INTERIM ACTION WORK PLAN

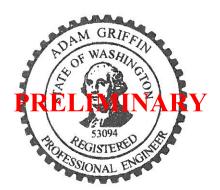
Texaco Strickland Site

Prepared for:

Strickland Real Estate Holdings, LLC and Chevron Environmental Management Company

Project No. 180357 • June 14, 2021 • PUBLIC REVIEW DRAFT

INTERIM ACTION WORK PLAN


Texaco Strickland Site

Prepared for:

Strickland Real Estate Holdings, LLC and Chevron Environmental Management Company

Project No. 180357 • June 14, 2021 • PUBLIC REVIEW DRAFT

Aspect Consulting, LLC

Adam Griffin, PE Associate Engineer agriffin@aspectconsulting.com

Andrew Yonkofski, LHG
Project Hydrogeologist
ayonkofski@aspectconsulting.com

Breeyn Greer, PEProject Engineer
bgreer@aspectconsulting.com

Contents

A	crony	ms and Abbreviations	iv
1	Intr	oduction	
	1.1	Work Plan Organization	2
2	Site	Description and Subsurface Conditions	3
	2.1		3
	2	1.1 Operational History of the Property	3
	2	1.2 Adjacent Property Descriptions	3
	2.2	Site Geology and Hydrogeology	
	2.3	,	
		3.1 Underground Storage Tank Removals and Closures	
		3.2 Historical Environmental Investigations	
	2.4	3	
		4.1 Soil Analytical Results	
	_	4.2 Groundwater Elevation and Analytical Results	
	2	4.3 Soil Gas Analytical Results	
3	Inte	erim Action Summary	11
	3.1	Objectives	
	3.2	Exposure Pathways	
	3.3	Basis of Interim Action	
	3.4	Remediation Levels	
	3.5	Soil Removal	13
4	Inte	erim Action Elements	17
	4.1	Construction and Safety Requirements	
	4.2	Mobilization and Site Preparation	
	4.3	Monitoring Well Decommissioning and Replacement	18
	4.4	Building Demolition	18
	4.5	UST and Hoist Removal	18
	4.6	Shoring Installation	19
	4.7	Soil Segregation, Handling, Management, and Monitoring	19
	4	7.1 Identification of Impacted and Contaminated Soils	
		7.2 Soil Excavation, Segregation and Stockpiling	
		7.3 Soil Sampling and Analysis7.4 Soil Profiling and Off-Site Treatment/Disposal	
	4.8	Water Management	
	4.9	Excavation Backfill	22

5	Compliance Monitoring	24	
	5.1 Protection Monitoring	24	
	5.2 Performance Monitoring and Overexcavation	24	
6	Permitting	26	
	6.1 Applicable or Relevant and Appropriate Requirements		
	6.2 Permitting and Substantive Requirements		
	6.2.1 City of Lynnwood		
	6.2.2 State Environmental Policy Act (SEPA)		
7	Reporting		
-	. •		
8	Schedule	30	
9	References	31	
10	Limitations	33	
Li	ist of Tables (in text)		
Α	UST Summary		
В	Soil Remediation Levels	13	
С	Locations Lacking Vertical Delineation	14	
D	Stockpile Sampling Frequency	21	
Ε	Interim Action Schedule	30	
Li	ist of Tables (attached)		
1	Soil Analytical Data		
2	Historical Groundwater Analytical Data		
3	Remedial Investigation Groundwater Elevations		
4	Remedial Investigation Groundwater Analytical Data		
5	Remedial Investigation Soil Gas Analytical Data		
6	Basis of Remedial Excavation Extents		
7	Estimated Soil Removal Volumes		

List of Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Remedial Investigation Soil Analytical Results
- 4 Cross Section A-A'
- 5 Groundwater Analytical Results 2020
- 6 Soil Gas Analytical Results 2020
- 7 Conceptual Soil Excavation Plan
- 8 Conceptual Soil Excavation Sections

List of Appendices

- A Remedial Investigation Boring and Monitoring Well Logs
- B Laboratory Analytical Reports
- C Data Validation Reports
- D Sampling Analysis Plan and Quality Assurance Project Plan
- E State Environmental Policy Act Checklist
- F Inadvertent Discovery Plan
- G Report Limitations and Guidelines for Use

Acronyms and Abbreviations

AO Agreed Order

ARARs Applicable or Relevant and Appropriate Requirements

Aspect Aspect Consulting, LLC

ASTM ASTM International

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

Cambria Environmental Technology, Inc.

CDF controlled-density fill

CEMC Chevron Environmental Management Company

CFR Code of Federal Regulations

City City of Lynnwood

COPCs contaminants of potential concern

CRA Conestoga-Rovers & Associates, Inc.

cVOCs chlorinated volatile organic compounds

DAHP Department of Archeological and Historic Preservation

EA Environmental Associates, Inc.

Ecology Washington State Department of Ecology

EDB 1,2-dibromoethane
EDC 1,2-dichloroethane

EIM Environmental Information Management database

EPA United States Environmental Protection Agency

ESA Environmental Site Assessment

FINE FINEnvironmental, Inc.

FS Feasibility Study

GeoEngineers, Inc.

GPR ground penetrating radar

HASP Health and Safety Plan

HAZWOPER Hazardous Waste Operations and Emergency Response

ASPECT CONSULTING

IAR Interim Action Report

IAWP Interim Action Work Plan

IDP Inadvertent Discovery Plan

mg/kg milligrams per kilogram

LNAPL light non-aqueous phase liquid

LUST leaking underground storage tank

MA APH Massachusetts Department of Environmental Protection

Air-Phase Petroleum Hydrocarbons

MTBE Methyl tert-butyl ether

MTCA Model Toxics Control Act

NAVD88 North American Vertical Datum of 1988

NFA No Further Action

Nowicki & Associates

OSHA Occupational Health and Safety Administration

PAHs polycyclic aromatic hydrocarbon

PCBs polychlorinated biphenyl

PCS petroleum-contaminated soil

PID photoionization detector
PIS petroleum-impacted soil

PLIA Washington State Pollution Liability Insurance Agency

PLPs Potentially Liable Parties

PTAP Petroleum Technical Assistance Program

RBM regulated building material

RCW Revised Code of Washington

RI Remedial Investigation

RIWP Remedial Investigation Work Plan

ROW right-of-way

SAP/QAPP Sampling Analysis Plan / Quality Assurance Project Plan

SEPA State Environmental Policy Act

SREH Strickland Real Estate Holdings, LLC

ASPECT CONSULTING

TESC temporary erosion and sediment control

TPHd total petroleum hydrocarbons as diesel

TPHg total petroleum hydrocarbons as gasoline

TPHo total petroleum hydrocarbons as oil

USGS U.S. Geological Survey

UST underground storage tank

VI vapor intrusion

VOC volatile organic compound

WAC Washington Administrative Code

WSDOT Washington State Department of Transportation

WISHA Washington Industrial Health and Safety Act

1 Introduction

Aspect Consulting, LLC (Aspect) has prepared this Interim Action Work Plan (IAWP), on behalf of Strickland Real Estate Holdings, LLC (SREH) to describe Interim Action cleanup activities to be completed at the Texaco Strickland Cleanup Site (the Site), located at 6808 196th Street SW in Lynnwood, Washington (the Property; Figure 1). The Property is recorded by the Snohomish County Tax Assessor as tax parcel #27042000200600. Two potentially liable parties (PLPs), Strickland Real Estate Holdings, LLC (SREH) and Chevron Environmental Management Company (CEMC), entered into Agreed Order (AO) No. 14315 with the Washington State Department of Ecology (Ecology) on August 28, 2018. On December 14, 2020, Ecology named Jiffy Lube International, Inc. (Jiffy Lube) as a PLP with regard to the Site.

The planned Interim Action is based on the results of the ongoing Remedial Investigation (RI) outlined in the "RI Work Plan" (RIWP, Aspect 2019). The first Remedial Investigation (RI) activities under the AO were completed in June 2019 and documented in the RIWP Addendum dated May 28, 2020 (Aspect, 2020). The RI activities were completed in accordance with the Ecology-approved RIWP and RIWP Addendum (Aspect, 2019 and 2020) and consisted of characterizing the nature and extent of residual light non-aqueous phase liquid (LNAPL) and petroleum-contaminated soil and groundwater exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels at the Site. Additional RI activities were necessary to define extent of LNAPL and petroleum-contaminated groundwater (Aspect, 2020). The investigation results will be compiled in the AO-required deliverable RI Report. The RI results form the basis of the planned Interim Action described herein.

Historical operations resulted in the release of petroleum hydrocarbons to the subsurface, impacting soil and groundwater on the Property. Contaminated groundwater has migrated off-Property. Remedial investigations have identified LNAPL in monitoring wells at the Property. The LNAPL at the Site is a hazardous substance which must be treated or removed if it cannot be reliably contained (Washington Administrative Code [WAC] 173-340-360(2)(c) (ii)(A)).

The primary purpose of the Interim Action is to remove LNAPL and contaminated soils from the Property to the maximum extent practicable (considering Site constraints) and mitigate the potential exposure pathways at the Site. A gasoline service station was operated at the Property for approximately 18 years (1959 to 1977) and a Jiffy Lube/Equilon lube facility operated at the Property for approximately 26 years (1977 to 2006). Ecology has determined that releases from the gasoline service station and the lube facility have commingled at the Site. LNAPL has accumulated at the groundwater interface and is a continuing source of contamination to groundwater and soil gas at the Site.

Concurrent with the Interim Action, the PLPs will close the remaining RI data gaps and satisfy the RI-requirements in the AO. The Interim Action will be implemented on a separate track from RI activities. The RI results, and the Interim Action performance

monitoring results will serve as the basis of the final cleanup action to be selected in the next AO-deliverable, the Feasibility Study (FS) Report.

1.1 Work Plan Organization

This IAWP is organized as follows:

- Section 2 Site Description and Subsurface Conditions
- Section 3 Interim Action Summary
- Section 4 Interim Action Elements
- Section 5 Compliance Monitoring
- Section 6 Permitting
- Section 7 Reporting
- Section 8 Schedule
- Section 9 References
- Section 10 Limitations

2 Site Description and Subsurface Conditions

2.1 Site History and Description

The Property is zoned as commercial and currently developed with one unoccupied building. The Property is identified by Snohomish County Parcel Number 27042000200600. The following subsections summarize the operational history of the Property and the land use of the adjacent properties.

2.1.1 Operational History of the Property

Based on the construction date of the service station building, the Property was first developed in approximately 1959. A review of historical documents has established the following operational history for the Site (Conestoga-Rovers & Associates [CRA], 2011; Aspect, 2019; Aspect, 2020):

• 1959 to 1977 – Texaco-branded Service Station: The property was initially developed with a Texaco-branded service station in 1959. Based on construction drawings, the service station consisted of two 4,000-gallon leaded gasoline underground storage tanks (USTs); one 6,000-gallon leaded gasoline UST; a single pump island with three pumps; associated product conveyance piping; an in-ground vehicle hoist; a 550-gallon used oil UST; and a 1,000-gallon heating oil UST.

Historical Site features are shown on Figure 2. The three gasoline USTs were removed by 1977 (Aspect, 2020). The 550-gallon waste oil and 1,000-gallon heating oil USTs remain in place, but it is unknown if they were decommissioned.

- 1977 to 2006 Jiffy Lube/Equilon Lube Facilities: In 1977, the property was converted to a lube facility, which operated continuously until approximately 2006. During this time, two additional USTs were installed on the property. According to Ecology's UST database, a 500-gallon used oil UST and a 3,000-gallon motor oil UST were installed in June of 1982. In 1995, these two USTs were decommissioned: the 500-gallon used oil UST was closed in place, and the 3,000-gallon motor oil UST was removed (see following section).
- **2006 to 2018 Aloha Café:** In 2006, the building was renovated into a restaurant, Aloha Café, which operated until 2018.
- **2018 to Present** The property has been vacant since 2018 to allow for ongoing remedial investigations.

2.1.2 Adjacent Property Descriptions

The parcel to the west of the Property (tax parcel 27042000200800) is commercially occupied by a strip mall, where a dry cleaner (Slater's One Hour Cleaners) historically operated. According to city directory records, Slater's One Hour Cleaners operated from at least 1971 through at least 2013.

The parcels to the south (tax parcel 27042000201000 and 27042000200900) are occupied by a multi-family residential apartment building owned by FWAK, LLC and operated as Chri-Mar Apartments. The presence of chlorinated solvents in soil and groundwater occur on this property based on environmental characterization work performed by Environmental Associates, Inc. (EA) on behalf of that property owner (EA, 2016a and 2018; see Section 2.3.3).

A commercial strip mall is located to the north of the Property across 196th Street SW. This property (tax parcel 27041700307000) was historically occupied by a Shell-branded service station with confirmed releases of petroleum and impacts to soil and groundwater. Shell is pursuing an opinion through the Washington State Pollution Liability Insurance Agency's (PLIA's) Petroleum Technical Assistance Program (PTAP).

The parcel to the east of the Property (tax parcel 27042000103100), across 68th Ave West, is currently used as parking for Edmonds Community College. This parcel was previously occupied by an Exxon-branded service station, which had confirmed releases of petroleum hydrocarbons to soil and groundwater. A remedial excavation was conducted on the property in 2005, and a No Further Action (NFA) determination was issued by Ecology in 2007.

2.2 Site Geology and Hydrogeology

The geology at the Site is imported fill to depths of approximately 10 feet below ground surface (bgs). This fill soil is underlain by unconsolidated silt, sand, gravel, and clay characteristic of a weathered glacial till deposit. The till deposit increases in density from 18 feet bgs to 32.5 feet bgs, the maximum depth explored at the Site. A cross section depicting these geologic strata are shown in Figure 4.

Fill material was encountered in all 26 soil borings advanced as part of the RIWP and RIWP Addendum implementations to depths ranging between 4 and 10 feet bgs. Boring logs are included as Appendix A. Fill material at the Site is comprised of sand with gravel and sand with silt and gravel. The sand content varied from poor- to well-graded, and the sand and gravel were subangular to subrounded. The fill was generally loose, and the fines (where present) were low plasticity.

Beneath the fill, Vashon till was encountered in all borings, which is consistent with the mapped geologic unit of the area (USGS, 1983). The till encountered during subsurface explorations had a variable composition and included silt (MH); sandy silt with gravel (ML); silty sand and silty sand with gravel (SM); sand with silt and sand with silt and gravel (SW/SP-SM); and sand with gravel (SP). The density of the till was consistent across the Site, ranging from medium dense at the fill-till interface and grading to very dense within a few feet below the interface.

The majority of the subsurface explorations were completed using a hollow-stem auger drilling rig, and geotechnical information was collected for nearly all borings. Based on the observed blow counts, the weathered, medium dense top of till varied in thickness between 2.5 and 15 feet. The underlying unweathered till is differentiated based on the blow counts and inferred density during drilling (Appendix A).

Groundwater is present at the Site and encountered at depths ranging from 7 to 15 feet bgs in the Vashon till unit. The horizontal hydraulic gradient is steep (5 percent). Groundwater flow at the Site and adjacent properties is generally to the southwest, with some minor seasonal variation.

2.3 Summary of Previous Remedial Investigation and Cleanup Actions

2.3.1 Underground Storage Tank Removals and Closures

To date, at least seven USTs have been installed on the Property. Four of the USTs have been removed; one was closed in place; and two confirmed to be present at the Property by a geophysical survey (Aspect, 2020). A description of installation date, decommissioning date and method, and tank operator is included below and summarized in Table A.

2.3.1.1 1977 UST Closure

The three gasoline USTs associated with the Texaco-branded service station were decommissioned (removed) in 1977 when the Property was converted to a Jiffy Lube/Equilon lube oil facility (Aspect, 2020). Based on the building plans for the original service station, these USTs were located in the northeastern corner of the Property, and the dispenser islands were located in the north-central portion of the Property (Figure 2). Decommissioning details are not available; however, a Snohomish County tax assessor indicates the tanks were indeed removed in 1977 (Aspect, 2020).

2.3.1.2 1995 UST Closure

Petroleum-impacted soil related to the former Jiffy Lube/Equilon lube oil facility was discovered in 1995 during removal of a 3,000-gallon new oil UST and closure-in-place of a 500-gallon waste oil UST (Figure 2). Nowicki & Associates (Nowicki) oversaw the removal of approximately 65 tons of soil impacted with total petroleum hydrocarbons as oil (TPHo) above the MTCA Method A cleanup level from the area of the former 3,000-gallon new oil UST (Nowicki, 1995a). Post-excavation sidewall and bottom samples collected by Nowicki concluded that soils impacted by TPHo exceeding the MTCA Method A cleanup levels had been removed.

The 500-gallon waste oil UST located beneath the building was decommissioned by cleaning and slurry filling. A soil boring was advanced approximately 4 feet south of the tank (location SB, Figure 2), and samples were analyzed for TPHo and TPH as gasoline (TPHg). Both TPHo and TPHg were detected at concentrations exceeding MTCA Method A cleanup levels at depths of 1.3 and 2 feet bgs.

The releases were reported to Ecology in 1995. The Site was subsequently listed with Ecology's leaking underground storage tank (LUST) program, as Site ID #6802.

2.3.1.3 Geophysical Survey and UST Inventory Summary

Aspect subcontracted Philip Duoos to conduct electromagnetic and ground penetrating radar (GPR) geophysical surveys at the Property. The purpose of these surveys was to evaluate the potential presence of any remaining subsurface service station infrastructure,

including potential USTs and product/vent lines. The geophysical survey was completed on June 3, 2019.

The geophysical survey noted that a large excavation was present in the northeast portion of the Property where station construction drawings indicated the three gasoline USTs were located. The results of the geophysical survey confirmed that the three gasoline USTs were removed from the Property. The gasoline contents of the USTs are documented in station construction diagrams and tax assessor records.

Two probable concrete slabs were encountered in the north central portion of the Property, at the location of the former pump islands. Numerous probable pipes were encountered extending from the excavation extents to the concrete slabs, indicating that product conveyance piping still exists. The depths of these probable pipes ranged from approximately 2.5 to 4 feet bgs.

What appeared to be an unknown UST was also detected on the north side of the existing building, which was not identified in the Final RIWP. The unknown UST was located at approximately 3.2 feet bgs. Another UST was detected at the southeast corner of the existing building and is assumed to be the 500-gallon heating oil UST based on the station construction diagrams.

A summary of all USTs at the Site is included below as Table A. The geophysical survey report is included as Appendix B in the RIWP Addendum (Aspect, 2020). The results of the geophysical survey were evaluated prior to mobilizing for other RIWP activities.

UST	Contents	Installation Date	Decommissioning Date and Method	Tank Operator
		Date	Date and Method	
4,000-gallon	Gasoline	1959	1977 – Removed	Service Station Dealer
4,000-gallon	Gasoline	1959	1977 – Removed	Service Station Dealer
6,000-gallon	Gasoline	1959	1977 – Removed	Service Station Dealer
3,000-gallon	New Oil	1982	1995 – Removed	Jiffy Lube/Equilon
500-gallon	Waste oil	1982	1995 - Closed In-Place	Jiffy Lube/Equilon
500-gallon ^(a)	Heating Oil	Unknown	Unknown – Unknown	Jiffy Lube/Equilon
Unknown UST ^(b)	Unknown	Unknown	Unknown – Unknown	Unknown

Table A. UST Summary

Notes:

- (a) The installation date of the 500- gallon heating oil UST cannot be confirmed but was reported to be 1989 (CRA, 2011). However, station construction diagrams show it was likely installed along with the station in the 1950s.
- (b) The unknown UST was identified on the north side of the building during the geophysical survey. Station construction diagrams indicate this was likely used as waste oil storage tank.

2.3.2 Historical Environmental Investigations

Environmental investigations were completed at the Site between 1995 and 2012:

- Nowicki, 1995b Nowicki advanced two soil borings (SB1 and SB2) to the north of the existing building.
- FINEnvironmental, Inc. (FINE), 2003 FINE completed a Phase I Environmental Site Assessment (ESA) that identified the Property had operated as a Texaco-branded gasoline service station prior to 1977.
- GeoEngineers, Inc. (GeoEngineers), 2004 GeoEngineers completed a Phase I ESA which resulted in similar findings to the Phase I conducted by FINE.
- Cambria Environmental Technology (Cambria), 2006 Cambria installed five monitoring wells (MW-1 through MW-5) and advanced one soil boring (SB-1) at the Property.
- Conestoga-Rovers & Associates, Inc. (CRA), 2007 CRA installed five monitoring wells (MW-6 though MW-10) on the Property.
- CRA, 2011 CRA advanced two soil borings (SB-3 and SB-4) and summarized Site characterization data collected to date.
- CRA, 2014 CRA advanced three additional soil borings (SB-5 through SB-7).

A complete summary of historical environmental investigations completed at the Site served as the primary basis of the data gaps identified in the Final RIWP (Aspect, 2019).

2.3.3 Off-Property Environmental Investigations

In February 2016, EA conducted a limited subsurface investigation and subsequent indoor air sampling at the adjacent property to the south, Chri-Mar Apartments. No TPHg, TPH as diesel (TPHd), TPHo, or benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds were detected in soil or groundwater at the five boring locations (B-01 through B-05, Figure 2). Grab soil vapor samples were collected from borings B-01 and B-03, and concentrations of benzene exceeded the MTCA Method B subslab soil gas screening level at both locations (EA, 2016a).

In March 2016, EA returned to the Chri-Mar Apartments property to conduct indoor and outdoor air sampling. Two indoor air samples were collected from the interior of the Chri-Mar complex, and one outdoor air sample was collected. Samples were collected over a 24-hour period. Benzene was detected in both indoor air samples and the outdoor air sample at concentrations exceeding the MTCA Method B indoor air cleanup levels (EA, 2016b). The benzene concentrations in the outdoor air sample indicate a background source to indoor air in this suburban area with lots of vehicle traffic.

2.4 Summary of 2019 and 2020 Remedial Investigation Results

SREH and CEMC entered into AO No. 14315 with Ecology on August 28, 2018, in order to select a cleanup action for the Site. The first AO-deliverable, the RIWP, was finalized by Aspect on March 6, 2019, and approved by Ecology on March 20, 2019 (Aspect, 2019). Based on the RIWP results, an RIWP Addendum was produced to address the

outstanding data gaps for completion of the RI, and was finalized on May 28, 2020 (Aspect, 2020). The results of RI activities conducted under the AO are summarized below.

2.4.1 Soil Analytical Results

A total of 52 unique soil samples (not including quality control samples) were submitted to Friedman & Bruya, Inc., a state-certified laboratory, for chemical analysis of the following contaminants of potential concern (COPCs):

- TPHg by Ecology Method NWTPH-Gx
- TPHd and TPHo by Ecology Method NWTPH-Dx
- BTEX and naphthalene by United States Department of Environmental Protection Agency (EPA) Method 8260C

Additionally, select soil samples were analyzed for the following:

- 8 of the 52 samples were analyzed for 1,2-dichloroethane (EDB); 1,2-dibromoethane (EDC); and methyl tert-butyl ether (MTBE) by EPA Method 8260C.
- 4 of the 52 samples were analyzed for lead by EPA Method 6010C at locations where TPHg concentrations were elevated.
- 6 of the 52 samples were analyzed for chlorinated volatile organic compounds (cVOCs) by EPA Method 8260C from locations along the western Property boundary.

Soil analytical results are summarized in Table 1 and presented on Figure 3. Based on the analytical data, TPHg, TPHd, TPHo, benzene, ethylbenzene, total xylenes, and naphthalene were detected above their respective MTCA Method A cleanup levels, and these analytes comprise the COPCs in soil at the Site. The following locations and depths contained one or more COPCs at concentrations greater than their respective MTCA Method A cleanup level (Table 1, Figure 3):

- B-07 at a depth of 8 feet bgs
- MW-11 at depths of 1 and 6 feet bgs
- MW-15 at depths of 10.5, 13, and 17.5 feet bgs
- MW-22 at a depth of 16 feet bgs
- MW-23 at depths of 18 and 25 feet bgs

The remaining soil borings did not contain detectable concentrations of TPHg or other Site COPCs. Additionally, no cVOCs were detected in soil from borings along the western Property boundary (B-08, GP-04, MW-12, MW-13, MW-14, MW-18, and MW-19; Table 1) and closest to the former dry cleaner. Laboratory analytical reports are included as Appendix B. Data validation reports are included as Appendix C.

2.4.2 Groundwater Elevation and Analytical Results

Groundwater occurs in the fill and weathered glacial till at the Site (Figure 4). Groundwater was gauged at depths ranging between approximately 8 and 16 feet bgs, corresponding to elevations of 431 to 442 feet (NAVD88¹) during the four monitoring events performed from August 2019 to November 2020 (Table 3). During each event, the groundwater flow direction was to the southwest at an average horizontal hydraulic gradient of 0.05 foot/foot (Figure 5).

During three of the four groundwater sampling events, LNAPL was present in monitoring wells MW-3, MW-4, MW-5, MW-8, and MW-15, and these monitoring wells were therefore not sampled. In August 2020, no LNAPL was measured at MW-4 or MW-8, and groundwater samples were collected. Groundwater samples were submitted to Friedman & Bruya, Inc. and analyzed for the following COPCs:

- TPHg by Ecology Method NWTPH-Gx
- TPHd and TPHo by Ecology Method NWTPH-Dx
- Naphthalene by EPA Method 8260C
- BTEX, EDB, EDC, and MTBE by EPA Method 8260C (August and November 2019 only)
- Total lead by EPA Method 6010C (August and November 2019 only)

Additionally, samples from monitoring wells closest to the former dry cleaner operation were analyzed for cVOCs by EPA Method 8260C. Laboratory analytical reports are included as Appendix B; data validation reports are included in Appendix C.

Groundwater analytical results are summarized in Table 4. Analytical results from the two 2020 events are presented on Figure 5. Based on the analytical data, TPHg, TPHd, TPHo, BTEX, and naphthalene were detected above their respective MTCA Method A cleanup levels. The following locations contained one or more COPCs at concentrations greater than the respective MTCA Method A cleanup levels (Table 4, Figure 5): MW-1, MW-2, MW-4, MW-8, MW-9, MW-10, MW-11, MW-13, MW-14, MW-17, MW-18, MW-21, MW-22, and MW-23.

Based on recent groundwater data, the groundwater plume has been delineated to the east and southeast (Figure 5). Based on the results of the two sampling events, it is apparent that results at the edges of the groundwater plume show seasonal variability (Figure 4). This may be due to groundwater contacting more residual, sorbed-phase petroleum hydrocarbon impacts present in the smear zone during certain seasons and also may be attributable to increased groundwater flow during certain conditions.

2.4.3 Soil Gas Analytical Results

A total of 16 unique soil gas samples (not including quality control samples) were collected in July 2019, August 2020, and November 2020 events and submitted to Friedman & Bruya, Inc. for analysis of the following:

¹ Elevations presented in feet referenced to North American Vertical Datum of 1988 (NAVD88).

- BTEX and naphthalene by EPA Method TO-15
- Aliphatic and aromatic hydrocarbons by Massachusetts Department of Environmental Protection Air-Phase Petroleum Hydrocarbons (MA APH)

Additionally, samples collected during the July 2019 event were analyzed for EDB, EDC, and MTBE by EPA Method TO-15.

Soil gas sampling results are summarized in Table 5 and the August 2020 and November 2020 results are presented on Figure 6. The concentration for TPH was calculated as the sum of aliphatic hydrocarbons, aromatic hydrocarbons, and gas-range volatile organic compounds (VOCs) and was compared to the generic total petroleum hydrocarbon screening level.² Total petroleum hydrocarbons exceeded the MTCA Method B subslab screening level for unrestricted use at the following locations:

- GP-03 during all three events.
- GP-05 during the November 2020 sampling event (the only sampling event for this location).
- SVS-01 during the August 2020 sampling event.

Individual analytes, including carcinogenic compounds, were not detected above their respective MTCA Method B subslab screening levels (Table 5). EDB, EDC, and MTBE were not detected in soil gas. Laboratory analytical reports are included as Appendix B, and data validation reports are included in Appendix C.

_

² The generic subslab TPH screening level is based on the generic TPH indoor air cleanup level of 140 ug/m³ and an attenuation factor of 0.03 in accordance with Ecology's Implementation Memo No. 18 (Ecology, 2018a).

3 Interim Action Summary

The purpose of the Interim Action is to remove LNAPL and contaminated soils from the Property to the maximum extent practicable (considering Site constraints) and mitigate the potential exposure pathways at the Site. Excavation of the LNAPL source and surrounding soils exceeding MTCA cleanup levels will be performed as an Interim Action under AO No. 14315.

The Interim Action will consist of a planned excavation to an average depth of 18 feet bgs with the ability to overexcavate deeper to an average maximum depth of 30 feet bgs, if warranted based on soil performance monitoring. Demolition of the building and temporary shoring on the northern and western Property extents is required to remove the LNAPL source from the Property. The remedial excavation will be backfilled to original grade.

3.1 Objectives

The Interim Action will be conducted to achieve the following objectives:

- Remove the LNAPL source of contamination at the Site.
- Achieve soil remediation levels at the excavation limits, to the extent practicable.
- Remove potential sources of contamination to groundwater and soil gas, including both LNAPL and petroleum hydrocarbons sorbed to soil as mentioned above, mitigating potential off-Property soil vapor intrusion risks.

3.2 Exposure Pathways

The goal of an Interim Action is "to reduce a threat to human health or the environment by eliminating or substantially reducing one or more pathways for exposure to a hazardous substance" (WAC 173-340-430(1)(a)). The following exposure pathways are determined to be complete or potentially complete at the Site:

- LNAPL to Groundwater: The LNAPL to groundwater pathway is complete at the Site. LNAPL has accumulated at the water table and dissolves into groundwater.
- **Soil to Groundwater:** The soil to groundwater pathway is complete at the Site. Sorbed-phase contamination is present in and surrounding the LNAPL body and leaches to groundwater.
- Vapor Intrusion (VI): The vapor intrusion pathway is potentially complete at the Site.

These exposure pathways serve as a basis of the Interim Action. The exposure pathway assessment for the Site will be presented in the RI Report.

3.3 Basis of Interim Action

The primary purpose of the Interim Action is to remove LNAPL and contaminated soils from the Property to mitigate the potential exposure pathways at the Site. LNAPL has

ASPECT CONSULTING

accumulated at the groundwater interface and is a continuing source of contamination to groundwater and soil gas at the Site. Based on environmental investigations conducted to date, the product released migrated vertically through the vadose zone (which consists of loose fill material) and accumulated at capillary contacts (the fill/till interface and/or groundwater table). The LNAPL migrated downgradient to the southwest through gravity and capillary forces on the surface of the water table.

Over the entire historical monitoring record, LNAPL thickness has varied at monitoring wells MW-3, MW-4, MW-5, MW-8 and MW-15, with the following maximum observed thicknesses:

- 0.39 feet in MW-3,
- 0.32 feet in MW-4,
- 1.12 feet in MW-5,
- 0.61 feet in MW-8, and
- 0.66 feet in MW-15.

LNAPL has not accumulated at MW-23, which bounds the downgradient LNAPL extent to the Property. The LNAPL extent is estimated as 3,100 square feet (sf) and is shown on Figure 2. A large portion of the LNAPL extent is underneath the existing building at the Property.

Seasonally, the thickness in LNAPL wells can decrease to 0 feet during high groundwater elevations. Seasonal groundwater elevation fluctuations are significant at the Site, varying between 5.02 feet at MW-08 and up to 7.25 feet at MW-09 over the 13-year monitoring record. This groundwater seasonality controls the observed LNAPL thicknesses in monitoring wells.

Based on the groundwater seasonality, the estimated LNAPL smear zone thickness is approximately 5 to 7 feet. The bottom of the smear zone was observed between 6 and 13 feet bgs in the vicinity of the release, and 10 to 18 feet bgs at the most downgradient LNAPL well, MW-15. It is possible that LNAPL accumulated at the groundwater interface at a rate greater than it could migrate downgradient, creating a slight hydraulic head which would allow LNAPL migration in the apparent upgradient direction of MW-5 and MW-8 and potentially off the Property to the north. The northern LNAPL extents have been bound by MW-17: there is a 16-inch diameter, high-pressure water main and major fiber optic corridor in the sidewalk and a high-pressure natural-gas main in the southern lane of 196th Street SW. MW-17 was placed as close to MW-8 as these utilities allowed.

The excavation and off-Site disposal of the contaminated soils associated with the LNAPL source zone at the Site is the basis of the Interim Action.

3.4 Remediation Levels

COPCs at the Site were refined based on the analytical data collected during historical and current RI activities³. The following COPCs were identified for each environmental media:

• Soil: BTEX, TPHg, TPHd, TPHo, and naphthalene

• Groundwater: BTEX, TPHg, TPHd, TPHo, and naphthalene

• Soil Gas: Benzene, TPH

For the purposes of this interim soil removal action, soil remediation levels have been established. Because cleanup levels have not yet been determined for the Site, the Interim Action will target soil compliance with remediation levels defined for the Interim Action in accordance with WAC 173-340-355 and 173-340-360. The soil remediation levels for Site COPCs are the MTCA Method A cleanup levels, as shown in Table B.

Soil Remediation Level Analyte (milligrams per kilogram [mg/kg]) **TPHg** 30 **TPHd** 2,000 TPHo 2,000 0.03 Benzene Toluene 7 Ethylbenzene 6 9 **Total Xvlenes** Naphthalene 5

Table B. Soil Remediation Levels

3.5 Soil Removal

The excavation and off-Site disposal of the contaminated soils associated with the LNAPL source zone at the Site is the first Interim Action objective. The second Interim Action objective is to achieve the remediation levels at the excavation extents, to the extent practicable. This section estimates to the soil excavation extents, in order to meet this objective.

Soil exceedances have been laterally delineated in all directions (Figure 3). The RI soil analytical results have vertically delineated cleanup level exceedances at depths of 16 to 25 feet bgs in areas close to the LNAPL footprint (MW-15 and MW-22) and at depths up to 8 feet bgs outside the LNAPL footprint (B-07 and MW-11).

Soil was not vertically delineated at locations MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-9, MW-10, and MW-23. At these locations, only benzene exceeded

³ EDB, EDC, MTBE, Lead, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) have all been eliminated as COPCs at the Site and approved by Ecology in the RIWP Addendum (Aspect, 2020).

the MTCA Method A cleanup level in each of the deepest analytical results from each boring. Table C below shows the maximum depth where analytical data was acquired for each of these locations; all soil analytical results are available in the attached Table 1.

Table C. Locations Lacking Vertical Delineation

Location	Depth (feet bgs)	Benzene Soil Concentration (milligrams per kilogram [mg/kg])
MW-1	27.5	0.14
MW-2	17.5	0.33
MW-3	17.5	0.53
MW-4	17.5	0.24
MW-5	17.5	0.09
MW-6	20	0.0921
MW-8	20	0.0486
MW-9	20	0.104
MW-10	20	0.0532
MW-23	25	0.047

At MW-2 and MW-6, which are outside the source zone area, benzene was either not detected or was detected at concentrations less than the remediation level in shallower soil samples (Table 1). The exposure pathways at each location formed the basis for targeted removal during the interim action.

With respect to the exceedance at MW-6:

- At 15 feet bgs, no Site COPCs were detected in soil.
- At 20 feet bgs, only benzene exceeded the MTCA Method A cleanup level in soil; since the exceedance is 20 feet deep, there is not a direct contact exposure risk, and the exceedance is outside the vertical separation screening distance for vapor intrusion.
- Benzene has never been detected in groundwater at MW-6 since sampling began in 2007, empirically demonstrating the historical soil exceedance does not present a current soil-to-groundwater exposure risk.
- Because benzene has never been detected in groundwater at MW-6, there is no potential groundwater-to-soil-gas VI exposure risk.

With respect to the exceedance at MW-2:

- At 12.5 feet bgs, benzene was detected but did not exceed the MTCA Method A cleanup level; no other Site COPCs were detected in soil.
- At 17.5 feet bgs, only benzene exceeded the MTCA Method A cleanup level in soil; since the exceedance is 17.5 feet deep, there is not a direct contact exposure risk, and the exceedance is outside the vertical separation screening distance for vapor intrusion as established in Ecology's *Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion* (2016a).

- Benzene is detected but does not exceed soil gas screening levels at GP-2, GP-3, and GP-5, which are 20, 25, and 24 feet away from MW-2, respectively; however, the benzene concentration in groundwater at MW-2 exceeds groundwater screening levels for potential VI risk.
- Benzene in groundwater at MW-2 exceeds groundwater cleanup levels.

The historical soil exceedance at MW-6 does not present any current exposure risk and will not be targeted for removal during the IAWP. The lack of groundwater exceedances at MW-6 empirically demonstrates soil compliance at this location.

The MW-2 soil exceedance is not protective of groundwater and will be targeted for removal during the IAWP.

At the remaining locations (MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, and MW-23), the benzene concentrations observed in the deepest soil sample fall within one order of magnitude of the remediation level. Additionally, these benzene exceedances are orders of magnitude less than the exceedances detected at shallower depths within each soil boring. These shallower, larger magnitude benzene exceedances coincide with relatively high exceedances of other Site COPCs, including TPHg. Based on observed geology, groundwater flow is not expected to be significant in the very dense, unweathered glacial till from which these samples were collected. These exceedances may be due to drag down of shallower LNAPL and/or higher-concentration soils and groundwater during drilling.

The planned remedial excavation targets higher concentration exceedances of benzene that occur with TPHg exceedances and are located within the fill and weathered till that is present in the subsurface at the Site. The planned remedial excavation is also based on the expectation that compliance with remediation levels can potentially be achieved at or near the top of the unweathered glacial till. The IAWP remedial excavation design accommodates overexcavation of soils exceeding remediation levels to a maximum depth into the unweathered glacial till, if warranted by soil performance monitoring. The basis for the depths across the remedial excavation is presented in Table 6.

- Planned Excavation Limits The planned excavation depth is based on analytical results indicative of LNAPL and the Site geology as presented in Table 6. In cases where low-level benzene exceedances were detected, the blow counts presented in the boring logs (Appendix A) were used to infer the depth to the unweathered glacial till.
 - The areal planned excavation limits will be advanced to the maximum extent practicable. The practical limitations of soil excavation are (1) the right-of-way (ROW) and utilities in the ROW at the northern excavation limits, (2) the adjacent property and building at the western excavation limits, and (3) the adjacent property and building at the southern excavation limits. The temporary shoring will be designed to allow for the maximum areal extent of soil removal based on these practical constraints.
- Maximum Overexcavation Depth The shoring has been designed so that if compliance with the remediation levels is not achieved at the bottom of the

ASPECT CONSULTING

planned excavation depth, the shoring can be extended vertically to accommodate overexcavation of soil exceeding remediation levels. The basis for the maximum overexcavation depth at each location presented in Table 6 are the low-level benzene exceedances observed in historical borings.

The planned excavation depth for the majority of the excavation is 18 to 20 feet bgs (Table 6; Figure 7). Compliance with soil remediation levels will be confirmed during performance sampling associated with the excavation (Section 5), and the shoring has been designed to allow overexcavation to depths up to 30 feet bgs along the western shoring wall (near MW-1) and depths up to 22 feet bgs along the northern shoring wall (Table 6; Figure 8). Excavation will be conducted below the groundwater table, and limited groundwater to be managed is anticipated in the glacial till soils.

Based on the historical and current RI analytical data, approximately 1,800 cubic yards of potentially clean soil (as described further in Section 4.7) exists as overburden above the contaminated soil to be removed. The estimated volume of contaminated soil to be removed for the planned excavation is approximately 5,300 cubic yards. Up to an additional 3,000 cubic yards may be removed if the maximum possible overexcavation is conducted in order to achieve soil remediation levels (Table 7).

4 Interim Action Elements

This section describes specific work elements of the Interim Action.

4.1 Construction and Safety Requirements

The following is a summary of construction and safety requirements to be employed at the Site when contamination is encountered during redevelopment construction:

- All persons performing Site activities where they may contact hazardous
 materials, including petroleum hydrocarbon-impacted soil or groundwater, must
 have completed Hazardous Waste Operations and Emergency Response
 (HAZWOPER) training in accordance with the Occupational Safety and Health
 Administration Part 1910.120 of Title 29 of the Code of Federal Regulations, and
 be in possession of a current HAZWOPER certification card.
- All work must be performed in accordance with the contractor's site-specific health and safety plan (HASP). The HASP will include guidelines to reduce the potential for injury, as well as incident preparedness and response procedures, emergency response and evacuation procedures, local and project emergency contact information, appropriate precautions for potential airborne contaminants, and Site hazards, and expected characteristics of generated waste. The general contractor will operate under its own HASP, as will any subcontractor performing site activities where hazardous materials may be contacted. The Aspect HASP establishes procedures and practices to protect employees of Aspect from potential hazards associated with Interim Action activities. The HASP will be updated prior to the start of construction.
- A safety meeting will be conducted prior to the start of each workday to inform workers of changing work conditions, and to reinforce key safety requirements.

All work must be conducted in a manner consistent with federal, state, and local construction and health and safety standards applicable to the Site and to the work being performed. All companies are responsible for the health and safety of their own workers.

4.2 Mobilization and Site Preparation

Mobilization and construction site preparation activities include:

- Mobilize construction equipment, materials, and utilities (e.g., electrical generators).
- Install temporary construction fencing.
- Building demolition, described below.
- Construct bermed and lined soil stockpile area(s) for soil handling.
- Construct temporary erosion and sediment controls (TESCs) per the TESC Plan.

- Remove or reroute any active utilities that may be impacted by the cleanup including water, gas, electric, and communication. This includes coordination with utility owners and deactivation as necessary.
- Decommission monitoring wells that are within the footprint of the planned excavation (Figure 7), as described in Section 4.3.

4.3 Monitoring Well Decommissioning and Replacement

Groundwater monitoring wells located within the footprint of the Interim Action excavation will be properly decommissioned, prior to the start of excavation, in accordance with the requirements of Chapter 173-160 WAC.

Fourteen monitoring wells will be decommissioned – MW-1, MW-3, MW-4, MW-5, MW-8, MW-9, MW-10, MW-11, MW-13, MW-14, MW-15, MW-20, MW-22, and MW-23 (Figure 7). Ecology well tags and resource protection well reports were located for all monitoring wells to be decommissioned. In accordance with WAC 173-160-640, monitoring wells will be decommissioned by filling the entire length of the casing with bentonite. Monitoring well decommissioning will be performed by a licensed driller. Off-Property monitoring wells located outside of the planned excavation footprint will be protected if practicable; otherwise, they will be decommissioned.

After the completion of the excavation and backfill, four monitoring wells will be installed in accordance with the procedures outlined in the Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP; Appendix D). The replacement monitoring wells will be located based on the results of a groundwater monitoring event at remaining wells after the interim action. Replacement monitoring well locations will be proposed in the Interim Action Report (IAR) for Ecology approval.

4.4 Building Demolition

Demolition of the existing building is required to conduct the Interim Action. Prior to demolition, the contractor will subcontract a survey of regulated building materials (RBMs), including potentially asbestos-containing materials, lead-containing paints, polychlorinated biphenyl (PCB)-containing light ballasts, and mercury-containing fluorescent light bulbs and thermostat switches. All RBMs will be abated prior to demolition in accordance with local, state, and federal regulations. Building demolition requires a City of Lynnwood (City) demolition permit, discussed in Section 6.2 below.

Following abatement, Aspect will oversee the demolition of the aboveground portion of the building, and direct segregation of building materials potentially contaminated with petroleum hydrocarbons in accordance with Section 5.7. During demolition of the floor slab, Aspect will closely observe the underlying soils for evidence of petroleum hydrocarbon source zones and unanticipated subsurface structures such as USTs.

4.5 UST and Hoist Removal

The contractor will remove the remaining three USTs during the Interim Action in accordance with Ecology's UST regulations (WAC 173-360A). One of the USTs was closed-in-place, and the closure status of the remaining two USTs is unknown (Table A). During removal, their condition, including whether they were previously abandoned-in-

place, will be documented. If any additional USTs are encountered during soil excavation activities, they will be removed in accordance with Ecology's UST regulations.

The condition and presence of the in-ground hoist shown on the original building construction diagrams is unknown. While hoists are not subject to the same regulations as USTs, the hoist may still contain hydraulic oil. Therefore, the hoist will be removed at the same time as the three remaining USTs and using similar means and methods. Any UST contents discovered during decommissioning, will be removed, handled, and disposed of in accordance with all state and federal regulations. Waste characterization sampling of contents will be conducted, if required for applicable disposal requirements.

4.6 Shoring Installation

Temporary shoring of the northern and western property boundaries is required to conduct the Interim Action. The shoring wall alignments, shown in plan view on Figure 7 and in section on Figure 8, are conceptual. Actual shoring wall alignments will be determined during design and permitting and be constrained by the ROW and utilities on the north wall, and the building on the adjacent property on the west wall. The design will target alignments as far north and west as possible, and as close to property boundary as these constraints, setbacks, and City permitting allows. The northern and western extents of contaminated soil excavation will be to the maximum extent practicable.

It is anticipated that a temporary soldier pile wall system will consist of wide-flange steel beams set into vertically drilled shafts typically installed at 6- to 8-foot horizontal spacing. Thick timber lagging would be placed to span between the soldier piles. The space behind the timber lagging would be backfilled with sand and gravel or controlled density fill (CDF) between the wall and surrounding sidewalks or buildings. The temporary shoring design will be prepared by a Washington-licensed geotechnical engineer, based on the remedial excavation requirements in this IAWP.

The estimated total length of temporary shoring is approximately 235 feet along the northern and western walls (Figure 7). The planned excavation limits require an exposed (retained) wall height of 20 feet on the northern and western walls. The temporary shoring will be designed to accommodate removal to the maximum overexcavation depth. Shoring will be designed to allow for a maximum of 22 feet exposure (bgs) on the north wall and 30 feet exposure (bgs) on the west wall. Section views shown on Figure 8 indicate the planned and maximum excavation extents.

4.7 Soil Segregation, Handling, Management, and Monitoring

Soil within the remedial excavation and from the locations of the soldier piles has been delineated into management categories according to the results of past environmental sampling. Three soil management categories will be used during the Interim Action, which were established based on Ecology's guidance (2016b):

1. Petroleum-Contaminated Soil (PCS) – Soil containing Site COPCs above the MTCA Method A cleanup levels

- 2. Petroleum-Impacted Soil (PIS) Soil containing detectable concentrations of Site COPCs but at concentrations less than the MTCA Method A cleanup levels
- 3. Potentially Clean Soil

The following sections define each management category, describe handling requirements, and provide acceptable soil disposal facilities for each.

4.7.1 Identification of Impacted and Contaminated Soils

An Aspect field representative will be on-Site full-time to monitor excavation activities for evidence of contamination, including potentially unanticipated sources. Criteria to be used include, but are not limited to:

- Petroleum hydrocarbon staining, sheen, or chemical color hues in soil or standing water
- The presence of separate-phase petroleum hydrocarbon product or other chemicals.
- The presence of utility pipelines with sludge or trapped liquid indicating petroleum hydrocarbon product.
- The presence of buried pipes, conduits, or tanks.
- Vapors causing eye irritation or nose tingling or burning.
- The presence of gasoline- or oil-like odors.

When evidence of PIS or PCS is encountered, an Aspect field representative will use visual and PID field screening techniques to assess the extent of contamination and instruct the contractor in segregation of PCS/PIS vs. potentially clean soils. Field screening methods include visual (staining and sheen testing), olfactory indicators, and headspace vapor screening using a photoionization detector (PID). If the PID response is greater than 10 parts per million, the soil will be segregated as PIS and/or PCS pending further characterization. Field segregation of soils will follow Ecology guidance, and soils impacted with petroleum hydrocarbons will be managed in accordance with Ecology's *Guidance for Remediation of Petroleum Contaminated Sites* (Ecology, 2016b) and as outlined below. If other soil contaminants or other conditions are encountered, an appropriate environmental response will be developed on a case-by-case basis.

4.7.2 Soil Excavation, Segregation and Stockpiling

The estimated extents of excavation for the Interim Action are shown on Figure 7 and in section views on Figure 8. Excavation will be implemented to first remove the delineated LNAPL source zone and continue to the planned excavation limits, or until field screening indicates the absence of petroleum hydrocarbon impacts, whichever is shallower. This remedial excavation design is based on the current understanding of subsurface conditions and the Interim Action objectives in Section 3.1.

Throughout the excavation, an Aspect representative will field screen for evidence of contamination and direct segregation of all excavated materials. Excavated soils that are known to be contaminated based on analytical data presented herein (or field-determined) may be direct-loaded and hauled to the selected off-Site treatment/disposal facility as

PCS. It may be necessary to temporarily stockpile soils for final categorization and subsequent handling based on laboratory analytical results. Any stockpiling will include the following requirements:

- If stockpiles are staged on pavement, the stockpiles must be underlain with plastic sheeting of 10-mil minimum thickness, with adjacent sheeting sections overlapping a minimum of 3 feet.
- If stockpiles are staged on pervious surfaces (soil), all stockpiles must be separated from underlying soil if the underlying soil is not known to be PCS based on previous environmental sampling.
- The perimeter of stockpiles will be surrounded by a berm or other erosion control measure as identified in the TESC to prevent run-on and/or runoff of precipitation.
- All stockpiles will be covered with plastic sheeting of 6-mil minimum thickness when not in use, and the cover will be anchored to prevent it from being disturbed by wind.
- Analytical testing will be conducted at the frequency prescribed in Ecology's guidance (2016b).

4.7.3 Soil Sampling and Analysis

Stockpiles will be sampled at the frequency prescribed in Ecology's guidance (2016b) and provided in Table D, below.

Cubic Yards of Soil	Number of Analytical Samples		
0 – 100	3		
101 – 500	5		
501 – 1,000	7		
1,001 – 2,000	10		
> 2,000	10 + 1 for each additional 500 cubic yards		

Table D. Stockpile Sampling Frequency

Stockpile samples will be collected and submitted for laboratory analysis of Site COPCs in accordance with the SAP/QAPP (Appendix D).

4.7.4 Soil Profiling and Off-Site Treatment/Disposal

The soil removal action has been designed and permitted in compliance with Washington State Dangerous Waste Regulations (WAC 173-303).

cVOCs have not been detected in soil samples collected from the Property. Samples have been analyzed for cVOCs on the west and south portions of the Site, near the former Slater's One Hour Cleaners at locations GP-04, B-08, MW-12, MW-13, MW-14, and

MW-18 (Table 1). Similarly, cVOCs were not detected in groundwater at on-Property monitoring wells MW-13 and MW-18. Vinyl chloride was detected in groundwater at monitoring MW-14, which is in the southwest portion of the Property (Table 4). At this location, the sloping for the remedial excavation is expected to remain in the vadose zone. Therefore, a Contained-In Determination will not be required to dispose of the PCS soils.

All soil and debris removed that is designated as PIS or PCS will be loaded and transported off-Site for disposal. Based on historical and current RI analytical data, all of the contaminated soil at the Site would exceed the criteria for PIS and would be profiled as PCS. Therefore, for the purposes of this IAWP, if suspected PIS and/or PCS is direct loaded, it must be presumed to be PCS and disposed of at a permitted Subtitle D landfill. Trucks transporting contaminated materials from the Site will comply with applicable state and federal regulations and local ordinances and will be covered from the time they are loaded on-Site until they off-load at the designated off-Site disposal facility.

If suspected PCS is stockpiled, and analytical testing indicates that Site COPCs are detected at concentrations less than remediation levels, the soil may be designated as PIS in accordance with Ecology's guidance (2016b). PIS is not suitable for reuse at the Site due to the shallow depth to groundwater. However, PIS may be disposed of at alternative disposal facility, such as Cadman's permitted Class 2 landfill, provided that petroleum-impacted soil meets the selected disposal facility's permit criteria in accordance with WAC 173-340.

4.8 Water Management

Management of water is necessary to advance the remedial excavation to the planned excavation limits. Water generated during the cleanup action will consist of groundwater and any stormwater entering the excavation. The groundwater quantities anticipated are low, and excavation water will be managed with sumps installed in the bottom of the excavation. Limited volumes of drainable LNAPL are expected within the excavation area, whereas the majority of the LNAPL body is expected to be residually trapped within the pore spaces of the soil matrix. Any drainable LNAPL will be managed in accordance with all local and state requirements. The IAWP implementation will target dry season to minimize water quantities to be managed.

All generated water will be pumped to tanks and handled in accordance with all local and state requirements by either hauling for disposal off-Site, or by a permitted discharge to a sanitary sewer in accordance with applicable permit requirements by the City and/or Snohomish County. If a permitted discharge is required, all permit treatment, monitoring and discharge requirements will be met. CVOCs were not detected in the groundwater on the Property; however, if they did occur in water generated, they would be treated using the same treatment process for the high concentrations of petroleum hydrocarbons and discharged in accordance with permit conditions and all local and state requirements.

4.9 Excavation Backfill

The backfill of the excavation will be conducted in phases during and following completion of discrete areas of remedial excavations. Assuming that the base of excavation is completely dewatered, these areas will be backfilled within 1 foot of final

grade with material meeting the requirements for Washington State Department of Transportation (WSDOT) Standard Specification for Gravel Borrow 9-03.14(1). Within 1 foot of final grade, the excavation will be backfilled with material meeting WSDOT Standard Specification for Crushed Surfacing 9-03.9(3).

The backfill material should only be placed on a relatively firm and unyielding subgrade, free from soft or disturbed material, standing water or organic material. The exposed subgrade soils will be compacted (in place) to a dense and unyielding condition prior to placement of backfill. The subgrade preparation should be observed by the geotechnical engineer prior to placement of backfill.

The backfill will be compacted to a relatively firm and unyielding condition to a minimum density of 95 percent of the maximum dry density as determined by ASTM International (ASTM) D1557 (ASTM, 2020). Backfill should be placed in lifts with a loose thickness no greater than 12 inches when using relatively large compaction equipment, such as a vibrating plate attachment to an excavator (hoe pack) or a drum roller). If small, hand-operated compaction equipment is used to compact structural fill, lifts should not exceed 6 inches in loose thickness.

Moisture content of the fill will be controlled to within 3 percent of optimum moisture during placement and will be wet of optimum moisture below the static groundwater table. Optimum moisture content shall correspond to the laboratory determined maximum modified proctor density.

5 Compliance Monitoring

In accordance with WAC 173-340-410, compliance monitoring includes the following elements:

- **Protection monitoring** confirms that human health and the environment are adequately protected during the Interim Action.
- **Performance monitoring** confirms that the cleanup action has attained Interim Action remediation levels and/or other performance standards, such as permit requirements.
- Confirmation monitoring confirms the long-term effectiveness of the cleanup action once cleanup levels and/or other performance standards have been attained.

For this Interim Action, protection and performance monitoring will be conducted, as outlined below. Confirmation monitoring will be conducted as part of the final cleanup action for the Site, not as part of this Interim Action.

5.1 Protection Monitoring

Protection monitoring of human health will be conducted during the Interim Action by requiring that on-Site workers conducting the soil handling and management are appropriately trained and aware of environmental exposure hazards with conduct of the work. Aspect's HASP for the Interim Action will be updated prior to the initiation of any field work. The contractor will prepare and comply with their own HASP.

Protection monitoring includes real-time air monitoring within the worker breathing zone and at the downgradient property boundary. The air monitoring is discussed in Aspect's HASP. Air monitoring data will be made available to on-Site workers and Ecology. Nothing in this IAWP precludes contractors/consultants on-Site from choosing to conduct additional air monitoring. Fugitive dust emissions will be monitored and managed by the Contractor and as required by the City.

Protection monitoring of the environment will occur via implementation and regular inspection of the TESC, complying with any dewatering discharge authorization requirements, and soil profiling and disposal in accordance with Washington State Dangerous Waste Regulations (WAC 173-303).

5.2 Performance Monitoring and Overexcavation

Soil performance monitoring will include laboratory analysis of both excavation sidewall and excavation bottom samples. The distance between soil samples will not exceed 20 feet laterally or 5 feet vertically, and closer sample spacing may be necessary. The samples will be submitted for laboratory analysis of Site COPCs described in Section 3.4 and in accordance with the SAP/QAPP (Appendix D).

Once the planned excavation limits are reached or when field screening indicates the absence of petroleum hydrocarbon impacts, excavation confirmation soil samples will be collected for laboratory analysis to confirm compliance with the Interim Action

remediation levels (Section 3.4). The soil samples will be collected from within the excavation using the excavator bucket or by hand if safely accessible to a worker in accordance with the SAP/QAPP (Appendix D). Excavation bottom samples will be collected on a systematic grid coinciding with pile locations in the final shoring design; bottom grid spacing will not exceed 20 feet by 20 feet. The sampling grid boundary will correspond to the remedial excavation area, and bottom samples will be collected from within the base of the excavation. Sidewall samples will be collected from behind the shoring wall and from the slope cuts on the south and east sides of the excavation; sidewall grid spacing will not exceed 20 feet laterally or 5 feet vertically. Within each grid area, Aspect will field-screen the soil for evidence of contamination.

Soil samples will be obtained at the bottom elevations, as follows:

- If there are no field screening indicators of contamination within the entire grid area, a single soil sample will be collected for analysis from the approximate center of the square area (one sample per maximum 20-foot by 20-foot square) to document the remediation levels (Table B) have been met at depth.
- If field screening indicators of contamination are observed at the planned excavation limit, the area will be immediately overexcavated by approximately 2 feet deep, and field screened.⁴
- This overexcavation process will be repeated until there are no field indicators of contamination, or until the maximum overexcavation depth is reached, whichever occurs first. Then excavation performance bottom samples will be collected as indicated above.

The shoring limits will be designed to accommodate overexcavation of contaminated soils to the maximum overexcavation depth. If contaminated soil cannot be safely or practicably overexcavated, it will be left in place and documented in the IAR. In areas where overexcavation is practicable and performed, a new bottom soil sample will be collected and evaluated for compliance with remediation levels.

The soil sampling and chemical analysis described above will be conducted in accordance with the SAP/QAPP (Appendix D).

.

⁴ Preliminary samples will be dual purposed; to document soil quality at the base of the planned excavation and to profile the stockpile as described above.

6 Permitting

6.1 Applicable or Relevant and Appropriate Requirements

The Interim Action will be performed under the Agreed Order, and it is therefore exempt from the procedural requirements of Chapters 70.94 (Washington Clean Air Act), 70.95 (Solid Waste Management Act), 70.105 (Hazardous Waste Management Act), 90.48 (Water Pollution Control), and 90.58 (Shoreline Management Act) Revised Code of Washington (RCW), and of laws requiring or authorizing local government permits or approvals. However, the Interim Action must still comply with the substantive requirements of such permits or approvals (WAC 173-340-520). In addition, the Interim Action is not exempt from federal permits.

The starting point for Applicable or Relevant and Appropriate Requirements (ARARs) is MTCA regulations (Chapter 173-340 WAC) that address implementation of a cleanup and define cleanup standards under the MTCA statute (Chapter 173.105D RCW). Other ARARs include, but are not limited, to the following:

- 1. State Water Pollution Control Act (Chapter 90.48 RCW)
- 2. Water Resources Act (Chapter 90.54 RCW)
- **3.** Applicable surface water quality criteria published in the water quality standards for surface waters of the State of Washington (Chapter 173-201A WAC)
- **4.** Applicable surface water quality criteria published under Sections 303(c) and 304 of the Clean Water Act
- **5.** Washington State Hazardous Waste Management Act (Chapter 70.105 RCW)
- **6.** State Dangerous Waste Regulations (Chapter 173-303 WAC)
- 7. Solid Waste Management-Reduction and Recycling (Chapter 70.95 RCW)
- **8.** Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 RCW)
- **9**. Washington Clean Air Act (Chapter 70.94 RCW)
- **10.** Puget Sound Clean Air Agency Regulations (http://www.pscleanair.org)
- **11.** Occupational Safety and Health Act (OSHA), 29 Code of Federal Regulations (CFR) Subpart 1910.120
- **12.** Washington Industrial Safety and Health Act (WISHA)
- **13**. Archaeological and Cultural Resources Act (Chapter 27.53 RCW)
- **14.** State Environmental Policy Act (SEPA; Chapter 43.21C RCW, Chapter 197-11 WAC, and Chapter WAC 173-802)

6.2 Permitting and Substantive Requirements

The following permits have been identified for the Interim Action.

6.2.1 City of Lynnwood

The City will require permits for the building demolition, shoring installation, and remedial excavation.

Concurrent with the public comment period on the Public Review Draft IAWP, a plan submittal to the City will initiate the City permit review and issuance outlined in this Section. The following permits will be required by the City for IAWP implementation:

- **Right-of-Way Use** Limited closure of lanes surrounding the Property may be necessary for equipment mobilizations, trucking and removal of soils, and equipment staging. The Contractor will apply for an ROW Use permit at a future date, as the need is identified.
- Tree Removal Class II Based on the number of trees to be removed, a class II tree removal permit will be required. The tree removal permit will be submitted with the Public Works Permit application. Replanting of trees will be required as part of post-construction site restoration.
- **Building Demolition** The building demolition permit will be required to remove the former service station building.
- **Grading** The grading permit will cover earthworks and shoring requirements for the project. The grading permit will be submitted with the Public Works Permit application.
- Industrial Waste, Limited Discharge The industrial waste permit (if necessary) for the excavation dewatering discharge to the public sewer system. The industrial waste permit will be submitted with the Public Works Permit application.
- **Sewer Capping** Once dewatering for the remedial excavation is complete, the sewer will need to be capped in accordance with the local, applicable code. The sewer capping permit will be submitted under the umbrella of a Public Works Permit application.

The permitting timeline is anticipated to be completed on a parallel schedule with the Ecology public comment process for the IAWP.

6.2.2 State Environmental Policy Act (SEPA)

The Interim Action activities comply with SEPA, Chapter 43.21C RCW by conducting a review in accordance with applicable regulatory requirements, including WAC 197-11-268, and Ecology Policy 130A (Ecology, 2004). A SEPA checklist for the Interim Action was submitted to Ecology with the Agency Review Draft and is included as Appendix E. Ecology determined that this IAWP will not have a probable significant adverse impact on the environment and issued a preliminary Determination of Nonsignificance for public review. The public review of the determination coincides with the comment period on

this Public Review Draft IAWP. The final SEPA determination will be issued by Ecology and included in the Ecology-approved Final IAWP.

6.2.3 Archaeological Resources

An Inadvertent Discovery Plan (IDP) was submitted to Ecology with the Agency Review Draft IAWP and is included as Appendix F. In accordance with the IDP, if potential archaeological materials are observed in the excavation, work will be stopped, and a professional archaeologist will be mobilized to the excavation location to observe and assess the materials encountered and determine the appropriate path forward in accordance with applicable laws and regulations. The Washington State Archaeologist will be notified in accordance with requirements of the Department of Archaeology and Historic Preservation (DAHP). The IDP will be included in the Ecology-approved Final IAWP.

7 Reporting

Within 90 days of completing the Interim Action construction activities and receipt of all construction reporting and laboratory analytical data, the PLPs will submit to Ecology the Draft IAR required by the Agreed Order. Information provided in the Draft IAR will include a description of the lateral and vertical limits of excavations, the volume of contaminated material removed/landfilled, how the contaminated media was managed, volume of water managed during excavation, and the performance monitoring data. Certificates of Disposal for the waste disposition will also be included. Ecology's comments will be addressed in a Final IAR. The Final IAR will complete satisfaction of the Agreed Order requirements for the interim action.

The analytical data collected during the Interim Action will also be uploaded to Ecology's Environmental Information Management (EIM) database within 60 days after it being validated in accordance with WAC 173-340-840(5) and Ecology's Toxics Cleanup Program Policy 840 (Data Submittal Requirements).

8 Schedule

The anticipated schedule of the IAWP implementation follows the schedule set forth in the AO, Exhibit C, Table 2, as outlined below:

Table E. Interim Action Schedule

Deliverable	Due Date
Public Review Draft IAWP and Ecology SEPA Determination	Due June 16, 2021
Public Comment Period	July 7 to August 3, 2021
Final Interim Action Work Plan	Due no later than 30 days after public notice and comment period closes - September 2, 2021
Ecology Review Draft IAR	Due no later than 90 days after IAWP completion
Final IAR	30 days after Ecology's approval of the Agency Review Draft IAR

The Final IAWP cannot be implemented until the City has issued permits required to satisfy local substantive requirements as identified in Section 6.2. Upon Ecology approval of the Public Review Draft IAWP, the design and permitting of the project will be initiated and with the goal of completing project permitting and contractor selection at the same time as the Final IAWP. Once permits have been issued by the City, Ecology will be notified of the Final IAWP implementation schedule. The IAWP implementation schedule will target the dry season to minimize water management during implementation.


The completion of the IAWP will be reported in the IAR satisfying the interim action requirements of the Agreed Order.

9 References

- American Petroleum Institute (API), 2016, API LNAPL Transmissivity Workbook: A Tool for Baildown Test Analysis User Guide, Publication 4762, dated April 2016.
- Aspect Consulting, LLC (Aspect), 2019, Remedial Investigation Work Plan, Texaco Strickland Cleanup Site, 6808 196th Street Southwest, Lynnwood, Washington. March 6, 2019.
- Aspect Consulting, LLC (Aspect), 2020, Remedial Investigation Work Plan Addendum, Texaco Strickland Cleanup Site, 6808 196th Street Southwest, Lynnwood, Washington. Dated May 28, 2020.
- ASTM International (ASTM), 2018, 2018 Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.
- Conestoga-Rovers & Associates (CRA), 2011, Remedial Investigation Report, Former Jiffy Lube Facility, 6808 196th Street Southwest, Lynnwood, Washington. August 17, 2011.
- Conestoga-Rovers & Associates (CRA), 2014, Subsurface Investigation Report, Former Jiffy Lube Facility, 6808 196th Street Southwest, Lynnwood, Washington. October 2014.
- Environmental Associates, Inc. (EA), 2016a, Limited Subsurface Sampling & Testing, Chri-Mar Apartments, 19618-19628 68th Avenue West, Lynnwood, Washington. February 19, 2016.
- Environmental Associates, Inc. (EA), 2016b, Limited Air Sampling and Testing, Chri-Mar Apartments, 19618-19628 68th Avenue West, Lynnwood, Washington. March 22, 2016.
- Environmental Associates, Inc. (EA), 2018, Well Installation and Soil Boring Report, Chri-Mar Apartments, 19618-19628 68th Ave West, Lynnwood, Washington. October 24, 2018.
- FINEnvironmental (FINE), 2003, Phase I Environmental Site Assessment Limited Compliance Audit, January 28, 2003.
- GeoEngineers, Inc., 2004, Limited Phase I Environmental Site Assessment, February 11, 2004.
- Nowicki & Associates (Nowicki), 1995a, UST Closure Site Characterization, Lynnwood Quaker State Lube, 6808 196th Street Southwest, Lynnwood, Washington. September 27, 1995.
- Nowicki & Associates (Nowicki), 1995b, Waste Oil UST Characterization Soil Boring, Lynnwood Q Lube, 6808 196th Street Southwest, Lynnwood, Washington. November 20, 1995.

ASPECT CONSULTING

- United States Geologic Survey (USGS), 1983, Geologic Map of the Edmonds East and Part of the Edmonds West Quadrangles, Washington.
- Washington State Department of Ecology (Ecology), 2016a, Updated Process for Initially Assessing the Potential for Petroleum Vapor Intrusion, Implementation Memorandum No. 14, Publication No. 16-09-046, dated March 31, 2016.
- Washington State Department of Ecology (Ecology), 2016b, Guidance for Remediation of Petroleum Contaminated Sites, Publication 10-09-057, Revised June 2016.
- Washington State Department of Ecology (Ecology), 2018a, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings, Implementation Memorandum No. 18, Publication No. 17-09-043, dated January 10, 2018.
- Washington State Department of Ecology (Ecology) 2018b, Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Publication No. 09-09-047, dated DRAFT, October 2009 and revised February 2016 and April 2018.

		Location		SB	l e	B1	SB1	-CAM
		Date	08/24/1995	08/24/1995	11/06/1995	11/06/1995	11/16/2006	11/16/2006
	_	Sample Name	SB-16"	SB-24"	SB1-12.5'	SB1-16'	SB1-CAM-7.5	SB1-CAM-12.5
	Dept	h Below Ground Surface	1.33 ft	2 ft	12.5 ft	16 ft	7.5 ft	12.5 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)	<u> </u>	·						
Gasoline-Range Organics	mg/kg	30			4100	< 5 U	4.51	12.3
Diesel-Range Organics	mg/kg	2000	1400	630	< 50 U		< 10.8 U	< 11.4 U
Motor Oil-Range Organics	mg/kg	2000	5200	2000	< 100 U		< 27.1 U	< 28.6 U
Diesel and Oil Extended-Range Organics BTEX	mg/kg	2000						
Benzene	mg/kg	0.03			18	< 0.1 U	0.14	0.73
Toluene	mg/kg	7			150	< 0.1 U	0.42	1.7
Ethylbenzene	mg/kg	6			57	< 0.1 U	< 0.08 U	0.18
Total Xylenes	mg/kg	9			280	< 0.3 U	< 0.24 U	0.9
Metals		050				T		
Lead	mg/kg	250					1.71	2.06
Pollycyclic Aromatic Hydrocarbons (PAHs) Naphthalene	mg/kg	5				I	0.1138	0.0152
Total cPAHs TEQ	mg/kg	0.1					< 0.0195 U	< 0.0208 U
Polychlorinated Biphenyls (PCBs)	3 3							
Total PCBs (Sum of Aroclors)	mg/kg	1					< 0.0108 U	< 0.0115 U
Volatile Organic Compounds (VOCs)								
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/kg							
1,1,2-1 richioroethane	mg/kg							
1,1-Dichloroethane	mg/kg mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	mg/kg mg/kg	0.005					< 0.04 U	 < 0.04 U
1,2-Distribution (EDB)	mg/kg	0.005	<u></u>				< 0.04 U	< 0.04 U
1,2-Dichloroethane (EDC)	mg/kg						< 0.04 U	< 0.04 U
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene 2,2-Dichloropropane	mg/kg mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg			-				
Acetone	mg/kg							
Bromobenzene Bromodichloromethane	mg/kg mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	mg/kg							
Chlorobenzene	mg/kg							
Chloroethane	mg/kg							
Chloropothana	mg/kg							
Chloromethane cis-1,2-Dichloroethene (cDCE)	mg/kg mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1					< 0.41 U	< 0.39 U
Methylene Chloride n-Hexane	mg/kg mg/kg	0.02						
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg	2.5-						
Tetrachloroethene (PCE)	mg/kg	0.05						
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	mg/kg mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg	2.30						
Vinyl Chloride	mg/kg							

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

		Location	SB2	sw	ww	WW2	WW4	ВОТ
		Date	11/06/1995	08/22/1995	08/22/1995	08/22/1995	08/24/1995	08/24/1995
		Sample Name	SB2-15'	SW	ww	WW2	WW4	ВОТ
	Dept	h Below Ground Surface	15 ft	6 ft	6 ft	-	10 ft	9 ft
		MTCA Method A						
Analyte	Unit	Cleanup Level						
Total Petroleum Hydrocarbons (TPHs) Gasoline-Range Organics	mg/kg	30	640					
Diesel-Range Organics	mg/kg	2000		 < 25 U	5100		 < 25 U	27
Motor Oil-Range Organics	mg/kg	2000		< 50 U	13000		< 50 U	66
Diesel and Oil Extended-Range Organics	mg/kg	2000						
BTEX								
Benzene	mg/kg	0.03	2.4			< 0.1 U		
Toluene	mg/kg	7	15			< 0.1 U		
Ethylbenzene	mg/kg	6	7			< 0.1 U		
Total Xylenes Metals	mg/kg	9	33			< 0.3 U		
Lead	mg/kg	250						
Pollycyclic Aromatic Hydrocarbons (PAHs)								
Naphthalene	mg/kg	5						
Total cPAHs TEQ	mg/kg	0.1						
Polychlorinated Biphenyls (PCBs)								
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)		2						
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/kg mg/kg	2						
1,1,2,2-retractiloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	mg/kg mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg	0.000						
1,2-Dichloroethane (EDC)	mg/kg					< 0.1 U		
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg		-					
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane 2-Butanone	mg/kg mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform Bromomethane	mg/kg mg/kg							
Carbon Tetrachloride	mg/kg mg/kg							
Chlorobenzene	mg/kg							
Chloroethane	mg/kg							
Chloroform	mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1						
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene tart-Butylbenzene	mg/kg							
tert-Butylbenzene Tetrachloroethene (PCE)	mg/kg mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg	0.03						
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
THE HOLDING OF THE HIATE								

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

 $\ensuremath{\mathsf{UJ}}$ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		1 4:	DOT2	I MAN	N 4	MAX	V-2
		Location Date	BOT2 08/24/1995	11/16/2006	V-1 11/16/2006	11/17/2006	V-2 11/17/2006
		Sample Name	BOT2	GW1-17.5	GW1-27.5	GW2-12.5	GW2-17.5
	Dep	th Below Ground Surface	12.5 ft	17.5 ft	27.5 ft	12.5 ft	17.5 ft
		MTCA Method A					
Analyte	Unit	Cleanup Level					
Total Petroleum Hydrocarbons (TPHs)							
Gasoline-Range Organics Diesel-Range Organics	mg/kg	30 2000	 - 25 II	< 3.54 U < 10.9 U	4.54 < 10.6 U	< 3.68 U	9.49 < 11.2 U
Motor Oil-Range Organics	mg/kg mg/kg	2000	< 25 U < 50 U	< 10.9 U	< 10.6 U	< 27.4 U	< 11.2 U < 28.1 U
Diesel and Oil Extended-Range Organics	mg/kg	2000					
BTEX	99						
Benzene	mg/kg	0.03		0.16	0.14	0.02	0.33
Toluene	mg/kg	7		0.34	0.38	< 0.07 U	1
Ethylbenzene	mg/kg	6		< 0.07 U	< 0.07 U	< 0.07 U	0.87
Total Xylenes Metals	mg/kg	9		< 0.21 U	< 0.21 U	< 0.22 U	0.34
Lead	mg/kg	250		1.48	0.962	1.6	1.4
Pollycyclic Aromatic Hydrocarbons (PAHs)	99				0.002	1.0	
Naphthalene	mg/kg	5		< 0.0108 U	< 0.0106 U	< 0.0111 U	< 0.0113 U
Total cPAHs TEQ	mg/kg	0.1		< 0.0195 U	< 0.0192 U	< 0.0201 U	< 0.0205 U
Polychlorinated Biphenyls (PCBs)							
Total PCBs (Sum of Aroclors)	mg/kg	1		< 0.0108 U	< 0.0106 U	< 0.0111 U	< 0.0113 U
Volatile Organic Compounds (VOCs) 1,1,1-Trichloroethane	malka	2					
1,1,1-1 richioroethane 1,1,2,2-Tetrachloroethane	mg/kg mg/kg	4	 				
1,1,2-Trichloroethane	mg/kg						
1,1-Dichloroethane	mg/kg						
1,1-Dichloroethene	mg/kg						
1,1-Dichloropropene	mg/kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropropane	mg/kg						
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	mg/kg mg/kg		<u></u>				
1,2-Dibromo-3-chloropropane	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005		< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U
1,2-Dichlorobenzene	mg/kg						
1,2-Dichloroethane (EDC)	mg/kg			< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane 1,4-Dichlorobenzene	mg/kg mg/kg		<u></u>				
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone Bromobenzene	mg/kg mg/kg						
Bromodichloromethane	mg/kg				 		
Bromoform	mg/kg						
Bromomethane	mg/kg						
Carbon Tetrachloride	mg/kg						
Chlorobenzene	mg/kg						
Chloroform	mg/kg						
Chloroform Chloromethane	mg/kg mg/kg						
cis-1,2-Dichloroethene (cDCE)	mg/kg mg/kg						
cis-1,3-Dichloropropene	mg/kg						
Dibromochloromethane	mg/kg						
Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE) Methylene Chloride	mg/kg	0.1 0.02		< 0.35 U	< 0.36 U	< 0.37 U	< 0.43 U
n-Hexane	mg/kg mg/kg	0.02	<u></u>		 		
n-Propylbenzene	mg/kg						
p-Isopropyltoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
Tetrachloroethene (PCE)	mg/kg	0.05					
trans-1,2-Dichloroethene	mg/kg						
trans-1,3-Dichloropropene	mg/kg	<u> </u>					
Trichloroethene (TCF)	ma/ka	0.03	_				
Trichloroethene (TCE) Trichlorofluoromethane	mg/kg mg/kg	0.03					

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- UJ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

							1	
		Location	MV 11/16/2006	V-3 11/16/2006	MV 11/17/2006	V-4 11/17/2006	MV 11/17/2006	V-5 11/17/2006
		Date Sample Name	GW3-7.5	GW3-17.5	GW4-7.5	GW4-17.5	GW5-7.5	GW5-17.5
	Dept	h Below Ground Surface	7.5 ft	17.5 ft	7.5 ft	17.5 ft	7.5 ft	17.5 ft
	- 1	MTCA Method A	7.0.1.	· · · · · ·	7.0 1.	111010	7.0.1	111010
Analyte	Unit	Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)	<u> </u>	·						
Gasoline-Range Organics	mg/kg	30	1820	8.39	1060	8.57	1550	23.9
Diesel-Range Organics	mg/kg	2000	63.3	< 11.1 U	30.9	< 11 U	62.4	< 11 U
Motor Oil-Range Organics	mg/kg	2000	< 27.9 U	< 27.8 U	< 26.8 U	< 27.5 U	< 26.9 U	< 27.5 U
Diesel and Oil Extended-Range Organics	mg/kg	2000						
BTEX								
Benzene	mg/kg	0.03	8.6 99	0.53	0.48 12	0.24	0.97	0.09
Toluene Ethylbenzene	mg/kg mg/kg	7 6	25	0.85 0.12	8.2	0.44 < 0.08 U	24 14	0.52 0.19
Total Xylenes	mg/kg	9	160	0.12	54	0.31	90	0.19
Metals	mg/kg	J	100	0.55	34	0.51	30	0.5
Lead	mg/kg	250	6.69	1.55	2.35	1.58	4.64	1.33
Pollycyclic Aromatic Hydrocarbons (PAHs)								
Naphthalene	mg/kg	5	5.86	< 0.0111 U	4.1	< 0.011 U	6.34	0.0127
Total cPAHs TEQ	mg/kg	0.1	< 0.0201 U	< 0.0201 U	< 0.0194 U	< 0.01991 U	< 0.0195 U	< 0.0201 U
Polychlorinated Biphenyls (PCBs)			10011111	0.455	100107::	10011	100100::	100111::
Total PCBs (Sum of Aroclors)	mg/kg	1	< 0.0111 U	0.109	< 0.0107 U	< 0.011 U	< 0.0108 U	< 0.0111 U
Volatile Organic Compounds (VOCs) 1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane	mg/kg mg/kg	۷						
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromo-3-Chioropropane 1,2-Dibromoethane (EDB)	mg/kg mg/kg	0.005	< 0.04 U	 < 0.04 U	 < 0.04 U	 < 0.04 U	 < 0.04 U	 < 0.04 U
1,2-Dichlorobenzene	mg/kg	0.000						
1,2-Dichloroethane (EDC)	mg/kg		< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg							-
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane 2-Butanone	mg/kg mg/kg							
2-Chlorotoluene	mg/kg		<u></u>					
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg							
Bromobenzene	mg/kg							==
Bromodichloromethane	mg/kg							
Bromoform Bromomethana	mg/kg							
Bromomethane Carbon Tetrachloride	mg/kg mg/kg							
Chlorobenzene	mg/kg mg/kg							
Chloroethane	mg/kg							
Chloroform	mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane Dichlorodifluoromethane	mg/kg mg/kg							
Isopropylbenzene	mg/kg mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.4 U	< 0.39 U	< 0.38 U	< 0.38 U	< 0.39 U	< 0.37 U
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg	0.05						
Tetrachloroethene (PCE) trans-1,2-Dichloroethene	mg/kg mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington					1		ı	
		Location Date	07/05/2007	N-6 07/05/2007	07/05/2007	V-7 07/05/2007	07/05/2007	V-8 07/05/2007
		Sample Name	MW6@15'	MW6@20'	MW7@5'	MW7@20'	MW8@15'	MW8@20'
	Dept	h Below Ground Surface	15 ft	20 ft	5 ft	20 ft	15 ft	20 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)				_				
Gasoline-Range Organics Diesel-Range Organics	mg/kg	30 2000	< 3.95 U	< 3.54 U	< 4.11 U	< 4.36 U	834	< 4.19 U
Motor Oil-Range Organics	mg/kg mg/kg	2000						
Diesel and Oil Extended-Range Organics	mg/kg	2000						
ВТЕХ								
Benzene	mg/kg	0.03	< 0.0158 U	0.0921	< 0.0164 U	< 0.0177 U	2.91	0.0486
Toluene	mg/kg	7	< 0.079 U	< 0.0708 U	0.214	< 0.0886 U	30.9	0.161
Ethylbenzene Total Xylenes	mg/kg mg/kg	6 9	< 0.079 U < 0.237 U	< 0.0708 U < 0.212 U	< 0.0822 U < 0.247 U	< 0.0886 U < 0.266 U	7.76 49.7	< 0.0838 U < 0.252 U
Metals	99		0.20.	5.2.2 5	5.2	3.233 3	-1011	3.232 3
Lead	mg/kg	250	1.49	1.93	2.34	1.85	3.29	1.46
Pollycyclic Aromatic Hydrocarbons (PAHs)		_						1
Naphthalene Total cPAHs TEQ	mg/kg	5 0.1						
Polychlorinated Biphenyls (PCBs)	mg/kg	0.1						
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)				•				
1,1,1-Trichloroethane	mg/kg	2		-				
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg mg/kg							
1,1-Dichloroethene	mg/kg			-				
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	mg/kg mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.079 U	< 0.0708 U	< 0.0822 U	< 0.0886 U	< 0.0789 U	< 0.0838 U
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg		< 0.079 U	< 0.0708 U	< 0.0822 U	< 0.0886 U	< 0.0789 U	< 0.0838 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	mg/kg mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone 2-Chlorotoluene	mg/kg mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg		1					
Bromobenzene Bromodichloromethane	mg/kg mg/kg		 					
Bromoform	mg/kg mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	mg/kg							
Chlorobenzene	mg/kg							
Chloroethane Chloroform	mg/kg							
Chloromethane	mg/kg mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.39 U	< 0.35 U	< 0.41 U	< 0.44 U	< 0.39 U	< 0.42 U
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene p-Isopropyltoluene	mg/kg							
p-isopropyitoluene sec-Butylbenzene	mg/kg mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg							
Tetrachloroethene (PCE)	mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg		-					
trans-1,3-Dichloropropene Trichloroethene (TCE)	mg/kg mg/kg	0.03						
Trichlorofluoromethane	mg/kg	0.00						
Vinyl Chloride	mg/kg							
				*	-	•	•	•

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

 $\ensuremath{\mathsf{UJ}}$ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

<u> </u>	n MW-9 MV			/ 40	LID OD 0		
		Location					HB-SB-3
		Date	07/06/2007	07/06/2007	07/06/2007	07/06/2007	05/10/2010
1	Done	Sample Name th Below Ground Surface	MW9@10' 10 ft	MW9@20' 20 ft	MW10@5' 5 ft	MW10@20' 20 ft	SO-241739-051010-HB-SB-3-5.0 5 ft
	Бері		10 π	20 π	5 π	20 π	5 π
		MTCA Method A					
Analyte	Unit	Cleanup Level					
Total Petroleum Hydrocarbons (TPHs)			0.000444	0.70.11	2.42	1 222	2.211
Gasoline-Range Organics	mg/kg	30	< 0.0364 U	< 3.72 U	8.16	3.99	< 0.2 U
Diesel-Range Organics	mg/kg	2000					< 5 U
Motor Oil-Range Organics	mg/kg	2000					< 5 U
Diesel and Oil Extended-Range Organics	mg/kg	2000					
BTEX							
Benzene	mg/kg	0.03	0.248	0.104	0.119	0.0532	< 0.00083 U
Toluene	mg/kg	7	< 0.0854 U	< 0.0744 U	0.359	0.102	< 0.00083 U
Ethylbenzene	mg/kg	6	0.0854	< 0.0744 U	< 0.0756 U	0.131	< 0.00083 U
Total Xylenes	mg/kg	9	< 0.256 U	0.327	< 0.227 U	< 0.228 U	< 0.0017 U
Metals							
Lead	mg/kg	250	1.96	1.29	5.91	1.54	
Pollycyclic Aromatic Hydrocarbons (PAHs)							
Naphthalene	mg/kg	5					
Total cPAHs TEQ	mg/kg	0.1					
Polychlorinated Biphenyls (PCBs)							
Total PCBs (Sum of Aroclors)	mg/kg	1					
Volatile Organic Compounds (VOCs)							
1,1,1-Trichloroethane	mg/kg	2					
1,1,2,2-Tetrachloroethane	mg/kg						
1,1,2-Trichloroethane	mg/kg						
1,1-Dichloroethane	mg/kg						
1,1-Dichloroethene	mg/kg		 				
1,1-Dichloropropene	mg/kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropenzene							
1,2,4-Trichlorobenzene	mg/kg						
	mg/kg						
1,2,4-Trimethylbenzene	mg/kg						
1,2-Dibromo-3-chloropropane	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.0854 U	< 0.0744 U	< 0.0756 U	< 0.0795 U	
1,2-Dichlorobenzene	mg/kg						
1,2-Dichloroethane (EDC)	mg/kg		< 0.0854 U	< 0.0744 U	< 0.0756 U	< 0.0794 U	
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene	mg/kg						
4-Methyl-2-pentanone	mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane	mg/kg						
Carbon Tetrachloride	mg/kg						
Chlorobenzene	mg/kg						
Chloroethane	mg/kg						
Chloroform							
	mg/kg						
Chloromethane	mg/kg						
cis-1,2-Dichloroethene (cDCE)	mg/kg						
cis-1,3-Dichloropropene	mg/kg						
Dibromochloromethane	mg/kg						
Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.43 U	< 0.37 U	< 0.38 U	< 0.4 U	
Methylene Chloride	mg/kg	0.02					
n-Hexane	mg/kg						
n-Propylbenzene	mg/kg						
p-Isopropyltoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
Tetrachloroethene (PCE)	mg/kg	0.05					
trans-1,2-Dichloroethene	mg/kg	2.00					
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)		0.03					
Trichlorofluoromethane	mg/kg	0.03					
Vinyl Chloride	mg/kg						
vinyi omonde	mg/kg						

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

		Location	HB-SB-4	D 05	D 06	l b	-07
		Location Date		B-05 06/10/2019	B-06 06/11/2019	06/12/2019	06/12/2019
		Sample Name	SO-241739-051010-HB-SB-4-5.0	B-05-16	B-06-13	B-07-8	B-07-12.5
	Dept	h Below Ground Surface	5 ft	16 ft	13 ft	8 ft	12.5 ft
		MTCA Method A	<u> </u>	1011	10 11	O II	12.0 10
Analyte	Unit	Cleanup Level					
Total Petroleum Hydrocarbons (TPHs)	<u> </u>						<u> </u>
Gasoline-Range Organics	mg/kg	30	< 0.24 U	< 5 U	< 5 U	87 J	< 5 U
Diesel-Range Organics	mg/kg	2000	6.1	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	mg/kg	2000	47	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics	mg/kg	2000		< 250 U	< 250 U	< 250 U	< 250 U
BTEX							
Benzene	mg/kg	0.03	< 0.001 U	< 0.02 U	< 0.02 U		
Toluene	mg/kg	7	0.0018	< 0.02 U	< 0.02 U		
Ethylbenzene	mg/kg	6	< 0.001 U	< 0.02 U	< 0.02 U		
Total Xylenes	mg/kg	9	0.002	< 0.06 U	< 0.06 U		
Metals Lead	mg/kg	250				1.44	I
Pollycyclic Aromatic Hydrocarbons (PAHs)		230				1.44	
Naphthalene	mg/kg	5				< 0.005 UJ	< 0.005 UJ
Total cPAHs TEQ	mg/kg	0.1					
Polychlorinated Biphenyls (PCBs)							
Total PCBs (Sum of Aroclors)	mg/kg	1					
Volatile Organic Compounds (VOCs)							
1,1,1-Trichloroethane	mg/kg	2					
1,1,2,2-Tetrachloroethane	mg/kg						
1,1,2-Trichloroethane	mg/kg						
1,1-Dichloroethane	mg/kg						
1,1-Dichloroethene	mg/kg						
1,1-Dichloropropene	mg/kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/kg						
1,2,4-Trichlorobenzene	mg/kg mg/kg					 	
1,2-Dibromo-3-chloropropane	mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005				< 0.005 U	< 0.005 U
1,2-Dichlorobenzene	mg/kg	0.000					
1,2-Dichloroethane (EDC)	mg/kg					< 0.005 U	< 0.005 U
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene	mg/kg						
1,3-Dichlorobenzene	mg/kg						
1,3-Dichloropropane	mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone 4-Chlorotoluene	mg/kg						
4-Chlorotoluene 4-Methyl-2-pentanone	mg/kg mg/kg						
Acetone	mg/kg					 	
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane	mg/kg						
Carbon Tetrachloride	mg/kg						
Chlorobenzene	mg/kg	_		==			
Chloroethane	mg/kg						
Chloroform	mg/kg						
Chloromethane	mg/kg						
cis-1,2-Dichloroethene (cDCE)	mg/kg						
cis-1,3-Dichloropropene	mg/kg						
Dibromochloromethane Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE)	mg/kg	0.1				< 0.005 U	< 0.005 U
Methylene Chloride	mg/kg	0.02					
n-Hexane	mg/kg						
n-Propylbenzene	mg/kg						
p-Isopropyltoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene	mg/kg						
Tetrachloroethene (PCE)	mg/kg	0.05					
trans-1,2-Dichloroethene	mg/kg						
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)	mg/kg	0.03					
Trichlorofluoromethane Vinyl Chloride	mg/kg						
Villyi Ollioliue	mg/kg						

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

Blue Shaded - Detected result exceeded screening level

U - Analyte not detected at or above Reporting Limit (RL) shown J - Result value estimated

 $\ensuremath{\mathsf{UJ}}$ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

			D 00		00	D 40	l	44
		Location Date	B-08 07/16/2019	08/05/2020	-09 08/05/2020	B-10 07/30/2020	07/28/2020	-11 07/28/2020
		Sample Name	B-08-13.5	B-09-2.5	B-09-6	B-10-12.5	B-11-5.5	B-11-10.5
	Dept	h Below Ground Surface	13.5 ft	2.5 ft	6 ft	12.5 ft	5.5 ft	10.5 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)								
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	12	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics BTEX	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Benzene	mg/kg	0.03	< 0.02 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7	< 0.02 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.02 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9	< 0.06 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Metals		050			T			
Lead Pollycyclic Aromatic Hydrocarbons (PAHs)	mg/kg	250						
Naphthalene	mg/kg	5		< 0.05 U	< 0.05 U	< 0.05 U	0.082	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1						
Polychlorinated Biphenyls (PCBs)								
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)			0.6= ::					
1,1,1-Trichloroethane	mg/kg	2	< 0.05 U					
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/kg mg/kg							
1,1-Dichloroethane	mg/kg		< 0.05 U					
1,1-Dichloroethene	mg/kg		< 0.05 U					
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	mg/kg							
1,2,4-1 rimethylbenzene 1,2-Dibromo-3-chloropropane	mg/kg mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg		< 0.05 U					
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene 1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone Acetone	mg/kg mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	mg/kg							
Chlorobenzene Chloroethane	mg/kg		 < 0.5 U					
Chloroform	mg/kg mg/kg		< 0.5 U					
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg		< 0.05 U					
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1						
Methylene Chloride	mg/kg	0.02	< 0.5 U					
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene Styrene	mg/kg							
tert-Butylbenzene	mg/kg mg/kg							
Tetrachloroethene (PCE)	mg/kg	0.05	< 0.025 U					
trans-1,2-Dichloroethene	mg/kg		< 0.05 U					
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene (TCE)	mg/kg	0.03	< 0.02 U					
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg		< 0.05 U					

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

 $\ensuremath{\mathsf{UJ}}$ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington

	Dept	Location Date Sample Name	B-11 07/28/2020 B-11-15	GP-04 06/05/2019 GP-04-2	11/10/2020 GP-05-1.25	-05 11/10/2020	GP-06 11/10/2020	MW-11 06/10/2019
	Dept	Sample Name	B-11-15	GP-04-2	CD 05 4 05			
	Dept			GF-04-2	GP-05-1.25	GP-05-6	GP-06-2.5	MW-11-1
	•	h Below Ground Surface	15 ft	2 ft	1.25 ft	6 ft	2.5 ft	1 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)								
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	280
Diesel-Range Organics Motor Oil-Range Organics	mg/kg	2000 2000	< 50 U < 250 U	< 50 U < 250 U	< 50 U < 250 U	< 50 U < 250 U	< 50 U < 250 U	
Diesel and Oil Extended-Range Organics	mg/kg mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	
BTEX	mg/kg	2000	1200 0	1200 0	1 200 0	1200 0	12000	
Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.2 U
Toluene	mg/kg	7	< 0.05 U	< 0.05 U	< 0.02 U	< 0.02 U	< 0.02 U	0.99
Ethylbenzene	mg/kg	6	< 0.05 U	< 0.05 U	< 0.02 U	< 0.02 U	< 0.02 U	2
Total Xylenes	mg/kg	9	< 0.1 U	< 0.1 U	< 0.06 U	< 0.06 U	< 0.06 U	11
Metals Lead	mg/kg	250						
Pollycyclic Aromatic Hydrocarbons (PAHs	<u> </u>	250						
Naphthalene	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	1.5
Total cPAHs TEQ	mg/kg	0.1						
Polychlorinated Biphenyls (PCBs)								
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)	manths			< 0.05 H				
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/kg mg/kg	2		< 0.05 U < 0.05 U				
1,1,2,2-retrachioroethane	mg/kg			< 0.05 U				
1,1-Dichloroethane	mg/kg			< 0.05 U				
1,1-Dichloroethene	mg/kg			< 0.05 U				
1,1-Dichloropropene	mg/kg			< 0.05 U	-	+		
1,2,3-Trichlorobenzene	mg/kg			< 0.25 U				
1,2,3-Trichloropropane	mg/kg			< 0.05 U				
1,2,4-Trichlorobenzene	mg/kg			< 0.25 U				
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	mg/kg mg/kg			< 0.05 U < 0.5 U				
1,2-Dibromoethane (EDB)	mg/kg	0.005		< 0.05 U				< 0.005 U
1,2-Dichlorobenzene	mg/kg			< 0.05 U				
1,2-Dichloroethane (EDC)	mg/kg			< 0.05 U				< 0.005 U
1,2-Dichloropropane	mg/kg			< 0.05 U				
1,3,5-Trimethylbenzene	mg/kg			< 0.05 U				
1,3-Dichlorobenzene 1,3-Dichloropropane	mg/kg			< 0.05 U < 0.05 U				
1,4-Dichlorobenzene	mg/kg mg/kg		<u></u>	< 0.05 U		 		
2,2-Dichloropropane	mg/kg			< 0.05 U				
2-Butanone	mg/kg			< 0.5 U				
2-Chlorotoluene	mg/kg			< 0.05 U				
2-Hexanone	mg/kg			< 0.5 U				
4-Chlorotoluene	mg/kg			< 0.05 U				
4-Methyl-2-pentanone	mg/kg			< 0.5 U < 0.5 U				
Acetone Bromobenzene	mg/kg mg/kg			< 0.5 U				
Bromodichloromethane	mg/kg			< 0.05 U				
Bromoform	mg/kg			< 0.05 U				
Bromomethane	mg/kg			< 0.5 U				
Carbon Tetrachloride	mg/kg			< 0.05 U				
Chlorobenzene	mg/kg			< 0.05 U				
Chloroform	mg/kg			< 0.5 U				
Chloroform Chloromethane	mg/kg mg/kg			< 0.05 U < 0.5 U				
cis-1,2-Dichloroethene (cDCE)	mg/kg			< 0.05 U				
cis-1,3-Dichloropropene	mg/kg			< 0.05 U				
Dibromochloromethane	mg/kg			< 0.05 U				
Dibromomethane	mg/kg			< 0.05 U				
Dichlorodifluoromethane	mg/kg			< 0.5 U				
Isopropylbenzene Methyl tort hutyl other (MTRE)	mg/kg	0.1		< 0.05 U				 < 0.005 II
Methyl tert-butyl ether (MTBE) Methylene Chloride	mg/kg mg/kg	0.1		< 0.05 U < 0.5 U				< 0.005 U
n-Hexane	mg/kg	0.02	<u></u>	< 0.5 U				
n-Propylbenzene	mg/kg			< 0.05 U				
p-Isopropyltoluene	mg/kg			< 0.05 U				
sec-Butylbenzene	mg/kg			< 0.05 U				
Styrene	mg/kg		-	< 0.05 U				
tert-Butylbenzene	mg/kg	0.05		< 0.05 U				
Tetrachloroethene (PCE) trans-1,2-Dichloroethene	mg/kg	0.05		< 0.025 U				
uans-1,∠-Dichloroethene	mg/kg		<u></u>	< 0.05 U < 0.05 U				
,	maira							ı
trans-1,3-Dichloropropene	mg/kg mg/ka	0.03						
,	mg/kg mg/kg mg/kg	0.03		< 0.02 U < 0.5 U				

Notes:

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

		Location	MW	<i>I</i> _11	MW-12	MW-13	MW-14
		Location Date	06/10/2019	06/10/2019	06/10/2019	06/11/2019	06/11/2019
		Sample Name	MW-11-6	MW-11-13	MW-12-15	MW-13-12.5	MW-14-12.5
	Dept	h Below Ground Surface	6 ft	13 ft	15 ft	12.5 ft	12.5 ft
Analyte	Unit	MTCA Method A Cleanup Level					
Total Petroleum Hydrocarbons (TPHs)	Oilit						
Gasoline-Range Organics	mg/kg	30	2600	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	240 X		< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	mg/kg	2000	< 250 U		< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics	mg/kg	2000	240 X		< 250 U	< 250 U	< 250 U
BTEX Benzene	mg/kg	0.03	0.63	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U
Toluene	mg/kg	7	4.1	0.031	< 0.02 U	< 0.02 U	< 0.02 U
Ethylbenzene	mg/kg	6	38	0.025	< 0.02 U	< 0.02 U	< 0.02 U
Total Xylenes	mg/kg	9	140	0.12	< 0.06 U	< 0.06 U	< 0.06 U
Metals							
Lead	mg/kg	250	8.76				
Pollycyclic Aromatic Hydrocarbons (PAHs) Naphthalene	mg/kg	5	7.4				
Total cPAHs TEQ	mg/kg	0.1					
Polychlorinated Biphenyls (PCBs)	99	.					
Total PCBs (Sum of Aroclors)	mg/kg	1					
Volatile Organic Compounds (VOCs)							
1,1,1-Trichloroethane	mg/kg	2			< 0.05 U	< 0.05 U	< 0.05 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/kg mg/kg						
1,1-Dichloroethane	mg/kg mg/kg				< 0.05 U	 < 0.05 U	 < 0.05 U
1,1-Dichloroethane	mg/kg				< 0.05 U	< 0.05 U	< 0.05 U
1,1-Dichloropropene	mg/kg						
1,2,3-Trichlorobenzene	mg/kg						
1,2,3-Trichloropropane	mg/kg						
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	mg/kg						
1,2-Dibromo-3-chloropropane	mg/kg mg/kg						
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.005 U			<u></u>	
1,2-Dichlorobenzene	mg/kg						
1,2-Dichloroethane (EDC)	mg/kg		< 0.005 U		< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichloropropane	mg/kg						
1,3,5-Trimethylbenzene 1.3-Dichlorobenzene	mg/kg						
1,3-Dichloropenzene	mg/kg mg/kg						
1,4-Dichlorobenzene	mg/kg						
2,2-Dichloropropane	mg/kg						
2-Butanone	mg/kg						
2-Chlorotoluene	mg/kg						
2-Hexanone	mg/kg						
4-Chlorotoluene 4-Methyl-2-pentanone	mg/kg mg/kg						
Acetone	mg/kg						
Bromobenzene	mg/kg						
Bromodichloromethane	mg/kg						
Bromoform	mg/kg						
Bromomethane Carbon Tetrachloride	mg/kg mg/kg						
Chlorobenzene	mg/kg						
Chloroethane	mg/kg				< 0.5 U	< 0.5 U	< 0.5 U
Chloroform	mg/kg						
Chloromethane	mg/kg						
cis-1,2-Dichloroethene (cDCE) cis-1,3-Dichloropropene	mg/kg mg/kg		 		< 0.05 U	< 0.05 U	< 0.05 U
Dibromochloromethane	mg/kg		 				
Dibromomethane	mg/kg						
Dichlorodifluoromethane	mg/kg						
Isopropylbenzene	mg/kg						
Methyl tert-butyl ether (MTBE) Methylene Chloride	mg/kg mg/kg	0.1 0.02	< 0.005 U		 < 0.5 U	 < 0.5 U	 < 0.5 U
n-Hexane	mg/kg mg/kg	0.02	 		< 0.5 0	< 0.5 0	< 0.5 U
n-Propylbenzene	mg/kg						
p-Isopropyltoluene	mg/kg						
sec-Butylbenzene	mg/kg						
Styrene	mg/kg						
tert-Butylbenzene Tetrachloroethene (PCE)	mg/kg	0.05			 < 0.005 !!	 < 0.025 U	 < 0.025 U
trans-1,2-Dichloroethene	mg/kg mg/kg	0.05			< 0.025 U < 0.05 U	< 0.025 U	< 0.025 U
trans-1,3-Dichloropropene	mg/kg						
Trichloroethene (TCE)	mg/kg	0.03			< 0.02 U	< 0.02 U	< 0.02 U
Trichlorofluoromethane	mg/kg						
Vinyl Chloride	mg/kg				< 0.05 U	< 0.05 U	< 0.05 U

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- UJ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington

Project No. 160337, Lynnwood, Washington								
		Location Date	06/12/2019	06/12/2019	MW-15 06/12/2019	06/12/2019	06/12/2019	MW-16 06/14/2019
		Sample Name	MW-15-7.5	MW-15-10.5	MW-15-13	MW-15-17.5	MW-15-25	MW-16-7.5
	Dept	h Below Ground Surface	7.5 ft	10.5 ft	13 ft	17.5 ft	25 ft	7.5 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)								
Gasoline-Range Organics	mg/kg	30	< 5 U	6500 J	3400	200	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U	1500 X	990 X	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics Diesel and Oil Extended-Range Organics	mg/kg mg/kg	2000 2000	< 250 U < 250 U	590 2090 X	370 1360 X	< 250 U < 250 U	< 250 U < 250 U	< 250 U < 250 U
BTEX	ilig/kg	2000	\ 230 U	2090 X	1300 X	\ 230 U	\ 230 U	V 250 0
Benzene	mg/kg	0.03			0.7 J	0.22	0.026	
Toluene	mg/kg	7	==		4.7 J	0.096	< 0.005 U	
Ethylbenzene	mg/kg	6			10 J	0.19	< 0.005 UJ	
Total Xylenes	mg/kg	9			64 J	1.19	< 0.01 U	
Metals Lead	ma/ka	250		1.88	1.93			
Pollycyclic Aromatic Hydrocarbons (PAHs)	mg/kg	250		1.00	1.93			
Naphthalene	mg/kg	5	< 0.005 UJ	6.3 J	4.9			
Total cPAHs TEQ	mg/kg	0.1						
Polychlorinated Biphenyls (PCBs)								
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)								
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	mg/kg mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene	mg/kg							
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	mg/kg mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.005 U	< 0.005 U	< 0.005 U			
1,2-Dichlorobenzene	mg/kg	0.000						
1,2-Dichloroethane (EDC)	mg/kg		< 0.005 U	< 0.005 U	< 0.005 U			
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,3-Dichloropropane 1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone Bromobenzene	mg/kg mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	mg/kg							
Chlorobenzene	mg/kg							
Chloroform	mg/kg							
Chloroform Chloromethane	mg/kg mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene Methyl tert-butyl ether (MTBE)	mg/kg	0.1	 < 0.005 U	 < 0.005 U	< 0.005 U			
Methylene Chloride	mg/kg mg/kg	0.02	< 0.005 U	< 0.005 U 	< 0.005 U			
n-Hexane	mg/kg	V.UL						
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg	0.05						
Tetrachloroethene (PCE) trans-1,2-Dichloroethene	mg/kg	0.05						
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	mg/kg mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							
	•				*	•	•	=

Notes:

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

		Lasstian	MW-17	MW-18	MW-19	T	MW-20	
		Location Date	06/14/2019	07/15/2019	07/16/2019	07/30/2020	07/30/2020	07/30/2020
		Sample Name	MW-17-8.5	MW-18-10	MW-19-8.5	MW-20-5'	MW-20-8'	MW-20-13'
	Dept	h Below Ground Surface	8.5 ft	10 ft	8.5 ft	5 ft	8 ft	13 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)								
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U					
Motor Oil-Range Organics Diesel and Oil Extended-Range Organics	mg/kg	2000 2000	< 250 U < 250 U					
BTEX	mg/kg	2000	< 250 0	< 250 0	< 250 0	< 250 0	< 250 0	< 250 0
Benzene	mg/kg	0.03		< 0.02 U	< 0.02 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7		< 0.02 U	< 0.02 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6		< 0.02 U	< 0.02 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9		< 0.06 U	< 0.06 U	< 0.1 U	< 0.1 U	< 0.1 U
Metals Lead	mg/kg	250						
Pollycyclic Aromatic Hydrocarbons (PAHs)		250						
Naphthalene	mg/kg	5				< 0.05 U	0.065	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1						
Polychlorinated Biphenyls (PCBs)								
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)	man He e-			< 0.0511	< 0.0511		ı	ı
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/kg mg/kg	2		< 0.05 U	< 0.05 U			
1,1,2-Trichloroethane	mg/kg				 			
1,1-Dichloroethane	mg/kg			< 0.05 U	< 0.05 U			
1,1-Dichloroethene	mg/kg			< 0.05 U	< 0.05 U			
1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg							
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	mg/kg				==			
1,2,4-Trimethylbenzene	mg/kg mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg			< 0.05 U	< 0.05 U			
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	mg/kg mg/kg				 			
1,3-Dichloropropane	mg/kg				 			
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone 4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg mg/kg							
Acetone	mg/kg				==			
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane Carbon Tetrachloride	mg/kg mg/kg							
Chlorobenzene	mg/kg				 			
Chloroethane	mg/kg			< 0.5 U	< 0.5 U			
Chloroform	mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg			< 0.05 U	< 0.05 U			
cis-1,3-Dichloropropene Dibromochloromethane	mg/kg							
Dibromocniorometnane Dibromomethane	mg/kg mg/kg				 			
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1						
Methylene Chloride	mg/kg	0.02		< 0.5 U	< 0.5 U			
n-Hexane	mg/kg							
n-Propylbenzene p-Isopropyltoluene	mg/kg mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene	mg/kg							
Tetrachloroethene (PCE)	mg/kg	0.05		< 0.025 U	< 0.025 U			
trans-1,2-Dichloroethene	mg/kg			< 0.05 U	< 0.05 U			
trans-1,3-Dichloropropene	mg/kg	0.00						
Trichloroethene (TCE) Trichlorofluoromethane	mg/kg mg/kg	0.03		< 0.02 U	< 0.02 U			
Vinyl Chloride	mg/kg mg/kg			< 0.05 U	< 0.05 U			
· · · · · ·				0.000	1 0.00 0			

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington

		Location		MW	<i>I-</i> 21		I MW	1-22
		Date	07/30/2020	07/28/2020	07/28/2020	07/28/2020	07/30/2020	07/30/2020
		Sample Name	MW-21A-2.5	MW-21-5	MW-21-10	MW-21-17.5	MW-22A-2.5	MW-22B-5'
	Dept	h Below Ground Surface	2.5 ft	5 ft	10 ft	17.5 ft	2.5 ft	5 ft
Analyte	Unit	MTCA Method A Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)	Ollit	3.04.14p 2010.						
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	90 X	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	mg/kg	2000	360	< 250 U	< 250 U	< 250 U	< 250 U	680
Diesel and Oil Extended-Range Organics	mg/kg	2000	450 X	< 250 U	< 250 U	< 250 U	< 250 U	680
BTEX Benzene	ma/ka	0.03	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg mg/kg	7	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Metals								
Lead	mg/kg	250						
Pollycyclic Aromatic Hydrocarbons (PAHs)		_	0.05.11	0.0511		0.0511	0.0511	0.0511
Naphthalene Total cPAHs TEQ	mg/kg	5 0.1	< 0.05 U	< 0.05 U	0.097	< 0.05 U	< 0.05 U	< 0.05 U
Polychlorinated Biphenyls (PCBs)	mg/kg	0.1						
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)		•		!	! 	1		
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane	mg/kg							
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane	mg/kg							
1,1-Dichloroethene 1,1-Dichloropropene	mg/kg		-					
1,2,3-Trichlorobenzene	mg/kg mg/kg		 				 	
1,2,3-Trichloropenzene	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC) 1,2-Dichloropropane	mg/kg mg/kg		 					
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene	mg/kg							
2,2-Dichloropropane	mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone 4-Chlorotoluene	mg/kg mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride Chlorobenzene	mg/kg							
Chloroethane	mg/kg mg/kg							
Chloroform	mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene Methyl tert-butyl ether (MTBE)	mg/kg mg/kg	0.1						
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-Isopropyltoluene	mg/kg							
sec-Butylbenzene	mg/kg							
Styrene	mg/kg							
tert-Butylbenzene Tetrachloroethene (PCE)	mg/kg	0.05						
trans-1,2-Dichloroethene	mg/kg mg/kg	0.05						
trans-1,3-Dichloropropene	mg/kg		 					
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							

Notes:

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- UJ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington

Dept	<u> </u>		Location		MVA	I-22		I MV	V-23
Column C				07/28/2020			07/28/2020		
Analyte			Sample Name		MW-22-12.5	MW-22-16		MW-23-8	MW-23-12.5
Champip Logic Champip Low		Dept	1	10 ft	12.5 ft	16 ft	25 ft	8 ft	12.5 ft
Total Performent profession TOPRO Control Performent TOPRO Control Performent TOPRO Control Performent TOPRO Control Performent Control	Amalista	1114							
Gaseline Range Organics		Unit	Oleanup Level						
Mistor Off-Range Organics		mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Direct and Oil Extended Annual Cyling 2899		mg/kg	2000	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U
### STEXE Parameter mg/kg									
Managemen		mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Telegrome		ma/ka	0.03	< 0.03 U	< 0.03 U	0.069	< 0.03 U	< 0.03 U	< 0.03 U
Total Systems									
Marie									
Lead		mg/kg	9	< 0.1 U	0.11	0.63	< 0.1 U	< 0.1 U	< 0.1 U
Polity price Anomate Hydrocontone PAHs		ma/ka	250				I		
Naphthalene			250						
Project Pick (PBB)			5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total PCBs (Sum of Aroctors) mg/kg 1		mg/kg	0.1						
Volatile Compounds (VOCs)									
11.1-17-indiscontame		mg/kg	1						
1.1.2-Trickhloroerblane		mg/kg	2						
1.1-Dichloroethene									
1.1-Dichloropteme					-				
1.1-Delchioropropane	•								
1.2.3-Trichloropeane mg/kg									
1.2.3-Trichloropropane mg/kg					-				
1.2.4-Dirented-Schoropropane					-				
1.2-Distonació-Enforperpane mg/kg		mg/kg							
1.2-Dishorosenane EDB mg/kg									
1.2-Dichlorochenzene mg/kg			0.005						
1.2 Deliorocophane (EDC)	. ,		0.003						
1,2-Dichloropropene	,								
1.3-Dichloropenzene mg/kg		mg/kg							
13-Dichloropropane mg/kg									
14-Dichlorobenzene									
22-Dichloropropane									
2-Butanone mg/kg	2,2-Dichloropropane								
2-Hexanone mg/kg		mg/kg							
## Action									
### Acetone									
Acctione mg/kg									
Bromodichloromethane									
Bromoform mg/kg									
Bromomethane									
Carbon Tetrachloride mg/kg					-				
Chloroethane									
Chloroform									
Chloromethane									
cis-1,2-Dichloroethene (cDCE) mg/kg									
cis-1,3-Dichloropropene mg/kg <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Dibromochloromethane									
Dibromomethane									
Isopropylbenzene		mg/kg							
Methyl tert-butyl ether (MTBE) mg/kg 0.1									
Methylene Chloride mg/kg 0.02			0.4						
n-Hexane mg/kg									
n-Propylbenzene mg/kg	-		0.02						
sec-Butylbenzene mg/kg <td>n-Propylbenzene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	n-Propylbenzene								
Styrene									
tert-Butylbenzene mg/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Tetrachloroethene (PCE) mg/kg 0.05 <	-								
trans-1,2-Dichloroethene mg/kg <t< td=""><td></td><td></td><td>0.05</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			0.05						
Trichloroethene (TCE) mg/kg 0.03 <th< td=""><td>trans-1,2-Dichloroethene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	trans-1,2-Dichloroethene								
Trichlorofluoromethane mg/kg									
3 0			0.03						
TAINIAL IIIA/KA I I I I I I I I	Vinyl Chloride	mg/kg mg/kg							

Notes:

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

Blue Shaded - Detected result exceeded screening level U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

X - Chromatographic pattern does not match fuel standard used for quantitation

		Lagation	NA)A	V-23	MW-24	MW-25	MW-26	MW-27
		Location Date	07/28/2020	07/28/2020	07/29/2020	07/30/2020	07/29/2020	07/29/2020
		Sample Name	MW-23-18	MW-23-25	MW-24-10.5	MW-25-8'	MW-26-12.5	MW-27-10.5
	Dept	h Below Ground Surface	18 ft	25 ft	10.5 ft	8 ft	12.5 ft	10.5 ft
		MTCA Method A						
Analyte	Unit	Cleanup Level						
Total Petroleum Hydrocarbons (TPHs)								
Gasoline-Range Organics	mg/kg	30	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U	< 5 U
Diesel-Range Organics	mg/kg	2000	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended-Range Organics	mg/kg	2000	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
BTEX		1						
Benzene	mg/kg	0.03	0.44	0.047	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene Ethylbenzene	mg/kg	7 6	< 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U	< 0.05 U < 0.05 U
Total Xylenes	mg/kg mg/kg	9	< 0.05 U	< 0.03 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.1 U
Metals	ilig/kg	J	10.10	10.10	10.10	10.10	10.10	10.10
Lead	mg/kg	250						
Pollycyclic Aromatic Hydrocarbons (PAHs)	<u> </u>							
Naphthalene	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total cPAHs TEQ	mg/kg	0.1						
Polychlorinated Biphenyls (PCBs)								
Total PCBs (Sum of Aroclors)	mg/kg	1						
Volatile Organic Compounds (VOCs)								
1,1,1-Trichloroethane	mg/kg	2						
1,1,2,2-Tetrachloroethane	mg/kg							
1,1,2-Trichloroethane	mg/kg							
1,1-Dichloroethane 1,1-Dichloroethene	mg/kg							
1,1-Dichloroethene 1,1-Dichloropropene	mg/kg							
1,2,3-Trichlorobenzene	mg/kg mg/kg							
1,2,3-Trichloropropane	mg/kg							
1,2,4-Trichlorobenzene	mg/kg							
1,2,4-Trimethylbenzene	mg/kg							
1,2-Dibromo-3-chloropropane	mg/kg							
1,2-Dibromoethane (EDB)	mg/kg	0.005						
1,2-Dichlorobenzene	mg/kg							
1,2-Dichloroethane (EDC)	mg/kg							
1,2-Dichloropropane	mg/kg							
1,3,5-Trimethylbenzene	mg/kg							
1,3-Dichlorobenzene	mg/kg							
1,3-Dichloropropane	mg/kg							
1,4-Dichlorobenzene 2,2-Dichloropropane	mg/kg mg/kg							
2-Butanone	mg/kg							
2-Chlorotoluene	mg/kg							
2-Hexanone	mg/kg							
4-Chlorotoluene	mg/kg							
4-Methyl-2-pentanone	mg/kg							
Acetone	mg/kg							
Bromobenzene	mg/kg							
Bromodichloromethane	mg/kg							
Bromoform	mg/kg							
Bromomethane	mg/kg							
Carbon Tetrachloride	mg/kg							
Chlorobenzene Chloroethane	mg/kg mg/kg							
Chloroform	mg/kg mg/kg							
Chloromethane	mg/kg							
cis-1,2-Dichloroethene (cDCE)	mg/kg							
cis-1,3-Dichloropropene	mg/kg							
Dibromochloromethane	mg/kg							
Dibromomethane	mg/kg							
Dichlorodifluoromethane	mg/kg							
Isopropylbenzene	mg/kg							
Methyl tert-butyl ether (MTBE)	mg/kg	0.1						
Methylene Chloride	mg/kg	0.02						
n-Hexane	mg/kg							
n-Propylbenzene	mg/kg							
p-Isopropyltoluene sec-Butylbenzene	mg/kg		<u></u>					
Styrene	mg/kg mg/kg							
tert-Butylbenzene	mg/kg mg/kg							
Tetrachloroethene (PCE)	mg/kg	0.05		 				
trans-1,2-Dichloroethene	mg/kg	0.00						
trans-1,3-Dichloropropene	mg/kg							
Trichloroethene (TCE)	mg/kg	0.03						
Trichlorofluoromethane	mg/kg							
Vinyl Chloride	mg/kg							

mg/kg - milligrams per kilogram, ft = feet

Bold - Analyte detected

- U Analyte not detected at or above Reporting Limit (RL) shown
- J Result value estimated
- $\ensuremath{\mathsf{UJ}}$ Analyte not detected and the Reporting Limit (RL) is an estimate
- X Chromatographic pattern does not match fuel standard used for quantitation

Project No. 180357, Lynnwood, Washington

		Location						MW-1					
		Sample	MW-1-39080	MW-1-39128	MW-1-39178	MW-1-39291	MW-1-39356	MW-1-39457	MW-1-39639	MW-1-39819	MW-1-40007	MW-1-40388	MW-1-40563
		Date	12/29/2006	02/15/2007	04/06/2007	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	07/13/2009	07/29/2010	01/20/2011
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	42100	41200	30200	5850	23900	73000	800	< 100 U	7500		
Diesel-Range Organics	ug/L	500	< 255 U	< 269 U	< 258 U	< 258 U	1540 X	< 243 U	1400	190	2800 X	320 X	2550
Motor Oil-Range Organics	ug/L	500	< 510 U	< 538 U	< 515 U	< 515 U	< 105 U	< 485 U	< 300 U	< 380 U	< 100 U	110	725
BTEX													
Benzene	ug/L	5	9190	9230	7450	2400	6270	16500	280	1	1200	32	13400
Toluene	ug/L	1000	2140	1840	732	32.4	196	4010	13	< 1 U	60	2.9	3950
Ethylbenzene	ug/L	700	1090	938	718	131	653	1610	2	< 1 U	220	17	1700
Total Xylenes	ug/L	1000	4100	3710	2310	190	1340	6790	33	< 1 U	470	48	7240
Metals													
Lead	ug/L	15									3.33		
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01									< 0.01 U		
1,2-Dichloroethane (EDC)	ug/L	5									< 0.29 U		
Diisopropyl ether (DIPE)	ug/L			< 1 U						< 2 U			< 1 U
Ethyl t-butyl ether (ETBE)	ug/L			< 1 U						< 2 U			< 1 U
Methyl tert-butyl ether (MTBE)	ug/L	20		< 5 U						< 1 U			< 1 U
t-Amyl methyl ether (TAME)	ug/L			< 1 U			-			< 2 U	-		< 1 U
t-Butyl alcohol (TBA)	ug/L			54.6						< 10 U			132

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location		MW-1					M	W-2			
		Sample	MW-1-41220	MW-1-41394	MW-1-41571	MW-2-39080	MW-2-39128	MW-2-39178	MW-2-39291	MW-2-39356	MW-2-39457	MW-2-39639	MW-2-39819
		Date	11/07/2012	04/30/2013	10/24/2013	12/29/2006	02/15/2007	04/06/2007	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	16700	7300	445	2640	249	180	3200	3980	5000	540	9200
Diesel-Range Organics	ug/L	500	1460	1600	898	< 253 U	< 278 U	< 258 U	< 255 U	1080 X	< 243 U	< 500 U	< 100 U
Motor Oil-Range Organics	ug/L	500	163	818	172	< 505 U	< 556 U	< 515 U	< 510 U	< 105 U	< 485 U	< 200 U	< 100 U
ВТЕХ													
Benzene	ug/L	5	4880	1590	28.8	21.7	2.06	1.83	66.1	175	214	4.9	390
Toluene	ug/L	1000	361	100	< 1 U	6.75	< 0.5 U	0.518	7.86	13.7	9.85	< 1 U	16
Ethylbenzene	ug/L	700	525	374	7.91	55.1	4.36	2.61	137	331	502	9.4	840
Total Xylenes	ug/L	1000	1530	445	7.82	9.91	< 1 U	< 1 U	20.4	47.4	71.0	< 1 U	62.0
Metals													
Lead	ug/L	15											
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01											
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L						< 1 U						< 20 U
Ethyl t-butyl ether (ETBE)	ug/L						< 1 U						< 20 U
Methyl tert-butyl ether (MTBE)	ug/L	20					< 5 U						< 10 U
t-Amyl methyl ether (TAME)	ug/L						< 1 U						< 20 U
t-Butyl alcohol (TBA)	ug/L						< 50 U						< 100 U

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location			MW	1-2					MW-3		
		Sample	MW-2-40007	MW-2-40388	MW-2-40563	MW-2-41220	MW-2-41394	MW-2-41571	MW-3-39080	MW-3-39128	MW-3-39178	MW-3-39291	MW-3-39356
		Date	07/13/2009	07/29/2010	01/20/2011	11/07/2012	04/30/2013	10/24/2013	12/29/2006	02/15/2007	04/06/2007	07/28/2007	10/01/2007
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	320		-	4070	< 100 U	2350	171000	263000	214000	248000	252000
Diesel-Range Organics	ug/L	500	210 X	200 X	689	757	261	527	608	2580 X	867 X	8340	185000 X
Motor Oil-Range Organics	ug/L	500	< 100 U	< 100 U	402	< 94.3 U	198	181	< 510 U	< 2750 U	< 495 U	< 5.05 U	< 10500 U
BTEX													
Benzene	ug/L	5	3.8	2.1	25.1	228	< 1 U	61.3	28500	29200	26600	28600	29300
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	4.99	< 1 U	1.03	29200	37400	37500	37400	35200
Ethylbenzene	ug/L	700	3.3	< 1 U	54.4	125	< 1 U	6.49	2950	3140	2850	2810	3260
Total Xylenes	ug/L	1000	< 1 U	< 1 U	5.42	40.3	< 3 U	3.52	15900	18600	16800	12800	19300
Metals													
Lead	ug/L	15	< 1 U										
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01	< 0.01 U										
1,2-Dichloroethane (EDC)	ug/L	5	< 0.5 U										
Diisopropyl ether (DIPE)	ug/L				< 1 U					< 100 U			
Ethyl t-butyl ether (ETBE)	ug/L				< 1 U					< 100 U			
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U					< 500 U			
t-Amyl methyl ether (TAME)	ug/L				< 1 U					< 100 U			
t-Butyl alcohol (TBA)	ug/L	_			< 20 U					< 5000 U			

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location	MW-3		MW-4			MW-5			MV	V-6	
		Sample	MW-3-40563	MW-4-39080	MW-4-39128	MW-4-40563	MW-5-39080	MW-5-39128	MW-5-40563	MW-6-39291	MW-6-39356	MW-6-39457	MW-6-39639
		Date	01/20/2011	12/29/2006	02/15/2007	01/20/2011	12/29/2006	02/15/2007	01/20/2011	07/28/2007	10/01/2007	01/10/2008	07/10/2008
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	87800	207000	253000	313000	122000	771000	327000	52.4	< 250 U	< 50 U	< 50 U
Diesel-Range Organics	ug/L	500		1810	72100 X	-	603	49200 X		< 253 U	< 105 U	< 250 U	< 500 U
Motor Oil-Range Organics	ug/L	500	7690	< 510 U	< 50000 U	< 9520 U	< 515 U	< 5000 U	109005	< 505 U	< 105 U	< 500 U	< 200 U
втех													
Benzene	ug/L	5	12100	32400	31500	12800	7220	12800	3710	< 0.5 U	< 1 U	< 0.5 U	< 1 U
Toluene	ug/L	1000	23200	39700	40500	28700	24400	43600	16200	1.25	< 1 U	< 0.5 U	< 1 U
Ethylbenzene	ug/L	700	3020	3200	2990	3180	2280	6000	2690	< 0.5 U	< 1 U	< 0.5 U	< 1 U
Total Xylenes	ug/L	1000	19700	18800	18100	21200	13200	40700	15800	< 1 U	< 3 U	< 3 U	< 1 U
Metals													
Lead	ug/L	15											
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01	< 1 U			< 1 U			< 1 U				
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L		1.24		< 100 U	< 1.00 U		< 100 U	< 1 U	-			
Ethyl t-butyl ether (ETBE)	ug/L		< 1 U		< 100 U	< 1 U		< 100 U	< 1 U	-			
Methyl tert-butyl ether (MTBE)	ug/L	20			< 500 U			< 500 U		-			
t-Amyl methyl ether (TAME)	ug/L		< 1 U		< 100 U	< 1 U		< 100 U	< 1 U				
t-Butyl alcohol (TBA)	ug/L		101		< 5000 U	61.8		< 5000 U	45.4				

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location				MW-6					MV	V-7	
		Sample	MW-6-39819	MW-6-40007	MW-6-40388	MW-6-40563	MW-6-41220	MW-6-41394	MW-6-41571	MW-7-39291	MW-7-39356	MW-7-39457	MW-7-39639
		Date	01/06/2009	07/13/2009	07/29/2010	01/20/2011	11/07/2012	04/30/2013	10/24/2013	07/28/2007	10/01/2007	01/10/2008	07/10/2008
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	< 100 U			201	< 100 U	< 100 U	< 100 U	< 50 U	< 250 U	51.2	< 50 U
Diesel-Range Organics	ug/L	500	< 100 U		< 100 U	-	< 94.3 U	97.8	124	< 253 U	< 111 U	< 250 U	< 500 U
Motor Oil-Range Organics	ug/L	500	< 100 U		190	472	< 94.3 U	< 93.5 U	123	< 495 U	< 111 U	< 500 U	< 200 U
ВТЕХ													
Benzene	ug/L	5	< 0.5 U		< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.5 U	1.78	68.4	< 1 U
Toluene	ug/L	1000	< 1 U		< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.5 U	< 1 U	1.26	< 1 U
Ethylbenzene	ug/L	700	< 1 U		< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.5 U	< 1 U	79.7	< 1 U
Total Xylenes	ug/L	1000	< 1 U		< 1 U	< 3 U	< 3 U	< 3 U	< 2 U	< 1 U	< 3 U	110	< 1 U
Metals													
Lead	ug/L	15		< 1 U									
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01				< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L		< 2 U			< 1 U							
Ethyl t-butyl ether (ETBE)	ug/L		< 2 U			< 1 U							
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U										
t-Amyl methyl ether (TAME)	ug/L		< 2 U			< 1 U							
t-Butyl alcohol (TBA)	ug/L		< 10 U			< 20 U							

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location				MW-7					MW	<i>I</i> -8	
		Sample	MW-7-39819	MW-7-40007	MW-7-40388	MW-7-40563	MW-7-41220	MW-7-41394	MW-7-41571	MW-8-39291	MW-8-39356	MW-8-39457	MW-8-39819
		Date	01/06/2009	07/13/2009	07/29/2010	01/20/2011	11/07/2012	04/30/2013	10/24/2013	07/28/2007	10/01/2007	01/10/2008	01/06/2009
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	< 100 U		-	119	< 100 U	< 100 U	< 100 U	266000	181000	202000	22000
Diesel-Range Organics	ug/L	500	< 100 U		< 100 U		94.3	115	< 93.5 U	8580	6540 X	9190 X	6900
Motor Oil-Range Organics	ug/L	500	< 100 U		< 100 U	174	< 94.3 U	< 93.5 U	106	< 5210 U	< 1110 U	< 4850 U	440
BTEX													
Benzene	ug/L	5	< 0.5 U	2.7	< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U	20500	18000	13400	2700
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	43600	32000	29600	6300
Ethylbenzene	ug/L	700	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	3550	2250	2200	390
Total Xylenes	ug/L	1000	< 1 U	< 1 U	< 1 U	< 3 U	< 3 U	< 3 U	< 2 U	23000	14900	14000	4300
Metals													
Lead	ug/L	15		< 1 U									
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01				< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L		< 2 U			< 1 U							< 40 U
Ethyl t-butyl ether (ETBE)	ug/L		< 2 U			< 1 U							< 40 U
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U										< 20 U
t-Amyl methyl ether (TAME)	ug/L		< 2 U			< 1 U							< 40 U
t-Butyl alcohol (TBA)	ug/L		< 10 U			< 20 U							< 200 U

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location		MV	V-8					MW-9			
		Sample	MW-8-40388	MW-8-40563	MW-8-41220	MW-8-41394	MW-9-39291	MW-9-39356	MW-9-39457	MW-9-39639	MW-9-39819	MW-9-40007	MW-9-40388
		Date	07/29/2010	01/20/2011	11/07/2012	04/30/2013	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	07/13/2009	07/29/2010
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800	-		75300	103000	< 50 U	299	< 50 U	< 50 U	< 100 U	-	
Diesel-Range Organics	ug/L	500	5300 X	6570	3160	3820	< 248 U	174 X	< 238 U	< 500 U	< 100 U		< 100 U
Motor Oil-Range Organics	ug/L	500	2000 X	1550	< 94.3 U	309	< 495 U	< 111 U	< 476 U	< 1000 U	< 100 U		< 100 U
BTEX													
Benzene	ug/L	5	18000	13800	7630	8830	< 0.5 U	5.52	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U
Toluene	ug/L	1000	40000	31500	15200	29400	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U
Ethylbenzene	ug/L	700	17000	3290	1140	1950	< 0.5 U	< 1 U	< 0.5 U	< 1 U	< 1 U	< 1 U	< 1 U
Total Xylenes	ug/L	1000	110000	21900	6120	11200	< 1 U	< 3 U	< 3 U	< 1 U	< 1 U	< 1 U	< 1 U
Metals													
Lead	ug/L	15										< 1 U	
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01		< 1 U									
1,2-Dichloroethane (EDC)	ug/L	5											
Diisopropyl ether (DIPE)	ug/L			< 1 U							< 2 U		
Ethyl t-butyl ether (ETBE)	ug/L			< 1 U							< 2 U		
Methyl tert-butyl ether (MTBE)	ug/L	20									< 1 U		
t-Amyl methyl ether (TAME)	ug/L			< 1 U							< 2 U		
t-Butyl alcohol (TBA)	ug/L			128							< 10 U		

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

		Location		MV	V-9					MW-10			
		Sample	MW-9-40563	MW-9-41220	MW-9-41394	MW-9-41571	MW-10-39291	MW-10-39356	MW-10-39457	MW-10-39639	MW-10-39819	MW-10-40007	MW-10-40388
		Date	01/20/2011	11/07/2012	04/30/2013	10/24/2013	07/28/2007	10/01/2007	01/10/2008	07/10/2008	01/06/2009	07/13/2009	07/29/2010
Analyte	Unit	MTCA Method A Cleanup Level											
TPHs													
Gasoline-Range Organics	ug/L	800		< 100 U	< 100 U	< 100 U	6570	27100	11400	1400	29000	4800	
Diesel-Range Organics	ug/L	500	141	< 94.3 U	< 93.5 U	< 94.3 U	307 X	1820 X	< 248 U	< 500 U	120	< 100 U	< 100 U
Motor Oil-Range Organics	ug/L	500	463	< 94.3 U	< 93.5 U	< 94.3 U	< 505 U	< 556 U	< 495 U	< 1000 U	< 100 U	< 100 U	< 100 U
втех													
Benzene	ug/L	5	< 1 U	< 1 U	< 1.00 U	< 1.00 U	299	1510	316	1400	4800	1600	240
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	< 1 U	179	1220	237	1200	1400	260	9.9
Ethylbenzene	ug/L	700	< 1 U	< 1 U	< 1 U	< 1 U	237	1210	842	710	1800	190	45
Total Xylenes	ug/L	1000	< 3 U	< 3 U	< 3 U	< 2 U	615	2650	604	2310	5100	1000	89
Metals													
Lead	ug/L	15										1.02	
VOCs													
1,2-Dibromoethane (EDB)	ug/L	0.01										< 0.01 U	
1,2-Dichloroethane (EDC)	ug/L	5										< 1.5 U	
Diisopropyl ether (DIPE)	ug/L		< 1 U								< 20 U		
Ethyl t-butyl ether (ETBE)	ug/L		< 1 U								< 20 U		
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U								< 10 U		
t-Amyl methyl ether (TAME)	ug/L		< 1 U								< 20 U		
t-Butyl alcohol (TBA)	ug/L		< 20 U								< 100 U		

Notes

ug/L = micrograms per liter

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

Project No. 180357, Lynnwood, Washington

<u> </u>		Location		MV	/-10		SB-3	SB-4
			MW-10-40563			MW-10-41571	SB-3-40308	SB-4-40308
		Date		11/07/2012	04/30/2013	10/24/2013	05/10/2010	05/10/2010
Analyte	Unit	MTCA Method A Cleanup Level						
TPHs								
Gasoline-Range Organics	ug/L	800		17300	590	6890	360	180
Diesel-Range Organics	ug/L	500	707	2710	346	2080	1600 X	2400 X
Motor Oil-Range Organics	ug/L	500	394	< 94.3 U	148	109	< 100 U	< 100 U
ВТЕХ								
Benzene	ug/L	5	938	5920	48.1	5630	170	< 0.5 U
Toluene	ug/L	1000	16.6	78.3	1.22	188	< 1 U	< 1 U
Ethylbenzene	ug/L	700	108	594	15.1	582	< 1 U	< 1 U
Total Xylenes	ug/L	1000	115	1060	21.4	1230	< 1 U	< 1 U
Metals								
Lead	ug/L	15						
VOCs								
1,2-Dibromoethane (EDB)	ug/L	0.01						
1,2-Dichloroethane (EDC)	ug/L	5						
Diisopropyl ether (DIPE)	ug/L		< 1 U					
Ethyl t-butyl ether (ETBE)	ug/L		< 1 U					
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U					
t-Amyl methyl ether (TAME)	ug/L		< 1 U					
t-Butyl alcohol (TBA)	ug/L		< 20 U					

Notes

ug/L = micrograms per liter

UJ = nondetect, estimated

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

X = chromatographic pattern did not match fuel standard.

