REMEDIAL INVESTIGATION REPORT

FORMER UNDERGROUND FUEL STORAGE TANK AND ABOVE-GROUND ROAD OIL STORAGE TANK AREAS

WEYERHAEUSER SNOQUALMIE MILL

SNOQUALMIE, WASHINGTON

Prepared for
Weyerhaeuser Company
March 24, 1998

Prepared by
EMCON
18912 North Creek Parkway, Suite 200
Bothell, Washington 98011-8016

TEGEMMED
MAR 092005
DEPT OF ECOLOGY

Project 40141-083.002

CONTENTS

LIST OF TABLES AND ILLUSTRATIONS iv
1 INTRODUCTION 1-1
2 BACKGROUND 2-1
2.1 General Site Information 2-1
2.2 Previous Investigation and Remedial Activities - Former UST Area 2-1
2.3 Previous Investigation and Remedial Activities - Former Road Oil Storage Tank Area 2-4
2.41991 through 1993 Groundwater Sampling Results - Former UST Area and Former Road Oil Storage Tank Area 2-5
2.5 1997 Groundwater Sampling Results - Former UST Area and Former Road Oil Storage Tank Area 2-5
3 FIELD INVESTIGATION 3-1
3.1 Soil Borings 3-1
3.2 Soil Sampling 3-1
3.3 Site Geology 3-2
4 NATURE AND EXTENT OF CONTAMINATION 4-1
4.1 Soil Sample Analytical Results - Former UST Area 4-1
4.2 Soil Sample Analytical Results - Former Road Oil Storage
Tank Area 4-1
5 EVALUATION OF TPH RISK - INTERIM POLICY SURROGATE APPROACH 5-1
5.1 General Description 5-1
5.2 Site Application - Direct Contact with Soil 5-1
5.3 Site Application - Protection of Groundwater 5-3
6 CONCLUSIONS 6-1
LIMITATIONS
TABLES

FIGURES

APPENDIX A SUBSURFACE EXPLORATION PROCEDURES
 APPENDIX B LABORATORY REPORTS

TABLES AND FIGURES

Following Text

Tables

1 Groundwater Sample Analytical Results
2 Soil Sample Analytical Results - Former Underground Storage Tank Area
3 Soil Sample Analytical Results - Former Above-Ground Road Oil Storage Tank Area
4 Soil Sample Laboratory Results - VPH and EPH Analyses
$5 \quad$ Protection of Direct Contact for Method B Residential Scenario - Former UST Area
6 Protection of Direct Contact for Method B Residential Scenario - Former Road Oil Storage Tank Area
7 Protection of Groundwater - Former UST Area
8 Protection of Groundwater - Former Road Oil Storage Tank Area

Figures

1 Site Vicinity Map
2 Site Map
3 Former UST Area - 1989 and 1990 Test Pit and Soil Boring Locations
4 Former Road Oil Storage Tank Area - 1989 and 1990 Test Pit and Soil Boring Locations
5 Former UST Area - 1997 Soil Boring Locations
6 Former Road Oil Storage Tank Area - 1997 Soil Boring Locations

1 INTRODUCTION

On September 12, 1997, remedial investigation activities were conducted at the former underground fuel storage tank (UST) area and the former above-ground road oil storage tank area of the Weyerhaeuser Snoqualmie Mill in Snoqualmie, Washington (Figure 1). Previous investigations revealed that petroleum hydrocarbon-impacted soil and groundwater were present beneath both areas. The purposes of the current investigation were to evaluate the lateral and vertical extents of hydrocarbon-impacted soil beneath both areas, characterize the current petroleum hydrocarbon concentrations at both areas consistent with the Washington Department of Ecology (Ecology) MTCA Interim Policy Statement for TPH (Interim Policy), ${ }^{1}$ and to evaluate the risks associated with the remaining TPH in soil. The tasks completed under the scope of work included the following:

- Drilled and sampled six soil borings (GP-1 through GP-6) at the former UST area.
- Drilled and sampled five soil borings (GP-7 through GP-11) at the former road oil storage tank area.
- Submitted selected soil samples from each boring, except GP-1, for quantitative chemical analysis.
- Evaluated the direct contact and protection of groundwater risks associated with the residual soil contamination at both areas.
- Interpreted the compiled data.
- Prepared this report.

[^0]
2 BACKGROUND

2.1 General Site Information

The Weyerhaeuser Snoqualmie Mill occupies approximately 300 acres near the Snoqualmie River in Snoqualmie, Washington (Figure 1). The former UST area and the former above-ground road oil storage tank area are located in the southern part of the site. The former UST area consisted of 10 gasoline, diesel, and lubricating oil tanks and associated fuel dispensing equipment that were installed in approximately 1960. The tanks and dispensing equipment were removed in January 1989. During the tank removal, petroleum hydrocarbon-saturated soils were observed in the excavation. Approximately 300 cubic yards of impacted soil were excavated and treated on site by bioremediation (landfarming) methods. The area near the former tank basin is currently inactive.

The former above-ground road oil storage tank area consisted of an 8,000-gallon tank and a 4,000-gallon tank that were installed in approximately 1960. The tanks were removed in November 1988. A steam cleaning rack and a machine shop were located to the northwest and west, respectively, of the former road oil tank area (Figure 2). The steam cleaning rack and machine shop have been decommissioned and removed. An aboveground lube oil storage facility and a concrete loading dock currently exist to the south and north of the former road oil tank area.

2.2 Previous Investigation and Remedial Activities - Former UST Area

On August 16, 1989, Weyerhaeuser personnel excavated 11 test pits (W1 through W11) in the former UST area to characterize and determine the extent of soil contamination. The test pit locations are shown on Figure 3. A total of 15 soil samples were collected from the test pits at depths ranging from 4 to 8 feet below ground surface (bgs). The samples from test pits W1, W2, W3, W4, W6, W7, W9, and W12 contained total petroleum hydrocarbon (TPH-IR by EPA Method 418.1) concentrations that exceeded 200 milligrams per kilogram (mg/kg). Benzene, toluene, ethylbenzene, and/or total xylenes (BTEX) concentrations exceeded Ecology cleanup levels in samples from test pits (W1, W2, and W7) located in the southern and southwest portions of the former UST area, in the vicinity of the former gasoline tanks and dispensing equipment. Based on the
soil sample analytical results, Weyerhaeuser notified Ecology of the release on September 6, 1989. The August 1989 investigation activities were summarized in the HDR Engineering, Inc. (HDR), report, Technical Memorandum 01, Former UST and Road Oil Storage Tank Facilities, dated February 19, 1990.

To further evaluate the extent of hydrocarbon-impacted soil at the former UST area, HDR and Olympus Environmental, Inc. (Olympus), conducted an investigation in November 1989 that consisted of excavating and sampling 12 test pits (TP-1 through TP-12). The locations of the test pits are shown on Figure 3. Groundwater was encountered in the test pits at a depth of approximately 5 feet bgs. Soil Sample analytical results showed that the samples from TP-2, TP-4, and TP-12 contained total petroleum hydrocarbon (TPH-TLC by thin layer chromatography methods) concentrations greater than $200 \mathrm{mg} / \mathrm{kg}$. Groundwater samples collected from TP-2, TP-3, TP-4, TP-5, TP-7, and TP-12 contained TPH-IR concentrations greater than 1 milligram per liter (mg / L). Groundwater samples were not collected from TP-6, TP-8, and TP-9. It appeared that the silty soils beneath the area limited lateral and vertical contaminant migration. By a depth of approximately 9 feet bgs, TPH-TLC concentrations in soil were below $200 \mathrm{mg} / \mathrm{kg}$. The results of the investigation activities were detailed in HDR's report, Technical Memorandum 01, Former UST and Road Oil Storage Tank Facilities, dated February 19, 1990.

Based on the results of the investigation activities, Olympus excavated approximately 700 cubic yards of impacted soil from areas to the west and south of the former UST basin in November 1989. The location of the excavation is shown on Figure 3. The depth of the excavation extended to approximately 10 feet bgs. Fourteen confirmation soil samples (TA-1 through TA-14) were collected from the sidewalls and floor of the excavation (Figure 3). The soil sample analytical results showed that the excavation effectively removed the impacted soil, except to the southeast of the former tank basin. Confirmation samples TA-11 and TA-13 contained TPH-IR concentrations greater than $200 \mathrm{mg} / \mathrm{kg}$, and sample TA-12 contained a benzene concentration ($4.7 \mathrm{mg} / \mathrm{kg}$) that exceeded the Ecology cleanup level. The excavation was not extended further to the southeast due to a highly traveled road. Additional impacted soil was not excavated from the tank basin because surface water had accumulated in the basin. The excavated soil was treated on site by landfarming methods. The excavation activities were described in HDR's report, Technical Memorandum 01, Former UST and Road Oil Storage Tank Facilities, dated February 19, 1990.

In March 1990, HDR conducted an additional investigation at the former UST area to further determine the lateral extent of soil and groundwater impacts. The investigation consisted of drilling and sampling 13 soil borings ($\mathrm{BH}-001$ through $\mathrm{BH}-010, \mathrm{BH}-019$, $\mathrm{BH}-021$, and BH-022). Four of the borings (BH-002, BH-008, BH-010, and BH-019) were completed as groundwater monitoring wells A1-1, A1-2, A1-3, and A-4, respectively. The locations of the borings and monitoring wells are shown on Figure 3. The investigation activities showed that the shallow silt unit beneath the area is underlain
by a sand unit. The top of the sand unit occurs at a depth of approximately 10 to 12 feet bgs, and the unit extends to a depth of approximately 30 feet bgs. The four monitoring wells were screened within the top 10 feet of the sand unit. Soil sample analytical results showed that samples from borings $\mathrm{BH}-001, \mathrm{BH}-003, \mathrm{BH}-004, \mathrm{BH}-007$, and $\mathrm{BH}-008$ contained total petroleum hydrocarbons (TPH by EPA Method 8015 modified) as gasoline (TPH-G) and as diesel (TPH-D) concentrations greater than $200 \mathrm{mg} / \mathrm{kg}$. Benzene, ethylbenzene, and total xylenes concentrations in the sample from BH-005 exceeded Ecology cleanup levels. Free product was not detected in any of the wells. The groundwater sample collected from well A1-3 (located south of the former tank basin) contained a benzene concentration that exceeded Ecology cleanup level. The groundwater sample analytical results are presented in Table 1. The reported groundwater flow direction beneath the area was to the southeast. The results of the investigation were described in HDR's report, Technical Memorandum 02, Former UST and Road Oil Storage Tank Facilities, dated March 27, 1990.

In September 1990, Shannon \& Wilson, Inc. (Shannon \& Wilson) sampled the groundwater in well A1-3 to confirm the benzene results from the March 1990 sampling event. The benzene and total xylenes concentrations (280 and 130 micrograms per liter $[\mu \mathrm{g} / \mathrm{L}]$; respectively) exceeded the draft Model Toxics Control Act (MTCA) ${ }^{2}$ Method A cleanup levels. The sample results are presented in Table 1.

In November 1990, Shannon \& Wilson and Olympus conducted an additional investigation at the former UST area to determine the extent of groundwater contamination to the south of the former tank basin. The work consisted of drilling and sampling three soil borings (BH-060, BH-061, and BH-062) and completing the borings as monitoring wells (A1-5, A1-6, and A1-7, respectively). The locations of the borings/wells are shown on Figure 3. Soil sample analytical results showed that the shallow sample (5 to 6.5 feet bgs) from BH-061 contained TPH as oil (TPH-O) and TPH-G concentrations that exceeded draft MTCA Method A cleanup levels. The concentrations in the boring decreased with depth and the 7.5 to 9 foot sample contained TPH-O and TPH-G concentrations below draft Method A cleanup levels. In December 1990, groundwater samples were collected from the new wells and all of the other wells at the former UST area. The sample from A1-3 contained benzene, toluene, and total xylenes concentrations that exceeded draft Method A cleanup levels. All of the other samples contained BTEX and TPH concentrations below draft Method A cleanup levels. The groundwater sampling results are presented in Table 1. The results of the investigation activities and the September and December 1990 groundwater sampling events were described in Shannon \& Wilson's report, Technical Memorandum 07, Subsurface Groundwater Conditions at Areas No. 1 and No. 2, dated March 7, 1991.

