

April 1, 2021 Project No. 0615.17.01

Mr. Panjini Balaraju and Mr. Andy Smith Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504

 Re: Groundwater Monitoring Report, Former Cascade Timber No. 3 Sort Yard Consent Decree No. 94-2-03590-3
Washington State Department of Ecology Facility Site ID No. 1206 Monitoring Date: February 19, 2021

Dear Mr. Balaraju and Mr. Smith:

On February 19, 2021, Maul Foster & Alongi, Inc. (MFA) conducted a groundwatermonitoring event on behalf of the Port of Tacoma (Port) at the former Cascade Timber No. 3 Log Sort Yard (Site), located on the south-southeastern side of Maxwell Way between Port of Tacoma Road and Thorne Road in Tacoma, Washington (Figure 1). Groundwater monitoring/sampling activities were conducted in accordance with the requirements set forth in the Consent Decree (94-2-03590-3), dated April 1994, between the Port and the Washington State Department of Ecology and in the compliance monitoring plan (HLA, 1994). The field activities and the analytical results of the monitoring event are discussed below.

Anchor QEA reported that removal of zinc from the site groundwater-monitoring analyte list had been approved in an email from Dom Reale (Ecology) to Mark Rettman (Port) dated June 28, 2011. The monitoring frequency was changed from 12 months to 18 months based on a memorandum of understanding between Ecology and the Port in 2011. In January 2017, Ecology conducted a periodic review of post-cleanup site conditions and site data to ensure that human health and the environment were being protected. Ecology determined that the requirements of the restrictive covenants and the Consent Decree were met (Anchor QEA, 2019).

The prior groundwater monitoring event was conducted in August 2019 by Anchor QEA. MFA sampled groundwater again on February 19, 2021. Windward completed the most recent cap inspection.

SITE BACKGROUND

The Site is located on the south-southeastern side of Maxwell Way between Port of Tacoma Road and Thorne Road in Tacoma, Washington (refer to Figure 1). The property was leased to the Cascade Timber Company and operated as a log sort yard from 1978 to 1984. In 1982,

Mr. Panjini Balaraju and Mr. Andy Smith April 1, 2021 Page 2

approximately 500 tons of slag generated by Asarco Incorporated was placed on the southwest portion of the property as ballast material. The Port is the current property owner. Currently, the Port leases the property to Washington United Terminals, which operates a truck-queuing area and a storage facility for empty shipping containers and chassis at the property.

Ecology collected stormwater runoff samples at the Site between November 1983 and June 1984. Analytical results indicated that metals, in concentrations above the U.S. Environmental Protection Agency (EPA) water-quality standards, were leaving the Site via the stormwater pathway. On October 1991, Ecology and the Port entered into an Agreed Order to complete a remedial investigation/feasibility study (RI/FS). An RI/FS report was submitted to Ecology in June 1993, and an engineering design report was submitted to Ecology in 1994. Construction of a low-permeability asphalt cap and stormwater drainage system was completed in 1994. Monitoring wells MW-1 and MW-2 were installed to monitor the effectiveness of the remedial action (Anchor QEA, 2019).

FIELD PROCEDURES

MFA conducted a groundwater-monitoring event at the Site on February 19, 2021. Water level data are summarized on Table 1. The locations of MW-1 and MW-2 are shown on Figure 2.

Groundwater monitoring and sampling activities were conducted in accordance with industry standard sampling protocols, with at least one pore volume extracted from each well and field parameters allowed to stabilize before sample collection. Depth-to-water measurements at the monitoring wells were measured, and new polyethylene tubing was installed at each monitoring well before groundwater-sampling activities began.

Water-quality parameters were measured with a YSI meter (YSI 556MPS) and a turbidity meter (Hach 2100P) before sample collection, and the process and results were recorded on field sampling data sheets (refer to Attachment A). Three groundwater samples were collected, including a duplicate sample at MW-2, using low-flow sampling techniques involving a peristaltic pump and dedicated tubing.

The groundwater samples were submitted to Friedman & Bruya, Inc., of Seattle, Washington, under standard chain-of-custody procedures. Samples were analyzed for the contaminants of concern, i.e., dissolved metals including arsenic, copper, lead, and zinc, by EPA Method 6020B.

Investigation-derived waste generated during the February 2021 sampling event was properly drummed and labeled and is temporarily stored at the Site, pending pickup and disposal.

Project No. 0615.17.01

Mr. Panjini Balaraju and Mr. Andy Smith April 1, 2021 Page 3

RESULTS AND DISCUSSION

Water-level measurements and groundwater analytical results are summarized in Tables 1 and 2, respectively. Laboratory analytical reports are provided as Attachment B. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met project-specific data quality objectives. This review was performed consistent with accepted EPA procedures for evaluating laboratory analytical data (EPA, 2017). A data validation memorandum summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods for the February 2021 groundwater quality data is included as Attachment C. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

SUMMARY OF FINDINGS

Groundwater analytical results (refer to Table 2) indicate the following:

- Dissolved arsenic was detected at a concentration of 283 micrograms per liter (ug/L) in MW-1 and 43.6 ug/L in MW-2. Both of these values exceed the Site's designated groundwater cleanup level of 36 ug/L for dissolved arsenic.
- Dissolved copper was not detected above the Site's designated groundwater cleanup level of 2.9 ug/L in either MW-1 or MW-2.
- Dissolved lead was not detected at the method detection limit (5 ug/L) in either MW-1 or MW-2.
- Dissolved zinc was not detected at the method detection limit (25 ug/L) in either MW-1 or MW-2.