Table 3. Remedial Investigation Groundwater Elevations

Project No. 180357, Lynnwood, Washington

Monitoring Well	TOC Elevation	Date	DTNAPL	DTW	LNAPL Thickness (feet)	Water Table (ft BTOC) ¹	Groundwater Elevation
		7/31/2019		12.86		12.86	438.88
MW-1	451.74	11/19/2019		13.81		13.81	437.93
10100-1	431.74	8/17/2020		11.82		11.82	439.92
		11/16/2020		12.85		12.85	438.89
		7/31/2019		11.51		11.51	439.08
MW-2	450.59	11/19/2019		11.76		11.76	438.83
IVI V V - Z	450.59	8/17/2020		10.77		10.77	439.82
		11/16/2020		11.3		11.30	439.29
		7/31/2019	10.45	10.75	0.3	10.52	441.17
NAVA / O	454.00	11/19/2019	11.62	12.00	0.38	11.71	439.98
MW-3	451.69	8/17/2020	9.69	9.94	0.25	9.75	441.94
		11/16/2020	10.93	11.09	0.16	10.97	440.72
		7/31/2019	11.22	11.33	0.11	11.25	440.76
	450.04	11/19/2019	12.36	12.67	0.31	12.43	439.58
MW-4	452.01	8/17/2020		10.41		10.41	441.60
		11/16/2020	11.69	11.71	0.02	11.69	440.32
		7/31/2019	9.87	10.69	0.82	10.07	441.31
100	454.00	11/19/2019	11.37	11.73	0.36	11.46	439.92
MW-5	451.38	8/17/2020	9.23	9.33	0.1	9.25	442.13
		11/16/2020	10.56	10.71	0.15	10.60	440.78
		7/31/2019		9.01		9.01	440.39
		11/19/2019		9.10		9.10	440.30
MW-6	449.4	8/17/2020		8.44		8.44	440.96
		11/16/2020		8.62		8.62	440.78
		7/31/2019		8.29		8.29	441.85
		11/19/2019		9.12		9.12	441.02
MW-7	450.14	8/17/2020		7.79		7.79	442.35
		11/16/2020		8.4		8.40	441.74
		7/31/2019	9.41	9.92	0.51	9.53	441.78
		11/19/2019	10.66	11.07	0.41	10.76	440.55
MW-8	451.31	8/17/2020		8.84		8.84	442.47
		11/16/2020	9.89	10.02	0.13	9.92	441.39
		7/31/2019		11.9		11.90	439.85
		11/19/2019		13.25		13.25	438.50
MW-9	451.75	8/17/2020		10.87		10.87	440.88
		11/16/2020		12.37		12.37	439.38
		7/31/2019		13.53		13.53	437.81
		11/20/2019		13.99		13.99	437.35
MW-10	451.34	8/17/2020		12.59		12.59	438.75
		11/16/2020		13.35		13.35	437.99
		7/31/2019		9.81		9.81	441.00
		11/19/2019		10.83		10.83	439.98
MW-11	450.81	8/17/2020		9.19		9.19	441.62
		11/16/2020		10.02		10.02	440.79
		7/31/2019		10.93		10.93	438.49
		11/19/2019		10.93		10.87	438.55
MW-12	449.42	8/17/2020		10.87		10.26	439.16
		11/16/2020		10.20		10.52	438.90

Table 3. Remedial Investigation Groundwater Elevations

Project No. 180357, Lynnwood, Washington

Monitoring Well	TOC Elevation	Date	DTNAPL	DTW	LNAPL Thickness (feet)	Water Table (ft BTOC) ¹	Groundwater Elevation
		7/31/2019		13.67		13.67	436.90
MW-13	450.57	11/19/2019		13.83		13.83	436.74
10100-13	430.37	8/17/2020		12.76		12.76	437.81
		11/16/2020		13.28		13.28	437.29
		7/31/2019		14.64		14.64	436.21
MW-14	450.85	11/19/2019		14.73		14.73	436.12
10100-14	430.03	8/17/2020		13.65		13.65	437.20
		11/16/2020		14.14		14.14	436.71
		7/31/2019	12.40	12.42	0.02	12.40	438.76
MW-15	451.16	11/19/2019	13.97	14.15	0.18	14.01	437.15
10100-15	451.10	8/17/2020	12.27	12.96	0.69	12.44	438.72
		11/16/2020	13.22	13.88	0.66	13.38	437.78
		7/31/2019		9.15		9.15	441.45
NAVA 40	450.0	11/19/2019		10.58		10.58	440.02
MW-16	450.6	8/17/2020		8.40		8.40	442.20
		11/16/2020		9.69		9.69	440.91
		7/31/2019		8.47		8.47	441.71
	450.40	11/19/2019		9.70		9.70	440.48
MW-17	450.18	8/17/2020		7.90		7.90	442.28
		11/16/2020		8.83		8.83	441.35
		7/31/2019		12.08		12.08	437.20
		11/19/2019		12.96		12.96	436.32
MW-18	449.28	8/17/2020		11.04		11.04	438.24
		11/16/2020		12.07		12.07	437.21
		7/31/2019		11.54		11.54	434.48
		11/19/2019		10.31		10.31	435.71
MW-19	446.02	8/17/2020		9.76		9.76	436.26
		11/16/2020		9.67		9.67	436.35
		8/17/2020		8.54		8.54	442.05
MW-20	450.59	11/16/2020		9.32		9.32	441.27
		8/17/2020		11.41		11.41	439.19
MW-21	450.603	11/16/2020		10.16		10.16	440.44
		8/17/2020		11.38		11.38	439.87
MW-22	451.254	11/16/2020		12.31		12.31	438.94
		8/17/2020		13.16	+	13.16	437.92
MW-23	451.079	11/16/2020		13.10		13.90	437.18
		8/17/2020		12.31		12.31	436.78
MW-24	449.094	11/16/2020		12.02		12.02	437.07
		8/17/2020			+	9.87	439.83
MW-25	449.701	11/16/2020		9.87 11.43		11.43	439.83
MW-26	449.13	8/17/2020		14.92		14.92	434.21
		11/16/2020		15.73		15.73	433.40
MW-27	447.27	8/17/2020		DRY		45.04	424.22
		11/16/2020 8/17/2020		15.94		15.94	431.33
1				DRY			

Notes

TOC = Top of Casing elevation in ft above mean sea level (NAVD88); NAPL = Non-aqueous phase liquid DTNAPL = Depth to NAPL below TOC (ft); DTW = Depth to water below TOC (ft); btoc = below TOC

 $^{^{1}}$ - In wells where NAPL is present, the depth to water table was calculated as Water Table = DTW + 0.76*(DTNAPL-DTW)

Project No. 180357, Lynnwood, Washington

rioject No. 100557, Lymwood, Washington		Location	CMW-1	CMW-4		MV	V-1			MV	V-2		MW-4	MV	V-6
		Date	11/17/2020	11/17/2020	08/01/2019	11/20/2019	08/18/2020	11/18/2020	08/01/2019	11/20/2019	08/17/2020	11/17/2020	08/18/2020	07/31/2019	11/20/2019
		Sample	111720	111720	080119	112019	081820	111820	080119	112019	081720	111720	081820	073119	112019
		MTCA Method A													
Analyte	Unit	Cleanup Level													
Total Petroleum Hydrocarbons (TPHs)															
Gasoline Range Organics	ug/L	800	< 100 U	< 100 U	24000	44000	14000	31000	1600	4600	770	4100	170000	< 100 U	< 100 U
Diesel Range Organics	ug/L	500	< 50 U	< 50 U	2100 X	3200 X	2100 X	1800 X	790 X	2200 X	660 X	1300 X	4500 X	68 X	< 50 U
Motor Oil Range Organics	ug/L	500	< 250 U	< 250 U	1000 X	570 X	1100 X	810 X	< 250 U	260 X	310 X	< 250 U	1000 X	< 250 U	< 250 U
Diesel and Oil Extended Range Organics	ug/L	500	< 250 U	< 250 U	3100 X	3770 X	3200 X	2610 X	790 X	2460 X	970 X	1300 X	5500 X	68 X	< 250 U
BTEX															
Benzene	ug/L	5	< 0.35 U	< 0.35 U	4200	6700	2200	5600	13	30	4.5	29	6000	< 0.35 U	< 0.35 U
Toluene	ug/L	1000	< 1 U	< 1 U	410	1500	180	740	2.2	6.5	<1U	7.8	21000	< 1 U	<1U
Ethylbenzene	ug/L	700	< 1 U	< 1 U	520	860	300	720	6.5	28	2.8	49	2300	< 1 U	< 1 U
Total Xylenes	ug/L	1000	< 2 U	< 2 U	1650	3680	750	2780	7.4	23.9	2.1	24.4	14100	< 2 U	< 2 U
Metals															
Lead	ug/L	15			< 1 UJ	< 1 U			< 1 UJ	< 1 U				< 1 UJ	<1U
Polycyclic Aromatic Hydrocarbons (PAHs)															
Naphthalene	ug/L	160	<1U	< 1 U	130	210	84	200	33	150	15	150	500	< 1 U	< 1 U
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	ug/L	200				-					-				
1,1-Dichloroethane	ug/L					-					1				-
1,1-Dichloroethene	ug/L														
1,2-Dibromoethane (EDB)	ug/L	0.01			< 1 U	< 100 U			< 1 U	< 1 U	-			< 1 U	< 1 U
1,2-Dichloroethane (EDC)	ug/L	5			< 1 U	< 100 U			< 1 U	< 1 U	-			< 1 U	< 1 U
Chloroethane	ug/L														
cis-1,2-Dichloroethene (cDCE)	ug/L					-					-				-
m,p-Xylenes	ug/L		< 2 U	< 2 U	1300	2800	580	2200	5.6	19	2.1	20	10000	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U	< 100 U			< 1 U	< 1 U				< 1 U	< 1 U
Methylene Chloride	ug/L	5				-					-				
o-Xylene	ug/L		< 1 U	< 1 U	350	880	170	580	1.8	4.9	<1U	4.4	4100	< 1 U	< 1 U
Tetrachloroethene (PCE)	ug/L	5													
trans-1,2-Dichloroethene	ug/L					-					-				-
Trichloroethene (TCE)	ug/L	5				-									-
Vinyl Chloride	ug/L	0.2													

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

ug/L = micrograms per liter

Aspect Consulting

Project No. 180357, Lynnwood, Washington

		Location	MV	V-6		M\	N-7		MW-8		MV	V-9		MW	V-10
		Date	08/17/2020	11/16/2020	07/31/2019	11/19/2019	08/17/2020	11/17/2020	08/18/2020	08/01/2019	11/20/2019	08/18/2020	11/16/2020	08/01/2019	11/20/2019
		Sample	081720	111620	073119	111920	081720	111720	081820	080119	112019	081820	111620	080119	112019
		MTCA Method A													
Analyte	Unit	Cleanup Level													
Total Petroleum Hydrocarbons (TPHs)															
Gasoline Range Organics	ug/L	800	< 100 U	130000	< 100 U	560	< 100 U	< 100 U	19000	21000					
Diesel Range Organics	ug/L	500	170 X	< 50 U	83 X	< 50 U	110 X	< 50 U	3200 X	88 X	290 X	80 X	< 54 U	1900 X	3900 X
Motor Oil Range Organics	ug/L	500	< 250 U	< 250 U	< 250 U	< 250 U	< 260 U	< 250 U	550 X	< 250 U	< 250 U	< 250 U	< 250 U	260 X	340 X
Diesel and Oil Extended Range Organics	ug/L	500	170 X	< 250 U	83 X	< 250 U	110 X	< 250 U	3750 X	88 X	290 X	80 X	< 250 U	2160 X	4240 X
BTEX															
Benzene	ug/L	5	< 0.35 U	4800	< 0.35 U	6.4	< 0.35 U	< 0.35 U	2400	2800					
Toluene	ug/L	1000	< 1 U	< 1 U	< 1 U	2.7	< 1 U	< 1 U	18000	< 1 U	< 1 U	< 1 U	< 1 U	44	< 100 U
Ethylbenzene	ug/L	700	< 1 U	< 1 U	< 1 U	1.6	< 1 U	< 1 U	1600	< 1 U	6.6	< 1 U	< 1 U	670	1000
Total Xylenes	ug/L	1000	< 2 U	< 2 U	< 2 U	8.8	< 2 U	< 2 U	10300	< 2 U	3.3	< 2 U	< 2 U	1102.7	1500
Metals															
Lead	ug/L	15			< 1 UJ	< 1 U				< 1 UJ	< 1 U			< 1 UJ	< 1 U
Polycyclic Aromatic Hydrocarbons (PAHs)															
Naphthalene	ug/L	160	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	400	< 1 U	< 1 U	< 1 U	< 1 U	160	270
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	ug/L	200													
1,1-Dichloroethane	ug/L														
1,1-Dichloroethene	ug/L														
1,2-Dibromoethane (EDB)	ug/L	0.01			< 1 U	< 1 U				< 1 U	<1U			< 1 U	< 100 U
1,2-Dichloroethane (EDC)	ug/L	5			< 1 U	< 1 U				< 1 U	<1U			< 1 U	< 100 U
Chloroethane	ug/L														
cis-1,2-Dichloroethene (cDCE)	ug/L														
m,p-Xylenes	ug/L		< 2 U	< 2 U	< 2 U	7.1	< 2 U	< 2 U	7500	< 2 U	< 2 U	< 2 U	< 2 U	1100	1500
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U	< 1 U				< 1 U	<1U			< 1 U	< 100 U
Methylene Chloride	ug/L	5													
o-Xylene	ug/L		< 1 U	< 1 U	< 1 U	1.7	< 1 U	< 1 U	2800	< 1 U	3.3	< 1 U	< 1 U	2.7	< 100 U
Tetrachloroethene (PCE)	ug/L	5							-	-					
trans-1,2-Dichloroethene	ug/L														
Trichloroethene (TCE)	ug/L	5													
Vinyl Chloride	ug/L	0.2													

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

ug/L = micrograms per liter

Aspect Consulting

Project No. 180357, Lynnwood, Washington

1 Toject No. 100557, Lynnwood, Washington		Location	MW	<i>I</i> -10		MW	<i>I</i> -11			MW	/ -12		MW-13		
			08/18/2020		07/31/2019			11/17/2020	08/01/2019	11/20/2019		11/16/2020	07/31/2019		08/17/2020
		Sample	081820	111720	073119	111919	081720	111720	080119	112019	081720	111620	073119	112019	081720
		MTCA Method A													
Analyte	Unit	Cleanup Level													
Total Petroleum Hydrocarbons (TPHs)															
Gasoline Range Organics	ug/L	800	5100	12000	13000	20000	27000	5400	240	540	230	410	1400	1800	420
Diesel Range Organics	ug/L	500	1100 X	1400 X	1100 X	2400 X	1600 X	720 X	310 X	370 X	240 X	230 X	530 X	780 X	320 X
Motor Oil Range Organics	ug/L	500	360 X	< 250 U	< 250 U	310 X	260 X	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended Range Organics	ug/L	500	1460 X	1400 X	1100 X	2710 X	1860 X	720 X	310 X	370 X	240 X	230 X	530 X	780 X	320 X
BTEX															
Benzene	ug/L	5	490	1800	320	270	330	160	0.59	1.1	< 0.35 U	0.65	7.5	4	0.75
Toluene	ug/L	1000	< 10 U	31	1800	1500	2200	290	< 1 U	<1U	<1U	< 1 U	< 1 U	< 1 U	<1U
Ethylbenzene	ug/L	700	200	630	410	690	790	220	< 1 U	<1U	<1U	< 1 U	< 1 U	< 1 U	<1U
Total Xylenes	ug/L	1000	240	620	1400	2580	3400	400	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Metals															
Lead	ug/L	15			3.49 J	1.85	-		< 1 UJ	<1U			< 1 UJ	< 1 U	
Polycyclic Aromatic Hydrocarbons (PAHs)															
Naphthalene	ug/L	160	60	220	42	130	140	110	< 1 U	<1U	<1U	< 1 U	< 1 U	< 1 U	<1U
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	ug/L	200		-		1	-	-				-	< 1 U	< 1 U	-
1,1-Dichloroethane	ug/L			-		ł	-	-		-		-	< 1 U	< 1 U	1
1,1-Dichloroethene	ug/L					-	-						< 1 U	< 1 U	
1,2-Dibromoethane (EDB)	ug/L	0.01		-	< 1 U	< 100 U	-	-	< 1 U	<1U		-	< 1 U	< 1 U	
1,2-Dichloroethane (EDC)	ug/L	5		-	< 1 U	< 100 U	-	-	< 1 U	<1U		-	< 1 U	< 1 U	
Chloroethane	ug/L			-		ł	-	-				-	< 1 U	< 1 U	1
cis-1,2-Dichloroethene (cDCE)	ug/L					-							< 1 U	< 1 U	
m,p-Xylenes	ug/L		240	620	1000	2100	2700	280	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20			< 1 U	< 100 U			< 1 U	<1U			< 1 U	< 1 U	
Methylene Chloride	ug/L	5				-							< 5 U	< 5 U	
o-Xylene	ug/L		< 10 U	< 10 U	400	480	700	120	< 1 U	<1U	<1U	< 1 U	< 1 U	< 1 U	< 1 U
Tetrachloroethene (PCE)	ug/L	5											< 1 U	< 1 U	
trans-1,2-Dichloroethene	ug/L					-							< 1 U	< 1 U	-
Trichloroethene (TCE)	ug/L	5											< 1 U	< 1 U	
Vinyl Chloride	ug/L	0.2	-										< 0.2 U	< 0.2 U	

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

ug/L = micrograms per liter

Aspect Consulting

Project No. 180357, Lynnwood, Washington

riojectivo. 100337, Eyiiiwood, wasiiiigtoii		Location	MW-13		MW	<i>I</i> -14			MW	<i>I</i> -16			MV	<i>I</i> -17	MW-17			
		Date	11/17/2020	07/31/2019	11/20/2019	08/18/2020	11/18/2020	07/31/2019	11/19/2019	08/17/2020	11/16/2020	07/31/2019	11/19/2019	08/17/2020	11/17/2020			
		Sample	111720	073119	112019	081820	111820	073119	111919	081720	111620	073119	111919	081720	111720			
		MTCA Method A																
Analyte	Unit	Cleanup Level													1			
Total Petroleum Hydrocarbons (TPHs)																		
Gasoline Range Organics	ug/L	800	1200	7500	11000	5000	6400	< 100 U	< 100 U	< 100 U	< 100 U	1800	1100	550	1200			
Diesel Range Organics	ug/L	500	490 X	1200 X	1600 X	570 X	780 X	84 X	< 50 U	130 X	< 50 U	320 X	560 X	270 X	550 X			
Motor Oil Range Organics	ug/L	500	260 X	330 X	300 X	< 250 U	290 X	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U			
Diesel and Oil Extended Range Organics	ug/L	500	750 X	1530 X	1900 X	570 X	1070 X	84 X	< 250 U	130 X	< 250 U	320 X	560 X	270 X	550 X			
BTEX																		
Benzene	ug/L	5	1.5	2400	2700	1200	2000	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	< 0.35 U	4.2	1.1	5.7			
Toluene	ug/L	1000	<1U	32	< 100 U	9.8	19	< 1 U	<1U	<1U	<1U	< 1 U	2.8	<1U	6.9			
Ethylbenzene	ug/L	700	<1U	130	< 100 U	32	31	< 1 U	<1U	<1U	<1U	< 1 U	< 1 U	< 1 U	< 1 U			
Total Xylenes	ug/L	1000	< 2 U	90	< 200 U	22.9	< 20 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	6.3	< 2 U	16			
Metals																		
Lead	ug/L	15		< 1 UJ	< 1 U	-		< 1 UJ	1.02			< 1 UJ	< 1 U					
Polycyclic Aromatic Hydrocarbons (PAHs)																		
Naphthalene	ug/L	160	<1U	50	< 100 U	31	46	< 1 U	<1U	<1U	<1U	< 1 U	1.6	<1U	1.9			
Volatile Organic Compounds (VOCs)																		
1,1,1-Trichloroethane	ug/L	200		<1U	< 100 U	-	-		-		-		-					
1,1-Dichloroethane	ug/L			<1U	< 100 U	-	-		-		-		-					
1,1-Dichloroethene	ug/L			<1U	< 100 U	-												
1,2-Dibromoethane (EDB)	ug/L	0.01		<1U	< 100 U	-	-	< 1 U	<1U		-	< 1 U	< 1 U					
1,2-Dichloroethane (EDC)	ug/L	5		<1U	< 100 U	-		< 1 U	<1U			< 1 U	< 1 U					
Chloroethane	ug/L			<1U	< 100 U	-							-					
cis-1,2-Dichloroethene (cDCE)	ug/L			<1U	< 100 U	-												
m,p-Xylenes	ug/L		< 2 U	72	< 200 U	19	< 20 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	4.2	< 2 U	16			
Methyl tert-butyl ether (MTBE)	ug/L	20		<1U	< 100 U	-		< 1 U	<1U			< 1 U	< 1 U					
Methylene Chloride	ug/L	5		< 5 U	< 500 U	-							-					
o-Xylene	ug/L		< 1 U	18	< 100 U	3.9	< 10 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	2.1	< 1 U	< 1 U			
Tetrachloroethene (PCE)	ug/L	5		< 1 U	< 100 U													
trans-1,2-Dichloroethene	ug/L			<1U	< 100 U													
Trichloroethene (TCE)	ug/L	5		< 1 U	< 100 U													
Vinyl Chloride	ug/L	0.2		2.7	< 20 U													

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

ug/L = micrograms per liter

Aspect Consulting

Project No. 180357, Lynnwood, Washington

		Location		MW	<i>I</i> -18			MV	V-19		MW	/-20	MW	<i>I</i> -21	MW-22
		Date	07/31/2019	11/19/2019	08/18/2020	11/16/2020	07/31/2019	11/20/2019	08/18/2020	11/17/2020	08/17/2020	11/17/2020	08/17/2020	11/17/2020	08/17/2020
		Sample	073119	111919	081820	111620	073119	112019	081820	111720	081720	111720	081720	111720	081720
Analyte	Unit	MTCA Method A Cleanup Level													
Total Petroleum Hydrocarbons (TPHs)															
Gasoline Range Organics	ug/L	800	< 100 U	1300	< 100 U	340	< 100 U	< 100 U	< 100 U	< 100 U	120	< 100 U	7400	6600	14000
Diesel Range Organics	ug/L	500	55 X	260 X	< 50 U	59 X	< 50 U	< 50 U	< 50 U	< 50 U	180 X	< 50 U	3200 X	2800 X	2500 X
Motor Oil Range Organics	ug/L	500	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	260 X	360 X	< 250 U
Diesel and Oil Extended Range Organics	ug/L	500	55 X	260 X	< 250 U	59 X	< 250 U	< 250 U	< 250 U	< 250 U	180 X	< 250 U	3460 X	3160 X	2500 X
ВТЕХ															
Benzene	ug/L	5	1	240	1.2	61	< 0.35 U	21	25	540					
Toluene	ug/L	1000	<1U	8.2	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	<1U	<1U	< 10 U	12	56
Ethylbenzene	ug/L	700	< 1 U	14	< 1 U	2.1	< 1 U	< 1 U	< 1 U	<1U	< 1 U	< 1 U	400	620	630
Total Xylenes	ug/L	1000	< 2 U	65	< 2 U	11.9	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	48	43	1350
Metals															
Lead	ug/L	15	< 1 UJ	< 1 U			< 1 UJ	< 1 U							
Polycyclic Aromatic Hydrocarbons (PAHs)															
Naphthalene	ug/L	160	< 1 U	5.2	< 1 U	2.4	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1U	470	440	220
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	ug/L	200	< 1 U	< 1 U			< 1 U	< 1 U							
1,1-Dichloroethane	ug/L		<1U	<1U			< 1 U	< 1 U							
1,1-Dichloroethene	ug/L		<1U	< 1 U			< 1 U	< 1 U							
1,2-Dibromoethane (EDB)	ug/L	0.01	<1U	< 1 U			< 1 U	< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5	< 1 U	< 1 U			< 1 U	< 1 U							
Chloroethane	ug/L		<1U	< 1 U			< 1 U	< 1 U							
cis-1,2-Dichloroethene (cDCE)	ug/L		< 1 U	< 1 U			< 1 U	< 1 U							
m,p-Xylenes	ug/L		< 2 U	48	< 2 U	9.8	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	48	43	1200
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1 U	< 1 U			< 1 U	< 1 U							
Methylene Chloride	ug/L	5	< 5 U	< 5 U			< 5 U	< 5 U							
o-Xylene	ug/L		< 1 U	17	< 1 U	2.1	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 10 U	< 10 U	150
Tetrachloroethene (PCE)	ug/L	5	< 1 U	< 1 U			17	12							
trans-1,2-Dichloroethene	ug/L		< 1 U	< 1 U			< 1 U	< 1 U							
Trichloroethene (TCE)	ug/L	5	< 1 U	< 1 U			1	< 1 U							
Vinyl Chloride	ug/L	0.2	< 0.2 U	< 0.2 U			< 0.2 U	< 0.2 U							

Notes

Bold = detected

Blue = exceeded

U = nondetect

J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

ug/L = micrograms per liter

Aspect Consulting

Table 4. Remedial Investigation Groundwater Analytical Data

Project No. 180357, Lynnwood, Washington

	Location			MW	<i>I</i> -23	MW	<i>I</i> -24	MW	<i>l</i> -25	MW-26		MW-27
	Date			08/18/2020	11/18/2020	08/18/2020	11/17/2020	08/18/2020	11/16/2020	08/18/2020	11/16/2020	11/20/2020
	Sample				111820	081820	111720	081820	111620	081820	111620	112020
		MTCA Method A										
Analyte	Unit	Cleanup Level										
Total Petroleum Hydrocarbons (TPHs)												
Gasoline Range Organics	ug/L	800	24000	21000	27000	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U
Diesel Range Organics	ug/L	500	3000 X	1900 X	2600 X	76 X	< 50 U	55 X	< 50 U	< 50 U	< 50 U	< 50 U
Motor Oil Range Organics	ug/L	500	410 X	< 250 U	390 X	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
Diesel and Oil Extended Range Organics	ug/L	500	3410 X	1900 X	2990 X	76 X	< 250 U	55 X	< 250 U	< 250 U	< 250 U	< 250 U
BTEX												
Benzene	ug/L	5	1000	3100	5300	< 0.35 U	< 0.35 U	< 0.35 U	0.53	< 0.35 U	< 0.35 U	< 0.35 U
Toluene	ug/L	1000	240	210	120	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Ethylbenzene	ug/L	700	1300	400	640	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Total Xylenes	ug/L	1000	3880	900	930	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Metals												
Lead	ug/L	15	-									
Polycyclic Aromatic Hydrocarbons (PAHs)												
Naphthalene	ug/L	160	390	110	170	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Volatile Organic Compounds (VOCs)												
1,1,1-Trichloroethane	ug/L	200	-		-				-		-	
1,1-Dichloroethane	ug/L		-		-				-		-	
1,1-Dichloroethene	ug/L											
1,2-Dibromoethane (EDB)	ug/L	0.01	-									
1,2-Dichloroethane (EDC)	ug/L	5	-		-				-		-	
Chloroethane	ug/L		-		-				-		-	
cis-1,2-Dichloroethene (cDCE)	ug/L		-									
m,p-Xylenes	ug/L		3500	790	930	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U
Methyl tert-butyl ether (MTBE)	ug/L	20										
Methylene Chloride	ug/L	5										
o-Xylene	ug/L		380	110	< 50 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Tetrachloroethene (PCE)	ug/L	5									-	
trans-1,2-Dichloroethene	ug/L											
Trichloroethene (TCE)	ug/L	5										
Vinyl Chloride	ug/L	0.2										

Notes

Bold = detected

Blue = exceeded

U = nondetect J = esitmated

UJ = nondetect, estimated

X = chromatographic pattern did not match fuel standard.

ug/L = micrograms per liter

Aspect Consulting

Table 4

Table 5. Remedial Investigation Soil Gas Analytical Data

Project No. 180357, Lynnwood, Washington

	Loca							GP-02 GP-03				
				Date	07/25/2019	08/20/2020	07/25/2019	08/20/2020	11/20/2020	07/25/2019	08/20/2020	11/20/2020
				Sample Name	GP-01-072519	GP-01-082020	GP-02-072519	GP-02-082020	GP-02-112020	GP-03-072519	GP-03-082020	GP-03-112020
			MTCA Method B	MTCA Method B								
		Risk	Subslab Screening	Subslab Screening								
Analyte	Unit	Driver	Level (Unrestricted) ¹	Level (Commercial) ²								
BTEX												
Benzene	ug/m3	С	11	37	3.8	< 1.1 U	1.5	< 1.1 U	< 1.1 U	3.4	6.4	< 2.7 U
Toluene	ug/m3	NC	76000	560,000	28	< 64 U	12	< 62 U	< 64 U	15	< 170 U	< 160 U
Ethylbenzene	ug/m3	NC	15000	110,000	6	< 1.5 U	3.4	3.1	2.2	3.9	60	< 3.6 U
Total Xylenes	ug/m3	NC	1500	11,000	32.9	< 3 U	18.3	16.7	12	21.5	293	10
PAHs												
Naphthalene	ug/m3	С	2.5	8.4	< 0.84 U	< 0.89 U	< 0.81 U	1.2	< 0.89 U	< 2 U	< 2.3 U	< 2.2 U
VOCs												
1,2-Dibromoethane (EDB)	ug/m3	NC	0.14	0.47	< 0.25 U		< 0.24 U			< 0.6 U		
1,2-Dichloroethane (EDC)	ug/m3	NC	3.2	10.7	< 0.13 U		< 0.13 U			< 0.32 U		
Methyl tert-butyl ether (MTBE)	ug/m3	NC	320	1070	< 5.8 U		< 5.6 U			< 14 U		
APH												
C5 - C8 Aliphatic Hydrocarbons	ug/m3				410	580	350	630	210	9,100	15,000	3,700
C9 - C12 Aliphatic Hydrocarbons	ug/m3				2,200	680	2,600	890	480	11,000	2,300	1,100
C9 - C10 Aromatic Hydrocarbons	ug/m3				< 80 U	< 85 U	< 77 U	< 82 U	< 85 U	< 190 U	< 220 U	< 210 U
Total Petroleum Hydrocarbons (ND = 1/2 RL)	ug/m3	NC	4,700	35,000	2,721	1,338	3,024	1,614	780	20,240	17,856	5,001

Notes

- (1) Model Toxic Control Act (MTCA) Method B Subslab Soil Gas Screening Levels (SLs).
- (2) Commercial screening levels calculated by adjusting exposure frequency for both noncarcinogens and carcinogens to 0.30, and average body weight and breathing rate for noncarcinogens to 70 kg and 20 m³/day, respectively. These adjustments are in accordance with MTCA Equations 750-1 and 750-2 and Ecology's Implementation Memorandum No. 21 (FAQs Regarding VI and Ecology's 2009 Draft VI Guidance).
- (3) Total petroleum hydrocarbon concentration is the sum total of VOCs and APHs, one-half of the laboratory detection limit was used for non-detects.
- (4) Generic sub-slab TPH screening level based on generic TPH indoor air cleanup level of 140 ug/m3 and an attenuation factor of 0.03 (Ecology Implementation Memo #18.)

Bold - Analyte Detected

Blue Shaded - Detected result exceeded unrestricted use MTCA Method B Subslab Screening Level

BTEX = benzene, toleuene, ethylbenzene, and total xylenes

PAHs = polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

APH = air petroleum hydrocarbon

µg/m₂ = micrograms per cubic meter

-- = Not Analyzed

U = Analyte was not detected at or above the Reporting Limit shown.

C = Carcinogenic; NC = Non carcinogenic

Aspect Consulting

Project No. 180357, Lynnwood, Washington

				Location	GP	-04	GP-05	GP-06	SVS	S-01	SVS	S-02
				Date	07/25/2019	08/20/2020	11/20/2020	11/20/2020	07/25/2019	08/20/2020	07/25/2019	08/20/2020
				Sample Name	GP-04-072519	GP-04-082020	GP-05-112020	GP-06-112020	SVS-01-072519	SVS-01-082020	SVS-02-072519	SVS-02-082020
			MTCA Method B	MTCA Method B								
		Risk	Subslab Screening	Subslab Screening								
Analyte	Unit	Driver	Level (Unrestricted) ¹	Level (Commercial) ²								
BTEX												
Benzene	ug/m3	С	11	37	1.2	1.7	< 14 U	2.7	2.2	17	3.3	1.8
Toluene	ug/m3	NC	76000	560,000	11	< 68 U	< 810 U	< 64 U	9.3	< 160 U	13	< 64 U
Ethylbenzene	ug/m3	NC	15000	110,000	3.4	5.1	< 19 U	5	2.6	7	2.9	5.8
Total Xylenes	ug/m3	NC	1500	11,000	18.7	28.3	< 37 U	25.8	14.4	57	14.2	31.3
PAHs												
Naphthalene	ug/m3	С	2.5	8.4	< 0.84 U	< 0.94 U	< 11 U	< 0.89 U	< 0.81 U	< 2.2 U	< 0.81 U	< 0.89 U
VOCs												
1,2-Dibromoethane (EDB)	ug/m3	NC	0.14	0.47	< 0.25 U				< 0.24 U		< 0.24 U	
1,2-Dichloroethane (EDC)	ug/m3	NC	3.2	10.7	< 0.13 U				< 0.13 U		< 0.13 U	
Methyl tert-butyl ether (MTBE)	ug/m3	NC	320	1070	< 5.8 U				< 5.6 U		< 5.6 U	
АРН												
C5 - C8 Aliphatic Hydrocarbons	ug/m3				510	650	22,000	160	1,000	4,100	1,700	750
C9 - C12 Aliphatic Hydrocarbons	ug/m3		-		1,800	470	5,000	390	1,300	6,700	1,100	670
C9 - C10 Aromatic Hydrocarbons	ug/m3		-		100	< 90 U	< 1100 U	< 85 U	78	< 210 U	100	< 85 U
Total Petroleum Hydrocarbons (ND = 1/2 RL)	ug/m3	NC	4,700	35,000	2,445	1,235	28,005	658	2,407	11,067	2,934	1,534

Notes

- (1) Model Toxic Control Act (MTCA) Method B Subslab Soil Gas Screening Levels (SLs).
- (2) Commercial screening levels calculated by adjusting exposure frequency for both noncarcinogens and carcinogens to 0.30, and average body weight and breathing rate for noncarcinogens to 70 kg and 20 m³/day, respectively. These adjustments are in accordance with MTCA Equations 750-1 and 750-2 and Ecology's Implementation Memorandum No. 21 (FAQs Regarding VI and Ecology's 2009 Draft VI Guidance).
- (3) Total petroleum hydrocarbon concentration is the sum total of VOCs and APHs, one-half of the laboratory detection limit was used for non-detects.
- (4) Generic sub-slab TPH screening level based on generic TPH indoor air cleanup level of 140 ug/m3 and an attenuation factor of 0.03 (Ecology Implementation Memo #18.)

Bold - Analyte Detected

Blue Shaded - Detected result exceeded unrestricted use MTCA Method B Subslab Screening Level

BTEX = benzene, toleuene, ethylbenzene, and total xylenes

PAHs = polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

APH = air petroleum hydrocarbon

µg/m₂ = micrograms per cubic meter

- -- = Not Analyzed
- U = Analyte was not detected at or above the Reporting Limit shown.
- C = Carcinogenic; NC = Non carcinogenic

Page 2 of 2

DRAFT

Aspect Consulting

Table 6. Basis of Remedial Excavation ExtentsProject No. 180357, Lynnwood, Washington DRAFT

Area of Site	Location		Depth to Unweathered Till (feet bgs)	Depth of Deepest Soil CUL Exceedance (feet bgs)	Depth of Soil Compliance (feet bgs)	Depth of Planned Excavation (feet bgs)	Depth of Maximum Possible Overexcavation (feet bgs)	
	MW-3	0	17	17.5	Not Delineated	18	> 25	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs. Depth of first impacted soil based on PID readings.
	MW-4	0	17	17.5	Not Delineated	18	> 25	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs. Depth of first impacted soil based on PID readings.
Source Area	MW-5	0	17.5	17.5	Not Delineated	18	22	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth at this location is 22 feet bgs. Depth of first impacted soil based on PID readings.
Godise / Ned	MW-8	0	20	20	Not Delineated	20	22	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. Due to the distance from the shoring wall, the maximum possible overexcavation depth at this location is 22 feet bgs. Depth of first impacted soil based on PID readings.
	SB1	10	17.5	12.5	16	16	> 25	Overexcavation is not anticipated at this location. However, due to the layout of the shoring and slope cuts, overexcavation in this area is possible to the depth indicated. Depth of first impacted soil based on PID readings.
	SB2	0	15	15	Not Delineated	16	> 25	Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs. Depth of first impacted soil based on PID readings.
	SB			2	Not Delineated			Too shallow to be used for the purpose of defining excavation extents.
	B-7	7	16	8	12.5	10	18	Due to its position near MW-5, and the slope requirements from the NW corner of the two shoring walls, the maximum possible overexcavation in this area is expected to be 18 feet bgs. Depth of first impacted soil based on PID readings.
Northwest	B-10	> 12.5	15	No Exceedances	Ground Surface	As needed for sloping	10	Due to its position near the corner of the two shoring walls, some excavation of clean soil may be necessary to meet sloping requirements within the interior of the excavation.
Corner	MW-9	0	10	20	Not Delineated	18	25	The soil CUL exceedance at both 10 and 20 feet was for benzene only, and may have been caused by dragdown during drilling. The planned excavation depth is based on nearby locations and the relative order of magnitude of CUL exceedances at 10 feet bgs versus 20 feet bgs. Due to the proximity of this location to both MW-1 and the NW corner where the two shoring walls meet, the maximum possible overexcavation at this location will be 25 feet bgs.

Table 6

Table 6. Basis of Remedial Excavation ExtentsProject No. 180357, Lynnwood, Washington DRAFT

Area of Site	Location	Depth of First Impacted Soil (feet bgs)	Depth to Unweathered Till (feet bgs)	Depth of Deepest Soil CUL Exceedance (feet bgs)	Depth of Soil Compliance (feet bgs)	Depth of Planned Excavation (feet bgs)	Depth of Maximum Possible Overexcavation (feet bgs)	Notes
	MW-1	0	17.5	27.5	Not Delineated	18	30	The soil CUL exceedance at 27.5 feet was for benzene only, and may have been caused by dragdown of LNAPL during drilling. The planned excavation depth is to the top of unweathered till at this location. However, the shoring wall has been designed to extend 2.5 feet below the deepest historical soil CUL exceedance.
Southwest Area	MW-10	0	20	20	Not Delineated	20	> 25	The soil CUL exceedance at 20 feet was for benzene only, and may have been caused by dragdown during drilling. The depth to unweathered till forms the basis of the remedial excavation depth. Due to the distance from the shoring wall, the maximum possible overexcavation depth is greater than 25 feet bgs.
	MW-15	10.5	13	17.5	25	18	> 25	Based on its distance from the shoring wall, the maximum possible overexcavation depth at this location is greater than 25 feet bgs.
	MW-23	18	12.5	25	Not Delineated	20	30	The soil CUL exceedance at 25 feet was for benzene only, and may have been caused by dragdown during drilling. The planned excavation depth is based on the order of magnitude of the soil exceedance at 18 feet as compared to the soil exceedance at 25 feet bgs. However, based on the proximity of this location to MW-1, the maximum possible overexcavation depth at this location will be 30 feet bgs.
	B-11	> 15	18	No Exceedances	Ground Surface	As needed for sloping	As needed for sloping	This location establishes the eastern edge of soil compliance. Excavation in this area will only be performed as necessary to meet sloping requirements for larger excavation area.
	MW-2	17.5	17.5	17.5	Not Delineated	18	20	The soil CUL exceedance at 17.5 feet was for benzene only, and may have been caused by dragdown during drilling. Due to the distance from the property line, the maximum possible overexcavation depth is 20 feet bgs.
Eastern Extents	MW-11	0	18	6	13	8	13	This location will be part of the slope cut. Based on the boring logs, an excavation depth of 8 feet is expected, though the shoring has been designed to reach depths of up to 13 feet bgs in this area.
Eastern Externs	MW-20	> 13	18	No Exceedances	Ground Surface	As needed for sloping	As needed for sloping	This location establishes the eastern edge of soil compliance. Excavation in this area will only be performed as necessary to meet sloping requirements for larger excavation area.
	MW-21	> 17.5	17.5	No Exceedances	Ground Surface	As needed for sloping	As needed for sloping	This location establishes the eastern edge of soil compliance. Excavation in this area will only be performed as necessary to meet sloping requirements for larger excavation area.
	MW-22	16	17.5	16	25	17.5	> 25	The soil CUL exceedance at 16 feet was for benzene only. Based on its distance from the shoring wall, the maximum possible overexcavation depth at this location is greater than 25 feet bgs.

Notes:

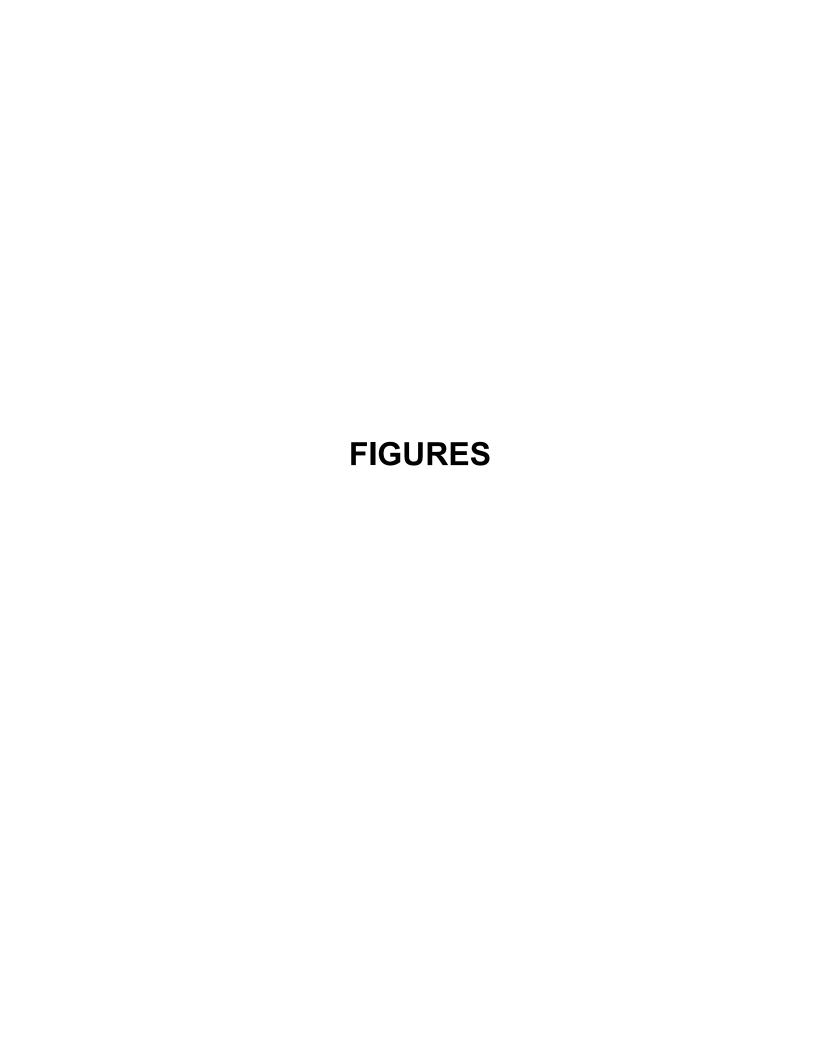
bgs = below ground surface

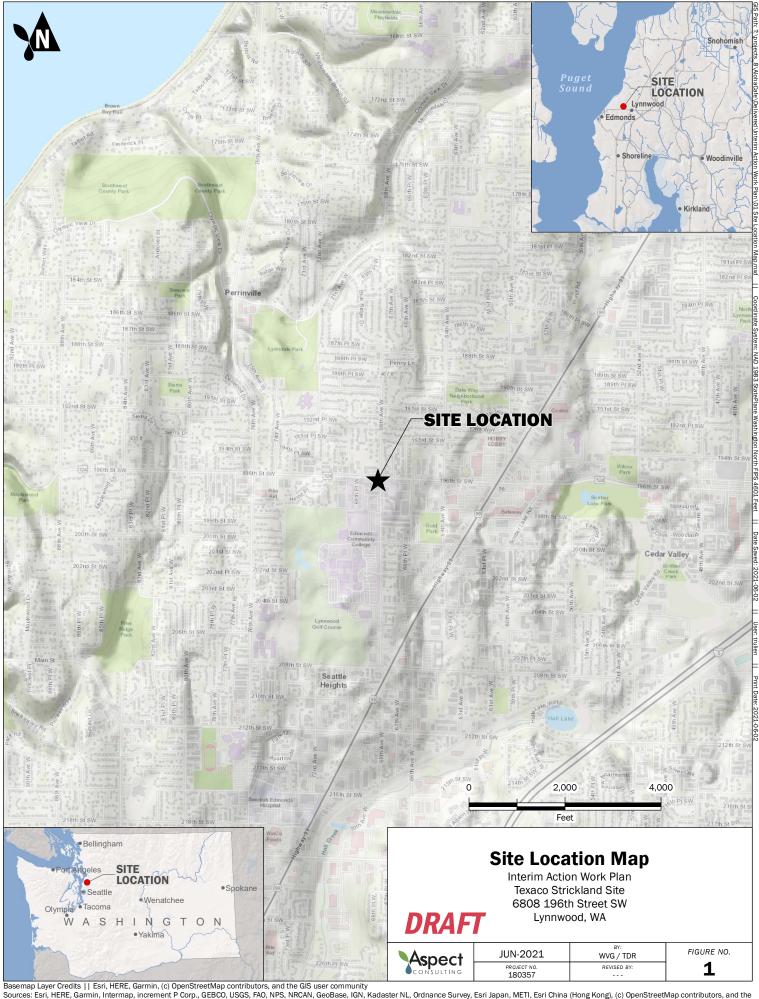
CUL = MTCA Method A Cleanup Levels

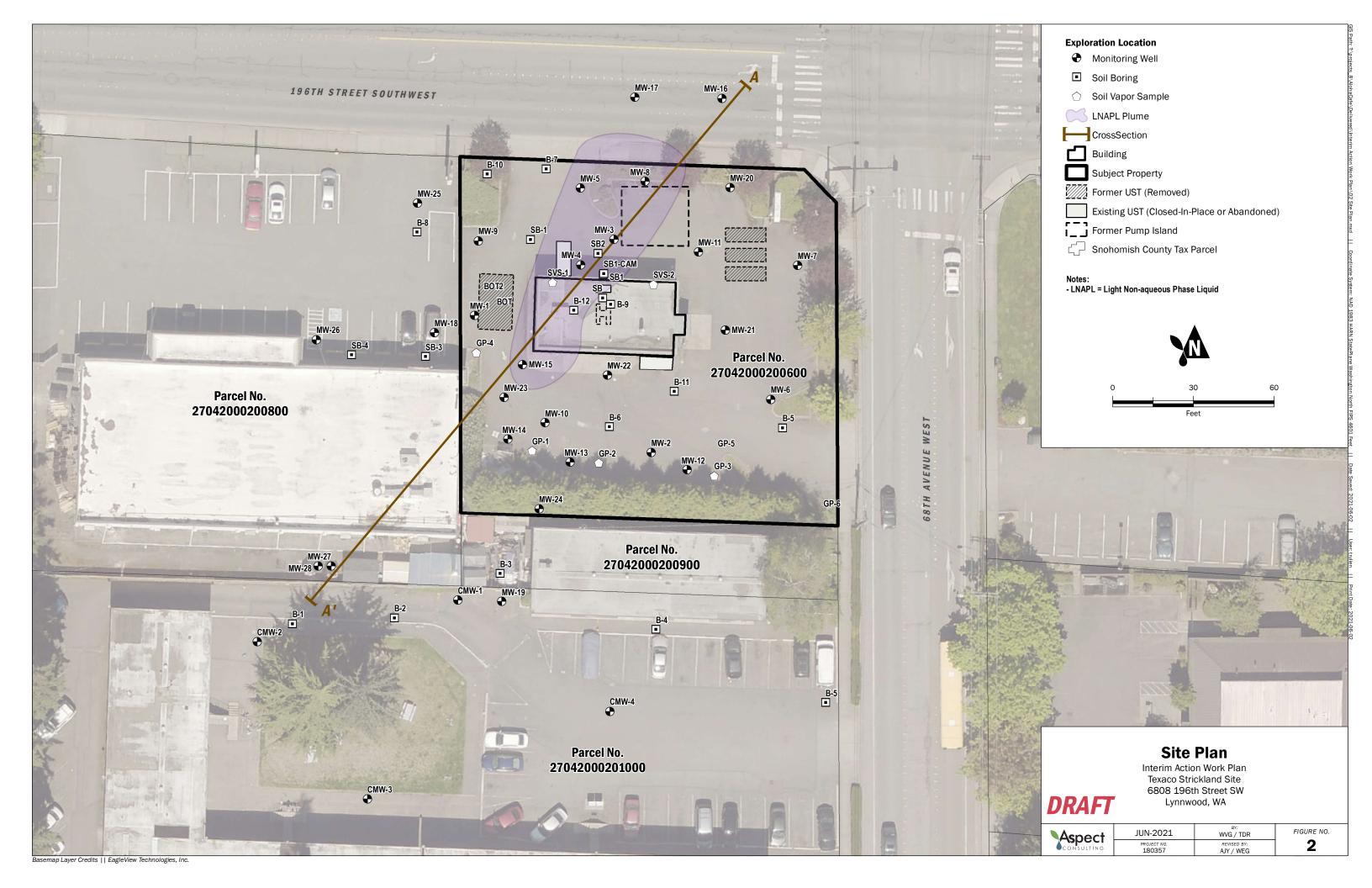
Aspect Consulting

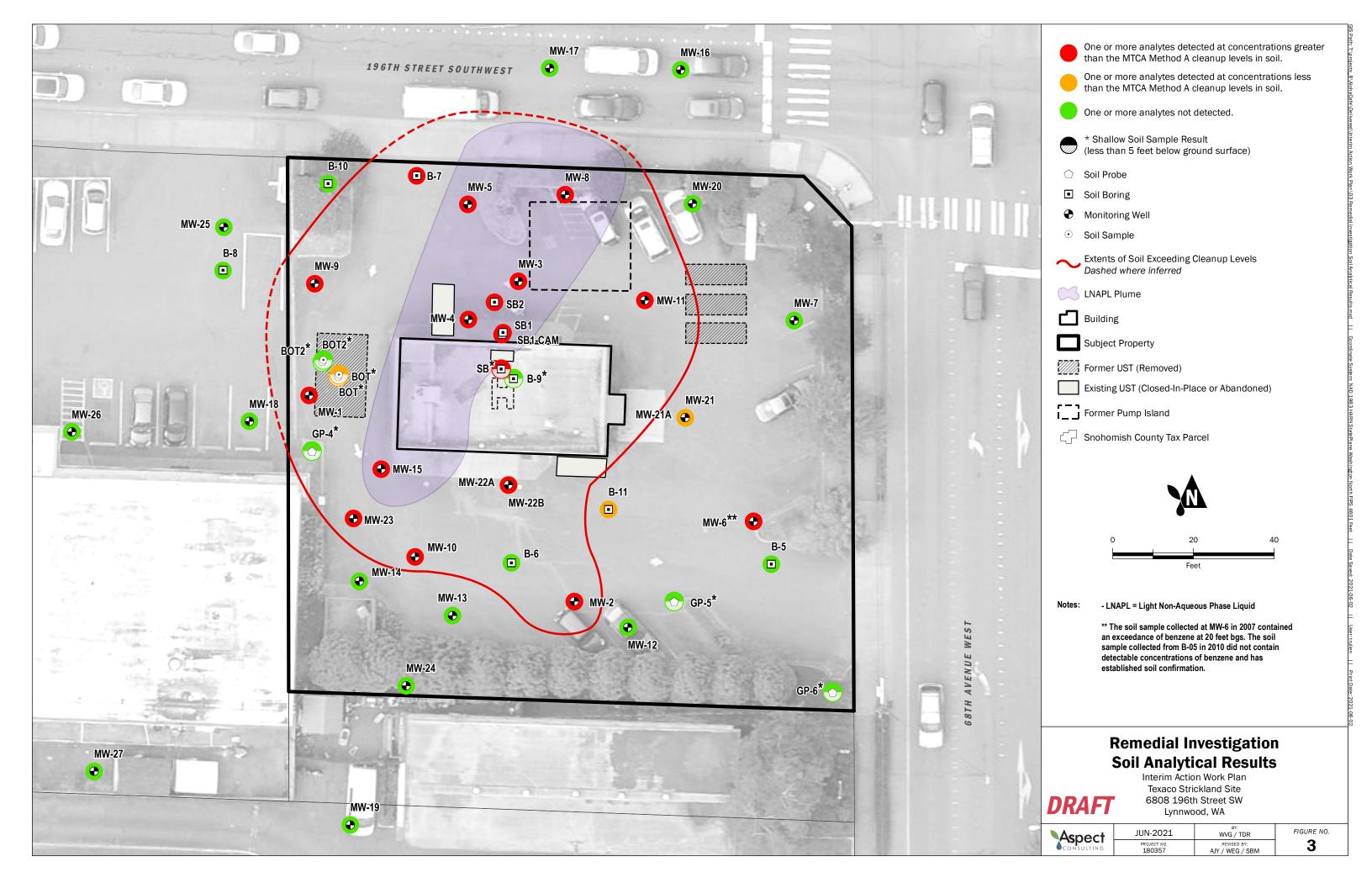
Table 6

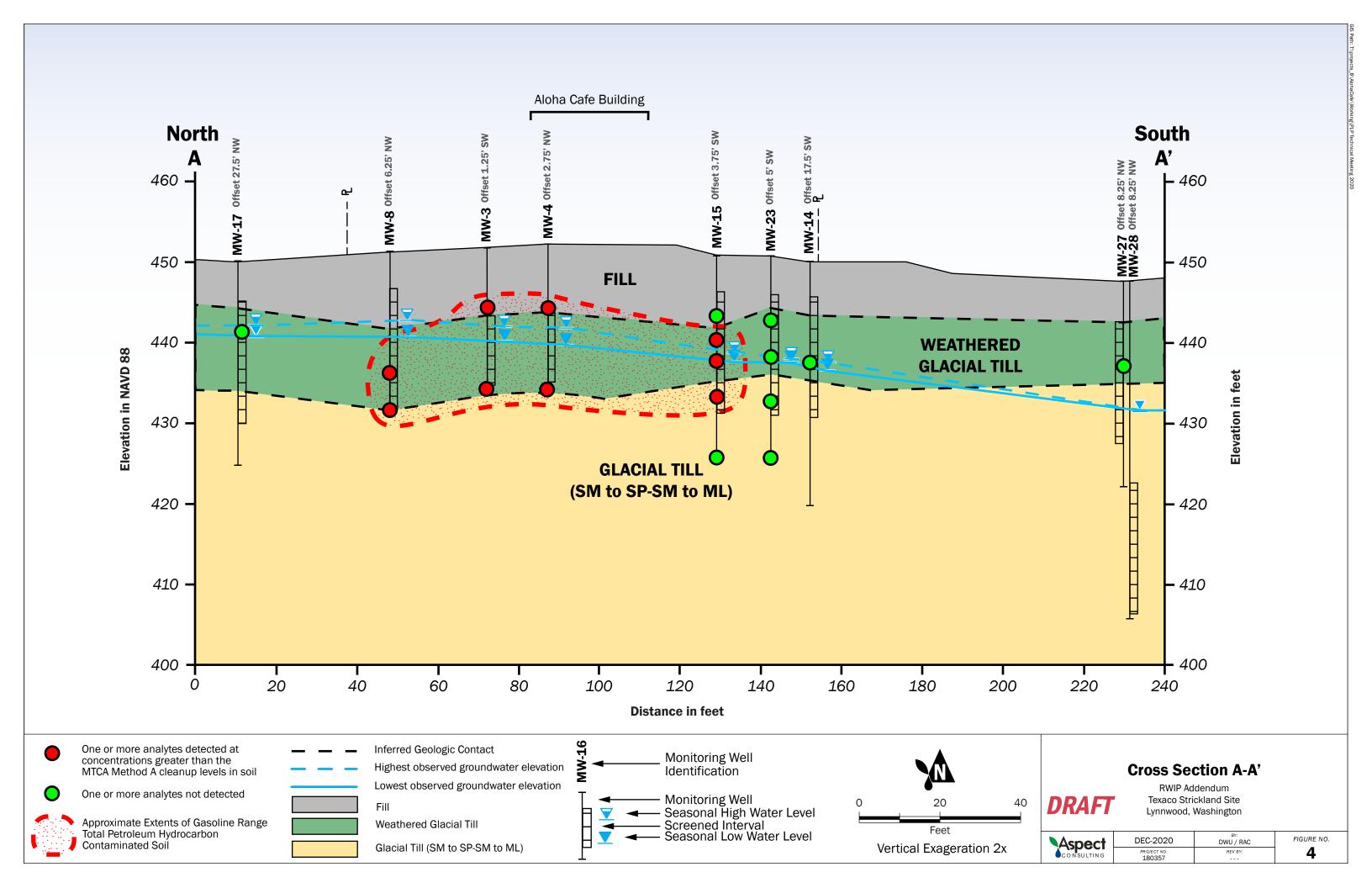
Table 7. Estimated Soil Removal Volumes

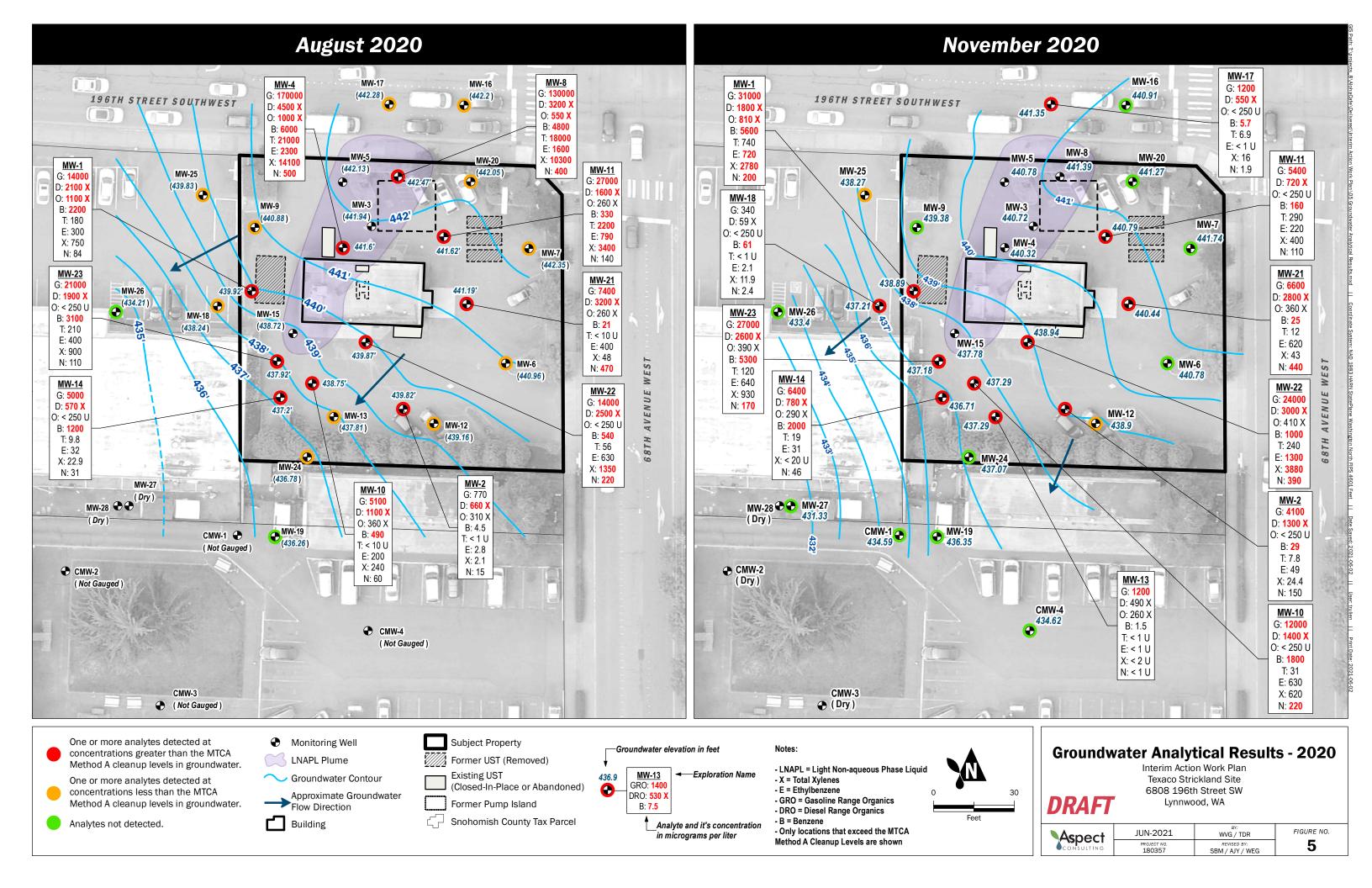

Project No. 180357, Lynnwood, Washington

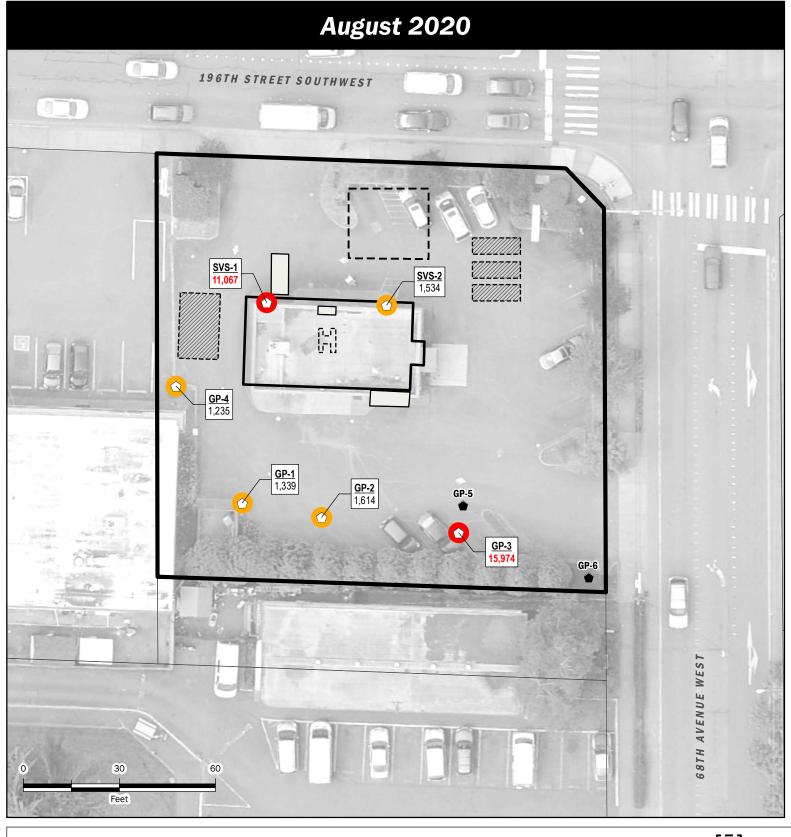

	Elevation	Area	Volume	
Feature	(feet ¹)	(square feet)	(cubic yards)	Notes
Planned Excavation Top	451	13,100	N/A	Area at ground surface
Planned Excavation Bottom	431-433	6,500	N/A	Area at planned bottom
Overexcavation Bottom	421	5,560	N/A	Area at practical limit bottom
Planned Soil Removal	431-433	N/A	7,100	Assumed 1.5:1 side slopes ²
	Pote	ntially Clean Soil	1,800	Based depth to first impacted soil
	Petroleum Co	ontaminated Soil	5,300	Planned Soil Removal less Potentially Clean
Additional Overexcavation	421	N/A	3,000	Assumed 1.5:1 side slopes ²

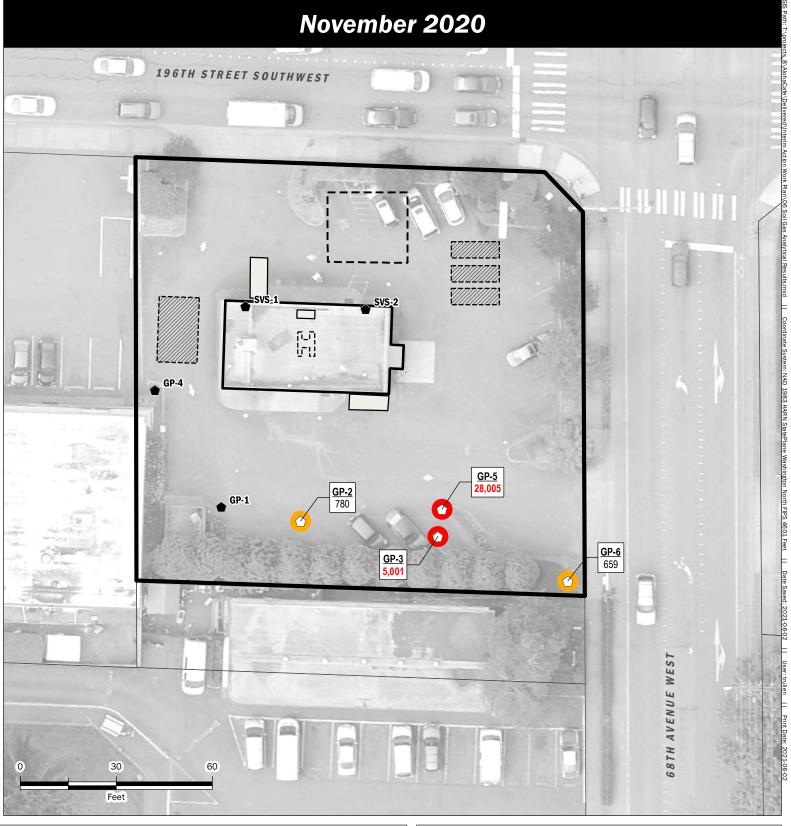

Notes:

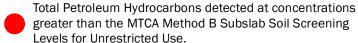

- 1) Elevation feet in NAVD88
- 2) Except for southern cut slope near MW-2 which may be closer to 1:1


Table areas and volumes assume a 1-foot offset from the property line and 3-foot offset from utilities to the shoring wall.







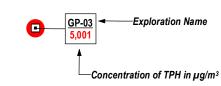


Total Petroleum Hydrocarbons detected at concentrations less than the MTCA Method B Subslab Soil Screening Levels for Unrestricted Use.

Total Petroleum Hydrocarbons not detected.

Soil Vapor Sample (Not Sampled During Event)

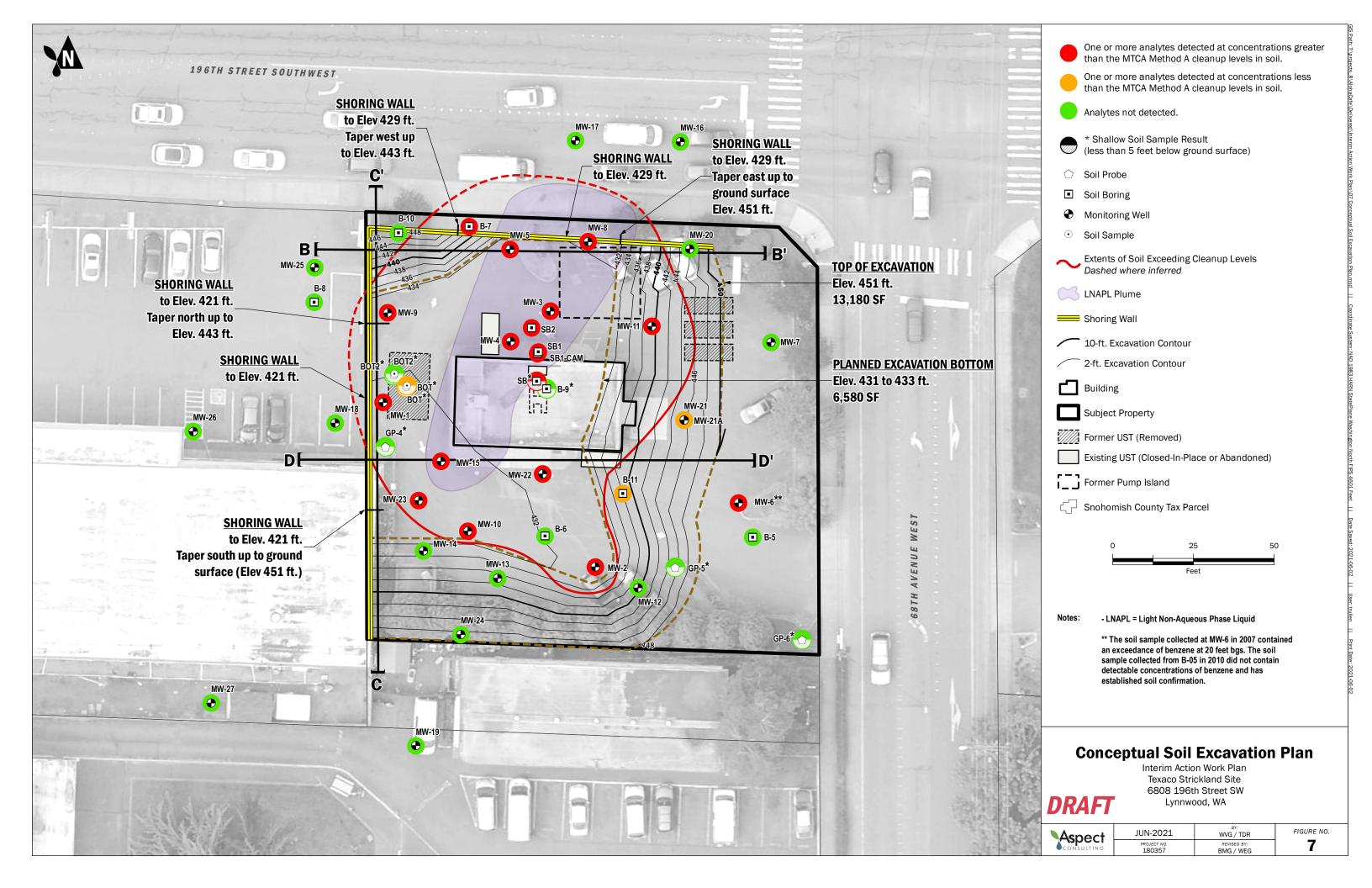
Building


Subject Property

Former UST (Removed)

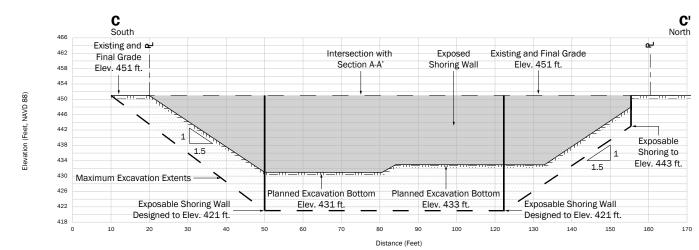
Existing UST (Closed-In-Place or Abandoned)

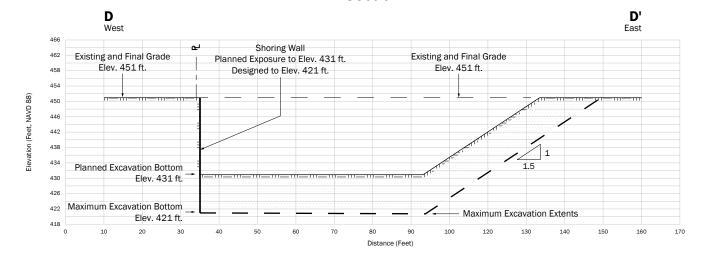
Snohomish County Tax Parcel


Notes:

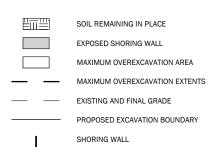
- TPH = Total Petroleum Hydrocarbons
- μg/m³ = Micrograms per cubic meter
 Total petroleum hydrocarbon
- Total petroleum hydrocarbon concentration is the sum total of VOCs and APHs; one-half of the laboratory detection limit was used for non-detects.

Soil Gas Analytical Results - 2020


Interim Action Work Plan Texaco Strickland Site 6808 196th Street SW Lynnwood, WA



Section B-B' В B' 462 Existing and Final Grade Existing and Final Grade Elev. 451 ft. Elev. 451 ft. Exposed Shoring Wall Exposable Shoring Wall Designed 442 to Elev. 443 ft. 1.5 1.5 Maximum Excavation Extents -----434 Exposable Shoring Wall Exposable Shoring Wall Designed to Elev. 429 ft. Planned Excavation Bottom Designed to Elev. 429 ft. Elev. 433 ft. 422 Planned Excavation Bottom Elev. 431 ft. Distance (Feet)


Section C-C'

Section D-D'

LEGEND:

Cross Section Scale

Conceptual Soil Excavation Sections

Interim Action Work Plan Texaco Strickland Site 6808 196th Street SW Lynnwood, WA

Aspect	
CONSULTING	

FEB-2021	BMG / RAC	FIGURE NO.
PROJECT NO. 180357	REV BY:	8

APPENDIX A

Remedial Investigation Boring and Monitoring Well Logs

		_		
	se Fraction e	≤5% Fines	GW	Well-graded GRAVEL Well-graded GRAVEL WITH SAND
200 Sieve)%¹ of Coars No. 4 Sieve	%5≅	GP	Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND
ined on No.	0%1 Retained on No. 200 Sieve Gravels - More than 50% ⁴ of Coarse Fraction Retained on No. 4 Sieve	≥15% Fines	GM	SILTY GRAVEL SILTY GRAVEL WITH SAND
1 50%1 Reta	Gravels - I	≥15%	GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND
Coarse-Grained Soils - More than 50%1 Retained on No. 200 Sieve	e Fraction	≤5% Fines	SW	Well-graded SAND Well-graded SAND WITH GRAVEL
ained Soils	Sands - $50\%^1$ or More of Coarse Fraction Passes No. 4 Sieve	s No. 4 Sieve	SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL
Coarse-Gr	$50\%^{1}$ or More Passes No.	≥15% Fines	SM	SILTY SAND SILTY SAND WITH GRAVEL
	Sands -		SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL
Sieve	/S 75 75 76 76 76		ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL
e Passes No. 200 Sieve	Silts and Clays	וווון דבפס ווו	CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL
	S	רולמומ ר	OL	ORGANIC SILT SANDY OF GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL
ils - 50%1 or	ys More	NOIG NOIG	МН	ELASTIC SILT SANDY or GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL
Fine-Grained Soils - 50%1 or Moi	Silts and Clays		СН	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL
Fine-	υ) τ <u>ι</u>	בולק מי	ОН	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL
Highly	Organic Soils		PT	PEAT and other mostly organic soils

"WITH SILT" or "WITH CLAY" means 5 to 15% silt and clay, denoted by a "-" in the group name; e.g., SP-SM • "SILTY" or "CLAYEY" means >15% silt and clay • "WITH SAND" or "WITH GRAVEL" means 15 to 30% sand and gravel. • "SANDY" or "GRAVELLY" means >30% sand and gravel. • "Well-graded" means approximately equal amounts of fine to coarse grain sizes • "Poorly graded" means unequal amounts of grain sizes • Group names separated by "/" means soil contains layers of the two soil types; e.g., SM/ML.

Soils were described and identified in the field in general accordance with the methods described in ASTM D2488. Where indicated in the log, soils were classified using ASTM D2487 or other laboratory tests as appropriate. Refer to the report accompanying these exploration logs for details.

- Estimated or measured percentage by dry weight
 (SPT) Standard Penetration Test (ASTM D1586)
 Determined by SPT, DCPT (ASTM STP399) or other field methods. See report text for details.

MC PS FC GH AL C Str OC Comp K SG	= = =	Natural Moisture Content Particle Size Distribution Fines Content (% < 0.075 mm) Hydrometer Test Atterberg Limits Consolidation Test Strength Test Organic Content (% Loss by Ignition) Proctor Test Hydraulic Conductivity Test Specific Gravity Test						
		Organio	c Chemical	 S			CHEMICAL LAB TES	STS
TPH-G VOCs SVOCs PAHs PCBs	TPH-Dx = Diesel and Oil-Range Petroleum Hydrocarbons TPH-G = Gasoline-Range Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls Metals RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total) MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total)							
PID	= 1	Photoic	nization De	etector			FIELD TES	STS
Sheen			en Test	: T				
SPT ² NSPT			rd Penetrat andard Pen		st			
DCPT	= [Dynam	ic Cone Per	netration Te	st			
Boulders Cobbles Coarse (Fine Gra Coarse (Medium Fine Sar	Descriptive Term Size Range and Sieve Number COMPONENT Boulders = Larger than 12 inches DEFINITIONS Cobbles = 3 inches to 12 inches Coarse Gravel = 3 inches to 3/4 inches Fine Gravel = 3/4 inches to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm) Silt and Clay = Smaller than No. 200 (0.075 mm)							
% by We	eight	Mod	ifier	% by Weig	ht	Modifier	ESTIMATE	ED¹
<1 1 to <5 5 to 10		Trac		15 to 25 30 to 45 >50	=		PERCENTA	GE

Moist Damp but no visible water Very Moist Water visible but not free draining

Wet Visible free water, usually from below water table

RELATIVE DENSITY Non-Cohesive or Coarse-Grained Soils

Density ³	SPT ² Blows/Foot	Penetration with 1/2" Diameter Rod
Very Loose	= 0 to 4	≥ 2'
Loose	= 5 to 10	1' to 2'
Medium Dense	= 11 to 30	3" to 1'
Dense	= 31 to 50	1" to 3"
Very Dense	= > 50	< 1"

Cohesive or Fine-Grained Soils

CONSISTENCY Manual Test

Consistency ³	SPT ² Blows/Foot

Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Very Soft = 0 to 1Penetrated 1/4" to 1" easily by thumb. Easily molded. Soft 2 to 4 Penetrated >1/4" with effort by thumb. Molded with strong pressure.

Medium Stiff = 5 to 8 = 9 to 15 Stiff Indented ~1/4" with effort by thumb.

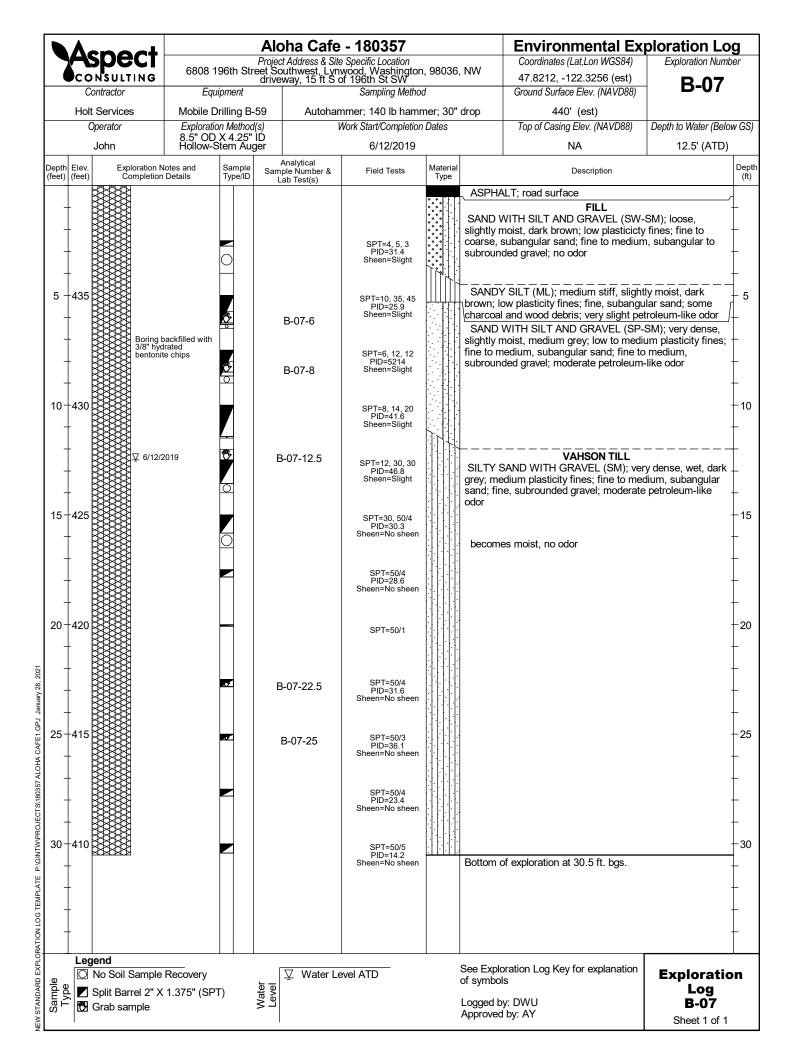
Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.

GEOLOGIC CONTACTS

Observed and Distinct

Observed and Gradual

Inferred



Exploration Log Key

	Δσ	nact			Aloha Cafe	e - 180357			Environmental Ex	ploration Lo	og
7	CO	NSULTING	6808 196t	h Street	Project Address & Si Southwest, Lynwo build	ite Specific Location od, Washington, 9 ling	98036, E o	f former	Coordinates NA	Exploration Nun	
		ntractor	Equ	iipment	Dunc	Sampling Meth	od		Ground Surface Elev. (NAVD88)	B-04	
		locene		push rig		Percussion han			440' (est)		
		perator Matt	Exploration		1(s)	Work Start/Completion	on Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	-
Depth		Matt	1	ct push	Analytical	8/5/2020	M-4:-I		NA	No Water Encou	Depth
(feet)	(feet)	Exploration N Completion	n Details	Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type	SAND I	Description WITH SILT (SW-SM); dry, light	grove finos low	(ft)
	439							plasticity CDF SAND \	sand fine to coarse, subangulary, sub	ar; appears to be grey; fines low	- 1 - 2
3 -								plasticy,	sand fine to coarse, subangula		- 3
4 -	436										- 4
5 -	435										- 5
6 -	434										- 6
	433						<u>````</u> \- -	concret	e of exploration at 7.5 ft. bgs.		7
8 + 9 -	432										+ 8 - 9
10-											10
11-											-11
12-	428										-12
13-	427										-13
14	426										14
15-	425										-15
16											+16
17											-17 -18
19											- 19
20-											-20
21	419										-21
22-	418										-22
23-	417										-23
24-	416										-24
Sample Type	Lege	end			Water Level	er Encountered	c I	See Explo of symbol Logged by Approved	y: DRB	Explorati Log B-04 Sheet 1 of 7	

			Aloha Cafe				Environmental Ex		
	spect	6808 196th Stre	Project Address & Sit et Southwest, Lynwo driveway, 30 ft	te Specific Location	3036 N	side of F	Coordinates (Lat,Lon WGS84)	Exploration Numb	ber
	ONSULTING	Fredrices et	driveway, 30 ft	E of 68th St	-/	ordo or E	47.8210, -122.3252 (est) Ground Surface Elev. (NAVD88)	B-05	
	Contractor	Equipment		Sampling Metho			. ,		
	It Services	Mobile Drilling		mmer; 140 lb hamr	-	drop	440' (est)		001
· '	Operator	Exploration Meth 8.5" OD X 4.2	10a(s) 5" ID	Work Start/Completion	Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belo	,
	John	8.5" OD X 4.2 Hollow-Stem A		6/10/2019			NA	12.5' (ATD)	
Depth (feet)			Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
	****					ASPHA	LT; road surface		
5 -435			B-05-3 B-05-6	SPT=4, 7, 5 PID=0 Sheen=No sheen SPT=3, 10, 18 PID=0.1 Sheen=No sheen		moist, m subangu odor SILT W plasticity	FILL WITH GRAVEL (SW); medium of edium brown; trace fines; fine to lar sand; fine to medium, subrount of the stand of the stand; fine to medium, subrount of the stand of the	o coarse, unded gravel; no , dark brown; low no odor -SM); dense,	- - - - - 5
10-430	Boring 3/8" hyr bentoni	packfilled with dated te chips	B-05-10.5	SPT=7, 12, 18 PID=0.2 Sheen=No sheen SPT=7, 17, 24 PID=0.3 Sheen=No sheen SPT=31, 50/5	• • • • • • • • • • • • • • • • • • • •	subangu SILTY S grey; me sand; fin	VASHON TILL AND WITH GRAVEL (SM); der dium plasticity fines; fine to mer e, subrounded gravel; no odor very; outside of sampler wet	el; no odor nse, moist, dark	- - -10 -
15-425		*	B-05-16	SPT=11, 50/5 PID=0 Sheen=No sheen	2000 2000 2000 2000	GRAVE	s very dense	-GM); very dense,	- -15
20-420				SPT=50/4 PID=0.2 Sheen=No sheen SPT=50/4.5 PID=0.2 Sheen=No sheen	60000000000000000000000000000000000000	subangu	grey; medium plasticity fines; f ar sand; fine to medium subrou ar gravel; no odor lling		- -20
+ + + 25+415		<u>.</u>	B-05-25	SPT=50/3 PID=0.2 Sheen=No sheen SPT=50/4 PID=0.1 Sheen=No sheen	00.00.00	moist, da subangu subangu	EL WITH SILT AND SAND (GW rk grey; medium plasticity fines ar sand; fine to medium, subro ar gravel; no odor f exploration at 25.5 ft. bgs.	; fine to coarse,	- - -25
30-410									-30
mple ype	gend No Soil Sample Split Barrel 2" X Grab sample	-	Water C Evel	evel ATD		See Explo of symbol Logged by Approved	y: DWU	Exploration Log B-05 Sheet 1 of 1	on .

	٨.	.noot			Aloha Cafe				Environmental Ex		
7	<u>(,</u>	haci	6808 196	Sth Stree	Project Address & Site t Southwest, Lynwo	Specific Location od. Washington	8036 3	 5 ft S of	Coordinates (Lat,Lon WGS84)	Exploration Number	er
_		ntractor		uipment	center of k	Sampling Metho			47.8210, -122.3255 (est) Ground Surface Elev. (NAVD88)	B-06	
			· ·	•	50 A	, ,		dros	, , , ,		
		Services Operator		Orilling B- ion Method		nmer; 140 lb hamr Work Start/Completion		игор	440' (est) Top of Casing Elev. (NAVD88)	Depth to Water (Below	ν C
		•	8.5" OD	X 4.25"	ìĎ l	·	Dales		, , , ,		v U
\neg		John		Stem Au	ger Analytical	6/11/2019			NA	12.5' (ATD)	Γ.
pth et)	Elev. (feet)	Exploration I Completion		Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type		Description		De (f
							***	ASPHA	LT; road surface		
	-			0		SPT=11, 11, 9 PID=0.4 Sheen=No sheen		moist, m	VITH SILT (SW-SM); medium of the second seco	fine to coarse,	
5 -	-435 -	3/8" hy	backfilled with drated ite chips		B-06-6	SPT=2, 1, 2 PID=1.1 Sheen=No sheen			/ SILT (ML); soft, moist, dark br e, subangular sand; some char		-
	-			2	B-06-8.5	SPT=13, 28, 32 PID=1.4 Sheen=Slight		slightly r	WITH SILT AND GRAVEL (SW noist, dark grey; low plasticity fir lar sand; fine to coarse, subrou	nes; fine to coarse, \downarrow	
0-	-430 -				B-06-10	SPT=16, 14, 17 PID=1.2 Sheen=No sheen				-	 - -
	- -	∇ 6/11/	/2019	• • •	B-06-13	SPT=7, 20, 50/5 PID=2.5 Sheen=Slight		grey; me	VASHON TILL SAND WITH GRAVEL (SM); ver dium plasticity fines; fine to med e to medium, subangular to sub	dium, subangular	 - -
-	-					SPT=24, 50-/5 PID=4.9 Sheen=Slight SPT=20, 39, 50/5 PID=1.1		wet, darl subangu subangu SILTY	WITH SILT AND GRAVEL (SP- k grey; low plasticity fines; fine to lar sand; fine to medium, subroular gravel SAND WITH GRAVEL (SM); ve	o medium, unded to 	_
0-	- -420					Sheen=No sheen		subangu ∖gravel	y; medium plasticity fines; fine to lar sand; fine to coarse, subang	ular to subrounded	-
-	-					SPT=50/5 PID=0.6 Sheen=No sheen		moist, da subangu	WITH SILT AND GRAVEL (SW ark grey; low plasticity fines; fine lar sand; fine to medium, subro lar gravel	to coarse,	L
	-					SPT=50/4 PID=0.7 Sheen=No sheen		SILTY dark gre	SAND WITH GRAVEL (SM); ve y; medium plasticity fines; fine to lar sand; fine to medium, subro	o medium,	L
25-	-415			20 2	B-06-25	SPT=50/3 PID=0.7 Sheen=No sheen		Bottom (of exploration at 25.5 ft. bgs.		-
_	-					0.100.1		201101111			
-	-									†	
0 - -	-410										_
_	-										L
-	-									+	
Type		end No Soil Sample Split Barrel 2" >	-	PT)	Water Le	evel ATD		of symbol		Exploration Log	·II
, C		Grab sample	`	-	× 3			Logged b		B-06 Sheet 1 of 1	

	Λ.	2004					- 180357			Environmental Ex		
	_	spect	6808 196th	Street S	<i>Projed</i> Southw	ct Address & Site	Specific Location d, Washington, 980	036, 50	ft N of NE	Coordinates (Lat,Lon WGS84)	Exploration Num	
		ONSULTING Contractor		uipment	corn	er of China C	afe Restaraunt Sampling Metho			47.8211, -122.3258 (est) Ground Surface Elev. (NAVD88)	− B-08	
	Hol	t Services		Orilling B	-59	Autohan	nmer; 140 lb hamr		" drop	440' (est)		
		Operator	Explorati	on Method	d(s)		Work Start/Completion			Top of Casing Elev. (NAVD88)	Depth to Water (Beld	ow GS
		Mitch	8.5" OD Hollow-S	X 4.25" Stem Au	ID ger		7/16/2019			NA	8.5' (ATD)	
Depth (feet)		Exploration I Completion		Sample Type/ID	Sam	Analytical ple Number & Lab Test(s)	Field Tests	Materia Type	ıl	Description		Dep (ft
						Lab Test(s)			ASPHA	LT; road surface		,
5	-425 -425 -420 -415 -410 	3/8" hybenton	ite chips		E	B-08-6.0 B-08-8.5 3-08-13.5	SPT=22, 50/5 PID=0.0 Sheen=No sheen SPT=12, 20, 28 PID=0.0 Sheen=No sheen SPT=20, 50/5 PID=0.0 Sheen=No sheen SPT=18, 32, 50/5 PID=0.0 Sheen=No sheen SPT=28, 50/5 PID=0.0 Sheen=No sheen SPT=50/5 PID=0.0 Sheen=No sheen		SAND V grey brove subround SILTY of grey brove coarse, so SILTY of the coarse subangue SILTY of grey brove coarse, so SAND V grey; fine odor	FILL VITH GRAVEL (SP); very densembly, in the tomedium, subangular ded gravel; no odor SAND WITH GRAVEL (SM); dewn; fine to medium, subangular subrounded gravel; no odor GRAVEL WITH SAND (GM); deep brown; fine to medium, subangular to subrounded gravel; no odor WASHON TILL VITH SILT AND GRAVEL (SP-noist, light grey to grey brown; flar sand; fine to coarse, subrounded gravel; no odor SAND WITH GRAVEL (SM); vewn; fine to medium, subangular subrounded gravel; no odor SAND WITH GRAVEL (SM); vewn; fine to medium, subangular sand; fine, subrounded gravel; no odor WITH SILT AND GRAVEL (SP-st, grey brown; fine to medium, subangular sand; fine, subrounded gravel; no odor	sand; fine, ense, slightly moist, sand; fine to ense, slightly angular sand; fine avel; no odor SM); very dense, ine to medium, inded gravel ery dense, moist, sand; fine to ery dense, moist, unded gravel; no ery dense, wery angular sand; fine, ery dense, very angular sand; fine,	- 10 - 15 - 10 - 15 - 20 - 25
Sample Type		gend No Soil Sample Split Barrel 2" X Grab sample	•	T)	Water Level	∑ Water Le	evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log B-08 Sheet 1 of 1	

	A	enoct					- 180357			Environmental	Ex	ploration Lo	og
		SPECT ONSULTING Contractor	6808 196ti	n Street	Project . Southw hoist	Address & Site est, Lynwoo inside Aloha	e Specific Location od, Washington, 98 a Cafe building Sampling Metho	3036, E	of former	Coordinates NA Ground Surface Elev. (NAVD	088)	Exploration Num B-09	nber
		dard Drilling		be 5412	,		Percussion ham			440' (est)	00)		
		Operator	Exploration				Work Start/Completion			Top of Casing Elev. (NAVD8	38)	Depth to Water (Bel	ow GS)
			Direc	ct push			8/5/2020			NA		No Water Encou	ntered
Depth (feet)	Elev. (feet)	Exploration N Completion	lotes and Details	Sample Type/ID	Sampl	nalytical le Number & lb Test(s)	Field Tests	Material Type		Description			Depti (ft)
2 - 3 - 4 - 5 - 6 - 7 - 6 - 7 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	-439 -436 -435 -434 -433 -432 -431 -430 -429 -428 -427 -426 -425 -424 -423 -421 -420 -419 -418 -417	Boring I	packfilled with trated te chips			-09-2.5 3-09-6	PID=0.2 Sheen=No sheen PID=2.0 Sheen=No sheen PID=0.9 Sheen=No sheen PID=1.6 Sheen=No sheen		SAND V coarse, s appears	RETE; building slab FILL WITH SILT (SW-SM); dry, I subangular sand; well cons to be controlled density fill RETE; dry, light gray; refus of exploration at 7.5 ft. bgs.	olida	ted; slow drilling;	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24
Sample		gend Continuous core Grab sample	= 1.85" ID		Water Level	No Wate	er Encountered		See Explo of symbol Logged b Approved	y: DWU	tion	Exploration Log B-09 Sheet 1 of 1	

	A co	~~ +						- 180357			Environmental Ex		
7	CONSU	JCI LTING	6808 196th	Str	eet S	<i>Projed</i> Southw	ct Address & Site vest, Lynwood 808 parking lo	Specific Location , Washington, 980 t on planter	36, NV	V corner of	Coordinates (Lat,Lon WGS84) 47.8212, -122.3257 (est)	Exploration Numb	ber
	Contracto	r	Equ	ipme	ent		рання <u>в</u>	Sampling Method	d		Ground Surface Elev. (NAVD88)	B-10	
	Holocen Operator		HSA Fore					nmer; 140 lb hamr Vork Start/Completion	,	drop	440' (est) Top of Casing Elev. (NAVD88)	Depth to Water (Belo	ow G.S)
	Matt		8.5" OD Hollow-S	X 4 Sten	.25" 1 Au	ID ger		7/30/2020	Datoo		NA	9.5' (ATD)	00,
Depth (feet)		xploration I	Notes and n Details	Sar	mple pe/ID	Sam	Analytical uple Number &	Field Tests	Materia Type	ıl	Description		Depth (ft)
10 + + + + + + + + + + + + + + + + + + +	435	Boring 3/8" hy	backfilled with drated te chips		S10 S9 S8 S7 S6 S5 S4 S3 S2 S1	E NW	3-10-12.5 TPH-Dx, GX, K, Napthalene	SPT=2, 2, 1 PID=2.5 Sheen=No sheen SPT=7, 38, 50/6 PID=3.1 Sheen=No sheen SPT=26, 38, 38 PID=2.5 Sheen=No sheen SPT=30, 39, 50/5 SPT=30, 39, 50/5 SPT=16, 22, 28 PID=5.6 Sheen=No sheen SPT=50/5 PID=4.1 Sheen=No sheen SPT=50/5 PID=3.1 Sheen=No sheen SPT=50/5 PID=3.1 Sheen=No sheen SPT=50/6 PID=3.6 Sheen=No sheen		SILTY S low plast subtrace mottling; SILTY S low plast fine, sub no odor SILTY S medium trace fine sample SILTY S gray; low subangu odor SANDY plasticity coarse, s	FILL SAND (SM); very loose, slightly icity fines; fine to medium, subarine, subrounded gravel; some subtrace charred wood fragme VASHON TILL SAND (SM); very dense, slightly icity fines; fine to medium, subarounded gravel; some coarse, som	angular sand; grey to dark brown nts; no odor moist, light gray; angular sand; trace ubangular sand; troce used to coarse, unded gravel; no	-
Sample	Legend No So Split B		Recovery (1.375" (SP	Γ)		Water Level	☑ Water Le	vel ATD	ı	See Explo of symbol Logged by Approved	y: DWU	Exploration Log B-10 Sheet 1 of 1	on

	Λ.	rnoct					- 180357			Environmental Ex	ploration Lo	
	Α	spect	6808 196t	h Stre	Proje et Sout	ct Address & Site hwest, Lynwo	Specific Location od, Washington, 9	98036,	SE of SE	Coordinates (Lat,Lon WGS84) 47.8210, -122.3254 (est)	Exploration Numb	ber
		ontractor	Equi	pment		corner of Ald	ona Care Sampling Metho	nd		Ground Surface Elev. (NAVD88)	B-11	
	Н	olocene	HSA Fore	most	B-58	Autohan	nmer; 140 lb ham	mer; 30	" drop	440' (est)		
	(Operator	Exploration	n Meth	od(s)	V	Work Start/Completion	n Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belo	w GS
		Matt	8.5" OD Hollow-S	tem A	uger		7/28/2020	_		NA	10' (ATD)	_
Depth (feet)		Exploration N Completion		Sampl Type/I	n Jan	Analytical nple Number & Lab Test(s)	Field Tests	Materia Type		Description		Dep (ft)
									ASPHA	ALT; road surface		7
10-		3/8" hyc bentoniii	le chips	St	NW BTE:	B-11-5.5 TPH-Dx, GX, X, Napthalene B-11-15 TPH-Dx, GX, X, Napthalene	SPT=28, 37, 50/5 PID=11.5 Sheen=No sheen SPT=6, 14, 7 PID=31.8 Sheen=No sheen SPT=25, 32, 50/5 PID=6.6 Sheen=No sheen		plasticity subroun stuck in SILTY medium trace fin fragmen SILTY sines; fir medium some 2	SILT (ML); hard, moist, dark brown fines; fine to coarse, subangula ded gravel; no odor; poor recover sampler SAND (SM); very loose, moist, or plasticit fines; fine to coarse, subrounded gravets; slight asphalt-like odor VASHON TILL SAND (SM); very dense, moist, or plasticit fines; fine to coarse, subrounded gravets; slight asphalt-like odor VASHON TILL SAND (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very dense, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon Till Sand (SM); very loose, moist, or plasticit fines; slight asphalt-like odor Vashon	ar sand; trace fine, ery due to cobble dark brown; ubangular sand; d; some charcoal gray; low plasticity trace fine to	- 5 - 5 - 10 - 15 - 20 - 25
Sample Type		gend No Soil Sample Split Barrel 2" X	-	-)	Water Level	☑ Water Le	evel ATD		See Explored See E	by: DWU	Exploration Log B-11 Sheet 1 of 1	

	Λ.	spoot			Alol	ha Cafe	- 180357			Environmental Ex	ploration Log
		sheci	6808 196	th Stree	Project A t Southw	Address & Site vest, Lynwo	e Specific Location od, Washington, 9 of W wall	98036, 10	0'S of N	Coordinates	Exploration Number
—		ONSULTING Contractor	Egu	ipment	v	vall, ~ 20' E	of W wall Sampling Meth	od		NA Ground Surface Elev. (NAVD88)	B-12
	Stand	dard Drilling		, obe 541	12		Percussion ham			440' (est)	
		Operator	Exploration				Work Start/Completic			Top of Casing Elev. (NAVD88)	Depth to Water (Below GS)
			Dire	ct push			8/5/2020			NA	No Water Encountered
Depth (feet)	Elev. (feet)	Exploration Completion	Notes and on Details	Sample Type/ID	Ar Sampl Lal	nalytical le Number & b Test(s)	Field Tests	Material Type	I	Description	Dept (ft)
1.3GINI WIPKOJECI SV18035/ ALCHA CAFET GP. January 28, 2021 2	-439 -438 -437 -436 -435 -434 -432	Boring 3/8" h bento	g backfilled with ydrated nite chips	Type/ID	Lal	b Test(s)		Type	SAND V plasticity CDF; no	FILL WITH SILT (SW-SM); dry, light v, sand fine to coarse, subangula o odor; slow drilling	grey; fines low
EXPLORATION LOG TER		gend				No Wate	er Encountered		See Explo	oration Log Key for explanation	Exploration
Sample Type	5				Water				of symbol Logged b Approved	y: DWU	Log B-12 Sheet 1 of 1

	Λ.	-					Ald	oha Cafe	- 180357			Monitoring V	Vell Log
		Sp		T	6808 196th	Street	Project Southy	ct Address & Site	e Specific Location d, Washington, 9 umpster enclosu	8036. SW	/ corner of	Coordinates (Lat,Lon WGS84)	Exploration Number
-		ONS Contra	ULTIN	G	Equi	pment	property	/, 10 ft'E of di	umpster enclosui Sampling Meth	re		47.8209, -122.3256 (est) Ground Surface Elev. (NAVD88)	GP-01
							20					, , ,	Ecology Well Tag No. BMF 722
		Opera	vices tor		Geopro Exploratio				Percussion har Work Start/Completi			440' (est) Top of Casing Elev. (NAVD88)	BMF 722 Depth to Water (Below GS)
		Loui				t push			6/5/2019			NA	No Water Encountered
- "	1	Loui						Analytical					
(feet)	h Elev.) (feet)		Explorat Compl	tion No letion [otes and Details	Sample Type/ID	Sam L	Analytical pple Number & ∟ab Test(s)	Field Tests	Materia Type		Description	Dep (ft)
	-439 -438		5" train in	Flush ffic-rat concre	mount, ed monument te								- 1 - 2
3 -	-437		1/4 3/8 bei	4" Teflo 3" hydr ntonite	on tubing in ated e chips						No san	nples collected	- 3
4 -	- 436			-favata	ad atainta a								- 4
5	- 435		Ste ste	eel scre	d stainless een in 10-20 id						Bottom (of exploration at 5 ft. bgs.	- 5
ry 28, 2021	-434												- 6
OHA CAFE1.GPJ Janua	- 433												- 7
WPROJECTS/180357 AI	-432												- 8
NEW STANDARD EXPLORATION LOG TEMPLATE P.GINTW/PROJECTS/180357 ALOHA CAFE1.GPJ January 28, 2021 Sample 6 0 0 L	- 431												- 9
NEW STANDARD EXPLORA	Le	gend				1 1	Water	No Wate	er Encountered	1	See Explosor See Explosor Symbo Logged by Approved	y: DWU	Exploration Log GP-01 Sheet 1 of 1

	Λ.	~ M		_					Alo	ha Cafe	- 180	357			ı	/lonitori	ng V	Vell Log	
		S N S Contrac	ULTI ctor	NG	68	808 190 Eau	Sth S pro	Street operty	Project of South y bound	Address & Sit west, Lynw dary, 30 ft E	te Specific L rood, Was of dumps Samp	ocation hington, 9 ster enclo ling Method	98036, <i>P</i> sure	Along S	47.8209,	es (Lat,Lon WG -122.3255 (face Elev. (NA	(est)	Exploration GP	
			vices			Geopr	•		,		·	sion hamr				40' (est)	/	Ecology We	ell Tag No.
		Opera			l E	Exploration					Work Start/0					ing Elev. (NAV	(D88)	Depth to Wate	r (Below GS)
		Loui				Dire			,			5/2019				NA NA	,	No Water E	
Depth (feet)	h Elev. (feet)		Explo	oration I	Notes a	and Is	San Typ	nple e/ID	Ar Sampl Lal	nalytical e Number & b Test(s)	Field	d Tests	Material Type		1	Description			Depth (ft)
1 -	439 438			5" Flus traffic-ra in conc	h mour ated m rete	nt, onument								Nagar		.d			- 1 - 2
3 -	-437			1/4" Te 3/8" hyo bentoni	flon tul drated ite chip	oing in								No san	nples collecte	ю			- 3
4 -	- 436	**************************************																	- 4
5 -	- 435			Perfora steel so silica s	ited sta creen ii and	ainless n 10-20								Bottom	of exploration	at 5 ft. bgs.			- 5
	- 434																		- 6
OHA CAFE1.GPJ Januar	- 433																		- 7
W/PROJECTS/180357 AL	-432																		- 8
NEW STANDARD EXPLORATION LOG TEMPLATE P.:GINTW/PROJECTS:180357 ALOHA CAFE1.GPJ January 28, 2021 Sample G O O Tanuary 28, 2021	- 431																		- 9
NEW STANDARD EXPLOR		gend						777	Water Level	No Wate	er Encoun	tered	1	See Explored See E	y: DWU	ey for explar	nation	Explor Lo GP-	g 02

	Λ.	- M		6 1				-	Aloha Cat	fe	- 180357			Monitoring \	Well Log	
		ON S Contrac	ULTI	NG	68	08 196	Sth S	Pr treet S proper	roject Address & . Southwest, Lyn rty boundary, 4	Site IWO IO f	Specific Location od, Washington, 9 t W of 68th St cur Sampling Method	98036, A b	Along S	Coordinates (Lat,Lon WGS84) 47.8209, -122.3253 (est) Ground Surface Elev. (NAVD88)	Exploration Number GP-03	
			vices		١,	Geopro					Percussion hamr			440' (est)	Ecology Well Tag BMF 724	g No.
		Opera			1	xploration				И	Vork Start/Completion			Top of Casing Elev. (NAVD88)	Depth to Water (Belo	ow GS)
		Loui				Direc					6/5/2019	Datoo		NA	No Water Encour	
Depth (feet)	Elev.		Explo	ration N	Notes ar Details	nd S	Sam	iple (Analytical Sample Number 8 Lab Test(s)	k	Field Tests	Material Type		Description		Depth (ft)
1 -	-439 -438			5" Flush traffic-ra in conci	n mount ated mo rete	t, nument							No.			- 1 - 2
3 -	-437		***************************************	1/4" Tef 3/8" hyr bentoni'	flon tubi dated te chips	ing in							No san	nples collected		- 3
4 -	436	************														- 4
5 -	- 435			Perforat steel so silica sa	ted staii creen in and	nless 10-20							Bottom (of exploration at 5 ft. bgs.		- 5
	- 434															- 6
HA CAFE1.GPJ January	433															- 7
APROJECTS/180357 ALC	- 432															- 8
NEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTWIPROJECTS/180357 ALOHA CAFE1.GPJ January 28, 2021 Sample C C C C Tring	- 431															- 9
NEW STANDARD EXPLORA Sample Type		gend						Water	No Wa	ater	Encountered	l	See Exploof symbol Logged by Approved	y: DWU	Exploration Log GP-03 Sheet 1 of 1	on_

	Λ	noct			Aloha Cafe	- 180357			Monitoring \	Vell Log	
	1/2	haci	6808 196	Sth Stree	Project Address & Site et Southwest, Lynwo boundary, 20 ft W	e Specific Location ood, Washington,	98036, /	Along E	Coordinates (Lat,Lon WGS84)	Exploration Number	r
_		ntractor	Fau	property ipment	/ boundary, 20 ft W	of SW corner of the Sampling Meth	building' od		47.8210, -122.3257 (est) Ground Surface Elev. (NAVD88)	GP-04	
		Services	·	obe 780	0	Percussion han			440' (est)	Ecology Well Tag I BMF 725	No.
		nerator	Exploration			Work Start/Completic			Top of Casing Elev. (NAVD88)	BMF 725 Depth to Water (Below	GS
	,	ouie		ct push		6/5/2019			NA	No Water Encounte	
	Elev.	Exploration N	lotes and	Sample	Campic Number &	Field Tests	Material		Description		Dept
(feet)	(feet)	Completion	Details	Type/ID	Lab Test(s)		Туре	ASPH/	ALT; Road surface		(ft)
1 -	-439	5" Flush traffic-re in concr	n mount, ited monument ete	GP-04-1		PID=7.9 Sheen=Slight		slightly r	FILL WITH SILT AND GRAVEL (SW moist, medium grey; trace fines; subangular; gravel fine to mediu	sand fine to	- 1
2 -	-438 ×			GP-04-2		PID=11.8 Sheen=Slight		SILT V brown; f odor	VITH GRAVEL (ML); soft, slight ines low plasticity; gravel fine, s	ly moist, dark ubrounded; no –	- 2
3 -	-437	1/4" Tef 3/8" hyd bentonit	lon tubing in Irated le chips	0							- 3
4 -	-436 ×										- 4
5 -	-435	Perforat Steel sc silica sa	red stainless reen in 10-20 and					Bottom	of exploration at 5 ft. bgs.		- 5
	-434										- 6
7 -	-433										- 7
8 -	-432										- 8
9 -	-431										- 9
Sample 6 8 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Lege	ond lo Soil Sample continuous core crab sample			No Water Programme No Water No	r Encountered		See Explored Symbol Logged & Approved	by: DWU	Exploration Log GP-04 Sheet 1 of 1	—

	cnact			Aloha Cafe	- 180357			Monitoring V		
	SPECI ONSULTING	6808 196th	Street	Project Address & Site Southwest, Lynwoc with GF	e Specific Location od, Washington, 9	98036, Co	o-located	Coordinates (Lat,Lon WGS84)	Exploration Numb	
	Contractor	Equi	pment	with GF	Sampling Meth	od		, (est) Ground Surface Elev. (NAVD88)	- GP-05	
	Holocene	Geoprob		от	Percussion han			440' (est)	Ecology Well Tag BNF 357	g No.
	Operator	Exploration			Work Start/Completic			Top of Casing Elev. (NAVD88)	BNF 357 Depth to Water (Below 0	
	Chris		t push		11/10/2020)		NA	No Water Encoun	ntered
Depth Elev (feet) (feet	/. Exploration	Notes and on Details	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Dept (ft)
				Lab Test(s)		,,	ASPH/	ALT; Road surface		
1 -439	traffic- in con	sh mount, rated monument crete			PID=0.0 Sheen=VSS		medium coarse, s subroun	FILL WITH SILT AND GRAVEL (SW- dense, moist, gray; low plasticit subangular sand; fine to mediur ded gravel; no odor SAND WITH GRAVEL (SM); ap	y fines; fine to n, subangular to	- 1
2 -438			S1		Sheen=OS PID=0.0 Sheen=OS		moist, br	own; medium plasticity fines; fi lar sand; fine to medium, subar ded gravel; no odor	ne to coarse,	- 2
3 -437	7 1/4" T 3/8" h	eflon tubing in ydrated nite chips								- 3
4 -436										- 4
5 +435										- 5
6 +434	4		S2	GP-05-6 NWTPH-Dx, Gx, BTEXN	PID=0.5 Sheen=OS			NIC SILT (OL); appears soft, medium plasticity; some organic of ike odor		+ 6
7 +433	Perfor	ated stainless screen in 10-20 sand			PID=0.2 Sheen=VSS		low plast	VASHON TILL SAND (SM); appears denes, mo ticity fines; fine to medium, sub- rounded gravel; no odor	ist, gray-brown; angular sand; trace	 7
8 +432	2 - 10 - 3 - 3 - 3						Bottom o	of exploration at 8 ft. bgs.		8
9 -431	1									- 9
mple Mype	egend No Soil Sampl Continuous co Grab sample	-		Mater Level	r Encountered		See Explo of symbol Logged b Approved	y: DWU	Exploration Log GP-05 Sheet 1 of 1	on

	Aspect				Aloha Cafe		Monitoring Well Log Coordinates (Lat,Lon WGS84) Exploration Numb				
🏅	CON	SULTING	6808 196th	Street	Project Address & Site Southwest, Lynwoo corner in d	d, Washington, 98 riveway	8036, SE	Property	, (est)	GP-06	
	Cor	ntractor	Equi	ipment		Sampling Metho	od		Ground Surface Elev. (NAVD88)		
		ocene	Geoprob			Percussion ham			439' (est)	Ecology Well Tag BNF 358	J 140.
Operator		Exploratio		f(s) V	Vork Start/Completio			Top of Casing Elev. (NAVD88)	Depth to Water (Below		
Depth B		Exploration		t push Sample	Analytical Sample Number &	11/10/2020 Field Tests	Material		NA Description	No Water Encoun	Depth
(feet) (Completio	n Details	Type/ID	Lab Test(s)	Tielu Tesis	Туре	ASPHA	LT; Road surface		(ft)
	438	5" Flus traffic-i in cond	h mount, ated monument crete		OD 00 0 5	PID=0.1 Sheen=OS		SAND V	FILL VITH SILT (SP-SM); appears Ic ow plasticity fines; fine to coarse lar sand; trace fine to medium,	e, mostly medium,	- 1 - 2
3 -4	436	1/4" Te 3/8" hy benton	flon tubing in rdated ite chips	S 1	GP-06-2.5 NWTPH-Dx, Gx, BTEXN	PID=0.1 Sheen=OS		brown; lo SILTY light brow	NIC SILT (OL); appears soft, ve ow plasticity; mostly organic deb SAND (SM); appears medium of wn; low plasticity fines; fine to not uce fine, subrounded gravel; no	oris; no odor lense, very moist, nedium, subangular	- 3
4 -	435 X			0							- 4
5 -4	434	Perfora steel s silica s	ated stainless creen in 10-20 and					Bottom o	of exploration at 5 ft. bgs.		- 5
	433										- 6
7 -4	432										- 7
8 -4	431										- 8
9 -4	430										- 9
Sample 6 8 8 L. Line of the control	III c	nd lo Soil Sample continuous cor crab sample			Mater Level	r Encountered		See Explo of symbol Logged b Approved	y: DWU	Exploration Log GP-06 Sheet 1 of 1	on

	Λ.	rnoct			Aloha Cafe				Monitoring V		
	▲ -	Spect NASULTING	Project Address & Site Specific Location 6808 196th Street Southwest, Lynwood, Washington, 98036, NE corner of building, close to former UST locations						NE of NE Coordinates (Lat,Lon WGS84) 47.8211, -122.3254 (est)		ber •
		ontractor	Equipment Sampling Method					Ground Surface Elev. (NAVD88)	MW-11		
		t Services		rilling B-		nmer; 140 lb hamı		drop	440' (est)	Ecology Well Tag BMF 726	_
	(Operator John		on Method(X 4.25" I Stem Aug	(s) V D er	Nork Start/Completion 6/10/2019	n Dates		Top of Casing Elev. (NAVD88) NA	Depth to Water (Belo 9.08' (Static)	
	Elev. (feet)	Exploration N Completion	Notes and	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description	,	Depth (ft)
, ,	, ,	8" Flush	n mount,		Lab Test(s)		• • []	ASPHA	ALT; road surface		 ``
-	<u>+</u> -	in conci	ated monument rete edule 40 PVC hydrated te chips		MW-11-1	SPT=3, 7, 5 PID=2688 Sheen=Slight		slightly r coarse, s gravel; n	FILL WITH SILT AND GRAVEL (SW- noist, light grey; low plasticity fir subangular sand; fine to medium noderate petroleum-like odor	nes; sand fine to n, subrounded	- - -
5 -	-435 -		ac Grips		MW-11-6	SPT=1, 3, 13 PID=3057 Sheen=Slight SPT=20, 50/5		dark bro moderat SILTY S slightly r medium	/ITH GRAVEL (ML); medium st wn; low plasticity fines; fine, subsete petroleum-like odor VASHON TILL SAND WITH GRAVEL (SM); menoist, dark grey; medium plastice, subrour petroleum-like odor	orounded gravel; ———————————————————————————————————	5
10-	-430 -		2019 (10-slot) 2" le 40 PVC in 12-20 silica	0		SPT=19, 24, 30					-10
-	+		2019	• <u>•</u>	MW-11-13	SPT=6, 11, 22 PID=11.2 Sheen=No sheen			es dense; wet; no odor		+
15-	-425 - - -			• •	MW-11-18	SPT=39, 43, 50/5 SPT=38, 50/3 PID=1.3 Sheen=No sheen		wet, dar sand; fir SILTY medium	EL WITH SILT AND SAND (GP- k grey; medium plasticity fines; on the to coarse, subrounded gravel; GRAVEL (GM); very dense, we plasticity fines; medium to coartillar gravel; no odor	coarse, subangular no odor t, dark grey;	-15
-	-420 -					SPT=50/4		moist, da subangu	WITH SILT AND GRAVEL (SW ark grey; medium plasticity fines llar sand; fine to medium, subro llar gravel; no odor	; fine to coarse,	-20
-	145					SPT=50/3 PID=1.7 Sheen=No sheen					-
25-	+415			.02	MW-11-25	SPT=50/4 PID=2.2 Sheen=No sheen		Bottom o	of exploration at 25.5 ft. bgs.		<u>+25</u>
-	†										ļ
30-	410										-30
-	†										
-	†										‡
-	<u> </u>										+
Sample		gend No Soil Sample Split Barrel 2" X Grab sample	-	Τ)	X Static Water Le	ater Level evel ATD		See Explo of symbo Logged b Approved	y: DWU	Exploration Log MW-11 Sheet 1 of 1	on

	A				Aloha Cafe	- 180357			Monitoring \	Vell Log	
		spect	6808 196th	Street S	Project Address & Site outhwest, Lynwood	Specific Location d. Washington, 98	036. 50	ft S of SE	Coordinates (Lat,Lon WGS84)	Exploration Numb	ber
		ontractor	corner of building			building Sampling Metho			47.8209, -122.3254 (est) Ground Surface Elev. (NAVD88)	− MW-12	
	Holt Services		· ·	•	-O Autobon	, ,		dran	,	Ecology Well Tag	g No.
Operator			rilling B-{ on Method(nmer; 140 lb hamr Work Start/Completion		arop	440' (est) Top of Casing Elev. (NAVD88)	BMF 727 Depth to Water (Belo	ow GS)	
	John		8.5" OD	X 4.25" I Stem Aug	ĎΙ	6/10/2019	Dates		NA	9.88' (Static)	,
Depth	Elev.	Exploration		Sample	Analytical Sample Number &	Field Tests	Material		Description	0.00 (0.00)	Depth
	(feet)	Completio	n Details	Type/ID	Lab Test(s)	Tield Tests	Type	АСОНА	LT; road surface		(ft)
5 -	- - - -435	traffic- in cond 2" Sch in 3/8"	h mount, ated monument crete edule 40 PVC hydrated ite chips		MW-12-3	SPT=13, 15, 18 PID=0.3 Sheen=No sheen SPT=5, 3, 2		SAND V	FILL VITH GRAVEL (SW); dense, sl ce fines; fine to coarse, subang subangular to subrounded gra	ular sand; fine to	- - - - 5
-	430	▼ 6/19	/2019		MW-12-8	SPT=6, 15, 20 PID=0.8 Sheen=No sheen		brown; lo	SILT WITH GRAVEL (ML); has been plasticity fines; fine, subanguled gravel; no odor	ular sand; fine,	-10
-	+00	0.010" schedt screen sand	(10-slot) 2" ıle 40 PVC in 12-20 silica	%	MW-12-11.5	SPT=4, 9, 12 PID=0.8 Sheen=No sheen SPT=15, 23, 28 PID=0.8 Sheen=No sheen		moist, da subangu subround	AND WITH GRAVEL (SM); me irk grey; medium plasticity fines lar sand; fine to medium, subar ded gravel; no odor es very dense	s; fine to medium,	_
15 ·	-425 -	☑ 6/10	/2019	<u> </u>	MW-12-15	SPT=27, 34, 50/5 PID=0.8 Sheen=No sheen		become	es wet		-15 -
20 ·	420					SPT=26, 50/4 PID=3,8 Sheen=No sheen SPT=50/4 PID=0,5 Sheen=No sheen		become	es moist		-20
-						SPT=50/4 PID=0.1 Sheen=No sheen		slow dri	lling :L WITH SAND (GW); very der r; trace fines; fine to coarse, su		<u> </u>
25	+415			-97	MW-12-25	SPT=50/4 PID=0.1 Sheen=No sheen	ي ش ش	to coarse	e, subangular to subrounded graft exploration at 25.5 ft. bgs.		-25
30	410										-30
-		gend						Soc Frederic	vation Log Vov for similar disc		
Sample 30	₹ Z	No Soil Sample Split Barrel 2" 2 Grab sample	-	Т)	∑ Static Water Le			See Explo of symbols Logged by Approved	y: DWU	Exploration Log MW-12 Sheet 1 of 1	on

	noct			loha Cafe				Monitoring V	Vell Log	
Col	NSULTING Intractor Services	Equipment Equipment			Sampling Method	d		Coordinates (Lat,Lon WGS84) 47.8209, -122.3256 (est) Ground Surface Elev. (NAVD88)	Exploration Number WW-13 Ecology Well Tag No	
Operator John		Exploration 8.5" OD X	n Method(s) K 4.25" ID		nammer; 140 lb hammer; 30" drop Work Start/Completion Dates			440' (est) Top of Casing Elev. (NAVD88)	Depth to Water (Below (
Depth Elev. (feet) (feet)	Exploration N Completion	otes and	Sample Sa	Analytical mple Number &	6/11/2019 Field Tests	Material Type		NA Description	12.31' (Static)	Dept
(idet) (idet)	8" Flush		Турслі	Lab Test(s)		**************************************	ASPHA	ALT; road surface	7	
5 -435	2" Schee in 3/8" h bentonit	dule 40 PVC ydrated		MW-13-6	SPT=5, 5, 10 PID=0.9 Sheen=No sheen SPT=2, 2, 9 PID=0.8 Sheen=No sheen		dense, s to coars odor SAND dark gre subangu odor	WITH SILT AND GRAVEL (SW- slightly moist, dark brown; low place, subangular sand; fine, subrounders, subangular sand; fine, subrounders, subangular sand; fine to medium, subrounders, subr	asticity fines, fine inded gravel; no SM); loose, moist, o medium, unded gravel; no	- - - 5 -
10-430	schedule screen ii	10-slot) 2" e 40 PVC n 12-20 silica			SPT=19, 25, 31 PID=0.7 Sheen=No Sheen SPT=10, 16, 17 PID=0.9 Sheen=No sheen		brown; le subroun odor SAND brown; le	Y SILT WITH GRAVEL (ML); sti ow plasticity fines; fine, subangu- ded gravel; some wood and cha WITH SILT (SP-SM); dense, sli ow plasticity fines; fine to mediu- le to medium, subangular to sub-	llar sand; fine,	- - - 10
	sand 6/19/2 6/11/2	019	501	MW-13-11 //W-13-12.5	SPT=9, 19, 27 PID=1.2 Sheen=No sheen		SAND brown; t subroun	WITH GRAVEL (SP); dense, sli race fines; fine to medium, suba ded gravel; no odor VASHON TILL WITH SILT AND GRAVEL (SW-	ingular sand; fine, 	
15 - 425				MW-13-18	SPT=22, 27, 50/5 PID=2.5 Sheen=No sheen SPT=39, 50/4 PID=1.8 Sheen=No sheen		coarse, solution SILTY gravel; no SILTY grey; me	noist, light grey; medium plastici subangular sand; fine, subround SAND (SM); dense, moist, dark of fines; fine, subangular sand; tra oo odor SAND WITH GRAVEL (SM); de adium plasticity fines; fine to me te to medium subangular to subi	ed gravel; no odor grey; medium ace rounded nnse, wet, dark dium, subangular	- 15 - -
20-420					SPT=38, 50/3 PID=1.8 Sheen=No sheen		odor	es very dense, moist; gravel fine		- - 20 -
25-415			y	MW-13-25	SPT=50/5.5 PID=1.7 Sheen=No sheen SPT=40, 50/3 PID=1.9 Sheen=No sheen			es slightly moist of exploration at 25.5 ft. bgs.		- - 25 -
30-410										- -
										-
ybe N ≥ S	end No Soil Sample Split Barrel 2" X Grab sample	-	Water (_	ater Level evel ATD		See Explo of symbo Logged b Approved	y: DWU	Exploration Log MW-13 Sheet 1 of 1	1

	<u> </u>		1		Aloha Cafe				Monitoring V	Vell Log	
	X	Spect	6808 196tl	n Street S	Project Address & Site Southwest, Lynwoo	e <i>Specific Location</i> od, Washington, 98	036, 5 f	t N of NE	Coordinates (Lat,Lon WGS84) 47.8209, -122.3257 (est)	Exploration Numb	
		ONSULTING Contractor	Project Address & Site Specific Location 6808 196th Street Southwest, Lynwood, Washington, 98036, 5 f corner of dumpster enclosure Equipment Sampling Method					Ground Surface Elev. (NAVD8)		⊢ MW-14	
Holt Services Operator			orilling B-	59 Autobar	nmer; 140 lb hamr		drop	440' (est)	Ecology Well Tag	g No.	
		Exploration	on Method	(s) I	Work Start/Completion		чор	Top of Casing Elev. (NAVD88)	Depth to Water (Belo	w GS)	
	8.5" O John Hollow		8.5" OD Hollow-S	X 4.25" Stem Aug	ÍĎ jer	6/11/2019			NA	13.25' (Statio	3)
Depti (feet)	Elev (feet	v. Exploration		Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type		Description	1	Depth (ft)
(1001)	(Tan an i	sh mount,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lab Test(s)		.,,,,,	ASPHA	LT; road surface		(,
5	- - - -435	trafficin con 2" Sch in 3/8" bentor	rated monument			SPT=3, 10, 7 PID=0,8 Sheen=No sheen SPT=2, 2, 2 PID=2.5 Sheen=No sheen SPT=50/3		dense, s to coarse subround	FILL VITH SILT AND GRAVEL (SW- lightly moist, dark brown; low pl , subangular sand; fine to med ded gravel; no odor al fragments illing, drill rig chatter	asticity fines; fine	- - - - 5 - -
10	-430 -	0.010' sched	' (10-slot) 2" ule 40 PVC n in 12-20 silica		MW-14-10.5	SPT=16, 30, 28 PID=2.9 Sheen=No sheen		moist, lig subangu	WITH SILT AND GRAVEL (SP- ht brown; low plasticity fines; fil lar sand; fine to medium, subro lar gravel; no odor	ne to medium,	-10
	† †	∑ 6/11		0	MW-14-12.5	SPT=18, 30, 28 PID=2.9 Sheen=No sheen		become	es wet		+
	+425			<u>.</u> ✓	MW-14-17.5-D MW-14-17.5	SPT=50/4 SPT=50/5 PID=7.5 Sheen=No sheen SPT=50/3 PID=7.3 Sheen=No sheen		grey; me sand; fin odor	VASHON TILL SAND WITH GRAVEL (SM); ver dium plasticity fines; fine to me e to coarse, subangular to subr es moist	dium, subangular	-15 - - - - -20
	 - - -			¥ \$	MW-14-22.5	SPT=41, 50/1 PID=5 Sheen=No sheen		SUTV	SAND (SM); very dense, wet, d	ark grev medium	 - - -
25	+415 -	5		5 2	MW-14-25	SPT=50/4 PID=11.5 Sheen=No sheen		plasticity	fines; fine to medium, subangurounded gravel; no odor		+25 -
	† + +				MW-14-27.5	SPT=50/3 PID=12.5 Sheen=No sheen		dark grey	SAND WITH GRAVEL (SM); very; medium plasticity fines, fine to lar sand; fine to coarse, subango odor	o medium,	+
30	410				MW-14-30	SPT=46, 50/6 PID=2.1 Sheen=No sheen		plasticity gravel; n	SAND (SM); very dense, wet, defines; fine, subangular sand; troo odor of exploration at 31 ft. bgs.		-30
	 - -										<u> </u> -
30 algumple		egend No Soil Sampl Split Barrel 2" Grab sample	•	T)	Static W Water Le	ater Level evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-14 Sheet 1 of 1	on