[^1]
2.3 Previous Investigation and Remedial Activities - Former Road Oil Storage Tank Area

On November 2, 1989, HDR excavated a test pit (TP-13) beneath the former road oil storage tank area to evaluate potential impacts. The location of the test pit is shown on Figure 4. The soil samples collected from the test pit at depths of 2.5, 3.5, and 6.5 feet bgs contained TPH-TLC concentrations greater than $10,000 \mathrm{mg} / \mathrm{kg}$. In November 1989, Olympus excavated approximately 600 cubic yards of hydrocarbon-impacted soil from the former tank area. All of the impacted soil could not be excavated due to physical constraints (e.g., lumber piles, a highly traveled road near the area, and a fire service main beneath the former tank). The depth of the excavation ranged from approximately 3 to 12 feet bgs. Twenty-three confirmation soil samples (OT-1 through OT-23) were collected from the floor and sidewalls of the excavation. Sample analytical results showed that TPH-TLC concentrations exceeded $200 \mathrm{mg} / \mathrm{kg}$ in all of samples except OT-9, OT-10, OT-12, OT-13, OT-14, OT-16, OT-22, and OT-23. The locations of the samples are shown on Figure 4. The excavated soil was treated on site by landfarming methods. The results of the investigation and remediation activities were described in HDR's report, Technical Memorandum 01, Former UST and Road Oil Storage Tank Facilities, dated February 19, 1990.

In March 1990, HDR conducted an additional investigation at the former road oil storage tank area to determine the extent of soil impacts and to characterize groundwater conditions. The investigation consisted of drilling and sámpling 10 soil borings ($\mathrm{BH}-004$, $\mathrm{BH}-012$ through $\mathrm{BH}-018, \mathrm{BH}-020$, and $\mathrm{BH}-023$). Borings $\mathrm{BH}-018, \mathrm{BH}-013, \mathrm{BH}-017$, and B-023 were completed as groundwater monitoring wells A2-1, A2-2, A2-3, and A2-4, respectively. The locations of the soil borings and monitoring wells are shown on Figure 4. Soil conditions were similar to the former UST area. A shallow silt unit extended to approximately 10 to 12 feet bgs, and an underlying sand unit extended to approximately 30 feet bgs. The wells were screened within the top 10 feet of the sand unit. Soil sample analytical results showed that samples from borings BH-014, BH-015, BH-016, and BH-020 contained TPH-O concentrations greater than $200 \mathrm{mg} / \mathrm{kg}$. In March 1990, groundwater samples from each well contained BTEX concentrations below Ecology cleanup levels. The groundwater sample results are presented in Table 1. The results of the investigation were detailed in HDR's report, Technical Memorandum 02, Activities Associated with Former UST and Road Oil Storage Tank Facilities, dated March 27, 1990.

In December 1990, Shannon \& Wilson collected groundwater samples from all of the wells at the former road oil storage tank area. The sample analytical results showed that BTEX and TPH concentrations were below draft Method A cleanup levels. The groundwater sample results are presented in Table 1. The results of the sampling event were detailed in Shannon \& Wilson's report, Technical Memorandum 07, Subsurface Groundwater Conditions at Areas No. I and No. 2, dated March 7, 1991.

2.41991 through 1993 Groundwater Sampling Results Former UST Area and Former Road Oil Storage Tank Area

From July 1991 through April 1993, Shannon \& Wilson conducted groundwater sampling events at the former UST area and the former road oil storage tank area on a semi-annual basis. During each sampling event, BTEX and TPH concentrations in the samples from well A1-3 exceeded MTCA Method A cleanup levels. The July 1991, September 1992, and April 1993 samples from A1-5 contained benzene and/or TPH concentrations greater than Method A cleanup levels. The September 1992 and April 1993 samples from A1-6 contained TPH concentrations greater than Method A cleanup levels. The samples from all of the other wells in the former UST area did not contain BTEX or TPH concentrations above Method A cleanup levels during any of the sampling events. Wells A1-3, A1-5, and A1-6 are located to the south of the former UST basin.

For the wells located in the road oil storage tank area, the samples from all of the wells, except A2-3, did not contain BTEX or TPH concentrations above Method A cleanup levels during any of the sampling events. The April 1993 sample from A2-3 contained a TPH concentration that exceeded the Method A cleanup level. Well A2-3 is located along the eastern edge of the former tank area. For wells in both areas, total lead concentrations in the samples frequently exceeded the Method A cleanup; however, Shannon \& Wilson concluded that the lead concentrations were due to sediment in the samples and did not represent groundwater conditions. The groundwater sampling results for the July 1991 through April 1993 events are shown in Table 1. The results of the July 1991 through April 1993 sampling events were summarized in Shannon \& Wilson's report, Technical Memorandum 14, Groundwater Quality Data - Fourth Biannual Sampling Event, dated June 2, 1993.

2.5 1997 Groundwater Sampling Results - Former UST Area and Former Road Oil Storage Tank Area

In April and July 1997, EMCON conducted groundwater sampling events at both areas. During both events, well A2-3 could not be located. In April and July 1997, the samples from A1-3 contained BTEX and TPH-G concentrations that exceeded MTCA Method A cleanup levels. The samples from the other wells in the UST area and from all of the wells in the road oil storage tank area contained BTEX and TPH concentrations below Method A cleanup levels. The groundwater sampling results for the April and July 1997 events are shown on Table 1. The results of the April and July 1997 sampling events were presented in EMCON's reports, April 1997 Groundwater Sampling Results, Former Underground Fuel Storage Tank and Above-Ground Road Oil Storage Areas, dated August 6, 1997, and July 1997 Groundwater Sampling Results, Former Underground Fuel Storage Tank and Above-Ground Road Oil Storage Areas, dated September 12, 1997.

3 FIELD INVESTIGATION

3.1 Soil Borings

Soil conditions were evaluated by drilling six soil borings (GP-1 through GP-6) at the former UST area and five soil borings (GP-7 through GP-11) at the former road oil storage tank area. The boring locations are shown on Figures 5 (UST area) and 6 (road oil storage tank area). All drilling and sampling activities were conducted on September 12, 1997, under the direction of an EMCON geologist. Cascade Drilling, Inc., of Woodinville, Washington, provided the drilling services.
Each boring was advanced to a maximum depth of approximately 12.5 feet bgs by using Geoprobe ${ }^{\mathrm{TM}}$ drilling equipment. After completing the drilling, the drilling rods were removed and the 1.5 -inch-diameter boreholes collapsed by natural caving of the soil. Hydrated bentonite was used to seal the surface of the borings. Details of the subsurface exploration procedures and the boring logs are presented in Appendix A.

3.2 Soil Sampling

Soil samples were collected during drilling of each boring. The 24 -inch-long samples were collected at approximately 0.5 - to 3 -foot intervals. The samples were collected by using a hydraulically driven, split-spoon sampler. The recovered samples were screened for the potential presence of petroleum hydrocarbons by using physical appearance, odor, and a photoionization detector (PID). Selected samples from the road oil storage tank area were also screened by using a Hanby field test kit. The PID and Hanby kit readings are included on the boring logs at the respective depth intervals. At least one selected soil sample from each boring, except GP-1, were submitted to the certified Weyerhaeuser Analytical and Testing Services Laboratory (Weyerhaeuser Analytical) in Federal Way, Washington, for quantitative chemical analysis. Soil samples from GP-1 were not submitted for analysis because the boring was drilled to determine the western extent of contamination and hydrocarbons were present in the boring. Boring GP-4 was drilled to the west of GP-1 and a sample from GP-4 was submitted for analysis. Soil sampling procedures are described in Appendix A.
All of the submitted samples from the former UST area borings were analyzed for BTEX by EPA Method 8020A, TPH-G by Ecology Method WTPH-G, and TPH-D and TPH-O
by Ecology Method WTPH-D extended. The sample with the highest PID reading from the source area boring (GP-2) was also analyzed for volatile petroleum hydrocarbons (VPH) by Ecology Method WA-VPH, extractable petroleum hydrocarbons (EPH) by Ecology Method EPH, total lead by EPA Method 6010, and polynuclear aromatic hydrocarbons (PAHs) by GC/MS SIM Methods. All of the samples from the former road oil storage tank area borings were analyzed for TPH-D and TPH-O. The sample with the highest PID reading from the source area boring (GP-7) was also analyzed for EPH and PAHs.

3.3 Site Geology

The surficial geology beneath both areas consists of approximately 1 to 9.5 feet of sandy gravel to gravelly sand fill. Where less than 7 feet thick, the fill is underlain by a silt unit that contains trace to abundant organics. A thin peaty zone was present within the silt unit at boring GP-6. Where the silt unit has not been excavated, the unit ranges from approximately 5 to 8 feet in thickness. The silt unit, or the fill unit where the silt has been excavated, is underlain by a silty sand to sandy silt unit. The top of the silty sand to sandy silt unit occurs at depths ranging from approximately 7 to 9.5 feet bgs. Based on previous investigation results, the silty sand to sandy silt unit extends to a depth of at least 30 feet bgs.
Groundwater is present in the fill unit (where it extends below 5 feet bgs), the silt unit, and the silty sand to sandy silt unit. At the time of drilling, groundwater was initially detected in each boring at a depth of approximately 5 to 6 feet bgs.

4 NATURE AND EXTENT OF CONTAMINATION

4.1 Soil Sample Analytical Results - Former UST Area

The soil sample analytical results showed that the BTEX concentrations in all of the samples from the borings in the former UST area were below MTCA Method B cleanup levels. TPH-G and TPH-D concentrations ranged from less than 5.1 to $1,000 \mathrm{mg} / \mathrm{kg}$ and from less than 6.5 to $520 \mathrm{mg} / \mathrm{kg}$, respectively. TPH-O was not detected in any of the samples above the method reporting limits (MRLs). The total lead, total carcinogenic PAH (CPAH), and the non-carcinogenic PAH concentrations in the 5 -foot-deep sample from GP-2 were below the MRL, Method A residential and industrial cleanup levels, and Method B cleanup levels, respectively. The soil sample analytical results for BTEX, TPH-G, TPH-D, TPH-O, and total CPAHs are presented in Table 2. Copies of the laboratory report and the chain-of-custody form are presented in Appendix B.

Based on field screening and sample analytical results, petroleum hydrocarbons, where present, were typically detected at a depth of approximately 4.5 feet bgs (just above the groundwater table) and the concentrations significantly decreased with depth. By 7 feet bgs (below groundwater), TPH-G and TPH-D concentrations were reduced to below $125 \mathrm{mg} / \mathrm{kg}$. At the source area boring (GP-2), hydrocarbons were initially detected at a depth of approximately 3 feet bgs. The field screening and sample analytical results showed that hydrocarbon-impacted soils extend from the south end of the former UST basin and the 1989 soil excavation to the south beyond boring GP-5 (Figure 5). Hydrocarbons were detected in source area boring GP-2, and then to the south of GP-2 in borings GP-1 and GP-5. Petroleum hydrocarbons were not detected to the east, west, or southeast of GP-2 in borings GP-3, GP-4, or GP-6, respectively.

4.2 Soil Sample Analytical Results - Former Road Oil Storage Tank Area

The soil sample analytical results showed that the TPH-D and TPH-O concentrations ranged from less than 7.4 to $6,300 \mathrm{mg} / \mathrm{kg}$ and from less than 19 to $15,000 \mathrm{mg} / \mathrm{kg}$, respectively. The total CPAH concentration $(3.12 \mathrm{mg} / \mathrm{kg})$ in the 6.5 -foot-deep sample from GP-7 exceeded the MTCA Method A residential cleanup level ($1 \mathrm{mg} / \mathrm{kg}$) but was below the Method A industrial cleanup level $(20 \mathrm{mg} / \mathrm{kg})$. Non-carcinogenic PAH
$125 \mathrm{mg} / \mathrm{kg}$ at a depth of 7 feet bgs. Except for boring GP-10, the TPH-D and TPH-O concentrations at the former road oil storage area were below the MRLs at 8.5 feet bgs. At boring GP-10, the deepest soil sample (7 to 8.5 feet bgs) contained TPH-D and TPH-O concentrations of 1,100 and $2,800 \mathrm{mg} / \mathrm{kg}$, respectively. //It appears that the silt unit has effectively limited the vertical migration of petroleum hydrocarbons.

Based on the 1997 groundwater sampling results, the petroleum hydrocarbons in the soil beneath both areas has not impacted the groundwater in the silty sand to sandy silt unit. The only impacted well in 1997 (A1-3) is also the only well that is screened across the groundwater table within the upper silt unit. All of the other monitoring wells at both areas are screened within the silty sand to sandy silt unit and below the top of the water table in the overlying silt unit.

The field screening and soil sample analytical results showed that hydrocarbon-impacted soil extends laterally from the south end of the former UST basin and the 1989 soil excavation to the south beyond GP-5 (more than 60 feet). At the former road oil storage area, the hydrocarbon-impacted soil occurs beneath the former tank area and extends to the west and south of the area (beyond borings GP-9 and GP-10). At both areas, the soil contamination appears to be associated with the top of the groundwater table.

