

1329 North State Street, Suite 301 | Bellingham, WA 98225 | 360 594 6262 | www.maulfoster.com

March 22, 2021 Project No. 9081.01.22

Thomas L. Mackie, LG, LHG, LEG Washington State Department of Ecology Central Regional Office 1250 West Alder Street Union Gap, Washington 98903

Re: 2020 Annual Progress Report

McFarland Cascade Pole and Lumber Company Site, Tacoma, Washington

Facility Site ID: 1222; Cleanup Site ID: 3643

Dear Mr. Mackie:

In accordance with Pierce County Superior Court Consent Decree No. 16-2-08380-9 (CD), operation and maintenance (O&M) and monitoring of the remedies selected in the Final Cleanup Action Plan (CAP) for the Cascade Pole and Lumber site (the Site) were conducted at the Site in 2020 (Ecology, 2016). The CD, which became effective on June 7, 2016, requires annual progress reporting to document operations and maintenance (O&M) and monitoring activities at the Site. The CAP is provided as Exhibit B to the CD.

Maul Foster & Alongi, Inc. (MFA) prepared this report on behalf of McFarland Cascade Holdings, Inc. (MCHI) and Prologis, Inc. (Prologis) to fulfill the annual progress reporting requirements for the Site. O&M and monitoring activities required at the Site are defined in the Groundwater Compliance Monitoring Plan (CMP) (MFA, 2016a) and the Site Management Plan (SMP) (MFA, 2016b), which are included in the CAP as Appendices A and B, respectively. Specific reporting requirements are outlined in Section 7 of the CMP.

This progress report includes O&M and monitoring activities completed at the Site for the entire 2020 calendar year. This is the fifth annual progress report since the CD became effective.

#### **BACKGROUND**

The Site includes property, owned by Prologis, at 1640 E Marc Street in Tacoma, Washington (the Property), as well as a portion of an adjoining property owned by the Port of Tacoma. The Property and Site boundaries are shown in the attached figure. MCHI leases the Property from Prologis and operates a treated-wood products manufacturing and processing facility on a portion of the Property. The final remedy for the Site includes O&M of a protective cap covering residual soil contamination in the Restricted Area (see the figure), soil management to be undertaken should soil be excavated or disturbed below the cap, O&M of a horizontal

Thomas L. Mackie, LG, LHG, LEG March 22, 2021 Page 2

groundwater recovery system, groundwater compliance monitoring, and institutional controls (see the CAP, CMP, and SMP for details).

Groundwater monitoring at the Site is being conducted in accordance with the protection stage of monitoring, as defined in the CMP. During the protection stage, the horizontal groundwater recovery system is in operation, and monitoring is required to evaluate performance and effectiveness. The CMP states that during the protection stage, monitoring will be conducted semiannually for two years and then reduced to an annual frequency. The last semiannual protection monitoring event was conducted in February 2017. MFA notified Ecology of the reduction from semiannual to annual monitoring at the Site (MFA, 2017a). As confirmed by the Ecology site manager, the sampling reduction was consistent with the requirements outlined in the CMP (Ecology, 2017). Therefore, protection monitoring is now conducted on an annual basis during January or February, in accordance with the CMP. An annual monitoring event was conducted in February 2020, as described in Attachment A.

#### **SUMMARY OF ON-SITE ACTIVITIES**

The following activities were conducted on the Site between January 1, 2020, and December 31, 2020:

- An annual groundwater compliance monitoring event was conducted in February 2020 (the groundwater monitoring report is provided as Attachment A).
- Routine operation and monthly inspections of the horizontal groundwater recovery system were conducted throughout the year (monthly inspection forms are provided as Attachment B).
- Annual inspection and maintenance of the protective cap (the 2020 annual cap inspection report is provided as Attachment C).
- The 2020 sampling data were uploaded to Ecology's Environmental Information Management database.

An initial inspection of the protective cap was conducted on August 20, 2020. Several areas were noted for monitoring and repair. Following completion of the repairs, a second inspection was conducted on November 24, 2020 (see Attachment C). At that time, no additional repairs were identified, with the exception of the temporary repair completed by Puget Sound Energy (PSE) associated with their assessment of a natural gas leak on the Site. Once PSE completes the natural gas line repair on the Site, MFA staff will evaluate the quality of final cap repairs to ensure they are consistent with the site management plan (MFA, 2016b). Following final cap repair inspection, MFA will prepare an "After Action" report for submittal to Ecology summarizing the work conducted by PSE.

Thomas L. Mackie, LG, LHG, LEG March 22, 2021 Page 3

The horizontal groundwater recovery system operated normally in 2020, with the exception of the totalizer meter (inspection logs and a summary table of inspection and performance data are provided as Attachment B). As noted in the 2019 annual progress report, a new totalizer was installed in July 2019 due to operation issues with the previous totalizer meter (MFA, 2020). Upon review of the horizontal well recovery records, an issue with the totalizer operation was identified following recordings of very low recovery volumes in fall 2020, when the groundwater table typically rises and groundwater discharges more frequently to the horizontal recovery well. Stella-Jones personnel thoroughly inspected the horizontal recovery well and determined that the system was operating correctly but that the totalizer was inconsistently recording the volume of water discharged. Therefore, a new totalizer meter will be installed to ensure that the cumulative groundwater recovery volumes are being tracked appropriately. Stella-Jones staff will monitor the operation of the horizontal recovery well and totalizer meter closely in 2021 to ensure functionality and determine if additional improvements are needed.

Groundwater compliance monitoring was conducted in accordance with the sampling requirements for the protection monitoring stage (see the CMP). Remediation levels were not exceeded in the sentry wells during the reporting period, and no contingent actions were triggered. Remediation levels were exceeded in source area wells; therefore, protection monitoring and operation of the groundwater horizontal recovery system will continue.

#### **NEXT STEPS**

An annual protection groundwater monitoring event was conducted in February 2021. A groundwater monitoring report for that event will be included in the 2021 annual progress report.

O&M and monthly monitoring of the horizontal groundwater recovery system will continue in 2021.

The next annual protective cap inspection is scheduled for the fall of 2021.

If you have any questions regarding this submittal, please feel free to contact either of us.

Thomas L. Mackie, LG, LHG, LEG March 22, 2021 Page 4

Sincerely,

Maul Foster & Alongi, Inc.

03-22-2021

James J. Maul, LHG Principal Hydrogeologist Carolyn R. Wise, LG
Project Geologist

Attachments: Limitations

References Figure

A—Annual Groundwater Monitoring Report B—Monthly Horizontal Well Inspection Forms C—Annual Protective Cap Inspection Report

cc: Alex Clark, McFarland Cascade Holdings, Inc.

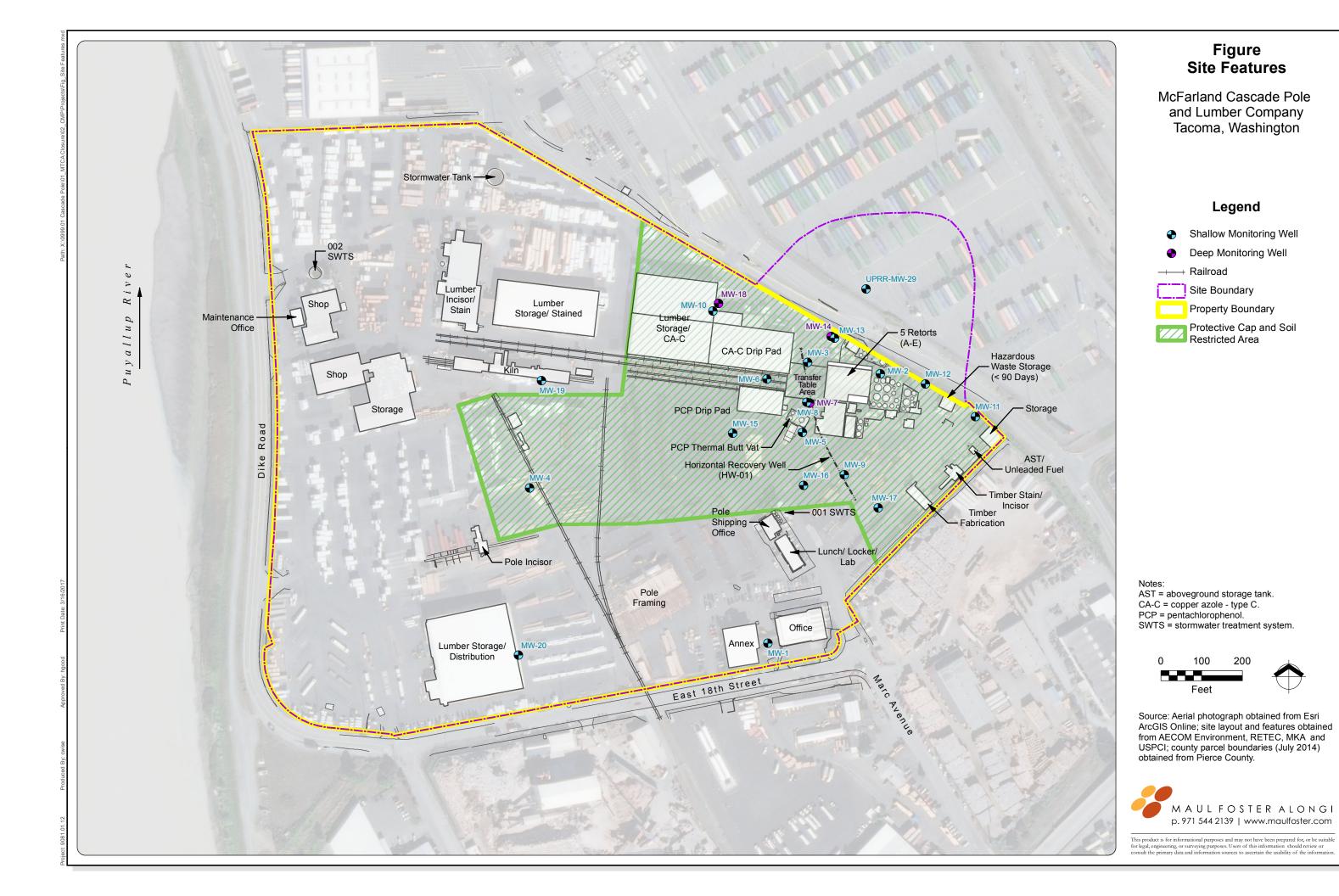
Brett Richer, Prologis, Inc.

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Ecology. 2016. Final cleanup action plan, Cascade Pole and Lumber Company, Tacoma, Washington. Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Southwest Regional Office, Lacey, Washington. January 12.

Ecology. 2017. Letter (re: groundwater monitoring frequency reduction, McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, facility site ID: 1222; cleanup site ID: 3643, Pierce County Superior Court Consent Decree No. 16-2-08380-9) to H. Good, Maul Foster & Alongi, Inc., Bellingham, Washington, from T. Mackie, Washington State Department of Ecology, Union Gap, Washington. May 31.


MFA. 2016a. Groundwater compliance monitoring plan—McFarland Cascade Pole and Lumber Company, Tacoma facility. Prepared for McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. January 12.

MFA. 2016b. Site management plan—McFarland Cascade Pole and Lumber Company, Tacoma facility. Prepared for McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. January 12.

MFA. 2017a. Letter (re: groundwater monitoring frequency reduction—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, facility site ID: 1222, cleanup site ID: 3643) to T.L. Mackie, Washington State Department of Ecology, from H. Good and J. Clary, Maul Foster & Alongi, Inc., Bellingham, Washington. May 3.

# **FIGURE**





## ATTACHMENT A

ANNUAL GROUNDWATER MONITORING REPORT



1329 North State Street, Suite 301 | Bellingham, WA 98225 | 360 594 6262 | www.maulfoster.com

April 6, 2020 Project No. 9081.01.19

Alex Clark Senior Environmental Manager Stella-Jones Corporation PO Box 1496 Tacoma, Washington 98401

Re: 2020 Annual Groundwater Monitoring Event

McFarland Cascade Pole and Lumber Company Site, Tacoma, Washington

Facility Site ID: 1222; Cleanup Site ID: 3643

Dear Ms. Clark:

On February 3 through 5, 2020, Maul Foster & Alongi, Inc. (MFA) conducted a groundwater monitoring event at the Cascade Pole and Lumber Company site located at 1640 East Marc Street in Tacoma, Washington (the Site). The monitoring event was conducted on behalf of McFarland Cascade Holdings, Inc. (MCHI) and Tyee Management Company, LLC (Tyee) to fulfill the annual compliance monitoring requirement under the final cleanup action plan (CAP) (Washington State Department of Ecology [Ecology], 2016), which is included as an exhibit in the consent decree dated June 7, 2016 (Pierce County Superior Court No. 16-2-08380-9). Sampling was conducted consistent with the groundwater compliance monitoring plan (CMP) (MFA, 2016a), which is included in the CAP as an appendix, and in accordance with compliance monitoring requirements put forth in the Washington State Model Toxics Control Act (Washington Administrative Code 173-340-410). Monitoring activities and sampling results are summarized below.

#### **BACKGROUND**

The Site includes property owned by Tyee (the Property) and a portion of the adjoining property owned by the Port of Tacoma (the Port). The Property and Site boundaries are shown on Figure 1. MCHI leases the Property from Tyee and operates a treated-wood-products manufacturing and processing facility on a portion of the Property. Actions completed under a 1989 agreed order include hydraulic containment and recovery via a horizontal groundwater recovery well and compliance groundwater monitoring as part of the final remedy for the Site (Ecology, 2016). Groundwater from the horizontal recovery well is used in the wood-treating process.

The groundwater monitoring program includes three stages of monitoring: protection, performance, and confirmational (MFA, 2016a). All three stages require groundwater monitoring to evaluate whether indicator hazardous substance (IHS) concentrations comply

with cleanup levels (CULs) at the conditional point of compliance (CPOC), which is located at the Site boundary (see Figure 1).

To demonstrate that CULs are being met at the CPOC, sentry wells are monitored for compliance with remediation levels (RELs). Sentry wells are located between the source area and the CPOC (see Figure 1). RELs are concentrations derived from attenuation modeling that, if reached in a sentry well, indicate the potential for exceeding a CUL at the CPOC. REL exceedances in a sentry well triggers additional assessment consistent with the CMP (MFA, 2016a). Criteria for evaluating compliance with RELs and CULs, requirements for progressing to the next stage of monitoring, and steps for addressing REL exceedances are included in the CMP.

The current stage is annual protection monitoring. During this stage, the horizontal recovery system is in operation and monitoring is required to evaluate its performance and protectiveness. After two years of semiannual groundwater monitoring without sentry well exceedances, the last semiannual protection monitoring event was conducted in February 2018. MFA notified Ecology of the reduction from semiannual to annual monitoring at the Site (MFA, 2017b).

As confirmed by the Ecology site manager, the sampling reduction was consistent with the requirements outlined in the CMP (Ecology, 2017). Therefore, protection monitoring is now conducted on an annual basis at the Site during January or February, in accordance with the CMP, and includes sampling of compliance monitoring network wells, including source area wells, sentry wells, and the horizontal recovery well; and measurement of water levels in all Site wells (see Figure 1). IHS concentrations in all compliance monitoring network wells are compared to RELs. It is required that the protection stage continue until it has been demonstrated, in accordance with the procedures outlined in the CMP, that RELs are being met in all compliance monitoring network wells.

Prior to the February 2018 event, protection monitoring events included analyzing groundwater samples for the following Site IHSs: dissolved arsenic, dissolved copper, total hexavalent chromium, benzene, ethylbenzene, xylenes, carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and pentachlorophenol. Data from four semiannual monitoring events conducted between February 2015 and October 2016 indicated that dissolved arsenic and dissolved copper were the only IHSs exceeding their respective CULs (MFA, 2016c). Therefore, Ecology approved a request to remove total hexavalent chromium, benzene, ethylbenzene, xylenes, cPAHs, and pentachlorophenol from the groundwater compliance monitoring program (see Attachment A of MFA, 2017a). The February 2017, 2018, 2019, and 2020 monitoring events included analyses for dissolved arsenic and dissolved copper only; future monitoring events will also focus on only these two IHSs.

Groundwater is present in both shallow and deep water-bearing zones (WBZs) beneath the Site. Compliance monitoring network wells are screened in each WBZ, as shown in the attached tables and figures.

One monitoring well associated with the Union Pacific Railroad's Former Milwaukee Railyard site (UPRR Site), UPRR-MW-29, is included within the Site boundaries and is located on the Port's property (see Figure 1). The Port completed cleanup actions and conducts ongoing groundwater monitoring to address petroleum-related contamination on the UPRR Site under Prospective Purchaser Consent Decree No. 95-2-02280-0. UPRR-MW-29 is monitored to evaluate concentration trends and hydraulic gradients as part of the protection and performance stages of monitoring for the Site but is not included in the compliance monitoring network. Therefore, IHS concentrations detected in this well are not compared to RELs. UPRR-MW-29 will be included in the final confirmational monitoring network (MFA, 2016a).

The February 2020 event is the eighth protection monitoring event since protection monitoring began in February 2015. The previous monitoring event was conducted in February 2019 (MFA, 2019b).

#### FIELD AND ANALYTICAL PROCEDURES

MFA measured static water levels in all existing Site wells and collected groundwater samples from all wells included in the compliance monitoring network and from UPRR-MW-29. A field duplicate sample was collected from source area well MW-3.

Water quality parameters were measured before sample collection and were recorded on field sampling data sheets (FSDSs) (see Attachment A). Groundwater samples were collected using low-flow sampling techniques.

Samples were submitted to Analytical Resources, Inc., of Tukwila, Washington, under standard chain-of-custody procedures. Samples were analyzed for dissolved arsenic and dissolved copper by U.S. Environmental Protection Agency Method 200.8. Samples were field filtered.

#### **GROUNDWATER FLOW**

Water levels were measured in all Site wells on February 4, 2020. Depth-to-water measurements and groundwater elevations are summarized in Table 1. Groundwater elevations across the Site were about 0.38 foot higher on average than water levels measured in February 2019 (see Table 1 and MFA, 2019b).

Estimated groundwater potentiometric surface contours for the shallow and deep WBZs (shown in Figure 2) indicate that groundwater in the shallow WBZ was generally flowing northwest, west, or southwest, toward the Puyallup River. This is consistent with the shallow-WBZ groundwater flow direction observed during previous monitoring events (MFA, 2016b,c,

2017a, 2019a,b). The general groundwater flow direction in the deep WBZ is west-southwest. This is consistent with the deep-WBZ groundwater flow direction observed during previous monitoring events, except for October 2016, in which the groundwater flow direction was west-northwest (MFA, 2016b,c, 2017a, 2019a,b).

The horizontal recovery well (HW-01) was installed in 1997 beneath the transfer table pit and adjacent areas for hydraulic containment of groundwater in the wood-treating area of the plant. HW-01 recovers groundwater from the shallow aquifer and influences shallow groundwater flow at the Site. Operation of HW-01 captures groundwater in the area of the wood-treating operation, as indicated by the groundwater potentiometric surface contours and associated groundwater flow lines shown on Figure 2. Given this influence by the horizontal recovery well, shallow groundwater flow varies across the Site from northwest to southwest; however, sentry wells MW-4, MW-19, and MW-20 remain downgradient of the treating area, outside the capture zone created by HW-01.

#### REDEVELOPMENT OF SENTRY WELLS

During previous groundwater monitoring events, turbidity in sentry wells MW-4, MW-19, and MW-20 was elevated (MFA, 2016b,c, 2017a). In the past, extensive purging was required to reduce turbidity. Given that the sentry wells were last sampled in February 2019, the accumulation of fine-grained material in the wells was anticipated. Therefore, the wells were redeveloped prior to sampling.

Sentry wells MW-4, MW-19, and MW-20 were redeveloped on February 3, 2020. Redevelopment consisted of surging and bailing the wells with a disposable bailer, followed by purging with a peristaltic pump and disposable tubing (see the well redevelopment forms, Attachment B). Before collection of the samples, the redeveloped sentry wells were allowed to recharge and stabilize for at least 24 hours. MFA collected samples from the sentry wells on February 4 and 5, 2020, after the water quality parameters had stabilized and turbidity had decreased to below 10 nephelometric turbidity units (see the FSDSs in Attachment A).

#### LABORATORY RESULTS

Analytical results are summarized in Table 2. The laboratory analytical report is included as Attachment C. A data validation memorandum, which summarizes data evaluation procedures, usability of data, and deviations from field and/or laboratory methods, is included as Attachment D. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether data quality objectives had been met. The data were validated and are considered acceptable for their intended use, with the appropriate data qualifiers assigned (see Attachment D).

Dissolved arsenic and dissolved copper were detected in groundwater samples collected during the February 2020 monitoring event (see Table 2); analytical results from both the shallow and deep WBZs are shown in Figure 3.

#### COMPARISON TO CLEANUP LEVELS AND REMEDIATION LEVELS

IHS (i.e., arsenic and copper) concentrations were compared to the CULs and RELs included in the CMP (MFA, 2016a) (see Table 2).

Dissolved arsenic REL exceedances were detected in the source area shallow WBZ (MW-3 and MW-8). CULs were exceeded in all shallow WBZ wells, with the exception of MW-20. Dissolved arsenic was detected in the deep WBZ (MW-7, MW-14, and MW-18), but no CUL or REL exceedances were detected in these wells.

Dissolved copper exceeded its CUL, but not its REL, in the shallow WBZ at HW-01. Dissolved copper was detected in the shallow WBZ at sentry well MW-19 and source area well MW-3 and in the deep WBZ in sentry wells MW-7 and MW-18, but not above its CUL or RELs.

IHS concentrations detected in samples from the sentry wells were all below RELs.

The dissolved arsenic and dissolved copper concentrations detected in the sample collected from the Port property monitoring well (UPRR-MW-29), which is in the shallow WBZ, exceeded CULs, consistent with previous monitoring events. However, UPRR-MW-29 is not included in the compliance monitoring network, and groundwater results from this well are not compared to RELs.

#### SUMMARY OF FINDINGS

Below is a summary of findings from the February 2020 compliance monitoring event:

- RELs were not exceeded in any sentry wells.
- In the shallow and deep WBZs, the groundwater flow direction remained consistent with previous monitoring events.
- In the shallow WBZ sentry wells (MW-4 and MW-19), dissolved arsenic concentrations exceeded CULs but were below RELs.
- In the shallow WBZ, the dissolved copper concentration exceeded the CUL at the horizontal recovery well.
- In the shallow WBZ source area wells, dissolved arsenic concentrations exceeded the CUL and RELs (MW-3 and MW-8).

- In the deep WBZ source area and sentry wells, dissolved arsenic and dissolved copper concentrations were below their respective CULs and RELs.
- The dissolved copper and dissolved arsenic concentrations detected in the Port property monitoring well (UPRR-MW-29) exceeded CULs. Groundwater results from this well were not compared to RELs.

#### **CONCLUSIONS**

RELs were not exceeded in shallow or deep WBZ sentry wells during this or previous compliance monitoring events, which indicates that IHS concentrations are in compliance with CULs at the CPOC. Therefore, no contingent actions, as defined in the CMP (MFA, 2016a), are triggered.

Dissolved arsenic and dissolved copper concentrations detected in the source area exceeded RELs; therefore, operation of the horizontal recovery system and protection monitoring will continue.

The next annual groundwater monitoring event is scheduled for February 2021.

If you have any questions regarding this letter, please contact us.

Sincerely,

Maul Foster & Alongi, Inc.

04-06-2020

James J. Maul, LHG Principal Hydrogeologist C- :-1

Carolyn R. Wise, LG Project Geologist Attachments: Limitations

References Tables Figures

A—Field Sampling Data Sheets
B—Well Redevelopment Logs
C—Laboratory Analytical Report
D—Data Validation Memorandum

cc: Les Lonning, Tyee

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Ecology. 2016. Final cleanup action plan, Cascade Pole and Lumber Company, Tacoma, Washington. Washington State Department of Ecology, Hazardous Waste and Toxics Reduction Program, Southwest Regional Office, Lacey, Washington. January 12.

Ecology. 2017. Letter (re: groundwater monitoring frequency reduction, McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, facility site ID: 1222; cleanup site ID: 3643, Pierce County Superior Court Consent Decree No. 16-2-08380-9) to H. Good, Maul Foster & Alongi, Inc., from T. Mackie, Washington State Department of Ecology, Union Gap, Washington. May 31.

MFA. 2016a. Groundwater compliance monitoring plan—McFarland Cascade Pole and Lumber Company, Tacoma facility. Prepared for McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. January 12.