Manach		Aloha Cafe				Monitoring V		
Apheci	6808 196th Street Sc	roject Address & Site outhwest, Lynwoo	Specific Location od, Washington, 98	8036. 5	ft SW of	Coordinates (Lat,Lon WGS84)	Exploration Num	ber
Consulting Contractor	Equipment	SW corner o	f building Sampling Method			47.8210, -122.3256 (est) Ground Surface Elev. (NAVD88)	MW-1	5
Holt Services	Mobile Drilling B-59	A. Haba-	nmer: 140 lb hamn		dron	`	Ecology Well Ta	_
Operator Operator	Exploration Method(s)		ork Start/Completion	,	arop	440' (est) Top of Casing Elev. (NAVD88)	BMF 730 Depth to Water (Belo	ow G
John	8.5" OD X 4.25" ID Hollow-Stem Auger		6/12/2019	_ 5.00		NA	12.1' (Static	
		Analytical	0/12/2019			IVA	12.1 (Static	Ť
Depth Elev. Exploration (feet) (feet) Completio		Sample Ńumber & Lab Test(s)	Field Tests	Material Type		Description		De (1
8" Flus	h mount,			· . · . [" } [ASPHA	LT; road surface		\overline{A}
traffication in condition in condition in condition in condition in 3/8" benton 5 -435	ated monument rerete edule 40 PVC hyrdated lite chips (10-slot) 2" le 40 PVC in 12-20 silica	MW-15-7.5 MW-15-10.5 MW-15-13	SPT=9, 12, 7 PID=13.6 Sheen=No sheen SPT=2, 2, 1 PID=60.8 Sheen=Slight SPT=8, 19, 16 PID=30.8 Sheen=Slight SPT=11, 26, 50/5 PID=15000 Sheen=Moderate SPT=11, 26, 50/5 PID=703.4 Sheen=Slight SPT=16, 50/6 PID=703.4 Sheen=Slight SPT=50/4 PID=1887 Sheen=Slight SPT=50/6 Sheen=No sheen SPT=50/5 PID=2807 Sheen=Slight SPT=50/5 PID=2807 Sheen=No sheen SPT=50/5 PID=51.1		SAND plasticity charcoal SAND slightly n subangu some ox SILTY s grey; me sand; fin petroleur fine to result of the subangu petroleur subangu petroleur subround GRAVE trace fine subround	FILL WITH SILT AND GRAVEL (SW- lightly moist, light brown; low pla e, subangular sand; fine to medio o odor SILT (ML); soft, slightly moist, fines; fine, subangular sand; s debris; very slight petroleum-lik WITH SILT AND GRAVEL (SW noist, light grey; low plasticity fin lar sand; fine to medium, subro ide staining; very slight petroleu VASHON TILL SAND WITH GRAVEL (SM); der dium plasticity fines; fine to me e, subrounded gravel; moderate m-like odor medium, subrounded gravel (SP); very dense, moist, dark gr subangular sand; moderate pe SAND WITH GRAVEL (SM); ve y; medium plasticity fines; fine to lar sand; fine, subrounded grave m-like odor WITH GRAVEL (SP); very dense es; medium, subangular sand; f ded gravel; no odor	light grey; medium ome wood and e odor -SM); very dense, es; fine to coarse, unded gravel; m-like odor ey; trace fines; troleum-like odor to strong ey; trace fines; troleum-like odor my dense, moist, to medium, el; moderate ee, wet, dark grey; ine to medium,	
Logand					SILTY : plasticity	Subrounded graver, no odor SAND (SM); very dense, moist, fines; fine, subangular sand; no of exploration at 31 ft. bgs.		- - -
Legend No Soil Sample Split Barrel 2") Grab sample		▼ Static War Le			See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-15	on

	<u> </u>	2222			Aloha Cafe	- 180357			Monitoring V	Vell Log	
	_ \	spect	6808 196t	h Street	Project Address & Site Southwest, Lynwoo 196th St SW, 50	e Specific Location od, Washington, 9	8036, 2r	nd lane of	Coordinates (Lat,Lon WGS84)	Exploration Num	
		ONSULTING Contractor		ipment	196th St SW, 50	ft from 68th St Sampling Metho	nd .		47.8213, -122.3255 (est) Ground Surface Elev. (NAVD88)	− MW-16	6
		It Services		orilling B-	59 Autoban	nmer; 140 lb ham		' dron	440' (est)	Ecology Well Ta	ıg No.
		Operator		on Method		Work Start/Completion		шор	Top of Casing Elev. (NAVD88)	BMF 732 Depth to Water (Belo	ow GS)
		John	8.5" OD Hollow-S	X 4.25" Stem Auc	ìĎ l	6/14/2019			NA NA	8.25' (Static	,
	Elev.		Notes and	Sample Type/ID	Analytical Sample Number &	Field Tests	Material		Description		Depti
(leet)	(leet)	8" Flush	n mount.		Lab Test(s)		Туре	ASPHA	LT; road surface		(ft)
- - - 5 -	- - - - - - 435	2" Sche in 3/8" l bentoni	edule 40 PVC nyrdated te chips			SPT=16, 18, 29 PID=0.8 Sheer-Clinks		medium	FILL WITH SILT AND GRAVEL (SP-sgrey; low to medium plasticity fi subangular sand; fine to mediu o odor	nes; fine to	- - - - 5
-	†	▼ 6/19/:	2019		MW-16-6.5 MW-16-7.5	Sheen=Slight SPT=7, 16, 19 PID=1.6 Sheen=Slight		grey; me	VASHON TILL SAND WITH GRAVEL (SM); de dium plasticity fines; fine to me e to coarse. subrounded gravel:	dium, subangular	† + +
10-	+430 +		(10-slot) 2" le 40 PVC in 12-20 silica 2019		MW-16-12.5	SPT=6, 14, 21 PID=1.4 Sheen=No sheen SPT=5, 23, 50-5 PID=1.4		become	, ,	TIO Odol	-10 -
15 - -	-425 -					Sheen=No sheen SPT=28, 36, 49 PID=1.5 Sheen=No sheen					- -15
20-	420			**	MW-16-17.5	SPT=50/5 PID=1.4 Sheen=No sheen		grey; low subround	SILT WITH GRAVEL (ML); ha plasticity fines; fine, subangula ded gravel; no odor		-20
-						SPT=50/5 PID=2.0 Sheen=No sheen SPT=50/1 PID=1.1 Sheen=No sheen		+ medii	um gravel		
25 - - -	-415 -			7 2	MW-16-25	SPT=50/6 PID=1.1 Sheen=No sheen		Bottom o	of exploration at 25.5 ft. bgs.		-25 -
30-	-410 -										-30 -
-											+
25		gend No Soil Sample Split Barrel 2" X Grab sample	-	T)	Mater Le	ater Level evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-16 Sheet 1 of 1	

	Λ.	spost			Aloha Cafe				Monitoring V		
	<u> </u>	Spect Substing	6808 196t	h Street	Project Address & Site Southwest, Lynwoo 196th St SW, 201	e Specific Location od, Washington, 98	3036, 2r	nd lane of	Coordinates (Lat,Lon WGS84) 47.8213, -122.3254 (est)	Exploration Num	
		Contractor		iipment	19001 30 300, 20	Sampling Metho			Ground Surface Elev. (NAVD88)	MW-17	
		t Services	Mobile D			nmer; 140 lb hamr		drop	440' (est)	Ecology Well Ta BMF 731	
	(Operator John	Exploration 8.5" OD Hollow-S	on Method X 4.25" Stem Aug	(s) V ID Der	Nork Start/Completion 6/14/2019	n Dates		Top of Casing Elev. (NAVD88) NA	Depth to Water (Belowater) 7.83' (Static)	,
Depth (feet)	Elev. (feet)	Exploration	Notes and	Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type		Description		Depth (ft)
(1001)	(icci)	8" Flus	sh mount.	Ĥ	Lab Test(s)		Type	_ ASPHA	LT; road surface		/ (11)
-	 - -	2" Sch in 3/8"	rated monument crete nedule 40 PVC hyrdated nite chips	i e				slightly r	FILL VITH SILT AND GRAVEL (SP-3 noist, medium grey; low to medi nedium, subangular sand; fine to ded gravel; no odor	um plasticity fines;	-
5 -	435			№	MW-17-6	SPT=15, 23, 30 PID=1.1 Sheen=No sheen					- 5 -
-	 	6/19	I/2019 0/2019	2	MW-17-8.5	SPT=9, 11, 12 PID=0.7 Sheen=No sheen		moist, da	VASHON TILL SAND WITH GRAVEL (SM); me ark grey; medium plasticity fines lar sand; fine to medium, subro	; fine to medium,	<u></u>
10-	430	□ □ □ □ □ 6/14 □ □ □ □ 0 010"		0	MW-17-10	SPT=3, 10, 22 PID=1.1 Sheen=No sheen		become	es wet		-10 -
-	 	sched screer sand	' (10-slot) 2" ule 40 PVC n in 12-20 silica			SPT=4, 10, 14 PID=0.6 Sheen=No sheen					+
15-	-425 -					SPT=14, 50/5 PID=0.8 Sheen=No sheen			es very dense WITH SILT AND GRAVEL (SW	SM): von donco	-15 -
-	 - -					SPT=50/4 PID=1.3 Sheen=No sheen		wet, med	dium grey; medium plasticity fine lar sand; fine to medium, subro	es; fine to coarse,	+
20-	420			.√	MW-17-20	SPT=50/5 PID=1.5 Sheen=No sheen		become	es light brown		-20 -
-	<u> </u> 					SPT=40, 50/2 PID=1.1 Sheen=No sheen		+ coars	se gravel; becomes moist		+
25-	+415 -			V	MW-17-25	SPT=50/5 PID=1.1 Sheen=No sheen		Bottom o	of exploration at 25.5 ft. bgs.		-25 -
-	†										+
30-	410										-30
-	†										+
-	+										-
	<u> </u>										
Sample		gend No Soil Sample Split Barrel 2" 2 Grab sample	-	T)	Mater Le	ater Level evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-17 Sheet 1 of 1	on

	Λ.	spoot			Aloha Cafe				Monitoring V	Vell Log	
		SPECT	6808 196th	Street S	Project Address & Site Southwest, Lynwood O'Yeah Tasty F	Specific Location Washington, 98	036, NE	corner of	Coordinates (Lat,Lon WGS84) 47.8211, -122.3258 (est)	Exploration Numb	
		Contractor		pment	O Teall Tasty F	Sampling Metho	d		Ground Surface Elev. (NAVD88)	− MW-18	3
		t Services		∃ 300		mer; 140 lb hamr		drop	440' (est)		
	(Operator Kyle	Exploration 8.5" OD 2 Hollow-S	X 4.25"	ìÓ	ork Start/Completion 7/15/2019	Dates		Top of Casing Elev. (NAVD88) NA	Depth to Water (Belo 12.5' (ATD)	,
Depth (feet)	Elev. (feet)	Exploration I	Notes and	Sample Type/ID	Analytical Sample Number &	Field Tests	Material Type		Description	,	Depth (ft)
(leet)	(icet)	8" Flus	n mount	Турель	Lab Test(s)		Type	ASPHA	LT; Road surface		(11)
-	_ - -	traffic-nin conc	ated monument			SPT=3, 13, 27 PID=0.3 Sheen=No sheen		slightly n fines; fin	FILL VITH SILT AND GRAVEL (SW- noist, orange brown; low to med e to coarse, subangular sand; f lar gravel; no odor	lium plasticity	- - - -
5 -	-435 -			*	MW-18-6.5	SPT=18, 32, 24 PID=1.1 Sheen=No sheen		-			- 5 -
10-	430	0.010"	(10-slot) 2" le 40 PVC	* 2	MW-18-8	SPT=15, 24, 22 PID=0.1 Sheen=No sheen		-			- - 10
-		schedu screen sand	in 12-20 silica	0	MW-18-10	SPT=16, 39, 38 PID=0.2 Sheen=No sheen			VASHON TILL		+
-	- - -425					SPT=29, 50/4 PID=0.2 Sheen=No sheen		medium subangu gravel; n	SAND WITH GRAVEL (SM); ver grey; medium plasticity fines; fi lar sand; fine to coarse, subrou o odor	ne to coarse, nded to subangular	- 1- 1- 15
15	423			.9	MW-18-15	SPT=50/3 PID=1.5 Sheen=No sheen		fines; tra	ce fine to medium sand; no odd	or 	
-	- -					SPT=50/3 PID=0.2 Sheen=No sheen		moist, m	WITH SILT AND GRAVEL (SW edium grey; low to medium plas subangular sand; fine to mediur ded gravel; no odor	sticity fines; fine to	<u>+</u> +
20 -	-420 -			•	MW-18-20 / FDUP- 1	SPT=50/4 PID=0.2 Sheen=No sheen		medium subangu	SAND WITH GRAVEL (SM); ve grey; medium plasticity fines; fi lar sand; fine to medium, suba ded gravel; no odor	ne to medium,	-20 -
January 28, 2021	† †					SPT=50/3 PID=0.8 Sheen=No sheen		slightly n	WITH SILT AND GRAVEL (SW noist, medium grey; low plasticit subangular sand; fine to mediur o odor	y fines; fine to	† - -
[편] 25 -	415					SPT=50/4	***	-			25
8/180357 ALOHA CA	_ - -					PID=0.4 Sheen=No sheen		Bottom o	of exploration at 25.5 ft. bgs.		+
PROJECTS	<u> </u>										-
ATE P:GINTW	+410 -										-30
LOG TEMPL											
ORATION -		rand								Γ	<u></u>
NEW STANDARD EXPLORATION LOG TEMPLATE P:/GINTWPROJECTS/18035/ALOHA CAFET.GPJ January 28, 2021 Sample Type Type		gend No Soil Sample Split Barrel 2" X Grab sample	-	¯)	Water Fever of Mater	vel ATD		See Explo of symbol Logged by Approved	y: DWU	Exploration Log MW-18 Sheet 1 of 1	n

	cnoct			Aloha Cafe				Monitoring V		
	SPECT ONSULTING Contractor		ipment		ite Specific Location od, Washington, 98 of Chri-Mar Apartme Sampling Metho nmmer; 140 lb hami	d		Coordinates (Lat,Lon WGS84) 47.8208, -122.3257 (est) Ground Surface Elev. (NAVD88) 440' (est)	Exploration Num MW-1 Ecology Well Ta	9
110	Operator Mitch	Exploration 8.5" OD 3 Hollow-S	n Method(X 4.25" I	(s)	Work Start/Completion 7/16/2019		шор	Top of Casing Elev. (NAVD88) NA	BMF 675 Depth to Water (Beld	ow GS)
Depth Elev	v. Exploration I	Notes and	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description	10 (A1D)	Depti (ft)
- - - -	in cond 2" Sche in 3/8"	h mount, ated monument rete edule 40 PVC hyrdated te chips	0	(/	SPT=12, 20, 32 PID=0.1 Sheen=No sheen SPT=30, 50/5 PID=0.0		SAND V slightly n subangu	LT; road surface FILL VITH SILT AND GRAVEL (SP-soist, brown; fine, subangular salar gravel; no odor WITH SILT (SP-SM); very dens	and; fine to coarse,e, slightly moist,	-
5 -435 - - -	0.010"	(10-slot) 2" le 40 PVC in 12-20 silica	Ŏ	MW-19-6.0	Sheen=No sheen SPT=22, 50/5 PID=0.0 Sheen=No sheen		SAND V	wn; fine, subangular sand; no or with SILT AND GRAVEL (SPnoist, grey brown; fine, subangular to subrounded grave	SM); very dense, llar sand; fine to	- 5 - -
10-430	0	2019		MW-19-8.5	SPT=15, 36, 36 PID=0.0 Sheen=No sheen		subangu	AND (SM); very dense, moist, lar sand; fine, subrounded grav	el; no odor 	- -10 -
15-425	5			MW-19-13.5	SPT=34, 50/6 PID=0.0 Sheen=No sheen		slightly n	WITH SILT AND GRAVEL (SP- noist, grey brown; fine to mediul e, subrounded gravel; no odor		- - -15 -
20-420			8	MW-19-18.5	SPT=50/5 PID=0.0 Sheen=No sheen		grey brow	WITH SILT (SP-SM); very dens vn; fine to medium, subangular	e, slightly moist, sand; some fine,	- - -20
25-415	5			MW-19-23.5	SPT=50/4 PID=0.1 Sheen=No sheen		subround	ded gravel; no odor		- - -25 -
25 - 415 							Bottom o	f exploration at 30 ft. bgs.		30
Sample Type	egend No Soil Sample Split Barrel 2" > Grab sample		<u> </u>	∑ Water I			See Exploof symbol Logged b	y: DRB	Exploration Log MW-19	on

	\cs	22 <u>1</u>			Aloha Cafe				Monitoring \		
X	<i>-p</i> h	GUT	6808 196th	Street	Project Address & Site Southwest, Lynwood 08 parking lot, ~5' W	e Specific Location d, Washington, 98	036, NE	corner of	Coordinates (Lat,Lon WGS84)	Exploration Numb	
	CONSU Contracto			680 ipment	08 parking lot, ~5' W	of Aloha Cafe sign Sampling Metho			47.8212, -122.3253 (est) Ground Surface Elev. (NAVD88)	− MW-20)
	Holocen		HSA For	'	59 Autoban	nmer; 140 lb ham		drop	440' (est)	Ecology Well Tag	g No.
	Operator		Exploration			Nork Start/Completion		шор	Top of Casing Elev. (NAVD88)	BNF 485 Depth to Water (Belo	w GS)
	Matt		8.5" OD Hollow-S	X 4.25"	ÌĎ	7/30/2020			NA	8.06' (Static)	,
Depth E (feet) (fe		xploration Completio		Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
		8" Flus	sh mount,		Lub Tool(o)			ASPH/	ALT; paved parking lot surface		
5 -4	35	in cond 2" Sch in 3/8"	rated monument crete edule 40 PVC hyrdated ite chips		MW-20-5	SPT=4, 7, 17 PID=3.4 Sheen=No sheen		medium odor	FILL SAND (SM); medium dense, moderate plasticity fines; fine to coarse s WITH SILT (SP-SM); medium of the coarse so the coarse	ubangular sand; no	- - - - 5
10-4	30	0.010"	/2020 /2020 (10-slot) 2" ule 40 PVC	0	MW-20-8	SPT=12, 18, 24 PID=125.4 Sheen=No sheen		plasticity petroleur SAND plasticity	VASHON TILL VITH SILT (SP-SM); dense, ver fines; fine to coarse subangula m-like odor WITH SILT (SP-SM); dense, wer fines; fine to coarse subangula	et, grey; low	10
- - -		screen	in 12-20 silica		MW-20-13	SPT=10, 18, 17 PID=4.0 Sheen=No sheen SPT=7, 10, 13 PID=3.6 Sheen=No sheen		SAND sand; pe SILTY medium fine to co SILTY plasticity	m-like odor (SP); dense, wet, grey; fine to r troleum-like odor SAND WITH GRAVEL (SM); de plasticity fines; fine to coarse s parse, subangular to subrounde SAND (SM); medium dense, we fines, fine to coarse subangular subangular trace gravel; no od	ense, wet, grey; ubangular sand; ed gravel; no odor/ et, grey; low ar sand; fine to	 - - - -
15+4	25			0		SPT=10, 22, 42 PID=4.4 Sheen=No sheen	96	low plast	WITH SILT (SP-SM); medium of icity fines; fine to coarse suban to coarse, subangular to subro	gular sand;	+15 -
 - -						SPT=22, 50/5 PID=6.7 Sheen=No sheen		grey; low	GRAVEL WITH SAND (GM); volve plasticity fines, medium to coal e to coarse, subangular to subr	rse subangular	- - -
20+4	20	···				SPT=50/5 PID=5.4 Sheen=No sheen					-20 -
+		*				SPT=50/4 PID=2.4 Sheen=No sheen					_
25-4	15	*************************************				SPT=50/6 PID=2.8 Sheen=No sheen		low plast subangu SILTY plasticity subangu	WITH SILT (SW-SM); very den icity fines; fine to coarse suban lar gravel; no odor SAND (SM); very dense, wet, g fines; fine to coarse subangula lar trace gravel; no odor of exploration at 25.5 ft. bgs.	gular sand; fine, rey; medium	- 25 - - -
			Recovery (1.375" (SP	Т)	Nater Le	ater Level evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-20 Sheet 1 of 1	on

0	Aspect		Aloha Cafe				Monitoring V		
	CONSULTING	6808 196th St	Project Address & Site reet Southwest, Lyn drive-thru windov	e Specific Location wood, Washington	, 98036	, E of	Coordinates (Lat,Lon WGS84) 47.8211, -122.3253 (est)	Exploration Num	
	Contractor	Equipment	dive-tilla willdow	Sampling Method	d		Ground Surface Elev. (NAVD88)	MW-2	
	Holocene	HSA Foremost E	3-58 Autohar	mmer; 140 lb hamr	ner; 30"	drop	440' (est)	Ecology Well Tag BNF 488	g No.
	Operator	Exploration Metho	d(s)	Work Start/Completion	Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Beld	ow GS)
	Matt	8.5" OD X 4.25 Hollow-Stem Au	iger	7/28/2020		_	NA	9.05' (Static))
Depth (feet)	Elev. Exploration N (feet) Completion	lotes and Details Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
		n mount,				ASPHA	ALT; paved parking lot surface		
-	in concr	dule 40 PVC		SPT=4, 6, 3 PID=4,9 Sheen=Slight sheer		brown; lo	FILL WITH SILT (SP-SM); loose, slig bw plasticity fines; fine to mediu h some coarse, subangular san , subrounded gravel; no odor	m, subangular	<u>+</u> - -
5 -	435		MW-21-5	SPT=6, 3, 1 PID=5, 5 Sheen=Very slight sheen SPT=25, 37, 28	7	plasticity	Y SILT (ML); soft, moist, dark re r fines; fine to medium, subangu rounded gravel; trace charcoal	ılar sand; trace	- 5 - - -
- 10- - -	-430 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		MW-21-10	SPT=10, 12, 18 PID=108.3 Sheen=Slight sheer		grey; lov subangu	VASHON TILL SAND WITH GRAVEL (SM); me to medium plasticity fines; fine tlar sand; fine to medium, subar ded gravel; slight petroleum-like	to medium, ngular to	- 10 -
- 15-	schedul	10-slot) 2" e 40 PVC n 12-20 silica		SPT=10, 10, 12 PID=18.7 Sheen=No sheen SPT=15, 16, 14 PID=15.4 Sheen=No sheen		no odo	r es very wet; trace coarse, subar	ngular sand	- - -15
-		0	SPT=42, 50 PID=6.3 Sheen=No sh			plasticity	/ SILT (ML); hard, moist, grey; l fines; fine, subangular sand; tr ded gravel; no odor		<u>+</u> - - -
20 -	420			SPT=50/4 PID=5.7 Sheen=No sheen		medium with trac	SAND (SM); very dense, very m plasticity fines; fine to medium, e coarse, subangular sand; trac ded gravel; no odor	subangular sand	+20 +
-		0		SPT=50/3 PID=5.8 Sheen=No sheen		become	es moist		+
25	-415			SPT=50/5 PID=4.6 Sheen=No sheen		Bottom o	of exploration at 25.5 ft. bgs.		-25 -
Sample	Legend ☐ No Soil Sample ☑ Split Barrel 2" X	•	Mater Le	ater Level evel ATD		See Exploof symbo		Exploration Log MW-21	on

A				Aloha Cafe	- 180357			Environmental Ex	ploration L	oa
\A S	pect	6808 196	th Street	Project Address & Site Southwest, Lynwo drive-thru window, 3	e Specific Location	8036 ~	25' F of	Coordinates	Exploration Nur	
	TSULTING atractor	E~:	in Street ipment	drive-thru window, (3' NW of MW-21 Sampling Method	7	20 L UI	NA Ground Surface Elev. (NAVD88)	MW-21	IA
			•	50 Autobou				· ' '		
	ocene erator	HSA Fore			nmer; 140 lb hamn Nork Start/Completion		arop	440' (est) Top of Casing Elev. (NAVD88)	Depth to Water (Be	low GS)
1	∕/att	8.5" OD Hollow-S	X 4.25" litem Aug	ID ger	7/30/2020	Datoo		NA	No Water Encou	-
Depth Elev. (feet) (feet)	Exploration N Completion	Notes and Details	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depti (ft)
(feet) (feet)	Completion Surface concrete	restored with	Sampe Type/ID	Sample Number & Lab Test(s) MW-21A-2.5	SPT=4, 5, 3 PID=2.7 Sheen=Slight sheen	Type	ASPHA SAND V brown; k sand; tra gravel; n	ALT; paved parking lot surface FILL WITH SILT (SP-SM); loose, slig ow plasticity fines; fine to mediu ace fine to medium, subangular	ım, subangular	- 10 - 15 - 20 - 20
20 - 420 										- - -25 - - -
Sample Type	nd lo Soil Sample plit Barrel 2" X		Γ)	Mater Level	er Encountered		See Explo of symbol Logged b Approved	y: DWU	Explorati Log MW-21/ Sheet 1 of	A

	Λ.	cnost			Aloha Cafe				Monitoring V		
		Spect	6808 196t	th Street	Project Address & Site Southwest, Lynwoo door of Alo	e Specific Location od, Washington, 98 sha Cafe	8036, S	of garage	Coordinates (Lat,Lon WGS84) 47.8210, -122.3255 (est)	Exploration Num	
		Contractor	Equ	uipment	door or Aid	Sampling Metho	d		Ground Surface Elev. (NAVD88)	MW-22	
	F	Holocene	HSA For	remost B	-58 Autohar	mmer; 140 lb hamı	ner; 30"	drop	440' (est)	Ecology Well Ta BNF 481	ıg No.
		Operator		ion Method X 4.25"		Work Start/Completion	Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Beld	ow GS)
	1	Matt	Hollow-	Stem Au	ger	7/28/2020	_		NA	10.78' (Statio	c)
Depth (feet)	Elev (feet			Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
		8" Flus	h mount,					ASPHA	ALT; paved parking lot surface		7
-	-	2" Sch in 3/8" bentor				SPT=10, 12, 4 PID=3.4 Sheen=No sheen	/	moist, gr	FILL SAND WITH GRAVEL (SM); me rey brown; low plasticity fines; fi lar sand; fine to medium, subro	ne to medium,	† + +
5 - - -	+435			0		SPT=2, 2, 2 PID=2.1 Sheen=No sheen		moist, gr		icity fines; fine to	5
-	+430	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	/2020			SPT=10, 26, 27 PID=4.7 Sheen=No sheen		low plast	VASHON TILL SAND (SM); very dense, very m icity fines; fine to medium, suba ledium, subangular gravel; no o	angular sand; trace	10
-	430	▼ 7/31	/2020			SPT=5, 4, 15 PID=6.7 Sheen=Very slight sheen		plasticity	SAND (SM); dense, wet. grey; l fines; fine to medium, subangu rounded gravel; very slight petro	ılar sand; trace	+
15-	-425	schedu screen sand	(10-slot) 2" ule 40 PVC in 12-20 silica			SPT=11, 20, 21 PID=23.9 Sheen=No sheen SPT=12, 25, 50/4 PID=70.2		mediun	n plasticity fines; no odor		- - - 15
- - -	- - -				MW-22-16	PID=70.2 Sheen=Slight sheer SPT=33, 50/4 PID=25.1 Sheen=No sheen		become	es moist		<u></u>
20-	-420 -			_		SPT=26, 50/5 PID=5.9 Sheen=No sheen		subangu medium,	SAND WITH GRAVEL (SM); so lar sand; low to medium plastic subangular sand; trace fine to ded gravel; trace granite compo	city fines; fine to coarse	20
-	<u>-</u>					SPT=50/5 PID=4.4 Sheen=No sheen			oarse, subangular sand es sandier		<u> </u>
25 - -	415				MW-22-25	SPT=50/4 PID=1.8 Sheen=No sheen		Bottom o	of exploration at 25.5 ft. bgs.		-25 -
-	<u>+</u> -										+
20-		gend] No Soil Sample] Split Barrel 2")	_		Static W V Water Le	ater Level evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-22 Sheet 1 of 1	

	<u> </u>				Aloha Cafe	- 180357			Environmental Ex	ploration Lo	og
	~	Spect NASULTING	6808 196t	h Street	Project Address & Sit Southwest, Lynwo with MW-2	e Specific Location od, Washington, 98	036, C	o-located	Coordinates NA	Exploration Num	
_		ontractor	Equ	ipment	with MVV-2	22, 2' VV Sampling Method	1		Ground Surface Elev. (NAVD88)	− MW-22	A
	Н	olocene	HSA For		-58 Autohar	mmer; 140 lb hamn	ner; 30"	drop	440' (est)		
	(Operator	Exploration	on Method	d(s)	Work Start/Completion	Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Bel	ow GS)
		Matt	8.5" OD Hollow-S	Stem Au	ger	7/30/2020			NA	No Water Encou	ntered
Depth (feet)	Elev. (feet)	Exploration N Completion	lotes and Details	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Depth (ft)
		Surface concret	restored with					ASPHA	ALT; paved parking lot surface		_
5 -	-435	Boring I 3/8" hy bentoni	packfilled with Irated te chips		MW-22A-2.5	SPT=11, 10, 11 PID=2.7 Sheen=Slight sheen SPT=12, 12, 7 Blows (non-SPT)=6, 6, 5		moist, gr subangu subround no reco with Moo	FILL SAND WITH GRAVEL (SM); makey brown; low plasticity fines, fillar sand; fine to medium, subarded gravel; no odor by overy on on 5-6' sample, sampled a sampler	ne to medium, ngular to	- - - - 5
-	_							Bottom o	of exploration at 7.5 ft. bgs.		+
-											+
10-	430										10
-	-										Ť
_											
15-	425										- 15
-	_										+
-											+
-											+
-											+
20-	420										-20
-	_										†
_											
25-	415										-25
-	<u></u>										+
-	<u> </u>										+
-											+
_											+
		 gend No Soil Sample	Recovery		No Wate	er Encountered			oration Log Key for explanation	Exploration	or
20 25		Split Barrel 2" X		Γ)	Water	oumorou		of symbol Logged b Approved	y: DWU	Log MW-22A Sheet 1 of 1	\

				Aloha Cafe	- 180357			Environmental Ex	ploration Log
K ==	pect	6808 1961	h Street	Project Address & Site Southwest, Lynwoo with MW-2	e Specific Location	3036 C	n-located	Coordinates	Exploration Number
	TSULTING tractor		ipment	with MW-2	22, 2' E Sampling Metho	7	3-located	NA Ground Surface Elev. (NAVD88)	MW-22B
		HSA Fore		EQ Autobor			dran	· ' '	
	ocene erator	Exploration			mmer; 140 lb hamr Work Start/Completion		агор	440' (est) Top of Casing Elev. (NAVD88)	Depth to Water (Below G
	1att	8.5" OD Hollow-S	X 4.25" Stem Au	ID ger	7/30/2020	- 20.00		NA	No Water Encountered
Depth Elev. (feet) (feet)	Exploration Completio	Notes and n Details	Sample Type/ID		Field Tests	Material Type		Description	De (f
Top: (Sometic Dators (Continuous and Legel) Top: (Sometic Dators	Surfaction concre	e restored with		MW-22B-5	SPT=Pushed with tube; no blow count PID=4.0 Sheen=Very slight sheen		SILTY S medium trace fine	ALT; paved parking lot surface FILL SAND (SM); loose, moist, mediuplasticity fines; fine to medium, e, subrounded gravel; no odor of exploration at 5.5 ft. bgs.	um brown; low to
Sample Type Type Type Type Type Type Type Typ	nd o Soil Sample olit Barrel 2")		Τ)	No Water Level	er Encountered	·	See Explo of symbol Logged by Approved	y: DWU	Exploration Log MW-22B Sheet 1 of 1

	Λ	noct			Aloha Cafe				Monitoring V		
		NSULTING	6808 196	Sth Stree	Project Address & Site Southwest, Lynwo	ood, Washington, 9	98036,	20' N of	Coordinates (Lat,Lon WGS84) 47.8210, -122.3257 (est)	Exploration Numb	
		ontractor	Equ	ipment	dumpster ei	Sampling Method	1		Ground Surface Elev. (NAVD88)	MW-23	
	Н	olocene	HSA For	emost B		nmer; 140 lb hamn		drop	440' (est)	Ecology Well Tag BNF 482	g No.
	(Operator	Exploration 8.5" OD	X 4.25"	ìĎ	Work Start/Completion	Dates		Top of Casing Elev. (NAVD88)	Depth to Water (Belo	,
Depth	Elev.	Matt Exploration N	Hollow-S	Sample	Analytical Sample Number &	7/28/2020 Field Tests	Materia		NA Description	12.35' (Statio	Depth
	(feet)	Completion	Details	Type/ID	Lab Test(s)	rieu resis	Type	ASPHA	ALT; paved parking lot surface		(ft)
-	-	traffic-ra in conci	dule 40 PVC			SPT=12, 15, 11 PID=2.9 Sheen=No sheen		SANDY brown; r odor	FILL SILT (ML); slightly moist, medium plasticity fines; fine, sub WITH SILT AND GRAVEL (SP-	angular sand; no SM); medium	1
5 -	- -435 - -	**		SPT=2, 1, 0 PID=3.2 Sheen=Slight shee			, , ,	to medium, subangular sand; fine to medium, subargular sand; fine to coarse, subargular sand; fine to coarse, subargular to subargular sand; fine to coarse, subargular sand; fine to coarse, subargular to subargular sand; fine to coarse, subargular sand; fine to co		dium, subrounded e, slightly moist, to coarse,	5
10-	- - -430 -	0.010" (10-slot) 2" schedule 40 PVC screen in 12-20 silica sand			MW-23-8	SPT=24, 24, 37 PID=5.4 Sheen=Slight sheen SPT=12, 22, 14 PID=7.8 Sheen=Slight sheen		moist, grands subangu odor	VASHON TILL VITH SILT AND GRAVEL (SW- rey brown; low plasticity fines; fil alar sand; fine to medium, subro es dense and grey	ne to coarse,	-10
15-	- - - -425	▼ 7/31/2			MW-23-12.5	SPT=23, 25, 50/5 PID=677.2 Sheen=Medium sheen SPT=18, 40, 50/5 PID=79.2	° ° 7	moist, grands subangual subroun	SAND WITH GRAVEL (SM); ve rey; medium plasticity fines; fine lar sand; fine to medium, subanded gravel; moderate petroleum es wet; approximately 2 inch thic	to medium, gular to -like odor	- - - -15
20, 2021	- - -				MW-23-18	Sheen=Slight sheen SPT=36, 41, 50/4 PID=80.5 Sheen=Slight sheen	7	SAND' medium fine to m	and gravel at 15.25 feet Y SILT WITH GRAVEL (ML); ha plasticity fines; fine ot medium, hedium, subrounded gravel; very m-like odor	subangular sand;	- - - - -
20	-420 - - -					SPT=50/5 PID=39.7 Sheen=Very slight sheen SPT=50/5 PID=5.7 Sheen=No sheen	<i>*</i>	· medium	SAND (SM); very dense, moist, plasticity fines; fine to medium, e to medium, subrounded grave	subangular sand;	+20 -
25	- -415 -			O		SPT=50/4 PID=5.1 Sheen=No sheen		$\overline{}$	oble stuck in sampler of exploration at 25.5 ft. bgs.		-25
Sample Type Type		jend No Soil Sample	Recovery		▼ Static Wa	ater Level			oration Log Key for explanation	Exploratio	on .
Sample		Split Barrel 2" X	•	Γ)	Mater Le			of symbo Logged b Approved	y: DWU	Log MW-23 Sheet 1 of 1	-

	spost				- 180357			Monitoring V	
C	SPECT ONSULTING Contractor	6808 196th Ca Equipr HSA Diedrich	ment		e Specific Location od, Washington, 98 ri-Mar Apartments Sampling Method mmer; 140 lb hamn	1		Coordinates (Lat,Lon WGS84) 47.8209, -122.3256 (est) Ground Surface Elev. (NAVD88) 440' (est)	Exploration Number MW-24 Ecology Well Tag No. BNF 487
	Operator RJ	Exploration 8.5" OD X Hollow-Ste	Method(s) 4.25" ID		Work Start/Completion 7/29/2020		шор	Top of Casing Elev. (NAVD88) NA	Depth to Water (Below GS) 14.36' (Static)
Depth Elev. (feet) (feet)	Exploration N	Notes and	Sample Sar	Analytical nple Number &	Field Tests	Material Type		Description	Dep (ft)
5 -435 	8" Flust traffic-ra in concilion in concilion in 3/8" bentoni Q. 7/29/3 0.010" schedul screedul scr	n mount, ated monument rete didule 40 PVC hyrdated te chips 2020 2020 2020 2020 2020 2020 2020 20		Lab Test(s)	SPT=5, 9, 8 PID=8.8 Sheen=Organic sheen SPT=4, 2, 4 SPT=26, 29, 29 PID=1.6 Sheen=Slight sheen SPT=24, 24, 37 PID=1.4 Sheen=Slight sheen SPT=9, 17, 25 PID=2.1 Sheen=Slight sheen SPT=9, 17, 25 PID=1.6 Sheen=Very slight sheen SPT=50/6 PID=1.6 Sheen=Very slight sheen SPT=50/6 PID=1.9 Sheen=Very slight sheen SPT=50/5 PID=0.4 Sheen=No sheen SPT=50/6 PID=1.9 Sheen=No sheen		SILTY Smoist, gravel; no subangu gravel; to subangu gravel; to subangu gravel; to subangu gravel; no subangu	SAND (SM); dense, moist, dark plasticity fines; fine to coarse, subangular to subrounded gratin:, no odor VASHON TILL SAND WITH GRAVEL (SM); very; low to medium plasticity fine lar sand; fine to coarse, subango odor ess wet SAND WITH GRAVEL (SM); very; medium plasticity fines; fine lar sand; fine to coarse, subango acce wood debris < 1 in.; no odor sace wood sace w	brown; low to subangular sand; trace wood savel; savel; to coarse,
Sample Type	gend No Soil Sample Split Barrel 2" X	-	Water Level	▼ Static W ☑ Water Le	ater Level evel ATD		See Explo of symbo Logged b Approved	y: DWU	Exploration Log MW-24 Sheet 1 of 1

		oha Cafe - 180357		Monitoring V		
Aspect		ct Address & Site Specific Location west, Lynwood, Washington, 98	026 NF 22*** - 1	Coordinates (Lat,Lon WGS84)	Exploration Numb	ber
OCONSULTING	6808 196th Street South	6820 parking lot		47.6212, -122.3236 (est)	MW-25	5
Contractor	Equipment	Sampling Metho	<u></u>	Ground Surface Elev. (NAVD88)		
Holocene	HSA Foremost B-58	Autohammer; 140 lb ham	mer; 30" drop	440' (est)	Ecology Well Tag BNF 484	j N
Operator	Exploration Method(s)	Work Start/Completion	n Dates	Top of Casing Elev. (NAVD88)	Depth to Water (Belo	w G
Matt	8.5" OD X 4.25" ÌD Hollow-Stem Auger	7/30/2020		NA	9.16' (Static))
oth Elev. Exploration	Notes and Sample Sam	Analytical ple Number & Field Tests	Material	Description	1	De
et) (feet) Completi		ab Test(s)	Type ASPH/	ALT; paved parking lot surface		(
Traffic in cor 2" Sc in 3/8 bento	nedule 40 PVC hyrdated lite chips	SPT=8,15,30 PID=1.8 Sheen=No sheen SPT=18, 50/4 PID=2.0 Sheen=No sheen SPT=15, 28, 32 PID=1.9 Sheen=No sheen SPT=20, 45, 50/3 PID=2.3 Sheen=No sheen SPT=20, 45, 50/3 PID=2.3 Sheen=No sheen SPT=50/4 PID=1.1 Sheen=No sheen SPT=50/4 PID=1.0 Sheen=No sheen	SAND slightly i medium gravel; SILTY sto medium sand; transpersion sampler subangu sandu sandu sandu sandu sandu sandu sandu sandu subangu sandu subangu sandu subangu sand; fiir odor sillty plasticity subangu	FILL MITH SILT AND GRAVEL (SP-5 moist, light brown; low plasticy fin, subangular sand; fine to mediu some asphalt and glass fragmen VASHON TILL SAND (SM); dense, slightly mois im plasticity fines; fine to mediur ace fine, subrounded gravel; no o WITH SILT AND GRAVEL (SP- moist, grey-brown; low plasticity in, subangular sand; fine to coarse ded gravel; no odor; poor recove	nes; fine to me, subangular ats; no odor st, grey-brown; low m, subangular odor SM); very dense, fines; fine to e, subangular to ery due to cobble in ry dense, very es; fine to medium, fine to coarse, or; apparent water subangular sand; fine to medium, or edium plasticity no odor soist, grey; low to subangular sand; ed gravel; no odor soist, grey; low to subangular sand; ed gravel; no odor soist, grey; low to subangular sand; ed gravel; no odor soist, grey; low to subangular sand; ed gravel; no odor soist, grey; low to subangular sand; ed gravel; no odor soist, grey; low to subangular sand; ed gravel; no odor gravel; no edium, grey; well arrounded gravel; no odor gravel	
Legend No Soil Samp Split Barrel 2"	<u> </u>	▼ Static Water Level ▼ Water Level ATD	See Expl of symbol Logged by Approved	y: DWU	Exploration Log MW-25 Sheet 1 of 1)n

	spost				fe - 180357			Monitoring V	
C	SPECT ONSULTING Contractor	Equ	ipment		Site Specific Location ood, Washington, 98 or Nielson Bros Car Sampling Metho	od		Coordinates (Lat,Lon WGS84) 47.8210, -122.3260 (est) Ground Surface Elev. (NAVD88)	Exploration Number WW-26 Ecology Well Tag No
	lolocene Operator		on Method((s)	ammer; 140 lb ham Work Start/Completion		drop	440' (est) Top of Casing Elev. (NAVD88)	BNF 483 Depth to Water (Below G
	RJ	Hollow-S	X 4.25" I Stem Aug	er Analytical	7/29/2020			NA	14.36' (Static)
Depth Elev. (feet) (feet)	Exploration N Completion		Sample Type/ID	Sample Number & Lab Test(s)	Field Tests	Material Type		Description	De (1
5 -435 -10 -430 -15 -425 -20 -420 -25 -415	8" Flust traffic-rs in conciling traffic-rs in conciling traffic-rs in conciling traffic traf	n mount, sted monument ete dulle 40 PVC hyrdated de chips 10-slot) 2" e 40 PVC in 12-20 silica		MW-26-12.5	SPT=4, 9, 23 PID=0.7 Sheen=No sheen SPT=26, 41, 50/6 PID=0.5 Sheen=No sheen SPT=33, 36, 44 PID=1.4 Sheen=No sheen SPT=50/6 PID=1.2 Sheen=No sheen SPT=50/1 PID=1.4 Sheen=No sheen SPT=50/1 PID=1.4 Sheen=No sheen SPT=50/3 PID=1.0 Sheen=No sheen SPT=50/3 PID=1.1 Sheen=No sheen		SAND Version of the total colors of the subroundary	'SILT (ML); hard, wet, grey; me to medium, subtrace, subang ded gravel; no odor SAND (SM); very dense, wet, g fines; fine to medium, subangu subrounded trace gravel; no od	oist, medium ne to medium, d; fine, subrounded -brown; low ular sand; fine, -ense, moist, nedium, bangular to -ery dense, moist, nedium, d; fine to coarse, egmatite gravel; no
Sample Type	gend No Soil Sample Split Barrel 2" X	•	Т)		Water Level Level ATD		See Explored of symbol Logged by Approved	y: DWU	Exploration Log MW-26 Sheet 1 of 1

Managt		Aloha Cafe				Monitoring V		_
CONSULTING	6808 196th Street S Bros C	Project Address & Site Southwest, Lynwood arpets, behind build	e Specific Location d, Washington, 98 ling, W of storage	036, S c	of Nielson	Coordinates (Lat,Lon WGS84) 47.8208, -122.3260 (est)	Exploration Number	r
Contractor	Equipment	arpoto, pormita pana	Sampling Metho			Ground Surface Elev. (NAVD88)	MW-27	
Holocene	HSA Diedrich D-50 Exploration Method		nmer; 140 lb hami Work Start/Completion		drop	447' (est) Top of Casing Elev. (NAVD88)	Depth to Water (Below (<u></u>
Operator RJ	8.5" OD X 4.25" Hollow-Stem Aug	ìÓ l	7/29/2020	I Dales		NA	Depirito Water (Below (GS
Depth (feet) Exploration N Completion		Analytical Sample Number & Lab Test(s)	Field Tests	Material Type		Description		Dep (ft)
	n mount,				ASPHA	LT; paved parking lot surface		
10 — \$\frac{\frac{2"}{3\text{Sche}} \\ \frac{2"}{3\text{Sche}} \\ \frac{2 \text{T/29} \text{T/29} \text{T/29} \\ \frac{2 \text{T/29} \\ \text{T/29} \\ \frac{2 \text{T/29} \\ \text{T/29} \\ \frac{2 \text{T/29} \\ \te	dule 40 PVC hyrdated te chips	MW-27-10.5	SPT=9,8,9 PID=1.7 Sheen=No sheen SPT=12,26,38 PID=1.6 Sheen=Slight sheer SPT=11,14,26 PID=3.1 Sheen=No sheen SPT=12,23,26 PID=2.4 Sheen=No sheen SPT=50/5 PID=1.9 Sheen=No sheen SPT=50/2 PID=0.6 Sheen=No sheen SPT=50/2 PID=0.4 Sheen=No sheen SPT=50/2 PID=0.7 Sheen=No sheen SPT=50/2 PID=0.7 Sheen=No sheen		medium trace fine odor SILTY: plasticity to medium no odor become SILTY: plasticity to medium subangu gravel; no subangu subround become slow dr	SAND (SM); dense, very moist, fines; fine to coarse, subangulam, subrounded gravel; no odor SAND WITH GRAVEL (SM); dev to medium plasticity fines; fine lar sand; fine to coarse, subang	subangular sand; rounded gravel; no st, grey-brown; low ar sand; no odor sist, red-brown; low a, subangular sand; ; low plasticity no odor oist, red-brown; subangular sand; grey; medium ar sand; trace fine ense, very moist, to coarse, jular to subrounded ery dense, wet, es; fine to coarse, igular to	
Legend No Soil Sample Split Barrel 2" X		Nater Level	evel ATD		See Explo of symbol Logged b Approved	y: DWU	Exploration Log MW-27 Sheet 1 of 1	-

	<u> </u>		201					- 180357			Monitoring V	Well Log	
		sp	ect	6808 196th	Street	Project Southw	Address & Site	e Specific Location d, Washington, 98 'W of MW-27	3036, Ba	ck alley of	Coordinates (Lat,Lon WGS84)	Exploration Numb	
-		Contracto	LTING or		ipment	6820) building, 4'	W of MW-27 Sampling Methor	od		, (est) Ground Surface Elev. (NAVD88)	⊢ MW-28	3
	Н	lolocen	е	HSA Diedric	:h D-50	Turbo	Autohar	mmer; 140 lb ham	mer; 30"	drop	447' (est)	Ecology Well Tag BNF 464	g No.
	(Operato	r	Exploration 8.5" OD	n Metho	d(s)		Work Start/Completio	n Dates	-	Top of Casing Elev. (NAVD88)	Depth to Water (Belo	w GS)
		RJ		Hollow-S	stem Au	iger		8/14/2020			NA	No Water Encoun	ntered
Depth (feet)	Elev. (feet))	Exploration I Completion		Sample Type/ID	Samp	nalytical le Number & lb Test(s)	Field Tests	Material Type		Description		Depth (ft)
			8" Flus	h mount,							LT; paved parking lot surface		4
-	445		traffic-r in cond	ated monument						no sam	ples; see MW-27 for lithology		+
-	‡												<u> </u>
5 -	<u> </u>												- 5
	440												<u> </u>
-	1												+
10-	‡		2" Sche	edule 40 PVC									10
	ļ 		2" Sche in 3/8" bentoni	hyrdated ite chips									+
	+435 +												Ī
	1												-
15	Ī									slow dr	illing; large cobble on boring, au	ugar sticking and	+ 15 +
-	430									stalling	illing, large copple on boring, ac	iger sticking and	+
	Ĭ								8				Ī.
20-	+							SPT=50/3 PID=1.9			VASHON TILL		-20
	+ 425							Sheen=No sheer		grey-bro	VITH SILT (SW-SM); very dens wn; low plasticity fines; fine to o e to medium, subrounded grave	oarse, subangular	Ī.
-	<u> </u>							SPT=50/2 PID=1.7 Sheen=No sheer		Sanu, iiii	e to medium, subrounded grave	51, 110 Odol	+
25	Ī				=			SPT=50/3		SILTY	SAND WITH GRAVEL (SM); ve		25
	420							PID=1.7 Sheen=No sheer		moist, gr	ey-brown; low plasticity fines; filar sand; fine to medium, subar	ne to coarse,	
	420							SPT=50/2 PID=2.2		subround	ded gravel; no odor WITH SILT AND GRAVEL (SP		7
.00 .00	1		0.010"	(10-slot) 2"				Sheen=No sheer		very moi	st, grey-brown; low plasticitỳ fin lar sand; fine to coarse, subrou	es; fine to medium,	30
Janua Janua	+		schedu screen sand	(10-slot) 2" ile 40 PVC in 12-20 silica				SPT=50/5 PID=2.6 Sheen=No sheer			ML); hard, moist, grey-brown; lo		1
AFE1.G	415							SPT=50/3		SAND	e to coarse, subrounded gravel; WITH SILT (SP-SM); very dens	se, very moist,	 - <u>-</u>
- ILOHA	+							PID=2.0 Sheen=No sheer			wn; low plasticity fines; fine to n lar sand; fine to coarse, subrou		<u> </u> -
35.	‡							SPT=50/3 PID=3.8		SILTY	SAND WITH GRAVEL (SM); ve		35
OJECTS	410							Sheen=No sheer	44		ey-brown; low to medium plasti subangular trace fine to mediu o odor		_
ATWPR	‡							SPT=50/6 PID=3.3 Sheen=No sheer		II — — — -	ML); hard, moist, grey-brown; lo	w plasticity fines;	
15 40 ·	1							SPT=50/5 PID=5.5		SAND	WITH SILT (SP-SM); very dens	e, very moist, medium,	40
EMPLA]	+ +405	;						Sheen=No sheer	ı	subangu	lar sand, no odor coarse, subangular sand	,	-
. Log	†										of exploration at 40.5 ft. bgs.		+
ORATIC	1.0	dong											<u> </u>
B EXP				Recovery		ار ان ان ان	No Wate	er Encountered		See Explo	oration Log Key for explanation s	Exploration	on
NEW STANDARD EXPLORATION LOG TEMPLATE P/GINTWPROJECTS/18035/ ALOHA CAFE1/GPJ January 28, 2021 Sample Trico	<u>ب</u> ا	Split E	Barrel 2" >	(1.375" (SP	Γ)	Water				Logged by		Log MW-28	
≶ UZ	1					ı				- p. 5100	, : ::	Sheet 1 of 1	

APPENDIX B

Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 11, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 5, 2019 from the Aloha Cafe 180357, F&BI 906075 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0611R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 5, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906075 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
GP-04-1
GP-04-2
AB-01-2
AB-01-5.5
AB-01-4
AB-01-11

The 8260C matrix spike and matrix spike duplicate failed the relative percent difference for dichlorodifluoromethane and cis-1,3-dichloropropene. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19

Project: Aloha Cafe 180357, F&BI 906075

Date Extracted: 06/06/19 Date Analyzed: 06/06/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (% Recovery) (Limit 50-150)
GP-04-2 906075-02	<5	108
Method Blank 09-1285 MB	<5	101

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19

Project: Aloha Cafe 180357, F&BI 906075

Date Extracted: 06/07/19 Date Analyzed: 06/07/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 53-144)
GP-04-2 906075-02	<50	<250	115
Method Blank 09-1347 MB	<50	<250	100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: GP-04-2 Client: Aspect Consulting, LLC

Date Received: 06/05/19 Project: Aloha Cafe 180357, F&BI 906075

06/06/19 Lab ID: 906075-02 Date Extracted: Date Analyzed: 06/06/19 Data File: $060612.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	97	55	145
4-Bromofluorobenzene	100	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906075

06/06/19 Lab ID: Date Extracted: 09-1316 mb Date Analyzed: 06/06/19 Data File: 060608.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	145
Toluene-d8	94	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	< 0.5	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19

Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 906063-03 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	280	160	56 hr

Laboratory Code: Laboratory Control Sample

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	120	71-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19

Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 906120-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	190	92	92	64-133	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	90	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 06/11/19 Date Received: 06/05/19

Project: Aloha Cafe 180357, F&BI 906075

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 905585-02 (Matrix Spike)

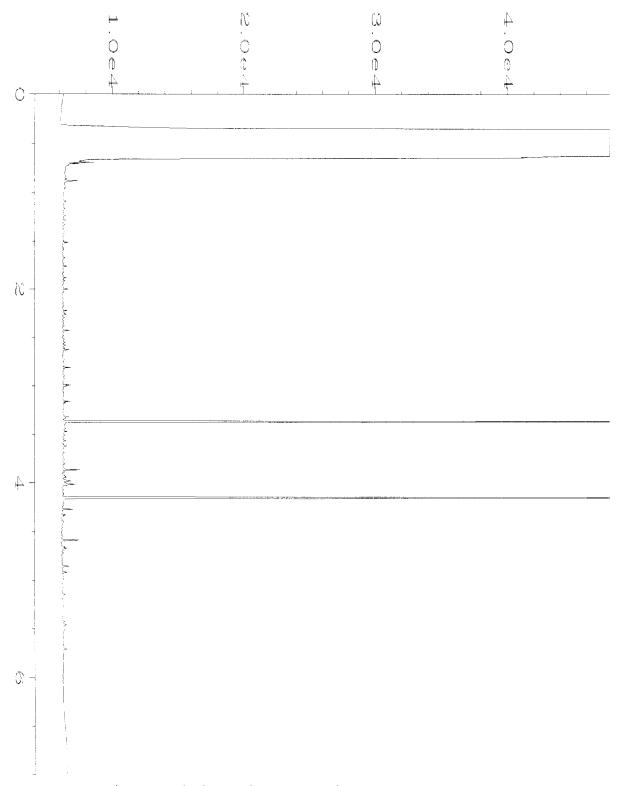
·	` '		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	$_{ m MS}$	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	20	16	10-142	22 vo
Chloromethane	mg/kg (ppm)	2.5	< 0.5	42	36	10-126	15
Vinyl chloride	mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.5	42 48	39 46	10-138 10-163	7 4
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.5 <0.5	48 49	46 47	10-163	4
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	43	41	10-176	5
Acetone	mg/kg (ppm)	12.5	< 0.5	124	119	10-163	4
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	69	69	10-160	0
Hexane	mg/kg (ppm)	2.5	< 0.25	36	34	10-137	6
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	66	66	10-156	0
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	69	69	21-145	0
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	67	14-137	1
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	70 68	69 71	19-140 10-158	1 4
cis-1,2-Dichloroethene	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	73	71	25-135	3
Chloroform	mg/kg (ppm)	2.5	< 0.05	71 71	70	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	97	95	19-147	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	68	68	12-160	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	70	70	10-156	0
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	68	67	17-140	1
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	67	66	9-164	2
Benzene	mg/kg (ppm)	2.5	< 0.03	69	68	29-129	$\frac{1}{2}$
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.03 <0.05	67 71	66 70	21-139 30-135	1
Bromodichloromethane	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.05	87	70 79	23-155	10
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	74	72	23-145	3
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	85	84	24-155	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	74	75	28-144	1
Toluene	mg/kg (ppm)	2.5	< 0.05	119	79	35-130	40 vo
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	78	78	26-149	0
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	91	80	10-205	13
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm)	$\frac{12.5}{2.5}$	<0.5 <0.05	90 73	87 74	15-166 31-137	3 1
Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.025	68	65	20-133	5
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	78	78	28-150	0
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	74	74	28-142	0
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	69	69	32-129	0
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	88	74	32-137	17
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	79	76	31-143	4
m,p-Xylene	mg/kg (ppm)	5	< 0.1	69	67	34-136	3
o-Xylene	mg/kg (ppm)	2.5	< 0.05	70	68	33-134	3
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	76 72	75 69	35-137 $31-142$	$\frac{1}{4}$
Bromoform	mg/kg (ppm)	2.5	< 0.05	82	83	21-156	1
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	67	66	23-146	2
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	71	72	34-130	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	66	66	18-149	0
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	81	82	28-140	1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	74	76	25-144	3
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	71	71	31-134	0
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.05 <0.05	70 69	70 66	31-136 30-137	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	66	66	10-182	0
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	66	64	23-145	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	64	63	21-149	2
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	68	69	30-131	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	67	68	29-129	1
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	70	70	31-132	0
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.5	74	74	11-161	0
1,2,4-Trichlorobenzene	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.25	63	63	22-142 10-142	0 7
Hexachlorobutadiene Naphthalene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	<0.25 <0.05	59 64	55 65	10-142 14-157	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	$\frac{2.5}{2.5}$	< 0.25	60	60	20-144	0
-,-,	me'ue (bhm)	2.0	.0.20	30	30	=0 111	v

ENVIRONMENTAL CHEMISTS

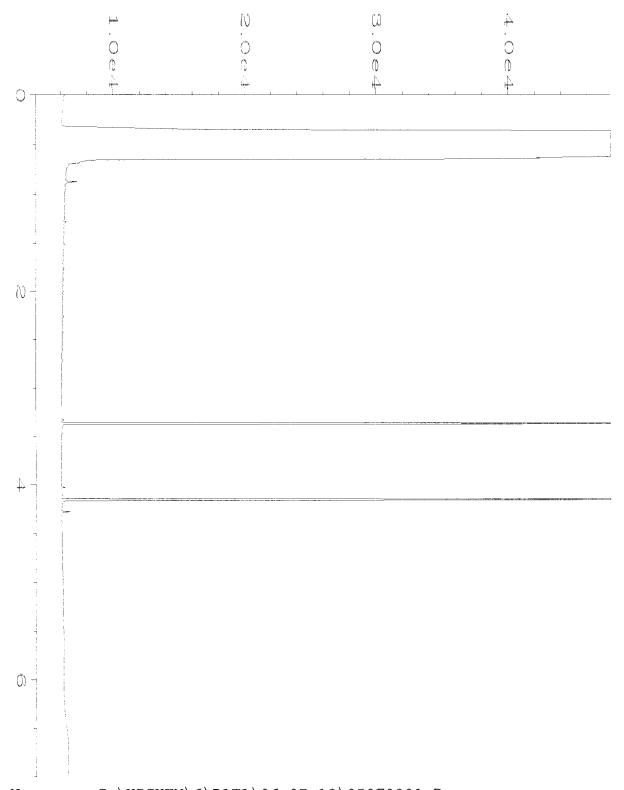
Date of Report: 06/11/19 Date Received: 06/05/19

Project: Aloha Cafe 180357, F&BI 906075

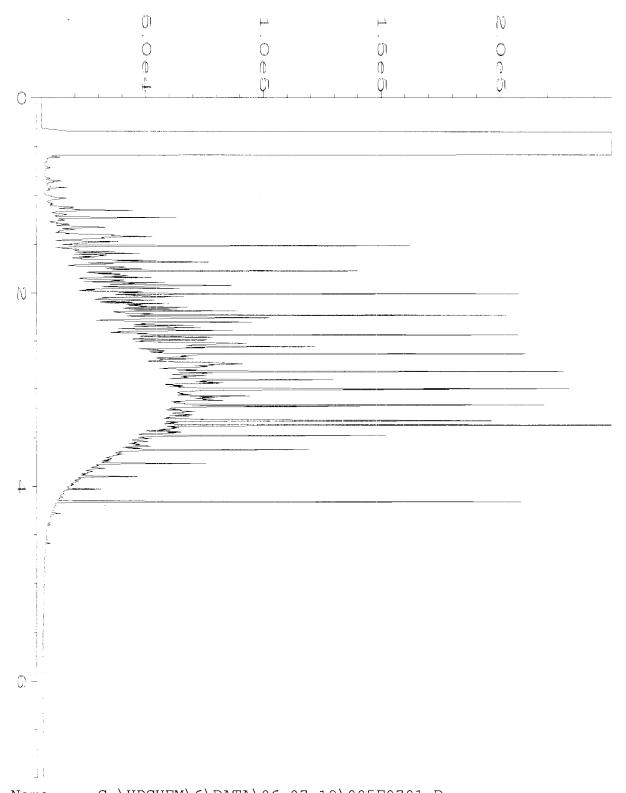
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C


Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	46	10-146
Chloromethane	mg/kg (ppm)	2.5	65	27-133
Vinyl chloride	mg/kg (ppm)	2.5	75	22-139
Bromomethane	mg/kg (ppm)	2.5	67	38-114
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	$\frac{2.5}{2.5}$	79 76	9-163 10-196
Acetone	mg/kg (ppm)	$\frac{2.5}{12.5}$	140	52-141
1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	103	47-128
Hexane	mg/kg (ppm)	2.5	78	43-142
Methylene chloride	mg/kg (ppm)	2.5	81	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	89	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	94	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	94	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	98	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	92	72-127
Chloroform	mg/kg (ppm)	2.5	90	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	110	72-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	85	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	96	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	93	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	97	60-139
Benzene	mg/kg (ppm)	2.5	90	68-114
Trichloroethene	mg/kg (ppm)	2.5	87	64-117
1,2-Dichloropropane	mg/kg (ppm)	$\frac{2.5}{2.5}$	89	72-127
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	95 90	72-130 70-120
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	97	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	$\frac{12.5}{2.5}$	93	75-136
Toluene	mg/kg (ppm)	2.5	90	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	96	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	93	75-113
2-Hexanone	mg/kg (ppm)	12.5	98	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	90	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	95	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	99	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	92	74-132
Chlorobenzene	mg/kg (ppm)	2.5	87	76-111
Ethylbenzene	mg/kg (ppm)	2.5	91	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	100	69-135
m,p-Xylene	mg/kg (ppm)	$\frac{5}{2.5}$	92 92	78-122 77-124
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2.5	95 95	74-124
Isopropylbenzene	mg/kg (ppm)	2.5	97	76-127
Bromoform	mg/kg (ppm)	2.5	106	56-132
n-Propylbenzene	mg/kg (ppm)	2.5	94	74-124
Bromobenzene	mg/kg (ppm)	2.5	91	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	96	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	94	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	92	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	95	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	93	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	97	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	95	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	95	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	96	70-132
1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	93 89	75-121 74-117
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2.5}{2.5}$	89 93	74-117 76-121
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	99	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	96	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	97	50-153
Naphthalene	mg/kg (ppm)	2.5	92	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	91	63-138
, ,	88 (P.P)	0		100


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
: C:\HPCHEM\6\DATA\06-07-19\054F0901.D
Data File Name
                  : TL
Operator
                                                  Page Number
                                                                   : 1
                                                  Vial Number
Instrument
                  : GC6
                                                                   : 54
                                                  Injection Number : 1
Sequence Line : 9
Sample Name
                 : 906075-02
Run Time Bar Code:
                                                  Instrument Method: DX.MTH
Acquired on
              : 07 Jun 19 08:38 PM
Report Created on: 10 Jun 19 08:35 AM
                                                  Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\06-07-19\050F0901.D
Data File Name
Operator
                : TL
                                             Page Number
                                                            : 1
                                             Vial Number : 50
Instrument
                : GC6
Sample Name
               : 09-1346 mb
                                             Injection Number: 1
                                             Sequence Line : 9
Run Time Bar Code:
Acquired on
            : 07 Jun 19 07:54 PM
                                             Instrument Method: DX.MTH
Report Created on: 10 Jun 19 08:33 AM
                                             Analysis Method : DEFAULT.MTH
```


Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.				•		11-10-614	AB-01-9	473-01-55	43-01-2	6-D-04-2	1-40-67	Sample ID		Phonel act) 413-54 lemail Ayrelackshillespeckerselles com	City, State, ZIP Scattle WA 98104	Address 7/0 2 nd Ale	_	\searrow [906075
Received by:	Relinquished by:	Received by:	Relinquished by:	SIG					85	05	g\range	03	02 T	OI A.E	Lab ID		ail Aymholshille	HOISP HUI	Sh 550	(ms.) The	Yonkusk	
	The contract of the contract o	Den (211	SIGNATURE					8		,			6/51/4	Date Sampled		spectosollo					
									1328	1316	1313	1303	1230	1234	Time Sampled		,com	REMARKS	Altha	PROJEC	SAMPLI	SAMPLE CHAIN OF CUSTOD
	T. C.								4				_	Sost	Sample Type			KS S	lake	PROJECT NAME	SAMPLERS (signatur	CHAIN
	76			PRII					4				-	S	# of Jars						ture	OF (
	ad ou		3	PRINT NAME											TPH-HCID							cus
	>	2	}	AMI						<u> </u>			×		TPH-Diesel					\$	<u> </u>	TO
				(4)			_	<u> </u>		ļ	.	<u> </u>	×		TPH-Gasoline							DY
							ļ	-			ļ	ļ <u>-</u>			BTEX by 8021B	A						
							-	-	-	-	-	 	<u> ×</u>		VOCs by 8260C	ANALYSES REQUESTED	47	, I	180357		1	ME 06-05
		727 737	ASI				-		-	-	-	-	-		SVOCs by 8270D	XES	7	70IC	2	PO#	İ	80
Ñ	7	Γ)ect	Q		ļ		ļ	 _	-	-	-	-		PAHs 8270D SIM	BB		ET		#		0
Samples received at			6	COMPANY			_	_	+	 		×		×	Hold Pendry	TUE						5
les			consist.	ANJ			Ц_		•					<u> </u>		STE] []	R	□ &		9
rece		(tore			ļ											Other	i Dispo	ush c	Stan RUS	ין	3
ive						,	र्व य	-									r S	SAMI Se at	harge	dard H	Fage #	\$ _
l at	1	9/0	5/3	D,			eiv										Other Samples	ter 3	es aut	Turn	ARO	ð
L		10	1/14	DATE			<u>Samples receiv</u>								, z		ll es	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	∦ Standard Turnaround	TURNAROUND TIME	K
င္ပ	-			1			rple								Notes			S	ed by	nd —	MIT of	Z.
		25.22	1278	TIME			San											•	.:		F)	× /
L			<u></u>					_1							<u> </u>	لــــــــــــــــــــــــــــــــــــــ	L		<u></u>			_

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 21, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 11, 2019 from the Aloha Cafe 180357, F&BI 906200 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0621R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 11, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906200 project. Samples were logged in under the laboratory ID's listed below.

T 1 TD	
<u>Laboratory ID</u>	Aspect Consulting, LLC
906200 -01	MW-11-1
906200 -02	MW-11-6
906200 -03	MW-11-13
906200 -04	MW-11-18
906200 -05	MW-11-25
906200 -06	B-05-3
906200 -07	B-05-6
906200 -08	B-05-10.5
906200 -09	B-05-16
906200 -10	B-05-25
906200 -11	MW-12-3
906200 -12	MW-12-8
906200 -13	MW-12-11.5
906200 -14	MW-12-15
906200 -15	MW-12-25
906200 -16	B-06-6
906200 -17	B-06-8.5
906200 -18	B-06-10
906200 -19	B-06-13
906200 -20	B-06-25
906200 -21	MW-13-6
906200 -22	MW-13-11
906200 -23	MW-13-12.5
906200 -24	MW-13-18
906200 -25	MW-13-25
906200 -26	MW-14-10.5
906200 -27	MW-14-12.5
906200 -28	MW-14-17.5
906200 -29	MW-14-17.5-D
906200 -30	MW-14-22.5
906200 -31	MW-14-25
906200 -32	MW-14-27.5
906200 -33	MW-14-30

ENVIRONMENTAL CHEMISTS

An 8260C internal standard failed the acceptance criteria for the direct sparge analysis of samples MW-11-1 and MW-11-6. The samples were diluted by methanolic extraction and reanalyzed with acceptable results. Both data sets were reported.

CASE NARRATIVE (continued)

Several compounds in the 8260C direct sparge laboratory control sample and laboratory control sample duplicate failed the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

Date Extracted: 06/13/19 Date Analyzed: 06/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
MW-11-1 906200-01 1/10	< 0.2	0.99	2.0	11	280	102
MW-11-6 906200-02 1/20	0.63	4.1	38	140	2,600	115
MW-11-13 906200-03	< 0.02	0.031	0.025	0.12	<5	99
B-05-16 906200-09	< 0.02	< 0.02	< 0.02	<0.06	<5	98
MW-12-15 906200-14	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
B-06-13 906200-19	< 0.02	< 0.02	< 0.02	< 0.06	<5	100
MW-13-12.5 906200-23	< 0.02	< 0.02	< 0.02	< 0.06	<5	99
MW-14-12.5 906200-27	< 0.02	< 0.02	< 0.02	<0.06	<5	99
Method Blank 09-1298 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

Date Extracted: 06/13/19 Date Analyzed: 06/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 56-165)
MW-11-6 906200-02	240 x	<250	93
B-05-16 906200-09	<50	<250	92
MW-12-15 906200-14	<50	<250	91
B-06-13 906200-19	<50	<250	91
MW-13-12.5 906200-23	<50	<250	92
MW-14-12.5 906200-27	<50	<250	91
Method Blank 09-1385 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-11-6 Client: Aspect Consulting, LLC

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

 Date Extracted:
 06/13/19
 Lab ID:
 906200-02

 Date Analyzed:
 06/13/19
 Data File:
 906200-02.056

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 8.76

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Aloha Cafe 180357, F&BI 906200

Date Extracted: 06/13/19 Lab ID: I9-365 mb
Date Analyzed: 06/13/19 Data File: I9-365 mb.070
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

Lab ID: 906200-01 Date Extracted: 06/13/19 Date Analyzed: 06/14/19 Data File: 061426.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	$255 \mathrm{~ip}$	50	150
4-Bromofluorobenzene	$148 \mathrm{J}$	50	150

Compounds: Concentration mg/kg (ppm)

 $\begin{array}{lll} \text{Methyl t-butyl ether (MTBE)} & <0.005 \\ 1,2\text{-Dibromoethane (EDB)} & <0.005 \\ 1,2\text{-Dichloroethane (EDC)} & <0.005 \\ \text{Naphthalene} & 0.31 \text{ ve J jl} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Direct Sparge

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

Lab ID: 906200-02 Date Extracted: 06/14/19 Date Analyzed: 06/14/19 Data File: 061427.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	118	50	150
Toluene-d8	741 ip	50	150
4-Bromofluorobenzene	428 ip	50	150

Compounds: Concentration mg/kg (ppm)

 $\begin{array}{lll} \text{Methyl t-butyl ether (MTBE)} & <0.005 \text{ J} \\ 1,2\text{-Dibromoethane (EDB)} & <0.005 \text{ J} \\ 1,2\text{-Dichloroethane (EDC)} & <0.005 \text{ J} \\ \text{Naphthalene} & 0.36 \text{ ve J jl} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Direct Sparge

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906200

06/14/19 Lab ID: Date Extracted: 09-1332 mbDate Analyzed: 06/14/19 Data File: 061408.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.005 1,2-Dibromoethane (EDB) <0.005 1,2-Dichloroethane (EDC) <0.005 Naphthalene <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-1	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200 Date Extracted: 06/13/19 Lab ID: 906200-01

 Date Extracted:
 06/13/19
 Lab ID:
 906200-01

 Date Analyzed:
 06/18/19
 Data File:
 061813.D

 Matrix:
 Soil
 Instrument:
 GCMS4

 Units:
 mg/kg (ppm) Dry Weight
 Operator:
 MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	98	55	145
4-Bromofluorobenzene	95	65	139

G 1	Concentration mg/kg (ppm)
Compounds:	mg/kg (ppm)

Methyl t-butyl ether (MTBE)	< 0.05
1,2-Dibromoethane (EDB)	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
Naphthalene	1.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-6	Client:	Aspect Consulting, LLC
-------------------	---------	---------	------------------------

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

Lab ID: Date Extracted: 906200-02 06/13/19 Date Analyzed: 06/18/19 Data File: 061814.DMatrix: Soil Instrument: GCMS4mg/kg (ppm) Dry Weight Units: MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	107	65	139

~ ,	Concentration
Compounds:	mg/kg (ppm)

Methyl t-butyl ether (MTBE)	< 0.05
1,2-Dibromoethane (EDB)	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
Naphthalene	7.4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-12-15 Client: Aspect Consulting, LLC

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

Lab ID: Date Extracted: 06/12/19 906200-14 Date Analyzed: 06/12/19 Data File: 061219.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 93 107 Toluene-d8 100 87 110 4-Bromofluorobenzene 99 85 112

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-13-12.5 Client: Aspect Consulting, LLC

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

Date Extracted: 06/12/19 Lab ID: 906200-23 Date Analyzed: 06/12/19 Data File: 061220.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS Operator:

 1,2-Dichloroethane-d4
 101
 93
 107

 Toluene-d8
 100
 87
 110

 4-Bromofluorobenzene
 99
 85
 112

Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1,1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-14-12.5 Client: Aspect Consulting, LLC

Date Received: 06/11/19 Project: Aloha Cafe 180357, F&BI 906200

85

112

Date Extracted: 06/12/19 Lab ID: 906200-27 Date Analyzed: 06/12/19 Data File: 061221.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS Operator:

98

Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1,1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

4-Bromofluorobenzene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906200

Date Extracted: 06/18/19 Lab ID: 09-1431 mb Date Analyzed: 06/18/19 Data File: 061808.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 145 Toluene-d8 99 55 145 4-Bromofluorobenzene 96 65 139

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.05 1,2-Dibromoethane (EDB) <0.05 1,2-Dichloroethane (EDC) <0.05 Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906200

Date Extracted: 06/12/19 Lab ID: 09-1327 mb Date Analyzed: 06/12/19 Data File: 061211.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS Operator:

Upper Lower Limit: Surrogates: % Recovery: Limit: 1.2-Dichloroethane-d4 99 93 107 87 Toluene-d8 98 110 4-Bromofluorobenzene 99 85 112

Concentration mg/kg (ppm) Compounds: Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1,1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 906200-09 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	89	69-120
Toluene	mg/kg (ppm)	0.5	91	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	94	65 - 123
Xylenes	mg/kg (ppm)	1.5	95	66-120
Gasoline	mg/kg (ppm)	20	85	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 906228-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	86	100	63-146	15

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	88	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906200-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	8.10	93	89	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D DIRECT SPARGE

Laboratory Code: 906232-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet wt)	Duplicate Result (Wet wt)	RPD (Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.005	< 0.005	nm
Naphthalene	mg/kg (ppm)	< 0.005	< 0.005	nm

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	0.05	85	80	49-148	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	86	84	69-137	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	99	98	70-130	1
Naphthalene	mg/kg (ppm)	0.05	136 vo	99	70-130	31

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906094-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	41	38	10-91	8
Chloroethane	mg/kg (ppm)	2.5	< 0.5	53	50	10-101	6
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	56	22 - 107	2
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	66	61	14-128	8
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	66	65	13-112	2
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	72	69	23 - 115	4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	73	71	25-120	3
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	72	72	22 - 124	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	70	65	27 - 112	7
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	68	67	30-112	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	68	68	25 - 114	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	88	42 - 107
Chloroethane	mg/kg (ppm)	2.5	95	47 - 115
1,1-Dichloroethene	mg/kg (ppm)	2.5	99	65-110
Methylene chloride	mg/kg (ppm)	2.5	97	50 - 127
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	101	74-109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	73-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	104	72-116
Trichloroethene	mg/kg (ppm)	2.5	94	72 - 107
Tetrachloroethene	mg/kg (ppm)	2.5	97	73-111

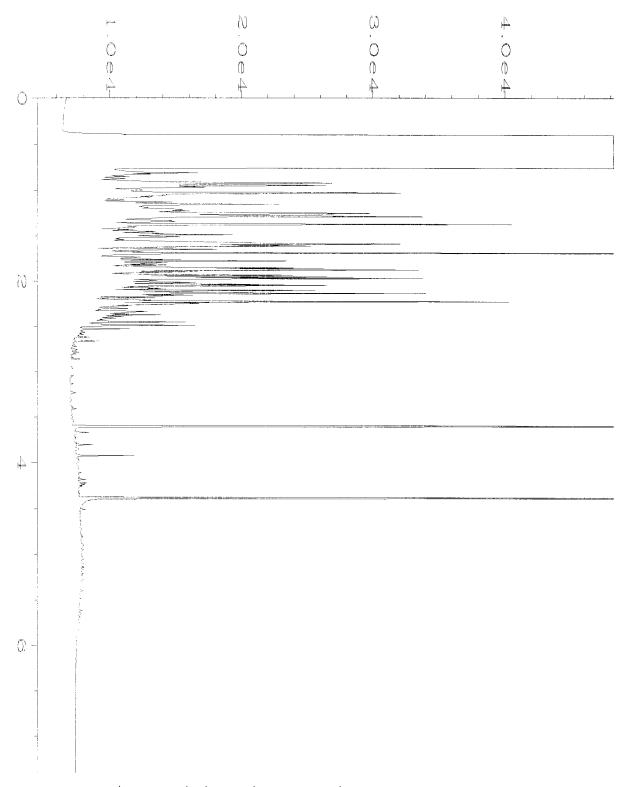
ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/11/19

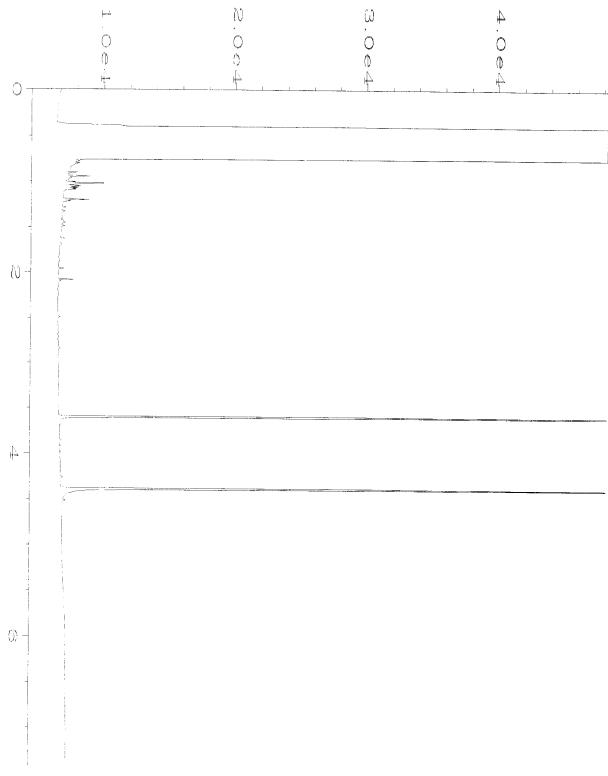
Project: Aloha Cafe 180357, F&BI 906200

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

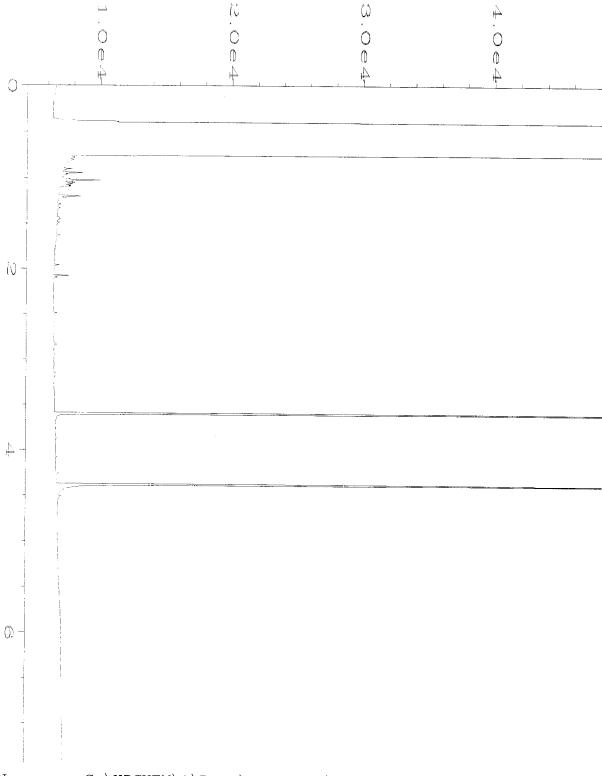
Laboratory Code: 906312-01 (Matrix Spike)

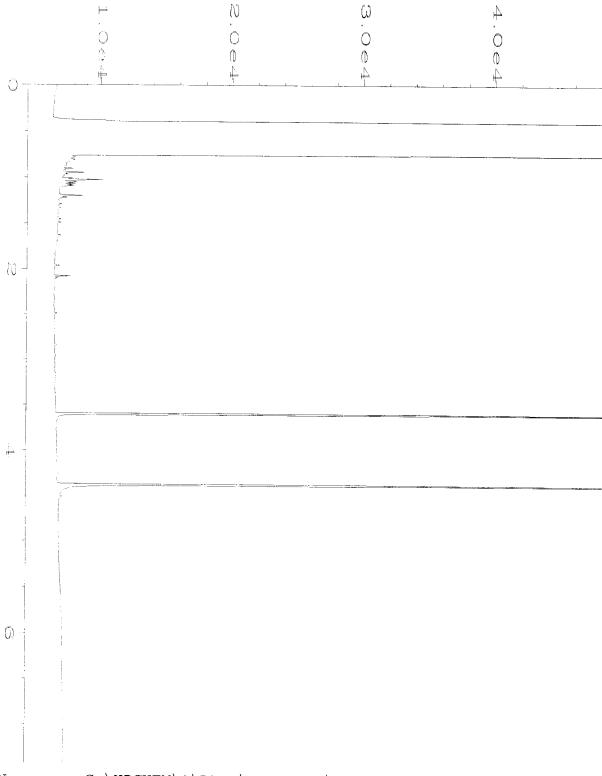

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	95	21-145
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	88	12-160
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	87	28-142
Naphthalene	mg/kg (ppm)	2.5	< 0.05	91	14 - 157

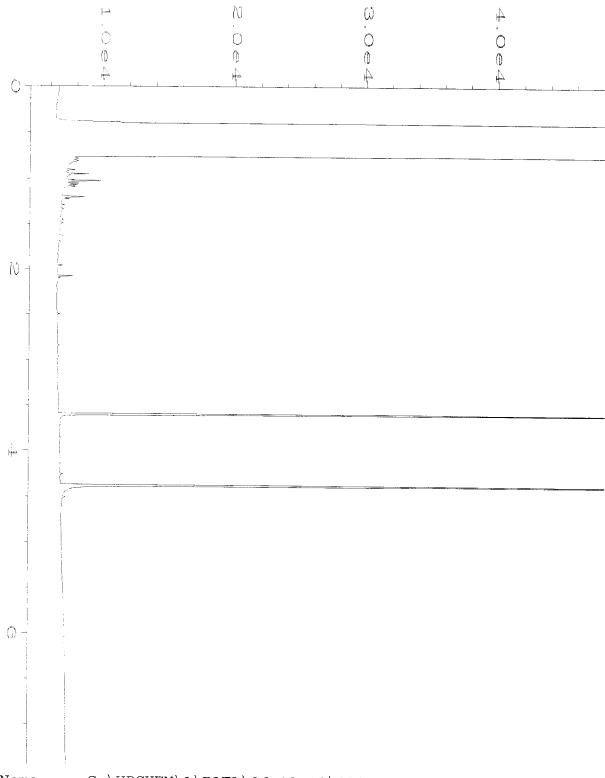
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	104	106	60-123	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	99	56 - 135	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	95	98	74 - 132	3
Naphthalene	mg/kg (ppm)	2.5	104	106	63-140	2

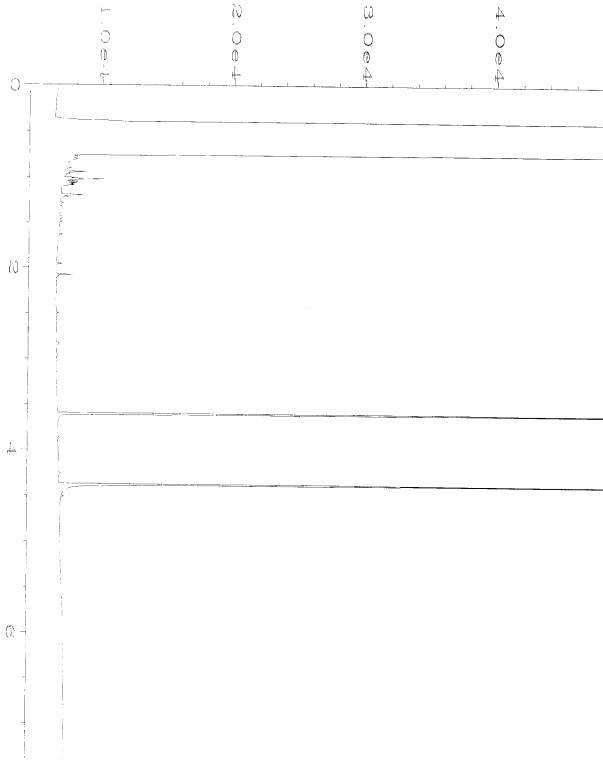

ENVIRONMENTAL CHEMISTS

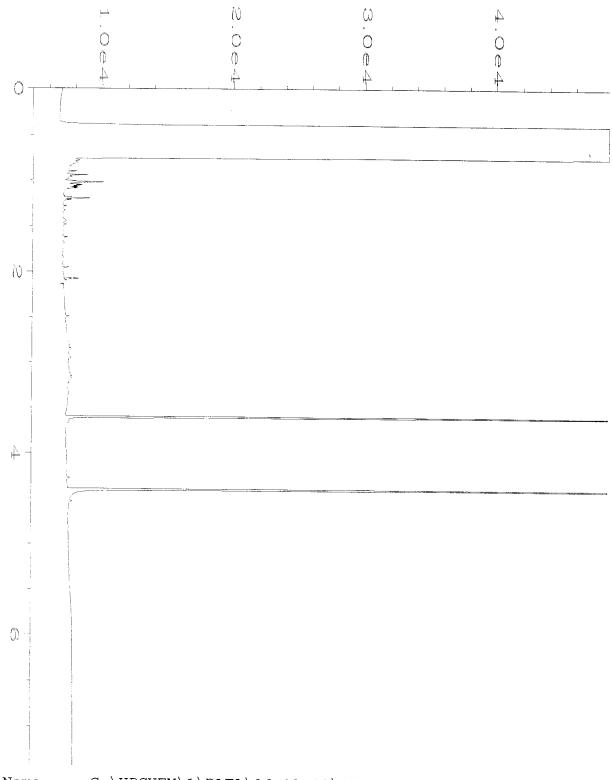
Data Qualifiers & Definitions

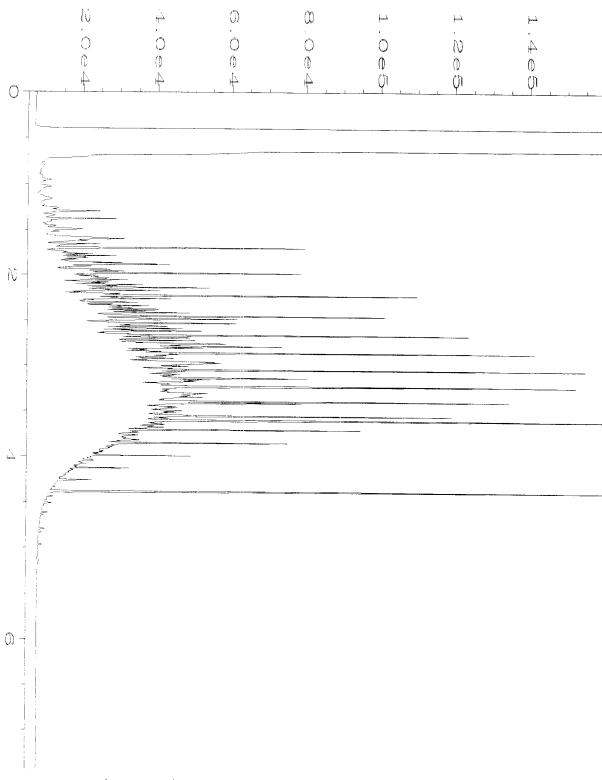

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name : C:\HPCHEM\1\DATA\06-13-19\024F0701.D
Operator
                : TL
                                              Page Number
                                             Vial Number
Instrument
                : GC1
                                              Injection Number : 1
                : 906200-02
Sample Name
Run Time Bar Code:
                                              Sequence Line : 7
Acquired on : 13 Jun 19 02:10 PM
                                              Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:20 AM
                                             Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\06-13-19\025F0701.D
Operator
                : TL
                                               Page Number
                                                                : 1
Instrument
                : GC1
                                               Vial Number
                                                                : 25
Sample Name
                : 906200-09
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 13 Jun 19 02:22 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:20 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\06-13-19\026F0701.D
Operator
                : TL
                                               Page Number
Instrument
                : GC1
                                               Vial Number
                                                               : 26
Sample Name
                : 906200-14
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                               : 7
Acquired on : 13 Jun 19 02:34 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:20 AM
                                              Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\06-13-19\027F0701.D
Operator
                : TL
                                               Page Number
Instrument
                : GC1
                                               Vial Number
                                                               : 27
Sample Name
                : 906200-19
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 13 Jun 19 02:46 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:20 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\06-13-19\028F0701.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                : GC1
                                               Vial Number
                                                                : 28
Sample Name
                : 906200-23
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                               : 7
Acquired on : 13 Jun 19 02:58 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:20 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                : C:\HPCHEM\1\DATA\06-13-19\029F0701.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                : GC1
                                               Vial Number
                                                                : 29
Sample Name
                : 906200-27
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 13 Jun 19 03:10 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:20 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
              : C:\HPCHEM\1\DATA\06-13-19\006F0301.D
Operator
                : TL
                                              Page Number
Instrument
                                             Vial Number
                : GC1
                                                          : 6
Sample Name
                : 09-1385 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
Acquired on : 13 Jun 19 08:53 AM
                                             Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:18 AM
                                             Analysis Method : DX.MTH
```



```
: C:\HPCHEM\1\DATA\06-13-19\003F0201.D
Data File Name
Operator
                 : TL
                                               Page Number
Instrument
                : GC1
                                               Vial Number
                                                                : 3
Sample Name
                : 500 Dx 57-78E
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 13 Jun 19 07:19 AM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 08:18 AM
                                               Analysis Method : DX.MTH
```

mw-11-75 1385-13-05-3 Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West mw-11-6 Friedman & Bruya, Inc. Mus-11-18 mw-11-13 $m\omega - 11 - 1$ City, State, ZIP Seat-Ic WA, 18104 Company Aspect Consulting
Address 710 2nd Auc, Stc 550 Phone (206) 413-5 4/1 Email or yorknown Open Consultations of the Consultation Report To Andrew Jonhofski 3-28-16 3-8-28 3-05-105 13-05-6 906200 Sample ID Received by: Relinquished by: Pandless Relinquishedby Received by: DI A.E 40 0% 08 90 þ.% 40 10 Lab ID SIGNATURE 6/10/14 Date Sampled <u>8</u>2 SAMPLE CHAIN OF CUSTODY 0923 1000 8480 0834 28 Time Sampled 1119 1111 E3 رية SAMPLERS (signature) PROJECT NAME REMARKS Alpha Cake Sample Type δ 4 HONE NEW David Union $\bar{\phi}$ # of Jars PRINT NAME TPH-HCID Ø 8 TPH-Diesel × × >**TPH-Gasoline** × × $\boldsymbol{\times}$ BTEX by 8021B 18087 VOCs by 8260C INVOICE TO SVOCs by 8270D PO# Mozet Consulting PAHs 8270D SIM REQUESTED COMPANY Hold pending Pb by COD 4 × Samples received at Other_ d Dispose after 30 days Standard Turnaround □ RUSH_ ☐ Archive Samples Rush charges authorized by: MTDE, RDB, EX VapH. × Page # //CY J SAMPLE DISPOSAL X DO AY DATE DerAY 6/11/19 ME 9/12/12 ME Notes TIME

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16" Avenue West	Friedman & Bruya, Inc.		13-06-25	3-66-13	B~86 - 10	3-06 - 85	B-06-B	mw - 12 - 25	mw - R-15	me -2-115	mw-12-8	mu-12-3	Sample ID		Phone (206) 413 5-41/Email axonho (shipupe tensulos com	City, State, ZIP Scottle, Wf, 48/04	Address 710 7rd Ave, Ste, SSO	Company Aspec Consul one	Report Tot move Jonholshi	9,620
Received by:	Relinquished by:	Received by:	7 F	SIC	20	P]	18	7	16	Di.	F	13	12	11 4-16	Lab ID		ail ayonho thi	HO18h '489	She, SSO	Sme	ofsh?	
	0	uda	million	SIGNATURE	0			-	6/11/19	*				C1/01/9	Date Sampled		graphe /com					
					OGRO	C880	0847	6480	0835	1432	1356	1350	1345	1331	Time Sampled		West Con	REMAR	Alcha	PROJEC	SAMPLI	SAMPLE CHAIN OF CUSTODY
		HOUZ	David		4				50%	*				Soil	Sample Type			KS	Colo	PROJECT NAME	SAMPLERS (signature	CHAIN
		Z	2	PRI	+				4	4			_	9	# of Jars						ture)	OF O
		2	بالريم	PRINT NAME											TPH-HCID		,				N	cus
		RU	5	AME		8					8				TPH-Diesel							
	`	1/E				× ×					×			† 	TPH-Gasoline						•	YC
		3				^			-		×				BTEX by 8021B VOCs by 8260C	AN						ME
															SVOCs by 8270D	ANALYSES REQUESTED	F	OAN	80357	P	1	ME OG-
		Z	200												PAHs 8270D SIM	ES R		ICE	57	PO#		1
		B	3	COMPANY	X	2001	² ←			×		+	_	×	Hold Denly	EQU		TO				1-1
		`	ansolfer	PAN		заготпро	-				×				CUCKS BYSSICOL	EST		A				10
		(olfer	Y												ð	☐ Archi	X Disp	Rush ((Star		
						алгарат											nive S	SAM:	charg	idard H	Fage #	820
		1	6/11/19	DATE		n at	2								Notes		☐ Archive Samples ☐ Other	SAMPLE DISPOSAL XDispose after 30 days	Rush charges authorized by:	XStandard Turnaround □ RUSH	TURNAROUND TIME	1/524
		1	11.5%	TIME		•	, and								tes			SAL	d by:	, ===	IME	ر مري

908 500

Report To Andrew Yorks Sk.

Company Here Consultar

Address 710 2nd Auc. Sk. 55

City, State, ZIP Sealle, WA, 9XIV

Phone 26 413 JHM Email Oxported & Baspertions altracon

SAMPLE CHAIN OF CUSTODY ME 06-11-19

SAMPLERS (signature) REMARKS PROJECT NAME Aloha Cafe INVOICE TO 18837 PO#

Standard Turnaround Dispose after 30 days

Archive Samples Rush charges authorized by: Pago# 3 of 34 Vg4
TURNAROUND TIME SAMPLE DISPOSAL

¥

	14- 22.5	mw-14-17.5-0	mw-14- 175	mw -14 - 125	mu - 18 - 10.8	mw -13-25	mw -13-18	mw -13-125	mw -13-17	mw-13-6	Sample ID	
	1 08	29	28	27	26	25	24	23	22 T	21 A.E	Lab ID	
SIGNATURE	4									Glilia	Date Sampled	
	1337	١	1323	DII	DOH	1041	1025	1011	1005	6953	Time Sampled	
	4									507	Sample Type	
PRII	4			<u> </u>		<u> </u>			_	4	# of Jars	
PRINT NAME											TPH-HCID	
HMA				8	ļ			⊗ ×			TPH-Diesel	
			<u></u>	×			-				TPH-Gasoline	
				×	ļ			×			BTEX by 8021B	A
											VOCs by 8260C	NAL
				ļ	ļ	ļ					SVOCs by 8270D	YSE
C		2	ς Υ								PAHs 8270D SIM	SRE
OME	4		\times		4		×		4	×	CUCZ SyxXO	QUE
COMPANY		7		×				×			CUCS SyxXXX	ANALYSES REQUESTED
		1001	<u>.</u>									D
		/eu										
DATE		**	2								Notes	
TIME))								tes	

Seattle, WA 98119-2029

Relinquished by:

Ph. (206) 285-8282

Received by:

3012 16th Avenue West

Received by:

Friedman & Bruya, Inc.

Relinquished by:

 $|u_{v}|$

155

Report To Abdew Voluday Company Aper Consider Company Aper Consider Address 70 7 rd Ape, 518 80 City, State, 2IP Sealtle, 11A, 9169 Phone (201) H3-54ll Email & prhobbig species and Time Sample ID Lab ID Date Sample Time Sample # of H-Diesel In H-75/5 All A E G/ll/19 347 827 5 1405 MW -14-75/5 32 T 1408 MW -14-75/5 32 T 1408 Friedman & Bruya, Inc. Resirved by: Resirved by: SIGNATURE PROJECT NAME SAMPLERS (signature) 2011 PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME SAMPLERS (signature) 2011 PROJECT NAME PROJEC	
SAMPLER SAMPLER PROJECT PROJEC	
SAMPLER PROJECT PROJECT AL REMARKS 1423 1423	
	2 1 T T T T
RS (signature) RS (signature) RS (signature) RS (signature) F NAME Oho Cof S Type Jar PR Dan M PR PR	744 7 441
PRII PRII PRII PRII PRII PRII PRII PRII) !
PRINT NAME PRINT NAME TPH-HCID TPH-Diesel) 1
TPH-HCID TPH-Diesel TPH-Gasoline	j }
) 4 1
BTEX by 8021B	>
VOCs by 8260C N N N N N N N N N	J.
SVOCs by 8270D SVOC	5
VOCs by 8260C SVOCs by 8270D SVOCs by 8270D PAHs 8270D SIM PAHs 8270D SIM PAHs 8270D SIM Rus Rus Rus Rus Rus Rus Rus Ru	
COMPANY COMPANY	\
Pa TUESTED WESTED WESTED WARRING WESTED WARRING WAR	,
Page # TURN TURN Astandard of RUSH Rush charge Rush charge Quested Archive Sami Archive Sami Contain of Cont	<i>>></i>
TURNAROU Standard Turnar RUSH Ush charges auth Dispose after 30 Archive Samples Other D D D D D D D D D D D D D D D D D D D	2
	•

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 21, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 12, 2019 from the Aloha Cafe 180357, F&BI 906232 project. There are 23 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0621R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 12, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
906232 -01	MW-15-7.5
906232 -02	MW-15-10.5
906232 -03	MW-15-13
906232 -04	MW-15-17.5
906232 -05	MW-15-25
906232 -06	B-07-6
906232 -07	B-07-8
906232 -08	B-07-12.5
906232 -09	B-07-22.5
906232 -10	B-07-25

An 8260C internal standard failed the acceptance criteria for the direct sparge analysis of samples MW-15-10.5 and MW-15-13. The samples were diluted by methanolic extraction and reanalyzed with acceptable results. Both data sets were reported.

Several compounds in the 8260C direct sparge laboratory control sample and laboratory control sample duplicate failed the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/17/19

Date Analyzed: 06/17/19 and 06/18/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
MW-15-7.5 906232-01	<5	88
MW-15-10.5 906232-02 1/20	6,500	ip
MW-15-13 906232-03 1/50	3,400	120
MW-15-25 906232-05	<5	89
B-07-8 906232-07	87	ip
B-07-12.5 906232-08	<5	86
Method Blank 09-1405 MB	<5	83

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/13/19 Date Analyzed: 06/13/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 48-168)
MW-15-7.5 906232-01	<50	<250	84
MW-15-10.5 906232-02	1,500 x	590	81
MW-15-13 906232-03	990 x	370	84
MW-15-25 906232-05	<50	<250	86
B-07-8 906232-07	<50	<250	84
B-07-12.5 906232-08	<50	<250	85
Method Blank _{09-1393 MB}	<50	<250	84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-15-10.5 Client: Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

 Date Extracted:
 06/13/19
 Lab ID:
 906232-02

 Date Analyzed:
 06/18/19
 Data File:
 906232-02.059

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 1.88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-15-13 Client: Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

 Date Extracted:
 06/13/19
 Lab ID:
 906232-03

 Date Analyzed:
 06/18/19
 Data File:
 906232-03.060

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 1.93

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B-07-8 Client: Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

 Date Extracted:
 06/13/19
 Lab ID:
 906232-07

 Date Analyzed:
 06/18/19
 Data File:
 906232-07.061

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 1.44

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/13/19 Lab ID: I9-365 mb
Date Analyzed: 06/13/19 Data File: I9-365 mb.070
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232 Lab ID: 906232-01 Date Extracted: 06/14/19 Date Analyzed: 06/14/19 Data File: 061419.DMatrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	103	50	150

~ .	Concentration
Compounds:	mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.005 1,2-Dibromoethane (EDB) <0.005 1,2-Dichloroethane (EDC) <0.005 Naphthalene <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

Lab ID: Date Extracted: 06/14/19 906232-02 Date Analyzed: 06/14/19 Data File: $061425.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 95 J 50 150 Toluene-d8 608 J ip 50 150 4-Bromofluorobenzene 2673 J ip 150

Compounds: Concentration mg/kg (ppm)

 $\begin{array}{ll} \text{Methyl t-butyl ether (MTBE)} & <0.005 \text{ J} \\ 1,2\text{-Dibromoethane (EDB)} & <0.005 \text{ J} \\ 1,2\text{-Dichloroethane (EDC)} & <0.005 \text{ J} \\ \text{Naphthalene} & 0.091 \text{ J jl} \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: MW-15-13 Client: Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/14/19 Lab ID: 906232-03 Date Analyzed: 06/14/19 Data File: 061424.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 108 50 150 Toluene-d8 273 ip 50 150 4-Bromofluorobenzene 1029 J ip 50 150

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.005 1,2-Dibromoethane (EDB) <0.005 J 1,2-Dichloroethane (EDC) <0.005 Naphthalene 0.19 J ve jl

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Direct Sparge

Client Sample ID:	MW-15-25	Client:	Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232 Date Extracted: 06/14/19 Lab ID: 906232-05

Date Extracted:06/14/19Lab ID:906232-05Date Analyzed:06/14/19Data File:061422.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)
Benzene	0.026
Toluene	< 0.005
Ethylbenzene	< 0.005
m,p-Xylene	< 0.01
o-Xylene	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-07-8	Client:	Aspect Consulting, LLC

 Date Received:
 06/12/19
 Project:
 Aloha Cafe 180357, F&BI 906232

 Date Extracted:
 06/14/19
 Lab ID:
 906232-07

 Date Analyzed:
 06/14/19
 Data File:
 061423.D

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	117	50	150
4-Bromofluorobenzene	116	50	150

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.005 1,2-Dibromoethane (EDB) <0.005 1,2-Dichloroethane (EDC) <0.005 Naphthalene <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	B-07-12.5	Client:	Aspect Consulting, LLC
-------------------	-----------	---------	------------------------

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/14/19 Lab ID: 906232-08

Lab ID: 906232-08 Date Extracted: 06/14/19 Date Analyzed: 06/14/19 Data File: 061421.DMatrix: Soil Instrument: GCMS4 Units: MS/AEN mg/kg (ppm) Dry Weight Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.005 1,2-Dibromoethane (EDB) <0.005 1,2-Dichloroethane (EDC) <0.005 Naphthalene <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID:	Method Blank	Client:	Aspect (Consulting, LLC
-------------------	--------------	---------	----------	-----------------

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906232

Lab ID: Date Extracted: 06/14/19 09-1332 mb Date Analyzed: 06/14/19 Data File: 061408.DMatrix: Soil Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration mg/kg (ppm)
Methyl t-butyl ether (MTBE)	< 0.005
1,2-Dichloroethane (EDC)	< 0.005
1,2-Dibromoethane (EDB)	< 0.005
Benzene	< 0.003
Toluene	< 0.005
Ethylbenzene	< 0.005
m,p-Xylene	< 0.01
o-Xylene	< 0.005
Naphthalene	< 0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-15-10.5	Client:	Aspect Consulting, LLC
-------------------	------------	---------	------------------------

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

Lab ID: Date Extracted: 06/18/19 906232-02 Date Analyzed: 06/19/19 Data File: 061913.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 105 62 145 Toluene-d8 103 55 145 4-Bromofluorobenzene 130 65 139

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.05 1,2-Dibromoethane (EDB) <0.05 1,2-Dichloroethane (EDC) <0.05 Naphthalene 6.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-15-13	Client:	Aspect Consulting, LLC
-------------------	----------	---------	------------------------

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

Lab ID: Date Extracted: 906232-03 06/18/19 Date Analyzed: 06/19/19 Data File: 061914.DMatrix: Instrument: Soil GCMS4mg/kg (ppm) Dry Weight Units: MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	116	65	139

~ .	Concentration
Compounds:	mg/kg (ppm)

Methyl t-butyl ether (MTBE)	< 0.05
1,2-Dibromoethane (EDB)	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
Naphthalene	4.9

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/18/19 Lab ID: 09-1431 mb Date Analyzed: 06/18/19 Data File: 061808.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 145 Toluene-d8 99 55 145 4-Bromofluorobenzene 96 65 139

Compounds: Concentration mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.05 1,2-Dibromoethane (EDB) <0.05 1,2-Dichloroethane (EDC) <0.05 Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 906262-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 906230-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	94	90	90	73-135	0

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	84	74-139	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 906200-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	8.10	93	89	75-125	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C DIRECT SPARGE

Laboratory Code: 906232-01 (Duplicate)

	Reporting Units	Sample Result	Duplicate Result	RPD
Analyte	1 0	(Wet wt)	(Wet wt)	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.005	< 0.005	nm
Benzene	mg/kg (ppm)	< 0.003	0.0034	nm
Toluene	mg/kg (ppm)	< 0.005	< 0.005	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.005	< 0.005	nm
Ethylbenzene	mg/kg (ppm)	< 0.005	< 0.005	nm
m,p-Xylene	mg/kg (ppm)	< 0.01	< 0.01	nm
o-Xylene	mg/kg (ppm)	< 0.005	< 0.005	nm
Naphthalene	mg/kg (ppm)	< 0.005	< 0.005	nm

			Percent	Percent			
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)	
Hexane	mg/kg (ppm)	0.05	60 vo	62 vo	70-130	3	
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	0.05	85	80	49-148	6	
1,2-Dichloroethane (EDC)	mg/kg (ppm)	0.05	86	84	69-137	2	
Benzene	mg/kg (ppm)	0.05	90	87	67-138	3	
Toluene	mg/kg (ppm)	0.05	95	90	12 - 185	5	
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	99	98	70-130	1	
Ethylbenzene	mg/kg (ppm)	0.05	126	95	70-130	28 vo	
m,p-Xylene	mg/kg (ppm)	0.1	163 vo	96	70-130	52 vo	
o-Xylene	mg/kg (ppm)	0.05	100	94	70-130	6	
Naphthalene	mg/kg (ppm)	0.05	136 vo	99	70-130	31 vo	

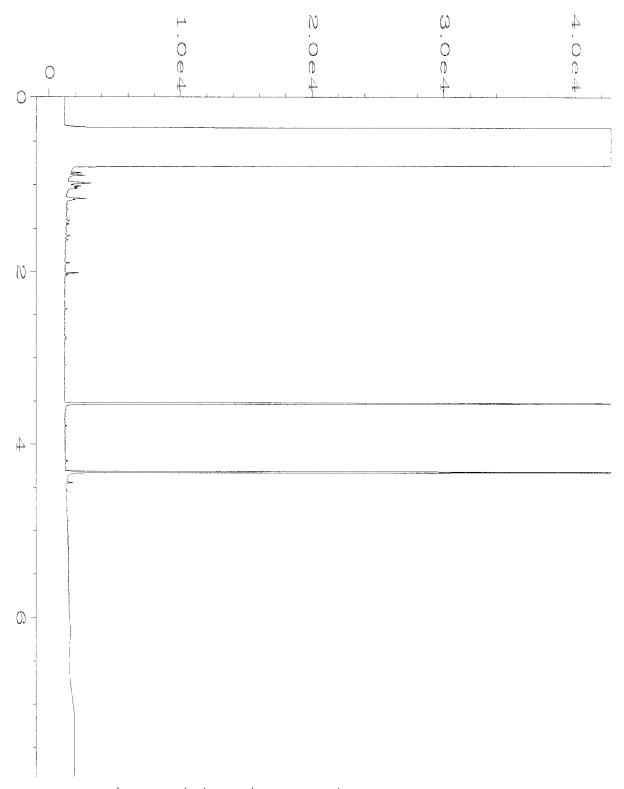
ENVIRONMENTAL CHEMISTS

Date of Report: 06/21/19 Date Received: 06/12/19

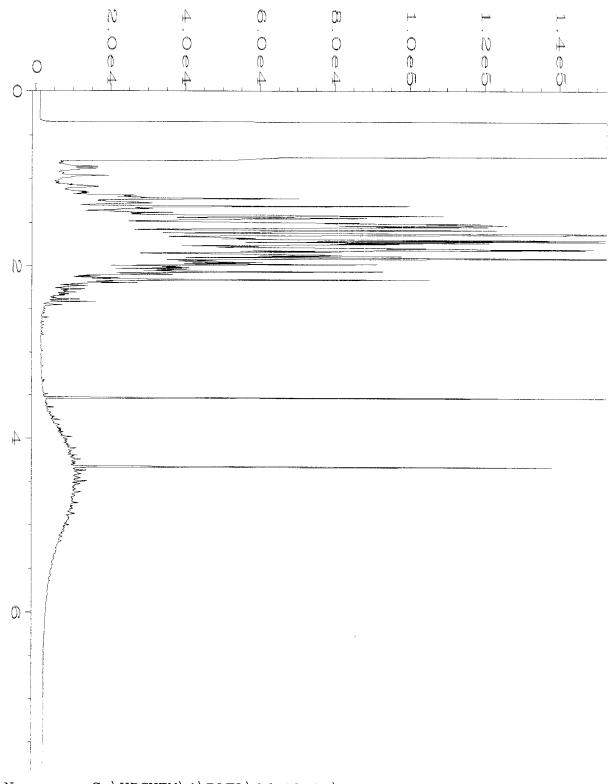
Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

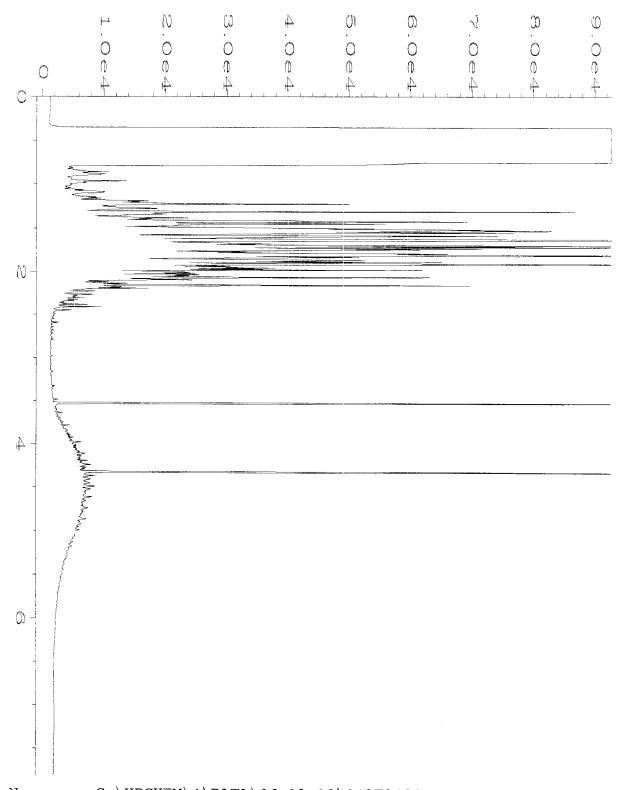
Laboratory Code: 906312-01 (Matrix Spike)

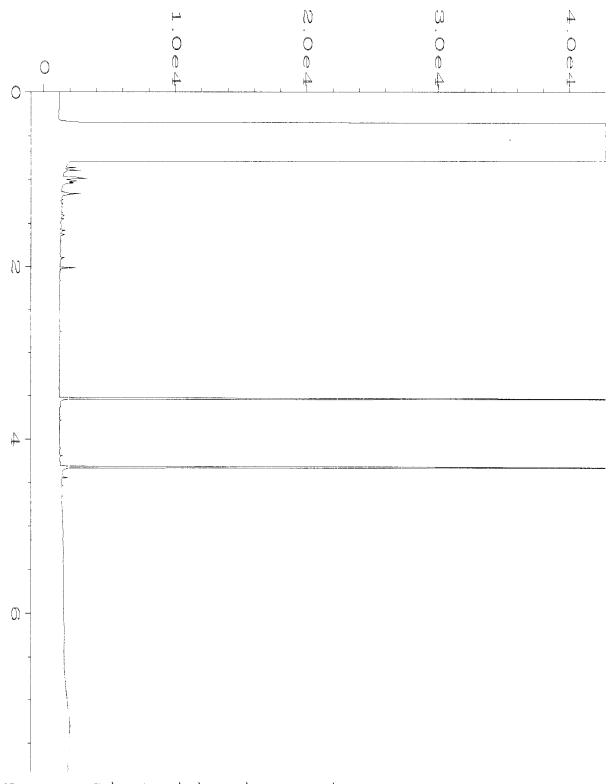

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	95	21-145
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	88	12-160
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	87	28-142
Naphthalene	mg/kg (ppm)	2.5	< 0.05	91	14-157

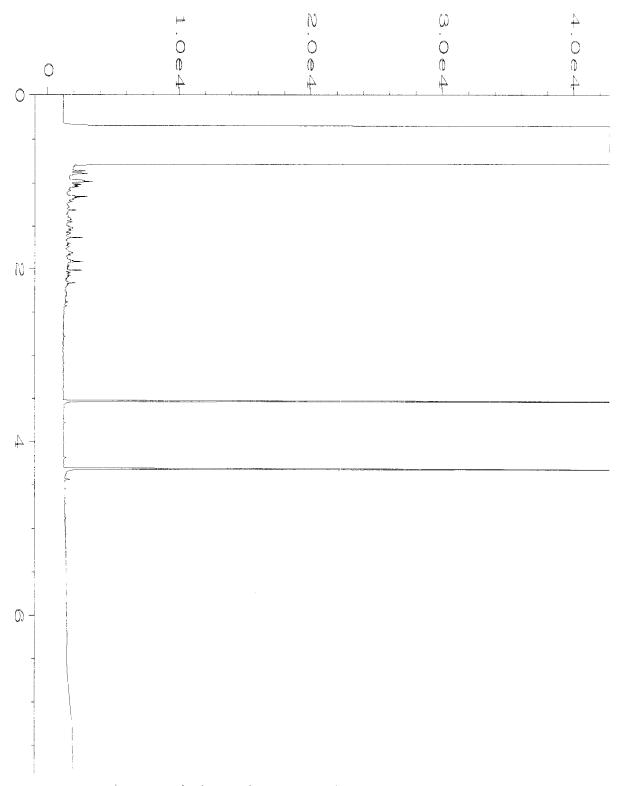
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	104	106	60-123	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	99	56 - 135	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	95	98	74 - 132	3
Naphthalene	mg/kg (ppm)	2.5	104	106	63-140	2

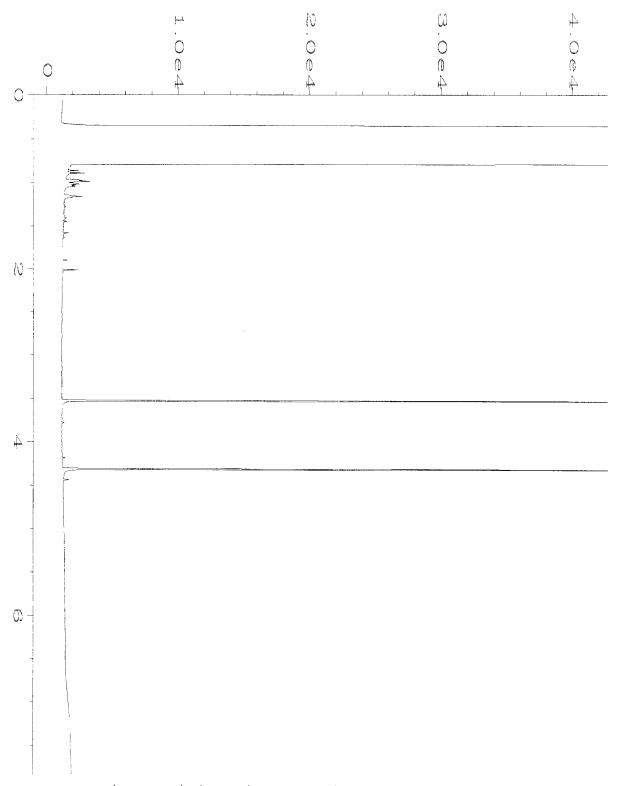

ENVIRONMENTAL CHEMISTS

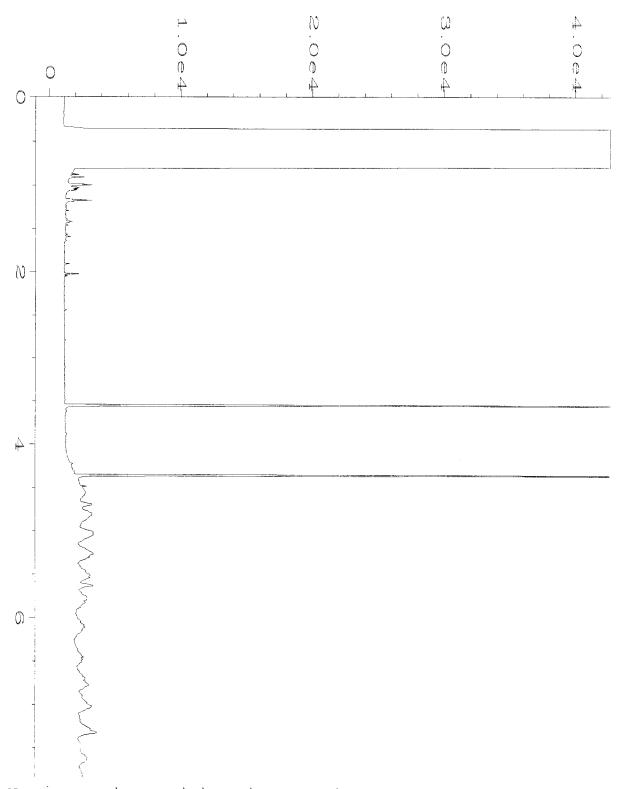
Data Qualifiers & Definitions

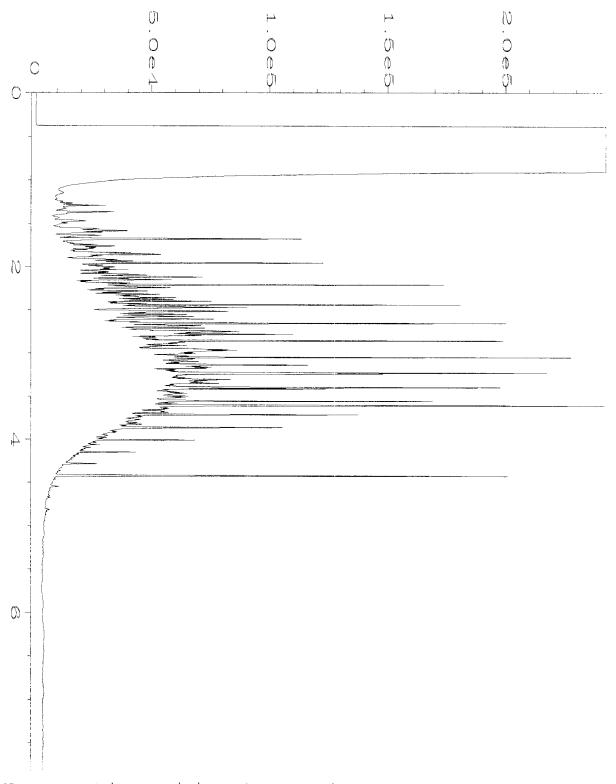

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
              : C:\HPCHEM\4\DATA\06-13-19\041F1401.D
                : TL
                                             Page Number
Operator
                                             Vial Number
Instrument
                : GC#4
                                                             : 41
Sample Name
                : 906232-01
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 14
Acquired on
            : 13 Jun 19 07:46 PM
                                             Instrument Method: DX.MTH
Report Created on: 14 Jun 19 07:52 AM
                                             Analysis Method : DEFAULT.MTH
```



```
Data File Name
                  : C:\HPCHEM\4\DATA\06-13-19\042F1401.D
Operator
                                                    Page Number
Vial Number
                  : TL
                                                                      : 1
Instrument
                  : GC#4
                                                                      : 42
Sample Name
                                                    Injection Number: 1
Sequence Line: 14
                  : 906232-02
Run Time Bar Code:
Acquired on
                  : 13 Jun 19 07:59 PM
                                                    Instrument Method: DX.MTH
Report Created on: 14 Jun 19 07:53 AM
                                                   Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\06-13-19\043F1401.D
Data File Name
Operator
                                             Page Number
                : TL
                                             Vial Number
Instrument
                : GC#4
Sample Name
              : 906232-03
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 14
                                             Instrument Method: DX.MTH
Acquired on
            : 13 Jun 19 08:11 PM
Report Created on: 14 Jun 19 07:53 AM
                                             Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\06-13-19\044F1401.D
Data File Name
                                                   Page Number
Vial Number
Operator
                  : TL
Instrument
                  : GC#4
                                                   Injection Number : 1
Sequence Line : 14
Sample Name
                  : 906232-05
Run Time Bar Code:
Acquired on
              : 13 Jun 19 08:24 PM
                                                   Instrument Method: DX.MTH
Report Created on: 14 Jun 19 07:53 AM
                                                   Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-13-19\045F1401.D
                                               Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
Sample Name
                : 906232-07
                                               Injection Number : 1
Run Time Bar Code:
                                                Sequence Line : 14
                                               Instrument Method: DX.MTH
Acquired on
             : 13 Jun 19 08:36 PM
Report Created on: 14 Jun 19 07:53 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\06-13-19\046F1401.D
Operator
                                               Page Number : 1
Vial Number : 46
                 : TL
Instrument
                 : GC#4
Sample Name
                : 906232-08
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 14
Acquired on
             : 13 Jun 19 08:49 PM
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 07:53 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-13-19\023F0801.D
                                               Page Number
Vial Number
Operator
                 : TL
Instrument
                                                           : 23
                 : GC#4
Sample Name
                 : 09-1393 mb
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 8
             : 13 Jun 19 02:27 PM
Acquired on
                                               Instrument Method: DX.MTH
Report Created on: 14 Jun 19 07:51 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\06-13-19\005F0901.D
                                               Page Number
Vial Number
Operator
                 : TL
Instrument
                : GC#4
Sample Name : 1000 Dx 57-78B
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 9
                                               Instrument Method: DX.MTH
Acquired on
            : 13 Jun 19 03:30 PM
Report Created on: 14 Jun 19 07:51 AM
                                               Analysis Method : DEFAULT.MTH
```

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. 3-07-125 3-07-325 St - St- BW Phone (26) 413-54/1 Email a yorkolsh Ouspectorsoff con Company Aspect Lossoffmy
Address 710 20 Auc. Ste 550 13-07-25 City, State, ZIP Scalle, WA, 48104 B-07-8 13-07-6 MW-15-175 mw-15-13 MW-15-10.5 Report To Andia Yorku Iski Mw-15-75 906232 Sample ID Received by: Relinquished by: Received by: Relinquished by: 7 5 2 30 200 40 06 20 80 01 A-E Lab ID SIGNATURE Date Sampled 145K 14/9 1349 0437 RB 11KG 9260 g G S 1337 1331 Time Sampled SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) REMARKS PROJECT NAME Aloha Cale Sample 8 PRINT NAME # of Jars 4 S TPH-HCID \times \times × TPH-Diesel × × TPH-Gasoline $\overline{\times}$ BTEX by ANALYSES REQUESTED INVOICE TO 120357 MI PO# Samples received at-96-12-19 COMPANY 10050/1524 □ Other XDispose after 30 days

Archive Samples **A**Standard Turnaround □ RUSH Rush charges authorized by: \times Pb by 6010 mrBE, EDB, EDC, Napthe lone TURNAROUND TIME × SAMPLE DISPOSAL DATE 6/13/19 ME Notes 1703 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 2, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on June 12, 2019 from the Aloha Cafe 180357, F&BI 906232 project. There are 10 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0702R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 12, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 906232 project. Samples were logged in under the laboratory ID's listed below.

Aspect Consulting, LLC
MW-15-7.5
MW-15-10.5
MW-15-13
MW-15-17.5
MW-15-25
B-07-6
B-07-8
B-07-12.5
B-07-22.5
B-07-25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/26/19 Date Analyzed: 06/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
MW-15-17.5 906232-04	200	133
Method Blank 09-1491 mb	<5	116

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

Date Extracted: 06/26/19 Date Analyzed: 06/26/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
MW-15-17.5 906232-04	<50	<250	100
Method Blank 09-1536 MB	<50	<250	104

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-15-13 Client: Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232
Date Extracted: 06/27/19 Lab ID: 906232-03 1/5

Date Extracted:06/27/19Lab ID:906232-03 1/5Date Analyzed:06/27/19Data File:062720.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 62 145 Toluene-d8 98 55 145 4-Bromofluorobenzene 104 65 139

Compounds: Concentration mg/kg (ppm)

 Benzene
 0.70

 Toluene
 4.7

 Ethylbenzene
 10

 m,p-Xylene
 46

 o-Xylene
 18

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-15-17.5 Client: Aspect Consulting, LLC

Date Received: 06/12/19 Project: Aloha Cafe 180357, F&BI 906232

Lab ID: Date Extracted: 06/26/19 906232-04 Date Analyzed: 06/26/19 Data File: $062612.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 145 Toluene-d8 99 55 145 4-Bromofluorobenzene 100 65 139

Compounds: Concentration mg/kg (ppm)

Benzene 0.22
Toluene 0.096
Ethylbenzene 0.19
m,p-Xylene 0.88
o-Xylene 0.31

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 906232

Lab ID: Date Extracted: 06/26/19 09-1500 mb Date Analyzed: 06/26/19 Data File: 062609.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 145 Toluene-d8 98 55 145 4-Bromofluorobenzene 98 65 139

Compounds: Concentration mg/kg (ppm)

Benzene <0.03
Toluene <0.05
Ethylbenzene <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 906512-03 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 906512-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	104	106	64-133	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	108	58-147

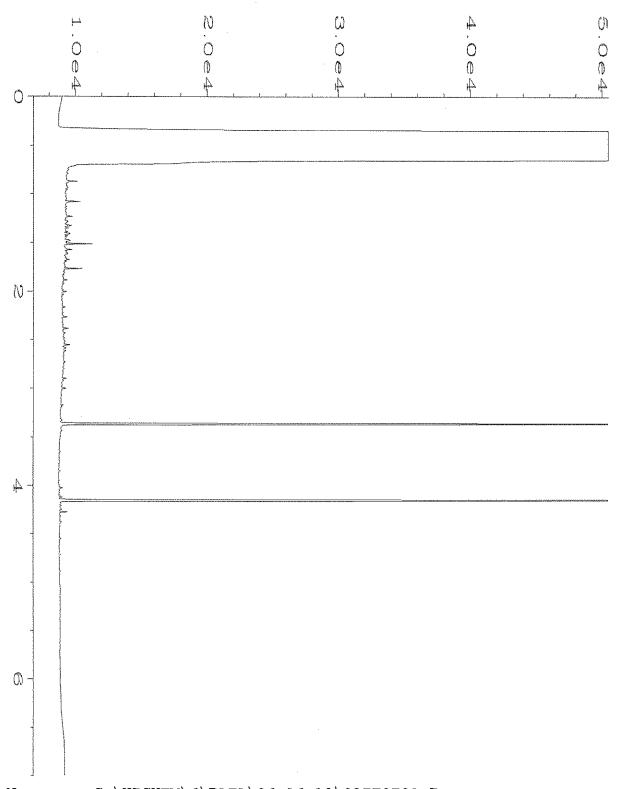
ENVIRONMENTAL CHEMISTS

Date of Report: 07/02/19 Date Received: 06/12/19

Project: Aloha Cafe 180357, F&BI 906232

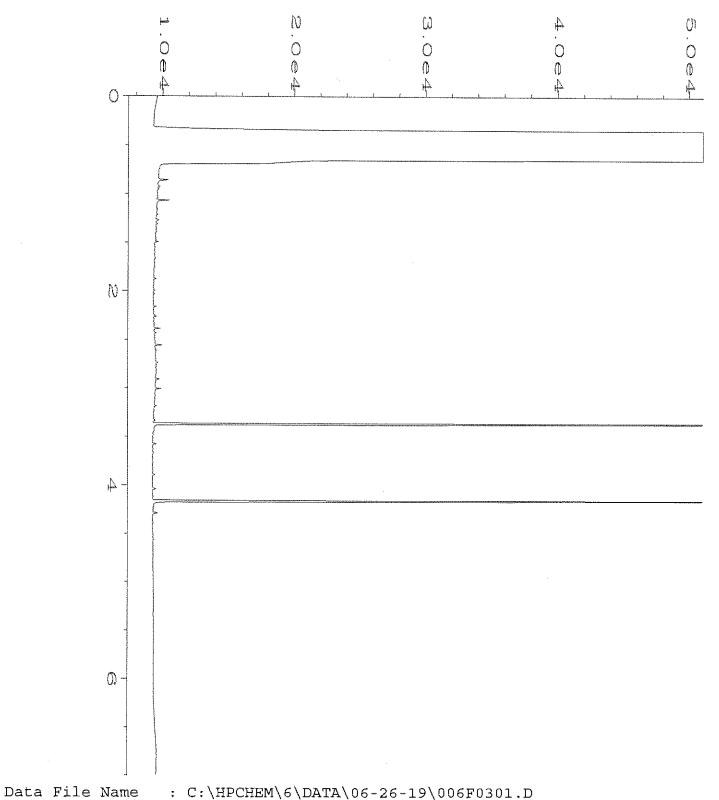
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 906266-01 (Matrix Spike)

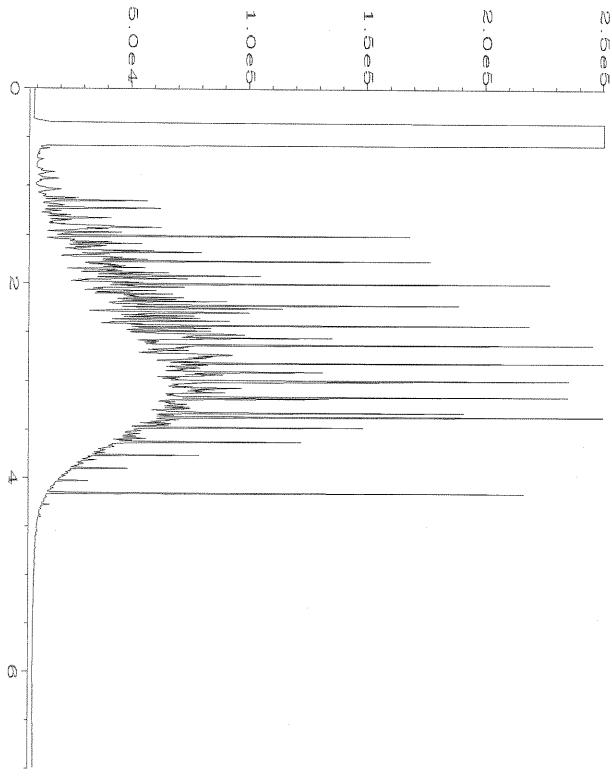

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Benzene	mg/kg (ppm)	2.5	< 0.03	69	29-129
Toluene	mg/kg (ppm)	2.5	< 0.05	64	35-130
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	68	32 - 137
m,p-Xylene	mg/kg (ppm)	5	< 0.1	68	34-136
o-Xylene	mg/kg (ppm)	2.5	< 0.05	72	33-134

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	95	100	68-114	5
Toluene	mg/kg (ppm)	2.5	93	96	66-126	3
Ethylbenzene	mg/kg (ppm)	2.5	97	102	64-123	5
m,p-Xylene	mg/kg (ppm)	5	99	104	78 - 122	5
o-Xylene	mg/kg (ppm)	2.5	101	103	77 - 124	2

ENVIRONMENTAL CHEMISTS


Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.