Based on the analyzed hydrocarbon fraction concentrations, the remaining TPH concentrations at both areas were evaluated for direct contact and protection of groundwater risks in accordance with the Interim Policy. / The direct contact was conservatively evaluated using MTCA Method B residential exposure scenarios. The maximum combined TPH concentrations detected during this investigation $(1,000 \mathrm{mg} / \mathrm{kg}$ TPH-G $+300 \mathrm{mg} / \mathrm{kg}$ TPH-D) at the former UST area are protective of human health risk in a direct contact exposure scenario and are protective of groundwater// The combined TPH concentrations detected at borings GP-9 and GP-10 in the former road oil storage tank area exceeded Method B risk levels for the direct contact exposure scenario. The maximum TPH concentrations in the area are protective of groundwater.

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

TABLES

			妥妥妥妥妥号喜	
				孚妥孚
		O－	位	
			我	a
		\cdots		
	\％			
		㐌	$\stackrel{\text { \％}}{4}$	$\frac{3}{4}$

Table 1
Groundwater Sample Analytical Results Former UST and Road Oil Ștorage Tank Areas

Well Number	Date Sampled	Benzene ${ }^{a}$ ($\mu \mathrm{g} / \mathrm{L}$)	Toluene ${ }^{\text {a }}$ ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \text { Ethylbenzene }^{\mathbf{a}} \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	Total Xylenes ${ }^{\text {a }}$ ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \mathrm{TPH}^{\mathrm{b}} \\ (\mu \mathrm{~g} / \mathrm{L}) \\ \hline \end{gathered}$	TPH as Gasoline ${ }^{\mathrm{c}}$ ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{aligned} & \text { TPH as } \\ & D^{\text {Diesel }}{ }^{\text {d }} \\ & (\mu \mathrm{L} / \mathrm{L} \end{aligned}$	$\begin{gathered} \hline \text { TPH as } \\ \mathrm{Oil}^{\circ} \\ (\mu \mathrm{gL} /)^{2} \\ \hline \end{gathered}$	Total Lead ${ }^{\text {f }}$ ($\mu \mathrm{g} / \mathrm{L}$)	Dissolved Lead ${ }^{\text {f }}$ ($\mu \mathrm{g} / \mathrm{L}$)	Total Suspended Solids $(\mu \mathrm{g} / \mathrm{L})$
MTCA Method A Cleanup Levels ${ }^{\text {h }}$			40	30	20	1,000	1,000	1,000	1,000	5	NL	NL
A1-4	3/90	<5.0	<5.0	<5.0	<5.0	NA						
	12/90	<1.0	< 5.0	< 5.0	<5.0	NA						
	7/91	<1.0	<1.0	<1.0	<1.0	590	NA	NA	NA	4\%	NA	NA
	3/92	<1.0	< 1.0	<1.0	<1.0	690	NA	NA	NA	¢s.	NA	NA
	9/92	<1.0	< 1.0	<1.0	<1.0	610	NA	NA	NA	\%\%	NA	NA
	4/93	<1.0	< 1.0	<1.0	<1.0	970	NA	NA	NA.	st	NA	NA
	4/97	<1.0	< 1.0	<1.0	<1.0	NA	<50	510	340	5.0	<3.0	380,000
	$7 / 97$	<1.0	<1.0	<1.0	<1.0	NA	<250	330	<260	NA	NA	NA
Al-5	12/90	< 1.0	<5.0	< 5.0	< 5.0	NA						
	7/91	1	<1.0	<1.0	<1.0	\%10	NA	NA	NA	\%	NA	NA
	3/92	<1.0	< 1.0	<1.0	<1.0	980	NA	NA	NA	\%s	NA	NA
	9/92	\%	21	1.1	9.3	1\#\%	NA	NA	NA	tis	NA	NA
	4/93	<1.0	<1.0	<1.0	<1.0	\%.E\%	NA	NA	NA	\%	NA	NA
	4/97	< 1.0	<1.0	<1.0	<1.0	NA	<50	590	300	<3.0	<3.0	120,000
	7/97	<1.0	<1.0	<1.0	<1.0	NA	<50	870	<260	NA	NA	NA
A1-6	12/90	< 1.0	<5.0	<5.0	< 5.0	NA						
	7/91	<1.0	< 1.0	<1.0	<1.0.	750	NA	NA	NA	<5.0	NA	NA
	3/92	<1.0	<1.0	<1.0	< 1.0	670	NA	NA	NA	¢\%\%	NA	NA
	9/92	2.1	2.5	<1.0	< 1.0	1\%	NA	NA	NA	34	NA	NA
	4/93	< 1.0	<1.0	<1.0	<1.0	¢\%\%	NA	NA	NA	,	NA	NA
	4/97	<1.0	<1.0	<1.0	<1.0	NA	<50	180	<200	<3.0	<3.0	80,000
	7/97	<1.0	<1.0	<1.0	<1.0	NA	< 50	210	<260	NA	NA	NA
A1-7	12/90	<1.0	<5.0	< 5.0	< 5.0	NA						
	7/91	<1.0	<1.0	- <1.0	< 1.0	180	NA	NA	NA	\%	NA	NA
	3/92	<1.0	<1.0	<1.0	< 1.0	<250	NA	NA	NA	<2.0	NA	NA
	9/92	<1.0	<1.0	<1.0	< 1.0	190	NA	NA	NA	\%	NA	NA
	4/93	<1.0	<1.0	<1.0	< 1.0	670	NA	NA	NA	3s	NA	NA
	4/97	<1.0	<1.0	<1.0	< 1.0	NA	<50	180	<210	3.0	<3.0	50,000
	$7 / 97$	<1.0	<1.0	<1.0	<1.0	NA	<50	200	<260	NA	NA	NA

Table 1
Groundwater Sample Analytical Results
Former UST and Road Oil Storage Tank Areas

SN	SN	SN	SN	SN	SN	VN	SN	SN ．	SN	SN	L6／L	
SN	SN	SN	SN	SN	SN	VN	SN	SN	SN	SN	L6／t	
VN	VN	23	VN	VN	VN	0－11	$0^{\circ} \mathrm{L}>$	$0 \cdot \mathrm{~T}$	$0^{\circ} \mathrm{I}>$	O＇I＞	£6／t	
VN	VN	oms	VN	VN	VN	OLS	${ }^{\circ} \mathrm{L}$＞	$0 \cdot 1>$	$0^{\circ} \mathrm{L}>$	${ }^{\circ} \mathrm{I}$＞	26／6	
VN	VN	tos	VN	VN	VN	082	$0: 1>$	$0^{\circ} \mathrm{L}>$	$0 \cdot 1>$	O＇I $>$	26／E	
VN	VN	ss	VN	VN	VN	0で	$0 \cdot 1>$	$0^{\circ} \mathrm{L}>$	$0 \cdot 1>$	$0^{\circ} \mathrm{I}>$	$16 / L$	
VN	$0 \cdot \mathrm{~s}>$	0 O P	$0 \cdot \mathrm{~S}>$	$0 \%>$	06／ZI							
VN	$0{ }^{\circ} \mathrm{s}>$	$0.5>$	$0 \cdot 5>$	$0 \cdot ¢>$	06／E	$\varepsilon-\tau \psi$						
VN	VN	VN	．097＞	$001>$	$0 ¢>$	VN	$0 \cdot 1>$	$0 \cdot 1>$	$0{ }^{\circ} \mathrm{I}$＞	$0 \cdot \mathrm{l}$＞	L6／L	
$000^{\circ} 07$	$0 \cdot \varepsilon>$	$0{ }^{\circ} \varepsilon>$	00 ＞	$08>$	OS＞	VN	$0^{\circ} \mathrm{L}$＞	$0^{\circ} \mathrm{I}>$	$0 \cdot \mathrm{I}>$	$0 \cdot 1>$	L6／t	
VN	VN	＂s	VN	VN	VN	OLS	$0 \cdot 1>$	$0 \cdot 1>$	$0 \cdot \mathrm{I}>$	$0^{\circ} \mathrm{I}>$	ع6／t	
VN	VN	ソ／	VN	VN	VN	0¢I	$0^{\circ} \mathrm{I}>$	$0 \cdot 1>$	$0 \cdot 1>$	$0^{\circ} \mathrm{L}>$	26／6	
VN	VN	0 0 $\%$	VN	VN	VN	osz＞	$0 \cdot 1>$	$0^{\circ} \mathrm{I}>$	$0^{\circ} \mathrm{I}>$	${ }^{\circ} \mathrm{I}$＞	26／E	
VN	VN	$0 \cdot \mathrm{~s}>$	VN	VN	VN	08	$0^{\circ} \mathrm{L}>$	$0^{\circ} \mathrm{I}>$	$0^{\circ} \mathrm{I}>$	$0^{\circ} \mathrm{I}>$	16／L	
VN	$0 \cdot \mathrm{~s}>$	$0{ }^{\circ} \mathrm{s}>$	$0 \cdot \varsigma>$	$0 \cdot \mathrm{~S}>$	06／ZI							
VN	$0.5>$	$0 \cdot \mathrm{~s}$	$0 \cdot \mathrm{~s}>$	$0 \cdot \mathrm{~s}>$	06／E	でで						
VN	VN	VN	0てE	061	OS＞	VN	$0 \cdot \mathrm{I}>$	$0 \cdot \mathrm{~L}>$	$0 \cdot \mathrm{~L}>$	$0 \cdot 1>$	L6／L	
$000^{\circ} 02$	$0^{\circ} \mathrm{E}>$	$0^{\circ} \varepsilon>$	$00 \tau>$	76	OS＞	VN	$0 \cdot \mathrm{I}>$	$0^{\circ} \mathrm{L}>$	${ }^{\circ} \mathrm{L} \times$	${ }^{\circ} \mathrm{I}$＞$>$	L6／t	
VN	VN	\％1	VN	VN	VN	065	$0 \cdot 1>$	$0 \cdot 1>$	$0^{\circ} \mathrm{L}>$	$0 \cdot 1>$	E6／t	
VN	VN	\％\％	VN	VN	VN	097	$0 \cdot 1>$	$0 \cdot 1>$	$0^{\circ} \mathrm{I}>$	$0 \cdot \mathrm{I}>$	26／6	
VN	VN	0\％7＞	VN	VN	VN	0Lt	$0^{\circ} \mathrm{I}>$	$0^{\circ} \mathrm{I}>$	${ }^{\circ} \mathrm{I} \times$	$0{ }^{\circ} \mathrm{I}>$	て6／E	
VN	VN	4	VN	VN	VN	08I	$0 \cdot 1>$	$0^{\circ} \mathrm{L}>$	$0^{\circ} \mathrm{I}>$	$0^{\circ} \mathrm{I}>$	16／L	
VN	$0{ }^{\circ} \mathrm{s}>$	$0 \cdot \mathrm{~s}>$	$0 \cdot \varsigma>$	$0 \cdot \mathrm{~s}>$	06／ZI							
VN	$0 \cdot \mathrm{~s}>$	$0 \cdot \varsigma>$	$0 \cdot 5>$	$0 \cdot \mathrm{~S}>$	06／E	I－で						
TN	TN	\bigcirc	$000^{\circ} \mathrm{I}$	$000^{\circ} \mathrm{I}$	$000^{\circ} \mathrm{L}$	$000{ }^{\text {c }}$	0τ	0ε	$0 \pm$	5		
（ $7 /{ }^{\text {Pr }}$ ）	（ $1 / 3 \mathrm{Fr}$ ）		（ $7 / \overline{\mathrm{F}}$ ）	（ $1 /{ }_{\text {／}}$	（ 7 ／$/ \mathrm{F}$ ）	（1／2T）	（ $7 / \mathrm{\beta}$ N）	（ $\mathrm{T} / \mathrm{\beta} \mathrm{H}$ ）			pardures	İquinn
${ }_{8} \mathrm{SP} \mathrm{I}_{1} \mathrm{~S}$	${ }_{3} \mathrm{per}$ T	${ }_{3} \mathrm{PE} \mathrm{T}^{1}$	ITO	$\mathrm{p}^{\text {psend }}$	－autioseo	${ }_{9} \mathrm{HdL}$		ะวขวzuวqโ	${ }_{\text {a }}{ }^{\text {aunn }}$［0」		210	IITM
pepurdsns［EIOL	ponjossia	［ETOL	Se Hdil	${ }^{58} \mathrm{HdL}$	${ }^{\text {se HdL }}$		［20］					

Table 1

Table 2
1997 Soil Sample Analytical Results
Former UST Area
Weyerhaeuser Snoqualm

