_EC >21-34	249.9914	12.16%	
Benzene	0.0000159	0.00%	
Toluene	0.000011	0.00%	× *
Ethylbenzene	0.0000096	0.00%	
Total Xylenes	0.0015	0.00%	
Naphthalene	0.093	0.00%	
1-Methyl Naphthalene	1.2	0.06%	
2-Methyl Naphthalene	1.6	0.08%	
n-Hexane	0.0603	0.00%	
MTBE	0.000017	0.00%	
Ethylene Dibromide (EDB)	0.0000266	0.00%	
1,2 Dichloroethane (EDC)	0.0000428	0.00%	
Benzo(a)anthracene	0.035	0.00%	
Benzo(b)fluoranthene	0.012	0.00%	
Benzo(k)fluoranthene	0.0091	0.00%	
Benzo(a)pyrene	0.078	0.00%	
Chrysene	0.062	0.00%	
Dibenz(a,h)anthracene	0.000342	0.00%	
Indeno(1,2,3-cd)pyrene	0.0083	0.00%	
Sum	2055.954923	100.00%	
3. Enter Site-Specific Hy	drogeological Da	ta	
Total soil porosity:	0.43	Unitless	
Volumetric water content:			
Volumetric air content:	0.3	Unitless	
Soil bulk density measured:	0.13	Unitless	
Fraction Organic Carbon:	0.001	kg/L Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground Water Concentation (if adjusted) If you adjusted the target TPH ground water			
concentration, enter adjusted	800	ug/L	
value here:	000	ug/ L/	

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>10/19/2010</u> Site Name: <u>Bothell Crossroads, Hertz Site</u> Sample Name: <u>H-PEX-3-4</u> Measured Soil TPH Concentration, mg/kg: **2,055.955**

1. Summary of Calculation Results

Exposure Pathway	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure ratiway	Wiethou/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,505	8.23E-07	2.67E-01	Pass
Contact: Human Health	Method C	100,673	2.04E-07	1.97E-02	Pass
Protection of Method B Ground	Potable GW: Human Health Protectior	100% NAPL	4.03E-06	1.60E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 800 ug/L	100% NAPL	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494). Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,504.80	100,673.17
Most Stringent Criterion	Risk of cPAHs mixture= 1E-6	Total Risk=1E-5

	Pro	Protective Soil Concentration @Method B				Protective Soil Concentration @Method C			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	
HI=1	NO	7.70E+03	3.08E-06	1.00E+00	NO	1.05E+05	1.04E-05	1.00E+00	
Total Risk=1E-5	NO	2.50E+04	1.00E-05	3.24E+00	YES	1.01E+05	1.00E-05	9.63E-01	
Risk of Benzene= 1E-6	NO	2.35E+09	9.40E-01	3.05E+05					
Risk of cPAHs mixture= 1E-6	YES	2.50E+03	1.00E-06	3.25E-01	NA				
EDB	NO	8.40E+05	3.36E-04	1.09E+02					
EDC	NO	4.88E+08	1.95E-01	6.33E+04	-				

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Met	hod B): Human Health Protection
Most Stringent Criterion	NA
Protective Ground Water Concentration, ug/L	NA
Protective Soil Concentration, mg/kg	Soil-to-Ground Water is not a critical pathway!

Ground Water Criteria	Protective	Protective Potable Ground Water Concentration @Method B					
Ground water Criteria	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg		
HI=1	YES	5.95E+01	6.73E-06	1.72E-01	100% NAPL		
Total Risk = 1E-5	YES	5.95E+01	6.73E-06	1.72E-01	100% NAPL		
Total Risk = 1E-6	YES	3.14E+01	1.00E-06	1.08E-01	2.46E+02		
Risk of cPAHs mixture= 1E-5	YES	5.95E+01	6.73E-06	1.72E-01	100% NAPL		
Benzene MCL = 5 ug/L	YES	5.95E+01	6.73E-06	1.72E-01	100% NAPL		
MTBE = 20 ug/L	YES	5.95E+01	6.73E-06	1.72E-01	100% NAPL		

Note: 100% NAPL is 72000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective	Protective Soil		
Ground Water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 800 ug/L	5.95E+01	6.73E-06	1.72E-01	100% NAPL

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

1. Enter Site Information

Date:	10/19/10
Site Name:	Bothell Crossroads, Hertz Site
Sample Name:	H-PEX-11-6

2. Enter Soil Concentra	tion Measured		Notes for Data Entry Set Default Hydrogeology
Chemical of Concern	Measured Soil Conc	Composition	
or Equivalent Carbon Group	dry basis	Ratio	Clear All Soil Concentration Data Entry Cells
	mg/kg	%	(Restore All Soil Concentration Data cleared previously)
Petroleum EC Fraction			
AL_EC >5-6	5	0.08%	
AL_EC >6-8	9.3	0.15%	REMARK:
AL_EC >8-10	17	0.28%	Hertz site pot hole sample
AL_EC >10-12	290	4.81%	MTCA Method A cleanup level = 800 mg/Kg because benzene was detected
AL_EC >12-16	1100	18.24%	in ground water in onsite monitoring wells
AL_EC >16-21	870	14.42%	
AL EC >21-34	1200	19.89%	
AR_EC >8-10	65.3700	1.08%	
AR_EC >10-12	61	1.01%	
AR EC >12-16	780	12.93%	
AR EC >16-21	799.6112	13.26%	
AR_EC >21-34	809.9797	13.43%	
Benzene	0.0000159	0.00%	
Toluene	0.000011	0.00%	
Ethylbenzene	0.25	0.00%	
Total Xylenes	0.38	0.01%	
Naphthalene	1.4	0.02%	
1-Methyl Naphthalene	8.4	0.14%	
2-Methyl Naphthalene	14	0.23%	
n-Hexane	0.0603	0.00%	
MTBE	0.000017	0.00%	
Ethylene Dibromide (EDB)	0.0000266	0.00%	
1,2 Dichloroethane (EDC)	0.0000428	0.00%	
Benzo(a)anthracene	0.073	0.00%	
Benzo(b)fluoranthene	0.055	0.00%	
Benzo(k)fluoranthene	0.0078	0.00%	
Benzo(a)pyrene	0.043	0.00%	
Chrysene	0.21	0.00%	
Dibenz(a,h)anthracene	0.000342	0.00%	
Indeno(1,2,3-cd)pyrene	0.02	0.00%	
Sum	6032.160455	100.00%	
2 Ender 04 9			
3. Enter Site-Specific Hy			
Total soil porosity:	0.43	Unitless	
Volumetric water content:	0.3	Unitless	
Volumetric air content:	0.13	Unitless	
Soil bulk density measured:	1.5	kg/L	
Fraction Organic Carbon:	0.001	Unitless	
Dilution Factor:	20	Unitless	
4. Target TPH Ground Wa		<u>f adjusted)</u>	
f you adjusted the target TPH gro		~	
concentration, enter adjusted	800	ug/L	
value here:			5

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Main Data Entry Form and Calculation Summary

A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750 Site Information

Date: <u>10/19/2010</u> Site Name: <u>Bothell Crossroads, Hertz Site</u> Sample Name: <u>H-PEX-11-6</u> Measured Soil TPH Concentration, mg/kg: **6,032.160**

1. Summary of Calculation Results

Exposure Pathway	Method/Goal	Protective Soil	With Measu	red Soil Conc	Does Measured Soil
Exposure ratilway	Method/Goal	TPH Conc, mg/kg	RISK @	HI @	Conc Pass or Fail?
Protection of Soil Direct	Method B	2,954	5.88E-07	2.04E+00	Fail
Contact: Human Health	Method C	37,194	1.46E-07	1.62E-01	Pass
Protection of Method B Ground	Potable GW: Human Health Protection	100% NAPL	1.45E-06	4.30E-01	Pass
Water Quality (Leaching)	Target TPH GW Conc. @ 800 ug/L	100% NAPL	NA	NA	Pass

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494). Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

	Method B: Unrestricted Land Use	Method C: Industrial Land Use
Protective Soil Concentration, TPH mg/kg	2,953.52	37,194.47
Most Stringent Criterion	HI =1	HI =1

	Pro	Protective Soil Concentration @Method B				Protective Soil Concentration @Method C			
Soil Criteria	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	Most Stringent?	TPH Conc, mg/kg	RISK @	HI @	
HI=1	YES	2.95E+03	2.88E-07	9.99E-01	YES	3.72E+04	8.99E-07	9.99E-01	
Total Risk=1E-5	NO	1.03E+05	1.00E-05	3.47E+01	NO	4.14E+05	1.00E-05	1.11E+01	
Risk of Benzene= 1E-6	NO	6.89E+09	6.72E-01	2.33E+06					
Risk of cPAHs mixture= 1E-6	NO	1.03E+04	1.00E-06	3.48E+00	NA				
EDB	NO	2.46E+06	2.40E-04	8.34E+02					
EDC	NO	1.43E+09	1.39E-01	4.84E+05					

3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Met	thod B): Human Health Protection		
Most Stringent Criterion	NA		
Protective Ground Water Concentration, ug/L NA			
Protective Soil Concentration, mg/kg Soil-to-Ground Water is not a critical pathway!			

Ground Water Criteria	Protective	Potable Ground Water	Concentration @M	1ethod B	Protective Soil
Ground water enterna	Most Stringent?	TPH Conc, ug/L	RISK @	HI @	Conc, mg/kg
HI=1	YES	1.57E+02	1.67E-06	4.36E-01	100% NAPL
Total Risk = 1E-5	YES	1.57E+02	1.67E-06	4.36E-01	100% NAPL
Total Risk = 1E-6	YES	1.47E+02	1.00E-06	4.10E-01	1.49E+03
Risk of cPAHs mixture= 1E-5	YES	1.57E+02	1.67E-06	4.36E-01	100% NAPL
Benzene MCL = 5 ug/L	YES	1.57E+02	1.67E-06	4.36E-01	100% NAPL
MTBE = 20 ug/L	YES	1.57E+02	1.67E-06	4.36E-01	100% NAPL

Note: 100% NAPL is 77000 mg/kg TPH.

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

Ground Water Criteria	Protective	Protective Soil		
Ground Water Criteria	TPH Conc, ug/L	Risk @	HI @	Conc, mg/kg
Target TPH GW Conc = 800 ug/L	1.57E+02	1.67E-06	4.36E-01	100% NAPL

APPENDIX B

LABORATORY CERTIFICATES OF ANALYSIS

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1008-237

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on August 31, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 30, 2010 and received by the laboratory on August 31, 2010. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-G/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The MTCA Method A clean-up level for Benzene in sample H-TP-1-8 is non-achievable due to the necessary dilution of the sample.

The chromatograms for samples H-TP-6-3 and H-TP-6-6 are similar to mineral spirits.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

oo				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-1-3					
Laboratory ID:	08-237-01					
Diesel Range Organics	ND	29	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	58	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	H-TP-1-8					
Laboratory ID:	08-237-02					
Diesel Fuel #1	25000	300	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	610	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	H-TP-2-10					
Laboratory ID:	08-237-04					
Diesel Range Organics	ND	33	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	66	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	H-TP-2-4					
Laboratory ID:	08-237-05					
Diesel Range Organics	ND	27	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	55	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	H-TP-3-3					
Laboratory ID:	08-237-06					
Diesel Range Organics	ND	29	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil	140	59	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	H-TP-3-8					
Laboratory ID:	08-237-07					
Diesel Range Organics	ND	32	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	64	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits			<u>.</u>	
o-Terphenyl	101	50-150				
, ,	-					

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-4-3					
Laboratory ID:	08-237-08					
Diesel Range Organics	ND	29	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	58	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	H-TP-4-7					
Laboratory ID:	08-237-09					
Diesel Range Organics	ND	31	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	61	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	H-TP-5-4					
Laboratory ID:	08-237-10					
Diesel Range Organics	ND	27	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	54	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	H-TP-5-7					
Laboratory ID:	08-237-11					
Diesel Range Organics	ND	32	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	63	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	H-TP-6-3					
Laboratory ID:	08-237-12					
Diesel Range Organics	2700	140	NWTPH-Dx	9-1-10	9-2-10	Ν
Lube Oil	11000	280	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Client ID:	H-TP-6-6					
Laboratory ID:	08-237-13					
Diesel Range Organics	1600	140	NWTPH-Dx	9-1-10	9-2-10	Ν
Lube Oil	7500	290	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

onits. hig/kg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-6-7					
Laboratory ID:	08-237-14					
Diesel Range Organics	70	33	NWTPH-Dx	9-1-10	9-2-10	Ν
Lube Oil	420	65	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	H-TP-7-5					
_aboratory ID:	08-237-15					
Diesel Range Organics	ND	28	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	H-TP-7-7					
Laboratory ID:	08-237-16					
Diesel Range Organics	ND	32	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil	110	63	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	H-TP-8-5					
Laboratory ID:	08-237-17					
Diesel Range Organics	ND	28	NWTPH-Dx	9-1-10	9-1-10	
_ube Oil	120	56	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	H-TP-8-7					
Laboratory ID:	08-237-18					
Diesel Range Organics	ND	30	NWTPH-Dx	9-1-10	9-1-10	
_ube Oil Range Organics	ND	60	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
. ,						

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

						Date	Dat	е	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB0901S1								
Diesel Range Organics	ND		25	NWTPH-D)x	9-1-10	9-1-1	10	
Lube Oil Range Organics	ND		50	NWTPH-D)x	9-1-10	9-1-1	10	
Surrogate:	Percent Recov	very	Control Limits						
o-Terphenyl	125		50-150						
				Per	cent	Recovery		RPD	
Analyte	Res	Result		Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	08-237	7-05							
	ORIG	DUF	D						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				109	101	50-150			
Laboratory ID:	08-237	7-10							
	ORIG	DUF							
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				104	98	50-150			

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-1-3					
Laboratory ID:	08-237-01					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.065	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.065	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.5	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				
Client ID:	H-TP-1-8					
Laboratory ID:	08-237-02					
Benzene	ND	0.14	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.71	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	2.1	0.71	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	6.4	0.71	EPA 8021	9-1-10	9-1-10	
o-Xylene	3.0	0.71	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	71	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-TP-2-10					
Laboratory ID:	08-237-04					
Benzene	ND	0.020	EPA 8021	9-1-10	9-2-10	
Toluene	ND	0.073	EPA 8021	9-1-10	9-2-10	
Ethyl Benzene	ND	0.073	EPA 8021	9-1-10	9-2-10	
m,p-Xylene	ND	0.073	EPA 8021	9-1-10	9-2-10	
o-Xylene	ND	0.073	EPA 8021	9-1-10	9-2-10	
Gasoline	ND	7.3	NWTPH-Gx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	55-127				

7

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-2-4					
Laboratory ID:	08-237-05					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.055	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.055	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.055	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.055	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	5.5	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				
Client ID:	H-TP-3-3					
Laboratory ID:	08-237-06					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.070	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.070	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.070	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.070	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	7.0	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	55-127				
Client ID:	H-TP-3-8					
Laboratory ID:	08-237-07					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.074	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.074	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.074	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.074	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	7.4	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				

8

Matrix: Soil Units: mg/kg (ppm)

Client ID: H-TP-4-3 Laboratory ID: 08-237-08 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.046 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.046 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 5-127 9 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 9-1-10 Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Gient ID: H-TP-5-4 Laboratory ID: 0-1-10 9-1-10 9-1-10 Surrogate: Percent Recovery <th></th> <th></th> <th></th> <th></th> <th>Date</th> <th>Date</th> <th></th>					Date	Date	
Laboratory ID: 08-237-08 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.046 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.046 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 109 55-127 Elaboratory ID: 08-237-09 Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 9-1-10 Surrogate ND 0.065 EPA 8021 9-1-10 9-1-10 9-1-10 Surogate: <td< th=""><th>Analyte</th><th>Result</th><th>PQL</th><th>Method</th><th>Prepared</th><th>Analyzed</th><th>Flags</th></td<>	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.046 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.046 EPA 8021 9-1-10 9-1-10 m.p.Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 109 55-127 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 cistylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.020<	Client ID:	H-TP-4-3					
Toluene ND 0.046 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.046 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 Fluorobenzene 109 55-127 55-127 55-127 Client ID: H-TP-4-7 Haboratory ID: 08-237-09 9-1-10 9-1-10 Benzene ND 0.005 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 102 55-127 Client ID: H-TP-5-4 <t< td=""><td>Laboratory ID:</td><td>08-237-08</td><td></td><td></td><td></td><td></td><td></td></t<>	Laboratory ID:	08-237-08					
Ethyl Benzene ND 0.046 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 109 55-127 Client ID: H-TP-4-7 Laboratory ID: 08-237-09 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Surrogate: ND 0.065 EPA 8021 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 5-5-127 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 55-127 9-1-10 9-1-10 <td>Benzene</td> <td>ND</td> <td>0.020</td> <td>EPA 8021</td> <td>9-1-10</td> <td>9-1-10</td> <td></td>	Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
ND 0.046 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 9-1-10 Surrogate: 109 55-127 Sourd State 9-1-10 9-1-10 Elaboratory ID: 08-237-09 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Surogate: ND 0.065 EPA 8021 9-1-10 9-1-10 Surogate: ND 0.065 EPA 8021 9-1-10 9-1-10 Surogate: Percent Recovery Control Limits Fluorobenzene 102 55-127 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 9-1-10	Toluene	ND	0.046	EPA 8021	9-1-10	9-1-10	
ND 0.046 EPA 8021 9-1-10 9-1-10 Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 109 55-127 9-1-10 9-1-10 9-1-10 Client ID: H-TP-4-7 Laboratory ID: 08-237-09 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 Oxylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Pit-10 9-1-10 9-1-10 Surrogate: ND <th< td=""><td>Ethyl Benzene</td><td>ND</td><td>0.046</td><td>EPA 8021</td><td>9-1-10</td><td>9-1-10</td><td></td></th<>	Ethyl Benzene	ND	0.046	EPA 8021	9-1-10	9-1-10	
Gasoline ND 4.6 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 109 55-127	m,p-Xylene	ND	0.046	EPA 8021	9-1-10	9-1-10	
Surrogate: Percent Recovery Control Limits Fluorobenzene 109 55-127 Client ID: H-TP-4-7 Laboratory ID: 08-237-09 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m.p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 55-127 9-1-10 9-1-10 Surrogate: ND 0.020 EPA 8021 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 Benzene	o-Xylene	ND	0.046	EPA 8021	9-1-10	9-1-10	
Fluorobenzene 109 55-127 Client ID: H-TP-4-7 Laboratory ID: 08-237-09 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 102 55-127 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 9-1-10 9-1-10 Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 <td>Gasoline</td> <td>ND</td> <td>4.6</td> <td>NWTPH-Gx</td> <td>9-1-10</td> <td>9-1-10</td> <td></td>	Gasoline	ND	4.6	NWTPH-Gx	9-1-10	9-1-10	
Client ID: H-TP-4-7 Laboratory ID: 08-237-09 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 Fluorobenzene 102 55-127 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 102 55-127 Client ID: H-TP-5-4 Haboratory ID: 08-237-10 9-1-10 9-1-10 Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 08-237-09 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 102 55-127 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10	Fluorobenzene	109	55-127				
Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 102 55-127 55-127 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 9-1-10 9-1-10 9-1-10 Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene	Client ID:	H-TP-4-7					
Toluene ND 0.065 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 Fluorobenzene 102 55-127 55-127 9-1-10 9-1-10 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 9-1-10 9-1-10 Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.	Laboratory ID:	08-237-09					
Ethyl Benzene ND 0.065 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 Client ID: H-TP-5-4 H-TP-5-4 Percent Recovery Percent Recovery Percent Recovery Percent Recovery Percent Recovery Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10<	Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
ND 0.065 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 102 55-127 Client ID: H-TP-5-4 H-TP-5-4 H-TP-5-4 H-TP-5-4 Laboratory ID: 08-237-10 08-237-10 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 </td <td>Toluene</td> <td>ND</td> <td>0.065</td> <td>EPA 8021</td> <td>9-1-10</td> <td>9-1-10</td> <td></td>	Toluene	ND	0.065	EPA 8021	9-1-10	9-1-10	
ND 0.065 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10 9-1-10 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 9-1-10 9-1-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 Mp-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 MD 0.063 EPA 8021 9-1-10 9-1-10 MD 0.063 EPA 8021 9-1-10 9-1-10 MD 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx	Ethyl Benzene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Gasoline ND 6.5 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Surrogate: Percent Recovery Control Limits Fluorobenzene 102 55-127 Client ID: H-TP-5-4 55-127 Laboratory ID: 08-237-10 9-1-10 Benzene ND 0.020 EPA 8021 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 Surrogate: Percent Recovery Control Limits 0-1-10	o-Xylene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Fluorobenzene 102 55-127 Client ID: H-TP-5-4 Laboratory ID: 08-237-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Surrogate: Surrogate: Surrogate:	Gasoline	ND	6.5	NWTPH-Gx	9-1-10	9-1-10	
Client ID: H-TP-5-4 Laboratory ID: 08-237-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Surrogate Surrogate Surrogate	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 08-237-10 Benzene ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Surrogate Surrogate Surrogate	Fluorobenzene	102	55-127				
ND 0.020 EPA 8021 9-1-10 9-1-10 Toluene ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 0-1-10 0-1-10	Client ID:	H-TP-5-4					
ND 0.063 EPA 8021 9-1-10 9-1-10 Ethyl Benzene ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 0.063 EPA 8021 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Surrogate Value Value	Laboratory ID:	08-237-10					
ND 0.063 EPA 8021 9-1-10 9-1-10 m,p-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 gasoline ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Surrogate Surrogate Surrogate	Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Vertex Vertex Vertex	Toluene	ND	0.063	EPA 8021	9-1-10	9-1-10	
ND 0.063 EPA 8021 9-1-10 9-1-10 o-Xylene ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits V V V	Ethyl Benzene	ND	0.063	EPA 8021	9-1-10	9-1-10	
ND 0.063 EPA 8021 9-1-10 9-1-10 Gasoline ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits Control Limits Control Limits Control Limits	m,p-Xylene	ND	0.063	EPA 8021	9-1-10	9-1-10	
ND 6.3 NWTPH-Gx 9-1-10 9-1-10 Surrogate: Percent Recovery Control Limits 9-1-10 9-1-10	o-Xylene	ND	0.063	EPA 8021	9-1-10	9-1-10	
Surrogate: Percent Recovery Control Limits	Gasoline	ND	6.3	NWTPH-Gx	9-1-10	9-1-10	
	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene	-	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-5-7					
Laboratory ID:	08-237-11					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.064	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.064	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.064	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.064	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.4	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				
Client ID:	H-TP-6-3					
Laboratory ID:	08-237-12					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.054	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	0.055	0.054	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	0.23	0.054	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.27	EPA 8021	9-1-10	9-1-10	U1
Gasoline	150	5.4	NWTPH-Gx	9-1-10	9-1-10	Z,O
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				
Client ID:	H-TP-6-6					
Laboratory ID:	08-237-13					
Benzene	ND	0.023	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.12	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.12	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	0.26	0.12	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.60	EPA 8021	9-1-10	9-1-10	U1
Gasoline	200	12	NWTPH-Gx	9-1-10	9-1-10	Z,O
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-6-7					
Laboratory ID:	08-237-14					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.074	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.074	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.074	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.074	EPA 8021	9-1-10	9-1-10	
Gasoline	10	7.4	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	55-127				
Client ID:	H-TP-7-5					
Laboratory ID:	08-237-15					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.057	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.057	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.057	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.057	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	5.7	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	55-127				
Client ID:	H-TP-7-7					
Laboratory ID:	08-237-16					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.070	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.070	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.070	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.070	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	7.0	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	55-127				

11

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-8-5					
Laboratory ID:	08-237-17					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.058	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.058	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.058	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.058	EPA 8021	9-1-10	9-1-10	
Gasoline	6.2	5.8	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-TP-8-7					
Laboratory ID:	08-237-18					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.060	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.060	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.060	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.060	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.0	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	55-127				

12

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

Surrogate:

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0901S1					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.050	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.050	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.050	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	5.0	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	55-127				
Laboratory ID:	MB0901S2					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.050	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.050	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.050	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	5.0	NWTPH-Gx	9-1-10	9-1-10	

Fluorobenzene 93 55-127

Percent Recovery Control Limits

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 0 1	/				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-23	37-17									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	ΙA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	5.51	5.30	NA	NA		Ν	JA	NA	4	30	
Surrogate:											
Fluorobenzene						100	101	55-127			
Laboratory ID:	08-23	37-18									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						98	97	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	01S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.03	1.04	1.00	1.00		103	104	75-113	1	9	
Toluene	0.989	1.01	1.00	1.00		99	101	75-116	2	10	
Ethyl Benzene	0.997	1.02	1.00	1.00		100	102	82-117	2	10	
m,p-Xylene	1.01	1.03	1.00	1.00		101	103	81-122	2	10	
o-Xylene	1.01	1.03	1.00	1.00		101	103	83-118	2	10	
Surrogate:											
Fluorobenzene						98	98	55-127			

% MOISTURE

Date Analyzed: 9-1-10

Client ID	Lab ID	% Moisture
H-TP-1-3	08-237-01	14
H-TP-1-8	08-237-02	17
H-TP-2-10	08-237-04	24
H-TP-2-4	08-237-05	9
H-TP-3-3	08-237-06	15
H-TP-3-8	08-237-07	22
H-TP-4-3	08-237-08	14
H-TP-4-7	08-237-09	18
H-TP-5-4	08-237-10	8
H-TP-5-7	08-237-11	21
H-TP-6-3	08-237-12	9
H-TP-6-6	08-237-13	13
H-TP-6-7	08-237-14	23
H-TP-7-5	08-237-15	11
H-TP-7-7	08-237-16	21
H-TP-8-5	08-237-17	10
H-TP-8-7	08-237-18	16

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The sample chromatogram is similar to mineral spirits.

ND - Not Detected at PQL

- PQL Practical Quantitation Limit
- **RPD Relative Percent Difference**

COMPANY DATE TIME REMARKS	CON Lipedy	morabel Mara Mr	11Creel Davaters	
	CON			Received by: Mic
	CON			by
		SIGNATURE	PRINT NAME	PRIN
		3	F = 51-1	H-70-8-7
		17	1415	4-10-8-5
		16	1410	H-T
			1400	H-TP-7-5
		T T	1251	5
		د ر	1042	H-10-6-6
		12	1330	478-6-3
			1300	17-7-41-41
		10	1245 1	H-TD-T-21
		A 100	1230 /	7-4-1-4
		8	1215 1	5-4-24 H
			1200 1	19第-3-8
		6	1150	H-TP-3-3
		م ر	011	H-TP- 2-4
		2	114,	H.TP-2-14
		دى	1170	H-70 2-6
		2	1115	4-1:97-8
		2	8/3 J.J. 1100 5	H.TP-1-3 0
90 M REMARKS	Nur	LAB ID BOTTLE	DATE TIME MATRIX	HWA SAMPLE ID
OIST	(? 1+ ;? 1+	PHONE:		HWA CONTACT:
	D* .9/r			SAMPLERS SIGNATURE:
- yr yr)=7+	PHONE:	4	NAN
			HERTZ REMAN	à
NALYSIS REQUESTED	ANALYS	# 2007-095	Bather	PROJECT NAME:
n of Custody bry Analysis Request PAGE: of	Chain of Custody and Laboratory Analysis Request	NC. 136 (425) 774-0106	HWA GEOSCIENCES INC. 19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106	19730 64th Ave. 1
].		

DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1009-011

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 1, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 1 2010 and received by the laboratory on September 1, 2010. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The MTCA Method A clean-up level for Benzene in sample H-TP-10-7 is non-achievable due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

2

73

ND

42

7.6

ND

ND

ND

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

Barium

Cadmium

Chromium

Lead

Mercury

Selenium

Silver

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-011-01 H-TP-9-4					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	43	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.56	6010B	9-2-10	9-2-10	
Chromium	27	0.56	6010B	9-2-10	9-2-10	
Lead	ND	5.6	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-1-10	9-1-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.56	6010B	9-2-10	9-2-10	
Lab ID: Client ID:	09-011-02 H-TP-9-7					
Arsenic	ND	12	6010B	9-2-10	9-2-10	

6010B

6010B

6010B

6010B

7471A

6010B

6010B

3.0

0.60

0.60

6.0

0.30

12

0.60

9-2-10

9-2-10

9-2-10

9-2-10

9-1-10

9-2-10

9-2-10

9-2-10

9-2-10 9-2-10

9-2-10

9-1-10

9-2-10

9-2-10

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-011-03 H-TP-10-3					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	46	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.56	6010B	9-2-10	9-2-10	
Chromium	31	0.56	6010B	9-2-10	9-2-10	
Lead	ND	5.6	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-1-10	9-1-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.56	6010B	9-2-10	9-2-10	

Lab ID: Client ID:	09-011-04 H-TP-10-7					
Arsenic	ND	13	6010B	9-2-10	9-2-10	
Barium	53	3.3	6010B	9-2-10	9-2-10	
Cadmium	ND	0.65	6010B	9-2-10	9-2-10	
Chromium	28	0.65	6010B	9-2-10	9-2-10	
Lead	ND	6.5	6010B	9-2-10	9-2-10	
Mercury	ND	0.33	7471A	9-1-10	9-1-10	
Selenium	ND	13	6010B	9-2-10	9-2-10	
Silver	ND	0.65	6010B	9-2-10	9-2-10	

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-011-05					
Client ID:	H-TP-11-4					
Arsenic	ND	12	6010B	9-2-10	9-2-10	
Barium	95	3.0	6010B	9-2-10	9-2-10	
Cadmium	ND	0.60	6010B	9-2-10	9-2-10	
Chromium	29	0.60	6010B	9-2-10	9-2-10	
Lead	ND	6.0	6010B	9-2-10	9-2-10	
Mercury	ND	0.30	7471A	9-1-10	9-1-10	
Selenium	ND	12	6010B	9-2-10	9-2-10	
Silver	ND	0.60	6010B	9-2-10	9-2-10	

Lab ID: Client ID:	09-011-06 H-TP-11-7					
Arsenic	ND	13	6010B	9-2-10	9-2-10	
Barium	56	3.2	6010B	9-2-10	9-2-10	
Cadmium	ND	0.63	6010B	9-2-10	9-2-10	
Chromium	39	0.63	6010B	9-2-10	9-2-10	
_ead	ND	6.3	6010B	9-2-10	9-2-10	
Mercury	ND	0.32	7471A	9-1-10	9-1-10	
Selenium	ND	13	6010B	9-2-10	9-2-10	
Silver	ND	0.63	6010B	9-2-10	9-2-10	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte R	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-011-07 H-TP-12-3					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	70	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.57	6010B	9-2-10	9-2-10	
Chromium	30	0.57	6010B	9-2-10	9-2-10	
Lead	ND	5.7	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-1-10	9-1-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.57	6010B	9-2-10	9-2-10	
Lab ID:	09-011-08					
Client ID.	H TD 10 7					

Client ID:	H-TP-12-7					
Arsenic	ND	12	6010B	9-2-10	9-2-10	
Barium	40	3.0	6010B	9-2-10	9-2-10	
Cadmium	ND	0.60	6010B	9-2-10	9-2-10	
Chromium	21	0.60	6010B	9-2-10	9-2-10	
Lead	ND	6.0	6010B	9-2-10	9-2-10	
Mercury	ND	0.30	7471A	9-1-10	9-1-10	
Selenium	ND	12	6010B	9-2-10	9-2-10	
Silver	ND	0.60	6010B	9-2-10	9-2-10	

Matrix:	Soil
Units:	mg/kg (ppm)

	5 5 (T)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-011-09					
Client ID:	H-DUP-090110					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	67	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.57	6010B	9-2-10	9-2-10	
Chromium	26	0.57	6010B	9-2-10	9-2-10	
Lead	ND	5.7	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-1-10	9-1-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.57	6010B	9-2-10	9-2-10	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-1&2-10
Date Analyzed:	9-1&2-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0901S5&MB0902S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-1&2-10
Date Analyzed:	9-1&2-10

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-011-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	38.3	35.9	6	2.5	
Cadmium	ND	ND	NA	0.50	
Caumum	ND	ND	NA	0.50	
Chromium	23.9	24.4	2	0.50	
			-	0.00	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-1&2-10
Date Analyzed:	9-1&2-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-011-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	88.5	88	91.3	91	3	
Barium	100	129	91	126	88	3	
Cadmium	50	44.5	89	44.4	89	0	
Chromium	100	113	89	112	88	1	
Lead	250	226	90	229	92	1	
Mercury	0.50	0.495	99	0.485	97	2	
Selenium	100	89.7	90	91.3	91	2	
Silver	25	20.7	83	21.6	86	4	

10

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

3· 3 (i-i-)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-9-4					
Laboratory ID:	09-011-01					
Diesel Range Organics	ND	28	NWTPH-Dx	9-1-10	9-1-10	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	125	50-150				
Client ID:	H-TP-9-7					
Laboratory ID:	09-011-02					
Diesel Fuel #1	92	30	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	60	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	H-TP-10-3					
Laboratory ID:	09-011-03					
Diesel Range Organics	ND	28	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Client ID:	H-TP-10-7					
Laboratory ID:	09-011-04					
Diesel Fuel #1	1900	33	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	65	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	H-TP-11-4					
Laboratory ID:	09-011-05					
Diesel Range Organics	ND	30	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	60	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				
Client ID:	H-TP-11-7					
Laboratory ID:	09-011-06					
Diesel Range Organics	ND	32	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	64	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits		-	-	
o-Terphenyl	106	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-12-3					
Laboratory ID:	09-011-07					
Diesel Range Organics	ND	28	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	57	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	H-TP-12-7					
Laboratory ID:	09-011-08					
Diesel Range Organics	ND	30	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	60	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	H-DUP-090110					
Laboratory ID:	09-011-09					
Diesel Range Organics	ND	28	NWTPH-Dx	9-1-10	9-2-10	
Lube Oil Range Organics	ND	57	NWTPH-Dx	9-1-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	123	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzo		Flags
METHOD BLANK							- J -
Laboratory ID:	MB0901S2						
Diesel Range Organics	ND	25	NWTPH-Dx	9-1-10	9-1-1()	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-1-10	9-1-1()	
Surrogate:	Percent Recove	ery Control Limits					
o-Terphenyl	132	50-150					
			Perce	nt Recovery		RPD	
Analyte	Result		Recove	ery Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09-011-	03					
	ORIG I	DUP					
Diesel Range Organics	ND	ND			NA	NA	
Lube Oil Range Organics	ND	ND			NA	NA	
Surrogate:							
o Torphonyl			112	110 50 150			

o-Terphenyl

113 110 50-150

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-9-4					
Laboratory ID:	09-011-01					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.073	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.073	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.073	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.073	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	7.3	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				
Client ID:	H-TP-9-7					
Laboratory ID:	09-011-02					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.066	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.066	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.066	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.066	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.6	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	55-127				
Client ID:	H-TP-10-3					
Laboratory ID:	09-011-03					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.065	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.065	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.065	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.5	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-10-7					
Laboratory ID:	09-011-04					
Benzene	ND	0.033	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.16	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	1.0	0.16	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	7.3	0.16	EPA 8021	9-1-10	9-1-10	
o-Xylene	0.29	0.16	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	16	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				
Client ID:	H-TP-11-4					
Laboratory ID:	09-011-05					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.073	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.073	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.073	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.073	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	7.3	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	55-127				
Client ID:	H-TP-11-7					
Laboratory ID:	09-011-06					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.064	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.064	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.064	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.064	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.4	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	55-127				

15

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-12-3					
Laboratory ID:	09-011-07					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.059	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.059	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.059	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.059	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	5.9	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	55-127				
Client ID:	H-TP-12-7					
Laboratory ID:	09-011-08					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.069	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.069	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.069	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.069	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.9	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	55-127				
Client ID:	H-DUP-090110					
Laboratory ID:	09-011-09					
Benzene	ND	0.020	EPA 8021	9-1-10	9-1-10	
Toluene	ND	0.061	EPA 8021	9-1-10	9-1-10	
Ethyl Benzene	ND	0.061	EPA 8021	9-1-10	9-1-10	
m,p-Xylene	ND	0.061	EPA 8021	9-1-10	9-1-10	
o-Xylene	ND	0.061	EPA 8021	9-1-10	9-1-10	
Gasoline	ND	6.1	NWTPH-Gx	9-1-10	9-1-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

Beault				Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0901S3					
ND	0.020	EPA 8021	9-1-10	9-1-10	
ND	0.050	EPA 8021	9-1-10	9-1-10	
ND	0.050	EPA 8021	9-1-10	9-1-10	
ND	0.050	EPA 8021	9-1-10	9-1-10	
ND	0.050	EPA 8021	9-1-10	9-1-10	
ND	5.0	NWTPH-Gx	9-1-10	9-1-10	
Percent Recovery	Control Limits				
97	55-127				
	ND ND ND ND ND Percent Recovery	ND 0.020 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 5.0 Percent Recovery Control Limits	ND 0.020 EPA 8021 ND 0.050 EPA 8021 ND 5.0 NWTPH-Gx Percent Recovery Control Limits	ND 0.020 EPA 8021 9-1-10 ND 0.050 EPA 8021 9-1-10 ND 5.0 NWTPH-Gx 9-1-10 Percent Recovery Control Limits Percent Second Secon	ND 0.020 EPA 8021 9-1-10 9-1-10 ND 0.050 EPA 8021 9-1-10 9-1-10 ND 5.0 NWTPH-Gx 9-1-10 9-1-10 Percent Recovery Control Limits 5-10 1-10 1-10

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-01	11-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						103	100	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	01S2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.981	1.02	1.00	1.00		98	102	75-113	4	9	
Toluene	1.00	1.06	1.00	1.00		100	106	75-116	6	10	
Ethyl Benzene	1.03	1.07	1.00	1.00		103	107	82-117	4	10	
m,p-Xylene	1.02	1.07	1.00	1.00		102	107	81-122	5	10	
o-Xylene	1.03	1.09	1.00	1.00		103	109	83-118	6	10	
Surrogate:											
Fluorobenzene						96	97	55-127			

% MOISTURE

Date Analyzed: 9-1-10

Client ID	Lab ID	% Moisture
H-TP-9-4	09-011-01	11
H-TP-9-7	09-011-02	17
H-TP-10-3	09-011-03	11
H-TP-10-7	09-011-04	23
H-TP-11-4	09-011-05	17
H-TP-11-7	09-011-06	21
H-TP-12-3	09-011-07	12
H-TP-12-7	09-011-08	16
H-DUP-090110	09-011-09	12

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

DISTRIBUT	Received by: War Cardinar H	Relinquished by: M. onel O-m. (mg	Received by: Mrchep Panglety	Relinquished by:	PRINT NAME						11-008-090110 9/1/10 - S	H-T - 7 - 7 13:21 A	17-77-12-3 (3:40)	<u>1-77-11-7 13:25 1</u>	-11-4	1 Ye: 51 2 - 0 - 17-41	BC: 21 5-01- 97-H		11/1/10 - 4 - 1-11		HWA CONTACT:	NATURE:	Se Proven	PROJECT NAME: Bandy Crossing		HWAGEOSCIENCES INC.	
DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain	6.2.5	ancald D	Marchall M		SIGNATURE			 				2 K)	7	6	57	4	3		- 2	LAB ID BOT	PHONE:		PHONE:	#: 2007-00			
to HWA; YELLOW -	and c		it.		JRE						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K X X	X X X	ダイズ	X V V	Y X X X	XXX	XXX	17 %	BOTTLE)[-1-1	- 8 Dx G-x[IBŢEK	Reo		(and Labo	
	ar ar as	heby	-2005	Kind	COMPANY						*	K	<u> </u>	ž	N	75	7	8	*	6,0	in <i>o</i> i	54	une	ANALYSIS REQUESTED		Chain of Custody and Laboratory Analysis Request	
by Lab; PINK - Retain by Sampler	0110	01.6	a-1.10	0	Y DATE																					ody sis Request	
	1412		-	_	TIME		 																		PAGE:	09-011	
					REMARKS				0											REMARKS		MUN (H)			of	N.	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1009-017

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 1, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 1, 2010 and received by the laboratory on September 1, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The chromatograms for samples H-TP-13-3, H-TP-13-8, H-TP-14-8, H-TP-15-3 and H-TP-15-8 are similar to mineral spirits.