MFA. 2016b. Letter (re: spring 2016 semiannual groundwater monitoring event—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, Facility Site ID: 1222, Cleanup Site ID: 3643) to G. Caron, Washington State Department of Ecology, from H. Good and J. Clary, Maul Foster & Alongi, Inc. Prepared for McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. March 25.

MFA. 2016c. Letter (re: fall 2016 semiannual groundwater monitoring event—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, Facility Site ID: 1222, Cleanup Site ID: 3643) to G. Caron, Washington State Department of Ecology, from H. Good and J. Clary, Maul Foster & Alongi, Inc. Prepared for McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. December 29.

MFA. 2017a. Letter (re: spring 2017 semiannual groundwater monitoring event—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, Facility Site ID: 1222, Cleanup Site ID: 3643) to T. Smith, McFarland Cascade Holdings, Inc., from H. R. Good and J. L. Clary, Maul Foster & Alongi, Inc. Prepared for McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC. Maul Foster & Alongi, Inc., Bellingham, Washington. March 27.

MFA. 2017b. Letter (re: groundwater monitoring frequency reduction—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, facility site ID: 1222, cleanup site ID: 3643) to T. L. Mackie, Washington State Department of Ecology, from H. G. Good and J. L. Clary, Maul Foster & Alongi, Inc., Bellingham, Washington. May 3.

MFA. 2019a. Letter (re: 2018 annual groundwater monitoring event—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, facility site ID: 1222, cleanup site ID: 3643) to T. L. Mackie, Washington State Department of Ecology, from C. R. Wise and J. J. Maul, Maul Foster & Alongi, Inc., Bellingham, Washington. February 1.

MFA. 2019b. Letter (re: 2019 annual groundwater monitoring event—McFarland Cascade Pole and Lumber Company site, Tacoma, Washington, facility site ID: 1222, cleanup site ID: 3643) to T. L. Mackie, Washington State Department of Ecology, from C. R. Wise and J. J. Maul, Maul Foster & Alongi, Inc., Bellingham, Washington. August 26.

# **TABLES**



#### Table 1



# Water Level Measurements McFarland Cascade Pole and Lumber Company CFarland Cascade Holdings Inc., and Type Management Co

## McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC Tacoma, Washington

| Well ID        | MP Elevation<br>(feet NGVD29) | Date       | Time     | DTW<br>(feet) | DTB<br>(feet) | Groundwater<br>Elevation<br>(feet) |
|----------------|-------------------------------|------------|----------|---------------|---------------|------------------------------------|
| Shallow Water- | Bearing Zone Wells            |            |          |               | •             |                                    |
| MW-1           | 11.68                         | 02/04/2020 | 1:30 PM  | 4.58          | 13.43         | 7.10                               |
| MW-2           | 11.93                         | 02/04/2020 | 10:45 AM | 4.32          | 9.33          | 7.61                               |
| MW-3           | 12.69                         | 02/04/2020 | 9:22 AM  | 5.96          | 10.53         | 6.73                               |
| MW-4           | 11.55                         | 02/04/2020 | 4:32 PM  | 6.83          | 13.07         | 4.72                               |
| MW-5           | 12.71                         | 02/04/2020 | 11:05 AM | 7.19          | 11.89         | 5.52                               |
| MW-6           | 12.70                         | 02/04/2020 | 12:55 PM | 5.56          | 11.66         | 7.14                               |
| MW-8           | 14.02                         | 02/04/2020 | 11:28 AM | 7.49          | 12.29         | 6.53                               |
| MW-9           | 10.96                         | 02/04/2020 | 10:54 AM | 5.03          | 10.29         | 5.93                               |
| MW-10          | 12.15                         | 02/04/2020 | 12:56 PM | 6.26          | 9.91          | 5.89                               |
| MW-11          | 11.70                         | 02/04/2020 | 8:40 AM  | 4.94          | 8.58          | 6.76                               |
| MW-12          | 12.32                         | 02/04/2020 | 8:35 AM  | 4.92          | 10.08         | 7.40                               |
| MW-13          | 12.31                         | 02/04/2020 | 9:00 AM  | 4.86          | 10.83         | 7.45                               |
| MW-15          | 11.90                         | 02/04/2020 | 11:10 AM | 6.92          | 10.79         | 4.98                               |
| MW-16          | 10.77                         | 02/04/2020 | 10:59 AM | 4.98          | 8.84          | 5.79                               |
| MW-17          | 13.56                         | 02/04/2020 | 8:30 AM  | 7.60          | 10.67         | 5.96                               |
| MW-19          | 14.15                         | 02/04/2020 | 3:50 PM  | 9.41          | 13.72         | 4.74                               |
| MW-20          | 14.99                         | 02/04/2020 | 4:39 PM  | 8.42          | 14.12         | 6.57                               |
| UPRR-MW-29     | 11.80                         | 02/04/2020 | 6:40 PM  | 3.64          | 15.48         | 8.16                               |
| Deep Water-Be  | earing Zone Wells             |            |          |               |               | -                                  |
| MW-7           | 12.00                         | 02/04/2020 | 11:25 AM | 7.58          | 24.89         | 4.42                               |
| MW-14          | 12.30                         | 02/04/2020 | 8:25 AM  | 7.81          | 24.73         | 4.49                               |
| MW-18          | 12.23                         | 02/04/2020 | 11:35 AM | 8.03          | 26.89         | 4.20                               |

#### NOTES:

DTW and DTB are measured from top of well casing.

DTB = depth to bottom.

DTW = depth to water.

MP = measuring point (i.e., top of well casing).

NGVD29 = National Geodetic Vertical Datum of 1929.

#### Table 2

# Groundwater Analytical Results (ug/L) McFarland Cascade Pole and Lumber Company McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC Tacoma, Washington

|               |               |                 | IHS:        | Dissolved Arsenic | Dissolved Coppe |
|---------------|---------------|-----------------|-------------|-------------------|-----------------|
|               |               |                 | CUL:        | 5                 | 2.4             |
| Location      | Location Type | Collection Date | Sample Type |                   |                 |
| Shallow Water | -Bearing Zone |                 |             |                   |                 |
|               |               |                 | HW-01 RELs: | 46                | 22              |
|               |               | 02/27/2015      | Ν           | 56.9              | 2.2             |
|               |               | 10/29/2015      | Ν           | 118               | 3               |
|               |               | 02/24/2016      | Ν           | 64.4              | 1.3             |
| HW-01         | Horizontal    | 10/05/2016      | Ν           | 138               | 2.87            |
| HW-UI         | Recovery Well | 02/02/2017      | Ν           | 45.6              | 0.921           |
|               |               | 02/06/2018      | Ν           | 49.5              | 0.5 U           |
|               |               | 02/26/2019      | Ν           | 37.6              | 287             |
|               |               | 02/26/2019      | FD          | 38                | 290             |
|               |               | 02/04/2020      | N           | 36                | 3.14            |
|               |               |                 | MW-3 RELs:  | 45                | 21              |
|               |               | 02/27/2015      | N           | 694 J             | 0.7             |
|               |               | 02/27/2015      | FD          | 773 J             | 0.6             |
|               |               | 10/29/2015      | N           | 497               | 0.5 U           |
|               |               | 02/24/2016      | N           | 566               | 0.6             |
|               |               | 02/24/2016      | FD          | 567               | 0.8             |
|               |               | 10/05/2016      | N           | 3,410             | 3.75            |
| MW-3          | Source Area   | 10/05/2016      | FD          | 3,320             | 4.52            |
| 10100-3       | Well          | 02/02/2017      | N           | 315               | 0.5 U           |
|               |               | 02/02/2017      | FD          | 343               | 0.5 U           |
|               |               | 02/06/2018      | N           | 706               | 0.947           |
|               |               | 02/06/2018      | FD          | 814               | 1.29            |
|               |               | 02/06/2019      | N           | 491               | 1.0 U           |
|               |               | 02/06/2019      | FD          | 507               | 1.0 U           |
|               |               | 02/04/2020      | FD          | 391               | 1.03            |
|               |               | 02/04/2020      | N           | 325               | 1.05            |
|               |               |                 | MW-4 RELs:  | 32                | 15              |
|               |               | 02/27/2015      | N           | 16.8              | 0.6             |
|               |               | 10/28/2015      | N           | 27.8              | 0.5 U           |
|               |               | 02/24/2016      | N           | 15                | 0.5 U           |
| MW-4          | Sentry Well   | 10/04/2016      | N           | 31.8              | 0.5 U           |
|               |               | 02/01/2017      | N           | 21.5              | 0.5 U           |
|               |               | 02/07/2018      | N           | 22.2              | 0.5 U           |
|               |               | 02/06/2019      | N           | 20.3              | 0.5 U           |
|               |               | 02/05/2020      | Ν           | 15.4              | 0.5 U           |

#### Table 2 ter Analytica

# Groundwater Analytical Results (ug/L) McFarland Cascade Pole and Lumber Company McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC Tacoma, Washington

|            |               |                 | IHS:        | Dissolved Arsenic | Dissolved Coppe |
|------------|---------------|-----------------|-------------|-------------------|-----------------|
|            |               |                 | CUL:        | 5                 | 2.4             |
| Location   | Location Type | Collection Date | Sample Type |                   |                 |
|            |               |                 | MW-8 RELs:  | 46                | 22              |
|            |               | 02/26/2015      | N           | 273               | 1.1             |
|            |               | 10/29/2015      | N           | 566               | 0.8             |
|            |               | 10/29/2015      | FD          | 604               | 1.4             |
| MW-8       | Source Area   | 02/24/2016      | Ν           | 236               | 0.5 U           |
| 1V1VV-O    | Well          | 10/06/2016      | Ν           | 594               | 0.5 U           |
|            |               | 02/02/2017      | N           | 160               | 0.797           |
|            |               | 02/06/2018      | N           | 139               | 0.595           |
|            |               | 02/05/2019      | Ν           | 188               | 0.5 U           |
|            |               | 02/04/2020      | Ν           | 112               | 0.5 U           |
|            |               |                 | MW-19 RELs: | 35                | 17              |
|            |               | 02/27/2015      | Ν           | 14                | 0.7             |
|            |               | 10/30/2015      | N           | 36.9*             | 0.5             |
|            |               | 11/24/2015      | N           | 18.2              |                 |
|            | Sentry Well   | 11/24/2015      | FD          | 18.0              |                 |
| MW-19      |               | 02/23/2016      | N           | 9.3               | 0.8             |
|            |               | 10/06/2016      | Ν           | 21.8              | 0.576           |
|            |               | 02/01/2017      | N           | 12.0              | 0.5 U           |
|            |               | 02/07/2018      | N           | 13.0              | 0.5 U           |
|            |               | 02/06/2019      | N           | 14.9              | 0.558           |
|            |               | 02/04/2020      | N           | 14.2              | 0.5 U           |
|            |               |                 | MW-20 RELs: | 29                | 14              |
|            |               | 02/27/2015      | N           | 2.1               | 0.6             |
|            |               | 10/28/2015      | N           | 0.9               | 0.5 U           |
|            |               | 02/23/2016      | N           | 0.6               | 0.5 U           |
| MW-20      | Sentry Well   | 10/05/2016      | N           | 0.966             | 0.5 U           |
|            |               | 02/01/2017      | N           | 0.672             | 0.5 U           |
|            |               | 02/07/2018      | N           | 0.645             | 0.5 U           |
|            |               | 02/06/2019      | N           | 0.493             | 0.5 U           |
|            |               | 02/05/2020      | N           | 0.338             | 0.5 U           |
|            |               |                 | MW-29 RELs: | NA                | NA              |
|            |               | 02/26/2015      | N           | 31.9              | 4               |
|            |               | 10/30/2015      | N           | 55.9              | 1.9             |
|            | Other         | 02/23/2016      | N           | 20.2              | 4.9             |
| UPRR-MW-29 | Monitoring    | 10/06/2016      | N           | 112               | 0.5 U           |
|            | Well          | 02/02/2017      | N           | 13.1              | 3.45            |
|            |               | 02/06/2018      | N           | 18                | 4.61            |
|            |               | 02/05/2019      | N           | 23.9              | 3.91            |
|            |               | 02/05/2020      | N           | 18.5              | 3.29            |

### Table 2

# Groundwater Analytical Results (ug/L) McFarland Cascade Pole and Lumber Company McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC Tacoma, Washington

|               |                     |                 | IHS:        | Dissolved Arsenic | Dissolved Copper |
|---------------|---------------------|-----------------|-------------|-------------------|------------------|
|               |                     |                 | CUL:        | 5                 | 2.4              |
| Location      | Location Type       | Collection Date | Sample Type |                   |                  |
| Deep Water-Be | earing Zone         |                 |             |                   |                  |
|               |                     |                 | MW-7 RELs:  | 43                | 20               |
|               |                     | 02/26/2015      | N           | 0.9               | 0.8              |
|               |                     | 10/29/2015      | N           | 1.4               | 0.7              |
|               |                     | 02/24/2016      | N           | 0.7               | 0.5 U            |
| MW-7          | Sentry Well         | 10/06/2016      | Ν           | 0.668             | 0.5 U            |
|               |                     | 02/02/2017      | N           | 0.709             | 0.5 U            |
|               |                     | 02/06/2018      | N           | 0.704             | 0.5 U            |
|               |                     | 02/05/2019      | N           | 0.88              | 0.546            |
|               |                     | 02/04/2020      | Ν           | 0.774             | 0.851            |
|               |                     |                 | MW-14 RELs: | 47                | 22               |
|               | 2                   | 02/27/2015      | N           | 10.5              | 6                |
|               |                     | 10/29/2015      | N           | 2.8               | 0.6              |
|               |                     | 02/24/2016      | N           | 4.5               | 3.2              |
| MW-14         | Source Area<br>Well | 10/05/2016      | Ν           | 2.86              | 0.5 U            |
|               | VVGII               | 02/02/2017      | N           | 3.04              | 0.551            |
|               |                     | 02/06/2018      | N           | 2.47              | 0.5 U            |
|               |                     | 02/06/2019      | N           | 2.05              | 0.5 U            |
|               |                     | 02/04/2020      | N           | 3.35              | 0.5 U            |
|               |                     |                 | MW-18 RELs: | 42                | 20               |
|               |                     | 02/27/2015      | N           | 0.6               | 1.1              |
|               |                     | 10/28/2015      | N           | 0.4               | 0.5 U            |
|               |                     | 02/24/2016      | N           | 0.2               | 0.6              |
| MW-18         | Sentry Well         | 10/05/2016      | N           | 0.283             | 0.5 U            |
|               |                     | 02/02/2017      | N           | 0.287             | 1.04             |
|               |                     | 02/06/2018      | N           | 0.2 U             | 0.5 U            |
|               |                     | 02/05/2019      | N           | 0.2 U             | 0.5 U            |
|               |                     | 02/04/2020      | N           | 0.224             | 0.681            |

#### Table 2

#### MAUL FOSTER ALONGI Groundwater Analytical Results (ug/L) McFarland Cascade Pole and Lumber Company McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC Tacoma, Washington

#### NOTES:

Bold and highlighted values indicate an REL exceedance. Method reporting limits for non-detect results were not compared to

Bold values indicate a CUL exceedance. Method reporting limits for non-detect results were not compared to CULs.

-- = not analyzed.

CUL = cleanup level.

FD = field duplicate.

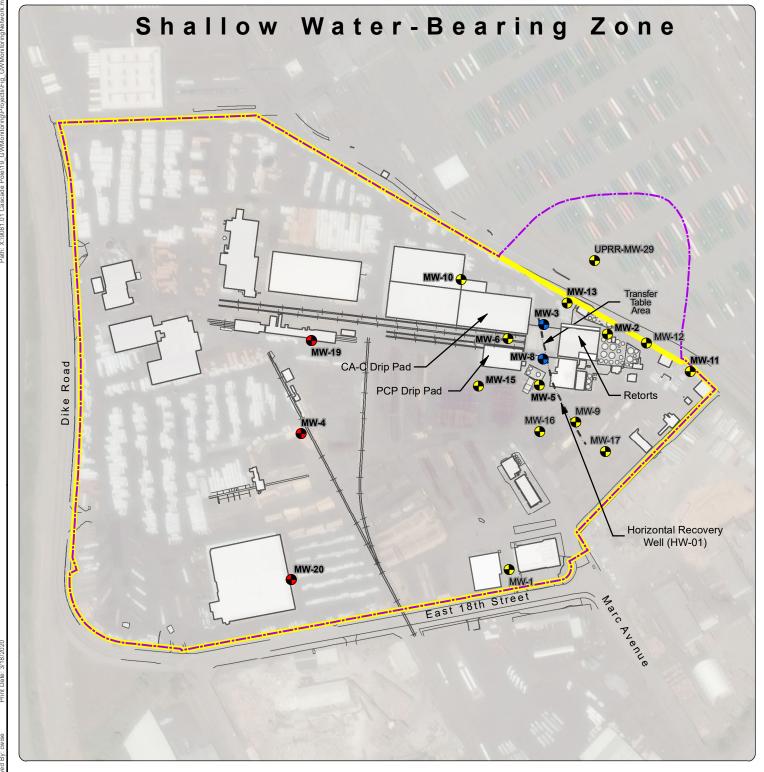
IHS = indicator hazardous substance.

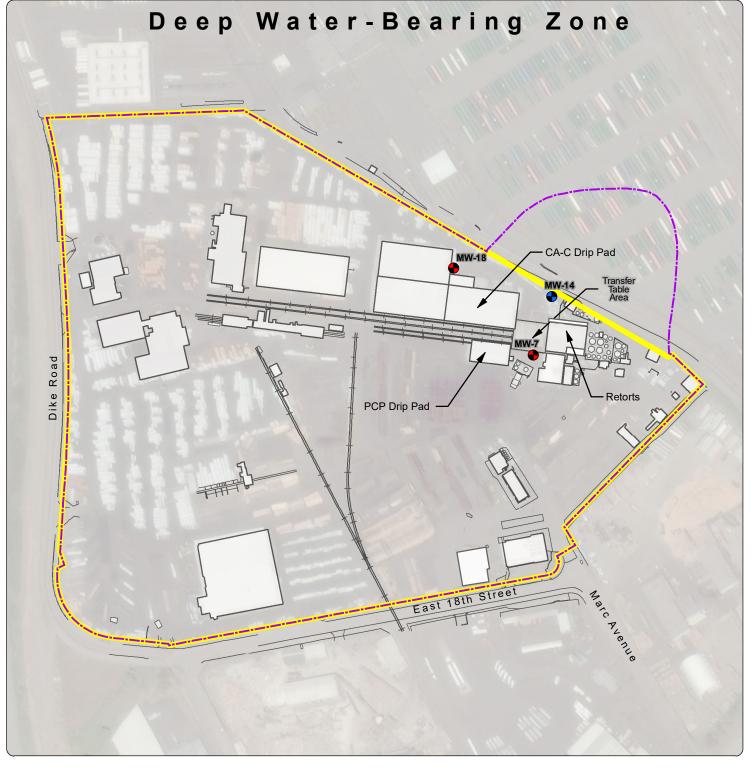
J = Result is an estimated value.

N = normal.

NA = not available/not applicable.

REL = remediation level.


U = Analyte not detected at or above method reporting limit.


ug/L = micrograms per liter.

\*Detection was determined not to be representative of aquifer conditions because of elevated turbidity in the sample. Following redevelopment of the well, an additional sample was collected from the location on November 24, 2015.

# **FIGURES**







Source: Aerial photograph obtained from Esri ArcGIS Online; site layout and features obtained from AECOM Environment, RETEC, MKA and USPCI.



This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

#### NOTES:

Water levels in the horizontal recovery well (HW-01) will not be monitored.

The Port of Tacoma property well, UPRR-MW-29, is not a sentry well and is not included in the compliance monitoring network. It will be monitored during the "Protection," "Performance," and "Confirmational" stages of monitoring to evaluate indicator hazardous substance concentration and hydraulic gradient trends, but will not be evaluated for compliance with RELs or CULs. However, this well is included in the final closure monitoring network and will be monitored for compliance with CULs during the "Final Closure" stage of monitoring.

CA-C = copper azole - type C.

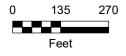
CUL = cleanup level.
PCP = pentachlorophenol.

REL = remediation level.

#### Legend

### Compliance Monitoring Network Includes:

- Sentry Well
- Source Area Well


### Water Level Monitoring Network Includes:

- Sentry Well
- Source Area Well
- Other Monitoring Well


# Rail Line Site Boundary Property Boundary

# Figure 1 Groundwater Monitoring Network

McFarland Cascade Pole and Lumber Company Tacoma, Washington







Deep Water-Bearing Zone MW-18 4.20' MW-14 CA-C Drip Pad PCP Drip Pad East 18th Street

from AECOM Environment, RETEC, MKA and

NOTES:

CA-C = copper azole - type C. NGVD29 = National Geodetic Vertical Datum of 1929. PCP = pentachlorophenol.

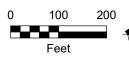
MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com



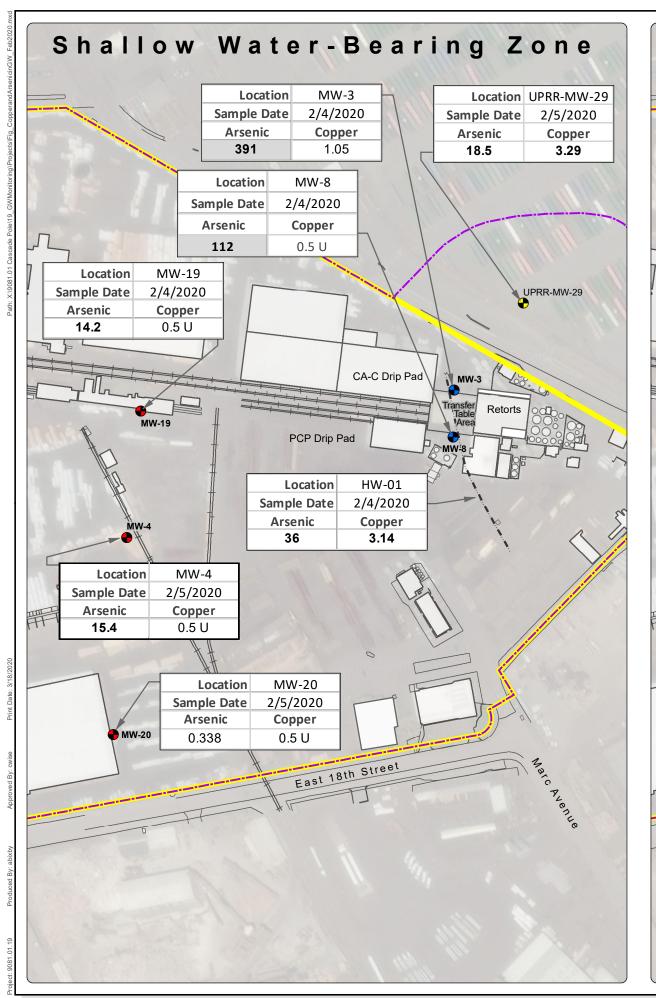
---- Horizontal Recovery Well

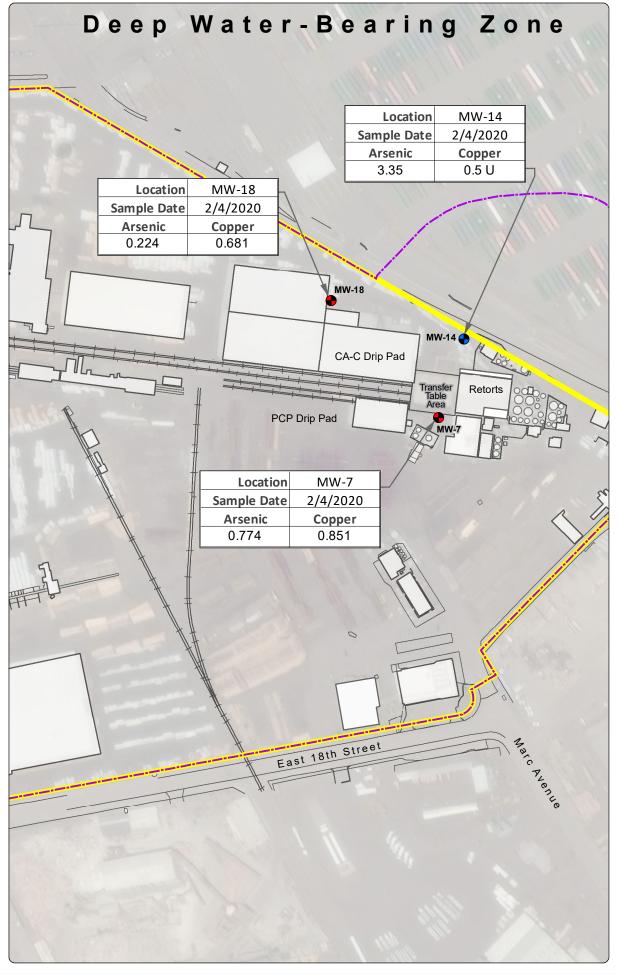
#### Legend

Water Level Monitoring Network Well (with Groundwater Elevation in Feet, NGVD29)


Shallow Groundwater Elevation Contour (0.5 ft.)