Soil Boring	Sample Name	Sample Depth (feet)	Date	$\begin{gathered} B_{B e n z e n e}{ }^{\mathrm{a}} \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	Toluene ${ }^{a}$ $(\mathrm{mg} / \mathrm{kg})$	$\begin{gathered} \text { Ethylbenzene }{ }^{\mathrm{a}}(\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	Total Xylenes ${ }^{2}$ (mg/kg)	TPH as Gasoline ${ }^{\text {b }}$ ($\mathrm{mg} / \mathrm{kg}$)	TPH as Diesel ${ }^{\text {c }}$ (mg/kg)	$\begin{gathered} \hline \text { TPH as } \\ \mathrm{Oil}^{\mathrm{c}} \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { CPAHs }^{\mathrm{d}} \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$
MTCA Method B Cleanup Levels ${ }^{\text {e }}$				34.5	16,000	8,000	160,000	3,635 ${ }^{\text {f }}$			$20^{8} / 1^{\mathrm{h}}$
GP-2	GP-2-5	5-7	9/12/97	<0.007	0.023	0.44	1.25	890	520	< 140	0.005
GP-2	GP-2-7	7-9	9/12/97	<0.003	<0.003	<0.003	<0.006	24	28	<19	NA
GP-3	GP-3-5	5-7	9/12/97	<0.003	<0.003	<0.003	<0.006	<6.9	<8.9	<22	NA
GP-4	GP-4-9	9-10.3	9/12/97	<0.003	<0.003	< 0.003	<0.006	<6.7	< 8.5	<21	NA
GP-5	GP-5-5	5-6.5	9/12/97	1.40	1.70	12.0	63.0	1,000	300	<95	NA
GP-5	GP-5-7	7-8.5	9/12/97	0.019	0.005	0.043	0.081	110	120	< 100	NA
GP-6	GP-6-5	5-7	9/12/97	<0.003	0.002	<0.003	<0.006	<5.1	<6.5	<16	NA
NOTES: $\mathrm{NA}=$ Not analyzed. ${ }^{\text {a }}$ Benzene, toluene, ethylbenzene, and total xylenes by EPA Method 8020A. ${ }^{\text {b }}$ Total petroleum hydrocarbons as gasoline by Ecology Method WTPH-G. ${ }^{\text {c }}$ Total petroleum hydrocarbons as diesel and as oil by Ecology Method WTPH-D extended. ${ }^{d}$ Total carcinogenic polynuclear aromatic hydrocarbons by GC/MS SIM Methods. ${ }^{\text {c }}$ Chapter 173-340 WAC, The Model Toxics Control Act Cleanup Regulation, Method B Cleanup Levels. Amended January 1996. ${ }^{\mathrm{f}}$ Combined TPH-G, TPH-D, and TPH-O cleanup level is based on an evaluation of direct contact and protection of groundwater risk at the site. Risk evaluation was conducted consistent with Ecology's MTCA Interim TPH Policy Statement for TPH, dated January 1997. ${ }^{8}$ Method A industrial cleanup level. ${ }^{h}$ Method A residential cleanup level.											

Table 3
1997 Soil Sample Analytical Results Former Road Oil Storage Tank Area

Weyerhaeuser Snoqualmie Mill

Table 4
 1997 Soil Sample Laboratory Results VPH and EPH Analyses
 Former UST and Road Oil Storage Tank Areas
 Weyerhaeuser Snoqualmie Mill

HC Fraction	Soil Concentration Sample GP-2-5			Soil Concentration Sample GP-7-6.5
	$\begin{gathered} \mathrm{VPH} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{EPH} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{array}{r} \text { E-TPH } \\ (\mathrm{mg} / \mathrm{kg}) \end{array}$	$\begin{gathered} \mathrm{EPH} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$
Aliphatics EC5-EC6	ND	-	ND	-
Aliphatics >EC6-EC8	114	-	114	-
Aliphatics $>\mathrm{EC} 8-\mathrm{ECl} 10$	74	16	74	ND
Aliphatics $>\mathrm{ECl} 10-\mathrm{ECl} 12$	87.9	47.3	87.9	7
Aliphatics >EC12-EC16	-	229	229	38
Aliphatics >EC16	-	219	219	613
Aromatics EC5-EC7	ND ${ }^{\text {a }}$	-	ND	-
Aromatics >EC7-EC8	$0.023^{\text {b }}$	-	0.023	-
Aromatics >EC8-EC10	56	-	56	-
Aromatics >ECl0-ECl2	126	16.9	126	ND
Aromatics >EC12-EC16	79.6	65.4	79.6	28.4
Aromatics $>\mathrm{EC} 16-\mathrm{EC} 21$	-	126	126	161
Aromatics >EC21-EC35	-	13.5	13.5	350
NOTES:				
- = Not analyzed by this method.				
$\mathrm{ND}=$ Not detected above method reporting limit.				
VPH $=$ Volatile Petroleum Hydrocarbons.				
EPH = Extractable (Semi-Volatile) Petroleum Hydrocarbons.				
E-TPH = Equivalent Total Petroleum Hydrocarbons; combines the maximum hydrocarbon fraction concentrations of the VPH and EPH.				
${ }^{\text {a }}$ Included in BTEX results as benzene, see Table 2.				
${ }^{\text {b }}$ Included in BTEX results, as toluene, see Table 2.				

Table 5
Protection of Direct Contact for Method B Residential Scenario
Former UST Area
Weyerhaeuser Snoqualmie Mill

Equations
1: Noncarcinogens: Multiplier $_{n}=$ Factor $_{n} /$ ORfD
2: Carcinogens: Multiplier $=$ Factor $_{c} *$ OCPF
3: Noncarcinogens: $\mathrm{HQ}=\mathrm{SC} *$ Multiplier $_{\mathrm{n}}$
4: Carcinogens: Risk $=\mathrm{SC} *$ Multiplier $_{\mathrm{o}}$

[^2]Table 6
Protection of Direct Contact for Method B Residential Scenario Former Road Oil Storage Tank Area Weyerhaeuser Snoqualmie Mill

Equations
1: Noncarcinogens: Multiplier $_{\mathrm{n}}=$ Factor $_{\mathrm{n}} / \mathrm{ORfD}$
2: Carcinogens: Multiplier ${ }_{\mathrm{c}}=$ Factor $_{\mathrm{c}} * \mathrm{OCPF}$
3: Noncarcinogens: $\mathrm{HQ}=\mathrm{SC}^{*}$ Multiplier $_{\mathrm{n}}$
4: Carcinogens: Risk $=\mathrm{SC}^{*}$ Multiplier $_{\mathrm{c}}$

Abbreviations
$E C=$ Equivalent carbon number
$N A=$ Not applicable
$E P H=$ Extractable petroleum hydrocarbons

Table 7
Protection of Groundwater
Weyerhaeuser Snoqualmie Mill

Compound Group Source	Soil Concentration ${ }^{2}$ SC (mg/kg) Site-specific	Molecular Weight MW (g/mole) Interim Policy	$\begin{aligned} & \text { Moles } \\ & \mathrm{M} \\ & \text { (unitless) } \\ & \text { SC/Mw } \end{aligned}$	Mole Fraction X (percent) $\mathrm{M} / \mathrm{sum}(\mathrm{M})$	Solubility S $(\mathrm{mg} / \mathrm{L})$ Interim Policy	Effective Solubility ES (mg / L) $\mathrm{X} * \mathrm{~S}$	Dilution Factor DF (unitless) Interim Policy	
Aliphatics EC5-EC6	ND	81	0.00	0.00	28	0.0000	20	
Aliphatics > EC6-EC8	114	100	1.14	0.17	4.2	0.6946	20	0at
Aliphatics >EC8-EC10	74	130	0.57	0.08	0.33	0.0271	20	\%et
Aliphatics > ECl0-EC12	88	160	0.55	0.08	0.03	0.0021	20	amp
Aliphatics > ECl2-ECl 6	229	200	1.15	0.17	0.0006	0.0001	20	【" 0 an
Aliphatics >ECl6	219	270	0.81	0.12	$1.00 \mathrm{E}-06$	0.0000	20	0son
Aromatics EC5-EC7	$\mathrm{ND}^{\text {b }}$	78	0.00	0.00	1800	0.0000	20	asm.
Aromatics >EC7-EC8	$0.023^{\text {c }}$	92	0.00	0.00	520	0.0000	20	ama
Aromatics >EC8-ECl0	56	120	0.46	0.07	65	4.3614	20	0:32.
Aromatics >EC10-ECl2	126	130	0.97	0.14	25	3.5153	20	019
Aromatics >EC12-ECl 6	80	150	0.53	0.08	5.80	0.4465	20	002.
Aromatics >EC16-EC21	126	190	0.66	0.10	0.51	0.0491	20	0.07
Aromatics >EC21-EC35	14	240	0.06	0.01	0.01	0.0001	20	ume
E-TPH	1,124		6.89	1.00				945
NOTE:								
ND = Not detected above method reporting limit.								
${ }^{\mathbf{a}}$ Hydrocarbon fractions based on values reported for sample GP-2-5.								
${ }^{\mathrm{b}}$ Included in BTEX results as benzene, see Table 2.								
${ }^{\text {c }}$ Included in BTEX results as toluene, see Table 2.								

[^3] Former UST Area

Table 8

Former Road Oil Storage Tank Area Weyerhaeuser Snoqualmie Mill

FIGURES

SOURCE: USGS 7.5×15 MINUTE SERIES, SNOQUALMIE, WASHINGTON 1973.

In $-2 \rightarrow 3$

SCALE (ft)

(). emcon

Figure 1
FORMER UST AND ROAD OIL TANK AREAS WEYERHAEUSER SNOQUALMIE MILL SNOQUALMIE, WASHINGTON SITE VICINITY MAP

LEGEND:

W2 a August 1989 Test Pit Location
TP-2 Δ November 1989 Test Pit Location
TA-8 $\times 1989$ Soil Excavation Confirmation Sol Sample location
BH-004 - March 1:390 Soil Boring Location Al-1 \Leftarrow Groundivater Monitoring Well Location $\nabla \square$ Area of Soil Excavation

FORMER MACHINE SHOP

DATE-10-97

DWN MPD
APP

PROV
PECT NO.

40141-083.002

OORMER UNDERGROUND STORAGE TANK AREA WEYERHAEUSER SNOQUALMIE MILL SNOQUALMIE, WASHINGTON
1989 AND 1990 TEST PIT AND

(3) Emcon

LE:GEND:

TP-13 Δ November 1989 Test Pit Location OT-2 $\times 1989$ Soil Excavation Confirmation Soil Sarnple Location
BH-016 * March 1990 Soil Boring Location A2-2 Groundwater 'Monitoring Well Location $\square \square \square$ Area of Soil Excavation - - F - - Uncierground Fire Service Main

LEGEND:

GP-1 ø September 1997 Soil Boring Location A-1 $\boldsymbol{\phi}$ Groundwater Monitoring Well Location $\boxed{\square}$ Ared of Soil Excavation

40141-083.002

APPENDIX A SUBSURFACE EXPLORATION PROCEDURES

SUBSURFACE EXPLORATION PROCEDURES

This appendix documents the procedures EMCON used to perform the 1997 field investigation activities described in this report. The discussion includes information on the following subjects:

- Drilling and sampling
- Soil sampling
- Soil screening

Soil Borings

The subsurface exploration program conducted for this investigation consisted of advancing and sampling 11 soil borings by using a Geoprobe ${ }^{\mathrm{TM}}$ rig. The borings penetrated to a maximum depth of 12.5 feet below ground surface (bgs). Boring logs, which include soil descriptions, are contained in this appendix. The soil boring locations are shown on Figures 5 and 6 of this report. The boring locations were horizontally surveyed by EMCON personnel.

The soil borings were drilled on September 12, 1997, by Cascade Drilling, Inc., of Woodinville, Washington. The borings were completed by using a Geoprobe drill rig which advanced a 1.5 -inch outside-diameter split-spoon samplers.

The 24 -inch-long soil samples were collected at approximately 0.5 - to 3 -foot intervals. Each soil sample was described generally consistent with the Unified Soil Classification System (Figure A-1). The drilling and sampling tools were steam cleaned or washed in distilled water before each use. The drilling activities were directed and logged by an EMCON geologist.

Once completed, all borings collapsed following final extraction of the sampler and drill rods. Hydrated bentonite was used to seal the surface of the borings.

Soil Sampling

Soil samples recovered from the soil borings were split into at least two approximately equal portions. Using stainless steel spoons, the first portion was transferred to
laboratory-prepared glass jars with Teflon ${ }^{\mathrm{TM}}$-lined lids and placed in a chilled cooler for transport to the testing laboratory. Chain-of-custody procedures were used to document the sample handling. The second portion was placed in a clean sealable plastic bag for field screening. Field screening methods are discussed below.