The MTCA Method A clean-up level for Benzene in samples H-TP-13-3 and H-TP-13-8 is non-achievable due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-13-3					
Laboratory ID:	09-017-01					
Benzene	ND	0.047	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.24	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	0.67	0.24	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	1.9	0.24	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	1.2	EPA 8021	9-2-10	9-3-10	U1
Gasoline	750	24	NWTPH-Gx	9-2-10	9-3-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				
Client ID:	H-TP-13-8					
Laboratory ID:	09-017-02					
Benzene	ND	0.10	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.52	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	1.1	0.52	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	2.9	0.52	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	2.6	EPA 8021	9-2-10	9-3-10	U1
Gasoline	1700	52	NWTPH-Gx	9-2-10	9-3-10	Z,O
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	55-127				
Client ID:	H-TP-14-3					
Laboratory ID:	09-017-03					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.0	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	55-127				

3

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-14-8					
Laboratory ID:	09-017-04					
Benzene	0.079	0.022	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.11	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	0.37	0.11	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	4.1	1.1	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	1.1	EPA 8021	9-2-10	9-3-10	U1
Gasoline	2100	110	NWTPH-Gx	9-2-10	9-3-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				
Client ID:	H-TP-15-3					
Laboratory ID:	09-017-05					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.055	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	0.11	0.055	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	0.38	0.055	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.055	EPA 8021	9-2-10	9-2-10	U1
Gasoline	210	5.5	NWTPH-Gx	9-2-10	9-2-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-TP-15-8					
Laboratory ID:	09-017-06					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.051	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	0.070	0.051	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	0.18	0.051	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.051	EPA 8021	9-2-10	9-2-10	
Gasoline	120	5.1	NWTPH-Gx	9-2-10	9-2-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0902S1					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.0	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-0-	17-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						102	108	55-127			
MATRIX SPIKES											
Laboratory ID:	08-20)2-03									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	1.10	1.11	1.00	1.00	ND	110	111	80-120	1	10	
Toluene	1.06	1.06	1.00	1.00	ND	106	106	82-120	0	11	
Ethyl Benzene	1.07	1.07	1.00	1.00	ND	107	107	83-120	0	10	
m,p-Xylene	1.09	1.08	1.00	1.00	ND	109	108	82-120	1	10	
o-Xylene	1.09	1.09	1.00	1.00	ND	109	109	80-120	0	10	
Surrogate:											
Fluorobenzene						102	100	55-127			

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H-TP-13-3					
Laboratory ID:	09-017-01					
Diesel Range Organics	ND	820	NWTPH-Dx	9-2-10	9-2-10	U1
Lube Oil	2200	56	NWTPH-Dx	9-2-10	9-2-10	-
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	122	50-150				
Client ID:	H-TP-13-8					
Laboratory ID:	09-017-02					
Diesel Range Organics	6100	150	NWTPH-Dx	9-2-10	9-3-10	
_ube Oil	5400	300	NWTPH-Dx	9-2-10	9-3-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	121	50-150				
Client ID:	H-TP-14-3					
aboratory ID:	09-017-03					
Diesel Range Organics	ND	28	NWTPH-Dx	9-2-10	9-2-10	
ube Oil Range Organics	ND	56	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	119	50-150				
Client ID:	H-TP-14-8					
_aboratory ID:	09-017-04					
Diesel Range Organics	ND	510	NWTPH-Dx	9-2-10	9-2-10	U1
₋ube Oil	1200	59	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	123	50-150				
Client ID:	H-TP-15-3					
aboratory ID:	09-017-05					
Diesel Range Organics	ND	620	NWTPH-Dx	9-2-10	9-2-10	U1
₋ube Oil	2300	280	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	131	50-150				
Client ID:	H-TP-15-8					
aboratory ID:	09-017-06					
Diesel Range Organics	ND	110	NWTPH-Dx	9-2-10	9-2-10	U1
₋ube Oil	280	56	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method		ate pared	Date Analyzed	FI	ags
METHOD BLANK								
Laboratory ID:	MB0902S1							
Diesel Range Organics	ND	25	NWTPH-Dx	9-2	2-10	9-2-10		
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-2	2-10	9-2-10		
Surrogate:	Percent Recove	ry Control Limits						
o-Terphenyl	125	50-150						
			Perc	ent	Recovery		RPD	
Analyte	Resul	t	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-017-0	01						
	ORIG [DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil	1920 1	510				24	NA	
Surrogate:								
a Tarabanyi			100	117	50 150			

o-Terphenyl

122 117 50-150

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-017-01 H-TP-13-3					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	44	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.56	6010B	9-2-10	9-2-10	
Chromium	31	0.56	6010B	9-2-10	9-2-10	
Lead	7.1	5.6	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-3-10	9-3-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.56	6010B	9-2-10	9-2-10	
Lab ID:	09-017-02					
Client ID:	H-TP-13-8					

Edd ID:	00 011 02					
Client ID:	H-TP-13-8					
Arsenic	ND	12	6010B	9-2-10	9-2-10	
Barium	58	3.0	6010B	9-2-10	9-2-10	
Cadmium	ND	0.60	6010B	9-2-10	9-2-10	
Chromium	24	0.60	6010B	9-2-10	9-2-10	
Lead	58	6.0	6010B	9-2-10	9-2-10	
Mercury	ND	0.30	7471A	9-3-10	9-3-10	
Selenium	ND	12	6010B	9-2-10	9-2-10	
Silver	ND	0.60	6010B	9-2-10	9-2-10	

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-017-03 H-TP-14-3					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	41	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.56	6010B	9-2-10	9-2-10	
Chromium	28	0.56	6010B	9-2-10	9-2-10	
Lead	ND	5.6	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-3-10	9-3-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.56	6010B	9-2-10	9-2-10	

Lab ID: Client ID:	09-017-04 H-TP-14-8				
Arsenic	ND	12	6010B	9-2-10	9-2-10
Barium	41	3.0	6010B	9-2-10	9-2-10
Cadmium	ND	0.59	6010B	9-2-10	9-2-10
Chromium	33	0.59	6010B	9-2-10	9-2-10
Lead	9.5	5.9	6010B	9-2-10	9-2-10
Mercury	ND	0.30	7471A	9-3-10	9-3-10
Selenium	ND	12	6010B	9-2-10	9-2-10
Silver	ND	0.59	6010B	9-2-10	9-2-10

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-017-05 H-TP-15-3					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	45	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.55	6010B	9-2-10	9-2-10	
Chromium	31	0.55	6010B	9-2-10	9-2-10	
Lead	24	5.5	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-3-10	9-3-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.55	6010B	9-2-10	9-2-10	

Lab ID: Client ID:	09-017-06 H-TP-15-8					
Arsenic	ND	11	6010B	9-2-10	9-2-10	
Barium	42	2.8	6010B	9-2-10	9-2-10	
Cadmium	ND	0.56	6010B	9-2-10	9-2-10	
Chromium	26	0.56	6010B	9-2-10	9-2-10	
Lead	ND	5.6	6010B	9-2-10	9-2-10	
Mercury	ND	0.28	7471A	9-3-10	9-3-10	
Selenium	ND	11	6010B	9-2-10	9-2-10	
Silver	ND	0.56	6010B	9-2-10	9-2-10	

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-2-10
Date Analyzed:	9-2-10
Matrix:	Soil

Units: mg/kg (ppm)

Lab ID: MB0902S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

TOTAL MERCURY EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-3-10
Date Analyzed:	9-3-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0903S1

Analyte	Method	Result	PQL
Mercury	7471A	ND	0.25

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	9-2-10
Date Analyzed:	9-2-10

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-011-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	38.3	35.9	6	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	23.9	24.4	2	0.50	
Lead	ND	ND	NA	5.0	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL MERCURY EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-3-10
Date Analyzed:	9-3-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-017-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.25	

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	9-2-10
Date Analyzed:	9-2-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-011-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	88.5	88	91.3	91	3	
Barium	100	129	91	126	88	3	
Cadmium	50	44.5	89	44.4	89	0	
Chromium	100	113	89	112	88	1	
Lead	250	226	90	229	92	1	
Selenium	100	89.7	90	91.3	91	2	
Silver	25	20.7	83	21.6	86	4	

15

TOTAL MERCURY EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-3-10
Date Analyzed:	9-3-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-017-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.50	0.539	108	0.544	109	1	

16

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

% MOISTURE

Date Analyzed: 9-2-10

Client ID	Lab ID	% Moisture
H-TP-13-3	09-017-01	11
H-TP-13-8	09-017-02	16
H-TP-14-3	09-017-03	10
H-TP-14-8	09-017-04	15
H-TP-15-3	09-017-05	10
H-TP-15-8	09-017-06	11

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The sample chromatogram is similar to mineral spirits.

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by				6 #- TP- 15-8	5 17-17-15-3	4 H-TP-44-8	3 A-TP-14-3	2 =- 12-2	1 4-70-73-3	Sampled by: Carruy ~ 、 Carruy ~ 、 Lab ID Sample identification	Project Name: Project Name: Project Manager: Project Manager:	Company:	ENVIPONMENTAL INC. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	MA OnSite
DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Client Copy	Reviewed by/Date				(3800 N	Atura	Amadinosi (\$ 1500 L \$	1450	1440	1430	1 1415 -	911/0 1410 S 2	Date Time # of Sampled Sampled Matrix Cont	✓ vorking day	(Check One)	Turn (İn	Chain of Custody
				· · · · · · · · · · · · · · · · · · ·		9/1/10 1540	CrSV orfile	Date Time									NWTPH-HCID NWTPH-Gx/BTI NWTPH-Dx Volatiles by 826 Halogenated Vo Semivolatiles by PAHs by 8270D	0B latiles by 8260B / 8270D / SIM		Laboratory Number:	ustody
	Chromatograms with final report							Comments/Special Instructions.									PCBs by 8082 Pesticides by 80 Herbicides by 80 Total RCRA Met TCLP Metals HEM by 1664	081A 151A	Hequested Amalysis		Page of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 3, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1009-023

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 2, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 2, 2010 and received by the laboratory on September 2, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The chromatograms for samples H-TP-16-3, H-TP-16-7, H-TP-18-7 and H-TP-21-2 are similar to mineral spirits.

The MTCA Method A clean-up level for Benzene in sample H-TP-18-7 is non-achievable due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

CG				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-16-3					
Laboratory ID:	09-023-01					
Diesel Range Organics	ND	30	NWTPH-Dx	9-2-10	9-2-10	
Lube Oil	190	59	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	H-TP-16-7					
Laboratory ID:	09-023-02					
Diesel Range Organics	ND	140	NWTPH-Dx	9-2-10	9-2-10	U1
Lube Oil	290	61	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	H-TP-17-3					
Laboratory ID:	09-023-03					
Diesel Range Organics	ND	31	NWTPH-Dx	9-2-10	9-2-10	
Lube Oil	99	62	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	H-TP-17-6					
Laboratory ID:	09-023-04					
Diesel Range Organics	ND	31	NWTPH-Dx	9-2-10	9-2-10	
Lube Oil Range Organics	ND	62	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	H-TP-18-3					
Laboratory ID:	09-023-05					
Diesel Range Organics	ND	28	NWTPH-Dx	9-2-10	9-2-10	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	H-TP-18-7					
Laboratory ID:	09-023-06					
Diesel Range Organics	ND	1600	NWTPH-Dx	9-2-10	9-2-10	U1
Lube Oil	2300	58	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-19-4					
Laboratory ID:	09-023-07					
Diesel Range Organics	ND	130	NWTPH-Dx	9-2-10	9-2-10	U1
Lube Oil	450	56	NWTPH-Dx	9-2-10	9-2-10	01
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	H-TP-19-6					
Laboratory ID:	09-023-08					
Diesel Range Organics	ND	55	NWTPH-Dx	9-2-10	9-2-10	U1
Lube Oil	220	57	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	H-TP-20-3					
Laboratory ID:	09-023-09					
Diesel Range Organics	ND	27	NWTPH-Dx	9-2-10	9-2-10	
ube Oil Range Organics	ND	54	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	H-TP-20-6					
Laboratory ID:	09-023-10					
Diesel Range Organics	ND	1700	NWTPH-Dx	9-2-10	9-3-10	U1
Lube Oil	5800	300	NWTPH-Dx	9-2-10	9-3-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	119	50-150				
Client ID:	H-TP-21-2					
Laboratory ID:	09-023-11					
Diesel Range Organics	ND	580	NWTPH-Dx	9-2-10	9-2-10	U1
Lube Oil	2300	56	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	H-TP-21-7					
Laboratory ID:	09-023-12					
Diesel Range Organics	ND	29	NWTPH-Dx	9-2-10	9-2-10	
Lube Oil	110	59	NWTPH-Dx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result		PQL	Method	F	Date Prepared	Date Analyze	d	Flags
METHOD BLANK							-		-
Laboratory ID:	MB09025	62							
Diesel Range Organics	ND		25	NWTPH-Dx		9-2-10	9-2-10		
Lube Oil Range Organics	ND		50	NWTPH-Dx		9-2-10	9-2-10		
Surrogate:	Percent Rec	overy	Control Limits						
o-Terphenyl	96		50-150						
				Perc	cent	Recovery		RPD	
Analyte	Res	sult		Reco	very	Limits	RPD	Limit	Flags
DUPLICATE									•
Laboratory ID:	09-02	23-01							
	ORIG	DUP							
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil	161	65.4					84	NA	
Surrogate:									
o-Terphenyl				97	81	50-150			
Laboratory ID:	09-02	23-09							
	ORIG	DUP							
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
T , ,					~~	50 (50			

o-Terphenyl

99 82 50-150 5

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-16-3					
Laboratory ID:	09-023-01					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.076	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.076	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	0.15	0.076	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.076	EPA 8021	9-2-10	9-2-10	
Gasoline	57	7.6	NWTPH-Gx	9-2-10	9-2-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	55-127				
Client ID:	H-TP-16-7					
Laboratory ID:	09-023-02					
Benzene	ND	0.020	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.066	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	ND	0.066	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	ND	0.066	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	0.066	EPA 8021	9-2-10	9-3-10	
Gasoline	72	6.6	NWTPH-Gx	9-2-10	9-3-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	55-127				
Client ID:	H-TP-17-3					
Laboratory ID:	09-023-03					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.075	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.075	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.075	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.075	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	7.5	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-17-6					
Laboratory ID:	09-023-04					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.073	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.073	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.073	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.073	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	7.3	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-TP-18-3					
Laboratory ID:	09-023-05					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.053	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.053	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.053	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.053	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.3	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-TP-18-7					
Laboratory ID:	09-023-06					
Benzene	ND	0.058	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.29	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	0.95	0.29	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	5.7	0.29	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	2.9	EPA 8021	9-2-10	9-3-10	U1
Gasoline	1900	29	NWTPH-Gx	9-2-10	9-3-10	Z
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	55-127				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-19-4					
Laboratory ID:	09-023-07					
Benzene	ND	0.020	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.062	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	ND	0.062	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	ND	0.062	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	0.062	EPA 8021	9-2-10	9-3-10	
Gasoline	ND	6.2	NWTPH-Gx	9-2-10	9-3-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				
Client ID:	H-TP-19-6					
Laboratory ID:	09-023-08					
Benzene	ND	0.020	EPA 8021	9-2-10	9-3-10	
Toluene	ND	0.058	EPA 8021	9-2-10	9-3-10	
Ethyl Benzene	ND	0.058	EPA 8021	9-2-10	9-3-10	
m,p-Xylene	ND	0.058	EPA 8021	9-2-10	9-3-10	
o-Xylene	ND	0.058	EPA 8021	9-2-10	9-3-10	
Gasoline	ND	5.8	NWTPH-Gx	9-2-10	9-3-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-TP-20-3					
Laboratory ID:	09-023-09					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.055	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.055	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.055	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.055	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.5	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-20-6					
Laboratory ID:	09-023-10					
Benzene	ND	0.028	EPA 8021	9-2-10	9-2-10	
Toluene	0.83	0.14	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.14	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.14	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.14	EPA 8021	9-2-10	9-2-10	
Gasoline	18	14	NWTPH-Gx	9-2-10	9-2-10	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	55-127				
Client ID:	H-TP-21-2					
Laboratory ID:	09-023-11					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.061	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.061	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.061	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.061	EPA 8021	9-2-10	9-2-10	
Gasoline	20	6.1	NWTPH-Gx	9-2-10	9-2-10	Z,O
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				
Client ID:	H-TP-21-7					
Laboratory ID:	09-023-12					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.054	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.054	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.054	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.054	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.4	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	55-127				

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0902S2					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.0	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	55-127				
Laboratory ID:	MB0902S3					
Benzene	ND	0.020	EPA 8021	9-2-10	9-2-10	
Toluene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-2-10	9-2-10	
m,p-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
o-Xylene	ND	0.050	EPA 8021	9-2-10	9-2-10	
Gasoline	ND	5.0	NWTPH-Gx	9-2-10	9-2-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 0 1	,				Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-01	7-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						102	108	55-127			
Laboratory ID:	09-02	02.00									
Laboratory ID:	ORIG	DUP									
Panzana	ND	ND	NA	NA		N	IA	NA	NA	30	
Benzene	ND	ND		NA			IA IA	NA NA			
Toluene	ND	ND	NA						NA	30	
Ethyl Benzene			NA	NA			IA IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:						(
Fluorobenzene						103	99	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09										
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.01	1.06	1.00	1.00		101	106	75-113	5	9	
Toluene	1.02	1.06	1.00	1.00		102	106	75-116	4	10	
Ethyl Benzene	1.03	1.07	1.00	1.00		103	107	82-117	4	10	
m,p-Xylene	1.03	1.07	1.00	1.00		103	107	81-122	4	10	
o-Xylene	1.02	1.07	1.00	1.00		102	107	83-118	5	10	
Surrogate:											
Fluorobenzene						98	101	55-127			

% MOISTURE

Date Analyzed: 9-2-10

Client ID	Lab ID	% Moisture
H-TP-16-3	09-023-01	16
H-TP-16-7	09-023-02	18
H-TP-17-3	09-023-03	19
H-TP-17-6	09-023-04	19
H-TP-18-3	09-023-05	11
H-TP-18-7	09-023-06	14
H-TP-19-4	09-023-07	10
H-TP-19-6	09-023-08	12
H-TP-20-3	09-023-09	7
H-TP-20-6	09-023-10	16
H-TP-21-2	09-023-11	10
H-TP-21-7	09-023-12	14

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The sample chromatogram is similar to mineral spirits.

ND - Not Detected at PQL

- PQL Practical Quantitation Limit
- **RPD Relative Percent Difference**

HWA CEOSCIENCES INC: and Laboratory Analysis Request DATE: 1/12/1/2 Image: State Difference State Difference State Difference State Difference State Difference Image: State Difference State Difference State Difference State Difference State Difference State Difference Image: State Difference Image: State Difference Image: State Difference Image: State Difference State Difference State Difference State Difference State Difference State Difference Image: State Difference State Difference State Difference State Difference State Difference State Difference Image: State Difference State Difference State Difference State Difference State Difference State Difference Image: State Difference State Difference State Difference State Difference State Difference State Difference									Received by:
Image: Second and Laboratory Analysis Request Onte: 100 (Laboratory Analysis Request Onte: 100 (Laboratory Analysis Request Onte: 100 (Laboratory Analysis Request Restard PHONE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request Restard PHONE: 100 (Laboratory Analysis Request PHONE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request Restard PHONE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request Restard PHONE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request Restard PHONE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request Restard PHONE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request PAGE: 100 (Laboratory Analysis Request Restard PAGE: 100 (Laboratory Analysis Request Restard PAGE: 100 (Relinauished by:
ENSCIENCES INC. and Laboratory Analysis Request DATE: 200, Unreceded Wester File PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin PHONE: 28: 747 2013 AMALYSIS REQUESTED 0.9 - 0 1, Gradin BOTTLE AMALYSIS REQUESTED 0.9 - 0 1, Gradin AMALYSIS		1310	9/2/10	AL-		<i>S</i>	AL NEW	ト	3
EVENCES INC 200 Uprement WA 8883 (NC) 200 Upre	REMARKS	TIME	DATE					RINT NAME	PF Relinguished by:
Image: State of the state o									
EVEX Chain of Custody and Laboratory Analysis Request DATE: 1/2 20. Lymmond WA 88006 (43) 7140105 and Laboratory Analysis Request DATE: 1/2 1. Sock Jacobie PHONE: 200 2 - 044y AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie PHONE: 206 794 3/12 AMALYSIS REQUESTED 09-0 1. Sock Jacobie AMALYSIS REQUESTED 09-0 0 1. Sock Jacobie AMALYSIS REQUESTED 09-0							_		
EVSCIENCES INC. 200. Lymmod. WA 9803 (263) 774-0105 Leasure 144 12 # 200 2 - 044 I course									
EVSCIENCES INC. 200. Lymmood WA 88036 (425) 7740108 and Laboratory Analysis Request 200. Lymmood WA 88036 (425) 7740108 and Laboratory Analysis Request 200. Lymmood WA 88036 (425) 7740108 and Laboratory Analysis Request 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 7740108 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 774018 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 200. Lymmood WA 88036 (425) 77401 Chain of Custody 2									
EVEN Chain of Custody 200, Lymmood WA BOS (428) 774-0108 and Laboratory Analysis Request DATE: 1 201, Lymmood WA BOS (428) 774-0108 and Laboratory Analysis Request DATE: 1 1, 2, 2, 2, - Vey PHONE: 26, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 2, 2, 5 1 2, 10, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 2, 5 1 2, 10, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 2, 5 1 2, 10, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 2, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 2 4, 5, 747 X13 ANALYSIS REQUESTED 0, 9 - 0 1, 10, 5 1 1 1 1 1 1 1, 10, 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>						-			
EVEX Chain of Custody DATE: Image: Control of Custody 20. Lymwood WA 9803 (429, 774000 and Laboratory Analysis Request DATE: DATE: DATE: 1. Corrows PHONE: 206 747 703 Analysis Request DATE: DATE: DATE: 1. Corrows PHONE: 206 747 703 Analysis Request DATE: DATE: DATE: 1. Corrows PHONE: 206 747 703 Analysis Request DATE: DATE: DATE: 1. Corrows PHONE: 206 747 703 Analysis Request DATE: DATE: DATE: 1. Corrows PHONE: 206 747 703 Analysis Request DG = 0 O = 0 1. Corrows PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 1. Corrows PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 1. So 1 3 PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 1. So 1 3 PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 1. So 1 3 PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 1. So 1 3 PHONE: 206 747 703 PHONE: 206 747 703 PHONE: 206 747 703 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
EVEX Chain of Custody DATE: 1 20. Lymwood, WA 9808 (425) 774-006 and Laboratory Analysis Request DATE: 1 20. Lymwood, WA 9808 (425) 774-006 and Laboratory Analysis Request DATE: 1 20. Lymwood, WA 9808 (425) 774-006 PHONE: $202 7 \cdot 2^{4}$ Analysis Request DATE: 1 1 $202 7 \cdot 2^{4}$ 13 Analysis Request DATE: 1 2 1 $202 7 \cdot 2^{4}$ 13 14 13 13 13 14		ť			ħ	4			
EDSCIENCES INC. Chain of Custody and Laboratory Analysis Request DATE: $\frac{1}{2}$ 20. Lymwood WA 8006 (425) 7740106 and Laboratory Analysis Request PAGE: $\frac{1}{2}$ PAGE: $\frac{1}{2}$ 1. Carrow Laboratory Analysis Request PHONE: $\frac{106}{744}$ $\frac{1}{2}$ <td></td> <td></td> <td></td> <td></td> <td><</td> <td>5</td> <td>ñ 8</td> <td></td> <td></td>					<	5	ñ 8		
EUX Chain of Custody DATE: $\frac{1}{2}$ EOSCIENCES INC. and Laboratory Analysis Request DATE: $\frac{1}{2}$ 200, Lymwood, WA 8006 (425) 7740106 and Laboratory Analysis Request DATE: $\frac{1}{2}$ 1 200, Lymwood, WA 8006 (425) 7740106 ANALYSIS REQUESTED 0.9 - 0 1 200, Lymwood, WA 8006 (425) 7740106 ANALYSIS REQUESTED 0.9 - 0 1 200, Lymwood, WA 8006 (425) 7740106 BATE: $\frac{1}{2}$ ANALYSIS REQUESTED 0.9 - 0 1 205, 7747 3129 ANALYSIS REQUESTED 0.9 - 0 0.9 - 0 0.9 - 0 1 205, 7747 3129 $\frac{1}{2}$					X	10	5		9-02-UTH
EDSCIENCES INC. Chain of Custody and Laboratory Analysis Request DATE: 1 200. Lymmood, WA 80036 (#25) 774-0106 PHONE: 200. 2 - 24y ANALYSIS REQUESTED 0.9 - 0 Courses, Ly PHONE: 206 747 11.3 2 4 0.9 - 0 March PHONE: 206 747 11.3 2 14.4 <td></td> <td></td> <td></td> <td></td> <td>1 × ×</td> <td>م</td> <td>70</td> <td>105</td> <td>H-1-2-3</td>					1 × ×	م	70	105	H-1-2-3
EOSCIENCES INC. Chain of Custody DATE: 200. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 200. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 200. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 201. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 202. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 203. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 204. Lymmood, WA 88056 (428) 774-0106 and Laboratory Analysis Request DATE: 205. TIME MATRIX LAB ID BOTTLE ANALYSIS REQUESTED 0.9 - 0 207. Lymmood, WA 88056 (428) 74/1 3/124 ANALYSIS REQUESTED 0.9 - 0 0 207. Lymmood, WA 88056 (428) 74/1 3/124 ANALYSIS REQUESTED 0.9 - 0 207. Lymmood, WA 88056 (428) 74/1 3/124 ANALYSIS REQUESTED 0.9 - 0 207. Lymmood, WA 88056 (428) 74/1 3/124 ANALYSIS REQUESTED 0.9 - 0 207. Lymmood, WA 88056 (428) 74/1 3/124 ANALYSIS REQUESTED 0.9 - 0 207. Lymmood, WA 88056 (428) 74/1 3/124 ANALYSIS REQUESTED 0.9 - 0 207. Lymmood, WA 88056 (428) 74/1 3/144 ANALYSIS REQUESTED 0.9 - 0 207. Lymmood,					N	∞	20	. ¢]	1-78-19-6
EUX Chain of Custody DATE: Chain of Custody 200, Lymmood WA 98036 (425) 774-0106 and Laboratory Analysis Request PAGE: PAGE: 200, Lymmood WA 98036 (425) 774-0106 and Laboratory Analysis Request PAGE: PAGE: 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 2 - 0 yr - 0 yr - 0 yr 1 - 0 yr - 0 yr - 0 yr - 0 yr 1 - 0 yr - 0 yr - 0 yr - 0 yr 1 - 0 yr -							හී 	ĮQ;	11-19
EDSCIENCES INC. Chain of Custody DATE: Image: Construction of Custody Image: Co						6	¥0 0	-Ę	-41-9
EOSCIENCES INC. 200, Lymmood, WA 98036 (425) 774-0106 $L_{1/2,cr_{2},L_{3}} = H_{2}/h_{2} = \frac{1}{200,2} - \frac{2}{100}$ and Laboratory Analysis Request $L_{1/2,cr_{2},L_{3}} = H_{2}/h_{2} = \frac{1}{200,2} - \frac{2}{100}$ $L_{1/2,cr_{2},L_{3}} = \frac{1}{100} + \frac{2}{100} + \frac{2}{1$						J.	5	9-1	4
EDSCIENCES INC. Chain of Custody DATE: Chain of Custody DATE: DATE: <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>6</td> <td></td> <td>H-17-17-6</td>						2	6		H-17-17-6
EDSCIENCES INC. Chain of Custody DATE: 1 200, Lymwood, WA 98036 (425) 774-0106 and Laboratory Analysis Request DATE: 1 1 1 2 2 2 0 1 1 2 2 2 0 0 0 0 1 1 2 1 2 2 0						w	0	19:	16-11
EDSCIENCES INC. Chain of Custody DATE: $\frac{1}{2}$ 200, Lymwood, WA 98036 (425) 774-0105 and Laboratory Analysis Request DATE: $\frac{1}{2}$ 1 $(23xr_3, \frac{1}{3}, -14\sqrt{3}, \frac{1}{3}, \frac{1}{2}\sqrt{3}, \frac{1}{3}\sqrt{3}, \frac{1}{3}$					~ ~	بر	25 1	38), (77-1
EOSCIENCES INC. Chain of Custody DATE: Image: Constraints Image: Constraint		X			Ż			12/10	H-TP-16-3
EOSCIENCES INC. Chain of Custody DATE: Image: Constraint of Custody Image: Constraintof Custody Image: Constraint of	REMARKS	96pr							HWA SAMPLE ID
HWA GEOSCIENCES INC. Chain of Custody DATE: 1 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106 and Laboratory Analysis Request DATE: 1 NAME: By Muh (2000-14) - Hey) 2 #: 200 2 - 044 ANALYSIS REQUESTED 0.9 - 0 NAME: PHONE: 206 747 3/13 By Muh (2000-14) - Hey) 2 #: 200 2 - 044 ANALYSIS REQUESTED 0.9 - 0 NAME: PHONE: 206 747 3/13 By Muh (2000-14) - Hey) 2 By Muh (2000-14) - Hey) 3 By Muh (2000-14) - Hey (200		0				PHONE: 206 3		R	HWA CONTACT:
HWA GEOSCIENCES INC. 64th Ave. W., suite 200, Lynnwood, WA 98036 (425) 774-0106 AME: Balluh L(235(73-1) + Hav) 2 #: 200 2 - 200 y ANALYSIS REQUESTED 09-0					741 X113 / /BIEX	PHONE: Zie	No.	ATURE:	SAMPLERS NAME
Chain of Custody and Laboratory Analysis Request PAGE: 1/2 PAGE: 1/2	-0.23	60		ANALYSIS REQUESTED		 .#	9	Balker Cesa	PROJECT NAME: SITE CODE:
Chain of Custody	$\frac{1}{2} \frac{1}{\sqrt{2}} \frac$	DATE PAGI	est	ratory Analysis Requ	and Labo	NC. 36 (425) 774-0106	VINWOOD, WA 9803	WAGEOS	H 19730 64th Ave
	0/0/2			hain of Custody	G		Ę		

DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler

No come o C

---.-2 4 .