Plots of dissolved arsenic, copper, lead, and zinc versus time for MW-1 and MW-2 are presented in Figures 3 through 6, respectively.

Monitoring of the dissolved arsenic, copper, lead, and zinc concentrations in groundwater will continue in accordance with the Consent Decree, as amended. The next scheduled sampling event will take place in February 2022. Groundwater-monitoring results will be submitted to Ecology within 45 days after completion of data validation.

Mr. Panjini Balaraju and Mr. Andy Smith April 1, 2021 Page 4 Project No. 0615.17.01

Please contact me if you have any questions regarding this report.

Sincerely,

Maul Foster & Alongi, Inc.

04-01-2021

Yen-Vy Van, LHG Senior Hydrogeologist

Attachments: Limitations References Tables Figures A—Field Sampling Data Sheets B—Laboratory Analytical Report C—Data Validation Memorandum

cc: Sarah Weeks, Port of Tacoma

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report. Anchor QEA. 2019. Groundwater monitoring report—former Cascade Timber No. 3 Sort Yard, Consent Decree No. 94-2-03590-3. November 14.

EPA. 2017. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

TABLES

r				
Well ID	Date	Top of Casing Elevation in Feet	Depth of Water below Top of Casing in Feet	Water Level Elevation in Feet
MW-1	12/28/1994			
MW-1	12/09/1994			
MW-1	12/01/1995	20.00	3.68	16.32
MW-1	12/13/1996	20.00	3.98	16.02
MW-1	12/09/1997	20.00	5.26	14.74
MW-1	12/07/1998	20.00	4.71	15.29
MW-1	12/22/1999	20.00	4.47	15.53
MW-1	10/11/2000	20.00	6.58	13.42
MW-1	11/03/2000	20.00		
MW-1	11/16/2001	20.00	4.35	15.65
MW-1	11/19/2001	20.00		
MW-1	11/26/2002	20.00	6.58	13.42
MW-1	11/14/2003	20.98	12.22	8.76
MW-1	10/29/2004	20.98	12.31	8.67
MW-1	10/26/2005	20.98	12.71	8.27
MW-1	01/29/2007	20.98	11.83	9.15
MW-1	02/08/2008	20.98	12.45	8.53
MW-1	02/27/2009	20.98	12.18	8.80
MW-1	02/04/2010	20.98	11.13	9.85
MW-1	02/22/2011	20.98	11.54	9.44
MW-1	02/13/2012	20.98	12.24	8.74
MW-1	09/23/2013	20.98	12.23	8.75
MW-1	02/12/2015	20.98	10.90	10.08
MW-1	08/26/2016	20.98	12.35	8.63
MW-1	02/12/2018	20.98	10.74	10.24
MW-1	08/23/2019	20.98	13.59	7.39
MW-1	02/19/2021	20.98	11.34	9.64
MW-2	12/28/1994			
MW-2	12/09/1994			
MW-2	12/01/1995	18.12	4.60	13.52
MW-2	12/13/1996	18.12	7.35	10.77
MW-2	12/09/1997	18.12	13.66	4.46
MW-2	12/07/1998	18.12	5.82	12.30
MW-2	12/22/1999	18.12	7.21	10.91
MW-2	10/11/2000	18.12	12.60	5.52
MW-2	11/03/2000	18.12		
MW-2	11/16/2001	18.12	13.55	4.57

Table 1 Water-Level Data Former Cascade Timber No. 3 Log Sort Yard

Well ID	Date	Top of Casing Elevation in Feet	Depth of Water below Top of Casing in Feet	Water Level Elevation in Feet
MW-2	11/19/2001	18.12	6.32	11.80
MW-2	11/26/2002	18.12	8.91	9.21
MW-2	11/14/2003	19.91	10.02	9.89
MW-2	10/29/2004	19.91	9.10	10.81
MW-2	10/26/2005	19.91	9.74	10.17
MW-2	01/29/2007	19.91	5.43	14.48
MW-2	02/08/2008	19.91	10.10	9.81
MW-2	02/27/2009	19.91	8.77	11.14
MW-2	02/04/2010	19.91	12.19	7.72
MW-2	02/22/2011	19.91	5.23	14.68
MW-2	02/13/2012	19.91	6.23	13.68
MW-2	09/23/2013	19.91	7.98	11.93
MW-2	02/12/2015	19.91	4.76	15.15
MW-2	08/26/2016	19.91	8.37	11.54
MW-2	02/12/2018	19.91	4.77	15.14
MW-2	08/23/2019	19.91	8.55	11.36
MW-2	02/19/2021	19.91	5.40	14.51
NOTES: Top of casing previous con:		n information provid	l ded by the Port of Tag	coma to the

Table 1 Water-Level Data Former Cascade Timber No. 3 Log Sort Yard

-- = not measured.