Deep Groundwater Elevation Contour (0.05 ft.)


Groundwater Flow Direction (approximate)


#### Figure 2 **Groundwater Elevation Contours** February 2020

McFarland Cascade Pole and Lumber Company Tacoma, Washington



This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or





#### Figure 3 **Dissolved Copper and Arsenic in Groundwater** February 2020

McFarland Cascade Pole and Lumber Company Tacoma, Washington

#### Legend

⊨ Rail Line



Property Boundary

#### **Compliance Monitoring Network Includes:**

- Sentry Well
- Source Area Well

#### **Not Included in Compliance Monitoring Network:**

Other Monitoring Well

All values are shown in ug/L.

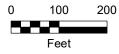
**Bold** values indicate a CUL exceedance. **Bold** and highlighted cell values indicate an REL exceedance.

Arsenic CUL = 5 ug/L

Copper CUL = 2.4 ug/L.

The greater of the parent or duplicate concentration is shown.

CA-C = copper-azole - type C.


CUL = cleanup level.

PCP = pentachlorophenol.

REL = remediation level. Remediation levels are identified in Table 2.

U = analyte not detected at or above method reporting limit.

ug/L = micrograms per liter.





Source: Aerial photograph obtained from Esri ArcGIS Online; site layout and features obtained from AECOM Environment, RETEC, MKA and



This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or

# ATTACHMENT A

FIELD SAMPLING DATA SHEETS



109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | HW-01        |
|----------------|------------------------------------|-----------------|--------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby     |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/4/2020     |
| Sampling Event | February 2020                      | Sample Name     | HW01-020420  |
| Sub Area       |                                    | Sample Depth    |              |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC |

#### **Hydrology/Level Measurements**

|      |      |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|------|------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date | Time | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
|      |      |           |            |          |                     |                |                             |
|      |      |           |            |          |                     |                |                             |

 $(0.75" = 0.023 \; \text{gal/ft}) \; (1" = 0.041 \; \text{gal/ft}) \; (1.5" = 0.092 \; \text{gal/ft}) \; (2" = 0.163 \; \text{gal/ft}) \; (3" = 0.367 \; \text{gal/ft}) \; (4" = 0.653 \; \text{gal/ft}) \; (6" = 1.469 \; \text{gal/ft}) \; (8" = 2.611 \;$ 

#### Water Quality Data

| Purge Method           | Time | Purge Vol (gal) | Flowrate l/min | pН | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP | Turbidity |
|------------------------|------|-----------------|----------------|----|----------|----------------|-----------|-----|-----------|
|                        |      |                 |                |    |          |                |           |     |           |
|                        |      |                 |                |    |          |                |           |     |           |
|                        |      |                 |                |    |          |                |           |     |           |
|                        |      |                 |                |    |          |                |           |     |           |
|                        |      |                 |                |    |          |                |           |     |           |
|                        |      |                 |                |    |          |                |           |     |           |
| Final Field Parameters |      |                 |                |    |          |                |           |     |           |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### **Water Quality Observations:**

Clear with particulates; yellowish brown tint; no odor.

| Sampling Method                              | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------------------------------|-------------|---------------|-----------------------------|---|----------|
| (7) Other (specify)                          | Groundwater | 11:20:00 AM   | VOA-Glass                   |   |          |
| <u>,                                    </u> |             | 1             | Amber Glass                 |   |          |
|                                              |             |               | White Poly                  |   |          |
|                                              |             |               | Yellow Poly                 |   |          |
|                                              |             |               | Green Poly                  |   |          |
|                                              |             |               | Red Total Poly              |   |          |
|                                              |             |               | Red Dissolved Poly          | 1 | Yes      |
|                                              |             |               | Total Bottles               | 1 |          |

| General | Samp | ling ( | Comments |
|---------|------|--------|----------|
|---------|------|--------|----------|

| Gra | b sample from horizon | ntal recovery well. Fi | eld filtered. |  |  |
|-----|-----------------------|------------------------|---------------|--|--|
|     |                       |                        |               |  |  |
|     |                       |                        |               |  |  |
|     |                       |                        |               |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location        | MW-3          |
|----------------|------------------------------------|------------------------|---------------|
| Project #      | 9081.01.19                         | Sampler                | A. Bixby      |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date 2/4/2020 |               |
| Sampling Event | February 2020                      | Sample Name            | MW3-GW-020420 |
| Sub Area       |                                    | Sample Depth           | 7.5           |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting                | Northing TOC  |

#### **Hydrology/Level Measurements**

|          |      |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 9:22 | 10.53     |            | 5.96     |                     | 4.57           | 0.74                        |

 $(0.75" = 0.023 \; \text{gal/ft}) \; (1" = 0.041 \; \text{gal/ft}) \; (1.5" = 0.092 \; \text{gal/ft}) \; (2" = 0.163 \; \text{gal/ft}) \; (3" = 0.367 \; \text{gal/ft}) \; (4" = 0.653 \; \text{gal/ft}) \; (6" = 1.469 \; \text{gal/ft}) \; (8" = 2.611 \;$ 

#### **Water Quality Data**

| Purge Method           | Time        | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP  | Turbidity |
|------------------------|-------------|-----------------|----------------|------|----------|----------------|-----------|------|-----------|
| (2) Peristaltic Pump   | 10:45:00 AM | 1               | 0.2            | 6.53 | 11.8     | 975            | 0.24      | 78.6 | 8.86      |
|                        | 10:50:00 AM | 1.1             | 0.2            | 6.53 | 11.3     | 978            | 0.24      | 76.9 | 8.23      |
|                        | 10:55:00 AM | 1.2             | 0.2            | 6.56 | 11.2     | 979            | 0.2       | 71.6 | 5.74      |
|                        |             |                 |                |      |          |                |           |      |           |
|                        |             |                 |                |      |          |                |           |      |           |
|                        |             |                 |                |      |          |                |           |      |           |
| Final Field Parameters | 10:58:00 AM | 1.2             | 0.2            | 6.56 | 11.2     | 979            | 0.19      | 71.1 | 5.62      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### **Water Quality Observations:**

Clear; colorless; slight sulfur-like odor; no sheen.

#### **Sample Information**

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 11:00:00 AM   | VOA-Glass                   |   |          |
| ,                    |             | 1             | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

#### **General Sampling Comments**

Began purge at 10:20. Field filtered.

Field duplicate MWDUP-GW-020420 collected here.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name           | McFarland Cascade Holdings, Inc.   | Sample Location | MW-4          |
|-----------------------|------------------------------------|-----------------|---------------|
| Project #             | 9081.01.19                         | Sampler         | A. Bixby      |
| Project Name          | Cascade Pole Compliance Monitoring | Sampling Date   | 2/5/2020      |
| <b>Sampling Event</b> | February 2020                      | Sample Name     | MW4-GW-020520 |
| Sub Area              |                                    | Sample Depth    | 10            |
| FSDS QA:              | S. Maloney 2/19/2020               | Easting         | Northing TOC  |

#### **Hydrology/Level Measurements**

|          |       |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|-------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time  | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 16:32 | 13.07     |            | 6.83     |                     | 6.24           | 1.02                        |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$ 

#### Water Quality Data

| Purge Method           | Time        | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|-------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 10:50:00 AM | 2.6             | 0.2            | 6.06 | 11.7     | 901            | 0.32      | 123.4 | 28.1      |
|                        | 10:55:00 AM | 2.8             | 0.2            | 6.09 | 11.7     | 910            | 0.3       | 118.5 | 23        |
|                        | 11:00:00 AM | 3               | 0.2            | 6.12 | 11.7     | 908            | 0.32      | 113.6 | 23.2      |
|                        | 11:05:00 AM | 3.2             | 0.2            | 6.15 | 11.7     | 902            | 0.34      | 110.3 | 22.6      |
|                        | 11:10:00 AM | 3.5             | 0.2            | 6.15 | 11.7     | 904            | 0.3       | 108.5 | 17.8      |
|                        | 11:15:00 AM | 3.7             | 0.2            | 6.16 | 11.7     | 908            | 0.29      | 105.3 | 17.1      |
| Final Field Parameters | 11:20:00 AM | 3.9             | 0.2            | 6.17 | 11.7     | 908            | 0.27      | 104.3 | 13.9      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations:

Cloudy; orange tint; no odor; no sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 11:35:00 AM   | VOA-Glass                   |   |          |
|                      |             | 1             | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General  | Samr | linσ | Comments  |
|----------|------|------|-----------|
| Other ar | Same | m    | Committee |

| Began purge at 8:25. Field filtered. |  |  |
|--------------------------------------|--|--|
|                                      |  |  |
|                                      |  |  |
|                                      |  |  |
|                                      |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | MW-7          |
|----------------|------------------------------------|-----------------|---------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby      |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/4/2020      |
| Sampling Event | February 2020                      | Sample Name     | MW7-GW-020420 |
| Sub Area       |                                    | Sample Depth    | 20            |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC  |

#### **Hydrology/Level Measurements**

|          |       |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|-------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time  | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 11:25 | 24.89     |            | 7.58     |                     | 17.31          | 2.82                        |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.041 \; gal/ft) \; (1.5" = 0.041 \; gal/ft) \; (1.5" = 0.041 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.041 \; gal/ft) \; (1.5" = 0.041 \; gal/ft) \; (1.5" = 0.041 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (8" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \; (1.5" = 0.041 \; gal/f$ 

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 2:15:00 PM | 2.5             | 0.2            | 7.12 | 10.9     | 2190           | 0.23      | 8     | 9.47      |
|                        | 2:20:00 PM | 2.7             | 0.2            | 7.14 | 11.3     | 2186           | 0.19      | -18.2 | 9.43      |
|                        | 2:25:00 PM | 2.9             | 0.2            | 7.15 | 11.8     | 2184           | 0.15      | -20.4 | 7.37      |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 2:30:00 PM | 3.2             | 0.2            | 7.15 | 11.4     | 2190           | 0.16      | -21.8 | 7.26      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations:

Clear; gray tint; no odor; sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 2:40:00 PM    | VOA-Glass                   |   |          |
|                      |             | 1             | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| Cananal | Camp | lina | Commonto |
|---------|------|------|----------|
| Generai | Samp | ling | Comments |

| Began purge at 13:20. Field filtered. |  |  |  |
|---------------------------------------|--|--|--|
|                                       |  |  |  |
|                                       |  |  |  |
|                                       |  |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | MW-8          |
|----------------|------------------------------------|-----------------|---------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby      |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/4/2020      |
| Sampling Event | February 2020                      | Sample Name     | MW8-GW-020420 |
| Sub Area       |                                    | Sample Depth    | 10            |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC  |

#### **Hydrology/Level Measurements**

|          |       |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|-------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time  | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 11:28 | 12.29     |            | 7.49     |                     | 4.8            | 0.78                        |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$ 

#### **Water Quality Data**

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP  | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|------|-----------|
| (2) Peristaltic Pump   | 3:15:00 PM | 0.8             | 0.2            | 6.06 | 9.2      | 474.3          | 0.32      | 32.3 | 12.1      |
|                        | 3:20:00 PM | 1               | 0.2            | 6.06 | 9.4      | 471.2          | 0.39      | 33   | 8.09      |
|                        | 3:25:00 PM | 1.2             | 0.3            | 6.05 | 9.4      | 472            | 0.31      | 34.8 | 8.86      |
|                        |            |                 |                |      |          |                |           |      |           |
|                        |            |                 |                |      |          |                |           |      |           |
|                        |            |                 |                |      |          |                |           |      |           |
| Final Field Parameters | 3:28:00 PM | 1.4             | 0.3            | 6.05 | 9.5      | 471.8          | 0.36      | 35   | 8.73      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations:

Clear; no odor; no sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 3:30:00 PM    | VOA-Glass                   |   |          |
| ,                    |             | 1             | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General | Samp | ling | Comments |
|---------|------|------|----------|
|---------|------|------|----------|

| Began purge at 14:50. Field filtered. |  |  |
|---------------------------------------|--|--|
|                                       |  |  |
|                                       |  |  |
|                                       |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

#### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | UPRR-MW-29         |
|----------------|------------------------------------|-----------------|--------------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby           |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/5/2020           |
| Sampling Event | February 2020                      | Sample Name     | UPRRMW29-GW-020520 |
| Sub Area       |                                    | Sample Depth    | 10                 |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC       |

#### **Hydrology/Level Measurements**

|          |       |           | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |         |             |
|----------|-------|-----------|---------------------|----------------|-----------------------------|---------|-------------|
| Date     | Time  | DT-Bottom | DT-Product          | DT-Water       | DTP-DTW                     | DTB-DTW | Pore Volume |
| 2/5/2020 | 13:40 | 15.48     | 3.68                | 3.64           | 0.01                        | 11.84   | 1.93        |

 $(0.75" = 0.023 \text{ gal/ft}) \ (1" = 0.041 \text{ gal/ft}) \ (1.5" = 0.092 \text{ gal/ft}) \ (2" = 0.163 \text{ gal/ft}) \ (3" = 0.367 \text{ gal/ft}) \ (4" = 0.653 \text{ gal/ft}) \ (6" = 1.469 \text{ gal/ft}) \ (8" = 2.611 \text{ gal/ft}) \ (8" = 2.611$ 

#### **Water Quality Data**

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP  | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|------|-----------|
| (2) Peristaltic Pump   | 2:35:00 PM | 1.6             | 0.3            | 6.64 | 10.3     | 120.8          | 0.32      | 72.4 | 12.5      |
|                        | 2:40:00 PM | 1.8             | 0.3            | 6.61 | 10.3     | 121.1          | 0.29      | 72.1 | 11.4      |
|                        | 2:45:00 PM | 2               | 0.3            | 6.6  | 10.3     | 122.2          | 0.3       | 71.9 | 9.72      |
|                        |            |                 |                |      |          |                |           |      |           |
|                        |            |                 |                |      |          |                |           |      |           |
|                        |            |                 |                |      |          |                |           |      |           |
| Final Field Parameters | 2:48:00 PM | 2.2             | 0.3            | 6.6  | 10.4     | 120.9          | 0.29      | 71.9 | 9.47      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### **Water Quality Observations:**

Clear with large black particulates; colorless; slight petroleum-hydrocarbon-like odor; sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 3:00:00 PM    | VOA-Glass                   |   |          |
| ,                    |             | 1             | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General  | Samr | linσ | Comments  |
|----------|------|------|-----------|
| Other ar | Same | m    | Committee |

| Began purge at 13:45. Field filtered. |  |  |
|---------------------------------------|--|--|
|                                       |  |  |
|                                       |  |  |
|                                       |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

## Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | MW-14          |
|----------------|------------------------------------|-----------------|----------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby       |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/4/2020       |
| Sampling Event | February 2020                      | Sample Name     | MW14-GW-020420 |
| Sub Area       |                                    | Sample Depth    | 20             |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC   |

#### **Hydrology/Level Measurements**

|          |      |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 8:25 | 24.73     |            | 7.81     |                     | 16.92          | 2.76                        |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$ 

#### Water Quality Data

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP  | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|------|-----------|
| (2) Peristaltic Pump   | 9:40:00 AM | 2.6             | 0.2            | 6.87 | 10.8     | 1894           | 0.14      | 44   | 13.1      |
|                        | 9:45:00 AM | 2.8             | 0.2            | 6.88 | 10.7     | 1901           | 0.14      | 37.9 | 13.3      |
|                        | 9:50:00 AM | 2.9             | 0.2            | 6.9  | 10.5     | 1902           | 0.12      | 34.8 | 13.4      |
|                        |            |                 |                |      |          |                |           |      |           |
|                        |            |                 |                |      |          |                |           |      |           |
|                        |            |                 |                |      |          |                |           |      |           |
| Final Field Parameters | 9:53:00 AM | 3               | 0.2            | 6.9  | 10.3     | 1899           | 0.12      | 34.4 | 13.2      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### **Water Quality Observations:**

Cloudy, then clear; grayish-brown tint; no odor; sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 10:00:00 AM   | VOA-Glass                   |   |          |
|                      |             |               | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General | Sampl | ling | Comments |
|---------|-------|------|----------|
|---------|-------|------|----------|

| Began purge at 8:30. Field filtered. |  |  |
|--------------------------------------|--|--|
|                                      |  |  |
|                                      |  |  |
|                                      |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | MW-18          |
|----------------|------------------------------------|-----------------|----------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby       |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/4/2020       |
| Sampling Event | February 2020                      | Sample Name     | MW18-GW-020420 |
| Sub Area       |                                    | Sample Depth    | 20             |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC   |

#### **Hydrology/Level Measurements**

|          |       |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|-------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time  | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 11:35 | 26.89     |            | 8.03     |                     | 18.86          | 3.07                        |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$ 

#### **Water Quality Data**

| Purge Method           | Time        | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP  | Turbidity |
|------------------------|-------------|-----------------|----------------|------|----------|----------------|-----------|------|-----------|
| (2) Peristaltic Pump   | 12:35:00 PM | 2.5             | 0.2            | 7.1  | 11.5     | 1808           | 0.24      | 101  | 19.5      |
|                        | 12:40:00 PM | 2.7             | 0.2            | 7.13 | 11.5     | 1807           | 0.19      | 97.8 | 19.1      |
|                        | 12:45:00 PM | 2.9             | 0.2            | 7.16 | 11.5     | 1807           | 0.17      | 92.8 | 19.3      |
|                        |             |                 |                |      |          |                |           |      |           |
|                        |             |                 |                |      |          |                |           |      |           |
|                        |             |                 |                |      |          |                |           |      |           |
| Final Field Parameters | 12:48:00 PM | 3.1             | 0.2            | 7.17 | 11.7     | 1807           | 0.15      | 91   | 16.5      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations:

Clear with orangish-yellow particulates; yellow tint; no odor; no sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 12:55:00 PM   | VOA-Glass                   |   |          |
|                      |             |               | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General | Samp | ling | Comments |
|---------|------|------|----------|

| Began purge at 11:45. Field filtered. |  |  |  |
|---------------------------------------|--|--|--|
|                                       |  |  |  |
|                                       |  |  |  |
|                                       |  |  |  |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

### Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | MW-19          |
|----------------|------------------------------------|-----------------|----------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby       |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/4/2020       |
| Sampling Event | February 2020                      | Sample Name     | MW19-GW-020420 |
| Sub Area       |                                    | Sample Depth    | 12             |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC   |

#### **Hydrology/Level Measurements**

|          |       |           |            |          | (Product Thickness) | (Water Column) | (Gallons/ft x Water Column) |
|----------|-------|-----------|------------|----------|---------------------|----------------|-----------------------------|
| Date     | Time  | DT-Bottom | DT-Product | DT-Water | DTP-DTW             | DTB-DTW        | Pore Volume                 |
| 2/4/2020 | 15:50 | 13.72     |            | 9.41     |                     | 4.31           | 0.7                         |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$ 

#### **Water Quality Data**

| Purge Method           | Time       | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 5:40:00 PM | 2.2             | 0.1            | 5.79 | 10.5     | 840            | 0.4       | 126.2 | 11.8      |
|                        | 5:45:00 PM | 2.2             | 0.1            | 5.81 | 10.3     | 843            | 0.38      | 123.8 | 10.2      |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
|                        |            |                 |                |      |          |                |           |       |           |
| Final Field Parameters | 5:50:00 PM | 2.3             | 0.1            | 5.84 | 10.3     | 842            | 0.34      | 119.9 | 9.55      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations:

Clear; yellowish-brown tint; sulfur-like odor; no sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 6:00:00 PM    | VOA-Glass                   |   |          |
|                      |             | 1             | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General | Samn | linσ | Comments |
|---------|------|------|----------|
| Guluan  | Samp | ши   | Comments |

| Began purge at 15:55. Field filtered. |
|---------------------------------------|
|                                       |
|                                       |
|                                       |

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

## Water Field Sampling Data Sheet

| Client Name    | McFarland Cascade Holdings, Inc.   | Sample Location | MW-20          |
|----------------|------------------------------------|-----------------|----------------|
| Project #      | 9081.01.19                         | Sampler         | A. Bixby       |
| Project Name   | Cascade Pole Compliance Monitoring | Sampling Date   | 2/5/2020       |
| Sampling Event | February 2020                      | Sample Name     | MW20-GW-020520 |
| Sub Area       |                                    | Sample Depth    | 12             |
| FSDS QA:       | S. Maloney 2/19/2020               | Easting         | Northing TOC   |

#### **Hydrology/Level Measurements**

| (Product Thickness) (Water Column) (Gallons/ft x |       |           |            |          |         |         | (Gallons/ft x Water Column) |
|--------------------------------------------------|-------|-----------|------------|----------|---------|---------|-----------------------------|
| Date                                             | Time  | DT-Bottom | DT-Product | DT-Water | DTP-DTW | DTB-DTW | Pore Volume                 |
| 2/5/2020                                         | 11:45 | 14.12     |            | 8.4      |         | 5.72    | 0.93                        |

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$ 

#### Water Quality Data

| Purge Method           | Time        | Purge Vol (gal) | Flowrate l/min | pН   | Temp (C) | E Cond (uS/cm) | DO (mg/L) | ORP   | Turbidity |
|------------------------|-------------|-----------------|----------------|------|----------|----------------|-----------|-------|-----------|
| (2) Peristaltic Pump   | 12:35:00 PM | 1               | 0.2            | 6.48 | 11       | 784            | 0.45      | 126   | 14.9      |
|                        | 12:40:00 PM | 1.2             | 0.2            | 6.47 | 11       | 762            | 0.48      | 126.6 | 14.9      |
|                        | 12:45:00 PM | 1.4             | 0.2            | 6.47 | 11       | 762            | 0.51      | 125.2 | 14.8      |
|                        | 12:50:00 PM | 1.5             | 0.2            | 6.5  | 11       | 762            | 0.52      | 120.2 | 12.7      |
|                        | 12:55:00 PM | 1.7             | 0.2            | 6.51 | 10.8     | 759            | 0.5       | 117.9 | 7.43      |
|                        | 1:00:00 PM  | 1.9             | 0.2            | 6.52 | 10.8     | 763            | 0.53      | 116.1 | 7.33      |
| Final Field Parameters | 1:05:00 PM  | 2.1             | 0.2            | 6.52 | 10.8     | 764            | 0.54      | 113.2 | 7.32      |

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

#### Water Quality Observations:

Clear; slight yellow tint; no odor; slight sheen.

| Sampling Method      | Sample Type | Sampling Time | Container Code/Preservative | # | Filtered |
|----------------------|-------------|---------------|-----------------------------|---|----------|
| (2) Peristaltic Pump | Groundwater | 1:10:00 PM    | VOA-Glass                   |   |          |
| '                    |             |               | Amber Glass                 |   |          |
|                      |             |               | White Poly                  |   |          |
|                      |             |               | Yellow Poly                 |   |          |
|                      |             |               | Green Poly                  |   |          |
|                      |             |               | Red Total Poly              |   |          |
|                      |             |               | Red Dissolved Poly          | 1 | Yes      |
|                      |             |               | Total Bottles               | 1 |          |

| General  | Samn | lino | Comments |
|----------|------|------|----------|
| Other ar | Samp | ши   | Comments |

| Began purge at 11:50. Field filtered. |  |  |  |
|---------------------------------------|--|--|--|
|                                       |  |  |  |
|                                       |  |  |  |

# ATTACHMENT B

WELL REDEVELOPMENT LOGS







| Project No.:     | Project No.: 9081.01.19 |                    |                | Date:                | 2/3/2020     |              |            |                                                            |  |  |
|------------------|-------------------------|--------------------|----------------|----------------------|--------------|--------------|------------|------------------------------------------------------------|--|--|
| Site Location    | n:                      | 1640 East M        | Iarc Street, T | 'acoma, WA           | Well:        | MW-4         |            |                                                            |  |  |
| Name:            |                         | Cascade Pol        | e Complianc    | e Monitoring         | Initial DTB: | 13.07        |            | Final DTB: 13.00                                           |  |  |
| Developmen       | nt Method:              | Surge and p        | urge           |                      | Initial DTW: | 6.89         |            | Final DTW: 6.85                                            |  |  |
| Total Water      | Removed:                | 7.5 gallons        |                |                      | Pore Volume: |              | 1.0 gallon |                                                            |  |  |
| Water Contained: |                         | 5-gallon buc       | kets           |                      | Casing Diame | ter:         | 2 inches   |                                                            |  |  |
| Time             | Cum. Vol<br>Removed     | Turbidity<br>(NTU) | рН             | Conductivity (uS/cm) | Temp<br>(°C) | DO<br>(mg/L) | ORP        | Comments                                                   |  |  |
| 15:12            | 0                       |                    |                |                      |              |              |            | Surge with bailer.                                         |  |  |
| 15:20            | 0                       |                    |                |                      |              |              |            | Begin purging with bailer.                                 |  |  |
| 15:30            | 5.0                     |                    |                |                      |              |              |            | Stop purging with bailer.                                  |  |  |
| 15:34            | 5.0                     |                    |                |                      |              |              |            | Begin purging with peristaltic pump.                       |  |  |
| 16:02            | 6.0                     | 88.8               |                |                      |              |              |            |                                                            |  |  |
| 16:05            | 6.2                     | 52.1               |                |                      |              |              |            |                                                            |  |  |
| 16:12            | 6.5                     | 60.7               |                |                      |              |              |            |                                                            |  |  |
| 16:15            | 6.7                     | 66.1               |                |                      |              |              |            | Pull up tubing in well slightly.                           |  |  |
| 16:20            | 7.0                     | 33.8               |                |                      |              |              |            |                                                            |  |  |
| 16:25            | 7.3                     | 60.8               |                |                      |              |              |            | Water level drawing down. Purge sediment from well bottom. |  |  |
| 16:30            | 7.5                     | 62.3               |                |                      |              |              |            | Well goes dry. Complete well redevelopment.                |  |  |
| NI - 4           |                         |                    |                |                      |              |              |            |                                                            |  |  |

#### Notes:

The YSI water quality meter was not functioning properly at time of well redevelopment; therefore, water quality parameters could not be measured and recorded.