ŝ

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 14, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1009-074

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 8, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 8, 2010 and received by the laboratory on September 8, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH Gx Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The chromatogram for sample H-PEX-2-6 is similar to mineral spirits with diesel fuel.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

PAHs EPA 8270D/SIM Analysis

Sample MS/MSD pair had several recoveries fall outside of control limits believed to be caused by sample matrix. The SB/SBD pair extracted with this batch had all parameters in control, no further action was deemed necessary.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

VOLATILE PETROLEUM HYDROCARBONS

Date Extracted:	9-9-10
Date Analyzed:	9-10-10
Matrix:	Soil
Units:	mg/Kg (ppm)

Lab ID:	09-074-01
Client ID:	H-PEX-1-6

VPH:	Results	PQL
Aliphatic C5-C6	ND	5.0
Aliphatic C6-C8	ND	5.0
Aliphatic C8-C10	5.9	5.0
Aliphatic C10-C12	97	5.0
Total Aliphatic:	100	
Aromatic C8-C10	47	5.0
Aromatic C10-C12	40	5.0
Aromatic C12-C13	15	5.0
Total Aromatic:	100	

Surrogate:	Percent Recovery	Control Limits
Fluorobenzene	81	60-126

Flags:

VOLATILE PETROLEUM HYDROCARBONS

Date Extracted:	9-9-10
Date Analyzed:	9-10&13-10
Matrix:	Soil
Units:	mg/Kg (ppm)
Lab ID: Client ID:	09-074-02 H-PEX-2-6
VPH:	Results
Aliphatic C5-C6	ND
Aliphatic C6-C8	ND
Aliphatic C8-C10	48
Aliphatic C10-C12	180

VPH:	Results	PQL
Aliphatic C5-C6	ND	5.0
Aliphatic C6-C8	ND	5.0
Aliphatic C8-C10	48	5.0
Aliphatic C10-C12	180	5.0
Total Aliphatic:	230	
Aromatic C8-C10	110	5.0
Aromatic C10-C12	40	5.0
Aromatic C12-C13	11	5.0
Total Aromatic:	160	

Surrogate:	Percent Recovery	Control Limits
Fluorobenzene	78	60-126

Flags:

VOLATILE PETROLEUM HYDROCARBONS

Date Extracted:	9-9-10
Date Analyzed:	9-10-10
Matrix:	Soil
Units:	mg/Kg (ppm)

Lab ID:	09-074-03
Client ID:	H-PEX-3-4

VPH:	Results	PQL
Aliphatic C5-C6	ND	5.0
Aliphatic C6-C8	ND	5.0
Aliphatic C8-C10	ND	5.0
Aliphatic C10-C12	11	5.0
Total Aliphatic:	11	
Aromatic C8-C10	ND	5.0
Aromatic C10-C12	ND	5.0
Aromatic C12-C13	ND	5.0
Total Aromatic:	NA	

Surrogate:	Percent Recovery	Control Limits
Fluorobenzene	85	60-126

Flags:

VOLATILE PETROLEUM HYDROCARBONS METHOD BLANK QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-10-10

Matrix:	Soil
Units:	mg/Kg (ppm)

Lab ID:

MB0909S1

VPH:	Results	PQL
Aliphatic C5-C6	ND	5.0
Aliphatic C6-C8	ND	5.0
Aliphatic C8-C10	ND	5.0
Aliphatic C10-C12	ND	5.0
Total Aliphatic:	NA	
Aromatic C8-C10	ND	5.0
Aromatic C10-C12	ND	5.0
Aromatic C12-C13	ND	5.0
Total Aromatic:	NA	

Surrogate:	Percent Recovery	Control Limits
Fluorobenzene	99	60-126

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	9-9-10
Date Analyzed:	9-9-10
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	09-074-01
Client ID:	H-PEX-1-6

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	U	0.0011
Chloromethane	ND		0.0053
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0053
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	0.058		0.0053
lodomethane	ND		0.0053
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0053
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0053
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	0.017		0.0053
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	0.0013		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0053
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	ND		0.0053
Toluene	ND		0.0053
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	09-074-01 H-PEX-1-6			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0053
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		0.015		0.0011
m,p-Xylene		0.015		0.0021
o-Xylene		ND		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		0.066		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		0.22		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		0.020		0.0011
tert-Butylbenzene		0.0088		0.0011
1,2,4-Trimethylbenzene		0.091		0.0011
sec-Butylbenzene		0.13		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		0.024		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		0.17		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0053
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0053
Naphthalene		0.16		0.0011
1,2,3-Trichlorobenzene		ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	66-128
Toluene-d8	103	68-126
4-Bromofluorobenzene	78	53-134

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B

Page 1 of 2

Client ID:	H-PEX-2-6
Lab ID:	09-074-02
Matrix: Units:	Soil mg/kg (ppm)
Date Extracted: Date Analyzed:	9-10-10 9-10-10

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0068
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0068
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	ND		0.0068
lodomethane	ND		0.0068
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0068
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0068
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	ND		0.0068
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0068
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0068
Toluene	ND		0.0068
(trans) 1,3-Dichloropropene	ND		0.0014

VOLATILES by EPA 8260B Page 2 of 2

Page 2

Lab ID: Client ID:	09-074-02 H-PEX-2-6			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		0.0054		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0068
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0027
o-Xylene		0.0021		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		0.0022		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		0.010		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		0.023		0.0014
sec-Butylbenzene		0.0017		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		0.0023		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		0.0030		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0068
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0068
Naphthalene		0.043		0.0014
1,2,3-Trichlorobenzene		ND		0.0014
		Percent		Control
Surrogate		Recovery		Limits

SurrogateRecoveryLimitsDibromofluoromethane8466-128Toluene-d810868-1264-Bromofluorobenzene8353-134

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	9-9-10
Date Analyzed:	9-9-10
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	09-074-03
Client ID:	H-PEX-3-4

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	U	0.0011
Chloromethane	ND		0.0055
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0055
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	0.073		0.0055
lodomethane	ND		0.0055
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0055
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0055
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	0.016		0.0055
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0055
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	ND		0.0055
Toluene	ND		0.0055
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

VOLATILES by EPA 8260B Page 2 of 2

PQL 0.0011 0.0011 0.0011 0.0055 0.0011 0.0011 0.0011 0.0011 0.0011 0.0022 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0055 0.0011 0.0055 0.0011 0.0011

		Page 2 of 2	
Lab ID:	09-074-03		
Client ID:	H-PEX-3-4		
Compound		Results	Flags
1,1,2-Trichloroethane		ND	
Tetrachloroethene		ND	
1,3-Dichloropropane		ND	
2-Hexanone		ND	
Dibromochloromethane		ND	
1,2-Dibromoethane		ND	
Chlorobenzene		ND	
1,1,1,2-Tetrachloroethane		ND	
Ethylbenzene		ND	
m,p-Xylene		ND	
o-Xylene		0.0015	
Styrene		ND	
Bromoform		ND	
lsopropylbenzene		0.0047	
Bromobenzene		ND	
1,1,2,2-Tetrachloroethane		ND	
1,2,3-Trichloropropane		ND	
n-Propylbenzene		0.020	
2-Chlorotoluene		ND	
4-Chlorotoluene		ND	
1,3,5-Trimethylbenzene		0.0065	
tert-Butylbenzene		0.0065	
1,2,4-Trimethylbenzene		0.040	
sec-Butylbenzene		0.029	
1,3-Dichlorobenzene		ND	
p-Isopropyltoluene		0.0031	
1,4-Dichlorobenzene		ND	
1,2-Dichlorobenzene		ND	
n-Butylbenzene		0.041	
1,2-Dibromo-3-chloropropan	e	ND	
1,2,4-Trichlorobenzene		ND	
Hexachlorobutadiene		ND	
Naphthalene		0.0067	
1,2,3-Trichlorobenzene		ND	

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	84	66-128
Toluene-d8	101	68-126
4-Bromofluorobenzene	76	53-134

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

12

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:9-9-10Date Analyzed:9-9-10Matrix:SoilUnits:mg/kg (ppm)

Lab ID: MB0909S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0050
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0909S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-Isopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	66-128
Toluene-d8	95	68-126
4-Bromofluorobenzene	80	53-134

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:9-10-10Date Analyzed:9-10-10Matrix:SoilUnits:mg/kg (ppm)

Lab ID: MB0910S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0050
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0910S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	-	0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-Isopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	84	66-128
Toluene-d8	101	68-126
4-Bromofluorobenzene	85	53-134

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-9-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: SB0909S1

	Spike		Percent		Percent	Recovery	
Compound	Amount	SB	Recovery	SBD	Recovery	Limits	Flags
1,1-Dichloroethene	0.0500	0.0368	74	0.0366	73	70-130	
Benzene	0.0500	0.0406	81	0.0400	80	70-121	
Trichloroethene	0.0500	0.0414	83	0.0419	84	70-124	
Toluene	0.0500	0.0421	84	0.0426	85	70-123	
Chlorobenzene	0.0500	0.0439	88	0.0444	89	71-119	

		RPD	
	RPD	Limit	Flags
1,1-Dichloroethene	1	14	
Benzene	2	10	
Trichloroethene	1	12	
Toluene	1	12	
Chlorobenzene	1	9	

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Date Extracted:	9-10-10
Date Analyzed:	9-10-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: SB0910S1

у
Flags
r ;) 1 3)

		RPD	
	RPD	Limit	Flags
1,1-Dichloroethene	5	14	
Benzene	4	10	
Trichloroethene	4	12	
Toluene	2	12	
Chlorobenzene	1	9	

PAHs by EPA 8270D/SIM (with silica gel clean-up)

onno. mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-1-6					
Laboratory ID:	09-074-01					
Naphthalene	0.064	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
2-Methylnaphthalene	0.068	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
1-Methylnaphthalene	0.049	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Acenaphthylene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Acenaphthene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Fluorene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Phenanthrene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Anthracene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Fluoranthene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Pyrene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[a]anthracene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Chrysene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[b]fluoranthene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[k]fluoranthene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[a]pyrene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Indeno(1,2,3-c,d)pyrene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Dibenz[a,h]anthracene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[g,h,i]perylene	ND	0.0080	EPA 8270/SIM	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	45 - 101				
Pyrene-d10	82	52 - 118				
Terphenyl-d14	91	41 - 106				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Analyte Result PQL Method Prepared Analyzed Client ID: H-PEX-2-6	
Laboratory ID: 09-074-02 Naphthalene 0.032 0.0074 EPA 8270/SIM 9-9-10 9-9-10 2-Methylnaphthalene 0.013 0.0074 EPA 8270/SIM 9-9-10 9-9-10 1-Methylnaphthalene 0.0088 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthylene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluorene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene	Flags
Naphthalene 0.032 0.0074 EPA 8270/SIM 9-9-10 9-9-10 2-Methylnaphthalene 0.013 0.0074 EPA 8270/SIM 9-9-10 9-9-10 1-Methylnaphthalene 0.0088 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthylene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluorene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Anthracene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 0.0074 EPA 8270/SIM <td< td=""><td></td></td<>	
2-Methylnaphthalene 0.013 0.0074 EPA 8270/SIM 9-9-10 9-9-10 1-Methylnaphthalene 0.0088 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthylene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluorene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Anthracene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.0074 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[ajanthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[bjfluoranthene ND 0.0074 EPA 8270/SIM	
1-Methylnaphthalene 0.0088 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthylene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluorene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Anthracene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[ajanthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10<	
Acenaphthylene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Acenaphthene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluorene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Anthracene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 </td <td></td>	
Acenaphthene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluorene 0.0091 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Anthracene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9	
Fluorene0.00910.0074EPA 8270/SIM9-9-109-9-10Phenanthrene0.0310.0074EPA 8270/SIM9-9-109-9-10Anthracene0.0120.0074EPA 8270/SIM9-9-109-9-10Fluoranthene0.0170.0074EPA 8270/SIM9-9-109-9-10Pyrene0.0200.0074EPA 8270/SIM9-9-109-9-10Benzo[a]anthraceneND0.0074EPA 8270/SIM9-9-109-9-10Chrysene0.00740.0074EPA 8270/SIM9-9-109-9-10Benzo[b]fluorantheneND0.0074EPA 8270/SIM9-9-109-9-10Benzo[k]fluorantheneND0.0074EPA 8270/SIM9-9-109-9-10Benzo[a]pyreneND0.0074EPA 8270/SIM9-9-109-9-10Indeno(1,2,3-c,d)pyreneND0.0074EPA 8270/SIM9-9-109-9-10Dibenz[a,h]anthraceneND0.0074EPA 8270/SIM9-9-109-9-10Benzo[g,h,i]perylene0.0100.0074EPA 8270/SIM9-9-109-9-10Benzo[g,h,i]peryleneND0.0074EPA 8270/SIM9-9-109-9-10Benzo[g,h,i]perylene0.0100.0074EPA 8270/SIM9-9-109-9-10Benzo[g,h,i]perylene0.0100.0074EPA 8270/SIM9-9-109-9-10Benzo[g,h,i]perylene0.0100.0074EPA 8270/SIM9-9-109-9-10Benzo[g,h,i]perylene0.0100.0074EPA 8270/SIM9-9-109-9-10<	
Phenanthrene 0.031 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Anthracene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10	
Anthracene 0.012 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9	
Fluoranthene 0.017 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM	
Pyrene 0.020 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control L	
Benzo[a]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Chrysene 0.0074 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10	
Chrysene 0.0074 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10	
Benzo[b]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10	
Benzo[k]fluoranthene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10	
Benzo[a]pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10	
Indeno(1,2,3-c,d)pyrene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Voltable Voltable Voltable	
Dibenz[a,h]anthracene ND 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Control Limits Control Limits Control Limits	
Benzo[g,h,i]perylene 0.010 0.0074 EPA 8270/SIM 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10	
Surrogate: Percent Recovery Control Limits	
2 Elucrobiohonul 60 45 101	
2-Fluorobiphenyl 69 45 - 101	
Pyrene-d10 94 52 - 118	
Terphenyl-d14 77 41 - 106	

PAHs by EPA 8270D/SIM (with silica gel clean-up)

onno. mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-3-4					
Laboratory ID:	09-074-03					
Naphthalene	0.093	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
2-Methylnaphthalene	1.6	0.040	EPA 8270/SIM	9-9-10	9-10-10	
1-Methylnaphthalene	1.2	0.040	EPA 8270/SIM	9-9-10	9-10-10	
Acenaphthylene	0.028	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Acenaphthene	0.11	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Fluorene	0.13	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Phenanthrene	0.26	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Anthracene	0.046	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Fluoranthene	0.083	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Pyrene	0.19	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[a]anthracene	0.035	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Chrysene	0.062	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[b]fluoranthene	0.012	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[k]fluoranthene	0.0091	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[a]pyrene	0.078	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Indeno(1,2,3-c,d)pyrene	0.0083	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Dibenz[a,h]anthracene	ND	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[g,h,i]perylene	0.031	0.0081	EPA 8270/SIM	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	45 - 101				
Pyrene-d10	88	52 - 118				
Terphenyl-d14	76	41 - 106				

PAHs by EPA 8270D/SIM (with silica gel clean-up) METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0909S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Acenaphthene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Fluorene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Phenanthrene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Anthracene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Fluoranthene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Pyrene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Chrysene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	45 - 101				
Pyrene-d10	79	52 - 118				
Terphenyl-d14	94	41 - 106				

PAHs by EPA 8270D/SIM (with silica gel clean-up) MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

Units. hig/kg					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-07	74-02									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0886	0.108	0.0833	0.0833	0.0284	72	96	31 - 115	20	19	L
Acenaphthylene	0.0643	0.0658	0.0833	0.0833	ND	77	79	40 - 134	2	22	
Acenaphthene	0.0795	0.0822	0.0833	0.0833	0.00902	85	88	48 - 118	3	17	
Fluorene	0.0688	0.0642	0.0833	0.0833	0.00814	73	67	54 - 122	7	16	
Phenanthrene	0.0920	0.0961	0.0833	0.0833	0.0274	78	82	46 - 123	4	19	
Anthracene	0.0712	0.0623	0.0833	0.0833	0.0107	73	62	53 - 123	13	27	
Fluoranthene	0.0915	0.0786	0.0833	0.0833	0.0154	91	76	47 - 132	15	26	
Pyrene	0.0966	0.0893	0.0833	0.0833	0.0177	95	86	41 - 137	8	25	
Benzo[a]anthracene	0.0671	0.0612	0.0833	0.0833	ND	81	73	43 - 132	9	26	
Chrysene	0.0656	0.0640	0.0833	0.0833	ND	79	77	46 - 126	2	24	
Benzo[b]fluoranthene	0.0612	0.0525	0.0833	0.0833	ND	73	63	44 - 134	15	24	
Benzo[k]fluoranthene	0.0666	0.0476	0.0833	0.0833	ND	80	57	45 - 132	33	20	L
Benzo[a]pyrene	0.0700	0.0609	0.0833	0.0833	ND	84	73	36 - 136	14	23	
Indeno(1,2,3-c,d)pyrene	0.0844	0.0618	0.0833	0.0833	ND	101	74	40 - 136	31	16	L
Dibenz[a,h]anthracene	0.0865	0.0646	0.0833	0.0833	ND	104	78	40 - 142	29	13	L
Benzo[g,h,i]perylene	0.0809	0.0715	0.0833	0.0833	0.00900	86	75	37 - 137	12	18	
Surrogate:											
2-Fluorobiphenyl						76	81	45 - 101			
Pyrene-d10						88	85	52 - 118			
Terphenyl-d14						93	73	41 - 106			

PAHs by EPA 8270D/SIM (with silica gel clean-up) SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Spike Level Recov		overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	09S2								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0755	0.0787	0.0833	0.0833	91	94	33 - 105	4	30	
Acenaphthylene	0.0801	0.0754	0.0833	0.0833	96	91	51 - 110	6	22	
Acenaphthene	0.0762	0.0785	0.0833	0.0833	91	94	51 - 105	3	20	
Fluorene	0.0695	0.0766	0.0833	0.0833	83	92	61 - 107	10	17	
Phenanthrene	0.0718	0.0742	0.0833	0.0833	86	89	61 - 106	3	12	
Anthracene	0.0691	0.0701	0.0833	0.0833	83	84	59 - 106	1	12	
Fluoranthene	0.0708	0.0709	0.0833	0.0833	85	85	66 - 116	0	12	
Pyrene	0.0787	0.0756	0.0833	0.0833	94	91	67 - 118	4	14	
Benzo[a]anthracene	0.0677	0.0710	0.0833	0.0833	81	85	60 - 114	5	11	
Chrysene	0.0623	0.0649	0.0833	0.0833	75	78	64 - 112	4	12	
Benzo[b]fluoranthene	0.0623	0.0660	0.0833	0.0833	75	79	61 - 123	6	14	
Benzo[k]fluoranthene	0.0641	0.0716	0.0833	0.0833	77	86	50 - 124	11	17	
Benzo[a]pyrene	0.0728	0.0731	0.0833	0.0833	87	88	50 - 114	0	17	
Indeno(1,2,3-c,d)pyrene	0.106	0.107	0.0833	0.0833	127	128	56 - 130	1	16	
Dibenz[a,h]anthracene	0.111	0.112	0.0833	0.0833	133	134	57 - 134	1	16	
Benzo[g,h,i]perylene	0.101	0.0982	0.0833	0.0833	121	118	56 - 121	3	15	
Surrogate:										
2-Fluorobiphenyl					88	83	45 - 101			
Pyrene-d10					83	78	52 - 118			
Terphenyl-d14					97	95	41 - 106			

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-1-6					
Laboratory ID:	09-074-01					
Gasoline	270	6.3	NWTPH-Gx	9-9-10	9-9-10	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				
Client ID:	H-PEX-2-6					
Laboratory ID:	09-074-02					
Gasoline	390	5.8	NWTPH-Gx	9-9-10	9-9-10	Z,O
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	55-127				
Client ID:	H-PEX-3-4					
Laboratory ID:	09-074-03					
Gasoline	22	7.3	NWTPH-Gx	9-9-10	9-10-10	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

						Date	Date		
Analyte		Result	PQL	Me	thod	Prepared	Analyzed	1	Flags
METHOD BLANK									
Laboratory ID:		MB0909S1							
Gasoline		ND	5.0	NWT	PH-Gx	9-9-10	9-9-10		
Surrogate:	Pei	rcent Recovery	Control Lim	its					
Fluorobenzene		90	55-127						
				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	/ Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-08	38-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					100 9	7 55-127			

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H-PEX-1-6				,	
Laboratory ID:	09-074-01					
Diesel Range Organics	220	30	NWTPH-Dx	9-9-10	9-10-10	N,M
Lube Oil	280	60	NWTPH-Dx	9-9-10	9-10-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	H-PEX-2-6					
Laboratory ID:	09-074-02					
Diesel Range Organics	ND	400	NWTPH-Dx	9-9-10	9-9-10	U1
Lube Oil	720	56	NWTPH-Dx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	H-PEX-3-4					
Laboratory ID:	09-074-03					
Diesel Range Organics	1800	150	NWTPH-Dx	9-9-10	9-10-10	N,M
Lube Oil	7300	300	NWTPH-Dx	9-9-10	9-10-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
-	•					

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

						Date	Date		
Analyte	Result		PQL	Method	F	repared	Analyze	d	Flags
METHOD BLANK									
Laboratory ID:	MB0909S1								
Diesel Range Organics	ND		25	NWTPH-Dx		9-9-10	9-9-10		
Lube Oil Range Organics	ND		50	NWTPH-Dx		9-9-10	9-9-10		
Surrogate:	Percent Recov	/ery	Control Limits						
o-Terphenyl	101		50-150						
Matrix: Soil									
Units: mg/Kg (ppm)				Perc	ont	Recovery		RPD	
Analyte	Resu	lt		Reco		Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-074	-02							
	ORIG	DUP							
Diesel Range Organics	ND	ND					NA	NA	U1
Lube Oil	641	624					3	NA	
Surrogate:									
o-Terphenyl				105	104	50-150			

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-074-01					
Client ID:	H-PEX-1-6					
Arsenic	ND	12	6010B	9-9-10	9-10-10	
Barium	69	3.0	6010B	9-9-10	9-10-10	
Cadmium	ND	0.60	6010B	9-9-10	9-10-10	
Chromium	35	0.60	6010B	9-9-10	9-10-10	
Lead	ND	6.0	6010B	9-9-10	9-10-10	
Mercury	ND	0.30	7471A	9-9-10	9-9-10	
Selenium	ND	12	6010B	9-9-10	9-10-10	
Silver	ND	0.60	6010B	9-9-10	9-10-10	

Lab ID:	09-074-02					
Client ID:	H-PEX-2-6					
Arsenic	ND	11	6010B	9-9-10	9-10-10	
Barium	41	2.8	6010B	9-9-10	9-10-10	
Cadmium	ND	0.56	6010B	9-9-10	9-10-10	
Chromium	27	0.56	6010B	9-9-10	9-10-10	
Lead	18	5.6	6010B	9-9-10	9-10-10	
Mercury	ND	0.28	7471A	9-9-10	9-9-10	
Selenium	ND	11	6010B	9-9-10	9-10-10	
Silver	ND	0.56	6010B	9-9-10	9-10-10	

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-074-03					
Client ID:	H-PEX-3-4					
Arsenic	ND	12	6010B	9-9-10	9-10-10	
Barium	79	3.0	6010B	9-9-10	9-10-10	
Cadmium	ND	0.61	6010B	9-9-10	9-10-10	
Chromium	26	0.61	6010B	9-9-10	9-10-10	
Lead	130	6.1	6010B	9-9-10	9-10-10	
Mercury	ND	0.30	7471A	9-9-10	9-9-10	
Selenium	ND	12	6010B	9-9-10	9-10-10	
Silver	ND	0.61	6010B	9-9-10	9-10-10	

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-9&10-10
Matrix:	Soil

Units: mg/kg (ppm)

Lab ID: MB0909S1&MB0909S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-9&10-10

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-074-02

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	36.5	38.4	5	2.5	
Banam	00.0	00.4	0	2.0	
Cadmium	ND	ND	NA	0.50	
Chromium	23.8	24.4	3	0.50	
Lead	16.5	11.4	37	5.0	С
Leau	10.5	11.4	37	5.0	C
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-9&10-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-074-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	94.2	94	95.1	95	1	
Barium	100	134	97	133	96	1	
Cadmium	50	46.4	93	45.8	92	1	
Chromium	100	118	94	118	95	0	
Lead	250	231	86	235	87	2	
Mercury	0.50	0.504	101	0.502	100	0	
Selenium	100	95.2	95	95.2	95	0	
Silver	25	21.7	87	21.8	87	0	

PCBs by EPA 8082

Matrix: Soil Units: mg/Kg (ppm)

Client ID: H-PEX-1-6 Laboratory ID: 09-074-01 Araclar 1016 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1211 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1221 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclar 121 ND 0.056 EPA 8082 9-9-10 9-9-10 Araclar 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Araclar 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Araclar 124 ND <	0 0 1 7				Date	Date	
Laboratory ID: 09-074-01 Aracler 1016 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1221 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1232 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Aracler 1260 ND 0.066 EPA 8082 9-9-10 9-9-10 Aracler 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aracler 121 ND 0.056 EPA 8082 9-9-10 9-9-10 Aracler 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aracler 124 ND 0.056 EPA 8082 9-9-10 <t< th=""><th>Analyte</th><th>Result</th><th>PQL</th><th>Method</th><th>Prepared</th><th>Analyzed</th><th>Flags</th></t<>	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Arcolor 1016 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1221 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1232 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1244 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Arcolor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Arcolor 121 ND 0.056 EPA 8082 9-9-10 9-9-10 Arcolor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Arcolor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Arcolor 1242 ND	Client ID:	H-PEX-1-6					
Araclor 1221 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclor 1232 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclor 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclor 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclor 1254 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Araclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits DCB 71 46-122 Client ID: H-PEX-2-6 Laboratory ID: 09-074-02 9-9-10 9-9-10 Araclor 1212 ND 0.056 EPA 8082 9-9-10 9-9-10 Araclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Araclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Arac	Laboratory ID:	09-074-01					
Aroclor 1232 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1243 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.066 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 121 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1244 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND	Aroclor 1016	ND	0.060	EPA 8082	9-9-10	9-9-10	
Aroclor 1242 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 DCB 71 46-122 46-122 46-122 Client D: H-PEX-2-6 Laboratory ID: 09-074-02 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1240 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1240 ND 0.056 EPA 8082 9-9-1	Aroclor 1221	ND	0.060	EPA 8082	9-9-10	9-9-10	
Aroclor 1248 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 DCB 71 46-122 V V 9-9-10 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061<	Aroclor 1232	ND	0.060	EPA 8082	9-9-10	9-9-10	
Aroclor 1254 ND 0.060 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 DCB 71 46-122 V 9-9-10 9-9-10 Client ID: H-PEX-2-6 1 9-9-10 9-9-10 9-9-10 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 127 ND 0.0	Aroclor 1242	ND	0.060	EPA 8082	9-9-10	9-9-10	
Aroclor 1260 ND 0.060 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 46-122 5 71 46-122 Client ID: H-PEX-2-6 5	Aroclor 1248	ND	0.060	EPA 8082	9-9-10	9-9-10	
Surrogate: Percent Recovery Control Limits DCB 71 46-122 Client ID: H-PEX-2-6 Laboratory ID: 09-074-02 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1222 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1244 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits DCB 70 46-122 Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 46-122 10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10	Aroclor 1254	ND	0.060	EPA 8082	9-9-10	9-9-10	
DCB 71 46-122 Client ID: H-PEX-2-6 Laboratory ID: 09-074-02 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1250 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits DCB 70 46-122 Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 46-122 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10	Aroclor 1260	ND	0.060	EPA 8082	9-9-10	9-9-10	
Client ID: H-PEX-2-6 09-074-02 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits DCB 70 46-122 Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 09-074-02 Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits DCB 70 46-122 Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082	DCB	71	46-122				
Aroclor 1016 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits DCB 70 46-122 Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 9-9-10 9-9-10 Aroclor 1212 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroc	Client ID:	H-PEX-2-6					
Aroclor 1221 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits V V 46-122 Client ID: H-PEX-3-4 Laboratory ID: 0.9061 EPA 8082 9-9-10 9-9-10 Aroclor 1212 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10<	Laboratory ID:	09-074-02					
Aroclor 1232 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 DCB 70 46-122 9-9-10 9-9-10 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 <	Aroclor 1016	ND	0.056	EPA 8082	9-9-10	9-9-10	
Aroclor 1242 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 DCB 70 46-122 V V 9-9-10 Client ID: H-PEX-3-4 V V V 9-9-10 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1244 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061	Aroclor 1221	ND	0.056	EPA 8082	9-9-10	9-9-10	
Aroclor 1248 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 SUrrogate: Percent Recovery Control Limits 9-9-10 9-9-10 Client ID: H-PEX-3-4 100-074-03 9-9-10 9-9-10 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 </td <td>Aroclor 1232</td> <td>ND</td> <td>0.056</td> <td>EPA 8082</td> <td>9-9-10</td> <td>9-9-10</td> <td></td>	Aroclor 1232	ND	0.056	EPA 8082	9-9-10	9-9-10	
Aroclor 1254 ND 0.056 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 9-9-10 9-9-10 SUrrogate: Percent Recovery Control Limits 70 46-122 Client ID: H-PEX-3-4 H-PEX-3-4 H-PEX-3-4 H-PEX-3-4 Laboratory ID: 09-074-03 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND <	Aroclor 1242	ND	0.056	EPA 8082	9-9-10	9-9-10	
Aroclor 1260 ND 0.056 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits 70 46-122 V	Aroclor 1248	ND	0.056	EPA 8082	9-9-10	9-9-10	
Surrogate: Percent Recovery Control Limits DCB 70 46-122 Client ID: H-PEX-3-4	Aroclor 1254	ND	0.056	EPA 8082	9-9-10	9-9-10	
DCB 70 46-122 Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Percent Recovery Control Limits	Aroclor 1260	ND	0.056	EPA 8082	9-9-10	9-9-10	
Client ID: H-PEX-3-4 Laboratory ID: 09-074-03 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Fortal Limits Fortal Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 09-074-03 Aroclor 1016 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Ferential Surrogate	DCB	70	46-122				
ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1221 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Percent Recovery Control Limits	Client ID:	H-PEX-3-4					
ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Vontrol Limits Vontrol Limits	Laboratory ID:	09-074-03					
ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1232 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1242 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Vontrol Limits Vontrol Limits	Aroclor 1016	ND	0.061	EPA 8082	9-9-10	9-9-10	
ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1248 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1250 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Voltable Voltable Voltable	Aroclor 1221	ND					
ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1254 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Voltable Voltable Voltable	Aroclor 1232	ND	0.061	EPA 8082	9-9-10	9-9-10	
ND 0.061 EPA 8082 9-9-10 9-9-10 Aroclor 1260 ND 0.061 EPA 8082 9-9-10 9-9-10 Surrogate: Percent Recovery Control Limits Control Limits Control Limits	Aroclor 1242	ND	0.061	EPA 8082	9-9-10	9-9-10	
Aroclor 1260ND0.061EPA 80829-9-109-9-10Surrogate:Percent RecoveryControl Limits	Aroclor 1248	ND	0.061	EPA 8082	9-9-10	9-9-10	
Surrogate: Percent Recovery Control Limits	Aroclor 1254	ND	0.061	EPA 8082	9-9-10	9-9-10	
· ·	Aroclor 1260	ND	0.061	EPA 8082	9-9-10	9-9-10	
· ·	Surrogate:	Percent Recovery	Control Limits				
	DCB	-	46-122				

34

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0909S1					
Aroclor 1016	ND	0.050	EPA 8082	9-9-10	9-9-10	
Aroclor 1221	ND	0.050	EPA 8082	9-9-10	9-9-10	
Aroclor 1232	ND	0.050	EPA 8082	9-9-10	9-9-10	
Aroclor 1242	ND	0.050	EPA 8082	9-9-10	9-9-10	
Aroclor 1248	ND	0.050	EPA 8082	9-9-10	9-9-10	
Aroclor 1254	ND	0.050	EPA 8082	9-9-10	9-9-10	
Aroclor 1260	ND	0.050	EPA 8082	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
DCB	73	46-122				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-0	74-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.432	0.403	0.500	0.500	ND	86	81	36-121	7	15	
Surrogate:											
DCB						75	70	46-122			

35

% MOISTURE

Date Analyzed: 9-9-10

Client ID	Lab ID	% Moisture	
H-PEX-1-6	09-074-01	17	
H-PEX-2-6	09-074-02	10	
H-PEX-3-4	09-074-03	17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.
- Z The sample chromatogram is similar to mineral spirits with diesel fuel.

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

CLIENT:	OnSite Environmental Inc.	DATE:	9/13/2010
	14648 NE 95th Street	ALS JOB#:	1009078
	Redmond, WA 98052	DATE RECEIVED:	9/9/2010
		WDOE ACCREDITATION #:	C1336

CLIENT CONTACT:Dave BaumeisterCLIENT PROJECT ID:Lab Ref #09-074 / Proj #2007-098CLIENT SAMPLE ID:9/8/2010H-PEX-1-6ALS SAMPLE #:-01

	L	DATA RESUL	15				
ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	40	5.0	1	MG/KG	9/10/2010	EBS
>C10-C12 Aliphatics	NWEPH	110	5.0	1	MG/KG	9/10/2010	EBS
>C12-C16 Aliphatics	NWEPH	140	5.0	1	MG/KG	9/10/2010	EBS
>C16-C21 Aliphatics	NWEPH	100	5.0	1	MG/KG	9/10/2010	EBS
>C21-C34 Aliphatics	NWEPH	300	5.0	1	MG/KG	9/10/2010	EBS
>C8-C10 Aromatics	NWEPH	ND	5.0	1	MG/KG	9/10/2010	EBS
>C10-C12 Aromatics	NWEPH	13	5.0	1	MG/KG	9/10/2010	EBS
>C12-C16 Aromatics	NWEPH	33	5.0	1	MG/KG	9/10/2010	EBS
>C16-C21 Aromatics	NWEPH	53	5.0	1	MG/KG	9/10/2010	EBS
>C21-C34 Aromatics	NWEPH	100	5.0	1	MG/KG	9/10/2010	EBS
Total Aliphatics	NWEPH	690	10	1	MG/KG	9/10/2010	EBS
Total Aromatics	NWEPH	200	10	1	MG/KG	9/10/2010	EBS

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

** UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Port Bagun

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT:	OnSite Environmental Inc. 14648 NE 95th Street	DATE: ALS JOB#:	9/13/2010 1009078
	Redmond, WA 98052	DATE RECEIVED:	9/9/2010
		WDOE ACCREDITATION #:	C1336

CLIENT CONTACT:Dave BaumeisterCLIENT PROJECT ID:Lab Ref #09-074 / Proj #2007-098CLIENT SAMPLE ID:9/8/2010H-PEX-2-6-02

	D	ATA RESUL	rs				
ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	ND	5.0	1	MG/KG	9/10/2010	EBS
>C10-C12 Aliphatics	NWEPH	ND	5.0	1	MG/KG	9/10/2010	EBS
>C12-C16 Aliphatics	NWEPH	7.0	5.0	1	MG/KG	9/10/2010	EBS
>C16-C21 Aliphatics	NWEPH	80	5.0	1	MG/KG	9/10/2010	EBS
>C21-C34 Aliphatics	NWEPH	230	5.0	1	MG/KG	9/10/2010	EBS
>C8-C10 Aromatics	NWEPH	ND	5.0	1	MG/KG	9/10/2010	EBS
>C10-C12 Aromatics	NWEPH	ND	5.0	1	MG/KG	9/10/2010	EBS
>C12-C16 Aromatics	NWEPH	ND	5.0	1	MG/KG	9/10/2010	EBS
>C16-C21 Aromatics	NWEPH	24	5.0	1	MG/KG	9/10/2010	EBS
>C21-C34 Aromatics	NWEPH	65	5.0	1	MG/KG	9/10/2010	EBS
Total Aliphatics	NWEPH	320	10	1	MG/KG	9/10/2010	EBS
Total Aromatics	NWEPH	97	10	1	MG/KG	9/10/2010	EBS

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

** UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Port Bagun

Page 2
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT:	OnSite Environmental Inc. 14648 NE 95th Street	DATE: ALS JOB#:	9/13/2010 1009078
	Redmond, WA 98052	DATE RECEIVED:	9/9/2010
		WDOE ACCREDITATION #:	C1336

CLIENT CONTACT:Dave BaumeisterCLIENT PROJECT ID:Lab Ref #09-074 / Proj #2007-098CLIENT SAMPLE ID:9/8/2010H-PEX-3-4-03

DATA RESULTS REPORTING DILUTION ANALYSIS ANALYSIS ANALYTE METHOD **RESULTS*** UNITS** LIMITS FACTOR DATE ΒY >C8-C10 Aliphatics NWEPH 84 5.0 1 MG/KG 9/10/2010 EBS 5.0 EBS >C10-C12 Aliphatics NWEPH 66 MG/KG 9/10/2010 1 >C12-C16 Aliphatics NWEPH 45 5.0 MG/KG 9/10/2010 EBS 1 EBS >C16-C21 Aliphatics NWEPH 120 5.0 MG/KG 9/10/2010 1 >C21-C34 Aliphatics NWEPH 1.400 5.0 MG/KG 9/10/2010 EBS 1 >C8-C10 Aromatics NWEPH ND 5.0 1 MG/KG 9/10/2010 EBS >C10-C12 Aromatics NWEPH 7.0 5.0 1 MG/KG 9/10/2010 EBS NWEPH 5.0 MG/KG 9/10/2010 >C12-C16 Aromatics 18 1 EBS >C16-C21 Aromatics NWEPH 48 5.0 1 MG/KG 9/10/2010 EBS 250 >C21-C34 Aromatics NWEPH 5.0 1 MG/KG 9/10/2010 EBS **Total Aliphatics** NWEPH 1,700 10 MG/KG 9/10/2010 EBS 1 **Total Aromatics** NWEPH 330 10 1 MG/KG 9/10/2010 EBS

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

** UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Par Bagun

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT: OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
 DATE:
 9/13/2010

 ALS JOB#:
 1009078

 DATE RECEIVED:
 9/9/2010

 WDOE ACCREDITATION #:
 C1336

CLIENT CONTACT: Dave Baumeister CLIENT PROJECT ID: Lab Ref #09-074 / Proj #2007-098

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

ALS SAMPLE ID	METHOD	SUR ID	% RECV
1009078-01	NWEPH	C25	100%
1009078-01	NWEPH	p-Terphenyl	82%
1009078-02	NWEPH	C25	101%
1009078-02	NWEPH	p-Terphenyl	84%
1009078-03	NWEPH	C25	104%
1009078-03	NWEPH	p-Terphenyl	85%

APPROVED BY:

Por Bagun

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT: OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
 DATE:
 9/13/2010

 ALS JOB#:
 1009078

 DATE RECEIVED:
 9/9/2010

 WDOE ACCREDITATION #:
 C1336

CLIENT CONTACT: Dave Baumeister CLIENT PROJECT ID: Lab Ref #09-074 / Proj #2007-098

QUALITY CONTROL RESULTS

BLANK RESULTS

QC SAMPLE ID	MATRIX	METHOD	ANALYTE	RESULT	UNITS
MBLK-9102010	Soil	NWEPH	>C8-C10 Aliphatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C10-C12 Aliphatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C12-C16 Aliphatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C16-C21 Aliphatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C21-C34 Aliphatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C8-C10 Aromatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C10-C12 Aromatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C12-C16 Aromatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C16-C21 Aromatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	>C21-C34 Aromatics	ND(<5.0)	MG/KG
MBLK-9102010	Soil	NWEPH	Total Aliphatics	ND(<10)	MG/KG
MBLK-9102010	Soil	NWEPH	Total Aromatics	ND(<10)	MG/KG

APPROVED BY:

Par Bagun

Page 5
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT: OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
 DATE:
 9/13/2010