Table 2Groundwater Analytical DataFormer Cascade Timber No. 3 Log Sort Yard

Well ID	Date	Dissolved Arsenic	Dissolved Copper	Dissolved Lead	Dissolved Zinc		
		Concentration in ug/L					
Groundwater Cl	eanup Levels ^(a) :	36	2.9	8.5	86		
MW-1	11/28/1994	940	8	<3	<20		
MW-1	12/09/1994	220	4	<3	<20		
MW-1	12/01/1995	132	4	<1	53		
MW-1	12/13/1996	93	6	<1	9		
MW-1	12/09/1997	60	2.1	2.4	12		
MW-1	12/07/1998	9.7	11	3.6	510		
MW-1	12/22/1999	21.0	2.5	<1	99		
MW-1	10/11/2000	73	<1	<0.5	4.7		
MW-1	11/03/2000	14.0					
MW-1	11/16/2001	7.02	8.73	<0.5	<4		
MW-1	11/26/2002	13.4	<2.5	<0.5	<2.5		
MW-1	11/14/2003	18.4	<1.0	<0.5	5.2		
MW-1	10/29/2004	32.4	<2.5	<2.5	12.2		
MW-1	10/26/2005	46	<2.5	<2.5	<2.5		
MW-1	01/29/2007	93	<2.0	<2.0	<5.0		
MW-1	02/08/2008	140	<0.55	<0.22	5.2J		
MW-1	02/27/2009	57.2	<0.5	<1	6		
MW-1	02/04/2010	50.3	0.6	<1	<4		
MW-1	02/22/2011	158	<0.5	<0.5	0.8		
MW-1	02/13/2012	53	<0.5	<0.5			
MW-1	08/23/2013	28.6	<0.5	<0.5			
MW-1	02/12/2015	57.7	0.7	<0.1			
MW-1	08/26/2016	24.2	<0.5	<0.1			
MW-1	02/12/2018	66	<0.5	<0.1			
MW-1	08/23/2019	20	<0.5	<0.1			
MW-1 (Duplicate)	08/23/2019	20.4	<0.5	<0.1			
MW-1	02/19/2021	283	<2.5	<5.0	<25		
MW-2	11/28/1994	10	3	<3	<20		
MW-2	12/01/1995						
MW-2 (Duplicate)	12/01/1995	132	5	<]	53		
MW-2	12/13/1996	3	5	<1	<83		
MW-2 (Duplicate)	12/13/1996	76	41	1	18		
MW-2 (Duplicate)	12/09/1997	54	6.1	2.4	43		
MW-2	12/16/1997	5	<2	<1	6		
MW-2	12/07/1998	2.3	1.8	5.1	360		
MW-2 (Duplicate)	12/07/1998	12	13	1.2	600		
MW-2	12/22/1999	4.4	<2	23	6.9		

Table 2Groundwater Analytical DataFormer Cascade Timber No. 3 Log Sort Yard

Well ID	Date	Dissolved Arsenic	Dissolved Copper	Dissolved Lead	Dissolved Zinc		
		Concentration in ug/L					
Groundwater Cl	Groundwater Cleanup Levels ^(a) :		2.9	8.5	86		
MW-2 (Duplicate)	12/22/1999	19	2.9	<1	38		
MW-2	10/11/2000	<1	<1	<1	99		
MW-2 (Duplicate)	10/11/2000	42	<1	<0.5	6.5		
MW-2	11/03/2000	2	<1	600	8.3		
MW-2 (Duplicate)	11/03/2000	7					
MW-2	11/13/2000			600			
MW-2 (Duplicate)	11/16/2001	7.69	10.2	<0.5	<4		
MW-2	11/19/2001	1.19	<]	3.74	38.6		
MW-2	11/26/2002	<2.5	<2.5	180	3.36		
MW-2 (Duplicate)	11/26/2002	19.7	<2.5	<0.5	<2.5		
MW-2	11/14/2003	8.91	<1.0	<0.5	4.64		
MW-2 (Duplicate)	11/14/2003	18.5	<1.0	<0.5	3.97		
MW-2	10/29/2004	25.4	<2.5	<2.5	<5		
MW-2 (Duplicate)	10/29/2004	31.9	<2.5	<2.5	7.15		
MW-2	10/26/2005	39	<2.5	<2.5	<2.5		
MW-2 (Duplicate)	10/26/2005	32	<2.5	<2.5	<2.5		
MW-2	01/29/2007	34	<2.0	<2.0	<5.0		
MW-2 (Duplicate)	01/29/2007	35	<2.0	<2.0	<5.0		
MW-2	02/08/2008	24	0.78J	<0.22	5.1J		
MW-2 (Duplicate)	02/08/2008	140	<0.55	<0.22	6.0J		
MW-2	02/27/2009	32.6	1.6	<]	6		
MW-2 (Duplicate)	02/27/2009	32.9	1.5	<1	<4		
MW-2	02/04/2010	8.1	4.1	<]	<4		
MW-2 (Duplicate)	02/04/2010	18.2	5.4	<]	<4		
MW-2	02/22/2011	27.2	<0.5	<0.5	0.8		
MW-2 (Duplicate)	02/22/2011	26.9	0.5	<0.5	1.1		
MW-2	02/13/2012	16	0.5	<0.5			
MW-2 (Duplicate)	02/13/2012	16	0.6	<0.5			
MW-2	08/23/2013	4.1	<0.5	<0.5			
MW-2 (Duplicate)	08/23/2013	4.0	<0.5	<0.5			
MW-2	02/12/2015	41.6	2.0	0.1			
MW-2 (Duplicate)	02/12/2015	40.7	1.8	0.1			
MW-2	08/26/2016	23.6	<0.5	<0.1			
MW-2 (Duplicate)	08/26/2016	26.5	<0.5	<0.1			
MW-2	02/12/2018	63.6	1.96	0.092 J			
MW-2 (Duplicate)	02/12/2018	60	2.43	0.112			
MW-2	08/23/2019	102	<0.5	<0.1			