Soil Screening

Soil samples were screened for volatile organic compounds by using a photoionization detector (PID) at the time of the collection. Selected samples were also screened by using a Hanby field test kit. The PID is a subjective analysis affected by, among other influences', climate (e.g., temperature and humidity), soil type and conditions, instrument calibration, and operation. A Thermo Environmental Instruments OVM/Datalogger Model 580B PID, was calibrated to 100 parts per million isobutylene. The Hanby kit is a liquid extraction and a colorometric analysis that is compared to standard colors of extractions from known petroleum hydrocarbon concentrations. The intent of these analyses were to qualitatively compare samples and to assist in sample selection for chemical analysis.

The samples were placed in clean, sealable plastic bags. Each sealed plastic bag was then allowed to stand in the back of a field vehicle for approximately 15 minutes. The plastic bag was then punctured with the PID probe, and the maximum reading in the headspace above the soil was recorded. For the Hanby kit analysis, a known volume of soil was placed in a vial and a liquid reagent was added to the sample. The sample was vigorously shaken and allowed to sit for at least 20 minutes. The color of the liquid was compared to standard color charts to determine the TPH concentration. The PID and Hanby measurements are listed on the boring logs presented within this appendix. They are recorded at their respective depth intervals.

Sample Descriptions

Classification of aolls in this report is based on visual fiold observations which include density/consistency, molsture condition, grain size, and plasticity estimatos and should not bo construed to Imoly field or laboratory testing unless stated. Visual-manual classification methods of ASTM 02488 were used as in Identification guide. Soil density/conslstency in borings is related primarly to the Standand Penetration Resistanco. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

DENSITY/CONSISTENCY			
SAND or GRAVEL		SILT Or CLAY	
Density	Standard Penetration Pesistance in Blows/Foot	Consistency	Standard Penetration Resistance \qquad in Blows/Foot
Very toose	0-4	Very soft	0-2
Loose	4-10	Soft	2-4
Medium dense	10-30	Medium stifl	4-8
Dense	30-50	Stiff	8-15
Very dense	>50	Very stiff	$15 \cdot 30$
		Hard	>30

MOSSTURE	
Modifier	Description
Dry	Little perceptible molsture
Damp	Some perceptible moisture, probably below optimum
Moist	Probably near optimum moisture content
Wot	Muct perceptible molsture, probably above optimum

MINOR CONSTITUENTS	
Modifier	Estimated Percentage
Trace	<5
Few	$5-10$
Little	$10-25$
Some	$25-45$

DATE 3-91
DWN.TB
APPR.
REVIS. \qquad

LOG OF EXPLORATORY BORING

REMARKS

(1) $S S=1.5$-inch-O.D. split-spoon sampler, (2) PID $=$ Photoionization detector readings in parts per million (ppm).
(3) ${ }^{*}=$ Sample submitted for laboratory analysis. (4) ATD $=$ Approximate depth to groundwater at time of drilling.

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NAME	Weyerhaeuser Snoqualmie Mill
LOCATION	Snoqualmie, Washington
DRILLED BY	Cascade Drilling, Inc.
DRILL METHOD	Geoprobe
LOGGED BY	Russell Thompson

BORING NO.
PAGE GROUND ELEV. TOTAL DEPTH 11.50' DATE COMPLETED 09/12/97

REMARKS
(1) $\mathrm{SS}=1.5$-inch-O.D. split-spoon sampler. (2) PID $=$ Photoionization detector readings in parts per million (ppm),
(3) ${ }^{n}=$ Sample submitted for laboratory analysis. (4) ATD $=$ Approximate depth to groundwater at time of drilling.

LOG OF EXPLORATORY BORING

PROJECT NAME	Weyerhaeuser Snoqualmie Mill
LOCATION	Snoqualmie, Washington
DRILLED BY	Cascade Drilling, Inc.
DRILL METHOD	Geoprobe
LOGGED BY	Russell Thompson

BORING NO. PAGE GROUND ELEV. TOTAL DEPTH DATE COMPLETED 09/12/97

REMARKS

(1) $S S=1.5$-inch-O.D, split-spoon sampler. (2) PID $=$ Photolonization detector readings in parts per million (ppm).
(3) * = Sample submitted for laboratory analysis. (4) ATD = Approximate depth to groundwater at time of drilling.

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NAME Weyerhaeuser Snoqualmie Mill
LOCATION Snoqualmie, Washington
DRILLED BY Cascade Drilling, Inc.
DRILL METHOD
LOGGED BY
Geoprobe
Russell Thompson

BORING NO.
PAGE GROUND ELEV.
TOTAL DEPTH $9.0 \mathbf{0}^{\circ}$
DATE COMPLETED 09/12/97

REMARKS
(1) $S S=1.5$-inch-O.D. split-spoon sampler. (2) $P I D=$ Photoionization detector readings in parts per million (ppm).
(3) ${ }^{*}=$ Sample submitted for laboratory analysis. (4) ATD = Approximate depth to groundwater at time of drilling.

EMCON

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NAME Weyerhaeuser Snoqualmie Mill
LOCATION Snoqualmie, Washington
DRILLED BY Cascade Drilling, Inc.
DRILL METHOD
LOGGED BY

Geoprobe
Russell Thompson

BORING NO.
GP- 8
PAGE 1 OF 1 GROUND ELEV.
TOTAL DEPTH 9.00'

DATE COMPLETED 09/12/97

REMARKS
(1) $\mathrm{SS}=1.6$-inch-O.D. split-spoon sampler. (2) PID $=$ Photoionization detector readings in parts per million (ppm).
(3) ${ }^{\text {* }}=$ Sample submitted for laboratory analysis. (4) ATD $=$ Approximate depth to groundwater at time of drilling.
(5) Hanby $=$ Hanby field test readings in ppm.

LOG OF EXPLORATORY BORING

PROJECT NAME	Weyerhaeuser Snoqualmie Mill	BORING NO.	GP- $\mathbf{9}$
LOCATION	Snoqualmie, Washington	PAGE	$\mathbf{1 0 F} \mathbf{1}$
DRILLED BY	Cascade Drilling, Inc.	GROUND ELEV.	$\mathbf{9 . 0 0}$
DRILL METHOD	Geoprobe	TOTAL DEPTH	$\mathbf{9 . 0}$
LOGGED BY	Russell Thompson		DATE COMPLETED

REMARKS

(1) $S S=1.5$-inch-O.D. split-spoon sampler. (2) PID $=$ Photoionization detector readings in parts per million (ppm).
(3) $n=$ Sample submitted for laboratory analysis. (4) ATD = Approximate depth to groundwater at time of drilling.
(5) Hanby $=$ Hanby field test readings in ppm

LOG OF EXPLORATORY BORING

$\begin{array}{ll}\text { PROJECT NAME } & \text { Weyerhaeuser Snoqualmie Mill } \\ \text { LOCATION } & \text { Snoqualmie, Washington } \\ \text { DRILLED BY } & \text { Cascade Drilling, Inc. } \\ \text { DRILL METHOD } & \text { Geoprobe } \\ \text { LOGGED BY } & \text { Russell Thompson }\end{array}$
BORING NO.
GP-10
PAGE 1 OF 1
GROUND ELEV.
TOTAL DEPTH 9.00'
DATE COMPLETED 09/12/97

REMARKS

(1) $S S=1.5$-inch-O.D. split-spoon sampler. (2) PID $=$ Photolonization detactor readings in parts per million (ppm).
(3) * = Sample submitted for laboratory analysis, (4) ATD = Approximate depth to groundwater at time of drilling.
(5) Hanby $=$ Hanby field test readings in ppm.

LOG OF EXPLORATORY BORING

REMARKS
(1) $\mathrm{SS}=1.5$-inch-O.D. split-spoon sampler. (2) PID $=$ Photoionization detector readings in parts per million (ppm).
(3) ${ }^{n}=$ Sample submitted for laboratory analysis. (4) ATD $=$ Approximate depth to groundwater at time of drilling.
(5) Hanby $=$ Hanby field test readings in ppm.

APPENDIX B LABORATORY REPORTS

October 2, 1997

Mr. Mike Stanton
EMCON NW
18912 North Creek Parkway, Suite 100
Bothell, WA 98011

RE: Service Request 04844 - Snoqualmie/EMCON Soil Samples

Dear Mike:
Attached is a copy of our final report for the samples you requested we analyze.
The results from North Creek Analytical for VPH and EPH should be sent to us on Monday. I will fax them to you when I get them.

Invoicing for this work will be directly to Weyerhaeuser. If you have any questions concerning this report, please feel free to contact me at (253) 924-6521.

Thank you for the opportunity to be of service. I look forward to working with you on future projects.

Sincerely,

Richard Boar, Chromatography Team Leader
Weyerhaeuser Analytical and Testing Services

SDG NARRATIVE

Organic Analysis

WEYERHAEUSER (WEYER) ANALYTICAL AND TESTING SERVICES

$$
\begin{array}{cl}
\text { Case Number } & 4844 \\
\text { SDG Number } & 87428
\end{array}
$$

PROJECT: SNOQUALMIE/EMCON SOIL SAMPLES EMCON PROJ\# 40141-083.001
The samples from this SDG were received on $9 / 16 / 97$. The SDG was composed of soil samples for the analysis of WTPH-G, WTPH-D, PAH by 8270 Mod ., Pb , and BTEX by EPA 8240 . The requested analyses were as follows:

SAMPLEID	LAB ID	MATRIX	ANALYSIS
GP-2-5	87428	SOIL	WTPH-D;WTPH-G;Pb;BTEX;PAH
GP-2-5DUP	87428DUP	SOIL	WTPH-G
GP-2-7	87429	SOIL	WTPH-D;WTPH-G; BTEX
GP-2-7DUP	87429DUP	SOIL	WTPH-D
GP-3-5	87430	SOIL	WTPH-D; WTPH-G; BTEX
GP-3-5DUP	87430DUP	SOIL	WTPH-D
GP-3-5MS	87430MS	SOIL	BTEX
GP-3-5MSD	87430MSD	SOIL	BTEX
GP-4-9	87431	SOIL	WTPH-D;WTPH-G; BTEX
GP-5-5	87432	SOIL	WTPH-D; WTPH-G; BTEX
GP-5-5DL	87432DL	SOIL	BTEX
GP-5-5DLDUP	87432DLDUP	SOIL	BTEX
GP-5-7	87433	SOIL	WTPH-D;WTPH-G; BTEX
GP-6-5	87434	SOIL	WTPH-D;WTPH-G; BTEX
GP-7-6.5	87435	SOIL	WTPH-D;PAH

SAMPLE ID	LAB ID		MATRIX	
GP-7-6.5MS	$87435 M S$	SOIL	PALYSIS	
GP-7-8.5	87436	SOIL	WTPH-D	
GP-8-5	87437	SOIL	WTPH-D	
GP-9-5	87438	SOIL	WTPH-D	
GP-10-5	87439	SOIL	WTPH-D	
GP-10-7	87440	SOIL	WTPH-D	
GP-11-7	87441	SOIL	WTPH-D	
LCS 09/26/97	LCS 09/26/97	Fortified Blank	WTPH-G	
SLC4T1_091997	SLC4T1_091997	Fortified Blank	PAH	

Laboratory comments for this sample delivery group are listed below. The comments are broken up into categories for ease of explanation.

1. BTEX (EPA 8240)
a) All samples and blanks contain a response near scan \#100 due to carbon dioxide which is not reported as a TIC.
b) Sample GP-5-5 required a medium level extraction due to the concentrations found in the 1 gram analysis. The diluted values qualified with a " D " are the best concentrations for this sample. A duplicate was also prepared and there is good agreement between them.

2. WTPH-G

a) The duplicate for sample GP-2-5 contained a lower concentration of gasoline range organics and did not agree well with original analysis. The difference appears to be related to sample non-homogeneity.
b) The surrogate could not be reported for sample GP-2-5 due to matrix interference. The surrogate was reported for the duplicate of the sample due to the lower levels of gasoline range organics as noted in a).

3. WTPH-D

a) Surrogates could not be reported for samples GP-8-5 and GP-10-5 due to large sample dilution and interference from the sample matrix.