 ALS JOB#:
 1009078

 DATE RECEIVED:
 9/9/2010

 WDOE ACCREDITATION #:
 C1336

CLIENT CONTACT: Dave Baumeister CLIENT PROJECT ID: Lab Ref #09-074 / Proj #2007-098

QUALITY CONTROL RESULTS

BLANK SPIKE/BLANK SPIKE DUPLICATE RESULTS

QC BATCH ID	MATRIX	METHOD	ANALYTE	SPIKE AMOUNT	BLANK SPIKE RECOVERY	BLANK SPIKE DUPLICATE RECOVERY	RPD
R70469	Soil	NWEPH	>C8-C10 Aliphatics	100	78%	77%	1
R70469	Soil	NWEPH	>C10-C12 Aliphatics	100	83%	81%	2
R70469	Soil	NWEPH	>C12-C16 Aliphatics	100	87%	88%	1
R70469	Soil	NWEPH	>C16-C21 Aliphatics	100	93%	92%	1
R70469	Soil	NWEPH	>C21-C34 Aliphatics	100	82%	80%	2
R70469	Soil	NWEPH	>C8-C10 Aromatics	100	82%	79%	4
R70469	Soil	NWEPH	>C10-C12 Aromatics	100	84%	80%	5
R70469	Soil	NWEPH	>C12-C16 Aromatics	100	86%	83%	4
R70469	Soil	NWEPH	>C16-C21 Aromatics	100	90%	89%	1
R70469	Soil	NWEPH	>C21-C34 Aromatics	100	95%	92%	3

APPROVED BY:

Por Bagun

Page 6
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

Laboratory Reference #: 09-074

1009078

Page 1 of 1

DISTRIBUTION: WHITE - Return to HWA: YFI I OW - Retain hy Latin hy Sampler	Received by: Van Sparshy Van Spherry 9/8/10 3:45	by: 1810 1/2/10 5:18	RINT NAME SIGNATURE COMPANY DATE TIME											THE WITH AND A ROF VPI VO SV PPI VO SV PPI VO SV PPI VO SV	CS 10 C 1 - C - C 25		<u>A PHONE: 206 799 -3113</u> → A La	PROJECT NAME: 2007.04 Horlit: 2007.099 ANALYSIS REQUESTED		•	
X			IE REMARKS										REMARKS			3	J.J. Now		DATE: 1/ 8/10		

y v ampier

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 10, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1009-088

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 9, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 9, 2010 and received by the laboratory on September 9, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The MTCA Method A clean-up level for Benzene in sample H-PEX-5-8 is not achievable due to the high moisture content of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-6-4					
Laboratory ID:	09-088-01					
Benzene	ND	0.020	EPA 8021	9-9-10	9-9-10	
Toluene	ND	0.062	EPA 8021	9-9-10	9-9-10	
Ethyl Benzene	ND	0.062	EPA 8021	9-9-10	9-9-10	
m,p-Xylene	ND	0.062	EPA 8021	9-9-10	9-9-10	
o-Xylene	ND	0.062	EPA 8021	9-9-10	9-9-10	
Gasoline	ND	6.2	NWTPH-Gx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-PEX-5-8					
Laboratory ID:	09-088-02					
Benzene	ND	0.063	EPA 8021	9-9-10	9-9-10	
Toluene	ND	0.31	EPA 8021	9-9-10	9-9-10	
Ethyl Benzene	ND	0.31	EPA 8021	9-9-10	9-9-10	
m,p-Xylene	ND	0.31	EPA 8021	9-9-10	9-9-10	
o-Xylene	ND	0.31	EPA 8021	9-9-10	9-9-10	
Gasoline	ND	31	NWTPH-Gx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	55-127				
Client ID:	PEX-4-8					
Laboratory ID:	09-088-03					
Benzene	ND	0.020	EPA 8021	9-9-10	9-9-10	
Toluene	ND	0.084	EPA 8021	9-9-10	9-9-10	
Ethyl Benzene	ND	0.084	EPA 8021	9-9-10	9-9-10	
m,p-Xylene	ND	0.084	EPA 8021	9-9-10	9-9-10	
o-Xylene	ND	0.084	EPA 8021	9-9-10	9-9-10	
Gasoline	ND	8.4	NWTPH-Gx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	55-127				

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-7-5					
Laboratory ID:	09-088-04					
Benzene	ND	0.020	EPA 8021	9-9-10	9-9-10	
Toluene	ND	0.079	EPA 8021	9-9-10	9-9-10	
Ethyl Benzene	ND	0.079	EPA 8021	9-9-10	9-9-10	
m,p-Xylene	ND	0.079	EPA 8021	9-9-10	9-9-10	
o-Xylene	ND	0.079	EPA 8021	9-9-10	9-9-10	
Gasoline	ND	7.9	NWTPH-Gx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				
Client ID:	H-PEX-8-6					
Laboratory ID:	09-088-05					
Benzene	ND	0.021	EPA 8021	9-9-10	9-9-10	
Toluene	ND	0.10	EPA 8021	9-9-10	9-9-10	
Ethyl Benzene	ND	0.10	EPA 8021	9-9-10	9-9-10	
m,p-Xylene	0.11	0.10	EPA 8021	9-9-10	9-9-10	
o-Xylene	ND	0.10	EPA 8021	9-9-10	9-9-10	
Gasoline	ND	10	NWTPH-Gx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

Surrogate: Fluorobenzene

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0909S1					
Benzene	ND	0.020	EPA 8021	9-9-10	9-9-10	
Toluene	ND	0.050	EPA 8021	9-9-10	9-9-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-9-10	9-9-10	
m,p-Xylene	ND	0.050	EPA 8021	9-9-10	9-9-10	
o-Xylene	ND	0.050	EPA 8021	9-9-10	9-9-10	
Gasoline	ND	5.0	NWTPH-Gx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-08	38-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA		NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						100	97	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	09S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.927	0.987	1.00	1.00		93	99	75-113	6	9	
Toluene	0.926	0.985	1.00	1.00		93	99	75-116	6	10	
Ethyl Benzene	0.951	1.01	1.00	1.00		95	101	82-117	6	10	
m,p-Xylene	0.966	1.03	1.00	1.00		97	103	81-122	6	10	
o-Xylene	0.968	1.02	1.00	1.00		97	102	83-118	5	10	

92

95

55-127

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-6-4					
Laboratory ID:	09-088-01					
Diesel Range Organics	ND	31	NWTPH-Dx	9-9-10	9-9-10	
Lube Oil Range Organics	ND	62	NWTPH-Dx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	H-PEX-5-8					
Laboratory ID:	09-088-02					
Diesel Range Organics	ND	87	NWTPH-Dx	9-9-10	9-9-10	
Lube Oil Range Organics	210	170	NWTPH-Dx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	H-PEX-4-8					
Laboratory ID:	09-088-03					
Diesel Range Organics	ND	34	NWTPH-Dx	9-9-10	9-9-10	
Lube Oil Range Organics	ND	68	NWTPH-Dx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	H-PEX-7-5					
Laboratory ID:	09-088-04					
Diesel Range Organics	ND	33	NWTPH-Dx	9-9-10	9-9-10	
Lube Oil Range Organics	ND	66	NWTPH-Dx	9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	H-PEX-8-6					
Laboratory ID:	09-088-05					
Diesel Range Organics	140	28	NWTPH-Dx	9-9-10	9-9-10	
Lube Oil	70	28 56	NWTPH-Dx NWTPH-Dx	9-9-10 9-9-10	9-9-10 9-9-10	
Surrogate:	Percent Recovery	Control Limits		3-3-10	3-3-10	
o-Terphenyl	105	50-150				
Старнану	100	00-700				

6

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Grinder 11.9/11.9 (PP11)						Date	Date	e	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB0909S2	2							
Diesel Range Organics	ND		25	NWTPH-Dx	[9-9-10	9-9-1	0	
Lube Oil Range Organics	ND		50	NWTPH-Dx	[9-9-10	9-9-1	0	
Surrogate:	Percent Reco	very	Control Limits						
o-Terphenyl	120		50-150						
				Perce	ent	Recovery		RPD	
Analyte	Res	ult		Recov	/ery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-08	8-01							
	ORIG	DUF	0						
Diesel Range Organics	ND	ND					NA	NA	
Diesel Range Organics Lube Oil Range Organics		ND ND					NA NA	NA NA	
	ND								

TOTAL ARSENIC EPA 6010B

Matrix: Units:	Soil					
Units.	mg/kg (ppm)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-088-01					
Client ID:	H-PEX-6-4					
Arsenic	ND	12	6010B	9-9-10	9-10-10	
Lab ID:	09-088-02					
Client ID:	H-PEX-5-8					
Arsenic	ND	17	6010B	9-9-10	9-10-10	
Lab ID:	09-088-03					
Client ID:	H-PEX-4-8					
Arsenic	ND	14	6010B	9-9-10	9-10-10	
Lab ID:	09-088-04					
Client ID:	H-PEX-7-5					
Arsenic	ND	13	6010B	9-9-10	9-10-10	
Lab ID:	09-088-05					
Client ID:	H-PEX-8-6					
Arsenic	ND	11	6010B	9-9-10	9-10-10	

TOTAL ARSENIC EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-10-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0909S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	5.0

TOTAL ARSENIC EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:9-9-10Date Analyzed:9-10-10

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 09-074-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	

TOTAL ARSENIC EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	9-9-10
Date Analyzed:	9-10-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-074-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	94.2	94	95.1	95	1	

% MOISTURE

Date Analyzed: 9-9-10

Client ID	Lab ID	% Moisture
H-PEX-6-4	09-088-01	19
H-PEX-5-8	09-088-02	71
H-PEX-4-8	09-088-03	27
H-PEX-7-5	09-088-04	24
H-PEX-8-6	09-088-05	11

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Relinquished by: Received by:	Received by:	Relinquished by:	PRI									1-4-4-0	1-1-12/-6-	マビム		1-0-X-X-Q	NA SAMPLE ID		HWA CONTACT: Vance Atkens	SAMPLERS SIGNATURE:	SAMPIERS NAME: Doto	IAME:	19730 0411 Ave.	H	
	P	26 6	PRINT NAME													117110	DATE		Vances		070	Both	W., Suite Zt		
		emo-	ш П						 			10100	11121	2010	10120		TIME	۰. ۴	4tkeb		Parcen		JU, LYIIIIWOO	EOSCIEN	
																1102	TIME MATRIX		ŝ	100		r055r	a, wa 980a		
	J.SO-05F	A.	SIS SI									U	7-4	· · · ·	24	<u> </u>		•	_ PHONE: <u>425-774-0/</u> 06		DHONE	Bothell Crossroads #: 2007-098	36 (425) //4-0106	HWA GEOSCIENCES INC.	
			SIGNATURE									7	2 4	£ 1	14	22	BOTTLE	# 0F	174-0106	14-5115	1911 2112	5-095			
												XX	< X X		< > < >			w	ТР <i>І</i> н - РН	'-G	вт ,	Έ¥		and L	
					-			-		 		X	. 7		< X 			AR	SEN	îC.				Chain c and Laboratory	
	20	M	0	·····			-															ANAL			
	SE		COMPANY								· ·				+	_						ANALYSIS REQUESTED		of Custody y Analysis Request	
			~																					ody sis Re	
	\¢	4																						ques	
	٩	6/10	DATE		_					 		X	×	. 🗡	×	• ×		26	MOUS	ΣUZ	Ē			4	
	1255	12:51	TIME			· · · · ·				 		1	7		N										1
	5	イ	m									-				24-1					ی از این م	D	PAGE:		
			REMARKS									l'	11	11	: -	Hour TAT	REMARKS					880-00	/ of	e la	
																							['	I	

DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 13, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1009-095

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 10, 2010.

Please note that the data for NWTPH-G/BTEX analyses is preliminary pending QA/QC data.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 10, 2010 and received by the laboratory on September 10, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The sample chromatogram for H-TP-22-8 is not similar to a typical gas.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-22-8					
Laboratory ID:	09-095-01					
Diesel Range Organics	ND	63	NWTPH-Dx	9-10-10	9-10-10	U1
Lube Oil	300	58	NWTPH-Dx	9-10-10	9-10-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	H-TP-23-7					
Laboratory ID:	09-095-02					
Diesel Fuel #2	5400	30	NWTPH-Dx	9-10-10	9-10-10	
Lube Oil	680	60	NWTPH-Dx	9-10-10	9-10-10	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

						Date	Date		
Analyte	Result		PQL	Method	Р	repared	Analyze	ed	Flags
METHOD BLANK									
Laboratory ID:	MB0910S1	1							
Diesel Range Organics	ND		25	NWTPH-Dx	ę	9-10-10	9-10-10)	
Lube Oil Range Organics	ND		50	NWTPH-Dx	ę	9-10-10	9-10-10)	
Surrogate:	Percent Reco	very	Control Limits						
o-Terphenyl	104		50-150						
Matrix: Soil									
Units: mg/Kg (ppm)									
5 5 (T)				Per	cent	Recovery		RPD	
Analyte	Resu	ult		Rece	overy	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-078	3-06							
	ORIG	DUP							
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				94	101	50-150			

4

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-22-8					
Laboratory ID:	09-095-01					
Benzene	ND	0.020	EPA 8021	9-10-10	9-13-10	
Toluene	ND	0.064	EPA 8021	9-10-10	9-13-10	
Ethyl Benzene	0.27	0.064	EPA 8021	9-10-10	9-13-10	
m,p-Xylene	1.2	0.064	EPA 8021	9-10-10	9-13-10	
o-Xylene	0.19	0.064	EPA 8021	9-10-10	9-13-10	
Gasoline	12	6.4	NWTPH-Gx	9-10-10	9-13-10	Т
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-TP-23-7					
Laboratory ID:	09-095-02					
Benzene	ND	0.060	EPA 8021	9-10-10	9-10-10	
Toluene	ND	0.30	EPA 8021	9-10-10	9-10-10	
Ethyl Benzene	0.65	0.30	EPA 8021	9-10-10	9-10-10	
m,p-Xylene	0.72	0.30	EPA 8021	9-10-10	9-10-10	
o-Xylene	ND	0.15	EPA 8021	9-10-10	9-10-10	U1
Gasoline	ND	30	NWTPH-Gx	9-10-10	9-10-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

······				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0910S1					
Benzene	ND	0.020	EPA 8021	9-10-10	9-13-10	
Toluene	ND	0.050	EPA 8021	9-10-10	9-13-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-10-10	9-13-10	
m,p-Xylene	ND	0.050	EPA 8021	9-10-10	9-13-10	
o-Xylene	ND	0.050	EPA 8021	9-10-10	9-13-10	
Gasoline	ND	5.0	NWTPH-Gx	9-10-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	55-127				

9-10-10

Date Analyzed:

% MOISTURE

·		
Client ID	Lab ID	% Moisture
H-TP-22-8	09-095-01	14
H-TP-23-9	09-095-02	17

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical gas.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

DISTRIBU	Received by:	by:	Received by: When the former	PRINT NAME								H-M-3-7 9/10/10 2:20 5	9/10/10	HWA SAMPLE ID DATE TIME MATRIX	HWA CONTACT: Vance Att ins	SHE CODE: SAMPLERS NAME: 104 1040	PROJECT NAME: Borbell Cossiends - Hortz	19700 0411 Ave: W., Outle 200, Lythilwood, WA 900	HWAGEOSCIENCES INC.
DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain							· · ·		 			2 K		LAB ID BOTTLE	- PHONE: 425 77 0/06	_ PHONE:206-74/ タリヌ	<u> 12-410-600-# 210</u>	0010-477 (C24) 00	
HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler		EC.	bring .	E COMPANY									XX		<u>РН - (</u>	I I S / BTEX	2/ ANALYSIS REQUESTED		Chain of Custody and Laboratory Analysis Request
ain by Sampler			_	DATE							 	X	Ø	З m	015N	PE			quest
			3/0	TIME REMARKS										REMARKS	141	24-hav	660-60		() (P

1

•

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 16, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1009-106

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 13, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 13, 2010 and received by the laboratory on September 13, 2010. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The MTCA Method A clean-up level for Benzene for sample H-TP-25-8 is not achievable due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Semivolatiles EPA 8270D/SIM Analysis

Sample MS/MSD pair had several recoveries fall outside of control limits believed to be caused by sample matrix. Due to the dilution of the sample MS/MSD two analytes were lost 1,4-Dichlorobenzene and 1,2,4-Trichlorobenzene. The SB/SBD pair extracted with this batch had all parameters in control, no further action was deemed necessary.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Total Metals EPA 6010B/7471A Analysis

The duplicate RPD for chromium is outside control limits due to sample inhomogeniety. The sample was re-extracted and re-analyzed with similar results.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H-PEX-9-5			•		<u> </u>
Laboratory ID:	09-106-02					
Diesel Fuel #2	820	30	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil Range Organics	ND	110	NWTPH-Dx	9-14-10	9-14-10	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	H-PEX-10-7 09-106-03					
Laboratory ID:		00		0 1 1 1 0	0.14.10	
Diesel Fuel #2	600	29 50	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil	86	58	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	H-PEX-11-6					
• • . • . • . • . • . • . • . • . •	09-106-04					
Laboratory ID:		00	NWTPH-Dx	0 1 1 1 0	0.14.10	
Diesel Fuel #2	1900 2700	29		9-14-10	9-14-10	
Lube Oil		57	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery 101	Control Limits 50-150				
o-Terphenyl	101	50-150				
Client ID:	H-SP-1					
Laboratory ID:	09-106-05					
Diesel Range Organics	<u>ND</u>	27	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil Range Organics	ND	55	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits	INVVIETEDX	9-14-10	9-14-10	
o-Terphenyl	107	50-150				
0-Terphenyi	107	50-150				
Client ID:	H-SP-2					
Laboratory ID:	09-106-06					
Diesel Range Organics	ND	29	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil	78	58	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits		014-10	514-10	
o-Terphenyl	96	50-150				
o-i elpileliyi	30	50-150				
Client ID:	H-TP-24-3					
Laboratory ID:	09-106-07					
Diesel Range Organics	ND	55	NWTPH-Dx	9-14-10	9-14-10	U1
Lube Oil	200	57	NWTPH-Dx	9-14-10	9-14-10	0,
Surrogate:	Percent Recovery	Control Limits		00	00	
o-Terphenyl	98	50-150				
e . e.p.ionji	00	00,00				

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-24-8					
Laboratory ID:	09-106-08					
Diesel Range Organics	ND	29	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil Range Organics	ND	58	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	H-TP-25-2					
Laboratory ID:	09-106-09					
Diesel Range Organics	ND	28	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	H-TP-25-8					
•	09-106-10					
Laboratory ID:				0 1 1 1 0	0.14.10	
Diesel Fuel #2	5400	33	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil	1700	65	NWTPH-Dx	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	H-DUP-091310					
Laboratory ID:	09-106-11					
Diesel Fuel #2	950	29	NWTPH-Dx	9-14-10	9-14-10	
Lube Oil Range Organics	ND	120	NWTPH-Dx	9-14-10	9-14-10	U1
Surrogate:	Percent Recovery	Control Limits		5 17 10	טודוט	01
o-Terphenyl	101	50-150				
0-i eipiieiiyi	101	50-150				

4

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analy:	-	Flags
METHOD BLANK				•			
Laboratory ID:	MB0914S1						
Diesel Range Organics	ND	25	NWTPH-Dx	9-14-10	9-14-	10	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-14-10	9-14-	10	
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	113	50-150					
			Percent	Recovery		RPD	
Analyte	Result		Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09-106-05	5					
	ORIG DI	JP					
Diesel Bange Organics		D			NΔ	ΝΔ	

Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				107	99	50-150			

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-9-5					
Laboratory ID:	09-106-02					
Benzene	ND	0.027	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.14	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.14	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	ND	0.14	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.14	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	14	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-PEX-10-7					
Laboratory ID:	09-106-03					
Benzene	ND	0.023	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.12	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.12	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	ND	0.12	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.12	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	12	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	55-127				
Client ID:	H-PEX-11-6					
Laboratory ID:	09-106-04					
Benzene	ND	0.027	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.13	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	0.25	0.13	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	0.38	0.13	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.65	EPA 8021	9-13-10	9-13-10	U1
Gasoline	ND	13	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-SP-1					
Laboratory ID:	09-106-05					
Benzene	ND	0.020	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.065	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.065	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	ND	0.065	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.065	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	6.5	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-SP-2					
Laboratory ID:	09-106-06					
Benzene	ND	0.020	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.061	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.061	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	ND	0.061	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.061	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	6.1	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	55-127				
Client ID:	H-TP-24-3					
Laboratory ID:	09-106-07					
Benzene	ND	0.020	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.064	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.064	EPA 8021	9-13-10	9-13-10	
n,p-Xylene	ND	0.064	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.064	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	6.4	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

7

Matrix: Soil Units: mg/kg (ppm)

Client ID: H-TP-24-8 Laboratory ID: 09-106-08 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Daluene ND 0.051 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.051 EPA 8021 9-13-10 9-13-10 chylape ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Gasoline ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 5-127 5-127 Client ID: H-TP-25-2 Laboratory ID: 09-106-09 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.063					Date	Date	
Laboratory ID: 09-106-08 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.051 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.051 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Surrogate: ND 0.063 EPA 8021 9-13-10 9-13-10	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.051 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.051 EPA 8021 9-13-10 9-13-10 or, Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.051 EPA 8021 9-13-10 9-13-10 Gasoline ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Suropate: ND 0.020 EPA 8021 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Surogate: ND 0.063 EPA 8021 9-13-10 9-13-10 Surogate: Percent Recovery <td>Client ID:</td> <td>H-TP-24-8</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Client ID:	H-TP-24-8					
Toluene ND 0.051 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.051 EPA 8021 9-13-10 9-13-10 oxylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.51 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: ND 0.020 EPA 8021 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 mp-Xylene ND 0.63 EPA 8021 9-13-10 9-13-10 Surrogate: Percent Recovery	Laboratory ID:	09-106-08					
ND 0.051 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Gasoline ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Fluorobenzene 100 55-127 9-13-10 9-13-10 Client ID: H-TP-25-2 Laboratory ID: 09-106-09 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Surrogate ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits	Benzene	ND	0.020	EPA 8021	9-13-10	9-13-10	
ND 0.051 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.051 EPA 8021 9-13-10 9-13-10 Gasoline ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Client ID: H-TP-25-2 Laboratory ID: 09-106-09 9-13-10 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 benzene ND 0.063 EPA 8021 9-13-10 9-13-10 surrogate: ND 0.063 EPA 8021 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 55-127 9-13-10	Toluene	ND	0.051	EPA 8021	9-13-10	9-13-10	
ND 0.051 EPA 8021 9-13-10 9-13-10 Gasoline ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-TP-25-2 Laboratory ID: 09-106-09 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Surrogate: ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.063 EPA 8021 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surogate: Percent Recovery	Ethyl Benzene	ND	0.051	EPA 8021	9-13-10	9-13-10	
Gasoline ND 5.1 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 55-127 9-13-10 9-13-10 9-13-10 Client ID: H-TP-25-2 100 55-127 55-127 9-13-10 9-13-10 Client ID: H-TP-25-2 100 09-106-09 9-13-10 9-13-10 9-13-10 Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 mp-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 oxylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	0.051	EPA 8021	9-13-10	9-13-10	
Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-TP-25-2 Laboratory ID: 09-106-09 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 orxylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 55-127 55-127 55-127 Client ID: H-TP-25-8 H-TP-25-8 100 9-13-10 9-13-10 Laboratory ID: 09-106-10 09-106-10 9-13-10 9-13-10 9-13-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10	o-Xylene	ND	0.051	EPA 8021	9-13-10	9-13-10	
Fluorobenzene 100 55-127 Client ID: H-TP-25-2 Laboratory ID: 09-106-09 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.063 EPA 8021 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 96 55-127 Client ID: H-TP-25-8 Laboratory ID: 09-106-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 <td< td=""><td>Gasoline</td><td>ND</td><td>5.1</td><td>NWTPH-Gx</td><td>9-13-10</td><td>9-13-10</td><td></td></td<>	Gasoline	ND	5.1	NWTPH-Gx	9-13-10	9-13-10	
Client ID: H-TP-25-2 Laboratory ID: 09-106-09 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 96 55-127 Client ID: H-TP-25-8 Haboratory ID: 09-106-10 9-13-10 9-13-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10 Toluene <t< td=""><td>Surrogate:</td><td>Percent Recovery</td><td>Control Limits</td><td></td><td></td><td></td><td></td></t<>	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 09-106-09 Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Benzene ND 0.032 EPA 8021 9-13-10 9-13-10 Surrogate ND 0.16 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 <t< td=""><td>Fluorobenzene</td><td>100</td><td>55-127</td><td></td><td></td><td></td><td></td></t<>	Fluorobenzene	100	55-127				
Benzene ND 0.020 EPA 8021 9-13-10 9-13-10 Toluene ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 96 55-127 Client ID: H-TP-25-8 Laboratory ID: 09-106-10 9-13-10 9-13-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10 Toluene <td>Client ID:</td> <td>H-TP-25-2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Client ID:	H-TP-25-2					
ND 0.063 EPA 8021 9-13-10 9-13-10 Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.63 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Benzene 96 55-127 9-13-10 9-13-10 Client ID: H-TP-25-8 Haboratory ID: 09-106-10 9-13-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10	Laboratory ID:	09-106-09					
Ethyl Benzene ND 0.063 EPA 8021 9-13-10 9-13-10 m,p-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Client ID: H-TP-25-8 H-TP-25-8 H-TP-25-8 H-TP-25-8 Laboratory ID: 09-106-10 9-13-10 9-13-10 9-13-10 Benzene ND 0.16 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 m,p-Xylene 0.42 0.16 <t< td=""><td>Benzene</td><td>ND</td><td>0.020</td><td>EPA 8021</td><td>9-13-10</td><td>9-13-10</td><td></td></t<>	Benzene	ND	0.020	EPA 8021	9-13-10	9-13-10	
ND 0.063 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 Client ID: H-TP-25-8 H-TP-25-8 H-TP-25-8 H-TP-25-8 Laboratory ID: 09-106-10 0.16 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 m,p-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021<	Toluene	ND	0.063	EPA 8021	9-13-10	9-13-10	
ND 0.063 EPA 8021 9-13-10 9-13-10 Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-10 Client ID: H-TP-25-8 Eaboratory ID: 09-106-10 9-13-10 9-13-10 9-13-10 Benzene ND 0.032 EPA 8021 9-13-10 9-13-10 Toluene ND 0.032 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 m.p-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.80 EPA 8021 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10 9-13-1	Ethyl Benzene	ND	0.063	EPA 8021	9-13-10	9-13-10	
Gasoline ND 6.3 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits	m,p-Xylene	ND	0.063	EPA 8021	9-13-10	9-13-10	
Surrogate: Percent Recovery 96 Control Limits 55-127 Client ID: H-TP-25-8 09-106-10 Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Percent Recovery Control Limits Percent Recovery Percent Recovery <t< td=""><td>o-Xylene</td><td>ND</td><td>0.063</td><td>EPA 8021</td><td>9-13-10</td><td>9-13-10</td><td></td></t<>	o-Xylene	ND	0.063	EPA 8021	9-13-10	9-13-10	
Fluorobenzene 96 55-127 Client ID: H-TP-25-8 Laboratory ID: 09-106-10 Benzene ND 0.032 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 orXylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 orXylene ND 16 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits Visitian	Gasoline	ND	6.3	NWTPH-Gx	9-13-10	9-13-10	
Client ID: H-TP-25-8 Laboratory ID: 09-106-10 Benzene ND 0.032 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 Mp-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 Gasoline ND 16 NWTPH-Gx 9-13-10 U1 Surrogate: Percent Recovery Control Limits V V	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 09-106-10 Benzene ND 0.032 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 or,p-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 Gasoline ND 16 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-13-10	Fluorobenzene	96	55-127				
ND 0.032 EPA 8021 9-13-10 9-13-10 Toluene ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 m,p-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 Gasoline ND 16 NWTPH-Gx 9-13-10 9-13-10 Surrogate: Percent Recovery Control Limits 0-13-10 0-13-10	Client ID:	H-TP-25-8					
ND 0.16 EPA 8021 9-13-10 9-13-10 Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 m,p-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 Gasoline ND 0.80 EPA 8021 9-13-10 9-13-10 U1 Gasoline ND 16 NWTPH-Gx 9-13-10 9-13-10 U1 Surrogate: Percent Recovery Control Limits EVAND EVAND EVAND EVAND EVAND	Laboratory ID:	09-106-10					
Ethyl Benzene 0.31 0.16 EPA 8021 9-13-10 9-13-10 m,p-Xylene 0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 Gasoline ND 16 NWTPH-Gx 9-13-10 U1 Surrogate: Percent Recovery Control Limits V V	Benzene	ND	0.032	EPA 8021	9-13-10	9-13-10	
0.42 0.16 EPA 8021 9-13-10 9-13-10 o-Xylene ND 0.80 EPA 8021 9-13-10 9-13-10 U1 Gasoline ND 16 NWTPH-Gx 9-13-10 9-13-10 U1 Surrogate: Percent Recovery Control Limits Control Limits Control Limits Control Limits	Toluene	ND	0.16	EPA 8021	9-13-10	9-13-10	
ND 0.80 EPA 8021 9-13-10 9-13-10 U1 Gasoline ND 16 NWTPH-Gx 9-13-10 9-13-10 U1 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	0.31	0.16	EPA 8021	9-13-10	9-13-10	
GasolineND16NWTPH-Gx9-13-109-13-10Surrogate:Percent RecoveryControl Limits	m,p-Xylene	0.42	0.16	EPA 8021	9-13-10	9-13-10	
Surrogate: Percent Recovery Control Limits	o-Xylene	ND	0.80	EPA 8021	9-13-10	9-13-10	U1
-	Gasoline	ND	16	NWTPH-Gx	9-13-10	9-13-10	
Fluorobenzene 104 55-127	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene	104	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-DUP-091310					
Laboratory ID:	09-106-11					
Benzene	ND	0.025	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.12	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.12	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	ND	0.12	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.12	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	12	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

9

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0913S1					
Benzene	ND	0.020	EPA 8021	9-13-10	9-13-10	
Toluene	ND	0.050	EPA 8021	9-13-10	9-13-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-13-10	9-13-10	
m,p-Xylene	ND	0.050	EPA 8021	9-13-10	9-13-10	
o-Xylene	ND	0.050	EPA 8021	9-13-10	9-13-10	
Gasoline	ND	5.0	NWTPH-Gx	9-13-10	9-13-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Result Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-10	06-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA		NA	NA	30	
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate:											
Fluorobenzene						98	98	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	13S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.01	0.985	1.00	1.00		101	99	75-113	3	9	
Toluene	0.983	0.961	1.00	1.00		98	96	75-116	2	10	
Ethyl Benzene	0.978	0.954	1.00	1.00		98	95	82-117	2	10	
m,p-Xylene	0.998	0.976	1.00	1.00		100	98	81-122	2	10	
o-Xylene	0.988	0.962	1.00	1.00		99	96	83-118	3	10	
Surrogate:											
Fluorobenzene						95	93	55-127			

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H-PEX-11-6			•	,	U
Laboratory ID:	09-106-04					
n-Nitrosodimethylamine	ND	0.19	EPA 8270	9-13-10	9-14-10	
Pyridine	ND	1.9	EPA 8270	9-13-10	9-14-10	
Phenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
Aniline	ND	0.19	EPA 8270	9-13-10	9-14-10	
bis(2-Chloroethyl)ether	ND	0.19	EPA 8270	9-13-10	9-14-10	
2-Chlorophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,3-Dichlorobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,4-Dichlorobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
Benzyl alcohol	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,2-Dichlorobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
2-Methylphenol (o-Cresol)	ND	0.19	EPA 8270	9-13-10	9-14-10	
bis(2-Chloroisopropyl)ether	ND	0.19	EPA 8270	9-13-10	9-14-10	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.19	EPA 8270	9-13-10	9-14-10	
n-Nitroso-di-n-propylamine	ND	0.19	EPA 8270	9-13-10	9-14-10	
Hexachloroethane	ND	0.19	EPA 8270	9-13-10	9-14-10	
Nitrobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
sophorone	ND	0.19	EPA 8270	9-13-10	9-14-10	
2-Nitrophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,4-Dimethylphenol	ND	4.8	EPA 8270	9-13-10	9-14-10	
ois(2-Chloroethoxy)methane	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,4-Dichlorophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,2,4-Trichlorobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
Naphthalene	1.4	0.19	EPA 8270	9-13-10	9-14-10	
4-Chloroaniline	ND	0.19	EPA 8270	9-13-10	9-14-10	
Hexachlorobutadiene	ND	0.19	EPA 8270	9-13-10	9-14-10	
4-Chloro-3-methylphenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
2-Methylnaphthalene	14	0.77	EPA 8270	9-13-10	9-14-10	
1-Methylnaphthalene	8.4	0.19	EPA 8270	9-13-10	9-14-10	
Hexachlorocyclopentadiene	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,4,6-Trichlorophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,3-Dichloroaniline	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,4,5-Trichlorophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
2-Chloronaphthalene	ND	0.19	EPA 8270	9-13-10	9-14-10	
2-Nitroaniline	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,4-Dinitrobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
Dimethylphthalate	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,3-Dinitrobenzene	ND	0.96	EPA 8270	9-13-10	9-14-10	
2,6-Dinitrotoluene	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,2-Dinitrobenzene	ND	0.19	EPA 8270	9-13-10	9-14-10	
Acenaphthylene	0.16	0.0077	EPA 8270/SIM	9-13-10	9-14-10	
3-Nitroaniline	ND	0.19	EPA 8270	9-13-10	9-14-10	

SEMIVOLATILES by EPA 8270	D/SIM
---------------------------	-------

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H-PEX-11-6	T QL	Method	Trepared	Analyzeu	i iago
Laboratory ID:	09-106-04					
2,4-Dinitrophenol	ND	0.96	EPA 8270	9-13-10	9-14-10	
Acenaphthene	0.43	0.19	EPA 8270	9-13-10	9-14-10	
4-Nitrophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,4-Dinitrotoluene	ND	0.19	EPA 8270	9-13-10	9-14-10	
Dibenzofuran	0.44	0.19	EPA 8270	9-13-10	9-14-10	
2,3,5,6-Tetrachlorophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
2,3,4,6-Tetrachlorophenol	ND	0.19	EPA 8270	9-13-10	9-14-10	
Diethylphthalate	ND	0.96	EPA 8270	9-13-10	9-14-10	
1-Chlorophenyl-phenylether		0.19	EPA 8270	9-13-10	9-14-10	
1-Nitroaniline	ND	0.19	EPA 8270	9-13-10	9-14-10	
	0.96	0.19	EPA 8270	9-13-10	9-14-10	
4,6-Dinitro-2-methylphenol	ND	0.96	EPA 8270 EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
1-Nitrosodiphenylamine	ND	0.98	EPA 8270 EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
I,2-Diphenylhydrazine	ND	0.19	EPA 8270	9-13-10	9-14-10	
1,2-Dipnenyinyurazine 1-Bromophenyl-phenylether		0.19	EPA 8270 EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
Hexachlorobenzene	ND	0.19	EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
Pentachlorophenol	ND	0.96	EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
Phenanthrene	1.8	0.30	EPA 8270	9-13-10	9-14-10	
Anthracene	0.20	0.19	EPA 8270	9-13-10	9-14-10	
Carbazole	ND	0.19	EPA 8270	9-13-10	9-14-10	
Di-n-butylphthalate	ND	0.19	EPA 8270	9-13-10	9-14-10	
Fluoranthene	0.093	0.0077	EPA 8270/SIM	9-13-10	9-14-10	
Benzidine	ND	1.9	EPA 8270	9-13-10	9-14-10	
Pyrene	0.20	0.19	EPA 8270	9-13-10	9-14-10	
Butylbenzylphthalate	2.4	0.19	EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
bis-2-Ethylhexyladipate	ND	0.19	EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
3,3'-Dichlorobenzidine	ND	1.9	EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
Benzo[a]anthracene	0.073	0.0077	EPA 8270/SIM	9-13-10 9-13-10	9-14-10 9-14-10	
	0.21	0.19				
Chrysene	ND	0.19	EPA 8270	9-13-10 9-13-10	9-14-10	
bis(2-Ethylhexyl)phthalate	ND	0.19	EPA 8270 EPA 8270	9-13-10 9-13-10	9-14-10 9-14-10	
Di-n-octylphthalate						
Benzo[b]fluoranthene	0.055 0.0078	0.0077	EPA 8270/SIM	9-13-10	9-14-10	
Benzo[k]fluoranthene	0.0078	0.0077 0.0077	EPA 8270/SIM EPA 8270/SIM	9-13-10 9-13-10	9-14-10	
Benzo[a]pyrene	0.043	0.0077 0.0077		9-13-10 9-13-10	9-14-10 9-14-10	
ndeno[1,2,3-cd]pyrene			EPA 8270/SIM			
Dibenz[a,h]anthracene	ND 0.039	0.0077 0.0077	EPA 8270/SIM EPA 8270/SIM	9-13-10 9-13-10	9-14-10 9-14-10	
Benzo[g,h,i]perylene Surrogate:	Percent Recovery			9-10-10	5-14-10	
2-Fluorophenol	49	22 - 107				
2-Fluorophenol Phenol-d6	49 69	22 - 107 28 - 116				
Nitrobenzene-d5	48	28 - 110 25 - 111				
2-Fluorobiphenyl	40 76	25 - 111 35 - 108				
2,4,6-Tribromophenol	76 71	42 - 118				
Terphenyl-d14	74	42 - 118 44 - 121				
erprieriyi-u 14	/4	44 - 121				