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.





| Project No.:  | :                   | 9081.01.19         |                |                      | Date:        | 2/3/2020     |            |                                                         |  |  |
|---------------|---------------------|--------------------|----------------|----------------------|--------------|--------------|------------|---------------------------------------------------------|--|--|
| Site Location | n:                  | 1640 East M        | larc Street, T | acoma, WA            | Well:        | MW-19        |            |                                                         |  |  |
| Name:         |                     | Cascade Pol        | e Complianc    | e Monitoring         | Initial DTB: | 13.75        |            | Final DTB: 13.76                                        |  |  |
| Developmen    | nt Method:          | Surge and pr       | urge           |                      | Initial DTW: | 9.46         |            | Final DTW: 10.02                                        |  |  |
| Total Water   | Removed:            | 7.5 gallons        |                |                      | Pore Volume: |              | 0.7 gallon |                                                         |  |  |
| Water Conta   | ained:              | 5-gallon buc       | kets           |                      | Casing Diame | ter:         | 2 inches   |                                                         |  |  |
| Time          | Cum. Vol<br>Removed | Turbidity<br>(NTU) | рН             | Conductivity (uS/cm) | Temp<br>(°C) | DO<br>(mg/L) | ORP        | Comments                                                |  |  |
| 13:00         | 0                   |                    |                |                      |              |              |            | Surge with bailer.                                      |  |  |
| 13:07         | 0                   |                    |                |                      |              |              |            | Begin purging with bailer.                              |  |  |
| 13:12         | 2.0                 |                    |                |                      |              |              |            | Water level 12.10'. Pause purging to allow recharge.    |  |  |
| 13:20         | 2.0                 |                    |                |                      |              |              |            | Water level at 10.00'. Resume purgit with bailer.       |  |  |
| 13:26         | 4.0                 |                    |                |                      |              |              |            | Water level at 12.15'. Pause purging to allow recharge. |  |  |
| 13:40         | 4.0                 |                    |                |                      |              |              |            | Water level 9.87'. Resume purging with bailer.          |  |  |
| 13:42         | 5.0                 |                    |                |                      |              |              |            | Stop purging with bailer.                               |  |  |
| 13:50         | 5.0                 |                    |                |                      |              |              |            | Begin purging with peristaltic pump.                    |  |  |
| 14:12         | 6.0                 | 24.6               |                |                      |              |              |            |                                                         |  |  |
| 14:30         | 6.5                 | 20.4               |                |                      |              |              |            |                                                         |  |  |
| 14:50         |                     |                    |                |                      |              |              |            |                                                         |  |  |
| 14:55         | 7.5                 | 20.3               |                |                      |              |              |            | Complete well redevelopment.                            |  |  |

#### Notes

The YSI water quality meter was not functioning properly at time of well redevelopment; therefore, water quality parameters could not be measured and recorded.

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

NTU = nephelometric turbidity unit.

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.





| Project No.:                      |                     | 9081.01.19         |               |                      | Date:        | 2/3/2020     |            |                                      |
|-----------------------------------|---------------------|--------------------|---------------|----------------------|--------------|--------------|------------|--------------------------------------|
| Site Locatio                      | n:                  | 1640 East M        | arc Street, T | acoma, WA            | Well:        | MW-20        |            |                                      |
| Name:                             |                     | Cascade Pol        | e Complianc   | e Monitoring         | Initial DTB: | 14.12        |            | Final DTB: 14.12                     |
| Developmen                        | nt Method:          | Surge and pr       | ırge          |                      | Initial DTW: | 8.46         |            | Final DTW: 8.87                      |
| Total Water                       | Removed:            | 8.9 gallons        |               |                      | Pore Volume: |              | 0.9 gallon |                                      |
| Water Contained: 5-gallon buckets |                     | Casing Diame       | ter:          | 2 inches             |              |              |            |                                      |
| Time                              | Cum. Vol<br>Removed | Turbidity<br>(NTU) | рН            | Conductivity (uS/cm) | Temp<br>(°C) | DO<br>(mg/L) | ORP        | Comments                             |
| 16:45                             | 0                   |                    |               |                      |              |              |            | Surge with bailer.                   |
| 16:55                             | 0                   |                    |               |                      |              |              |            | Begin purging with bailer.           |
| 17:04                             | 7.0                 |                    |               |                      |              |              |            | Stop purging with bailer.            |
| 17:08                             | 7.0                 |                    |               |                      |              |              |            | Begin purging with peristaltic pump. |
| 17:30                             | 8.5                 | 19.7               |               |                      |              |              |            |                                      |
| 17:35                             | 8.7                 | 16.0               |               |                      |              |              |            |                                      |
| 17:40                             | 8.9                 | 14.5               |               |                      |              |              |            | Complete well redevelopment.         |
| NI - 4                            |                     | -                  | -             |                      |              |              |            | _                                    |

#### Notes:

The YSI water quality meter was not functioning properly at time of well redevelopment; therefore, water quality parameters could not be measured and recorded.

Cum. = cumulative.

DO = dissolved oxygen.

DTB = depth to bottom.

DTW = depth to water.

mg/L = milligrams per liter.

 $\label{eq:normalized} NTU = nephelometric turbidity unit.$ 

ORP = oxygen reduction potential.

uS/cm = microsiemens per centimeter.

# ATTACHMENT C

ANALYTICAL LABORATORY REPORT





18 February 2020

Carolyn Wise Maul, Foster & Alongi, Inc. 2001 NW 19th Avenue, Suite 200 Portland, WA 97209

RE: Cascade Pole 9081

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

20B0072

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Cert# 10000

Chain of Custody Record & Laboratory Analysis Request

| ARI Assigned Number:                          | Turn-ard                 | ound Re    | equested: |              |                             | Page              | ,     |               | 2                           |              |   | Analyti                    | cal Resources, Incorporated cal Chemists and Consultants |
|-----------------------------------------------|--------------------------|------------|-----------|--------------|-----------------------------|-------------------|-------|---------------|-----------------------------|--------------|---|----------------------------|----------------------------------------------------------|
| ARI Client Company: Mau I Fo                  | ster &                   | Alone      | hone:     | )594-6       | 255                         | Date              | 2/5/2 | Ice<br>Prese  | ent? Le.                    | 5            |   | Tukwila                    | outh 134th Place, Suite 100<br>a, WA 98168               |
| Client Contact: Carolyn W                     | ise                      |            |           | 3,43,50      |                             | No. of<br>Coolers | 1     | Coole<br>Temp |                             |              |   |                            | 5-6200 206-695-6201 (fax) rilabs.com                     |
| Client Project Name: Cascade                  |                          | !          |           |              |                             | *                 | 200   |               |                             | Requested    | T |                            | Notes/Comments                                           |
| Client Project #: 9081,01,19                  | Sample                   | rs:<br>Am  | anda 1    | Bixby        |                             | As by<br>200.8    | Co b. |               |                             |              |   |                            |                                                          |
| Sample ID                                     | Date                     | e          | Time      | Matrix       | No. Containers              | 4                 | DISS. |               |                             |              |   |                            |                                                          |
| MW14-GW-020420                                | 2/4/                     | 120 1      | 1000      | W            | 1                           | X                 | X     |               |                             |              |   |                            | *All samples were field-filtered.                        |
| MW 3 - GW - 020420                            |                          | 1          | 1100      | 1            | 1                           | X                 | X     |               |                             |              |   |                            |                                                          |
| MW DUP-GW-020420                              |                          | Ì          | 1100      |              |                             | X                 | X     |               |                             |              |   |                            |                                                          |
| HW01-020420                                   |                          |            | 1120      |              |                             | X                 | X     | 5             |                             |              |   |                            |                                                          |
| MW18-GW-020420                                |                          | l          | 255       |              |                             | X                 | X     |               |                             |              |   |                            |                                                          |
| MW7-GW-020420                                 |                          | Ì          | 440       |              |                             | X                 | X     |               |                             |              |   |                            | 0                                                        |
| MW8-GW-020420                                 |                          | 1          | 1530      |              |                             | X                 | X     |               |                             |              |   |                            |                                                          |
| MW19-GW-020420                                | $\downarrow$             | - 1        | 1800      | $\downarrow$ | <b>\</b>                    | X                 | X     |               |                             |              | = |                            |                                                          |
| MW4-GW-020520                                 | 2/5/                     | 20         | 1135      |              | İ                           | X                 | ×     |               |                             |              | 2 |                            |                                                          |
| MW20-GW-020520                                | 1                        | . ]        | 1310      | 4            | 1                           | X                 | X     |               |                             | 30           |   |                            | В                                                        |
| Comments/Special Instructions Direct b.11 +o: | Relinquish<br>(Signature |            | Thust     | Bill         | Received by:<br>(Signature) | her               | /     |               | Relinquished<br>(Signature) | by:          | • | Received by<br>(Signature) |                                                          |
| Alex Clark                                    | Printed Na               | nda B      | 3.46.1    | 8            | Printed Mame:               | cob               | Leel+ | le            | Printed Nam                 | e:           |   | Printed Nam                | e:                                                       |
| McFarland Cascacle Pole<br>PO Box 1496        | Company:                 |            | 9         |              | Company:                    | 工                 |       |               | Company:                    | - WEST OF ES |   | Company:                   |                                                          |
| Tacoma, WA 98401-1496                         | Date & Tim               | A<br>120 / | / 15      | 38           | Date & Time:                | 1                 | 20 B  | 78            | Date & Time                 |              |   | Date & Time                |                                                          |

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

| ARI Assigned Number:  O 15072  ARI Client Company: Maul Fog  Client Contact: Caroly n W | turn-around<br>ster & Alon<br>lise |         | 1594-6                                                                                                         | 255                         | Page: Date: No. of Coolers: | 215/2            |       | 2<br>ent? Ku                | 9*(       | Analytic<br>4611 Sc<br>Tukwila<br>206-69 | cal Resources, Incorporated cal Chemists and Consultants outh 134th Place, Suite 100 s, WA 98168 5-6200 206-695-6201 (fax) cilabs.com |
|-----------------------------------------------------------------------------------------|------------------------------------|---------|----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|------------------|-------|-----------------------------|-----------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Client Project Name: Cascade                                                            | Pole                               |         |                                                                                                                |                             | ×                           | *                |       |                             | Requested |                                          | Notes/Comments                                                                                                                        |
| Client Project #: 9081 - 01.19                                                          | Samplers:                          | 4 manda | Bixby                                                                                                          |                             | As by*<br>200.8             | Cu by            |       |                             |           |                                          |                                                                                                                                       |
| Sample ID                                                                               | Date                               | Time    | Matrix                                                                                                         | No. Containers              | Diss. A.                    | Diss. C<br>EPA 2 |       |                             |           |                                          |                                                                                                                                       |
| UPRRMW29-6W-020528                                                                      | 2/5/22                             | 1500    | W                                                                                                              |                             | X                           | X                |       |                             |           |                                          | * All samples were field filtered.                                                                                                    |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          | 3                                                                                                                                     |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  | -     |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         |                                                                                                                |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
|                                                                                         |                                    |         | er managarina di kanada di kan |                             |                             |                  |       |                             |           |                                          |                                                                                                                                       |
| 0 10 11 1                                                                               |                                    |         |                                                                                                                |                             | 1                           | 1                |       |                             |           |                                          |                                                                                                                                       |
| Comments/Special Instructions Direct 611 to:                                            | Relinquished by:<br>(Signature)    | Church  | lix                                                                                                            | Received by:<br>(Signature) | Pul                         | 1-               | N     | Relinquished<br>(Signature) | by:       | Received by:<br>(Signature)              |                                                                                                                                       |
| Alex Clark                                                                              | Printed Name:                      | da Bixb | 3                                                                                                              | Printed Name:               | Tacol                       | al age 1         | The s | Printed Name                | 9:        | Printed Name                             | 9:                                                                                                                                    |
| Alex Clark<br>Mc Farland Coscode Pole<br>PO Box 1496                                    | Į.                                 | 1FA     | J                                                                                                              | Company:                    | Z                           | ral              | ,,,   | Company:                    |           | Company:                                 |                                                                                                                                       |
| Tacona, WA 98401-1496                                                                   | Date & Time: 2/5/20                | / 15    | 38                                                                                                             | Date & Time:                | 5/200                       | 0 1              | 538   | Date & Time:                |           | Date & Time:                             |                                                                                                                                       |

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number:9081.01.19Reported:Portland WA, 97209Project Manager:Carolyn Wise18-Feb-2020 15:24

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID          | Laboratory ID | Matrix | Date Sampled      | Date Received     |
|--------------------|---------------|--------|-------------------|-------------------|
| MW14-GW-020420     | 20B0072-01    | Water  | 04-Feb-2020 10:00 | 05-Feb-2020 15:38 |
| MW3-GW-020420      | 20B0072-02    | Water  | 04-Feb-2020 11:00 | 05-Feb-2020 15:38 |
| MWDup-GW-020420    | 20B0072-03    | Water  | 04-Feb-2020 11:00 | 05-Feb-2020 15:38 |
| HW01-020420        | 20B0072-04    | Water  | 04-Feb-2020 11:20 | 05-Feb-2020 15:38 |
| MW18-GW-020420     | 20B0072-05    | Water  | 04-Feb-2020 12:55 | 05-Feb-2020 15:38 |
| MW7-GW-020420      | 20B0072-06    | Water  | 04-Feb-2020 14:40 | 05-Feb-2020 15:38 |
| MW8-GW-020420      | 20B0072-07    | Water  | 04-Feb-2020 15:30 | 05-Feb-2020 15:38 |
| MW19-GW-020420     | 20B0072-08    | Water  | 04-Feb-2020 18:00 | 05-Feb-2020 15:38 |
| MW4-GW-020520      | 20B0072-09    | Water  | 05-Feb-2020 11:35 | 05-Feb-2020 15:38 |
| MW20-GW-020520     | 20B0072-10    | Water  | 05-Feb-2020 13:10 | 05-Feb-2020 15:38 |
| UPRRMW29-GW-020520 | 20B0072-11    | Water  | 05-Feb-2020 15:10 | 05-Feb-2020 15:38 |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc.

Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

#### **Work Order Case Narrative**

#### Sample receipt

Samples as listed on the preceding page were received February 5,2020 under ARI work order 20B0072. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### **Dissolved Metals - EPA Method 200.8**

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank was clean at the reporting limits.

The LCS percent recoveries were within control limits.

A matrix spike and duplicate were prepared in conjunction with sample MW 14-GW-020420. The matrix spike percent recoveries and duplicate RPD were within QC limits.

Printed: 02/05/2020 16:19:08

#### WORK ORDER

| 20B0072 |  |
|---------|--|
| 2000072 |  |

Client: Maul, Foster & Alongi, Inc.

Project Manager: Amanda Volgardsen

Project: Cascade Pole 9081

Project Number: 9081.01.19

#### **Preservation Confirmation**

| Container ID | Container Type                 | рН  |          |
|--------------|--------------------------------|-----|----------|
| 20B0072-01 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 29  | Pass (P) |
| 20B0072-02 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 49  | ρ        |
| 20B0072-03 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 49  | ρ        |
| 20B0072-04 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | <9  | ρ        |
| 20B0072-05 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 4   | P        |
| 20B0072-06 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | <7  | P        |
| 20B0072-07 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | <3  | ρ        |
| 20B0072-08 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 42  | P        |
| 20B0072-09 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | < 3 | P        |
| 20B0072-10 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | ()  | P        |
| 20B0072-11 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 47  | P        |

Preservation Confirmed By

Reviewed By



## **Cooler Receipt Form**

| MI Coster della                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                        | 1 8/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ARI Client: May Fost & Along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Name:                            | cade Poll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| COC No(s):NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Delivered by: Fed-Ex UPS                 | Courier Hand Delivered Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er:        |
| Assigned ARI Job No: 2080072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tracking No:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CNA        |
| Preliminary Examination Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Were intact, properly signed and dated custody seals atta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ached to the outside of the cooler?      | YES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO         |
| Were custody papers included with the cooler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO         |
| Were custody papers properly filled out (ink, signed, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                        | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO         |
| Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | for chemistry)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Time 1538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| If cooler temperature is out of compliance fill out form 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 070F                                     | Temp Gun ID#: DOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5006       |
| Cooler Accepted by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 070F                                     | Time: 1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | forms and attach all shipping docume     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Log-In Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Mas a temperature blank included in the cooler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VE0 403    |
| Was a temperature blank included in the cooler?  What kind of packing material was used? B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ubble Wrap Wet Ice Gel Packs Baggies F   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO     |
| Was sufficient ice used (if appropriate)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | NAMES AND ADDRESS OF THE PROPERTY OF THE PROPE | YES NO     |
| How were bottles sealed in plastic bags?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | for all the second seco | YES NO Not |
| Did all bottles arrive in good condition (unbroken)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO     |
| Were all bottle labels complete and legible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO     |
| Did the number of containers listed on COC match with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO     |
| Did all bottle labels and tags agree with custody papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES NO     |
| Were all bottles used correct for the requested analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO     |
| Do any of the analyses (bottles) require preservation? (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | attach preservation sheet, excluding VOC | C 10 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YES NO     |
| Were all VOC vials free of air bubbles?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES NO     |
| Was sufficient amount of sample sent in each bottle?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES NO     |
| Date VOC Trip Blank was made at ARI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | CNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Were the sample(s) split NA YES Date/Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ime: Equipment:                          | Split                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | by:        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Samples Logged by:Date: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2105/2020 Time: 1615                     | Labels checked by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>   |
| ** Notify Project I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manager of discrepancies or concerns     | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Sample ID on Bottle Sample ID on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COC Sample ID on Bottle                  | Sample ID or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 COC      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Additional Notes, Discrepancies, & Resolutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| , and a second and a second and a second a secon |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| By: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

0016F 01/17/2018 Cooler Receipt Form

Revision 014A



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

MW14-GW-020420 20B0072-01 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 10:00Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 19:31Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-01 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

| Analyte            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------|------------|----------|--------------------|--------|-------|-------|
| Arsenic, Dissolved | 7440-38-2  | 1        | 0.200              | 3.35   | ug/L  |       |
| Copper, Dissolved  | 7440-50-8  | 1        | 0.500              | ND     | ug/L  | U     |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

MW3-GW-020420 20B0072-02 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KED

Instrument: ICPMS1 Analyst: MCB

Sampled: 02/04/2020 11:00

Analyzed: 02/17/2020 20:22

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Extract ID: 20B0072-02 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes Arsenic, Dissolved 7440-38-2 5 1.00 325 ug/L D Copper, Dissolved 7440-50-8 0.500 1.05 ug/L

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number:9081.01.19Reported:Portland WA, 97209Project Manager:Carolyn Wise18-Feb-2020 15:24

#### MWDup-GW-020420 20B0072-03 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 11:00Instrument: ICPMS1Analyst: MCBAnalyzed: 02/17/2020 20:27Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-03 A 01

Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

|                    |            |          | Reporting |        |       |       |
|--------------------|------------|----------|-----------|--------|-------|-------|
| Analyte            | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved | 7440-38-2  | 5        | 1.00      | 391    | ug/L  | D     |
| Copper, Dissolved  | 7440-50-8  | 1        | 0.500     | 1.03   | ug/L  |       |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

#### HW01-020420 20B0072-04 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 11:20Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 21:45Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-04 A 01

Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

|                    | 110parea: 02/15/2020 | I III (CIMIII) |          |           |        |       |       |
|--------------------|----------------------|----------------|----------|-----------|--------|-------|-------|
|                    |                      |                | •        | Reporting |        |       |       |
| Analyte            |                      | CAS Number     | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved |                      | 7440-38-2      | 1        | 0.200     | 36.0   | ug/L  |       |
| Copper, Dissolved  |                      | 7440-50-8      | 1        | 0.500     | 3.14   | ug/L  |       |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number:9081.01.19Reported:Portland WA, 97209Project Manager:Carolyn Wise18-Feb-2020 15:24

MW18-GW-020420 20B0072-05 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 12:55Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 21:50Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-05 A 01

Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

|                    | F |            |          |           |        |       |       |
|--------------------|---|------------|----------|-----------|--------|-------|-------|
|                    |   | <u> </u>   |          | Reporting |        |       | •     |
| Analyte            |   | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved |   | 7440-38-2  | 1        | 0.200     | 0.224  | ug/L  |       |
| Copper, Dissolved  |   | 7440-50-8  | 1        | 0.500     | 0.681  | ug/L  |       |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

MW7-GW-020420 20B0072-06 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 14:40Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 21:54Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-06 A 01

Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

|                    | F |            |          |           |        |       |       |
|--------------------|---|------------|----------|-----------|--------|-------|-------|
|                    |   |            | •        | Reporting |        |       |       |
| Analyte            |   | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved |   | 7440-38-2  | 1        | 0.200     | 0.774  | ug/L  |       |
| Copper, Dissolved  |   | 7440-50-8  | 1        | 0.500     | 0.851  | ug/L  |       |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

MW8-GW-020420 20B0072-07 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 15:30Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 21:58Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-07 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

|                    | 1          |          |           |        |       |       |
|--------------------|------------|----------|-----------|--------|-------|-------|
|                    |            |          | Reporting |        |       |       |
| Analyte            | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved | 7440-38-2  | 1        | 0.200     | 112    | ug/L  |       |
| Copper, Dissolved  | 7440-50-8  | 1        | 0.500     | ND     | ug/L  | U     |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number:9081.01.19Reported:Portland WA, 97209Project Manager:Carolyn Wise18-Feb-2020 15:24

MW19-GW-020420 20B0072-08 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/04/2020 18:00Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 22:02Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-08 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

| Analyte            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------|------------|----------|--------------------|--------|-------|-------|
| Arsenic, Dissolved | 7440-38-2  | 1        | 0.200              | 14.2   | ug/L  |       |
| Copper, Dissolved  | 7440-50-8  | 1        | 0.500              | ND     | ug/L  | U     |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

MW4-GW-020520 20B0072-09 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/05/2020 11:35Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 22:07Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-09 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

| Analyte            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------|------------|----------|--------------------|--------|-------|-------|
| Arsenic, Dissolved | 7440-38-2  | 1        | 0.200              | 15.4   | ug/L  |       |
| Copper, Dissolved  | 7440-50-8  | 1        | 0.500              | ND     | ug/L  | U     |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number:9081.01.19Reported:Portland WA, 97209Project Manager:Carolyn Wise18-Feb-2020 15:24

MW20-GW-020520 20B0072-10 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/05/2020 13:10Instrument: ICPMS1Analyst: MCBAnalyzed: 02/14/2020 22:12Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-10 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

| Analyte            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------|------------|----------|--------------------|--------|-------|-------|
| Arsenic, Dissolved | 7440-38-2  | 1        | 0.200              | 0.338  | ug/L  |       |
| Copper, Dissolved  | 7440-50-8  | 1        | 0.500              | ND     | ug/L  | U     |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

#### UPRRMW29-GW-020520 20B0072-11 (Water)

Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KEDSampled: 02/05/2020 15:10Instrument: ICPMS1 Analyst: MCBAnalyzed: 02/14/2020 22:19Sample Preparation:Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrixExtract ID: 20B0072-11 A 01

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix
Preparation Batch: BIB0323 Sample Size: 25 mL

Prepared: 02/13/2020 Final Volume: 25 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes Arsenic, Dissolved 7440-38-2 1 0.200 18.5 ug/L Copper, Dissolved 7440-50-8 0.500 3.29 ug/L

Analytical Resources, Inc.



Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200 Portland WA, 97209 Project Number: 9081.01.19
Project Manager: Carolyn Wise

**Reported:** 18-Feb-2020 15:24

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BIB0323 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: MCB

| QC Sample/Analyte          | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes  |
|----------------------------|---------|--------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|--------|
| Blank (BIB0323-BLK1)       | Isotope | resur  | - Dillik           |       | ared: 13-Feb   |                  |             |                |      | Emm          | 110103 |
| Arsenic, Dissolved         | 75a     | ND     | 0.200              | ug/L  | urou. 15 1 oc  | 7 2020 Tina      | nyzeu. 11   | 2020 17        | .50  |              | U      |
| Copper, Dissolved          | 63      | ND     | 0.500              | ug/L  |                |                  |             |                |      |              | U      |
| Copper, Dissolved          | 65      | ND     | 0.500              | ug/L  |                |                  |             |                |      |              | U      |
| LCS (BIB0323-BS1)          |         |        |                    | Prep  | ared: 13-Feb   | o-2020 Ana       | ılyzed: 14- | Feb-2020 18    | 3:02 |              |        |
| Arsenic, Dissolved         | 75a     | 24.8   | 0.200              | ug/L  | 25.0           |                  | 99.2        | 80-120         |      |              |        |
| Copper, Dissolved          | 63      | 25.6   | 0.500              | ug/L  | 25.0           |                  | 102         | 80-120         |      |              |        |
| Copper, Dissolved          | 65      | 25.9   | 0.500              | ug/L  | 25.0           |                  | 104         | 80-120         |      |              |        |
| Duplicate (BIB0323-DUP1)   |         | Source | e: 20B0072-01      | Prep  | ared: 13-Feb   | o-2020 Ana       | ılyzed: 14- | Feb-2020 19    | 9:36 |              |        |
| Arsenic, Dissolved         | 75a     | 3.28   | 0.200              | ug/L  |                | 3.35             |             |                | 2.17 | 20           |        |
| Copper, Dissolved          | 63      | ND     | 0.500              | ug/L  |                | ND               |             |                |      |              | U      |
| Matrix Spike (BIB0323-MS1) |         | Source | e: 20B0072-01      | Prep  | ared: 13-Feb   | o-2020 Ana       | ılyzed: 14- | Feb-2020 19    | 9:42 |              |        |
| Arsenic, Dissolved         | 75a     | 28.7   | 0.200              | ug/L  | 25.0           | 3.35             | 101         | 75-125         |      |              |        |
| Copper, Dissolved          | 63      | 25.2   | 0.500              | ug/L  | 25.0           | ND               | 99.2        | 75-125         |      |              |        |

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

#### **Certified Analyses included in this Report**

| Analyte  | Certifications  |
|----------|-----------------|
| Allalyte | Oci tilications |

#### EPA 200.8 UCT-KED in Water

| Arsenic-75a | NELAP,WADOE,WA-DW,DoD-ELAP |
|-------------|----------------------------|
| Copper-63   | NELAP,WADOE,WA-DW,DoD-ELAP |
| Copper-65   | NELAP,WADOE,WA-DW,DoD-ELAP |

| Code     | Description                                        | Number       | Expires    |
|----------|----------------------------------------------------|--------------|------------|
| ADEC     | Alaska Dept of Environmental Conservation          | 17-015       | 01/31/2021 |
| CALAP    | California Department of Public Health CAELAP      | 2748         | 06/30/2019 |
| DoD-ELAP | DoD-Environmental Laboratory Accreditation Program | 66169        | 01/01/2021 |
| NELAP    | ORELAP - Oregon Laboratory Accreditation Program   | WA100006-012 | 05/12/2020 |
| WADOE    | WA Dept of Ecology                                 | C558         | 06/30/2019 |
| WA-DW    | Ecology - Drinking Water                           | C558         | 06/30/2019 |
|          |                                                    |              |            |

Analytical Resources, Inc.



Maul, Foster & Alongi, Inc. Project: Cascade Pole 9081

2001 NW 19th Avenue, Suite 200Project Number: 9081.01.19Reported:Portland WA, 97209Project Manager: Carolyn Wise18-Feb-2020 15:24

#### **Notes and Definitions**

| B This analyte was detected in the method blank | ζ. |
|-------------------------------------------------|----|
|-------------------------------------------------|----|

D The reported value is from a dilution

J Estimated concentration value detected below the reporting limit.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

# ATTACHMENT D

DATA VALIDATION MEMORANDUM



## DATA QUALITY ASSURANCE/ QUALITY CONTROL REVIEW

PROJECT NO. 9081.01.19 | FEBRUARY 19, 2020 | MCFARLAND CASCADE HOLDINGS, INC.

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected at the Cascade Pole and Lumber Company site located at 1640 E Marc Street in Tacoma, Washington. The samples were collected on February 4 and 5, 2020.

Analytical Resources, Inc. (ARI) performed the analyses. ARI report number 20B0072 was reviewed. The analysis performed and samples analyzed are listed below.

| Analysis                     | Reference   |
|------------------------------|-------------|
| Dissolved Arsenic and Copper | USEPA 200.8 |

USEPA = U.S. Environmental Protection Agency.

| Samples Analyzed |                    |
|------------------|--------------------|
| Report 20B0072   |                    |
| MW14-GW-020420   | MW8-GW-020420      |
| MW3-GW-020420    | MW19-GW-200420     |
| MWDUP-GW-020420  | MW4-GW-020520      |
| HW01-020420      | MW20-GW-020520     |
| MW18-GW-020420   | UPRRMW29-GW-020520 |
| MW7-GW-020420    |                    |

#### DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (USEPA) procedures (USEPA, 2017) and appropriate laboratory and method-specific guidelines (ARI, 2018; USEPA, 1986).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

### HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

#### **Holding Times**

Extractions and analyses were performed within the recommended holding time criteria.

#### Preservation and Sample Storage

The samples were preserved and stored appropriately.

#### **BLANKS**

#### Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All laboratory method blank results were non-detect.

#### Trip Blanks

Trip blanks were not required for this sampling event.

#### Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

#### MATRIX SPIKE RESULTS

Matrix spike (MS) results are used to evaluate laboratory precision and accuracy. All MS samples were extracted and analyzed at the required frequency. All recoveries were within acceptance limits for percent recovery.

#### LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. All laboratory duplicate relative percent differences (RPDs) were within acceptance limits.

#### LABORATORY CONTROL SAMPLE RESULTS

A laboratory control sample (LCS) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS samples were extracted and analyzed at the required frequency. All LCS results were within acceptance limits for percent recovery.

#### FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis (MW3-GW-020420/MWDUP-GW-020420). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the method reporting limit (MRL), or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results.

All analytes were within the acceptance criteria.

#### **REPORTING LIMITS**

ARI used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

#### DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

ARI. 2018. Quality assurance plan. Rev. 016.1. Analytical Resources, Incorporated, Tukwila, Washington. November.

USEPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

USEPA. 2017. USEPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

# ATTACHMENT B

MONTHLY HORIZONTAL WELL INSPECTION FORMS



#### **Table**



# Horizontal Recovery Well Inspections—2020 McFarland Cascade Pole and Lumber Company McFarland Cascade Holdings, Inc., and Tyee Management Company, LLC Tacoma, Washington

| Date     | Time  | Discharge<br>Pump<br>Operating? | Water Level in<br>Tank<br>(feet) | Alarm Light<br>On? | Pipes<br>Leaking? | Discharge Totalizer<br>Reading<br>(gallons) | Inspector | Total<br>(gallons) |
|----------|-------|---------------------------------|----------------------------------|--------------------|-------------------|---------------------------------------------|-----------|--------------------|
| 01/06/20 | 7:30  | Υ                               | 0.33                             | Ν                  | N                 | 14,800                                      | CC        | 5,755,610          |
| 02/03/20 | 7:00  | Y                               | 0.25                             | Ν                  | N                 | 86,700                                      | CC        | 5,827,510          |
| 03/02/20 | 7:15  | Y                               | 0.00                             | Ν                  | N                 | 86,700                                      | CC        | 5,827,510          |
| 04/01/20 | 11:30 | Y                               | 0.00                             | N                  | N                 | 86,800                                      | CC        | 5,827,610          |
| 05/01/20 | 6:00  | Υ                               | 0.00                             | Ν                  | N                 | 86,700                                      | CC        | 5,827,510          |
| 06/01/20 | 5:45  | Y                               | 0.33                             | N                  | N                 | 86,600                                      | CC        | 5,827,410          |
| 07/01/20 | 7:45  | N                               | 0.00                             | Ν                  | N                 | 86,700                                      | CC        | 5,827,510          |
| 08/03/20 | 7:00  | Y                               | 0.33                             | N                  | N                 | 84,700                                      | CC        | 5,825,510          |
| 09/01/20 | 7:00  | Y                               | 0.33                             | N                  | N                 | 86,700                                      | CC        | 5,827,510          |
| 10/01/20 | 7:30  | Y                               | 0.17                             | Ν                  | Ν                 | 86,700                                      | CC        | 5,827,510          |
| 11/02/20 | 7:30  | Y                               | 0.17                             | Ν                  | Ν                 | 86,800                                      | CC        | 5,827,610          |
| 12/01/20 | 7:30  | Υ                               | 0.00                             | Ν                  | Ν                 | 91,700                                      | CC        | 5,832,510          |

#### NOTES:

The totalizer meter malfunctioned and did not accurately record treatment volumes in 2020, The meter will be replaced in 2021.

CC = Chris Chase of MCHI.

MCHI = McFarland Cascade Holdings, Inc.

N = no.

Y = yes.

| Date: 1-6-20                                                          | Time: 6730              |
|-----------------------------------------------------------------------|-------------------------|
| Checked By: Chars                                                     | Weather: dork & raining |
| 1) Discharge pump operating? YES                                      | _XNO                    |
| 2) Water level in tank 4 a                                            | ft                      |
| 3) Alarm light on? YES                                                | NO_X                    |
| 4) Pipes leaking? YES                                                 | NO X                    |
| 5) Discharge TOTALIZER reading                                        | 148 gallons             |
| 6) Describe any activities performed:                                 |                         |
|                                                                       |                         |
| EMERGENCY SHUTDOWN PROCE                                              | DURES                   |
| Turn off WELL PUMP (air supply) Turn off TRANSFER PUMP (at electrons) | ical panel)             |
| System Administration and Responsible Is                              | nd <del>ivid</del> ual: |

Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

#### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# ECOLOGY NOTIFICATION OF SHUTDOWN

Inspections are to be conducted on a monthly basis.

| Date: 1-ch 3 2020                     | Time: 0 + 00           |
|---------------------------------------|------------------------|
| Checked By:                           | Weather: Cald, drizzle |
| 1) Discharge pump operating? YES_     | × NO                   |
| 2) Water level in tank 3°1            | ft                     |
| 3) Alarm light on? YES                | NO_X                   |
| 4) Pipes leaking? YES                 | NO _X                  |
| 5) Discharge TOTALIZER reading        | 867 gallons            |
| 6) Describe any activities performed: |                        |
|                                       |                        |
|                                       |                        |
|                                       |                        |

# EMERGENCY SHUTDOWN PROCEDURES

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

#### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**



| Date: 3-2-20                          | Time: 07/5                |
|---------------------------------------|---------------------------|
| Checked By: Chris Char                | Weather: Cool & over Cast |
| 1) Discharge pump operating? YES      | × NO                      |
| 2) Water level in tank                | ft                        |
| 3) Alarm light on? YES                | NO X                      |
| 4) Pipes leaking? YES                 | NO <u></u>                |
| 5) Discharge TOTALIZER reading        | 867 gallons               |
| 6) Describe any activities performed: |                           |
|                                       |                           |
|                                       |                           |
| 2.                                    |                           |

#### EMERGENCY SHUTDOWN PROCEDURES

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual:

Ted Smith

(253) 597-3319

## INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

## ECOLOGY NOTIFICATION OF SHUTDOWN



| Date:                                 | Time: 11.30        |
|---------------------------------------|--------------------|
| Checked By: Class Chare               | Weather: Over Cast |
| 1) Discharge pump operating? YES_     | NO                 |
| 2) Water level in tank                | ft                 |
| 3) Alarm light on? YES                | NOX                |
| 4) Pipes leaking? YES                 | NO<                |
| 5) Discharge TOTALIZER reading        | 868 gallons        |
| 6) Describe any activities performed: |                    |
|                                       |                    |
| <del></del>                           |                    |
|                                       |                    |

# **EMERGENCY SHUTDOWN PROCEDURES**

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

#### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**

| Date: 1 may 2020                      | Time: 0600     |
|---------------------------------------|----------------|
| Checked By: Chair Cheer               | Weather: Clear |
| 1) Discharge pump operating? YES_     | X NO           |
| 2) Water level in tank                | ft             |
| 3) Alarm light on? YES                | NO_X           |
| 4) Pipes leaking? YES                 | NO _X          |
| 5) Discharge TOTALIZER reading        | 867 gallons    |
| 6) Describe any activities performed: |                |
| <del></del>                           |                |
|                                       |                |
| EMERGENCY SHUTDOWN PROCE              | DURES          |

Turn off WELL PUMP (air supply) Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

#### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# ECOLOGY NOTIFICATION OF SHUTDOWN

| Date: June 2020                       | Time: 0545         |
|---------------------------------------|--------------------|
| Checked By: Charis Charc              | Weather: over cast |
| 1) Discharge pump operating? YES_     | NO                 |
| 2) Water level in tank                | ft                 |
| 3) Alarm light on? YES                | NO X               |
| 4) Pipes leaking? YES                 | NO X               |
| 5) Discharge TOTALIZER reading        | 866 gallons        |
| 6) Describe any activities performed: |                    |
|                                       |                    |
| =                                     |                    |
|                                       |                    |

# EMERGENCY SHUTDOWN PROCEDURES

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

# RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**

If the horizontal recovery well is non-operational for 30 days or more during periods when operation of the horizontal recovery well is a required component of the groundwater treatment (i.e., during the protection stage of monitoring; see the groundwater compliance monitoring plan [MFA, 2015a]), Ecology must be notified within 30 days after the 30th consecutive day on which the well is not operated (i.e., within 60 days of the first day of the 30-consecutive-day shutdown).

7.2.2020

| Date: 1 July 20                       | Time: 0745         |
|---------------------------------------|--------------------|
| Checked By: Chis                      | Weather: Over Cast |
| 1) Discharge pump operating? YES      | NOX                |
| 2) Water level in tank                | ft                 |
| 3) Alarm light on? YES                | NO_X               |
| 4) Pipes leaking? YES                 | NOX                |
| 5) Discharge TOTALIZER reading        | 867 gallons        |
| 6) Describe any activities performed: |                    |
|                                       |                    |
| 9                                     |                    |
|                                       |                    |

## EMERGENCY SHUTDOWN PROCEDURES

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

#### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

## **ECOLOGY NOTIFICATION OF SHUTDOWN**

If the horizontal recovery well is non-operational for 30 days or more during periods when operation of the horizontal recovery well is a required component of the groundwater treatment (i.e., during the protection stage of monitoring; see the groundwater compliance monitoring plan [MFA, 2015a]), Ecology must be notified within 30 days after the 30th consecutive day on which the well is not operated (i.e., within 60 days of the first day of the 30-consecutive-day shutdown).

9.5.2020

| Date: 8-3-20                          | Time: 0700         |
|---------------------------------------|--------------------|
| Checked By: Chins                     | Weather: OVER CAST |
| 1) Discharge pump operating? YES_     | NO                 |
| 2) Water level in tank                | ft                 |
| 3) Alarm light on? YES                | NO_X               |
| 4) Pipes leaking? YES                 | NO 🗡               |
| 5) Discharge TOTALIZER reading        | 847 gallons        |
| 6) Describe any activities performed: |                    |
|                                       |                    |
|                                       |                    |
|                                       |                    |

# **EMERGENCY SHUTDOWN PROCEDURES**

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

## **RECORDING PROCEDURES**

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**

If the horizontal recovery well is non-operational for 30 days or more during periods when operation of the horizontal recovery well is a required component of the groundwater treatment (i.e., during the protection stage of monitoring; see the groundwater compliance monitoring plan [MFA, 2015a]), Ecology must be notified within 30 days after the 30th consecutive day on which the well is not operated (i.e., within 60 days of the first day of the 30-consecutive-day shutdown).

Q-4-2020

| Date: 9-1-20                          | Time: _ 0 7 00             |
|---------------------------------------|----------------------------|
| Checked By: Churs Chese               | Weather Over cost, drizzle |
| 1) Discharge pump operating? YES_     | × NO                       |
| 2) Water level in tank 4              | ft                         |
| 3) Alarm light on? YES                | NO ×                       |
| 4) Pipes leaking? YES                 | NO 🗶                       |
| 5) Discharge TOTALIZER reading        | 867 gallons                |
| 6) Describe any activities performed: |                            |
|                                       |                            |
| 7.                                    |                            |
| EMERGENCY SHUTDOWN PROCEI             | DURES                      |
| Turn off WELL PUMP (air supply)       |                            |

Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

### INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**



| Date: 16-1-20                                                              | Time: 0730                |  |  |
|----------------------------------------------------------------------------|---------------------------|--|--|
| Checked By: Churs Chese                                                    | Weather: Over Cast, Foggy |  |  |
| 1) Discharge pump operating? YES_                                          | NO                        |  |  |
| 2) Water level in tank 2                                                   | ft                        |  |  |
| 3) Alarm light on? YES                                                     | NO                        |  |  |
| 4) Pipes leaking? YES                                                      | NO X                      |  |  |
| 5) Discharge TOTALIZER reading                                             | 867 gallons               |  |  |
| 6) Describe any activities performed:                                      |                           |  |  |
|                                                                            |                           |  |  |
| <del>0 </del>                                                              |                           |  |  |
| EMERGENCY SHUTDOWN PROCE                                                   | DURES                     |  |  |
| Turn off WELL PUMP (air supply)                                            |                           |  |  |
| Turn off TRANSFER PUMP (at electrical panel)                               |                           |  |  |
| System Administration and Responsible Individual: Ted Smith (253) 597-3319 |                           |  |  |

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

# RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**

If the horizontal recovery well is non-operational for 30 days or more during periods when operation of the horizontal recovery well is a required component of the groundwater treatment (i.e., during the protection stage of monitoring; see the groundwater compliance monitoring plan [MFA, 2015a]), Ecology must be notified within 30 days after the 30th consecutive day on which the well is not operated (i.e., within 60 days of the first day of the 30-consecutive-day shutdown).

11-4-2020

| Date: 11-2-20                         | Time: 0730  |
|---------------------------------------|-------------|
| Checked By: Chris Chase               | Weather:    |
| 1) Discharge pump operating? YES_     | × NO        |
| 2) Water level in tank 2 "            | ft          |
| 3) Alarm light on? YES                | NO_X        |
| 4) Pipes leaking? YES                 | NO          |
| 5) Discharge TOTALIZER reading        | 868 gallons |
| 6) Describe any activities performed: |             |
|                                       |             |
|                                       |             |
|                                       |             |

# **EMERGENCY SHUTDOWN PROCEDURES**

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

# INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

#### RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

#### ECOLOGY NOTIFICATION OF SHUTDOWN



| Date: 12-1-20                         | Time: 0730         |
|---------------------------------------|--------------------|
| Checked By:                           | Weather: Rame Cool |
| 1) Discharge pump operating? YES_     |                    |
| 2) Water level in tank                | ft                 |
| 3) Alarm light on? YES                | NOX                |
| 4) Pipes leaking? YES                 | NO                 |
| 5) Discharge TOTALIZER reading        | 917 gallons        |
| 6) Describe any activities performed: |                    |
| -                                     |                    |
|                                       |                    |
|                                       |                    |

## EMERGENCY SHUTDOWN PROCEDURES

Turn off WELL PUMP (air supply)
Turn off TRANSFER PUMP (at electrical panel)

System Administration and Responsible Individual: Ted Smith (253) 597-3319

## INSPECTION FREQUENCY

Inspections are to be conducted on a monthly basis.

# RECORDING PROCEDURES

File this form in the permanent records for the Property to be provided to future Property owners or to Ecology by request and also include in the groundwater monitoring reports to be prepared in accordance with the schedule described in the Groundwater Compliance Monitoring Plan.