4. PAH

a) Sample extract dilution and re-analysis was required for both samples because compound concentrations exceeded the calibration range. Rather than report the results for each dilution, a summary report has been prepared for each sample with results that fall with the calibration range reported.
b) All surrogates except pyrene-d10 were diluted out and could not be reported for sample GP-2-5.
c) The matrix spike recoveries were not meaningful for many of the target compounds because the concentration of compounds native in the sample was much higher than the concentration spiked.
5. METALS (LEAD)
WeyerfiacutSel

Weyerhaeuser Company
Analytical Laboratories
Tacoma, Washington

Report

Snoqualmie/EMCON Soil Samples

I b Name: WEYERHAEUSER
Lab Code: WEYER
Case No.: 04844
N trix: (soil/water) SOIL
Sample wt/vol:
$1.0(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$
I vel: (low/med) LOW
\% Moisture: not dec. 28
C. Column: CAP ID: 0.530° (mm)
sil Extract Volume:

CAS NO.

$$
71-43-2----- \text { - - Benzene }
$$

108-88-3----Toluene
100-41-4------Ethylbenzene

$$
106-42-3----- \text { - mp-Xylene }
$$

$$
95-47-6----0-\text { Xylene_ }^{2}
$$

Contract: 046-5601
SAS No.:
GP-2-5

SDG No.: GP-2-5

Lab Sample ID: 87428
Lab File ID: A6443
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG • Q

1A
EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA .SHEET

Lé 位 Name: WEYERHAEUSER
Lab Code: WEYER
Case No.: 04844
Me rix: (soil/water) SOIL
Sample wt/vol: $2.5(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$
Lefel: (low/med) LOW
\% Moisture: not dec. 23
GC Column : CAP
Sc il Extract Volume:
ID: . $0.530 \cdot(\mathrm{~mm})$
(uL)

$$
G P-2-7
$$

Contract: 046-5601
SAS NO.:

SDG NO.: GP-2-5

Lab Sample ID: 87429
Lab File ID: A6439
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)
CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG : Q

71-43-2--------Benzene		3	U
108-88-3------Toluene		3	U
100-41-4-------Ethylbenzene		3	U
106-42-3-------mp-Xylene		3	U
95-47-6-------- Xylene.		3	U

VOLATILE ORGANICS ANALYSIS DATA SHEET
L. Name: WEYERHAEUSER

Lab Code: WEYER Case No.: 04844
M trix: (soil/water) soIL
Sample wt/vol:
$2.5(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$

L Hel: (low/med) LOW
\% Moisture: not dec. 28
G Column: CAP ID: 0.530 (mm)
S il Extract Volume:
(uL)
Contract: 046-5601
SAS No.:
SDG No.: GP-2-5
Lab Sample ID: 87430
Lab File ID: A6437
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)
CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG . Q

71-43-2---------Benzene	3	U
108-88-3------Toluene	3	U
100-41-4-------Ethylbenzene.	3	U
106-42-3-------mp-Xylene	3	U
95-47-6---------Xylene	3	U

I b Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 04844
N trix: (soil/water) SOIL
Sample wt/vol: $2.5(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$

Ifvel: (low/med) LOW
\% Moisture: not dec. 28
c. Column: CAP ID: 0.530 (mm)
$\xi_{\text {il Extract Volume: } \cdots(u L) ~}^{\text {il }}$
Contract: 046-5601 SAS No.:

Lab Sample ID: 87431

Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)
CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
71-43-2-	-Benzene			U
108-88-3	-Toluene		3	U
100-41-4	Ethylbenz		3	U
106-42-3	-mp-Xylene		3	U
95-47-6-	-o-xylene		3	U

I b Name: WEYERHAEUSER
Lab Code: WEYER
N trix: (soil/water) sOIL
Sample wt/vol: I.O (g / mL) G

I vel: (low/med) LOW
\% Moisture: not dec. 29
G Column: CAP ID: 0.530 (mm)
s il Extract Volume:
(uL)
Contract: 046-5601

- SAS No.:

Lab Sample ID:. 87432
Lab File ID: A6441 (aws
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: I. 0
Soil Aliquot Volume:
(uL)
CONCENTRATION UNITS:

I b Name: WEYERHAEUSER
Lab Code: WEYER
, trix: (soil/water) SOIL
Sample wt/vol:
$4.0(\mathrm{~g} / \mathrm{mL}) \quad \mathrm{G}$
I vel: (low/med) MED

- Moisture: not dec. 29

G Column: CAP ID: 0.530 (mm)
§ il Extract Volume: 10000 (uL)
Contract: 046-5601
SAS No.:
Lab Sample ID: 87432DL
Lab File ID: B3560:
Date Received: 09/16/97
Date Analyzed: 09/24/97
Dilution Factor: 1.0
Soil Aliquot Volume: $100 \cdots$ (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG . Q

71-43-2---------Benzene	1400	D
108-88-3--------Toluene	1700	D
100-41-4-------Ethylbenzene	12000	D
106-42-3-------mp-Xylene	52000	D
95-47-6--------XYlene	11000	D

L ’ Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 04844
Lab Code: WEYER Case N
M frix: (soil/water) SOIL
Sample wt/vol:
L vel: (low/med) MED
\% Moisture: not dec. 29
G Column: CAP ID: 0.530.(mm)
S^il Extract Volume: 10000 (uL)
Contract: 046-5601
SAS No.:
GP-5-5DLDUP

Sample wt/vol. $\because 4.0(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$
Ifvel: (low/med)

Leं, Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 04844
M frix: (soil/water) sorl
Sample wt/vol:
1.0. $(\mathrm{g} / \mathrm{mL}) \mathrm{G}$

Lfel: (low/med) LOW
\% Moisture: not dec. 21
G Column: CAP ID: 0.530 (mm)
Sril Extract Volume:
(uL)
Contract: 046-5601
SAS No.:
Lab Sample ID: 87433
Lab File ID: A6442 …:
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)
CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG : Q
CAS NO. COMPOUND
71-43-2--------Benzene_____
108-88-3--------Toluene
100-41-4--------Ethylbenzene
106-42-3--------mp-Xylene \qquad

Li p Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 04844
M Erix: (soil/water) soIL

Li rel: (low/med) LOW
\% Moisture: not dec. 25
G Column: CAP ID: 0.530 (mm)

S il Extract Volume:

Contract: 046-5601
SAS No.:
Lab Sample ID: 87434
Lab File ID: A6440 …
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG . . Q

Lab Name: WEYERHAEUSER
I b Code: WEYER Case No.: 04844

Contract: 046-5601
SAS No.: \quad SDG No.: GP-2-5 I•evel: (low/med) LOW

	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL) \#	(BFB) \#	(DCE) \#		OUT
01	GP-2-5	124	108	91	0	0
02	GP-2-7	100	104	96	0	0
03	GP-3-5	101	102	95	0	0
04	GP-4-9	102	100	96	0	0
05	GP-5-5	114	110	99	0	0
06	GP-5-7	99	105	93	0	0
07	GP-6-5	96	10.2	95	0	0
08.	GP-3-5MS	102	99	87	0	0
09	GP-3-5MSD	103	100	89	0	0
10	VBLKS1	99	102	96	0	0

QC LIMITS

\# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

Lっb Name: WEYERHAEUSER
Luo Code: WEYER Case No.: 04844 SAS No.: SDG NO.: GP-2-5

L vel: (low/med) MED

	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL) \#	(BFB) \#	(DCE) \#		OUT
01	GP-5-5DL	125	98	88	0	0
02	GP-5-5DLDUP	123	94	83	0	0
03	VBLKMI	118	103	90	0	0

```
                    QC LIMITS
SMC1 (TOL) = Toluene-d8 ( 84-138)
SMC2 (BFB) = Bromofluorobenzene (59-113)
SMC3 (DCE) = 1,2-Dichloroethane-d4( 70-121) *
```

\# Column to be used to flag recovery values

* Values outside of contract required QC limits

D System Monitoring Compound diluted out

SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: WEYERHAEUSER
L b Code: WEYER Case No.: 04844
Matrix Spike - EPA Sample No.: GP-3-5

Contract: 046-5601
SAS No.:
SDG No.: GP-2-5
Level:(low/med) LOW

COMPOUND	$\begin{aligned} & \hline \text { SPIKE } \\ & \text { ADDED } \\ & (\mathrm{ug} / \mathrm{Kg}) \end{aligned}$	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	$\begin{gathered} \text { MS } \\ \vdots \\ \text { REC } \\ \text { RE } \\ ====== \end{gathered}$	
$===============$	139.0	0	130.6	94	59-172
Trichloroethene	139.0	0	123.9	89	62-137
Benzene	139.0	0	131.1	94	66-142
Toluene	139.0	0	135.6	98	59-139
'Chlorobenzene	139.0	0	129.4	93	60-133

	SPIKE ADDED	MSD CONCENTRATION	MSD	\%	QC LI	IMITS
COMPOUND	(ug/Kg)	($\mathrm{ug} / \mathrm{Kg}$)	REC \#	RPD \#	RPD	REC.
======================	= = = = = = $=$	124.2	89	5	22	59-172
1,1-Dichloroethene	139.0 139.0	124.2	87	2	24	62-137
Trichloroethene	139.0 139.0	126.4	91	3	21	66-142
Benzene	139.0 139.0	126.7	98		21	59-139
Toluene	139.0 139.0	130.8	94	1	21	60-133
Chlorobenzene	139.0					

f' Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

1 D: 0 out of 5 outside limits Sike Recovery: 0 out of 10 outside limits SMMENTS :

EPA SAMPLE NO.
GP-3-5MS

Contract: 046-5601

Lab Sample ID: 87430MS
Lab File ID: A6445
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: $\quad 1.0$
Soil Aliquot Volume:
(uL)
CONCENTRATION UNITS:
(ug/L or ug/Kg.) UG/KG•• Q

130 140 108-88-3-..----Tóluene 100-41-4--------Ethylbenzene 106-42-3--------mp-xylene 95-47-6--------0-xylene \qquad

L i Name: WEYERHAEUSER
Lab Code: WEYER
M frix: (soil/water) SOIL
Sample wt/vol: $2.5(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$
L gel: (low/med) LOW
\% Moisture: not dec. 28
GU Column: CAP
S il Extract Volume:
ID:
$0.530^{\text {(}}$ (mm)

Contract: 046-5601
SAS NO.:
Lab Sample ID: 87430 MSD
Lab File ID: A6446 An
Date Received: 09/16/97
Date Analyzed: 09/23/97
Dilution Factor: 1.0
Soil Aliquot Volume:
(uL) CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG : Q

CAS NO: COMPOUND

71-43-2---------Benzene	130	
108-88-3------ Toluene	140	
100-41-4-------Ethylbenzene	3	U
106-42-3------mp-xylene	3	U
95-47-6-------0-Xylene	3	U

VOLATILE METHOD BLANK SUMMARY

Li) Name: WEYERHAEUSER
Lab Code: WEYER
L b File ID: Date Analyzed:

G Column: CAP Instrument ID:

Case No.: 04844
A6436
09/23/97
ID: $0.530(\mathrm{~mm})$

Contract: 046-5601 SAS No.:

Lab Sample ID: VBLKS1
Time Analyzed: 1144
Heated Purge: (Y / N) N

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

C MMMENTS:

Li Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 04844
M Erix: (soil/water) sOIL
Sample wt/vol: $\quad 5.0(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$

L rel: (low/med) LOW
\% Moisture: not dec.
G Column: CAP ID: 0.530 (mm)
S il Extract Volume:

Contract: 046-5601 SAS NO.:

Lab Sample ID: VBLKSI
Lab File ID: A6436
Date Received:
Date Analyzed: 09/23/97
Dilution Factor: $\quad 1.0$
Soil Aliquot Volume:
(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG . Q
CAS NO. COMPOUND

L b Name: WEYERHAEUSER
Lab Code: WEYER
L〕 File ID:
Date Analyzed:
G Column: CAP
Instrument ID:

Case No.: 04844
B3559
09/24/97
ID: $0.530(\mathrm{~mm})$
VOA2

EPA SAMPLE NO.

VBLKM1
Contract: 046-5601
SAS No.:
SDG No: : GP-2-5
Lab Sample ID: VBLKM1
Time Analyzed: $1631 \cdots$
Heated Purge: (Y / N) N

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	$\begin{aligned} & \text { LAB } \\ & \text { SAMPLE ID } \end{aligned}$	$\begin{aligned} & \text { LAB } \\ & \text { FILE ID } \end{aligned}$	$\begin{gathered} \text { TIME } \\ \text { ANALYZED } \end{gathered}$
01	GP-5-5DL	87432DL	B3560	1720
02	GP-5-5DLDUP	87432DLDUP	B3561	1810

CUMMENTS:

T.ab Name: WEYERHAEUSER

Lab Code: WEYER
Case No.: 04844
fatrix: (soil/water) SOIL
Sample wt/vol: $\quad 4.0(\mathrm{~g} / \mathrm{mL}) \mathrm{G}$
evel: (low/med) MED
\% Moisture: not dec.
C Column: CAP ID: 0.530 (mm)
Soil Extract Volume: 10000 (uL)

Contract: 046-5601

SAS No.:

VBLKM1

SDG No.: GP-2-5
Lab Sample ID: VBLKM1
Lab File ID: B3559
Date Received:
Date Analyzed: 09/24/97
Dilution Factor: 1.0
Soil Aliquot Volume: 100 (uL) CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG . Q

CAS NO. COMPOUND

	71-43-2--------Benzene
	108-88-3--------Toluene
	100-41-4--------Ethylbenzene
	106-42-3--------mp-Xylene
	95-47-6---------0-Xylene

120
120 120
120
120

U Indicates that the compound was analyzed for but not detected above the reporting limit. The sample w reporting limit corrected for dilution and percent moisture is reported.
J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds or when the data indicates the presence of a compound but the result is less than the sample quantitation limit but greater than zero.