```
Data File Name
                : C:\HPCHEM\6\DATA\06-26-19\037F0701.D
Operator
                                               Page Number
                : TL
Instrument
                : GC6
                                               Vial Number
                                                                : 37
Sample Name
                : 906232-04
                                               Injection Number: 1
                                               Sequence Line
                                                               : 7
Run Time Bar Code:
Acquired on : 26 Jun 19 06:03 PM
                                               Instrument Method: DX.MTH
Report Created on: 27 Jun 19 08:05 AM
```

Analysis Method : DEFAULT.MTH


```
Operator : TL Page Number : 1
Instrument : GC6 Vial Number : 6
Sample Name : 09-1536 mb Injection Number : 1
Run Time Bar Code: Sequence Line : 3
Acquired on : 26 Jun 19 10:21 AM Instrument Method: DX.MTH
Report Created on: 27 Jun 19 08:02 AM Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\06-26-19\005F0401.D
Data File Name
Operator
                : TL
                                               Page Number
Instrument
                                              Vial Number
                : GC6
                                                                : 5
Sample Name
                : 1000 Dx 57-78B
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
Acquired on : 26 Jun 19 02:41 PM
                                               Instrument Method: DX.MTH
```

Report Created on: 27 Jun 19 08:03 AM Analysis Method : DEFAULT.MTH

Phone (26) 413-54/1 Email a yorkolshi Oospertionsoff con City, State, ZIP Scalle, WA, 98104 Company Aspect Corrolling
Address 710 20 Au . Ste 550 Report To Andrew Yorko Iski 906232 SAMPLE CHAIN OF CUSTODY REMARKS SAMPLEBS (signature) PROJECT NAME Alpha Cate INVOICE TO ME 06-12-19 120357 PO# SAMPLE DISPOSAL

ADispose after 30 days

Archive Samples □ Other Rush charges authorized by: XStandard Turnaround TURNAROUND TIME

Sample ID Lab ID Date Time Sample # of CD el el ne sch C CO CO CO CO CO CO CO	7	<u>ر</u>	Ω	<u>ت</u> ن	ĮĮ,	ſ	1	T	<u> </u>	1	1	Τ		Т			
A.E. Signature Sampled Time Sampled Type Jars HONG PRINT NAME PRINT NAME PAHS 8270D SIM PAHS 8270D S	h. (206) 285-8282	eaute, WA 90119-2029	and WA DOLLD DOO	012 16th Appropria Wast	riedman & Bruya, Inc.	13-07-25	3-07-925	8-07-125	8-07-8	B-07-6	St - 31- Ow	11-31-0m	mw-15-13	mw-15-10.5	Mw-15-75	Sample ID	
Sampled Type Sampled Sampled Type Sampled Ty	Received by:	neringuished by:	120		SIGI Relinquished by: ———————————————————————————————————	10 1	09	38	40	96	05	96	03	02	<u>, , , , , , , , , , , , , , , , , , , </u>	Lab ID	
ANALYSES REQUESTED ANALYS		(uga	Sent 2	VATURE	_									610114	Date Sampled	
PRINT NAME PRINT NAME PRINT NAME PAHS 8270D SIM PAHS 8270D		,)			1425	14/19	1349	1337	133/	90,00	0937	<i>0926</i>	also	OHIH	Time Sampled	
TPH-Diesel XXXXXX TPH-Gasoline BTEX by-8091B VOCs by 8260C SVOCs by 8270D SIM PAHs 8270D			Hona	Cass		*									801	Sample Type	
TPH-Diesel XXXXXX TPH-Gasoline BTEX by-8091B VOCs by 8260C SVOCs by 8270D SIM PAHs 8270D			Z	101	PRIN'	+								,	d	#of Jars	
TPH-Diesel XXXXXX TPH-Gasoline BTEX by-8091B VOCs by 8260C SVOCs by 8270D SIM PAHs 8270D		1	1/2	3	NS.											TPH-HCID	Γ
ANALYSES REQUESTED ANALYSES RECONTRACTOR WOCs by 8260C SVOCs by 8270D SIM PAHs 8270D SIM ANALYSES RECUESTED ANAL			1/6		EM							<u>义</u>			×	TPH-Diesel	
VOCs by 8260C SVOCs by 8270D SIM PAHs 8270D	1		7	1				$\overset{\sim}{+}$	~			\boxtimes	\geq	<u> </u>	\times		
DATE TI											4	الک	<u> </u>			BTEX by 8021B	A
DATE TI			~ \ -1		+				\dashv	_						VOCs by 8260C	NAL
DATE TI			3	350					-				_		ı	SVOCs by 8270D	YSE
DATE TI	du		H	5	181	<									\sim	PAHs 8270D SIM	REC
DATE TI	es			6	MPA)			_							-	Hold Pendoria	MUC
DATE TI	ecei.			2501	NY	-		_	$\overline{+}$		\dashv					CUCKS by 8260	THUE
Notes X-pu A 6/13/19 17/11/19 DATE TI DATE TI 1/12/19 1/12/19	ved	-	Ì	Bu												Ph by 60//2 1	
Notes Notes Notes 13/19 4/15 11/19 11/1	7	1	7	8				싁	$\exists +$	_			\rightarrow	\exists	`	Naphulme	
Notes Notes		W		\sim	ATE				l			***	2	ς' ,		×	
	<u>_</u> გ											1	2 2			Z 1	
			V	8	IMIT						1	7 7	\$ 8		10	s s	
· I	- in 1		<u>, </u>	·											101		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 3, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on June 14, 2019 from the Aloha Café 180357, F&BI 906279 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0703R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 14, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Café 180357, F&BI 906279 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
906279 -01	MW-17-6
906279 -02	MW-17-8.5
906279 -03	MW-17-10
906279 -04	MW-17-20
906279 -05	MW-17-25
906279 -06	MW-16-6.5
906279 -07	MW-16-7.5
906279 -08	MW-16-12.5
906279 -09	MW-17-17.5
906279 -10	MW-17-25

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19

Project: Aloha Cafe 180357, F&BI 906279

Date Extracted: 06/28/19 Date Analyzed: 06/28/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
MW-17-8.5 906279-02	<5	81
MW-16-7.5 906279-07	<5	80
Method Blank 09-1521 MB	<5	78

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19

Project: Aloha Cafe 180357, F&BI 906279

Date Extracted: 06/28/19 Date Analyzed: 06/28/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 56-165)
MW-17-8.5 906279-02	<50	<250	99
MW-16-7.5 906279-07	<50	<250	102
Method Blank 09-1552 MB	<50	<250	97

ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19

Project: Aloha Cafe 180357, F&BI 906279

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 906590-03 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			1 ercent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	110	71-131

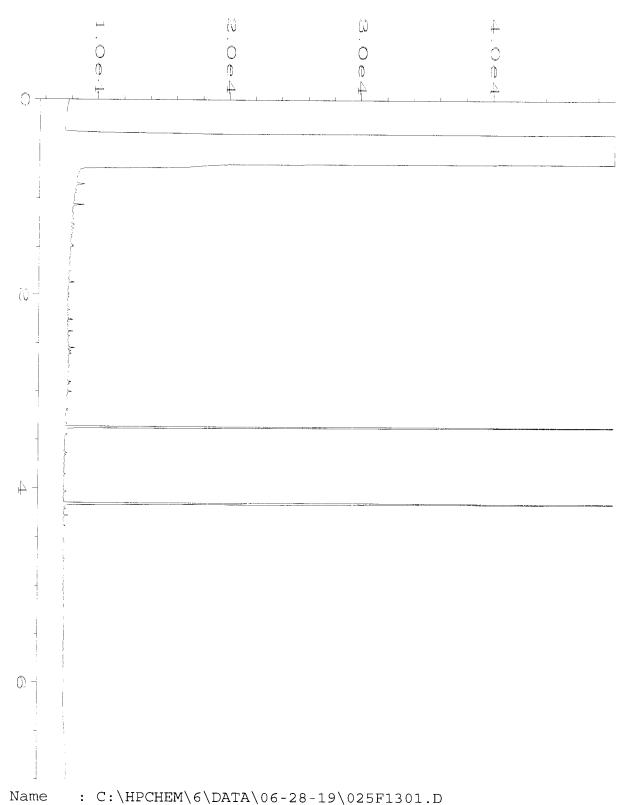
ENVIRONMENTAL CHEMISTS

Date of Report: 07/03/19 Date Received: 06/14/19

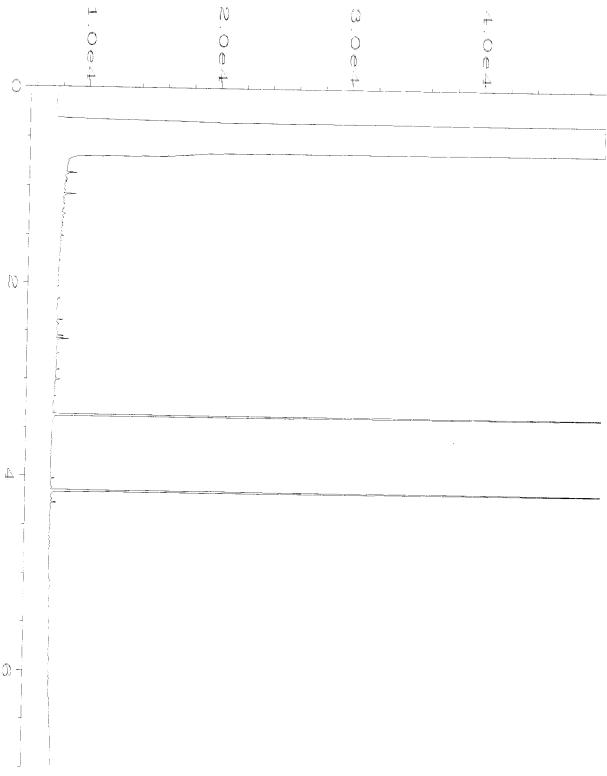
Project: Aloha Cafe 180357, F&BI 906279

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

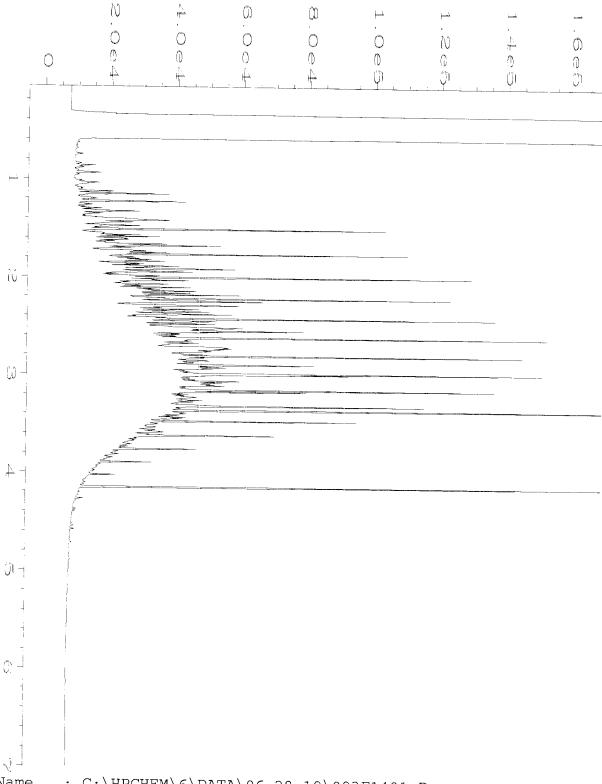
Laboratory Code: 906519-06 (Matrix Spike)

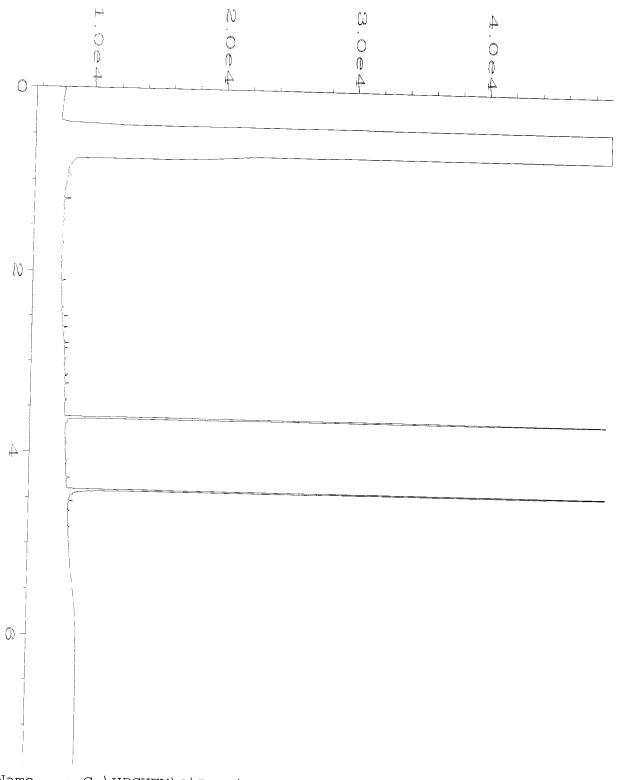

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	8,400	72	92	63-146	24 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	112	79-144


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
Operator
                : TL
                                              Page Number
                                                              : 1
Instrument
                                              Vial Number
                : GC6
Sample Name
                : 906279-02
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 13
Acquired on
            : 28 Jun 19 04:18 PM
                                              Instrument Method: DX.MTH
Report Created on: 01 Jul 19 10:31 AM
                                             Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\06-28-19\026F1301.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC6
                                               Vial Number
                                                                 : 26
Sample Name
                 : 906279-07
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                                : 13
Acquired on
                : 28 Jun 19 04:27 PM
                                               Instrument Method: DX.MTH
Report Created on: 01 Jul 19 10:31 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\6\DATA\06-28-19\093F1401.D
Data File Name
Operator
                 : TL
                                               Page Number
Instrument
                 : GC6
                                              Vial Number
Sample Name
                : 500 Dx 57-78E
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 14
Acquired on
              : 28 Jun 19 05:00 PM
                                              Instrument Method: DX.MTH
Report Created on: 01 Jul 19 10:32 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\1\DATA\06-28-19\006F0301.D
Operator
                : TL
                                              Page Number
Instrument
                                                               : 1
                : GC1
                                              Vial Number
Sample Name
                : 09-1552 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 28 Jun 19 09:33 AM
                                              Instrument Method: DX.MTH
Report Created on: 01 Jul 19 10:41 AM
                                              Analysis Method : DEFAULT.MTH
```

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. mw-17-17.5 mw -17-25 mw -16 - 12.5 mw -16 - 7.5 5.9-91-mm Phone (200) 413-54 [Email Oxyon/Kotskil @ wspect corsyllary.com Company Appert Consulting LL Address 710 3nd Ale, Ste-550 City, State, ZIP Scattle, WA, 98104 mw -17 - 10 Report To Andrew Yorkol-Shi mw-17-25 mw -17 - 10 mw-17-6 mw-17-85 Sample ID Relinquished by: Received by: Relinquished by: Received by: 80 04 02 9 8 5 3.410 Lab ID SIGNATURE 0/14/19 Date Sampled 6/14/14 0644 4 0437 0220 0909 8580 200 8230 2012 07/5 0655 Time Sampled SAMPLE CHAIN OF CUSTODY ME % - 14 - 19SAMPLERS (signature)

Titu I (beat)

PROJECT NAME REMARKS Alpha Fefe 5001 ß Sample 4 Hord Unruk ¥ DOM PRINT NAME \leftarrow # of Jars S TPH-HCID $\frac{\infty}{\infty}$ 8 TPH-Diesel 180357 INVOICE TO As Deat Consulting PO# COMPANY REQUESTED Samples received at 7 oc X × bus Taget rols Other M Dispose after 30 days □ Archive Samples XStandard Turnaround Rush charges authorized by: □ RUSH Page # / VS 3

TURNAROUND TIME SAMPLE DISPOSAL 6/14//9 614-19 DATE Extrat Rad His X-Der AY (X)- pr A6 6/21/19 ME 6/28/15~ Notes 12.2 <u>8</u> TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

July 24, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 17, 2019 from the Aloha Cafe 180357, F&BI 907276 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin

ASP0724R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 17, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907276 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
907276 -01	MW-18-6.5
907276 -02	MW-18-8
907276 -03	MW-18-10
907276 -04	MW-18-15
907276 -05	MW-18-20
907276 -06	B-08-6.0
907276 -07	B-08-8.5
907276 -08	B-08-13.5
907276 -09	B-08-18.5
907276 -10	B-08-23.5
907276 -11	MW-19-6.0
907276 -12	MW-19-8.5
907276 -13	MW-19-13.5
907276 -14	MW-19-18.5
907276 -15	MW-19-23.5
907276 -16	Dup-2
907276 -17	Trip Blank
907276 -18	FD1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

Project: Aloha Cafe 180357, F&BI 907276

Date Extracted: 07/22/19 Date Analyzed: 07/23/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline Range	Surrogate (% Recovery) (Limit 50-132)
MW-18-10 907276-03	< 0.02	< 0.02	< 0.02	<0.06	<5	93
B-08-13.5 907276-08	< 0.02	< 0.02	< 0.02	<0.06	<5	94
MW-19-8.5 907276-12	< 0.02	< 0.02	< 0.02	<0.06	<5	93
Dup-2 907276-16	< 0.02	< 0.02	< 0.02	<0.06	<5	95
Method Blank 09-1723 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	74

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

Project: Aloha Cafe 180357, F&BI 907276

Date Extracted: 07/18/19 Date Analyzed: 07/18/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
Trip Blank 907276-17	<1	<1	<1	<3	<100	100
Method Blank 09-1712 MB	<1	<1	<1	<3	<100	102

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

Project: Aloha Cafe 180357, F&BI 907276

Date Extracted: 07/18/19 Date Analyzed: 07/18/19

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

			Surrogate
Sample ID	<u>Diesel Range</u>	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}\text{-}C_{25})$	$(C_{25}-C_{36})$	(Limit 48-168)
MW-18-10 907276-03	<50	<250	94
B-08-13.5 907276-08	<50	<250	92
MW-19-8.5 907276-12	<50	<250	92
Dup-2 907276-16	<50	<250	93
Method Blank 09-1731 MB	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-18-10 Client: Aspect Consulting, LLC

Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

Lab ID: 907276-03 Date Extracted: 07/18/19 Date Analyzed: 07/18/19 Data File: $071815.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 96 93 107 Toluene-d8 100 87 110 4-Bromofluorobenzene 97 85 112

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B-08-13.5 Client: Aspect Consulting, LLC

Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

Lab ID: 907276-08 Date Extracted: 07/18/19 Date Analyzed: 07/18/19 Data File: 071816.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	93	107
Toluene-d8	97	87	110
4-Bromofluorobenzene	96	85	112

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-19-8.5 Client: Aspect Consulting, LLC

Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

Lab ID: 907276-12 Date Extracted: 07/18/19 Date Analyzed: 07/18/19 Data File: 071817.DMatrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	93	107
Toluene-d8	97	87	110
4-Bromofluorobenzene	98	85	112

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Dup-2 Client: Aspect Consulting, LLC

Date Received: 07/17/19 Project: Aloha Cafe 180357, F&BI 907276

07/18/19 Lab ID: 907276-16 Date Extracted: Date Analyzed: 07/18/19 Data File: $071818.\mathrm{D}$ Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	93	107
Toluene-d8	97	87	110
4-Bromofluorobenzene	96	85	112

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 907276

Lab ID: Date Extracted: 07/18/19 09-1684 mb Date Analyzed: 07/18/19 Data File: 071814.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS/AEN

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 145 Toluene-d8 98 55 145 4-Bromofluorobenzene 97 65 139

Compounds:	Concentration mg/kg (ppm)
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 907338-06 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	15	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	109	69-120
Toluene	mg/kg (ppm)	0.5	114	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	113	65 - 123
Xylenes	mg/kg (ppm)	1.5	114	66-120
Gasoline	mg/kg (ppm)	20	90	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 907267-03 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	2.4	1.6	38 a
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	100	65-118
Toluene	ug/L (ppb)	50	106	72 - 122
Ethylbenzene	ug/L (ppb)	50	109	73 - 126
Xylenes	ug/L (ppb)	150	108	74-118
Gasoline	ug/L (ppb)	1,000	105	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 907241-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	88	88	73-135	0

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Diesel Extended	mg/kg (ppm)	5,000	100	74-139		

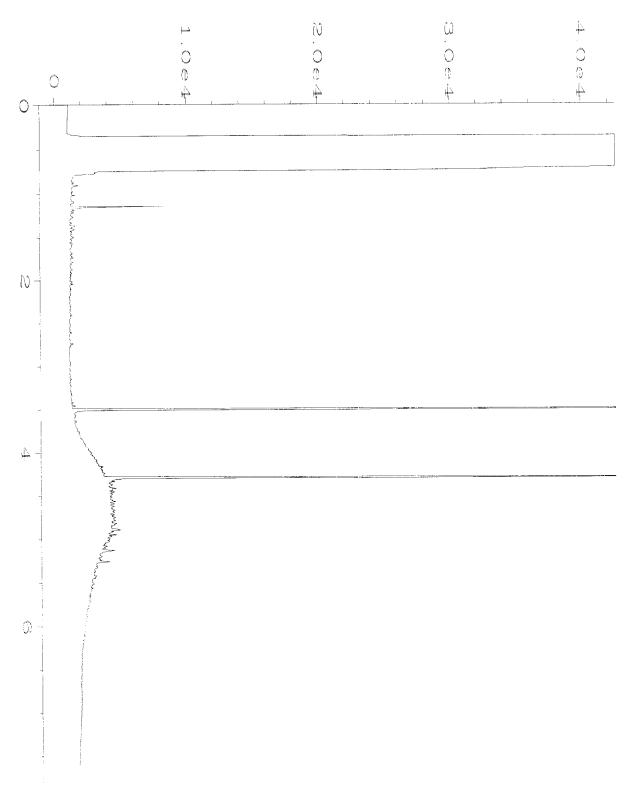
ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/19 Date Received: 07/17/19

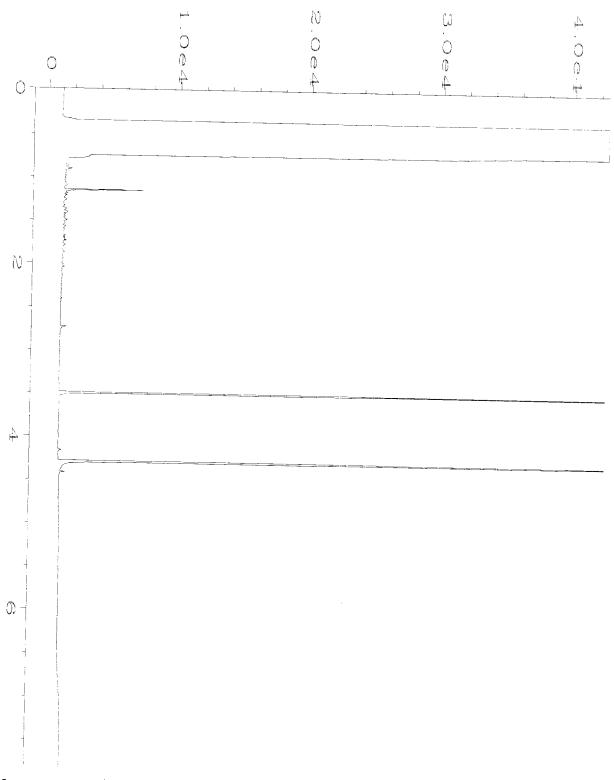
Project: Aloha Cafe 180357, F&BI 907276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

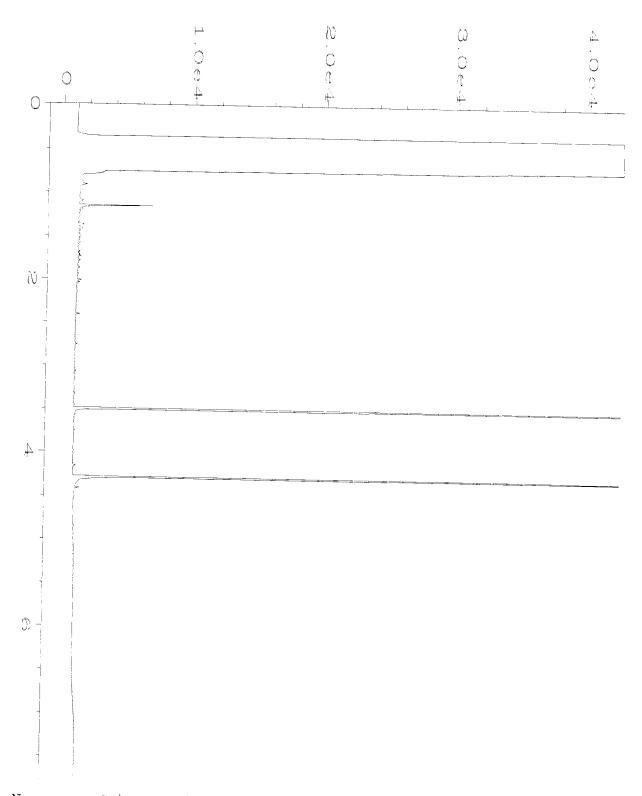
Laboratory Code: 907276-12 (Matrix Spike)

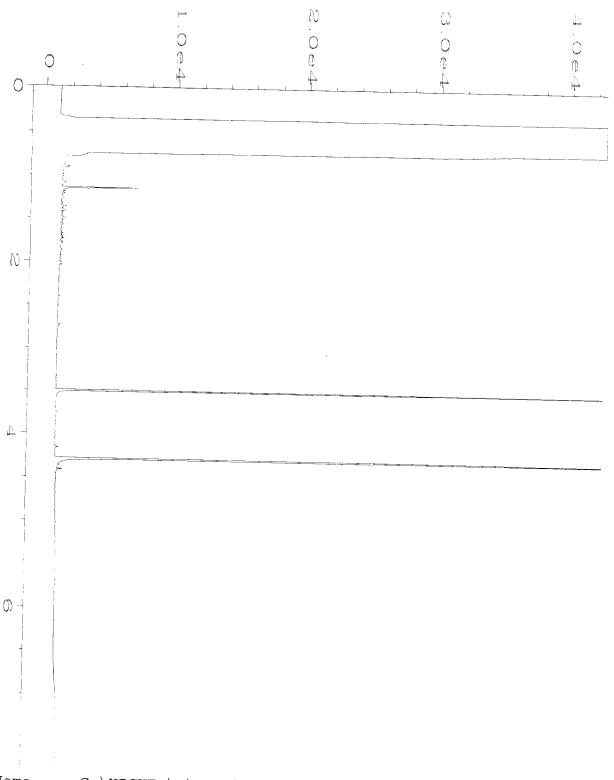

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	49	51	10-91	4
Chloroethane	mg/kg (ppm)	2.5	< 0.5	65	68	10-101	5
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	67	71	22 - 107	6
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	68	71	14-128	4
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	76	13-112	7
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	74	79	23 - 115	7
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	80	25-120	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	80	82	22 - 124	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	78	82	27 - 112	5
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	80	81	30-112	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	82	83	25 - 114	1

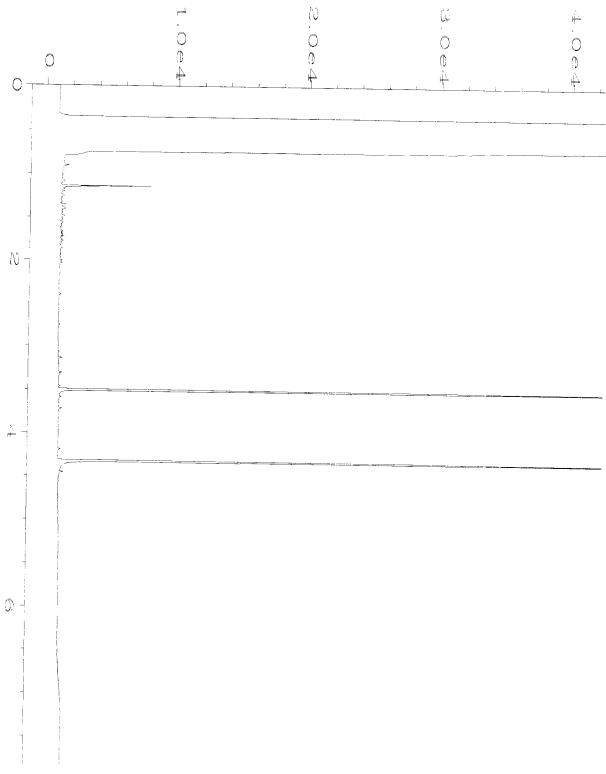
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	mg/kg (ppm)	2.5	95	42-107
Chloroethane	mg/kg (ppm)	2.5	92	47-115
1,1-Dichloroethene	mg/kg (ppm)	2.5	91	65-110
Methylene chloride	mg/kg (ppm)	2.5	104	50 - 127
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	101	71-113
1,1-Dichloroethane	mg/kg (ppm)	2.5	99	74 - 109
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	105	73-110
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	96	73-111
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	104	72 - 116
Trichloroethene	mg/kg (ppm)	2.5	95	72 - 107
Tetrachloroethene	mg/kg (ppm)	2.5	102	73-111

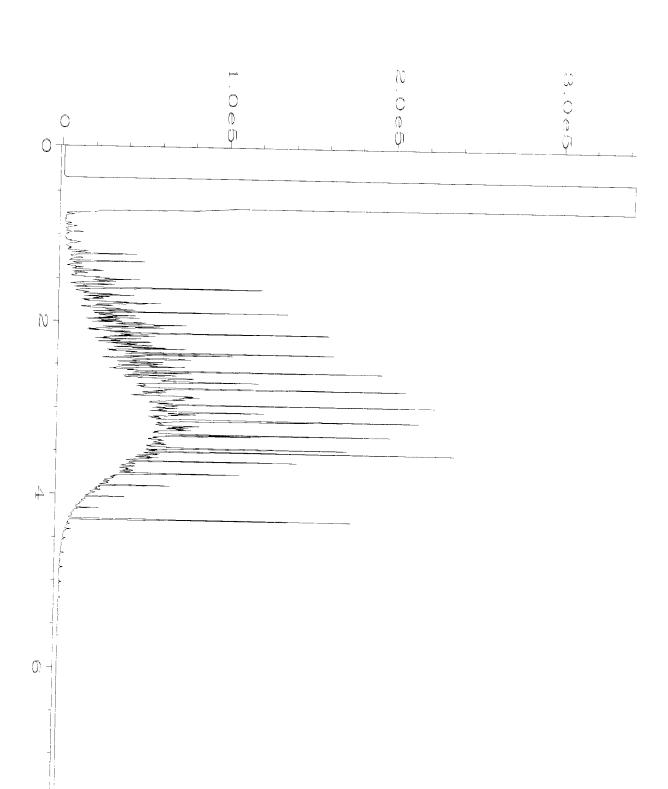

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
: C:\HPCHEM\4\DATA\07-18-19\024F0701.D
Data File Name
                                              Page Number
Operator
                : TL
                                             Vial Number
                                                              : 24
Instrument
                : GC#4
                                              Injection Number: 1
Sample Name
               : 907276-03
                                              Sequence Line : 7
Run Time Bar Code:
                                             Instrument Method: DX.MTH
Acquired on
           : 18 Jul 19 06:25 PM
Report Created on: 19 Jul 19 09:16 AM
                                             Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\07-18-19\025F0701.D
Operator
                 : TL
                                               Page Number
Instrument
                 : GC#4
                                               Vial Number
                                                               : 25
Sample Name
                : 907276-08
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 7
Acquired on
             : 18 Jul 19
                             06:37 PM
                                              Instrument Method: DX.MTH
Report Created on: 19 Jul 19
                             09:16 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\07-18-19\026F0701.D
Operator
                 : TL
                                                Page Number
Instrument
                                                                 : 1
                 : GC#4
                                                Vial Number
                                                                 : 26
Sample Name
                 : 907276-12
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
Acquired on
                : 18 Jul 19
                              06:49 PM
                                                Instrument Method: DX.MTH
Report Created on: 19 Jul 19 09:16 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\07-18-19\027F0701.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC#4
                                               Vial Number
Sample Name
                                                                 : 27
                 : 907276-16
                                               Injection Number : 1
Run Time Bar Code:
                                               Sequence Line : 7
Acquired on
              : 18 Jul 19
                             07:01 PM
                                               Instrument Method: DX.MTH
Report Created on: 19 Jul 19
                             09:16 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\07-18-19\006F0301.D
Operator
                : TL
                                              Page Number
                                                              : 1
Instrument
                : GC#4
                                              Vial Number
Sample Name
               : 09-1731 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on
            : 18 Jul 19 12:00 PM
                                              Instrument Method: DX.MTH
Report Created on: 19 Jul 19 09:11 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\07-18-19\005F1001.D
Operator
                 : TL
                                                Page Number
Instrument
                 : GC#4
                                                Vial Number
Sample Name
                                                                 : 5
                 : 1000 Dx 57-78B
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                              : 10
Acquired on
                : 18 Jul 19
                              09:02 PM
                                                Instrument Method: DX.MTH
Report Created on: 19 Jul 19 09:17 AM
                                                Analysis Method : DEFAULT.MTH
```

SAMPLE CHAIN OF CUSTODY HE 07-17-19
[SAMPLERS (signalue)]

Report To And an Hotology Hum 6-94m PROJ Company 15 pet Consulting PROJ Address 7/0 2nd Ave, 5k 550 All REM.

Phone (30) 413-54/1 Email Wyorkothilles testiconsultingum

PROJECT NAME

PO#

PROJECT NAME

PO#

INVOICE

TURNAROUND TIME

X Standard Turnaround

RUSH

Rush charges authorized by:

SAMPLE DISPOSAL

Dispose after 30 days

Archive Samples

		B-08-23,5	18-08-18.5	B-08-135	B-08-8.5	B-08-6.0	06-81- MW	MU -18-15	mw -18-10	MU-18-8	MW-18-6.5	Sample ID	
1	SI	10	Po	B	87	06	05	04	63	02	OIAE	Lab ID	
	SIGNATURE	←			,	7/16/19	×	The section of the se	The second secon		7/15/14 1553	Date Sampled	
\		1050	1040	1030	1015	1010	1144	IDI	1108	//Oλ	E301	Time Sampled	
"		+				1,05 gat	R	To the second se	-		5	Sample Type	
j	PRI	+			-	5	4		-	II. Der Kapragentre B	9	# of Jars	
	PRINT NAME											TPH-HCID	
	AME		<u> </u>	×		ļ		ļ	×	ļ	ļ	TPH-Diesel	
			ļ	×	-		<u> </u>		×	<u> </u>	<u> </u>	TPH-Gasoline	
				×	-	-	-		×	-		BTEX by 8021B	ΑŅ
				 			-	<u> </u>		 	<u> </u>	CVOCs by 8260C	YTAL
_											 	SVOCs by 8270D	SES
د۔	6	-							 			PAHs 8270D SIM	ANALYSES REQUESTED
>	COMPANY		1								 	17000 panyons	SEU
•	YN												CED
1		-				-	<u> </u>	-			-		
	DATE									5/11/4	X-pe AY	Notes	
	TIME								WE	21/12	~	S S	

3012 16th Avenue West

Received by:

ms

Mhán

72/2

teB?

0400 41/41/E

0440

Samples received at 4 °C

ASTACT COSSILIES

Lind Black

Friedman & Bruya, Inc.

Relinquished by:

Seattle, WA 98119-2029

Relinquished by:

Received by:

Ph. (206) 285-8282

SAMPLE CHAIN OF CUSTODY

Report To Andrew Tonk OSSK, Aden Soften SAMPLERS (signature)

Aud (J. & Danie 13

PROJECT NAME REMARKS Aloha Cate 180357

City, State, ZIP Seathle WA

Phone 206-413-5411 Email washir & aspectiasoity com

Address

Company Aspect Consulting

HE 07-617-19 VSY BOST TURNAROUND TIME PO#

Standard Turnaround ☐ RUSH______

Rush charges authorized by: SAMPLE DISPOSAL

INVOICE TO

₽ Dispose after 30 days
☐ Archive Samples

Other_

3012 16 th Avenue West	Friedman & Bruya, Inc.			rd/	TripBlank	Dop-2	MU-19-73.5	MW-19-18.5	MW-19-13.5	MW-19-8.5	MJ-19-60	Sample ID	
Received by:	Relinquished by	SI		78 A 76	718	16	15	14/	13	13	1(A-E	Lab ID	
MIMIM	B	SIGNATURE		BA: 87/15/19	1	<					7/16/19	Date Sampled	
					((1410	1350	1340	1330	1320	Time Sampled	
Whan Phan	Panel Bhak				Vater	←					56:	Sample Type	
5	1 W	PRI			4	<					5	# of Jars	
DW.	rock	PRINT NAMI										TPH-HCID	
2,	'`	AME				>.		ļ	ļ	×	ļ	TPH-Diesel	
					 \times		ļ		-	X		TPH-Gasoline	
					 	X		ļ		×		BTEX by 8021B	Al
٠,						×	┼			×		VOCs by 8260C	VAL
2	A5						-	-	-	 -	ļ	SVOCs by 8270D	ZSES
37	13	C								-		PAHs 8270D SIM	REG
	7)MP			 ←							Fold Tening	ang.
	Š	COMPANY			 	<u> </u>	ļ			ļ			ANALYSES REQUESTED
	WHY.					ļ	ļ	-			-		
111	<u>></u>						ļ			ļ			
V1/41/1	2HH	DATE	3	illely,				12,	JON JAN			Notes	
OHO	0940	TIME		165				200				tes	

Seattle, WA 98119-2029

Relinquished by:

Received by:

Samples received at # OC

Ph. (206) 285-8282

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 9, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 30, 2019 from the Aloha Cafe 180357, F&BI 907561 project. There are 22 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0809R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907561 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
907561 -01	GP-01-072519
907561 -02	GP-02-072519
907561 -03	GP-03-072519
907561 -04	Dup-1-072519
907561 -05	GP-04-072519
907561 -06	SVS-02-072519
907561 -07	SVS-01-072519
907561 -08	Trip Blank

The APH EC5-8 aliphatics concentrations in samples GP-03-072519, Dup-1-072519, and SVS-02-072519 exceeded the calibration range of the instrument. The data were flagged accordingly.

APH EC9-12 aliphatics was detected in the TO-15 method blank at a level greater than one tenth the concentration detected in sample Dup-1-072519 and SVS-02-072519. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-01-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-01 1/3.2 Date Analyzed: 08/02/19 Data File: 080214.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 410 APH EC9-12 aliphatics 2,200 APH EC9-10 aromatics <80

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-02-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-02 1/3.1 Date Analyzed: 08/03/19 Data File: 080216.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 350 APH EC9-12 aliphatics 2,600 APH EC9-10 aromatics <77

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-03-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-03 1/7.5 Date Analyzed: 08/03/19 Data File: 080220.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 12,000 ve APH EC9-12 aliphatics 3,600 APH EC9-10 aromatics <190

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Dup-1-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-04 1/7.8 Date Analyzed: 08/03/19 Data File: 080221.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 12,000 ve APH EC9-12 aliphatics 2,700 fb APH EC9-10 aromatics <190

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-04-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-05 1/3.2 Date Analyzed: 08/03/19 Data File: 080217.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 510 APH EC9-12 aliphatics 1,800 APH EC9-10 aromatics 100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SVS-02-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-06 1/3.1 Date Analyzed: 08/03/19 Data File: 080218.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 88 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 2,200 ve APH EC9-12 aliphatics 1,100 fb APH EC9-10 aromatics 100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SVS-01-072519 Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-07 1/3.1 Date Analyzed: 08/03/19 Data File: 080219.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 94 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 1,000 APH EC9-12 aliphatics 1,300 APH EC9-10 aromatics 78

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Trip Blank Client: Aspect Consulting, LLC Date Received: 07/30/19 Project: Aloha Cafe 180357 Lab ID: Date Collected: 07/25/19 907561-08 Date Analyzed: 08/02/19 Data File: 080213.DMatrix: Instrument: GCMS7 Air

Operator:

bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 83 70 130

Concentration

ug/m3

Compounds: ug/m3

Units:

APH EC5-8 aliphatics <46
APH EC9-12 aliphatics <35
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Aloha Cafe 180357

Not Applicable Lab ID: Date Collected: 09-1852 mbDate Analyzed: 08/02/19 Data File: 080212.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 93 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <46
APH EC9-12 aliphatics 37 lc
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-01-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-01 1/3.2
Date Analyzed:	08/02/19	Data File:	080214.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130

	Concent	tration
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	< 5.8	<1.6
1,2-Dichloroethane (EDC)	< 0.13	< 0.032
Benzene	3.8	1.2
Toluene	28	7.4
1,2-Dibromoethane (EDB)	< 0.25	< 0.032
Ethylbenzene	6.0	1.4
m,p-Xylene	24	5.4
o-Xylene	8.9	2.1
Naphthalene	< 0.84	< 0.16

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-02 1/3.1
Date Analyzed:	08/03/19	Data File:	080216.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

0 1	Concen	
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	< 5.6	<1.5
1,2-Dichloroethane (EDC)	< 0.13	< 0.031
Benzene	1.5	0.47
Toluene	12	3.2
1,2-Dibromoethane (EDB)	< 0.24	< 0.031
Ethylbenzene	3.4	0.78
m,p-Xylene	13	3.0
o-Xylene	5.3	1.2
Naphthalene	< 0.81	< 0.15

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-03 1/7.5
Date Analyzed:	08/03/19	Data File:	080220.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Maria de la calenta de la casa de		
Methyl t-butyl ether (MTBE)	<14	<3.7
1,2-Dichloroethane (EDC)	< 0.3	< 0.075
Benzene	3.9	1.2
Toluene	17	4.6
1,2-Dibromoethane (EDB)	< 0.58	< 0.075
Ethylbenzene	4.9	1.1
m,p-Xylene	19	4.4
o-Xylene	8.1	1.9
Naphthalene	<2	< 0.37

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Dup-1-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-04 1/7.8
Date Analyzed:	08/03/19	Data File:	080221.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	74	70	130

	Concent	tration
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	<14	<3.9
1,2-Dichloroethane (EDC)	< 0.32	< 0.078
Benzene	3.4	1.1
Toluene	15	4.0
1,2-Dibromoethane (EDB)	< 0.6	< 0.078
Ethylbenzene	3.9	0.90
m,p-Xylene	15	3.5
o-Xylene	6.5	1.5
Naphthalene	<2	< 0.39

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-04-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-05 1/3.2
Date Analyzed:	08/03/19	Data File:	080217.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	89	70	130

	Concent	tration
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	< 5.8	<1.6
1,2-Dichloroethane (EDC)	< 0.13	< 0.032
Benzene	1.2	0.36
Toluene	11	2.9
1,2-Dibromoethane (EDB)	< 0.25	< 0.032
Ethylbenzene	3.4	0.78
m,p-Xylene	13	3.1
o-Xylene	5.7	1.3
Naphthalene	< 0.84	< 0.16

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SVS-02-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-06 1/3.1
Date Analyzed:	08/03/19	Data File:	080218.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	86	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	< 5.6	<1.5
1,2-Dichloroethane (EDC)	< 0.13	< 0.031
Benzene	3.3	1.0
Toluene	13	3.3
1,2-Dibromoethane (EDB)	< 0.24	< 0.031
Ethylbenzene	2.9	0.66
m,p-Xylene	9.5	2.2
o-Xylene	4.7	1.1
Naphthalene	< 0.81	< 0.15

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SVS-01-072519	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-07 1/3.1
Date Analyzed:	08/03/19	Data File:	080219.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Mathyl t hystyl athen (MTDE)	< 5.6	<1.5
Methyl t-butyl ether (MTBE)	<0.6	<1.5
1,2-Dichloroethane (EDC)	< 0.13	< 0.031
Benzene	2.2	0.68
Toluene	9.3	2.5
1,2-Dibromoethane (EDB)	< 0.24	< 0.031
Ethylbenzene	2.6	0.61
m,p-Xylene	9.9	2.3
o-Xylene	4.5	1.0
Naphthalene	< 0.81	< 0.15

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	07/30/19	Project:	Aloha Cafe 180357
Date Collected:	07/25/19	Lab ID:	907561-08
Date Analyzed:	08/02/19	Data File:	080213.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	81	70	130
	Concent	ration	
Compounds:	ug/m3	ppbv	

Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	<1.8	< 0.5
1,2-Dichloroethane (EDC)	< 0.04	< 0.01
Benzene	< 0.32	< 0.1
Toluene	< 0.38	< 0.1
1,2-Dibromoethane (EDB)	< 0.077	< 0.01
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Aloha Cafe 180357
Date Collected:	Not Applicable	Lab ID:	09-1852 mb
Date Analyzed:	08/02/19	Data File:	080212.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130
Compounds:	Concent ug/m3	ration ppbv	

Compounds:	ug/m3	ppbv
Methyl t-butyl ether (MTBE)	<1.8	< 0.5
1,2-Dichloroethane (EDC)	< 0.04	< 0.01
Benzene	< 0.32	< 0.1
Toluene	< 0.38	< 0.1
1,2-Dibromoethane (EDB)	< 0.077	< 0.01
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 07/30/19

Project: Aloha Cafe 180357, F&BI 907561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 907561-01 1/3.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	410	440	7
APH EC9-12 aliphatics	ug/m3	2,200	2,100	5
APH EC9-10 aromatics	ug/m3	<80	<80	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	45	96	70-130
APH EC9-12 aliphatics	ug/m3	45	127	70-130
APH EC9-10 aromatics	ug/m3	45	92	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 08/09/19 Date Received: 07/30/19

Project: Aloha Cafe 180357, F&BI 907561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl t-butyl ether (MTBE)	ppbv	5	83	70-130
1,2-Dichloroethane (EDC)	ppbv	5	105	70-130
Benzene	ppbv	5	94	70-130
Toluene	ppbv	5	91	70-130
1,2-Dibromoethane (EDB)	ppbv	5	103	70-130
Ethylbenzene	ppbv	5	103	70-130
m,p-Xylene	ppbv	10	104	70-130
o-Xylene	ppbv	5	107	70-130
Naphthalene	ppbv	5	81	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Andrew York of ski

Company Aspect Consulting
Address 710 2nd Ave Ste 550

SasticiUA

City, State, ZIP_

Phone 316. 617.0494 Emaile youth of His Corpections Huze of Sub Slab/Soil Gas

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature) PROJECT NAME REPORTING LEVEL Alore ase □ Deep Soil Gas□ SVE/Grab 180357 INVOICE TO P0#

> TURNAROUND TIME Page #

SAMPLE DISPOSAL

B Dispose after 30 days Rush charges authorized by: O RUSH_ **V**Standard

ANALYSIS REQUESTED

□ Other

□ Archive Samples

				•								
Samples received at 25 °C	Х			l	1	1	{	1	}	2432	80	Trip Blank
	×			1403	4	1357 5		7/25/19 80		3387 259	29	51/5-01-072519
,	×			1335	77	1330	30	7/25/19 30	244	2247	4	615240-20-515
	×			1227	71	1222		08 b1/37/t	204	3287	05	GF-04-072519
Collected within the the of the others	×				5		30	7/15/19 30	224	1302	R	Dup-1-072519
	>			<u>1</u> .	5	1135		OS 12/2/E	757	367	03	GP-03-072519
Nephthelac, of MANPH	<u>*</u>			107	ज	1102	CS	7/25/19	255	3540	2	GP-02-072519
All surpled FOT BTEX, MTBE, EDB, EDC,	×			1016	7	1010	30	7/25/19	242	3664	0	GP-01-072519
MA APH.	EPATO-15 BTEX, MT13E EDB, EDC, Naphthalace &	TO-15 BTEXN TO-15 cVOCs	TO-15 Full Scan	Field Final Time	Field Final Field Press. Final (Hg) Time	Field Initial	Field Initial Press (Hg)	Field Initia Date Press Sampled (Hg)	; Flow Contr.	Canister ID	Lab	Sample Name

J. S. S. S.

FORMS\COC\COCTO-Fax (206) 28; Ph. (206) 285 Seattle, WA 9 3012 16th Av Friedman & B

15.DOC	3-5044	-8282	98119-2029		Bruya, Inc.
	Received by:	Relinquished by:	Received by:	Relinquished by: J. Boot	SIGNATURE
	Leve Clark		THUS NICHES	Piniel Brak	PRINT NAME
	+ D D		F61) 6X	Apact Consulting	COMPANY
7	And		7/20/19	7/30/14	DATE
-1)	-1536		3:76	9651	EMIL

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 28, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on July 30, 2019 from the Aloha Cafe 180357, F&BI 907561 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0828R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 907561 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
907561 -01	GP-01-072519
907561 -02	GP-02-072519
907561 -03	GP-03-072519
907561 -04	Dup-1-072519
907561 -05	GP-04-072519
907561 -06	SVS-02-072519
907561 -07	SVS-01-072519
907561 -08	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-03-072519 Client: Aspect Consulting, LLC

Date Received: 07/30/19 Project: Aloha Cafe 180357, F&BI 907561

Lab ID: Date Collected: 07/25/19 907561-03 1/37 Date Analyzed: 08/14/19 Data File: 081328.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 8,700 APH EC9-12 aliphatics 9,600 APH EC9-10 aromatics <920

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Dup-1-072519 Client: Aspect Consulting, LLC

Date Received: 07/30/19 Project: Aloha Cafe 180357, F&BI 907561

Lab ID: Date Collected: 07/25/19 907561-04 1/39 Date Analyzed: 08/14/19 Data File: 081329.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 9,100 APH EC9-12 aliphatics 11,000 APH EC9-10 aromatics <970

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SVS-02-072519 Client: Aspect Consulting, LLC

Date Received: 07/30/19 Project: Aloha Cafe 180357, F&BI 907561

Lab ID: Date Collected: 07/25/19 907561-06 1/7.7 Date Analyzed: 08/14/19 Data File: 081327.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 81 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 1,700 APH EC9-12 aliphatics 860 APH EC9-10 aromatics <190

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 907561

Not Applicable Lab ID: Date Collected: 09-1864 mb Date Analyzed: 08/13/19 Data File: 081310.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 103 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <46
APH EC9-12 aliphatics <35
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Date of Report: 08/28/19 Date Received: 07/30/19

Project: Aloha Cafe 180357, F&BI 907561

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 908226-03 1/3.3 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	390	440	12
APH EC9-12 aliphatics	ug/m3	350	340	3
APH EC9-10 aromatics	ug/m3	<82	<82	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	45	97	70-130
APH EC9-12 aliphatics	ug/m3	45	123	70-130
APH EC9-10 aromatics	ug/m3	45	91	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Andrew Yonk of ski

Company Aspect Consulting
Address 710 2nd Ave Ste 550

SasticiUA

City, State, ZIP_

Phone 316. 617.0494 Emaile youth of His Corpections Huze of Sub Slab/Soil Gas

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature) PROJECT NAME REPORTING LEVEL Alore ase □ Deep Soil Gas□ SVE/Grab 180357 INVOICE TO P0#

> TURNAROUND TIME Page #

SAMPLE DISPOSAL

B Dispose after 30 days Rush charges authorized by: O RUSH_ **V**Standard

ANALYSIS REQUESTED

□ Other

□ Archive Samples

				•								
Samples received at 25 °C	Х			l	1	1	{	1		2432	80	Trip Blank
	×			1403	4	1357 5		7/25/19 80		3387 259	29	51/5-01-072519
,	×			1335	77	1330	30	7/25/19 30	244	2247	4	615240-20-515
	×			1227	71	1222		08 b1/37/t	204	3287	05	GF-04-072519
Collected within the the of the others	×				5		30	7/15/19 30	224	1302	R	Dup-1-072519
	>			<u>1</u> .	5	1135		OS 12/2/E	757	367	03	GP-03-072519
Nephthelac, of MANPH	<u>*</u>			107	ज	1102	CS	7/25/19	255	3540	2	GP-02-072519
All surpled FOT BTEX, MTBE, EDB, EDC,	×			1016	7	1010	30	7/25/19	242	3664	0	GP-01-072519
MA APH.	EPATO-15 BTEX, MT13E EDB, EDC, Naphthalace &	TO-15 BTEXN TO-15 cVOCs	TO-15 Full Scan	Field Final Time	Field Final Field Press. Final (Hg) Time	Field Initial	Field Initial Press (Hg)	Field Initia Date Press Sampled (Hg)	; Flow Contr.	Canister ID	Lab	Sample Name

J. S. S. S.

FORMS\COC\COCTO-Fax (206) 28; Ph. (206) 285 Seattle, WA 9 3012 16th Av Friedman & B

15.DOC	3-5044	-8282	98119-2029		Bruya, Inc.
	Received by:	Relinquished by:	Received by:	Relinquished by: J. Boot	SIGNATURE
	Leve Clark		THUS NICHES	Piniel Brak	PRINT NAME
	+ D D		F61) 6X	Apact Consulting	COMPANY
7	And		7/20/19	7/30/14	DATE
-1)	-1536		3:76	9651	EMIL

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 12, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 1, 2019 from the Aloha Cafe 180357, F&BI 908023 project. There are 51 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
908023 -01	MW-16-073119
908023 -02	MW-18-073119
908023 -03	MW-14-073119
908023 -04	MW-13-073119
908023 -05	Dup-01-073119
908023 -06	MW-17-073119
908023 -07	MW-19-073119
908023 -08	MW-7-073119
908023 -09	MW-11-073119
908023 -10	MW-6-073119
908023 -11	MW-12-080119
908023 -12	MW-2-080119
908023 -13	MW-10-080119
908023 -14	MW-9-080119
908023 -15	Rinse Blank-080119
908023 -16	MW-1-080119
908023 -17	Trip Blank

The NWTPH-Dx surrogate in sample Rinse Blank-080119 exceeded the acceptance criteria. No material was detected in the sample, therefore the results were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/06/19

Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-16-073119 908023-01	<100	109
MW-18-073119 908023-02	<100	110
MW-14-073119 908023-03	7,500	106
MW-13-073119 908023-04	1,400	92
Dup-01-073119 908023-05	9,700	107
MW-17-073119 908023-06 1/10	1,800	100
MW-19-073119 908023-07	<100	109
MW-7-073119 908023-08	<100	113
MW-11-073119 908023-09 1/20	13,000	98
MW-6-073119 908023-10	<100	115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/06/19

Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-12-080119 908023-11	240	119
MW-2-080119 908023-12	1,600	114
MW-10-080119 908023-13 1/20	19,000	109
MW-9-080119 908023-14	<100	101
Rinse Blank-080119 908023-15	<100	91
MW-1-080119 908023-16 1/20	24,000	105
Trip Blank 908023-17	<100	95
Method Blank 09-1950 MB	<100	99
Method Blank 09-1903 MB	<100	116

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-16-073119 908023-01	84 x	<250	119
MW-18-073119 908023-02	55 x	<250	108
MW-14-073119 908023-03	1,200 x	330 x	121
MW-13-073119 908023-04	530 x	<250	131
Dup-01-073119 908023-05	1,100 x	270 x	116
MW-17-073119 908023-06	320 x	<250	113
MW-19-073119 908023-07	<50	<250	115
MW-7-073119 908023-08	83 x	<250	114
MW-11-073119 908023-09	1,100 x	<250	116
MW-6-073119 908023-10	68 x	<250	118
MW-12-080119 908023-11	310 x	<250	114

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-2-080119 908023-12	790 x	<250	128
MW-10-080119 908023-13	1,900 x	260 x	125
MW-9-080119 908023-14	88 x	<250	122
Rinse Blank-080119 908023-15	<50	<250	142 vo
MW-1-080119 908023-16	2,100 x	1,000 x	126
Method Blank 09-1899 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-16-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-01 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-01.059 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-18-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-02 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-02.062 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-14-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-03 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-03.063 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-13-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-04 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-04.064 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Dup-01-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

08/05/19 Lab ID: 908023-05 Date Extracted: Date Analyzed: 08/05/19 Data File: 908023-05.065 ICPMS2 Matrix: Water Instrument: Units:

ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-17-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-06 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-06.066 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Operator.

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-19-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-07 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-07.069 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-7-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-08 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-08.070 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-11-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-09 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-09.071 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 3.49

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-6-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-10 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-10.072 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-12-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-11 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-11.073 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-2-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-12 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-12.074 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb)

SPOperator:

Concentration Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-10-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-13 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-13.075 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-9-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-14 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-14.076 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Rinse Blank-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-15 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-15.077 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-1-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-16 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-16.078 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Aloha Cafe 180357, F&BI 908023

08/05/19 Lab ID: I9-472 mbDate Extracted: Date Analyzed: 08/05/19 Data File: I9-472 mb.057ICPMS2 Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-16-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Lab ID: 908023-01 Date Analyzed: 08/02/19 Data File: 080221.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1

1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Benzene < 0.35 Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-18-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Received: Project: 08/01/19 908023-02 Lab ID: Date Extracted: 08/02/19 Date Analyzed: 08/02/19 Data File: 080222.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	100	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	1.0
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-14-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Received: Project: 08/01/19 Lab ID: 908023-03 Date Extracted: 08/02/19 Date Analyzed: 08/02/19 Data File: 080223.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	101	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	2.7
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	1,300 ve
Trichloroethene	<1
Toluene	32
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	130
m,p-Xylene	72
o-Xylene	18
Naphthalene	50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-14-073119	Client:	Aspect Consulting, LLC
D . D . 1		—	

Date Received: Aloha Cafe 180357, F&BI 908023 08/01/19 Project: Lab ID: 908023-03 1/100

Date Extracted: 08/02/19 Date Analyzed: 08/05/19 Data File: 080543.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<20
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
Methyl t-butyl ether (MTBE)	<100
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	<100
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100

Benzene 2,400 Trichloroethene <100 Toluene <100 Tetrachloroethene <100 1,2-Dibromoethane (EDB) <100 Ethylbenzene 120 m,p-Xylene < 200

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-13-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-04Date Analyzed: 08/05/19 Data File: $080530.\mathrm{D}$ Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	7.5
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Dup-01-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Project: 08/01/19 908023-05 Lab ID: Date Extracted: 08/02/19 Date Analyzed: 08/02/19 Data File: 080225.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	103	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	2.8
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	1,400 ve
Trichloroethene	<1
Toluene	45
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	190 ve
m,p-Xylene	120
o-Xylene	25
Naphthalene	77

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Dup-01-073119	Client:	Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-05 1/100 Date Analyzed: 08/05/19 Data File: 080544.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	<20
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
Methyl t-butyl ether (MTBE)	<100
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	<100
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100
Benzene	3,500
Trichloroethene	<100
Toluene	<100
Tetrachloroethene	<100
1,2-Dibromoethane (EDB)	<100
Ethylbenzene	170
m,p-Xylene	<200
o-Xylene	<100
Naphthalene	<100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-17-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

08/02/19 Date Extracted: Lab ID: 908023-06 Date Analyzed: 08/05/19 Data File: 080531.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	101	50	150

Concentration

Compounds:	ug/L (ppb)

Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-19-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Lab ID: 908023-07 Date Analyzed: 08/05/19 Data File: $080532.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	1.0
Toluene	<1
Tetrachloroethene	17
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-08
Date Analyzed:	08/05/19	Data File:	080533.D
Matrix:	Water	Instrument:	GCMS9

Operator:

MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	101	50	150

<1

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-073119	Client:	Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Lab ID: Date Extracted: 08/02/19 908023-09 Date Analyzed: 08/02/19 Data File: 080229.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Compounds.	ug/Li (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 320 ve Benzene Toluene 1,600 ve Ethylbenzene 450 ve m,p-Xylene 1,300 ve o-Xylene 460 ve Naphthalene 42

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-09 1/100 Date Analyzed: 08/05/19 Data File: $080545.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	95	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 1,2-Dibromoethane (EDB) <100 Benzene 320 Toluene 1,800 Ethylbenzene 410 m,p-Xylene 1,000 o-Xylene 400 Naphthalene <100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-6-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-10
Date Analyzed:	08/05/19	Data File:	080534.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

<1

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Data Extracted:	08/09/10	Lah ID:	908023-11

Date Extracted: Lab ID: 908023-11 08/02/19 Date Analyzed: 08/05/19 Data File: 080535.DMatrix: Water GCMS9 Instrument: Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	100	50	150

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Benzene 0.59Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-2-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-12
Data Analyzadi	00/00/10	Data File.	000000 D

Date Extracted: 08/02/19 Lab ID: 908023-12
Date Analyzed: 08/02/19 Data File: 080232.D
Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	101	50	150

1.8

33

1 Bromondoroschizene	101
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	13
Toluene	2.2
Ethylbenzene	6.5
m,p-Xylene	5.6

o-Xylene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-080119 Client: Aspect Consulting, LLC

 Date Received:
 08/01/19
 Project:
 Aloha Cafe 180357, F&BI 908023

 Date Extracted:
 08/02/19
 Lab ID:
 908023-13

 Date Analyzed:
 08/02/19
 Data File:
 080233.D

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	102	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 1,200 ve Benzene Toluene 44 Ethylbenzene 680 ve m,p-Xylene 1,300 ve o-Xylene 2.7 Naphthalene 190 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-080119	Client:	Aspect Consulting, LLC
T T 1			11 1 0 0 1 1 1 1 1 1 1 1

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-13 1/100 Date Analyzed: 08/05/19 Data File: $080546.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	94	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 1,2-Dibromoethane (EDB) <100 Benzene 2,400 Toluene <100 Ethylbenzene 670 m,p-Xylene 1,100 o-Xylene <100 Naphthalene 160

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-9-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-14
Date Analyzed:	08/05/19	Data File:	080536.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	99	50	150

<1

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Rinse Blank-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-15
Date Analyzed:	08/07/19	Data File:	080738.D
N. f	TT7	T 1	COMCO

Date Analyzed: 08/07/19 Data File: 080738.D

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	97	50	150

Concentration Compounds: ug/L (ppb) Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 < 0.35 Benzene Toluene <1 Ethylbenzene <1 <2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Lab ID: 908023-16 Date Analyzed: 08/02/19 Data File: 080236.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 1,400 ve Benzene Toluene 420 ve Ethylbenzene 550 ve m,p-Xylene 1,500 ve o-Xylene 380 ve Naphthalene 130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-080119	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-16 1/100 Date Analyzed: 08/05/19 Data File: 080547.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 1,2-Dibromoethane (EDB) <100 Benzene 4,200 Toluene 410 520 Ethylbenzene m,p-Xylene 1,300 o-Xylene 350 Naphthalene 110

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-17
Date Analyzed:	08/05/19	Data File:	080537.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
D . D . 1	37 . 4 1. 11	ъ.	41 1 C 0 4 4000 = TOD

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 908023 Lab ID: Date Extracted: 08/02/19 09-1853 mb

Date Analyzed: 08/02/19 Data File: $080220.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	99	50	150

<1

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1

1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Benzene < 0.35 Trichloroethene <1 Toluene <1

Tetrachloroethene <1 1,2-Dibromoethane (EDB) <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908067-06 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Gasoline	ug/L (ppb)	1,000	95	69-134	_	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	5,000	97	88	61-133	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 908023-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	68 b	68 b	75-125	0 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

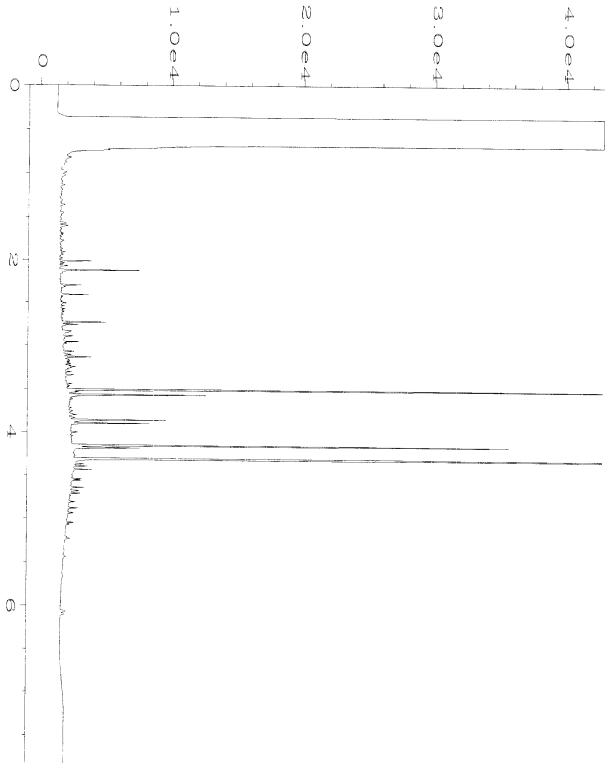
Laboratory Code: 908023-11 (Matrix Spike)

		Percent			
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	98	61-139
Chloroethane	ug/L (ppb)	50	<1	104	55 - 149
1,1-Dichloroethene	ug/L (ppb)	50	<1	113	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	88	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68 - 125
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	99	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	63-126
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	70-119
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	103	75 - 121
Benzene	ug/L (ppb)	50	0.72	100	75 - 114
Trichloroethene	ug/L (ppb)	50	<1	100	73 - 122
Toluene	ug/L (ppb)	50	<1	102	73 - 117
Tetrachloroethene	ug/L (ppb)	50	<1	100	40 - 155
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	110	79-120
Ethylbenzene	ug/L (ppb)	50	<1	103	66 - 124
m,p-Xylene	ug/L (ppb)	100	<2	106	63-128
o-Xylene	ug/L (ppb)	50	<1	102	64-129
Naphthalene	ug/L (ppb)	50	<1	104	60 - 145

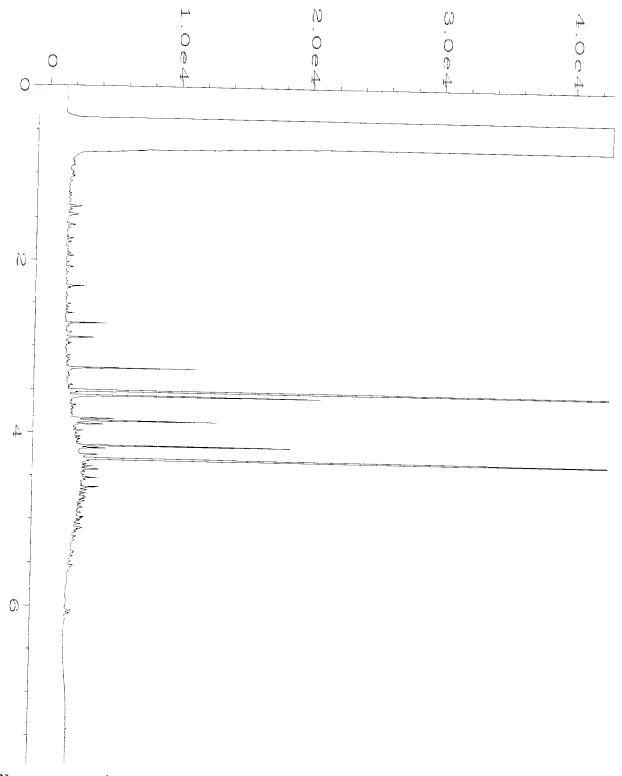
ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

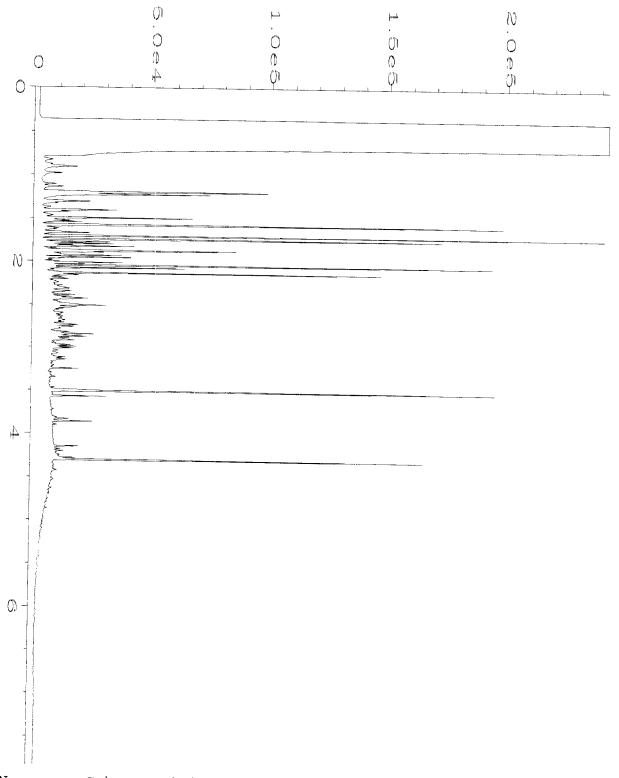
Project: Aloha Cafe 180357, F&BI 908023

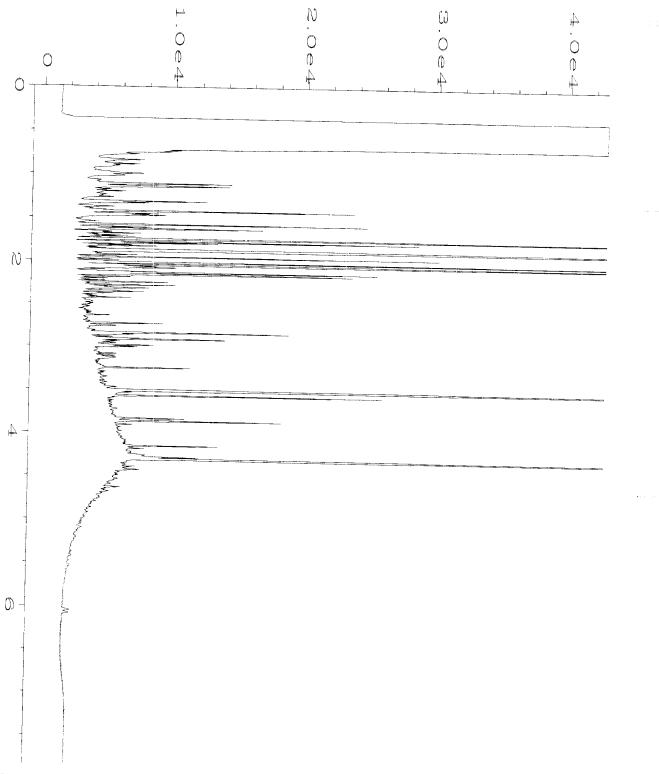

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

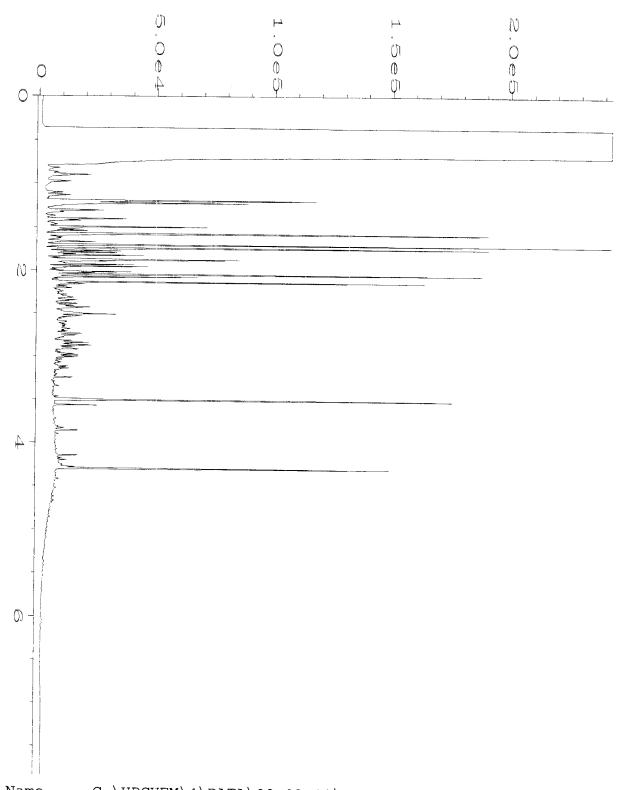
	p		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	96	100	70-128	4
Chloroethane	ug/L (ppb)	50	104	108	66-149	4
1,1-Dichloroethene	ug/L (ppb)	50	109	112	72 - 121	3
Methylene chloride	ug/L (ppb)	50	85	87	63-132	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	92	96	70 - 122	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	100	76 - 118	2
1,1-Dichloroethane	ug/L (ppb)	50	96	98	77-119	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	94	97	76 - 119	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	103	106	75 - 116	3
1,1,1-Trichloroethane	ug/L (ppb)	50	103	106	80-116	3
Benzene	ug/L (ppb)	50	96	100	75 - 116	4
Trichloroethene	ug/L (ppb)	50	100	103	72 - 119	3
Toluene	ug/L (ppb)	50	100	104	79 - 115	4
Tetrachloroethene	ug/L (ppb)	50	100	103	78-109	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	111	117	82-118	5
Ethylbenzene	ug/L (ppb)	50	102	106	83-111	4
m,p-Xylene	ug/L (ppb)	100	106	110	81-112	4
o-Xylene	ug/L (ppb)	50	101	104	81-117	3
Naphthalene	ug/L (ppb)	50	95	99	72 - 131	4

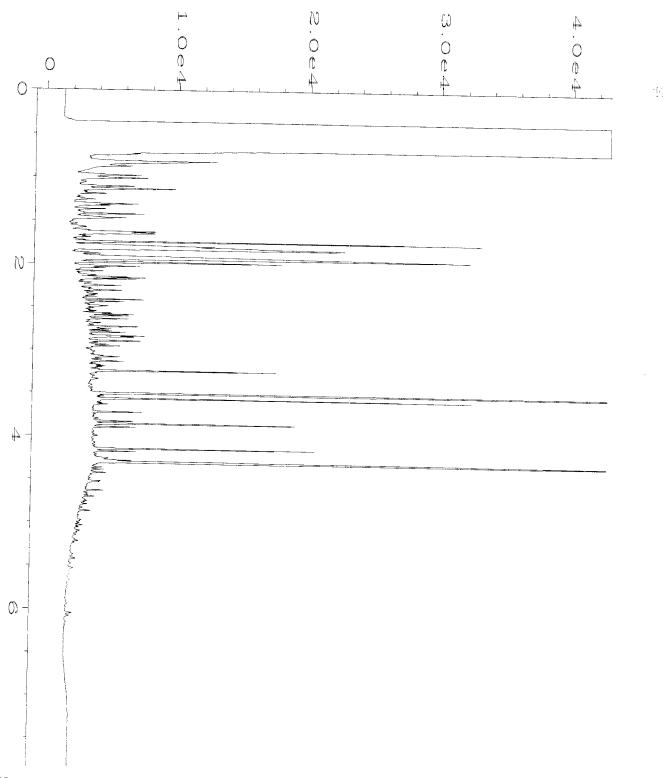

ENVIRONMENTAL CHEMISTS

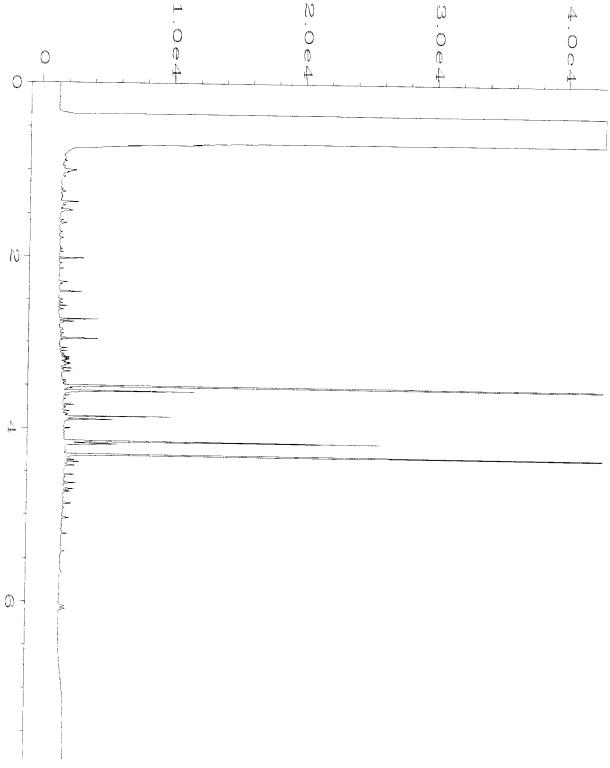
Data Qualifiers & Definitions

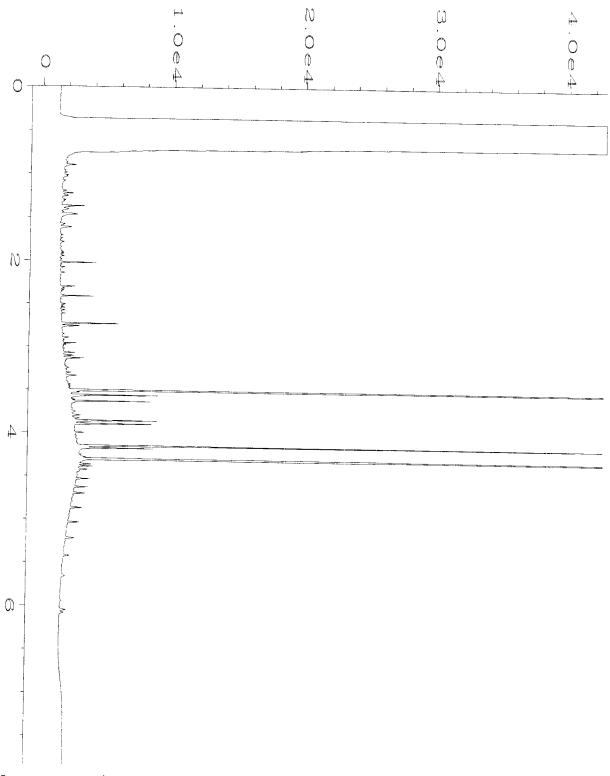

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

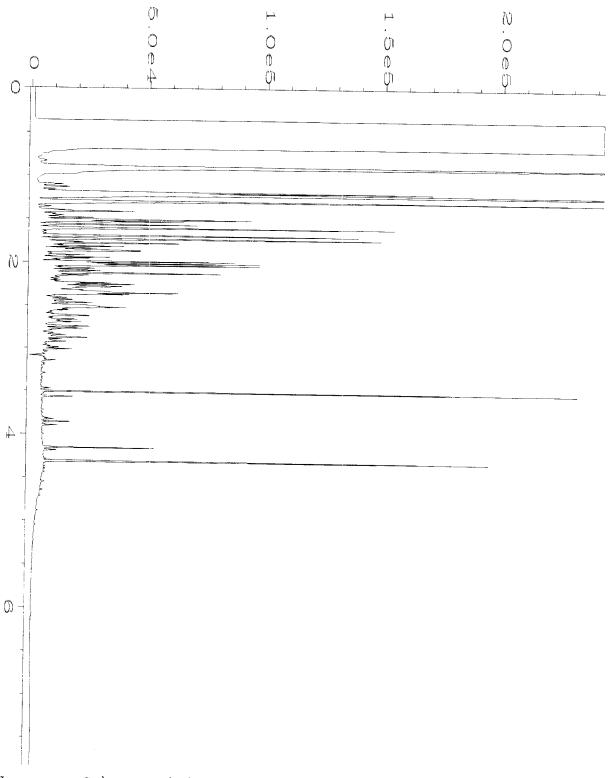

```
Data File Name : C:\HPCHEM\4\DATA\08-02-19\009F0301.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 908023-01
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                             : 3
Acquired on : 02 Aug 19 01:02 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:29 AM
                                              Analysis Method : DEFAULT.MTH
```

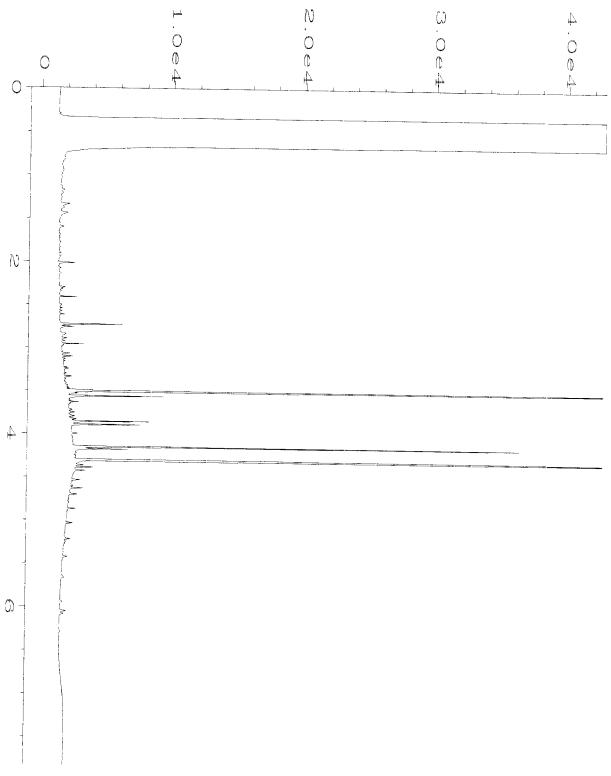


```
Data File Name
              : C:\HPCHEM\4\DATA\08-02-19\010F0301.D
Operator
                 : TL
                                               Page Number
Instrument
                                                               : 1
                : GC#4
                                              Vial Number
Sample Name
                                                               : 10
                : 908023-02
                                              Injection Number : 1
Run Time Bar Code:
                                              Sequence Line
Acquired on : 02 Aug 19 01:25 PM
                                                               : 3
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:40 AM
                                              Analysis Method : DEFAULT.MTH
```

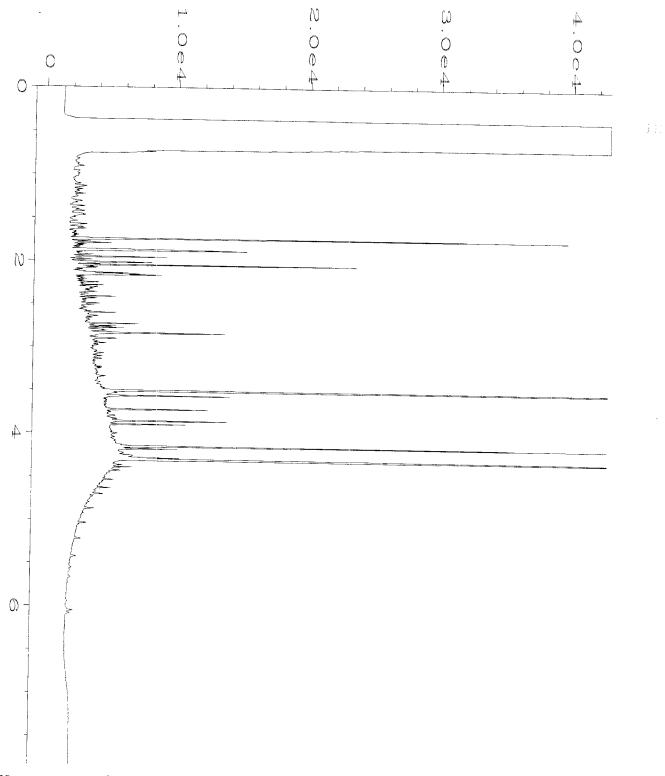


```
Data File Name
                 : C:\HPCHEM\4\DATA\08-02-19\011F0301.D
Operator
Instrument
                 : TL
                                                Page Number
                                                                  : 1
                 : GC#4
                                                Vial Number
                                                                  : 11
Sample Name
                 : 908023-03
                                                Injection Number : 1
Run Time Bar Code:
                                                Sequence Line : 3
Acquired on : 02 Aug 19 01:38 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:41 AM
                                                Analysis Method : DEFAULT.MTH
```

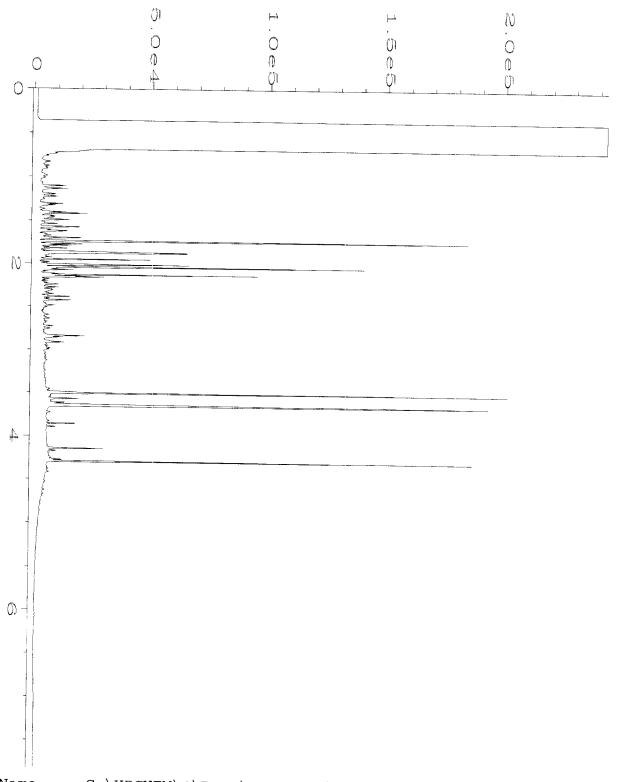


```
: C:\HPCHEM\4\DATA\08-02-19\012F0301.D
Data File Name
Operator
                 : TL
Instrument
                                               Page Number
                                                                : 1
                 : GC#4
                                               Vial Number
Sample Name
                                                                : 12
                : 908023-04
                                               Injection Number : 1
Run Time Bar Code:
                                               Sequence Line : 3
Acquired on
            : 02 Aug 19
                             01:51 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                             09:30 AM
                                              Analysis Method : DEFAULT.MTH
```

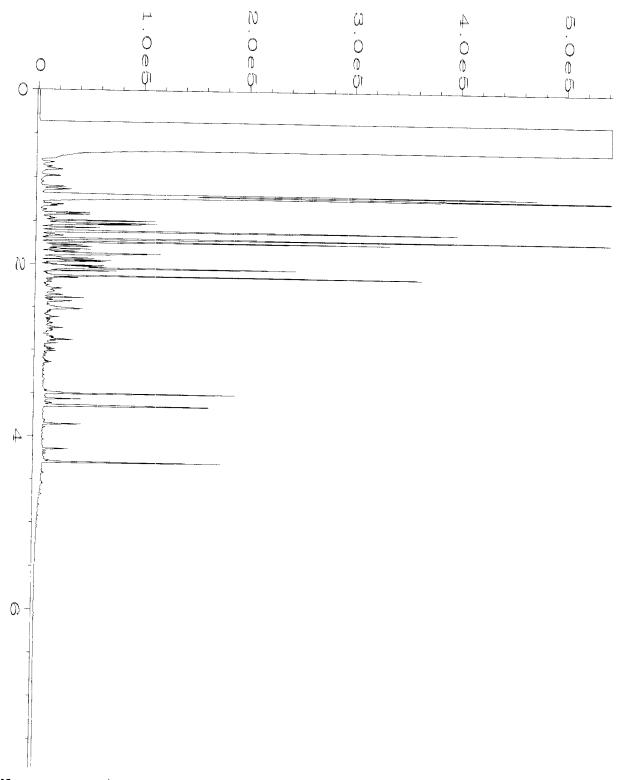


```
Data File Name
                : C:\HPCHEM\4\DATA\08-02-19\013F0301.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 13
Sample Name
                 : 908023-05
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 3
Acquired on : 02 Aug 19 02:03 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:41 AM
                                              Analysis Method : DEFAULT.MTH
```

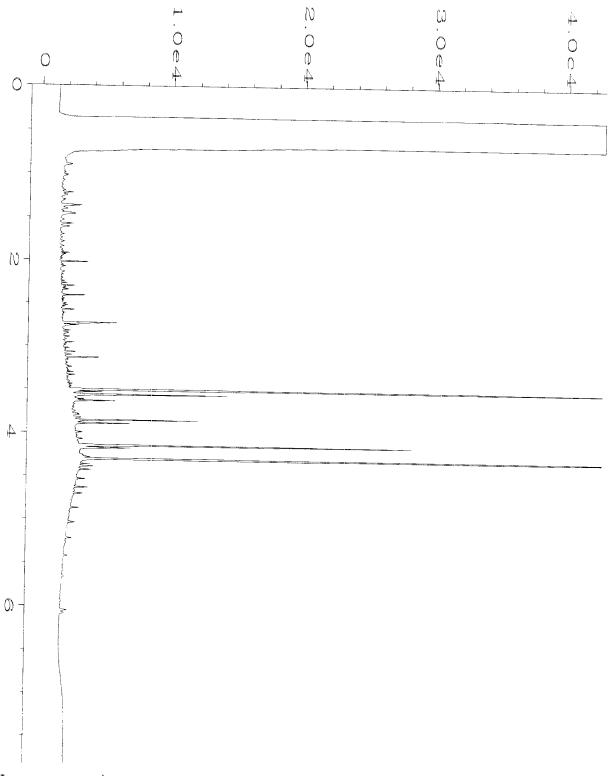


```
Data File Name
              : C:\HPCHEM\4\DATA\08-02-19\014F0301.D
Operator
                : TL
                                               Page Number
Instrument
                                                               : 1
                : GC#4
                                              Vial Number
Sample Name
                : 908023-06
                                              Injection Number : 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19 02:16 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:37 AM
                                              Analysis Method : DEFAULT.MTH
```

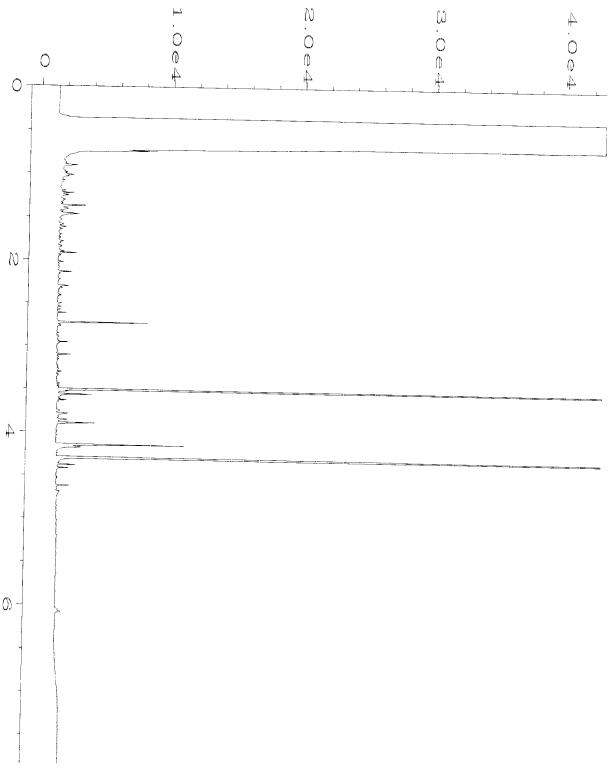


```
Data File Name : C:\HPCHEM\4\DATA\08-02-19\015F0301.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                               : 15
Sample Name
                : 908023-07
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19 02:29 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:37 AM
                                              Analysis Method : DEFAULT.MTH
```

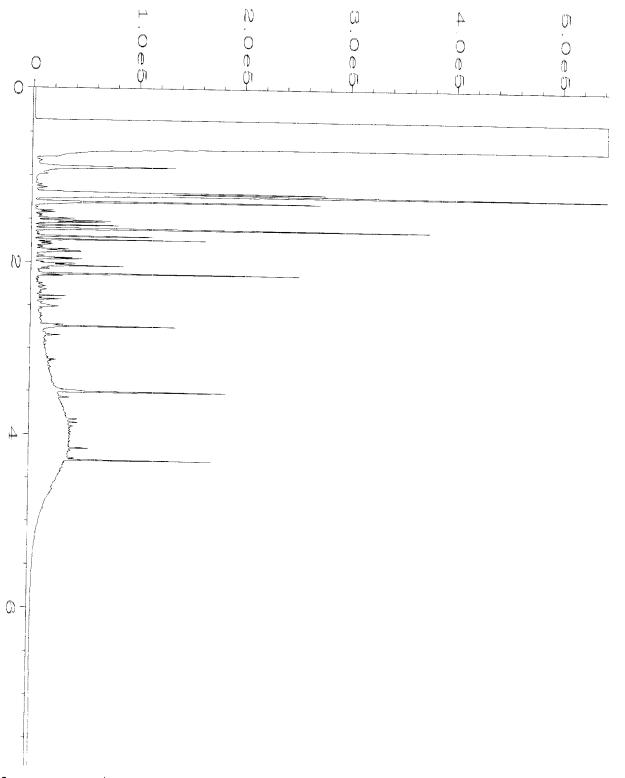


```
: C:\HPCHEM\4\DATA\08-02-19\016F0301.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                                                               : 1
                : GC#4
                                              Vial Number
                                                               : 16
Sample Name
                : 908023-08
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19 02:41 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:41 AM
                                              Analysis Method : DEFAULT.MTH
```

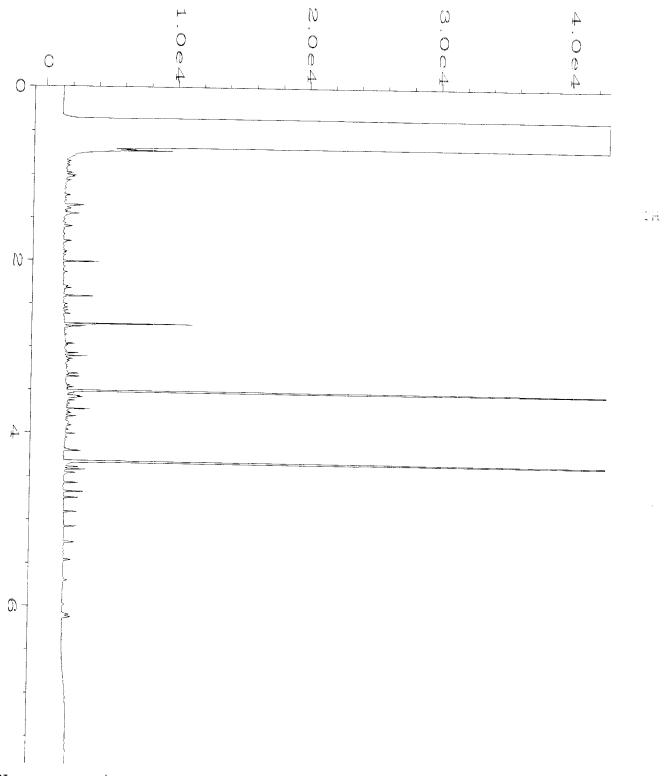


```
Data File Name
                : C:\HPCHEM\4\DATA\08-02-19\017F0501.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 908023-09
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 5
Acquired on : 02 Aug 19 03:29 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:40 AM
                                              Analysis Method : DEFAULT.MTH
```

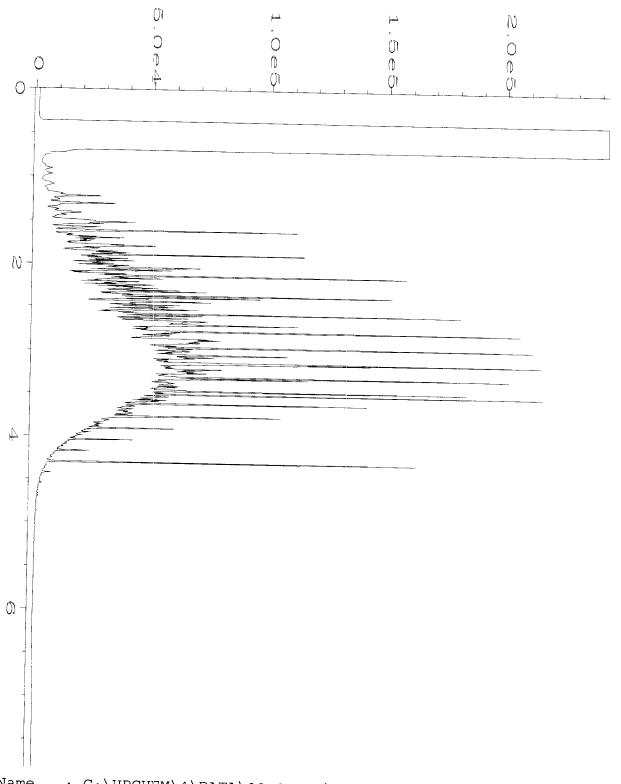


```
: C:\HPCHEM\4\DATA\08-02-19\018F0501.D
Data File Name
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC#4
                                                                 : 18
Sample Name
                : 908023-10
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 02 Aug 19 03:39 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                             09:42 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\019F0501.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 19
Sample Name
                : 908023-11
                                               Injection Number : 1
Run Time Bar Code:
                                               Sequence Line : 5
Acquired on : 02 Aug 19
                             03:52 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                             09:42 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\08-02-19\020F0501.D
Data File Name
Operator
                 : TL
                                                 Page Number
Instrument
                 : GC#4
                                                 Vial Number : 20
Injection Number : 1
Sample Name
                 : 908023-12
Run Time Bar Code:
                                                 Sequence Line : 5
Acquired on : 02 Aug 19 04:05 PM
                                                 Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:42 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\08-02-19\021F0501.D
Operator
Instrument
                 : TL
                                                Page Number
                 : GC#4
                                                Vial Number
                                                                  : 21
Sample Name
                 : 908023-13
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 02 Aug 19 04:17 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:42 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\022F0501.D
Operator
                 : TL
                                                Page Number
Vial Number
                                                                  : 1
Instrument
                 : GC#4
Sample Name
                 : 908023-14
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 02 Aug 19 04:30 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:43 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\023F1101.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                                                                 : 1
                 : GC#4
Sample Name
                                                                 : 23
                : 908023-15
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 11
Acquired on : 02 Aug 19 06:12 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                              09:43 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\08-02-19\024F1101.D
Data File Name
Operator
                 : TL
                                               Page Number
                                                               : 1
Instrument
                : GC#4
                                               Vial Number
Sample Name
                : 908023-16
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 11
Acquired on : 02 Aug 19 06:25 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                            09:44 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\006F0301.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 09-1899 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19
                             12:27 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:44 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\08-02-19\005F0401.D
Operator
                 : TL
                                                Page Number
Vial Number
                                                                 : 1
Instrument
                 : GC#4
Sample Name
                : 1000 Dx 57-78B
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 4
Acquired on : 02 Aug 19 03:07 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:45 AM
                                               Analysis Method : DEFAULT.MTH
```

MW-6-073119 MW-11-073119 MW-7-073119 Mu-19-073119 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West DISTOTIM 170p-01-073119 MW-13-073119 MW-14-073119 Friedman & Bruya, Inc. MW-18-073119 Phone 316. 617.0449 Email Was Note & Oaspationed Ming Com City, State, ZIF Company___ Address Report To ANDROW YENKOYSKI MW-16-073119 Sample ID 25080P Received by Relinquished by: Received by: Relinquished by Ø 4- K 2 R 20 0 844 67 A-K 20 A-H S 0(4-4 Lab ID SIGNATURE 07/31/19 Sampled Date 1245 210 1020 0830 ON25 115 SAMPLE CHAIN OF CUSTODY 0820 1030 1240 Sampled SAMPLERS (signature REMARKS PROJECT NAME Alona Cato 15-15-Sample Type HONTO Day 8 # of Jars 1Stock 8 00 PRINT NAME ∞ TPH-HCID × × × \times × × TPH-Diesel × \times 54 × × × × TPH-Gasoline BTEX by 8021B 180357 VOCs by 8260C ME 08/01/19 VW5 INVOICE TO SVOCs by 8270D PO# 45/2ect PAHs 8270D SIM Samples received at 4 °C REQUESTED COMPANY BTEX 8260 × **×** × \times \times × × \succ \times MTBE, EPB, EDC Anaphthelene 820 ×. × × \times \prec **×** Carsultane \times >< \times ☐ Archive Samples ADispose after 30 days XStandard Turnaround Rush charges authorized by: Total laid 6010 >>>< \times >< × \times \prec TURNAROUND TIME SAMPLE DISPOSAL CVOCIS × × × \times HCada prosent DATENotes TIME

	SAMPLE CHAIN OF CUSTODY	ME 08/01/19	1005/AIG/CE
Report To Fockor You Kotski	SAMPLERS (signature)	A LANCOSCO SECULIARIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DE LA COMPANIO DE LA COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DE LA COMPANIO DEL COMPANIO	Page # of of
1000	PROJECT NAME	PO #	Standard Turnaround
Company 1/2/ 00	Alobe Cite	180357	Rush charges authorized
City, State, ZIP	REMARKS	INVOICE TO	SAMPLE DISPOS.
Phone 316.617.0499 Email Cayonk of SKI Casplet consolting con	oll tuz-cor		☐ Archive Samples ☐ Other

Rush charges authorized by: Standard Turnaround

SAMPLE DISPOSAL

TURNAROUND TIME

Ph. (206) 285-8282	2029	r	<u>۔ ۔</u> رز	$\overline{}$		AB CD GFR	Trip Blank 3 sets		MW-1-080119	Ring Blank-080119	MW-4-080119	MW-10-090119	MW-2-080119	11080-21-MM	Sample ID	
Received by:	Relinquished by:	Received by: \mathcal{H}_0	Relinquished by:	SIC			5 17 7		10	15	14	B	73	17.A.H	Lab ID	
		sulp		SIGNATURE					4					8/01/19	Date Sampled	
									15.30	H55	1420	1330	1205	110	Time Sampled	
	•	HONGIN	Darie I Robcock						4					Water	Sample Type	, .
		161	W W	PRINT NAME			Q,		90	8	∞	∞	8	8	# of Jars	
	_	2	3	T'N/		ļ				ļ					TPH-HCID	
	(TI .	アング	ME					×	\times	\times	<u> </u>	\succeq	×	TPH-Diesel	
		5	,		-	<u> </u>	\otimes		×	×	\times	\times		→ .	TPH-Gasoline	
			į					ļ					ļ		BTEX by 8021B	A
				H		<u> </u>	(x)								VOCs by 8260C	VAL
		5	15/7										ļ		SVOCs by 8270D	YSES
ξ _Ω	•	12	60	00			ļ								PAHs 8270D SIM	RE
amp			6	COMPANY		<u> </u>			×	×		×	×	\times		ANALYSES REQUESTED
les r			8,8	YNA		-			*	>	×	×	×	~	MTBi, CPB, LDC though talone 8200 Total land 6010	STE
Samples received at		,	Aspect Consulting						*	×	×	~	×	\times	Total Food 6010	D
d at			<u> </u>						<u>±</u>			-1.	て			
0° 4	,	00	11/19 11717	DATE TIME	per DB elilla me	Gas Taget VOUS (VOLS	X)-best + Cx		Hi aler Prisont			HCadas Prosent	Hi ador present	•	Notes	
			<u></u>		[,,,	<u>ر</u> ۲	<u> </u>	l	<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 11, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included is the amended report from the testing of material submitted on August 1, 2019 from the Aloha Cafe 180357, F&BI 908023 project. The second set of NWTPH-Gx quality assurance was added to the report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 12, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 1, 2019 from the Aloha Cafe 180357, F&BI 908023 project. There are 52 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 1, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 908023 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
908023 -01	MW-16-073119
908023 -02	MW-18-073119
908023 -03	MW-14-073119
908023 -04	MW-13-073119
908023 -05	Dup-01-073119
908023 -06	MW-17-073119
908023 -07	MW-19-073119
908023 -08	MW-7-073119
908023 -09	MW-11-073119
908023 -10	MW-6-073119
908023 -11	MW-12-080119
908023 -12	MW-2-080119
908023 -13	MW-10-080119
908023 -14	MW-9-080119
908023 -15	Rinse Blank-080119
908023 -16	MW-1-080119
908023 -17	Trip Blank

The NWTPH-Dx surrogate in sample Rinse Blank-080119 exceeded the acceptance criteria. No material was detected in the sample, therefore the results were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/06/19

Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-16-073119 908023-01	<100	109
MW-18-073119 908023-02	<100	110
MW-14-073119 908023-03	7,500	106
MW-13-073119 908023-04	1,400	92
Dup-01-073119 908023-05	9,700	107
MW-17-073119 908023-06 1/10	1,800	100
MW-19-073119 908023-07	<100	109
MW-7-073119 908023-08	<100	113
MW-11-073119 908023-09 1/20	13,000	98
MW-6-073119 908023-10	<100	115

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/06/19

Date Analyzed: 08/06/19, 08/07/19, 08/08/19, and 08/12/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-12-080119 908023-11	240	119
MW-2-080119 908023-12	1,600	114
MW-10-080119 908023-13 1/20	19,000	109
MW-9-080119 908023-14	<100	101
Rinse Blank-080119 908023-15	<100	91
MW-1-080119 908023-16 1/20	24,000	105
Trip Blank 908023-17	<100	95
Method Blank 09-1950 MB	<100	99
Method Blank 09-1903 MB	<100	116

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-16-073119 908023-01	84 x	<250	119
MW-18-073119 908023-02	55 x	<250	108
MW-14-073119 908023-03	1,200 x	330 x	121
MW-13-073119 908023-04	530 x	<250	131
Dup-01-073119 908023-05	1,100 x	270 x	116
MW-17-073119 908023-06	320 x	<250	113
MW-19-073119 908023-07	<50	<250	115
MW-7-073119 908023-08	83 x	<250	114
MW-11-073119 908023-09	1,100 x	<250	116
MW-6-073119 908023-10	68 x	<250	118
MW-12-080119 908023-11	310 x	<250	114

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Date Analyzed: 08/02/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-2-080119 908023-12	790 x	<250	128
MW-10-080119 908023-13	1,900 x	260 x	125
MW-9-080119 908023-14	88 x	<250	122
Rinse Blank-080119 908023-15	<50	<250	142 vo
MW-1-080119 908023-16	2,100 x	1,000 x	126
Method Blank 09-1899 MB	<50	<250	101

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-16-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-01 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-01.059 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-18-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-02 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-02.062 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-14-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-03 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-03.063 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-13-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-04 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-04.064 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Dup-01-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

08/05/19 Lab ID: 908023-05 Date Extracted: Date Analyzed: 08/05/19 Data File: 908023-05.065 ICPMS2 Matrix: Water Instrument: Units:

ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-17-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-06 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-06.066 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

Operator.

 $\begin{array}{c} & Concentration \\ Analyte: & ug/L\ (ppb) \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-19-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-07 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-07.069 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-7-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-08 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-08.070 Matrix: ICPMS2 Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-11-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-09 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-09.071 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 3.49

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-6-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-10 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-10.072 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-12-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-11 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-11.073 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-2-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-12 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-12.074 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb)

SPOperator:

Concentration Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-10-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-13 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-13.075 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-9-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-14 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-14.076 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Rinse Blank-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-15 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-15.077 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-1-080119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: 908023-16 Date Extracted: 08/05/19 Date Analyzed: 08/05/19 Data File: 908023-16.078 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Aloha Cafe 180357, F&BI 908023

08/05/19 Lab ID: I9-472 mbDate Extracted: Date Analyzed: 08/05/19 Data File: I9-472 mb.057ICPMS2 Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-16-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Lab ID: 908023-01 Date Analyzed: 08/02/19 Data File: 080221.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1

1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Benzene < 0.35 Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-18-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-02Date Analyzed: 08/02/19 Data File: 080222.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	1.0
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-14-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Received: Project: 08/01/19 Lab ID: 908023-03 Date Extracted: 08/02/19 Date Analyzed: 08/02/19 Data File: 080223.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	101	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	2.7
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	1,300 ve
Trichloroethene	<1
Toluene	32
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	130
m,p-Xylene	72
o-Xylene	18
Naphthalene	50

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-14-073119	Client:	Aspect Consulting, LLC
D . D . 1		—	

Date Received: Aloha Cafe 180357, F&BI 908023 08/01/19 Project: Lab ID: 908023-03 1/100

Date Extracted: 08/02/19 Date Analyzed: 08/05/19 Data File: 080543.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<20
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
Methyl t-butyl ether (MTBE)	<100
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	<100
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100

Benzene 2,400 Trichloroethene <100 Toluene <100 Tetrachloroethene <100 1,2-Dibromoethane (EDB) <100 Ethylbenzene 120 m,p-Xylene < 200

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-13-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-04Date Analyzed: 08/05/19 Data File: $080530.\mathrm{D}$ Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	7.5
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Dup-01-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Received: Project: 08/01/19 Lab ID: 908023-05 Date Extracted: 08/02/19 Date Analyzed: 08/02/19 Data File: 080225.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	103	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	2.8
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	1,400 ve
Trichloroethene	<1
Toluene	45
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	190 ve
m,p-Xylene	120
o-Xylene	25
Naphthalene	77

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Dup-01-073119	Client:	Aspect Consulting, LLC
D D 1			

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-05 1/100 Date Analyzed: 08/05/19 Data File: 080544.DMatrix: Instrument: Water GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	<20
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
Methyl t-butyl ether (MTBE)	<100
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	<100
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100
Benzene	3,500
Trichloroethene	<100
Toluene	<100
Tetrachloroethene	<100
1,2-Dibromoethane (EDB)	<100
Ethylbenzene	170
m,p-Xylene	<200
o-Xylene	<100
Naphthalene	<100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-17-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

08/02/19 Date Extracted: Lab ID: 908023-06 Date Analyzed: 08/05/19 Data File: 080531.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	101	50	150

Concentration

Compounds:	ug/L (ppb)

Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-19-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Lab ID: 908023-07 Date Analyzed: 08/05/19 Data File: $080532.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) MS/AEN Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	1.0
Toluene	<1
Tetrachloroethene	17
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-08
Date Analyzed:	08/05/19	Data File:	080533.D
Matrix:	Water	Instrument:	GCMS9

Operator:

MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	101	50	150

<1

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-11-073119	Client:	Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023 Lab ID: Date Extracted: 08/02/19 908023-09 Date Analyzed: 08/02/19 Data File: 080229.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
Compounds.	ug/Li (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 320 ve Benzene Toluene 1,600 ve Ethylbenzene 450 ve m,p-Xylene 1,300 ve o-Xylene 460 ve Naphthalene 42

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-073119 Client: Aspect Consulting, LLC

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-09 1/100 Date Analyzed: 08/05/19 Data File: $080545.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	95	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 1,2-Dibromoethane (EDB) <100 Benzene 320 Toluene 1,800 Ethylbenzene 410 m,p-Xylene 1,000 o-Xylene 400 Naphthalene <100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-6-073119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-10
Date Analyzed:	08/05/19	Data File:	080534.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

<1

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Data Extracted:	08/09/10	Lah ID:	908023-11

Date Extracted: Lab ID: 908023-11 08/02/19 Date Analyzed: 08/05/19 Data File: 080535.DMatrix: Water GCMS9 Instrument: Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	100	50	150

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 Benzene 0.59 Toluene <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-2-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-12
Data Analyzadi	00/00/10	Data File.	000000 D

Date Extracted: 08/02/19 Lab ID: 908023-12
Date Analyzed: 08/02/19 Data File: 080232.D
Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	101	50	150

1.8

33

1 Bromondoroschizene	101
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	13
Toluene	2.2
Ethylbenzene	6.5
m,p-Xylene	5.6

o-Xylene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-080119 Client: Aspect Consulting, LLC

 Date Received:
 08/01/19
 Project:
 Aloha Cafe 180357, F&BI 908023

 Date Extracted:
 08/02/19
 Lab ID:
 908023-13

 Date Analyzed:
 08/02/19
 Data File:
 080233.D

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	102	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 1,200 ve Benzene Toluene 44 Ethylbenzene 680 ve m,p-Xylene 1,300 ve o-Xylene 2.7 Naphthalene 190 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-10-080119	Client:	Aspect Consulting, LLC
T T 1			11 1 0 0 1 1 1 1 1 1 1 1

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-13 1/100 Date Analyzed: 08/05/19 Data File: $080546.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	94	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 1,2-Dibromoethane (EDB) <100 Benzene 2,400 Toluene <100 Ethylbenzene 670 m,p-Xylene 1,100 o-Xylene <100 Naphthalene 160

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-9-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-14
Date Analyzed:	08/05/19	Data File:	080536.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	99	50	150

<1

Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
1,2-Dibromoethane (EDB)	<1
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Rinse Blank-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-15
Date Analyzed:	08/07/19	Data File:	080738.D
N. f	TT7	T 1	COMCO

Date Analyzed: 08/07/19 Data File: 080738.D

Matrix: Water Instrument: GCMS9
Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	97	50	150

Concentration Compounds: ug/L (ppb) Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 < 0.35 Benzene Toluene <1 Ethylbenzene <1 <2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-080119	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023

Date Extracted: 08/02/19 Lab ID: 908023-16 Date Analyzed: 08/02/19 Data File: 080236.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 1,2-Dibromoethane (EDB) <1 1,400 ve Benzene Toluene 420 ve Ethylbenzene 550 ve m,p-Xylene 1,500 ve o-Xylene 380 ve Naphthalene 130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-1-080119	Client:	Aspect Consulting, LLC
-------------------	-------------	---------	------------------------

Date Received: 08/01/19 Project: Aloha Cafe 180357, F&BI 908023

Lab ID: Date Extracted: 08/02/19 908023-16 1/100 Date Analyzed: 08/05/19 Data File: 080547.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 1,2-Dibromoethane (EDB) <100 Benzene 4,200 Toluene 410 520 Ethylbenzene m,p-Xylene 1,300 o-Xylene 350 Naphthalene 110

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	08/01/19	Project:	Aloha Cafe 180357, F&BI 908023
Date Extracted:	08/02/19	Lab ID:	908023-17
Date Analyzed:	08/05/19	Data File:	080537.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
D . D . 1	37 . 4 1. 11	ъ.	41 1 C 0 4 4000 = TOD

Date Received: Not Applicable Project: Aloha Cafe 180357, F&BI 908023 Lab ID: Date Extracted: 08/02/19 09-1853 mb

Date Analyzed: 08/02/19 Data File: $080220.\mathrm{D}$ Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: MS/AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	99	50	150

<1

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1

1,2-Dichloroethane (EDC) <1 1,1,1-Trichloroethane <1 Benzene < 0.35 Trichloroethene <1 Toluene <1

Tetrachloroethene <1 1,2-Dibromoethane (EDB) <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908067-06 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	95	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 908177-09 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	ug/L (ppb)	1,000	88	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	5,000	97	88	61-133	10

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 908023-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	68 b	68 b	75-125	0 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

Project: Aloha Cafe 180357, F&BI 908023

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

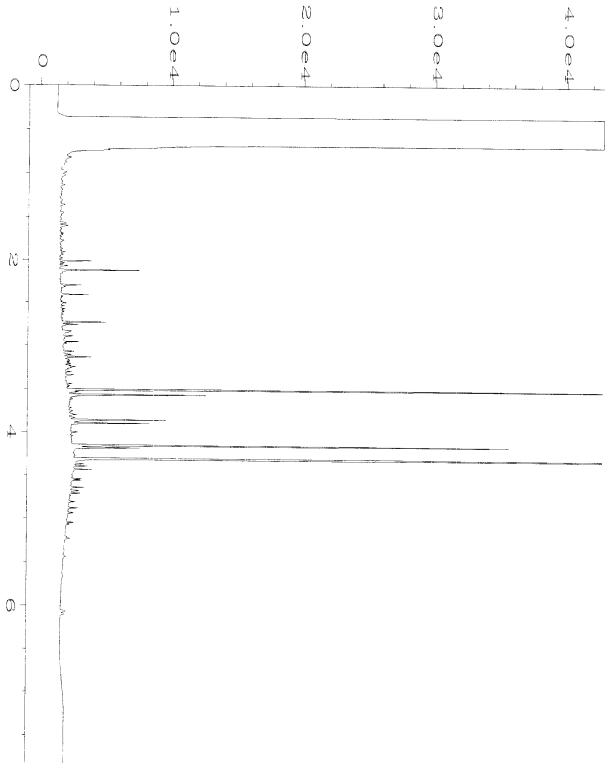
Laboratory Code: 908023-11 (Matrix Spike)

			Percent				
	Reporting	Spike	Sample	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Vinyl chloride	ug/L (ppb)	50	< 0.2	98	61-139		
Chloroethane	ug/L (ppb)	50	<1	104	55-149		
1,1-Dichloroethene	ug/L (ppb)	50	<1	113	71 - 123		
Methylene chloride	ug/L (ppb)	50	<5	88	61-126		
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68 - 125		
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72 - 122		
1,1-Dichloroethane	ug/L (ppb)	50	<1	99	79-113		
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	96	63-126		
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	70-119		
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	103	75 - 121		
Benzene	ug/L (ppb)	50	0.72	100	75 - 114		
Trichloroethene	ug/L (ppb)	50	<1	100	73 - 122		
Toluene	ug/L (ppb)	50	<1	102	73 - 117		
Tetrachloroethene	ug/L (ppb)	50	<1	100	40 - 155		
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	110	79-120		
Ethylbenzene	ug/L (ppb)	50	<1	103	66-124		
m,p-Xylene	ug/L (ppb)	100	<2	106	63 - 128		
o-Xylene	ug/L (ppb)	50	<1	102	64-129		
Naphthalene	ug/L (ppb)	50	<1	104	60 - 145		

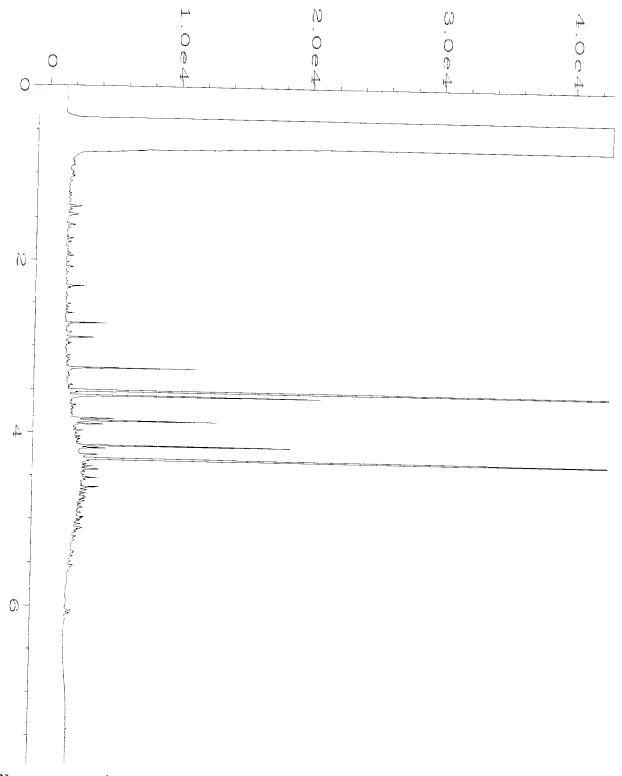
ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/19 Date Received: 08/01/19

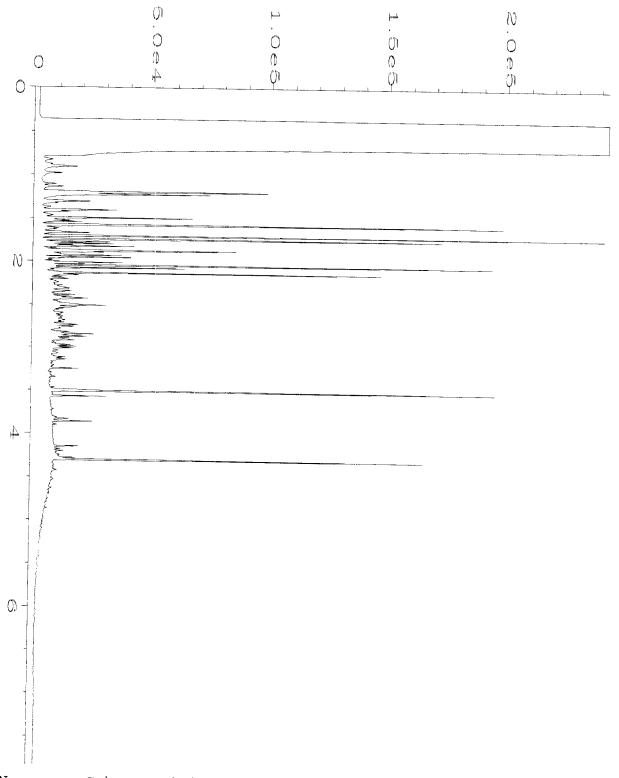
Project: Aloha Cafe 180357, F&BI 908023

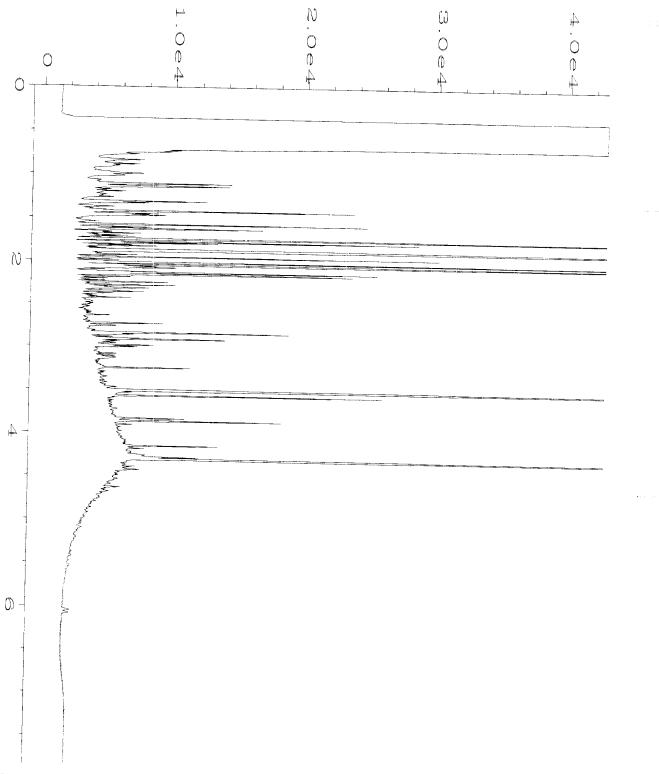

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

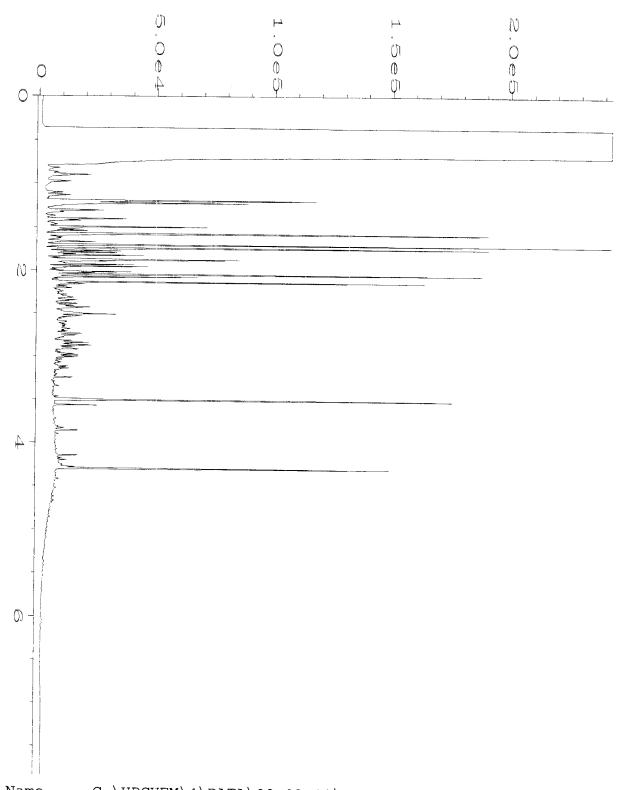
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	96	100	70-128	4
Chloroethane	ug/L (ppb)	50	104	108	66-149	4
1,1-Dichloroethene	ug/L (ppb)	50	109	112	72 - 121	3
Methylene chloride	ug/L (ppb)	50	85	87	63-132	2
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	92	96	70 - 122	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	100	76 - 118	2
1,1-Dichloroethane	ug/L (ppb)	50	96	98	77-119	2
cis-1,2-Dichloroethene	ug/L (ppb)	50	94	97	76-119	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	103	106	75 - 116	3
1,1,1-Trichloroethane	ug/L (ppb)	50	103	106	80-116	3
Benzene	ug/L (ppb)	50	96	100	75 - 116	4
Trichloroethene	ug/L (ppb)	50	100	103	72 - 119	3
Toluene	ug/L (ppb)	50	100	104	79 - 115	4
Tetrachloroethene	ug/L (ppb)	50	100	103	78-109	3
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	111	117	82-118	5
Ethylbenzene	ug/L (ppb)	50	102	106	83-111	4
m,p-Xylene	ug/L (ppb)	100	106	110	81-112	4
o-Xylene	ug/L (ppb)	50	101	104	81-117	3
Naphthalene	ug/L (ppb)	50	95	99	72 - 131	4

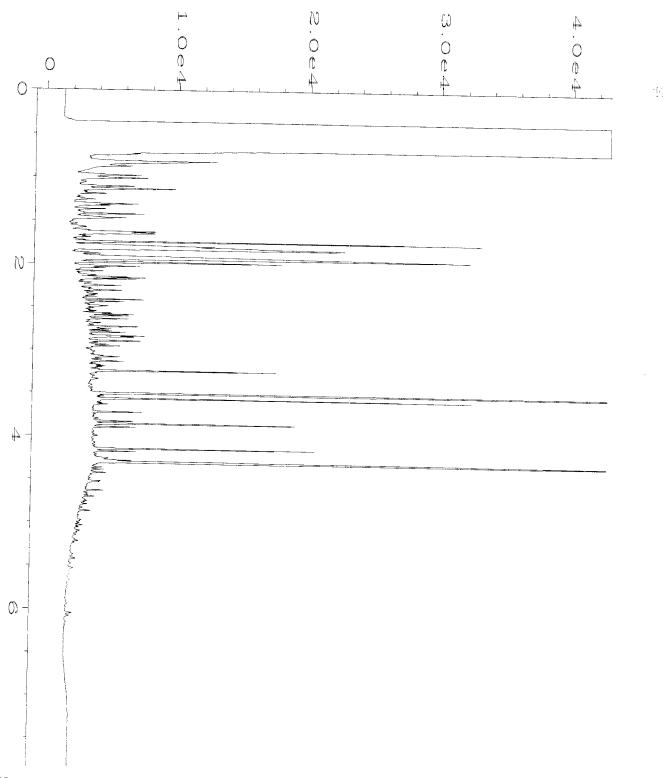

ENVIRONMENTAL CHEMISTS

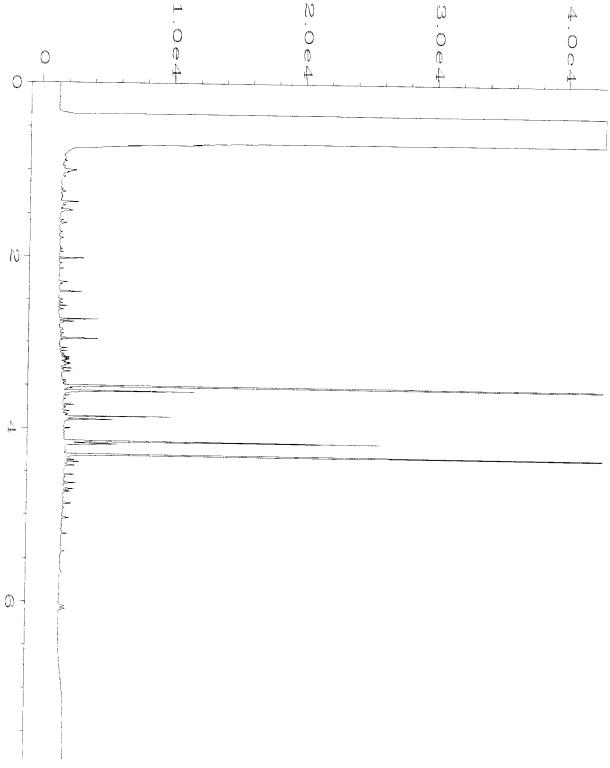
Data Qualifiers & Definitions

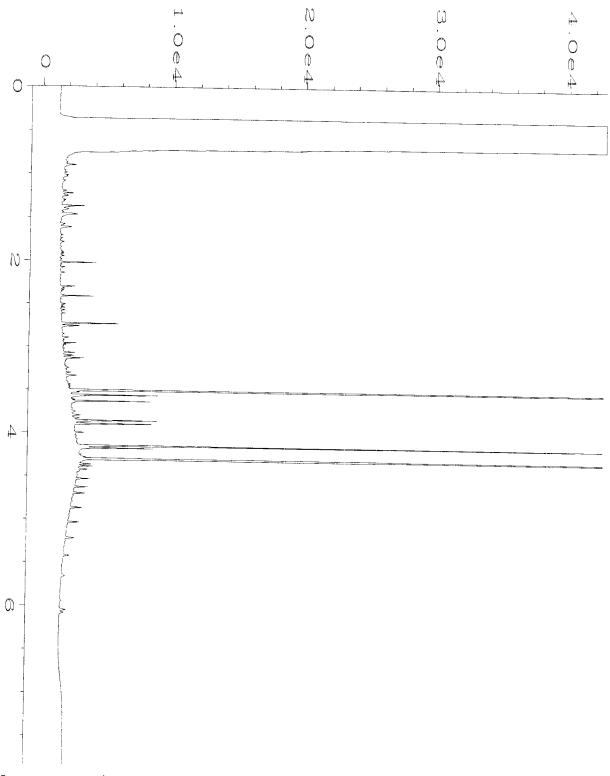

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

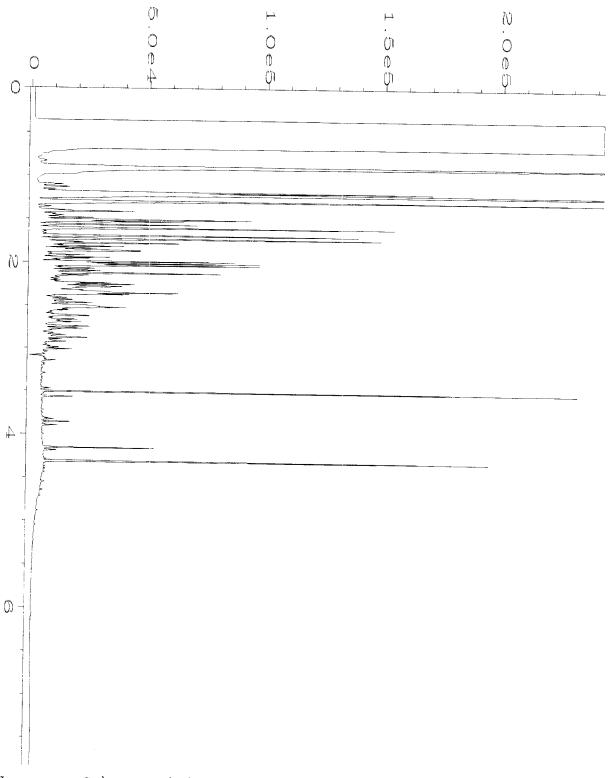