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	MDaadaadd					
Laboratory ID:	MB0913S1	0.000		0 10 10	0 14 10	
n-Nitrosodimethylamine	ND	0.033 0.33	EPA 8270	9-13-10	9-14-10	
Pyridine	ND		EPA 8270	9-13-10	9-14-10	
Phenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
Aniline	ND	0.033	EPA 8270	9-13-10	9-14-10	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	9-13-10	9-14-10	
2-Chlorophenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
Benzyl alcohol	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	9-13-10	9-14-10	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	9-13-10	9-14-10	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	9-13-10	9-14-10	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	9-13-10	9-14-10	
Hexachloroethane	ND	0.033	EPA 8270	9-13-10	9-14-10	
Nitrobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
Isophorone	ND	0.033	EPA 8270	9-13-10	9-14-10	
2-Nitrophenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
2,4-Dimethylphenol	ND	0.83	EPA 8270	9-13-10	9-14-10	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	9-13-10	9-14-10	
2,4-Dichlorophenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
Naphthalene	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
4-Chloroaniline	ND	0.033	EPA 8270	9-13-10	9-14-10	
Hexachlorobutadiene	ND	0.033	EPA 8270	9-13-10	9-14-10	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	9-13-10	9-14-10	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
2,3-Dichloroaniline	ND	0.033	EPA 8270	9-13-10	9-14-10	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	9-13-10	9-14-10	
2-Chloronaphthalene	ND	0.033	EPA 8270	9-13-10	9-14-10	
2-Nitroaniline	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
Dimethylphthalate	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,3-Dinitrobenzene	ND	0.17	EPA 8270	9-13-10	9-14-10	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	9-13-10	9-14-10	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
3-Nitroaniline	ND	0.033	EPA 8270	9-13-10	9-14-10	

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL page 2 of 2

Laboratory ID: MB0913S1 2.4-Dinitrophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Acenaphthene ND 0.0033 EPA 8270 9-13-10 9-14-10 4-Nitrophenol ND 0.033 EPA 8270 9-13-10 9-14-10 2.4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14-10 2.4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14+10 2.3.5.6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2.3.4.6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 4.Chlorophenyl-phenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14+10 4.6-Dinitro-2-methylphenol ND 0.017 EPA 8270 9-13-10 9-14+10 4.6-Dinitro-2-methylphenol ND 0.033 EPA 8270 9-13-10 9-14+10 1.2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14+10	rte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Acenaphthene ND 0.0067 EPA 8270 9-13-10 9-14-10 A-Nitrophenol ND 0.033 EPA 8270 9-13-10 9-14-10 2.4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14-10 2.3,6.6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 2.3,6.6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 2.3,6.6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 4-Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4-Nitrosodiphenyl-inpenylether ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033					•		<u> </u>
Accenaphthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 4-Nitrophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2,4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.017 EPA 8270 9-13-10 9-14+10 4-Sitrophynylazine ND 0.033 EPA 8270 9-13-10 9-14+10 1-2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1-2-Diphenylphonol ND 0.033 EPA 8270 <							
ND 0.033 EPA 8270 9-13-10 9-14-10 2,4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14-10 2,4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14-10 2,3,6,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 2,3,6,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,6,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 4,6-Dinitro-2-methylphenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14+10 4,6-Dinitro-2-methylphenol ND 0.033 EPA 8270 9-13-10 9-14+10 4,6-Dinitro-2-methylphenol ND 0.017 EPA 8270 9-13-10 9-14+10 4,2-Diohenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diohenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diohenylhydrazine ND 0.033							
2,4-Dinitrotoluene ND 0.033 EPA 8270 9-13-10 9-14-10 Dibenzofuran ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,6,F-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,6,F-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 4-Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 4-Bromophenylamine ND 0.033 EPA 8270 9-13-10 9-14+10 1-2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1-2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1-2-Diphenylchrein ND 0.033 EPA 8270							
Dibenzofuran ND 0.033 EPA 8270 9-13-10 9-14-10 2,3,6,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14+10 4-Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diphenylether ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diphenylatriane ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diphenylchtrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diphenylchtrazine ND 0.033 EPA 8270 9-13-10 9-14+10 1,2-Diphenylchtrazine ND 0.0067 EPA 8270 9-13-10 9-14+10 Actrazene ND 0.0067 EPA 8270							
2,3,5,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 4:Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4:Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4:Nitroaniline ND 0.0067 EPA 8270 9-13-10 9-14-10 4:Obintro-2-methylphenol ND 0.017 EPA 8270 9-13-10 9-14-10 4:Obintro-2-methylphenol ND 0.033 EPA 8270 9-13-10 9-14-10 4:Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4:Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hearathbrophenol ND 0.033 EPA 8270 9-13-10 9-14-10 Hearathbrophenol ND 0.033 EPA 8270 9-13-10 9-14-10 Anthracene ND 0.0067							
ND 0.033 EPA 8270 9-13-10 9-14-10 Diethylphthalate ND 0.17 EPA 8270 9-13-10 9-14-10 4-Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14-10 4-Nitroaniline ND 0.0067 EPA 8270 9-13-10 9-14-10 4-Nitroaniline ND 0.017 EPA 8270 9-13-10 9-14-10 4-Bromophenylamine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenyldydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Pentachlorophenol ND 0.033 EPA 8270 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270 9-13-10 9-14-10							
Diethylphthalate ND 0.17 EPA 8270 9-13-10 9-14-10 4-Chiroophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14-10 4-Nitroaniline ND 0.0067 EPA 8270 9-13-10 9-14-10 4-Sitroaniline ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 Herachlorophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Phenanthrene ND 0.0067 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10	6-Tetrachlorophenol			EPA 8270		9-14-10	
4-Chlorophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14-10 Fluorene ND 0.0067 EPA 8270 9-13-10 9-14-10 A(-Dinitro-2-methylphenol ND 0.17 EPA 8270 9-13-10 9-14-10 A(-Dinitro-2-methylphenol ND 0.033 EPA 8270 9-13-10 9-14-10 A(-Dinitro-2-methylphenol ND 0.033 EPA 8270 9-13-10 9-14-10 A(-Dinitro-2-methylphenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 A-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorophenol ND 0.0067 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.0033 EPA 8270 9-13-10 9-14-10 Din-butylphthalate ND 0.033 <t< td=""><td></td><td></td><td></td><td></td><td>9-13-10</td><td></td><td></td></t<>					9-13-10		
4-Nitroaniline ND 0.033 EPA 8270 9-13-10 9-14-10 Fluorene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270 9-13-10 9-14-10 n-Nitrosociphenylamine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorophenol ND 0.017 EPA 8270 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Di-no-tylphthalate ND 0.033 EPA 8270 9-13-10 </td <td>/lphthalate</td> <td>ND</td> <td></td> <td>EPA 8270</td> <td>9-13-10</td> <td>9-14-10</td> <td></td>	/lphthalate	ND		EPA 8270	9-13-10	9-14-10	
Fluorene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270 9-13-10 9-14-10 n-Nitrosodiphenylamine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Phenanthrene ND 0.0067 EPA 8270 9-13-10 9-14-10 Phenanthrene ND 0.0067 EPA 8270 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270 9-13-10 9-14-10 Catazole ND 0.0033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.0037 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.0067 EPA 8270 9-13-10	prophenyl-phenylether	ND	0.033	EPA 8270	9-13-10	9-14-10	
4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270 9-13-10 9-14-10 n-Nitrosodiphenylamine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorobenzene ND 0.0033 EPA 8270 9-13-10 9-14-10 Pentachlorobenzene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzolaine ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-butylphthalate ND 0.0067 EPA 8270 9-13-10 9-14-10 Benzolaine ND 0.0067	oaniline	ND	0.033	EPA 8270	9-13-10	9-14-10	
Nitrosodiphenylamine ND 0.033 EPA 8270 9-13-10 9-14-10 1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorobenzene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Pentachlorophenol ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Anttracene ND 0.033 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Din-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.0033 EPA 8270 9-13-10<	e	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
1,2-Diphenylhydrazine ND 0.033 EPA 8270 9-13-10 9-14-10 4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13.10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13.10 9-14-10 Pentachlorophenol ND 0.17 EPA 8270 9-13.10 9-14-10 Phenanthrene ND 0.0067 EPA 8270/SIM 9-13.10 9-14-10 Anthracene ND 0.0067 EPA 8270/SIM 9-13.10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13.10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13.10 9-14-10 Fluoranthene ND 0.033 EPA 8270 9-13.10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13.10 9-14-10 System ND 0.33 EPA 8270 9-13.10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13.10 9-14-10 System ND 0.033 EPA 8270 9-13.10 9-14-10	initro-2-methylphenol	ND	0.17	EPA 8270	9-13-10	9-14-10	
4-Bromophenyl-phenylether ND 0.033 EPA 8270 9-13-10 9-14-10 Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Phenanthrene ND 0.0067 EPA 8270 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.0067 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Garbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Bis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 Si3-Dichlorobenzidine ND 0.033 EPA 8270 9-13-10	osodiphenylamine		0.033	EPA 8270	9-13-10	9-14-10	
Hexachlorobenzene ND 0.033 EPA 8270 9-13-10 9-14-10 Pentachlorophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Phenanthrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzolphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Sis-2-Ethylhexylapitata ND 0.033 EPA 8270 9-13-10 9-14-10 <t< td=""><td>phenylhydrazine</td><td>ND</td><td>0.033</td><td>EPA 8270</td><td>9-13-10</td><td>9-14-10</td><td></td></t<>	phenylhydrazine	ND	0.033	EPA 8270	9-13-10	9-14-10	
Pentachlorophenol ND 0.17 EPA 8270 9-13-10 9-14-10 Phenanthrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.0067 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.0067 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Si_2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 Si_2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 Si_2-Ethylhexyllophthalate ND 0.0067 EPA 8270/SIM 9-13-1	mophenyl-phenylether	ND	0.033	EPA 8270	9-13-10	9-14-10	
Phenanthrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3-Dichlorobenzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.033 EPA 8270 9-13-10 9-14-10 bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 <td>chlorobenzene</td> <td>ND</td> <td>0.033</td> <td>EPA 8270</td> <td>9-13-10</td> <td>9-14-10</td> <td></td>	chlorobenzene	ND	0.033	EPA 8270	9-13-10	9-14-10	
ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Carbazole ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.0067 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.0067 EPA 8270 9-13-10 9-14-10 Benzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Sis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 Sis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 Sis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10	chlorophenol	ND	0.17	EPA 8270	9-13-10	9-14-10	
ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Pyrene ND 0.0067 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.0067 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.033 EPA 8270 9-13-10 9-14-10 Di-s(2-Ethylhexyllopthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0033 EPA 8270 9-13-10 9-14-10 <td>anthrene</td> <td>ND</td> <td>0.0067</td> <td>EPA 8270/SIM</td> <td>9-13-10</td> <td>9-14-10</td> <td></td>	anthrene	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Pyrene ND 0.033 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.0067 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Batylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3 - Dichlorobenzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.033 EPA 8270 9-13-10 9-14-10 Di-cctylphthalate ND 0.0067 EPA 8270 9-13-10 9-14-10 Di-cctylphthalate ND 0.0067 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0067 EPA 8270/SIM 9-13-10<	acene	ND	0.0067	EPA 8270/SIM	9-13-10	9-14-10	
Di-n-butylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Pyrene ND 0.0067 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.0033 EPA 8270 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Batylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.033 EPA 8270 9-13-10 9-14-10 Dis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0067 EPA 8270/SIM	zole	ND	0.033	EPA 8270	9-13-10	9-14-10	
Fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Butylbenzylphthalate ND 0.0033 EPA 8270 9-13-10 9-14-10 Box ND 0.033 EPA 8270 9-13-10 9-14-10 Sis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.033 EPA 8270 9-13-10 9-14-10 Chrysene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10	outylphthalate	ND			9-13-10	9-14-10	
Benzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 bis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.33 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Chrysene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM	• •	ND				9-14-10	
Pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Butylbenzylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 bis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.33 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Chrysene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dis(2-Ethylhexyl)phthalate ND 0.0033 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 E	dine	ND					
ButylbenzylphthalateND0.033EPA 82709-13-109-14-10bis-2-EthylhexyladipateND0.033EPA 82709-13-109-14-103,3'-DichlorobenzidineND0.33EPA 82709-13-109-14-10Benzo[a]anthraceneND0.0067EPA 8270/SIM9-13-109-14-10ChryseneND0.0067EPA 8270/SIM9-13-109-14-10bis(2-Ethylhexyl)phthalateND0.033EPA 82709-13-109-14-10Din-octylphthalateND0.033EPA 82709-13-109-14-10Benzo[b]fluorantheneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[k]fluorantheneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[k]fluorantheneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[a]pyreneND0.0067EPA 8270/SIM9-13-109-14-10Indeno[1,2,3-cd]pyreneND0.0067EPA 8270/SIM9-13-109-14-10Dibenz[a,h]anthraceneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[g,h,i]peryleneND0.0067EPA 8270/SIM9-13-109-14-10Surrogate:Percent RecoveryControl Limits2-Fluorophenol5222 - 107Phenol-d65728 - 116Nitrobenzene-d55125 - 1112-Fluorobiphenyl5735 - 108							
Dis-2-Ethylhexyladipate ND 0.033 EPA 8270 9-13-10 9-14-10 3,3'-Dichlorobenzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Chrysene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0067 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.0033 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067							
3,3'-Dichlorobenzidine ND 0.33 EPA 8270 9-13-10 9-14-10 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Chrysene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surogate: Percent Recovery Co							
Benzo[a]anthraceneND0.0067EPA 8270/SIM9-13-109-14-10ChryseneND0.0067EPA 8270/SIM9-13-109-14-10bis(2-Ethylhexyl)phthalateND0.033EPA 82709-13-109-14-10Di-n-octylphthalateND0.033EPA 82709-13-109-14-10Benzo[b]fluorantheneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[b]fluorantheneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[a]pyreneND0.0067EPA 8270/SIM9-13-109-14-10Indeno[1,2,3-cd]pyreneND0.0067EPA 8270/SIM9-13-109-14-10Dibenz[a,h]anthraceneND0.0067EPA 8270/SIM9-13-109-14-10Benzo[g,h,i]peryleneND0.0067EPA 8270/SIM9-13-109-14-10Surrogate:Percent RecoveryControl Limits2-Fluorophenol5222 - 107Phenol-d65728 - 116116116116Nitrobenzene-d55125 - 1112-Fluorobiphenyl5735 - 108							
ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 52 22 - 107 Phenol-d6 57 28 - 116 <							
Disc. ND 0.033 EPA 8270 9-13-10 9-14-10 Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 52 22 - 107 Phenol-d6 57 28							
Di-n-octylphthalate ND 0.033 EPA 8270 9-13-10 9-14-10 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 52 22 - 107 Phenol-d6 57 28 - 116 Nitrobenzene-d5 51 25 - 111 2-Fluorobiphenyl 57 <							
Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 22 -107 Phenol-d6 57 28 - 116 11 25 - 111 25 - 111 2-Fluorobiphenyl 57 35 - 108 57							
Benzo[k]fluoranthene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 22 22 - 107 Phenol-d6 57 28 - 116 11 125 - 111 Nitrobenzene-d5 51 25 - 111 25 - 108							
Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 22-107 9-14-10 9-14-10 Phenol-d6 57 28 - 116 10 10 10 Nitrobenzene-d5 51 25 - 111 25-111 25-108							
Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 52 22 - 107 Phenol-d6 57 28 - 116 16 16 Nitrobenzene-d5 51 25 - 111 2-Fluorobiphenyl 57 35 - 108							
Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 9-13-10 9-14-10 2-Fluorophenol 52 22 - 107 9-14-10 9-14-10 Phenol-d6 57 28 - 116 9-14-10 Nitrobenzene-d5 51 25 - 111 9-13-10 2-Fluorobiphenyl 57 35 - 108 9-13-10							
Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 9-13-10 9-14-10 Surrogate: Percent Recovery Control Limits 22 - 107 22 - 107 28 - 116 25 27 - 101 25 - 111 25 - 111 25 - 108 26 - 108 26 - 108 26 - 108 26 - 108 26 - 108 26 - 108 27 - 108 27 - 108 27 - 108 28 - 108 28 - 108 28 - 108 28 - 108 28 - 108 28 - 108 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Surrogate:Percent RecoveryControl Limits2-Fluorophenol5222 - 107Phenol-d65728 - 116Nitrobenzene-d55125 - 1112-Fluorobiphenyl5735 - 108							
2-Fluorophenol 52 22 - 107 Phenol-d6 57 28 - 116 Nitrobenzene-d5 51 25 - 111 2-Fluorobiphenyl 57 35 - 108					3-13-10	3-14-10	
Phenol-d6 57 28 - 116 Nitrobenzene-d5 51 25 - 111 2-Fluorobiphenyl 57 35 - 108		-					
Nitrobenzene-d5 51 25 - 111 2-Fluorobiphenyl 57 35 - 108							
2-Fluorobiphenyl 57 35 - 108							
2.4.6-Tribromonhenol 7.4 12.110		57 74	35 - 108 42 - 118				
2,4,6-Tribromophenol 74 42 - 118 Terphenyl-d14 73 44 - 121							

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-10	06-01									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.25	0.982	1.33	1.33	ND	94	74	31 - 111	24	27	
2-Chlorophenol	1.23	0.895	1.33	1.33	ND	92	67	36 - 106	32	32	
1,4-Dichlorobenzene	ND	ND	0.667	0.667	ND	0	0	25 - 96	NA	42	I,I,L
n-Nitroso-di-n-propylamine	0.795	0.691	0.667	0.667	ND	119	104	37 - 107	14	36	I
1,2,4-Trichlorobenzene	ND	ND	0.667	0.667	ND	0	0	29 - 101	NA	31	I,I,L
4-Chloro-3-methylphenol	1.36	1.27	1.33	1.33	ND	102	95	47 - 112	7	18	
Acenaphthene	0.901	0.893	0.667	0.667	ND	135	134	43 - 104	1	19	I,I
4-Nitrophenol	1.53	1.74	1.33	1.33	ND	115	131	24 - 133	13	18	
2,4-Dinitrotoluene	1.24	0.757	0.667	0.667	ND	186	113	42 -117	48	19	I,I,L
Pentachlorophenol	0.860	0.865	1.33	1.33	ND	65	65	25 - 135	0	20	
Pyrene	0.802	0.639	0.667	0.667	ND	120	96	29 - 129	31	29	L
Surrogate:											
2-Fluorophenol						78	51	22 - 107			
Phenol-d6						93	70	28 - 116			
Nitrobenzene-d5						80	68	25 - 111			
2-Fluorobiphenyl						91	75	35 - 108			
2,4,6-Tribromophenol						86	80	42 - 118			
Terphenyl-d14						90	78	44 - 121			

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	13S1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	1.02	0.971	1.33	1.33	77	73	28 - 112	5	31	
2-Chlorophenol	1.04	1.00	1.33	1.33	78	75	24 - 115	4	39	
1,4-Dichlorobenzene	0.425	0.451	0.667	0.667	64	68	16 - 108	6	36	
n-Nitroso-di-n-propylamine	0.468	0.445	0.667	0.667	70	67	24 - 111	5	31	
1,2,4-Trichlorobenzene	0.427	0.437	0.667	0.667	64	66	18 - 110	2	34	
4-Chloro-3-methylphenol	1.10	1.10	1.33	1.33	83	83	51 - 106	0	24	
Acenaphthene	0.507	0.482	0.667	0.667	76	72	45 - 99	5	24	
4-Nitrophenol	1.23	1.30	1.33	1.33	92	98	38 - 134	6	25	
2,4-Dinitrotoluene	0.575	0.587	0.667	0.667	86	88	51 - 114	2	25	
Pentachlorophenol	1.30	1.38	1.33	1.33	98	104	44 - 130	6	26	
Pyrene	0.537	0.578	0.667	0.667	81	87	58 - 110	7	22	
Surrogate:										
2-Fluorophenol					70	70	22 - 107			
Phenol-d6					76	72	28 - 116			
Nitrobenzene-d5					71	70	25 - 111			
2-Fluorobiphenyl					69	66	35 - 108			
2,4,6-Tribromophenol					83	85	42 - 118			
Terphenyl-d14					80	85	44 - 121			

VOLATILES by EPA 8260B

Page 1 of 2

Date Extracted:	9-13-10
Date Analyzed:	9-13-10
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	09-106-04
Client ID:	H-PEX-11-6

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	5	0.062
Chloromethane	ND		0.31
Vinyl Chloride	ND		0.062
Bromomethane	ND		0.062
Chloroethane	ND		0.31
Trichlorofluoromethane	ND		0.062
1,1-Dichloroethene	ND		0.062
Acetone	ND		0.31
lodomethane	ND		0.31
Carbon Disulfide	ND		0.062
Methylene Chloride	ND		0.31
(trans) 1,2-Dichloroethene	ND		0.062
Methyl t-Butyl Ether	ND		0.062
1,1-Dichloroethane	ND		0.062
Vinyl Acetate	ND		0.31
2,2-Dichloropropane	ND		0.062
(cis) 1,2-Dichloroethene	ND		0.062
2-Butanone	ND		0.31
Bromochloromethane	ND		0.062
Chloroform	ND		0.062
1,1,1-Trichloroethane	ND		0.062
Carbon Tetrachloride	ND		0.062
1,1-Dichloropropene	ND		0.062
Benzene	ND		0.062
1,2-Dichloroethane	ND		0.062
Trichloroethene	ND		0.062
1,2-Dichloropropane	ND		0.062
Dibromomethane	ND		0.062
Bromodichloromethane	ND		0.062
2-Chloroethyl Vinyl Ether	ND		0.31
(cis) 1,3-Dichloropropene	ND		0.062
Methyl Isobutyl Ketone	ND		0.31
Toluene	ND		0.31
(trans) 1,3-Dichloropropene	ND		0.062

VOLATILES by EPA 8260B

Page 2 of 2

Lab ID: Client ID:	09-106-04 H-PEX-11-6			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.062
Tetrachloroethene		ND		0.062
1,3-Dichloropropane		ND		0.062
2-Hexanone		ND		0.31
Dibromochloromethane		ND		0.062
1,2-Dibromoethane		ND		0.062
Chlorobenzene		ND		0.062
1,1,1,2-Tetrachloroethane		ND		0.062
Ethylbenzene		ND		0.062
m,p-Xylene		ND		0.12
o-Xylene		ND		0.062
Styrene		ND		0.062
Bromoform		ND		0.062
Isopropylbenzene		0.19		0.062
Bromobenzene		ND		0.062
1,1,2,2-Tetrachloroethane		ND		0.062
1,2,3-Trichloropropane		ND		0.062
n-Propylbenzene		0.39		0.062
2-Chlorotoluene		ND		0.062
4-Chlorotoluene		ND		0.062
1,3,5-Trimethylbenzene		ND		0.062
tert-Butylbenzene		ND		0.062
1,2,4-Trimethylbenzene		0.37		0.062
sec-Butylbenzene		0.34		0.062
1,3-Dichlorobenzene		ND		0.062
p-Isopropyltoluene		0.095		0.062
1,4-Dichlorobenzene		ND		0.062
1,2-Dichlorobenzene		ND		0.062
n-Butylbenzene		0.55		0.062
1,2-Dibromo-3-chloropropane		ND		0.31
1,2,4-Trichlorobenzene		ND		0.062
Hexachlorobutadiene		ND		0.31
Naphthalene		0.39		0.062
1,2,3-Trichlorobenzene		ND		0.062

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	79	66-128
Toluene-d8	104	68-126
4-Bromofluorobenzene	85	53-134

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	9-13-10
Date Analyzed:	9-13-10
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0913S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0050
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0050
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0050
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB0913S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	-	0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-Isopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	66-128
Toluene-d8	101	68-126
4-Bromofluorobenzene	88	53-134

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	9-13-10
Date Analyzed:	9-13-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-106-04

Compound	Sample Amount	Spike Amount	MS	Percent Recovery	MSD	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	ND	1.02/0.969	1.01	99	0.920	95	70-130	
Benzene	ND	1.02/0.969	0.941	92	0.870	90	70-130	
Trichloroethene	ND	1.02/0.969	1.04	102	0.975	101	70-130	
Toluene	ND	1.02/0.969	1.01	99	0.946	98	70-126	
Chlorobenzene	ND	1.02/0.969	1.01	99	0.982	101	70-130	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	4	14	
Benzene	2	14	
Trichloroethene	1	18	
Toluene	1	20	
Chlorobenzene	2	15	

21

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-106-04 H-PEX-11-6					
Arsenic	ND	11	6010B	9-13-10	9-13-10	
Barium	50	2.9	6010B	9-13-10	9-13-10	
Cadmium	ND	0.57	6010B	9-13-10	9-13-10	
Chromium	23	0.57	6010B	9-13-10	9-13-10	
Lead	37	5.7	6010B	9-13-10	9-13-10	
Mercury	ND	0.29	7471A	9-13-10	9-13-10	
Selenium	ND	11	6010B	9-13-10	9-13-10	
Silver	ND	0.57	6010B	9-13-10	9-13-10	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-13-10
Date Analyzed:	9-13-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0913S1&MB0913S3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-13-10
Date Analyzed:	9-13-10

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-091-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	13.9	16.7	18	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	6.40	7.95	22	0.50	К
Lead	18.8	22.2	17	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-13-10
Date Analyzed:	9-13-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 09-091-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	97.9	98	97.4	97	0	
Barium	100	108	94	110	96	2	
Cadmium	50	42.6	85	43.0	86	1	
Chromium	100	95.1	89	97.5	91	3	
Lead	250	235	86	241	89	3	
Mercury	0.50	0.508	102	0.509	102	0	
Selenium	100	92.7	93	91.7	92	1	
Silver	25	22.2	89	22.3	89	0	

PCBs by EPA 8082

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-11-6					
Laboratory ID:	09-106-04					
Aroclor 1016	ND	0.057	EPA 8082	9-14-10	9-14-10	
Aroclor 1221	ND	0.057	EPA 8082	9-14-10	9-14-10	
Aroclor 1232	ND	0.057	EPA 8082	9-14-10	9-14-10	
Aroclor 1242	ND	0.057	EPA 8082	9-14-10	9-14-10	
Aroclor 1248	ND	0.057	EPA 8082	9-14-10	9-14-10	
Aroclor 1254	ND	0.057	EPA 8082	9-14-10	9-14-10	
Aroclor 1260	ND	0.057	EPA 8082	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits				
DCB	88	46-122				

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

e				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0914S1					
Aroclor 1016	ND	0.050	EPA 8082	9-14-10	9-14-10	
Aroclor 1221	ND	0.050	EPA 8082	9-14-10	9-14-10	
Aroclor 1232	ND	0.050	EPA 8082	9-14-10	9-14-10	
Aroclor 1242	ND	0.050	EPA 8082	9-14-10	9-14-10	
Aroclor 1248	ND	0.050	EPA 8082	9-14-10	9-14-10	
Aroclor 1254	ND	0.050	EPA 8082	9-14-10	9-14-10	
Aroclor 1260	ND	0.050	EPA 8082	9-14-10	9-14-10	
Surrogate:	Percent Recovery	Control Limits				
DCB	102	46-122				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-1	06-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.474	0.523	0.500	0.500	ND	95	105	36-121	10	15	
Surrogate:											
DCB						86	92	46-122			

% MOISTURE

Date Analyzed: 9-13-10

Client ID	Lab ID	% Moisture
H-PEX-9-5	09-106-02	17
H-PEX-10-7	09-106-03	13
H-PEX-11-6	09-106-04	13
H-SP-1	09-106-05	9
H-SP-2	09-106-06	13
H-TP-24-3	09-106-07	12
H-TP-24-8	09-106-08	14
H-TP-25-2	09-106-09	11
H-TP-25-8	09-106-10	23
H-DUP-091310	09-106-11	15

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

9/16/2010 1009094 9/14/2010 C1336

CLIENT:	OnSite Environmental Inc.	DATE:
	14648 NE 95th Street	ALS JOB#:
	Redmond, WA 98052	DATE RECEIVED:
		WDOE ACCREDITATION #:

CLIENT CONTACT:Dave BaumeisterCLIENT PROJECT ID:Lab Ref #09-106 / Proj #2007-098-921CLIENT SAMPLE ID:9/13/2010H-PEX-11-6ALS SAMPLE #:-01

	L	DATA RESUL	15				
ANALYTE	METHOD	RESULTS *	REPORTING LIMITS	DILUTION FACTOR	UNITS**	ANALYSIS DATE	ANALYSIS BY
C5-C6 Aliphatics	NWVPH	ND	5.0	1	MG/KG	9/15/2010	DLC
>C6-C8 Aliphatics	NWVPH	9.3	5.0	1	MG/KG	9/15/2010	DLC
>C8-C10 Aliphatics	NWVPH	17	5.0	1	MG/KG	9/15/2010	DLC
>C8-C10 Aromatics	NWVPH	66	5.0	1	MG/KG	9/15/2010	DLC
Total Aliphatics	NWVPH	29	5.0	1	MG/KG	9/15/2010	DLC
Total Aromatics	NWVPH	66	5.0	1	MG/KG	9/15/2010	DLC
Hexane	NWVPH	ND	0.20	1	MG/KG	9/15/2010	DLC
>C10-C12 Aliphatics	NWEPH	290	5.0	1	MG/KG	9/15/2010	GAP
>C12-C16 Aliphatics	NWEPH	1,100	5.0	1	MG/KG	9/15/2010	GAP
>C16-C21 Aliphatics	NWEPH	870	5.0	1	MG/KG	9/15/2010	GAP
>C21-C34 Aliphatics	NWEPH	1,200	5.0	1	MG/KG	9/15/2010	GAP
>C10-C12 Aromatics	NWEPH	61	5.0	1	MG/KG	9/15/2010	GAP
>C12-C16 Aromatics	NWEPH	780	5.0	1	MG/KG	9/15/2010	GAP
>C16-C21 Aromatics	NWEPH	800	5.0	1	MG/KG	9/15/2010	GAP
>C21-C34 Aromatics	NWEPH	810	5.0	1	MG/KG	9/15/2010	GAP
Total Aliphatics	NWEPH	3,500	10	1	MG/KG	9/15/2010	GAP
Total Aromatics	NWEPH	2,500	10	1	MG/KG	9/15/2010	GAP

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

** UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Part Bagun

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT: OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
 DATE:
 9/16/2010

 ALS JOB#:
 1009094

 DATE RECEIVED:
 9/14/2010

 WDOE ACCREDITATION #:
 C1336

CLIENT CONTACT: Dave Baumeister CLIENT PROJECT ID: Lab Ref #09-106 / Proj #2007-098-921

QUALITY CONTROL RESULTS

SURROGATE RECOVERY

ALS SAMPLE ID	METHOD	SUR ID	% RECV
1009094-01	NWVPH	TFT - Aliphatic	75%
1009094-01	NWVPH	TFT - Aromatic	76%
1009094-01	NWVPH	TFT - Hexane	84%
1009094-01	NWEPH	C25	71%
1009094-01	NWEPH	p-Terphenyl	78%

APPROVED BY:

Par Bagun

Page 2
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT: OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
 DATE:
 9/16/2010

 ALS JOB#:
 1009094

 DATE RECEIVED:
 9/14/2010

 WDOE ACCREDITATION #:
 C1336

CLIENT CONTACT: Dave Baumeister CLIENT PROJECT ID: Lab Ref #09-106 / Proj #2007-098-921

QUALITY CONTROL RESULTS

BLANK RESULTS

QC SAMPLE ID	MATRIX	METHOD	ANALYTE	RESULT	UNITS
MBLK-9152010	Soil	NWVPH	C5-C6 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWVPH	>C6-C8 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWVPH	>C8-C10 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWVPH	>C8-C10 Aromatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWVPH	Total Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWVPH	Total Aromatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWVPH	Hexane	ND(<0.20)	MG/KG
MBLK-9152010	Soil	NWEPH	>C10-C12 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C12-C16 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C16-C21 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C21-C34 Aliphatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C10-C12 Aromatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C12-C16 Aromatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C16-C21 Aromatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	>C21-C34 Aromatics	ND(<5.0)	MG/KG
MBLK-9152010	Soil	NWEPH	Total Aliphatics	ND(<10)	MG/KG
MBLK-9152010	Soil	NWEPH	Total Aromatics	ND(<10)	MG/KG

APPROVED BY:

Al Bagun

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

CLIENT: OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
 DATE:
 9/16/2010

 ALS JOB#:
 1009094

 DATE RECEIVED:
 9/14/2010

 WDOE ACCREDITATION #:
 C1336

DI ANK CDIKE

CLIENT CONTACT: Dave Baumeister CLIENT PROJECT ID: Lab Ref #09-106 / Proj #2007-098-921

QUALITY CONTROL RESULTS

BLANK SPIKE/BLANK SPIKE DUPLICATE RESULTS

QC BATCH ID	MATRIX	METHOD	ANALYTE	SPIKE AMOUNT	BLANK SPIKE RECOVERY	BLANK SPIKE DUPLICATE RECOVERY	RPD
R70527	Soil	NWVPH	C5-C6 Aliphatics	100	88%	93%	6
R70527	Soil	NWVPH	>C6-C8 Aliphatics	100	101%	107%	6
R70527	Soil	NWVPH	>C8-C10 Aliphatics	100	100%	107%	7
R70527	Soil	NWVPH	>C8-C10 Aromatics	100	97%	106%	9
R70527	Soil	NWVPH	Hexane	100	89%	95%	7
R70528	Soil	NWEPH	>C10-C12 Aliphatics	100	83%	81%	2
R70528	Soil	NWEPH	>C12-C16 Aliphatics	100	87%	88%	1
R70528	Soil	NWEPH	>C16-C21 Aliphatics	100	93%	92%	1
R70528	Soil	NWEPH	>C21-C34 Aliphatics	100	82%	80%	2
R70528	Soil	NWEPH	>C10-C12 Aromatics	100	84%	80%	5
R70528	Soil	NWEPH	>C12-C16 Aromatics	100	86%	83%	4
R70528	Soil	NWEPH	>C16-C21 Aromatics	100	90%	89%	1
R70528	Soil	NWEPH	>C21-C34 Aromatics	100	95%	92%	3

APPROVED BY:

Port Bagun

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

Environmental Inc.		1009094 Page 1 of 1
14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881 Subcontract Laboratory: ALS	Turnaroynd Request-	Laboratory Reference #: 09 - 106 Project Manager: David Baumeister
Contact Person: Address:	Standard 3 Day	email: dbaumeister@onsite-env.com Project Number: 2007-098-921
Phone Number: Date/Time:	Other:	Project Name:
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	# of Cont Requested Analysis
H-PEX-1		HCG/HAN
· · · · · ·		
		QAQC
Relinquished by Manual Signature	Company	9/W/10/1015
Received by:	Spechil	9/1/10 10:5
Received by: Wallborkunk	ALS	9/14/10/11:15 and
Relinquished by:		

DIST	Received by: M VOUV	by:	11	Relinquished by: New Jean	11 0				- + 05160~JNA-H	H-1-22-8 25-21	14-11-25-2 12:20	24:11 & -22-12-N	3	14-5P-2 11:40	 6	رد ر	5 1 9:30	9/13/10 11:25	HWA SAMPLE ID DATE TIME MA	SAMPLERS SIGNATURE: HWA CONTACT: U. Allend	SAMPLERS NAME: 1. Pers	PROJECT NAME: Bered (1000)	19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106	HWA GEOSCIENCES INC.	
RIBUTION: WHITE - Return to HWA;	Dr.S.	And	1 Speeder Van		SIGNATURE						X Y			×	× 2	×.			MATRIX LAB ID BOTTLE	PHONE: 425 777 0106	PHONE: 206 794-313	Hertz #: 7007-098-921	NA 98036 (425) 774-0106		
DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler	JOJE	Sauger -	Speally	Hung	COMPANY						<u> </u>				ス ス ス ス ス ス		7	X X X X X	NWTPH VPH/E SVOC VOC,	1 G-/10 TPH · 3 -8	FEX 	ANALYSIS REQUESTED		Chain of Custody and Laboratory Analysis Request	
i by Sampler	9/13/10 1345	5/10	0		DATE TIME REMARKS				C							>			REMARKS	ISTUR TATA		09 - 1 06			

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 16, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1009-119

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 14, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 14, 2010 and received by the laboratory on September 14, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The MTCA Method A clean-up level for Benzene is not achievable for sample H-TP-26-9 due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Jints. Ing/Kg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-26-4					
_aboratory ID:	09-119-01					
Diesel Range Organics	ND	28	NWTPH-Dx	9-15-10	9-15-10	
_ube Oil	150	56	NWTPH-Dx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	H-TP-26-9					
_aboratory ID:	09-119-02					
Diesel Fuel #2	3600	29	NWTPH-Dx	9-15-10	9-15-10	
_ube Oil	1800	58	NWTPH-Dx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	H-TP-27-5					
_aboratory ID:	09-119-03					
Diesel Range Organics	ND	30	NWTPH-Dx	9-15-10	9-15-10	
ube Oil Range Organics	ND	59	NWTPH-Dx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	H-TP-27-9					
_aboratory ID:	09-119-04					
Diesel Range Organics	ND	31	NWTPH-Dx	9-15-10	9-15-10	
_ube Oil Range Organics	ND	62	NWTPH-Dx	9-15-10	9-15-10	
	Percent Recovery	Control Limits				
Surrogate:	Percent Recovery	Control Linnis				

3

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

ee						Date	Date	e	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB0915S1								
Diesel Range Organics	ND		25	NWTPH-D	x	9-15-10	9-15-	10	
Lube Oil Range Organics	ND		50	NWTPH-D	x	9-15-10	9-15-	10	
Surrogate:	Percent Reco	very	Control Limits						
o-Terphenyl	117		50-150						
				Perc	ent	Recovery		RPD	
Analyte	Res	ult		Reco	very	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-119	9-01							
	ORIG	DUF)						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil	134	80.9)				49	NA	
a <i>i</i>									
Surrogate:									

Matrix: Soil Units: mg/kg (ppm)

America	Descrit	DOI		Date	Date	-
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-26-4					
Laboratory ID:	09-119-01					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.060	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.060	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.060	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.060	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	6.0	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-TP-26-9					
Laboratory ID:	09-119-02					
Benzene	ND	0.056	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.28	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	0.53	0.28	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	0.72	0.28	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.28	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	28	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits		0.0.0	0.0.0	
Fluorobenzene	97	55-127				
Client ID:	H-TP-27-5					
	09-119-03					
Laboratory ID:		0.000		0.45.40	0.45.40	
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.057	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.057	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.057	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.057	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	5.7	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-TP-27-9					
Laboratory ID:	09-119-04					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.068	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.068	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.068	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.068	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	6.8	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
		2 0 01 Ennito				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0915S1					
ND	0.020	EPA 8021	9-15-10	9-15-10	
ND	0.050	EPA 8021	9-15-10	9-15-10	
ND	0.050	EPA 8021	9-15-10	9-15-10	
ND	0.050	EPA 8021	9-15-10	9-15-10	
ND	0.050	EPA 8021	9-15-10	9-15-10	
ND	5.0	NWTPH-Gx	9-15-10	9-15-10	
Percent Recovery	Control Limits				
84	55-127				
	MB0915S1 ND ND ND ND ND ND Percent Recovery	MB0915S1 ND 0.020 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 5.0 Percent Recovery Control Limits	MB0915S1 ND 0.020 EPA 8021 ND 0.050 EPA 8021 ND 5.0 NWTPH-Gx Percent Recovery Control Limits	Result PQL Method Prepared MB0915S1	Result PQL Method Prepared Analyzed MB0915S1

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-11	9-03								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						97 94	55-127			

SPIKE BLANKS

Laboratory ID:	SB09	915S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	0.974	0.994	1.00	1.00	97	99	75-113	2	9	
Toluene	0.961	0.981	1.00	1.00	96	98	75-116	2	10	
Ethyl Benzene	0.976	1.00	1.00	1.00	98	100	82-117	2	10	
m,p-Xylene	0.990	1.01	1.00	1.00	99	101	81-122	2	10	
o-Xylene	0.989	1.01	1.00	1.00	99	101	83-118	2	10	
Surrogate:										
Fluorobenzene					95	96	55-127			

Date of Report: September 16, 2010 Samples Submitted: September 14, 2010 Laboratory Reference: 1009-119 Project: 2007-098-921

% MOISTURE

Date Analyzed:	9-14-10		
Client ID		Lab ID	% Moisture
H-TP-26-4		09-119-01	11
H-TP-26-9		09-119-02	14
H-TP-27-5		09-119-03	15
H-TP-27-9		09-119-04	20

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Relinquished by: Received by: DISTRIBI	M, Vou	Relinquished by: Dela Peace	PRINT NAME				H-77-27-9 " 1480 "	5 11 1430	HWA SAMPLE ID DATE TIME MATRIX	HWA CONTACT: Vance Allemy	NAME:	PROJECT NAME: Wholl Costands	HWAGEOSCIENCES INC. 19730 64th Ave. W., Suite 200, Lynnwood, WA 98036 (425) 774-0106
UTION: WHITE - Return to HWA; YE	1 march		SIGNATURE				4			PHONE: 975 374 0106))	# 2007-978-97	
DISTRIBUTION: WHITE - Return to HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler	05/50 A									ТРН - (ANALYSIS REQUESTED	Chain of Custody and Laboratory Analysis Request
/ Sampler	N CULL	1570	DATE TIME REMARKS				W	~	REMARKS	MOI	SNE 24HR MAT	09-119	st DATE: <u>4/14/10</u> PAGE: <u>1 of 1</u>

2

t.