Table 2Groundwater Analytical DataFormer Cascade Timber No. 3 Log Sort Yard

Well ID	Date	Dissolved Arsenic	Dissolved Copper	Dissolved Lead	Dissolved Zinc
			Concentra	tion in ug/L	
Groundwater Cl	eanup Levels ^(a) :	36	2.9	8.5	86
MW-2	02/19/2021	42.0	<2.5	<5.0	<25
MW-2 (Duplicate)	02/19/2021	43.6	<2.5	<5.0	<25
MW-3S	11/28/1994	25	28	<3	<20
MW-3S	12/01/1995	54	3	2	65
MW-3S	12/13/1996	190	<2	3	9
MW-3S	12/09/1997	63	2	4.2	330
MW-3S	12/07/1998	50	2.9	2.2	<5
MW-3D	11/28/1994	20	7	<3	<20
MW-3D	12/01/1995	3	4	<1	35
MW-3D	12/13/1996	4	14	<5	18
MW-3D	12/09/1997	27	2.2	2	17
MW-3D	12/07/1998	3	<2	<1	7.8

NOTES:

Analytical results for groundwater samples collected in February 2021 provided by Maul Foster & Alongi, Inc. All previous groundwater analytical results provided by Port of Tacoma.

Groundwater samples were analyzed for dissolved metals; samples collected before 2020 analyzed by EPA Method 200.8 and samples collected after 2020 analyzed by EPA Method 6020B.

Value in bold indicates concentration greater than groundwater cleanup level.

Zinc analysis was discontinued in 2011 with Ecology approval dated June 28, 2011.

-- = not analyzed.

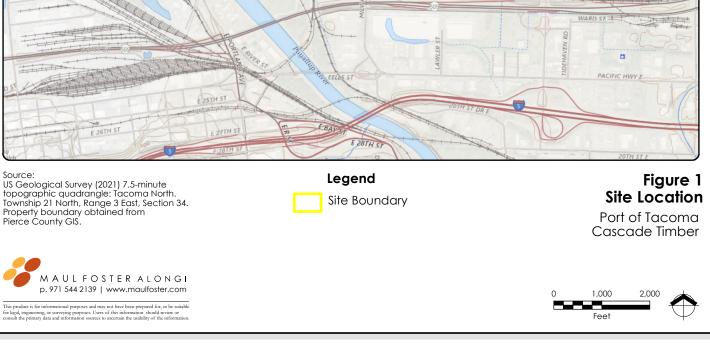
< = laboratory analytical result does not exceed laboratory quantitation limit.

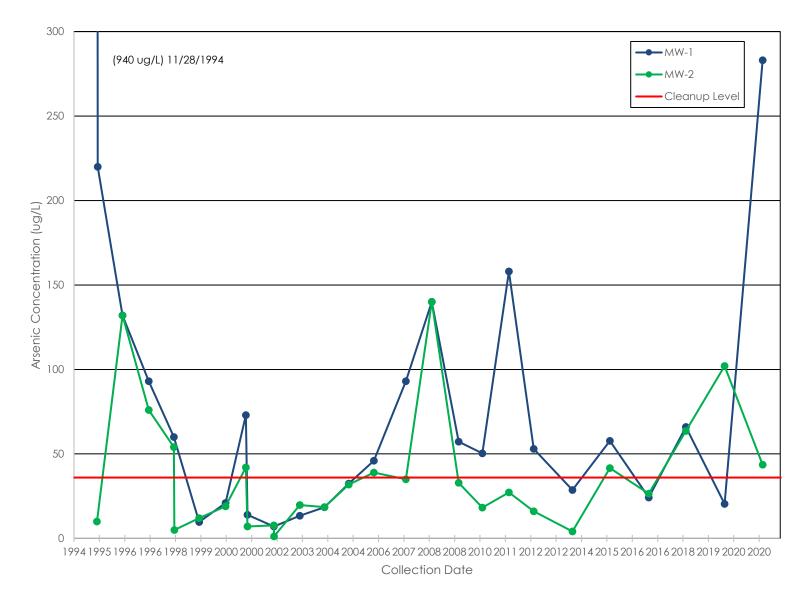
EPA = U.S. Environmental Protection Agency.