# **ECOLOGY NOTIFICATION OF SHUTDOWN**

## MONTHLY CLIMATOLOGICAL SUMMARY for JAN. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

# TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY    | MEAN<br>TEMP | HIGH | TIME            | LOW          | TIME            | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH         | TIME            | DOM<br>DIR |  |
|--------|--------------|------|-----------------|--------------|-----------------|---------------------|---------------------|------|----------------------|--------------|-----------------|------------|--|
| 1      | 51.1         | 54.1 | 12:10a          | 46.5         | 11:50p          | 13.9                | 0.0                 | 0.03 | 15.9<br>4.3          | 55.0<br>42.0 | 8:20p<br>10:50p | SSW<br>SSE |  |
| 2      | 45.0         | 49.8 | 10:50p          | 41.2         | 6:20p           |                     | 0.0                 | 0.35 | 4.8                  | 54.0         | q00:8           | SSE        |  |
| 3      | 51.8         | 62.5 | 6:10p<br>3:50p  | 45.2<br>41.3 | 12:00m<br>7:10a |                     | 0.0                 | 0.33 | 9.8                  | 46.0         | 2:20a           | SSW        |  |
| 4<br>5 | 43.8         | 45.5 | 1:50p           |              | 12:00m          |                     | 0.0                 | 0.16 | 9.1                  | 59.0         | 11:00a          | SSW        |  |
|        | 44.5         | 48.2 | 6:10p           | 42.1         | 1:10a           |                     | 0.0                 | 1.32 | 8.1                  | 50.0         | 10:20p          | SSW        |  |
| 7      | 51.5         | 56.3 |                 | 46.0         | 1:10a           |                     | 0.0                 | 0.32 | 8.2                  | 47.0         | 11:50p          | SSW        |  |
| 8      | 42.0         | 46.0 | 1:10p<br>12:10a |              | 12:00m          |                     | 0.0                 | 0.09 | 11.7                 | 63.0         | 3:30a           | SSW        |  |
| 9      | 35.8         | 39.1 | 4:50p           | 32.0         | 5:50a           | 29.2                | 0.0                 | 0.10 | 0.2                  | 15.0         | 5:30a           | SE         |  |
| 10     | 41.8         | 46.0 | 1:00p           | 34.9         | 2:20a           | 23.2                | 0.0                 | 0.46 | 7.4                  | 54.0         | 11:30p          | SE         |  |
| 11     | 44.1         | 46.6 | 12:00p          | 39.7         | 11:40p          | 20.9                | 0.0                 | 0.10 | 10.2                 | 57.0         | 3:30p           | SSW        |  |
| 12     | 40.3         | 44.7 | 1:10p           | 35.6         | 11:40p          |                     | 0.0                 | 0.31 |                      | 70.0         | 4:40p           | SSW        |  |
| 13     | 34.7         | 38.9 | 3:50p           | 31.5         | 12:00m          |                     | 0.0                 | 0.01 | 1.5                  | 28.0         | 5:50a           | SSW        |  |
| 14     | 33.6         | 37.2 | 3:00p           | 29.8         | 3:00a           |                     | 0.0                 | 0.07 | 7.1                  | 54.0         | 12:20p          | SSW        |  |
| 15     | 39.5         | 46.2 | 10:20p          | 33.3         | 9:00a           |                     | 0.0                 | 0.00 | 11.0                 | 62.0         | 8:10p           | SSE        |  |
|        | 41.5         | 46.4 | 3:10p           | 36.0         | 11:20p          |                     | 0.0                 | 0.06 | 2.4                  | 36.0         | 12:20a          | SE         |  |
| 17     | 38.2         | 43.8 | 9:00p           | 33.8         | 8:20a           |                     | 0.0                 | 0.03 | 0.4                  | 13.0         | 2:30p           | SE         |  |
| 18     | 45.5         | 52.9 | 2:10p           | 39.0         | 1:20a           | 19.5                | 0.0                 | 0.20 | 1.8                  | 33.0         | 2:20p           | S          |  |
| 19     | 45.2         | 49.4 | 2:50p           | 42.3         | 11:50p          | 19.8                | 0.0                 | 0.08 | 0.2                  | 14.0         | 3:10p           | NNW        |  |
| 20     | 45.5         | 49.1 | 3:40p           | 42.0         | 3:50a           | 19.5                | 0.0                 | 0.00 | 0.2                  | 13.0         | 10:40a          | SE         |  |
| 21     | 46.8         | 50.7 | 11:10a          | 43.3         | 12:20a          | 18.2                | 0.0                 | 0.28 | 10.4                 | 61.0         | 1:20p           | SSE        |  |
| 22     | 46.7         | 50.3 | 12:00m          |              | 5:40a           |                     | 0.0                 | 0.38 | 2.4                  | 41.0         | 1:40a           | S          |  |
| 23     | 54.1         | 57.1 | 3:50a           |              | 12:10a          |                     | 0.0                 | 0.75 | 4.9                  | 33.0         | 2:50a           | SE         |  |
| 24     | 51.0         | 54.3 | 12:20p          | 48.3         | 11:50p          |                     | 0.0                 | 0.42 | 3.5                  | 40.0         | 11:00a          | SSW        |  |
| 25     | 48.3         | 52.7 | 2:50p           | 45.9         | 7:50a           |                     | 0.0                 | 0.23 | 0.3                  | 15.0         | 3:30p           | NNM        |  |
| 26     | 50.1         | 55.2 | 2:30p           | 46.6         | 12:50a          |                     | 0.0                 | 0.21 | 5.1                  | 38.0         | 1:10p           | SSW        |  |
| 27     | 46.5         | 50.3 | 11:40a          |              | 5:50a           |                     | 0.0                 | 0.73 |                      | 19.0         | 3:00a           | SE         |  |
| 28     | 49.5         | 53.5 | 2:30p           | 47.2         | 6:40a           |                     | 0.0                 | 0.42 | 0.9                  | 25.0         | 1:50a           | SE         |  |
| 29     | 49.0         | 52.1 | 4:40p           |              | 8:00a           |                     | 0.0                 | 0.22 | 1.6                  | 41.0         | 1:40p           | SSW        |  |
| 30     | 45.9         | 50.8 | 12:00m          |              | 9:30a           |                     | 0.0                 | 0.35 | 0.8                  | 19.0         | 7:00p           | SE         |  |
| 31     | 56.3         | 60.3 | 9:00p           | 50.8         | 12:10a          | 8.7                 | 0.0                 | 0.44 | 11.0                 | 82.0         | 9:40p           | SSW        |  |
|        | 45.4         | 62.5 | 3               | 29.8         | 14              | 607.3               | 0.0                 | 8.57 | 5.5                  | 82.0         | 31              | SSW        |  |

Max >= 90.0: 0 Max <= 32.0: 0 Min <= 32.0: 3

Min  $\leq 0.0: 0$ 

Max Rain: 1.32 ON 01/06/20

Days of Rain: 28 (>.01 in) 20 (>.1 in) 1 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for FEB. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

# TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|
| 1   | 48.2         | 57.3 | 12:10a | 37.6 | 11:30p | 16.8                | 0.0                 | 0.91 | 11.8                 | 61.0 | 12:20a | SSW        |
| 2   | 39.0         | 46.4 | 2:50p  | 32.9 | 7:40a  | 26.0                | 0.0                 | 0.00 | 1.2                  | 19.0 | 3:50p  |            |
| 3   | 37.3         | 41.8 | 4:30p  | 34.2 | 11:00p | 27.7                | 0.0                 | 0.22 | 0.7                  | 17.0 | 12:10p |            |
| 4   | 36.7         | 43.6 | 12:00m | 32.1 | 3:30a  | 28.3                | 0.0                 |      |                      | 17.0 | 12:20p | SE         |
| 5   | 48.4         | 51.7 | 4:30p  | 43.1 | 12:10a | 16.6                | 0.0                 |      |                      | 50.0 | 7:30a  |            |
| 6   | 51.2         | 53.1 | 7:40p  |      | 7:40a  |                     |                     | 0.48 |                      | 41.0 |        |            |
| 7   | 49.8         | 53.7 | 12:10p |      | 6:50p  |                     |                     | 0.30 |                      |      | 4:30p  |            |
| 8   | 45.6         | 49.6 | 2:30p  |      | 12:00m |                     |                     |      | 5.6                  | 55.0 |        |            |
| 9   |              | 47.0 | 2:00p  |      | 7:40a  |                     |                     | 0.00 | 0.4                  | 14.0 |        |            |
| 10  |              |      | 1:50p  | 34.9 | 8:00a  |                     | 0.0                 | 0.00 | 1.4                  | 23.0 |        |            |
| 11  | 43.9         | 49.6 | 5:00p  | 35.8 | 4:50a  |                     | 0.0                 | 0.02 |                      | 26.0 |        |            |
| 12  | 46.1         | 48.8 | 12:50p |      | 11:40p |                     |                     |      |                      | 15.0 | 2:20p  |            |
| 13  |              | 47.1 | 3:30p  |      | 4:00a  |                     |                     |      | 5.3                  | 46.0 | 5:00p  |            |
| 14  |              | 50.3 | 2:00p  |      | 6:10a  |                     |                     |      | 8.0                  |      | 3:50a  |            |
| 15  |              |      | 2:10p  |      | 2:00a  |                     |                     |      |                      |      | 6:10p  |            |
| 16  | 43.3         |      | 1:00p  |      | 7:40a  | 21.7                | 0.0                 | 0.02 |                      |      | 2:40p  |            |
| 17  |              | 48.3 | 3:00p  |      | 7:40a  |                     | 0.0                 |      |                      |      | 1:10p  |            |
| 18  |              | 46.4 | 3:50p  |      | 7:00a  | 25.6                | 0.0                 |      |                      |      | 3:20p  |            |
| 19  | 41.5         | 53.6 | 4:10p  |      | 8:00a  |                     | 0.0                 | 0.00 |                      | 15.0 | 11:10a |            |
| 20  | 42.8         | 54.5 | 3:10p  | 32.6 | 6:00a  |                     | 0.0                 | 0.00 |                      | 17.0 | 12:50p |            |
| 21  | 44.6         | 56.8 | 4:00p  |      | 7:20a  |                     | 0.0                 | 0.00 | 1.2                  | 15.0 | 5:20p  |            |
| 22  | 45.0         | 49.0 | 11:00a |      | 2:50a  |                     |                     | 0.00 |                      | 24.0 | 11:40a |            |
| 23  | 44.6         | 50.0 | 5:50a  |      | 7:10a  |                     |                     | 0.53 | 12.9                 |      | 7:00a  |            |
| 24  | 44.2         | 50.8 | 3:00p  |      | 7:10a  |                     |                     | 0.00 | 4.2                  | 59.0 | 12:10a |            |
| 25  | 44.2         | 50.8 | 2:40p  |      | 6:30a  |                     |                     | 0.01 |                      |      | 9:50a  |            |
| 26  | 47.1         | 53.7 | 5:20p  |      | 12:00m |                     |                     | 0.06 |                      |      | 1:30p  |            |
| 27  |              | 58.6 | 5:10p  |      | 6:50a  |                     |                     |      |                      | 17.0 |        |            |
| 28  |              | 52.9 | 2:10p  |      |        |                     |                     |      |                      | 52.0 |        |            |
| 29  | 44.1         | 49.3 | 2:40p  | 38.3 | 12:00m | 20.9                | 0.0                 | 0.05 | 5.8                  | 46.0 | 3:10a  | SSW        |
|     | 43.9         | 58.6 | 27     | 30.5 | 18     | 611.0               | 0.0                 | 3.10 | 3.9                  | 68.0 | 23     | SSW        |

Max >= 90.0: 0Max <= 32.0: 0 Min <= 32.0: 0 Min <= 32.0: 2 Min <= 0.0: 0 Max Rain: 0.91 ON 02/01/20

Days of Rain: 15 (>.01 in) 8 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for MAR. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

## TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY    | MEAN<br>TEMP | HIGH         | TIME            | LOW  | TIME           | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |  |
|--------|--------------|--------------|-----------------|------|----------------|---------------------|---------------------|------|----------------------|------|--------|------------|--|
|        | 41.2         | 48.5         | 1:40p           |      | 7:50a          |                     | 0.0                 | 0.00 | 1.2                  |      |        |            |  |
| 2      | 46.0         | 49.5         | 5:20p           |      | 1:30a          |                     | 0.0                 | 0.00 | 10.3                 | 44.0 | 6:20p  |            |  |
|        | 49.4         | 55.7         | 1:00p           |      | 6:10p          |                     | 0.0                 | 0.09 |                      |      |        |            |  |
| 4      | 47.3         | 53.1<br>57.1 | 3:50p           |      | 7:30a          |                     | 0.0                 |      | 4.3                  |      | 2:50a  |            |  |
| 5<br>6 | 47.3         | 45.0         | 1:40p<br>12:10a |      | 6:20a<br>5:50a |                     |                     |      | 0.2                  |      |        |            |  |
| 7      | 41.5         | 45.7         | 3:00p           |      | 11:10p         |                     | 0.0                 | 0.04 |                      | 27.0 | 3:10p  |            |  |
|        | 40.8         | 48.1         | 4:00p           |      | 7:00a          |                     | 0.0                 | 0.00 |                      | 23.0 | 3:10p  |            |  |
|        | 41.6         | 50.3         | 5:50p           |      | 7:00a<br>7:40a |                     | 0.0                 | 0.00 |                      | 17.0 | 12:10p |            |  |
| 10     | 44.4         | 53.9         | 5:40p           |      | 6:00a          |                     | 0.0                 |      |                      | 36.0 | 7:20p  |            |  |
| 11     | 47.0         | 52.0         | 5:00p           |      | 10:10a         |                     | 0.0                 | 0.04 |                      | 32.0 |        |            |  |
| 12     | 44.8         | 51.3         | 5:00p           |      | 8:30a          |                     |                     |      |                      |      | 2:00p  |            |  |
| 13     | 38.6         | 42.9         | 12:10a          |      | 9:30a          |                     |                     |      |                      | 45.0 |        |            |  |
| 14     | 38.9         | 42.7         | 3:00p           |      | 12:00m         |                     |                     | 0.00 |                      | 60.0 |        |            |  |
| 15     | 39.6         | 45.1         | 4:50p           |      | 7:00a          |                     |                     | 0.00 |                      | 58.0 |        |            |  |
| 16     | 46.1         | 53.0         | 2:50p           |      | 7:40a          |                     |                     | 0.00 | 6.9                  |      | 1:30a  |            |  |
| 17     | 43.4         | 52.9         | 5:20p           |      | 8:00a          |                     |                     | 0.00 |                      | 19.0 |        |            |  |
| 18     | 45.9         | 56.2         | 6:50p           |      | 7:50a          |                     | 0.0                 | 0.00 |                      | 20.0 | 1:10p  |            |  |
| 19     | 47.9         | 60.2         | 6:50p           |      | 7:20a          |                     |                     | 0.00 |                      | 15.0 | 11:30a |            |  |
| 20     | 49.8         | 61.3         | 5:30p           |      | 7:20a          |                     |                     | 0.00 |                      | 19.0 | 1:10p  |            |  |
| 21     | 46.9         | 54.6         | 6:30p           |      | 8:10a          |                     |                     | 0.00 |                      |      | 2:10p  |            |  |
| 22     | 47.0         | 60.5         | 2:20p           |      | 7:20a          |                     |                     | 0.00 |                      | 32.0 | 7:10p  |            |  |
| 23     | 45.0         | 49.8         | 3:00p           |      | 12:00m         |                     | 0.0                 | 0.26 |                      | 45.0 | 1:30p  |            |  |
| 24     | 44.2         | 50.3         | 2:40p           |      | 10:30p         |                     |                     | 0.22 |                      | 28.0 |        |            |  |
| 25     | 43.6         | 50.2         | 5:10p           |      | 4:50a          |                     |                     | 0.43 |                      | 24.0 |        |            |  |
| 26     | 44.7         | 49.5         |                 |      | 7:20a          |                     |                     | 0.01 |                      | 31.0 | 9:00a  |            |  |
| 27     | 47.0         | 51.3         | 6:00p           |      |                |                     |                     | 0.03 |                      | 33.0 | 11:50a | S          |  |
| 28     | 50.5         | 55.5         | 5:10p           |      | 7:20a          |                     |                     | 0.09 |                      | 46.0 | 4:20p  |            |  |
| 29     | 50.5         | 56.3         | 5:20p           |      | 6:40a          |                     |                     |      |                      | 38.0 |        |            |  |
| 30     | 45.6         |              | 12:50a          |      |                |                     |                     | 0.64 |                      |      | 1:50p  |            |  |
| 31     | 43.4         |              | 1:30p           |      |                |                     |                     | 0.01 |                      |      | 3:00p  |            |  |
|        | 44.9         | 61.3         | 20              | 32.3 | 9              | 622.2               | 0.0                 | 3.27 | 4.8                  | 60.0 | 14     | SSW        |  |

Max >= 90.0: 0 $Max \le 32.0: 0$ 

Min <= 32.0: 0 Min <= 0.0: 0 Max Rain: 0.64 ON 03/30/20

Days of Rain: 13 (>.01 in) 8 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for APR. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

### TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME  | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |  |
|-----|--------------|------|-------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|--|
| 1   | 44.4         | 51.5 | 4:00p | 39.2 | 1:20a  |                     | 0.0                 | 0.00 | 1.8                  |      | 4:50p  | NNW        |  |
| 2   | 44.8         | 50.4 | 5:30p |      | 3:40a  |                     | 0.0                 | 0.00 | 3.4                  |      | 2:10p  | SSW        |  |
| 3   | 42.8         | 49.5 | 4:30p |      | 6:30a  |                     | 0.0                 | 0.00 |                      | 43.0 | 11:10a | SSW        |  |
| 4   | 45.0         | 53.5 | 4:50p |      | 7:10a  | 20.0                | 0.0                 | 0.00 | 4.5                  | 34.0 | 9:40p  | NW         |  |
| 5   | 48.8         | 55.6 | 4:20p |      | 6:40a  | 16.2                | 0.0                 | 0.00 | 3.4                  | 31.0 | 12:40p |            |  |
| 6   | 50.9         | 61.5 | 6:30p | 39.7 | 7:30a  | 14.1                | 0.0                 | 0.00 | 1.2                  | 26.0 | 8:20p  |            |  |
| 7   | 48.4         | 56.1 | 5:50p |      | 7:10a  |                     | 0.0                 | 0.00 | 1.1                  | 20.0 | 2:30p  | SE         |  |
| 8   | 50.8         | 60.5 | 3:40p |      | 7:30a  |                     | 0.0                 | 0.00 |                      | 33.0 | 4:40p  | MNM        |  |
| 9   | 54.9         | 66.3 | 4:00p | 42.2 | 6:50a  | 10.2                | 0.1                 | 0.00 | 1.9                  | 27.0 | 5:40p  | MNM        |  |
| 10  | 53.8         | 65.5 | 5:00p | 44.1 | 7:20a  |                     | 0.0                 | 0.00 | 3.2                  | 29.0 | 6:00p  | W          |  |
| 11  | 51.6         | 59.2 | 5:00p | 46.7 | 8:20a  | 13.4                | 0.0                 | 0.00 | 6.5                  | 43.0 | 7:30p  | SSW        |  |
| 12  | 49.7         | 59.2 | 4:00p | 36.8 | 6:20a  | 15.3                | 0.0                 | 0.00 | 6.1                  | 44.0 | 3:30p  | N          |  |
| 13  | 51.7         | 63.5 | 4:30p |      | 5:50a  | 13.3                | 0.0                 | 0.00 | 1.8                  | 23.0 | 5:30p  | WNW        |  |
| 14  | 54.4         | 65.2 | 5:00p | 44.7 | 7:10a  | 10.6                | 0.0                 | 0.00 | 3.2                  | 33.0 | 3:10p  | W          |  |
| 15  | 56.1         | 64.6 | 5:30p | 50.0 | 4:10a  | 8.9                 | 0.0                 | 0.00 | 5.4                  | 45.0 | 6:10p  | SSW        |  |
| 16  | 57.0         | 69.0 | 4:50p |      |        | 8.6                 | 0.6                 | 0.00 | 1.8                  | 23.0 | 6:30p  | MNM        |  |
| 17  | 56.8         | 70.1 | 3:30p | 41.9 | 6:40a  | 8.9                 | 0.7                 | 0.00 | 1.6                  | 20.0 | 5:40p  | MNM        |  |
| 18  | 53.7         | 60.2 | 5:30p | 49.5 | 7:50a  | 11.3                | 0.0                 | 0.11 | 1.6                  | 24.0 | 10:50p | SSW        |  |
| 19  | 55.7         | 64.9 | 6:30p | 50.0 | 4:20a  | 9.3                 | 0.0                 | 0.00 | 1.9                  | 17.0 | 2:30p  | WNW        |  |
| 20  | 56.0         | 66.9 | 7:00p | 45.8 | 6:20a  | 9.1                 | 0.1                 | 0.00 | 2.0                  | 21.0 | 2:30p  | NNW        |  |
| 21  | 53.3         | 59.3 | 5:50p | 48.2 | 7:40a  | 11.7                | 0.0                 | 0.00 | 4.4                  | 26.0 | 12:10a | SSW        |  |
| 22  | 52.4         | 56.6 | 6:50p | 49.0 | 10:00a | 12.6                | 0.0                 | 0.40 | 2.5                  | 34.0 | 9:30p  | SSW        |  |
| 23  | 54.1         | 63.6 | 5:00p | 48.9 | 5:50a  | 10.9                | 0.0                 | 0.04 | 4.6                  | 34.0 | 6:10p  | SSW        |  |
| 24  | 54.8         | 60.3 | 1:30p | 48.4 | 6:40a  | 10.2                | 0.0                 | 0.00 | 1.2                  | 17.0 | 12:40p | SE         |  |
| 25  | 56.1         | 63.5 | 3:30p | 50.9 | 9:00a  | 8.9                 | 0.0                 | 0.29 | 5.7                  | 46.0 | 1:30p  | M          |  |
| 26  | 55.2         | 62.9 | 7:20p | 47.2 | 4:40a  | 9.8                 | 0.0                 | 0.16 | 2.4                  | 30.0 | 8:50p  | SE         |  |
| 27  | 56.6         | 63.8 | 5:50p | 52.0 | 12:20a | 8.4                 | 0.0                 | 0.07 | 6.6                  | 48.0 | 2:10p  | SSW        |  |
| 28  | 53.9         | 63.0 | 4:00p | 45.8 | 5:30a  | 11.1                | 0.0                 | 0.00 | 1.3                  | 26.0 | 5:50p  | NNW        |  |
| 29  | 58.5         | 72.8 | 2:30p | 51.1 | 6:30a  | 7.5                 | 1.0                 | 0.02 | 4.2                  | 39.0 | 6:20p  |            |  |
| 30  | 54.0         | 58.4 | 4:20p | 49.4 | 12:00m | 11.0                | 0.0                 | 0.05 |                      | 36.0 |        |            |  |
|     | 52.5         | 72.8 | 29    | 36.8 | 12     | 376.3               | 2.5                 | 1.14 | 3.3                  | 48.0 | 27     | SSW        |  |

Max >= 90.0: 0 Max <= 32.0: 0 Min <= 32.0: 0 Min <= 0.0: 0

Max Rain: 0.40 ON 04/22/20

Days of Rain: 8 (>.01 in) 4 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for MAY. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

## TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|
|     |              | 65.2 | 4:30p  | 41.2 | 6:20a  |                     | 0.0                 | 0.00 | 1.6                  |      | 6:20p  |            |
| 2   | 53.9         | 59.2 |        |      | 12:00m |                     |                     | 0.36 |                      | 52.0 | 2:20p  |            |
|     | 50.2         | 57.3 | 3:10p  |      | 5:00a  |                     |                     | 0.10 |                      | 35.0 | 5:30a  | SSW        |
|     | 52.4         | 63.5 | 4:30p  |      | 6:40a  |                     |                     | 0.00 |                      | 26.0 | 5:50p  |            |
|     | 58.6         | 70.5 | 5:20p  |      | 5:30a  |                     |                     |      | 3.5                  |      | 8:10p  |            |
|     | 55.8         | 63.1 | 5:00p  |      |        | 9.2                 |                     | 0.00 |                      |      | 1:10p  |            |
|     | 55.8         | 65.3 | 4:10p  |      |        | 9.2                 |                     | 0.00 |                      |      | 7:20p  |            |
| 8   | 64.8         | 76.5 | 5:10p  |      |        | 4.1                 |                     | 0.00 |                      |      | 12:30a | NNE        |
| 9   | 68.3         | 82.2 | 4:40p  |      | 6:30a  |                     |                     | 0.00 |                      | 33.0 | 6:50p  |            |
| -0  | 70.4         | 83.2 | 4:10p  |      | 5:20a  |                     |                     | 0.00 |                      |      | 4:20p  |            |
| _1  | 62.3         | 74.2 | 1:10p  |      | 11:50p |                     |                     | 0.01 |                      |      | 2:50p  |            |
| .2  | 56.7         | 65.4 | 2:30p  |      | 5:20a  |                     |                     |      | 2.7                  |      | -      |            |
| .3  | 57.2         | 66.5 | _      |      | 6:40a  |                     |                     | 0.10 |                      | 38.0 | 6:10p  | SSW        |
| .4  | 57.9         | 67.8 | 5:30p  |      | 6:30a  |                     |                     | 0.08 |                      | 31.0 | 7:10p  | SSW        |
| .5  | 59.9         | 68.8 | 4:30p  |      | 5:20a  | 5.5                 | 0.4                 | 0.00 |                      | 19.0 | 12:30p | NNM        |
| .6  | 57.5         | 62.2 | 4:00p  |      | 6:20a  | 7.5                 | 0.0                 | 0.35 | 0.8                  | 17.0 | 3:10p  | SE         |
| .7  | 59.9         | 68.1 | 5:40p  |      |        | 5.4                 | 0.3                 | 0.10 | 2.1                  | 24.0 | 6:50p  | SE         |
| 8   | 59.3         | 67.9 | 7:00p  | 51.9 | 6:20a  | 6.1                 | 0.3                 | 0.00 | 3.1                  | 31.0 | 10:30p | N          |
| 9   | 57.6         | 64.9 | 5:00p  | 52.8 | 7:10a  | 7.4                 | 0.0                 | 0.00 | 1.6                  | 30.0 | 10:00p | SSW        |
| 0   | 55.9         | 62.9 | 5:20p  | 51.0 | 6:00a  | 9.1                 | 0.0                 | 0.02 | 4.1                  | 37.0 | 5:50p  | SSW        |
| 1   | 53.7         | 61.4 | 3:20p  | 48.1 | 6:30a  |                     |                     | 0.16 | 7.7                  | 47.0 | 4:20p  | SSW        |
| 2   | 54.8         | 63.2 | 3:20p  | 47.2 | 1:40a  | 10.2                | 0.0                 | 0.00 | 5.4                  | 40.0 | 4:10p  | SSW        |
| 3   | 56.6         | 65.2 | 4:40p  | 50.3 | 5:30a  | 8.4                 | 0.0                 | 0.00 | 2.3                  | 18.0 | 5:50p  | WNW        |
| 4   | 60.8         | 70.0 | 5:20p  | 52.8 | 6:00a  | 5.2                 | 1.0                 | 0.00 | 2.1                  | 21.0 | 4:30p  | MNM        |
| 5   | 60.3         | 63.8 | 3:20p  | 56.3 | 7:50a  | 4.7                 | 0.0                 | 0.10 | 2.3                  | 26.0 | 1:10p  | SSW        |
| 6   | 58.9         | 66.5 | 5:20p  | 53.4 | 6:30a  | 6.1                 | 0.1                 | 0.00 | 1.3                  | 19.0 | 6:00p  | WNW        |
| 7   | 62.6         | 74.2 | 5:10p  | 50.1 | 6:30a  | 4.6                 | 2.2                 | 0.00 | 3.6                  | 30.0 | 6:50p  | WNW        |
| 8   | 68.4         | 80.1 | 5:00p  |      | 6:10a  | 1.6                 | 5.0                 | 0.00 | 2.2                  | 26.0 | 4:50p  | WNW        |
| 9   | 66.7         | 76.8 | 3:10p  | 59.9 | 6:30a  | 1.3                 | 3.0                 | 0.00 | 3.6                  | 25.0 | 6:00p  | WNW        |
| 0   | 55.5         | 60.7 | 12:10a | 51.9 | 10:50p | 9.5                 | 0.0                 | 0.72 | 2.7                  | 35.0 | 6:00p  | WNW        |
| 31  | 56.4         | 65.1 | 5:30p  |      | 2:40a  | 8.6                 |                     |      |                      | 36.0 | 3:20p  | SSW        |
|     | 58.8         | 83.2 | 10     |      | 4      |                     |                     |      | 3.2                  |      | 7      | SSW        |