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 16, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1009-140

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 15, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: September 16, 2010 Samples Submitted: September 15, 2010 Laboratory Reference: 1009-140 Project: 2007-098-921

Case Narrative

Samples were collected on September 15, 2010 and received by the laboratory on September 15, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The MTCA Method A clean-up level for Benzene is not achievable for samples H-PEX-14-14 and H-PEX-16-14 due to the high moisture content of these samples.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-12-12					
Laboratory ID:	09-140-01					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.057	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.057	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.057	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.057	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	5.7	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				
Client ID:	H-PEX-13-14					
Laboratory ID:	09-140-02					
Benzene	ND	0.029	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.15	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.15	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.15	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.15	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	15	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	117	55-127				
Client ID:	H-PEX-14-14					
Laboratory ID:	09-140-03					
Benzene	ND	0.064	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.32	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.32	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.32	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.32	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	32	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	55-127				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-15-10					
Laboratory ID:	09-140-04					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.072	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.072	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.072	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.072	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	7.2	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	55-127				
Client ID:	H-PEX-16-14					
Laboratory ID:	09-140-05					
Benzene	ND	0.053	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.27	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.27	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	0.94	0.27	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.27	EPA 8021	9-15-10	9-15-10	
Gasoline	30	27	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	55-127				
Client ID:	H-DUP-091510					
Laboratory ID:	09-140-06					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.057	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.057	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.057	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.057	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	5.7	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-17-7					
Laboratory ID:	09-140-07					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.072	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.072	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.072	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.072	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	7.2	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

5 5 (T)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0915S2					
Benzene	ND	0.020	EPA 8021	9-15-10	9-15-10	
Toluene	ND	0.050	EPA 8021	9-15-10	9-15-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-15-10	9-15-10	
m,p-Xylene	ND	0.050	EPA 8021	9-15-10	9-15-10	
o-Xylene	ND	0.050	EPA 8021	9-15-10	9-15-10	
Gasoline	ND	5.0	NWTPH-Gx	9-15-10	9-15-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-14	40-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		١	١A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	١A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	١A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	١A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	ΙA	NA	NA	30	
Surrogate:											
Fluorobenzene						98	99	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	15S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.974	0.994	1.00	1.00		97	99	75-113	2	9	
Toluene	0.961	0.981	1.00	1.00		96	98	75-116	2	10	
Ethyl Benzene	0.976	1.00	1.00	1.00		98	100	82-117	2	10	
m,p-Xylene	0.990	1.01	1.00	1.00		99 101		81-122	2	10	
o-Xylene	0.989	1.01	1.00	1.00		99	101	83-118	2	10	

95

96

55-127

Surrogate:

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Angleta	Desult	POL	Mathad	Date	Date Analyza d	Flore
Analyte Client ID:	Result H-PEX-12-12	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	09-140-01	0.1		0.40.40	0.40.40	
Diesel Range Organics	ND	31	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	61	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	H-PEX-13-14					
_aboratory ID:	09-140-02					
Diesel Range Organics	ND	120	NWTPH-Dx	9-16-10	9-16-10	U1
Lube Oil	700	100	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	H-PEX-14-14					
Laboratory ID:	09-140-03					
Diesel Range Organics	ND	91	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil	390	180	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	H-PEX-15-10					
Laboratory ID:	09-140-04					
Diesel Range Organics	<u>ND</u>	33	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	65	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits	HITTER BA	0 10 10	0 10 10	
o-Terphenyl	93	50-150				
o roipiionyi	00					
Client ID:	H-PEX-16-14					
Laboratory ID:	09-140-05					
Diesel Range Organics	ND	130	NWTPH-Dx	9-16-10	9-16-10	U1
Lube Oil	980	150	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

7

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

5 5 G T /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-DUP-091510					
Laboratory ID:	09-140-06					
Diesel Range Organics	ND	28	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	H-PEX-17-7					
Laboratory ID:	09-140-07					
Diesel Range Organics	ND	31	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	61	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result		PQL	Method		Date Prepared	Dat Analy		Flags
METHOD BLANK							,		1
Laboratory ID:	MB0916S1								
Diesel Range Organics	ND		25	NWTPH-Dx		9-16-10	9-16-	10	
Lube Oil Range Organics	ND		50	NWTPH-Dx		9-16-10	9-16-	10	
Surrogate:	Percent Recov	rery	Control Limits						
o-Terphenyl	93		50-150						
				Perce	ent	Recovery		RPD	
Analyte	Resu	ılt		Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-140)-07							
	ORIG	DUP							
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				97	99	50-150			

9

Date of Report: September 16, 2010 Samples Submitted: September 15, 2010 Laboratory Reference: 1009-140 Project: 2007-098-921

% MOISTURE

Date Analyzed: 9-15-10

Client ID	Lab ID	% Moisture
H-PEX-12-12	09-140-01	18
H-PEX-13-14	09-140-02	50
H-PEX-14-14	09-140-03	72
H-PEX-15-10	09-140-04	23
H-PEX-16-14	09-140-05	67
DUP-091510	09-140-06	11
H-PEX-17-7	09-140-07	18

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

	Chromatograms with final report		Client Copy	Yellow -	DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Client Copy	FION LEGEND:	DISTRIBU		
	2			_	ov/Date	Reviewed bv/Date			Reviewed by/Date
									Received by
								~ ~ ~ ~	Relinquished by
									Received by
									Relinquished by
		14/20	9/15/10	2	ST AT	0 Л	N N	X	Received by
		1420	8/15/10	15		Aura	A	- lad	Relinquished by
	Commenter/SpecialInstructions8	filme)		Dett		Company		Signature)	
· · · · · · · · · · · · · · · · · · ·									×
						Ţ			
7			1	/	<i>}</i> -	1330	4	F- H- ×	7 4- 72~
K,					- d	1205		Php-1391510	10 m-p
X			1			1300		a-1614	5 H-P-10
X			/			1200		×-15-10	4)+-12=*
Υ.			/			1755		11-11-1-	3 H-P=x
X				/		1150		-x-13-14	2 H- P=x
X					Ň	1145	9/13/12	12-12	H-Tur
% Mo	PCBs Pestici Herbio Total F TCLP HEM t	Haloge Semiv PAHs	NWTF Volatile		H of Alarity (Bont)	Time Sampled	Date	Sample Identification	EUD
isture	ides b ides t RCRA Metal	olatile				(other)			Sampled by.
	oy 808 oy 81 . Meta	es by							ATE:- >
	51A	8270[B	X	(TPH analysis 5 working days)	(TPH analysis 5 working d		1 100	Project Manager:
		-				handord (7 m			Project Name:
					🗌 3 Day	2 Day	2	2 2 2	2007-098
		3			X 1 Day	Same Day	s		Riw A Project Number:
	Requested Analysis				One)	(Check One)			
		Number:	Laboratory	Labo	Request g.days)	Turnaround Reques (In working days)	98052 Ni com	Environmental Inc. 14648 NE 95th Street: Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	
of	Pagec		Lusinnà			S		M OnSite	
			525		2	<u>ר</u>			Ň

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 17, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1009-154

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 16, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 17, 2010 Samples Submitted: September 16, 2010 Laboratory Reference: 1009-154 Project: 2007-098-921

Case Narrative

Samples were received by the laboratory on September 16, 2010. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-18-11					
Laboratory ID:	09-154-01					
Benzene	ND	0.020	EPA 8021	9-16-10	9-17-10	
Toluene	ND	0.069	EPA 8021	9-16-10	9-17-10	
Ethyl Benzene	ND	0.069	EPA 8021	9-16-10	9-17-10	
m,p-Xylene	ND	0.069	EPA 8021	9-16-10	9-17-10	
o-Xylene	ND	0.069	EPA 8021	9-16-10	9-17-10	
Gasoline	ND	6.9	NWTPH-Gx	9-16-10	9-17-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	55-127				
Client ID:	H-PEX-19-6					
Laboratory ID:	09-154-02					
Benzene	ND	0.020	EPA 8021	9-16-10	9-17-10	
Toluene	ND	0.070	EPA 8021	9-16-10	9-17-10	
Ethyl Benzene	ND	0.070	EPA 8021	9-16-10	9-17-10	
m,p-Xylene	ND	0.070	EPA 8021	9-16-10	9-17-10	
o-Xylene	ND	0.070	EPA 8021	9-16-10	9-17-10	
Gasoline	ND	7.0	NWTPH-Gx	9-16-10	9-17-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	55-127				
Client ID:	H-PEX-20-6					
Laboratory ID:	09-154-03					
Benzene	ND	0.020	EPA 8021	9-16-10	9-16-10	
Toluene	ND	0.073	EPA 8021	9-16-10	9-16-10	
Ethyl Benzene	ND	0.073	EPA 8021	9-16-10	9-16-10	
m,p-Xylene	ND	0.073	EPA 8021	9-16-10	9-16-10	
o-Xylene	ND	0.073	EPA 8021	9-16-10	9-16-10	
Gasoline	ND	7.3	NWTPH-Gx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	55-127				

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-TP-28-9					
Laboratory ID:	09-154-04					
Benzene	ND	0.020	EPA 8021	9-16-10	9-16-10	
Toluene	ND	0.051	EPA 8021	9-16-10	9-16-10	
Ethyl Benzene	ND	0.051	EPA 8021	9-16-10	9-16-10	
m,p-Xylene	ND	0.051	EPA 8021	9-16-10	9-16-10	
o-Xylene	ND	0.051	EPA 8021	9-16-10	9-16-10	
Gasoline	ND	5.1	NWTPH-Gx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	55-127				
Client ID:	H-TP-29-6					
Laboratory ID:	09-154-05					
Benzene	ND	0.020	EPA 8021	9-16-10	9-16-10	
Toluene	ND	0.046	EPA 8021	9-16-10	9-16-10	
Ethyl Benzene	ND	0.046	EPA 8021	9-16-10	9-16-10	
m,p-Xylene	ND	0.046	EPA 8021	9-16-10	9-16-10	
o-Xylene	ND	0.046	EPA 8021	9-16-10	9-16-10	
Gasoline	ND	4.6	NWTPH-Gx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	55-127				
Client ID:	H-Dup-091610					
Laboratory ID:	09-154-06					
Benzene	ND	0.020	EPA 8021	9-16-10	9-16-10	
Toluene	ND	0.049	EPA 8021	9-16-10	9-16-10	
Ethyl Benzene	ND	0.049	EPA 8021	9-16-10	9-16-10	
m,p-Xylene	ND	0.049	EPA 8021	9-16-10	9-16-10	
o-Xylene	ND	0.049	EPA 8021	9-16-10	9-16-10	
Gasoline	ND	4.9	NWTPH-Gx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0916S2					
Benzene	ND	0.020	EPA 8021	9-16-10	9-16-10	
Toluene	ND	0.050	EPA 8021	9-16-10	9-16-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-16-10	9-16-10	
m,p-Xylene	ND	0.050	EPA 8021	9-16-10	9-16-10	
o-Xylene	ND	0.050	EPA 8021	9-16-10	9-16-10	
Gasoline	ND	5.0	NWTPH-Gx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-15	54-03								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						107 107	55-127			

MATRIX SPIKES

Laboratory ID:	09-09	94-42									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	0.973	0.993	1.00	1.00	ND	97	99	80-120	2	10	
Toluene	0.982	1.00	1.00	1.00	ND	98	100	82-120	2	11	
Ethyl Benzene	1.02	1.04	1.00	1.00	ND	102	104	83-120	2	10	
m,p-Xylene	1.03	1.05	1.00	1.00	ND	103	105	82-120	2	10	
o-Xylene	1.02	1.05	1.00	1.00	ND	102	105	80-120	3	10	
Surrogate:											
Fluorobenzene						97	98	55-127			

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-18-11					
Laboratory ID:	09-154-01					
Diesel Fuel #2	300	31	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil	320	62	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	H-PEX-19-6					
Laboratory ID:	09-154-02					
Diesel Fuel #2	320	29	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil	740	59	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	H-PEX-20-6					
Laboratory ID:	09-154-03					
Diesel Range Organics	ND	32	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	64	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	H-TP-28-9					
Laboratory ID:	09-154-04					
Diesel Range Organics	ND	29	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	59	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	H-TP-29-6					
Laboratory ID:	09-154-05					
Diesel Range Organics	ND	31	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	62	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	H-Dup-091610					
Laboratory ID:	09-154-06					
Diesel Range Organics	ND	30	NWTPH-Dx	9-16-10	9-16-10	
Lube Oil Range Organics	ND	59	NWTPH-Dx	9-16-10	9-16-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyta	Decult	DOI	Mathad	Date	Date		Flore
Analyte METHOD BLANK	Result	PQL	Method	Prepared	Analyz	ea	Flags
	MB0916S1						
Laboratory ID:							
Diesel Range Organics	ND	25	NWTPH-Dx	9-16-10	9-16-1	0	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-16-10	9-16-1	0	
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	93	50-150					
			Percent	Recovery		RPD	
Analyte	I	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09	9-146-03					
	ORI	G DUP					

Diesel Range Organics	ND	ND				NA	NA
Lube Oil Range Organics	ND	ND				NA	NA
Surrogate:							
o-Terphenyl			84	86	50-150		

Date of Report: September 17, 2010 Samples Submitted: September 16, 2010 Laboratory Reference: 1009-154 Project: 2007-098-921

% MOISTURE

Date Analyzed: 9-16-10

Client ID	Lab ID	% Moisture
H-PEX-18-11	09-154-01	20
H-PEX-19-6	09-154-02	15
H-PEX-20-6	09-154-03	21
H-TP-28-9	09-154-04	15
H-TP-29-6	09-154-05	19
H-Dup-091610	09-154-06	16

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Signature,		<u> </u>	6 H-Dup-Ogleic	5 17 - 29 - 6	4 H-JA 28-9	3 H-PEA 20-6	1d- Pra	1 14-15-18-11	Sampled by: ATK.~S ATK.~S	Project Manager	223-3-098-9-2	Project Number	Company:	HAVIPONMENTAL INC. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Www.onside-env.com	MA OnSite
DISTRIBUTION LEGEND: White - OnSite Copy Y					e Brit	13 ma	Company			1500	/ yuz	172	1245	1142	1140	Date (other) + of Sampled Sampled Mattix Cont.	(TPH analysis 5 working days)	2 Day 3 Day	Same Day	(Check One)	Turnaround Request (In working days)	Chain of Custody
Yellow - Client Copy					9/10/10 1530	P/14/10 1530										NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260E Halogenated Volat Semivolatiles by 8 PAHs by 8270D /	iles by 270D /		3		Laboratory Number:	ustody
Chromatograms with final report \Box					,		Comments/Special Instructions:									PCBs by 8082 Pesticides by 808 Herbicides by 815 Total RCRA Metal TCLP Metals HEM by 1664	1A			Requested Analysis	09-154	Page 🦯
									 	x	ズ	X	X	X	X	% Moisture						_of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 21, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-821 Laboratory Reference No. 1009-169

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 17, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: September 21, 2010 Samples Submitted: September 17, 2010 Laboratory Reference: 1009-169 Project: 2007-098-821

Case Narrative

Samples were collected on September 17, 2010 and received by the laboratory on September 17, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/kg (ppm)

Client ID: H-PEX-21-16 Laboratory ID: 09-169-01 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.068 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.068 EPA 8021 9-20-10 9-20-10 Chine ND 0.068 EPA 8021 9-20-10 9-20-10 Chine ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: ND 0.020 EPA 8021 9-20-10 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 9-20-10 Client D: H-PEX-23-9 Isoratory ID: 09-169-03 9-20-10 9-20-10					Date	Date	
Laboratory ID: 09-169-01 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.068 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.068 EPA 8021 9-20-10 9-20-10 mp-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 101 55-127 Client ID: H-PEX-22-12 Laboratory ID: 09-169-02 Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 -20-10 Mp-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.068 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.068 EPA 8021 9-20-10 9-20-10 or,Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.068 EPA 8021 9-20-10 9-20-10 Sturogate: Percent Recovery Control Limits Fluorobenzene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.063 EPA 8021 9-20-10 <td>Client ID:</td> <td>H-PEX-21-16</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Client ID:	H-PEX-21-16					
ND 0.068 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.068 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Surr	Laboratory ID:	09-169-01					
Ethyl Benzene ND 0.068 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Surrogate: ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 <	Benzene	ND	0.020	EPA 8021	9-20-10	9-20-10	
ND 0.068 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 5-127 9-20-10 9-20-10 Client ID: H-PEX-22-12 Laboratory ID: 09-169-02 9-20-10 9-20-10 Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Surrogate: ND 0.063 EPA 8021 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 55-127 9-20-10 9-20-10<	Toluene	ND	0.068	EPA 8021	9-20-10	9-20-10	
ND 0.068 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	ND	0.068	EPA 8021	9-20-10	9-20-10	
Gasoline ND 6.8 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 55-127 55-127 55-127 Client ID: H-PEX-22-12 55-127 55-127 55-127 55-127 Client ID: H-PEX-22-12 55-127 55-127 55-127 55-127 Client ID: H-PEX-22-12 55-127 55-127 9-20-10 9-20-10 9-20-10 Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03<	m,p-Xylene	ND	0.068	EPA 8021	9-20-10	9-20-10	
Surrogate: Percent Recovery 101 Control Limits 55-127 Client ID: H-PEX-22-12 Uaboratory ID: O9-169-02 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Eaboratory ID: 09-169-03 9-20-10 9-20-10 Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021	o-Xylene	ND	0.068	EPA 8021	9-20-10	9-20-10	
Fluorobenzene 101 55-127 Client ID: H-PEX-22-12 Laboratory ID: 09-169-02 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m.p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.063 EPA 8021 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene ND 0.061 EPA 8021 9-20-10 9-20-10 Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 m.p-Xylene ND 0.061	Gasoline	ND	6.8	NWTPH-Gx	9-20-10	9-20-10	
Client ID: H-PEX-22-12 Dog-169-02 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 </td <td>Surrogate:</td> <td>Percent Recovery</td> <td>Control Limits</td> <td></td> <td></td> <td></td> <td></td>	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 09-169-02 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021	Fluorobenzene	101	55-127				
Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m.p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Ben	Client ID:	H-PEX-22-12					
ND 0.063 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery 100 Control Limits 55-127 9-20-10 9-20-10 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND	Laboratory ID:	09-169-02					
Benzene ND 0.063 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 Surrogate: ND 0.020 EPA 8021 9-20-10 9-20-10 Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061	Benzene	ND	0.020	EPA 8021	9-20-10	9-20-10	
Np-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 9-20-10 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10	Toluene	ND	0.063	EPA 8021	9-20-10	9-20-10	
ND 0.063 EPA 8021 9-20-10 9-20-10 Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 9-20-10 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline ND 0.061 EPA 8021 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 9-20-10 9-20-10 9-20-10	Ethyl Benzene	ND	0.063	EPA 8021	9-20-10	9-20-10	
Gasoline ND 6.3 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Surrogate: Percent Recovery Control Limits Laboratory ID: 09-169-03 09-20-10 9-20-10 9-20-10 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits 0 0 0	m,p-Xylene	ND	0.063	EPA 8021	9-20-10	9-20-10	
Surrogate: Percent Recovery Control Limits Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 or,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 0 Surrogate: Percent Recovery Control Limits O 0	o-Xylene	ND	0.063	EPA 8021	9-20-10	9-20-10	
Fluorobenzene 100 55-127 Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 0 Surrogate: Percent Recovery Control Limits O 0	Gasoline	ND	6.3	NWTPH-Gx	9-20-10	9-20-10	
Client ID: H-PEX-23-9 Laboratory ID: 09-169-03 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 0 Surrogate: Percent Recovery Control Limits V V V	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID: 09-169-03 Benzene ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 or,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 O Surrogate: Percent Recovery Control Limits Surrogate Control Limits Surrogate Surr	Fluorobenzene	100	55-127				
ND 0.020 EPA 8021 9-20-10 9-20-10 Toluene ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 O Surrogate: Percent Recovery Control Limits O O O O	Client ID:	H-PEX-23-9					
ND 0.061 EPA 8021 9-20-10 9-20-10 Ethyl Benzene ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 O Surrogate: Percent Recovery Control Limits Vertice Vertice Vertice	Laboratory ID:	09-169-03					
ND 0.061 EPA 8021 9-20-10 9-20-10 m,p-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 Surrogate: Percent Recovery Control Limits Vertex Vertex Vertex	Benzene	ND	0.020	EPA 8021	9-20-10	9-20-10	
ND 0.061 EPA 8021 9-20-10 9-20-10 o-Xylene ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 O Surrogate: Percent Recovery Control Limits Control Limits Control Limits Control Limits	Toluene	ND	0.061	EPA 8021	9-20-10	9-20-10	
ND 0.061 EPA 8021 9-20-10 9-20-10 Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 O Surrogate: Percent Recovery Control Limits Control Limits Control Limits Control Limits	Ethyl Benzene	ND	0.061	EPA 8021	9-20-10	9-20-10	
Gasoline 12 6.1 NWTPH-Gx 9-20-10 9-20-10 O Surrogate: Percent Recovery Control Limits O	m,p-Xylene	ND	0.061	EPA 8021	9-20-10	9-20-10	
Surrogate: Percent Recovery Control Limits	o-Xylene	ND	0.061	EPA 8021	9-20-10	9-20-10	
•	Gasoline	12	6.1	NWTPH-Gx	9-20-10	9-20-10	0
Fluorobenzene 103 55-127	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene	103	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0920S1					
ND	0.020	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	5.0	NWTPH-Gx	9-20-10	9-20-10	
Percent Recovery	Control Limits				
98	55-127				
	MB0920S1 ND ND ND ND ND ND Percent Recovery	MB0920S1 ND 0.020 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 5.0 Percent Recovery Control Limits	MB0920S1 ND 0.020 EPA 8021 ND 0.050 EPA 8021 ND 5.0 NWTPH-Gx Percent Recovery Control Limits	Result PQL Method Prepared MB0920S1	Result PQL Method Prepared Analyzed MB0920S1

102

96

104

98

83-118

55-127

2

10

					Source	Perc	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-10	69-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
Gasoline	10.1	9.26	NA	NA		Ν	A	NA	9	30	
Surrogate:											
Fluorobenzene						103	99	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	20S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.936	0.958	1.00	1.00		94	96	75-113	2	9	
Toluene	0.973	0.993	1.00	1.00		97	99	75-116	2	10	
Ethyl Benzene	1.01	1.03	1.00	1.00		101	103	82-117	2	10	
m,p-Xylene	1.03	1.05	1.00	1.00		103	105	81-122	2	10	

Surrogate: Fluorobenzene 1.02

1.04

1.00

1.00

o-Xylene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	H-PEX-21-16		Method	Tiepareu	Analyzeu	Tiago
Laboratory ID:	09-169-01					
Diesel Range Organics	ND	33	NWTPH-Dx	9-18-10	9-19-10	
Lube Oil Range Organics	ND	65	NWTPH-Dx	9-18-10	9-19-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	H-PEX-22-12					
Laboratory ID:	09-169-02					
Diesel Range Organics	ND	30	NWTPH-Dx	9-18-10	9-19-10	
Lube Oil Range Organics	ND	60	NWTPH-Dx	9-18-10	9-19-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	H-PEX-23-9					
Laboratory ID:	09-169-03					
Diesel Range Organics	ND	310	NWTPH-Dx	9-18-10	9-19-10	U1
Lube Oil	1600	59	NWTPH-Dx	9-18-10	9-19-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

G						Date	Date	e	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB0918S1								
Diesel Range Organics	ND		25	NWTPH-D	Эx	9-18-10	9-19-	10	
Lube Oil Range Organics	ND		50	NWTPH-D	Эх	9-18-10	9-19-	10	
Surrogate:	Percent Recov	/ery	Control Limits						
o-Terphenyl	99		50-150						
				Per	cent	Recovery		RPD	
Analyte	Resi	ult		Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-169	9-02							
	ORIG	DUP)						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics Surrogate:	ND	ND					NA	NA	

6

Date of Report: September 21, 2010 Samples Submitted: September 17, 2010 Laboratory Reference: 1009-169 Project: 2007-098-821

% MOISTURE

Date Analyzed: 9-18-10

Client ID	Lab ID	% Moisture
H-PEX-21-16	09-169-01	24
H-PEX-22-12	09-169-02	16
H-PEX-23-9	09-169-03	15

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

	Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Signature	0				3 H-P=×23-9	2 H-PEXZZ-12	1 A.Pax 21-16	14648 NE 95th Street - Redmond, WA 98052 Company: Project Number: 2-50-3 マラジー テマ」 Project Number: 2-50-3 マラジー テマ」 Project Name: 75-57-52 Project Namager: 76-5-52 Project Manager: 76-5-52 Sampled by: 97-5-52 Sampled by: 97-5-52	NA OnSite
DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Client Copy	Reviewed by/Date					340	- Iture	Company					x + 12	1 /230 2	9/12/10 53= SOL 2	(th working days) (Check One) Check One) Same Day 2 Day 3 Day (TPH analysis 5 working days) (TPH analysis 5 working days)	
/ Yellow - Client Copy						9/17/10 /550	9/17/10 1050	Date								NWTPH-HCID Laboratory NWTPH-Gx/BTEX NWTPH-Dx Volatiles by 8260B Halogenated Volatiles by 8260B Semivolatiles by 8270D / SIM Semivolatiles by 8270D / SIM	Custody
	Chromatograms with final report						1	Comments/Special Instructions:								PCBs by 8082 Pesticides by 8081A Herbicides by 8151A Total RCRA Metals (8) TCLP Metals HEM by 1664	Page
							;			 			¢			% Moisture	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 22, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1009-192

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 20, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 20, 2010 and received by the laboratory on September 20, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-24-6					
Laboratory ID:	09-192-01					
Benzene	ND	0.020	EPA 8021	9-20-10	9-20-10	
Toluene	ND	0.057	EPA 8021	9-20-10	9-20-10	
Ethyl Benzene	ND	0.057	EPA 8021	9-20-10	9-20-10	
m,p-Xylene	ND	0.057	EPA 8021	9-20-10	9-20-10	
o-Xylene	ND	0.057	EPA 8021	9-20-10	9-20-10	
Gasoline	ND	5.7	NWTPH-Gx	9-20-10	9-20-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	55-127				
Client ID:	H-PEX-25-6					
Laboratory ID:	09-192-02					
Benzene	ND	0.020	EPA 8021	9-20-10	9-20-10	
Toluene	ND	0.065	EPA 8021	9-20-10	9-20-10	
Ethyl Benzene	ND	0.065	EPA 8021	9-20-10	9-20-10	
m,p-Xylene	ND	0.065	EPA 8021	9-20-10	9-20-10	
o-Xylene	ND	0.065	EPA 8021	9-20-10	9-20-10	
Gasoline	ND	6.5	NWTPH-Gx	9-20-10	9-20-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				
Client ID:	H-DUP-0920					
Laboratory ID:	09-192-03					
Benzene	ND	0.020	EPA 8021	9-20-10	9-20-10	
Toluene	ND	0.066	EPA 8021	9-20-10	9-20-10	
Ethyl Benzene	ND	0.066	EPA 8021	9-20-10	9-20-10	
m,p-Xylene	ND	0.066	EPA 8021	9-20-10	9-20-10	
o-Xylene	ND	0.066	EPA 8021	9-20-10	9-20-10	
Gasoline	ND	6.6	NWTPH-Gx	9-20-10	9-20-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0920S1					
ND	0.020	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	0.050	EPA 8021	9-20-10	9-20-10	
ND	5.0	NWTPH-Gx	9-20-10	9-20-10	
Percent Recovery	Control Limits				
98	55-127				
	MB0920S1 ND ND ND ND ND ND Percent Recovery	MB0920S1 ND 0.020 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 5.0 Percent Recovery Control Limits	MB0920S1 ND 0.020 EPA 8021 ND 0.050 EPA 8021 ND 5.0 NWTPH-Gx Percent Recovery Control Limits	Result PQL Method Prepared MB0920S1	Result PQL Method Prepared Analyzed MB0920S1

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-10	69-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	10.1	9.26	NA	NA		Ν	IA	NA	9	30	
Surrogate:											
Fluorobenzene						103	99	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	20S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.936	0.958	1.00	1.00		94	96	75-113	2	9	
Toluene	0.973	0.993	1.00	1.00		97	99	75-116	2	10	
Ethyl Benzene	1.01	1.03	1.00	1.00		101	103	82-117	2	10	
m,p-Xylene	1.03	1.05	1.00	1.00		103	105	81-122	2	10	

Surrogate: Fluorobenzene 1.02

1.04

1.00

1.00

102

96

104

98

83-118

55-127

2

10

o-Xylene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

	Result	PQL	Method	Date Bropprod	Date	Flogo
Analyte Client ID:	H-PEX-24-6	FQL	Method	Prepared	Analyzed	Flags
•						
Laboratory ID:	09-192-01					
Diesel Range Organics	ND	27	NWTPH-Dx	9-21-10	9-21-10	
Lube Oil	58	55	NWTPH-Dx	9-21-10	9-21-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	H-PEX-25-6					
Laboratory ID:	09-192-02					
Diesel Range Organics	41	28	NWTPH-Dx	9-21-10	9-21-10	
Lube Oil	220	56	NWTPH-Dx	9-21-10	9-21-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	H-DUP-0920					
Laboratory ID:	09-192-03					
Diesel Range Organics	ND	34	NWTPH-Dx	9-21-10	9-21-10	U1
Lube Oil	270	57	NWTPH-Dx	9-21-10	9-21-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

G				Date	Dat	e	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB0921S1						
Diesel Range Organics	ND	25	NWTPH-Dx	9-21-10	9-21-	10	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-21-10	9-21-	10	
Surrogate:	Percent Recov	ery Control Limits	3				
o-Terphenyl	122	50-150					
			Percen	t Recovery		RPD	
Analyte	Resu	ılt	Recover	ry Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09-192	-03					
	ORIG	DUP					
	0110						
Diesel Range Organics	ND	ND			NA	NA	U1
Diesel Range Organics Lube Oil		ND 225			NA 6	NA NA	U1
• •	ND						U1

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	09-192-01 H-PEX-24-6					
Arsenic	ND	11	6010B	9-21-10	9-21-10	
Barium	49	2.7	6010B	9-21-10	9-21-10	
Cadmium	ND	0.55	6010B	9-21-10	9-21-10	
Chromium	25	0.55	6010B	9-21-10	9-21-10	
Lead	28	5.5	6010B	9-21-10	9-21-10	
Mercury	ND	0.27	7471A	9-21-10	9-21-10	
Selenium	ND	11	6010B	9-21-10	9-21-10	
Silver	ND	0.55	6010B	9-21-10	9-21-10	

Lab ID: Client ID:	09-192-02 H-PEX-25-6					
Arsenic	ND	11	6010B	9-21-10	9-21-10	
Barium	49	2.8	6010B	9-21-10	9-21-10	
Cadmium	ND	0.56	6010B	9-21-10	9-21-10	
Chromium	23	0.56	6010B	9-21-10	9-21-10	
Lead	22	5.6	6010B	9-21-10	9-21-10	
Mercury	ND	0.28	7471A	9-21-10	9-21-10	
Selenium	ND	11	6010B	9-21-10	9-21-10	
Silver	ND	0.56	6010B	9-21-10	9-21-10	