J = concentration is estimated.

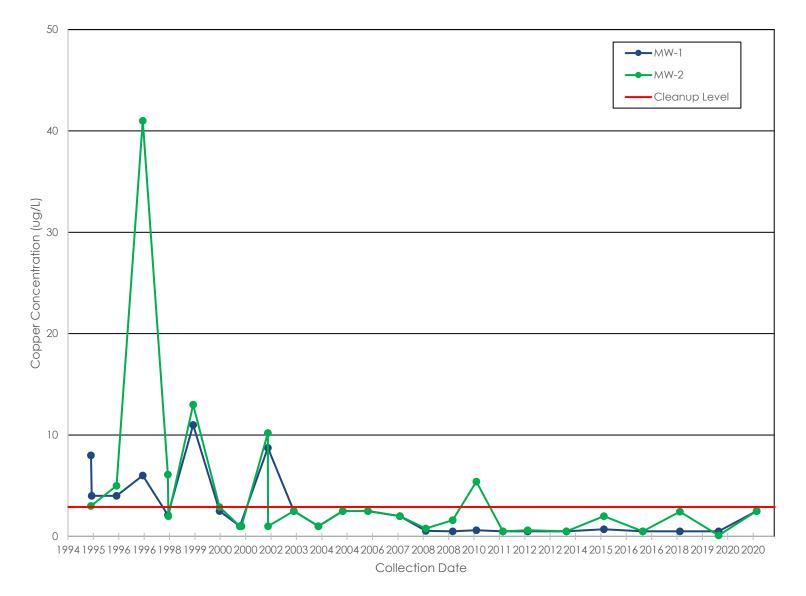
ug/L = micrograms per liter.

^(a)Groundwater cleanup levels are based on EPA chronic marine water quality criteria (WAC 173-201A).