```
Data File Name : C:\HPCHEM\4\DATA\08-02-19\009F0301.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 908023-01
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                             : 3
Acquired on : 02 Aug 19 01:02 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:29 AM
                                              Analysis Method : DEFAULT.MTH
```

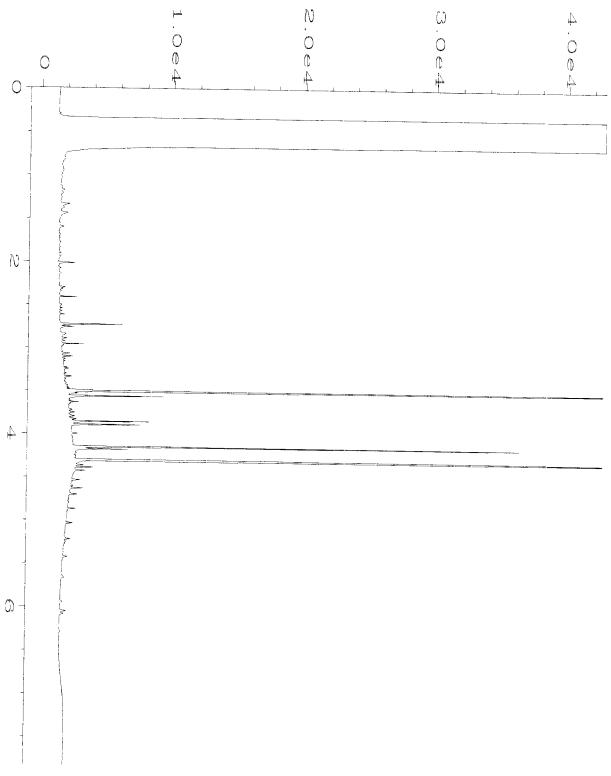


```
Data File Name
              : C:\HPCHEM\4\DATA\08-02-19\010F0301.D
Operator
                 : TL
                                               Page Number
Instrument
                                                               : 1
                : GC#4
                                              Vial Number
Sample Name
                                                               : 10
                : 908023-02
                                              Injection Number : 1
Run Time Bar Code:
                                              Sequence Line
Acquired on : 02 Aug 19 01:25 PM
                                                               : 3
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:40 AM
                                              Analysis Method : DEFAULT.MTH
```

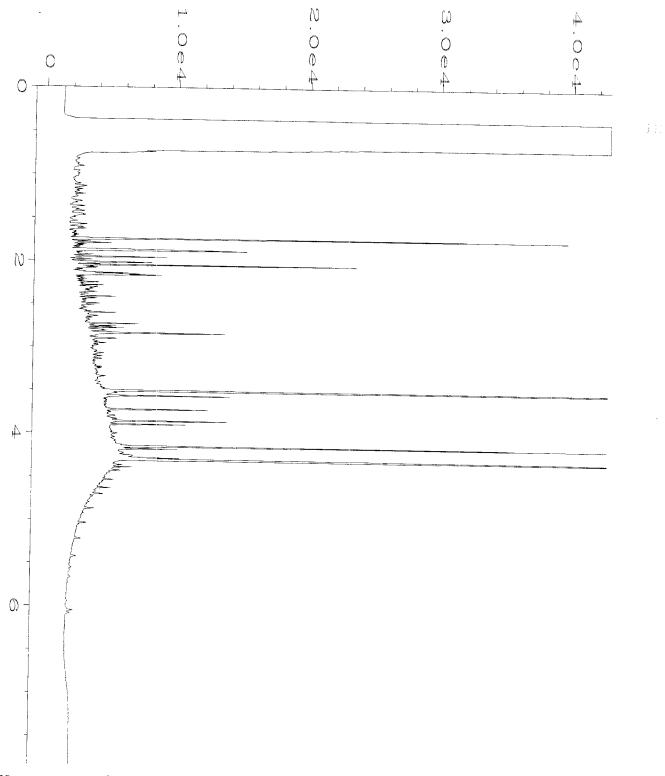


```
Data File Name
                 : C:\HPCHEM\4\DATA\08-02-19\011F0301.D
Operator
Instrument
                 : TL
                                                Page Number
                                                                  : 1
                 : GC#4
                                                Vial Number
                                                                  : 11
Sample Name
                 : 908023-03
                                                Injection Number : 1
Run Time Bar Code:
                                                Sequence Line : 3
Acquired on : 02 Aug 19 01:38 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:41 AM
                                                Analysis Method : DEFAULT.MTH
```

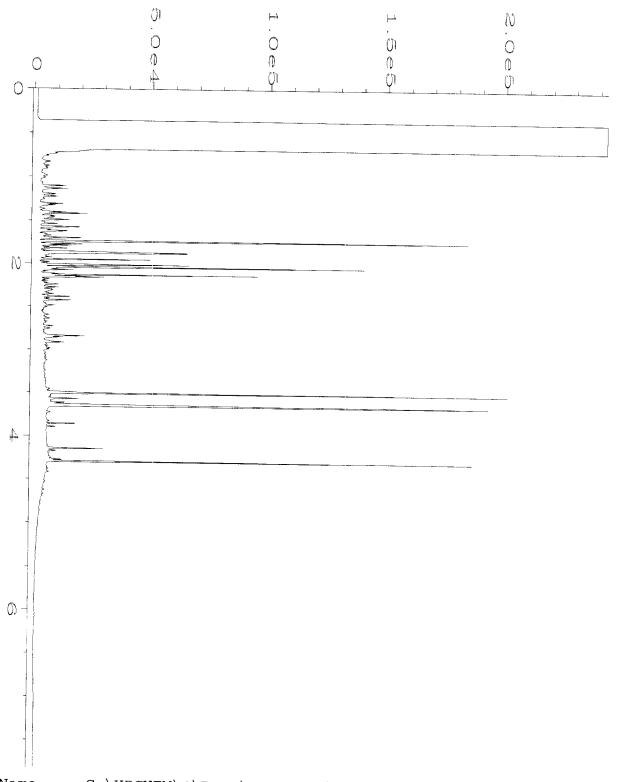


```
: C:\HPCHEM\4\DATA\08-02-19\012F0301.D
Data File Name
Operator
                 : TL
Instrument
                                               Page Number
                                                                : 1
                 : GC#4
                                               Vial Number
Sample Name
                                                                : 12
                : 908023-04
                                               Injection Number : 1
Run Time Bar Code:
                                               Sequence Line : 3
Acquired on
            : 02 Aug 19
                             01:51 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                             09:30 AM
                                              Analysis Method : DEFAULT.MTH
```

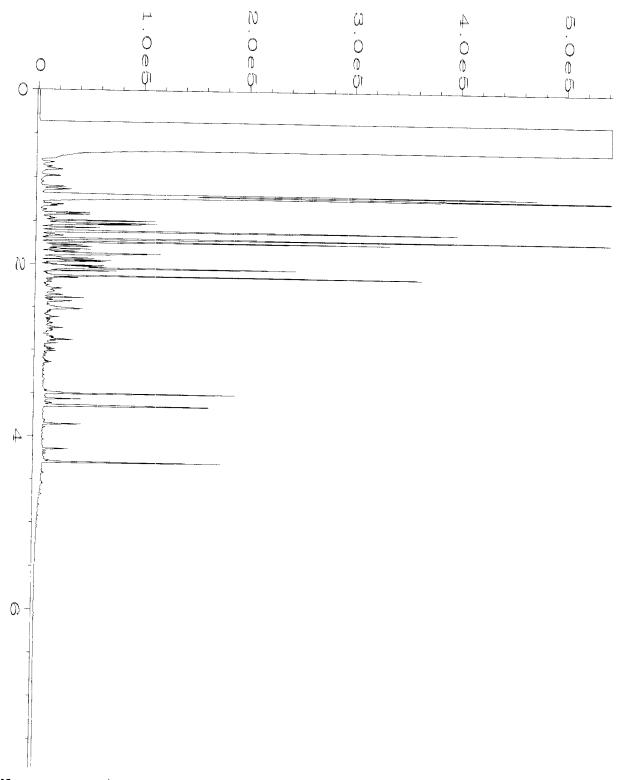


```
Data File Name
                : C:\HPCHEM\4\DATA\08-02-19\013F0301.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 13
Sample Name
                 : 908023-05
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 3
Acquired on : 02 Aug 19 02:03 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:41 AM
                                              Analysis Method : DEFAULT.MTH
```

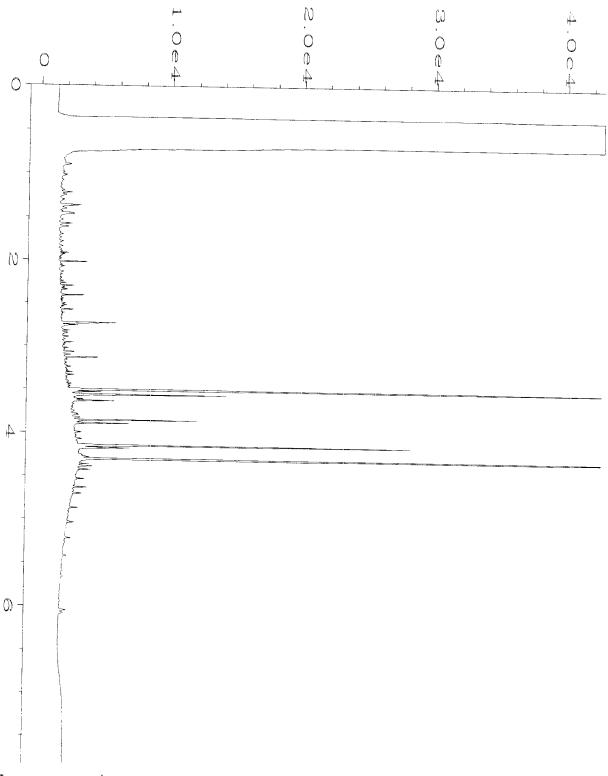


```
Data File Name
              : C:\HPCHEM\4\DATA\08-02-19\014F0301.D
Operator
                : TL
                                               Page Number
Instrument
                                                               : 1
                : GC#4
                                              Vial Number
Sample Name
                : 908023-06
                                              Injection Number : 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19 02:16 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:37 AM
                                              Analysis Method : DEFAULT.MTH
```

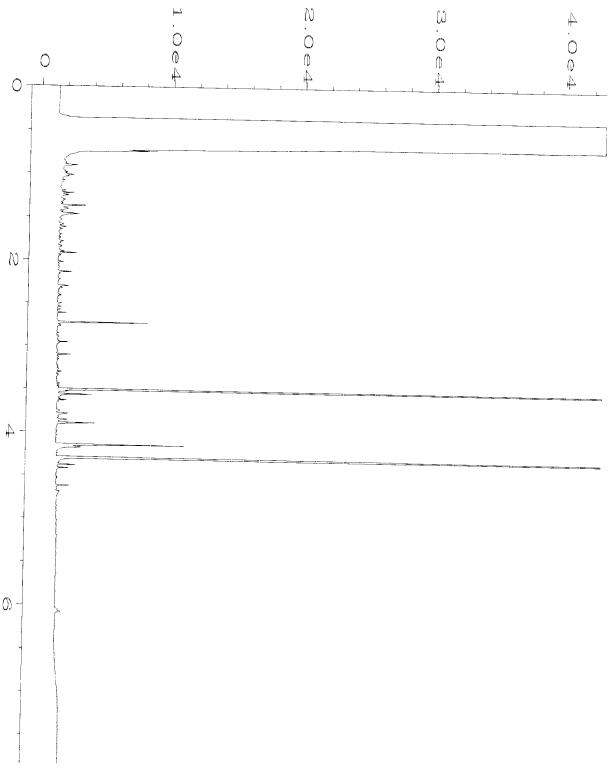


```
Data File Name : C:\HPCHEM\4\DATA\08-02-19\015F0301.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                               : 15
Sample Name
                : 908023-07
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19 02:29 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:37 AM
                                              Analysis Method : DEFAULT.MTH
```

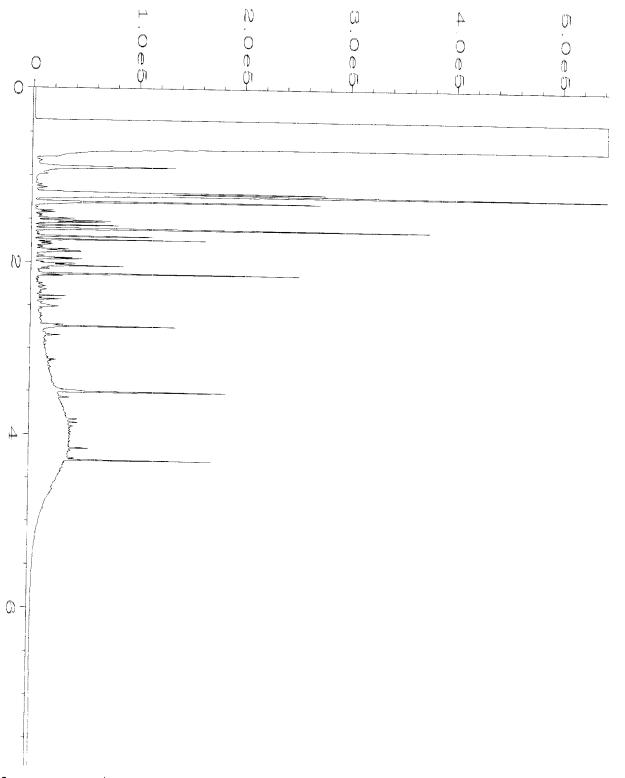


```
: C:\HPCHEM\4\DATA\08-02-19\016F0301.D
Data File Name
Operator
                : TL
                                              Page Number
Instrument
                                                               : 1
                : GC#4
                                              Vial Number
                                                               : 16
Sample Name
                : 908023-08
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19 02:41 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:41 AM
                                              Analysis Method : DEFAULT.MTH
```

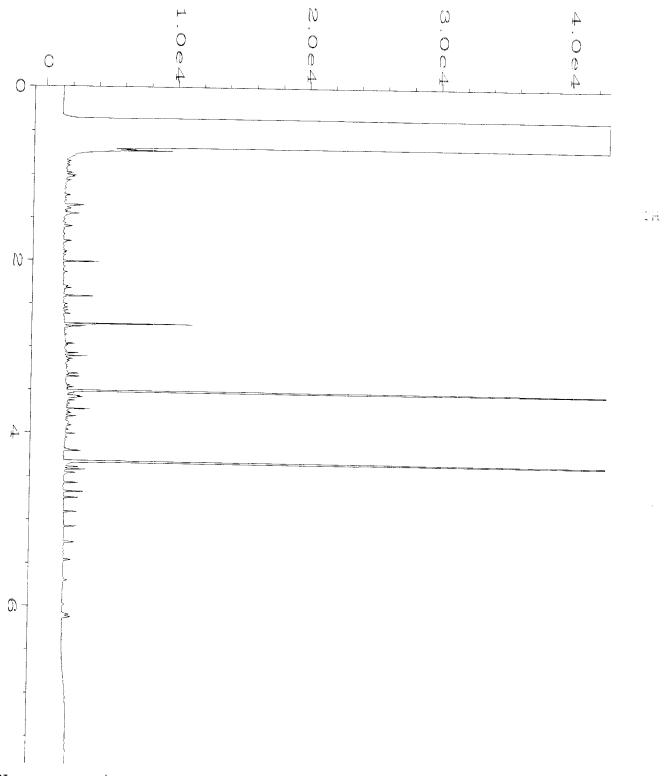


```
Data File Name
                : C:\HPCHEM\4\DATA\08-02-19\017F0501.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 908023-09
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 5
Acquired on : 02 Aug 19 03:29 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:40 AM
                                              Analysis Method : DEFAULT.MTH
```

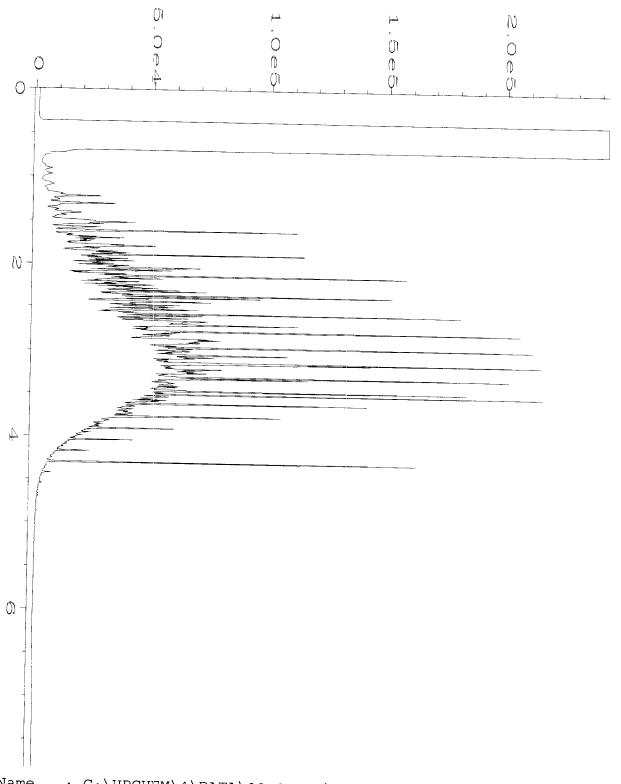


```
: C:\HPCHEM\4\DATA\08-02-19\018F0501.D
Data File Name
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC#4
                                                                 : 18
Sample Name
                : 908023-10
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 02 Aug 19 03:39 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                             09:42 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\019F0501.D
Operator
                 : TL
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 19
Sample Name
                : 908023-11
                                               Injection Number : 1
Run Time Bar Code:
                                               Sequence Line : 5
Acquired on : 02 Aug 19
                             03:52 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                             09:42 AM
                                               Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\08-02-19\020F0501.D
Data File Name
Operator
                 : TL
                                                 Page Number
Instrument
                 : GC#4
                                                 Vial Number : 20
Injection Number : 1
Sample Name
                 : 908023-12
Run Time Bar Code:
                                                 Sequence Line : 5
Acquired on : 02 Aug 19 04:05 PM
                                                 Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:42 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\08-02-19\021F0501.D
Operator
Instrument
                 : TL
                                                Page Number
                 : GC#4
                                                Vial Number
                                                                  : 21
Sample Name
                 : 908023-13
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 02 Aug 19 04:17 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:42 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\022F0501.D
Operator
                 : TL
                                                Page Number
Vial Number
                                                                  : 1
Instrument
                 : GC#4
Sample Name
                 : 908023-14
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on : 02 Aug 19 04:30 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:43 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\023F1101.D
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                                                                 : 1
                 : GC#4
Sample Name
                                                                 : 23
                : 908023-15
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 11
Acquired on : 02 Aug 19 06:12 PM
                                                Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                              09:43 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\08-02-19\024F1101.D
Data File Name
Operator
                 : TL
                                               Page Number
                                                               : 1
Instrument
                : GC#4
                                               Vial Number
Sample Name
                : 908023-16
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 11
Acquired on : 02 Aug 19 06:25 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19
                            09:44 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\08-02-19\006F0301.D
Operator
                : TL
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
Sample Name
                : 09-1899 mb
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 3
Acquired on : 02 Aug 19
                             12:27 PM
                                              Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:44 AM
                                              Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\08-02-19\005F0401.D
Operator
                 : TL
                                                Page Number
Vial Number
                                                                 : 1
Instrument
                 : GC#4
Sample Name
                : 1000 Dx 57-78B
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 4
Acquired on : 02 Aug 19 03:07 PM
                                               Instrument Method: DX.MTH
Report Created on: 05 Aug 19 09:45 AM
                                               Analysis Method : DEFAULT.MTH
```

MW-6-073119 MW-11-073119 MW-7-073119 MU-19-073119 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West DISTOTIM 170p-01-073119 MW-13-073119 MW-14-073119 Friedman & Bruya, Inc. MW-18-073119 Phone 316. 617.0449 Email Was Note & Oaspationed Ming Com City, State, ZIF Company___ Address Report To ANDROW YENKOYSKI MW-16-073119 Sample ID 25080P Received by Relinquished by: Received by: Relinquished by Ø 4- K 2 R 20 0 844 67 A-K 20 A-H S 0(4-4 Lab ID SIGNATURE 07/31/19 Sampled Date 1245 210 1020 0830 ON25 115 SAMPLE CHAIN OF CUSTODY 0820 1030 1240 Sampled SAMPLERS (signature REMARKS PROJECT NAME Alona Cato 15-15-Sample Type HONTO Day 8 # of Jars 1Stock 8 00 PRINT NAME ∞ TPH-HCID × × × \times × × TPH-Diesel × \times 54 × × × × TPH-Gasoline BTEX by 8021B 180357 VOCs by 8260C ME 08/01/19 VW5 INVOICE TO SVOCs by 8270D PO# 45/2ect PAHs 8270D SIM Samples received at 4 °C REQUESTED COMPANY BTEX 8260 × **×** × \times \times × × \succ \times MTBE, EPB, EDC Anaphthelene 820 ×. × × \times \prec **×** Carsultane \times >< \times ☐ Archive Samples ADispose after 30 days XStandard Turnaround Rush charges authorized by: Total laid 6010 >>× \times >< × \times \prec TURNAROUND TIME SAMPLE DISPOSAL CUOCIS × × × \times HCada prosent DATENotes TIME

	SAMPLE CHAIN OF CUSTODY	ME 08/01/19	1005/AIG/CE
Report To Fockor You Kotski	SAMPLERS (signature)	A LANCOSCO SECULIARIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DE LA COMPANIO DEL COMP	Page # of of
1000	PROJECT NAME	PO #	Standard Turnaround
Company 1/2/ 00	Alobe Cite	180357	Rush charges authorized
City, State, ZIP	REMARKS	INVOICE TO	SAMPLE DISPOS.
Phone 316.617.0499 Email Cayonk of SKI Casplet consolting con	oll tuz-cor		☐ Archive Samples ☐ Other

Rush charges authorized by: Standard Turnaround

SAMPLE DISPOSAL

TURNAROUND TIME

Ph. (206) 285-8282	2029	r	<u>۔ ۔</u> رز	$\overline{}$		AB CD GFR	Trip Blank 3 sets		MW-1-080119	Ring Blank-080119	MW-4-080119	MW-10-090119	MW-2-080119	11080-21-MM	Sample ID	
Received by:	Relinquished by:	Received by: \mathcal{H}_0	Relinquished by:	SIC			5 17 7		10	15	14	B	73	17.A.H	Lab ID	
		sulp		SIGNATURE					4					8/01/19	Date Sampled	
									15.30	H55	1420	1330	1205	110	Time Sampled	
	•	HONGIN	Darie I Robcock						4					Water	Sample Type	, .
		161	W W	PRINT NAME			Q,		90	8	∞	∞	8	8	# of Jars	
	_	2	3	T'N/		ļ				ļ					TPH-HCID	
	(TI .	72	ME					×	\times	\times	<u> </u>	\succeq	×	TPH-Diesel	
		5	,		-	<u> </u>	\otimes		×	×	\times	\times		→ .	TPH-Gasoline	
			į					ļ					ļ		BTEX by 8021B	A
				H		<u> </u>	(x)								VOCs by 8260C	VAL
		5	15/7								<u> </u>		ļ		SVOCs by 8270D	YSES
ξ _Ω	•	12	60	00			ļ								PAHs 8270D SIM	RE
amp			6	COMPANY		<u> </u>			×	×		×	×	\times		ANALYSES REQUESTED
les r			8,8	YNA		-			*	>	×	×	×	~	MTBi, CPB, LDC though talone 8200 Total land 6010	STE
Samples received at		,	Aspect Consulting						*	×	×	×	×	\times	Total Food 6010	D
d at			<u>&</u>						<u>±</u>			-1.	て			
0° 4	,	00	11/19 11717	DATE TIME	per DB elilla me	Gas Taget VOUS (VOUS	X)-best + Cx		Hi aler Prisont			HCadas Prosent	Hi ador present	•	Notes	
			<u></u>		[,,,	<u>ر</u> ۲	<u> </u>	l	<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 2, 2019

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2019 from the Aloha Cafe 180357, F&BI 911310 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP1202R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2019 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Aloha Cafe 180357, F&BI 911310 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
911310 -01	MW-1-112019
911310 -02	MW-2-112019
911310 -03	MW-6-112019
911310 -04	MW-7-112019
911310 -05	MW-9-112019
911310 -06	MW-10-112019
911310 -07	MW-11-112019
911310 -08	MW-12-112019
911310 -09	MW-13-112019
911310 -10	MW-14-112019
911310 -11	MW-16-112019
911310 -12	MW-17-112019
911310 -13	MW-18-112019
911310 -14	MW-19-112019
911310 -15	DUP-01-112019
911310 -16	Rinseblank-112019
911310 -17	Trip blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

Date Extracted: 11/21/19

Date Analyzed: 11/21/19 and 11/25/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-1-112019 911310-01 1/20	44,000	98
MW-2-112019 911310-02	4,600	86
MW-6-112019 911310-03	<100	86
MW-7-112019 911310-04	<100	89
MW-9-112019 911310-05	560	100
MW-10-112019 911310-06 1/20	21,000	97
MW-11-112019 911310-07 1/10	20,000	108
MW-12-112019 911310-08	540	96
MW-13-112019 911310-09	1,800	104
MW-14-112019 911310-10 1/10	11,000	94
MW-16-112019 911310-11	<100	88

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

Date Extracted: 11/21/19

Date Analyzed: 11/21/19 and 11/25/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-17-112019 911310-12	1,100	116
MW-18-112019 911310-13	1,300	96
MW-19-112019 911310-14	<100	86
DUP-01-112019 911310-15	<100	94
Rinseblank-112019	<100	87
Trip blank 911310-17	<100	89
Method Blank 09-2735 MB	<100	81

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

Date Extracted: 11/21/19 Date Analyzed: 11/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-1-112019 911310-01	3,200 x	570 x	112
MW-2-112019 911310-02	2,200 x	260 x	125
MW-6-112019 911310-03	<50	<250	108
MW-7-112019 911310-04	<50	<250	122
MW-9-112019 911310-05	290 х	<250	121
MW-10-112019 911310-06	3,900 x	340 x	127
MW-11-112019 911310-07	2,400 x	310 x	125
MW-12-112019 911310-08	370 х	<250	126
MW-13-112019 911310-09	780 x	<250	117
MW-14-112019 911310-10	1,600 x	300 x	119
MW-16-112019 11310-11	<50	<250	120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

Date Extracted: 11/21/19 Date Analyzed: 11/21/19

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-17-112019 911310-12	560 x	<250	124
MW-18-112019 911310-13	260 x	<250	134
MW-19-112019 911310-14	<50	<250	134
DUP-01-112019 911310-15	<50	<250	137
Rinseblank-112019 911310-16	<50	<250	117
Method Blank 09-2869 MB	<50	<250	124

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-1-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-01 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-01.050 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-2-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-02 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-02.053 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-6-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-03 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-03.054 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-7-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-04 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-04.055 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-9-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-05 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-05.056 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-10-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-06 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-06.057 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-11-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-07 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-07.060 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 1.85

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-12-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-08 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-08.061 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-13-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-09 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-09.062 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-14-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-10 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-10.063 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-16-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-11 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-11.064 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Lead 1.02

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-17-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-12 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-12.065 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-18-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-13 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-13.066 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: MW-19-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-14 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-14.067 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DUP-01-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: 911310-15 Date Extracted: 11/21/19 Date Analyzed: 11/21/19 Data File: 911310-15.068 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Rinseblank-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: Date Extracted: 11/21/19 911310-16 Date Analyzed: 11/21/19 Data File: 911310-16.069 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Aspect Consulting, LLC

Date Received: NA Project: Aloha Cafe 180357, F&BI 911310

Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-1-112019 Client: Aspect Consulting, LLC
Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: Date Extracted: 11/25/19 911310-01 1/100 Date Analyzed: 11/26/19 Data File: 112545.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	99	60	133

Concentration Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 Benzene 6,700 Toluene 1,500 1,2-Dibromoethane (EDB) <100 Ethylbenzene 860 m,p-Xylene 2,800 o-Xylene 880 Naphthalene 210

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-2-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19	Lab ID:	911310-02
Date Analyzed:	11/25/19	Data File:	112534.D
Matrix:	Water	Instrument:	GCMS4

Operator:

MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	96	60	133

4-Diomondorobenzene	30
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	30
Toluene	6.5
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	28
m,p-Xylene	19
o-Xylene	4.9
Naphthalene	150

ug/L (ppb)

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-6-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310

Date Extracted: 11/25/19 Lab ID: 911310-03 Date Analyzed: 11/25/19 Data File: 112535.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	98	60	133

Concentration Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 Benzene < 0.35 Toluene <1 1,2-Dibromoethane (EDB) <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-7-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19	Lab ID:	911310-04
Date Analyzed:	11/25/19	Data File:	112536.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	96	60	133

1 Diomondo do dinadiro	0.0
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	2.7
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	1.6
m,p-Xylene	7.1
o-Xylene	1.7
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-9-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19	Lab ID:	911310-05
Date Analyzed:	11/25/19	Data File:	112537.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	95	60	133

1 Diomondo o o o o o o o o o o o o o o o o o o	
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	6.4
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	6.6
m,p-Xylene	<2
o-Xylene	3.3
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-10-112019 Client: Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: Date Extracted: 11/25/19 911310-06 1/100 Date Analyzed: 11/26/19 Data File: 112546.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	95	60	133

Concentration

Compounds: ug/L (ppb)

Methyl t-butyl ether (MTBE) <100 1,2-Dichloroethane (EDC) <100 Benzene 2,800 Toluene <100 1,2-Dibromoethane (EDB) <100 Ethylbenzene 1,000 m,p-Xylene 1,500 o-Xylene <100 Naphthalene 270

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-11-112019 Client: Aspect Consulting, LLC
Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310

Lab ID: Date Extracted: 11/25/19 911310-07 1/100 Date Analyzed: 11/26/19 Data File: 112547.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	102	60	133

Concentration
ug/L (ppb)

Methyl t-butyl ether (MTBE) <100
1,2-Dichloroethane (EDC) <100
Benzene 270
Toluene 1,500

Toluene 1,500
1,2-Dibromoethane (EDB) <100
Ethylbenzene 690
m,p-Xylene 2,100
o-Xylene 480
Naphthalene 130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-12-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
D (D () 1	11/07/10	T 1 TD	011010 00

Date Extracted: 11/25/19 Lab ID: 911310-08 Date Analyzed: 11/25/19 Data File: 112538.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	98	60	133

$\begin{array}{c} & Concentration \\ Compounds: & ug/L\ (ppb) \end{array}$

Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1 Benzene 1.1 Toluene <1 1,2-Dibromoethane (EDB) <1 Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-13-112019	Client:	Aspect Co	onsulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Lab ID: 911310-09 Date Extracted: 11/25/19 Date Analyzed: 11/25/19 Data File: 112539.DMatrix: Instrument: GCMS4 Water Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	98	60	133

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	4.0
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-14-112019	Client:	Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310
Date Extracted: 11/25/19 Lab ID: 911310-10 1/100

 Date Extracted:
 11/25/19
 Lab ID:
 911310-10 1/100

 Date Analyzed:
 11/26/19
 Data File:
 112548.D

 Matrix:
 Water
 Instrument:
 GCMS4

 Units:
 ug/L (ppb)
 Operator:
 MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	96	60	133

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	<20
Chloroethane	<100
1,1-Dichloroethene	<100
Methylene chloride	< 500
Methyl t-butyl ether (MTBE)	<100
trans-1,2-Dichloroethene	<100
1,1-Dichloroethane	<100
cis-1,2-Dichloroethene	<100
1,2-Dichloroethane (EDC)	<100
1,1,1-Trichloroethane	<100
Benzene	2,700
Trichloroethene	<100
Toluene	<100
Tetrachloroethene	<100
1,2-Dibromoethane (EDB)	<100
Ethylbenzene	<100
m,p-Xylene	<200
o-Xylene	<100
Naphthalene	<100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-16-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19	Lab ID:	911310-11
Data Analyzadi	11/95/10	Data File:	119540 D

Date Analyzed: 11/25/19 Data File: 112540.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) MSOperator:

<1

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	97	60	133

1 Diomondorobenzene	01
Compounds:	Concentration ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35
Toluene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-17-112019	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
T . T		T 1 TT	

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	96	60	133

Concentration Compounds: ug/L (ppb) Methyl t-butyl ether (MTBE) <1 1,2-Dichloroethane (EDC) <1

Benzene 4.2
Toluene 2.8
1,2-Dibromoethane (EDB) <1
Ethylbenzene <1
m,p-Xylene 4.2
o-Xylene 2.1
Naphthalene 1.6

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-18-112019	Client:	Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Lab ID: 911310-13 Date Extracted: 11/25/19 Date Analyzed: 11/25/19 Data File: 112542.DMatrix: Instrument: GCMS4 Water Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	99	60	133

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	230 ve
Trichloroethene	<1
Toluene	8.2
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	14
m,p-Xylene	48
o-Xylene	17
Naphthalene	5.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-18-112019	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310
Date Extracted: 11/25/19 Lab ID: 911310-13 1/10

 Date Extracted:
 11/25/19
 Lab ID:
 911310-13 1/10

 Date Analyzed:
 11/26/19
 Data File:
 112626.D

 Matrix:
 Water
 Instrument:
 GCMS4

 Units:
 ug/L (ppb)
 Operator:
 MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	97	60	133

Concentration ug/L (ppb) Vinyl chloride <2 Chloroethane <10

1,1-Dichloroethene <10 Methylene chloride < 50 Methyl t-butyl ether (MTBE) <10 trans-1,2-Dichloroethene <10 1,1-Dichloroethane <10 cis-1,2-Dichloroethene <10 1,2-Dichloroethane (EDC) <10 1,1,1-Trichloroethane <10 Benzene 240 Trichloroethene <10 Toluene <10 Tetrachloroethene <10 1,2-Dibromoethane (EDB) <10 Ethylbenzene 15 m,p-Xylene 52 o-Xylene 18 Naphthalene <10

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-19-112019	Client:	Aspect Consulting, LLC

Date Received: 11/20/19 Project: Aloha Cafe 180357, F&BI 911310 Lab ID: 911310-14Date Extracted: 11/25/19Date Analyzed: 11/25/19 Data File: 112543.DMatrix: Instrument: GCMS4Water

Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	97	60	133

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	12
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	DUP-01-112019	Client:	Aspect Consulting, LLC
-------------------	---------------	---------	------------------------

 Date Received:
 11/20/19
 Project:
 Aloha Cafe 180357, F&BI 911310

 Date Extracted:
 11/25/19
 Lab ID:
 911310-15

 Date Analyzed:
 11/26/19
 Data File:
 112625.D

Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	99	60	133

Concentration

	Concentration
Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	15
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Rinseblank-112019	Client:	Aspect Consulting, LLC
-------------------	-------------------	---------	------------------------

Aloha Cafe 180357, F&BI 911310 Date Received: 11/20/19 Project: Lab ID: Date Extracted: 911310-16 11/25/19 Date Analyzed: 11/26/19 Data File: 112544.DMatrix: GCMS4Water Instrument: Units: ug/L (ppb) MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	101	60	133

Concentration

Compounds:	ug/L (ppb)
Methyl t-butyl ether (MTBE)	<1
1,2-Dichloroethane (EDC)	<1
Benzene	< 0.35

Toluene <1
1,2-Dibromoethane (EDB) <1
Ethylbenzene <1
m,p-Xylene <2
o-Xylene <1
Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Trip blank	Client:	Aspect Consulting, LLC
Date Received:	11/20/19	Project:	Aloha Cafe 180357, F&BI 911310
Date Extracted:	11/25/19	Lab ID:	911310-17
Date Analyzed:	11/25/19	Data File:	112533.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	96	60	133

4-Diomondonenzene	30
Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Aloha Cafe 180357, F&BI 911310

Date Received:Not ApplicableProject:Aloha Cafe 1Date Extracted:11/25/19Lab ID:09-2843 mbDate Analyzed:11/25/19Data File:112512.DMatrix:WaterInstrument:GCMS4Units:ug/L (ppb)Operator:MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	97	60	133

Concentration

Compounds:	ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
Methyl t-butyl ether (MTBE)	<1
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Benzene	< 0.35
Trichloroethene	<1
Toluene	<1
Tetrachloroethene	<1
1,2-Dibromoethane (EDB)	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 911310-03 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	102	69-134	-

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	96	96	61-133	0

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 911310-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Lead	ug/L (ppb)	10	<1	84	89	75-125	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	93	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

Project: Aloha Cafe 180357, F&BI 911310

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

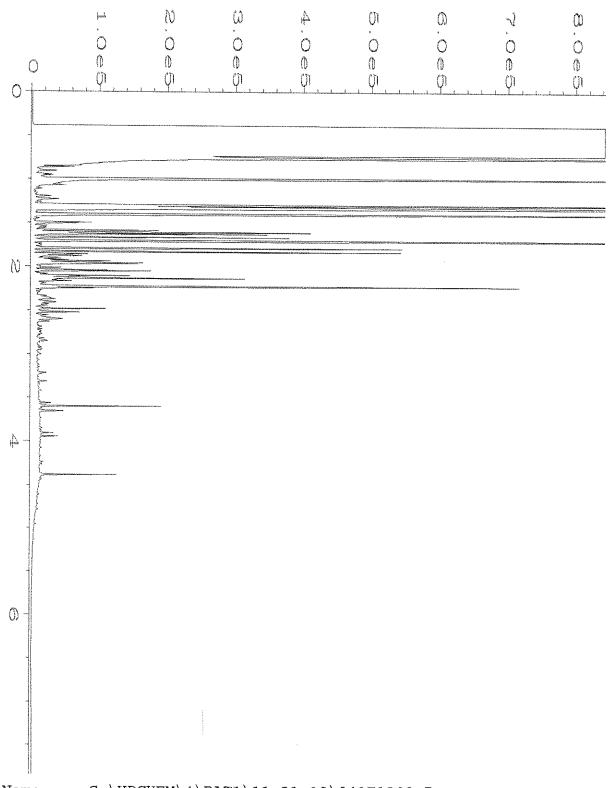
Laboratory Code: 911310-02 (Matrix Spike)

		Percent			
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	90	36-166
Chloroethane	ug/L (ppb)	50	<1	102	46-160
1,1-Dichloroethene	ug/L (ppb)	50	<1	107	60-136
Methylene chloride	ug/L (ppb)	50	<5	101	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	103	74 - 127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	100	72 - 129
1,1-Dichloroethane	ug/L (ppb)	50	<1	103	70-128
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	71 - 127
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	101	48-149
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	102	60-146
Benzene	ug/L (ppb)	50	30	101 b	76 - 125
Trichloroethene	ug/L (ppb)	50	<1	95	66-135
Toluene	ug/L (ppb)	50	6.5	104	76 - 122
Tetrachloroethene	ug/L (ppb)	50	<1	105	10-226
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	98	69-134
Ethylbenzene	ug/L (ppb)	50	28	104 b	69-135
m,p-Xylene	ug/L (ppb)	100	19	104	69-135
o-Xylene	ug/L (ppb)	50	4.9	104	60-140
Naphthalene	ug/L (ppb)	50	150	126 b	44-164

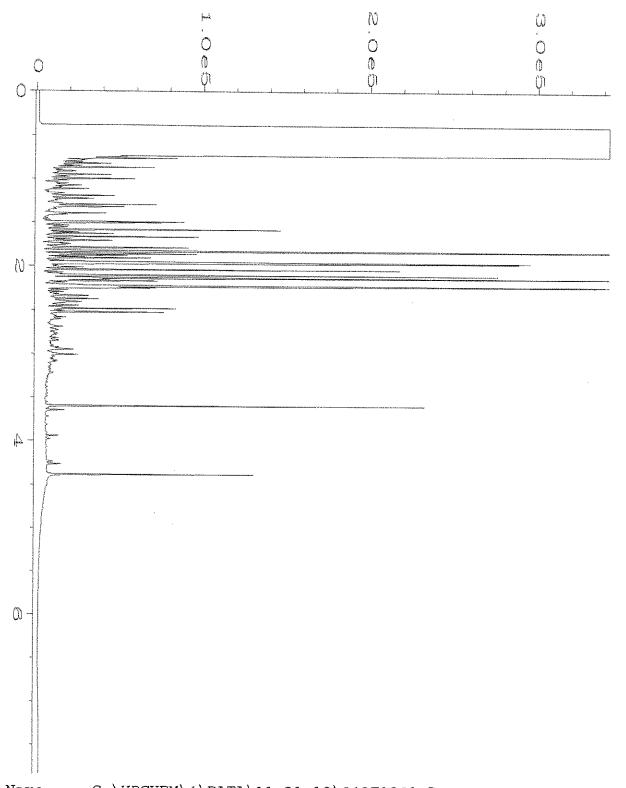
ENVIRONMENTAL CHEMISTS

Date of Report: 12/02/19 Date Received: 11/20/19

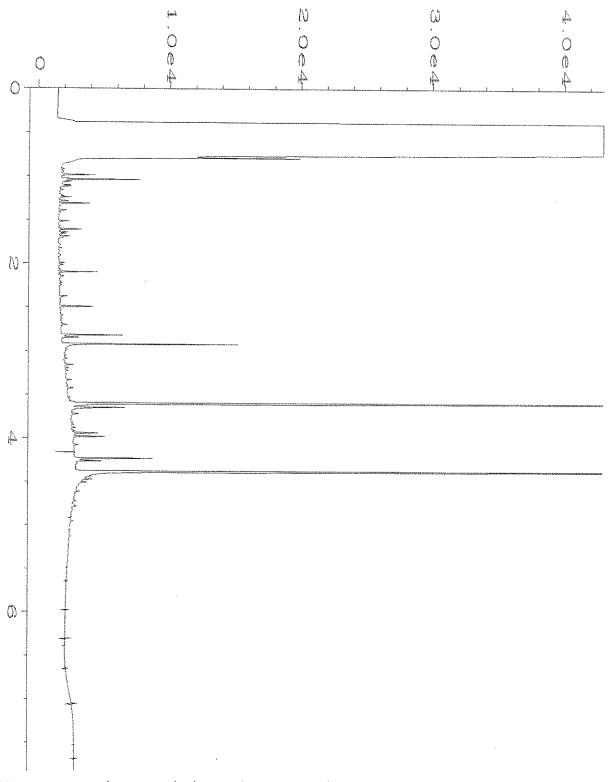
Project: Aloha Cafe 180357, F&BI 911310

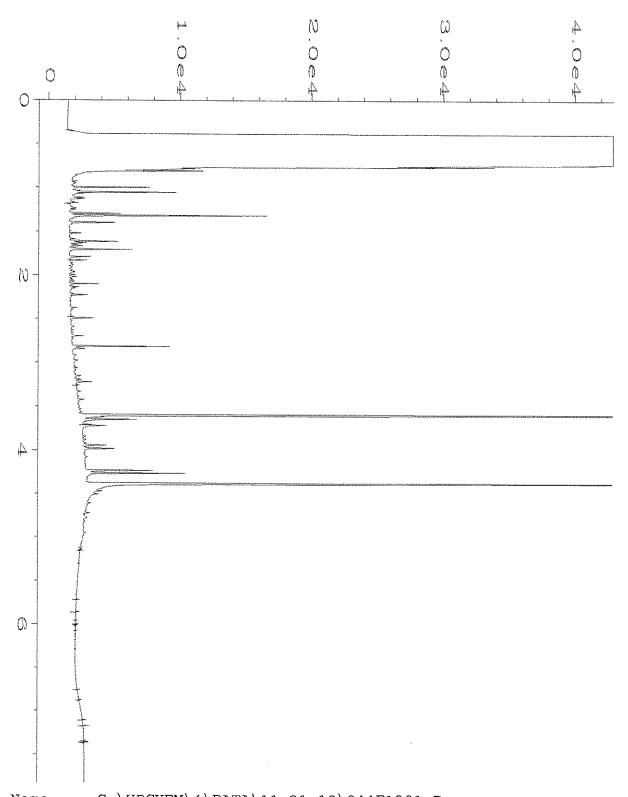

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

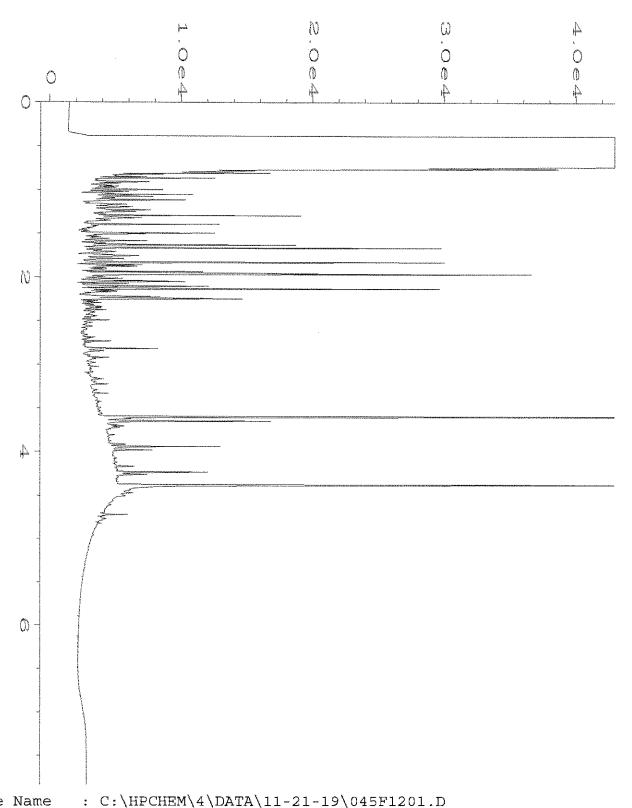
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	93	83	50-154	11
Chloroethane	ug/L (ppb)	50	104	92	58-146	12
1,1-Dichloroethene	ug/L (ppb)	50	103	93	67-136	10
Methylene chloride	ug/L (ppb)	50	99	91	39-148	8
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	103	92	64 - 147	11
trans-1,2-Dichloroethene	ug/L (ppb)	50	98	88	68-128	11
1,1-Dichloroethane	ug/L (ppb)	50	99	90	79-121	10
cis-1,2-Dichloroethene	ug/L (ppb)	50	99	90	80-123	10
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	96	88	73 - 132	9
1,1,1-Trichloroethane	ug/L (ppb)	50	102	92	81-125	10
Benzene	ug/L (ppb)	50	95	87	69-134	9
Trichloroethene	ug/L (ppb)	50	92	84	79-113	9
Toluene	ug/L (ppb)	50	107	96	72 - 122	11
Tetrachloroethene	ug/L (ppb)	50	109	99	76 - 121	10
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	102	94	82-115	8
Ethylbenzene	ug/L (ppb)	50	107	97	77 - 124	10
m,p-Xylene	ug/L (ppb)	100	107	96	81-112	11
o-Xylene	ug/L (ppb)	50	109	98	81-121	11
Naphthalene	ug/L (ppb)	50	105	95	64-133	10


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                : C:\HPCHEM\4\DATA\11-21-19\041F1201.D
Operator
                                               Page Number
                 : TL
Instrument
                                               Vial Number
                 : GC#4
                                                                ; 41
Sample Name
                : 911310-01
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 12
Acquired on
                : 21 Nov 19 04:30 PM
                                               Instrument Method: DX.MTH
Report Created on: 22 Nov 19 09:25 AM
                                               Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\11-21-19\042F1201.D
Operator
                                               Page Number
                 : TL
Instrument
                 : GC#4
                                               Vial Number
                                                                : 42
Sample Name
                 : 911310-02
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 12
Acquired on
                : 21 Nov 19 04:42 PM
                                               Instrument Method: DX.MTH
Report Created on: 22 Nov 19 09:25 AM
                                               Analysis Method : DEFAULT.MTH
```



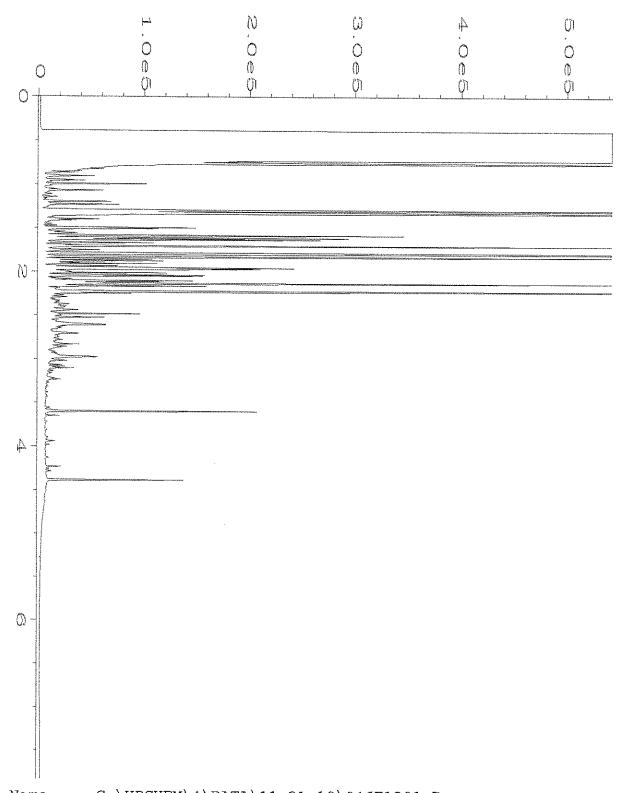
```
: C:\HPCHEM\4\DATA\11-21-19\043F1201.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
                                                                  : 43
Sample Name
                 : 911310-03
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 12
Acquired on
                : 21 Nov 19 04:55 PM
                                                Instrument Method: DX.MTH
Report Created on: 22 Nov 19 09:25 AM
                                                Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\11-21-19\044F1201.D
Data File Name
                                                         Page Number
Vial Number
Operator
                    : TL
                                                                              : 1
Instrument
                    : GC#4
                                                         Injection Number : 1
Sequence Line : 12
Sample Name
                    : 911310-04
Run Time Bar Code:
                                                         Instrument Method: DX.MTH
Analysis Method : DEFAULT.MTH
Acquired on
                   : 21 Nov 19 05:07 PM
Report Created on: 22 Nov 19 09:25 AM
```

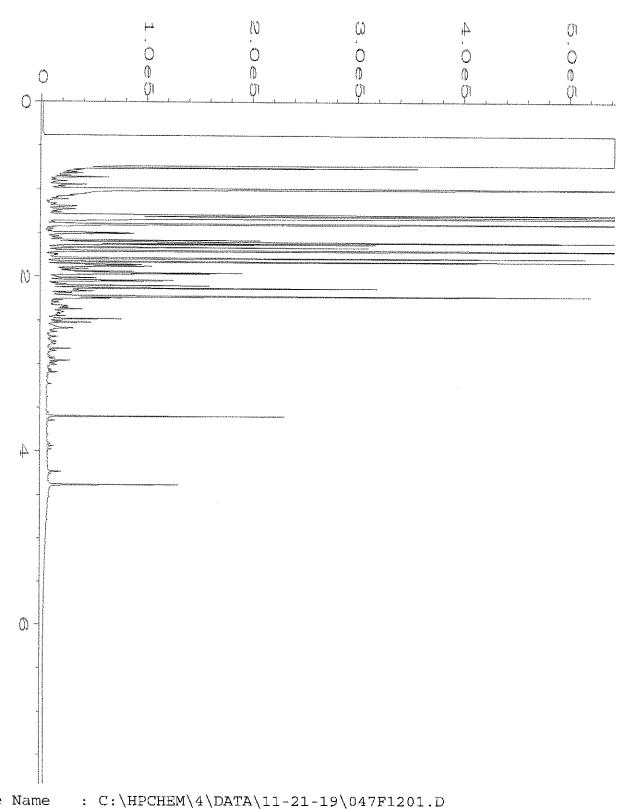

Data File Name : C:\HPCHEM\4\DATA\11-21-19\045F1201.D

Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 45

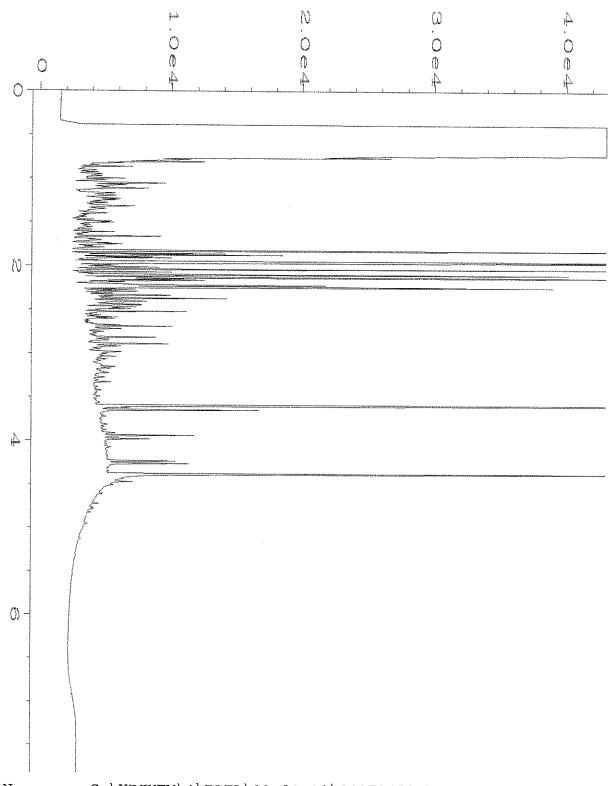
Sample Name : 911310-05 Injection Number : 1

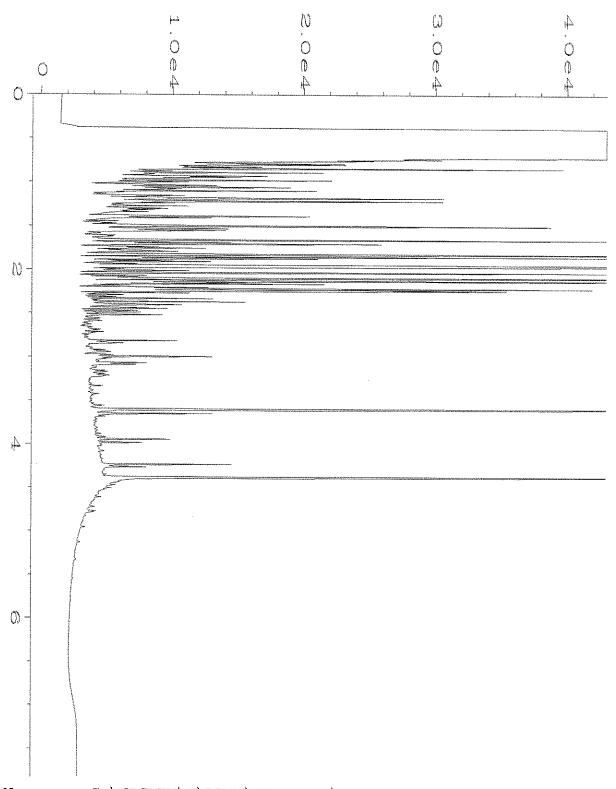
Run Time Bar Code: Sequence Line : 12


Acquired on : 21 Nov 19 05:18 PM Instrument Method: DX.MTH

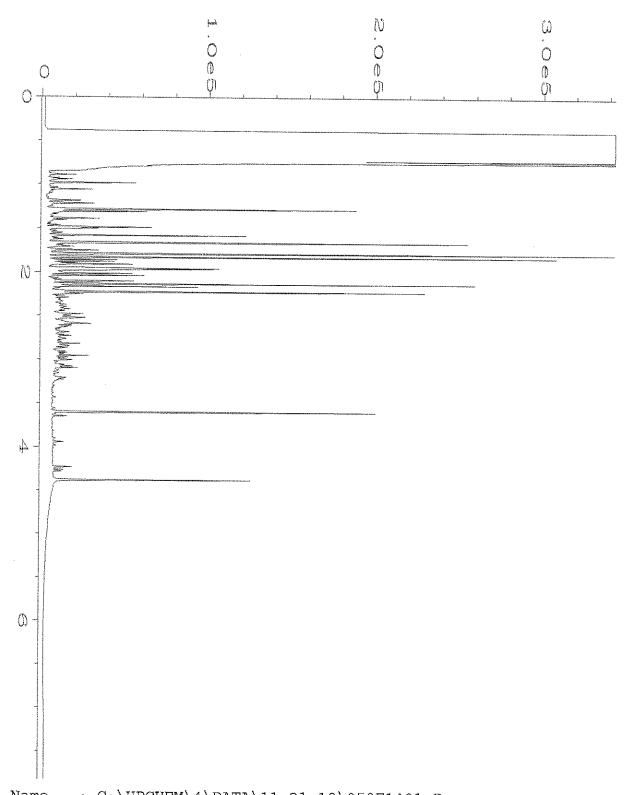
Report Created on: 22 Nov 19 09:26 AM Analysis Method : DEFAULT.MTH

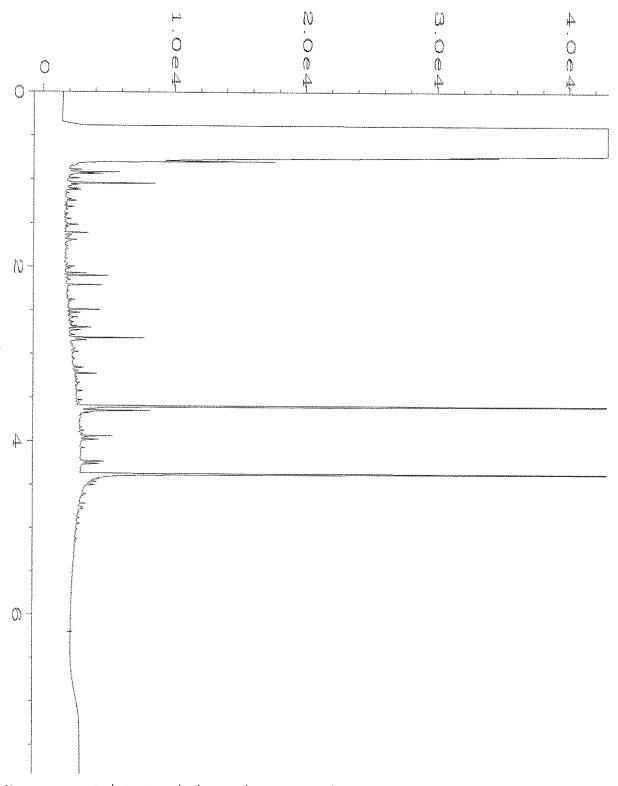

```
: C:\HPCHEM\4\DATA\11-21-19\046F1201.D
Data File Name
Operator
                                                  Page Number
Vial Number
                  : TL
Instrument
                  : GC#4
                                                                    : 46
Sample Name
                  : 911310-06
                                                  Injection Number: 1
Run Time Bar Code:
                                                  Sequence Line : 12
Acquired on
                 : 21 Nov 19
                                                  Instrument Method: DX.MTH
                              05:31 PM
```

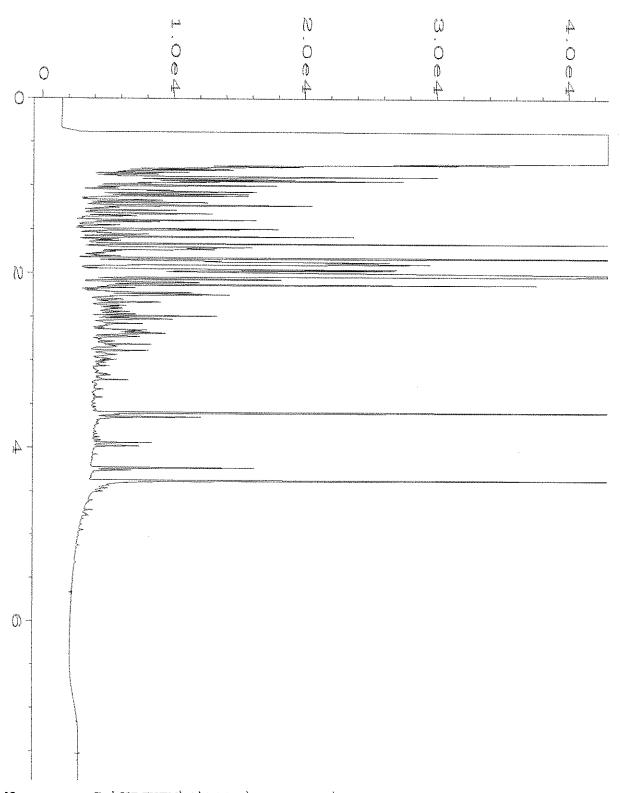

Report Created on: 22 Nov 19 09:26 AM Analysis Method : DEFAULT.MTH

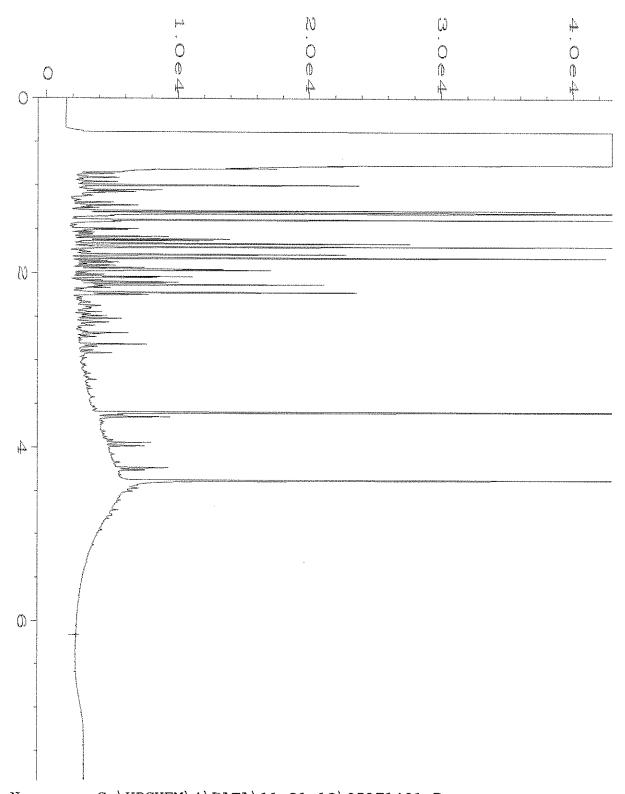

Data File Name : C:\HPCHEM\4\DATA\11-21-19\047F1201.D Operator : TL Page Number : 1 Instrument : GC#4 Vial Number : 47 Sample Name : 911310-07 Injection Number : 1

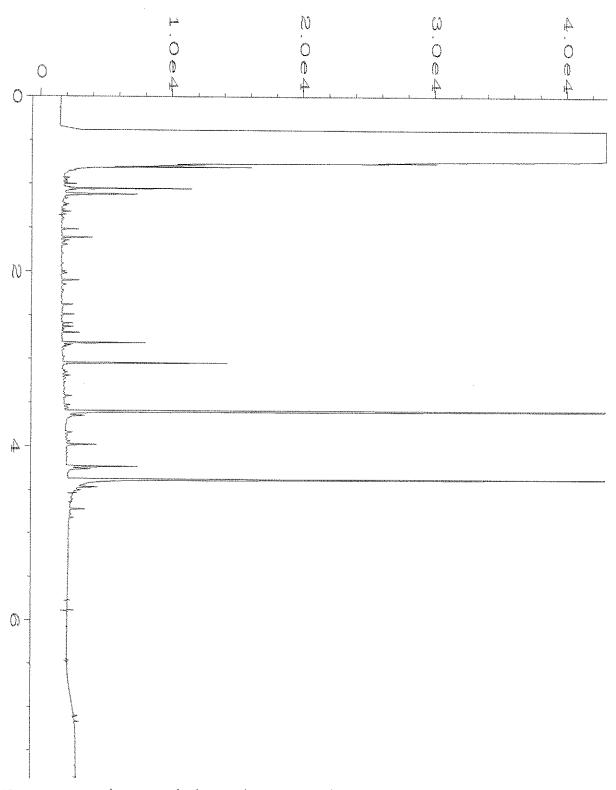
Run Time Bar Code: Sequence Line : 12
Acquired on : 21 Nov 19 05:43 PM Instrument Method: DX

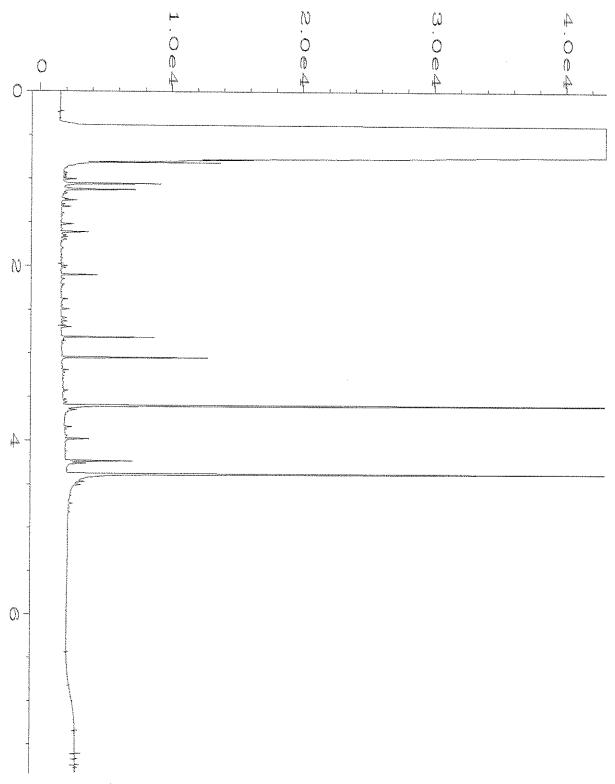

Acquired on : 21 Nov 19 05:43 PM Instrument Method: DX.MTH
Report Created on: 22 Nov 19 09:27 AM Analysis Method : DEFAULT.MTH

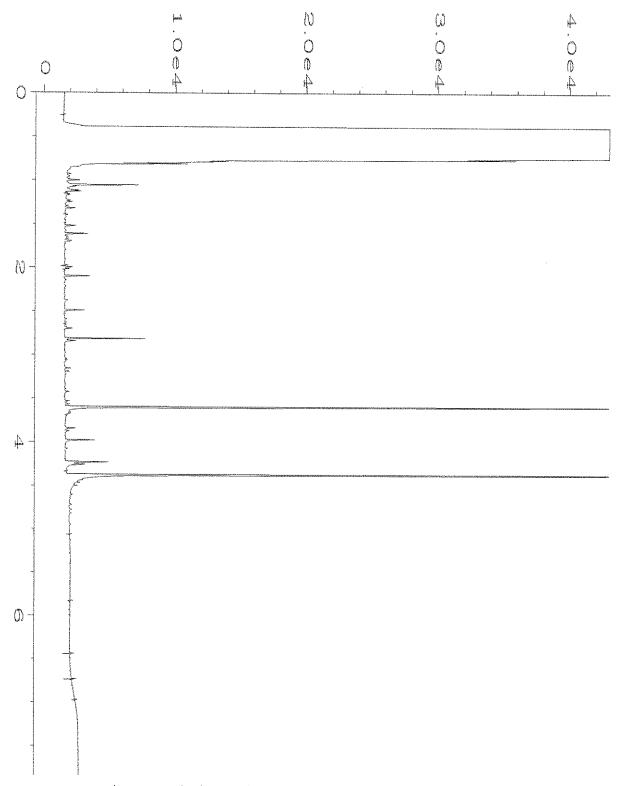

```
: C:\HPCHEM\4\DATA\11-21-19\048F1401.D
Data File Name
Operator
                                                Page Number
Vial Number
                 : TL
Instrument
                 : GC#4
                                                                  : 48
Sample Name
                 : 911310-08
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 14
                                                Instrument Method: DX.MTH
Acquired on
                 : 21 Nov 19 06:18 PM
Report Created on: 22 Nov 19 09:27 AM
                                                Analysis Method : DEFAULT.MTH
```

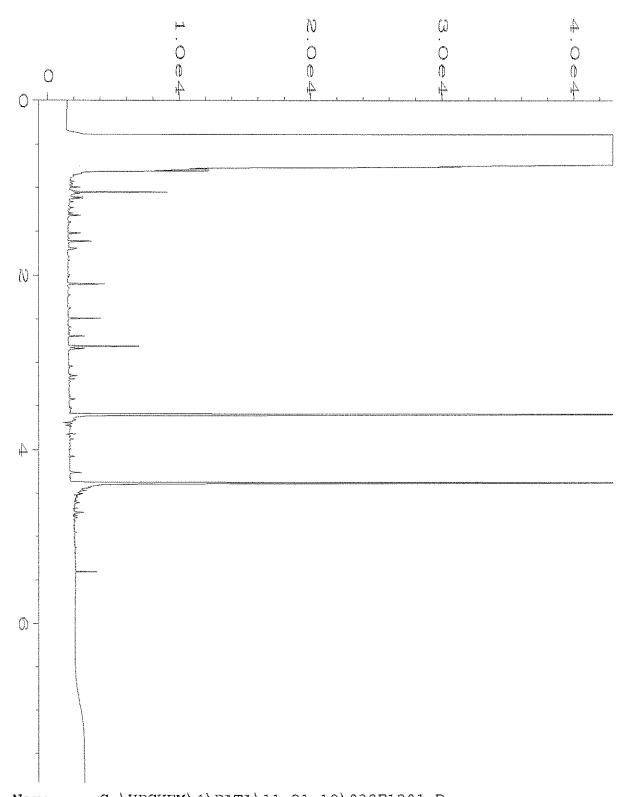


```
Data File Name
                 : C:\HPCHEM\4\DATA\11-21-19\049F1401.D
Operator
                 : TL
                                                 Page Number
                                                 Vial Number
Instrument
                 : GC#4
                                                 Injection Number: 1
Sequence Line: 14
Sample Name
                 : 911310-09
Run Time Bar Code:
Acquired on
                 : 21 Nov 19 06:30 PM
                                                 Instrument Method: DX.MTH
Report Created on: 22 Nov 19 09:27 AM
                                                 Analysis Method : DEFAULT.MTH
```

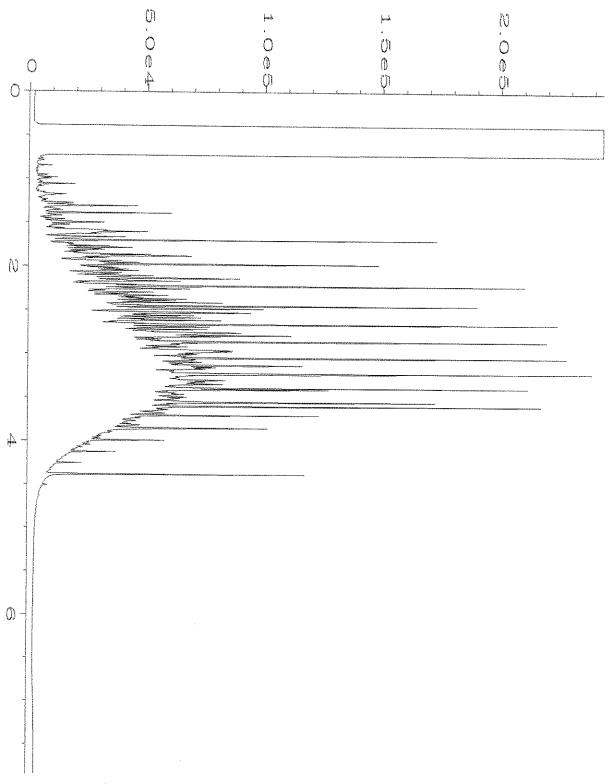


```
: C:\HPCHEM\4\DATA\11-21-19\050F1401.D
Data File Name
Operator
                                                  Page Number
                  : TL
Instrument
                  : GC#4
                                                  Vial Number
                                                                    : 50
Sample Name
                                                  Injection Number: 1
Sequence Line: 14
                 : 911310-10
Run Time Bar Code:
                                                  Instrument Method: DX.MTH
Acquired on
                 : 21 Nov 19 06:42 PM
Report Created on: 22 Nov 19 09:27 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\11-21-19\051F1401.D
Data File Name
Operator
                 : TL
                                                 Page Number
Instrument
                                                 Vial Number
                 : GC#4
                                                 Injection Number: 1
Sequence Line : 14
Sample Name
                 : 911310-11
Run Time Bar Code:
                                                 Instrument Method: DX.MTH
Acquired on
                 : 21 Nov 19 06:54 PM
Report Created on: 22 Nov 19 09:27 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\11-21-19\052F1401.D
Data File Name
Operator
                                                   Page Number
Vial Number
                  : TL
Instrument
                  : GC#4
                                                   Injection Number: 1
Sequence Line: 14
Sample Name
                 : 911310-12
Run Time Bar Code:
                                                   Instrument Method: DX.MTH
Acquired on
                 : 21 Nov 19 07:06 PM
Report Created on: 22 Nov 19 09:28 AM
                                                   Analysis Method : DEFAULT.MTH
```



```
Data File Name
               : C:\HPCHEM\4\DATA\11-21-19\053F1401.D
Operator
                : TL
                                              Page Number
                                                             : 1
                                             Vial Number : 53
Instrument
                : GC#4
                                              Injection Number : 1
Sample Name
                : 911310-13
                                              Sequence Line : 14
Run Time Bar Code:
Acquired on
            : 21 Nov 19 07:18 PM
                                              Instrument Method: DX.MTH
Report Created on: 22 Nov 19 09:28 AM
                                              Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\11-21-19\054F1401.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
                                                                 : 54
Sample Name
                 : 911310-14
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 14
                                                Instrument Method: DX.MTH
Acquired on
                : 21 Nov 19 07:30 PM
Report Created on: 22 Nov 19 09:28 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                 : C:\HPCHEM\4\DATA\11-21-19\055F1401.D
                                                 Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
                                                                   : 55
Sample Name
                 : 911310-15
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line : 14
                                                 Instrument Method: DX.MTH
Acquired on
                 : 21 Nov 19
                              07:42 PM
Report Created on: 22 Nov 19 09:28 AM
                                                 Analysis Method : DEFAULT.MTH
```



```
Data File Name
                : C:\HPCHEM\4\DATA\11-21-19\056F1401.D
                                                Page Number
Vial Number
Operator
                 : TL
Instrument
                 : GC#4
                                                                 : 56
Sample Name
                 : 911310-16
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 14
                                                Instrument Method: DX.MTH
Acquired on
                : 21 Nov 19 07:54 PM
Report Created on: 22 Nov 19 09:28 AM
                                                Analysis Method : DEFAULT.MTH
```



```
Data File Name
                  : C:\HPCHEM\4\DATA\11-21-19\038F1201.D
                                                     Page Number
Operator
                   : TL
                                                                       : 1
                                                    Vial Number : 38
Injection Number : 1
                                                                      : 38
Instrument
                   : GC#4
Sample Name
                  : 09-2869 mb
                                                     Sequence Line : 12
Instrument Method: DX.MTH
Run Time Bar Code:
Acquired on
                  : 21 Nov 19 03:54 PM
Report Created on: 22 Nov 19 09:29 AM
                                                    Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\4\DATA\11-21-19\005F1101.D
Data File Name
Operator
                   : TL
                                                     Page Number
                                                     Vial Number : 5
Injection Number : 1
Instrument
                   : GC#4
Sample Name
                  : 1000 Dx 58-146C
Run Time Bar Code:
                                                     Sequence Line : 11
Instrument Method: DX.MTH
Acquired on
                  : 21 Nov 19 02:54 PM
Report Created on: 22 Nov 19 09:20 AM
                                                     Analysis Method : DEFAULT.MTH
```

Seattle, WA 98119-2029 Ph. (206) 285-8282 3012 16th Avenue West Friedman & Bruya, Inc. Phone 200 41554 Email & Jonhof Sh. Oasped and Project specific RLs? - Yes / 10 City, State, ZIP Scuttle, WH, 9804 Address 710 2nd Ave, Ste 550 Company /typut longultong Report To Arkew Vonkofin / Holum La Hon trad way Kinsebluds - 112019 MOKII - M - MM MW -18-111914 MW-17- 111914 MW-16-18414 אנטבוו - 10- קטל 911310 Sample ID Relinquished by: Relinquished by: Received by: Received by: NO A-H E P 51 \overline{z} 79 13-4-81 Z 2 Lab ID SIGNATURE 11/06/14 MANIA Sampled Date ð) OKPO SAMPLE CHAIN OF CUSTODY HE 11-20-19 Olipo Sampled 8 5 SAMPLERS (signature) Time REMARKS PROJECT NAME Albha Cate るを Sample 4 Туре $\overline{\sim}$ Jars #of PRINT NAME دو 130 L NWTPH-Dx × 4 NWTPH-Gx NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PO# PAHs EPA 8270 Hoset Langullary PCBs EPA 8082 COMPANY 4 BTEX 8260 MTB B, ED3, EDC + MUPHULLENC 8260 Total PS 60/0 Samples ¥ □ Other ☐ Archive samples XStandard turnaround Default: Dispose after 30 days Rush charges authorized by: received at_ 4 TURNAROUND TIME SAMPLE DISPOSAL CVOUS 8260 X × >< מוצמבוו DATE l oc 180 T / HIS Notes TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 4, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 29, 2020 from the Texaco Strickland PO 180357, F&BI 007493 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin

ASP0804R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 29, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 007493 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
007493 -01	MW-22-7.5
007493 -02	MW-22-10
007493 -03	MW-22-12.5
007493 -04	MW-22-16
007493 -05	MW-22-25
007493 -06	MW-23-8
007493 -07	MW-23-12.5
007493 -08	MW-23-15
007493 -09	MW-23-18
007493 -10	MW-23-25
007493 -11	MW-21-5
007493 -12	MW-21-10
007493 -13	MW-21-17.5
007493 -14	MW-21-25
007493 -15	B-11-5.5
007493 -16	B-11-10.5
007493 -17	B-11-15
007493 -18	B-11-18
007493 -19	B-11-22.5
007493 -20	MW-26-5
007493 -21	MW-26-10.5
007493 -22	MW-26-12.5
007493 -23	MW-26-22.5
007493 -24	MW-27-8
007493 -25	MW-27-10.5
007493 -26	MW-27-15
007493 -27	MW-27-22.5
007493 -28	MW-24-8
007493 -29	MW-24-10.5
007493 -30	MW-24-13
007493 -31	MW-24-22.5
007493 -32	DUP-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

Date Extracted: 07/30/20

Date Analyzed: 07/30/20 and 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
MW-22-16 007493-04	<5	97
MW-22-25 007493-05	<5	95
MW-23-8 007493-06	<5	95
MW-23-12.5 007493-07	<5	97
MW-23-18 007493-09	<5	95
MW-21-5 007493-11	<5	96
MW-21-10 007493-12	<5	97
MW-21-17.5 007493-13	<5	97
B-11-5.5 007493-15	12	96
B-11-10.5 007493-16	<5	98

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

Date Extracted: 07/30/20

Date Analyzed: 07/30/20 and 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
B-11-15 007493-17	<5	90
MW-26-12.5 007493-22	<5	99
MW-27-10.5 007493-25	<5	97
MW-24-10.5 007493-29	<5	94
DUP-3 007493-32	<5	97
Method Blank _{00-1390 MB}	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

Date Extracted: 07/31/20 Date Analyzed: 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 53-144)
MW-22-16 007493-04	<50	<250	94
MW-22-25 007493-05	<50	<250	91
MW-23-8 007493-06	<50	<250	92
MW-23-12.5 007493-07	<50	<250	90
MW-23-18 007493-09	<50	<250	84
MW-21-5 007493-11	<50	<250	86
MW-21-10 007493-12	<50	<250	88
MW-21-17.5 007493-13	<50	<250	91
B-11-5.5 007493-15	<50	<250	91
B-11-10.5 007493-16	<50	<250	55

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

Date Extracted: 07/31/20 Date Analyzed: 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
B-11-15 007493-17	<50	<250	94
MW-26-12.5 007493-22	<50	<250	84
MW-27-10.5 007493-25	<50	<250	90
MW-24-10.5 007493-29	<50	<250	94
DUP-3 007493-32	<50	<250	94
Method Blank _{00-1713 MB}	<50	<250	89

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22-16 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-04

Date Extracted: 07/30/20 Lab ID: 007/493-04

Date Analyzed: 07/30/20 Data File: 073015.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	0.069
Toluene	< 0.05
Ethylbenzene	0.12
m,p-Xylene	0.50
o-Xylene	0.13
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22-25 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-05

Date Extracted:07/30/20Lab ID:007493-05Date Analyzed:07/30/20Data File:073016.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-23-8 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-06

07/30/20 Lab ID: 007493-06 Date Extracted: Date Analyzed: 07/30/20 Data File: 073017.DSoil Matrix: Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	62	145
Toluene-d8	96	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-23-12.5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-07

Date Extracted: 07/30/20 Lab ID: 007493-07
Date Analyzed: 07/30/20 Data File: 073018.D
Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	97	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-23-18 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-09

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	97	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	0.44
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-21-5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Data Fytypotod: 07/20/20 Lab ID: 007403 11

07/30/20 Lab ID: 007493-11 Date Extracted: Date Analyzed: 07/30/20 Data File: $073020.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-21-10 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-12

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	0.097

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-21-17.5 Client: Aspect Consulting, LLC

Date Received: 07/29/20 Project: Texaco Strickland PO 180357

Date Extracted: 07/30/20 Leb ID: 007/493 13

07/30/20 Lab ID: 007493-13 Date Extracted: Date Analyzed: 07/30/20 Data File: $073022.\mathrm{D}$ Soil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B-11-5.5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-15

Date Analyzed: 07/30/20 Data File: 073023.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	145
Toluene-d8	97	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	0.082

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B-11-10.5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-16

Date Extracted:07/30/20Lab ID:007493-16Date Analyzed:07/30/20Data File:073024.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B-11-15 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-17

07/30/20 Lab ID: 007493-17 Date Extracted: Date Analyzed: 07/30/20 Data File: $073025.\mathrm{D}$ Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-26-12.5 Client: Aspect Consulting, LLC

Date Received: 07/29/20 Project: Texaco Strickland PO 180357

Date Extracted: 07/30/20 Lab ID: 007493-22

07/30/20 Lab ID: 007493-22Date Extracted: Date Analyzed: 07/30/20 Data File: $073026.\mathrm{D}$ Soil Matrix: Instrument: GCMS4Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	98	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-27-10.5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-25

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	62	145
Toluene-d8	97	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-24-10.5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/30/20 Lab ID: 007493-29

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)	
Benzene	< 0.03	
Toluene	< 0.05	
Ethylbenzene	< 0.05	
m,p-Xylene	< 0.1	
o-Xylene	< 0.05	
Naphthalene	< 0.05	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: DUP-3 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357

07/30/20 Lab ID: 007493-32Date Extracted: Date Analyzed: 07/30/20 Data File: 073029.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	98	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

07/30/20 Lab ID: 00-1688 mb Date Extracted: Date Analyzed: 07/30/20 Data File: 073010.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	94	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 007470-02 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	90	71-131	-

ENVIRONMENTAL CHEMISTS

Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 007493-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	114	110	64-133	4

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	104	58-147

ENVIRONMENTAL CHEMISTS

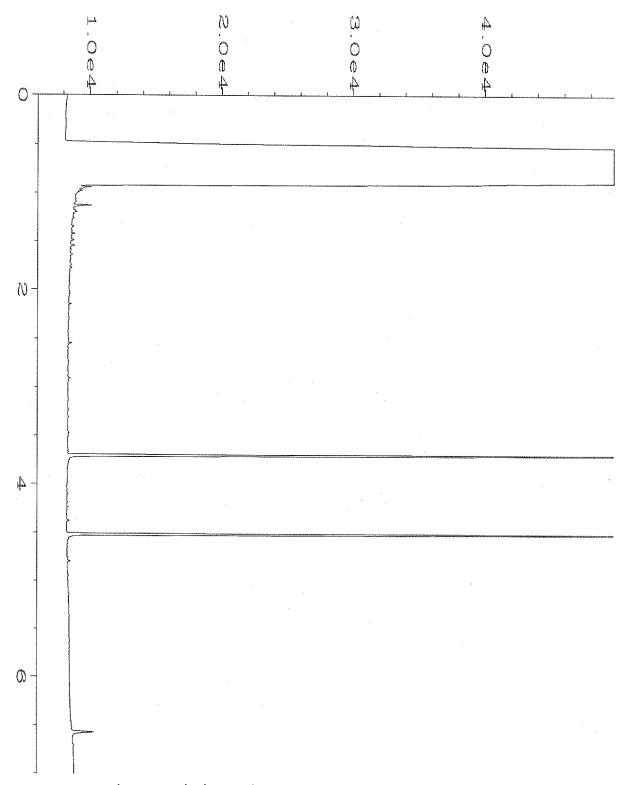
Date of Report: 08/04/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

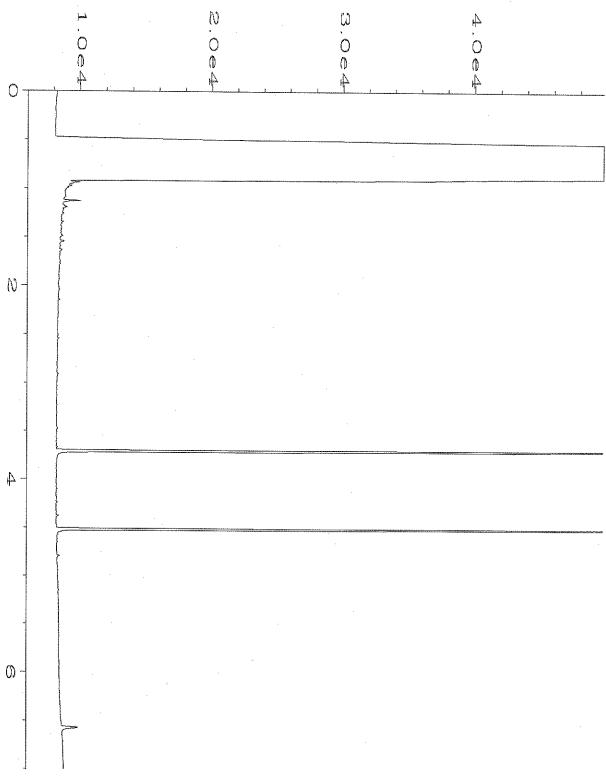
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007470-08 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	< 0.03	80	74	29-129	8
Toluene	mg/kg (ppm)	2.5	< 0.05	79	74	35-130	7
Ethylbenzene	mg/kg (ppm)	2.5	0.35	66	60	32 - 137	10
m,p-Xylene	mg/kg (ppm)	5	0.71	65	61	34-136	6
o-Xylene	mg/kg (ppm)	2.5	0.054	83	78	33-134	6
Naphthalene	mg/kg (ppm)	2.5	0.59	59 b	$54 \mathrm{\ b}$	14 - 157	9 b


Laboratory Code: Laboratory Control Sample

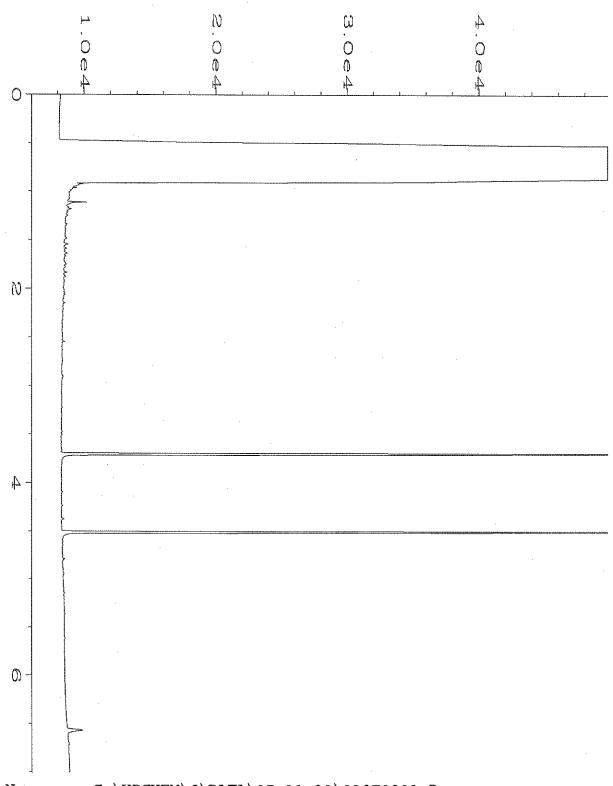
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	2.5	99	68-114
Toluene	mg/kg (ppm)	2.5	97	66-126
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123
m,p-Xylene	mg/kg (ppm)	5	102	78-122
o-Xylene	mg/kg (ppm)	2.5	104	77 - 124
Naphthalene	mg/kg (ppm)	2.5	106	63-140

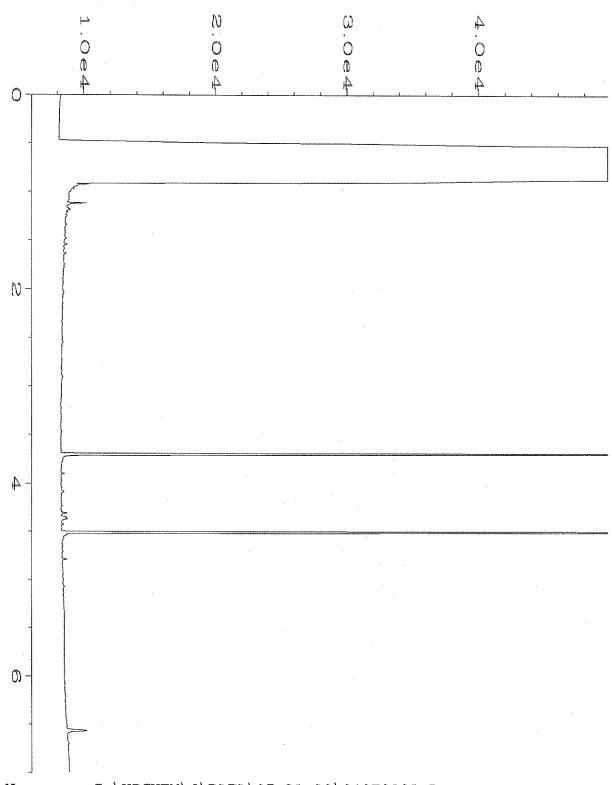

ENVIRONMENTAL CHEMISTS

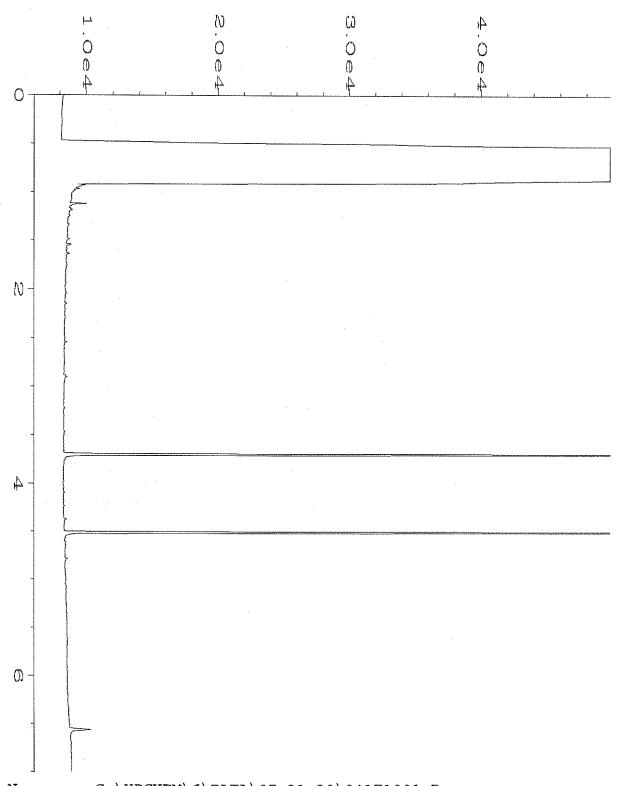
Data Qualifiers & Definitions

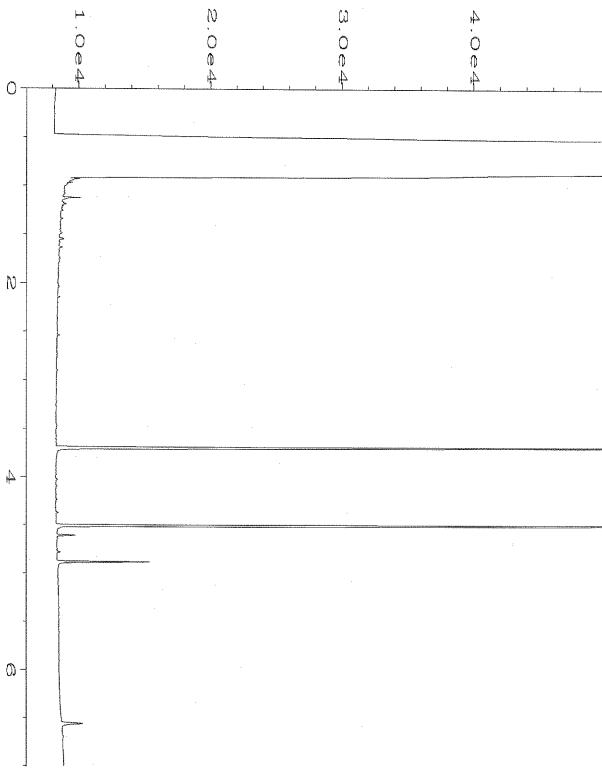
- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

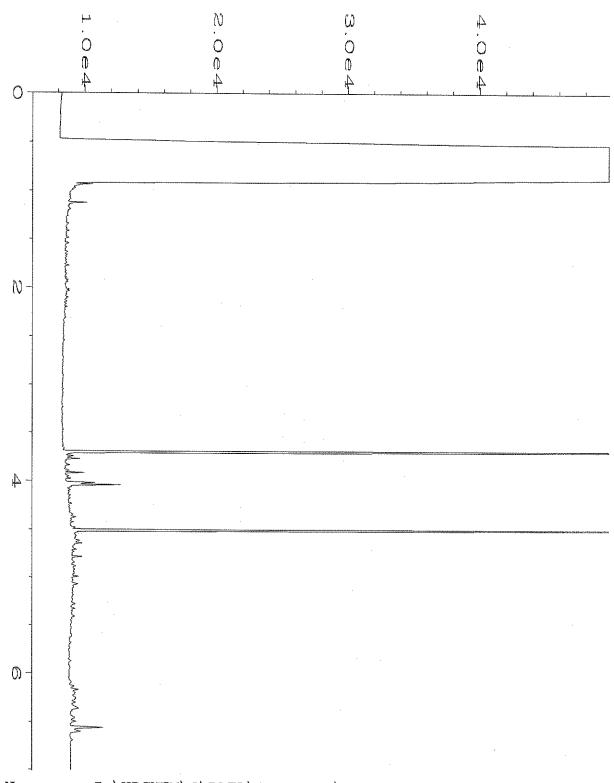

```
Data File Name
                 : C:\HPCHEM\6\DATA\07-31-20\035F0801.D
Operator
                                               Page Number
                 : TL
Instrument
                 : GC6
                                               Vial Number
                                                                : 35
Sample Name
                 : 007493-04
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line
                                                                : 8
Acquired on : 31 Jul 20 03:18 PM
                                               Instrument Method: DX.MTH
Report Created on: 03 Aug 20 09:02 AM
                                               Analysis Method : DX.MTH
```

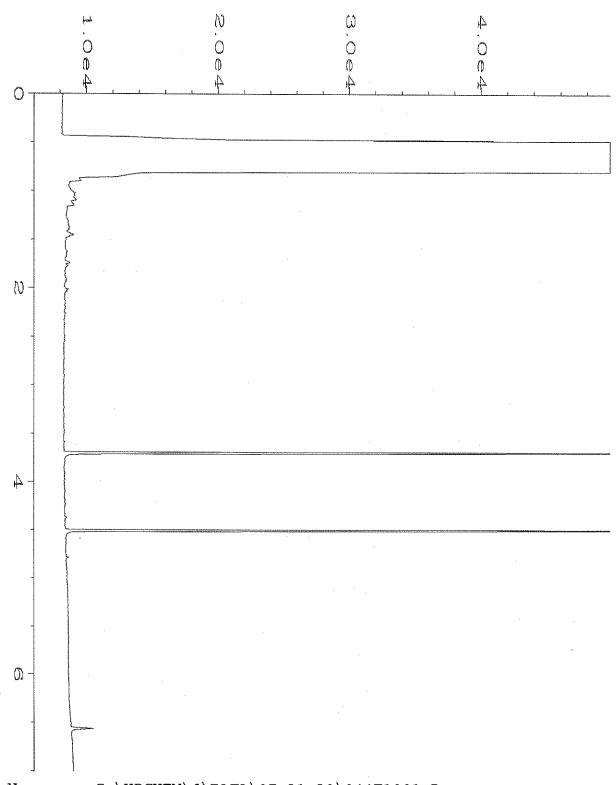


```
: C:\HPCHEM\6\DATA\07-31-20\036F0801.D
Data File Name
Operator
                  : TL
                                                  Page Number
Instrument
                  : GC6
                                                  Vial Number
                                                                    : 36
Sample Name
                 : 007493-05
                                                  Injection Number : 1
Sequence Line : 8
Run Time Bar Code:
                                                                  : 8
Acquired on : 31 Jul 20 03:29 PM
                                                  Instrument Method: DX.MTH
Report Created on: 03 Aug 20 09:02 AM
                                                  Analysis Method : DX.MTH
```

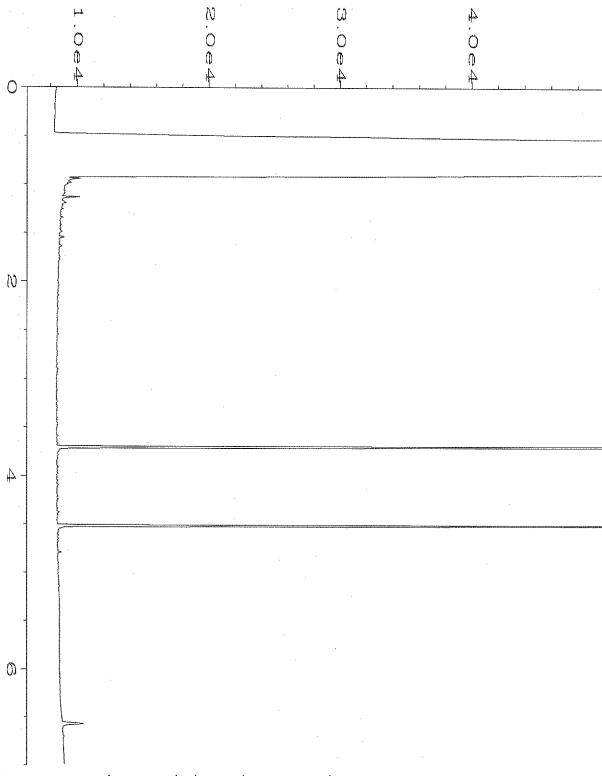


```
Data File Name
                : C:\HPCHEM\6\DATA\07-31-20\037F0801.D
Operator
Instrument
                 : TL
                                               Page Number
                                               Vial Number
                : GC6
                                                                : 37
Sample Name
                : 007493-06
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 8
Acquired on : 31 Jul 20 03:40 PM
                                               Instrument Method: DX.MTH
Report Created on: 03 Aug 20
                             09:03 AM
                                               Analysis Method : DX.MTH
```

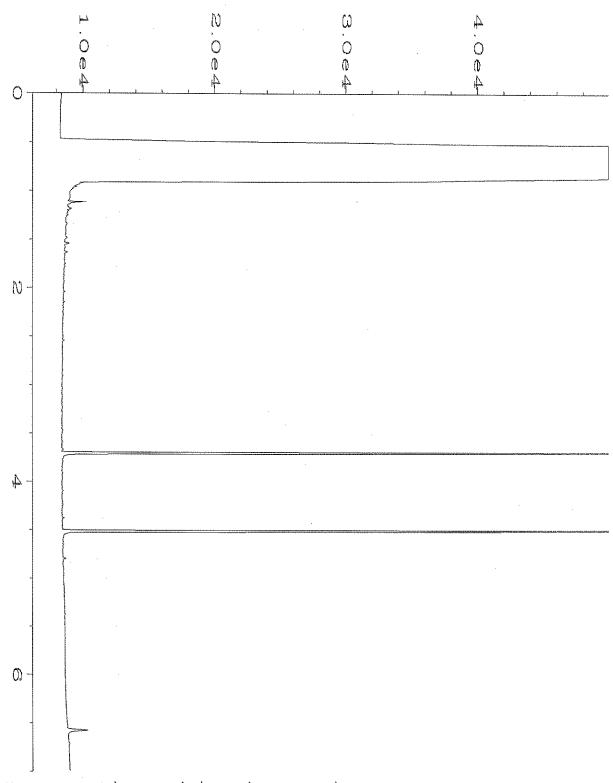


```
Data File Name
                  : C:\HPCHEM\6\DATA\07-31-20\038F0801.D
Operator
                                                  Page Number
Vial Number
                  : TL
                                                                    : 1
Instrument
                  : GC6
Sample Name
                  : 007493-07
                                                  Injection Number: 1
Run Time Bar Code:
                                                  Sequence Line
                                                  Instrument Method: DX.MTH
Acquired on
                 : 31 Jul 20
                               03:51 PM
Report Created on: 03 Aug 20
                               09:03 AM
                                                  Analysis Method : DX.MTH
```

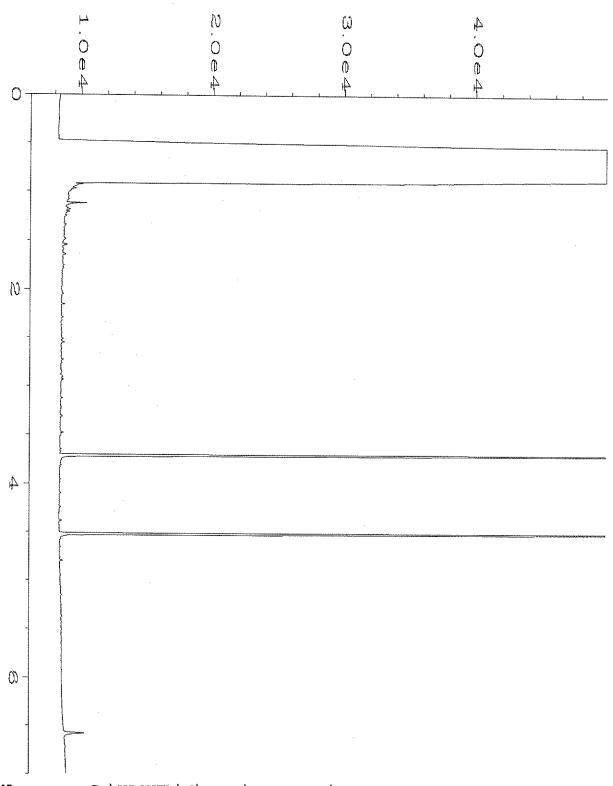


```
Data File Name
                 : C:\HPCHEM\6\DATA\07-31-20\039F0801.D
Operator
                 : TL
                                                Page Number
                                                                 : 1
Instrument
                 : GC6
                                                Vial Number
                                                                 : 39
Sample Name
                 : 007493-09
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
                                                                : 8
Acquired on
                : 31 Jul 20
                             04:02 PM
                                                Instrument Method: DX.MTH
Report Created on: 03 Aug 20
                             09:03 AM
                                                Analysis Method : DX.MTH
```



```
Data File Name
                  : C:\HPCHEM\6\DATA\07-31-20\040F0801.D
                                                  Page Number
Vial Number
Operator
                  : TL
                                                                    : 1
Instrument
                  : GC6
                                                                    : 40
Sample Name
                  : 007493-11
                                                  Injection Number: 1
Run Time Bar Code:
                                                  Sequence Line
                                                  Instrument Method: DX.MTH
Acquired on
                 : 31 Jul 20
                               04:13 PM
Report Created on: 03 Aug 20
                               09:03 AM
                                                  Analysis Method : DX.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-31-20\041F1001.D
Operator
                 : TL
                                               Page Number
                                                                 : 1
                                               Vial Number
Instrument
                 : GC6
                                                                 : 41
Sample Name
                 : 007493-12
                                               Injection Number: 1
                                               Sequence Line : 10
Run Time Bar Code:
Acquired on
                : 31 Jul 20
                                               Instrument Method: DX.MTH
                             04:47 PM
Report Created on: 03 Aug 20
                             09:03 AM
                                               Analysis Method : DX.MTH
```



```
: C:\HPCHEM\6\DATA\07-31-20\042F1001.D
Data File Name
                                               Page Number
Vial Number
Operator
                 : TL
                                                                : 1
Instrument
                 : GC6
                                               Injection Number: 1
Sample Name
                : 007493-13
Run Time Bar Code:
                                               Sequence Line : 10
Acquired on : 31 Jul 20 04:58 PM
                                               Instrument Method: DX.MTH
Report Created on: 03 Aug 20
                             09:03 AM
                                               Analysis Method : DX.MTH
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-31-20\043F1001.D
Operator
                                                 Page Number
Vial Number
                 : TL
Instrument
                 : GC6
                                                                   : 43
Sample Name
                 : 007493-15
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line
                                                                : 10
Acquired on
                 : 31 Jul 20
                               05:09 PM
                                                 Instrument Method: DX.MTH
Report Created on: 03 Aug 20
                               09:03 AM
                                                 Analysis Method : DX.MTH
```



```
: C:\HPCHEM\6\DATA\07-31-20\044F1001.D
Data File Name
                                                Page Number
Vial Number
Operator
                 : TL
                                                                 : 1
Instrument
                 : GC6
                                                                  : 44
Sample Name
                 : 007493-16
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 10
Acquired on : 31 Jul 20
                                                Instrument Method: DX.MTH
                              05:20 PM
Report Created on: 03 Aug 20
                                                Analysis Method : DX.MTH
                              09:04 AM
```



```
Data File Name
                  : C:\HPCHEM\6\DATA\07-31-20\045F1001.D
                                                    Page Number : 1
Vial Number : 45
Injection Number : 1
Operator
                  : TL
Instrument
                  : GC6
                                                                       : 45
Sample Name
                  : 007493-17
Run Time Bar Code:
                                                    Sequence Line : 10
Acquired on : 31 Jul 20
                                                    Instrument Method: DX.MTH
                                05:31 PM
Report Created on: 03 Aug 20
                                09:04 AM
                                                    Analysis Method : DX.MTH
```



```
: C:\HPCHEM\6\DATA\07-31-20\046F1001.D
Data File Name
                                                  Page Number
Vial Number
Operator
                  : TL
Instrument
                  : GC6
                                                                    : 46
                                                  Injection Number: 1
Sample Name
                 : 007493-22
Run Time Bar Code:
                                                  Sequence Line
                                                                 : 10
                 : 31 Jul 20
                                                  Instrument Method: DX.MTH
Acquired on
                               05:42 PM
Report Created on: 03 Aug 20
                                                  Analysis Method : DX.MTH
                               09:04 AM
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\07-31-20\047F1001.D
Operator
Instrument
                 : TL
                                                Page Number
                                                                 : 1
                 : GC6
                                                Vial Number
                                                                 : 47
Sample Name
                 : 007493-25
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 10
Acquired on
                 : 31 Jul 20 05:54 PM
                                                Instrument Method: DX.MTH
Report Created on: 03 Aug 20 09:04 AM
                                                Analysis Method : DX.MTH
```

Company Aspect Cornelling Report To Andrew Yorkes Shi City, State, ZIP Sent /e, WA, 98109 Address 7/0 2nd Ale, Sk. S50 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone (2013-541) Email wyorks shill a spect and Project specific RLs? - Yes / NO mu-22-16 mu-23-125 MW-25-8 mw-22-25 かしーるやーしる MW-22-10 27-88-0M mu -23 - 18 mw-23-15 MW-23-25 Sample ID Relinquished by: Relinquished by: Received by: Received by: 8 8 25 000 2 20 *04* NH80 | OB/18/1/ 3-1/10 Lab ID いっともの SIGNATURE Sampled SAMPLE CHAIN OF CUSTODY ME 672 CHIC **280** 282 经 1/02 3 Sampled 11/2 छ SAMPLERS (signature) REMARKS PROJECT NAME Texaco Stricklund E S Sample Туре 4 SOOK 9 Jars PRINT NAME 755gg NWTPH-HCID INVOICE TO ANALYSES REQUESTED PO# PAHs EPA 8270 07-29-20 TOPAT LONGITH PCBs EPA 8082 Samples received at COMPANY 7 ンく Default: Dispose after 30 days ☐ Archive samples Rush charges authorized by: XStandard turnaround O RUSH_ VS5/BOS TURNAROUND TIME Page#__ SAMPLE DISPOSAL 06/182/10 12/2/F DATE Notes #0;1 TIME (0)

å	eived at	Samples received at	Sar							-		A PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROP			Received by:	Ph. (206) 285-8282	Ph
, , , , , , , , , , , , , , , , , , ,) 		multimonard parameter.	-			9						Y		Relinquished by:	Seattle, WA 98119-2029 R	Se
お光	1 Daleste	,	<u>S</u>	43			3	(%)	6	(°	Screek	8	N	7	Received by:	3012 16th Avenue West	30
797	7/29/20 1	or sullive	76		7				7)na	Lord Dra			land breed on	wemiquished by:	 ئ	5 5
TIME	DATE	AN	COMPANY					Œ	PRINT NAME	IN	PRI			SIGNATURE	SIC		ş
			×							-	*	*	1420	A	30	mu-24- 13	
			×						×				1417		20	mw -24 - 105	-
			1										0//1/		25	mw-24-8	
													88		23	MW-27-292	
		×	~~				,								26	MJ-17-15	—
			X						X	×			B		25	mw-27-105	-
			×										188		24 A A	mu-27-8	
(de) INC	y yor	×	<u> </u>						,				0885		23 A-J	mu-26-725	
7%/	20 4 00 :		×						×	\overline{x}			8180		23 A-D	MJ-26-125	<u> </u>
		× _									4	8	08/D	7/24/20 O8/2	21A-6	MU-26-10.5	13
υ	Notes	Apl pendons	BIEN BOW	PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	NWTPH-HCID	BTEX EPA 8021	NWTPH-Gx	NWTPH-Dx	#of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
		TED	ANALYSES REQUESTED	S R	ISAT	ANA				H							
30 days	□ Other Default: Dispose after 3	Default:	any vanament and a second	10 1 E 41 61		STATE OF THE STATE OF			8	Yes	Ls? · Y	specific R	Project	Dusputu	alpholyha	Phone (2064) 3-5411 Email 21040 (A) Project specific RLs? Yes	护
F	SAMPLE DISPOSAL hive samples	SAMPLE DI □ Archive samples		TO	INVOICE TO	NVC	 					RKS	- REMAF		Way May	City, State, ZIP Szaffle, WA, 1804	Ω
by:	Rush charges authorized by:	Rush char		ANTHA PARTIES AN						3	hock	Texaco Strikland	ct		SH-5500	Address 7/0 2nd Auc.	Ac
	Standard turnaround RUSH	© Standar			PO#	ю.				Ì	1	PROJECT NAME	PROJE		Consulting	Company Aspect Con	S
AE 7	Page #of	Page #		•						LA	rature Let	SAMPLERS (signatu <u>r</u> e)	SAMPL	and first		Report To Ankau Yorkalshil	ᅑ
	VS5/805		7	7.0	_	K)Y ME	00	TST.	CU	NOF	E CHAI	SAMPLE CHAIN OF CUSTOD	32440C	400		*
		-	ことのこと			•											

Ph. (206) 285-8282 Received by:	Т.	<u> </u>	- 1	Friedman & Bruva Inc. Relinquished by The Rel								DUP-3 32 1/24/20 - 4 4 XX	MW-24-225 3(A# 7/24/20 1441 Sol 5	Sample ID Lab ID Date Time Sample Hof H-Dx NWTPH-GX BTEX EPA 8021 NWTPH-HCID	Añ	Phone (206) 413-54 Email & Ymbash Buspa How Project specific RLs? - Yes 1/80		Texaco Strikland	Company Apper (mysollyng PROJECT NAME	Report Toffice (Signature) / Home Copy of School Signature 7		
1,000	(X	- transportation									1		Time Sample		Brojec	— REM	<u>@</u> /	PROJ	LATAC		
		35/	1)au :a	Address	-							~	So./			ct specific Rl	ARKS	ww Shi	JECT NAME	PLEKS (sign		
		se l		PRIN								4	्र	# of Jars		's? - Y		Ton L		vature)		
			6		AN TI								Z		NWTPH-Dx		es //			}	D	
-		88		ME			<u> </u>					×				D				<u> </u>		
	Þ	18							-										7)		
														NWTPH-HCID VOCs EPA 8260	AN		IN	No.	-			
				+	7	\forall			<u> </u>							PAHs EPA 8270	ANALYSES	17	INVOICE TO	80K/	P0#	
	4	AN TRO	SA	SA SA	Tipe												ES	***	ETC	7	#	1
S					2	1	1	MOD								\times		BTEXN 82600	REQU	*	•	
amı		سبذ	arso	COMPANY									X	HII	CHUSH							
les				7											Œ	Other Default		Rush	⊃ XSt			
rece												$\neg \dagger$				her ult:	SAI	ı char	anda 19H	Page #		
Samples received at	7	4	Wa	Ţ												□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL O Archive samples	Rush charges authorized by:	XStandard turnaround	Page # ' of 7		
Tat	_	Ouples	achel	DATE										→		se at	DIS]	uthor	naroı			
1	9	+0.4	0 1207	TIME										Notes		ter 3	POSA	ized l	ind			
1 [1.0	177	1 1	- 1		ı		1	ı 1	- 1	-				[]	S	1	تــان		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 11, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on July 29, 2020 from the Texaco Strickland PO 180357, F&BI 007493 project. There are 11 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin

ASP0811R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 29, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 007493 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Aspect Consulting, LLC
007493 -01	MW-22-7.5
007493 -02	MW-22-10
007493 -03	MW-22-12.5
007493 -04	MW-22-16
007493 -05	MW-22-25
007493 -06	MW-23-8
007493 -07	MW-23-12.5
007493 -08	MW-23-15
007493 -09	MW-23-18
007493 -10	MW-23-25
007493 -11	MW-21-5
007493 -12	MW-21-10
007493 -13	MW-21-17.5
007493 -14	MW-21-25
007493 -15	B-11-5.5
007493 -16	B-11-10.5
007493 -17	B-11-15
007493 -18	B-11-18
007493 -19	B-11-22.5
007493 -20	MW-26-5
007493 -21	MW-26-10.5
007493 -22	MW-26-12.5
007493 -23	MW-26-22.5
007493 -24	MW-27-8
007493 -25	MW-27-10.5
007493 -26	MW-27-15
007493 -27	MW-27-22.5
007493 -28	MW-24-8
007493 -29	MW-24-10.5
007493 -30	MW-24-13
007493 -31	MW-24-22.5
007493 -32	DUP-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

Date Extracted: 08/05/20 Date Analyzed: 08/05/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
MW-22-10 007493-02	<5	90
MW-22-12.5 007493-03	<5	90
MW-23-25 007493-10	<5	92
Method Blank _{00-1395 MB}	<5	89

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

Date Extracted: 08/04/20 Date Analyzed: 08/04/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 48-168)
MW-22-10 007493-02	<50	<250	90
MW-22-12.5 007493-03	<50	<250	91
MW-23-25 007493-10	<50	<250	91
Method Blank _{00-1762 MB}	<50	<250	102

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22-10 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 08/04/20 Lab ID: 007493-02

Date Analyzed: 08/05/20 Data File: 080510.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22-12.5 Client: Aspect Consulting, LLC
Date Received: 07/29/20 Project: Texaco Strickland PO 180357
Date Extracted: 08/04/20 Lab ID: 007493-03

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	0.068
m,p-Xylene	0.11
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-23-25 Client: Aspect Consulting, LLC

Date Received: 07/29/20 Project: Texaco Strickland PO 180357

Date Extracted: 08/04/20 Lab ID: 007493-10

Date Applying 1: 08/05/20 Date File: 080513 D

Date Analyzed: 08/05/20 Data File: 080512.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	0.047
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

08/04/20 Lab ID: Date Extracted: 00-1719 mb Date Analyzed: 08/04/20 Data File: 080409.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 007493-02 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			rercent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	100	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 008002-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	14,000	93 b	154 b	73-135	49 b

Laboratory Code: Laboratory Control Sample

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	88	74-139	

ENVIRONMENTAL CHEMISTS

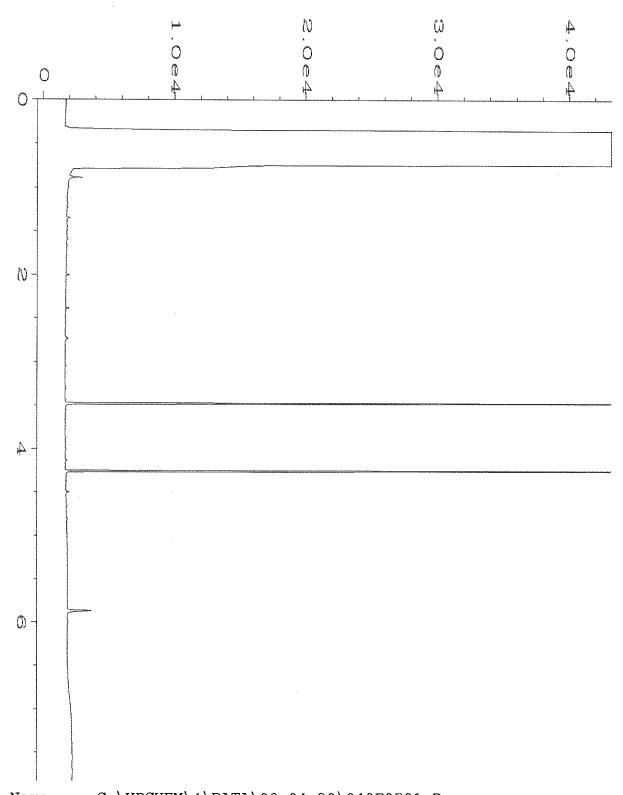
Date of Report: 08/11/20 Date Received: 07/29/20

Project: Texaco Strickland PO 180357, F&BI 007493

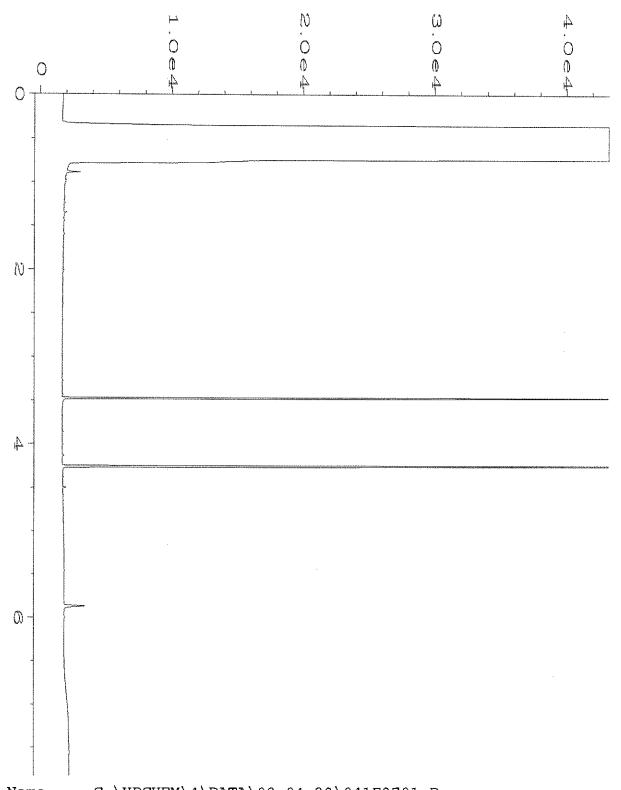
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007432-02 (Matrix Spike)

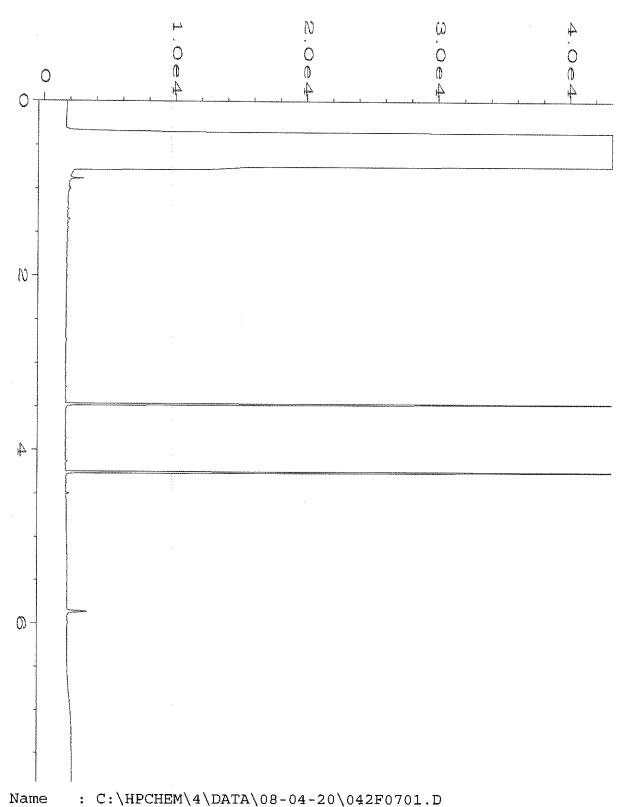
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	${\bf Recovery}$	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	< 0.03	93	96	29-129	3
Toluene	mg/kg (ppm)	2.5	< 0.05	90	92	35-130	2
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	90	92	32 - 137	2
m,p-Xylene	mg/kg (ppm)	5	< 0.1	90	91	34-136	1
o-Xylene	mg/kg (ppm)	2.5	< 0.05	92	94	33-134	2
Naphthalene	mg/kg (ppm)	2.5	0.26	96	95	14 - 157	1

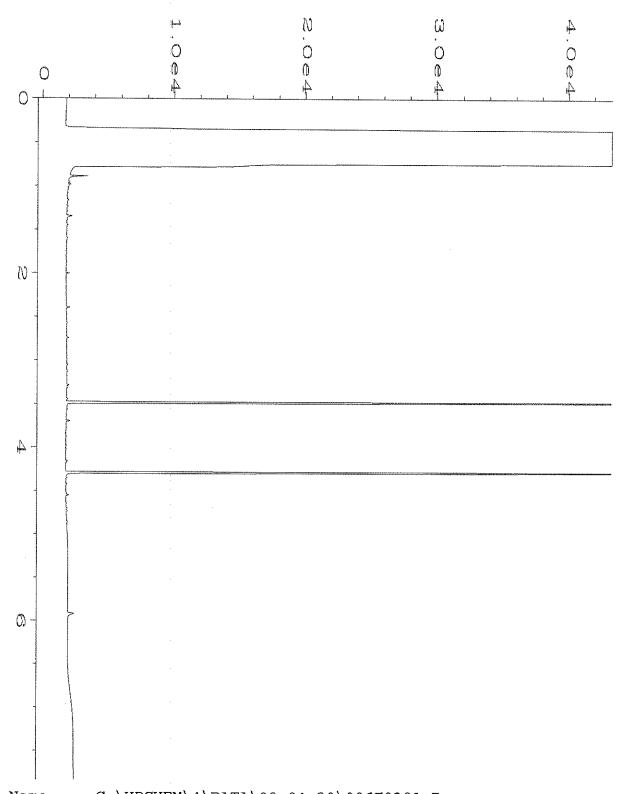

Laboratory Code: Laboratory Control Sample

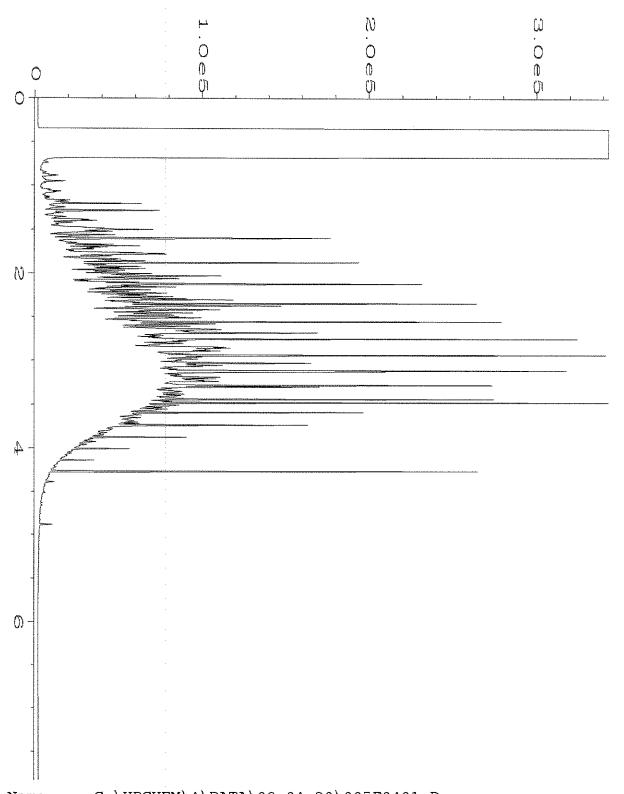
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	2.5	97	68-114
Toluene	mg/kg (ppm)	2.5	91	66-126
Ethylbenzene	mg/kg (ppm)	2.5	94	64-123
m,p-Xylene	mg/kg (ppm)	5	97	78-122
o-Xylene	mg/kg (ppm)	2.5	98	77 - 124
Naphthalene	mg/kg (ppm)	2.5	94	63-140


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                : C:\HPCHEM\4\DATA\08-04-20\040F0701.D
Operator
                                               Page Number
                 : TL
                                                                : 1
                                               Vial Number
Instrument
                 : GC#4
                                                                : 40
                : 007493-02
Sample Name
                                               Injection Number: 1
                                               Sequence Line : 7
Run Time Bar Code:
Acquired on
                                               Instrument Method: DX.MTH
                : 04 Aug 20
                             06:21 PM
                                               Analysis Method : DEFAULT.MTH
Report Created on: 05 Aug 20
                             07:20 AM
```



Report Created on: 05 Aug 20 07:20 AM Analysis Method : DEFAULT.MTH


```
Data File Name
Operator
                  : TL
                                                  Page Number
                                                  Vial Number : 42
Injection Number : 1
Instrument
                  : GC#4
Sample Name
                 : 007493-10
                                                  Sequence Line : 7
Run Time Bar Code:
Acquired on
                                                  Instrument Method: DX.MTH
                 : 04 Aug 20
                              06:47 PM
Report Created on: 05 Aug 20
                                                  Analysis Method : DEFAULT.MTH
                               07:20 AM
```



```
: C:\HPCHEM\4\DATA\08-04-20\006F0301.D
Data File Name
Operator
                                             Page Number
                : TL
                                                             : 1
                                             Vial Number
Instrument
                : GC#4
                                                             : 6
Sample Name : 00-1762 mb
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 3
Acquired on : 04 Aug 20
                            08:58 AM
                                             Instrument Method: DX.MTH
                                             Analysis Method : DEFAULT.MTH
Report Created on: 05 Aug 20 07:20 AM
```