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	09-192-03					
Client ID:	H-DUP-0920					
Arsenic	ND	11	6010B	9-21-10	9-21-10	
Barium	51	2.8	6010B	9-21-10	9-21-10	
Cadmium	ND	0.57	6010B	9-21-10	9-21-10	
Chromium	29	0.57	6010B	9-21-10	9-21-10	
Lead	21	5.7	6010B	9-21-10	9-21-10	
Mercury	ND	0.28	7471A	9-21-10	9-21-10	
Selenium	ND	11	6010B	9-21-10	9-21-10	
Silver	ND	0.57	6010B	9-21-10	9-21-10	

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	9-21-10
Date Analyzed:	9-21-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0921S1&MB0921S4

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	9-21-10
Date Analyzed:	9-21-10

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-192-03

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	45.1	43.3	4	2.5	
	ND			0.50	
Cadmium	ND	ND	NA	0.50	
Chromium	26.0	21.5	19	0.50	
Chromidin	20.0	21.5	19	0.50	
Lead	18.3	17.0	7	5.0	
2000	1010		•	0.0	
Mercury	ND	ND	NA	0.25	
-					
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

10

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	9-21-10
Date Analyzed:	9-21-10

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 09-192-03

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	96.6	97	98.9	99	2	
Barium	100	142	97	148	103	4	
Cadmium	50	46.1	92	47.9	96	4	
Chromium	100	114	88	117	91	3	
Lead	250	255	95	259	96	2	
Mercury	0.50	0.379	76	0.416	83	9	
Selenium	100	97.7	98	99.4	99	2	
Silver	25	22.6	90	23.3	93	3	

% MOISTURE

Date Analyzed: 9-20-10

Client ID	Lab ID	% Moisture
H-PEX-24-6	09-192-01	9
H-PEX-25-6	09-192-02	10
H-DUP-0920	09-192-03	12

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Heviewed/Luaie		Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature					3 1/- 100-6920	2 N-9EX-25-6	1 H-107-24-6	Lab ID Sample Identification	Sampled by: P. He Peurs 3	Project Manager: Vance Modums	Project Name: Balley Cosco 443	Frigher Hummer: 2007-098-921	MWH	Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc. 14648 NE 05th Street • Redmond, WA 98052	OnSite
Data Packane: evel III I evel IV Electronic Data Deliverables (EDDs)	Baviawod/Data					2 Ostor	Awa	Company			1		1	() Y:00	4/20/10 13:30 S	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 3 Days	Same Day 🧖 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
ectronic Data Deliverables (EDDs)						2. 912/10:1530	9/22/10 1330	Date Time					× ×	X	×.	NWTP NWTP NWTP NWTP Volatil Haloge	PH-Dx es 8260 enated ') TEX)B Volatiles 8270D/	s 8260E	· · · · ·			Laboratory Number:	Chain of Custody
Chromatograms with final report		[J	<u> </u>	Comments/Special Instructions					×			PAHs PCBs Organ Organ Chlori Total F	ow-leve 8270D/ 8082 ochlorir ophosph nated A AGRA Metals (oil and	SIM (lov ne Pesti norus Pe cid Heri MTCA I	cides 8 sticides bicides Metals	081A 8270D/ 8151A			. 0	Page
						-			 · · · · ·				×	X		% Mo	isture	× × [×] '' ×		· · · · · · · · · · · · · · · · · · ·			9 - 1 9 2	ge of

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 23, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098 Laboratory Reference No. 1009-226

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on September 22, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on September 22, 2010 and received by the laboratory on September 22, 2010. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

3 3 (FF)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-PEX-26-8					
Laboratory ID:	09-226-01					
Diesel Range Organics	ND	30	NWTPH-Dx	9-23-10	9-23-10	
Lube Oil	81	60	NWTPH-Dx	9-23-10	9-23-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

сс				Date	Dat	-	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB0923S1						
Diesel Range Organics	ND	25	NWTPH-Dx	9-23-10	9-23-	10	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-23-10	9-23-	10	
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	121	50-150					
			Percent	Recovery		RPD	
Analyte	Result		Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	09-226-01						
	ORIG DU	P					

	Uniu	DOI	
Diesel Range Organics	ND	ND	NA NA
Lube Oil	67.9	64.2	6 NA
Surrogate:			

o-Terphenyl

109 101 50-150

% MOISTURE

Date Analyzed: 9-22-10

Client ID Lab ID

H-PEX-26-8

09-226-01

16

% Moisture

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 7, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1010-034

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on October 5, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 7, 2010 Samples Submitted: October 5, 2010 Laboratory Reference: 1010-034 Project: 2007-098-921

Case Narrative

Samples were collected on October 5, 2010 and received by the laboratory on October 5, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
alyte	Result	PQL	Method	Prepared	Analyzed	Flags
ent ID:	H-SP-1					
ooratory ID:	10-034-01					
sel Range Organics	ND	28	NWTPH-Dx	10-6-10	10-6-10	
e Oil Range Organics	ND	56	NWTPH-Dx	10-6-10	10-6-10	
rrogate:	Percent Recovery	Control Limits				
erphenyl	100	50-150				
ent ID:	H-SP-2					
poratory ID:	10-034-02					
sel Range Organics	55	31	NWTPH-Dx	10-6-10	10-6-10	
be Oil	250	61	NWTPH-Dx	10-6-10	10-6-10	
rrogate:	Percent Recovery	Control Limits				
erphenyl	107	50-150				
ent ID:	H-SP-3					
poratory ID:	10-034-03					
sel Range Organics	ND	28	NWTPH-Dx	10-6-10	10-6-10	
be Oil	250	56	NWTPH-Dx	10-6-10	10-6-10	
rrogate:	Percent Recovery	Control Limits				
erphenyl	107	50-150				
pe Oil rrogate:	Percent Recovery	Control Limits	NWTPH-Dx	10-6-10	10-6-10	

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Dat Analy	-	Flags
METHOD BLANK	nooun		motriou	Topulou	7 that y		i lugo
Laboratory ID:	MB1006S1						
Diesel Range Organics	ND	25	NWTPH-Dx	10-6-10	10-6-	10	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-6-10	10-6-	10	
Surrogate:	Percent Recover	Control Limits					
o-Terphenyl	100	50-150					
			Percent	Recovery		RPD	
Analyte	Result		Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	10-033-0	3					
	ORIG D	UP					
Diesel Range Organics	ND N	ID			NA	NA	
Lube Oil Range Organics	ND N	ID			NA	NA	

Surrogate:

o-Terphenyl

93 106 50-150

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
H-SP-1					
10-034-01					
ND	0.020	EPA 8021	10-6-10	10-6-10	
ND	0.055	EPA 8021	10-6-10	10-6-10	
ND	0.055	EPA 8021	10-6-10	10-6-10	
ND	0.055	EPA 8021	10-6-10	10-6-10	
ND	0.055	EPA 8021	10-6-10	10-6-10	
ND	5.5	NWTPH-Gx	10-6-10	10-6-10	
Percent Recovery	Control Limits				
95	55-127				
H-SP-2					
10-034-02					
ND	0.020	EPA 8021	10-6-10	10-6-10	
ND	0.072	EPA 8021	10-6-10	10-6-10	
ND	0.072	EPA 8021	10-6-10	10-6-10	
ND	0.072	EPA 8021	10-6-10	10-6-10	
ND	0.072	EPA 8021	10-6-10	10-6-10	
ND	7.2	NWTPH-Gx	10-6-10	10-6-10	
Percent Recovery	Control Limits				
91	55-127				
H-SP-3					
10-034-03					
ND	0.020	EPA 8021	10-6-10	10-6-10	
ND	0.051	EPA 8021	10-6-10	10-6-10	
ND	0.051	EPA 8021	10-6-10	10-6-10	
ND	0.051	EPA 8021	10-6-10	10-6-10	
ND	0.051	EPA 8021	10-6-10	10-6-10	
ND	5.1	NWTPH-Gx	10-6-10	10-6-10	
Percent Recovery	Control Limits				
94	55-127				
	H-SP-1 10-034-01 ND ND ND ND ND Percent Recovery 95 H-SP-2 10-034-02 ND ND ND ND ND ND ND ND ND ND	H-SP-1 10-034-01 ND 0.020 ND 0.055 ND 5.5 Percent Recovery Control Limits 95 55-127 H-SP-2 10-034-02 10-034-02 0.072 ND 7.2 Percent Recovery Control Limits 91 55-127 H-SP-3 55-127 10-034-03 55-127 H-SP-3 55-127 10-034-03 0.051 ND 0.051	H-SP-1 10-034-01 ND 0.020 EPA 8021 ND 0.055 EPA 8021 ND 0.55 NWTPH-Gx Percent Recovery Control Limits 95 95 55-127 55-127 H-SP-2 10-034-02 EPA 8021 ND 0.072 EPA 8021 ND 7.2 NWTPH-Gx Percent Recovery Control Limits 91 55-127 H-SP-3 55-127 10-034-03 ND ND 0.051 EPA 8	Result PQL Method Prepared 10-034-01 10-034-01 10-6-10 10-6-10 ND 0.020 EPA 8021 10-6-10 ND 0.055 EPA 8021 10-6-10 ND 0.5.5 NWTPH-Gx 10-6-10 ND 5.5 NWTPH-Gx 10-6-10 Percent Recovery Control Limits 95 55-127 H-SP-2 10-034-02 10-6-10 10-6-10 ND 0.072 EPA 8021 10-6-10 ND 7.2 NWTPH-Gx 10-6-10 ND 7.2 NWTPH-Gx 10-6-	Result PQL Method Prepared Analyzed H-SP-1 10-034-01 10-6-10 10-6-10 10-6-10 ND 0.020 EPA 8021 10-6-10 10-6-10 ND 0.055 EPA 8021 10-6-10 10-6-10 ND 5.5 NWTPH-Gx 10-6-10 10-6-10 Percent Recovery Control Limits 95 55-127 10-6-10 10-6-10 ND 0.072 EPA 8021 10-6-10 10-6-10 ND 0.072

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1006S1					
Benzene	ND	0.020	EPA 8021	10-6-10	10-6-10	
Toluene	ND	0.050	EPA 8021	10-6-10	10-6-10	
Ethyl Benzene	ND	0.050	EPA 8021	10-6-10	10-6-10	
m,p-Xylene	ND	0.050	EPA 8021	10-6-10	10-6-10	
o-Xylene	ND	0.050	EPA 8021	10-6-10	10-6-10	
Gasoline	ND	5.0	NWTPH-Gx	10-6-10	10-6-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-03	33-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						88	91	55-127			
SPIKE BLANKS											
Laboratory ID:	SB10	06S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.945	0.969	1.00	1.00		95	97	75-113	3	9	
Toluene	0.932	0.971	1.00	1.00		93	97	75-116	4	10	
Ethyl Benzene	0.946	0.972	1.00	1.00		95	97	82-117	3	10	
m,p-Xylene	0.953	0.979	1.00	1.00		95	98	81-122	3	10	
o-Xylene	0.955	0.973	1.00	1.00		96	97	83-118	2	10	
Surrogate:											
Fluorobenzene						91	92	55-127			

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onito. mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-SP-1					
Laboratory ID:	10-034-01					
Naphthalene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
2-Methylnaphthalene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
1-Methylnaphthalene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthylene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthene	0.045	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Fluorene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Phenanthrene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Anthracene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Fluoranthene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Pyrene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]anthracene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Chrysene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[k]fluoranthene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]pyrene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[g,h,i]perylene	ND	0.0075	EPA 8270/SIM	10-5-10	10-6-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	92	45 - 101				
Pyrene-d10	101	52 - 118				
Terphenyl-d14	97	41 - 106				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onito. mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-SP-2					
Laboratory ID:	10-034-02					
Naphthalene	0.33	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
2-Methylnaphthalene	0.13	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
1-Methylnaphthalene	0.25	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthylene	0.010	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthene	0.75	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Fluorene	0.66	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Phenanthrene	1.5	0.041	EPA 8270/SIM	10-5-10	10-6-10	
Anthracene	0.22	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Fluoranthene	0.95	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Pyrene	0.56	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]anthracene	0.16	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Chrysene	0.16	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[b]fluoranthene	0.052	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[k]fluoranthene	0.043	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]pyrene	0.051	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Indeno(1,2,3-c,d)pyrene	0.020	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Dibenz[a,h]anthracene	0.0083	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[g,h,i]perylene	0.023	0.0082	EPA 8270/SIM	10-5-10	10-6-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	45 - 101				
Pyrene-d10	95	52 - 118				
Terphenyl-d14	95	41 - 106				

PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onito. mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	H-SP-3					
Laboratory ID:	10-034-03					
Naphthalene	0.0081	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
2-Methylnaphthalene	ND	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
1-Methylnaphthalene	0.029	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthylene	ND	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthene	0.29	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Fluorene	0.17	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Phenanthrene	0.18	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Anthracene	0.015	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Fluoranthene	0.094	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Pyrene	0.057	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]anthracene	0.020	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Chrysene	0.029	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[b]fluoranthene	0.014	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[k]fluoranthene	0.0091	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]pyrene	0.014	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Indeno(1,2,3-c,d)pyrene	0.011	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Dibenz[a,h]anthracene	ND	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[g,h,i]perylene	0.018	0.0074	EPA 8270/SIM	10-5-10	10-6-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	45 - 101				
Pyrene-d10	95	52 - 118				
Terphenyl-d14	100	41 - 106				

Date of Report: October 7, 2010 Samples Submitted: October 5, 2010 Laboratory Reference: 1010-034 Project: 2007-098-921

PAHs by EPA 8270D/SIM (with silica gel clean-up) METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

5. 3				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1005S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Acenaphthene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Fluorene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Phenanthrene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Anthracene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Pyrene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Chrysene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	10-5-10	10-6-10	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	81	45 - 101				
Pyrene-d10	91	52 - 118				
Terphenyl-d14	100	41 - 106				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PAHs by EPA 8270D/SIM (with silica gel clean-up) MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

Units. hig/kg					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	10-02	23-05									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0572	0.0627	0.0833	0.0833	ND	69	75	31 - 115	9	19	
Acenaphthylene	0.0665	0.0743	0.0833	0.0833	ND	80	89	40 - 134	11	22	
Acenaphthene	0.0680	0.0737	0.0833	0.0833	ND	82	88	48 - 118	8	17	
Fluorene	0.0690	0.0751	0.0833	0.0833	ND	83	90	54 - 122	8	16	
Phenanthrene	0.0685	0.0727	0.0833	0.0833	ND	82	87	46 - 123	6	19	
Anthracene	0.0674	0.0733	0.0833	0.0833	ND	81	88	53 - 123	8	27	
Fluoranthene	0.0708	0.0789	0.0833	0.0833	ND	85	95	47 - 132	11	26	
Pyrene	0.0710	0.0773	0.0833	0.0833	ND	85	93	41 - 137	8	25	
Benzo[a]anthracene	0.0775	0.0819	0.0833	0.0833	ND	93	98	43 - 132	6	26	
Chrysene	0.0733	0.0772	0.0833	0.0833	ND	88	93	46 - 126	5	24	
Benzo[b]fluoranthene	0.0649	0.0695	0.0833	0.0833	ND	78	83	44 - 134	7	24	
Benzo[k]fluoranthene	0.0646	0.0713	0.0833	0.0833	ND	78	86	45 - 132	10	20	
Benzo[a]pyrene	0.0702	0.0765	0.0833	0.0833	ND	84	92	36 - 136	9	23	
Indeno(1,2,3-c,d)pyrene	0.0866	0.0880	0.0833	0.0833	ND	104	106	40 - 136	2	16	
Dibenz[a,h]anthracene	0.0866	0.0875	0.0833	0.0833	ND	104	105	40 - 142	1	13	
Benzo[g,h,i]perylene	0.0773	0.0782	0.0833	0.0833	ND	93	94	37 - 137	1	18	
Surrogate:											
2-Fluorobiphenyl						76	82	45 - 101			
Pyrene-d10						86	94	52 - 118			
Terphenyl-d14						87	89	41 - 106			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	10-034-01 H-SP-1					
Arsenic	ND	11	6010B	10-5-10	10-5-10	
Barium	37	2.8	6010B	10-5-10	10-5-10	
Cadmium	ND	0.56	6010B	10-5-10	10-5-10	
Chromium	21	0.56	6010B	10-5-10	10-5-10	
Lead	8.2	5.6	6010B	10-5-10	10-5-10	
Mercury	ND	0.28	7471A	10-6-10	10-6-10	
Selenium	ND	11	6010B	10-5-10	10-5-10	
Silver	ND	0.56	6010B	10-5-10	10-5-10	

Lab ID:	10-034-02					
Client ID:	H-SP-2					
Arsenic	ND	12	6010B	10-5-10	10-5-10	
Barium	48	3.1	6010B	10-5-10	10-5-10	
Cadmium	ND	0.61	6010B	10-5-10	10-5-10	
Chromium	25	0.61	6010B	10-5-10	10-5-10	
Lead	31	6.1	6010B	10-5-10	10-5-10	
Mercury	ND	0.31	7471A	10-6-10	10-6-10	
Selenium	ND	12	6010B	10-5-10	10-5-10	
Silver	ND	0.61	6010B	10-5-10	10-5-10	

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	10-034-03 H-SP-3					
Arsenic	ND	11	6010B	10-5-10	10-5-10	
Barium	34	2.8	6010B	10-5-10	10-5-10	
Cadmium	ND	0.56	6010B	10-5-10	10-5-10	
Chromium	17	0.56	6010B	10-5-10	10-5-10	
Lead	19	5.6	6010B	10-5-10	10-5-10	
Mercury	ND	0.28	7471A	10-6-10	10-6-10	
Selenium	ND	11	6010B	10-5-10	10-5-10	
Silver	ND	0.56	6010B	10-5-10	10-5-10	

13

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: October 7, 2010 Samples Submitted: October 5, 2010 Laboratory Reference: 1010-034 Project: 2007-098-921

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted:	10-5-10
Date Analyzed:	10-5-10
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB1005S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 7, 2010 Samples Submitted: October 5, 2010 Laboratory Reference: 1010-034 Project: 2007-098-921

TOTAL METALS EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	10-6-10
Date Analyzed:	10-6-10
Matrix:	Soil

Units: mg/kg (ppm)

Lab ID: MB1006S1

Analyte	Method	Result	PQL
Mercury	7471A	ND	0.25

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted:	10-5-10
Date Analyzed:	10-5-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-013-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Barium	28.5	26.6	7	2.5	
Cadmium	ND	ND	NA	0.50	
Chromium	26.4	25.8	2	0.50	
Lead	ND	ND	NA	5.0	
Selenium	ND	ND	NA	10	
Silver	ND	ND	NA	0.50	

TOTAL METALS EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted:10-6-10Date Analyzed:10-6-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-013-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.25	

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted:	10-5-10
Date Analyzed:	10-5-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-013-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.3	95	99.1	99	4	
Barium	100	114	86	124	95	8	
Cadmium	50	43.3	87	45.4	91	5	
Chromium	100	118	91	124	98	5	
Lead	250	213	85	225	90	5	
Selenium	100	91.0	91	96.5	96	6	
Silver	25	21.4	85	22.3	89	4	

TOTAL METALS EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted:	10-6-10
Date Analyzed:	10-6-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-013-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.50	0.511	102	0.504	101	1	

19

% MOISTURE

Date Analyzed: 10-5-10

Client ID	Lab ID	% Moisture
H-SP-1	10-034-01	11
H-SP-2	10-034-02	18
H-SP-3	10-034-03	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Received by:	ii< °	Relinquished by: Male Course	PRINT NAME										/	50-J 11	12-20-2 1 1105 1	H-SP-1 10/5/10 100 Soic	HWA SAMPLE ID DATE TIME MATRIX		2	SAMPLERS NAME: PATENT'S	SITE CODE: HEAT	PROJECT NAME: BOTHELL		HWA GEOSCIENCES INC.	HWA
	XXX Day	- Alle	SIGNATURE					-						ω			LAB ID BO			PHONE:		#: 2003-098-921	5 (+2-5) / / +-0100		
		1	TURE												11100	3 ///	BOTTLE WWFF Not PAIN	- 	рж - G	 12=		1-1-1-		and Laboratory	
	Orthe Fr-	Alux	COMPANY			الله الله الله الله الله الله الله الله								*	×		Men %~ r	115.	- [2	<u>'c p</u>	A	ANALYSIS REQUESTED		Chain of Custody poratory Analysis Request	
	icitatio	u/s/al	DATE				1. A.			 	 	 												quest	
	1530		TIME	19 19			N			•							REMARKS	AA		N-lan				5	7 EU- UF

UIS I RIBUTION: WHITE - Return to HWA; YELLOW - Retain by Lab; PINK - Retain by Sampler

..... ۲

,

:

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 12, 2010

Vance Atkins HWA GeoSciences, Inc. 21312 30th Drive SE, Suite 110 Bothell, WA 98021

Re: Analytical Data for Project 2007-098-921 Laboratory Reference No. 1010-095

Dear Vance:

Enclosed are the analytical results and associated quality control data for samples submitted on October 11, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on October 11, 2010 and received by the laboratory on October 11, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Descult	DOI		Date	Date	F 1
	PQL	Method	Prepared	Analyzed	Flags
	00		10 11 10	10 11 10	
			10-11-10	10-11-10	
•					
109	30-130				
HZ-SP-101110-2					
10-095-02					
ND	29	NWTPH-Dx	10-11-10	10-11-10	
100	59	NWTPH-Dx	10-11-10	10-11-10	
Percent Recovery	Control Limits				
106	50-150				
HZ-SP-101110-3					
10-095-03					
ND					U1
		NWTPH-Dx	10-11-10	10-11-10	
•					
116	50-150				
H7-SP-101110-4					
	52	NWTPH-Dx	10-11-10	10-11-10	U1
					01
			10 11 10	101110	
•					
HZ-SP-101110-5					
10-095-05					
ND	31	NWTPH-Dx	10-11-10	10-11-10	
220	62	NWTPH-Dx	10-11-10	10-11-10	
Percent Recovery	Control Limits				
118	50-150				
	10-095-02 ND 100 Percent Recovery 106 HZ-SP-101110-3 10-095-03 ND 230 Percent Recovery 116 HZ-SP-101110-4 10-095-04 ND 320 Percent Recovery 108	HZ-SP-101110-1 10-095-01 ND 29 ND 57 Percent Recovery Control Limits 109 50-150 HZ-SP-101110-2 50-150 10-095-02 10 ND 29 10-095-02 Control Limits 10-095-02 Control Limits 100 59 Percent Recovery Control Limits 106 50-150 HZ-SP-101110-3 50-150 10-095-03 33 230 58 Percent Recovery Control Limits 116 50-150 HZ-SP-101110-4 50-150 10-095-04 50-150 HZ-SP-101110-4 50-150 10-095-04 50-150 HZ-SP-101110-5 50-150 100 52 320 62 Percent Recovery Control Limits 108 50-150 10-095-05 50-150 10-095-05 5150	HZ-SP-101110-1 10-095-01 NW ND 29 NWTPH-Dx ND 57 NWTPH-Dx Percent Recovery Control Limits 50-150 NW 109 50-150 V HZ-SP-101110-2 10-095-02 V V ND 29 NWTPH-Dx Percent Recovery Control Limits 50 NWTPH-Dx Percent Recovery Control Limits 106 NWTPH-Dx Percent Recovery Control Limits 50-150 NWTPH-Dx Percent Recovery Control Limits 116 NWTPH-Dx Percent Recovery Control Limits 50-150 NWTPH-Dx ND 31 NWTPH-Dx ND	HZ-SP-101110-1 10-095-01 ND 29 57 NWTPH-Dx 10-11-10 ND 57 NWTPH-Dx 10-11-10 Percent Recovery 109 Control Limits 50-150 10-11-10 HZ-SP-101110-2 10-095-02 NWTPH-Dx 10-11-10 ND 29 NWTPH-Dx 10-11-10 Percent Recovery 106 Control Limits 50-150 10-11-10 Percent Recovery 10-095-03 Control Limits 50-150 10-11-10 Percent Recovery 10-095-03 33 NWTPH-Dx 10-11-10 Percent Recovery 10-095-03 Control Limits 50-150 10-11-10 Percent Recovery 10-095-04 Control Limits 50-150 10-11-10 Percent Recovery 10-095-04 Control Limits 50-150 10-11-10 Percent Recovery 10-095-05 Control Limits 50-150 10-11-10 Percent Recovery 10-095-05 Control Limits 50-150 10-11-10 Percent Recovery 10-095-05 MWTPH-Dx 10-11-10 Percent Recovery 10-095-05 31 NWTPH-Dx 10-11-10 Percent Recovery 10-095-05 31 NWTPH-Dx 10-11-10	HZ-SP-101110-1 10-095-01 Image: constraint of the system of

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

ee				Date	Dat	е	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB1011S1						
Diesel Range Organics	ND	25	NWTPH-Dx	10-11-10	10-11	-10	
Lube Oil Range Organics	ND	50	NWTPH-Dx	10-11-10	10-11	-10	
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	128	50-150					
			Percent	Recovery		RPD	
Analyte	Result		Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	10-095-02						
	ORIG DUI	P					

NA NA
22 NA

o-Terphenyl

106 106 50-150

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	10-095-01 HZ-SP-101110-1					
Arsenic	ND	11	6010B	10-11-10	10-11-10	
Cadmium	ND	0.57	6010B	10-11-10	10-11-10	
Chromium	31	0.57	6010B	10-11-10	10-11-10	
Lead	ND	5.7	6010B	10-11-10	10-11-10	
Mercury	ND	0.29	7471A	10-11-10	10-11-10	
Lab ID: Client ID:	10-095-02 HZ-SP-101110-2					
Arsenic	ND	12	6010B	10-11-10	10-11-10	
Cadmium	ND	0.59	6010B	10-11-10	10-11-10	
Chromium	30	0.59	6010B	10-11-10	10-11-10	
Lead	13	5.9	6010B	10-11-10	10-11-10	
Mercury	ND	0.29	7471A	10-11-10	10-11-10	
Lab ID: Client ID:	10-095-03 HZ-SP-101110-3					
Arsenic	ND	12	6010B	10-11-10	10-11-10	
Cadmium	ND	0.58	6010B	10-11-10	10-11-10	
Chromium	24	0.58	6010B	10-11-10	10-11-10	
Lead	14	5.8	6010B	10-11-10	10-11-10	
Mercury	ND	0.29	7471A	10-11-10	10-11-10	

5

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010B/7471A

Matrix:	Soil
Units:	mg/kg (ppm)

			Date	Date	
Result	PQL	EPA Method	Prepared	Analyzed	Flags
10-095-04 HZ-SP-101110-4					
ND	12	6010B	10-11-10	10-11-10	
ND	0.62	6010B	10-11-10	10-11-10	
30	0.62	6010B	10-11-10	10-11-10	
91	6.2	6010B	10-11-10	10-11-10	
ND	0.31	7471A	10-11-10	10-11-10	
-	10-095-04 HZ-SP-101110-4 ND ND 30 91	10-095-04 HZ-SP-101110-4 ND 12 ND 0.62 30 0.62 91 6.2	10-095-04 HZ-SP-101110-4 ND 12 6010B ND 0.62 6010B 30 0.62 6010B 91 6.2 6010B	10-095-04 HZ-SP-101110-4 ND 12 6010B 10-11-10 ND 0.62 6010B 10-11-10 30 0.62 6010B 10-11-10 91 6.2 6010B 10-11-10	10-095-04 HZ-SP-101110-4 ND 12 6010B 10-11-10 10-11-10 ND 0.62 6010B 10-11-10 10-11-10 30 0.62 6010B 10-11-10 10-11-10 91 6.2 6010B 10-11-10 10-11-10

Lab ID:	10-095-05					
Client ID:	HZ-SP-101110-5					
Arsenic	ND	12	6010B	10-11-10	10-11-10	
Cadmium	ND	0.62	6010B	10-11-10	10-11-10	
Chromium	30	0.62	6010B	10-11-10	10-11-10	
Lead	28	6.2	6010B	10-11-10	10-11-10	
Mercury	ND	0.31	7471A	10-11-10	10-11-10	

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	10-11-10
Date Analyzed:	10-11-10
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB1011S1&MB1011S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	10-11-10
Date Analyzed:	10-11-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-077-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	9.15	9.05	1	0.50	
Lead	9.45	8.45	11	5.0	
Mercury	ND	ND	NA	0.25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	10-11-10
Date Analyzed:	10-11-10

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 10-077-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	97.8	98	99.6	100	2	
Cadmium	50	45.2	90	45.7	91	1	
Chromium	100	108	99	108	99	0	
Lead	250	228	87	230	88	1	
Mercury	0.50	0.522	104	0.506	101	3	

% MOISTURE

Date Analyzed: 10-11-10

Client ID	Lab ID	% Moisture
HZ-SP-101110-1	10-095-01	13
HZ-SP-101110-2	10-095-02	15
HZ-SP-101110-3	10-095-03	13
HZ-SP-101110-4	10-095-04	19
HZ-SP-101110-5	10-095-05	19

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

 ${\sf H}$ - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Sign			5 HZ-SP-10	4 HZ-SP-1011	3 HZ-SP- 1011	2 HZ - SP- 101	1 HZ-SP-10110	Lab D Sample	Sampled by:	ATEINS	u - HER	25 - 80	а 24			NA OnSite
				(Pra	la O	ature9			1110-5	101110-24	101110-3	1011 1012	1	mple Identification			C ¹	121	A.		Environmental Inc.	E
DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Client Copy				(Aura	Company			2 1310 1 1	2001	1300	17255 1 (10/11/10 1250 S Z	Date Time # of Sampled Sampled Matrix _ Con	(other)		Standard (7 working days) (TPH analysis 5 working days)	2 Day 3 Day	Same Day 1 Day	(Check One)	Turnaround Request (In working days)	Chain o
Copy Yellow - Client Copy					10/11/10/13	si cillipoi	pate Iline								NWTF NWTF NWTF Volatile Haloge	PH-Gx/ PH-Dx es by a enated	ID BTEX 3260E I Volat	3 iiles by	1 8260)B	-	Laboratory Nun	Chain of Custody
Chromatograms with final report					50	1250	Comments/Special Instructions:	· 							Semiv PAHs PCBs Pestici Herbic	by 827 by 800 ides by sides b	70D / 32 y 808 y 815 Metal	SIM 1A 1A			Requested Analysis	Number:	
ith final report							tructions:														ilysis	10-0	Page
								 		<					% Mo	isture)95	<u></u> -

APPENDIX C DATA QUALITY ASSESSMENT

INTRODUCTION

This appendix presents a data quality assessment for the Bothell Former Hertz Facility site independent action soil cleanup. Quality is the degree to which a set of inherent characteristics fulfills project requirements. Quality assurance (QA) is the processes of auditing the project's quality requirements and the results from quality control measurements to ensure appropriate quality standards are used. Quality control (QC) is the process of monitoring and recording results of executing the project quality activities to assess performance and to recommend necessary changes (PMI, 2008).

The principal ingredients that make up suitable data quality or "good data" are (Flory, 2000):

- 1. **Clearly stated measurement purposes:** Must include the chemical compounds to be analyzed; the sample matrices to be submitted; the intended use of the data, and the associated detection limits, accuracy, and precision required.
- 2. **Data management:** Refers to sample tracking (chain-of-custody) and associated activities that guarantee the laboratory results are associated with the correct sample.
- 3. **Sampling:** Includes a technically valid sampling plan that is correctly implemented to properly collect, identify, preserve, store and prepare samples for analysis.
- 4. **Analytical method:** Must have sufficient selectivity, detection limits, accuracy and precision to be technically valid.
- 5. **Quality control samples:** Must include sufficient quality control samples to support the necessary statements of accuracy, precision, and detection limits. These include blanks (field, trip, laboratory, reagent), duplicate measurements, matrix spikes, laboratory control samples, and performance evaluation samples.
- 6. **Quality control limits:** Includes clearly stated acceptable limits for quality control samples such as allowable blank contamination; precision of duplicate samples; and accuracy of matrix spikes, performance evaluation samples and laboratory control samples. Calibration frequency and linearity may also be included.
- 7. **Documentation:** Must be comprehensive enough to allow a third party evaluator to independently verify the suitability of the sample data.

The process of verifying the suitability of the data is termed data quality assessment. Data quality assessment is a determination of the suitability of the data for the intended use. It includes the four major tasks of (a) data management, (b) data validation, (c) data qualification/review (flagging), and (d) the determination of suitability. Data management includes determining the completeness of the data documentation. Environmental data validation primarily entails checking to see if the quality control

requirements of the method have been met. Data qualification is the application of flags to the data that reflect the failures found during validation. The final determination of suitability must consider the technical validity of the data as well as the data qualifiers and be consistent with the intended use of the analytical data (Flory, 2000).

There were two components to the data quality program for the Bothell Former Hertz Facility site cleanup: field and laboratory. Both components followed Washington Department of Ecology guidance (Ecology, 2004). Also, the *Interim Action Work Plan* (HWA, 2010) specified the sample collection procedures and analysis, and defined the data quality objectives (DQOs) and criteria for the independent action cleanup.

FIELD QC METHODS

Assessment of field QC methods and data revealed no deviations from the *Interim Action Work Plan* (HWA, 2010). Field QC included proper documentation of field activities in a field log book and daily field reports that provided a daily record of significant events, observations, deviations from the sampling plan and measurements collected during the field activities. Field personnel followed standard QC procedures to collect and transport samples including collection of duplicate samples, decontamination of reusable sampling equipment between samples, labeling samples, and following chain of custody procedures to transport samples to the laboratory. Field personnel photographically documented significant events and observations during the independent action cleanup.

LABORATORY QC METHODS

OnSite Environmental Inc. of Redmond, Washington performed nearly all sample analyses. OnSite Environmental is accredited by the Washington Department of Ecology (Accreditation #C591-10) for all analyses performed for the independent action cleanup except for NWEPH analysis. Therefore, OnSite Environmental subcontracted NWEPH and some NWVPH analyses to ALS Environmental in Everett, Washington. ALS Environmental is accredited by the Department of Ecology for NWEPH and NWVPH analyses (Ecology Accreditation # C1336).

Specific laboratory QC consisted of the following (OnSite Environmental, 2008; Ecology, 2004):

• **Sample Batching.** A batch consisted of up to twenty samples in addition to any quality control samples that were required. Samples in a batch may have been collected at different sites by different clients of OnSite Environmental. The samples were extracted, digested, and prepared for analysis within a twelve-hour window. If more than twenty samples were to be extracted, a second batch of quality control samples was generated.

- Method Blanks. Method blanks were used to ensure that the extraction and analysis procedures did not contribute contamination to the analysis. Method blanks were prepared and analyzed in the laboratory to document the response of the measurement system to a sample containing effectively none of the analyte of interest. A positive blank response can be due to a variety of factors related to the procedure, equipment, or reagents. Unusually high blank responses indicate laboratory contamination. The method blank response becomes very important when the analyte concentration is near the detection limit.
- **Spike Blanks.** A spike blank is a laboratory QC sample prepared by adding a known amount of the target analyte(s) to a laboratory blank sample. This is a measure of the accuracy of the test procedure. If an analyte for any spike blank was outside of quality control criteria, then that particular analyte was evaluated and actions were taken to bring the analysis into control.
- **Duplicate Samples.** Duplicate samples were used to ensure that sample results could be reproduced in a precise manner.
- Surrogates. Surrogate compounds are compounds similar to the analytes of interest that were added to the sample at a known concentration in order to track the accuracy of the sample extraction and analysis. Some methods for organics analyses specify that all samples, including QC samples, be spiked with surrogate compounds at the start of the procedure. Because surrogate compounds are not expected to be present in the samples, they give analytical responses that can be distinguished from those of the analytes of interest. Surrogate percent recoveries (defined below) provided an estimate of accuracy for the entire analytical procedure. The standard deviations of surrogate results provided an estimate of analytical precision, while the mean percent recoveries indicated whether or not the sample results were biased.
- **Spiked Blank Duplicates.** These were a second laboratory spiked blank laboratory QC sample. The difference in the laboratory's recovery of the spiked blank and spiked blank duplicate was a measure of analytical precision, and was reported as relative percent difference (RPD) as defined below.
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples. Matrix spike samples were used to ensure the analytes of interest could be accurately recovered from the sample matrix. The matrix spike duplicate was also used to ensure the analytes could be repeatedly recovered in an accurate and precise manner.

Analytical Accuracy and Precision

Routine laboratory QC analyses provided information about accuracy and precision. The types of quality control samples differed depending on the method specifications. Analytical accuracy was assessed through the surrogate, spike blank, and matrix spike analysis as specified by the analytical method. Accuracy was expressed as percent recovery:

Percent Recovery (%R) = $100^{*}(X_s/C_t)$

Where X_s was the observed concentration of the analyte, and C_t was the true concentration of the analyte. The acceptable range for accuracy was determined by the method or by control charting of actual laboratory samples. A control chart is a graphical representation of the precision of QC results showing whether the measurement system is in statistical control. The laboratory analyst was responsible for verifying that the surrogate, spike blank and MS/MSD percent recoveries meet the quality control limits.