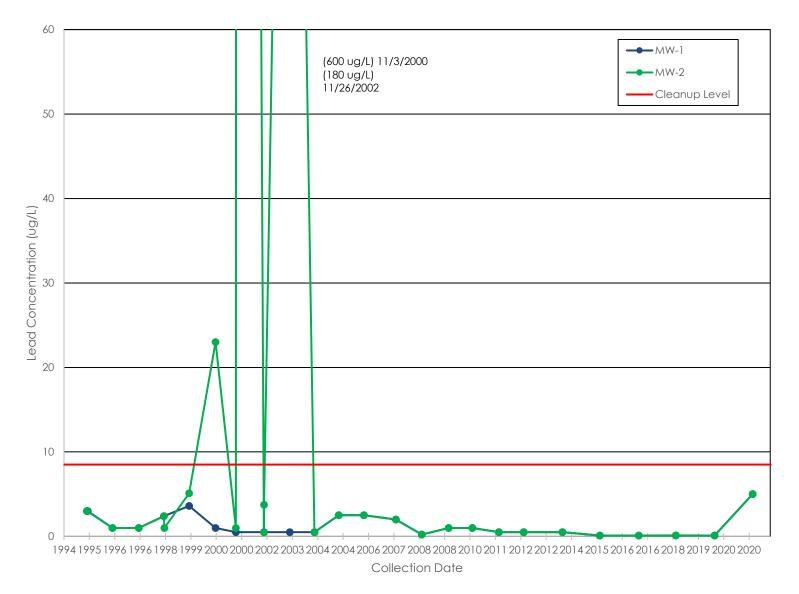

FIGURES

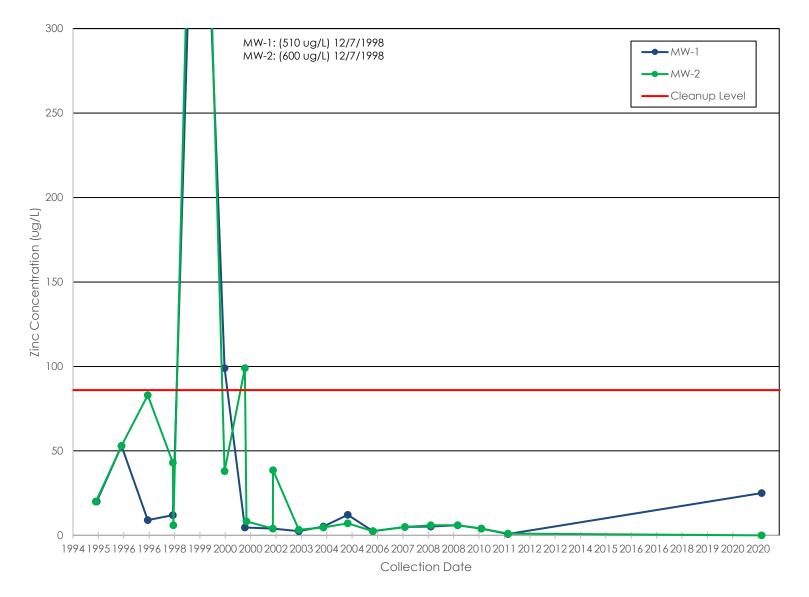

061515

Blair Waterway EUS Sitcum Waterway ROSS Blair Waterway Site Location Puyallup Waterway NA 1114 E 17TH ST E 4TH ST 自由自由自由自由


Figure 3 Dissolved Arsenic Concentration Trends Former Cascade Timber No. 3 Log Sort Yard

Dissolved Arsenic


Figure 4 Dissolved Copper Concentration Trends Former Cascade Timber No. 3 Log Sort Yard


Figure 5 Dissolved Lead Concentration Trends Former Cascade Timber No. 3 Log Sort Yard

Dissolved Lead

Figure 6 Dissolved Zinc Concentration Trends Former Cascade Timber No. 3 Log Sort Yard

ATTACHMENT A FIELD SAMPLING DATA SHEETS

Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Tacoma	Sample Location	MW-1
Project #	0615.17.01	Sampler	SRM
Project Name	Former Cascade Timber Property	Sampling Date	2/19/2021
Sampling Event	February 2021	Sample Name	MW-1-GW-13.75
Sub Area		Sample Depth	13.75
FSDS QA:	B. James 3/2/2021	Easting	Northing

Hydrology/Level Measurements

			(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)		
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/19/2021	14:45	16.19		11.34		4.85	0.8

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	3:05:00 PM	0.5	0.4	6.12	9.2	595.8	0.99	120.2	7.87
	3:10:00 PM	1	0.4	6.14	9.2	541.5	0.33	119.2	3.57
	3:15:00 PM	1.5	0.4	6.2	9.2	534.1	0.23	115	2.63
Final Field Parameters	3:20:00 PM	2	0.4	6.2	9.2	532.9	0.18	113.1	2.5

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Clear; colorless; organic odor; no sheen.
-----------------------------	---

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	3:25:00 PM	VOA-Glass		
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	1	

General Sampling Comments

Began purging at 14:55.

Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	Port of Tacoma	Sample Location	MW-2		
Project #	0615.17.01	Sampler SRM			
Project Name	Former Cascade Timber Property	Sampling Date	2/19/2021		
Sampling Event	February 2021	Sample Name	MW-2-GW-11.75		
Sub Area		Sample Depth 11.75			
FSDS QA:	B. James 3/2/2021	Easting	Northing TOC		

Hydrology/Level Measurements

			(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)		
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
2/19/2021	13:45	17.91		5.4		12.51	2

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:05:00 PM	0.6	0.4	5.95	10.6	415.1	0.42	95	29.9
	2:10:00 PM	1.3	0.4	5.99	10.5	360.2	0.24	94.3	26.1
	2:15:00 PM	2	0.4	6.04	10.3	335.4	0.17	92.3	23.1
	2:20:00 PM	2.3	0.2	6.11	10.3	330	0.15	89.8	23.6
Final Field Parameters	2:25:00 PM	2.6	0.2	6.11	10.2	327.8	0.15	89.2	22.8

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Clear; green tint; black suspended particles; organic odor; no sheen.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:30:00 PM	VOA-Glass		
			Amber Glass		
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	1	

General Sampling Comments

Began purging at 13:57. MWDUP-GW-11.75 collected here.

ATTACHMENT B LABORATORY ANALYTICAL REPORT

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 1, 2021

Yen-Vy Van, Project Manager Maul Foster Alongi 2815 2nd Ave, Suite 540 Seattle, WA 98121

Dear Ms Van:

Included are the results from the testing of material submitted on February 19, 2021 from the Port of Tacoma-Cascade Timber PO 0615.17.01-01, F&BI 102310 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures MFA0301R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 19, 2021 by Friedman & Bruya, Inc. from the Maul Foster Alongi Port of Tacoma-Cascade Timber PO 0615.17.01-01, F&BI 102310 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Maul Foster Alongi</u>
102310 -01	MW-2-GW-11.75
102310 -02	MW-1-GW-13.75
102310 -03	MWDUP-GW-11.75