```
Data File Name
                : C:\HPCHEM\4\DATA\08-04-20\005F0401.D
Operator
                : TL
                                              Page Number
                                              Vial Number
Instrument
                : GC#4
                                                               ; 5
                                              Injection Number: 1
                : 1000 Dx 60-170B
Sample Name
Run Time Bar Code:
                                              Sequence Line : 4
                                              Instrument Method: DX.MTH
Acquired on
                : 04 Aug 20
                             02:49 PM
Report Created on: 05 Aug 20
                                              Analysis Method : DEFAULT.MTH
                             07:20 AM
```

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 I6th Avenue West Friedman & Bruya, Inc. Phone [200413-5411 Email Works sure specific RLs? Yes / Kg | AP Mu-23-125 MW-23-8 mu-22-16 City, State, ZIP Sent /c, WA, 98/04 Address 7/0 2nd Ale, Sk. 550 mu-23-15 mw-22-25 Company Aspect Cornolina MW-23-25 mw-22-125 Report To Antew Yorkershi / Abor mw-23-18 MW-22-10 MW-22-25 Sample ID Relinquished by Received by: Received by: Relinquished by: 2 68 90 12 20 03 B \mathcal{O} 24 3-4/10 Lab ID のなより SIGNATURE 1/2X/20 Sampled Date 860 SHK SHKS 12 SAMPLE CHAIN OF CUSTODY NNV CHOC 127 **280** Ē 280 1112 1/02 Time Sampled SAMPLERS (signature) REMARKS PROJECT NAME Texaco Strickland $\widetilde{\wp}$ Sample Sciol Lessia 9 PRINT NAME # of Jars × × × × NWTPH-Gx 250g 2750g INVOICE TO ANALYSES REQUESTED PO# THE LANGET LANGET 04-27-20 Samples received at COMPANY 7 ゝ $\overline{*}$ * Default: Dispose after 30 days [] Other ☐ Archive samples Rush charges authorized by: Standard turnaround TURNAROUND TIME VSS/805 Page # SAMPLE DISPOSAL 06/12/17 101/2/t Additional samples added by Andrew Yonk of sign on 04/04/2020 DATE Additional samples added by Andre Yonkofski, or 08/04/2020 Notes wes added by Andro 10, 12, TIME B

ceived at 3 oc	Samples received at					Received by:	Ph. (206) 285-8282
,		9		1		,	
+0:t/ 01/12/t	FBI	e lessicy	SCHOOL	Y	21	Relinguished by:	Seattle, WA 98119-2029
7/20/20 1707	Appert Consulton	Unah	Java ()		headlast	Received by:	3012 16th Avenue West
DATE TIME	COMPANY	PRINT NAME			SIGNATURE,	Relinquished by:	Friedman & Bruya, Inc.
	×				18/19/		
			2		1/2///DO 10X-1	9	MV-26-5
	X 2		∢	HYSI	4	Ā	13-11-225
	×		2	1033		a	13-11-18
	×	×		7651		3	13-11-15
	×	×		1571		16	B-11-105
	×	×		1459		250	13-11-05
	×			1353		14	mw-21-72
	×	×		1340		13	mw-21-125
	×	×		1328		77	mw-21-10
		×	2017	1318	JAKAD	11A-15	18-18-CM
Notes	PAHS EPA 8270 PCBS EPA 8082 PEXN BACK Held Pedes	NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	Sample #of Type Jars	Time Sampled	Date Sampled	Lab ID	Sample ID
	ANALYSES REQUESTED	AN					
Dispose after 30 days	Default:	Yes / RO AP	specific RLs? -	Project	(Dryati	Smail Oxportuct 3/h	Project specific RLs? - Yes / Mo
☐ Archive samples	☐ Arc					14, 00, 1, 10	ord, brane, all soull let, out 10101
The propose	2	100	1	REMARKS	///W	1.11/2 98	City State 71B (
C RUSHRush charges authorized by:		/ / //was	texas service	ra	Ğ	10 2m Am St. SSO	Address 7/0 22
Standard turnaround	PO# XStande	Se la land	PROJECT NAME	PROJE		- Corsulting	Company Hspeat
the Solution of A	Page #	e) De Marie	SAMPLERS (signature)	SAMPI	am Coffe	And whole	Report To Andrew Yorkshi / Hor
120/0ES 7,	UT-CI-W	SAMPLE CHAIN OF CUSTODX	E CHAIN O	SAMPL	254too	000	

į

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone (2064) 3-5411 Email appholy (100 specific RLs? Yes 1 XD - he- mm mw - 24 -アントア mw-27-105 MU-26-10.5 City, State, ZIP Seeffle WH, 1804 Address 710 2nd Ave, St. STO Company Aspect Considting 8 - 48-m MJ-26-125 Report To Ankey Yorks Shill SEC-12-014 B-CB-000 mu-26-725 Sample ID Relinquished by: Received by: Received by: Relinquished by: 30 25 35 24 A R 23 A-D 26 23 A D 211A-E Lab ID 324400 SIGNATURE 7/24/20108/2 Sampled A Date 2180 88 SAMPLE CHAIN OF CUSTODY ME 1881 Sampled 88 B 0/hi SAMPLERS (signature REMARKS PROJECT NAME Ŕ Sample Туре Soper 9 PRINT NAME # of Jars INVOICE TO ANALYSES REQUESTED PO# COMPANY × × × Samples received at 4 × × Default: Dispose after 30 days ☐ Archive samples Rush charges authorized by: O RUSH □ Standard turnaround TURNAROUND TIME SAMPLE DISPOSAL Page # 1/20/20 ح 00 DATE dry/ INC 20h 207 Notes なが 199 TIME 7%/

171. (200) 260-8282 Received by:	.2029	3012 16th Avenue West Received by:	Friedman & Bruya, Inc. Reling				100000							XIP-3	CPP-HP-MILL	Sample ID			Phone (206) 4/3 54/1 Email a Vinh Ash Darce Low House	City, State, ZIP Scalle, Wh 98104	Address 110 2 All	Company Appert ansolving	Report To Holican Voluction / Adom	
ed by:	Relinquished by:		Relinquished by:	SIG										37	3/44	1			a Vindent Lo	WA 9816	Sk.57	ollong	the / Ada	20440C
		The state of the s		SIGNATURE										1/20130	MANAO!	Date Sampled		a special	Concret Cons	2			rhaller	493
	V.													1	1441	Time Sampled		Project	move III	REMAI	Top	PROJE	SAMPI	SAMPL
	Same	Law st								•			- -	<u></u>	₹ \$	Sample Type		specific RLs		REMARKS	io Struk	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUST
	6	Unry	FRINT NAME				+	\bot	_					<u>-</u>	9	# of Jars		? - Ye		D/W			iture)	OF
	S S S S S S S S S S S S S S S S S S S		MAME							***************************************			*	7		NWTPH-Dx NWTPH-Gx	-	s / de	١					cusi
	do)			Ή├-	_		 ļ	1								BTEX EPA 802	1			+	***************************************	5		YODY WE
				$\ \cdot\ $	\dashv		-	+	+				+	-		NWTPH-HCID		- uniform		INV.	\sim			Z Mes
		7	>										ig	+		VOCs EPA 8260 PAHs EPA 8270			G	200	3° K	PO#		
	T	Dee	C		_	1	 	$oldsymbol{\perp}$	\perp							PCBs EPA 8082	ES R		 	OICE TO	1	#		07-14-20
San	187	6	COMPANY	-	-	_	 	 	_							BTEXN 8260	N E	1						70
ples		art los	YN	-	+	+	 ļ	-	+	\dashv			_		X	Hold	STE				対け			2
rece	'	NA .		-		+		\vdash	+	+			_	+				Default:	Archi		RUS ush cl	T (Stan	P	
Samples received at	4	W	מ			+		 	+	\dashv	_			+	+		$\left \cdot \right $: Dis	Archive samples	MDI	Harges	dard t	Page#	77
a a	afte	alpell	DATE													b -v-i		ose a	iples	מות ש	© RUSH	ROUN	4	2
10	±0:£1						i									Notes		fter 3	hive samples	000	O RUSH authorized by:	TURNAROUND TIME	of.	805
Å.	17	く	TIME															Default: Dispose after 30 days	כ		Y.	Œ	4	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 6, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on July 30, 2020 from the Texaco Strickland PO 180357, F&BI 007523 project. There are 22 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin

ASP0806R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 30, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 007523 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
007523 -01	MW-20-5'
007523 -02	MW-20-8'
007523 -03	MW-20-10.5'
007523 -04	MW-20-13'
007523 -05	MW-20-15.5'
007523 -06	MW-20-17.5'
007523 -07	MW-20-20'
007523 -08	MW-20-22.5
007523 -09	MW-20-25'
007523 -10	MW-25-2.5
007523 -11	MW-25-5'
007523 -12	MW-25-8'
007523 -13	MW-25-10.5'
007523 -14	MW-25-13'
007523 -15	MW-25-15'
007523 -16	MW-25-17.5'
007523 -17	MW-25-20'
007523 -18	MW-25-22.5'
007523 -19	MW-25-25
007523 -20	B-10-2.5
007523 -21	B-10-6
007523 -22	B-10-7.5
007523 -23	B-10-12.5
007523 -24	B-10-16
007523 -25	B-10-17.5
007523 -26	B-10-20
007523 -27	B-10-22.5
007523 -28	B-10-25
007523 -29	MW-21A-2.5
007523 -30	MW-22A-2.5
007523 -31	MW-22B-5'
007523 -32	DUP-4
007523 -33	DUP-5
007523 -34	Trip Blank
	±

The 8260D matrix sample and matrix sample duplicate failed the relative percent difference for several compounds. The laboratory control sample met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

Date Extracted: 07/31/20 Date Analyzed: 08/03/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-20-5' 007523-01	<5	99
MW-20-8' 007523-02	<5	101
MW-20-13' 007523-04	<5	99
MW-25-8' 007523-12	<5	93
B-10-12.5 007523-23	<5	100
MW-21A-2.5 007523-29	<5	99
MW-22A-2.5 007523-30	<5	100
MW-22B-5' 007523-31	<5	98
DUP-4 007523-32	9.2	105
Method Blank _{00-1392 MB}	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

Date Extracted: 08/03/20 Date Analyzed: 08/04/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
Trip Blank 007523-34	<100	93
Method Blank 00-1393 MB	<100	108

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

Date Extracted: 07/31/20 Date Analyzed: 07/31/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 56-165)
MW-20-5' 007523-01	<50	<250	97
MW-20-8' 007523-02	<50	<250	93
MW-20-13' 007523-04	<50	<250	91
MW-25-8' 007523-12	<50	<250	93
B-10-12.5 007523-23	<50	<250	92
MW-21A-2.5 007523-29	90 x	360	90
MW-22A-2.5 007523-30	<50	<250	91
MW-22B-5' 007523-31	<50	680	88
DUP-4 007523-32	<50	<250	90
Method Blank _{00-1754 MB}	<50	<250	92

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-20-5' Client: Aspect Consulting, LLC

Date Received: 07/30/20 Project: Texaco Strickland PO 180357

Date Extracted: 07/31/20 Lab ID: 007523-01

Date Applying Consulting, LLC

Project: Texaco Strickland PO 180357

Lab ID: 007523-01

Date Applying Consulting, LLC

Project: Texaco Strickland PO 180357

Lab ID: 007523-01

Date Analyzed:07/31/20Data File:073121.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	99	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-20-8' Client: Aspect Consulting, LLC

Date Received: 07/30/20 Project: Texaco Strickland PO 180357

Date Extracted: 07/31/20 Lab ID: 007523-02

Date Applying 1: 07/21/20 Date File: 072132 D

Date Analyzed: 07/31/20 Data File: 073122.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	0.065

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-20-13' Client: Aspect Consulting, LLC
Date Received: 07/30/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/31/20 Lab ID: 007523-04

Date Analyzed: 07/31/20 Data File: 073123.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-25-8' Client: Aspect Consulting, LLC

Date Received: 07/30/20 Project: Texaco Strickland PO 180357

Date Extracted: 07/31/20 Lab ID: 007523-12

Date Extracted:07/31/20Lab ID:007523-12Date Analyzed:07/31/20Data File:073124.DMatrix:SoilInstrument:GCMS4Units:mg/kg (ppm) Dry WeightOperator:MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	62	145
Toluene-d8	100	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B-10-12.5 Client: Aspect Consulting, LLC
Date Received: 07/30/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/31/20 Lab ID: 007523-23

Date Analyzed: 07/31/20 Lab ID. 00/323-23

Date Analyzed: 07/31/20 Data File: 073125.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-21A-2.5 Client: Aspect Consulting, LLC
Date Received: 07/30/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/31/20 Lab ID: 007523-29

Date Extracted: 07/31/20 Lab ID: 007523-29
Date Analyzed: 07/31/20 Data File: 073126.D
Matrix: Soil Instrument: GCMS4
Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	95	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22A-2.5 Client: Aspect Consulting, LLC
Date Received: 07/30/20 Project: Texaco Strickland PO 180357
Date Extracted: 07/31/20 Lab ID: 007523-30

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	96	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22B-5' Client: Aspect Consulting, LLC Date Received: 07/30/20 Project: Texaco Strickland PO 180357 Date Extracted: 07/31/20 Lab ID: 007523-31

Date Extracted: 07/31/20 Lab ID: 007/523-31

Date Analyzed: 07/31/20 Data File: 073128.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	145
Toluene-d8	102	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: DUP-4 Client: Aspect Consulting, LLC Date Received: 07/30/20 Project: Texaco Strickland PO 180357 Date Extracted: 07/31/20 Lab ID: 007523-32

Date Extracted: 07/31/20 Lab ID: 007/523-32

Date Analyzed: 07/31/20 Data File: 073129.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Dry Weight Operator: MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	101	55	145
4-Bromofluorobenzene	97	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	0.098

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

07/31/20 Lab ID: Date Extracted: 00-1718 mb Date Analyzed: 07/31/20 Data File: 073110.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight MSOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	145
Toluene-d8	97	55	145
4-Bromofluorobenzene	93	65	139

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	07/30/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/03/20	Lab ID:	007523-34
Date Analyzed:	08/03/20	Data File:	080315.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Extracted:	08/03/20	Lab ID:	00-1684 mb
Date Analyzed:	08/03/20	Data File:	080310.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 007511-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			rercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	95	71-131	-

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH- $G_{\mathbf{x}}$

Laboratory Code: 007463-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	108	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 007523-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	112	106	63-146	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	108	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

Project: Texaco Strickland PO 180357, F&BI 007523

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 007477-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	2.5	< 0.03	78	62	29-129	23 vo
Toluene	mg/kg (ppm)	2.5	< 0.05	77	61	35-130	23 vo
Ethylbenzene	mg/kg (ppm)	2.5	0.075	78	62	32 - 137	23 vo
m,p-Xylene	mg/kg (ppm)	5	1.2	74 b	58 b	34-136	$24 \mathrm{b}$
o-Xylene	mg/kg (ppm)	2.5	0.061	85	67	33-134	24 vo
Naphthalene	mg/kg (ppm)	2.5	1.8	73 b	50 b	14 - 157	37 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	2.5	104	68-114
Toluene	mg/kg (ppm)	2.5	101	66-126
Ethylbenzene	mg/kg (ppm)	2.5	104	64 - 123
m,p-Xylene	mg/kg (ppm)	5	105	78-122
o-Xylene	mg/kg (ppm)	2.5	108	77 - 124
Naphthalene	mg/kg (ppm)	2.5	109	63-140

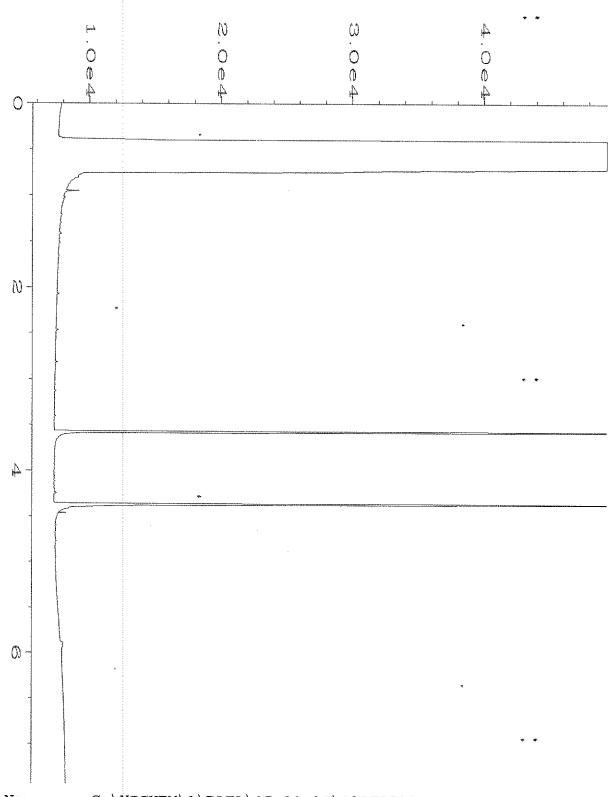
ENVIRONMENTAL CHEMISTS

Date of Report: 08/06/20 Date Received: 07/30/20

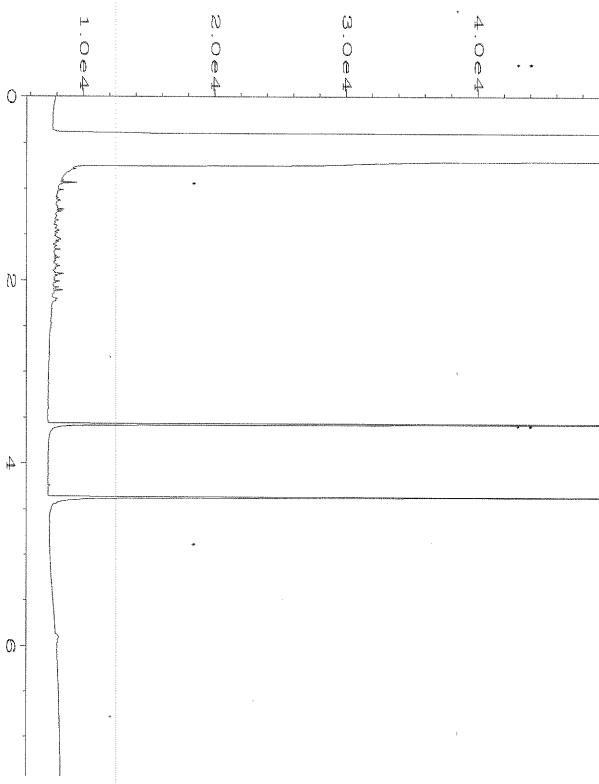
Project: Texaco Strickland PO 180357, F&BI 007523

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

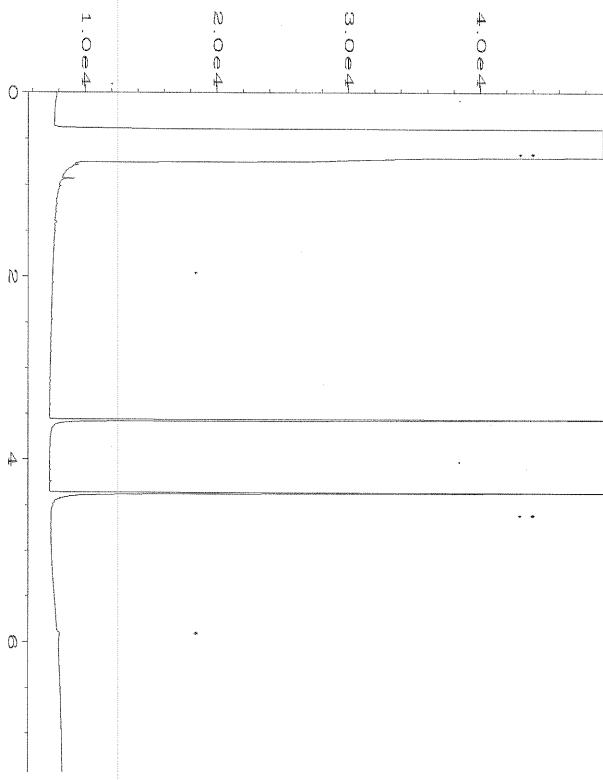
Laboratory Code: 007524-01 (Matrix Spike)


				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	50	< 0.35	101	76 - 125
Toluene	ug/L (ppb)	50	<1	95	76 - 122
Ethylbenzene	ug/L (ppb)	50	<1	95	69 - 135
m,p-Xylene	ug/L (ppb)	100	<2	96	69 - 135
o-Xylene	ug/L (ppb)	50	<1	98	60-140
Naphthalene	ug/L (ppb)	50	<1	99	44-164

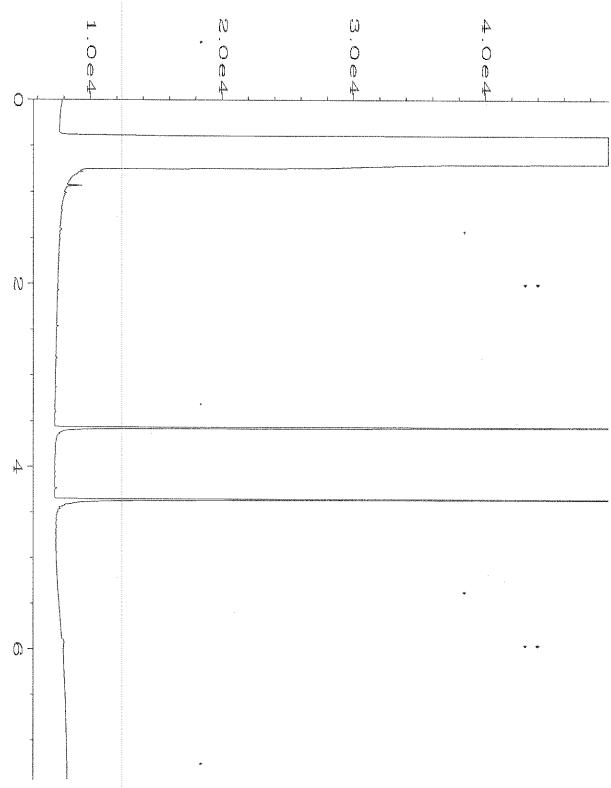
-			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	101	94	69-134	7
Toluene	ug/L (ppb)	50	95	88	72 - 122	8
Ethylbenzene	ug/L (ppb)	50	98	90	77 - 124	9
m,p-Xylene	ug/L (ppb)	100	100	91	81-112	9
o-Xylene	ug/L (ppb)	50	101	92	81-121	9
Naphthalene	ug/L (ppb)	50	97	94	64-133	3

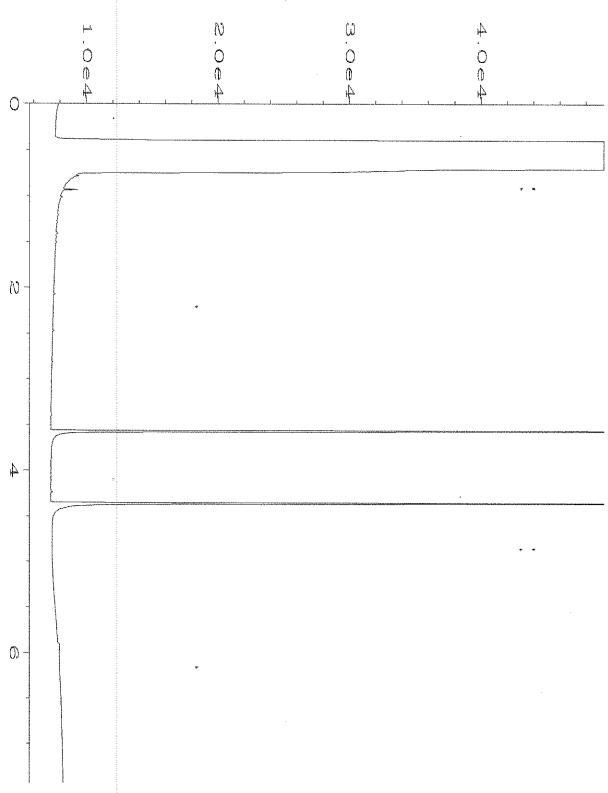

ENVIRONMENTAL CHEMISTS

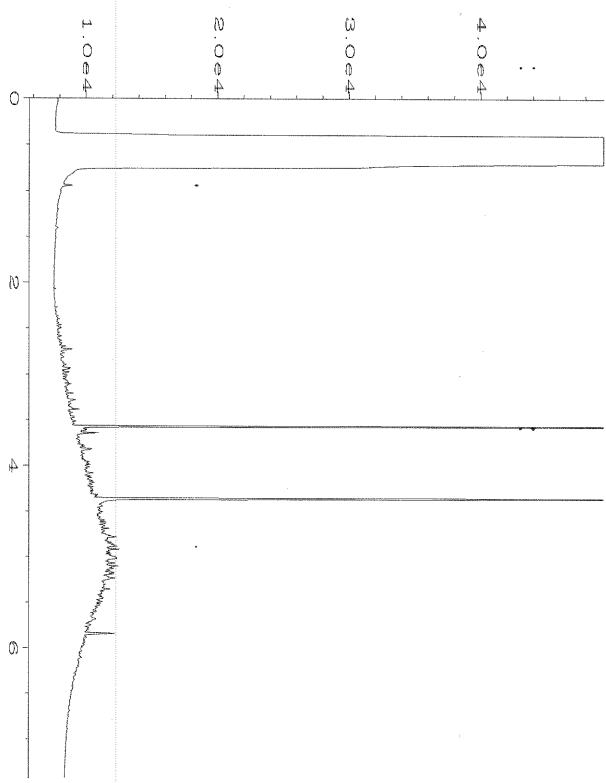
Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

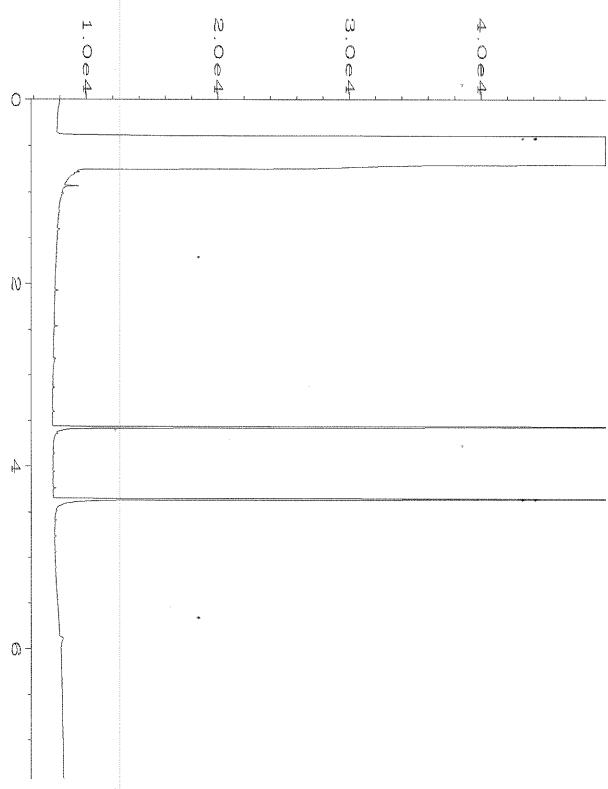

```
Data File Name : C:\HPCHEM\1\DATA\07-31-20\023F0501.D
Operator
                                                Page Number
Vial Number
                 : TL
Instrument
                 : GC1
                                                                 : 23
Sample Name
                : 007523-01
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 5
Acquired on
                : 31 Jul 20
                             02:20 PM
                                                Instrument Method: DX.MTH
Report Created on: 03 Aug 20
                                                Analysis Method : DX.MTH
                              07:57 AM
```



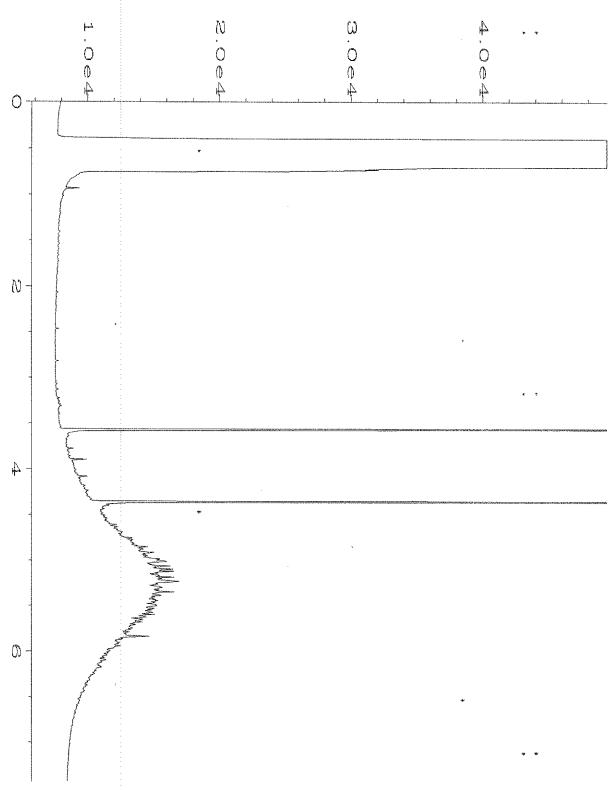

Data File Name : C:\HPCHEM\1\DATA\07-31-20\024F0701.D Operator : TL Page Number : 1 Instrument Vial Number : GC1 Sample Name : 007523-02 Injection Number: 1 Run Time Bar Code: Sequence Line Instrument Method: DX.MTH Acquired on : 31 Jul 20 02:58 PM Report Created on: 03 Aug 20 Analysis Method : DX.MTH 07:57 AM


Data File Name : C:\HPCHEM\1\DATA\07-31-20\025F0701.D Operator : TL Page Number Vial Number : 25 Injection Number : 1 Instrument : GC1 Sample Name : 007523-04 Sequence Line : 7 Run Time Bar Code: : 31 Jul 20 03:07 PM Acquired on Instrument Method; DX.MTH

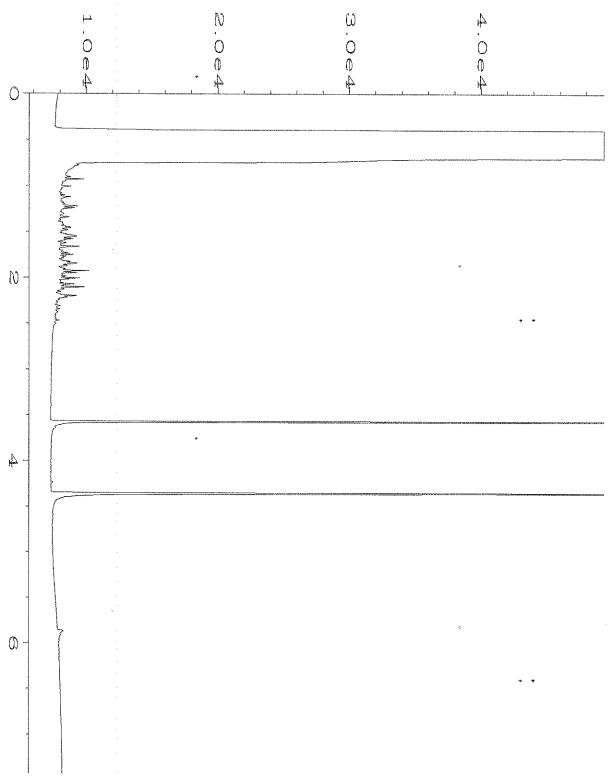
Report Created on: 03 Aug 20 07:57 AM Analysis Method : DX.MTH

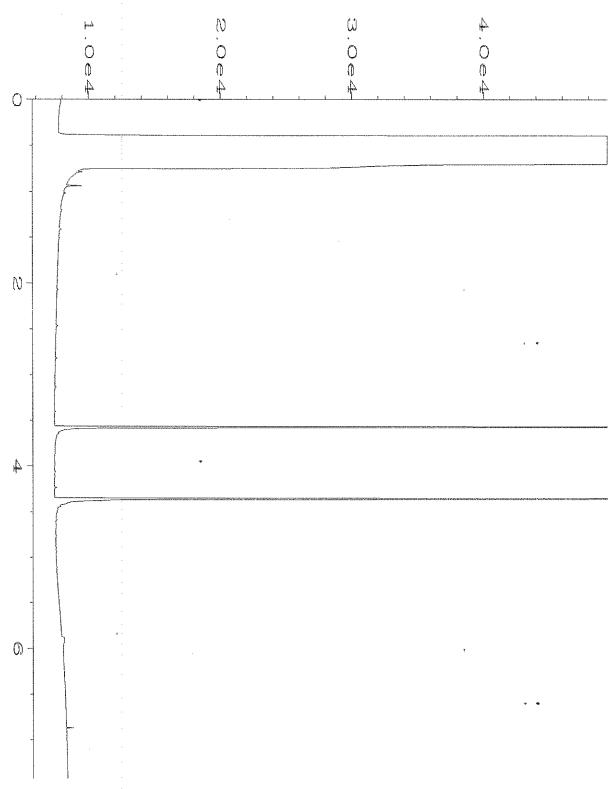



```
Data File Name : C:\HPCHEM\1\DATA\07-31-20\027F0701.D
Operator
                                               Page Number : 1
Vial Number : 27
                 : TL
Instrument
                 : GC1
                                               Injection Number: 1
Sample Name
                : 007523-23
                                               Sequence Line : 7
Run Time Bar Code:
                                               Instrument Method: DX.MTH
Acquired on
            : 31 Jul 20 03:30 PM
                                               Analysis Method : DX.MTH
Report Created on: 03 Aug 20 07:58 AM
```

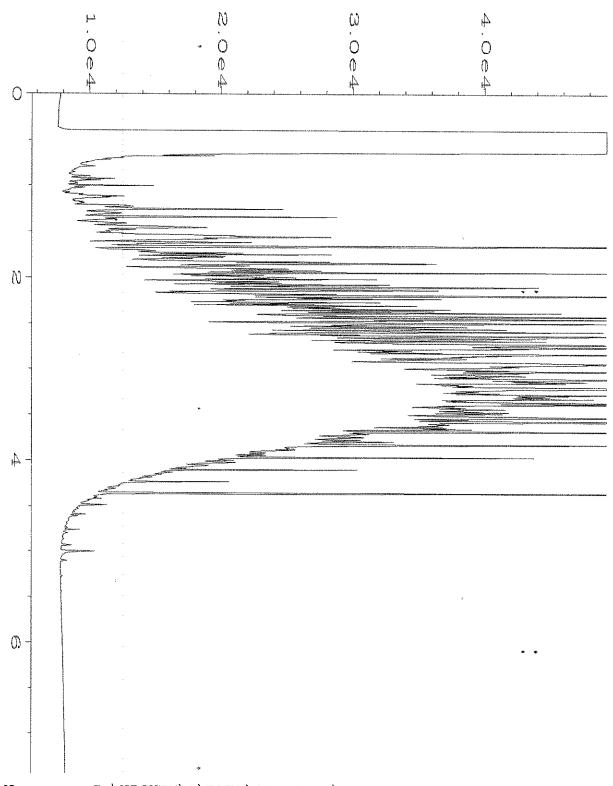



```
Data File Name
                   : C:\HPCHEM\1\DATA\07-31-20\028F0701.D
                                                       Page Number : 1
Vial Number : 28
Injection Number : 1
Operator
                     \mathrm{TL}
Instrument
                   : GC1
                                                                           : 28
Sample Name
                   : 007523-29
Run Time Bar Code:
                                                       Sequence Line : 7
Acquired on
                                                       Instrument Method: DX.MTH
                   : 31 Jul 20
                                  03:42 PM
                                                       Analysis Method : DX.MTH
Report Created on: 03 Aug 20
                                  07:58 AM
```




```
Data File Name
                   : C:\HPCHEM\1\DATA\07-31-20\029F0701.D
                                                     Page Numbér : 1
Vial Number : 29
Operator
                   : TL
Instrument
                   : GC1
                   : 007523-30
Sample Name
                                                     Injection Number: 1
                                                     Sequence Line · : 7
Instrument Method: DX.MTH
Run Time Bar Code:
              : 31 Jul 20 03:54 PM
Acquired on
```

Report Created on: 03 Aug 20 07:58 AM Analysis Method : DX.MTH




```
: C:\HPCHEM\1\DATA\07-31-20\030F0701.D
Data File Name
Operator
                                                     Page Number
                   : TL
                                                     Vial Number : 30
Injection Number : 1
Instrument
                   : GC1
                  : 007523-31
Sample Name
                                                     Sequence Line : 7
Instrument Method: DX.MTH
Run Time Bar Code:
Acquired on
                  : 31 Jul 20 04:06 PM
                                                     Analysis Method : DX.MTH
Report Created on: 03 Aug 20 07:58 AM
```



```
Data File Name
              : C:\HPCHEM\1\DATA\07-31-20\018F0501.D
                : TL
                                             Page Number
Operator
                                                         : 18
                                             Vial Number
Instrument
                : GC1
                                             Injection Number: 1
                : 00-1754 mb
Sample Name
                                             Sequence Line : 5
Run Time Bar Code:
Acquired on
                                             Instrument Method: DX.MTH
            : 31 Jul 20 01:21 PM
Report Created on: 03 Aug 20 07:57 AM
                                             Analysis Method : DX.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\07-31-20\003F0801.D
                : TL
Operator
                                             Page Number
                                             Vial Number
Instrument
                : GC1
               : 500 Dx 60-170C
                                             Injection Number: 1
Sample Name
                                             Sequence Line : 8
Run Time Bar Code:
Acquired on
            : 31 Jul 20
                                             Instrument Method: DX.MTH
                            04:42 PM
Report Created on: 03 Aug 20
                           07:57 AM
                                             Analysis Method : DX.MTH
```

		•													Received by:	Ph. (206) 285-8282	Ph. (20
å	ved at 3	Samples received at	Sam										X		Relinquished by:	Seattle, WA 98119-2029 R	Seattle
1828	7/30/20		E. O				2/2	Br	webber-Bruy	كالهر		lin	20	Mr. D. W.	Received by:	3012 16th Avenue West	3012 1
RESI	7130/20	Aspect Consulting	COV	rect	3			113	W.V	705	Rachel Cornw	- Rac		ann -	Relinquished by:	Friedman & Bruya, Inc.	Friedm
TIME		ANY	COMPANY	00					AMI	Z	PRINT NAME			SIGNATURE	+		
				-	-	-	-	-			N	+	0716	+	10	NN-15-7.5	5
		< >	2 .	+	-	-	-	-			S		1007		100	MW-20-75'	N,
		< <		-		+	-				্ৰ তা		0957	- (-	27-F	MW-20-22.5	3
		/ ×	+	+-	-	-		-			工		0949		07 A-D	MW -20-20'	7
			+	\dashv	-	-	-	-	_		-		0943		90	18:11-07-MM	MY
			1.	+	+	+-			1				0936		95	MW-20-15.5'	MM
				+		-	-	-	<u> </u> ×	X		-	0933		24	MW-20-13'	MM
			· ×	-	-		+-						8260		03	MW-20-1015,	N.W.
				7	+	+-	-	-	X	$ \times $		-	0921		02	MW-10-8'	Z
				<u> </u>	-	+	-		<u> ×</u>	>	- ai	1.05	11110	7/30/20	0/ A-R	MW-20-2555	WW-
8	Notes	Hold Pendin	WILL Den lin	PCBs EPA 8082 BTEXN 826	PAHs EPA 8270	VOCs EPA 8260	NWTPH-HCID	BTEX EPA 8021		NWTPH-Dx	# of Jars	Sample Type	Time Sampled	Date Sampled	Lab ID	Sample ID	
		ESTED	UES	REG	SES	ᄀᄓ		<u> </u>	-						t		
30 days	Dispose after 30 days	1 1 1				1 -				-	· Yes	ecific RLs?	Cumay In C	ei@aspect	ayonbofs	Phone (20 6)413-54 Email ayunkafski @ aspect cupsulphing with	Phone (
	amples	☐ Archive samples		(Ì				·			, S	REMAKKS	101	WA 48	City, State, ZIP Seather, WA 98104	City, Sta
AL	SAMPLE DISPOSAL	SAMP			INVOICE TO	200	Z		_			2			SH.350	Address 710 Low Ave, Str. 250	Address
by:	Rush charges authorized by:	Rush charge			7	70	180357	$\overline{\propto}$			PMY	Texaco Stricklimo	Texaco		Jan.	Company As pect Consulting	Compan
	Standard turnaround	Standard			#	PO#						NAME		10000	70.00	o Market o	Report T
ME UWI	TURNAROUND TIME VW	rage#_ TURN/	-		1 1		Vi	<u> </u>			(re)	SAMPLERS (signature)	-	Arian Circh	Vo CVI/A	Profession America Children Children	
4 Bos		30-20	-70	3 %	×	1		Y	101	USI	OF C	CHAIN (SAMPLE CHAIN OF CUSTODY	70	Ŋ	90750	

City, State, ZIP Seutle, WA 98104 Address 710 2nd Ave, Ste. 550 Company Aspect Consulting Report To Andrew You kotski / Adam Chriffin SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) PROJECT NAME REMARKS Texaco Stricksand 180357 INVOICE TO も P0# ME 07-30-20 SAMPLE DISPOSAL

Archive samples X Standard turnaround Rush charges authorized by: Page # 2 TURNAROUND TIME r cf

	г	- 1				r				Γ	,		_		
		8-10-25	MW-25-25	MW-25-22.5'	MW-25-201	MW-25-1751	MW-25-151	MW-25-13'	MW-25-10,5'	MW-25-81	MW-25-5'	Sample ID			Phone (706) 413-5411 Email au WWofsk Daspect Consulting Curr
SI		20 ALB	19 A-D	187	17 A-R	16 A · D	15	14	(3	12 A &	11 A-9	Lab ID			il auunlyefsk
SIGNATURE		4				7					7/30/20	Date Sampled		•	. Daspect
		1134	holo	0757	0750	240	0740	0734	0729	0713	0716	Time Sampled			or by three of s
		Ł									5011	Sample Type			pecific RLs
PKI		a	S	N	N	4	Q.	57	vi	N	2	# of Jars			s? - Yo
PRINT NAME										×		NWTPH-Dx			es /
AM										×		NWTPH-Gx			2
E COMPANY	1											BTEX EPA 8021			
										<u> </u>		NWTPH-HCID	$\Big _{\mathbb{A}}$		
			<u> </u>	<u> </u>			ļ					VOCs EPA 8260	NAL		\$
	Ì		-	ļ		ļ	ļ	-		_		PAHs EPA 8270	YSE		
					ļ		ļ					PCBs EPA 8082	SRE		
								<u> </u>		X	_	BTEX N 82W	QUE		
	7 7 7 7	×	×	×	X		X		/		X	NWTPH-HCID VOCs EPA 8260 PAHS EPA 8270 PCBS EPA 8082 BTEX N 8260 HOld Panding	STED		☐ Other Default
															er It: D
חאום	מיייי		ON Y 3 VO AU/SON	-								Z			© Other
1 -	-		DAC									Notes			r 30
TIVE	TIME		4601	\											days

Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282

Relinquished by:

Received by:

Friedman & Bruya, Inc.

Relinquished by:

Ready Cornwell

Aspect Consulting

7/30/70

853

7/30/20

1558

Liz Webber - Brya

Received by:

SAMPLE CHAIN OF CUSTODY

07-30-20

City, State, ZIP Seathe, WA Trion Company Aspect Consultivey Address 710 2nd Ave, SK. 550 Report To Andrew You ke toki / Adown Griffin

Phone (206) 413-5411 Email ayan to F3 to a spect on Project specific RLs? - Yes / (No SAMPLERS (signature) REMARKS PROJECT NAME Toxaco Strickound 180357 INVOICE TO 4 PO#

Rush charges authorized by:

XStandard turnaround

TURNAROUND TIME 141

RUSH_

☐ Archive samples

SAMPLE DISPOSAL

Default: Dispose after 30 days

	MW-22A-2.5	MW-21A-2.5	8-10-25	8-10-22.5	B-10-20	8-10-17.5	B-10-16	B-10-12.5	B-10-7.5	8-10-6	Sample ID	
SI	02	25	28	77	スケル・圧	25 A D	22	22	22)	21 A.E	Lab ID	2
SIGNATURE	+									2(A.E 7/30/20 1140	Date Sampled	
	1557	17341	1313	1300	1253	1247	1707	1700	1148		Time Sampled	
	4									5011	Sample Type	
PRII	9	a	N	N	N	4	N	5	N	51	# of Jars	
PRINT NAME	X	×						×			NWTPH-Dx	
AMI	×	X		<u> </u>	<u> </u>		<u> </u>	×			NWTPH-Gx	(
		<u> </u>		ļ		ļ	ļ	ļ	ļ	-	BTEX EPA 8021	
			-					-	<u> </u>		NWTPH-HCID	A
	ļ	ļ	-	<u> </u>		-	-	-	<u> </u>		VOCs EPA 8260	VAL
			-	-	-	-	-	-	-	<u> </u>	PAHs EPA 8270	YSES
2	-		<u> </u>	-		-		-			PCBs EPA 8082	REC
COMPANY	×	<u> </u>		—	ļ	 	ļ	X	 	-	BTEMV5260C HOLL Pending	UE
ANY		<u> </u>	\prec	<u> </u>	$\langle \times \rangle$	×	×	-	×	×	Hold Pending	ANALYSES REQUESTED
										-		
DATE						NO HOLLAN					Notes	
TIME						7					© &	

Seattle, WA 98119-2029

Relinquished by:

Received by:

Ph. (206) 285-8282

Received by:

3012 16th Avenue West

Friedman & Bruya, Inc.

Relinquished by:

Parchel Connuct

7/30/20

1558

7/30/20

2880

ج'

Newber-Bruys

Phone 2006 413-541) Email Chyconkoff & Ocspect of Project specific RLs? - Yes / No Address 710 2nd Ave, SK. 550 Report To Andrew Yunketski / Adww Chittin City, State, ZIP Swith WA 98104 Company Aspect CUMSU/ hing MW-228-5 Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282 Friedman & Bruya, Inc. DUP-4 DUP-5 Trip blunk Sample ID Relinquished by: Kake Relinquished by: Received by: Received by: 32 A-E 22 39A-B|7+ 3(A 0) 7/30/20 1434 Lab ID SIGNATURE M.D. W. 7130/20 7/30/20 Sampled Date Sampled SAMPLERS (signature) Time REMARKS Texaco Strick land PROJECT NAME 5011 5011 108 Sample Type A Kachel Connuell 15 U J # of Jars PRINT NAME Webber-Brya NWTPH-Dx BTEX EPA 8021 180357 NWTPH-HCID INVOICE TO ANALYSES REQUESTED 7 P0# Aspect Consulting PAHs EPA 8270 PCBs EPA 8082 COMPANY X BTEXN8260C Hold Pending × Page # Default: Dispose after 30 days ☐ Archive samples Rush charges authorized by: Standard turnaround RUSH_ TURNAROUND TIME SAMPLE DISPOSAL 7/30/10 7/30/20 DATE Notes 1558 553 TIME

SAMPLE CHAIN OF CUSTODY

07-30-20

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 11, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 5, 2020 from the Texaco Strickland PO 180357, F&BI 008076 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin

ASP0811R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 5, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 008076 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
008076 -01	B-09-2.5
008076 -02	B-09-4
008076 -03	B-09-6
008076 -04	B-12-2.5
008076 -05	B-12-5
008076 -06	Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

Date Extracted: 08/07/20 Date Analyzed: 08/07/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
B-09-2.5 008076-01	<5	96
B-09-6 008076-03	<5	96
Method Blank _{00-1400 MB}	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

Date Extracted: 08/07/20 Date Analyzed: 08/07/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
Trip Blank	<100	95
Method Blank _{00-1781 MB}	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

Date Extracted: 08/06/20 Date Analyzed: 08/06/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{\text{(C}_{25}\text{-C}_{36}\text{)}}$	Surrogate (% Recovery) (Limit 48-168)
B-09-2.5 008076-01	<50	<250	92
B-09-6 008076-03	<50	<250	93
Method Blank _{00-1777 MB}	<50	<250	92

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B-09-2.5 Client: Aspect Consulting, LLC Texaco Strickland PO 180357 Date Received: 08/05/20 Project: Lab ID: 008076-01 Date Extracted: 08/06/20 Date Analyzed: 08/06/20 Data File: 080325.DMatrix: Soil Instrument: GCMS13

Units: mg/kg (ppm) Dry Weight Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B-09-6 Client: Aspect Consulting, LLC
Date Received: 08/05/20 Project: Texaco Strickland PO 180357
Date Extracted: 08/06/20 Lab ID: 008076-03

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Texaco Strickland PO 180357

08/06/20 Lab ID: 00-1728 mbDate Extracted: Date Analyzed: 08/06/20 Data File: 080310.DSoil Matrix: Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)
Benzene	< 0.03
Toluene	< 0.05
Ethylbenzene	< 0.05
m,p-Xylene	< 0.1
o-Xylene	< 0.05
Naphthalene	< 0.05

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	08/05/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/06/20	Lab ID:	008076-06
Date Analyzed:	08/06/20	Data File:	080324.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Extracted:	08/06/20	Lab ID:	00-1729 mb
Date Analyzed:	08/06/20	Data File:	080309.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 008076-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	90	71-131	-

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH- $G_{\mathbf{x}}$

Laboratory Code: 008040-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	108	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 008076-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	86	96	73-135	11

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	84	74-139	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008076-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	1.0	< 0.03	88	84	50-150	5
Toluene	mg/kg (ppm)	1.0	< 0.05	90	84	50-150	7
Ethylbenzene	mg/kg (ppm)	1.0	< 0.05	92	86	50-150	7
m,p-Xylene	mg/kg (ppm)	2.0	< 0.1	88	82	50-150	7
o-Xylene	mg/kg (ppm)	1.0	< 0.05	90	83	50-150	8
Naphthalene	mg/kg (ppm)	1.0	< 0.05	95	87	50-150	9

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	mg/kg (ppm)	1.0	101	70-130		
Toluene	mg/kg (ppm)	1.0	104	70-130		
Ethylbenzene	mg/kg (ppm)	1.0	105	70-130		
m,p-Xylene	mg/kg (ppm)	2.0	100	70-130		
o-Xylene	mg/kg (ppm)	1.0	102	70-130		
Naphthalene	mg/kg (ppm)	1.0	106	70-130		

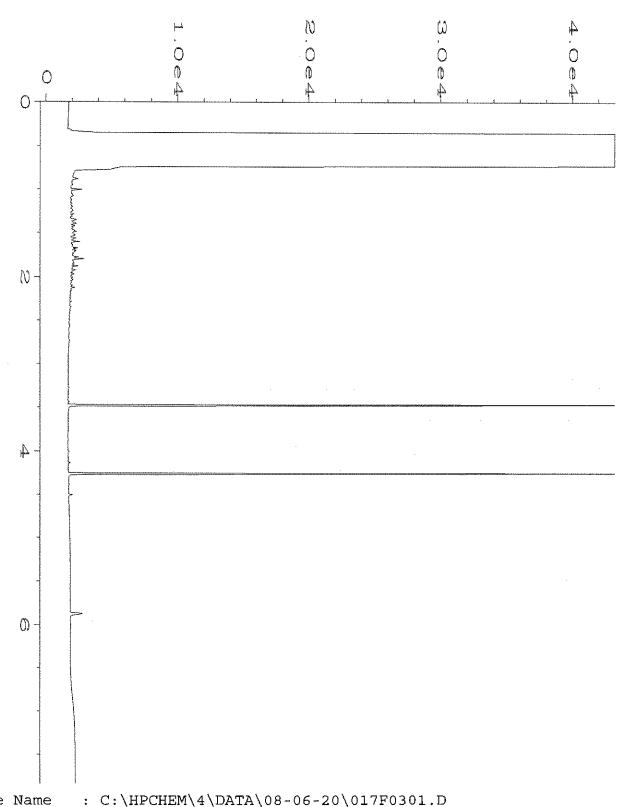
ENVIRONMENTAL CHEMISTS

Date of Report: 08/11/20 Date Received: 08/05/20

Project: Texaco Strickland PO 180357, F&BI 008076

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008091-01 (Matrix Spike)


				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	10	< 0.35	98	50 - 150
Toluene	ug/L (ppb)	10	2.3	94 b	50 - 150
Ethylbenzene	ug/L (ppb)	10	<1	97	50 - 150
m,p-Xylene	ug/L (ppb)	20	<2	94	50 - 150
o-Xylene	ug/L (ppb)	10	<1	95	50 - 150
Naphthalene	ug/L (ppb)	10	<1	100	50-150

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	98	98	70-130	0
Toluene	ug/L (ppb)	10	97	99	70-130	2
Ethylbenzene	ug/L (ppb)	10	98	99	70-130	1
m,p-Xylene	ug/L (ppb)	20	95	96	70-130	1
o-Xylene	ug/L (ppb)	10	96	97	70-130	1
Naphthalene	ug/L (ppb)	10	101	102	70-130	1

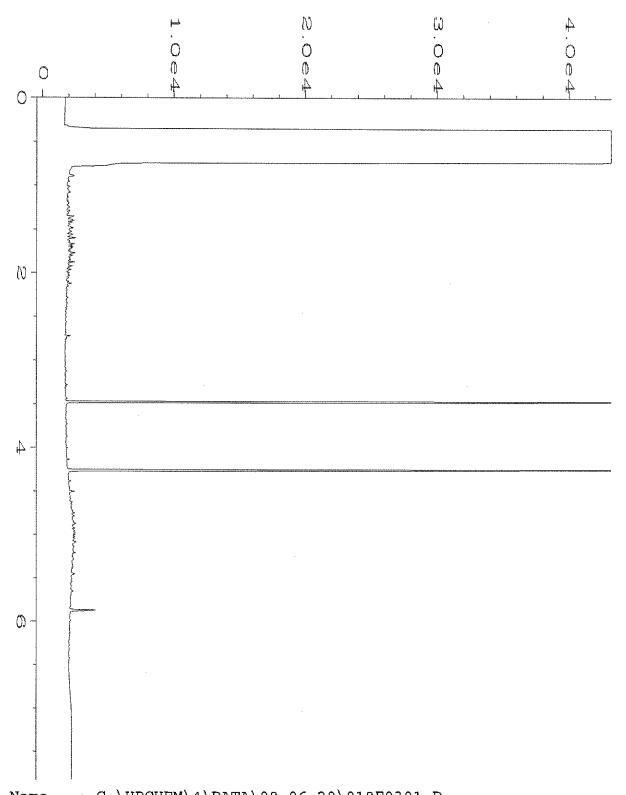
ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- ${\rm d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

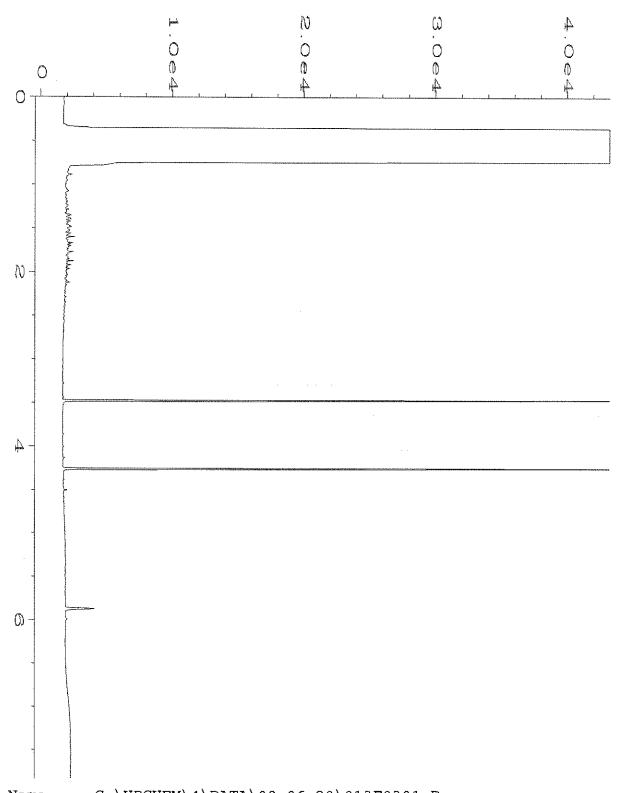

```
Data File Name : C:\HPCHEM\4\DATA\08-06-20\017F0301.D

Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 17

Sample Name : 008076-01 Injection Number : 1

Run Time Bar Code: Sequence Line : 3


Acquired on : 06 Aug 20 11:03 AM Instrument Method: DX.MTH
```

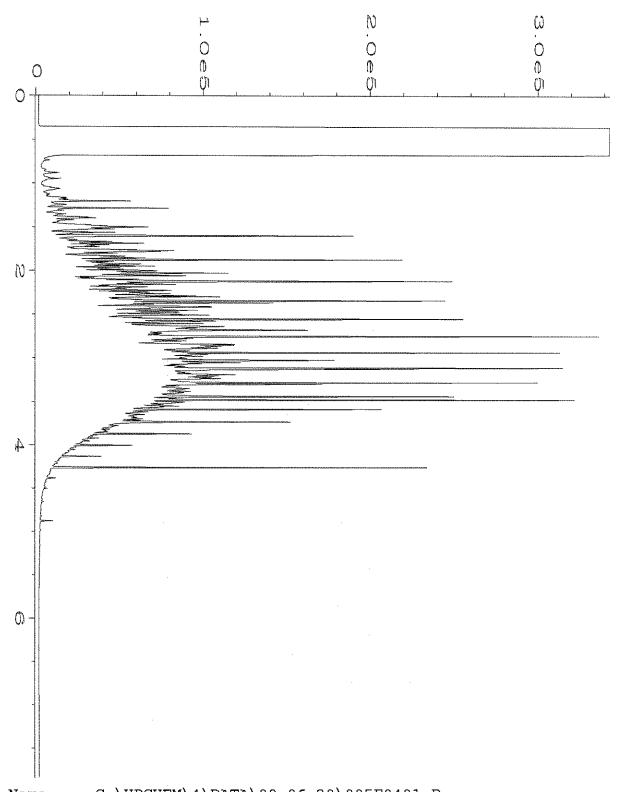
Report Created on: 07 Aug 20 08:40 AM Analysis Method : DEFAULT.MTH


```
Data File Name
                : C:\HPCHEM\4\DATA\08-06-20\018F0301.D
                                                  Page Number
Operator
                  : TL
                                                  Vial Number
Instrument
                  : GC#4
                                                                    : 18
                                                  Injection Number: 1
Sample Name
                 : 008076-03
                                                  Sequence Line : 3
Instrument Method: DX.MTH
Run Time Bar Code:
```

Acquired on : 06 Aug 20 11:16 AM Report Created on: 07 Aug 20 08:41 AM Analysis Method : DEFAULT.MTH


```
Data File Name : C:\HPCHEM\4\DATA\08-06-20\013F0301.D

Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 13

Sample Name : 00-1777 mb Injection Number : 1

Run Time Bar Code: Sequence Line : 3

Acquired on : 06 Aug 20 10:12 AM Instrument Method: DX.MTH

Report Created on: 07 Aug 20 08:41 AM Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\08-06-20\005F0401.D

Operator : TL Page Number : 1

Instrument : GC#4 Vial Number : 5

Sample Name : 1000 Dx 60-170B Injection Number : 1

Run Time Bar Code: Sequence Line : 4

Acquired on : 06 Aug 20 02:01 PM Instrument Method: DX.MTH
```

Acquired on : 06 Aug 20 02:01 PM Instrument Method: DX.MTH
Report Created on: 07 Aug 20 08:41 AM Analysis Method : DEFAULT.MTH

Company Aspect Consulting
Address 710 2 Ave Se 550 City, State, ZIP Seattle, WA, 98104 Report To Ankrew Vorhofskill-down brills Phone (206) 413-5411 Email aymkal & Desped word Project specific RLs? - Yes / Ro Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282 Friedman & Bruya, Inc. 3-G-05 B-09-B-99-4 S-0-10-5 5-12-5 Sample ID 070807b Relinquished by: Relinquished by: Received by: Received by: 06 A-B 200 B 8 2 0(A-B Lab ID SIGNATURE Sampled Date SAMPLE CHAIN OF CUSTODY Time Sampled 部 222 SAMPLERS (signature) 1421 1671 REMARKS PROJECT NAME Toxaco Strictle 1:05 SE SE Sample Type BISEAT # of Jars Z PRINT NAME NWTPH-Dx NWTPH-Gx ACHES F BTEX EPA 8021 1808/ 1808/ INVOICE TO PO# 2 PAHs EPA 8270 COMPANY × × 08-05-20 (on)c \succ Standard turnaround Default: Dispose after 30 days ☐ Archive samples Rush charges authorized by: □ Other_ Samples market # TURNAROUND TIME SAMPLE DISPOSAL 20170 received at Run NWTPH-Gx and 8260 do not run NWTPH-Dx. 08/06/2020 Andrew Yonkofski, DATE Notes TIME 28 15/

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 1, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 18, 2020 from the Texaco Strickland PO 180357, F&BI 008261 project. There are 51 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin

ASP0901R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 18, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 008261 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
008261 -01	MW-1-081820
008261 -02	MW-2-081720
008261 -03	MW-4-081820
008261 -04	MW-6-081720
008261 -05	MW-7-081720
008261 -06	MW-8-081820
008261 -07	MW-9-081820
008261 -08	MW-10-081820
008261 -09	MW-11-081720
008261 -10	MW-12-081720
008261 -11	MW-13-081720
008261 -12	MW-14-081820
008261 -13	MW-16-081720
008261 -14	MW-17-081720
008261 -15	MW-18-081820
008261 -16	MW-19-081820
008261 -17	MW-20-081720
008261 -18	MW-21-081720
008261 -19	MW-22-081720
008261 -20	MW-23-081820
008261 -21	MW-24-081820
008261 -22	MW-25-081820
008261 -23	MW-26-081820
008261 -24	DUP-01-081720
008261 -25	DUP-02-081820
008261 -26	RB-01-081720
008261 -27	RB-02-081820
008261 -28	Trip Blank
	=

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

Date Extracted: 08/24/20

Date Analyzed: 08/24/20 and 08/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-1-081820 008261-01 1/10	14,000	102
MW-2-081720 008261-02	770	106
MW-4-081820 008261-03 1/100	170,000	104
MW-6-081720 008261-04	<100	95
MW-7-081720 008261-05	<100	92
MW-8-081820 008261-06 1/100	130,000	100
MW-9-081820 008261-07	<100	94
MW-10-081820 008261-08	5,100	102
MW-11-081720 008261-09 1/20	27,000	106
MW-12-081720 008261-10	230	100
MW-13-081720 008261-11	420	104
MW-14-081820 008261-12	5,000	92

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

Date Extracted: 08/24/20

Date Analyzed: 08/24/20 and 08/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
MW-16-081720 008261-13	<100	96
MW-17-081720 008261-14	550	104
MW-18-081820 008261-15	<100	94
MW-19-081820 008261-16	<100	96
MW-20-081720 008261-17	120	99
MW-21-081720 008261-18	7,400	132
MW-22-081720 008261-19 1/10	14,000	106
MW-23-081820 008261-20 1/10	21,000	99
MW-24-081820 008261-21	<100	95
MW-25-081820 008261-22	<100	95
MW-26-081820 008261-23	<100	90
DUP-01-081720 008261-24 1/10	13,000	110

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

Date Extracted: 08/24/20

Date Analyzed: 08/24/20 and 08/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 51-134)
DUP-02-081820 008261-25	<100	95
RB-01-081720 008261-26	<100	94
RB-02-081820 008261-27	<100	93
Trip Blank 008261-28	<100	94
Method Blank _{00-1800 MB}	<100	95
Method Blank _{00-1801 MB}	<100	86

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

Date Extracted: 08/19/20 Date Analyzed: 08/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-1-081820 008261-01	2,100 x	1,100 x	95
MW-2-081720 008261-02	660 x	310 x	84
MW-4-081820 008261-03	4,500 x	1,000 x	86
MW-6-081720 008261-04	170 x	<250	105
MW-7-081720 008261-05	110 x	<260	86
MW-8-081820 008261-06	3,200 x	550 x	68
MW-9-081820 008261-07	80 x	<250	112
MW-10-081820 008261-08	1,100 x	360 x	98
MW-11-081720 008261-09	1,600 x	260 x	106
MW-12-081720 008261-10	240 x	<250	97
MW-13-081720 008261-11	320 x	<250	84

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

Date Extracted: 08/19/20 Date Analyzed: 08/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 47-140)
MW-14-081820 008261-12	570 x	<250	80
MW-16-081720 008261-13	130 х	<250	100
MW-17-081720 008261-14	270 x	<250	89
MW-18-081820 008261-15	<50	<250	83
MW-19-081820 008261-16	<50	<250	92
MW-20-081720 008261-17	180 x	<250	94
MW-21-081720 008261-18	3,200 x	260 x	80
MW-22-081720 008261-19	2,500 x	<250	86
MW-23-081820 008261-20	1,900 x	<250	90
MW-24-081820 008261-21	76 x	<250	106
MW-25-081820 008261-22	55 x	<250	119

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

Date Extracted: 08/19/20 Date Analyzed: 08/21/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 47-140)
MW-26-081820 008261-23	<50	<250	119
DUP-01-081720 008261-24	3,100 x	260 x	91
DUP-02-081820 008261-25	53 x	<250	111
RB-01-081720 008261-26	67 x	<250	114
RB-02-081820 008261-27	<50	<250	96
Method Blank 00-1892 MB	<50	<250	82
Method Blank _{00-1893 MB}	<50	<250	107

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-1-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-01
Date Analyzed:	08/19/20	Data File:	081935.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	88	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	860 ve
Toluene	170 ve
Ethylbenzene	280 ve
m,p-Xylene	560 ve
o-Xylene	170 ve
Naphthalene	84

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-1-081820 Client: Aspect Consulting, LLC Date Received: 08/18/20 Project: Texaco Strickland PO 180357 Lab ID: 008261-01 1/100 Date Extracted: 08/24/20 Date Analyzed: 08/26/20 Data File: $082635.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	96	60	133

Concentration
Compounds:

Benzene
2,200
Toluene
180
Ethylbenzene
300
m,p-Xylene
580
o-Xylene
170
Naphthalene

Concentration
ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-2-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-02
Date Analyzed:	08/19/20	Data File:	081931.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	94	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	4.5
Toluene	<1
Ethylbenzene	2.8
m,p-Xylene	2.1
o-Xylene	<1
Naphthalene	15

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-4-081820 Client: Aspect Consulting, LLC Date Received: 08/18/20 Project: Texaco Strickland PO 180357 Lab ID: Date Extracted: 08/19/20 008261-03 1/100 Date Analyzed: 08/24/20 Data File: 082430.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: VM

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	94	60	133

 $\begin{array}{c} \text{Concentration} \\ \text{Compounds:} \\ \text{Benzene} \\ \text{Toluene} \\ \text{Ethylbenzene} \\ \end{array} \begin{array}{c} \text{Concentration} \\ \text{ug/L (ppb)} \\ \text{6,000} \\ \text{21,000 ve} \\ \text{2,300} \\ \end{array}$

 Ethylbenzene
 2,300

 m,p-Xylene
 10,000

 o-Xylene
 4,100

 Naphthalene
 500

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-4-081820 Client: Aspect Consulting, LLC

Date Received: 08/18/20 Project: Texaco Strickland PO 180357

Date Extracted: 08/24/20 Lab ID: 008261-03 1/1000

Date Analyzed: 08/26/20 Data File: 082637.D

Motrice: Western Received: CCMS4

Date Analyzed: 08/26/20 Data File: 082637.1

Matrix: Water Instrument: GCMS4
Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	95	60	133

Concentration
Ug/L (ppb)

Benzene 6,400
Toluene 21,000
Ethylbenzene 2,400
m,p-Xylene 11,000
o-Xylene 4,300
Naphthalene <1,000

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-6-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-04
Date Analyzed:	08/19/20	Data File:	081931.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-7-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-05
Date Analyzed:	08/19/20	Data File:	081932.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-8-081820 Client: Aspect Consulting, LLC Date Received: 08/18/20 Project: Texaco Strickland PO 180357 Lab ID: Date Extracted: 08/19/20 008261-06 1/100 Date Analyzed: 08/24/20 Data File: 082431.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

400

Concentration
Ug/L (ppb)

Benzene 4,800
Toluene 18,000 ve
Ethylbenzene 1,600
m,p-Xylene 7,500
o-Xylene 2,800

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-8-081820 Client: Aspect Consulting, LLC Date Received: 08/18/20 Project: Texaco Strickland PO 180357 Lab ID: Date Extracted: 08/24/20 008261-06 1/1000 Date Analyzed: 08/26/20 Data File: $082638.\mathrm{D}$ Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	95	60	133

Concentration
Compounds:

Benzene
4,900
Toluene
18,000
Ethylbenzene
m,p-Xylene
0-Xylene
Naphthalene

Concentration
ug/L (ppb)
1,600
18,000
2,700
7,400
2,700
<1,000

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-9-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-07
Date Analyzed:	08/19/20	Data File:	081933.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-10-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-08 1/10
Date Analyzed:	08/24/20	Data File:	082424.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	490
Toluene	<10
Ethylbenzene	200
m,p-Xylene	240
o-Xylene	<10
Naphthalene	60

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-11-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-09 1/100
Date Analyzed:	08/24/20	Data File:	082432.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	330
Toluene	2,200
Ethylbenzene	790
m,p-Xylene	2,700
o-Xylene	700
Naphthalene	140

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-12-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-10
Date Analyzed:	08/19/20	Data File:	081934.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-13-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-11
Date Analyzed:	08/19/20	Data File:	081935.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	0.75
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-14-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-12
Date Analyzed:	08/19/20	Data File:	081936.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	380 ve
Toluene	9.8
Ethylbenzene	32
m,p-Xylene	19
o-Xylene	3.9
Naphthalene	31

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-14-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-12 1/10
Date Analyzed:	08/24/20	Data File:	082425.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	95	63	127
4-Bromofluorobenzene	93	60	133

Concentration ug/L (ppb)
1,200
<10
29
<20
<10
25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-16-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-13
Date Analyzed:	08/19/20	Data File:	081917.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-17-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-14
Date Analyzed:	08/19/20	Data File:	081932.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	1.1
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-18-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-15
Date Analyzed:	08/19/20	Data File:	081918.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	95	50	150

1 Bromondorobenzene	88
Compounds:	Concentration ug/L (ppb)
Benzene	1.2
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-19-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-16
Date Analyzed:	08/19/20	Data File:	081919.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-20-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-17
Date Analyzed:	08/19/20	Data File:	081920.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-21-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-18 1/10
Date Analyzed:	08/24/20	Data File:	082426.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	94	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	21
Toluene	<10
Ethylbenzene	400
m,p-Xylene	48
o-Xylene	<10
Naphthalene	470

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-22-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-19 1/10
Date Analyzed:	08/24/20	Data File:	082427.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	540
Toluene	56
Ethylbenzene	630
m,p-Xylene	1,200
o-Xylene	150
Naphthalene	220

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-23-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-20
Date Analyzed:	08/19/20	Data File:	081933.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	106	50	150
4-Bromofluorobenzene	103	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	880 ve
Toluene	200 ve
Ethylbenzene	330 ve
m,p-Xylene	690 ve
o-Xylene	110
Nanhthalene	110

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-23-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/24/20	Lab ID:	008261-20 1/100
Date Analyzed:	08/26/20	Data File:	082636.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	3,100
Toluene	210
Ethylbenzene	400
m,p-Xylene	790
o-Xylene	110
Naphthalene	<100

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-24-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-21
Date Analyzed:	08/19/20	Data File:	081926.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-25-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-22
Date Analyzed:	08/19/20	Data File:	081927.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-26-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-23
Date Analyzed:	08/19/20	Data File:	081911.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	DUP-01-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-24 1/10
Date Analyzed:	08/24/20	Data File:	082429.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	VM

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	500
Toluene	52
Ethylbenzene	570
m,p-Xylene	1,100
o-Xylene	140
Naphthalene	200

ENVIRONMENTAL CHEMISTS

Client Sample ID:	DUP-02-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-25
Date Analyzed:	08/19/20	Data File:	081928.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	1.2
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	RB-01-081720	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-26
Date Analyzed:	08/19/20	Data File:	081929.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	89	50	150
Toluene-d8	93	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	RB-02-081820	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-27
Date Analyzed:	08/19/20	Data File:	081930.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	08/18/20	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	008261-28
Date Analyzed:	08/19/20	Data File:	081912.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Extracted:	08/26/20	Lab ID:	00-1868 mb
Date Analyzed:	08/26/20	Data File:	082609.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	00-1852 mb
Date Analyzed:	08/19/20	Data File:	081909.D
Matrix:	Water	Instrument:	GCMS11
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Extracted:	08/19/20	Lab ID:	00-1853 mb
Date Analyzed:	08/19/20	Data File:	081910.D
Matrix:	Water	Instrument:	GCMS13
Units:	ug/L (ppb)	Operator:	AEN

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	96	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 008261-05 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	93	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 008261-21 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	95	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	100	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	92	96	61-133	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008261-04 (Matrix Spike)

			Percent				
	Reporting	Spike	Sample	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Benzene	ug/L (ppb)	10	< 0.35	106	50-150		
Toluene	ug/L (ppb)	10	<1	100	50 - 150		
Ethylbenzene	ug/L (ppb)	10	<1	103	50 - 150		
m,p-Xylene	ug/L (ppb)	20	<2	102	50 - 150		
o-Xylene	ug/L (ppb)	10	<1	102	50 - 150		
Naphthalene	ug/L (ppb)	10	<1	104	50-150		

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	106	104	70-130	2
Toluene	ug/L (ppb)	10	101	101	70-130	0
Ethylbenzene	ug/L (ppb)	10	102	100	70-130	2
m,p-Xylene	ug/L (ppb)	20	100	98	70-130	2
o-Xylene	ug/L (ppb)	10	101	100	70-130	1
Naphthalene	ug/L (ppb)	10	109	105	70-130	4

ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008261-23 (Matrix Spike)

		Percent				
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Benzene	ug/L (ppb)	10	< 0.35	100	50-150	
Toluene	ug/L (ppb)	10	<1	98	50-150	
Ethylbenzene	ug/L (ppb)	10	<1	100	50-150	
m,p-Xylene	ug/L (ppb)	20	<2	96	50-150	
o-Xylene	ug/L (ppb)	10	<1	97	50-150	
Naphthalene	ug/L (ppb)	10	<1	103	50-150	

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	98	103	70-130	5
Toluene	ug/L (ppb)	10	95	100	70-130	5
Ethylbenzene	ug/L (ppb)	10	97	102	70-130	5
m,p-Xylene	ug/L (ppb)	20	94	98	70-130	4
o-Xylene	ug/L (ppb)	10	95	100	70-130	5
Naphthalene	ug/L (ppb)	10	101	103	70-130	2

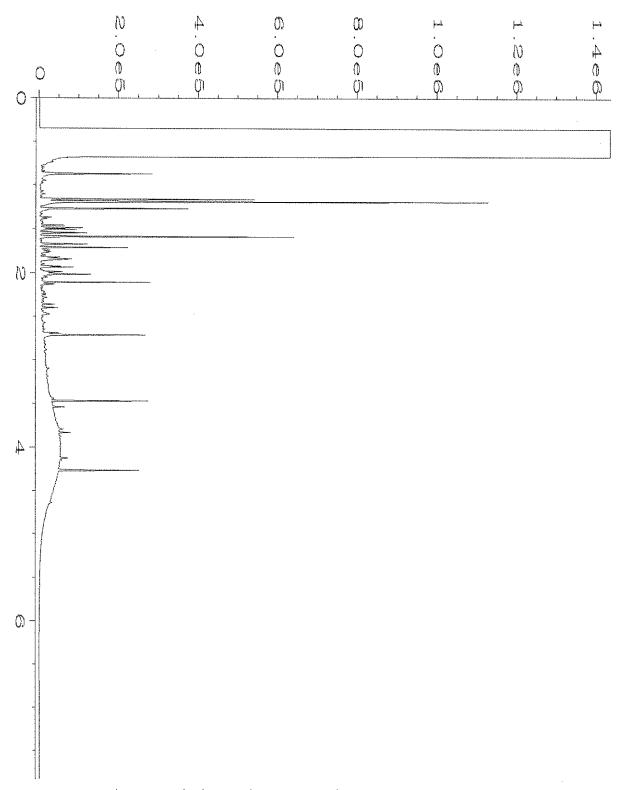
ENVIRONMENTAL CHEMISTS

Date of Report: 09/01/20 Date Received: 08/18/20

Project: Texaco Strickland PO 180357, F&BI 008261

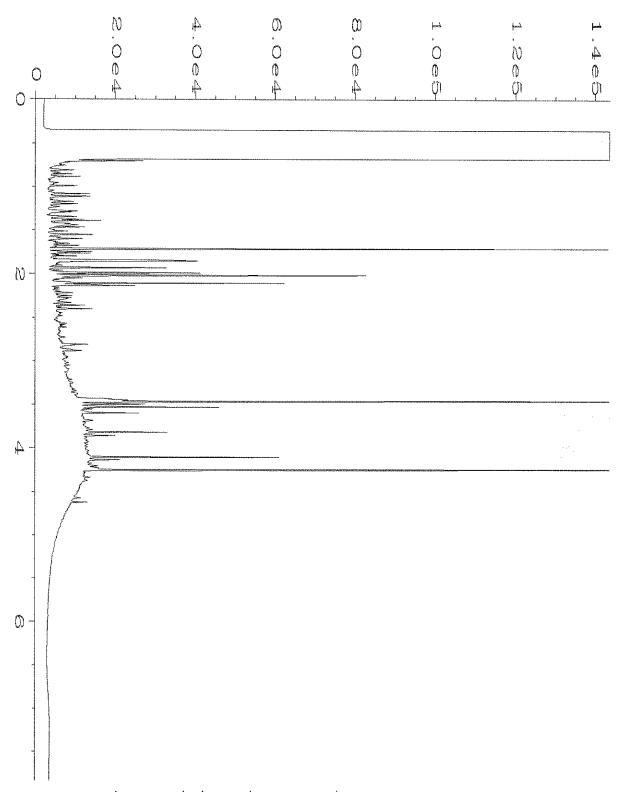
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 008381-01 (Matrix Spike)

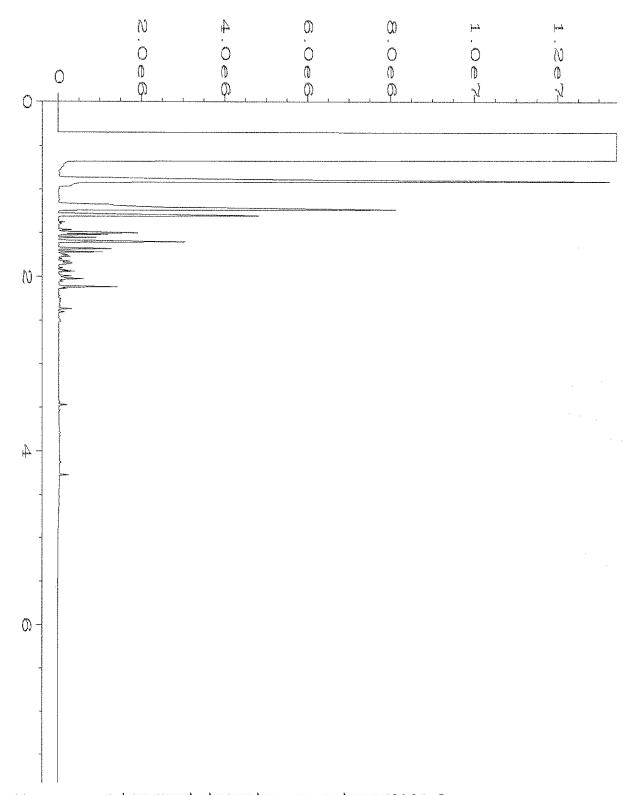

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	50	< 0.35	94	76 - 125
Toluene	ug/L (ppb)	50	<1	93	76 - 122
Ethylbenzene	ug/L (ppb)	50	<1	95	69-135
m,p-Xylene	ug/L (ppb)	100	<2	96	69-135
o-Xylene	ug/L (ppb)	50	<1	96	60-140
Naphthalene	ug/L (ppb)	50	<1	91	44-164

-			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	50	92	91	69-134	1
Toluene	ug/L (ppb)	50	99	98	72 - 122	1
Ethylbenzene	ug/L (ppb)	50	98	95	77 - 124	3
m,p-Xylene	ug/L (ppb)	100	101	100	81-112	1
o-Xylene	ug/L (ppb)	50	96	94	81-121	2
Naphthalene	ug/L (ppb)	50	104	104	64-133	0

ENVIRONMENTAL CHEMISTS

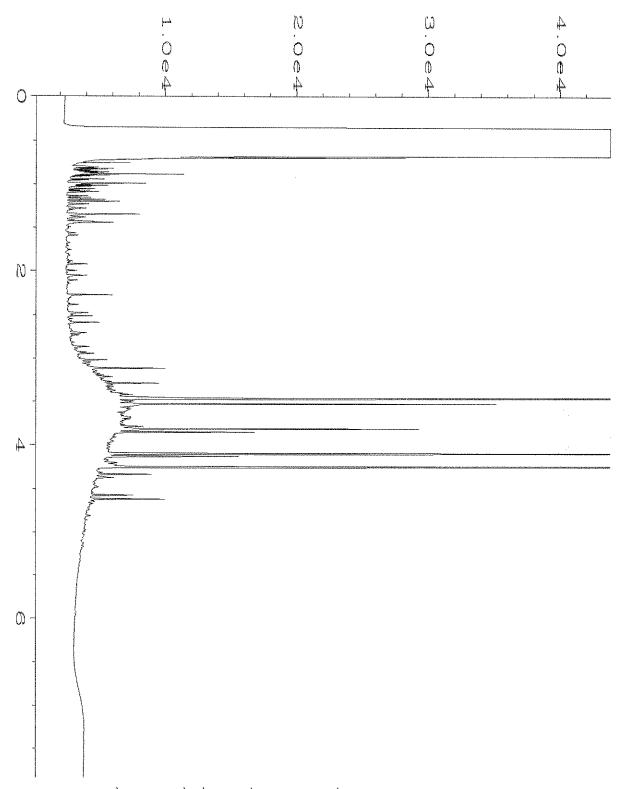

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


Data File Name : C:\HPCHEM\4\DATA\08-21-20\006F0301.D Operator Page Number Vial Number : TL Instrument : GC#4 : 6 : 008261-01 Injection Number: 1 Sample Name Run Time Bar Code: Sequence Line : 3 Instrument Method: DX.MTH : 21 Aug 20 06:59 AM Acquired on

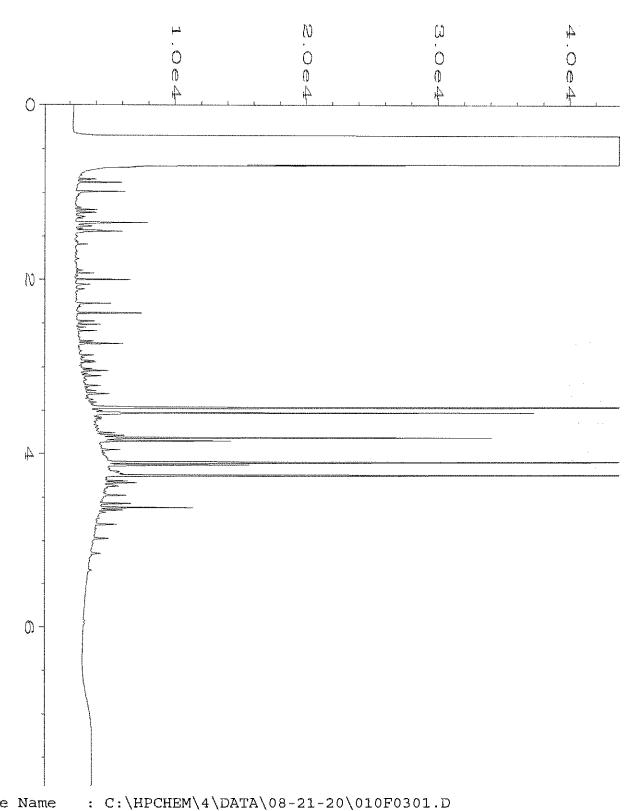
Report Created on: 24 Aug 20 10:37 AM Analysis Method : DEFAULT.MTH

Acquired on : 21 Aug 20 07:09 AM Instrument Method: DX.MTH


Report Created on: 24 Aug 20 10:37 AM Analysis Method : DEFAULT.MTH

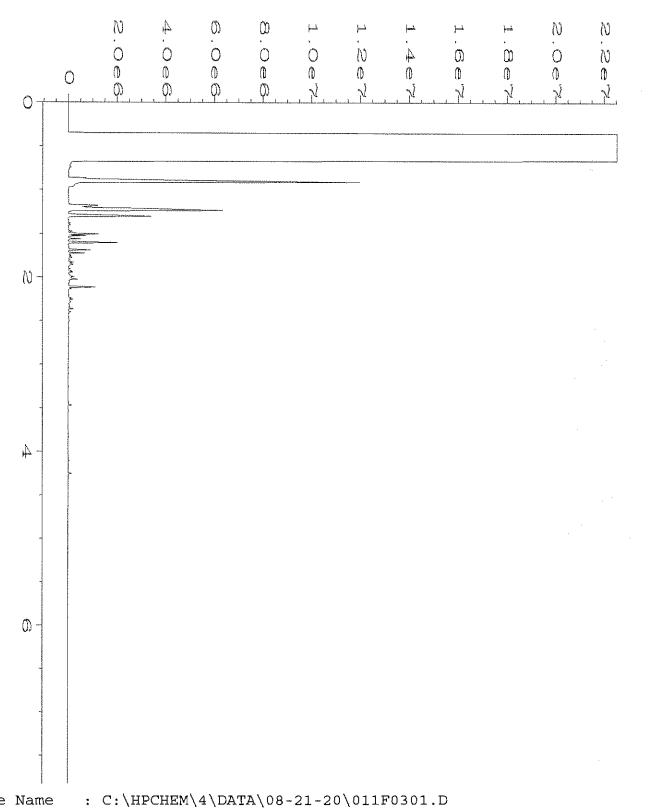
Data File Name : C:\HPCHEM\4\DATA\08-21-20\008F0301.D Page Number : 1 Vial Number : 8 Injection Number : 1 : TL Operator Instrument : GC#4 Sample Name : 008261-03 Sequence Line : 3
Instrument Method: DX.MTH Run Time Bar Code:

Acquired on : 21 Aug 20 07:32 AM


Report Created on: 24 Aug 20 10:38 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\009F0301.D Page Number : 1 Vial Number : 9 Injection Number : 1 Operator : TL Instrument : GC#4 Sample Name : 008261-04 Sequence Line : 3
Instrument Method: DX.MTH Run Time Bar Code:

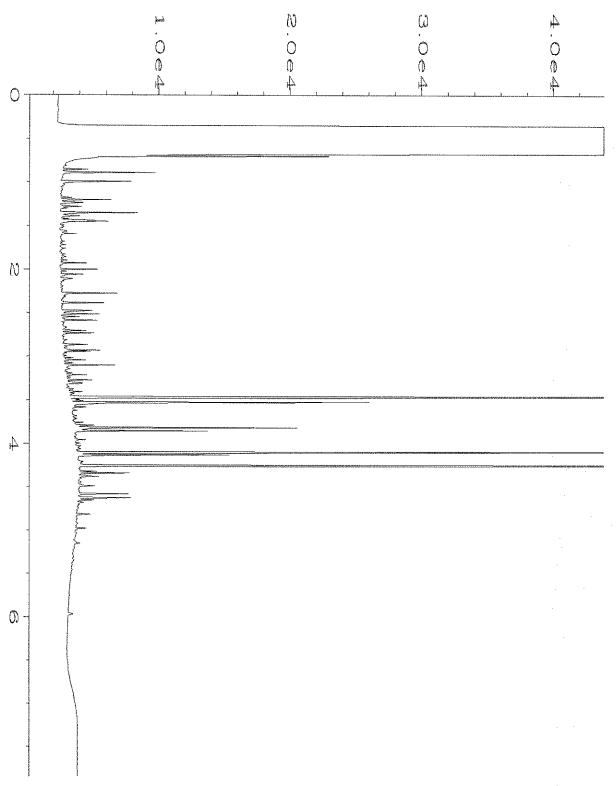
Acquired on : 21 Aug 20 07:42 AM


Report Created on: 24 Aug 20 10:38 AM Analysis Method : DEFAULT.MTH

Data File Name Page Number : 1
Vial Number : 10
Injection Number : 1 Operator : TL Instrument : GC#4 : 008261-05 Sample Name Sequence Line : 3
Instrument Method: DX.MTH Run Time Bar Code:

Acquired on : 21 Aug 20 07:54 AM

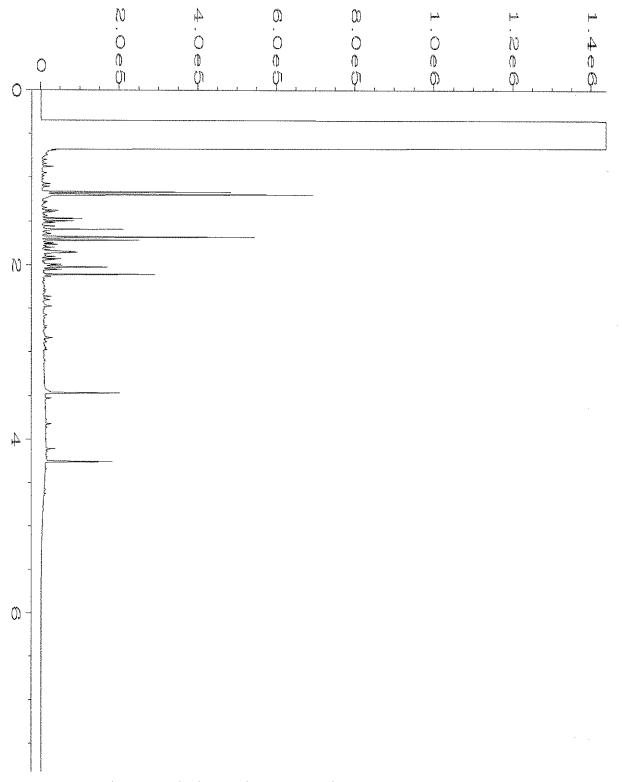
Report Created on: 24 Aug 20 10:39 AM Analysis Method : DEFAULT.MTH



Data File Name Page Number : 1 Vial Number : 11 Operator : TL Instrument : GC#4 Sample Name : 008261-06 Injection Number: 1

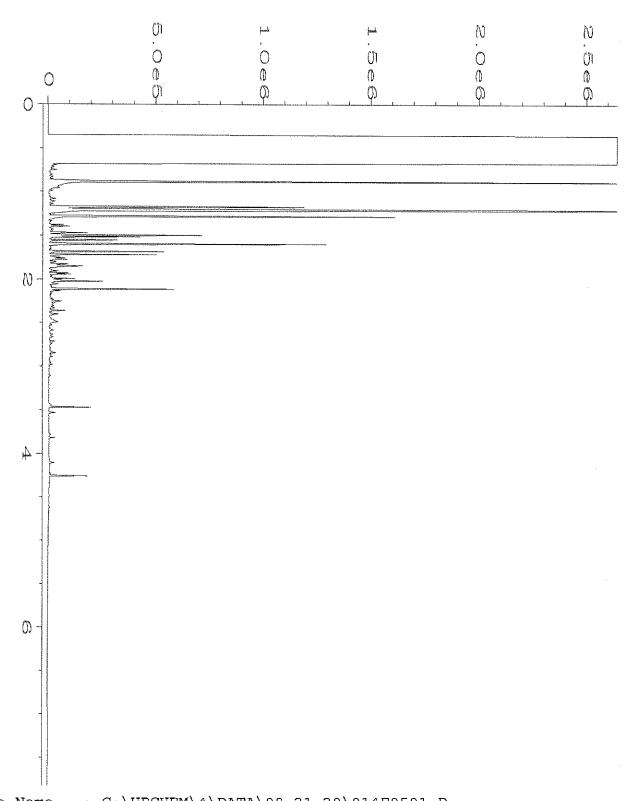
Run Time Bar Code:

Sequence Line : 3
Instrument Method: DX.MTH Acquired on : 21 Aug 20 08:07 AM


Report Created on: 24 Aug 20 10:39 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\012F0301.D Page Number : 1
Vial Number : 12
Injection Number : 1
Sequence Line : 3
Instrument Method: DX.MTH Operator : TL Instrument : GC#4 Sample Name : 008261-07 Run Time Bar Code:

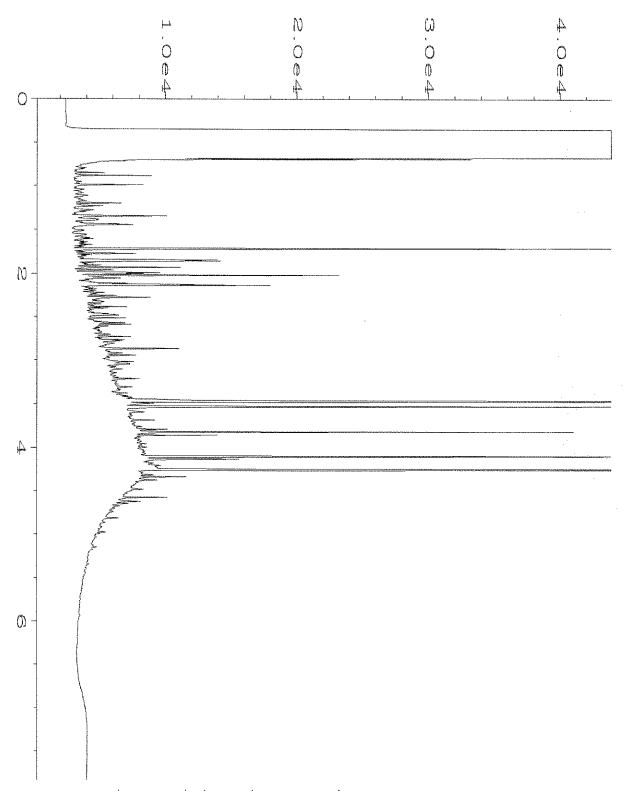
Acquired on : 21 Aug 20 08:20 AM


Report Created on: 24 Aug 20 10:40 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\013F0301.D Page Number Vial Number Operator : TL Instrument : GC#4 : 13 Injection Number: 1 : 008261-08 Sample Name Run Time Bar Code: Sequence Line : 3

Instrument Method: DX.MTH Acquired on : 21 Aug 20 08:32 AM

Report Created on: 24 Aug 20 10:40 AM Analysis Method : DEFAULT.MTH



Data File Name : C:\HPCHEM\4\DATA\08-21-20\014F0501.D Page Number : 1 Vial Number : 14 Injection Number : 1 Operator : TL Instrument : GC#4 Sample Name : 008261-09

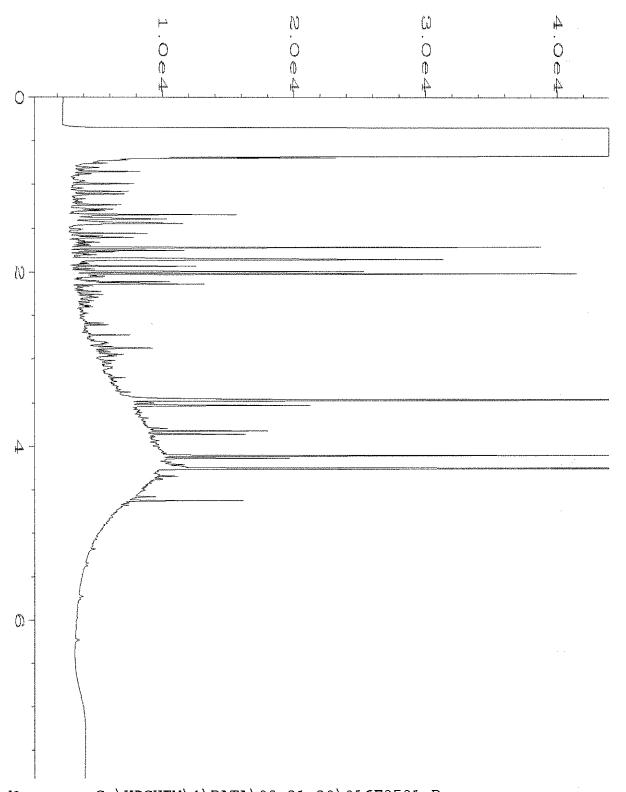
Run Time Bar Code:

Sequence Line : 5. Instrument Method: DX.MTH Acquired on : 21 Aug 20 08:57 AM

Report Created on: 24 Aug 20 10:50 AM Analysis Method : DEFAULT.MTH

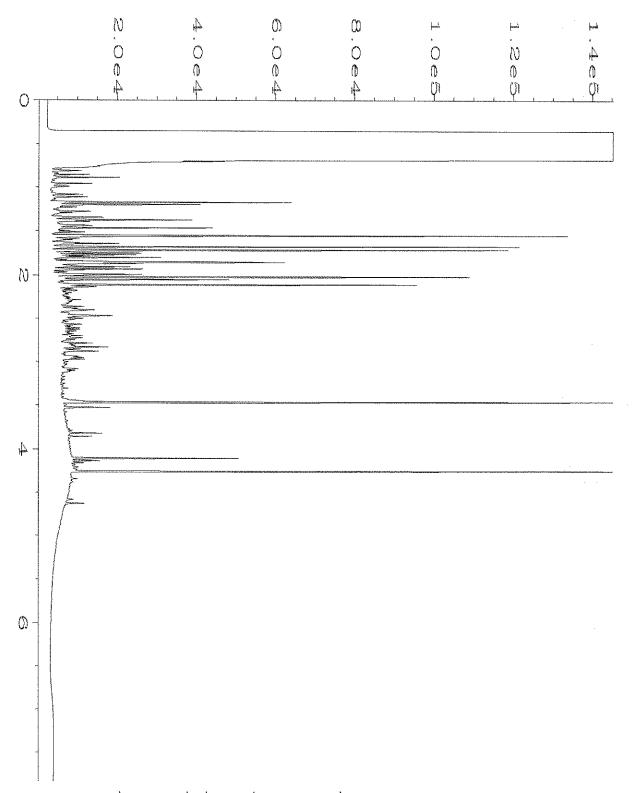
Data File Name : C:\HPCHEM\4\DATA\08-21-20\015F0501.D

Operator : TL Page Number : 1

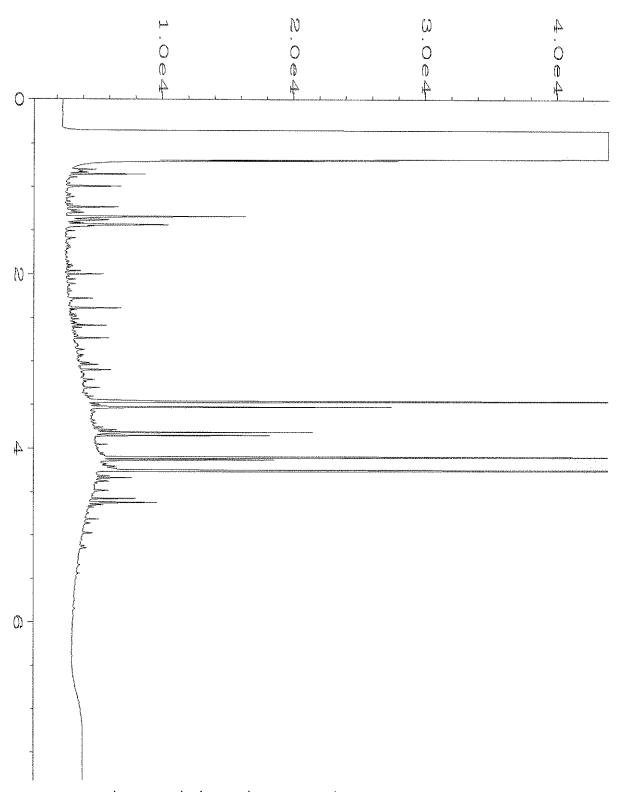

Instrument : GC#4 Vial Number : 15

Sample Name : 008261-10 Injection Number : 1

Run Time Bar Code: Sequence Line : 5


Acquired on : 21 Aug 20 09:10 AM Instrument Method: DX.MTH

Report Created on: 24 Aug 20 10:50 AM Analysis Method : DEFAULT.MTH


: C:\HPCHEM\4\DATA\08-21-20\016F0501.D Data File Name Page Number : TL Operator Vial Number Instrument : GC#4 : 16 Injection Number: 1 : 008261-11 Sample Name Sequence Line : 5 Run Time Bar Code: Instrument Method: DX.MTH Acquired on : 21 Aug 20 09:22 AM

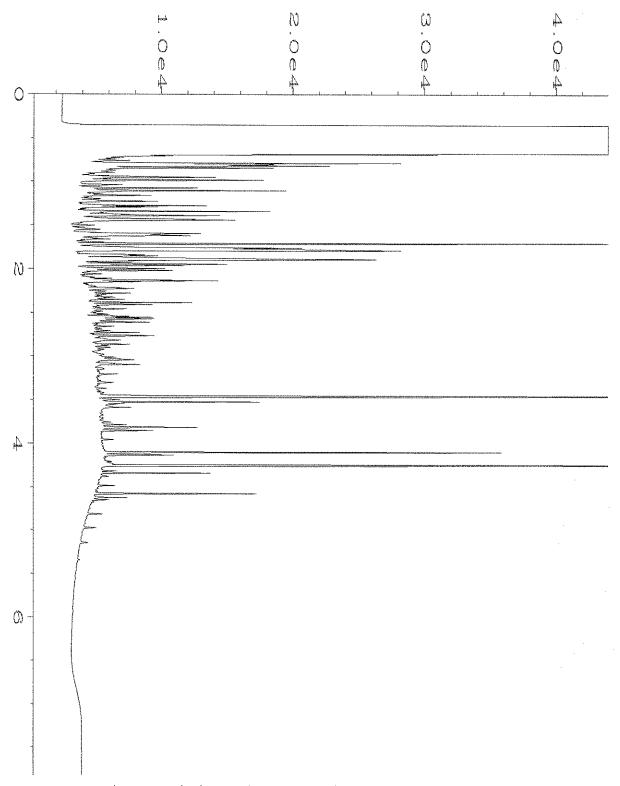
Report Created on: 24 Aug 20 10:50 AM Analysis Method : DEFAULT.MTH

Acquired on : 21 Aug 20 09:35 AM Instrument Method: DX.MTH

Report Created on: 24 Aug 20 10:50 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\018F0501.D

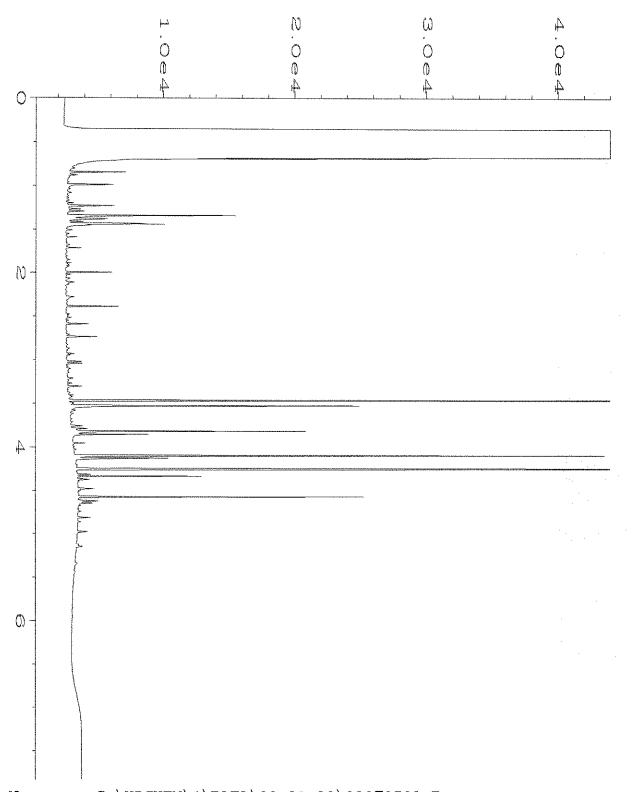
Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 18

Sample Name : 008261-13 Injection Number : 1

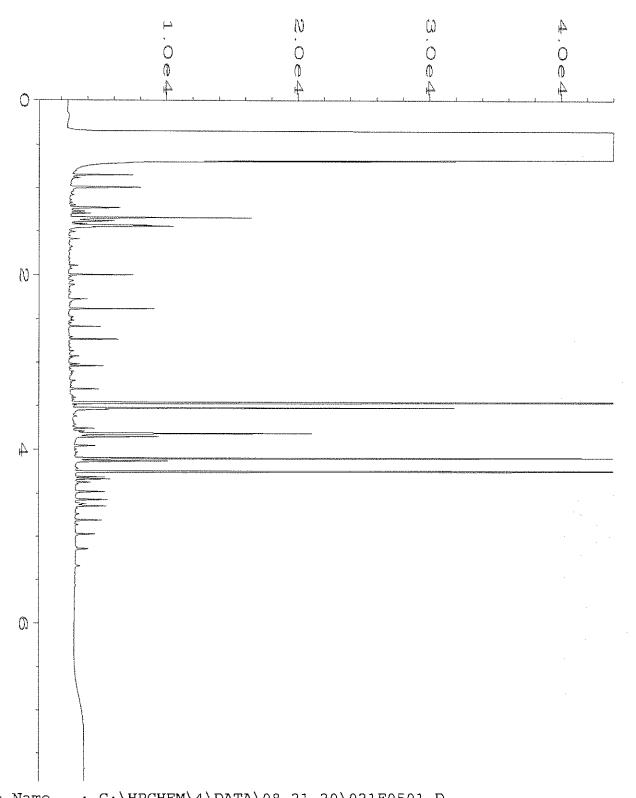
Run Time Bar Code: Sequence Line : 5

Acquired on : 21 Aug 20 09:48 AM Instrument Method: DX.MTH


Report Created on: 24 Aug 20 10:51 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\019F0501.D Page Number : 1
Vial Number : 19
Injection Number : 1
Sequence Line : 5 Operator : TL Instrument : GC#4 Sample Name : 008261-14 Run Time Bar Code:

Instrument Method: DX.MTH Acquired on : 21 Aug 20 10:00 AM


Report Created on: 24 Aug 20 10:51 AM Analysis Method : DEFAULT.MTH

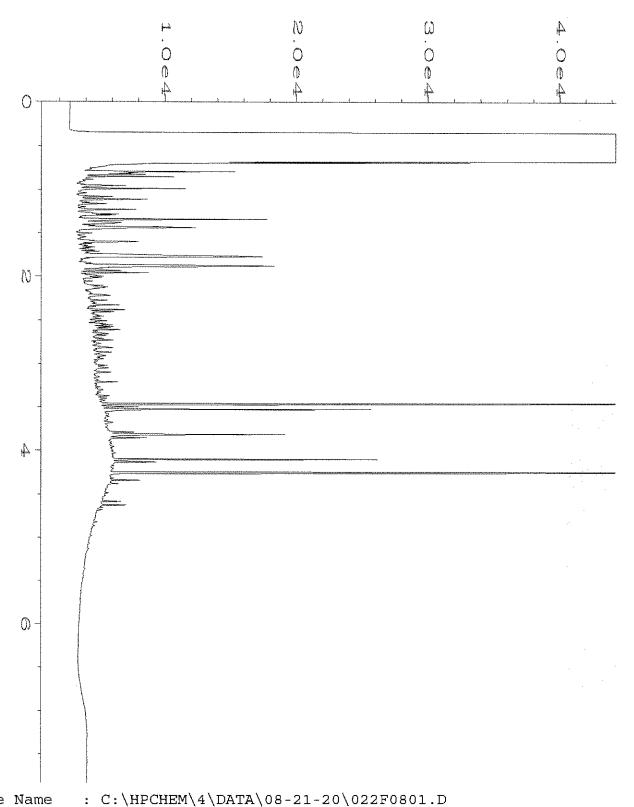
Data File Name : C:\HPCHEM\4\DATA\08-21-20\020F0501.D Page Number : 1 Vial Number : 20 Injection Number : 1 Operator : TL Instrument : GC#4 Sample Name : 008261-15 Sequence Line : 5
Instrument Method: DX.MTH Run Time Bar Code:

Acquired on : 21 Aug 20 10:13 AM

Report Created on: 24 Aug 20 10:51 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\021F0501.D

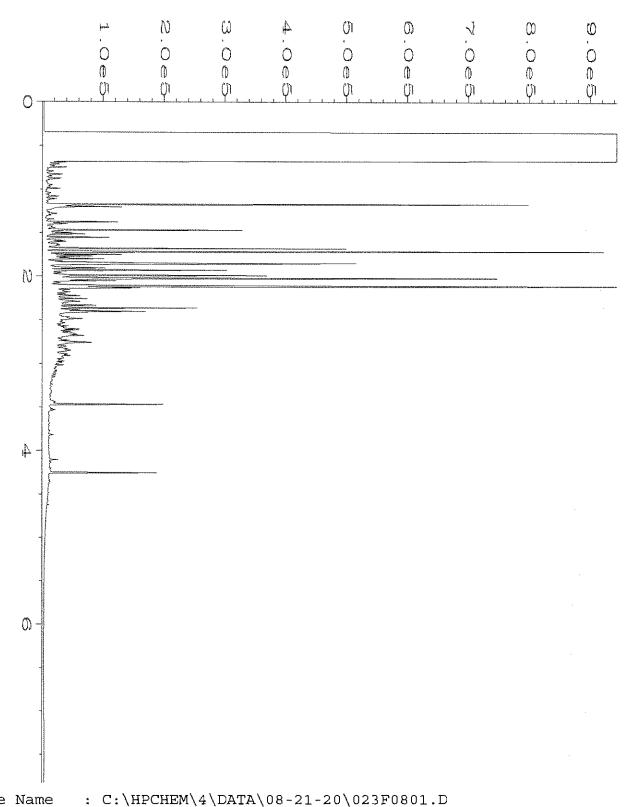
Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 21

Sample Name : 008261-16 Injection Number : 1

Run Time Bar Code: Sequence Line : 5

Acquired on : 21 Aug 20 10:25 AM Instrument Method: DX.MTH


Report Created on: 24 Aug 20 10:51 AM Analysis Method : DEFAULT.MTH

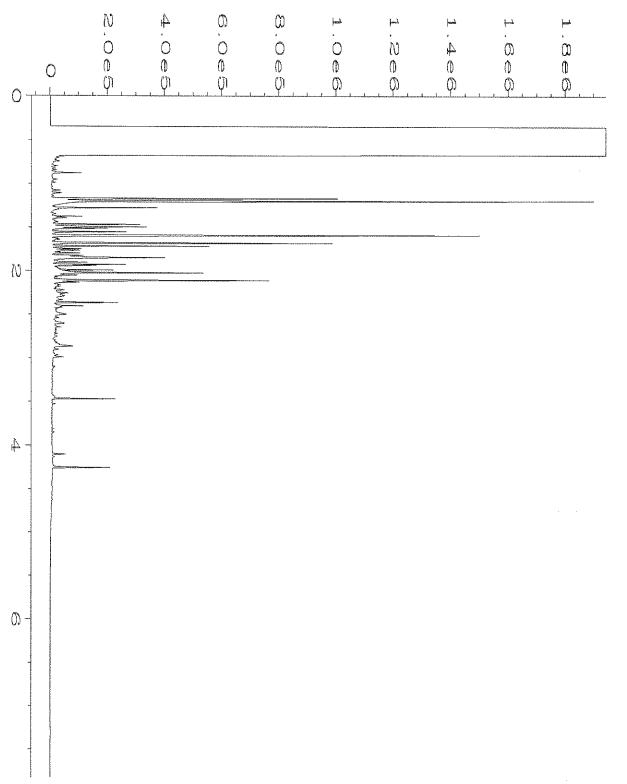
Data File Name Page Number : 1 Vial Number : 22 Operator : TL Instrument : GC#4 Injection Number : 1 Sequence Line : 8 Sample Name : 008261-17 Run Time Bar Code:

Acquired on : 21 Aug 20 02:20 PM Report Created on: 24 Aug 20 10:51 AM Instrument Method: DX.MTH

Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\023F0801.D

Operator : TL Page Number : 1

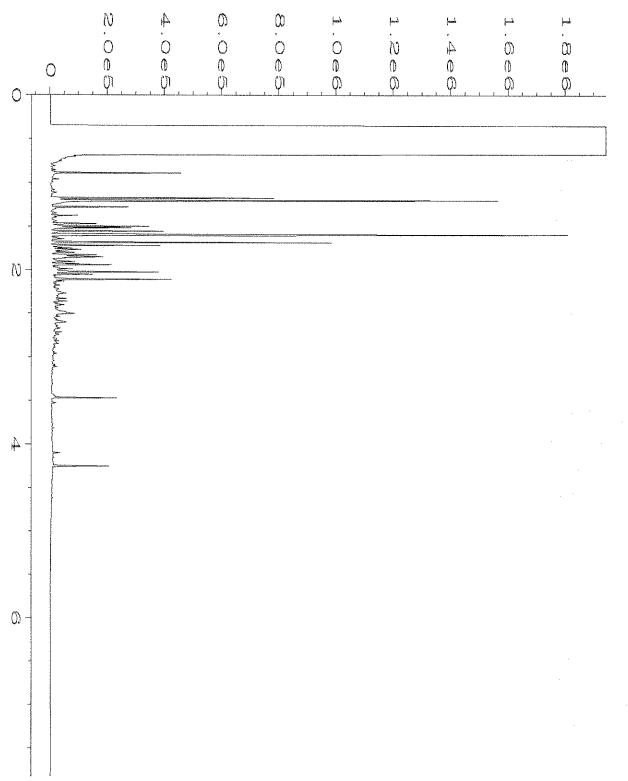

Instrument : GC#4 Vial Number : 23

Sample Name : 008261-18 Injection Number : 1

Run Time Bar Code: Sequence Line : 8

Acquired on : 21 Aug 20 02:30 PM Instrument Method: DX.MTH

Report Created on: 24 Aug 20 10:51 AM Analysis Method : DEFAULT.MTH

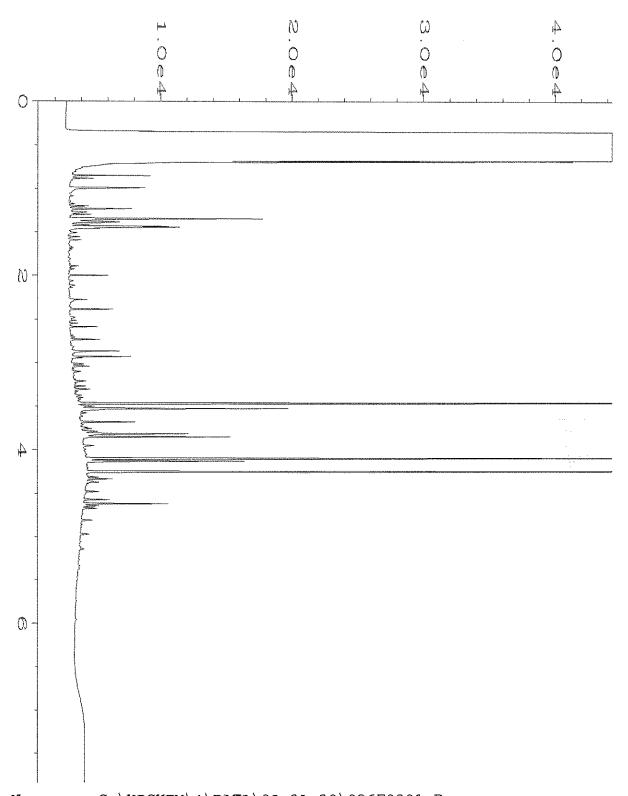


Data File Name : C:\HPCHEM\4\DATA\08-21-20\024F0801.D

Page Number Operator : TL Vial Number : 24 Injection Number : 1 Instrument : GC#4 Sample Name : 008261-19 Run Time Bar Code:

Sequence Line : 8
Instrument Method: DX.MTH Acquired on : 21 Aug 20 02:43 PM

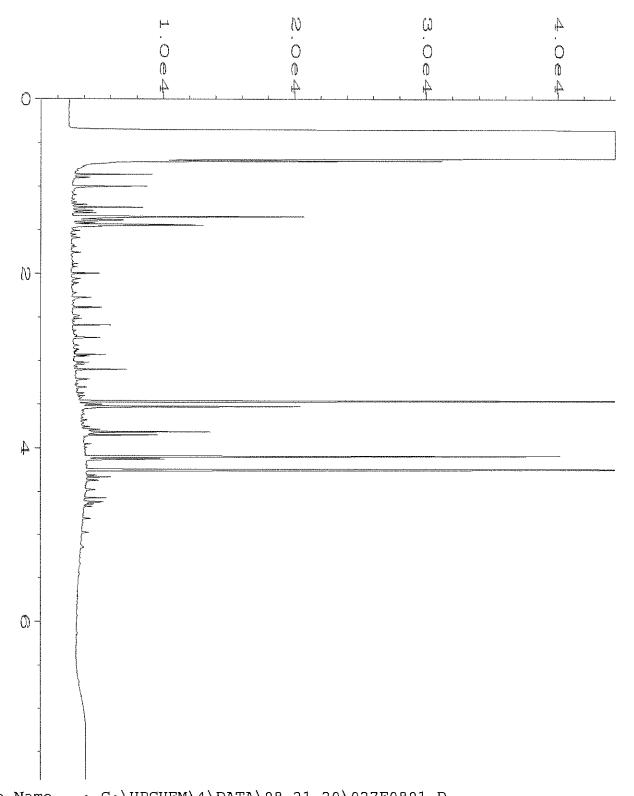
Report Created on: 24 Aug 20 10:52 AM Analysis Method : DEFAULT.MTH



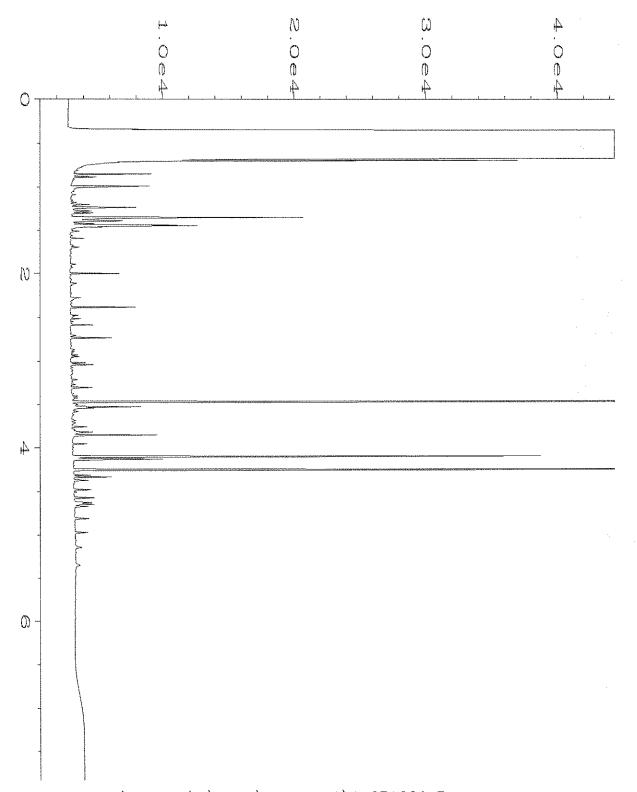
: C:\HPCHEM\4\DATA\08-21-20\025F0801.D Data File Name

Page Number : 1 Vial Number : 25 Injection Number : 1 Operator : TL Instrument : GC#4 Sample Name : 008261-20 Run Time Bar Code:

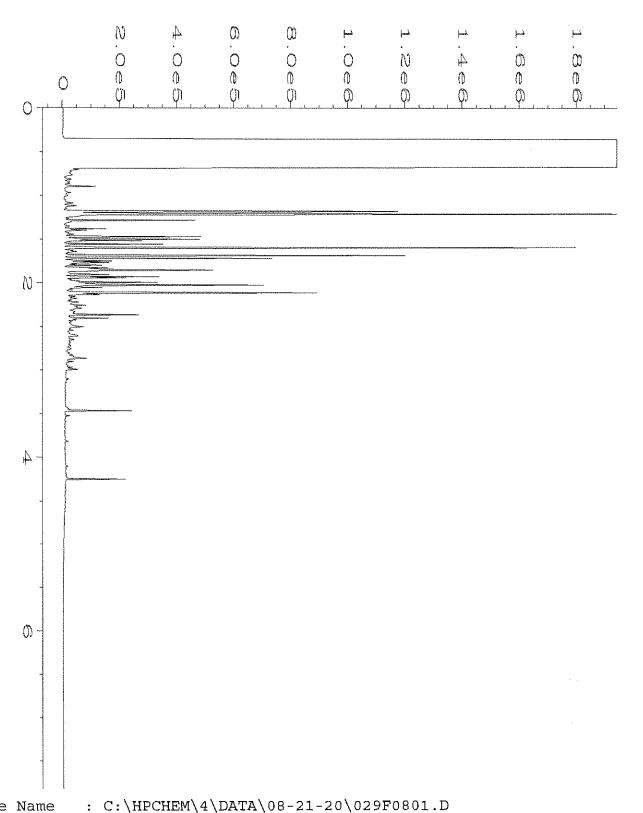
Sequence Line : 8
Instrument Method: DX.MTH Acquired on : 21 Aug 20 02:56 PM


Report Created on: 24 Aug 20 10:52 AM Analysis Method : DEFAULT.MTH

Data File Name : C:\HPCHEM\4\DATA\08-21-20\026F0801.D Page Number : 1 Vial Number : 26 Injection Number : 1 Operator : TL Instrument : GC#4 : 008261-21 Sample Name Run Time Bar Code: Sequence Line : 8


Instrument Method: DX.MTH Acquired on : 21 Aug 20 03:08 PM

Analysis Method : DEFAULT.MTH Report Created on: 24 Aug 20 10:53 AM


Report Created on: 24 Aug 20 10:53 AM Analysis Method : DEFAULT.MTH

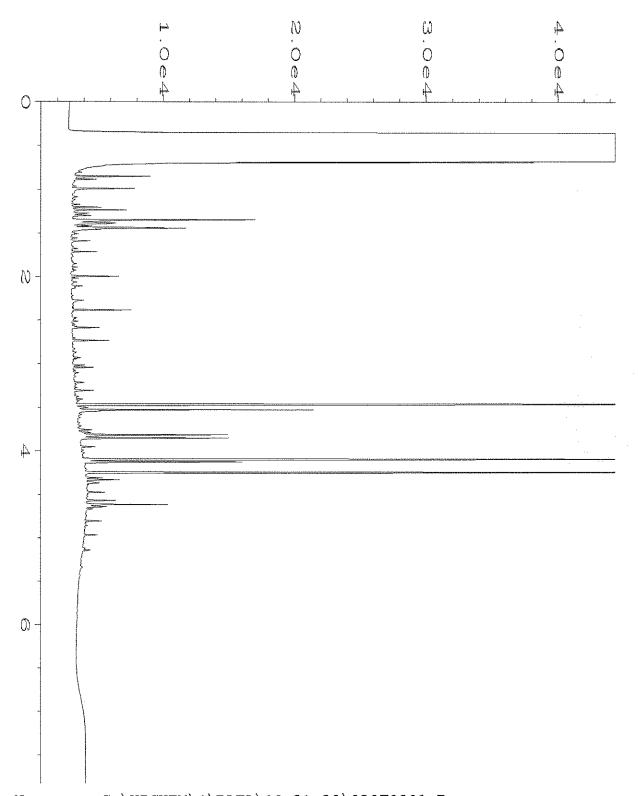
in the second

: C:\HPCHEM\4\DATA\08-21-20\028F0801.D Data File Name Page Number Operator : TL Vial Number : 28 Instrument : GC#4 Sample Name : 008261-23 Injection Number: 1 Sequence Line : 8 Run Time Bar Code: Instrument Method: DX.MTH Acquired on : 21 Aug 20 03:34 PM Report Created on: 24 Aug 20 10:53 AM Analysis Method : DEFAULT.MTH

or created on: 24 Aug 20 10.33 An Andry Dis Nethod . Server

Data File Name : C:\HPCHEM\4\DATA\08-21-20\029F0801.D

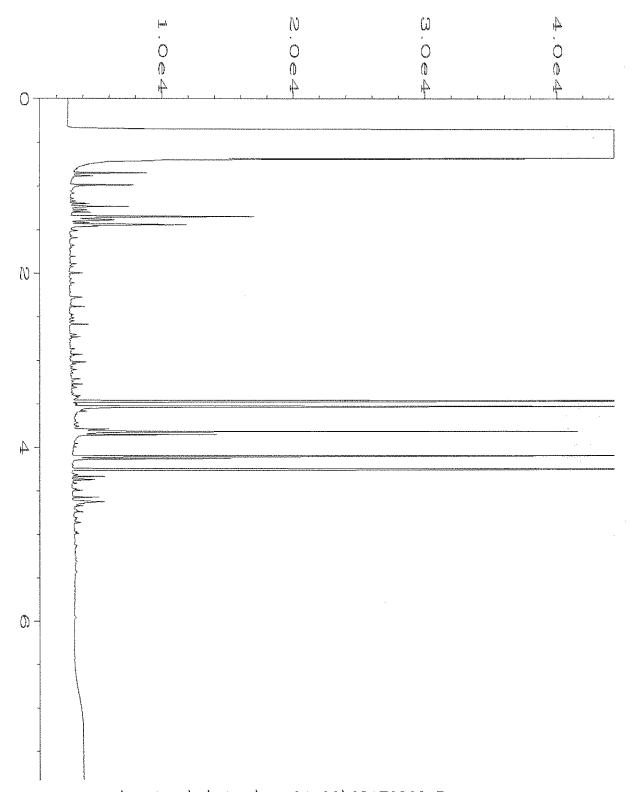
Operator : TL Page Number : 1


Instrument : GC#4 Vial Number : 29

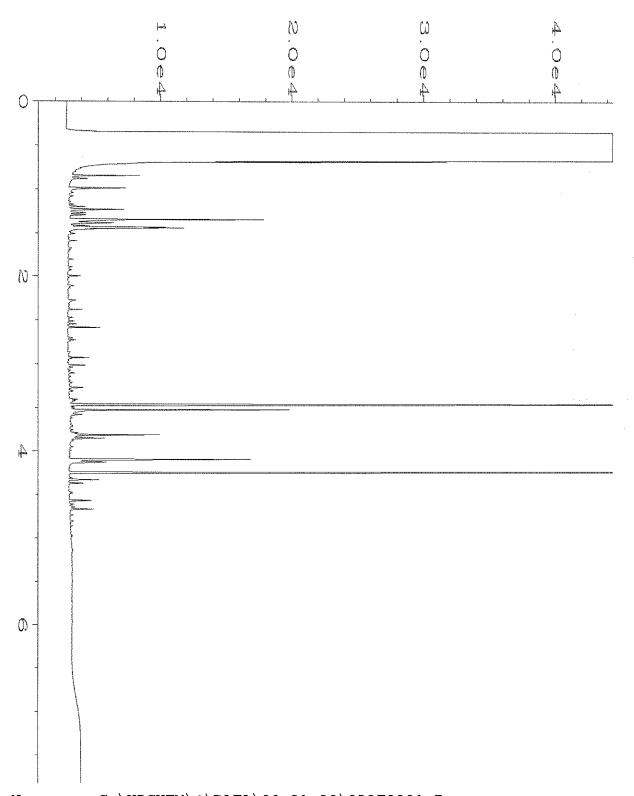
Sample Name : 008261-24 Injection Number : 1

Run Time Bar Code: Sequence Line : 8

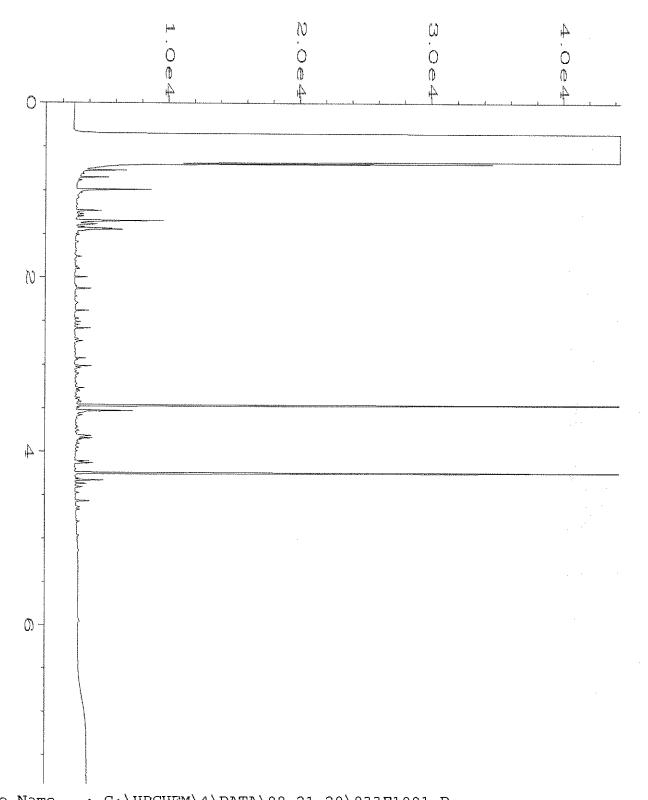
Acquired on : 21 Aug 20 03:46 PM Instrument Method: DX.MTH


Report Created on: 24 Aug 20 10:53 AM Analysis Method : DEFAULT.MTH

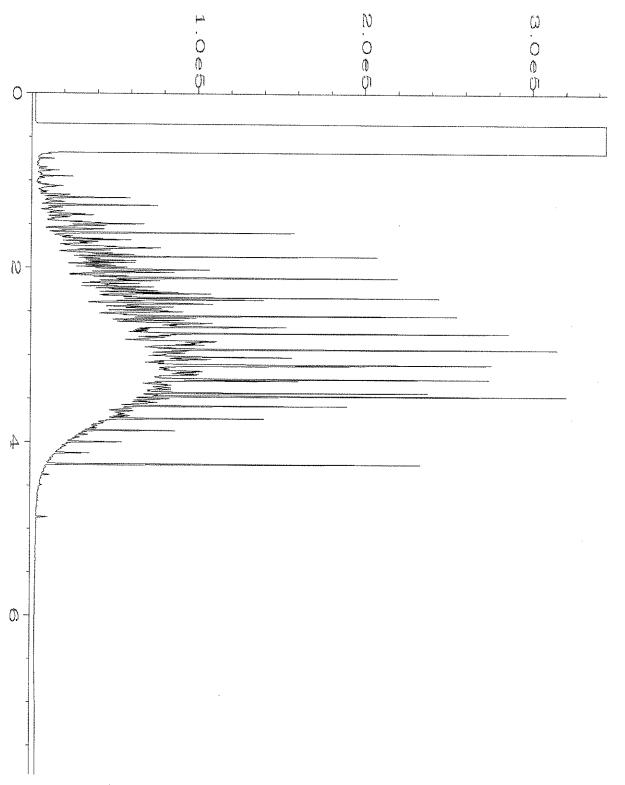
: C:\HPCHEM\4\DATA\08-21-20\030F0801.D Data File Name Page Number Vial Number Operator : TL Instrument : 30 : GC#4 Injection Number: 1 Sample Name : 008261-25 Sequence Line : 8
Instrument Method: DX.MTH Run Time Bar Code:


Acquired on : 21 Aug 20 03:59 PM

Analysis Method : DEFAULT.MTH Report Created on: 24 Aug 20 10:53 AM


```
: C:\HPCHEM\4\DATA\08-21-20\031F0801.D
Data File Name
                                                  Page Number
Vial Number
Operator
                  : TL
                                                                    : 31
Instrument
                  : GC#4
                                                  Injection Number: 1
                  : 008261-26
Sample Name
Run Time Bar Code:
                                                  Sequence Line
                                                                 : 8
                                                  Instrument Method: DX.MTH
                 : 21 Aug 20 04:12 PM
Acquired on
```

Report Created on: 24 Aug 20 10:54 AM Analysis Method : DEFAULT.MTH



Data File Name : C:\HPCHEM\4\DATA\08-21-20\032F0801.D Page Number : 1 Vial Number : 32 Operator : TL Instrument : GC#4 Injection Number: 1 : 008261-27 Sample Name Run Time Bar Code: Sequence Line : 8 Instrument Method: DX.MTH

Acquired on : 21 Aug 20 04:24 PM Analysis Method : DEFAULT.MTH Report Created on: 24 Aug 20 10:54 AM

.