Analytical precision was assessed through analysis of the sample duplicates or matrix spike duplicates as specified by the analytical method. Precision was expressed as relative percent difference:

Relative Percent Difference (RPD) = $100*(X_1-X_2)/((X_1+X_2)/2)$

Where: X_1 was the concentration in the first duplicate sample and X_2 was the concentration in the second duplicate sample. The acceptable range for precision was determined by the method or by control charting of actual laboratory samples. The analyst was responsible for verifying that the duplicate or MS/MSD recoveries meet the quality control limits.

Practical Quantitation Limits and Method Detection Limits

OnSite Environmental reported all analytical results for the independent action cleanup as practical quantitation limits (PQLs). PQLs are the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. OnSite Environmental's routine PQLs for all independent action analyses were lower than regulatory cleanup levels thus ensuring confirmation of successful cleanup. OnSite Environmental conducts studies annually for all accredited test methods to determine its PQLs.

Method detection limits (MDLs) are the lowest concentration that can be detected by an instrument with correction for the effects of sample matrix and method-specific parameters such as sample preparation. OnSite Environmental conducts studies annually for all accredited test methods to determine its method detection limits. MDLs are defined at 40 CFR Part 136 as three times the standard deviation of replicate spiked analyses. An analytical PQL is generally 5-10 times the MDL. MDLs are only a measure of the ability of the test procedure to generate a positive response and have nothing to do with the accuracy of that response (Quality Assurance Associates, 2010).

DATA VERIFICATION

Ninety four soil samples were analyzed for this independent action cleanup. The analyses performed included:

- NWTPH-Gx Gasoline range petroleum hydrocarbons using Ecology Method NWTPH-Gx
- NWTPH-Dx Diesel and oil range petroleum hydrocarbons using Ecology Method NWTPH-Dx
- BTEX Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021
- RCRA 8 Metals Arsenic, barium, cadmium, chromium, lead, selenium, silver using EPA Method 6010B and 6020; and mercury using EPA Method 7471A
- PAHs Polynuclear aromatic hydrocarbons by EPA Method 8270D/SIM
- VPH/EPH Ecology methods VPH and EPH for volatile and extractable petroleum hydrocarbon fractions
- PCBs Polychlorinated biphenyls by EPA Method 8082

Analytical data are summarized in Table 2 of the cleanup report. Verification of the data included checking holding times, checking that the laboratory performed the analyses requested on the chain of custody form, and that the laboratory's QC results were within established control limits. Table C-1 below summarizes the data verification results. Holding times, surrogate percent recoveries, method blank analytical results, lab duplicate RPDs, matrix spike/matrix spike duplicate percent recoveries and RPDs, and spiked blank duplicate percent recoveries and RPDs were all within control limits with the following exceptions:

• Twenty nine soil sample analyses had elevated PQLs due to interferences present in the sample matrix, high moisture content, or necessary dilution of the sample. Of these 29 soil samples, 17 soil samples had PQLs that were less than their respective Method A soil cleanup levels. Twelve samples had a PQL for benzene greater than the MTCA Method A soil cleanup level of 0.03 mg/kg. The PQLs for compounds other than benzene in these 12 samples were less than their respective Method A cleanup level. Nine of the 12 samples with a benzene PQL greater than 0.03 mg/kg represented soils that were subsequently excavated and removed from the site during the cleanup. Three of the 12 samples with an elevated benzene PQL were independent action cleanup confirmation samples in which a high moisture content in the sample caused the elevated PQL:

H-PEX-5-8	benzene <0.31 mg/kg
H-PEX-14-4	benzene <0.32 mg/kg
H-PEX-16-14	benzene <0.053 mg/kg

It is HWA's opinion that the slightly elevated benzene PQLs for these three confirmation samples does not compromise the conclusion that the site was successfully cleaned up because benzene was not detected at concentrations greater than 0.03 mg/kg in any soil samples collected during the pre-cleanup site investigations or in any of the other 36 confirmation soil samples collected during the independent action cleanup; i.e., benzene is not a chemical of potential concern at the site.

- Samples H-PEX-1-6, H-PEX-2-6, and H-PEX-3-4. For the Method 6010B analysis (metals) the lab's duplicate QC sample RPD for lead was outside control limits (a 'C' Flag) due to high result variability when the analyte concentrations were less than five times the PQL. The duplicate QC sample for this batch had a very low lead concentration. Poor duplicate RPDs for any analytes at low concentrations (i.e., near the PQL) are not uncommon, and are not considered a major QC issue. The areas represented by these 3 samples were subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- Sample H-PEX-11-6. The spiked compound recovery was outside of the control limits for several PAHs in the 8270D MS/MSD QC analysis (an 'I' Flag). This QC issue arose because the QC sample for the batch had elevated concentrations of these PAHs; the QC sample was from the site of another client of OnSite Environmental. For all other PAHs the MS/MSD percent recoveries were within control limits for these samples, as were the method blank and spike blank/spike blank duplicate QC checks. The area represented by this sample was subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- Sample H-PEX-11-6. The lab's duplicate QC sample RPD for chromium was outside control limits due to sample inhomogeneity (a 'K' Flag); the sample was re-extracted and re-analyzed with similar results. The duplicate QC sample for this batch was from the site of another client of OnSite Environmental and had a fairly low chromium concentration. Poor duplicate RPDs for any analytes at low concentrations (i.e., near the PQL) are not uncommon, and are not considered a major QC issue. The area represented by this sample was subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- Samples H-PEX-1-6, H-PEX-2-6, H-PEX-3-4, and H-PEX-11-6. The RPD for the 8270D MS/MSD QC analysis was outside of the control limits for several PAHs (an 'L' Flag). This QC issue arose because the QC sample for the batch had elevated concentrations of these PAHs; the QC sample was from the site of

another client of OnSite Environmental. For all other PAHs the MS/MSD percent recoveries were within control limits for these samples, as were the method blank and spike blank/spike blank duplicate QC checks. The areas represented by these 4 samples were subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.

- Samples H-PEX-1-6 and H-PEX-3-4. Hydrocarbons in the gasoline range impacted the diesel range result (an 'M' Flag). This QC issue arose due to gasoline and diesel's overlapping hydrocarbon ranges, and resulted in the reported concentration of the less dominant product (diesel) being slightly higher than may actually be the case. The areas represented by these 2 samples were subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- Samples H-TP-6-3, H-TP-6-6, H-TP-6-7, H-PEX-1-6, and H-PEX-3-4. Hydrocarbons in the lube oil range impacted the diesel range result (an 'N' Flag). This QC issue arose due to diesel and lube oil's overlapping hydrocarbon ranges, and resulted in the reported concentration of the less dominant product (diesel) being slightly higher than may actually be the case. The areas represented by these 5 samples were subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- Sample H-TP-23-7. Hydrocarbons in the diesel range impacted the lube oil range result (an 'N1' Flag). This QC issue arose due to diesel and lube oil's overlapping hydrocarbon ranges, and resulted in the reported concentration of the less dominant product (lube oil) being slightly higher than may actually be the case. The area represented by sample H-TP-23-7 was subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- Samples H-TP-6-3, H-TP-6-6, H-TP-13-8, H-TP-20-6, H-TP-21-2, H-PEX-1-6, H-PEX-2-6, H-PEX-3-4, and H-PEX-23-9. Hydrocarbons indicative of heavier fuels were present in the sample and impacted the gasoline result (an 'O' Flag). This QC issue arose due to gasoline and diesel's overlapping hydrocarbon ranges, and resulted in the reported concentration of the less dominant product (gasoline) being slightly higher than may actually be the case. The areas represented by these 9 samples were subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.
- **Sample H-TP-1-8**. Surrogate recovery data for the QC check of the analysis was not available due to the necessary dilution of the sample (an 'S' Flag). The area

represented by this sample was subsequently excavated. Consequently, this QC issue did not compromise the conclusion that the site was successfully cleaned up.

- **Sample H-TP-22-8.** The sample chromatogram for the NWTPH-Gx analysis was not similar to a typical gas (a 'T' Flag). The flag for this confirmation sample was advisory and not an indication of a QC issue that may have compromised the conclusion that the site was successfully cleaned up.
- Samples H-TP-6-3, H-TP-6-6, H-TP-13-3, H-TP-13-8, H-TP-14-8, H-TP-15-3, H-TP-15-8, H-TP-16-3, H-TP-16-7, H-TP-18-7, H-TP-21-2, and H-PEX-2-6. The chromatogram for the NWTPH-Gx analysis was similar to mineral spirits (a 'Z' Flag). The flag for these samples was advisory and not an indication of a QC issue that may have compromised the conclusion that the site was successfully cleaned up.

EVALUATION OF FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected at an approximate frequency of one duplicate per 17.8 soil samples – a frequency slightly more than the ratio of one duplicate per 20 samples specified in the *Interim Action Work Plan* (HWA, 2010). The *Interim Action Work Plan* did not specify quality criteria for field duplicate samples; HWA thus used the following U.S. Army Corps of Engineers criteria (Grant, Jenkins, and Mudambi, 1996) to evaluate the field duplicate analytical results:

Analytical Result	Criteria	Conclusion			
Both results less than PQL	PQLs differ by more than ±25%	Disagreement			
One result greater than PQL and one result less than PQL	>5x difference >10x difference	Disagreement Major disagreement			
Both results greater than PQL	RPD >30% RPD >65%	Disagreement Major disagreement			

Table C-2 summarizes the analytical results of the field duplicate samples. As can be seen, field duplicate sample analytical results were all within the quality criteria listed above.

PROJECT DOCUMENTATION AND DATA MANAGEMENT

Field personnel used bound waterproof field notebooks to record significant events and observations during the independent action cleanup. Entries were made in waterproof ink or pencil, signed, and dated. Field personnel also completed daily field reports and

forwarded copies of the field report to City of Bothell representatives. All field logs, figures, and records are retained in project files at HWA's office.

Digital photographs taken of field activities and significant events are stored on HWA's computer system with the following information noted:

- Date, time, and location of photograph taken
- Description of photograph taken
- Reasons photograph was taken
- Viewing direction

Original laboratory certificates containing analytical results and laboratory QC data are documented in Appendix B of this report. An electronic copy of each laboratory certificate is stored on HWA's computer network server as PDF files in the project folder. In addition, OnSite Environmental's Electronic Data Deliverables (EDD) packages for all analytical results are stored on HWA's computer network server as Microsoft Excel spreadsheets in the project folder. HWA routinely backs up its network servers.

SUMMARY

- Field QC procedures were followed.
- The voluminous field and laboratory data generated during the independent action cleanup are technically complete, accessible, and efficiently handled.
- All samples collected during the independent action cleanup were analyzed within holding times. Appropriate standard analytical methods were used. The few quality control issues noted above did not compromise the analytical accuracy or precision of the data.
- All reported data should be considered valid as qualified and acceptable for further use.

REFERENCES

- Grant, C.G, T.F. Jenkins, and A.R. Mudambi, 1996, Comparison Criteria for Environmental Chemical Analyses of Split Samples Sent to Different Laboratories-Corps of Engineers Archived Data, U.S. Army Corps of Engineers Cold Regions & Environmental Research Laboratory, Hanover NH. CRREL Special Report No. 96-9, May 1996.
- Flory, D., 2000, *What is "Good" Data*, Quality Assurance Associates (www.qaallc.com/gooddata.html)

- OnSite Environmental, 2008, *Quality Assurance Manual, Revision No. 9.2*, November 19, 2008 (www.onsite-env.com/pdf/QA.pdf)
- HWA GeoSciences, 2010, Interim Action Work Plan, Former Hertz Rentals Property, Bothell, Washington. Prepared for City of Bothell, May 7, 2010.
- PMI, 2008, A Guide to the Project Management Body of Knowledge Fourth Edition (ANSI/PMI 99-001-2008), Project Management Institute (www.pmi.org).
- Quality Assurance Associates, 2010, *Understanding Laboratory Reporting Limits*. (www.qaallc.com/replimit.html)
- Washington Department of Ecology, 2004, *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies*, Publication No. 04-03-030.

Table C-1 Analytical Quality Control Summary

		OnSite Environmental				Lab Prepared Sample Within	Surrogate Recovery Within	Method Blank Within Control	Lab Duplicate Within Control	Matrix Spike / Matrix Spike Duplicate Within		
Sample ID	Matrix	Lab ID	Sample Date	On COC Form?	Requested Analyses ¹ NWTPH-Gx/BTEX	Holding Time	Control Limits	Limits	Limits	Control Limits	Control Limits	Notes
H-TP-1-3	Soil	1008-237-01	8/30/10	N	NWTPH-Dx	V	v	N	v	N	N	BTEX PQLs raised due to necessary dilution of sample
H-TP-1-8	Soil	1008-237-02	8/30/10	V	NWTPH-Gx/BTEX NWTPH-Dx	1	See Notes	V	\checkmark	√	V	S Flag - Surrogate recovery data not available due to the necessary dilution of the sample
H-TP-2-6	Soil	1008-237-03	8/30/10	V	NWTPH-Gx/BTEX							Sample put on hold at HWA GeoSciences' request
H-TP-2-10	Soil	1008-237-04	8/30/10	V	NWTPH-Dx	4	V	V	1	1	V	
H-TP-2-4	Soil	1008-237-05	8/30/10	V	NWTPH-Gx/BTEX NWTPH-Dx NWTPH-Gx/BTEX	1	1	√	√	√	~	
H-TP-3-3	Soil	1008-237-06	8/30/10	~	NWTPH-Dx	1	V	V	1	V	V	
H-TP-3-8	Soil	1008-237-07	8/30/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	√	V	1	1	V	
H-TP-4-3	Soil	1008-237-08	8/30/10	~	NWTPH-Gx/BTEX NWTPH-Dx	1	1	V	\checkmark	V	V	
H-TP-4-7	Soil	1008-237-09	8/30/10	1	NWTPH-Gx/BTEX NWTPH-Dx	4	1	V	1	1	V	
H-TP-5-4	Soil	1008-237-10	8/30/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	1	V	1	1	V	
H-TP-5-7	Soil	1008-237-11	8/30/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	1	V	~	~	1	
H-TP-6-3	Soil	1008-237-12	8/30/10	V	NWTPH-Gx/BTEX NWTPH-Dx	ł	V	V	V	V	V	N Flag for NWTPH-Dx analysis - Hydrocarbons in the lube oil range are impacting the diesel range result O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for diesel and o-xylene analyses - The PQL is elevated due to interferences present in the sample
H-TP-6-6	Soil	1008-237-13	8/30/10	V	NWTPH-Gx/BTEX NWTPH-Dx	4	V	Å	4	V	V	Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits N Flag for NWTPH-Dx analysis - Hydrocarbons in the lube oil range are impacting the diesel range result O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for diesel and o-xylene analyses - The PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-6-7	Soil	1008-237-14	8/30/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	1	V	1	1	~	N Flag for NWTPH-Dx analysis - University of the lube oil range are impacting the diesel range result
H-TP-7-5	Soil	1008-237-15	8/30/10	1	NWTPH-Gx/BTEX	1	V	V	√	V	1	result
H-TP-7-7	Soil	1008-237-16	8/30/10	V	NWTPH-Dx NWTPH-Gx/BTEX	V	V	V	1	V	1	
H-TP-8-5	Soil	1008-237-17	8/30/10	V	NWTPH-Dx NWTPH-Gx/BTEX	V	V	V	V	Å	V	
H-TP-8-7	Soil	1008-237-18	8/30/10	1	NWTPH-Dx NWTPH-Gx/BTEX	1	, ,	۰. ۲	, V	√	1	
H-TP-9-4	Soil	1009-011-01	9/1/10	√	NWTPH-Dx NWTPH-Gx/BTEX NWTPH-Dx	~	~				~	
H-TP-9-7	Soil	1009-011-02	9/1/10	~	RCRA 8 Metals NWTPH-Gx/BTEX NWTPH-Dx	~	~	~	~	~	V	
H-TP-10-3	Soil	1009-011-03	9/1/10	~	RCRA 8 Metals NWTPH-Gx/BTEX NWTPH-Dx	V	V	1	1	1	1	
H-TP-10-7	Soil	1009-011-04	9/1/10	~	RCRA 8 Metals NWTPH-Gx/BTEX NWTPH-Dx	1	1	1	1	1	1	
H-TP-11-4	Soil	1009-011-05	9/1/10	~	RCRA 8 Metals NWTPH-Gx/BTEX NWTPH-Dx PCRA 8 Metals	~	V	√	1	1	~	
H-TP-11-7	Soil	1009-011-06	9/1/10	√	RCRA 8 Metals NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	1	1	1	1	1	√	
H-TP-12-3	Soil	1009-011-07	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	1	V	1	V	

Table C-1 Analytical Quality Control Summary

Sample ID	Matrix	OnSite Environmental Lab ID	Sample Date	On COC Form?	Requested Analyses ¹	Lab Prepared Sample Within Holding Time	Surrogate Recovery Within Control Limits	Method Blank Within Control Limits	Lab Duplicate Within Control Limits	Matrix Spike / Matrix Spike Duplicate Within Control Limits	Spiked Blank / Spiked Blank Duplicate Within Control Limits	Notes
H-TP-12-7	Soil	1009-011-08	9/1/10	~	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	~	V	~	V	V	٨	
H-DUP-090110	Soil	1009-011-09	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	V	V	V	Duplicate of sample H-TP-12-3
H-TP-13-3	Soil	1009-017-01	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	V	V	V	U1 Flag for NWTPH-Dx and o-xylene analyses - The PQL is elevated due to interferences present i the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-13-8	Soil	1009-017-02	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	V	V	Å	O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for NWTPH-Dx and o-xylene analyses - The PQL is elevated due to interferences present it the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-14-3	Soil	1009-017-03	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	V	V	V	
H-TP-14-8	Soil	1009-017-04	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	V	V	V	U1 Flag for diesel and o-xylene analyses - The PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-15-3	Soil	1009-017-05	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	Ń	~	V	V	Ń	V	2 Flag for WVTPH-Gx analysis - Chromatogram is similar to mineral spins U1 Flag for diesel and o-xylene any system of the PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-15-8	Soil	1009-017-06	9/1/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	See Notes	V	V	Z Flag for NWTPH-Gx analysis - Unionaugrant is similar to mineral spins The PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-16-3	Soil	1009-023-01	9/2/10	1	NWTPH-Gx/BTEX NWTPH-Dx	V	1	V	1	V	1	Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-16-7	Soil	1009-023-02	9/2/10	V	NWTPH-Gx/BTEX NWTPH-Dx	V	V	\checkmark	V	V	V	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-17-3	Soil	1009-023-03	9/2/10	1	NWTPH-Gx/BTEX NWTPH-Dx	√	1	√	1	V	√	
H-TP-17-6	Soil	1009-023-04	9/2/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	1	√	1	V	1	
H-TP-18-3	Soil	1009-023-05	9/2/10	1	NWTPH-Gx/BTEX NWTPH-Dx	V	1	V	1	V	1	
H-TP-18-7	Soil	1009-023-06	9/2/10	٨	NWTPH-Gx/BTEX NWTPH-Dx	V	V	Ń	V	V	1	U1 Flag for diesel and o-xylene analyses - The PQL is elevated due to interferences present in the sample
H-TP-19-4	Soil	1009-023-07	9/2/10	1	NWTPH-Gx/BTEX NWTPH-Dx	V	1	V	1	V	1	Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-TP-19-6	Soil	1009-023-08	9/2/10	1	NWTPH-DX NWTPH-Gx/BTEX NWTPH-Dx	~	1	√	1	V	1	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-TP-20-3	Soil	1009-023-09	9/2/10	1	NWTPH-DX NWTPH-Gx/BTEX NWTPH-Dx	V	1	√	1	1	1	
H-TP-20-6	Soil	1009-023-10	9/2/10	V	NWTPH-Dx NWTPH-Gx/BTEX NWTPH-Dx	4	V	V	V	V	V	O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-TP-21-2	Soil	1009-023-11	9/2/10	V	NWTPH-Gx/BTEX NWTPH-Dx	4	V	V	V	V	V	O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits
H-TP-21-7	Soil	1009-023-12	9/2/10	1	NWTPH-Gx/BTEX	V	V	V	V	V	V	
11-11-21-7	301	1005-025-12	5/2/10	×	NWTPH-Dx	× ·	N N	v	v	, v	v	

Table C-1 Analytical Quality Control Summary

Sample ID	Matrix	OnSite Environmental Lab ID	Sample Date	On COC Form?	Requested Analyses ¹	Lab Prepared Sample Within Holding Time	Surrogate Recovery Within Control Limits	Method Blank Within Control Limits	Lab Duplicate Within Control Limits	Matrix Spike / Matrix Spike Duplicate Within Control Limits	Spiked Blank / Spiked Blank Duplicate Within Control Limits	Notes
H-PEX-1-6	Soil	1009-074-01	9/8/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals PAHs NWVPH/NWEPH PCBs	V	V	٨	See Notes	See Notes	٨	C Flag for 6010B analysis (metals) - The lab duplicate RPD for lead was outside control limits due to high result variability when analyte concentrations are within five times the quantitation limits L Flag for several PAHs in 8270D MS/MSD QC analysis - The RPD was outside of the control limits M Flag for diesel analysis - Hydrocarbons in the gasoline range impacted the diesel range result N Flag for diesel analysis - Hydrocarbons in the lube oil range impacted the diesel range result O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for lab duplicate diesel QC analysis - The PQL is elevated due to interferences present in the sample NWEPH analyses were performed by ALS Environmental labs on sample split prepared by OnSite Environmental Inc.
H-PEX-2-6	Soil	1009-074-02	9/8/10	J	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals PAHs NWVPH/NWEPH PCBs	J	J	V	See Notes	See Notes	V	C Flag for 6010B analysis (metals) - The lab duplicate RPD for lead was outside control limits due to high result variability when analyte concentrations are within five times the quantitation limits L Flag for several PAHs in 8270D MS/MSD QC analysis - The RPD was outside of the control limits O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for diesel (including lab duplicate QC) analysis - The PQL is elevated due to interferences present in the sample Z Flag for NWTPH-Gx analysis - Chromatogram is similar to mineral spirits with diesel fuel NWEPH analyses were performed by ALS Environmental labs on sample split prepared by OnSite Environmental Inc.
H-PEX-3-4	Soil	1009-074-03	9/8/10	J	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metais PAHs NWVPH/NWEPH PCBs	J	J	V	See Notes	See Notes	J	C Flag for 6010B analysis (metals) - The lab duplicate RPD for lead was outside control limits due to high result variability when analyte concentrations are within five times the quantitation limits L Flag for several PAHs in 8270D MS/MSD QC analysis - The RPD was outside of the control limits M Flag for diesel analysis - Hydrocarbons in the gasoline range impacted the diesel range result N Flag for diesel analysis - Hydrocarbons in the lube oil range impacted the diesel range result O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for lab duplicate diesel QC analysis - The PQL is elevated due to interferences present in the sample NWEPH analyses were performed by ALS Environmental labs on sample split prepared by OnSite Environmental Inc.
H-PEX-6-4	Soil	1009-088-01	9/9/10	1	NWTPH-Gx/BTEX NWTPH-Dx Arsenic	1	1	1	Ń	1	V	
H-PEX-5-8	Soil	1009-088-02	9/9/10	V	NWTPH-Gx/BTEX NWTPH-Dx Arsenic NWTPH-Gx/BTEX	V	V	V	1	V	V	
H-PEX-4-8	Soil	1009-088-03	9/9/10	1	NWTPH-Gx/BTEX NWTPH-Dx Arsenic NWTPH-Gx/BTEX	1	1	√	1	1	1	
H-PEX-7-5	Soil	1009-088-04	9/9/10	1	NWTPH-GX/BTEX NWTPH-Dx Arsenic NWTPH-Gx/BTEX	1	~	1	4	1	1	
H-PEX-8-6	Soil	1009-088-05	9/9/10	V	NWTPH-GX/BTEX NWTPH-Dx Arsenic	V	V	V	V	V	\checkmark	

Table C-1 Analytical Quality Control Summary

Sample ID	Matrix	OnSite Environmental Lab ID	Sample Date	On COC Form?	Requested Analyses ¹	Lab Prepared Sample Within Holding Time	Surrogate Recovery Within Control Limits	Method Blank Within Control Limits	Lab Duplicate Within Control Limits	Matrix Spike / Matrix Spike Duplicate Within Control Limits	Spiked Blank / Spiked Blank Duplicate Within Control Limits	Notes
					NWTPH-Gx/BTEX							T Flag for NWTPH-Gx analysis - The sample chromatogram is not similar to a typical gas
H-TP-22-8	Soil	1009-095-01	9/10/10	V	NWTPH-GX/BTEX NWTPH-Dx	V	V	V	V	V	V	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-TP-23-7	Soil	1009-095-02	9/10/10	V	NWTPH-Gx/BTEX NWTPH-Dx	V	V	V	V	V	V	N1 Flag for NWTPH-Dx and o-xylene analyses - Hydrocarbons in the diesel range are impacting the lube oil range result U1 Flag for o-xylene analysis - The PQL is elevated due to interferences present in the sample
WCB-Water-1	Water	1009-106-01	9/13/10	1								Sample put on hold at HWA GeoSciences' request
H-PEX-9-5	Soil	1009-106-02	9/13/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	√	1	√	U1 Flag for lube oil analysis - The PQL is elevated due to interferences present in the sample
H-PEX-10-7	Soil	1009-106-03	9/13/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	1	1	
H-PEX-11-6	Soil	1009-106-04	9/13/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA & Metals PAHs NWPH/NWEPH PCBs	V	V	V	A	See Notes	V	I Flag for several PAHs in 8270D MS/MSD QC analysis - Compound recovery was outside of the control limits L Flag for several PAHs in 8270D MS/MSD QC analysis - The RPD was outside of the control limits K Flag for chromium in duplicate QC analysis - Sample duplicate RPD was outside control limits due to sample inhomogeneity; the sample was re-extracted and re-analyzed with similar results U1 Flag for o-xylene analysis - The PQL is elevated due to interferences present in the sample NWVPH/NWEPH analyses were performed by ALS Environmental labs on sample split prepared by OnSite Environmental Inc.
H-TP-24-3	Soil	1009-106-07	9/13/10	~	NWTPH-Gx/BTEX NWTPH-Dx	1	1	~	1	1	~	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-TP-24-8	Soil	1009-106-08	9/13/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	1	1	
H-TP-25-2	Soil	1009-106-09	9/13/10	1	NWTPH-Gx/BTEX NWTPH-Dx	~	1	√	√	√	~	
H-TP-25-8	Soil	1009-106-10	9/13/10	√	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	\checkmark	1	~	U1 Flag for o-xylene analysis - The PQL is elevated due to interferences present in the sample
H-DUP-091310	Soil	1009-106-11	9/13/10	~	NWTPH-Gx/BTEX NWTPH-Dx	V	V	V	4	1	V	Duplicate of sample H-PEX-9-5 U1 Flag for lube oil analysis - The PQL is elevated due to interferences present in the sample
H-TP-26-4	Soil	1009-119-01	9/14/10	√	NWTPH-Gx/BTEX NWTPH-Dx	1	1	1	1	1	1	
H-TP-26-9	Soil	1009-119-02	9/14/10	1	NWTPH-Gx/BTEX NWTPH-Dx	4	V	V	1	1	1	
H-TP-27-5	Soil	1009-119-03	9/14/10	~	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	1	V	
H-TP-27-9	Soil	1009-119-04	9/14/10	1	NWTPH-Gx/BTEX NWTPH-Dx	4	1	V	1	1	V	
H-PEX-12-12	Soil	1009-140-01	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	4	1	V	1	1	V	
H-PEX-13-14	Soil	1009-140-02	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	4	1	V	1	1	V	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-PEX-14-14	Soil	1009-140-03	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	V	V	
H-PEX-15-10	Soil	1009-140-04	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	\checkmark	1	V	
H-PEX-16-14	Soil	1009-140-05	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	~	\checkmark	\checkmark	√	~	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
H-DUP-091510	Soil	1009-140-06	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	1	1	Duplicate of sample H-PEX-12-12
H-PEX-17-7	Soil	1009-140-07	9/15/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	\checkmark	1	~	
H-PEX-18-11	Soil	1009-154-01	9/16/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	\checkmark	1	V	
H-PEX-19-6	Soil	1009-154-02	9/16/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	√	1	1	
H-PEX-20-6	Soil	1009-154-03	9/16/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	1	1	
H-TP-28-9	Soil	1009-154-04	9/16/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	V	V	1	1	√	
H-TP-29-6	Soil	1009-154-05	9/16/10	1	NWTPH-Gx/BTEX NWTPH-Dx	4	V	V	1	1	V	
H-DUP-091610	Soil	1009-154-06	9/16/10	~	NWTPH-Gx/BTEX NWTPH-Dx	1	1	~	~	1	~	Duplicate of sample H-TP-28-9

Table C-1 Analytical Quality Control Summary

Sample ID	Matrix	OnSite Environmental Lab ID	Sample Date	On COC Form?	Requested Analyses ¹	Lab Prepared Sample Within Holding Time	Surrogate Recovery Within Control Limits	Method Blank Within Control Limits	Lab Duplicate Within Control Limits	Matrix Spike / Matrix Spike Duplicate Within Control Limits	Spiked Blank / Spiked Blank Duplicate Within Control Limits	Notes
H-PEX-21-16	Soil	1009-169-01	9/17/10	V	NWTPH-Gx/BTEX NWTPH-Dx	\checkmark	~	~	\checkmark	~	\checkmark	
H-PEX-22-12	Soil	1009-169-01	9/17/10	1	NWTPH-Gx/BTEX NWTPH-Dx	1	1	1	1	1	1	
H-PEX-23-9	Soil	1009-169-01	9/17/10	V	NWTPH-Gx/BTEX NWTPH-Dx	V	4	1	V	4	V	O Flag for NWTPH-Gx analysis - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
					NWTPH-Gx/BTEX							O Friag for dieser analysis - The PQL is elevated due to interferences present in the sample
H-PEX-24-6	Soil	1009-192-01	9/20/10	1	NWTPH-Dx RCRA 8 Metals	~	~	1	~	~	1	
H-PEX-25-6	Soil	1009-192-02	9/20/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	V	V	V	V	V	
H-DUP-0920	Soil	1009-192-03	9/20/10	1	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals	V	1	1	V	See Notes	V	Duplicate of sample H-PEX-25-6 U1 Flag for diesel (including duplicate QC) analysis - The PQL is elevated due to interferences present in the sample
H-PEX-26-8	Soil	1009-226-01	9/22/10	1	NWTPH-Dx	V	V	1	V	V	1	procent in the cample
H-SP-1	Soil	1010-034-01	10/5/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals PAHs	V	V	\checkmark	V	V	V	
H-SP-2	Soil	1010-034-02	10/5/10	4	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals PAHs	V	V	1	V	V	V	
H-SP-3	Soil	1010-034-03	10/5/10	V	NWTPH-Gx/BTEX NWTPH-Dx RCRA 8 Metals PAHs	V	V	V	V	V	V	
HZ-SP-101110-1	Soil	1010-095-01	10/11/10	√	NWTPH-Dx RCRA 8 Metals	V	~	1	V	~	~	
HZ-SP-101110-2	Soil	1010-095-02	10/11/10	√	NWTPH-Dx RCRA 8 Metals	V	1	1	V	√	1	
HZ-SP-101110-3	Soil	1010-095-03	10/11/10	V	NWTPH-Dx RCRA 8 Metals	V	V	V	V	~	√	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
HZ-SP-101110-4	Soil	1010-095-04	10/11/10	1	NWTPH-Dx RCRA 8 Metals	1	1	1	1	1	1	U1 Flag for diesel analysis - The PQL is elevated due to interferences present in the sample
HZ-SP-101110-5	Soil	1010-095-05	10/11/10	1	NWTPH-Dx RCRA 8 Metals	1	1	1	1	1	1	

Footnotes:

Fortnotes: √- Indicates that QA/QC criteria were met for all analyses performed on sample Blank cell (except for notes) Indicates that the QC check was not applicable for the specified analyses 1 - Analyses Performed: NWTPH-Dx - Disesi and oil range petroleum hydrocarbons using Ecology Method NWTPH-Gx NWTPH-Dx - Disesi and oil range petroleum hydrocarbons using Ecology Method NWTPH-Dx BTEX - Bearzen, toluene, ethylberzene, and xylenes using EPA Method 8021 RCRA 8 Metals - Arsenic, barium, cadmium, chromium, lead, selenium, silver using EPA Method 6010B and 6020; and mercury using EPA Method 7471A PAHs - Polynuclear aromatic hydrocarbons by EPA Method 8270D/SIM NWVPHNWEPH - Ecology methods VPH and EPH for volatile and extractable petroleum hydrocarbon fractions PCBs - Polychorinated biphenyls by EPA Method 8082

Sample Location	Diesel	Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Notes
H-TP-28-9	<29	<59	<5.1	<0.020	<0.051	<0.051	<0.051									
HZ-DUP-091610	<30	<59	<4.9	<0.020	<0.049	<0.049	<0.049									
Ratio of Non-detects ¹	1.0	1.0	1.0	1.0	1.0	1.0	1.0									
RPDs ² for Detects																
													•			
H-PEX-9-5	820	<110	<14	<0.027	<0.14	<0.14	<0.14									
H-DUP-091310	950	<120	<12	<0.025	<0.12	<0.12	<0.12									
Ratio of Non-detects		0.9	1.2	1.1	1.2	1.2	1.2									
RPDs for Detects	-14.7%															
H-PEX-12-12	<31	<61	<5.7	<0.020	<0.057	<0.057	<0.057	[1	1	[1	[
H-DUP-091510	<28	<56	<5.7	<0.020	<0.057	<0.057	<0.057									
Ratio of Non-detects	1.1	1.1	1.0	1.0	1.0	1.0	1.0									
RPDs for Detects	1.1	1.1	1.0	1.0	1.0	1.0	1.0									
H-TP-12-3	<28	<57	<5.9	<0.020	<0.059	< 0.059	< 0.059	<11	70	<0.57	30	<5.7	<0.28	<11	<0.57	
H-DUP-090110	<28	<57	<6.1	<0.020	<0.061	<0.061	<0.061	<11	67	<0.57	26	<5.7	<0.28	<11	<0.57	
Ratio of Non-detects	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		1.0	1.0	1.0	1.0	
RPDs for Detects									4.4%		14.3%					
					-		-		-		P					
H-PEX-25-6	41	220	<6.5	<0.020	<0.065	<0.065	<0.065	<11	49	<0.56	23	22	<0.28	<11	<0.56	
H-DUP-0920	<34	270	<6.6	<0.020	<0.066	<0.066	<0.066	<11	51	<0.57	29	21	<0.28	<11	<0.57	
Ratio of Non-detects	1.2		1.0	1.0	1.0	1.0	1.0	1.0		1.0			1.0	1.0	1.0	
RPDs for Detects		-20.4%							-4.0%		-23.1%	4.7%				

 Table C-2

 Evaluation of Field Duplicate Sample Results

Notes:

1 - Ratio of one PQL to another PQL or the ratio of a PQL to a reported analytical concentration

2 - RPD = Relative Percent Difference = $100^{*}(X_1-X_2) / ((X_1+X_2)/2)$

Where: X_1 is the concentration in the first sample and X_2 is the concentration in the duplicate sample.

Indicates disagreement in analytical results for duplicate samples

Indicates major disagreement in analytical results for duplicate samples

APPENDIX D

PHOTOGRAPHS OF SOIL CLEANUP ACTION

Photo 1 – Removing building foundations on September 2, 2010 (looking to west).

Photo 2 – Peat layer and water table exposed in southern extent of excavation (looking to south) on September 17, 2010.

Photo 3 – Peat layer and water table exposed in northern extent of excavation (looking to north) on September 17, 2010.

Photo 4 – Old hydraulic lift exposed on September 7, 2010.

Photo 5 – Removing the hydraulic lift on September 7, 2010 (looking north).

Photo 6 – Old wooden catch basin exposed on September 13, 2010 (looking west).

Photo 7 – Pumping water and oil out of old wooden catch basin on September 14, 2010.

APPENDIX E

CEMEX USA RELEASE OF LIABILITY/ CERTIFICATE OF DISPOSAL

Release of Liability/Certificate of Disposal

Hos Bros Construction Inc. and their client ; are released from liability for all petroleum contaminated soil originating from:

Bothell Crossroads Phase II Hertz Parcel Bothell WA. 98011

and transported to:

CEMEX Soil Remediation Facility 6300 Glenwood Ave. Everett WA 98203

From 09/092010 through 10/11/2010

A total of 11182.41 tons of petroleum-contaminated soil were transported to the above facility. The material was disposed of in the following manner:

Thermal Desorption/Landfill for Reclamation

Disposal of the contaminated soil was performed in accordance with all applicable federal, state, and local laws and regulations.

Signed:

Date: November 29th, 2010

Farry W. Baker

Larry W. Baker CEMEX USA. Operations Manager Soil Remediation Division