Max >= 90.0: 0 Max <= 32.0: 0Min <= 32.0: 0

Min <= 32.0: 0 Min <= 0.0: 0

Max Rain: 0.72 ON 05/30/20

Days of Rain: 12 (>.01 in) 4 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for JUN. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

## TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |  |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|--|
| 1   | 59.0         | 68.9 | 5:40p  | 48.3 | 6:20a  |                     | 0.6                 | 0.00 | 2.6                  | 19.0 | 10:40a | WNW        |  |
| 2   | 58.6         | 68.3 | 1:40p  | 51.2 | 5:40a  |                     | 0.2                 | 0.00 | 2.6                  | 29.0 | 4:10p  | W          |  |
| 3   | 58.7         | 67.3 | 4:30p  | 52.6 | 5:30a  |                     |                     | 0.00 | 3.5                  | 22.0 | 5:30p  |            |  |
| 4   | 60.7         | 69.0 | 4:00p  | 54.6 | 5:20a  |                     |                     | 0.00 |                      | 35.0 | 9:40p  |            |  |
| 5   | 59.2         | 68.6 | 6:10p  |      | 6:00a  |                     |                     |      |                      | 30.0 | 8:20p  |            |  |
| 6   | 56.3         | 63.6 | 12:50p |      | 2:40a  |                     |                     | 0.04 |                      | 46.0 | 1:10p  |            |  |
| 7   | 56.2         | 63.3 | 7:00p  |      | 5:40a  |                     | 0.0                 | 0.01 |                      | 41.0 | 9:30p  |            |  |
| 8   | 57.7         | 65.7 | 5:30p  | 51.7 | 6:10a  |                     | 0.0                 | 0.01 |                      | 41.0 | 1:50p  |            |  |
| 9   | 57.5         | 65.3 | 4:30p  | 52.1 | 7:20a  |                     | 0.0                 | 0.49 |                      | 37.0 | 3:50p  |            |  |
| 10  | 62.6         | 71.1 | 5:20p  | 55.7 | 6:30a  |                     | 1.1                 | 0.02 |                      | 36.0 | 2:50p  |            |  |
| 11  | 63.8         | 72.3 | 6:20p  | 58.4 | 9:50a  |                     | 1.5                 | 0.11 |                      | 16.0 | 4:20a  | M          |  |
| 12  | 58.3         | 63.1 | 12:10a |      | 3:30p  |                     | 0.0                 | 0.19 | 1.1                  | 20.0 | 9:00p  | SSW        |  |
| 13  | 56.5         | 62.0 | 2:30p  | 53.2 | 5:20a  |                     | 0.0                 | 0.03 |                      | 34.0 | 11:30a | SSW        |  |
| 14  | 58.1         | 65.9 | 4:10p  |      | 4:10a  |                     | 0.0                 | 0.00 | 3.5                  | 26.0 | 8:10a  | SSW        |  |
| 15  | 57.4         | 65.3 | 4:10p  |      | 8:30a  |                     | 0.0                 | 0.47 | 3.7                  | 43.0 | 4:30p  |            |  |
| 16  | 58.6         | 66.8 | 6:20p  |      | 5:20a  |                     |                     | 0.06 |                      | 27.0 | 4:10p  |            |  |
| 17  | 62.0         | 72.8 | 6:10p  |      | 5:10a  |                     |                     | 0.00 | 3.0                  | 21.0 | 4:10p  |            |  |
| 18  | 64.4         | 76.1 | 4:50p  | 54.8 | 5:40a  |                     | 2.9                 | 0.00 | 4.4                  | 27.0 | 4:20p  | WNW        |  |
| 19  | 68.1         | 79.9 | 3:40p  | 56.4 | 5:20a  | 2.0                 | 5.1                 | 0.00 |                      | 19.0 | 1:30p  |            |  |
| 20  | 66.0         | 73.7 | 3:50p  | 61.3 | 8:50a  | 0.7                 |                     | 0.03 | 4.8                  | 34.0 | 2:50p  |            |  |
| 21  | 64.0         | 71.7 | 5:20p  | 57.8 | 12:00m |                     | 1.3                 | 0.00 |                      | 34.0 | 4:10p  | M          |  |
| 22  | 65.5         | 78.3 | 5:40p  | 54.2 | 4:50a  |                     |                     | 0.00 |                      | 28.0 | 6:40p  | MNM        |  |
| 23  | 69.3         | 83.0 | 4:00p  | 59.3 | 5:10a  |                     |                     | 0.00 |                      | 32.0 | 6:00p  |            |  |
| 24  | 69.2         | 78.5 | 4:30p  | 62.4 | 7:00a  |                     | 4.5                 | 0.00 | 4.0                  | 37.0 | 10:40a | W          |  |
| 25  | 67.5         | 79.3 | 5:00p  | 58.0 | 6:50a  | 2.2                 | 4.7                 | 0.00 | 4.3                  | 33.0 | 6:30p  | WNW        |  |
| 26  | 68.9         | 82.5 | 4:10p  | 59.7 | 5:50a  | 0.9                 | 4.8                 | 0.00 | 3.4                  | 29.0 | 4:00p  | NW         |  |
| 27  | 61.2         | 65.0 | 2:50p  | 56.7 | 12:00m | 3.8                 | 0.0                 | 0.00 | 6.2                  | 33.0 | 6:00p  | SSW        |  |
| 28  | 60.7         | 70.5 | 6:50p  | 53.3 | 5:20a  | 5.3                 | 1.0                 | 0.14 |                      | 30.0 | 1:30a  | NNW        |  |
| 29  | 62.8         | 73.0 | 3:40p  | 55.1 | 6:30a  | 3.6                 | 1.4                 | 0.00 | 6.0                  | 34.0 | 6:40p  | SSW        |  |
| 30  | 60.8         | 67.0 | 5:40p  | 56.8 | 4:00a  | 4.3                 | 0.1                 | 0.00 | 8.4                  | 43.0 | 4:00p  | SSW        |  |
|     | 61.7         | 83.0 | 23     | 48.3 | 1      | 143.6               | 42.9                | 1.60 | 3.7                  | 46.0 | 6      | SSW        |  |

Max >= 90.0: 0Max <= 32.0: 0 Min <= 32.0: 0 Min <= 0.0: 0

Max Rain: 0.49 ON 06/09/20

Days of Rain: 10 (>.01 in) 5 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for JUL. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

#### TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME  | LOW  | TIME  | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |
|-----|--------------|------|-------|------|-------|---------------------|---------------------|------|----------------------|------|--------|------------|
| 1   | 59.3         | 66.7 | 3:00p | 54.8 | 6:10a |                     |                     | 0.00 |                      | 41.0 | 11:10a |            |
| 2   | 60.2         | 68.1 | 4:40p |      | 2:10a |                     |                     | 0.00 |                      | 40.0 | 1:20a  |            |
| 3   | 61.7         | 66.8 | 1:50p |      | 7:30a |                     |                     | 0.00 |                      | 34.0 | -      |            |
| 4   | 62.2         | 71.8 | 5:30p |      | 5:20a |                     |                     | 0.00 |                      |      | 5:50p  |            |
| 5   | 64.9         | 74.8 | 5:50p |      | 6:10a |                     |                     | 0.00 |                      |      | 9:00p  |            |
| 6   | 63.8         | 71.4 | 3:40p |      | 5:50a |                     | 1.3                 | 0.00 |                      |      | 5:20p  |            |
| 7   | 61.5         | 69.4 | 4:20p |      | 7:10a |                     |                     | 0.01 |                      | 39.0 |        |            |
| 8   | 64.4         | 72.6 | 5:30p |      | 5:50a |                     | 2.1                 | 0.20 |                      | 19.0 |        |            |
| - 9 | 64.1         | 73.1 | 5:30p |      | 8:40a |                     |                     | 0.03 |                      | 29.0 | 5:40p  |            |
| 10  | 64.2         | 72.9 | 7:10p |      |       |                     |                     | 0.00 |                      | 27.0 |        |            |
| 11  | 63.0         | 58.7 | 2:30p |      |       |                     |                     | 0.00 |                      | 34.0 | -      |            |
| 12  | 64.4         | 70.7 | 5:40p |      | 7:50a |                     | 1.1                 | 0.00 |                      | 27.0 | -      |            |
| 13  | 64.9         | 74.2 | 4:50p |      | 5:30a |                     |                     | 0.00 |                      | 31.0 |        |            |
| 14  | 67.3         | 78.7 | 6:00p |      | 6:30a |                     |                     | 0.00 |                      | 36.0 | -      |            |
| 15  | 69.8         | 81.7 | 5:50p |      | 5:20a |                     | 5.9                 | 0.00 |                      | 24.0 |        |            |
| 16  | 68.2         | 79.3 | 6:10p |      | 8:40a |                     | 4.3                 | 0.00 |                      | 31.0 | 8:40p  |            |
| 17  | 64.9         | 71.7 | 5:20p |      | 8:20a |                     |                     | 0.01 |                      | 23.0 | 7:20a  |            |
| 18  | 67.7         | 77.4 | 4:40p |      | 6:00a |                     |                     | 0.00 |                      | 34.0 | 5:20p  |            |
| 19  | 70.8         | 81.2 | 4:40p |      | 6:20a |                     | 6.5                 | 0.00 |                      | 31.0 | 6:10p  |            |
| 20  | 73.3         | 85.4 | 6:00p |      | 6:00a |                     | 8.6                 | 0.00 |                      | 31.0 | 1:40p  |            |
| 21  | 71.2         | 81.2 | 5:50p |      | 7:30a |                     | 6.3                 | 0.00 |                      | 27.0 | 2:20p  |            |
| 22  | 65.2         | 72.4 | 5:20p |      | 8:00a |                     |                     | 0.00 | 2.2                  | 23.0 | 5:10p  |            |
| 23  | 62.8         | 67.9 | 4:00p |      | 5:30a |                     |                     | 0.00 | 2.6                  | 23.0 | 3:50p  |            |
| 24  | 62.3         | 71.0 | 5:00p |      | 4:00a |                     | 1.0                 | 0.00 | 2.5                  | 29.0 | 6:50p  |            |
| 25  | 66.0         | 75.4 | 4:40p |      | 6:10a |                     | 3.1                 | 0.00 |                      | 33.0 | 4:50p  |            |
| 26  | 71.2         | 83.0 | 5:50p |      | 6:20a |                     |                     | 0.00 | 3.9                  | 28.0 | 2:40p  |            |
| 27  | 75.4         | 89.2 | 4:30p |      | 5:40a |                     |                     | 0.00 |                      | 20.0 | 3:00p  |            |
| 28  | 69.1         | 82.4 | 5:40p |      | 6:50a |                     |                     | 0.00 |                      |      | 11:10a |            |
| 29  | 69.8         | 82.3 | 5:00p |      | 6:10a |                     | 6.0                 | 0.00 |                      |      | 2:40p  |            |
| 30  |              | 87.0 | 4:30p |      | 6:20a |                     |                     | 0.00 |                      | 24.0 |        |            |
| 31  | 72.2         | 83.6 | 3:30p | 63.4 | 6:20a | 0.1                 | 7.3                 | 0.00 | 4.4                  | 34.0 | 10:10p | W          |
|     | 66.4         | 89.2 | 27    | 54.5 | 14    | 65.6                | 109.7               | 0.25 | 3.9                  | 41.0 | 1      | MNM        |

Max >= 90.0: 0

Max <= 32.0: 0 Min <= 32.0: 0

Min <= 0.0: 0

Max Rain: 0.20 ON 07/08/20

Days of Rain: 2 (>.01 in) 1 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for AUG. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

## TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DOM<br>DIR |  |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
|     | 66.6         | 76.5 | 6:30p  |      |        | 1.5                 |                     | 0.00 | 1.7                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| 2   | 70.5         | 82.1 | 3:30p  |      | 7:10a  |                     |                     | 0.00 | 3.8                  | 30.0 | and the second s |            |  |
| 3   | 70.4         | 80.6 | 5:20p  |      | 4:40a  |                     |                     |      | 3.0                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| 4   | 70.6         | 81.0 | 5:20p  |      | 6:40a  |                     |                     | 0.00 |                      | 37.0 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 5   | 69.5         | 82.4 | 4:40p  |      | 6:20a  |                     |                     |      | 3.7                  |      | 9:20p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |
|     | 64.7         | 73.0 | 2:20p  |      | 7:40a  |                     |                     |      | 5.9                  |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 7   | 65.4         | 75.8 | 5:00p  |      | 2:00a  |                     |                     |      | 2.9                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| 8   | 63.5         | 69.7 | 5:00p  |      | 4:20a  |                     |                     |      | 1.7                  |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 9   | 65.6         | 74.6 | 4:30p  |      | 6:30a  |                     |                     | 0.00 |                      | 31.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| 10  | 68.3         | 80.1 | -      | 57.4 |        |                     |                     | 0.00 |                      | 23.0 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 11  | 65.0         | 76.2 | 3:00p  |      | 7:30a  |                     |                     | 0.00 |                      | 34.0 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M          |  |
| 12  | 62.4         | 71.0 | 5:50p  |      | 4:20a  |                     |                     | 0.00 |                      | 21.0 | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |
| 13  | 63.8         | 74.0 | 4:50p  |      | 7:20a  |                     |                     | 0.00 |                      | 20.0 | 8:40p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |
| 14  | 66.8         | 78.1 | 5:10p  |      | 5:50a  |                     | 4.3                 | 0.00 |                      | 32.0 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 15  | 72.0         | 82.7 | 5:20p  |      | 7:00a  |                     | 7.5                 | 0.00 | 4.1                  | 32.0 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 16  | 78.6         | 98.1 | 5:20p  |      | 7:00a  |                     |                     | 0.00 | 1.0                  | 34.0 | 7:00p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M          |  |
| 17  | 75.7         | 87.4 | 6:10p  |      | 7:10a  |                     |                     | 0.00 | 2.6                  | 23.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| 18  | 70.2         | 79.6 | 4:10p  |      |        |                     |                     | 0.00 |                      | 25.0 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |  |
| 19  | 69.9         | 82.2 | 5:40p  |      | 6:30a  |                     | 5.8                 | 0.00 |                      | 28.0 | 9:30p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NNW        |  |
| 20  | 70.0         | 79.5 | 5:20p  |      | 7:00a  |                     |                     | 0.10 | 1.9                  | 21.0 | 6:00a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NM         |  |
| 21  | 67.8         | 71.9 | 10:50a |      | 12:00m |                     |                     | 0.12 | 4.3                  | 43.0 | 2:00p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SSW        |  |
| 22  | 65.3         | 73.6 | 5:20p  |      | 9:40a  |                     |                     | 0.05 |                      | 33.0 | 7:40p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WNW        |  |
| 23  | 64.9         | 75.2 | 4:30p  |      | 6:20a  |                     |                     | 0.00 |                      | 29.0 | 1:30p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NNW        |  |
| 24  | 65.5         | 74.7 | 4:10p  |      | 7:00a  |                     |                     | 0.00 |                      | 21.0 | 1:20p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WNW        |  |
| 25  | 65.7         | 76.4 | 4:30p  | 54.6 | 6:50a  |                     | 3.3                 | 0.00 | 2.6                  | 24.0 | 2:10p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WNW        |  |
| 26  | 65.8         | 74.7 | 4:30p  | 56.4 | 6:30a  | 2.1                 | 3.0                 | 0.00 | 2.8                  | 34.0 | 3:30p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MNM        |  |
| 27  | 66.9         | 78.3 | 6:10p  | 56.0 | 7:00a  | 2.2                 |                     | 0.00 | 2.4                  | 20.0 | 1:20p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WNW        |  |
| 28  | 66.4         | 77.4 | 5:20p  | 57.6 | 6:40a  | 1.8                 | 3.2                 | 0.00 | 2.4                  | 19.0 | 3:40p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WNW        |  |
| 29  | 64.2         | 73.0 | 5:40p  | 59.1 | 6:30a  |                     | 1.2                 | 0.00 | 2.8                  | 23.0 | 9:10p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NW         |  |
| 30  | 62.8         | 74.6 | 4:30p  |      | 7:10a  |                     | 1.9                 |      | 3.6                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| 31  | 61.6         | 69.2 | 5:40p  | 55.3 | 5:30a  | 4.1                 | 0.7                 | 0.01 | 3.7                  | 25.0 | 2:10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MMM        |  |
|     | 67.3         | 98.1 | 16     | 52.6 | 30     | 53.4                | 125.2               | 0.31 | 3.0                  | 44.0 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MNM        |  |

Max >= 90.0: 1 Max <= 32.0: 0

Min <= 32.0: 0 Min <= 0.0: 0

Max Rain: 0.12 ON 08/21/20

Days of Rain: 4 (>.01 in) 1 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for SEP. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

## TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|
| 1   | 66.9         | 79.4 | 4:40p  | 56.2 | 6:00a  | 2.6                 | 4.5                 | 0.00 | 2.3                  | 22.0 | 5:20p  | WNW        |
| 2   | 68.0         | 77.5 | 3:00p  | 59.5 | 6:40a  | 1.1                 | 4.1                 | 0.00 | 3.1                  | 29.0 | 4:40p  | NNW        |
| 3   | 68.3         | 79.2 | 4:40p  | 58.5 | 7:00a  | 1.5                 |                     | 0.00 | 3.6                  | 31.0 | 4:10p  | MMM        |
| 4   | 68.4         | 81.9 | 3:40p  | 58.3 | 6:40a  | 1.3                 |                     | 0.00 | 2.0                  | 25.0 | 6:30p  |            |
| 5   | 65.5         | 74.0 | 4:50p  | 60.4 | 5:40a  | 1.5                 | 2.0                 | 0.00 | 1.6                  | 22.0 | 1:40a  | E          |
| 6   | 66.9         | 77.5 | 6:20p  | 58.0 | 6:50a  | 2.1                 | 4.0                 | 0.00 | 2.5                  | 24.0 | 4:50p  | WNW        |
| 7   | 70.8         | 81.4 | 5:00p  | 60.8 | 6:00a  | 0.8                 | 6.5                 | 0.00 | 10.4                 | 65.0 | 6:30p  | NNE        |
| 8   | 72.3         | 78.0 | 3:50p  | 66.7 | 7:10a  | 0.0                 | 7.3                 | 0.00 | 19.7                 | 71.0 | 8:10a  | NE         |
| 9   | 72.8         | 83.5 | 5:20p  | 59.3 | 7:30a  | 0.5                 | 8.3                 | 0.00 | 5.1                  | 44.0 | 5:30p  | NNE        |
| 10  | 70.4         | 83.4 | 4:00p  | 58.3 | 7:20a  | 1.2                 | 6.5                 | 0.00 | 2.0                  | 22.0 | 1:20p  | WNW        |
| 11  | 65.0         | 75.3 | 5:20p  | 56.5 | 7:10a  | 2.6                 | 2.6                 | 0.00 | 2.5                  | 20.0 | 1:30p  | W          |
| 12  | 57.9         | 62.6 | 12:10a | 55.3 | 11:30p | 7.1                 | 0.0                 | 0.00 | 0.5                  | 12.0 | 11:10a | MMM        |
| 13  | 56.6         | 63.9 | 5:50p  | 51.4 | 5:40a  | 8.4                 | 0.0                 | 0.00 | 0.7                  | 13.0 | 12:50p | NNW        |
| 14  | 61.2         | 67.5 | 4:50p  | 57.5 | 12:30a | 3.9                 | 0.1                 | 0.01 | 1.0                  | 15.0 | 1:30p  | NNM        |
| 15  | 65.2         | 74.1 | 3:50p  | 59.3 | 2:30a  | 1.6                 | 1.8                 | 0.01 | 1.3                  | 15.0 | 2:10a  | MMM        |
| 16  | 64.6         | 70.7 | 4:10p  | 60.0 | 7:20a  | 1.7                 | 1.3                 | 0.00 | 0.9                  | 13.0 | 5:20p  | NM         |
| 17  | 64.2         | 70.4 | 4:10p  | 59.6 | 8:00a  | 1.8                 | 1.0                 | 0.00 | 1.5                  | 17.0 | 3:00p  | MMM        |
| 18  | 64.0         | 68.6 | 5:40p  | 60.5 | 5:30a  | 1.5                 | 0.5                 | 0.57 | 1.2                  | 19.0 | 5:50p  | SE         |
| 19  | 64.7         | 72.5 | 3:50p  | 61.1 | 7:30a  | 1.6                 | 1.4                 | 0.01 | 5.0                  | 36.0 | 5:40p  | SSW        |
| 20  | 63.1         | 69.9 | 5:10p  | 58.7 | 12:00m | 2.8                 | 0.9                 | 0.01 | 1.3                  | 16.0 | 3:20p  | NW         |
| 21  | 61.8         | 70.6 | 5:10p  | 53.8 | 6:20a  | 4.3                 | 1.1                 | 0.00 | 1.2                  | 18.0 | 12:50p | SE         |
| 22  | 65.7         | 73.0 | 4:30p  | 60.5 | 7:40a  | 1.2                 | 2.0                 | 0.00 | 3.2                  | 25.0 | 3:20p  | W          |
| 23  | 62.1         | 64.6 | 1:10p  | 59.5 | 5:00a  | 2.9                 | 0.0                 | 0.79 | 6.1                  | 47.0 | 12:10p | SE         |
| 24  | 60.6         | 63.3 | 10:20a | 58.3 | 11:30p | 4.4                 | 0.0                 | 0.28 | 4.0                  | 41.0 | 1:00p  | SSW        |
| 25  | 59.6         | 64.0 | 5:20p  | 56.2 | 12:00m | 5.4                 | 0.0                 | 0.41 | 7.4                  | 44.0 | 5:00p  | SSW        |
| 26  | 58.6         | 66.0 | 1:30p  | 54.6 | 5:10a  | 6.4                 | 0.0                 | 0.03 | 5.2                  | 50.0 | 1:50p  | SSW        |
| 27  | 59.4         | 67.1 | 4:10p  | 52.1 | 7:50a  | 5.8                 | 0.2                 | 0.00 | 2.3                  | 21.0 | 1:50p  | MNM        |
| 28  | 60.5         | 71.3 | 4:20p  | 50.6 | 6:10a  | 5.4                 | 1.0                 | 0.00 | 1.8                  | 23.0 | 5:40p  | NNW        |
| 29  | 63.1         | 75.6 | 4:10p  | 52.3 | 7:10a  | 3.9                 | 2.0                 | 0.00 | 1.2                  | 18.0 | 12:20p | NNW        |
| 30  | 61.9         | 72.2 | 3:50p  | 55.5 | 7:20a  | 4.1                 | 1.0                 | 0.00 | 0.8                  | 19.0 | 5:40p  | NW         |
|     | 64.3         | 83.5 | 9      | 50.6 | 28     | 89.4                | 69.6                | 2.12 | 3.4                  | 71.0 | 8      | NNW        |

Max >= 90.0: 0 Max <= 32.0: 0 Min <= 32.0: 0 Min <= 0.0: 0

Max Rain: 0.79 ON 09/23/20

Days of Rain: 5 (>.01 in) 4 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for OCT. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

## TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|
| 1   | 59.2         | 66.9 | 5:00p  | 55.5 | 8:00a  |                     | 0.0                 | 0.00 | 0.8                  | 13.0 | 1:30p  | WNW        |
| 2   | 59.9         | 69.8 | 4:50p  | 54.2 | 6:40a  |                     | 0.5                 | 0.00 | 0.4                  | 12.0 | 1:30p  |            |
| 3   | 57.0         | 58.6 | 12:10a | 55.4 | 8:00a  |                     | 0.0                 | 0.00 |                      | 14.0 | 3:00p  | NNW        |
| 4   | 57.7         | 59.9 | 3:30p  |      | 4:10a  |                     |                     | 0.04 | 0.3                  | 16.0 | 11:40a |            |
| 5   | 59.1         | 65.6 | 4:30p  |      | 7:30a  |                     |                     | 0.00 |                      | 25.0 | 5:40p  |            |
| 6   | 59.8         | 69.0 | 5:10p  |      | 4:20a  |                     |                     | 0.00 | 1.3                  | 29.0 | 6:30p  |            |
| 7   | 57.9         | 62.2 | 6:10p  |      | 7:20a  |                     |                     | 0.00 |                      | 9.0  | 9:30a  | SE         |
| 8   | 61.1         | 69.1 | 3:50p  |      | 12:10a |                     |                     | 0.00 |                      | 24.0 | 3:50p  |            |
| 9   | 62.4         | 71.6 | 2:50p  |      | 7:00a  |                     |                     | 0.45 | 2.9                  | 35.0 | q00:E  |            |
| 10  | 57.2         | 60.6 | 2:50p  |      | 11:40p |                     |                     | 0.78 | 8.9                  | 52.0 | 10:10a |            |
| 11  | 54.9         | 60.2 | 5:10p  |      | 7:10a  |                     |                     | 0.41 | 5.3                  | 72.0 | 7:10p  | SSW        |
| 12  | 57.2         | 63.3 | 4:30p  |      | 11:20p |                     | 0.0                 | 0.00 |                      | 67.0 | 3:20a  | SSW        |
| 13  | 57.4         | 63.2 | 1:10p  |      | 6:00a  |                     | 0.0                 | 0.56 | 9.1                  | 61.0 | 1:20p  | SSW        |
| 14  | 57.0         | 63.9 | 3:40p  | 51.1 | 11:50p | 8.0                 | 0.0                 | 0.00 | 4.5                  | 37.0 | 9:40a  | SSW        |
| 15  | 53.4         | 60.5 | 3:50p  | 45.3 | 7:50a  | 11.6                | 0.0                 | 0.00 | 0.8                  | 16.0 | 1:30p  | WNW        |
| 16  | 60.3         | 64.8 | 4:00p  |      | 12:20a |                     | 0.0                 | 0.00 | 10.9                 | 64.0 | 10:00a | SSW        |
| 17  | 56.5         | 59.9 | 12:10a | 52.4 | 8:40a  | 8.5                 | 0.0                 | 0.00 | 1.6                  | 26.0 | 10:20a | SSW        |
| 18  | 59.6         | 66.6 | 3:30p  | 54.2 | 3:00a  | 5,5                 | 0.1                 | 0.03 | 8.2                  | 54.0 | 10:40a | SSW        |
| 19  | 57.8         | 62.1 | 12:40p | 53.3 | 12:00m | 7.2                 | 0.0                 | 0.01 | 5.0                  | 41.0 | 1:30p  | SSW        |
| 20  | 54.5         | 60.0 | 3:40p  | 50.3 | 12:00m |                     |                     | 0.01 | 0.6                  | 19.0 | 2:20a  | SE         |
| 21  | 49.7         | 54.2 | 2:50p  | 45.0 | 12:00m | 15.3                | 0.0                 | 0.04 | 1.7                  | 37.0 | 12:50p | ENE        |
| 22  | 46.1         | 53.3 | 5:20p  | 39.7 | 6:10a  | 18.9                | 0.0                 | 0.00 | 1.4                  | 17.0 | 3:00p  | SE         |
| 23  | 45.7         | 54.1 | 5:20p  | 38.7 | 4:40a  | 19.3                | 0.0                 | 0.23 | 4.2                  | 44.0 | 6:10p  | SE         |
| 24  | 46.2         | 50.0 | 2:10p  | 43.6 | 10:30p | 18.8                | 0.0                 | 0.03 | 17.6                 | 62.0 | 8:40a  | N          |
| 25  | 43.7         | 49.1 | 2:10p  | 37.2 | 11:50p | 21.3                | 0.0                 | 0.00 | 11.4                 | 41.0 | 7:30a  | NE         |
| 26  | 43.7         | 51.8 | 4:50p  | 34.1 | 3:30a  | 21.3                | 0.0                 | 0.00 | 1.0                  | 14.0 | 2:40a  | SE         |
| 27  | 50.0         | 57.7 | 5:10p  | 45.1 | 6:10a  | 15.0                | 0.0                 | 0.00 | 0.8                  | 15.0 | 3:20p  | SSW        |
| 28  | 51.7         | 57.4 | 1:50p  | 44.2 | 7:50a  | 13.3                | 0.0                 | 0.00 | 1.5                  | 19.0 | 2:20p  | SE         |
| 29  | 54.6         | 61.4 | 4:50p  | 47.1 | 11:30p | 10.4                | 0.0                 | 0.00 | 0.2                  | 14.0 | 3:00a  | S          |
| 30  | 53.9         | 60.0 | 3:20p  | 46.5 | 1:20a  | 11.1                | 0.0                 | 0.06 | 6.7                  | 51.0 | 11:40a | SSW        |
| 31  | 47.7         | 54.7 | 4:20p  |      | 8:50a  | 17.3                | 0.0                 | 0.00 | 1.5                  | 23.0 | 5:40p  | N          |
|     |              |      |        |      |        |                     |                     |      |                      |      |        |            |
|     | 54.6         | 71.6 | 9      | 34.1 | 26     | 324.5               | 2.3                 | 2.65 | 3.9                  | 72.0 | 11     | SSW        |

Max >= 90.0: 0 Max <= 32.0: 0

Min <= 32.0: 0 Min <= 0.0: 0

Max Rain: 0.78 ON 10/10/20

Days of Rain: 10 (>.01 in) 5 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for NOV. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

#### TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW / | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR |  |
|-----|--------------|------|--------|-------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|--|
| 1   | 47.3         |      | 4:10p  |       | 7:00a  |                     | 0.0                 | 0.00 |                      |      | 6:30a  | SE         |  |
| 2   | 50.2         |      | 3:00p  | 39.5  | 6:30a  |                     | 0.0                 | 0.00 | 0.2                  |      | 4:40a  | SE         |  |
| 3   | 50.1         | 59.3 | 12:00m |       | 3:00a  |                     |                     |      |                      | 18.0 | 11:10p |            |  |
| 4   | 63.5         | 68.3 | q00:E  |       | 12:10a |                     |                     | 0.11 | 12.0                 |      | 3:10p  |            |  |
| 5   | 53.7         | 61.1 | 12:20a |       | 10:40p |                     | 0.0                 |      | 4.7                  |      |        |            |  |
| 6   | 47.0         | 51.0 | 2:50p  | 39.6  | 11:20p |                     | 0.0                 | 0.13 | 9.9                  | 55.0 | 5:00a  |            |  |
| 7   | 39.6         | 45.0 | 7:10p  |       | 7:10a  |                     | 0.0                 | 0.08 | 2.0                  | 43.0 | 3:40p  |            |  |
| 8   | 40.3         | 48.1 | 2:20p  |       | 6:50a  |                     | 0.0                 | 0.00 | 6.8                  | 46.0 | 1:50p  |            |  |
| 9   | 38.1         | 45.1 | 4:30p  |       | 5:10a  |                     | 0.0                 | 0.02 | 4.5                  | 47.0 | 11:10p |            |  |
| 10  | 44.7         | 48.3 | 11:20a |       | 1:00a  |                     | 0.0                 | 0.15 | 4.2                  | 39.0 | 2:30a  |            |  |
| 11  | 43.2         | 47.6 | 2:10p  |       | 4:50a  |                     |                     | 0.00 | 0.4                  | 13.0 | 12:00m | SE         |  |
| 12  | 44.8         | 51.8 | 2:50p  |       | 6:20a  |                     |                     | 0.12 | 4.3                  | 56.0 | 3:50p  |            |  |
| 13  | 47.3         |      | 2:30p  |       | 11:20p |                     |                     | 0.52 |                      |      | 1:10p  |            |  |
| 14  | 44.9         | 49.7 | 1:20p  |       | 6:20a  |                     | 0.0                 | 0.43 | 2.9                  | 36.0 | 3:30a  |            |  |
| 15  | 49.7         |      | 3:40p  |       | 11:10p |                     |                     | 0.18 |                      | 46.0 | 11:50a | SSW        |  |
| 16  | 47.2         | 48.3 | 11:10a |       | 6:40a  |                     |                     | 0.33 |                      | 17.0 | 11:40a | N          |  |
| 17  | 51.7         | 62.1 | 10:20a |       | 5:00a  |                     |                     | 0.25 | 5.4                  | 64.0 | 10:20a | SSE        |  |
| 18  | 47.6         | 52.8 | 12:30a |       | 9:20p  |                     | 0.0                 | 0.28 | 4.0                  | 48.0 | 3:50p  |            |  |
| 19  | 45.7         | 49.4 | 11:10a | 42.3  | 6:40a  | 19.3                | 0.0                 | 0.37 | 3.0                  | 34.0 | 2:20p  | SSW        |  |
| 20  | 49.4         | 54.4 | 11:40a | 45.6  | 12:10a | 15.6                | 0.0                 | 0.00 | 1.7                  | 30.0 | 11:50a | SSW        |  |
| 21  | 47.8         | 52.5 | 2:50p  | 41.5  | 12:00m | 17.2                | 0.0                 | 0.00 | 0.5                  | 19.0 | 6:40p  | WNW        |  |
| 22  | 42.2         | 45.9 | 1:40p  | 37.7  | 8:10a  | 22.8                | 0.0                 | 0.17 | 0.2                  | 15.0 | 2:20p  | SE         |  |
| 23  | 46.1         | 49.9 | 1:50p  | 43.4  | 2:30a  | 18.9                | 0.0                 | 0.07 | 1.6                  | 32.0 | 10:10a | S          |  |
| 24  | 47.2         | 53.3 | 1:00p  | 42.7  | 12:00m | 17.8                | 0.0                 | 0.22 | 6.0                  | 48.0 | 1:10p  | SSW        |  |
| 25  | 46.0         | 51.2 | 2:40p  | 42.4  | 1:50a  | 19.0                | 0.0                 | 0.02 | 1.7                  | 23.0 | 7:30a  | SSW        |  |
| 26  | 47.1         | 50.7 | 3:20p  | 44.6  | 5:50a  | 17.9                | 0.0                 | 0.02 | 2.4                  | 37.0 | 12:00p | SSW        |  |
| 27  | 48.8         | 53.6 | 3:20p  | 45.8  | 9:10a  | 16.2                | 0.0                 | 0.00 | 0.9                  | 21.0 | 7:50p  | SE         |  |
| 28  | 46.0         | 49.4 | 1:10p  | 41.0  | 11:40p | 19.0                | 0.0                 | 0.00 | 0.6                  | 25.0 | 1:10a  | SSW        |  |
| 29  | 38.9         | 44.9 | 3:40p  | 33.9  | 10:30a | 26.1                | 0.0                 | 0.00 | 0.1                  | 12.0 | 9:20p  | SE         |  |
| 30  | 46.3         | 51.3 | 12:40p | 38.9  | 12:50a | 18.7                | 0.0                 | 0.25 | 8.8                  | 67.0 | 10:30a | SSW        |  |
|     |              |      |        |       |        |                     |                     |      |                      |      |        |            |  |
|     | 46.7         | 68.3 | 4      | 30.4  | 9      | 548.2               | 0.6                 | 4.67 | 3.7                  | 67.0 | 30     | SSW        |  |

Max >= 90.0: 0 Max <= 32.0: 0 Min <= 32.0: 2 Min <= 0.0: 0

Max Rain: 0.73 ON 11/03/20

Days of Rain: 21 (>.01 in) 16 (>.1 in) 0 (>1 in)

#### MONTHLY CLIMATOLOGICAL SUMMARY for DEC. 2020

NAME: WeatherStation CITY: STATE:

ELEV: 0 ft LAT: LONG:

#### TEMPERATURE (°F), RAIN (in), WIND SPEED (mph)

| DAY | MEAN<br>TEMP | HIGH | TIME   | LOW  | TIME   | HEAT<br>DEG<br>DAYS | COOL<br>DEG<br>DAYS | RAIN | AVG<br>WIND<br>SPEED | HIGH | TIME   | DOM<br>DIR | _ |
|-----|--------------|------|--------|------|--------|---------------------|---------------------|------|----------------------|------|--------|------------|---|
| 1   | 41.8         | 49.0 | 2:20p  | 34.4 | 6:00a  |                     | 0.0                 | 0.00 | 1.7                  |      | 7:30p  |            |   |
| 2   | 41.7         | 53.7 | 3:00p  |      | 8:00a  |                     |                     | 0.00 |                      | 26.0 | 1:00a  |            |   |
| 3   | 42.4         | 50.3 | 2:10p  |      | 4:30a  |                     |                     | 0.00 |                      | 9.0  | 5:20p  |            |   |
| 4   | 42.6         | 51.2 | 2:50p  |      | 7:20a  |                     |                     | 0.00 |                      | 15.0 | 1:00p  |            |   |
| 5   | 42.7         | 54.2 | 3:40p  |      | 4:50a  |                     |                     | 0.01 |                      | 22.0 | 10:00a |            |   |
| 6   | 49.6         | 55.5 |        |      | 12:00m | 15.4                | 0.0                 | 0.02 |                      | 32.0 | 1:00p  |            |   |
| 7   | 47.8         | 52.7 | 3:10p  | 41.7 | 1:00a  |                     |                     | 0.00 |                      |      | 3:10a  |            |   |
| 8   | 50.0         | 52.3 | 9:10a  |      | 5:10a  |                     |                     | 0.37 |                      | 23.0 | 5:00p  |            |   |
| 9   | 48.2         | 52.7 |        |      | 11:50p |                     |                     | 0.07 |                      | 36.0 | 11:40a |            |   |
| 10  | 41.3         | 45.6 | 3:40p  | 37.6 | 4:30a  |                     |                     | 0.05 |                      | 32.0 | 6:30p  | SE         |   |
| 11  | 42.6         | 45.5 | 1:10p  | 37.5 | 12:00m | 20.1                | 0.0                 | 0.02 |                      | 27.0 | 2:30a  | SSW        |   |
| 12  | 36.9         | 43.2 | 3:30p  | 29.2 | 8:40a  | 25.2                | 0.0                 | 0.01 | 0.1                  | 14.0 | 2:40a  | SE         |   |
| 13  | 43.4         | 48.4 | 2:10p  | 38.6 | 12:10a | 18.9                | 0.0                 | 0.12 | 0.2                  | 20.0 | 12:30a | SE         |   |
| 14  | 46.7         | 51.7 | 1:40p  | 44.5 | 12:10a | 15.8                | 0.0                 | 0.03 |                      | 30.0 | 1:50p  | SSW        |   |
| 15  | 47.1         | 48.9 | q00:E  | 43.8 | 5:40a  | 15.4                | 0.0                 | 0.34 |                      | 50.0 | 3:50a  | S          |   |
| 16  | 48.5         | 51.5 | 9:00p  | 46.1 | 3:40a  | 14.2                | 0.0                 | 0.31 | 3.6                  | 51.0 | 9:20p  | SSW        |   |
| 17  | 47.6         | 50.6 | 1:30p  | 45.0 | 5:10a  | 14.6                | 0.0                 | 0.06 | 6.9                  | 50.0 | 3:20a  | SSW        |   |
| 18  | 48.5         | 52.4 | 5:40p  | 44.4 | 9:10a  | 14.3                | 0.0                 | 0.13 | 7.1                  | 51.0 | 8:30p  | SSE        |   |
| 19  | 49.3         | 54.1 | 12:00m | 46.7 | 8:50a  | 13.9                | 0.0                 | 0.42 | 4.8                  | 50.0 | 12:50a | SSW        |   |
| 20  | 51.7         | 55.9 | 2:10a  | 47.8 | 11:10p | 11.3                | 0.0                 | 0.19 | 3.8                  | 53.0 | 2:00a  | SSW        |   |
| 21  | 47.6         | 61.2 | 1:00p  | 35.8 | 8:40p  | 14.6                | 0.0                 | 1.07 | 5.8                  | 58.0 | 5:30p  | SSW        |   |
| 22  | 41.6         | 46.5 | 1:00p  | 35.6 | 12:00m | 20.0                | 0.0                 | 0.00 | 0.0                  | 12.0 | 4:00a  | SE         |   |
| 23  | 36.7         | 42.8 | 2:50p  | 29.7 | 5:50a  | 25.2                | 0.0                 | 0.00 | 0.7                  | 18.0 | 12:50p | NNW        |   |
| 24  | 35.0         | 41.9 | 2:10p  | 30.7 | 6:00a  | 26.9                | 0.0                 | 0.01 | 0.6                  | 19.0 | 2:40a  | SE         |   |
| 25  | 39.6         | 45.8 | 12:00m | 33.1 | 12:10a | 22.3                | 0.0                 | 0.30 | 0.4                  | 31.0 | 11:50p | SE         |   |
| 26  | 47.1         | 50.0 | 2:50p  | 43.5 | 10:20p | 15.4                | 0.0                 | 0.04 | 4.8                  | 42.0 | 11:40a | SSW        |   |
| 27  | 44.0         | 48.3 | 2:50a  | 34.5 | 12:00m | 18.0                | 0.0                 | 0.02 | 0.1                  | 14.0 | 2:10a  | SE         |   |
| 28  | 38.3         | 46.2 | 2:20p  | 30.9 | 9:10a  | 23.8                | 0.0                 | 0.00 | 0.6                  | 27.0 | 3:50p  | SE         |   |
| 29  | 37.7         | 41.4 | 7:00p  | 32.2 | 4:30a  | 24.4                | 0.0                 | 0.15 | 0.4                  | 17.0 | 6:00a  | SE         |   |
| 30  | 45.6         | 50.2 | 4:20p  | 39.7 | 3:30a  | 16.0                | 0.0                 | 0.47 | 7.1                  | 53.0 | 2:50p  | SSE        |   |
| 31  | 49.1         | 51.5 | 1:00p  | 47.0 | 12:00m | 14.1                | 0.0                 | 0.10 |                      |      | 3:40a  |            |   |
|     | 44 3         | 61.2 | 21     | 29.2 | 12     | 577.9               | 0 0                 | 4.31 | 2 3                  | 58.0 | 21     | SSW        |   |
|     | -1.5         | 01.2 | 2 1    | 20.2 | 12     | 211.3               | 0.0                 | 1.51 | 2.5                  | 50.0 | 21     | DDW        |   |

Max >= 90.0: 0Max <= 32.0: 0

Min <= 32.0: 4

Min <= 0.0: 0

Max Rain: 1.07 ON 12/21/20

Days of Rain: 20 (>.01 in) 11 (>.1 in) 1 (>1 in)

# ATTACHMENT C

ANNUAL PROTECTIVE CAP INSPECTION REPORT



# SITE INSPECTION SUMMARY REPORT—CAP VISUAL MONITORING CASCADE POLE AND LUMBER COMPANY

| Date:                         | 11/24/2020                                  |  |  |  |  |  |
|-------------------------------|---------------------------------------------|--|--|--|--|--|
| Weather:                      | Overcast with light rain, ~45° F            |  |  |  |  |  |
| Precipitation (prior 24 hrs): | 0.11" on 11/23/2020                         |  |  |  |  |  |
| Completed By:                 | M. Tarbert, EIT, Maul Foster & Alongi, Inc. |  |  |  |  |  |
| Engineer of Record:           | S. Taylor, PE, Maul Foster & Alongi, Inc.   |  |  |  |  |  |

#### **General Observations:**

This is the fifth annual cap inspection performed as required under the Consent Decree.

The cap (asphalt cap, concrete drip pad, building capped areas) all generally appear in good condition.

Typical site activities were being performed during the inspection, including movement of lumber poles, movement and handling of lumber boards, and some light construction activity at the CA-C drip pad associated with the ongoing drip pad expansion project.

No major areas of standing water were observed.

There was no visible demarcation fabric.

#### **Specific Observations:** To be noted with photographs, measurements, and locations:

#### Pavement Cap:

No settling, bulging, or punctures were observed.

Some minor linear asphalt cracks are continuing to form and should be closely monitored. These areas are shown on the attached figure.

Some fatigue cracking of asphalt was observed in localized areas of the site and should be closely monitored. These areas are shown on the attached figure.

Puget Sound Energy (PSE) is performing investigation work onsite to detect a potential natural gas leak along the western spur of the railroad on site. This work is being conducted in accordance with the 2015 Site Management Plan. This includes asphalt removal and minor excavation.

New asphalt was observed in several recently repaired areas, as shown on the attached figure.

#### Drip Pad Cap:

Drip pad was covered with steel plating in 2016, and is currently in good condition.

A drip pad extension and a humidity control system were recently constructed over the existing CA-C drip pad. Cap activities concluded on November 25, 2020.

No settling or bulging was observed.

# Transfer Table Pit Cap:

No settling or bulging was observed.

#### Building Cap:

Appears to be in good condition; no foundation cracks or penetrations were observed.

#### Measurements:

Areas of recently repaired asphalt are also shown on the attached figure.

Approximate extent of areas where observed sealant fatigue and cracks forming are shown on the attached figure.



Project Name: McFarland Cascade Pole and Lumber Company—

Cap Inspection, 11.24.20

Project Number: 9081.01.19

Location: 1640 East Marc Street, Tacoma, Washington

## Photo No. 1.

# **Description**

Linear crack to monitor on eastern end of site, looking northwest.



## Photo No. 2.

# **Description**

Three-side structure covering the steel drip pad. View looking north.





Project Name: McFarland Cascade Pole and Lumber Company—

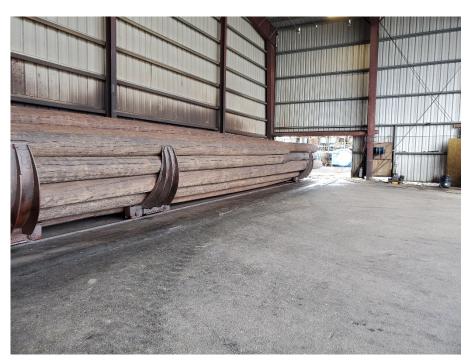
Cap Inspection, 11.24.20

Project Number: 9081.01.19

Location: 1640 East Marc Street, Tacoma, Washington

# Photo No. 3.

# **Description**


Steel-covered drip pad. View looking northwest.



# Photo No. 4.

# **Description**

Steel-covered drip pad. View looking northeast.





Project Name: McFarland Cascade Pole and Lumber Company—

Cap Inspection, 11.24.20

Project Number: 9081.01.19

Location: 1640 East Marc Street, Tacoma, Washington

# Photo No. 5.

# **Description**

Asphalt cap above horizontal recovery well, looking north.



# Photo No. 6.

# **Description**

Area to monitor approximately 200 feet south of the PCP Thermal Butt Vat.





# Photo No. 7.

## **Description**

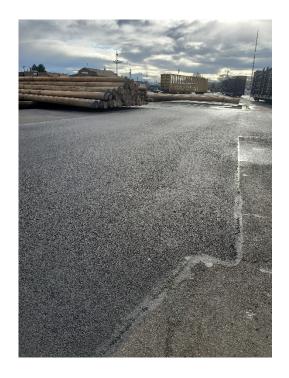
Area repaired with new asphalt at center of site, near railroad spur. View looking north.

# **PHOTOGRAPHS**

Project Name: McFarland Cascade Pole and Lumber Company—

Cap Inspection, 11.24.20

Project Number: 90\(\bar{8}\)1.01.19


Location: 1640 East Marc Street, Tacoma, Washington



# Photo No. 8.

# **Description**

Area repaired with new asphalt at center of site, near railroad spur. View looking south.





Project Name: McFarland Cascade Pole and Lumber Company—

Cap Inspection, 11.24.20

Project Number: 9081.01.19

Location: 1640 East Marc Street, Tacoma, Washington

# Photo No. 9.

# **Description**

Area repaired with new asphalt north of the CA-C Drip Pad. View looking east.



# Photo No. 10.

# **Description**

Puget Sound Energy cap repair, near railroad spur.





Project Name: McFarland Cascade Pole and Lumber Company—

Cap Inspection, 11.24.20

Project Number: 9081.01.19

Location: 1640 East Marc Street, Tacoma, Washington

# Photo No. 11.

# **Description**

Transfer table area. View looking northeast.



# Photo No. 12.

# **Description**

Aerial view of transfer table. North shown by arrow on photo.





Project Name: McFarland Cascade Pole and Lumber Company—

Cap Inspection, 11.24.20

Project Number: 9081.01.19

Location: 1640 East Marc Street, Tacoma, Washington

# Photo No. 13.

# **Description**

Aerial view of cap repair areas at center of the site near railroad spur. North shown by arrow on photo.