N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for the detected concentrations between the two GC columns. The lower of the two results is reported.

C This flag is used for pesticide results that have been confirmed by GC/MS

B This flag is used when the analyte is detected in the associated blank as well as the sample.

E This flag is used for compounds whose concentrations exceed the calibration range of the instrument.

D This flag identifies all compounds identified in an analysis at a secondary dilution. This flag alerts the data user that any discrepancies between the concentrations reported in the two runs may be due to dilution errors.

A This flag is used for tentatively identified compounds that suspected to be aldol-condensation products.
X This flag is assigned by the computer when the program has been manually adjusted by the operator. It has no significance to the number itself.

WTPH-G

Service Request:
04844
Analyst:
C. Thomson

Sample ID					
Client ID	Blank	LES	87428	87429	87430
	$09 / 26 / 97$	$09 / 26 / 97$	GP-2-5	GP-2-7	GP-3-5
Analyse	mg/ Kg	\%Rec.	$\underline{\mathrm{mg} / \mathrm{Kg}}$	$\mathrm{mg} / \mathrm{Kg}$	$\underline{\mathrm{mg} / \mathrm{Kg}}$
Gasoline Range Organics	U	122%	890	24	U
Surrogate \% Recovery					
Bromofluorobenzene (BFB)	102%	88%	0 D	92%	72%

0 D - Indicates surrogate recovery is not available due to matrix interference.

Date Sampled			$09 / 12 / 97$	$09 / 12 / 97$	$09 / 12 / 97$
Date Extracted	$09 / 26 / 97$	$09 / 26 / 97$	$09 / 26 / 97$	$09 / 26 / 97$	$09 / 26 / 97$
Date Analyzed	$09 / 30 / 97$	$09 / 30 / 97$	$09 / 30 / 97$	$09 / 30 / 97$	$09 / 30 / 97$
Holding Time Days		14	14	14	
Reporting Limit					
Gasoline Range Organics	5.0		35	6.2	6.9

Date $10 / 1 / 97$

WTPH-G

Service Request:
Analyst:

04844
C. Thomson

Sample ID					
Client D	GP-4-9	GP-5-5	GP-5-7	GP-6-5	GP-2-5DUP
Analyte	$\mathrm{mg} / \mathrm{Kg}$.	$\mathrm{mg} / \mathrm{Kg}$	$\mathrm{mg} / \mathrm{Kg}$	$\mathrm{mg} / \mathrm{Kg}$	$\mathrm{mg} / \mathrm{Kg}$
Gasoline Range Organics	U	1000	110	U	310
Surrogate \% Recovery				\ddots	
Bromofluorobenzene (BFB)	78%	0 D	118%	71%	74%

Date Sampled	$09 / 12 / 97$	$09 / 12 / 97$	$09 / 12 / 97$	$09 / 12 / 97$	$09 / 12 / 97$
Date Extracted	$09 / 26 / 97$	$09 / 26 / 97$	$09 / 26 / 97$	$09 / 26 / 97$	$09 / 26 / 97$
Date Analyzed	$09 / 30 / 97$	$09 / 30 / 97$	$09 / 30 / 97$	$09 / 30 / 97$	$09 / 30 / 97$
Holding Time Days	14	14	14	14	14

Reporting Limit

Gasoline Range Organics
6.7

35
31
5.1

34

WTPH-D Extended

Service Request
04844
Analyst:
C. Thomson

Sample ID	Blank	LES	87428	87429	87430
Client ID	$09 / 24 / 97$	$09 / 24 / 97$	GP-2-5	GP-2-7	GP-3-5
Analytes	$\mathrm{mg} / \mathrm{Kg}$.$\frac{\% \mathrm{Rec} .}{}$	$\underline{\mathrm{mg} / \mathrm{Kg}}$	$\underline{\mathrm{mg} / \mathrm{Kg}}$	$\mathrm{mg} / \mathrm{Kg}$
Diesel Fuel Range	U	120%	520	28	U
Motor Oil Range	U		U	U	U
Surrogate Recovery	97%	103%	110%	99%	100%

0 D - Indicates surrogate recovery unavailable due to matrix interference.

Reporting Limit

Diesel Range	6.8	55	7.4	8.9
Motor Oil Range	17	140	19	22

Date $10 / 1 / 97$

WTPH-D Extended

Service Request:
Analyst:

Sample ID					
Client ID	87431	87432	87433	87434	87435
	GP-4-9	GP-5-5	GP-5-7	GP-6-5	GP-7-6.5
Analytes					
Diesel Fuel Range	$\mathrm{mg} / \mathrm{Kg}$				
Motor Oil Range	U	300	120	U	740
Surrogate Recovery	100%	111%	109%	98%	106%

Date Sampled
Date Extracted

Date Analyzed

Reporting Limit
Diesel Range
Motor Oil Range

8.5	3
21	9

40	6.5
100	16

43
110

WTPH-D Extended

Service Request:
Analyst:

Sample ID					
Client ID	GP-7-8.5	GP-8-5	GP-9-5	GP-10-5	GP-10-7
Analytes	$\mathrm{mg} / \mathrm{Kg}$				
Diesel Fuel Range	U	U	3600	6300	1100
Motor Oil Range	U	U	8300	15000	2800
Surrogate Recovery	100%	116%	0 D	0 D	132%

Date Sampled
Date Extracted

Date Analyzed

Reporting Limit
Diesel Range

Motor Oil Range
$7.4 \quad 10$

330
360
74
$24 \quad 820 \quad 910 \quad 190$

WTPH-D Extended

Service Request:
Analyst:

Sample ID Client D	87441	87429DUP	87430DUP
GP-11-7	GP-2-7DUP	GP-3-5DUP	
Analytes .	mg/Kg.	$\mathrm{mg} / \mathrm{Kg}$	$\mathrm{mg} / \mathrm{Kg}$
Diesel Fuel Range	U	18	U
Motor Oil Range	U	U	U
Surrogate Recovery	99%	107%	99%

Date Sampled
Date Extracted
Date Analyzed
Holding Time Days

Reporting Limit

Diesel Range
Motor Oil Range
8.2

20
7.3
8.9

18 . 22

Summary Report - PAH

Weyerhaeuser Analytical
SR \#04844 - Snoqualmie/EMCON soil Samples EMCON proj\# 40141-083.001
Method: PAHSIM
Units: ug/Kg(PPB)

Client ID Sample Date and Time Lab ID		$\begin{gathered} \text { GP-2-5 } \\ 9 / 12 / 97 \quad 0905 \\ 87428 \\ \hline \end{gathered}$	GP-7-6.5 9/12/97 1300 87435	SOIL BLANK SBL4T1_091997
Naphthalene 2-Methyinaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)Anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a, h$)$ anthriacené Benzo(g,h,i)perylene	$\begin{aligned} & 91-20-3 \\ & 91-57-6 \\ & 208-96-8 \\ & 83-32-9 \\ & 132-64-9 \\ & 86-73-7 \\ & 85-01-8 \\ & 120-12-7 \\ & 206-44-0 \\ & 129-00-0 \\ & 56-55-3 \\ & 218-01-9 \\ & 205-99-2 \\ & 207-08-9 \\ & 50-32-8 \\ & 193-39-5 \\ & 53-70-3 \\ & 191-24-2 \end{aligned}$	750 5600 120 240 110 470 930 $3 U$ 15 75 $3 U$ 5 $3 U$ $3 U$ $3 U$ $3 U$ $3 U$ $3 U$	430 14000 280 1600 520 2700 11000 1200 380 3900 280 1600 140 120 860 62 54 160	$\begin{aligned} & 2 U \\ & 2 U \end{aligned}$
1-MethyInaphthalene-d1 o-Terphenyl Pyrene-d10 Benzo(g,h,i)perylene-d12	$\begin{aligned} & (20-120) \\ & :(20-120) \\ & (20-120) \\ & (20-120) \end{aligned}$	$\begin{array}{r} 62 \% \\ 91 \% \\ 104 \% \\ 77 \% \end{array}$	$\begin{array}{r} 0 \% \mathrm{D} \\ 0 \% \mathrm{D} \\ 134 \% \mathrm{D} \\ 0 \% \mathrm{D} \end{array}$	$\begin{aligned} & 84 \% \\ & 87 \% \\ & 85 \% \\ & 78 \% \end{aligned}$
Date Extracted Date Analyzed		$\begin{aligned} & \hline 9 / 19 / 97 \\ & 9 / 30 / 97 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9 / 19 / 97 \\ & 9 / 30 / 97 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9 / 19 / 97 \\ & 9 / 30 / 97 \\ & \hline \end{aligned}$

$D=$ Sample diluted.

2D

Lab Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 4844

Contract:
Method: 8270SIM SDG No.: 87428
Level: (low/med) LOW

	\qquad	$\text { S1 } \#$	S2 $\#$	S3 \#		S5	${ }^{\mathrm{S} 6} \neq$		$S 8$	TOT
01	===============-=	82	80	88	78					0
02	SBL4T1_091997	84	87	85	78					0
03	GP-2-5	62	91	104	77					0
04	GP-7-6.5	OD	OD	134D	OD					0
05	GP-7-6.5DL	OD	OD	OD	0D					0
06	GP-7-6.5DL2	OD	OD	OD	OD					0
07	GP-2-5DL3	OD	OD	OD	OD					0
08	GP-2-5DL2	OD	OD	OD	0D					0
09	GP-2-5DL	OD	100	104	71					0
10	GP-7-6.5MS	117D	140D	201D	0D					0
11										
12								\cdots		
13										
14										
15										
16										
17										
18										
19										
20								\cdots		
21										
22						.				
23										
24										
25										
26										
27										
28										
29										
30										

QC LIMITS

S1	$=1$-Methylnaphthalene-d1	$(20-120)$
S2	$=0-$ Terpheny 1	$(20-120)$
S3	$=$ Pyrene-d10	$(20-120)$
S4	$=$ Benzo $(9, h, i)$ perylene-d	$(20-120)$

\# Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

Lab Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 4844 Method: PAHSIM SDG No.: 87428
Matrix Spike - EPA Sample No: : SBL4TI_09199 Level: (low/med) LOW

COMPOUND	$\begin{aligned} & \hline \text { SPIKE } \\ & \text { ADDED } \\ & \text { (ug/Kg) } \end{aligned}$	SAMPLE CONCENTRATION ($\mathrm{ug} / \mathrm{Kg}$)	MS CONCENTRATION $(\mathrm{ug} / \mathrm{Kg})$	$\begin{gathered} \text { MS } \\ \circ \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { QC. } \\ \text { LIMITS } \\ \text { REC. } \\ ====== \end{gathered}$
	20	0.00	16	80	20-160
Naphthalene --Methylnaphthalene	20	$0.00{ }^{\prime}$	22	110	20-160
2-Methylnaphthalene Acenaphthylene	20	0.00	15	75	20-160
Acenaphthylene	20	0.00	15	75	20-160
Dibenzofuran	20	0.00	14	70	20-160
Fluorene	20	0.00	15	75	20-160
Phenanthrene	20	0.00	17	85	20-160
Anthracene	20	0.00	16	80	20-160
Fluoranthene	20	0.00	15	75	20-160
Pyrene	20	0.00	17	85	20-160
Benzo (a) Anthracene	20	0.00	11	55	20-160
Chrysene	20	0.00	11	55	20-160
Benzo (b) fluoranthene	20	0.00	19	95	20-160
Benzo (k) fluoranthene	20	0.00	18	90	20-160
Benzo (a) pyrene	20	0.00	15	85	0-160
Indeno (1, 2, 3-cd) pyrene	20	0.00	17	85	20-160
Dibenzo (a, h) anthracene	20	0.00	16	80	$20-160$ $20-160$
Benzo (g, h, i) perylene .	20	0.00	16	80	20-160

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits
Spike Recovery: 4 out of 22 outside limits

COMMENTS :

Lab Name: WEYERHAEUSER
Lab Code: WEYER Case No.: 4844 Method: PAHSIM SDG No.: 87428
Matrix Spike - EPA Sample No.: GP-7-6.5 Level: (low/med) LOW