```
Data File Name : C:\HPCHEM\4\DATA\08-21-20\005F0701.D

Operator : TL Page Number : 1

Instrument : GC#4 Vial Number : 5

Sample Name : 1000 Dx 60-170B Injection Number : 1

Run Time Bar Code: Sequence Line : 7

Acquired on : 21 Aug 20 02:03 PM Instrument Method: DX.MTH
```

Report Created on: 24 Aug 20 10:54 AM Analysis Method : DEFAULT.MTH

1	* - <u>3</u> 8													-	ž	, way						
Γ	Ph., (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.		m12-12-08/720	mw-11-081720	OE8180-01- mm	DES/80-6-MM	Or SIRO -8-MW	mw-7-081720	mu-6-08/120	OE8180-H-MM	mw-2-081726	028180-1-MM	Sample ID		Phone (206)413-511 Email axonly of the aspect of Project specific RLs? - Yes	City, State, ZIP Seattle, WA 98104	アプ	Company Assect Consultona	008261
	Received by:	Relinquished by:	Received by:	Relinquished by:	SI	0	3	08	07+	0%	95	\$	3	92	01 13-6	Lab ID		ail oxalizatsh	WA,98104	An, 54.550	Vankokskil -	
***************************************			M	Reduce	SIGNATURE	\	OCIUIRO	4		OCIVIS	4	8/1/7/20	ORIVINS	8/17/20	8/18/20	Date Sampled		Baspation	, included the control of the contro	Q	Hery Light	
						1330	132	1330	SIE	D20	135	BE	5111	世紀	14/30	Time Sampled		Project s	REMARKS	Texaco		S
			Khoi	Rad		4							2	UL	WL	Sample Type		pecific RL	SS	o Sarchland	PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)
			三 长	Zachel Covinue 11	PRIN	4								,	7	# of Jars		<u>s? - Ύ</u>	÷	2		I OF
			Horzens	DVI	PRINT NAME	¥.									×	NWTPH-Dx		-			Jon 1	$\int Cus $
- LANGE CONTRACTOR OF THE PARTY			7.	200	ME	*									×	NWTPH-Gx BTEX EPA 8021					- Ita	STODY
***************************************																NWTPH-HCID			=	~		M X
				:												VOCs EPA 8260	ANALYSES	五	INVOICE TO	2502	PC	FO
				Aspect							ļ					PAHs EPA 8270	YSES		CE T	7	PO#	8/11/8
		•	FB I	ect	COM	4	ļ							<u> </u>	×	DIFXN 8260C	REQU		O			The special
		200	,		COMPANY											DITANO DAWC	REQUESTED		3.5			
	Žia e	<u> </u>			Y												Ü	Default	G Arch:	tush cl	TI Stan BUS	VW5
		Samples received at	×2	9														t: Dis	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	TURNAROUND TIME Standard turnaround RUSH	5 Page#
			18	an18118	DATE		***************************************						*					ose a	E DIS. aples	autho	ROUN	-72
		•	/20 L	20	\vdash											Notes		fter 3	POSA	rized t	D TIM	of
ŀ		,	16 00	1660	TIME					114								Default: Dispose after 30 days	Ľ)y:	Œ	h

Company Aspert Lorsolling
Address 7/0 and As, Stasso
City, State, ZIP Sealthe, WA, 98/184 Report To Annew Yorkoski Adam Later Phone (20043-54) Email Apple of Project specific RLs? - Yes / No Seattle, WA 98119-2029 021180 - 12-MM 3012 16th Avenue West Friedman & Bruya, Inc. Ph. (206) 285-8282 MW-23-081820 20 MU-18-081630 MU-17-061720 MW-16-08/720 OC 8180 - H- MW MU -22 - 081720 |19 MW-13-081720 064189-06-MW MW-14-08/80 Sample ID Relinquished by: Relinquished by: Received by: Received by: Ţ 工 3 Lab ID SIGNATURE SEHI OCICI18 0010 06/6/1/8 0110 02/8/18 020 | 0618118 Date Sampled 8/1/1/20 1030 SHI 1981/18 SAMPLE CHAIN OF CUSTODY ME 08/18/20 240 Time Sampled 000 138 りの REMARKS Structury SAMPLERS (signature) PROJECT NAME Sample Type Pachel Commell KHOI HOOMS Jars PRINT NAME 4 NWTPH-HCID INVOICE TO 130357 ANALYSES REQUESTED PO# Aspect FB I PCBs EPA 8082 COMPANY Page # 2 of 3
TURNAROUND TIME SAMPLE DISPOSAL

Archive samples Standard turnaround Samples received at 1 0C Rush charges authorized by: Default: Dispose after 30 days 02/21/8 DATE Notes 809

TIME

Company Aspect Longolfma, She 550 Report To Andrew Yorkship / Alum Lostin City, State, ZIP Seaffle, WH, assort Company /tspect Phone (20) 41354// Emailes for Indshill perpet 100 Project specific RLs? - Yes / 80 OBSIGO - JOE - COM arsiso-he-mu Seattle, WA 98119-2029 3012 16th Avenue West mw-26-81R20 Ph. (206) 285-8282 RB-02-081820 Friedman & Bruya, Inc. 06/180 - 10- AUD RB-01-081720 OBSISO - CO- PUL Sample ID Relinquished by: Received by: Relinquished by Received by: 一年ま 23 7 Y 2 57 レナム 28 A-D Lab ID SIGNATURE OC/U/B 08/1/8 OCIBILIX 06/1/18 Sampled Date TO SECOND SAMPLE CHAIN OF CUSTODY Sampled 0900 W DO SS SAMPLERS (signature) PROJECT NAME REMARKS 0.8hi Topaco Storchilm Time Sample AQ Q B Type Packel Commell 发 4 That Jars PRINT NAME 4 NWTPH-HCID 1888 INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 P0# Aspect PCBs EPA 8082 COMPANY × 4 BTEXN 8260L Standard turnaround □ Other_ ☐ Archive samples Rush charges authorized by: Default: Dispose after 30 days Samples received at " TURNAROUND TIME SAMPLE DISPOSAL 02/8/18 00011 0018V8 DATE Notes 600 TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 4, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on August 20, 2020 from the Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318 project. There are 26 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Data Aspect, Adam Griffin ASP0904R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
008318 -01	SVS-01-082020
008318 -02	SVS-02-082020
008318 -03	GP-01-082020
008318 -04	GP-02-082020
008318 -05	GP-03-082020
008318 -06	GP-04-082020
008318 -07	GP-DUP-082020
008318 -08	Trip Blank

Samples SVS-01-082020, SVS-02-082020, GP-01-082020, GP-02-082020, GP-03-082020, and GP-04-082020 were sent to Fremont Analytical for carbon dioxide, methane, and oxygen analyses. The report is enclosed.

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The APH EC5-8 aliphatics concentration in samples GP-03-082020 and GP-DUP-082020 exceeded the calibration range of the instrument. The samples were diluted and reanalyzed. Both data sets were reported.

The sample Trip Blank was prepared at the laboratory. The presence of low level laboratory solvents were noted in the APH range. The data were qualified accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SVS-01-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Units: ug/m3 Operator: VM

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 4,100 APH EC9-12 aliphatics 6,700 APH EC9-10 aromatics <210

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SVS-02-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Units: ug/m3 Operator: VM

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 750 APH EC9-12 aliphatics 670 APH EC9-10 aromatics <85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-01-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-03 1/3.4

 Date Analyzed:
 08/28/20
 Data File:
 082717.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: VM

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 580 APH EC9-12 aliphatics 680 APH EC9-10 aromatics <85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-02-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-04 1/3.3

 Date Analyzed:
 08/28/20
 Data File:
 082718.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: VM

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 630 APH EC9-12 aliphatics 890 APH EC9-10 aromatics <82

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-03-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/20/20
 Lab ID:
 008318-05 1/8.8

 Date Analyzed:
 08/28/20
 Data File:
 082719.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: VM

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 11,000 ve APH EC9-12 aliphatics 2,200 APH EC9-10 aromatics 220

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-03-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/19/20 Lab ID: 008318-05 1/44 Date Analyzed: 09/02/20 Data File: 090213.D

Matrix: Air Instrument: GCMS12 Units: ug/m3 Operator: bat

% Lower Upper

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 94 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 13,000 APH EC9-12 aliphatics 3,300 APH EC9-10 aromatics <1,100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-04-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-06 1/3.6

 Date Analyzed:
 08/28/20
 Data File:
 082720.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: VM

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 650 APH EC9-12 aliphatics 470 APH EC9-10 aromatics <90

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-DUP-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/27/20 Lab ID: 008318-07 1/8.8 Date Analyzed: 08/28/20 Data File: 082721.D

Matrix: Air Instrument: GCMS12 Units: ug/m3 Operator: VM

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3

 $\begin{array}{lll} \text{APH EC5-8 aliphatics} & 12,000 \text{ ve} \\ \text{APH EC9-12 aliphatics} & 2,300 \\ \text{APH EC9-10 aromatics} & <220 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-DUP-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/19/20
 Lab ID:
 008318-07 1/44

 Date Analyzed:
 09/02/20
 Data File:
 090214.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 93 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 15,000 APH EC9-12 aliphatics 3,500 APH EC9-10 aromatics <1,100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Trip Blank Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-08 1/2.8

 Date Analyzed:
 08/28/20
 Data File:
 082722.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: VM

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 390 lc APH EC9-12 aliphatics <140 APH EC9-10 aromatics <70

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Texaco Strickland Lynwood, WA PO 180357

Not Applicable Lab ID: Date Collected: 00-1933 MBDate Analyzed: 08/27/20 Data File: 082709.DMatrix: Instrument: GCMS12 Air Units: ug/m3 Operator: VM

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 98 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SVS-01-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/27/20 Lab ID: 008318-01 1/8.5 Date Analyzed: 08/28/20 Data File: 082715.D

	Concen	tration
Compounds:	ug/m3	ppbv
Benzene	17	5.4
Toluene	<160	<42
Ethylbenzene	7.0	1.6
m,p-Xylene	45	10
o-Xylene	12	2.8
Naphthalene	< 2.2	< 0.42

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SVS-	-02-082020 Client:	Aspect Consulting, LLC
------------------------	--------------------	------------------------

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-02 1/3.4

 Date Analyzed:
 08/28/20
 Data File:
 082716.D

 Matrix:
 Air
 Instrument:
 GCMS12

Matrix: Air Instrument: GCM Units: ug/m3 Operator: VM

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	102	70	130

Compounds:	Concen ug/m3	tration
Compounds.	ug/IIIo	ppov
Benzene	1.8	0.55
Toluene	<64	<17
Ethylbenzene	5.8	1.3
m,p-Xylene	23	5.4
o-Xylene	8.3	1.9
Naphthalene	< 0.89	< 0.17

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	GP-01-082020	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/27/20 Lab ID: 008318-03 1/3.4 Date Analyzed: 08/28/20 Data File: 082717.D

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	92	70	130

Compounds:	Concentration ug/m3 ppb	
Benzene	<1.1	< 0.34
Toluene	<64	<17
Ethylbenzene	<1.5	< 0.34
m,p-Xylene	<3	< 0.68
o-Xylene	<1.5	< 0.34
Naphthalene	< 0.89	< 0.17

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: GP-02-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/27/20 Lab ID: 008318-04 1/3.3 Date Analyzed: 08/28/20 Data File: 082718.D

Compounds:	Concen- ug/m3	tration ppbv
Benzene	<1.1	< 0.33
Toluene	<62	<16
Ethylbenzene	3.1	0.71
m,p-Xylene	12	2.7
o-Xylene	4.7	1.1
Naphthalene	1.2	0.23

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: GP-03-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/20/20 Lab ID: 008318-05 1/8.8 Date Analyzed: 08/28/20 Data File: 082719.D

	Concen	tration
Compounds:	ug/m3	ppbv
Benzene	5.7	1.8
Toluene	<170	<44
Ethylbenzene	80	18
m,p-Xylene	300	70
o-Xylene	82	19
Naphthalene	< 2.3	< 0.44

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: GP-04-082020 Client: Aspect Consulting, LLC

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

Date Collected: 08/27/20 Lab ID: 008318-06 1/3.6 Date Analyzed: 08/28/20 Data File: 082720.D

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Benzene	1.7	0.53
		<18
Toluene	<68	
Ethylbenzene	5.1	1.2
m,p-Xylene	21	4.8
o-Xylene	7.3	1.7
Naphthalene	< 0.94	< 0.18

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: GP-DUP-082020 Client: Aspect	t Consulting, LLC	,
--	-------------------	---

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-07 1/8.8

 Date Analyzed:
 08/28/20
 Data File:
 082721.D

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

Compounds:	Concen ug/m3	tration ppbv
Benzene	6.4	2.0
Toluene	<170	<44
Ethylbenzene	60	14
m,p-Xylene	230	52
o-Xylene	63	14
Naphthalene	< 2.3	< 0.44

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
-------------------	------------	---------	------------------------

Date Received: 08/20/20 Project: Texaco Strickland Lynwood, WA PO 180357

 Date Collected:
 08/27/20
 Lab ID:
 008318-08 1/2.8

 Date Analyzed:
 08/28/20
 Data File:
 082722.D

 Matrix:
 Air
 Instrument:
 GCMS12

Units: ug/m3 Operator: VM

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	94	70	130

Compounds:	Concen ug/m3	tration ppbv
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<0.89 <53 <1.2 <2.4 <1.2 <0.73	<0.28 <14 <0.28 <0.56 <0.28 <0.14

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Texaco Strickland Lynwood, WA PO 180357

Not Applicable Lab ID: Date Collected: 00-1933 MB08/27/20 Date Analyzed: Data File: $082709.\mathrm{D}$ Matrix: Air Instrument: GCMS12ug/m3 Units: Operator: VM

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	96	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20

Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

Date Extracted: 08/31/20 Date Analyzed: 08/31/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
SVS-01-082020 008318-01	<0.6
SVS-02-082020 008318-02	<0.6
GP-01-082020 008318-03	< 0.6
GP-02-082020 008318-04	< 0.6
GP-03-082020 008318-05	< 0.6
GP-04-082020 008318-06	<0.6
Method Blank	<0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20

Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 008378-01 1/2.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	100	86	15
APH EC9-12 aliphatics	ug/m3	580	570	2
APH EC9-10 aromatics	ug/m3	<67	<67	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	90	70-130
APH EC9-12 aliphatics	ug/m3	67	117	70-130
APH EC9-10 aromatics	ug/m3	67	124	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20

Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 008378-01 1/2.7 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	< 0.86	< 0.86	nm
Toluene	ug/m3	<51	<51	nm
Ethylbenzene	ug/m3	<1.2	<1.2	nm
m,p-Xylene	ug/m3	< 2.3	< 2.3	nm
o-Xylene	ug/m3	<1.2	<1.2	nm
Naphthalene	ug/m3	< 0.71	< 0.71	nm

Laboratory Code: Laboratory Control Sample

	Percent			
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	95	70-130
Toluene	ug/m3	51	93	70-130
Ethylbenzene	ug/m3	59	100	70-130
m,p-Xylene	ug/m3	120	105	70-130
o-Xylene	ug/m3	59	107	70-130
Naphthalene	ug/m3	71	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/04/20 Date Received: 08/20/20

Project: Texaco Strickland 6808 196th St SW Lynwood, WA PO 180357, F&BI 008318

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code:	008226-07 (Duj	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code:	008318-01 (Duյ	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 008318

Work Order Number: 2008283

August 27, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 6 sample(s) on 8/20/2020 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 08/27/2020

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 008318 **Work Order:** 2008283

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2008283-001	SVS-01-082020	08/20/2020 9:55 AM	08/20/2020 4:30 PM
2008283-002	SVS-02-082020	08/20/2020 9:16 AM	08/20/2020 4:30 PM
2008283-003	GP-01-082020	08/20/2020 12:20 PM	08/20/2020 4:30 PM
2008283-004	GP-02-082020	08/20/2020 12:54 PM	08/20/2020 4:30 PM
2008283-005	GP-03-082020	08/20/2020 1:35 PM	08/20/2020 4:30 PM
2008283-006	GP-04-082020	08/20/2020 10:38 AM	08/20/2020 4:30 PM

Case Narrative

WO#: **2008283**Date: **8/27/2020**

CLIENT: Friedman & Bruya

Project: 008318

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: **2008283**

Date Reported: **8/27/2020**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2008283**Date Reported: **8/27/2020**

CLIENT: Friedman & Bruya

Project: 008318

Lab ID: 2008283-001 **Collection Date:** 8/20/2020 9:55:00 AM

Client Sample ID: SVS-01-082020 Matrix: Air

Result **RL Qual** Units DF **Date Analyzed Analyses** Batch ID: R61354 Analyst: MS Major Gases by EPA Method 3C Carbon Dioxide 0.121 0.0500 1 8/21/2020 1:48:00 PM Methane ND 0.0500 % 8/21/2020 1:48:00 PM 21.6 0.0500 % 1 8/21/2020 1:48:00 PM Oxygen

Lab ID: 2008283-002 **Collection Date:** 8/20/2020 9:16:00 AM

Client Sample ID: SVS-02-082020 Matrix: Air

Units Analyses Result **RL Qual** DF **Date Analyzed** Batch ID: R61354 Analyst: MS **Major Gases by EPA Method 3C** Carbon Dioxide 0.0698 0.0500 % 8/21/2020 2:05:00 PM Methane ND 0.0500 % 1 8/21/2020 2:05:00 PM Oxygen 22.9 0.0500 8/21/2020 2:05:00 PM

Lab ID: 2008283-003 **Collection Date:** 8/20/2020 12:20:00 PM

Client Sample ID: GP-01-082020 Matrix: Air

Result **RL Qual** Units DF **Date Analyzed Analyses** Major Gases by EPA Method 3C Batch ID: R61354 Analyst: MS Carbon Dioxide 24.6 0.0500 % 1 8/21/2020 2:17:00 PM ND Methane 0.0500 % 1 8/21/2020 2:17:00 PM Oxygen 3.44 0.0500 % 1 8/21/2020 2:17:00 PM

Analytical Report

Work Order: **2008283**Date Reported: **8/27/2020**

CLIENT: Friedman & Bruya

Project: 008318

Lab ID: 2008283-004 **Collection Date:** 8/20/2020 12:54:00 PM

Client Sample ID: GP-02-082020 Matrix: Air

Result **RL Qual** Units DF **Date Analyzed Analyses** Batch ID: R61354 Analyst: MS Major Gases by EPA Method 3C Carbon Dioxide 20.0 0.0500 1 8/21/2020 2:31:00 PM Methane ND 0.0500 % 8/21/2020 2:31:00 PM 6.95 0.0500 % 1 8/21/2020 2:31:00 PM Oxygen

Lab ID: 2008283-005 **Collection Date:** 8/20/2020 1:35:00 PM

Client Sample ID: GP-03-082020 Matrix: Air

Units Analyses Result **RL Qual** DF **Date Analyzed** Batch ID: R61354 Analyst: MS **Major Gases by EPA Method 3C** Carbon Dioxide 22.8 0.0500 % 8/21/2020 3:04:00 PM Methane 0.157 0.0500 % 1 8/21/2020 3:04:00 PM Oxygen 1.90 0.0500 8/21/2020 3:04:00 PM

Lab ID: 2008283-006 **Collection Date:** 8/20/2020 10:38:00 AM

Client Sample ID: GP-04-082020 Matrix: Air

Result **RL Qual** Units DF **Date Analyzed Analyses** Major Gases by EPA Method 3C Batch ID: R61354 Analyst: MS Carbon Dioxide 8.53 0.0500 % 1 8/21/2020 3:29:00 PM ND Methane 0.0500 % 1 8/21/2020 3:29:00 PM Oxygen 15.9 0.0500 % 1 8/21/2020 3:29:00 PM

Date: 8/27/2020

Work Order: 2008283

CLIENT: Friedman & Bruya

0.102

ND

21.9

0.0500

0.0500

0.0500

Project: 008318

Carbon Dioxide Methane

Oxygen

QC SUMMARY REPORT

Major Gases by EPA Method 3C

17.4

1.35

30

30

30

0.1214

21.57

0

Client ID: LCSW Batch ID: R61354 Result RL SPK value SPK Ref Val WREC LowLimit HighLimit RPD Ref Val WRPD RPDLimit Qual	110,000				
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Carbon Dioxide 100 0.0500 100.0 0 100 70 130 Methane 99.6 0.0500 100.0 0 99.6 70 130 Oxygen 100 0.0500 100.0 0 100 70 130 Sample ID: 2008283-001AREP SampType: REP Units: % Prep Date: 8/21/2020 RunNo: 61354 Client ID: SVS-01-082020 Batch ID: R61354	Sample ID: LCS-R61354	SampType: LCS	Units: %	Prep Date: 8/21/2020	RunNo: 61354
Carbon Dioxide	Client ID: LCSW	Batch ID: R61354		Analysis Date: 8/21/2020	SeqNo: 1230886
Methane 99.6 0.0500 100.0 0 99.6 70 130 Oxygen 100 0.0500 100.0 0 100 70 130 Sample ID: 2008283-001AREP SampType: REP Units: % Prep Date: 8/21/2020 RunNo: 61354 Client ID: SVS-01-082020 Batch ID: R61354 Analysis Date: 8/21/2020 SeqNo: 1230880	Analyte	Result RL	SPK value SPK Ref Val %RI	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Oxygen 100 0.0500 100.0 0 100 70 130 Sample ID: 2008283-001AREP SampType: REP Units: % Prep Date: 8/21/2020 RunNo: 61354 Client ID: SVS-01-082020 Batch ID: R61354 Analysis Date: 8/21/2020 SeqNo: 1230880	Carbon Dioxide	100 0.0500	100.0 0 10	0 70 130	
Sample ID: 2008283-001AREP SampType: REP Units: % Prep Date: 8/21/2020 RunNo: 61354 Client ID: SVS-01-082020 Batch ID: R61354 Analysis Date: 8/21/2020 SeqNo: 1230880	Methane	99.6 0.0500	100.0 0 99	6 70 130	
Client ID: SVS-01-082020 Batch ID: R61354 Analysis Date: 8/21/2020 SeqNo: 1230880	Oxygen	100 0.0500	100.0 0 10	0 70 130	
7,7 100 100 100 100 100 100 100 100 100 10	Sample ID: 2008283-001AREP	SampType: REP	Units: %	Prep Date: 8/21/2020	RunNo: 61354
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual	Client ID: SVS-01-082020	Batch ID: R61354		Analysis Date: 8/21/2020	SeqNo: 1230880
	Analyte	Result RL	SPK value SPK Ref Val %RI	EC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Original Page 7 of 9

Sample Log-In Check List

С	lient Name:	FB	Work Order Number:	2008283	3
Lo	ogged by:	Gabrielle Coeuille	Date Received:	8/20/202	20 4:30:00 PM
<u>Cha</u>	in of Custo	ody			
1.	Is Chain of Cu	ustody complete?	Yes 🗸	No \square	Not Present
2.	How was the	sample delivered?	Client		
Log	<u>. In</u>				
3.	Coolers are pr	resent?	Yes	No 🗸	NA \square
			Air samples		
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗸	No 🗌	
5.		s present on shipping container/cooler? ments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹
6.	Was an attem	ppt made to cool the samples?	Yes	No \square	NA 🗹
7.	Were all items	s received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🔽
8.	Sample(s) in p	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes 🗸	No \square	
10.	Are samples p	properly preserved?	Yes 🗸	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗌
12.	Is there heads	space in the VOA vials?	Yes	No 🗌	NA 🗸
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14.	Does paperwo	ork match bottle labels?	Yes 🗸	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No \square	
16.	Is it clear wha	t analyses were requested?	Yes 🗸	No \square	
17.	Were all holdi	ng times able to be met?	Yes 🗸	No \square	
Spe	cial Handl	ing (if applicable)			
-		tified of all discrepancies with this order?	Yes	No 🗌	NA 🗸
	Person i	Notified: Date	e:		
	By Who		eMail Phone	e ∏ Fax	☐ In Person
	Regardir				
		structions:			

19. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Ph. (206) 285-8282 Relinquished by:		3012 16th Avenue-West Relinquished by MT ME	E. J. & D. L. GICNATURE			this Bhath ex	WB 69-DUP-082020	GP-04-082020 1038	GP-03 - 082020 1335	GP-02-082020	GP-01-082020 1220	545-02-082020 916	542-01-1821/20 8/20/20 955	Sample ID Lab Date Time ID Sampled Sampled		100	te, ZIP_	Address 3012 16th Ave W		Send Report To Michael Erdahl
	K	2										-	Air	Matrix		7a.com	RE		PR	SU
		Mich	1				-			-	-	-	-	# of jars		PI	REMARKS	00	PROJECT NAME/NO.	SUBCONTRACIER
	when	Michael Erdahl	9											Dioxins/Furans		Please Email Results	02	008318	NAME	KACIE
	1		PRINT NAME			1	1	-	1	-				ЕРН	11	nail Re		V	NO.	N.
	Dhinson	Liz Web	NAM											VPH	A	sults				
		bber-Bruse	(4)					7	(>	< *	×	×	×	CO2, CH4, O2, 3C				A		
	CAI	Friedr	CON												VALYSES REQUESTED			338	PO#	
		& Bruya	COMPANY				+	+	+	+	+	+	+		Œ	□ Will	D Disj	Rush	□ RUS	

TIME

8/20/20 8/20/20 DATE

1630

2008783 ☐ Dispose after 30 days
☐ Return samples
☐ Will call with instructions Standard TAT Rush charges authorized by: TURNAROUND TIME SAMPLE DISPOSAL Page 9 of 9

Notes

Company Aspect Lonsulting Address 710 3nd Auc. Ste 550 City, State, ZIP Seathle, WH, 98104

Phone (305)413-5411 Email ayonhotzh: O espectionsulting.com SAMPLE CHAIN OF CUSTODY PROJECT NAME & ADDRESS
TOMO SHOWING
6808 196th St. Sw. Haward, WA
NOTES: SAMPLERS (signature) INVOICE TO 18087 PO# 20 08-20-20 ¥Standard □ RUSH___ ☐ Archive (Fee may apply) ☐ Default: Clean after 3 days TURNAROUND TIME Rush charges authorized by: SAMPLE DISPOSAL

						^^	^ ~	<u> </u>					Ś
Tro Walk	6P-100P-082020 07 9438	0458 00 060680 - HO-93	6P-03-0822020 05 3260	6P-02-082020 of 2433	67-01-082020 03 3300	SUS-02-082020 02 2434	SUS -01-08/2020 or 3387	Sample Name			****		SAMPLE INFORMATION
	33030	2600	OCOL	000	0,60,6	OCORS	020	e	-				NOLLY
80	07	8	200	20	B	07	2	ID	Lab				
1305 108	ŀ	3540	3260	2433		ŀ	1	ID	Canister				
100X	109	82	101	8	345	82	S	ΙD	Cont.	된 W			
IA / SG	ia / 😭	та / 🚱	IA / 🚱	та / 🚱	1A / 😭	та / (\$)	IA / 🚱	(Circle One)	SG=Soil Gas	Level:	Reporting		
j	4						OSIO OF OUTOUR	Sampled ("Hg)	Date				
	8	इं	Š	જે	3	2160 80-	상	("Hg)	Vac.	This is			
		1032 -5	1331	1357	Sta		1	Time	Initial	Field			
	Ó	31	رئی	دار	S	2	८५	("Hg)	Vac.	<u></u> 되			
	Ì	1038	335	1254	סכבו	9116	0455 0455	T	Final	Field			
	,								TO1	5 Fu	ll Sc	an	ANAI
₩	7		-				×	-	***************************************	15 B'.		 	XSIS
1	-						×		1/	API		p	REQ
X	7	<u>g</u>					×			Heliu	ım		ANALYSIS REQUESTED
W.	17.			,			×	1	0	1, U	4,0	<u>.</u> K	EB
• .	品						Trade in		1				
4	地河			-	<u> </u>		15	Notes					
	APH						T.	Sc					
	D /V		<u></u>		<u>L</u>	<u> </u>		<u></u>		·····			
												1	

FORMS\COC\COCTO-15,DOC Fax (206) 283-5 Seattle, WA 98. 3012 16th Aven Ph. (206) 285-8

Friedman & Bruya, Inc.	SIGNATURE /	PRINT NAME,	COMPANY	DATE	TIME
3012 16th Avenue West Relinquished by:	Relinquished by:	Davit Unal	Aspect Lonsolling	ah1 0e/0e/8	Jak
Seattle, WA 98119-2029	Received by:	Khai Hoans	FBD T	२	70/20 1445
Ph. (206) 285-8282	Relinquished by:	0			25 on
Fax (206) 283-5044	Received by:		Sampro	Campies received at	
EVENTON COOK OCCUPATION					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 17, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 10, 2020 from the Texaco Strickland PO 180357, F&BI 011185 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 10, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011185 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011185 -01	GP-05-1.25
011185 -02	GP-05-6
011185 -03	GP-06-2.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

Date Extracted: 11/13/20 Date Analyzed: 11/13/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
GP-05-1.25 011185-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
GP-06-2.5 011185-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
Method Blank 00-2418 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	89

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

Date Extracted: 11/10/20 Date Analyzed: 11/10/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
GP-05-1.25 011185-01	<50	<250	80
GP-06-2.5 011185-03	<50	<250	84
Method Blank 00-2494 MB	<50	<250	83

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GP-05-1.25 Client: Aspect Consulting, LLC
Date Received: 11/10/20 Project: Texaco Strickland PO 180357

Lab ID: 011185-01 Date Extracted: 11/10/20 Date Analyzed: 11/10/20 Data File: 111033.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 145 Toluene-d8 104 55 145 4-Bromofluorobenzene 100 65 139

Compounds: Concentration mg/kg (ppm)

Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GP-06-2.5 Client: Aspect Consulting, LLC
Date Received: 11/10/20 Project: Texaco Strickland PO 180357

Lab ID: 011185-03 Date Extracted: 11/10/20 Date Analyzed: 11/10/20 Data File: 111034.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 62 145 Toluene-d8 104 55 145 4-Bromofluorobenzene 101 65 139

Compounds: Concentration mg/kg (ppm)

Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

Lab ID: Date Extracted: 11/10/20 00-2668 mbDate Analyzed: 11/10/20 Data File: 111009.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 145 Toluene-d8 104 55 145 4-Bromofluorobenzene 99 65 139

Compounds: Concentration mg/kg (ppm)

Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011185-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	mg/kg (ppm)	0.5	88	69-120		
Toluene	mg/kg (ppm)	0.5	90	70 - 117		
Ethylbenzene	mg/kg (ppm)	0.5	92	65 - 123		
Xylenes	mg/kg (ppm)	1.5	93	66-120		
Gasoline	mg/kg (ppm)	20	90	71 - 131		

ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 011154-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5.000	26,000	180 b	177 b	64-133	2 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	98	58-147

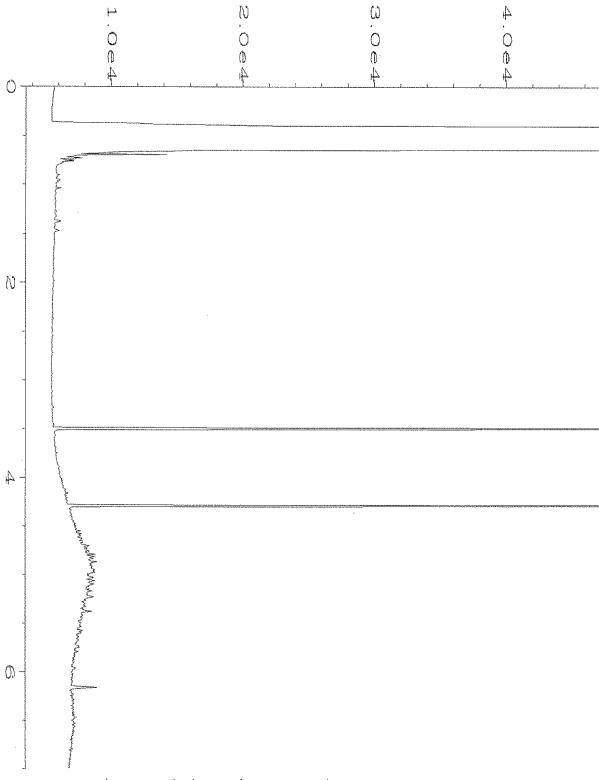
ENVIRONMENTAL CHEMISTS

Date of Report: 11/17/20 Date Received: 11/10/20

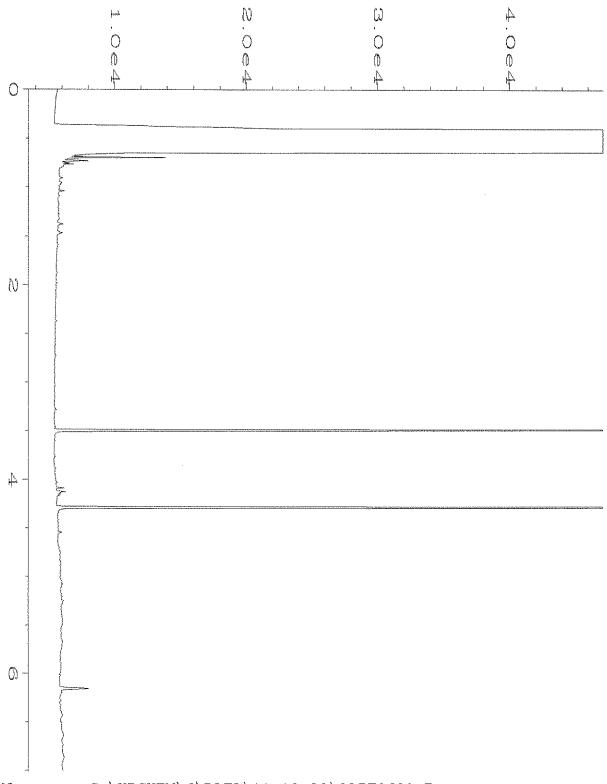
Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011140-01 (Matrix Spike)


			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	1	< 0.05	98	104	14 - 157	6

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Naphthalene	mg/kg (ppm)	1	86	63-140	-


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

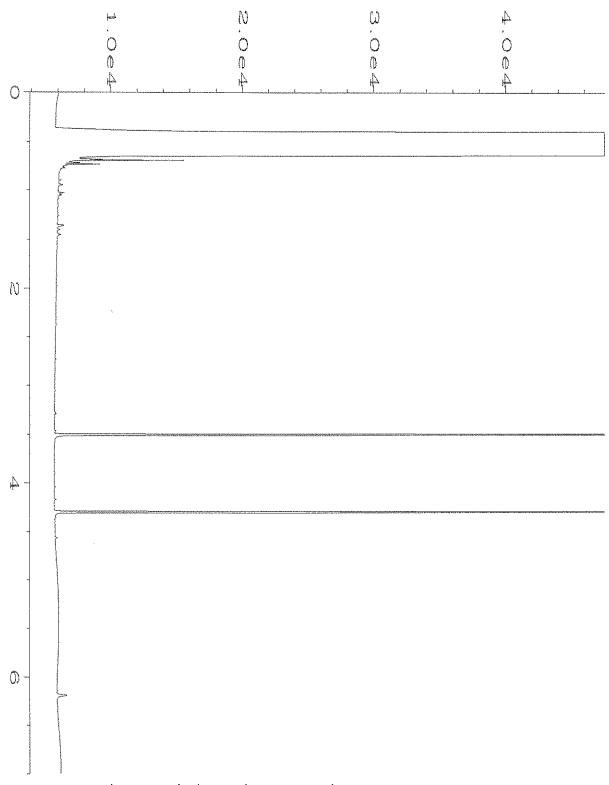
- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Data File Name
                 : C:\HPCHEM\6\DATA\11-10-20\036F0601.D
                                                     Page Number
Vial Number
Operator
                   : TL
                                                                         : 1
Instrument
                                                                         : 36
                   : GC6
Sample Name
                   : 011185-01
                                                      Injection Number: 1
Run Time Bar Code:
                                                      Sequence Line
                                                                       : 6
Acquired on : 10 Nov 20 Report Created on: 11 Nov 20
                                                      Instrument Method: DX.MTH
                                04:17 PM
                                                      Analysis Method : DX.MTH
                                09:44 AM
```

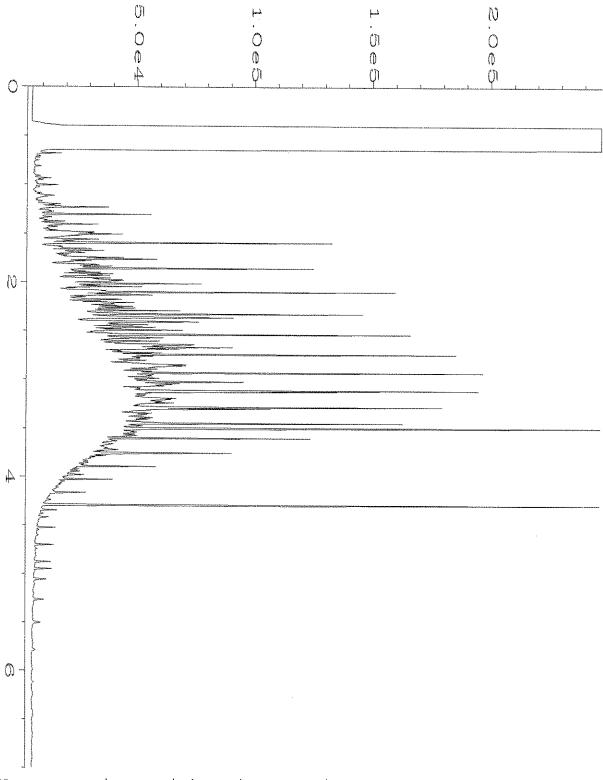


```
Data File Name : C:\HPCHEM\6\DATA\11-10-20\037F0601.D

Operator : TL Page Number : 1


Instrument : GC6 Vial Number : 37

Sample Name : 011185-03 Injection Number : 1


Run Time Bar Code: Sequence Line : 6

Acquired on : 10 Nov 20 04:28 PM Instrument Method: DX.MTH

Report Created on: 11 Nov 20 09:44 AM Analysis Method : DX.MTH
```



```
Data File Name
               : C:\HPCHEM\6\DATA\11-10-20\015F0301.D
Operator
                                              Page Number
                : TL
                                              Vial Number
                                                               : 15
Instrument
                : GC6
                                              Injection Number: 1
Sample Name
                : 00-2494 mb
                                              Sequence Line
                                                             : 3
Run Time Bar Code:
Acquired on : 10 Nov 20 09:59 AM
                                              Instrument Method: DX.MTH
                                              Analysis Method : DX.MTH
Report Created on: 11 Nov 20 09:44 AM
```



```
Data File Name
                 : C:\HPCHEM\6\DATA\11-10-20\003F0701.D
Operator
                 : TL
                                                 Page Number
Vial Number
Instrument
                 : GC6
                                                                  : 3
Sample Name
                 : 500 Dx 61-146D
                                                 Injection Number: 1
Run Time Bar Code:
                                                 Sequence Line
Acquired on : 10 Nov 20 04:50 PM
                                                 Instrument Method: DX.MTH
Report Created on: 11 Nov 20 09:41 AM
                                                 Analysis Method : DX.MTH
```

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 24, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the additional results from the testing of material submitted on November 10, 2020 from the Texaco Strickland PO 180357, F&BI 011185 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 10, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011185 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011185 -01	GP-05-1.25
011185 -02	GP-05-6
011185 -03	GP-06-2.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

Date Extracted: 11/18/20 Date Analyzed: 11/18/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
GP-05-6 011185-02	< 0.02	<0.02	<0.02	<0.06	<5	82
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<5	81

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

Date Extracted: 11/18/20 Date Analyzed: 11/18/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	$\frac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 48-168)
GP-05-6 011185-02	<50	<250	90
Method Blank 00-2532 MB	<50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GP-05-6 Client: Aspect Consulting, LLC
Date Received: 11/10/20 Project: Texaco Strickland PO 180357

Lab ID: 011185-02Date Extracted: 11/19/20 Date Analyzed: 11/19/20 Data File: 111919.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 94 62 145 Toluene-d8 100 55 145 4-Bromofluorobenzene 102 65 139

Compounds: Concentration mg/kg (ppm)

Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

Lab ID: Date Extracted: 11/19/20 00-2697 mb Date Analyzed: 11/19/20 Data File: 111909.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 99 62 145 Toluene-d8 101 55 145 4-Bromofluorobenzene 102 65 139

Compounds: Concentration mg/kg (ppm)

Naphthalene <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 011312-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	92	69-120
Toluene	mg/kg (ppm)	0.5	94	70 - 117
Ethylbenzene	mg/kg (ppm)	0.5	94	65 - 123
Xylenes	mg/kg (ppm)	1.5	93	66-120
Gasoline	mg/kg (ppm)	20	95	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/24/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 011185-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	98	94	73-135	4

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Diesel Extended	mg/kg (ppm)	5,000	90	74-139	

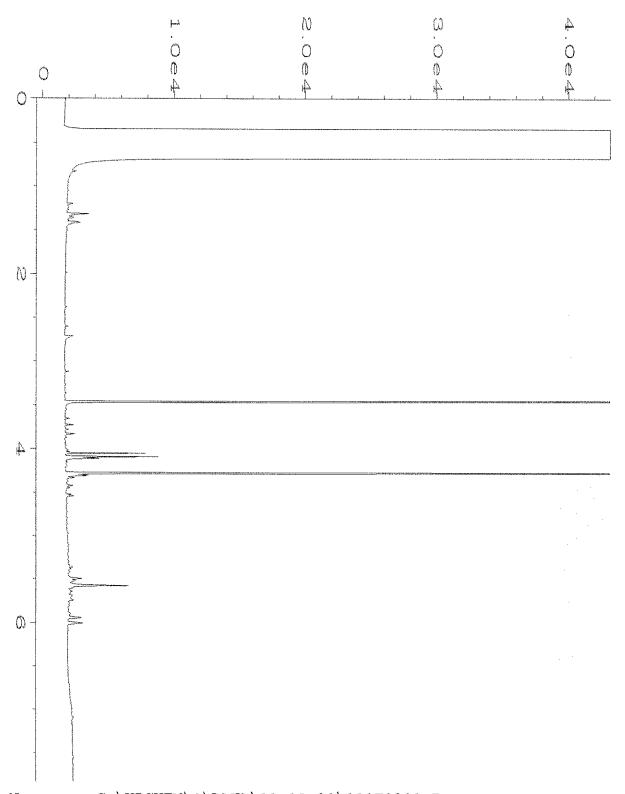
ENVIRONMENTAL CHEMISTS

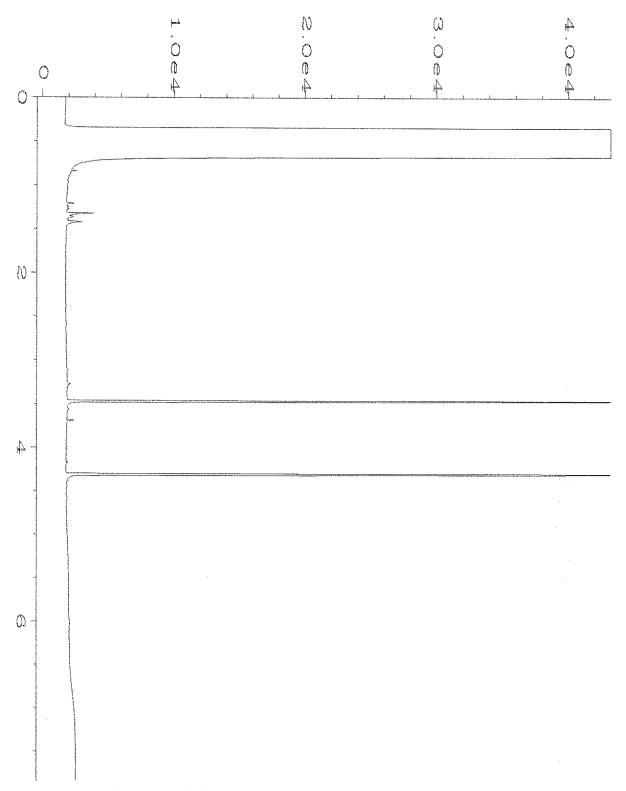
Date of Report: 11/24/20 Date Received: 11/10/20

Project: Texaco Strickland PO 180357, F&BI 011185

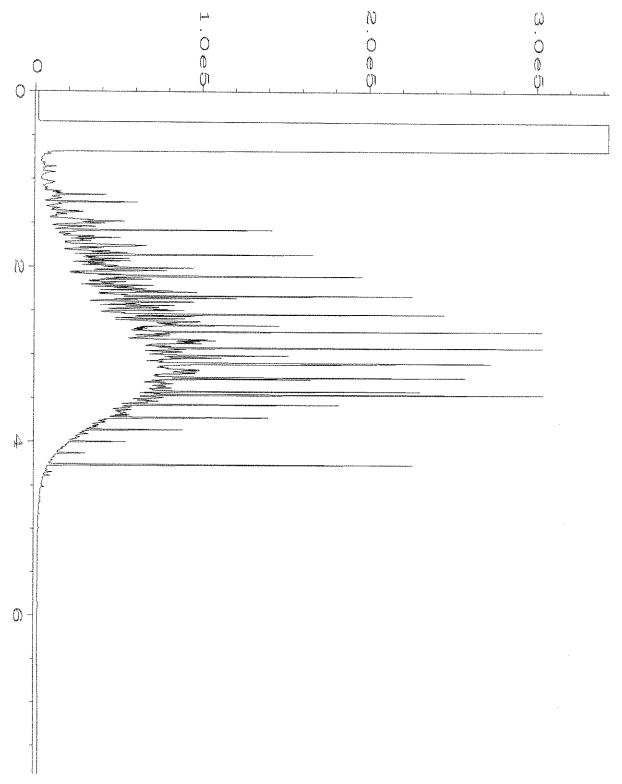
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011324-01 (Matrix Spike)


			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	1	< 0.05	86	78	14 - 157	10


		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Naphthalene	mg/kg (ppm)	1	91	63-140	

ENVIRONMENTAL CHEMISTS


Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

and the second of the second of the

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 30, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 18, 2020 from the Texaco Strickland PO 180357, F&BI 011339 project. There are 46 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Aspect Data, Adam Griffin

ASP1130R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 18, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011339 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011339 -01	MW-1-111820
011339 -02	MW-2-111720
011339 -03	MW-6-111620
011339 -04	MW-7-111720
011339 -05	MW-9-111620
011339 -06	MW-10-111720
011339 -07	MW-11-111720
011339 -08	MW-12-111620
011339 -09	MW-13-111720
011339 -10	MW-14-111820
011339 -11	MW-16-111620
011339 -12	MW-17-111620
011339 -13	MW-18-111620
011339 -14	MW-19-111720
011339 -15	MW-20-111720
011339 -16	MW-21-111720
011339 -17	MW-22-111620
011339 -18	MW-23-111820
011339 -19	MW-24-111720
011339 -20	MW-25-111620
011339 -21	MW-26-111620
011339 -22	CMW-1-111720
011339 -23	CMW-4-111720
011339 -24	DUP-01-111620
011339 -25	DUP-02-111720
011339 -26	RB-01-111720
011339 -27	RB-02-111820
011339 -28	Trip Blank
	*

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

Date Extracted: 11/19/20

Date Analyzed: 11/20/20 and 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-1-111820 011339-01 1/10	31,000	105
MW-2-111720 011339-02	4,100	93
MW-6-111620 ₀₁₁₃₃₉₋₀₃	<100	92
MW-7-111720 011339-04	<100	90
MW-9-111620 011339-05	<100	93
MW-10-111720 011339-06 1/10	12,000	107
MW-11-111720 011339-07 1/10	5,400	97
MW-12-111620 011339-08	410	101
MW-13-111720 011339-09	1,200	105
MW-14-111820 011339-10	6,400	85
MW-16-111620 011339-11	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

Date Extracted: 11/19/20

Date Analyzed: 11/20/20 and 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-17-111620 011339-12	1,200	89
MW-18-111620 011339-13	340	93
MW-19-111720 011339-14	<100	91
MW-20-111720 011339-15	<100	90
MW-21-111720 011339-16	6,600	121
MW-22-111620 011339-17 1/10	24,000	117
MW-23-111820 011339-18 1/10	27,000	105
MW-24-111720 011339-19	<100	93
MW-25-111620 011339-20	<100	91
MW-26-111620 011339-21	<100	89
CMW-1-111720 011339-22	<100	87

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

Date Extracted: 11/19/20

Date Analyzed: 11/20/20 and 11/24/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 51-134)
CMW-4-111720 ₀₁₁₃₃₉₋₂₃	<100	90
DUP-01-111620 011339-24	370	91
DUP-02-111720 011339-25 1/20	13,000	72
RB-01-111720 ₀₁₁₃₃₉₋₂₆	<100	92
RB-02-111820 ₀₁₁₃₃₉₋₂₇	<100	92
Trip Blank ₀₁₁₃₃₉₋₂₈	<100	90
Method Blank _{00-2424 MB}	<100	91
Method Blank 00-2426 MB	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 41-152)
MW-1-111820 011339-01	1,800 x	810 x	107
MW-2-111720 ₀₁₁₃₃₉₋₀₂	1,300 x	<250	103
MW-6-111620 ₀₁₁₃₃₉₋₀₃	<50	<250	111
MW-7-111720 011339-04	<50	<250	114
MW-9-111620 011339-05	<54	<250	106
MW-10-111720 011339-06	1,400 x	<250	100
MW-11-111720 ₀₁₁₃₃₉₋₀₇	720 x	<250	104
MW-12-111620 ₀₁₁₃₃₉₋₀₈	230 х	<250	101
MW-13-111720 ₀₁₁₃₃₉₋₀₉	490 x	260 x	124
MW-14-111820 011339-10	780 x	290 x	102
MW-16-111620 011339-11	<50	<250	102
MW-17-111620 011339-12	550 x	<250	128

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	$\frac{\text{Motor Oil Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 41-152)
MW-18-111620 011339-13	59 x	<250	133
MW-19-111720 011339-14	<50	<250	126
MW-20-111720 011339-15	<50	<250	119
MW-21-111720 011339-16	$2,\!800~{\rm x}$	360 x	127
MW-22-111620 ₀₁₁₃₃₉₋₁₇	3,000 x	410 x	117
MW-23-111820 ₀₁₁₃₃₉₋₁₈	2,600 x	390 x	126
MW-24-111720 011339-19	<50	<250	123
MW-25-111620 ₀₁₁₃₃₉₋₂₀	<50	<250	120
MW-26-111620 011339-21	<50	<250	108
CMW-1-111720 011339-22	<50	<250	109
CMW-4-111720 011339-23	<50	<250	118
DUP-01-111620 011339-24	59 x	<250	131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

Date Extracted: 11/20/20 Date Analyzed: 11/20/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

			Surrogate
Sample ID	<u>Diesel Range</u>	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 41-152)
DUP-02-111720 011339-25	1,700 x	280 x	115
RB-01-111720 ₀₁₁₃₃₉₋₂₆	<50	<250	111
RB-02-111820 ₀₁₁₃₃₉₋₂₇	<50	<250	129
Method Blank	<50	<250	103
00-2573 MB		_00	_30
Method Blank _{00-2542 MB2}	<50	<250	102

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-1-111820 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-01 1/50 Date Analyzed: 11/20/20 Data File: 111947.D Matrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	108	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Concentration

Compounds: ug/L (ppb)

 Benzene
 5,600

 Toluene
 740

 Ethylbenzene
 720

 m,p-Xylene
 2,200

 o-Xylene
 580

 Naphthalene
 200

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-2-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-02Date Analyzed: 11/19/20 Data File: 111936.DMatrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	103	50	150

Concentration

Compounds: ug/L (ppb)

Benzene29Toluene7.8Ethylbenzene49m,p-Xylene20o-Xylene4.4Naphthalene150

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 011339-03 11/19/20 Date Analyzed: 11/19/20 Data File: 111937.DMatrix: GCMS11 Water Instrument: Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	121	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	101	50	150

Concentration

Compounds:	ug/L (ppb)	
Benzene	< 0.35	
Toluene	<1	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-7-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-04 Date Analyzed: 11/19/20 Data File: 111938.DMatrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	116	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	96	50	150

Concentration

Compounds: ug/L (ppb)

Benzene <0.35

Toluene <1

Ethylbenzene <1

m,p-Xylene <2

o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-9-111620 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-05Date Analyzed: 11/19/20 Data File: 111939.D Matrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	87	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	101	50	150

 $\begin{array}{c} {\rm Concentration} \\ {\rm Compounds:} & {\rm ug/L~(ppb)} \\ {\rm Benzene} & <0.35 \\ {\rm Toluene} & <1 \\ \end{array}$

Ethylbenzene <1 m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-10-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-06 1/10 Date Analyzed: 11/20/20 Data File: 111948.D Matrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: JCM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	70 Necovery. 102	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	99	50	150

Concentration

Compounds: ug/L (ppb)

 $\begin{array}{lll} \text{Benzene} & 1,600 \text{ ve} \\ \text{Toluene} & 31 \\ \text{Ethylbenzene} & 630 \\ \text{m,p-Xylene} & 620 \\ \text{o-Xylene} & <10 \\ \text{Naphthalene} & 220 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-10-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-06 1/50 Date Analyzed: 11/21/20 Data File: 112030.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 131 50 150 Toluene-d8 96 50 150 4-Bromofluorobenzene 98 50 150

Concentration

Compounds: ug/L (ppb)

Benzene 1,800

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-11-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-07 1/50 Date Analyzed: 11/20/20 Data File: 111949.D Matrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	107	50	150

Concentration

Compounds: ug/L (ppb)

Benzene160Toluene290Ethylbenzene220m,p-Xylene280o-Xylene120Naphthalene110

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-12-111620 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	% necovery. 96	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Concentration

Compounds: ug/L (ppb)

 $\begin{array}{lll} \text{Benzene} & 0.65 \\ \text{Toluene} & <1 \\ \text{Ethylbenzene} & <1 \\ \text{m,p-Xylene} & <2 \\ \text{o-Xylene} & <1 \\ \text{Naphthalene} & <1 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW-13-111720	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-09 Date Analyzed: 11/19/20 Data File: 111941.D Matrix: Water Instrument: GCMS11 Units: ug/L (ppb) JCMOperator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	113	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	100	50	150

Concentration

Compounds:	ug/L (ppb)
D	

Benzene 1.5
Toluene <1
Ethylbenzene <1
m,p-Xylene <2
o-Xylene <1
Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-14-111820 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-10 1/10 Date Analyzed: 11/20/20 Data File: 111950.DMatrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	118	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	96	50	150

 $\begin{array}{lll} \text{Benzene} & 1,800 \text{ ve} \\ \text{Toluene} & 19 \\ \text{Ethylbenzene} & 31 \\ \text{m,p-Xylene} & <20 \\ \text{o-Xylene} & <10 \\ \text{Naphthalene} & 46 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-14-111820 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-10 1/50 Date Analyzed: 11/21/20 Data File: 112031.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: JCM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 109 50 150 Toluene-d8 107 50 150 4-Bromofluorobenzene 100 50 150

Concentration

Compounds: ug/L (ppb)

Benzene 2,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: 011339-11 Date Extracted: 11/19/20 Date Analyzed: 11/19/20 Data File: 111942.DMatrix: Water Instrument: GCMS11 Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	ug/L (ppb)	
Benzene	< 0.35	
Toluene	<1	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-17-111620 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-12Date Analyzed: 11/20/20 Data File: 111943.DMatrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	115	50	150
Toluene-d8	95	50	150
4-Bromofluorobenzene	103	50	150

Concentration

Compounds: ug/L (ppb)

Benzene 5.7
Toluene 6.9
Ethylbenzene <1
m,p-Xylene 16
o-Xylene <1
Naphthalene 1.9

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-18-111620 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-13 Date Analyzed: 11/20/20 Data File: 111944.D Matrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	121	50	150
Toluene-d8	94	50	150
4-Bromofluorobenzene	101	50	150

Concentration

Compounds: ug/L (ppb)

Benzene 61
Toluene <1
Ethylbenzene 2.1
m,p-Xylene 9.8
o-Xylene 2.1
Naphthalene 2.4

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-19-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-14Date Analyzed: 11/20/20 Data File: 111945.DMatrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	50	150
Toluene-d8	105	50	150
4-Bromofluorobenzene	101	50	150

Concentration

 Compounds:
 ug/L (ppb)

 Benzene
 <0.35</td>

 Toluene
 <1</td>

 Ethylbenzene
 <1</td>

 m,p-Xylene
 <2</td>

 o-Xylene
 <1</td>

 Naphthalene
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-20-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-15Date Analyzed: 11/20/20 Data File: 111946.D Matrix: Water Instrument: GCMS11 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	105	50	150

Concentration ug/L (ppb)

Benzene <0.35
Toluene <1
Ethylbenzene <1
m,p-Xylene <2
o-Xylene <1
Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-21-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-16 1/10 Date Analyzed: 11/19/20 Data File: 111938.DMatrix: Water Instrument: GCMS4 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	107	60	133

Benzene25Toluene12Ethylbenzene620m,p-Xylene43o-Xylene<10</td>Naphthalene440

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-22-111620 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-17 1/20 Date Analyzed: 11/19/20 Data File: 111939.D Matrix: Water Instrument: GCMS4 Units: JCMug/L (ppb) Operator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	103	60	133

Concentration

Compounds: ug/L (ppb)

 Benzene
 1,000

 Toluene
 240

 Ethylbenzene
 1,300

 m,p-Xylene
 3,500

 o-Xylene
 380

 Naphthalene
 390

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: MW-23-111820 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-18 1/50 Date Analyzed: 11/19/20 Data File: 111940.D Matrix: Water Instrument: GCMS4 Units: JCMug/L (ppb) Operator:

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	104	60	133

Concentration

Compounds: ug/L (ppb)

 Benzene
 5,300

 Toluene
 120

 Ethylbenzene
 640

 m,p-Xylene
 930

 o-Xylene
 <50</td>

 Naphthalene
 170

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 011339-19 11/19/20 Date Analyzed: 11/19/20 Data File: 111935.DMatrix: GCMS4 Water Instrument: Units: ug/L (ppb) JCMOperator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	105	60	133

Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW-25-111620	Client:	Aspect Consulting, LLC
-------------------	--------------	---------	------------------------

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 011339-20 11/19/20 Date Analyzed: 11/19/20 Data File: 111936.DMatrix: Instrument: GCMS4Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	101	60	133

Concentration

<1

Compounds:	ug/L (ppb)
Benzene	0.53
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1

Naphthalene

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW-26-111620	Client:	Aspect	Consulting, LLC
-------------------	--------------	---------	--------	-----------------

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-21Date Analyzed: 11/19/20 Data File: 111937.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) JCMOperator:

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	103	60	133

Compounds:	ug/L (ppb)	
Benzene	< 0.35	
Toluene	<1	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: CMW-1-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

	0/ D	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	104	60	133

Concentration

Compounds: ug/L (ppb)

Benzene <0.35

Toluene <1

Ethylbenzene <1

m,p-Xylene <2

o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-23 Date Analyzed: 11/19/20 Data File: 111944.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	105	60	133

Compounds:	ug/L (ppb)	
Benzene	< 0.35	
Toluene	<1	
Ethylbenzene	<1	
m,p-Xylene	<2	
o-Xylene	<1	
Naphthalene	<1	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-24Date Analyzed: 11/21/20 Data File: 112029.DMatrix: Instrument: GCMS11 Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	104	50	150

Concentration

Compounds:	ug/L (ppb)		
Benzene	83		
Toluene	1.3		
Ethylbenzene	3.3		
1			

m,p-Xylene 15 o-Xylene 2.9 Naphthalene 3.0

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: DUP-02-111720 Client: Aspect Consulting, LLC

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	105	60	133

Concentration

Compounds: ug/L (ppb)

 Benzene
 1,800

 Toluene
 32

 Ethylbenzene
 710

 m,p-Xylene
 690

 o-Xylene
 <50</td>

 Naphthalene
 200

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	RB-01-111720	Client:	Aspect C	Consulting, LLC
-------------------	--------------	---------	----------	-----------------

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-26 Date Analyzed: 11/19/20 Data File: 111932.DMatrix: Instrument: GCMS4Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	101	63	127
4-Bromofluorobenzene	106	60	133

Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-27Date Analyzed: 11/19/20 Data File: 111933.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	103	63	127
4-Bromofluorobenzene	105	60	133

Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
-------------------	------------	---------	------------------------

Date Received: 11/18/20 Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 011339-28 Date Analyzed: 11/19/20 Data File: 111934.DMatrix: Instrument: GCMS4 Water Units: ug/L (ppb) JCMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	104	60	133

Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 00-2696 mb Date Analyzed: 11/19/20 Data File: 111908.DMatrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JCM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	95	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	104	60	133

Concentration

Compounds: ug/L (ppb)

 $\begin{array}{lll} \text{Benzene} & <0.35 \\ \text{Toluene} & <0.5 \\ \text{Ethylbenzene} & <1 \\ \text{m,p-Xylene} & <2 \\ \text{o-Xylene} & <1 \\ \text{Naphthalene} & <1 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Aspect Consulting, LLC

Date Received: Not Applicable Project: Texaco Strickland PO 180357, F&BI 011339

Lab ID: Date Extracted: 11/19/20 00-2545 mbDate Analyzed: 11/19/20 Data File: 111907.D Matrix: Water Instrument: GCMS11 Units: ug/L (ppb) Operator: JCM

Cumaratası	0/ Pagarana	Lower Limit:	Upper Limit:
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	125	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	97	50	150

Concentration

Compounds: ug/L (ppb)

Benzene <0.35

Toluene <1

Ethylbenzene <1

m,p-Xylene <2 o-Xylene <1 Naphthalene <1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH- $G_{\mathbf{x}}$

Laboratory Code: 011333-05 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	97	69-134	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 011339-11 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	93	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	88	92	63-142	4

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	89	108	63-142	19

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011340-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	10	< 0.35	105	50-150
Toluene	ug/L (ppb)	10	<1	104	50-150
Ethylbenzene	ug/L (ppb)	10	<1	106	50-150
m,p-Xylene	ug/L (ppb)	20	<2	104	50-150
o-Xylene	ug/L (ppb)	10	<1	105	50-150
Naphthalene	ug/L (ppb)	10	<1	108	50-150

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	99	106	70-130	7
Toluene	ug/L (ppb)	10	103	107	70-130	4
Ethylbenzene	ug/L (ppb)	10	104	105	70-130	1
m,p-Xylene	ug/L (ppb)	20	102	104	70-130	2
o-Xylene	ug/L (ppb)	10	103	105	70-130	2
Naphthalene	ug/L (ppb)	10	108	107	70-130	1

ENVIRONMENTAL CHEMISTS

Date of Report: 11/30/20 Date Received: 11/18/20

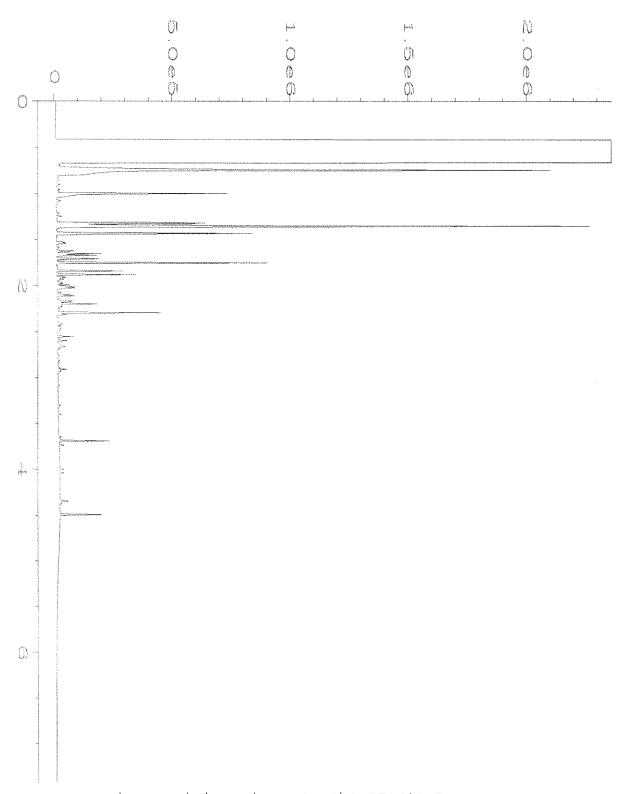
Project: Texaco Strickland PO 180357, F&BI 011339

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 011339-19 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	10	< 0.35	99	76 - 125
Toluene	ug/L (ppb)	10	<1	98	76 - 122
Ethylbenzene	ug/L (ppb)	10	<1	99	69 - 135
m,p-Xylene	ug/L (ppb)	20	<2	99	69 - 135
o-Xylene	ug/L (ppb)	10	<1	97	60-140
Naphthalene	ug/L (ppb)	10	<1	90	44-164

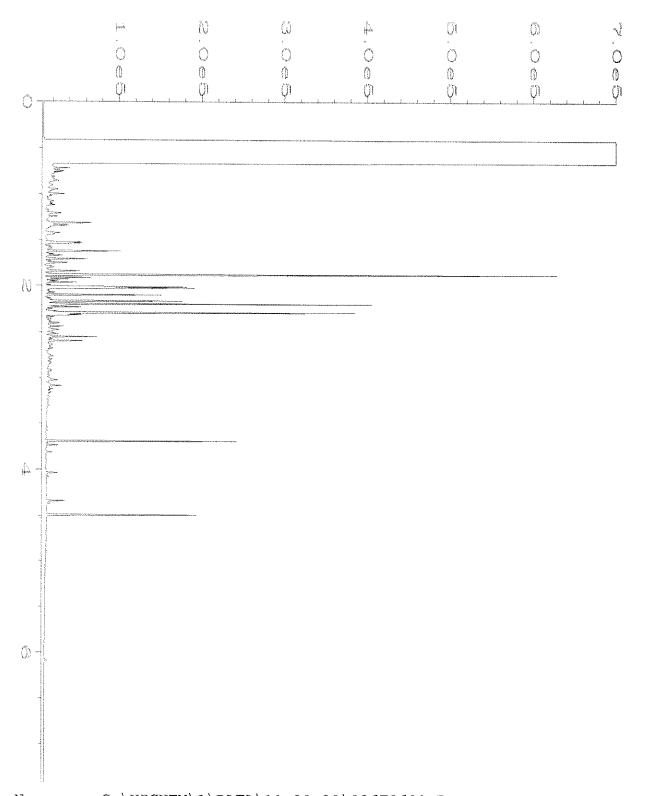
·	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	102	100	69-134	2
Toluene	ug/L (ppb)	10	99	97	72 - 122	2
Ethylbenzene	ug/L (ppb)	10	99	98	77 - 124	1
m,p-Xylene	ug/L (ppb)	20	99	96	81-112	3
o-Xylene	ug/L (ppb)	10	100	96	81-121	4
Naphthalene	ug/L (ppb)	10	100	95	64-133	5


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.		mw-25-111620	06/111-he-mm	DEB111-56-MM	mw-22- 111620	OELI11-12-07W	DELIII -06-000	DGT111-91-WM	mw-18-11/1000	mw-17-111620	069/11-91-07W	Sample ID		Phone (316)413 5411 Email ayokolde Cape	City, State, ZIP Souther	JID DA	Report To Harry Jonkes J
Received by:	Relinquished by:	Received by:	Relinquished by	SI	20	[9	හි		16	ίς		13	12	II A-G	Lab ID		iail Ayakafde	HOURD THUS	r sk 550	Consultan Adom Cro
-			medled.	SIGNATURE	11116/20	11/17/20	WY87M	06/11/11	+		111/17/20	11/16/20	11/1/1/20	111111/20	Date Sampled		-	H)	norden
		4			1312	0900	OHOI	365	630	818	1300	IIIO	0850	08570	Time Sampled		Project specific RLs? -	REMARKS	Texaco	SAMPLERS (signature) PROJECT NAME
obsessions were the feet state of the feet		Q.	Down		4-									UK-	Sample Type		pecific RLs	KS		SAMPLERS (signature) PROJECT NAME
***************************************		ラ	10,	PRINT NAME	+									7	# of Jars	ì	? - Yes		Strichlord	ture)
)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100	NAM	4									×	NWTPH-Dx NWTPH-Gx					
				E											BTEX EPA 8021					- India
															NWTPH-HCID	A	R	¥	180	
		. 1	Aspec												VOCs EPA 8260 PAHS EPA 8270 PCBs EPA 8082 STEXN 8260	ALYS	AP	INVOICE TO	180357	PO#
,		17		G											PCBs EPA 8082	ES R		OLB		#
Saj		77	T	COMPANY	4									×	BTEXN 82604	HOLD				
əldm			Coasal	ANY										ļ		STEI	Ğ □	0	Z	
sre		Ĭ	To a				<u> </u>										□ Other Default	S. Archi	ısh ch	Page # TURN Standard
Samples received at																-	☐ Other	SAMPLE DISPOSAL O Archive samples	Rush charges authorized by	
dat	-		OC 181/11	DATE						ĺ							pose s	mples	autho	VAROUM
1		20	<u> </u>	\vdash											Notes		after :	SPOS	nîzed	Of TI
الا د د		Shhi	Khh1	TIME											7,		15 O	I	by:	A M

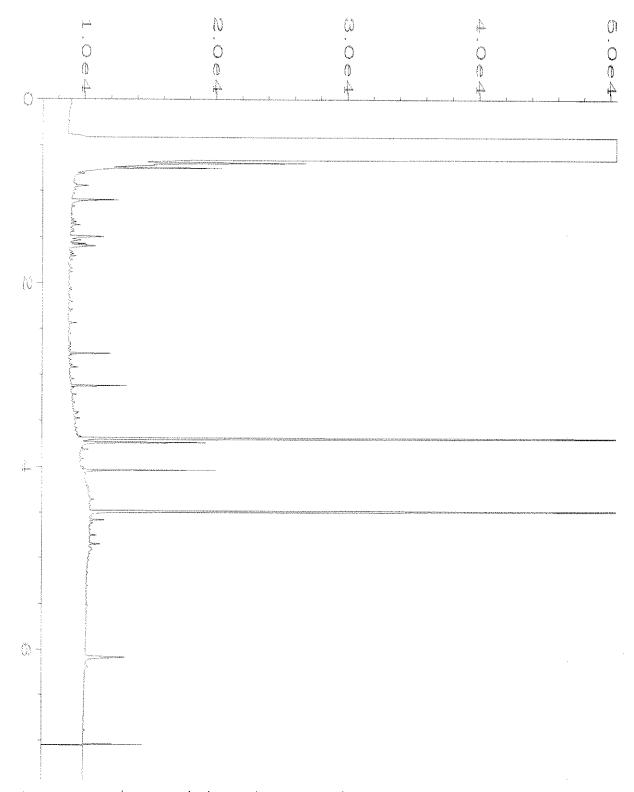

															- sound-existence								
Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.			•	Top Block	RB-62-111820	RB-01-11/200	OET/11 -60-9US	DC9111-10-905	CMW-4-111720	OEZIII-1-0MJ	OE 9111 -92-07W	Sample ID		Phone (db) 4135411 Email Ayorket 418 uspec	City, State, ZIP Southe	The and	Company April 6	0 11 33 9 Report To Antim Vir		
Received by:	Relinquished by:	Received by:	Relinquished by:	SIG		:	28 A-D	27	26	25	24	23	22	2 A-6	Lab ID		mail by pribately	e, WH, Alloy	25 yes 2	msolfing	Portugue / Album		
	<i>,</i>	my my	Zullun L	SIGNATURE,		:	1	CE/8/1/11	4	11.1/17/20	14/6/20	4	06/211/1	QC/9///II	Date Sampled			.			Ch-		
	·	٦					1	5061	SSPI	l		1345	155	2882	Time Sampled		(Project specific RLs? -	. KEMAKKS	Tomo	PROJE	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)		
		NAME OF THE PROPERTY OF THE PR	Daws			:	4		AB	4				H	Sample Type		pecific RLs	8	o Stal	PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)		
	***************************************			PRINT NAME			4	4-						7	# of Jars		? - Yes		iland		OF (
		<u>2</u>	mork	NAI			-	*						X V	NWTPH-Dx					ë.	Suc.		
:		2	7	MIE											NWTPH-Gx BTEX EPA 80	—	(S)	<u>) </u>		······································	rop		
	-														NWTPH-HCI		1		3		X		
															VOCs EPA 82		7	INVOICETO	700	ш	ME		
~	***************************************	ため	7	COMPANY										<u></u>		PAHs EPA 82	70)ĮCE	180357	PO#	11	l
Sam		BI	pute										<u></u>		PCBs EPA 80	82 2		Z			/_ /8		
ples		÷						4	-						X	BTEXN 82						18-20 	,
rece			are llower	N.												ANALYSES REQUESTED	De		Ru		\Box φ		
Samples received at		1	37.8												-		efault:	Echiv	sh cha	XStanda 	Page #	_	
, do		III/latas	ILMAO	DATE											Z		Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	XStandard turnaround □ RUSH	Page # 2 of Z	1	
0		Phhl	1,446/	崖										·	Notes		er 30 days	Osal	zed by:	n d	of 3	į	
				-	<u> </u>							 	***************************************	•			J [<u> </u>		¹`		

Data File Name : C:\HPCHEM\1\DATA\11-20-20\025F0601.D Page Number : 1 : TL Operator Vial Number Instrument : 25 : GC1 Sample Name : 011339-01 Injection Number: 1 Sequence Line Run Time Bar Code:

Instrument Method: DX.MTH Acquired on : 20 Nov 20 02:51 PM Report Created on: 23 Nov 20 09:11 AM

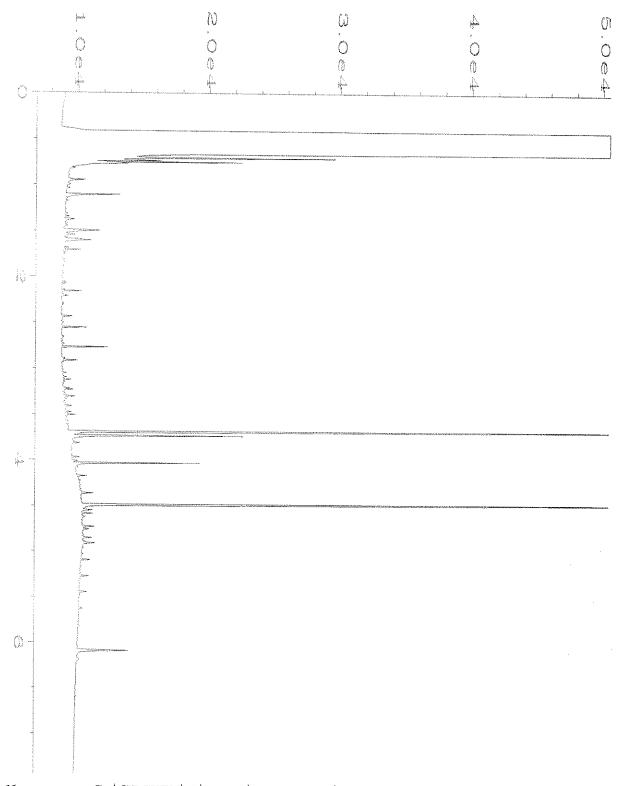
Analysis Method : DEFAULT.MTH


```
Data File Name : C:\HPCHEM\1\DATA\11-20-20\026F0601.D

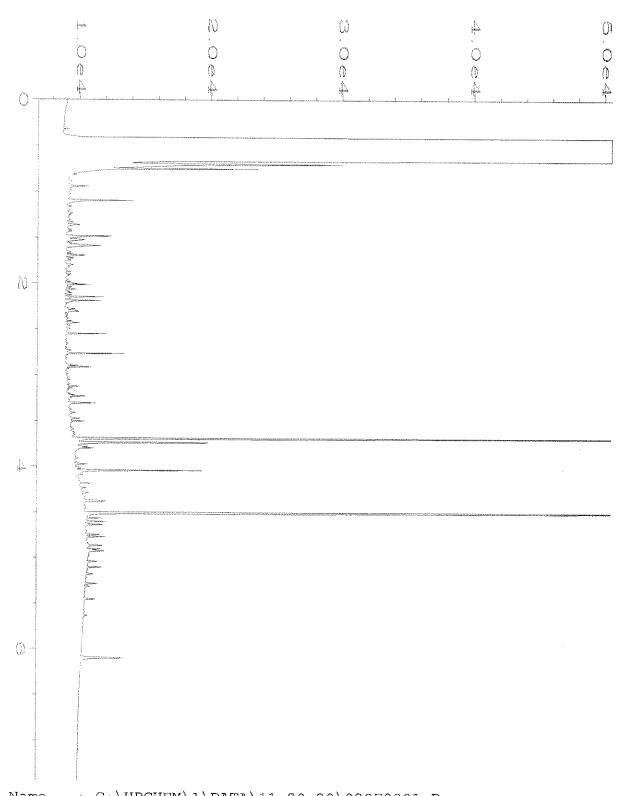

Operator : TL Page Number : 1

Instrument : GC1 Vial Number : 26

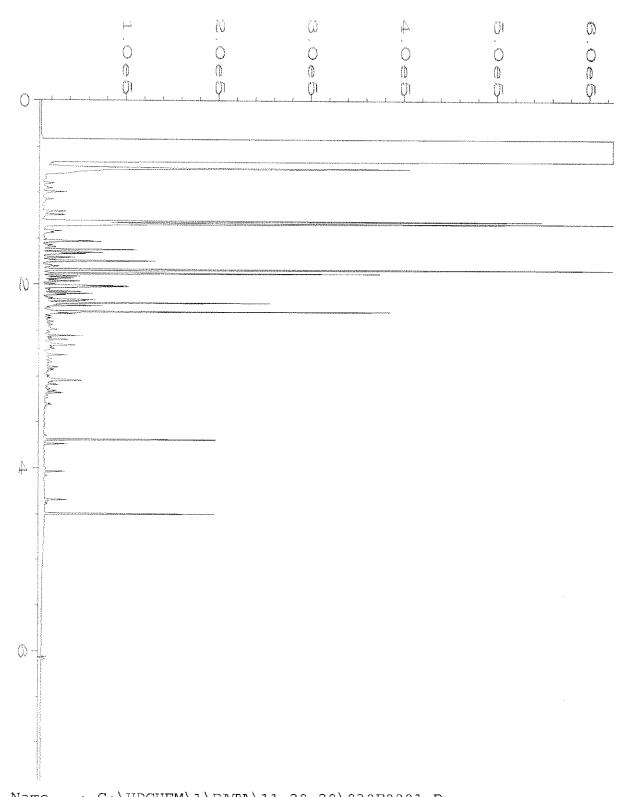
Sample Name : 011339-02 Injection Number : 1


Run Time Bar Code: Sequence Line : 6
```

Acquired on : 20 Nov 20 03:02 PM Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:11 AM Analysis Method : DEFAULT.MTH


```
Data File Name
               : C:\HPCHEM\1\DATA\11-20-20\027F0601.D
Operator
                 : TL
                                                Page Number
                                                Vial Number : 2'
Injection Number : 1
Instrument
                 : GC1
                                                                  : 27
Sample Name
                : 011339-03
Run Time Bar Code:
                                                 Sequence Line
                                                                  : 6
Acquired on
                                                Instrument Method: DX.MTH
             : 20 Nov 20 03:14 PM
                                                Analysis Method : DEFAULT.MTH
Report Created on: 23 Nov 20 09:11 AM
```

. .




```
: C:\HPCHEM\1\DATA\11-20-20\028F0601.D
Data File Name
Operator
                 : TL
                                                Page Number
                                                                  : 1
Instrument
                                                Vial Number
                 : GC1
                                                                  : 28
Sample Name
                : 011339-04
                                                Injection Number : 1
Sequence Line : 6
Run Time Bar Code:
Acquired on : 20 Nov 20 03:25 PM
                                                Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:12 AM
                                                Analysis Method : DEFAULT.MTH
```

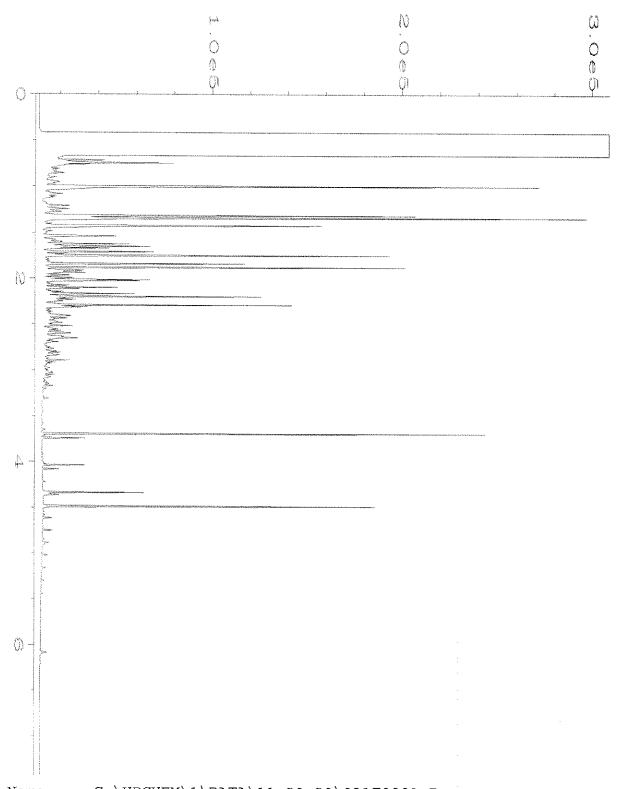
.

Report Created on: 23 Nov 20 09:12 AM Analysis Method: DEFAULT.MTH


```
Data File Name : C:\HPCHEM\1\DATA\11-20-20\030F0801.D

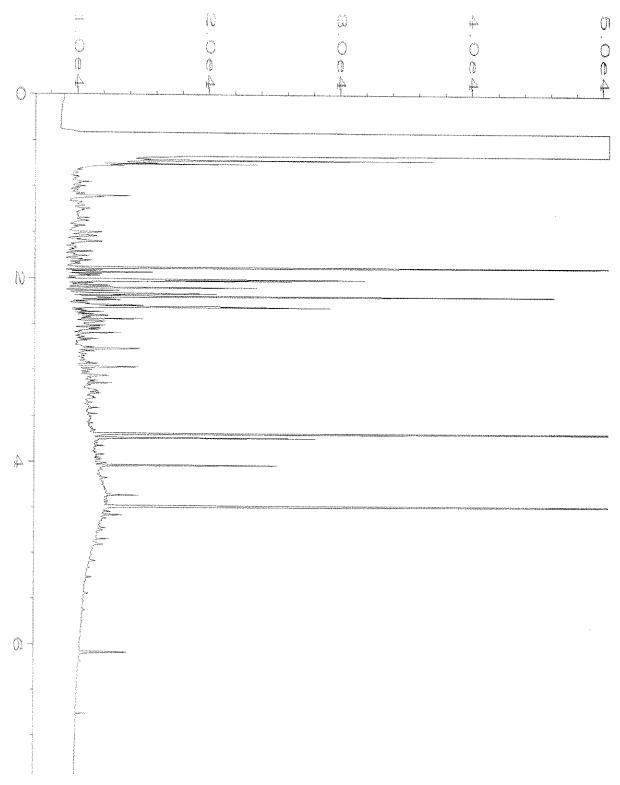
Operator : TL Page Number : 1

Instrument : GC1 Vial Number : 30

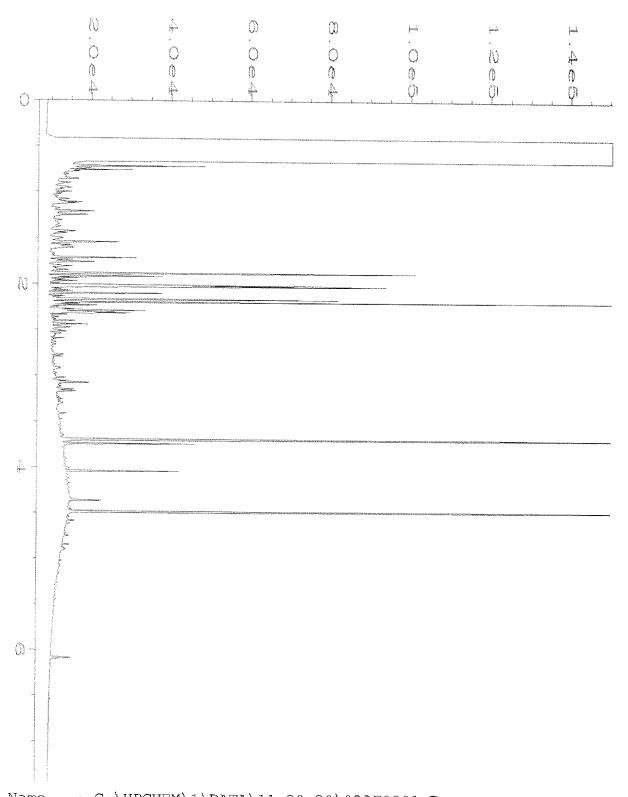

Sample Name : 011339-06 Injection Number : 1

Run Time Bar Code: Sequence Line : 8
```

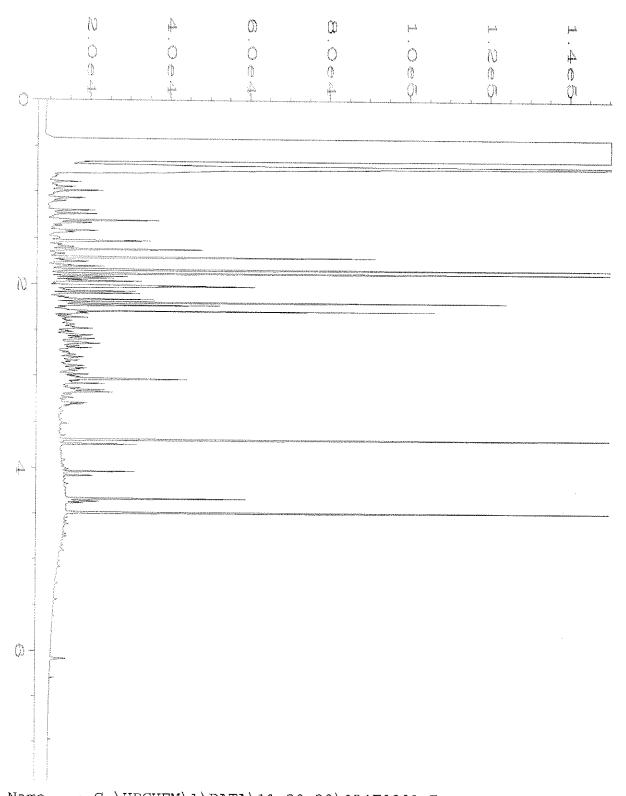
Acquired on : 20 Nov 20 04:19 PM Instrument Method: DX.MTH

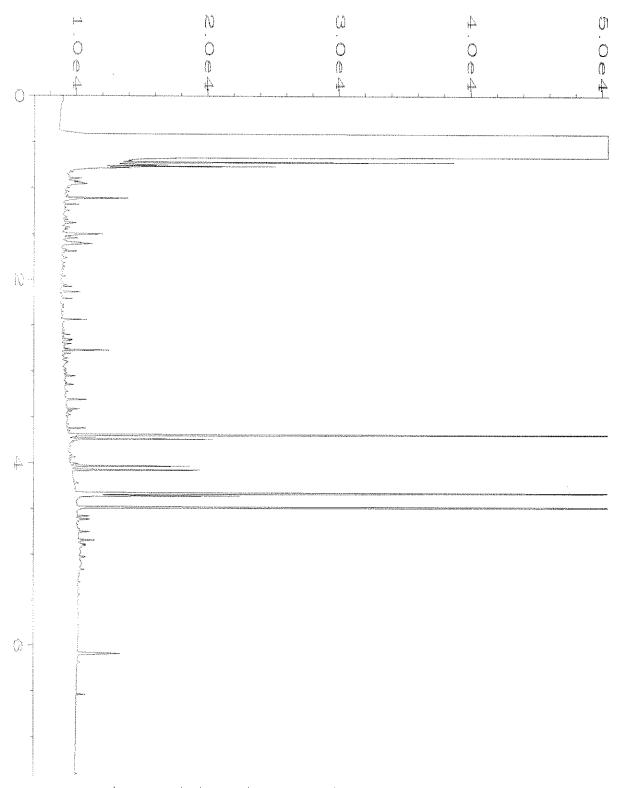

Report Created on: 23 Nov 20 09:12 AM Analysis Method : DEFAULT.MTH

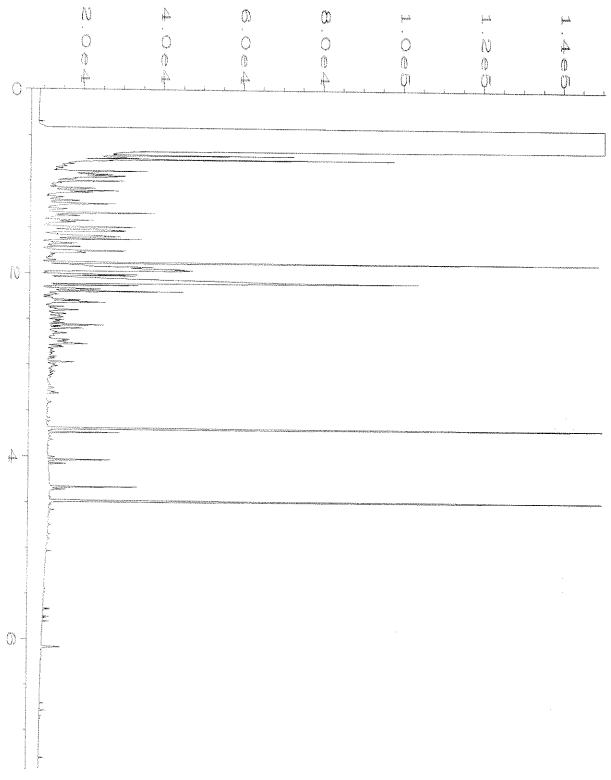
. .

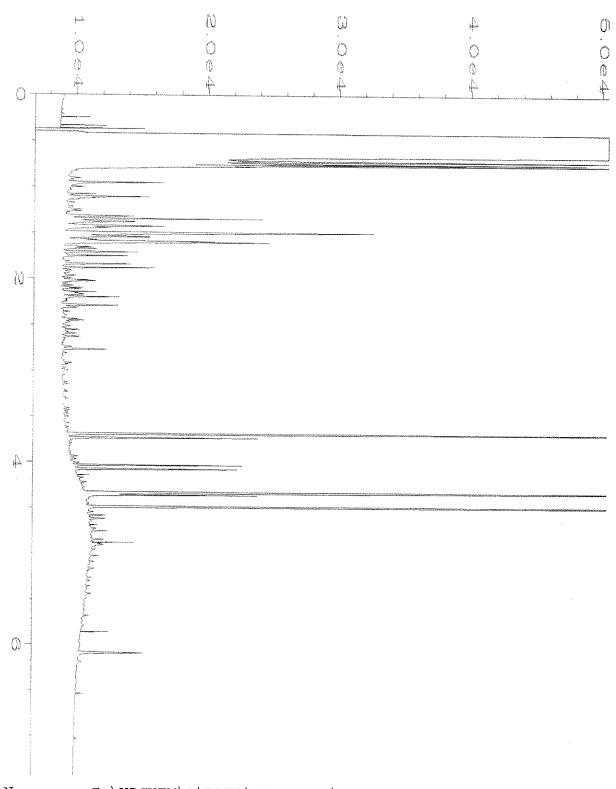


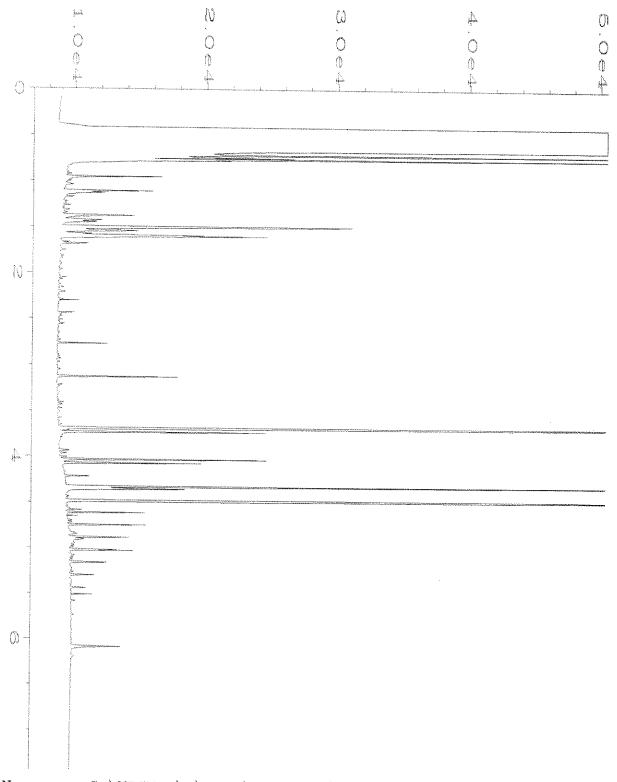

```
Data File Name
                : C:\HPCHEM\1\DATA\11-20-20\031F0801.D
Operator
                : TL
                                             Page Number
                                                             : 1
Instrument
                                             Vial Number
                : GC1
                                                         : 31
Sample Name : 011339-07
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 8
                                             Instrument Method: DX.MTH
Acquired on
            : 20 Nov 20 04:30 PM
```


Report Created on: 23 Nov 20 09:12 AM Analysis Method : DEFAULT.MTH

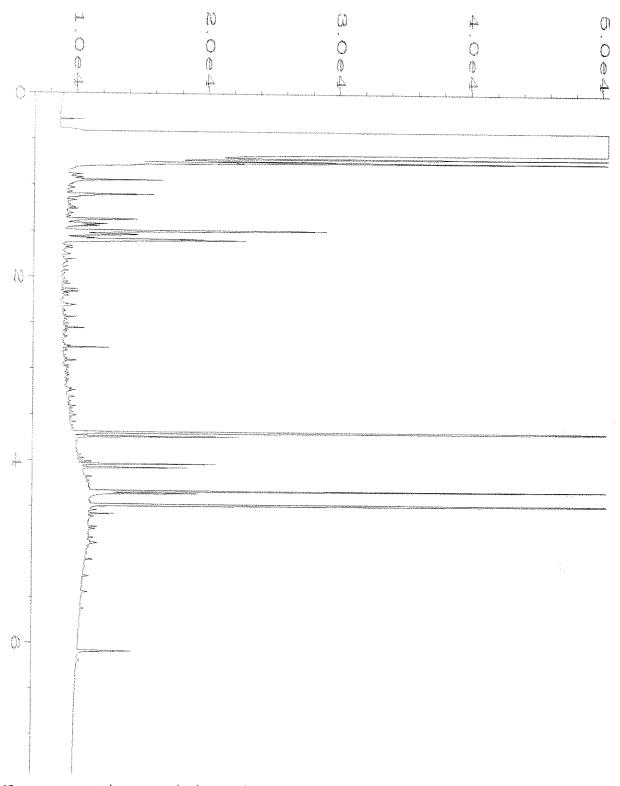

Data File Name : C:\HPCHEM\1\DATA\11-20-20\032F0801.D Operator : TL Page Number : 1 Vial Number : 32 Instrument : GC1 Sample Name : 011339-08 Injection Number: 1 Run Time Bar Code: Sequence Line Acquired on : 20 Nov 20 04:41 PM Instrument Method: DX.MTH Report Created on: 23 Nov 20 09:12 AM Analysis Method : DEFAULT.MTH


Data File Name : C:\HPCHEM\1\DATA\11-20-20\033F0801.D Operator Page Number Vial Number : TL Instrument : GC1 : 33 Sample Name : 011339-09 Injection Number : 1 Sequence Line : 8 Run Time Bar Code: Acquired on : 20 Nov 20 04:53 PM Instrument Method: DX.MTH Report Created on: 23 Nov 20 09:13 AM Analysis Method : DEFAULT.MTH

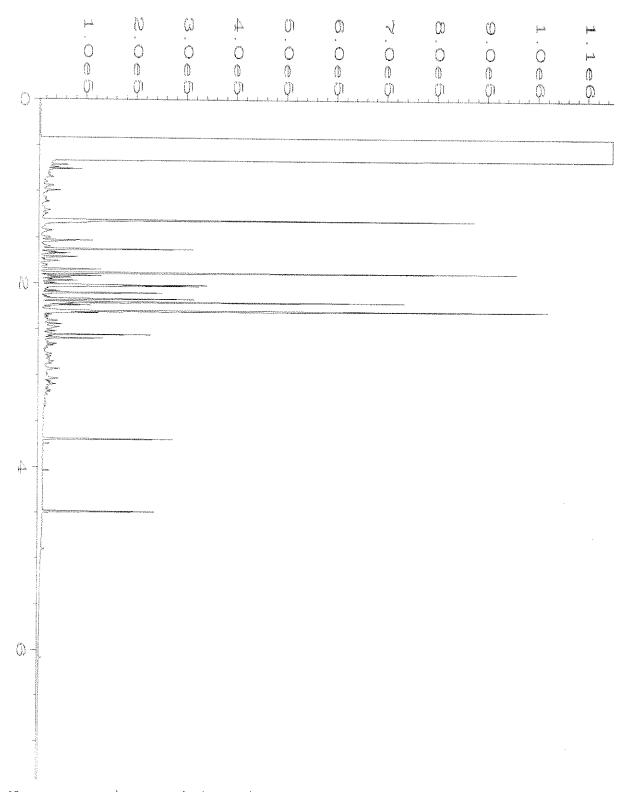

```
: C:\HPCHEM\1\DATA\11-20-20\034F0801.D
Data File Name
Operator
                                               Page Number : 1
Vial Number : 34
                : TL
Instrument
                : GC1
Sample Name : 011339-10
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 8
Acquired on : 20 Nov 20 05:04 PM
                                               Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:13 AM
                                               Analysis Method : DEFAULT.MTH
```



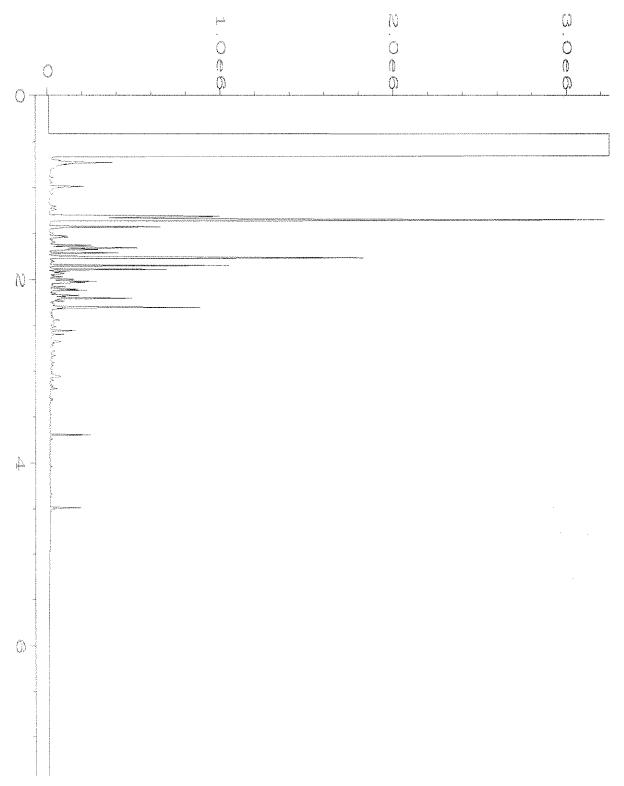

```
Data File Name
                : C:\HPCHEM\1\DATA\11-20-20\035F0801.D
Operator
                 : TL
                                                  Page Number
                                                 Vial Number : 3!
Injection Number : 1
Instrument
                 : GC1
                                                                   : 35
Sample Name
                 : 011339-11
                                                 Sequence Line : 8
Run Time Bar Code:
Acquired on
                 : 20 Nov 20 05:16 PM
                                                  Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:13 AM
                                                 Analysis Method : DEFAULT.MTH
```




```
Data File Name
               : C:\HPCHEM\1\DATA\11-20-20\036F0801.D
Operator
                : TL
                                             Page Number
                                                             : 1
Instrument
                : GC1
                                             Vial Number
                                                             : 36
Sample Name : 011339-12
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 8
Acquired on : 20 Nov 20 05:27 PM
                                             Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:13 AM
                                             Analysis Method : DEFAULT.MTH
```

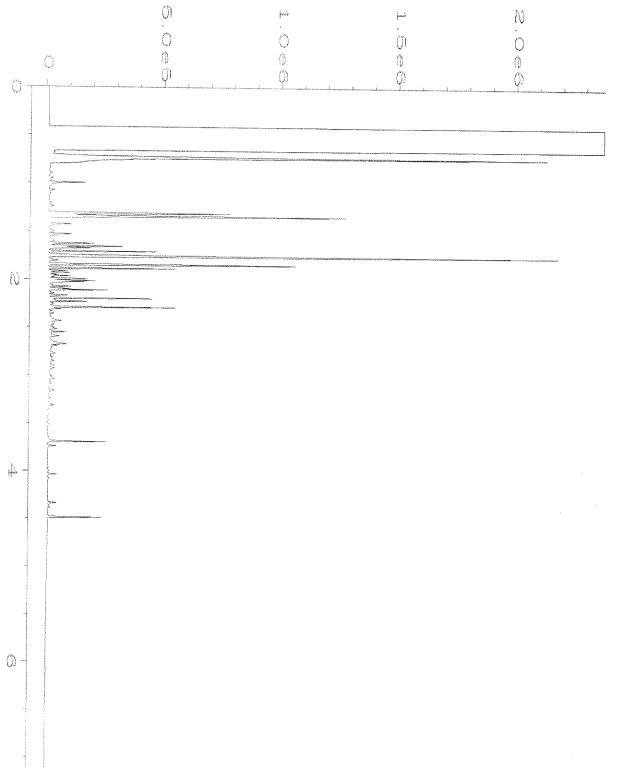




```
: C:\HPCHEM\1\DATA\11-20-20\038F0801.D
Data File Name
Operator
                 : TL
                                               Page Number
Vial Number
                                                                 : 1
Instrument
                 : GC1
                                                                 : 38
Sample Name
                : 011339-14
                                               Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 8
Acquired on
            : 20 Nov 20 05:50 PM
                                               Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:13 AM
                                               Analysis Method : DEFAULT.MTH
```

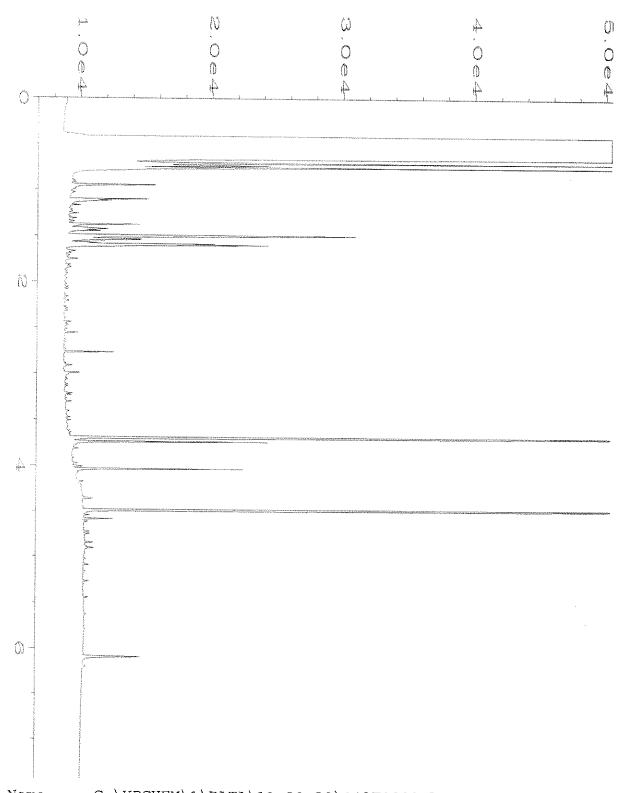



```
: C:\HPCHEM\1\DATA\11-20-20\039F0801.D
Data File Name
Operator
                 : TL
                                               Page Number : 1
Vial Number : 39
Instrument
                 : GC1
Sample Name
                : 011339-15
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 8
Acquired on
             : 20 Nov 20 06:02 PM
                                               Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:14 AM
                                               Analysis Method : DEFAULT.MTH
```

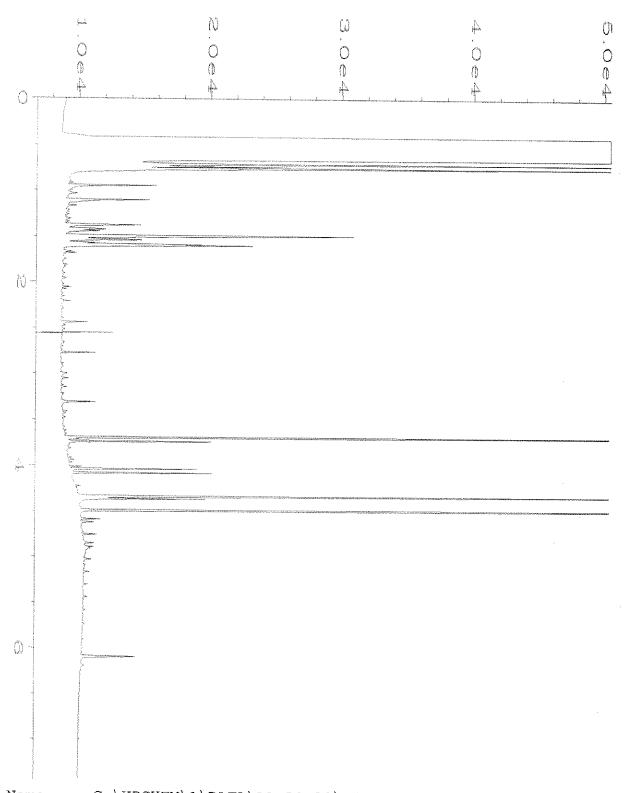
. . .



Acquired on : 20 Nov 20 06:13 PM Instrument Method: DX.MTH Report Created on: 23 Nov 20 09:14 AM Analysis Method : DEFAULT.MTH


```
Data File Name
                : C:\HPCHEM\1\DATA\11-20-20\041F0801.D
                                               Page Number
                : TL
Operator
                                                               : 1
                                               Vial Number
Instrument
                                                                : 41
                : GC1
Sample Name
                : 011339-17
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 8
                                               Instrument Method: DX.MTH
Acquired on
            : 20 Nov 20 06:24 PM
```

Report Created on: 23 Nov 20 09:14 AM Analysis Method : DEFAULT.MTH




```
: C:\HPCHEM\1\DATA\11-20-20\042F0801.D
Data File Name
Operator
                 : TL
                                                Page Number
Vial Number
Instrument
                 : GC1
                                                                 : 42
Sample Name
                : 011339-18
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line
Acquired on : 20 Nov 20 06:36 PM
                                                Instrument Method: DX.MTH
Report Created on: 23 Nov 20
                             09:15 AM
                                                Analysis Method : DEFAULT.MTH
```

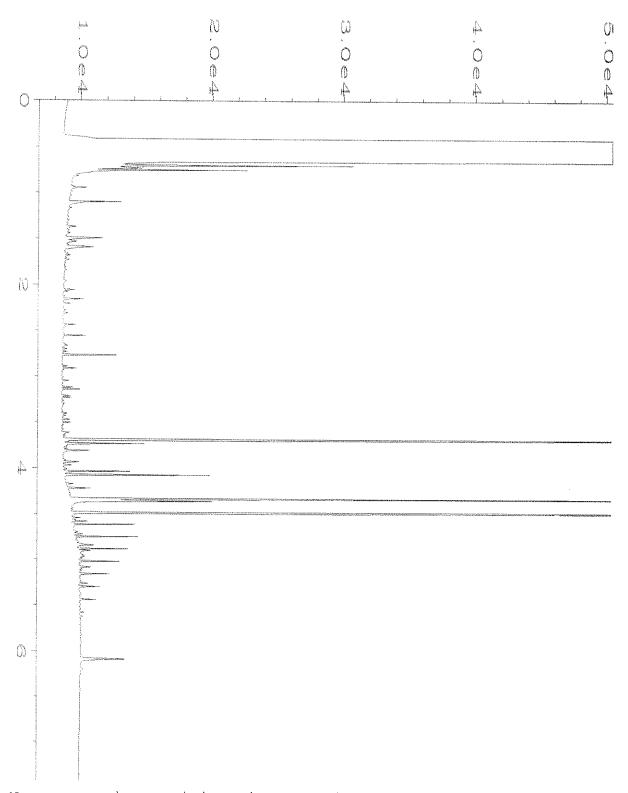
. .


```
: C:\HPCHEM\1\DATA\11-20-20\043F0801.D
Data File Name
Operator
                 : TL
                                                Page Number
                                                                 : 1
Instrument
                                                Vial Number : 43
                 : GC1
Sample Name
                : 011339-19
                                                Injection Number : 1
Sequence Line : 8
Run Time Bar Code:
Acquired on : 20 Nov 20 06:47 PM
                                                Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:15 AM
                                                Analysis Method : DEFAULT.MTH
```



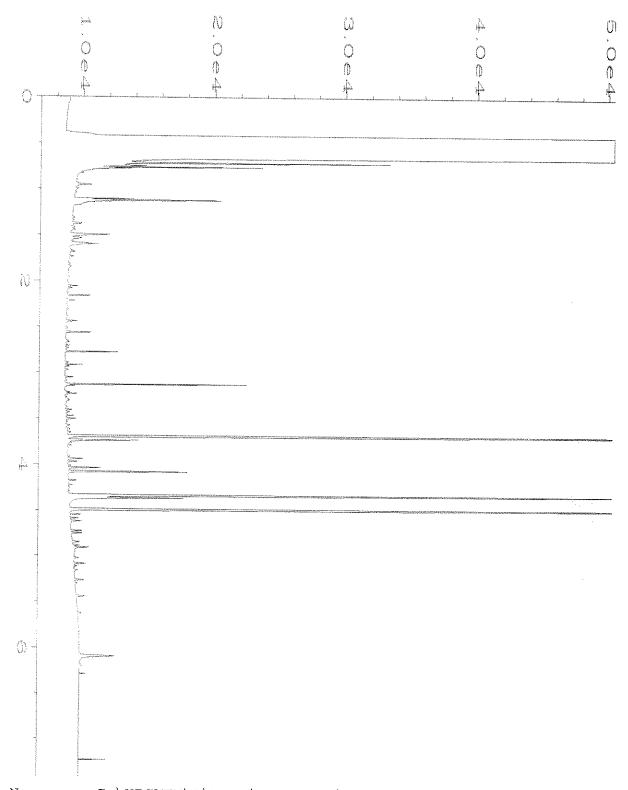
```
      Data File Name
      : C:\HPCHEM\1\DATA\11-20-20\044F0801.D

      Operator
      : TL
      Page Number
      : 1

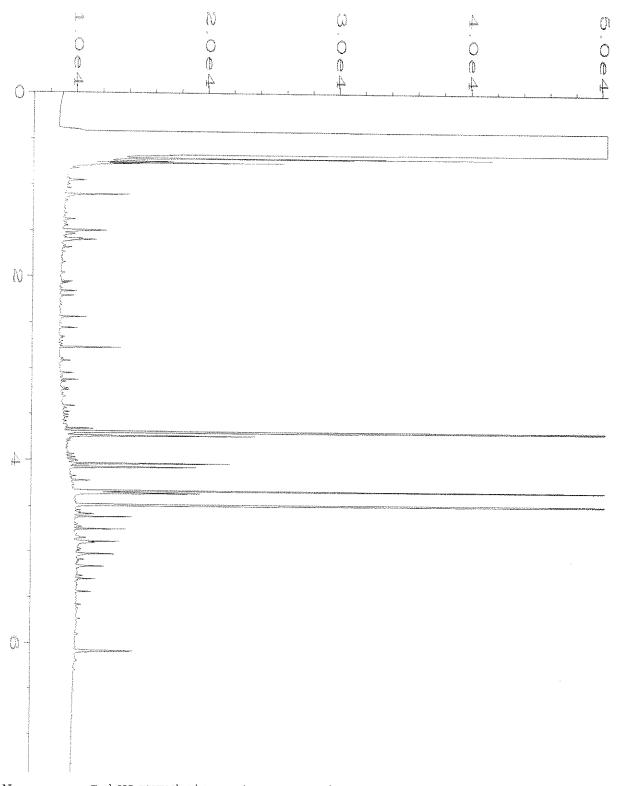

      Instrument
      : GC1
      Vial Number
      : 44

      Sample Name
      : 011339-20
      Injection Number
      : 1

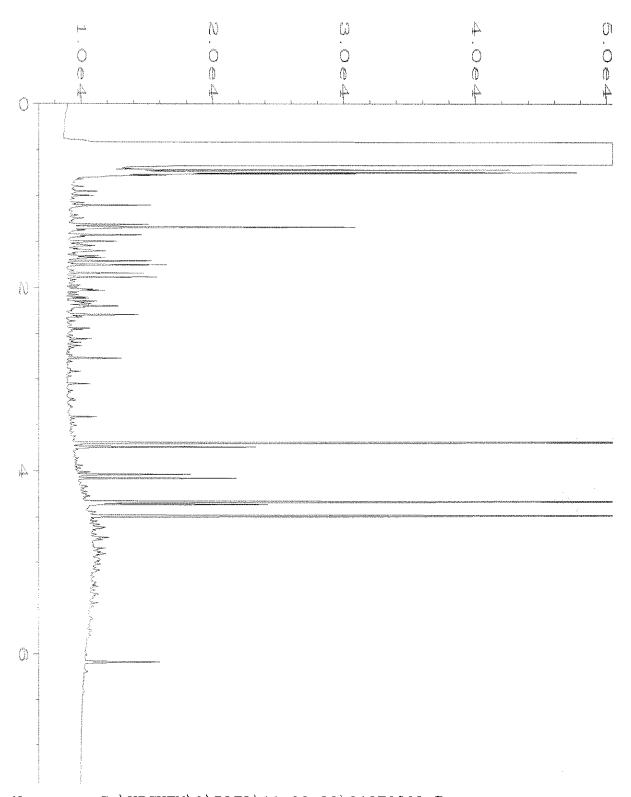
      Run Time Bar Code:
      Sequence Line
      : 8


      Acquired on
      : 20 Nov 20 06:59 PM
      Instrument Method: DX.MTH

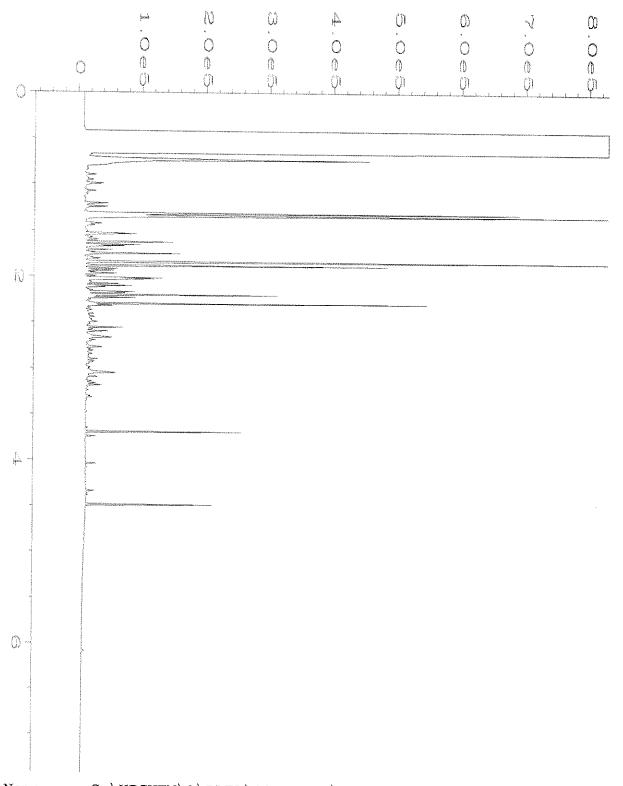
      Report Created on:
      23 Nov 20 09:15 AM
      Analysis Method
      : DEFAULT.MTH
```



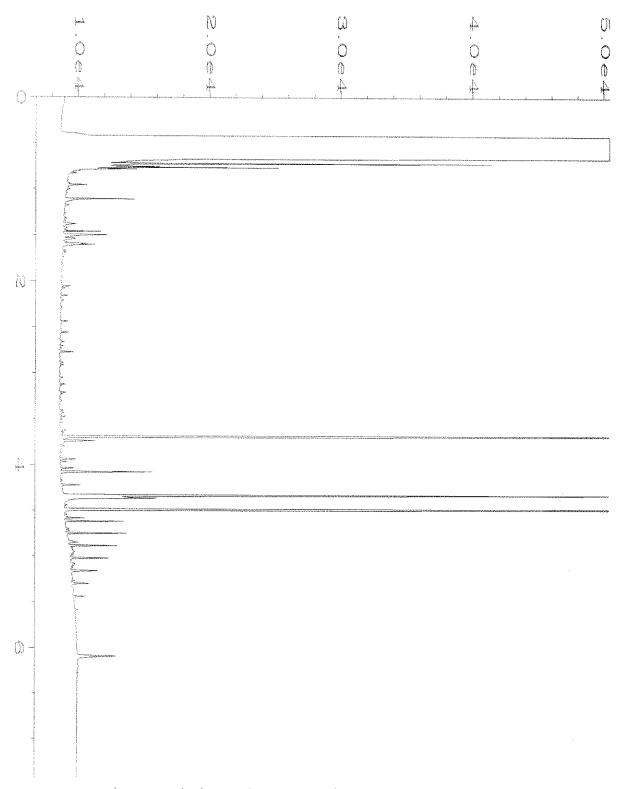
: C:\HPCHEM\1\DATA\11-20-20\046F0801.D Data File Name Operator : TL Page Number : 1 Vial Number : 46 Instrument : GC1 Sample Name : 011339-21 Injection Number : 1 Run Time Bar Code: Sequence Line : 8 Acquired on : 20 Nov 20 07:22 PM Instrument Method: DX.MTH Report Created on: 23 Nov 20 09:16 AM


Analysis Method : DEFAULT.MTH

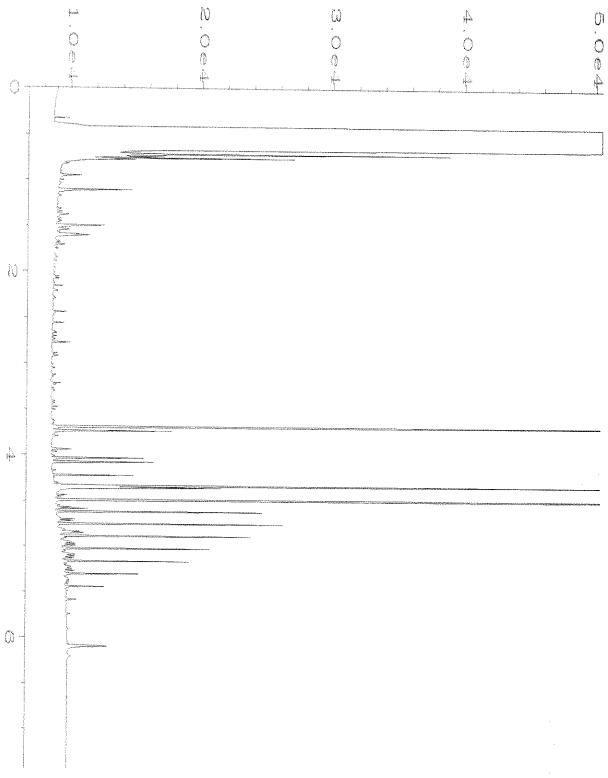

```
: C:\HPCHEM\1\DATA\11-20-20\047F0801.D
Data File Name
Operator
                : TL
                                              Page Number
Vial Number
                                                               : 1
Instrument
                : GC1
                                                               : 47
Sample Name : 011339-22
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
Acquired on : 20 Nov 20 07:33 PM
                                              Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:16 AM
                                              Analysis Method : DEFAULT.MTH
```

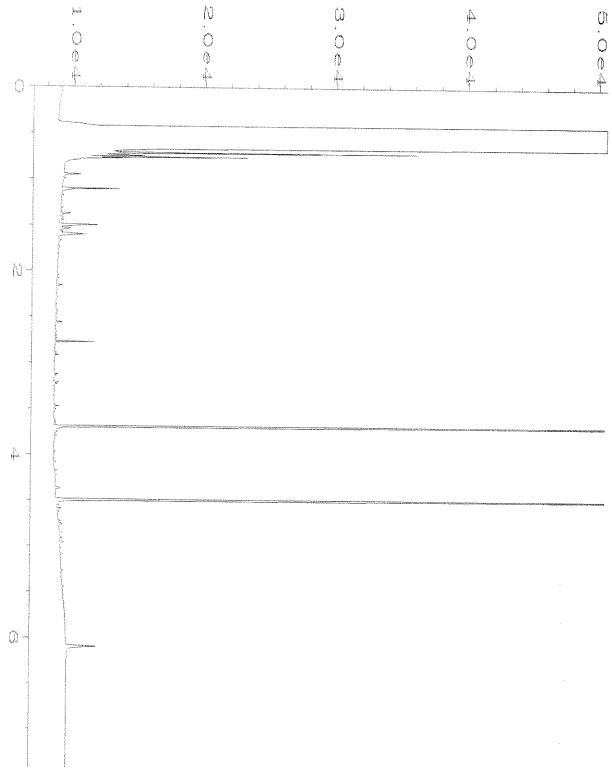


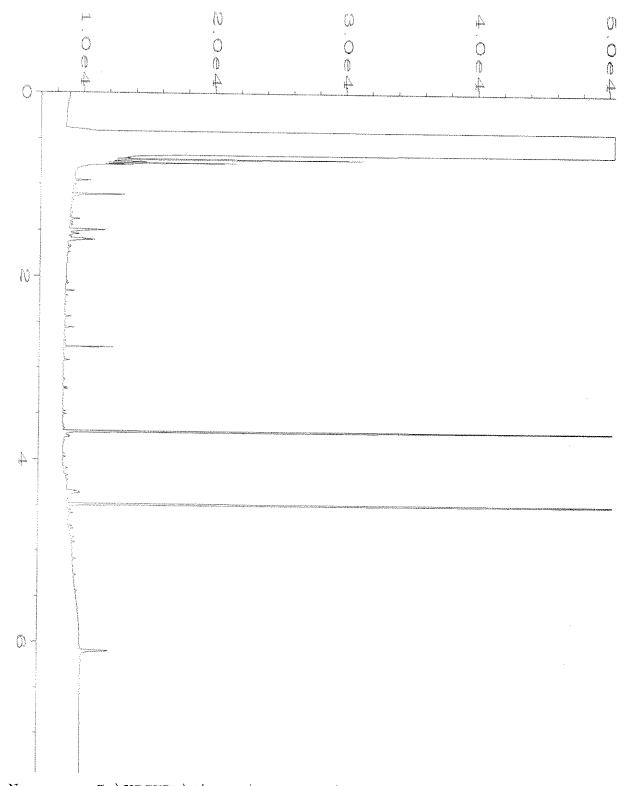

```
Data File Name
               : C:\HPCHEM\1\DATA\11-20-20\048F0801.D
Operator
                : TL
                                               Page Number
Vial Number
Instrument
                : GC1
                                                                : 48
Sample Name : 011339-23
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 8
Acquired on
             : 20 Nov 20 07:45 PM
                                               Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:17 AM
                                              Analysis Method : DEFAULT.MTH
```




```
Data File Name
               : C:\HPCHEM\1\DATA\11-20-20\049F0801.D
                                                 Page Number
Vial Number
Operator
                                                                  : 1
                 : TL
Instrument
                                                                   : 49
                 : GC1
                                                 Injection Number: 1
Sample Name
                : 011339-24
Run Time Bar Code:
                                                 Sequence Line
                                                 Instrument Method: DX.MTH
Acquired on
             : 20 Nov 20 07:56 PM
```


Report Created on: 23 Nov 20 09:17 AM Analysis Method : DEFAULT.MTH


```
Data File Name
               : C:\HPCHEM\1\DATA\11-20-20\050F0801.D
Operator
                : TL
                                              Page Number
                                                              : 1
Instrument
                                              Vial Number
                : GC1
Sample Name
               : 011339-25
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
Acquired on
            : 20 Nov 20 08:08 PM
                                              Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:17 AM
                                             Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\1\DATA\11-20-20\051F1001.D
Data File Name
Operator
                                                      Page Number
                   : TL
                                                                         : 1
                                                      Vial Number : 51
Injection Number : 1
Instrument
                   : GC1
Sample Name
                  : 011339-26
Run Time Bar Code: Acquired on :
                                                      Sequence Line : 10
Instrument Method: DX.MTH
              : 20 Nov 20 08:42 PM
Report Created on: 23 Nov 20 09:18 AM
                                                     Analysis Method : DEFAULT.MTH
```



```
: C:\HPCHEM\1\DATA\11-20-20\052F1001.D
Data File Name
Operator
                  : TL
                                                    Page Number
                                                                         1
Instrument
                                                    Vial Number : 52
Injection Number : 1
Sequence Line : 10
                  : GC1
Sample Name
                  : 011339-27
Run Time Bar Code:
Acquired on : 20 Nov 20 08:53 PM
                                                    Instrument Method: DX.MTH
Report Created on: 23 Nov 20 09:18 AM
                                                    Analysis Method : DEFAULT.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\11-20-20\022F0601.D
Operator
                 : TL
                                                Page Number
                                                                 : 1
                                               Vial Number
Instrument
                 : GC1
                                                                 : 22
Sample Name : 00-2573 mb
                                                Injection Number: 1
Run Time Bar Code:
                                                Sequence Line : 6
Instrument Method: DX.MTH
Acquired on : 20 Nov 20 02:17 PM
Report Created on: 23 Nov 20 09:15 AM
                                               Analysis Method : DEFAULT.MTH
```


ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 9, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011402 project. There are 21 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1209R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011402 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011402 -01	GP-02-112020
011402 -02	GP-03-112020
011402 -03	GP-05-112020
011402 -04	GP-06-112020
011402 -05	SV-DUP-112020
011402 -06	Trip Blank

Samples GP-02-112020, GP-03-112020, GP-05-112020 and GP-06-112020 were sent to Fremont Analytical for carbon dioxide, methane, and oxygen analyses. The report is enclosed.

The APH EC5-8 aliphatics in sample SV-DUP-112020 exceeded the calibration range of the instrument. The sample was diluted. Both data sets were reported. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-02-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: 011402-01 1/3.4 Date Collected: 11/20/20 Date Analyzed: 11/25/20 Data File: 112421.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 210 APH EC9-12 aliphatics 480 APH EC9-10 aromatics <85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-03-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-02 1/8.4 Date Analyzed: 12/03/20 Data File: 120325.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 3,700 APH EC9-12 aliphatics 1,100 APH EC9-10 aromatics <210

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-05-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Date Collected: 11/20/20 Lab ID: 011402-03 1/43 Data File: Date Analyzed: 12/04/20 120326.D GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 22,000 APH EC9-12 aliphatics 5,000 APH EC9-10 aromatics <1,100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-06-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-04 1/3.4 Date Analyzed: 11/25/20 Data File: 112423.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 160 APH EC9-12 aliphatics 390 APH EC9-10 aromatics <85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-DUP-112020 Client: Aspect Consulting, LLC Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-05 1/41 Date Analyzed: 12/04/20 Data File: 120327.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 24,000 ve APH EC9-12 aliphatics 6,000 APH EC9-10 aromatics <1,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-DUP-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Date Collected: 11/20/20 Lab ID: 011402-05 1/490

Date Analyzed: 11/25/20 Data File: 112428.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

% Lower Upper ates: Recovery: Limit: Limit:

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <20,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Trip Blank Client: Aspect Consulting, LLC Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-06 Date Analyzed: 11/25/20 Data File: 112420.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

Not Applicable Lab ID: Date Collected: $00\text{-}2555~\mathrm{MB}$ Date Analyzed: 11/24/20 Data File: 112410.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-01 1/3.4
Date Analyzed:	11/25/20	Data File:	112421.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130
	Concent	ration	
~ 1			

Compounds:	ug/m3	ppbv
Benzene	<1.1	< 0.34
Toluene	<64	<17
Ethylbenzene	2.2	0.51
m,p-Xylene	9.3	2.1
o-Xylene	2.7	0.63
Naphthalene	< 0.89	< 0.17

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-02 1/8.4
Date Analyzed:	12/03/20	Data File:	120325.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130
	Concent	cration	
Compounds	110r/m 3	nnhr	

Compounds:	ug/m3	ppbv
Benzene	<2.7	< 0.84
Toluene	<160	<42
Ethylbenzene	<3.6	< 0.84
m,p-Xylene	10	2.4
o-Xylene	<3.6	< 0.84
Naphthalene	<2.2	< 0.42

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-05-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-03 1/43
Date Analyzed:	12/04/20	Data File:	120326.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	<14	<4.3
Toluene	<810	<210
Ethylbenzene	<19	<4.3
m,p-Xylene	<37	<8.6
o-Xylene	<19	<4.3
Naphthalene	<11	< 2.1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-06-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-04 1/3.4
Date Analyzed:	11/25/20	Data File:	112423.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130
	Concent	ration	

	Concen	Concentration		
Compounds:	ug/m3	ppbv		
Benzene	2.7	0.84		
Toluene	<64	<17		
Ethylbenzene	5.0	1.2		
m,p-Xylene	20	4.7		
o-Xylene	5.8	1.3		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SV-DUP-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-05 1/41
Date Analyzed:	12/04/20	Data File:	120327.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

0 1	Concen	_
Compounds:	ug/m3	ppbv
Benzene	<13	<4.1
Toluene	<770	<200
Ethylbenzene	<18	<4.1
m,p-Xylene	37	8.5
o-Xylene	<18	<4.1
Naphthalene	<11	<2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-06
Date Analyzed:	11/25/20	Data File:	112420.D

Date Analyzed: 11/25/20 Data File: 112420.D

Matrix: Air Instrument: GCMS7

Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Collected:	Not Applicable	Lab ID:	00-2555 MB
Date Analyzed:	11/24/20	Data File:	112410.D

Date Analyzed: 11/24/20 Data File: 112410.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

Date Extracted: 11/30/20 Date Analyzed: 11/30/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
GP-02-112020 011402-01	<0.6
GP-03-112020 011402-02	<0.6
GP-05-112020 011402-03	<0.6
GP-06-112020 011402-04	<0.6
Method Blank	< 0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	210	200	5
APH EC9-12 aliphatics	ug/m3	480	460	4
APH EC9-10 aromatics	ug/m3	<85	<85	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	82	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.1	<1.1	nm
Toluene	ug/m3	<64	<64	nm
Ethylbenzene	ug/m3	2.2	2.3	4
m,p-Xylene	ug/m3	9.3	9.8	5
o-Xylene	ug/m3	2.7	3.3	20
Naphthalene	ug/m3	< 0.89	< 0.89	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	119	70-130
Toluene	ug/m3	51	84	70-130
Ethylbenzene	ug/m3	59	114	70-130
m,p-Xylene	ug/m3	120	99	70-130
o-Xylene	ug/m3	59	98	70-130
Naphthalene	ug/m3	71	82	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 0	11402-01 (Duj	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code: 0	11401-05 (Duj	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	14 ve	19 ve	30 hr	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 011402

Work Order Number: 2011458

December 01, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 11/20/2020 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 011402 **Work Order:** 2011458

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2011458-001	GP-02-112020	11/20/2020 10:24 AM	11/20/2020 4:24 PM
2011458-002	GP-03-112020	11/20/2020 11:22 AM	11/20/2020 4:24 PM
2011458-003	GP-05-112020	11/20/2020 12:15 PM	11/20/2020 4:24 PM
2011458-004	GP-06-112020	11/20/2020 1:25 PM	11/20/2020 4:24 PM
2011458-005	SV-DUP-112020	11/20/2020 12:00 AM	11/20/2020 4:24 PM

Case Narrative

WO#: **2011458**Date: **12/1/2020**

CLIENT: Friedman & Bruya

Project: 011402

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: **2011458**

Date Reported: 12/1/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2011458**Date Reported: **12/1/2020**

CLIENT: Friedman & Bruya

Project: 011402

Lab ID: 2011458-001 **Collection Date:** 11/20/2020 10:24:00 AM

Client Sample ID: GP-02-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	n ID: R6	3578 Analyst: MS
Carbon Dioxide	27.6	0.0500	%	1	11/23/2020 6:53:00 AM
Methane	ND	0.0500	%	1	11/23/2020 6:53:00 AM
Oxygen	4.50	0.0500	%	1	11/23/2020 6:53:00 AM

Lab ID: 2011458-002 **Collection Date:** 11/20/2020 11:22:00 AM

Client Sample ID: GP-03-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	n ID: R6	33578 Analyst: MS
Carbon Dioxide	30.3	0.0500	%	1	11/23/2020 7:05:00 AM
Methane	0.168	0.0500	%	1	11/23/2020 7:05:00 AM
Oxygen	1.35	0.0500	%	1	11/23/2020 7:05:00 AM

Lab ID: 2011458-003 **Collection Date:** 11/20/2020 12:15:00 PM

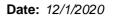
Client Sample ID: GP-05-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	n ID: R6	3578 Analyst: MS
Carbon Dioxide	29.6	0.0500	%	1	11/23/2020 7:17:00 AM
Methane	0.515	0.0500	%	1	11/23/2020 7:17:00 AM
Oxygen	1.27	0.0500	%	1	11/23/2020 7:17:00 AM

Analytical Report

Work Order: **2011458**

Date Reported: 12/1/2020


CLIENT: Friedman & Bruya

Project: 011402

Lab ID: 2011458-004 **Collection Date:** 11/20/2020 1:25:00 PM

Client Sample ID: GP-06-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	n ID: R6	3578 Analyst: MS
Carbon Dioxide	17.1	0.0500	%	1	11/23/2020 7:29:00 AM
Methane	ND	0.0500	%	1	11/23/2020 7:29:00 AM
Oxygen	8.16	0.0500	%	1	11/23/2020 7:29:00 AM

Work Order: 2011458

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Major Gases by EPA Method 3C

Project:	011402	

Sample ID: LCS-R63578	SampType: LCS			Units: %		Prep Da	te: 11/23/2	2020	RunNo: 635	578	
Client ID: LCSW	Batch ID: R63578					Analysis Da	te: 11/23/2	2020	SeqNo: 127	6255	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	100	0.0500	100.0	0	100	70	130				
Methane	99.9	0.0500	100.0	0	99.9	70	130				
Oxygen	101	0.0500	100.0	0	101	70	130				

Sample ID: 2011458-001AREP	SampType: REP		Units:	%	Prep Da	te: 11/23/2	2020	RunNo: 635	578	
Client ID: GP-02-112020	Batch ID: R63578				Analysis Da	te: 11/23/2	2020	SeqNo: 127	76251	
Analyte	Result	RL	SPK value SPK Ref	'al %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	27.9	0.0500					27.64	0.905	30	
Methane	ND	0.0500					0		30	
Oxygen	4.47	0.0500					4.505	0.725	30	

Original Page 7 of 9

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	per: 2011458		
L	ogged by:	Carissa True	Date Received:	11/20/202	20 4:24:00 PM	
Cha	ain of Cust	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes 🗹	No 🗌	Not Present	
2.	How was the	sample delivered?	Client			
Log	<u>ı In</u>					
_	Coolers are p	present?	Yes	No 🗸	na 🗆	
			Air samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹	
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	as received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🗹	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌		
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗸	No 🗌		
10	Are samples	properly preserved?	Yes 🗸	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA \square	
12	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗹	
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌		
15	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌		
		at analyses were requested?	Yes 🗸	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🗸	No 🗌		
Spe	ecial Handl	ing (if applicable)				
_		otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
		Notified: Date:	: [
	By Who		le.	one Fax	☐ In Person	
	Regardi	-		<u></u>		
		nstructions:				
		,				

19. Additional remarks:

Item Information

Original

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

REMARKS	City, State, ZIP Seattle, WA 98119	City, State, ZIP
011402	3012 16th Ave W	Address
PROJECT NAME/N	Friedman and Bruya, Inc.	Company
SUBCONTRACTER	Send Report To Michael Erdahl	Send Report To

Phone #(206) 285-8282_merdahl@friedmanandbruya.com	City, State, ZIP Seattle, WA 98119	Address 3012 16th Ave W 011402	Company Friedman and Bruya, Inc. PROJECT NAME/NO.	Send Report To Michael Erdahl SUBCONTRACTER
		A-472	PO#	

Far (906) 909 5044	Ph. (206) 285-8282	2029	7							SV-00P-112028	GP. 06-112020	GP-05-112020	GP-03-112020	GP-02-112020	Sample ID Lab	
Received by:	Relinquished by:	Received by:	Retinquished by:		2									11/20/20	Date Sampled	
	Y.	mana	y:	SIGNATURE						1	1325	1215	1122	1024	Time Sampled	
		Toll								P	P	P	P	Þ	Matrix	
1	5	1	Micha												# of	
		alla	Michael Erdahl Euc	P											Dioxins/Furans	
		H	和石	PRINT NAME											ЕРН	
		nd	6	NAME			4								VPH	7
		MENS	bung T	2						1.	/	1	7	1	Co2; CH4, O2	ANALYSES REQUESTED
		7	Fried													SKEQ
1		Ph	lman &	COM		-	+	-	4							TEST
			Friedman & Bruya	COMPANY		+	+	+		4						CD
i			20			 -										
	1-1-	MONTH	11/20/6	DATE	is in				N	HOLE				×	z	
		4631	1355	TIME					20) SU-040		Ť			Notes	

SAMPLE DISPOSAL Z Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by:	Standard TAT	TURNAROUND TIME	Page #of
	Pa	ge 9	of 9	9

Address 710 2nd City, State, ZIP South, Wif, allot Company__ Report To_ どられこり Au Strass DAMETED CHALLY OF COULCUL SAMPLERS (signature) NOTES: PROJECT NAME & ADDRESS Some ! 18.GI INVOICE TO 多 PO# 1-20-20 Page # □ Default: Clean after 3 days Rush charges authorized by: O RUSH AStandard TURNAROUND TIME SAMPLE DISPOSAL

Phone (2013 5411 Email axxx 4 Daspert Cotoulpres, an

☐ Archive (Fee may apply)

SAMPLE INFORMATION 06-4170 JOHN J ORDE11-80-d3 7P-05-00011-100% Sample Name Se Sell 04 80 02 0 Ğ, Tab TD ઠ્ઠ が見れ 88 347% 15g5 9/15 2017 Canister ID <u>8</u>8 かって **元** ह Cont. 3 と Flow Ħ IA=Indoor Air SG=Soil Gas IA / (SG) (Circle One) K IA / SG 1A / 89 IA / 85 и / (69) Reporting K IA / (3) SG SS Sampled Date 2 Initial ("Hg) 2 cen 2 Vac. **8回8** 1000 B Time Initial 11018 1-5 Field Final 4 ("Hg) Vac. 4 2 たら Field Time Final ANALYSIS REQUESTED TO15 Full Scan 4 × TO15 BTEXN TO15 cVOCs 4 × APH Samples received at × × Helium 02.34 W2 CH4, + Tedlor bay Notes _

Ph. (206 Seattle, Fax (20 3012 16 Friedmi

FORMS\COC\COCTO-15.DOC

		La Provincia de la Carte de la	ANNOTONIA TONIA		x.x.00000 (00
			and the state of t	Received by:	DV 035 5044
		- International Property of the Property of th		Relinquished by:	96) 285-8282
				101120	,
1528	1 42/11	ナルー		Received by: North	, WA 98119-2029
•	,		Care City	The Mary Comment	
11/10/18	2% C	一人を努力して		Relinquished by:	6th Avenue West
			And the second s	PICINAL DAM	nan & Bruya, Inc.
TIMILI	DATES LIME	COMPANY	PRINT NAME	TOTO A TATO	, ,
יייי איזיי	1			•	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 16, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included is the amended report from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011402 project. The benzene reporting limit for samples GP-05-112020 and SV-DUP-112020 were lowered, per your request.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1209R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 9, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011402 project. There are 21 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1209R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011402 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
011402 -01	GP-02-112020
011402 -02	GP-03-112020
011402 -03	GP-05-112020
011402 -04	GP-06-112020
011402 -05	SV-DUP-112020
011402 -06	Trip Blank

Samples GP-02-112020, GP-03-112020, GP-05-112020 and GP-06-112020 were sent to Fremont Analytical for carbon dioxide, methane, and oxygen analyses. The report is enclosed.