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2-GW-11.75 02/19/21 02/22/21 02/25/21 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Port of Tacoma-Cascade Timber 102310-01 x5 102310-01 x5.217 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	42.0		
Copper	<25		
Lead	<5		
Zinc	$<\!\!25$		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1-GW-13.75 02/19/21 02/22/21 02/25/21 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Port of Tacoma-Cascade Timber 102310-02 x5 102310-02 x5.218 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	283		
Copper	<25		
Lead	<5		
Zinc	<25		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MWDUP-GW-11.75 02/19/21 02/22/21 02/25/21 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Maul Foster Alongi Port of Tacoma-Cascade Timber 102310-03 x5 102310-03 x5.219 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	43.6		
Copper	<25		
Lead	<5		
Zinc	<25		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank Not Applicable 02/22/21 02/23/21 Water	Client: Project: Lab ID: Data File: Instrument:	Maul Foster Alongi Port of Tacoma-Cascade Timber I1-130 mb I1-130 mb.058 ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Copper	<5		
Lead	<1		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/01/21 Date Received: 02/19/21 Project: Port of Tacoma-Cascade Timber PO 0615.17.01-01, F&BI 102310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 6020B

Laboratory C	oue. 102511-01 x	.10 (mani	ix opine)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<10	105	116	75 - 125	10
Copper	ug/L (ppb)	20	<50	99	97	75 - 125	2
Lead	ug/L (ppb)	10	<10	89	89	75 - 125	0
Zinc	ug/L (ppb)	50	<50	92	92	75 - 125	0

Laboratory Code: 102311-01 x10 (Matrix Spike)

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	80-120
Copper	ug/L (ppb)	20	104	80-120
Lead	ug/L (ppb)	10	101	80-120
Zinc	ug/L (ppb)	50	100	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

102310					SAMPLE CHAIN OF				ÇU	STO	DDY	r Y	P	0	27	19-	-21	1	A	Σ_1			
Report To Yen-Vy Van					SAMPI	LERS	(sign	ature)				Tuy		- ¢				239) 27				of	
Company Mant tostir & Along; Inc. Port.			PROJE	ROJECT NAME PO# Port of Tacaman Cascuda 0615.17.01-01					TURNAROUND TIME Standard turnaround RUSH Rush charges authorized by:														
Address 28/5 End Avenu	IR -	Site 54	0					11100			ļ											·	_
City, State, ZIP Southe, U	NA	9812-1	••••••••••••••••••••••••••••••••••••••		– REMAF	RKS		i			ác c	I. ount	NVC '^3@	DICE	1 TO 1 ft.5	tr.e	CEA		chive	SAMPLE DISPOSAL ive samples			
Phone 253-320 -5378 E	lmail y	yuan @ Mou	1 foster	<u>.com</u>	- Project	specif	fie RL	.s? - Y	es /	No								□ Otl Defa		Dispos	e afte	r 30 day	'S
					T							Į	ANA	LYSI		EQU		ED	····			N /	٦
Sample ID		Lab ID	1	ate apled	Time Sampled	1	nple 7pe	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	AS, Pb, Cu,Zn by USER CAZA	(Disseived)				No	tes	
MW-2-GW-11.75		01	2/19	12021	1430	Gv	N	1								X	-			All S Gel	somple 1d-fiH	'S hared -	_
MW-1 -01-137	5 .	50M DZ			san 1525 Yestig	2		1								X					Ť		-
MWDUP -GW- 11.7	s	03			1430		L	1				~.				Х					1	;	
-	-»·																			• •			-
							7			i.	č					:					÷ :		
						•		:						·									
					2.				·														
														i. G									1
																							1
			INATU	JRE			· · · · · · · · · · · · · · · · · · ·	PRIN	T NA	AME	R				C	OMI	PAN	Y		DAI	re	TIME	
Friedman & Bruya, Inc.	Reling	uished by:		an	and the second se	5	Sean	Ma	lon	en 1	I				N	1 F.	74			2/19/	111	1700	1
3012 16 th Avenue West	Receiv	. WI	W			<u>,</u>	\//	INIT	t	/					FR		<u>< 1</u>		4	2/19/	21	1700	
Seattle, WA 98119-2029	Relinq	uished by:	-				-4-1		••••••						-fÈ	<i>L</i>		.		t'(t)		<u>. </u>	-
Ph. (206) 285-8282	Receive	ed by:													Sar	ıple	s re	ceiv	ed a	于于	_•d		-

ģ

DRAFT

Analysis For Dissolved Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	MW-2-GW-11.75 02/19/21 02/22/21 03/17/21	Client: Project: Lab ID: Data File:	Maul Foster Alongi Port of Tacoma-Cascade Timber 102310-01 x5 102310-01 x5.038
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		

Copper

<2.5

Client ID:	MW-1-GW-13.75	Client:	Maul Foster Alongi
Date Received:	02/19/21	Project:	Port of Tacoma-Cascade Timber
Date Extracted:	02/22/21	Lab ID:	102310-02 x5
Date Analyzed:	03/16/21	Data File:	102310-02 x5.140
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Copper	<2.5		

Client ID:	MWDUP-GW-11.75	Client:	Maul Foster Alongi
Date Received:	02/19/21	Project:	Port of Tacoma-Cascade Timber
Date Extracted:	02/22/21	Lab ID:	102310-03 x5
Date Analyzed:	03/17/21	Data File:	102310-03 x5.039
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Copper	<2.5		