COMPOUND	$\begin{aligned} & \text { SPIKE } \\ & \text { ADDED } \\ & \text { (ug/Kg) } \end{aligned}$	CONCENTRRATION (ug/Kg)	$\frac{\text { MS }}{\text { CONCENTRATION }}$ (ug/Kg)	MS \circ REC \# $======$	QC. LIMITS REC.
	27	$=========$	550	444*	20-160
Naphthalene 2-Methylnaphthalene	27	12000	21000	33333*	20-160
Acenaphthylene	27	280	420	518*	20-160
Acenaphthene	27	1400	1800	1481*	20-160
Dibenzofuran	27	520	1000 .	*	20-160
Fluorene	27	3000	900	*	20-160
Phenanthrene	27	7300	11000	13704*	20-160
Anthracene	27	990	1200	*	20-160
Fluoranthene	27	380	610	852*	0
Pyrene	27	2000	2400	1481*	0
Benzo (a) Anthracene	27	280	580	1111*	20-160
Chrysene	27	1600	1600	0*	20-160
Benzo (b) fluoranthene	27	140	170	111	20-160
Benzo (k) fluoranthene	27	120	190	259*	20-160
Benzo (a) pyrene	27	820	860	148	20-160
Indeno ($1,2,3-\mathrm{cd}$) pyrene	27	62	100	141	20-160
Dibenzo (a, h) anthracene	27	54	94	148	20-160
Benzo (g , h, i) perylene	27	160	220	$222 *$	20-160
Benzo(g, h, i) perylene-d1	27	0.00	0.00	0*	20-160
1-Methylnaphthalene-d10	27	0.00	32	8	20-160
--Terphenyl	27	0.00	39	14	20-160
Pyrene-d10	27	37	55	67	20-160

\# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits
Spike Recovery: 15 out of 22 outside Iimits

COMMENTS :

A Weyerhaeuser

32901 Weyerhaeuser Way South Federal Way WA 98003
Tel (253) 924-6872
Fax (253) 924-6654

October 8, 1997

Mr. Mike Stanton
OCT 10
EMCON NW
18912 North Creek Parkway, Suite 100
Bothell, WA 98011
RE: Service Request 04844 - Snoqualmie/EMCON Soil Samples
Dear Mike:
Attached is a copy of the final report from North Creek Analytical for VPH and EPH on the samples listed on the above referenced service request.

Thank you for the opportunity to be of service. I look forward to working with you on future projects.

Sincerely,
Rick Boogers
Richard Bogar, Chromatography Team Leader
Weyerhaeuser Analytical and Testing Services

WEYERHAEUSER Technology Center-Tacoma		Weyerhaeuser Soil Samples	Sampled:	9/12/97
WEYERHAEUSER Technology Center-Tacoma	Project: Project Number:	RD0082260	Received:	9/17/97 10/6/97 13:23
1-20 WA 98477-0001	Project Manager:	Rick Bogar	Reported.	

Volatile Petroleum Hydrocarbons by WDOE Interim TPH Policy Method
North Creek Analytical - Bothell

iurrogate: 4-BFB (PID)

BOTHELL • (425) 481-9200 \quad FAX 485-2992
SPOKANE - (509) 924-9200 - FAX 924-9290
PORTLAND - (503) 643-9200 « FAX 644-2202

Extractable Petroleum Hydrocarbons by WDOE Interim TPH Policy Method North Creek Analytical - Bothell

- alyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
			B709353-01				Soil	
GP-2-5			$\stackrel{\text {-/28/97 }}{ }$	-01	5.00	16.1	$\mathrm{mg} / \mathrm{kg}$ dry	
¢-C10 Aliphatics	0970641	9/25/97	9/28/97		5.00	47.3		
- 0-C12 Aliphatics	*	${ }_{*}$			5.00	229	"	
C.2-C16 Aliphatics	"	"	"		5.00	178	"	
C16-C21 Aliphatics	"	"	"		5.00	40.6	"	
1-C34 Aliphatics	"	"	9/29/97		5.00	16.9	"	
- 0-C12 Aromatics	"	"	$9 / 29197$		5.00	65.4	\cdots	
C12-C16 Aromatics	"	"	"		5.00	126	"	
C16-C21 Aromatics	${ }^{\prime}$	"	"		5.00	13.5	,	
1-C34 Aromatics	"	"	9/28/97	50.0-150		79.5	\%	
Surrogate: Octacosane	"	"	9/29/97	50.0-150		63.4	"	
Surrogate: 2-FBP			912937					
			B709353-02				Soil $\mathrm{mg} / \mathrm{kg}$ dry	
-P-7-6.5			9/29/97		5.00	ND		
C8-C10 Aliphatics	${ }^{0} 0970641$	"	9/20\%		5.00	7.01	$\mathrm{mg} / \mathrm{kg}$ dry	
- 10-C12 Aliphatics	,	"	"		5.00	38.2		
12-C16 Aliphatics		"	"		5.00	107	"	
C16-C21 Aliphatics	"	"	"		5.00	506	"	
C21-C34 Aliphatics		"	"		5.00	ND	"	
10-C12 Aromatics		${ }^{\prime \prime}$	"		5.00	28.4	"	
-12-C16 Aromatics	"				5.00	161	"	
C16-C21 Aromatics	"	"	"		5.00	350	"	
21-C34 Aromatics	"	"	"	50.0-150		82.5	\%	
Irrogate: Octacosane	"	"	"	50.0-150		73.2	"	

Surrogate: 2-FBP

BOTHELL • (425) 481-9200 ^ FAX 485-2992
SPOKANE - (509) 924-9200 m FAX 924-9290
PORTLAND = (503) 643-9200 ^FAX 644-2202

		Project:
WEYERHAEUSER Technology Center-Tacoma	Weyerhaeuser Soil Samples	Sampled: $9 / 12 / 97$
uTC 2F25	Project Number:	RD0082260

Dry Weight Determination
North Creek Analytical - Bothell

North Creek Analytical, Inc.

	Project:	Weyerhaeuser Soil Samples	Sampled: 9/12/97
WEYERHAEUSER Te $\text { JTC } 2 \mathrm{~F} 25$	Project Number:	RD0082260	Received: 9/17/97 Reported: 10/6/97 13:23
coma, WA 98477-0001	Project Manager:	Rick Bogar	ported. 10/6/9713:23

North Creek Analytical, Inc.
*Refer to end of report for text of notes and definitions.

Matthew Essig, Project Manager

North Creek Analytical, Inc.
*Refer to end of report for text of notes and definitions.

Katthew Esstg, Project Manager

NORTH CREEK ANALYTICAL

BOTHELL • (425) 481-9200 \approx FAX 485-2992
SPOKANE • (509) 924-9200 = FAX 924-9290
PORTLAND • (503) 643-9200 = FAX 644-2202

WEYERHAEUSER Technology Center-Tacoma	Project:	Weyerhaeuser Soil Samples	Sampled:	9/12/97
WTC 2F25	Project Number:	RD0082260	Received:	9/17/97
acoma, WA 98477-0001	Project Manager:	Rick Bogar	Reported:	10/6/97 13:23

Analyte	Date Analyzed	Spike Level	Sample Result	$\begin{array}{r} \mathrm{QC} \\ \text { Result } \end{array}$	Units Rep	porting Limit Recov. Limits	$\begin{array}{r} \text { Recov. } \\ \cdot \% \end{array}$	$\begin{aligned} & \hline \text { RPD } \\ & \text { Limit } \end{aligned}$	$\begin{array}{r} 2 P D \\ \% \\ \hline \end{array}$	Notes*
Satch: 0970778	Date Prepared: 9/30/97				Extraction Method: EPA 3550					
Blank	0970778-BLKI									
8-C10 Aliphatics	10/3/97			ND	$\mathrm{mg} / \mathrm{kg}$ dry	5.00				
110-C12 Aliphatics	"			ND	"	5.00				
C12-C16 Aliphatics	"			ND	"	5.00				
316-C21 Aliphatics	"			ND	"	5.00				
21-C34 Aliphatics	"			ND	"	5.00				
C10-C12 Aromatics	"			ND	"	5.00				
C12-C16 Aromatics	"			ND	"	5.00				
16-C21 Aromatics	"			ND	"	5.00				
121-C34 Aromatics	"			ND	"	5.00				
Surrogate: Octacosane	"	11.8		$N D$	"	50.0-150	NR			
Turrogate: 2-FBP		11.7		$N D$	"	50.0-150	$N R$			
LCS	0970778-BS1									
C8-C10 Aliphatics	10/3/97	1.67		ND	$\mathrm{mg} / \mathrm{kg}$ dry	60.0-140	NR			
10-Cl2 Aliphatics	${ }^{\prime \prime}$	1.67		ND	"	60.0-140	NR			
212-C16 Aliphatics	"	1.67		ND	"	60.0-140	NR			
C16-C21 Aliphatics	"	1.67		ND	"	60.0-140	NR			
121-C34 Aliphatics	"	1.67		ND	"	60.0-140	NR			
110-Cl2 Aromatics	"	0.0833		ND	"	60.0-140	NR			
Cl2-C16 Aromatics	"	0.250		ND	*	60.0-140	NR			
C16-C21 Aromatics	"	0.417		ND	,	60.0-140	NR			
C21-C34 Aromatics	"	0.667		ND	"	60.0-140	-NR			
Surrogate: Octacosane	"	11.8		$N D$	"	50.0-150	NR			
Surrogate: 2-FBP	"	11.7		$N D$	"	50.0-150	$N R$			
CS Dup	0970778-BSD1									
C8-C10 Aliphatics	10/3/97	1.67		ND	$\mathrm{mg} / \mathrm{kg} \mathrm{dry}$	60.0-140	NR	40.0		
210-C12 Aliphatics	"	1.67		ND	"	60.0-140	NR	40.0		
C12-Cl6 Aliphatics	"	1.67		ND	"	60.0-140	NR	40.0		
C16-C21 Aliphatics	"	1.67		ND	"	60.0-140	NR	40.0		
C21-C34 Aliphatics	"	1.67		ND	"	60.0-140	NR	40.0		
210-C12 Aromatics	"	0.0833		ND	"	60.0-140	NR	40.0		
E12-C16 Aromatics	"	0.250		ND	'	60.0-140	NR	40.0		
C16-C21 Aromatics	"	0.417		ND	"	60.0-140	NR	40.0		
C21-C34 Aromatics	"	0.667		ND	"	60.0-140	NR	40.0		
Burrogate: Octacosane	"	11.8		$N D$	"	50.0-150	$N R$			
Surrogate: 2-FBP	"	11.7		$N D$	"	50.0-150	$N R$			

North Creek Analytical, Inc.
*Refer to end of report for text of notes and definitions.

Sampled: 9/12/97
Received: 9/17/97
Reported: 10/6/97 13:23

Notes and Definitions

This sample appears to contain extractable diesel range organics.

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.

The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.

Analyte DETECTED
Analyte NOT DETECTED at or above the reporting limit

Relative Percent Difference

[^0]: 1 Washington State Department of Ecology. 1997. Interim Interpretive and Policy Statement Cleanup of Petroleum Hydrocarbons (TPH). Publication No. ECY97-600. January.

[^1]: 2 Chapter 173-340 WAC, The Model Toxics Control Act Cleanup Regulation; Method A Cleanup Levels.

[^2]: Abbreviations
 $\mathrm{EC}=$ Equivalent carbon number
 NA $=$ Not applicable
 E-TPH $=$ Equivalent total petroleum hydrocarbons; combines the maximum fraction concentrations of the VPH and EPH.

[^3]: | Abbreviations |
 | :--- |
 | $\mathrm{EC}=$ Equivalent carbon number |
 | $\mathrm{NA}=$ Not applicable |
 | $\mathrm{E}-\mathrm{TPH}$ |$=$ Equivalent total petroleum hydrocarbons; combines the \quad maximum fraction concentrations of the VPH and EPH.

 | Abbreviations |
 | :--- |
 | $\mathrm{EC}=$ Equivalent carbon number |
 | $\mathrm{NA}=$ Not applicable |
 | $\mathrm{E}-\mathrm{TPH}=$ |\quad Equivalent total petroleum hydrocarbons; combines the \quad maximum fraction concentrations of the VPH and EPH.

 | Abbreviations |
 | :--- |
 | $\mathrm{EC}=$ Equivalent carbon number |
 | $\mathrm{NA}=$ Not applicable |
 | $\mathrm{E}-\mathrm{TPH}=$ |\quad Equivalent total petroleum hydrocarbons; combines the \quad maximum fraction concentrations of the VPH and EPH.

 | Abbreviations |
 | :--- |
 | $\mathrm{EC}=$ Equivalent carbon number |
 | $\mathrm{NA}=$ Not applicable |
 | $\mathrm{E}-\mathrm{TPH}=$ |\quad Equivalent total petroleum hydrocarbons; combines the \quad maximum fraction concentrations of the VPH and EPH.