Analysis For Dissolved Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Maul Foster Alongi
Date Received:	Not Applicable	Project:	Port of Tacoma-Cascade Timber
Date Extracted:	02/22/21	Lab ID:	I1-130 mb
Date Analyzed:	02/23/21	Data File:	I1-130 mb.058
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
	Concentration		
Analyte:	ug/L (ppb)		
_			

Copper

< 0.5

102310					SAMPL	E CH	IAIN	N OF	ÇU	STO	DDY	p T	P	0	27	19-	-21	!	A:	EI			
Report To Yen-Vy Van					SAMPI	ERS	(sign	ature)				Tuy		~				9220) 27				of	
Company Man1 Factur 6					PROJE	CT N F Ta	Ci ilaci -	- Casci Timbu			1		- 7.0	PO # (~ 01				≯ Sta □ RU	andar ISH	NARO d turn: ges aut	aroun	d	-
Address 28/5 End Avenu	IR -	Site 54	0					11000	~~~		ļ											•	_
City, State, ZIP Seattle, U	NA	9812-1	*********		REMAR	RKS		ŗ			ace	II ounte	NVC MSO	DICE	TO Ifizi	tr.e	CEA		chive	IPLE I sample		SAL	
Phone 253-320 -5378 E	lmail y	yuan @ Mou	1 fostur	com	- Project	specif	ie RL	.s? - Y	es /	No								□ Otl Defa		Dispos	e afte	<u>r 30 dav</u>	s
					T							l	NA'	LYSI				ED	· · · · · ·			x r	٦
Sample ID		Lab ID	1	ate pled	Time Sampled	1	nple 7pe	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	AS, Pb, Cu,Zn by USER CAZA	(Disseived)				No	tes	
MW-2-GW-11.75		01	2/19	12021	1430	Gv	v	1								X	-			All S Gel	somple U-fih	S	
MW-1 -01-137	5 .	50M DZ			san 1525 HEMD	2		1								X					İ		
MWDUP -GW- 11.7	s	03			1430			1				•.				Х					1	-	
-	-p-1																			• *	1		-
																							1
							7				ć					:					+ 1		1
						•	*																
					2.				·														
													ļ	r. V	,								1
																							1
			INATU	JRE				PRIN	T NA	\ME	t				C	OMI	PAN	Y		DAI	E	TIME	
Friedman & Bruya, Inc.	Reling	uished by:		ann	and the second se	5	Sean	Ma	lon	en 1	1				N	1 F.	74			2/19/	111	1700	1
3012 16 th Avenue West	Receiv	. WI	M			<u> </u>	\//	INT	F	/				<u>.</u>	ĒŔ		<u>< 1</u>		2	2/19/	21	1700	1
Seattle, WA 98119-2029	Relinq	uished by:	-				- V - 1	······································	.						f	<i>L</i>		·····		111		<u> </u>	-
Ph. (206) 285-8282	Receive	ed by:											1	5	Sar	ıple	s re	ceiv	eđ at	: 1	_•d		

ģ

ATTACHMENT C DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 0615.17.01 | MARCH 4, 2021 | PORT OF TACOMA – CASCADE TIMBER

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater samples collected on February 19, 2021, at the Port of Tacoma Cascade Timber site.

Friedman & Bruya, Inc. (FBI) performed the analyses. FBI reports 102310 and 102310additional were reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
Dissolved Metals	EPA 6020B
NOTE: EPA = U.S. Environmental Protection Agency.	

Samples Analyzed
Report 102310/102310-additional
MW-2-GW-11.75
MW-1-GW-13.75
MWDUP-GW-11.75

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) procedures (EPA, 2017) and appropriate laboratory and method-specific guidelines (EPA, 1986; FBI, 2019).

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

According to the chain of custody provided in report 102310, samples were received by FBI at 7 degrees Celsius (°C), which is above the upper recommended storage temperature range

of 2 to 6°C. The reviewer confirmed that FBI received the samples only 2.5 hours after collection and that ice was still present in the cooler; thus, qualification was not required.

There were no additional issues related to sample storage or preservation.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All laboratory method blank results were non-detect to method reporting limits (MRLs).

Trip Blanks

Trip blanks were not required for this sampling event, as analysis for volatile organic compounds was not conducted.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. The MS/MSD samples were extracted and analyzed at the required frequency.

All MS/MSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results were not reported; batch precision was evaluated with MS/MSD sample results.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. An LCS sample was extracted and analyzed at the required frequency. LCSD results were not reported; batch precision was evaluated with MS/MSD sample results.

All LCS results were within acceptance limits for percent recovery.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. One field duplicate was submitted for analysis (MW-2-GW-11.75/MWDUP-GW-11.75). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

REPORTING LIMITS

FBI used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

FBI. 2019. Quality assurance manual. Rev. 16. Friedman & Bruya, Inc., Seattle, Washington. October 2.