The APH EC5-8 aliphatics in sample SV-DUP-112020 exceeded the calibration range of the instrument. The sample was diluted. Both data sets were reported. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-02-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: 011402-01 1/3.4 Date Collected: 11/20/20 Date Analyzed: 11/25/20 Data File: 112421.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 210 APH EC9-12 aliphatics 480 APH EC9-10 aromatics <85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-03-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-02 1/8.4 Date Analyzed: 12/03/20 Data File: 120325.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 3,700 APH EC9-12 aliphatics 1,100 APH EC9-10 aromatics <210

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-05-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Date Collected: 11/20/20 Lab ID: 011402-03 1/43 Data File: Date Analyzed: 12/04/20 120326.D GCMS7 Matrix: Air Instrument: Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 22,000 APH EC9-12 aliphatics 5,000 APH EC9-10 aromatics <1,100

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: GP-06-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-04 1/3.4 Date Analyzed: 11/25/20 Data File: 112423.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 97 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 160 APH EC9-12 aliphatics 390 APH EC9-10 aromatics <85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-DUP-112020 Client: Aspect Consulting, LLC Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-05 1/41 Date Analyzed: 12/04/20 Data File: 120327.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 24,000 ve APH EC9-12 aliphatics 6,000 APH EC9-10 aromatics <1,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: SV-DUP-112020 Client: Aspect Consulting, LLC
Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Date Collected: 11/20/20 Lab ID: 011402-05 1/490

Date Analyzed: 11/25/20 Data File: 112428.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

% Lower Upper ates: Recovery: Limit: Limit:

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 92 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <20,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Trip Blank Client: Aspect Consulting, LLC Date Received: 11/20/20 Project: Texaco Strickland PO 180357

Lab ID: Date Collected: 11/20/20 011402-06 Date Analyzed: 11/25/20 Data File: 112420.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC
Date Received: Not Applicable Project: Texaco Strickland PO 180357

Not Applicable Lab ID: Date Collected: $00\text{-}2555~\mathrm{MB}$ Date Analyzed: 11/24/20 Data File: 112410.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 91 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <40
APH EC9-12 aliphatics <50
APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-02-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-01 1/3.4
Date Analyzed:	11/25/20	Data File:	112421.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130
	Concent	ration	
~ 1			

Compounds:	ug/m3	ppbv
Benzene	<1.1	< 0.34
Toluene	<64	<17
Ethylbenzene	2.2	0.51
m,p-Xylene	9.3	2.1
o-Xylene	2.7	0.63
Naphthalene	< 0.89	< 0.17

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-03-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-02 1/8.4
Date Analyzed:	12/03/20	Data File:	120325.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	101	70	130
	Concent	cration	
Compounds	110r/m 3	nnhr	

Compounds:	ug/m3	ppbv
Benzene	<2.7	< 0.84
Toluene	<160	<42
Ethylbenzene	<3.6	< 0.84
m,p-Xylene	10	2.4
o-Xylene	<3.6	< 0.84
Naphthalene	<2.2	< 0.42

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-05-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-03 1/43
Date Analyzed:	12/04/20	Data File:	120326.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
Benzene	7.1	2.2
Toluene	<810	<210
Ethylbenzene	<19	<4.3
m,p-Xylene	<37	<8.6
o-Xylene	<19	<4.3
Naphthalene	<11	< 2.1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	GP-06-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-04 1/3.4
Date Analyzed:	11/25/20	Data File:	112423.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130
	Concent	ration	

	Concen	Concentration		
Compounds:	ug/m3	ppbv		
Benzene	2.7	0.84		
Toluene	<64	<17		
Ethylbenzene	5.0	1.2		
m,p-Xylene	20	4.7		
o-Xylene	5.8	1.3		
Naphthalene	< 0.89	< 0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	SV-DUP-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-05 1/41
Date Analyzed:	12/04/20	Data File:	120327.D
Matrix:	Air	Instrument:	GCMS7
Units:	ug/m3	Operator:	bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	98	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
D		
Benzene	5.8	1.8
Toluene	<770	<200
Ethylbenzene	<18	<4.1
m,p-Xylene	37	8.5
o-Xylene	<18	<4.1
Naphthalene	<11	<2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Trip Blank	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Collected:	11/20/20	Lab ID:	011402-06
Date Analyzed:	11/25/20	Data File:	112420.D

Date Analyzed: 11/25/20 Data File: 112420.D

Matrix: Air Instrument: GCMS7

Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Collected:	Not Applicable	Lab ID:	00-2555 MB
Date Analyzed:	11/24/20	Data File:	112410.D

Date Analyzed: 11/24/20 Data File: 112410.D Matrix: Air Instrument: GCMS7 Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	93	70	130

	Concen	tration
Compounds:	ug/m3	ppbv
_		
Benzene	< 0.32	< 0.1
Toluene	<19	<5
Ethylbenzene	< 0.43	< 0.1
m,p-Xylene	< 0.87	< 0.2
o-Xylene	< 0.43	< 0.1
Naphthalene	< 0.26	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

Date Extracted: 11/30/20 Date Analyzed: 11/30/20

RESULTS FROM THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Results Reported as % Helium

Sample ID Laboratory ID	<u>Helium</u>
GP-02-112020 011402-01	<0.6
GP-03-112020 011402-02	<0.6
GP-05-112020 011402-03	<0.6
GP-06-112020 011402-04	<0.6
Method Blank	< 0.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	210	200	5
APH EC9-12 aliphatics	ug/m3	480	460	4
APH EC9-10 aromatics	ug/m3	<85	<85	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	81	70-130
APH EC9-12 aliphatics	ug/m3	67	82	70-130
APH EC9-10 aromatics	ug/m3	67	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 011402-01 1/3.4 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Benzene	ug/m3	<1.1	<1.1	nm
Toluene	ug/m3	<64	<64	nm
Ethylbenzene	ug/m3	2.2	2.3	4
m,p-Xylene	ug/m3	9.3	9.8	5
o-Xylene	ug/m3	2.7	3.3	20
Naphthalene	ug/m3	< 0.89	< 0.89	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	119	70-130
Toluene	ug/m3	51	84	70-130
Ethylbenzene	ug/m3	59	114	70-130
m,p-Xylene	ug/m3	120	99	70-130
o-Xylene	ug/m3	59	98	70-130
Naphthalene	ug/m3	71	82	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 12/09/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011402

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR HELIUM USING METHOD ASTM D1946

Laboratory Code: 0	11402-01 (Duj	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	< 0.6	< 0.6	nm	0-20
Laboratory Code: 0	11401-05 (Duj	olicate)		
	Sample	Duplicate	Relative	
Analyte	Result	Result	Percent	Acceptance
	(%)	(%)	Difference	Criteria
Helium	14 ve	19 ve	30 hr	0-20

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 3012 16th Ave. W. Seattle, WA 98119

RE: 011402

Work Order Number: 2011458

December 01, 2020

Attention Michael Erdahl:

Fremont Analytical, Inc. received 5 sample(s) on 11/20/2020 for the analyses presented in the following report.

Major Gases by EPA Method 3C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes
Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 011402 **Work Order:** 2011458

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2011458-001	GP-02-112020	11/20/2020 10:24 AM	11/20/2020 4:24 PM
2011458-002	GP-03-112020	11/20/2020 11:22 AM	11/20/2020 4:24 PM
2011458-003	GP-05-112020	11/20/2020 12:15 PM	11/20/2020 4:24 PM
2011458-004	GP-06-112020	11/20/2020 1:25 PM	11/20/2020 4:24 PM
2011458-005	SV-DUP-112020	11/20/2020 12:00 AM	11/20/2020 4:24 PM

Case Narrative

WO#: **2011458**Date: **12/1/2020**

CLIENT: Friedman & Bruya

Project: 011402

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Major gases are reported as % ratio of the Major Gases analyzed (Carbon dioxide, Carbon Monoxide, Methane, Nitrogen, Oxygen and Hydrogen).

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS). The LCS is processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: The estimated BTU calculation is based off of the methane result.

Qualifiers & Acronyms

WO#: **2011458**

Date Reported: 12/1/2020

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2011458**Date Reported: **12/1/2020**

CLIENT: Friedman & Bruya

Project: 011402

Lab ID: 2011458-001 **Collection Date:** 11/20/2020 10:24:00 AM

Client Sample ID: GP-02-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	n ID: R6	3578 Analyst: MS
Carbon Dioxide	27.6	0.0500	%	1	11/23/2020 6:53:00 AM
Methane	ND	0.0500	%	1	11/23/2020 6:53:00 AM
Oxygen	4.50	0.0500	%	1	11/23/2020 6:53:00 AM

Lab ID: 2011458-002 **Collection Date:** 11/20/2020 11:22:00 AM

Client Sample ID: GP-03-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	n ID: R6	33578 Analyst: MS
Carbon Dioxide	30.3	0.0500	%	1	11/23/2020 7:05:00 AM
Methane	0.168	0.0500	%	1	11/23/2020 7:05:00 AM
Oxygen	1.35	0.0500	%	1	11/23/2020 7:05:00 AM

Lab ID: 2011458-003 **Collection Date:** 11/20/2020 12:15:00 PM

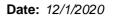
Client Sample ID: GP-05-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batch	n ID: R6	3578 Analyst: MS
Carbon Dioxide	29.6	0.0500	%	1	11/23/2020 7:17:00 AM
Methane	0.515	0.0500	%	1	11/23/2020 7:17:00 AM
Oxygen	1.27	0.0500	%	1	11/23/2020 7:17:00 AM

Analytical Report

Work Order: **2011458**

Date Reported: 12/1/2020


CLIENT: Friedman & Bruya

Project: 011402

Lab ID: 2011458-004 **Collection Date:** 11/20/2020 1:25:00 PM

Client Sample ID: GP-06-112020 Matrix: Air

Analyses	Result	RL Qual	Units	DF	Date Analyzed
Major Gases by EPA Method 3C			Batcl	n ID: R6	3578 Analyst: MS
Carbon Dioxide	17.1	0.0500	%	1	11/23/2020 7:29:00 AM
Methane	ND	0.0500	%	1	11/23/2020 7:29:00 AM
Oxygen	8.16	0.0500	%	1	11/23/2020 7:29:00 AM

Work Order: 2011458

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Major Gases by EPA Method 3C

Project:	011402	

Sample ID: LCS-R63578	SampType: LCS			Units: %		Prep Da	te: 11/23/2	2020	RunNo: 635	578	
Client ID: LCSW	Batch ID: R63578					Analysis Da	te: 11/23/2	2020	SeqNo: 127	6255	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	100	0.0500	100.0	0	100	70	130				
Methane	99.9	0.0500	100.0	0	99.9	70	130				
Oxygen	101	0.0500	100.0	0	101	70	130				

Sample ID: 2011458-001AREP	SampType: REP		Units:	%	Prep Da	te: 11/23/2	2020	RunNo: 635	578	
Client ID: GP-02-112020	Batch ID: R63578				Analysis Da	te: 11/23/2	2020	SeqNo: 127	76251	
Analyte	Result	RL	SPK value SPK Ref	'al %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon Dioxide	27.9	0.0500					27.64	0.905	30	
Methane	ND	0.0500					0		30	
Oxygen	4.47	0.0500					4.505	0.725	30	

Original Page 7 of 9

Sample Log-In Check List

С	lient Name:	FB	Work Order Numb	per: 2011458		
L	ogged by:	Carissa True	Date Received:	11/20/202	20 4:24:00 PM	
Cha	ain of Cust	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes 🗹	No 🗌	Not Present	
2.	How was the	sample delivered?	Client			
Log	<u>ı In</u>					
_	Coolers are p	present?	Yes	No 🗸	na 🗆	
			Air samples			
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹	
6.	Was an atter	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	as received at a temperature of >2°C to 6°C *	Yes	No 🗌	NA 🗹	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌		
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗸	No 🗌		
10	Are samples	properly preserved?	Yes 🗸	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA \square	
12	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗸	
		es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗸	No 🗌		
15	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌		
		at analyses were requested?	Yes 🗸	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🗸	No 🗌		
Spe	ecial Handl	ing (if applicable)				
_		otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
		Notified: Date:	: [
	By Who		le.	one Fax	☐ In Person	
	Regardi	-		<u></u>		
		nstructions:				
		,				

19. Additional remarks:

Item Information

Original

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

REMARKS	City, State, ZIP Seattle, WA 98119	City, State, ZIP
011402	3012 16th Ave W	Address
PROJECT NAME/N	Friedman and Bruya, Inc.	Company
SUBCONTRACTER	Send Report To Michael Erdahl	Send Report To

Phone #(206) 285-8282_merdahl@friedmanandbruya.com	City, State, ZIP Seattle, WA 98119	Address 3012 16th Ave W 011402	Company Friedman and Bruya, Inc. PROJECT NAME/NO.	Send Report To Michael Erdahl SUBCONTRACTER
		A-472	P0#	

Far (906) 989 5044	Ph. (206) 285-8282	2029	7		-					SV-0VP-112028	GP. 06-112020	GP-05-112020	GP-03-112020	GP-02-112020	Sample ID Lab	
Received by:	Relinquished by:	Received by:	Retinquished by:		?								-	11/20/20	Date Sampled	
	Y.	mana	y:	SIGNATURE						1	1325	275	1122	1024	Time Sampled	
		Toll								P	P	P	A	Þ	Matrix	
1	5	1	Micha												# of	
		alla	Michael Erdahl Euc	P											Dioxins/Furans	
		H	和石	PRINT NAME			_								ЕРН	
		nd	6	NAME		\perp	4	-	_	_					VPH	7
		MENS	bung T	2						1	/	1	7	1	CO2; CH4, 02	ANALYSES REQUESTED
		7	Fried													SKEQ
1		Ph	lman &	COM		+	+	-	-							TEST
			Friedman & Bruya	COMPANY		++	+	+	+	<i>3</i> -						CL
i			20			J.	-	1	-							
	1-1-	MONTH	11/20/6	DATE	is a			,	200	HOLE				2	Z	
		4631	1355	TIME					20) JU-040		Ť			Notes	

SAMPLE DISPOSAL Z Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by:	Standard TAT	TURNAROUND TIME	Page #of
	Pa	ge 9	of 9	9

Address 710 2nd City, State, ZIP South, With a MOH Company___ Report To_ どられこり Au Strass DAMETED CHALLY OF COULCUL SAMPLERS (signature) NOTES: PROJECT NAME & ADDRESS Some ! 18.GI INVOICE TO 多 PO# 1-20-20 Page # □ Default: Clean after 3 days Rush charges authorized by: O RUSH AStandard TURNAROUND TIME SAMPLE DISPOSAL

Phone (2013 5411 Email axxx 4 Daspert Cotoulpres, an

☐ Archive (Fee may apply)

SAMPLE INFORMATION 06-06-112020 ORDE11-80-d3 72-05-CON-100% Sample Name Se Sell 04 80 02 0 Ğ, Tab TD ઠ્ઠ が見れ **88** 347% 15g5 9/15 2017 Canister ID <u>8</u>8 かって **元** ह Cont. 3 と Flow Ħ IA=Indoor Air SG=Soil Gas IA / (SG) (Circle One) K IA / SG 1A / 89 IA / 85 и / (69) Reporting K IA / (S) SG SS Sampled Date 2 Initial ("Hg) 2 cen 2 Vac. **80回**86 **必要なる** Time Initial 11018 1-5 Field Final 4 ("Hg) Vac. 4 2 たら Field Time Final ANALYSIS REQUESTED TO15 Full Scan 4 × TO15 BTEXN TO15 cVOCs 4 × APH Samples received at × × Helium ,02.34 W2 CH4, + Tedlor bay Notes _

Ph. (20t Seattle, Fax (20 3012 16 Friedmi

FORMS\COC\COCTO-15.DOC

		- Comments	ANALY THE PROPERTY AND		x.x.00000 (00
			and the state of t	Received by:	DV 035 5044
		- CONTRACTOR OF THE PROPERTY O		Relinquished by:	96) 285-8282
				101120	,
1528	1 42/11	ナルー		Racesyed by: War 1	, WA 98119-2029
•	,		Canal City	Land Mary I	
11/10/18	2% C	一人をなってながし		Relinquished by:	6th Avenue West
			A DATE OF THE PROPERTY OF THE	PICNAL OUT	nan & Bruya, Inc.
TIMILI	DATES LIME	COMPANY	PRINT NAME	DALLE VIXOLO	, ,
יייי איזיי	1			•	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 1, 2020

Andrew Yonkofski, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Yonkofski:

Included are the results from the testing of material submitted on November 20, 2020 from the Texaco Strickland PO 180357, F&BI 011403 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP1201R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 20, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Texaco Strickland PO 180357, F&BI 011403 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Aspect Consulting, LLC</u>

011403 -01 MW-27-112020

The NWTPH-Dx surrogate in sample MW-27-112020 exceeded the acceptance criteria. No material was detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011403

Date Extracted: 11/25/20 Date Analyzed: 11/25/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW-27-112020 011403-01	<100	97
Method Blank _{00-2593 MB}	<100	90

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011403

Date Extracted: 11/23/20 Date Analyzed: 11/23/20

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Motor Oil Range}}{(C_{25}\text{-}C_{36})}$	Surrogate (% Recovery) (Limit 47-140)
MW-27-112020 011403-01	<50	<250	151 vo
Method Blank 00-2585 MB	<50	<250	130

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	MW-27-112020	Client:	Aspect Consulting, LLC
Date Received:	11/20/20	Project:	Texaco Strickland PO 180357
Date Extracted:	11/23/20	Lab ID:	011403-01
Date Analyzed:	11/23/20	Data File:	112316.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	57	121
Toluene-d8	102	63	127
4-Bromofluorobenzene	104	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID:	Method Blank	Client:	Aspect Consulting, LLC
Date Received:	Not Applicable	Project:	Texaco Strickland PO 180357
Date Extracted:	11/23/20	Lab ID:	00-2550 mb
Date Analyzed:	11/23/20	Data File:	112318.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	MS

		Lower	\cup pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	104	60	133

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Naphthalene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 011391-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	360	370	1

	Percent						
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Gasoline	ug/L (ppb)	1,000	98	69-134	_		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

Project: Texaco Strickland PO 180357, F&BI 011403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	104	61-133	4

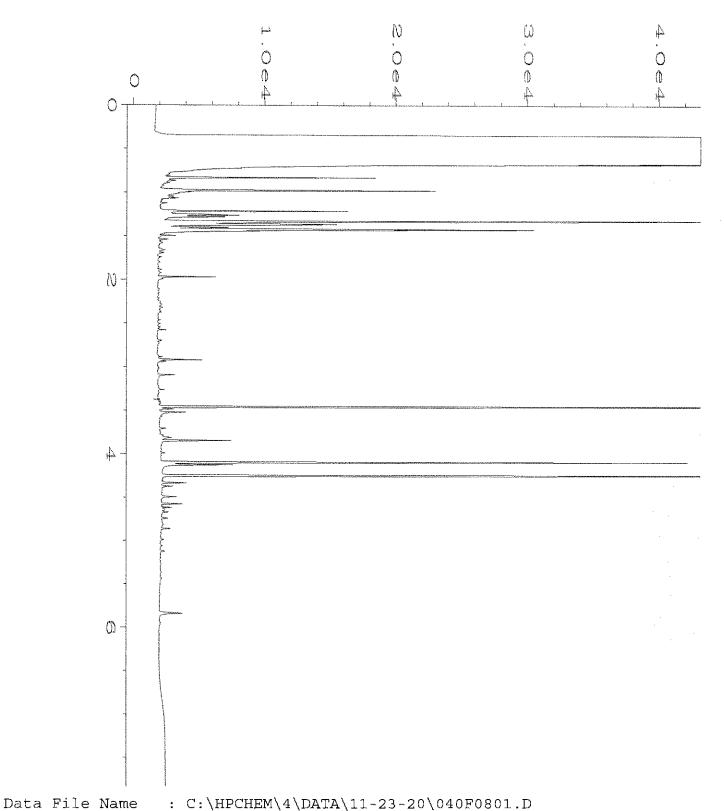
ENVIRONMENTAL CHEMISTS

Date of Report: 12/01/20 Date Received: 11/20/20

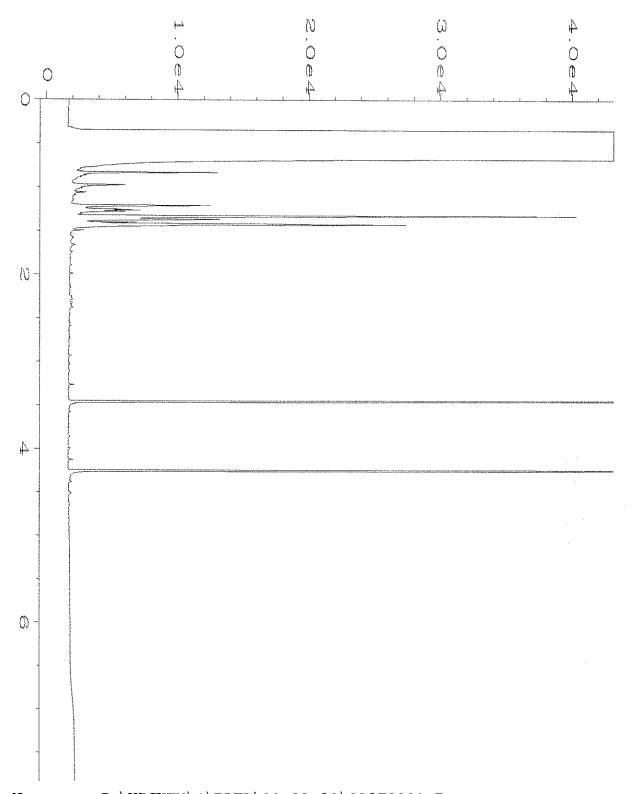
Project: Texaco Strickland PO 180357, F&BI 011403

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

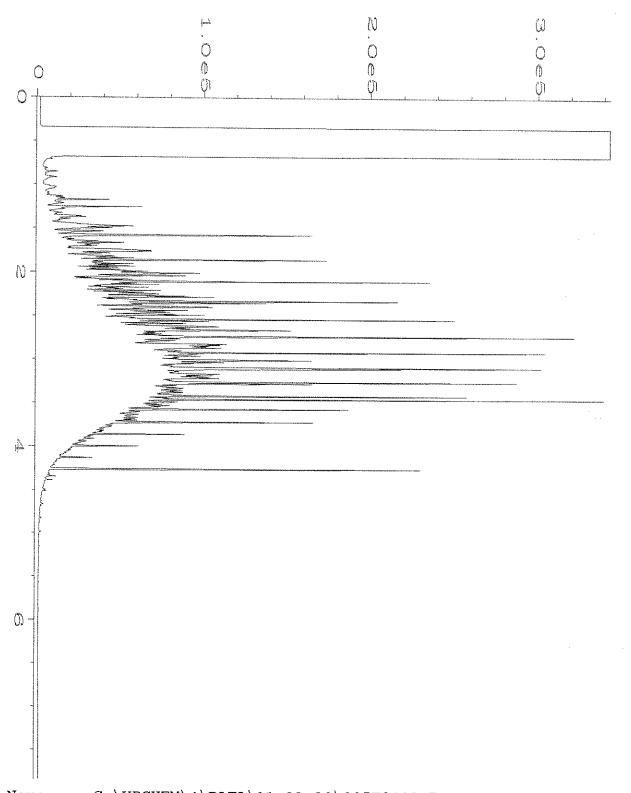
Laboratory Code: 011411-01 (Matrix Spike)


				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benzene	ug/L (ppb)	10	< 0.35	91	76 - 125
Toluene	ug/L (ppb)	10	<1	91	76 - 122
Ethylbenzene	ug/L (ppb)	10	<1	95	69 - 135
m,p-Xylene	ug/L (ppb)	20	<2	95	69 - 135
o-Xylene	ug/L (ppb)	10	<1	94	60-140
Naphthalene	ug/L (ppb)	10	<1	88	44-164

-	_		Percent	Percent		
	Reporting	Spike	$\operatorname{Recovery}$	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	96	93	69-134	3
Toluene	ug/L (ppb)	10	90	91	72 - 122	1
Ethylbenzene	ug/L (ppb)	10	95	95	77 - 124	0
m,p-Xylene	ug/L (ppb)	20	94	94	81-112	0
o-Xylene	ug/L (ppb)	10	93	94	81-121	1
Naphthalene	ug/L (ppb)	10	89	92	64-133	3


ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions


- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


```
Operator : TL Page Number : 1
Instrument : GC#4 Vial Number : 40
Sample Name : 011403-01 Injection Number : 1
Run Time Bar Code: Sequence Line : 8
Acquired on : 23 Nov 20 06:16 PM Instrument Method: DX.MTH
Report Created on: 24 Nov 20 09:03 AM Analysis Method : DEFAULT.MTH
```


Report Created on: 24 Nov 20 09:01 AM Analysis Method: DEFAULT.MTH


```
Data File Name
                  : C:\HPCHEM\4\DATA\11-23-20\005F0401.D
Operator
                  : TL
                                                  Page Number
                                                  Vial Number : 5
Injection Number : 1
Instrument
                  : GC#4
Sample Name
                  : 1000 Dx 61-146C
Run Time Bar Code:
                                                  Sequence Line
Acquired on
                  : 23 Nov 20 01:35 PM
                                                  Instrument Method: DX.MTH
Report Created on: 24 Nov 20 09:00 AM
                                                  Analysis Method : DEFAULT.MTH
```

						· · · · · · · · · · · · · · · · · · ·		MARTINTENATION										
h. (206) 285-8282	Seattle, WA 98119-2029	Friedman & Bruya, Inc.								mw-37-11-2026	Sample ID		Phone (26)413-5411 Email a forte this Desput	City, State, ZIP Scuffly	Mr. B. OM	[Report To Ankow Y	C11403
Received by:	Relinquished by:	Relinquished by:								01A~G	Lab ID		nail a yorko (3/5)	, wh, wire	Mr. St. 550	Consultans	Yoshodio / Blan	W
a con e conseina de conseina d	1	Take UKB	f 3							deal	Date Sampled			TIEL .		,	mathe	*
				-						GIDO	Time . Sampled		Project specific RLs? - Yes	- REMARI	Texace	PROJEC	SAMPLE	SAMPLE CHAIN OF CUSTODY
	Michael Edd	Dave						***************************************		WF	Sample # Type J		pecific RLs?	SS	Texus Strahl	PROJECT NAME	SAMPLERS (signature)	CHAIN (
	Edu	I MAL				÷		THE PERSON NAMED IN COLUMN 1		7 _X X	M # of		· Yes /(No	•	All		re) TZ)F CUSTO
								CONTRACTOR OF THE PROPERTY OF			BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	ANAI	A	OANI	180357		Ment_) уд
	1	Breet		•				The state of the s		×	PAHs EPA 8270 PCBs EPA 8082 BTEN 8060C	ANALYSES REQUESTED		INVOICE TO		PO#		ME II.
		ANY		Samples received as	•			j j				RTED	Default: I	SAMPLE DI	Rush char	XStandar	Page#	20-20
	11/20/1	JUNGOUTE TAILE			4.00						Notes		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by:	XStandard turnaround	Page #ofTURNAROUND TIME	
	25%	S S S S S S S S S S S S S S S S S S S						APPENDANTAL PROPERTY AND A STATE OF THE STAT			ັ ຜັ		30 days	AL	l by:		ME Ye	<u> </u>

APPENDIX C

Data Validation Reports

CDC

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh

Jyabandeh@aspectconsulting.com

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 15, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #45754:

SDG#	<u>Fraction</u>
906075, 906200 906232, 906279	Volatiles, TPH as Gasoline, TPH as Diesel & Motor Oil, Lead
907276, 908023	

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4, October 2014
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christing Rink

Christina Rink
CRink@lab-data.com
Project Manager/Senior Chemist

September 13, 2019

	206 pages-EM													At	tach	mer	nt 1																				
	Stage 2A / EDD LDC #45754 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe)																																				
LDC	SDG#	DATE REC'D	(3) DATE DUE	(82	OA 260 /D)	(602	b 20B)	(NW	TPH		H-E TPH x)	(802	21B)																								
Matrix	:: Water/Soil	•	Ī	W	s	W	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	906075	08/15/19	09/05/19	0	1	-	-	0	1	0	1	-	-																								
В	906200	08/15/19	09/05/19	0	7	0	1	0	8	0	6	0	8																								
С	906232	08/15/19	09/05/19	0	9	0	3	0	7	0	7	-	-																								
D	906279	08/15/19	09/05/19	-	-	-	-	0	2	0	2	-	-																								
Е	907276	08/15/19	09/05/19	0	4	-	-	1	4	0	4	1	4																								
F	908023	08/15/19	09/05/19	22	0	16	0	17	0	16	0	-	-																								
																																			\Box	\dashv	\dashv
				t			t						t																						\Box		\dashv
				t			t						t																						\Box		ᅦ
$\parallel \rightarrow \parallel$																																			\Box	\dashv	一
																																			\Box	\dashv	\dashv
Total	J/CR			22	21	16	4	18	22	16	20	1	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	152
																		-	-														-	-			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-04-2	906075-02	Soil	06/05/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

#:_906075 ratory: <u>Friedman & Bruya, Inc.</u>	I	Level II	2nd	Page:(of Reviewer:7 2nd Reviewer:		
			ation areas. Validati			
Validation Area			Comr	nents		
Sample receipt/Technical holding times	AIA					
GC/MS Instrument performance check	N					
Initial calibration/ICV	N/N					
Continuing calibration	N_				- Heart - ex- The service - and	
Laboratory Blanks	A					
Field blanks	N					
Surrogate spikes	A					
. Matrix spike/Matrix spike duplicates	N	Non aten	F			
Laboratory control samples	A	VCS				
Field duplicates	N					
Internal standards	N					
Compound quantitation RL/LOQ/LODs	N					
Target compound identification	N_					
System performance	N					
Overall assessment of data	A					
N = Not provided/applicable R = Ri	insate	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank :	
Client ID			Lab ID	Matrix	Date	
GP-04-2			906075-02	Soil	06/05/19	
09-1316 MB						
				<u> </u>		
	ratory: Friedman & Bruya, Inc. HOD: GC/MS Volatiles (EPA SW 846 Meaning and seation findings worksheets. Validation Area Sample receipt/Technical holding times GC/MS Instrument performance check Initial calibration/ICV Continuing calibration Laboratory Blanks Field blanks Surrogate spikes Matrix spike/Matrix spike duplicates Laboratory control samples Field duplicates Internal standards Compound quantitation RL/LOQ/LODs Target compound identification System performance Overall assessment of data A = Acceptable N = Not provided/applicable SW = See worksheet Client ID	Traitory: Friedman & Bruya, Inc. HOD: GC/MS Volatiles (EPA SW 846 Method 82600 camples listed below were reviewed for each of the foation findings worksheets. Validation Area	ratory: Friedman & Bruva, Inc. HOD: GC/MS Volatiles (EPA SW 846 Method 8260C) samples listed below were reviewed for each of the following valid ation findings worksheets. Validation Area Sample receipt/Technical holding times GC/MS Instrument performance check Initial calibration/ICV Continuing calibration Laboratory Blanks Field blanks Surrogate spikes Matrix spike/Matrix spike duplicates Laboratory control samples Field duplicates Internal standards Compound quantitation RL/LOQ/LODs Target compound identification N System performance N Overall assessment of data A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank Client ID GP-04-2	ratory: Friedman & Bruya, Inc. HOD: GC/MS Volatiles (EPA SW 846 Method 8260C) samples listed below were reviewed for each of the following validation areas. Validation findings worksheets. Validation Area Comm. Sample receipt/Technical holding times A-/ A GC/MS Instrument performance check N Initial calibration/ICV N/N Continuing calibration N Laboratory Blanks A Field blanks A Surrogate spikes A Matrix spike/Matrix spike duplicates N Laboratory control samples A Laboratory control samples N Internal standards N Compound quantitation RL/LOQ/LODs N Target compound identification N System performance N Overall assessment of data A = Acceptable N = Not provided/applicable N = Field blank B = Equipment blan Client ID Lab ID GP-04-2 906075-02	ratory: Friedman & Bruya. Inc. HOD: GC/MS Volatiles (EPA SW 846 Method 8260C) samples listed below were reviewed for each of the following validation areas. Validation findings are atton findings worksheets. Validation Area	

VALIDATION COMPLETENESS WORKSHEET

Date: 09/04/19

LDC #: 45754A1a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Total Petroleum Hydrocarbons as Gasoline

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-04-2	906075-02	Soil	06/05/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

SDG # Labora	#:_45754A7 VALIDATION #:_906075 atory: Friedman & Bruya, Inc. #OD: GC TPH as Gasoline (NWTPH-G)		PLETENES Level II	S WORKSHEE		Date: <u>b9/64/1</u> Page: <u>t of t</u> Reviewer: <u>t</u> Reviewer:
The sa	amples listed below were reviewed for etion findings worksheets.		ollowing valic	lation areas. Valida	tion findings are	noted in attached
	Validation Area			Com	ments	
I.	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
<u>V.</u>	Field blanks	N				
VI.	Surrogate spikes	l A				
VII.	Matrix spike/Matrix spike duplicates	N	Non Clien	+		
VIII.	Laboratory control samples	A	ics			
IX.	Field duplicates	Ŋ				
X.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = R SW = See worksheet FB =	No compound Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER ank	
	Client ID			Lab ID	Matrix	Date
1 (GP-04-2			906075-02	Soil	06/05/19
2						
3						
4						
5						
6						
7						
8						
9						
10			****			
11						
Notes:	59-1285 MB		<u> </u>			1
11	J7- [/83 IV[]7					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906075

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-04-2	906075-02	Soil	06/05/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906075

No Sample Data Qualified in this SDG

SDG	#: <u>906075</u>		Level II			Page:of!
Labo	ratory: Friedman & Bruya, Inc.				Ond i	Reviewer:
METI	HOD: GC TPH as Diesel (NWTPH-Dx)				∠na i	Reviewer:
	samples listed below were reviewed for e ation findings worksheets.	ach of the fo	ollowing valida	ation areas. Validation	on findings are	noted in attached
valluc	ation findings worksneets.					
	Validation Area			Comm	onte	
I.	Sample receipt/Technical holding times	A, A		OOIIII	<u> </u>	
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	P				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	Non Clien	+		
VIII.	Laboratory control samples	I A	LCS			
IX.	Field duplicates	7				
X.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XIL	Overall assessment of data	1				
Note:	N = Not provided/applicable R = Ri	No compounds insate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER:	rce blank
	Client ID	***		Lab ID	Matrix	Date
1	GP-04-2			906075-02	Soil	06/05/19
2						
3						
4						
5						
6						
7						
8						
9						
10						
11		···				
Votes					<u> </u>	
1 0	19-1347-MB					
		4200				· · · · · · · · · · · · · · · · · · ·
		-				

VALIDATION COMPLETENESS WORKSHEET

Date: 69/04/1

LDC #: 45754A8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-1	906200-01	Soil	06/10/19
MW-11-1DL	906200-01DL	Soil	06/10/19
MW-11-6	906200-02	Soil	06/10/19
MW-11-6DL	906200-02DL	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Methods 8260C/8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-11-1	Toluene-d8	255 (50-150)	All compounds	J (all detects)	А
MW-11-6	Toluene-d8 Bromofluorobenzene	741 (50-150) 428 (50-150)	All compounds	J (all detects)	Α

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D (061419) (MW-11-1 MW-11-6)	Naphthalene	136 (70-130)	-	J (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LCS/D (061419) (MW-11-1 MW-11-6)	Naphthalene	31 (≤20)	J (all detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Flag	A or P
MW-11-1	Naphthalene	DNR	-
MW-11-1DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-
MW-11-6	Naphthalene	DNR	-
MW-11-6DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 906200

Sample	Compound	Flag	A or P	Reason
MW-11-1	Naphthalene	DNR	-	Overall assessment of data
MW-11-1DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data
MW-11-6	Naphthalene	DNR	-	Overall assessment of data
MW-11-6DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

SDG∃ _abor	#:_45754B1a VALIDATIO #:_906200 atory: Friedman & Bruya, Inc. HOD: GC/MS Volatiles (EPA SW 846 Met	I	Level II	S WORKSHEET		Date: alia 104 104 104 105
Γhe s	amples listed below were reviewed for eation findings worksheets.		·	ation areas. Validation	ı findings are	noted in attached
	Validation Area Comments					
l.	Sample receipt/Technical holding times	A,A				
11.	GC/MS Instrument performance check	N				
III.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	SW				
VIII.	Matrix spike/Matrix spike duplicates	A	SDG 906	232		
IX.	Laboratory control samples	SW	1_C8/D			
Х.	Field duplicates	17				
XI.	Internal standards					
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.	Target compound identification	N				
XIV.	System performance	N				
		SW				
lote:						
	Client ID			Lab ID	Matrix	Date
1 ·	MW-11-1			906200-01	Soil	06/10/19
	MW-11-1RÉDL			906200-01RED L	Soil	06/10/19
				906200-02	Soil	06/10/19
	MW-11-6Ŗ É Ď∟			906200-02REV)	Soil	06/10/19
				906200-14	Soil	06/10/19
- 1				906200-23	Soil	06/11/19
7 -	MW-14-12.5			906200-27	Soil	06/11/19
8						
lotes	<u> </u>		- 1 1			
- 1						

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L.)1,2-Dichloroethane	LL.) Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM.) Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT/ 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 45759BL

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:_	1_of
Reviewer:_	LT
2nd Reviewe r ≤	2
	_

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y(N/N/A Were all surrogate %R within QC limits?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

	Criteri				
#	Date	Sample ID	Surrogate	%Recovery (Limits)	Qualifications
		1 (NO/DEX)	TOL	255 (50-150)	J/A Rets
					1
		3 (MOIREA)	toL	741 ()	
			BFB	428 ()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
	· · · · · · · · · · · · · · · · · · ·			()	
<u> </u>				()	
				()	
				. ()	
				()	
l					
				()	
				()	
				()	
				()	
				()	
				()	

(TOL) = Toluene-d8 (BFB) = Bromofluorobenzene (DCE) = 1,2-Dichloroethane-d4 (DFM) = Dibromofluoromethane LDC #: 45759Bla

VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Samples (LCS)</u>

Page: _	l_of
Reviewer:	<u></u>
2nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

ÝN N/A

Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		LC5/D (061419)	MMM	136 (70-130)	()	()	1,3 coet)	51P R45
			V	()	()	31 (20)	- -	JUJIP
				()	()	()		
				()	()	()		
				_()	()	()		
				()	()	()		
				()	()	()		
				()		()		
				()	()	()		
				()	()	()		
				()	()	()		
<u> </u>				()	()	()		
<u> </u>				(()		
				()	()	()		
<u> </u>				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
	operation in			()	()	()		
				_()	_()	()		

LDC #: 45754BL

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page:	of
Reviewer:	UT
2nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

N N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1	MMM	DL higher result	DNR
		2	LL, ++, L	original run lower PL	
		3	MMM	DL higher result	
		Ļ	ly TT, L	original run lawer RL	
				J. W.	

Comments:		 	
<u>-</u>			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Lead

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-6	906200-02	Soil	06/10/19
MW-11-6MS	906200-02MS	Soil	06/10/19
MW-11-6MSD	906200-02MSD	Soil	06/10/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program, SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Lead - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Lead - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Lead - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

DG #	±:		PLETENES Level I I	S WORKSHEE		Date: oq/oч/ Page: (of 1
abora	atory: <u>Friedman & Bruya, Inc.</u>				2nd	Reviewer: 17 Reviewer:
METH	OD: Lead (EPA SW 846 Method 6020B)					<i>y</i>
	amples listed below were reviewed for eaction findings worksheets.	ch of the f	ollowing valid	ation areas. Validat	ion findings are	noted in attached
	Validation Area			Comr	ments	-
I.	Sample receipt/Technical holding times	A,A		OMIII	Heilis	
 ': II.	ICP/MS Tune	N				
	Instrument Calibration	N				
IV.	ICP Interference Check Sample (ICS) Analysis	N				
V.	Laboratory Blanks	A				
VI.	Field Blanks	N				
VII.	Matrix Spike/Matrix Spike Duplicates	Α	(2137			
VIII.	Duplicate sample analysis	Ŋ				
IX.	Serial Dilution	N				
X.	Laboratory control samples	Д	105			
XI.	Field Duplicates	2				
XII.	Internal Standard (ICP-MS)	N				
XIII.	Sample Result Verification	N				
XIV	Overall Assessment of Data	K				
ote:	N = Not provided/applicable R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	urce blank :
	Client ID			Lab ID	Matrix	Date
ı	MW-11-6			906200-02	Soil	06/10/19
	MW-11-6MS			906200-02MS	Soil	06/10/19
	MW-11-6MSD			906200-02MSD	Soil	06/10/19
	- Marie Viv					
1						
				_		
0						
1						

Notes:_

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-1	906200-01	Soil	06/10/19
MW-11-6	906200-02	Soil	06/10/19
MW-11-13	906200-03	Soil	06/10/19
B-05-16	906200-09	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
B-06-13	906200-19	Soil	06/11/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19
B-05-16DUP	906200-09DUP	Soil	06/10/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

SDG ; Labor	#:_906200 atory: <u>Friedman & Bruya, Inc.</u>		PLETE Level		ESS WORKSHEE		Date: v9/o4/U Page: Lof L Reviewer: V7 Reviewer:
The s	IOD: GC TPH as Gasoline (NWTPH-Gx amples listed below were reviewed for e tion findings worksheets.		ollowin	g va	alidation areas. Valida	tion findings are	e noted in attached
	Validation Area				Com	ments	
l.	Sample receipt/Technical holding times	AIA					
11.	Initial calibration/ICV	N/N					
HI.	Continuing calibration	N					
IV.	Laboratory Blanks	A					
V.	Field blanks	N					
VI.	Surrogate spikes	Ā				•	
VII.	Matrix spike/Matrix spike duplicates	N/A	(a)			
VIII.	Laboratory control samples	A-	LC	<u>s</u>			
IX.	Field duplicates	N					
X.	Compound quantitation RL/LOQ/LODs	N					
XI.	Target compound identification	N					
XII	Overall assessment of data	A					
lote:	A = Acceptable ND = N = Not provided/applicable R = Ri	No compounds insate Field blank	s detecte	ed	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER	urce blank t:
	Client ID				Lab ID	Matrix	Date
1	MW-11-1				906200-01	Soil	06/10/19
	MW-11-6				906200-02	Soil	06/10/19
	MW-11-13				906200-03	Soil	06/10/19
	B-05-16				906200-09	Soil	06/10/19
	MW-12-15				906200-14	Soil	06/10/19
	B-06-13				906200-19	Soil	06/11/19
	MW-13-12.5			906200-23	Soil	06/11/19	
	MW-14-12.5			906200-27	Soil	06/11/19	
	B-05-16DUP			906200-09DUP	Soil	06/10/19	
10							
11							
lotes							1
10	9-1298MB			\perp			
1				- 1			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-6	906200-02	Soil	06/10/19
B-05-16	906200-09	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
B-06-13	906200-19	Soil	06/11/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

LDC :	#: <u>45754B8</u> VALIDATIO	ON COMP	PLETE	NESS WORKSHEE		Date: <u>₺a/6Ч/</u> ।
SDG 7	#:_906200		Level I	I		Page: <u></u> of <u></u>
Labor	ratory: <u>Friedman & Bruya, Inc.</u> ลูน Mihr ณโ HOD: GC TPH as Diesel [®] (NWTPH-Dx)				2nd	Page: _ l of _ l Reviewer: l Reviewer: l
METH	אָרָאָי אָרָאָ אָרָאָאָ אָרָאָאָ Aloob: GC TPH as Diesel (NWTPH-Dx)				Znu	Reviewer.
	amples listed below were reviewed for e tion findings worksheets.	ach of the f	ollowing	validation areas. Valida	ation findings are	e noted in attached
vanda						
	Validation Area			Con	nments	
I.	Sample receipt/Technical holding times	KA				
11.	Initial calibration/ICV	N/N				
Ш.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	10	Non C	Client		
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
Χ.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	+				
		<u> </u>	<u> </u>	D D !! .	00.0	
Note:	N = Not provided/applicable R = Ri		s detected	TB = Trip blank	OTHER	ırce blank :
	SW = See worksheet FB = F	Field blank		EB = Equipment b	lank	
	Client ID			Lab ID	Matrix	Date
1	MW-11-6			906200-02	Soil	06/10/19
	B-05-16			906200-09	Soil	06/10/19
- 1	MW-12-15			906200-14	Soil	06/10/19
	B-06-13			906200-19	Soil	06/11/19
	MW-13-12.5			906200-23	Soil	06/11/19
	MW-14-12.5			906200-27	Soil	06/11/19
7						
8						
9						
10						
11						
lotes:						
1 (09-1385 MB					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906200

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-11-1	906200-01	Soil	06/10/19
MW-11-6	906200-02	Soil	06/10/19
MW-11-13	906200-03	Soil	06/10/19
B-05-16	906200-09	Soil	06/10/19
MW-12-15	906200-14	Soil	06/10/19
B-06-13	906200-19	Soil	06/11/19
MW-13-12.5	906200-23	Soil	06/11/19
MW-14-12.5	906200-27	Soil	06/11/19
B-05-16DUP	906200-09DUP	Soil	06/10/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8021B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 906200

No Sample Data Qualified in this SDG

SDG Labo MET I	#: 906200 ratory: Friedman & Bruya, Inc. HOD: GC Volatiles (BTEX) (EPA SW 84)	i 6 Method 8	Level II 021B)	SS WORKSHEET	2nd	Date: 96 Page: lof l Reviewer: 7 Reviewer:
	samples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valid	dation areas. Validation	on findings are	noted in attached
	Validation Area			Comm	nents	
l.	Sample receipt/Technical holding times	AIA				
II.	Initial calibration/ICV	NIN				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	IN				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	NIA	(9)			
VIII.		A	108			
IX.	Field duplicates	N				· · · · · · · · · · · · · · · · · · ·
X.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	T A		·		
Note:	A = Acceptable ND = N N = Not provided/applicable R = Rin	No compounds nsate ield blank	detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1	MW-11-1			906200-01	Soil	06/10/19
2	MW-11-6			906200-02	Soil	06/10/19
3	MW-11-13			906200-03	Soil	06/10/19
4	B-05-16			906200-09	Soil	06/10/19
5	MW-12-15			906200-14	Soil	06/10/19
6	B-06-13			906200-19	Soil	06/11/19
7	MW-13-12.5			906200-23	Soil	06/11/19
8	MW-14-12.5			906200-27	Soil	06/11/19
9	B-05-16DUP			906200-09DUP	Soil	06/10/19
10						
11						
Votes	3:					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-7.5	906232-01	Soil	06/12/19
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-10.5DL	906232-02DL	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
MW-15-13DL	906232-03DL	Soil	06/12/19
MW-15-25	906232-05	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19
B-07-12.5	906232-08	Soil	06/12/19
MW-15-7.5DUP	906232-01DUP	Soil	06/12/19
MW-15-17.5	906232-04	Soil	06/12/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Methods 8260C/8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the following exceptions:

Sample	Compound	Total Days From Sample Collection Until Analysis	Required Holding Time (in Days) From Sample Collection Until Analysis	Flag	A or P
MW-15-13	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	15	14	J (all detects) UJ (all non-detects)	А

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-15-10.5	Toluene-d8 Bromofluorobenzene	608 (50-150) 2673 (50-150)	All compounds	J (all detects)	А

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-15-13	Toluene-d8 Bromofluorobenzene	273 (50-150) 1029 (50-150)	All compounds	J (all detects)	А

VIII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
LCS/D (061419) (MW-15-25)	m,p-Xylenes	163 (70-130)	-	NA	-
LCS/D (061419) (MW-15-10.5 MW-15-13)	Naphthalene	136 (70-130)	-	J (all detects)	Р
LCS/D (061419) (MW-15-7.5 B-07-8 B-07-12.5)	Naphthalene	136 (70-130)	-	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
LCS/D (061419) (MW-15-25)	Ethylbenzene m,p-Xylenes	28 (≤20) 52 (≤20)	UJ (all non-detects) UJ (all non-detects)	Р
LCS/D (061419) (MW-15-7.5 MW-15-10.5 MW-15-10.5DL MW-15-13 B-07-8 B-07-12.5)	Naphthalene	31 (≤20)	J (all detects) UJ (all non-detects)	Р

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Flag	A or P
MW-15-10.5	Naphthalene	DNR	-
MW-15-10.5DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-
MW-15-13	Naphthalene	DNR	-
MW-15-13DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-

Due to technical holding time, surrogate %R, and LCS/LCSD %R and RPD, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Aloha Café Volatiles - Data Qualification Summary - SDG 906232

Sample	Compound	Flag	A or P	Reason
MW-15-13	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	J (all detects) UJ (all non-detects)	А	Technical holding times
MW-15-25	Ethylbenzene m,p-Xylenes	UJ (all non-detects) UJ (all non-detects)	Р	Laboratory control samples (RPD)
MW-15-7.5 MW-15-10.5DL B-07-8 B-07-12.5	Naphthalene	J (all detects) UJ (all non-detects)	Р	Laboratory control samples (RPD)
MW-15-10.5	Naphthalene	DNR	-	Overall assessment of data
MW-15-10.5DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data
MW-15-13	Naphthalene	DNR	-	Overall assessment of data
MW-15-13DL	Methyl-tert-butyl ether 1,2-Dibromoethane 1,2-Dichloroethane	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

LDC #: 45754C1a VALIDATION COMPLETENESS WORKSHEET SDG #: 906232 Level II

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C/D)

Date: 04/04/19
Page: 1 of 2
Reviewer: 17
2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A,SH	
11.	GC/MS Instrument performance check	N	
III.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N _t	
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	N/A	(9)
IX.	Laboratory control samples	کہک	LCS/D
X.	Field duplicates	N	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	, N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SH	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 ′	MW-15-7.5	906232-01	Soil	06/12/19
2 ·	MW-15-10.5	906232-02	Soil	06/12/19
3 ·	MW-15-10.5BEDL	906232-02BE-OL	Soil	06/12/19
4	MW-15-13	906232-03	Soil	06/12/19
5	MW-15-13₹€DV	906232-03RE DL	Soil	06/12/19
	MW-15-25	906232-05	Soil	06/12/19
7 -	B-07-8	906232-07	Soil	06/12/19
	B-07-12.5	906232-08	Soil	06/12/19
)	MW-15-7.5DUP	906232-01DUP	Soil	06/12/19
10	MW-15-17.5	V-04	4	1
11				
2				
3				

LDC #: 45754C1a SDG #: 906232 Laboratory: Friedman & Bruya, METHOD: GC/MS Volatiles (EF	Date: <u>69/64</u> /(q Page: <u>2</u> of <u>2</u> Reviewer: <u> </u>	
Notes:		

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L) 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM.) Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR.)m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT) 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 45754Cla

VALIDATION FINDINGS WORKSHEET Technical Holding Times

2nd Reviewer

All circled dates have exceeded the technical holding times.

N N/A Were all cooler temperatures within validation criteria?
Y N N/A Were air bubbles > 1/4 inch or was headspace present in the vials?

	METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C/D)						
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total # of Days	Qualifier
4 (Det)*+1	W 5	7	06/12/19	06/27/19	06/27/19	15	JV5/
W. V. CC 57.							
* V, CC, EE,			,				
			, <u>, , , , , , , , , , , , , , , , , , </u>				
was and the state of the state							

TECHNICAL HOLDING TIME CRITERIA

Water unpreserved:

Aromatic within 7 days, non-aromatic within 14 days of sample collection.

Water preserved: Soil:

Within 14 days of sample collection. Within 14 days of sample collection.

LDC #: 4575966

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:_	<u>l_of_</u>
Reviewer:	17
nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y\N\N/A Were all surrogate %R within QC limits?

JN N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Date	Sample ID	Surrogate	%Recovery (Limits)	Qualifications
		2 (Myber)	toL	608 (50-150)	J/A DOAS
			BFB	2673 ()	.1/
			-	()	
		4 (Nolver)	tol BFB	273 ()	
			BFB	1029 ()	
				()	
				()	
				()	
				()	
]				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
				()	
			· · · · · · · · · · · · · · · · · · ·	()	
				()	
				()	
				()	

(TOL) = Toluene-d8

(DCE) = 1,2-Dichloroethane-d4

(BFB) = Bromofluorobenzene

(DFM) = Dibromofluoromethane

LDC #: 45754C/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: _	l	_of_ <u>\</u> _
Reviewer:		4
2nd Reviewer:		0

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?

#	Date	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
			-31	60 (7010)	62 (70-130)	()		ナルザイヤー
		LOS/D (06/419)	PER	163 ()	()	()	6 (ND)	JP pets
			MMM	136 (V)	()	()	1,7,8 (ND) 2,4 (pet	$\land \ \ $
			EE	()	()	28 (20)	6(ND)	J1514
			ppp	()	()	52 () 649	17.8(ND) 2,4 (00)	
			MMM	()	()	31 (1)	1,7,8(NO) 2,4 (OCA	
				()	()	()		Ψ
				()_	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

LDC #: 45759ch

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	1_of
Reviewer:	157
2nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C/D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y) N N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		2	MMM	DL higher result	DNR
		3	ш, т, ш	original ry lawar RL	
		4	MMM	DL higher result	
		5	U, TT, L	original run lower PL	

Comments:				 	 	 		
•								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Lead

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program, SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Lead - Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Lead - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Lead - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

SDG Labor	#:_45754C4a		PLETENES Level II	S WORKSHEET		Date: <u>&/lºЧ/[</u> Page:_ <u>l</u> of Reviewer: <u>l</u> Reviewer:
	amples listed below were reviewed for ea	ch of the f	ollowing valid	lation areas. Validation	on findings are	noted in attached
valida	ation findings worksheets.					
	Validation Area			Comn	nents	
<u>l</u> .	Sample receipt/Technical holding times	A,A				
11.	ICP/MS Tune	N_				
111.	Instrument Calibration	N_				
IV.	ICP Interference Check Sample (ICS) Analysis	N_				
V.	Laboratory Blanks	A				
VI.	Field Blanks	N				
VII.	Matrix Spike/Matrix Spike Duplicates	A	506 91	16210		
VIII.	Duplicate sample analysis	N				
IX.	Serial Dilution	N				
Χ.	Laboratory control samples	A,	Lus			
XI.	Field Duplicates	N				
XII.	Internal Standard (ICP-MS)	N				
XIII.	Sample Result Verification	N				
Lxıv	Overall Assessment of Data	<u> </u>				
Note:	N = Not provided/applicable R = Rin	o compound: sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1	MW-15-10.5	_		906232-02	Soil	06/12/19
2	MW-15-13			906232-03	Soil	06/12/19
3	B-07-8			906232-07	Soil	06/12/19
4						
5						
6						
7						
8		41.40				
9						
10						
11						
12				<u> </u>		
Notes	· <u> </u>				····	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-7.5	906232-01	Soil	06/12/19
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
MW-15-25	906232-05	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19
B-07-12.5	906232-08	Soil	06/12/19
MW-15-17.5	906232-04	Soil	06/12/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-15-10.5	Bromobenzene	218 (50-150)	All compounds	J (all detects)	Р
B-07-8	Bromobenzene	251 (50-150)	All compounds	J (all detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

Due to surrogate %R, data were qualified as estimated in two samples.

No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906232

Sample	Compound	Flag	A or P	Reason
MW-15-10.5 B-07-8	All compounds	J (all detects)	Р	Surrogates (%R)

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

SDG Labo MET The	#: 45754C7 VALIDATIO #: 906232 pratory: Friedman & Bruya, Inc. HOD: GC TPH as Gasoline (NWTPH-Gx) samples listed below were reviewed for eation findings worksheets.)	_evel II	SS WORKSHEE	2nd	Date: area M M M M M M M M M
	Validation Area			Con	nments	
I.		A A			111.111.11	
11.		N/N				
111.	Continuing calibration	N			-	
IV.		A				
V.	Field blanks	2				
VI.	Surrogate spikes	SW				
VII	. Matrix spike/Matrix spike duplicates	7	Van cli	ent		
VIII		A	L45			
IX. Field duplicates						
X.	Compound quantitation RL/LOQ/LODs					
XI.	Target compound identification	N				
XII	Overall assessment of data	K				
Note:	N = Not provided/applicable R = Rir	No compounds nsate ïeld blank	detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1	MW-15-7.5			906232-01	Soil	06/12/19
2	MW-15-10.5			906232-02	Soil	06/12/19
3	MW-15-13			906232-03	Soil	06/12/19
4	MW-15-25			906232-05	Soil	06/12/19
5	B-07-8			906232-07	Soil	06/12/19
6	B-07-12.5			906232-08	Soil	06/12/19
7	MW-15-17-5			V -04	₩	J
8						
9						
10						
11						
lote:					ГТ	
1	09-1405 MB					

LDC #: 457546h

VALIDATION FINDINGS WORKSHEET <u>Surrogate Recovery</u>

Page: L_of
Reviewer: 7
and Reviewer:

METHOD:	GC HPLC	/				
Are surrogat	tes required by the m	ethod? Yes	or No			
Please see	qualifications below t	or all questions a	inswered "N". No	ot applicable ques	stions are identif	fied as "N/A".
<u>Y N N/A</u>	Were surrogates	s spiked into all sa	amples and blan	ıks?		
Y (N) N/A	Did all surrogate	recoveries (%R) meet the OC lin	mits?		

#	Sample ID	Detector/ Column	Surrogate Compound	%R (Limits)	Qualifications
	z (Det)		Brown L	218 (50-150)	Qualifications J/APDets
				()	
	5 (Der)		<i>\</i>	251 (1/)	
				(
				()	
				()	
				()	
				()	
				()	
				(
ļ				()	
<u> </u>				()	
 			-	()	
				()	
<u> </u>				()	
 					
 			<u> </u>		
 					

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyi-D14	Т	3,4-Dinitrotoluene	Z	1,2-Dinitrobenzene
С	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin		
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin		
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate		
LF.	1.4-Difluorobenzene (DFB)		Bromobenzene	R	4-Nitrophenol	X	Triphenyl Phosphate		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906232

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-15-7.5	906232-01	Soil	06/12/19
MW-15-10.5	906232-02	Soil	06/12/19
MW-15-13	906232-03	Soil	06/12/19
MW-15-25	906232-05	Soil	06/12/19
B-07-8	906232-07	Soil	06/12/19
B-07-12.5	906232-08	Soil	06/12/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906232

No Sample Data Qualified in this SDG

SDG # _abora METH The sa	#:_45754C8 VALIDATION #:_906232 atory:_Friedman & Bruya, Inc. And Mofw 0if IOD: GC TPH as Diesel*(NWTPH-Dx) amples listed below were reviewed for extion findings worksheets.	l	_evel II	SS WORKSHEI	2nd	Date: \(\frac{color(v)/l}{color(v)/l} \) Reviewer: \(\frac{color(v)/l}{color(v)/l} \) Reviewer: \(\frac{color(v)/l}{color(v)/l} \) e noted in attached
	Validation Area			Coi	nments	
I.	Sample receipt/Technical holding times	A, A				
II.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N				
IV.	Laboratory Blanks	A-				
V.	Field blanks	7				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	N	Non Gie	wt		
VIII.	Laboratory control samples	A	125			
IX.	Field duplicates	7				
Χ.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	A				- ************************************
Note:	N = Not provided/applicable R = R	No compounds Rinsate Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1 !	MW-15-7.5			906232-01	Soil	06/12/19
2 [MW-15-10.5			906232-02	Soil	06/12/19
3 1	MW-15-13			906232-03	Soil	06/12/19
4 [MW-15-25			906232-05	Soil	06/12/19
5 I	B-07-8			906232-07	Soil	06/12/19
6 [B-07-12.5			906232-08	Soil	06/12/19
	MW-15-17.5			V -04	V	1
8						
9						
10						
11						
lotes:						
			$\perp \downarrow \perp$			
		-				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906279

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-17-8.5	906279-02	Soil	06/14/19
MW-16-7.5	906279-07	Soil	06/14/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

SDG	#: 45754D7 VALIDATIC #: 906279 ratory: Friedman & Bruya, Inc.		PLETEN Level II	ESS	WORKSHEET	I Rev 2nd Rev	Date: <u>p٩/64/</u> Page: <u>l</u> of <u>l</u> iewer: <u></u>
The	HOD: GC TPH as Gasoline (NWTPH-Gx samples listed below were reviewed for eation findings worksheets.		ollowing v	alida	tion areas. Validatior		
	Validation Area				Comme	ents	
I.	Sample receipt/Technical holding times	A,A					
II.	Initial calibration/ICV	N/N					
III.	Continuing calibration	N					
IV.	Laboratory Blanks	I A					
V.	Field blanks	N					
VI.	Surrogate spikes	A					
VII.	Matrix spike/Matrix spike duplicates	2	Non C	iren	+		
VIII		A	LOS				
IX.	Field duplicates	2					
X.	Compound quantitation RL/LOQ/LODs	N					
XI.	Target compound identification	N					
XII	Overall assessment of data	A					
Note:	N = Not provided/applicable R = Ri	No compounds nsate Field blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	olank
	Client ID				Lab ID	Matrix	Date
1	MW-17-8.5				906279-02	Soil	06/14/19
2	MW-16-7.5				906279-07	Soil	06/14/19
3							
4							
5							
6							
7							
8							
9							
10							
11							
Notes	S:		1 1				
igsqcut							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 906279

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-17-8.5	906279-02	Soil	06/14/19
MW-16-7.5	906279-07	Soil	06/14/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 906279

No Sample Data Qualified in this SDG

	#: <u>906279</u>		Level II			Page: <u> </u> of <u> </u>
aboratory: Friedman & Bruya, Inc.					0-4	Page:lof_l Reviewer:LT Reviewer:
ИЕТН	IOD: GC TPH as Diesel (NWTPH-Dx)	1			∠na	Reviewer:
	amples listed below were reviewed for		ollowing valid	lation areas. Valid	ation findings are	noted in attache
	tion findings worksheets.		bilowing valle	ation areas. Valid	ation infairige are	Tiolog in allacine
			l			
	Validation Area	ΙΛ.Λ		Cor	mments	
. 	Sample receipt/Technical holding times	A / A				
II. 	Initial calibration/ICV	N/N				
III.	Continuing calibration	A A				
IV.	Laboratory Blanks					The state of the s
V.	Field blanks	N				
VI.	Surrogate spikes	I A				· · · · · · · · · · · · · · · · · · ·
VII.	Matrix spike/Matrix spike duplicates	N	Non cir	ent		
VIII.	Laboratory control samples	A	LG			
IX.	Field duplicates	N				
Χ.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = F	No compounds Rinsate Field blank		D = Duplicate TB = Trip blank EB = Equipment I	OTHER	irce blank :
9	Client ID			Lab iD	Matrix	Date
1 I	MW-17-8.5			906279-02	Soil	06/14/19
2	MW-16-7.5			906279-07	Soil	06/14/19
3						
4						
5						
6						
7						
8		******			,	
9						
10						
lotes:						

\top						

VALIDATION COMPLETENESS WORKSHEET

Date: 04/04/19

LDC #: 45754D8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19
MW-19-8.5MS	907276-12MS	Soil	07/16/19
MW-19-8.5MSD	907276-12MSD	Soil	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

LDC #: 45754E1a VALIDATION COMPLETENESS WORKSHEET SDG #: 907276 Level II Laboratory: Friedman & Bruya, Inc.

Date: v9/v4/l 1
Page: l of l
Reviewer: LT
2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	V-l'd-d'an Ana		2
	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	GC/MS Instrument performance check	N _	
III.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N_	
V.	Laboratory Blanks	A	
VI.	Field blanks	7	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(5.6)
IX.	Laboratory control samples	A	Les
X.	Field duplicates	ND	D=3+4
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank
N = Not provided/applicable R = Rinsate TB = Trip blank OTHER:
SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	MW-18-10	907276-03	Soil_	07/15/19
2 `	B-08-13.5	907276-08	Soil	07/16/19
з •	MW-19-8.5	907276-12	Soil	07/16/19
4 .	Dup-2	907276-16	Soil	07/16/19
5	MW-19-8.5MS	907276-12MS	Soil_	07/16/19
6	MW-19-8.5MSD	907276-12MSD	Soil	07/16/19
7				
8				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19
Trip Blank	907276-17	Water	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

SDG :	#:_45754E7 VALIDATI #:_907276 ratory: <u>Friedman & Bruya, Inc.</u>		PLETENES Level II	S WORKSHEE		Date: <u>៚</u> Page: <u></u> of_ Reviewer:
/IET⊦ ⊺he s	HOD: GC TPH as Gasoline (NWTPH-G amples listed below were reviewed for e tion findings worksheets.		ollowing valid	ation areas. Valida	2nd	Reviewer:
aliua	Validation Area			Con	nments	
l.	Sample receipt/Technical holding times	A,A				
II.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	NO	TB= 5			
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	$\ddot{\alpha}$	Non Clie	?W4	 	
VIII.	Laboratory control samples	A	LOS			
IX.	Field duplicates	ND	D= 3+	-4	-	
Χ.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	F				
ote:	A = Acceptable ND = N = Not provided/applicable R = F	No compound Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
	MW-18-10			907276-03	Soil	07/15/19
	B-08-13.5			907276-08	Soil	07/16/19
	MW-19-8.5			907276-12	Soil	07/16/19
	Dup-2			907276-16	Soil	07/16/19
	Trip Blank			907276-17	Water	07/16/19
-						
0						
1						
otes						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

	#: <u>45754E8</u> VALIDATI 0 #: 907276		PLETENES: Level II	S WORKSHEE		Date: <u>જ્વ/<i>૦</i> ૫</u> Page: ⁽ of I
	atory: <u>Friedman & Bruya, Inc.</u>					Page: <u></u> of <u>)</u> Reviewer: <u> </u>
METL	IOD: CC TPH as Discal (NWTPH Dv)				2nd	Reviewer:
MEIL	IOD: GC TPH as Diesel (NWTPH-Dx)					-
	amples listed below were reviewed for ϵ tion findings worksheets.	each of the fo	ollowing valida	ation areas. Valida	ation findings are	noted in attache
vallua	uon mungs worksneets.					
	Validation Area			Con	nments	
I.	Sample receipt/Technical holding times	A,A				
II.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N				
IV.	Laboratory Blanks	À				1
	Field blanks	7				
VI.	Surrogate spikes	A				
		1	Mm Ci	a. 1		
VII.	Matrix spike/Matrix spike duplicates	I N A	Non Cin	ewt		
VIII.	Laboratory control samples	ND	D= 3+	 u		1
IX.	Field duplicates		0 - 31	1	, , , , , ,	
X.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N N				
XII	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R = F	No compounds Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	irce blank :
	Client ID			Lab ID	Matrix	Date
1 1	MW-18-10			907276-03	Soil	07/15/19
	B-08-13.5			907276-08	Soil	07/16/19
3	MW-19-8.5			907276-12	Soil	07/16/19
	 Dup-2			907276-16	Soil	07/16/19
5						
6	<u> </u>					
7						
8						
9						
10				*****		
11						
Votes:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 9, 2019

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907276

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-18-10	907276-03	Soil	07/15/19
B-08-13.5	907276-08	Soil	07/16/19
MW-19-8.5	907276-12	Soil	07/16/19
Dup-2	907276-16	Soil	07/16/19
Trip Blank	907276-17	Water	07/16/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8021B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-8.5 and Dup-2 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 907276

No Sample Data Qualified in this SDG

SDG#	#: <u>907276</u>			LETENES Level II	S WORKSHEE		Date: <u>0¶/6Ч/ Page:{of_} Reviewer:7</u>
Labora	atory: <u>Friedman & Bruya, I</u>	nc.				2nd	Reviewer: <u>U1</u> Reviewer:
METH	IOD: GC Volatiles (BTEX)	(EPA SW 846	Method 8	021B)			
	amples listed below were r tion findings worksheets.	eviewed for eac	ch of the fo	ollowing valid	lation areas. Valida	ation findings are	noted in attache
	Validation A	rea			Com	nments	
l.	Sample receipt/Technical hold	ling times	A, A				
II.	Initial calibration/ICV		NN				
III.	Continuing calibration		V				
IV.	Laboratory Blanks		A				
V.	Field blanks		ND	TB=5			
VI.	Surrogate spikes		A				
VII.	Matrix spike/Matrix spike dupli	cates	2	Nan Cili	ent		
VIII.	Laboratory control samples		A	L55			
IX.	Field duplicates		ND	D=3+U			
X.	Compound quantitation RL/LO)Q/LODs	N				
XI.	Target compound identification		N				
XII	Overall assessment of data		A				
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER:	rce blank :
7	Client ID				Lab ID	Matrix	Date
1 1	MW-18-10	***************************************			907276-03	Soil	07/15/19
2 E	3-08-13.5				907276-08	Soil	07/16/19
	MW-19-8.5				907276-12	Soil	07/16/19
	Dup-2				907276-16	Soil	07/16/19
	Гrip Blank				907276-17	Water	07/16/19
6							
7							
8							
9							
10							
11							
lotes:							
. 1	ŀ	1		1 1		1 1	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-14-073119DL	908023-03DL	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
Dup-01-073119DL	908023-05DL	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-11-073119DL	908023-09DL	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-10-080119DL	908023-13DL	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19
MW-1-080119DL	908023-16DL	Water	08/01/19
Trip Blank	908023-17	Water	08/01/19
MW-12-080119MS	908023-11MS	Water	08/01/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	tion (ug/L)			
Compound	MW-14-073119	Dup-01-073119	RPD (Limits)	Flag	A or P
Vinyl chloride	2.7	2.8	4 (≤35)	-	-
Toluene	32	45	34 (≤35)	-	-
m,p-Xylenes	72	120	50 (≤35)	J (all detects)	А
o-Xylene	18	25	33 (≤35)	-	-
Naphthalene	50	77	43 (≤35)	J (all detects)	Α

	Concentra	tion (ug/L)			
Compound	MW-14-073119	Dup-01-073119DL	RPD (Limits)	Flag	A or P
Ethylbenzene	130	170	27 (≤35)	-	-

	Concentra	tion (ug/L)				
Compound	MW-14-073119DL	14-073119DL Dup-01-073119DL		Flag	A or P	
Benzene	2400	3500	37 (≤35)	J (all detects)	А	

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

		T		
Sample	Compound	Finding	Flag	A or P
MW-14-073119	Benzene	Results exceeded calibration range.	DNR	-
MW-14-073119DL	All compounds except Benzene	Results from undiluted analyses were more usable.	DNR	-
Dup-01-073119	Benzene Ethylbenzene	Results exceeded calibration range.	DNR	-
Dup-01-073119DL	All compounds except Benzene Ethylbenzene	Results from undiluted analyses were more usable.	DNR	-
MW-11-073119 MW-1-080119	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Results exceeded calibration range.	DNR	-
MW-11-073119DL MW-1-080119DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Results from undiluted analyses were more usable.	DNR	-
MW-10-080119	Benzene Ethylbenzene m,p-Xylenes Naphthalene	Results exceeded calibration range.	DNR	-
MW-10-080119DL All compounds except Benzene Ethylbenzene m,p-Xylenes Naphthalene		Results from undiluted analyses were more usable.	DNR	-

Due to field duplicate RPD, data were qualified as estimated in two samples.

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 908023

Sample	Compound	Flag	A or P	Reason
MW-14-073119 Dup-01-073119	m,p-Xylenes Naphthalene	J (all detects) J (all detects)	А	Field duplicates (RPD)
MW-14-073119DL Dup-01-073119DL	Benzene	J (all detects)	A	Field duplicates (RPD)
MW-14-073119	Benzene	DNR	-	Overall assessment of data
MW-14-073119DL	All compounds except Benzene	DNR	-	Overall assessment of data
Dup-01-073119	Benzene Ethylbenzene	DNR	-	Overall assessment of data
Dup-01-073119DL	All compounds except Benzene Ethylbenzene	DNR	-	Overall assessment of data
MW-11-073119 MW-1-080119	Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	DNR	-	Overall assessment of data
MW-11-073119DL MW-1-080119DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	DNR	-	Overall assessment of data
MW-10-080119	Benzene Ethylbenzene m,p-Xylenes Naphthalene	DNR	-	Overall assessment of data
MW-10-080119DL	All compounds except Benzene Ethylbenzene m,p-Xylenes Naphthalene	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II SDG #: 908023

Laboratory: Friedman & Bruya, Inc.

LDC #: 45754F1a

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

Date: 09/04/19 Page: (of 2 Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	DN	TB = 22 RB = 19
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(23) M5 ONLY
IX.	Laboratory control samples	A	LCS/D
X.	Field duplicates	SW	D= 3+6, 4+7, 3+7
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

Client ID Lab ID Matrix Date MW-16-073119 908023-01 Water 07/31/19 MW-18-073119 908023-02 Water 07/31/19 MW-14-073119 908023-03 Water 07/31/19 MW-14-073119BE DV 908023-03BE101 Water 07/31/19 MW-13-073119 908023-04 Water 07/31/19 6 Dup-01-073119 908023-05 Water 07/31/19 Dup-01-073119R€ 908023-05RED L Water 07/31/19 8 . MW-17-073119 908023-06 Water 07/31/19 9 MW-19-073119 908023-07 Water 07/31/19 908023-08 07/31/19 10. MW-7-073119 Water 11. MW-11-073119 908023-09 Water 07/31/19 MW-11-073119RE Water 908023-09REDL 12 07/31/19 MW-6-073119 908023-10 Water 07/31/19

LDC #:_45754F1a	VALIDATION COMPLETENESS WORKSHEET
SDG #: 908023	Level II

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

Date: 09/04/19
Page: 2-of 2
Reviewer: 17
2nd Reviewer:

14 .	MW-12-080119	908023-11	Water	08/01/19
15 .	MW-2-080119	908023-12	Water	08/01/19
16 ·	MW-10-080119	908023-13	Water	08/01/19
17 ·	MW-10-080119BE DL	908023-13RE-DL	Water	08/01/19
18 ·	MW-9-080119	908023-14	Water	08/01/19
19 -	Rinse Blank-080119	908023-15	Water	08/01/19
20 ·	MW-1-080119	908023-16	Water	08/01/19
21 -	MW-1-080119RE-DU	908023-16REDL	Water	08/01/19
22 ·	Trip Blank	908023-17	Water	08/01/19
23	MW-12-080119MS	908023-11MS	Water	08/01/19
24				
25				
26				

Notes:

1	09-1853 MB			-		

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C Vinyl choride	(CC) Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-isopropyitoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR/ m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:45754F1a

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

	Concent	RPD (≤35)		
Compound	3	3 6		Diff
С	2.7	2.8	4	
СС	32	45	34	
RRR	72	120	50	
SSS	18	25	33	
МММ	50	77	43	

5deth 5deth

	Concen			
Compound	3	7	RPD (≤35)	Diff
EE	130	170	27	

	Concent			
Compound	4	7	RPD (≤35)	Diff
V	2400	3500	37	

5 det/A

LDC #:45754Fla

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	of
Reviewer:	LT
2nd Reviewer	
`	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y) N N/A

Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		3	V	x'd Cal range	DNP
		4	All okano) V		
		4	All except V	dilyted	
		6	V & FE	Xd cal range	
		7	All except 1 & EE	diluted	
		-1	//// ok=/// 4 PE	Artorca	
		11,20	V, CC, EE, PMC, SSS	7d cal range	
		12,21	All except V.CC, EE, PRIZ, 559	s diluted	
		16	V, EE, REP, MMM	Xd cal range	
				,	
		17	All except V. FF. PRL, MMM	dilutcol	V

Comments:				 			
•		 -					
	 -	 	 	 	 	 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Lead

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19
MW-16-073119MS	908023-01MS	Water	07/31/19
MW-16-073119MSD	908023-01MSD	Water	07/31/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program, SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
MW-16-073119MS/MSD (MW-16-073119 MW-18-073119 MW-14-073119 MW-13-073119 Dup-01-073119 MW-17-073119 MW-7-073119 MW-7-073119 MW-11-073119 MW-6-073119 MW-6-073119 MW-2-080119 MW-2-080119 MW-10-080119 MW-9-080119 MW-9-080119 MW-1-080119 MW-1-080119 MW-1-080119	Lead	68 (75-125)	68 (75-125)	J (all detects) UJ (all non-detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD %R, data were qualified as estimated in fifteen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Aloha Café Lead - Data Qualification Summary - SDG 908023

Sample	Analyte	Flag	A or P	Reason
MW-16-073119 MW-18-073119 MW-14-073119 MW-13-073119 Dup-01-073119 MW-17-073119 MW-7-073119 MW-7-073119 MW-11-073119 MW-6-073119 MW-6-073119 MW-12-080119 MW-2-080119 MW-10-080119 MW-9-080119 MW-1-080119	Lead	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Aloha Café

Lead - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Lead - Field Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 908023 Laboratory: Friedman & Bruya, Inc.

LDC #: 45754F4a

Level II

Page:_ (of Reviewer:

Date: 61/04/15

2nd Reviewer

METHOD: Lead (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A-1A	
11.	ICP/MS Tune	N	
III.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	A	
VI.	Field Blanks	ND	PB= 15
VII.	Matrix Spike/Matrix Spike Duplicates	SW	(17,18)
VIII.	Duplicate sample analysis	2	
IX.	Serial Dilution	2	
X.	Laboratory control samples	A	LCS
XI.	Field Duplicates	12	D=3+5
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-16-073119	908023-01	Water	07/31/19
2	MW-18-073119	908023-02	Water	07/31/19
3	MW-14-073119	908023-03	Water	07/31/19
4	MW-13-073119	908023-04	Water	07/31/19
5	Dup-01-073119	908023-05	Water	07/31/19
6	MW-17-073119	908023-06	Water	07/31/19
7	MW-19-073119	908023-07	Water	07/31/19
8	MW-7-073119	908023-08	Water	07/31/19
9	MW-11-073119	908023-09	Water	07/31/19
10	MW-6-073119	908023-10	Water	07/31/19
11	MW-12-080119	908023-11	Water	08/01/19
12	MW-2-080119	908023-12	Water	08/01/19
13	MW-10-080119	908023-13	Water	08/01/19
14	MW-9-080119	908023-14	Water	08/01/19
15	Rinse Blank-080119	908023-15	Water	08/01/19

LDC #: 45754F49

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: _of_\	
Reviewer:	
2nd Reviewer:	

METHOD: Lead (EPA SW 846 Method 6020B)

I	$\frac{1}{2}$	ase see qualifications below for all	questions answered "N	 Not applicable ques 	tions are identified as "N/A".
_			1		

✓ N. N/A

Was a matrix spike analyzed for each matrix in this SDG?

Output

Description:

Output

Descr

Y(N)N/A Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Y N (N/A) Were all duplicate sample relative percent differences (RPD) \leq 20% for water samples and \leq 35% for soil samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications \
	17/18	W	Lead	68 (75-125)	68(75-125		1-8, 10-40 CM	JUSIA (Det(m)
							gtDer)	
Г							9-14,16	
Г								
Г								
			l					

Comments:	 								

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19
Trip Blank	908023-17	Water	08/01/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	tion (ug/L)	
Compound	MW-14-073119	Dup-01-073119	RPD (Limits)
Gasoline range	7500	9700	26 (≤35)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

ı	DC.	#•	45754F7	
ᆫ	\mathcal{L}	₩.	4010411	

VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #: 908023

Laboratory: Friedman & Bruya, Inc.

Reviewer: 2nd Reviewer

Date: 09/04/19

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A, A	
II.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	PB=15 +B=17
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	Non Client
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	SW	D=3+5
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-16-073119	908023-01	Water	07/31/19
2	MW-18-073119	908023-02	Water	07/31/19
3	MW-14-073119	908023-03	Water	07/31/19
4	MW-13-073119	908023-04	Water	07/31/19
5	Dup-01-073119	908023-05	Water	07/31/19
6	MW-17-073119	908023-06	Water	07/31/19
7	MW-19-073119	908023-07	Water	07/31/19
8	MW-7-073119	908023-08	Water	07/31/19
9	MW-11-073119	908023-09	Water	07/31/19
10	MW-6-073119	908023-10	Water	07/31/19
11	MW-12-080119	908023-11	Water	08/01/19
12	MW-2-080119	908023-12	Water	08/01/19
13	MW-10-080119	908023-13	Water	08/01/19
14	MW-9-080119	908023-14	Water	08/01/19
15	Rinse Blank-080119	908023-15	Water	08/01/19
16	MW-1-080119	908023-16	Water	08/01/19
17	Trip Blank	908023-17	Water	08/01/19

LDC#:45754F7

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: lof (
Reviewer: 1
2nd Reviewer: 2

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Concer	ntration (ug/L)			
Compound	3	5	RPD (≤35)	Diff	
Gasoline Range	7500	9700	26		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 9, 2019

Parameters: Total Petroleum Hydrocarbons as Diesel & Motor Oil

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 908023

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-16-073119	908023-01	Water	07/31/19
MW-18-073119	908023-02	Water	07/31/19
MW-14-073119	908023-03	Water	07/31/19
MW-13-073119	908023-04	Water	07/31/19
Dup-01-073119	908023-05	Water	07/31/19
MW-17-073119	908023-06	Water	07/31/19
MW-19-073119	908023-07	Water	07/31/19
MW-7-073119	908023-08	Water	07/31/19
MW-11-073119	908023-09	Water	07/31/19
MW-6-073119	908023-10	Water	07/31/19
MW-12-080119	908023-11	Water	08/01/19
MW-2-080119	908023-12	Water	08/01/19
MW-10-080119	908023-13	Water	08/01/19
MW-9-080119	908023-14	Water	08/01/19
Rinse Blank-080119	908023-15	Water	08/01/19
MW-1-080119	908023-16	Water	08/01/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Semivolatile Data Validation, SOP HW-35A, Revision 0 (June 2015), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel and Motor Oil by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Rinse Blank-080119 was identified as a rinsate blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
Rinse Blank-080119	Ortho-Terphenyl	142 (47-140)	All compounds	NA	-

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-14-073119 and Dup-01-073119 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentrat	tion (ug/L)		
Compound	MW-14-073119	Dup-01-073119	RPD (Limits)	Difference (Limits)
Diesel range	1200	1100	9 (≤35)	-
Motor oil range	330	270	-	60 (≤500)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Laboratory Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel and Motor Oil - Field Blank Data Qualification Summary - SDG 908023

No Sample Data Qualified in this SDG

LDC #:45754 F8

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	<u>of</u>
Reviewer:	17
2nd Reviewer:	

n-Triacontane

Hexacosane

Bromobenzene

Q

#	Sample ID	Detect Colun		Surrogate Compound		%R (Limits)			Qua	alifications
Ī	15 (ND)	-		H		142 (47	-140)		5/1	P Dets
						()			
						()			
						()			
				L		()			
)			
)			
)			
)	<u> </u>		·
						()			
)			
						(_					
)_			
						()			
)			
)_			
)_			
					+-)_	<u> </u>		
)_			
						()_			
								<u> </u>			
	Surrogate Compound		Surrog	gate Compound		Surrogate Compound		Surrogate	Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	0	ctacosane	М	Benzo(e)Pyrene	s	1-Chloro-3-	-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	(H)		tho-Terphenyl	N	Terphenyl-D14	Т		trotoluene	z	1,2-Dinitrobenzene
C	a,a,a-Trifluorotoluene_		Fluor	obenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripe	entyltin	<u> </u>	

1-methylnaphthalene

Dichlorophenyl Acetic Acid (DCAA)

4-Nitrophenol

٧

W

Tri-n-propyltin

Tributyl Phosphate

Triphenyl Phosphate

Ε

Bromochlorobenene

1,4-Dichlorobutane

1.4-Difluorobenzene (DFB)

Κ

LDC#:45754F8

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 1
Reviewer: 2nd Reviewer:

METHOD: GC TPH as Diesel and Motor Oil (NWTPH-Dx)

	Concent			
Compound	3	5	RPD (≤35)	Diff (≤500)
Diesel Range	1200	1100	9	
Motor Oil Range	330	270		60

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com October 2, 2019

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed is the final validation report for the fraction listed below. This SDG was received on September 3, 2019. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #45879:

SDG #	<u>Fraction</u>
907561	Volatiles

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Analysis Of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink

crink@lab-data.com

Christma Rink

Project Manager/Senior Chemist

33 pages-EM Attachment 1 LDC #45879 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A / EDD VOA DATE DATE VOA (MA LDC SDG# **REC'D** DUE (TO-15) -ÀPH) A S Matrix: Air/Water/Soil 8 09/03/19 09/24/19 907561 0 0 0 0 0 0 0 Total J/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 24, 2019

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907561

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-01-072519	907561-01	Air	07/25/19
GP-02-072519	907561-02	Air	07/25/19
GP-03-072519	907561-03	Air	07/25/19
Dup-1-072519	907561-04	Air	07/25/19
GP-04-072519	907561-05	Air	07/25/19
SVS-02-072519	907561-06	Air	07/25/19
SVS-01-072519	907561-07	Air	07/25/19
Trip Blank	907561-08	Air	07/25/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-072519 and Dup-1-072519 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

_	Concentra	ation (ug/m³)			
Compound	GP-03-072519	Dup-1-072519	RPD (Limits)	Flag	A or P
Benzene	3.9	3.4	14 (≤35)	-	-
Toluene	17	15	13 (≤35)	-	-
Ethylbenzene	4.9	3.9	23 (≤35)	-	-
m,p-Xylene	19	15	24 (≤35)	-	-
o-Xylene	8.1	6.5	22 (≤35)	-	-

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Date: 01/24/19 LDC #: 45879A48a Stage 2A Page: l of J SDG #: 907561 Laboratory: Friedman & Bruya, Inc. Reviewer: LT 2nd Reviewer: KW **METHOD:** GC/MS Volatiles (EPA Method TO-15) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times GC/MS Instrument performance check II. h III. Initial calibration/ICV Continuing calibration IV. individually certified V. Laboratory Blanks/Canister Blanks VI. Field blanks ND TB = 8 VII. Surrogate spikes VIII. Matrix spike/Matrix spike duplicates A <u></u> C5 IX. Laboratory control samples D = 4 + 3SW X. Field duplicates N XI. Internal standards XII. Ν Compound quantitation RL/LOQ/LODs XIII. Target compound identification Ν XIV. System performance Ν XV. Leak Check Compounds XVI. Overall assessment of data A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank Note: N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: FB = Field blank SW = See worksheet EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
•	GP-01-072519	907561-01	Air	07/25/19
· ·	GP-02-072519	907561-02	Air	07/25/19
3 ·	GP-03-072519	907561-03	Air	07/25/19
4 .	Dup-1-072519	907561-04	Air	07/25/19
5	GP-04-072519	907561-05	Air	07/25/19
3 ·	SVS-02-072519	907561-06	Air	07/25/19
<u>, . </u>	SVS-01-072519	907561-07	Air	07/25/19
8 <i>-</i>	Trip Blank	907561-08	Air	07/25/19
9	<u> </u>			

TARGET COMPOUND WORKSHEET

METHOD: VOA

WILTHOD. VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:45879A48b

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: 1 of \
Reviewer: \(\forall 1 \)
2nd Reviewer: \(\forall 1 \)

METHOD: GC/MS Volatiles (EPA Method TO-15)

	Concentration (ug/m3)			
Compound	3	4	RPD (≤35)	Qual
V	3.9	3.4	14	
СС	17	15	13	
EE	4.9	3.9	23	
RRR	19	15	24	
SSS	8.1	6.5	22	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 24, 2019

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 907561

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
GP-01-072519	907561-01	Air	07/25/19
GP-02-072519	907561-02	Air	07/25/19
GP-03-072519	907561-03	Air	07/25/19
GP-03-072519DL	907561-03DL	Air	07/25/19
Dup-1-072519	907561-04	Air	07/25/19
Dup-1-072519DL	907561-04DL	Air	07/25/19
GP-04-072519	907561-05	Air	07/25/19
SVS-02-072519	907561-06	Air	07/25/19
SVS-02-072519DL	907561-06DL	Air	07/25/19
SVS-01-072519	907561-07	Air	07/25/19
Trip Blank	907561-08	Air	07/25/19
GP-01-072519DUP	907561-01DUP	Air	07/25/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analysis Date	Compound	Concentration	Associated Samples
09-1852 MB	08/02/19	APH EC9-12 aliphatics	37 ug/m³	GP-01-072519 GP-02-072519 GP-03-072519 Dup-1-072519 GP-04-072519 SVS-02-072519 SVS-01-072519 Trip Blank

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-072519 and Dup-1-072519 and samples GP-03-072519DL and Dup-1-072519DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)			
Compound	GP-03-072519DL	Dup-1-072519DL	RPD (Limits)	Flag	A or P
APH EC5-8 aliphatics	8700	9100	4 (≤35)	-	-
APH EC9-12 aliphatics	9600	11000	14 (≤35)	-	-

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
GP-03-072519 Dup-1-072519 SVS-02-072519	APH EC5-8 aliphatics	Results exceeded calibration range.	DNR	-
GP-03-072519 Dup-1-072519	APH EC9-12 aliphatics	Results from diluted analyses were more usable.	DNR	-
GP-03-072519DL Dup-1-072519DL	APH EC9-10 aromatics	Results from undiluted analyses were more usable.	DNR	-
SVS-02-072519DL	APH EC9-12 aliphatics APH EC9-10 aromatics	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 907561

Sample	Compound	Flag	A or P	Reason
GP-03-072519 Dup-1-072519 SVS-02-072519	APH EC5-8 aliphatics	DNR	-	Overall assessment of data
GP-03-072519 Dup-1-072519	APH EC9-12 aliphatics	DNR	-	Overall assessment of data
GP-03-072519DL Dup-1-072519DL	APH EC9-10 aromatics	DNR	-	Overall assessment of data
SVS-02-072519DL	APH EC9-12 aliphatics APH EC9-10 aromatics	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 907561

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 907561 Laboratory: Friedman & Bruya, Inc.

LDC #: 45879A48b

Stage 2A

Reviewer: LT 2nd Reviewer: KA

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	GC/MS Instrument performance check	N	
III.	Initial calibration/ICV	N,N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	SW/A	Individually certified
VI.	Field blanks	ND	TB = 11
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates DVP	N/A	(12)
IX.	Laboratory control samples	A	LG
X.	Field duplicates	SM	D=3+5,4+6
XI.	Internal standards	N	,
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
XVI.	Overall assessment of data	SIA	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	GP-01-072519	907561-01	Air	07/25/19
2 ·	GP-02-072519	907561-02	Air	07/25/19
3 .	GP-03-072519	907561-03	Air	07/25/19
4 .	GP-03-072519R E b	907561-03₽ € DL	Air	07/25/19
5 .	Dup-1-072519	907561-04	Air	07/25/19
6 •	Dup-1-072519₽€ Ы_	907561-04RPDL	Air	07/25/19
7 .	GP-04-072519	907561-05	Air	07/25/19
8 ·	SVS-02-072519	907561-06	Air	07/25/19
9 •	SVS-02-072519REDL	907561-06REDL	Air	07/25/19
10	SVS-01-072519	907561-07	Air	07/25/19
11.	Trip Blank	907561-08	Air	07/25/19
12	GP-01-072519DUP	907561-01DUP	Air	07/25/19

LDC #: 45879 A486

(Y) N N/A

Blank analysis date:

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	1 of 1
Reviewer:_	LT
2nd Reviewer:	KK

METHOD: GC/MS VOA (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A Was a method blank associated with every sample in this SDG? (Y) N N/A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Was there contamination in the method blanks? If yes, please see the qualifications below.

Blank analysis date: 08/02/19 Conc. units: UA/M³

Associated Samples: 1-3,5,7,8,10,11 > CROL or ND

Compound	Blank ID	 Sample Identification					
	09-1852 mb						
Methylene chloride						 	
Acetone							
APH ECO-10						 	
APH EC9-10 APH EC9-12 aliphatics	37						
]				
			1,				

Conc. units: Associated Samples: Compound Blank ID Sample Identification Methylene chloride Acetone

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC#:45879A48b

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: of Page: of Page: Of Pag

METHOD: GC/MS Volatiles (MA-APH)

	Concentra	tion (ug/m3)		0.1
Compound	4 6		RPD (≤35)	Qual
APH EC5-8 aliphatics	8700	9100	4	
APH EC9-12 aliphatics	9600	11000	14	

LDC #: 45879A48b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _	1_of_\
Reviewer:	LT
2nd Reviewer:	RK

METHOD: GC/MS VOA (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

N N/A Was the overall quality and usability of the data acceptable?

	i Total			T	
#	Date	Sample ID	Compound	Finding	Qualifications
		3,5,8	APH ECS-8 aliphatics	xd cal range	DNR
			· ·)
		3,5	Aft EC9-12 aliphatics	biased low results, DL	
	_			results are more acceptable	
		d 11 1	A 0 500 10 0 11:		
		\$ 4,6	AAI ECO-10 aromatics	diluted	
		9	APH EQ-12 aliphatizs 3		
			APH EC9-10 aromatics	√	\bigvee
ļ					

Comments:					
		W 1002			

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com January 6, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on December 9, 2019. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #46741:

SDG #	<u>Fraction</u>
911310	Volatiles, Lead, Total Petroleum Hydrocarbons as Gasoline, Total Petroleum Hydrocarbons as Diesel

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA Region 2 Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program, SOP HW-2b, Revision 15; December 2012
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

peiotina Prink

Project Manager/Senior Chemist

206 pages-EM Attachment 1 LDC #46741 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A / EDD TPH-G TPH-E Pb (NWTPH (NWTPH DATE DATE VOA (8260C) (6020B) LDC SDG# **REC'D** DUE Gx) Dx) | w | s | w | w s w s w s ws Matrix: Water/Soil 17 0 0 16 0 12/09/19 12/31/19 18 0 16 911310 0 0 0 0 0 0 0 Total J/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 3, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
Sample Identification	911310-01		
MW-1-112019		Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-18-112019DL	911310-13RE	Water	11/20/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19
Trip blank	911310-17	Water	11/20/19
MW-2-112019MS	911310-02MS	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip blank was identified as a trip blank. No contaminants were found.

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)				
Compound	MW-19-112019	DUP-01-112019	RPD (Limits)	Flag	A or P
Tetrachloroethene	12	15	22 (≤35)	-	-

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
MW-18-111919	Benzene	Results exceeded calibration range.	DNR	-
MW-18-112019DL	All compounds except Benzene	Results from undiluted analyses were more usable.	DNR	-

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Aloha Café Volatiles - Data Qualification Summary - SDG 911310

Sample	Compound	Flag	A or P	Reason
MW-18-11191 : 9	Benzene	DNR	-	Overall assessment of data
MW-18-11201 Đ DL	All compounds except Benzene	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 46741A1a

SDG #: 911310 Laboratory: Friedman & Bruya, Inc. Level II

Reviewer:

2nd Reviewer

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A,A	
	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	RB=17 TB=18
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(19)-MS ONLY LCS/D
IX.	Laboratory control samples	A	
X.	Field duplicates	حہر	D = 16 +15
XI.	Internal standards	7	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

R = Rinsate

FB = Field blank

ND = No compounds detected

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	MW-1-112019	911310-01	Water	11/20/19
2 ·	MW-2-112019	911310-02	Water	11/20/19
3 -	MW-6-112019	911310-03	Water	11/20/19
4 ·	MW-7-112019	911310-04	Water	ଏ 11/2 <mark>9</mark> /19
5 ·	MW-9-112019	911310-05	Water	11/20/19
6 ·	MW-10-112019	911310-06	Water	11/20/19
7 .	MW-11-112019	911310-07	Water	11/2 Ø /19
8 ·	MW-12-112019	911310-08	Water	11/20/19
9 .	MW-13-112019	911310-09	Water	11/20/19
10 '	MW-14-112019	911310-10	Water	11/20/19
11.	MW-16-112019	911310-11	Water	11/20/19
12 .	MW-17-112 0 19	911310-12	Water	19 11/20/19
13	мW-18-112019	911310-13	Water	11/ 2 0/19

SDG Labo	#:46741A1a VALIDATION COMPLETENE b #:_ 911310 Level II bratory: Friedman & Bruya, Inc. CHOD: GC/MS Volatiles (EPA SW 846 Method 8260C)	Date: <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Date: 12/28/ Page: 1 of 1 Reviewer: 17 Reviewer: 27	
14.	MW-18-112019₽€ D ~	911310-13BE	Water	11/20/19
15 -	MW-19-112019	911310-14	Water	11/20/19
16 -	DUP-01-112019	911310-15	Water	11/20/19
17 `	Rinseblank- 112019	911310-16	Water	11/20/19
18	Trip blank	911310-17	Water	11/20/19
19	MW-2-112019MS	911310-02MS	Water	11/20/19
20				
21				
22				
Note	s:			
	09-2843 MB			

TARGET COMPOUND WORKSHEET

METHOD: VOA

WILTHOD, VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC, 1-Ghlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#: 46741Ah

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	<u>l_of_l</u>
Reviewer:	سر ہے ا
2nd Reviewer:_	

METHOD: G€MS VOA (EPA Method 8260C)

	Concentration (ug/L)		
Compound	15	16	RPD (≤ 35)
AA	12	15	22

LDC #: 46791ALA

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page:	of
Reviewer: 2nd Reviewer:	

METHOD: GC/MS VOA (EPA SW 846 Method 8260C)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

N N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Findings	Qualifications
		13	✓	X'd Calvange	ONR
		14	All-except V	diluted	<u> </u>
Ì					
ļ					
<u> </u>					

Comments:				 		 	 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 3, 2020

Parameters:

Lead

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19
MW-1-112019MS	911310-01MS	Water	11/20/19
MW-1-112019MSD	911310-01MSD	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for the Evaluation of Lead for the Contract Laboratory Program, SOP HW-2b, Revision 15 (December 2012), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Lead by Environmental Protection Agency (EPA) SW 846 Method 6020B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

ICP-MS tune data were not reviewed for Stage 2A validation.

III. Instrument Calibration

Instrument performance check data were not reviewed for Stage 2A validation.

IV. ICP Interference Check Sample Analysis

Interference check sample (ICS) analysis data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples.

XII. Internal Standards (ICP-MS)

Internal standard data were not reviewed for Stage 2A validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2A validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Lead - Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café Lead - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café Lead - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 911310 Laboratory: Friedman & Bruya, Inc.

LDC #: 46741A4a

Level II

Page: 1 of 2
Reviewer: DTM
2nd Reviewer:

METHOD: Lead (EPA SW 846 Method 6020B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>l.</u>	Sample receipt/Technical holding times	AA	
11.	ICP/MS Tune	N	
111.	Instrument Calibration	N	
IV.	ICP Interference Check Sample (ICS) Analysis	N	
V.	Laboratory Blanks	Α	
VI.	Field Blanks	ANI	R18=16
VII.	Matrix Spike/Matrix Spike Duplicates	'A	
VIII.	Duplicate sample analysis	7	
IX.	Serial Dilution	2	
X.	Laboratory control samples	Α	LCS
XI.	Field Duplicates	20	(14,15)
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	Ą	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-112019	911310-01	Water	11/20/19
2	MW-2-112019	911310-02	Water	11/20/19
3	MW-6-112019	911310-03	Water	11/20/19
4	ια MW-7-11 2 019	911310-04	Water	11/20/19
5	MW-9-112019	911310-05	Water	11/20/19
6	MW-10-112019	911310-06	Water	11/20/19
7	19 MW-11-11 2 019	911310-07	Water	11/20/19
8	MW-12-112019	911310-08	Water	11/20/19
9	MW-13-112019	911310-09	Water	11/20/19
10	MW-14-112019	911310-10	Water	11/20/19
11	MW-16-11 2 019	911310-11	Water	11/20/19
12	MW-17-112019	911310-12	Water	11/20/19
13_	MW-18-112019	911310-13	Water	11/20/19
14	MW-19-112019	911310-14	Water	11/20/19
15	DUP-01-112019	911310-15	Water	11/20/19

LDC #: 46741A4a VALIDATION COMPLETENESS WORKSHEET SDG #: 911310 Level II

Laboratory: Friedman & Bruya, Inc.

METHOD: Lead (EPA SW 846 Method 6020B)

Date: 12/16/19
Page: 20f 3
Reviewer: DIM
2nd Reviewer:

911310-16	Water	11/20/19
911310-01MS	Water	11/20/19
911310-01MSD	Water	11/20/19
	911310-01MS	911310-01MS Water

21		 <u> </u>	
Notes			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: January 3, 2020

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19
Trip blank	911310-17	Water	11/20/19
MW-6-112019DUP	911310-03DUP	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip blank was identified as a trip blank. No contaminants were found.

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 911310 Laboratory: Friedman & Bruya, Inc.

LDC #: 46741A7

Level II

Date: 12/28/4 Page:__lof_ Reviewer: 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	RB = 16 TB=17
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	NA	(18)-PUP
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	ND	D=15+14
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

ND = No compounds detected

R = Rinsate

D = Duplicate TB = Trip blank SB=Source blank OTHER:

N = Not provided/applicable SW = See worksheet

FB = Field blank

EB = Equipment blank

				
	Client ID	Lab ID	Matrix	Date
1	MW-1-112019	911310-01	Water	11/20/19
2	MW-2-112019	911310-02	Water	11/20/19
3	MW-6-112019	911310-03	Water	11/20/19
4	MW-7-112019	911310-04	Water	11/20/19
5	MW-9-112019	911310-05	Water	11/20/19
6	MW-10-112019	911310-06	Water	11/20/19
7	MW-11-112019	911310-07	Water	เ ร 11/2ช/19
8	MW-12-112019	911310-08	Water	11/20/19
9	MW-13-112019	911310-09	Water	11/20/19
10	MW-14-112019	911310-10	Water	11/20/19
11	MW-16-112019	911310-11	Water	11/ 2 0/19
12	MW-17-112019	911310-12	Water	ເ ງ 11/20/19
13	и МW-18-11 2 019	911310-13	Water	1 /2 11/2 / /19
14	MW-19-112019	911310-14	Water	11/20/19
15	DUP-01-112019	911310-15	Water	11/20/19
16	Rinseblank - 1120 11	911310-16	Water	11/20/19
17	Trip blank	911310-17	Water	11/20/19

LDC #:_46741A7 SDG #:_911310 Laboratory: Friedman & Bruya METHOD: GC TPH as Gasolii	Date:r2/2%/ Page: 2-of 2 Reviewer: 57 2nd Reviewer:			
18 MW-6-112019DUP		911310-03DUP	Water	11/20/19
19				
20				
21				
Notes:				
109-2735 MB				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 3, 2020

Parameters:

Total Petroleum Hydrocarbons as Diesel

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 911310

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-1-112019	911310-01	Water	11/20/19
MW-2-112019	911310-02	Water	11/20/19
MW-6-112019	911310-03	Water	11/20/19
MW-7-111919	911310-04	Water	11/19/19
MW-9-112019	911310-05	Water	11/20/19
MW-10-112019	911310-06	Water	11/20/19
MW-11-111919	911310-07	Water	11/19/19
MW-12-112019	911310-08	Water	11/20/19
MW-13-112019	911310-09	Water	11/20/19
MW-14-112019	911310-10	Water	11/20/19
MW-16-111919	911310-11	Water	11/19/19
MW-17-111919	911310-12	Water	11/19/19
MW-18-111919	911310-13	Water	11/19/19
MW-19-112019	911310-14	Water	11/20/19
DUP-01-112019	911310-15	Water	11/20/19
Rinseblank-112019	911310-16	Water	11/20/19

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Diesel by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Rinseblank-112019 was identified as a rinse blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-19-112019 and DUP-01-112019 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Diesel - Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel - Laboratory Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Diesel - Field Blank Data Qualification Summary - SDG 911310

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 46741A8 Level II SDG #: 911310

Date: ו <u>אלא</u> ל
Page:lof_}
Reviewer: U7
2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l	Sample receipt/Technical holding times	AA	
11.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N_	
IV.	Laboratory Blanks	A	
V.	Field blanks	NO	PB = 16
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	2	
VIII.	Laboratory control samples	A	LCS/D
IX.	Field duplicates	ND	D= 15+14
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XIL	Overall assessment of data	IH	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Lab ID Matrix Date Client ID MW-1-112019 911310-01 Water 11/20/19 MW-2-112019 Water 11/20/19 911310-02 MW-6-112019 Water 11/20/19 3 911310-03 MW-7-112019 เ**ร** 11/**2**0/19 911310-04 Water 4 11/20/19 MW-9-112019 Water 911310-05 5 11/20/19 6 MW-10-112019 911310-06 Water **/ f** 11/2**/2/**19 **լհ** MW-11-112019 911310-07 Water MW-12-112019 911310-08 11/20/19 Water 8 11/20/19 9 MW-13-112019 911310-09 Water MW-14-112019 11/20/19 10 911310-10 Water 11/20/19 **19** MW-16-112019 Water 911310-11 11 MW-17-112019 11/20/19 12 911310-12 Water MW-18-112019 11/20/19 13 Water 911310-13 MW-19-112019 911310-14 Water 11/20/19 14 DUP-01-112019 Water 11/20/19 15 911310-15 Rinseblank- 11209 911310-16 Water 11/20/19 16

CDC

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com December 31, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on December 4, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49889:

SDG #	Fraction
011185, 011339	Volatiles, Total Petroleum Hydrocarbons as Gasoline, Total
011403	Petroleum Hydrocarbons as Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

heisting Rink

Project Manager/Senior Chemist

123 pages-EM Attachment 1 LDC #49889 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A EDD TPH-G TPH-E KNWTPHKNWTPH BTEX VOA VOA DATE DATE LDC SDG# **REC'D** DUE (8260D) (8260D) -Gx) -Dx) (8021B) | w | s | w | w s w s ws w s Matrix: Water/Soil 0 0 0 12/04/20 12/29/20 3 3 0 3 011185 30 0 28 27 В 011339 12/04/20 12/29/20 0 0 12/04/20 12/29/20 011403 0 0 0 0 0 0 0 Total J/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

December 29, 2020

Parameters:

Naphthalene

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Naphthalene - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Naphthalene - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Naphthalene - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

LDC #: 49889A1a	VALIDATION COMPLETENESS WORKSHEET	Date: <u>MR/12</u>
SDG #: 011185	_ Level II	Page: <u>(</u> of <u>)</u>
Laboratory: Friedman & Bruya,	<u>Inc.</u>	Reviewer: 2nd Reviewer:
		2nd Reviewer:
METHOD: GC Naphthalene (El	PA SW 846 Method 8260D)	
The samples listed below were validation findings worksheets.	reviewed for each of the following validation areas. Validation fine	dings are noted in attached

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A,A	
II.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	7	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	2	Non aient
VIII.	Laboratory control samples	A	LC6
IX.	Field duplicates	7	
X.	Compound quantitation RL/LOQ/LODs	N	Dry wright basis=1-3
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank

Client ID	 	Lab ID	Matrix	Date
1 GP-05-1.25	 	011185-01	Soil	11/10/20
2 GP-05-6	 	011185-02	Soil	11/10/20
3 * GP-06-2.5		011185-03	Soil	11/10/20
4				
5				
6				
7				
8				
9	 			
10				
11	 :			
12				
otes:				

1 00-2669 MB 2 00-2697 MB

Collection time discrepancy COC 12:26 vs EDO 09:36

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

December 29, 2020

Parameters:

Total Petroleum Hydrocarbons as Gasoline

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20
GP-05-1.25DUP	011185-01DUP	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

SDG#	: 011185		LETENESS WORKSHEET Level II	Page: \(\frac{12\frac}}}}}}}{1212\frac{1				
	Laboratory: Friedman & Bruya, Inc. Reviewer: VI 2nd Reviewer:							
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.								
	Validation Area		Comments					

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	K	
VII.	Matrix spike/Matrix spike duplicates	NA	(પ)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	2	
X.	Compound quantitation RL/LOQ/LODs	N	Duy weight basis = 1-3
XI.	Target compound identification	N	
IIX	Overall assessment of data	A	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date	
1	GP-05-1.25	011185-01	Soil	11/1/1/20	
2	GP-05-6	011185-02	Soil	11/1 7 /20	
3 *	GP-06-2.5	011185-03	Soil	11/1 /1 /20	
4	GP-05-1.25DUP	011185-01D	UP Soil	11/1 7 /20	
 5					
 6					
7					
 8					
9					
 10					
11					
12					
lotes:					

1 00-248-MB 2 00-2419 MB2

* Cateotian time discrepancy coc 12:26 vs E00 09:35

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

December 29, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20
GP-05-6MS	011185-02MS	Soil	11/10/20
GP-05-6MSD	011185-02MSD	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

SDG Labo	#:49889A8VALIDATION #:011185 ratory: Friedman & Bruya, Inc. THE HOD: GC TPH as Diesel (NWTPH-Dx)		PLETENE Level II	ESS WORKSHEE		Date: [2] 28/2 Page: _ [of] Reviewer: _ [F
The	samples listed below were reviewed for eation findings worksheets.	each of the f	ollowing va	alidation areas. Valida	ation findings are	noted in attached
	Validation Area			Con	nments	
I.	Sample receipt/Technical holding times	AA				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	2				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	AN	(4,5)	Non Client	(4.5)	
VIII	Laboratory control samples	A	LOS			
IX.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/LODs	N	Dry we	ight basis=1-3		
XI.	Target compound identification	N				
_XII	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R = F	No compound Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment b	OTHER	urce blank :
	Client ID			Lab ID	Matrix	Date
1	GP-05-1.25			011185-01	Soil	11/1/1/20
2	GP-05-6			011185-02	Soil	11/1/1/20
3 *	GP-06-2.5			011185-03	Soil	11/1/7/20

2 GP-05-6		Client ID	 	 	Lab ID	Matrix	Date
3 * GP-06-2.5 011185-03 Soil 11/1/7/20 4 GP-05-6MS 011185-02MS Soil 11/1/7/20 5 GP-05-6MSD 011185-02MSD Soil 11/1/7/20 6 011185-02MSD Soil 11/1/7/20 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 (GP-05-1.25			011185-01	Soil_	11/1 / /20
3 GP-06-2.5 011185-03 Soil 11/7/20 4 GP-05-6MS Soil 11/7/20 5 GP-05-6MSD 011185-02MSD Soil 11/17/20 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	GP-05-6			011185-02	Soil	11/1/1/20
5 GP-05-6MSD Soil 11/17/20 6	3 *	GP-06-2.5			011185-03	Soil	11/1/7/20
5 GP-05-6MSD Soil 11/1/7/20 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4	GP-05-6MS			011185-02MS	Soil	11/1/7/20
7	5 (GP-05-6MSD	 	 	011185-02MSD	Soil	ا) 11/1 7 /20
8 9 10 10 11 1 12 12 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	6		 				
9 10 11 1 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	7						
10	8						
11	9		 				
lotes:	10			 			
otes:	11						
	12						
1 00-2494-MB 2 00-2532-MB	lotes:		 	 			
2 00-1532 MB	10	0-2494-MB					
	20	10-2532 MB					
							-

* Collection time discrepancy coc 12:26 VS 1500 09:310

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

December 29, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011185

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-05-1.25	011185-01	Soil	11/10/20
GP-05-6	011185-02	Soil	11/10/20
GP-06-2.5	011185-03	Soil	11/10/20
GP-05-1.25DUP	011185-01DUP	Soil	11/10/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8021B

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011185

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49889A23 Level II Page: \of SDG #: 011185 Laboratory: Friedman & Bruya, Inc. Reviewer:_ い 2nd Reviewer: /// METHOD: GC Volatiles (BTEX) (EPA SW 846 Method 8021B) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times N/N 11. Initial calibration/ICV III. Continuing calibration Ν Laboratory Blanks ٧. Field blanks Surrogate spikes VI. (4) Matrix spike/Matrix spike duplicates VII. VIII. Laboratory control samples N IX. Field duplicates X. Compound quantitation RL/LOQ/LODs Ν Dry weight basis = 1-3 XI. Target compound identification Ν ΧII Overall assessment of data A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank Note: N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank **Client ID** Lab ID Matrix Date GP-05-1.25 011185-01 Soil 11/**1/**//20 GP-05-6 Soil 011185-02 GP-06-2.5 011185-03 Soil 11/1/1/20 4 GP-05-1.25DUP 011185-01DUP Soil 11/1/1/20 8 9 10 11

1 00-2418 MB 2 00-2419 MB2

* collection time discrepancy coc12:20 vs EDD 09:36

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: December 29, 2020

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011339

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-1-111820	011339-01	Water	11/18/20
MW-2-111720	011339-02	Water	11/17/20
MVV-6-111620	011339-03	Water	11/16/20
MW-7-111720	011339-04	Water	11/17/20
MW-9-111620	011339-05	Water	11/16/20
MW-10-111720	011339-06	Water	11/17/20
MW-10-111720DL	011339-06DL	Water	11/17/20
MW-11-111720	011339-07	Water	11/17/20
MW-12-111620	011339-08	Water	11/16/20
MW-13-111720	011339-09	Water	11/17/20
MW-14-111820	011339-10	Water	11/18/20
MW-14-111820DL	011339-10DL	Water	11/18/20
MVV-16-111620	011339-11	Water	11/16/20
MVV-17-111620	011339-12	Water	11/16/20
MVV-18-111620	011339-13	Water	11/16/20
MW-19-111720	011339-14	Water	11/17/20
MW-20-111720	011339-15	Water	11/17/20
MW-21-111720	011339-16	Water	11/17/20
MW-22-111620	011339-17	Water	11/16/20
MVV-23-111820	011339-18	Water	11/18/20
MW-24-111720	011339-19	Water	11/17/20
MVV-25-111620	011339-20	Water	11/16/20
MVV-26-111620	011339-21	Water	11/16/20
CMW-1-111720	011339-22	Water	11/17/20
CMW-4-111720	011339-23	Water	11/17/20
DUP-01-111620	011339-24	Water	11/16/20

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
DUP-02-111720	011339-25	Water	11/17/20
RB-01-111720	011339-26	Water	11/17/20
RB-02-111820	011339-27	Water	11/18/20
Trip Blank	011339-28	Water	11/17/20
MW-24-111720MS	011339-19MS	Water	11/17/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Samples RB-01-111720 and RB-02-111820 were identified as rinsate blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-10-111720 and DUP-02-111720, samples MW-10-111720DL and DUP-02-111720, and samples MW-18-111620 and DUP-01-111620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)			
Compound	MW-10-111720 DUP-02-111720		RPD (Limits)	Difference (Limits)
Toluene	31	32	-	1 (≤35)
Ethylbenzene	630	710	12 (≤35)	-
m,p-Xylene	620	690	11 (≤35)	-
Naphthalene	220	200	-	20 (≤100)

	Concentra	ition (ug/L)		
Compound	MW-10-111720DL	DUP-02-111720	RPD (Limits)	Difference (Limits)
Benzene	1800	1800	0 (≤35)	-

	Concentra	ation (ug/L)		
Compound	MW-18-111620	DUP-01-111620	RPD (Limits)	Difference (Limits)
Benzene	61	83	31 (≤35)	-
Toluene	1U	1.3	-	0.3 (≤2)
Ethylbenzene	2.1	3.3	-	1.2 (≤2)
m,p-Xylene	9.8	15	-	5.2 (≤4)
o-Xylene	2.1	2.9	-	0.8 (≤2)
Naphthalene	2.4	3.0	-	0.6 (≤2)

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
MW-10-111720 MW-14-111820	Benzene	Results exceeded calibration range.	DNR	-

No results were rejected in this SDG.

Aloha Café

Volatiles - Data Qualification Summary - SDG 011339

Sample	Compound	Flag	A or P	Reason
MW-10-111720 MW-14-111820	Benzene	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49889B1a

SDG #: 011339 Laboratory: Friedman & Bruya, Inc. Level II

Reviewer: 2nd Reviewer: KU

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A, A	
11.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	M)	RB=28,29 TB=30
VII.	Surrogate spikes	*	
VIII.	Matrix spike/Matrix spike duplicates	A	(31) - Ms only
IX.	Laboratory control samples	A	LOSID
X.	Field duplicates	52	D=15+26, 6+27, 7+27
XI.	Internal standards	7	,
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

		<u> </u>		
	Client ID	Lab ID	Matrix	Date
1	MW-1-111820	011339-01	Water	11/18/20
2	MW-2-111720	011339-02	Water	11/17/20
3	MW-6-111620	011339-03	Water	11/16/20
4	MW-7-111720	011339-04	Water	11/17/20
5	MW-9-111620	011339-05	Water	11/16/20
6	MW-10-111720 D2_	011339-06	Water	11/17/20
7	MW-10-111720BE DL P2	011339-06BEDL	Water	11/17/20
8	MW-11-111720	011339-07	Water	11/17/20
9	MW-12-111620	011339-08	Water	11/16/20
10	MW-13-111720	011339-09	Water	11/17/20
11	MW-14-111820	011339-10	Water	11/18/20
12	MW-14-111820BE りし	011339-10BEDL	Water	11/18/20
13	MW-16-111620	011339-11	Water	11/16/20
14	MW-17-111620	011339-12	Water	11/16/20

LDC #: 49889B1a VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #: 011339 Laboratory: Friedman & Bruya, Inc. Page: 2 of 2
Reviewer: 5
2nd Reviewer: 146

Date: 148/12

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

		<u> </u>		
15	MW-18-111620 D	011339-13	Water	11/16/20
16	MW-19-111720	011339-14	Water	11/17/20
17	MW-20-111720	011339-15	Water	11/17/20
18	MW-21-111720	011339-16	Water	11/17/20
19_	MW-22-111620	011339-17	Water	11/16/20
20	MW-23-111820	011339-18	Water	11/18/20
21_	MW-24-111720	011339-19	Water	11/17/20
22	MW-25-111620	011339-20	Water	11/16/20
23_	MW-26-111620	011339-21	Water	11/16/20
24	CMW-1-111720	011339-22	Water	11/17/20
25	CMW-4-111720	011339-23	Water	11/17/20
26	DUP-01-1416/260- 1116/20 D1	011339-24	Water	11/16/20
27_	DUP-02-111720 02	011339-25	Water	11/17/20
28*	RB-01-111720	011339-26	Water	11/17/20
29	RB-02-111820	011339-27	Water	11/1//20
30	Trip Blank	011339-28	Water	11/17/20
31_	MW-24-111720MS	011339-19MS	Water	11/17/20
32_				
33				
34				
Notes				
	00 -2696 MB			
2	00 - 2545 V			

TARGET COMPOUND WORKSHEET

METHOD: VOA

	······································			
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:49889B1a

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (EPA SW846 Method 8260D)

	Concent	RPD		Diff Limit	
Compound	6	6 27			Diff
СС	31	32		1	(≤35)
EE	630	710	12		
RRR	620	690	11		
МММ	220	200		20	(≤100)

	Concentration (ug/L)				
Compound	7	27	RPD (≤35)	Diff	Diff Limit
v	1800	1800	0		

	Concentration (ug/L)					
Compound	15	26	RPD (≤35)	Diff	Diff Limit	Qual
V	61	83	31			
СС	1U	1.3		0.3	(≤2)	
EE	2.1	3.3		1.2	(≤2)	
RRR	9.8	15		5.2	(≤4)	J/A DETS
sss	2.1	2.9		0.8	(≤2)	
ммм	2.4	3.0		0.6	(≤2)	

LDC #: 49889B1a

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _1	_of1_
Reviewer:	LT

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes<u>x</u> No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		6,11	V	exceed calibration range	DNR
				·	

Comments: _			 		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: December 29, 2020

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011339

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-1-111820	011339-01	Water	11/18/20
MW-2-111720	011339-02	Water	11/17/20
MW-6-111620	011339-03	Water	11/16/20
MW-7-111720	011339-04	Water	11/17/20
MW-9-111620	011339-05	Water	11/16/20
MW-10-111720	011339-06	Water	11/17/20
MW-11-111720	011339-07	Water	11/17/20
MW-12-111620	011339-08	Water	11/16/20
MW-13-111720	011339-09	Water	11/17/20
MW-14-111820	011339-10	Water	11/18/20
MW-16-111620	011339-11	Water	11/16/20
MW-17-111620	011339-12	Water	11/16/20
MW-18-111620	011339-13	Water	11/16/20
MW-19-111720	011339-14	Water	11/17/20
MW-20-111720	011339-15	Water	11/17/20
MW-21-111720	011339-16	Water	11/17/20
MW-22-111620	011339-17	Water	11/16/20
MW-23-111820	011339-18	Water	11/18/20
MW-24-111720	011339-19	Water	11/17/20
MW-25-111620	011339-20	Water	11/16/20
MW-26-111620	011339-21	Water	11/16/20
CMW-1-111720	011339-22	Water	11/17/20
CMW-4-111720	011339-23	Water	11/17/20
DUP-01-111620	011339-24	Water	11/16/20
DUP-02-111720	011339-25	Water	11/17/20
RB-01-111720	011339-26	Water	11/17/20

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
RB-02-111820	011339-27	Water	11/18/20
Trip Blank	011339-28	Water	11/17/20
MW-16-111620DUP	011339-11DUP	Water	11/16/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a rinsate. No contaminants were found.

Samples RB-01-111720 and RB-02-111820 were identified as rinsate blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-10-111720 and DUP-02-111720 and samples MW-18-111620 and DUP-01-111620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra				
Compound	MW-10-111720	DUP-02-111720	RPD (Limits)	Difference (Limits)	
Gasoline range	12000	13000	8 (≤35)	-	

	Concentra	ition (ug/L)			
Compound	MW-18-111620	DUP-01-111620	RPD (Limits)	Difference (Limits)	
Gasoline range	340	370	-	30 (≤200)	

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Level II

SDG #: 011339 Laboratory: Friedman & Bruya, Inc.

LDC #: 49889B7

Reviewer: 2nd Reviewer:_////

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
II.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N_	
IV.	Laboratory Blanks	A	
V.	Field blanks	ND	RB = 26,24 TB=28
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	M 4	(29)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	SW	D=13+24, 6+25
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

Г				
	Client ID	Lab ID	Matrix	Date
1	MW-1-111820	011339-01	Water	11/18/20
2	MW-2-111720	011339-02	Water	11/17/20
3	MW-6-111620	011339-03	Water	11/16/20
4	MW-7-111720	011339-04	Water	11/17/20
5	MW-9-111620	011339-05	Water	11/16/20
6	MW-10-111720 D2	011339-06	Water	11/17/20
7	MW-11-111720	011339-07	Water	11/17/20
8	MW-12-111620	011339-08	Water	11/16/20
9	MW-13-111720	011339-09	Water	11/17/20
10	MW-14-111820	011339-10	Water	11/18/20
11	MW-16-111620	011339-11	Water	11/16/20
12	MW-17-111620	011339-12	Water	11/16/20
13	MW-18-111620	011339-13	Water	11/16/20
14	MW-19-111720	011339-14	Water	11/17/20
15	MW-20-111720	011339-15	Water	11/17/20
16	MW-21-111720	011339-16	Water	11/17/20
17	MW-22-111620	011339-17	Water	11/16/20

LDC #: 49889B7 VALIDATION COMPLETENESS WORKSHEET SDG #: 011339 Level II

Laboratory: Friedman & Bruya, Inc.

METHOD: GC TPH as Gasoline (NWTPH-Gx)

Date: \(\frac{\psi_1\psi_1\psi_2}{\psi_1\psi_2}\)
Reviewer: \(\frac{\psi_2}{\psi_1\psi_2}\)
2nd Reviewer: \(\frac{\psi_1\psi_2}{\psi_1\psi_2}\)

18	MW-23-111820	011339-18	Water	11/18/20
19	MW-24-111720	011339-19	Water	11/17/20
20	MW-25-111620	011339-20	Water	11/16/20
21	MW-26-111620	011339-21	Water	11/16/20
22	CMW-1-111720	011339-22	Water	11/17/20
23	CMW-4-111720	011339-23	Water	11/17/20
24	DUP-01-11162 6 0	011339-24	Water	11/16/20
25	DUP-02-111720 02	011339-25	Water	11/17/20
26 *	RB-01-111720	011339-26	Water	11/17/20
** 27	RB-02-111820	011339-27	Water	11/1/120
28	Trip Blank	011339-28	Water	11/17/20
29	MW-16-111620DUP	011339-11DUP	Water	11/16/20
30				
31				
32				
Votes:				

1	00-2424 MB				
2	00 - 2426 L				

LDC#:49889B7

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT___</u>

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Conce	ntration (ug/L)			
Compound	6	25	RPD Diff (≤35)		
Gasoline Range	12000	13000	8		

	Concentration (ug/L)			
Compound	13	24	RPD	Diff (≤200)
Gasoline Range	340	370		30

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: December 29, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011339

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-111820	011339-01	Water	11/18/20
MW-2-111720	011339-02	Water	11/17/20
MW-6-111620	011339-03	Water	11/16/20
MW-7-111720	011339-04	Water	11/17/20
MW-9-111620	011339-05	Water	11/16/20
MW-10-111720	011339-06	Water	11/17/20
MW-11-111720	011339-07	Water	11/17/20
MW-12-111620	011339-08	Water	11/16/20
MW-13-111720	011339-09	Water	11/17/20
MW-14-111820	011339-10	Water	11/18/20
MW-16-111620	011339-11	Water	11/16/20
MW-17-111620	011339-12	Water	11/16/20
MW-18-111620	011339-13	Water	11/16/20
MW-19-111720	011339-14	Water	11/17/20
MW-20-111720	011339-15	Water	11/17/20
MW-21-111720	011339-16	Water	11/17/20
MW-22-111620	011339-17	Water	11/16/20
MW-23-111820	011339-18	Water	11/18/20
MW-24-111720	011339-19	Water	11/17/20
MW-25-111620	011339-20	Water	11/16/20
MW-26-111620	011339-21	Water	11/16/20
CMW-1-111720	011339-22	Water	11/17/20
CMW-4-111720	011339-23	Water	11/17/20
DUP-01-111620	011339-24	Water	11/16/20
DUP-02-111720	011339-25	Water	11/17/20
RB-01-111720	011339-26	Water	11/17/20
RB-02-111820	011339-27	Water	11/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples RB-01-111720 and RB-02-111820 were identified as rinsate blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples MW-10-111720 and DUP-02-111720 and samples MW-18-111620 and DUP-01-111620 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentratio			
Compound	MW-10-111720	DUP-02-111720	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	1400	1700	19 (≤35)	-
Motor oil range (C25-C36)	250U	280	-	30 (≤500)

	Concentration (ug/L)			
Compound	MW-18-111620	DUP-01-111620	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	59	59	-	0 (≤100)

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 011339

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 011339

LDC #: 49889B8

Level II

Page: l of Reviewer:_

Date: plush

2nd Reviewer: 1/1/2

Laboratory: Friedman & Bruya, Inc. TPHE

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	110	FB= 26,27
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	K	LC510
IX.	Field duplicates	SW	D= 13+24, 6+25
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	T The state of the	1		
	Client ID	Lab ID	Matrix	Date
1	MW-1-111820	011339-01	Water	11/18/20
2	MW-2-111720	011339-02	Water	11/17/20
3	MW-6-111620	011339-03	Water	11/16/20
4	MW-7-111720	011339-04	Water	11/17/20
5	MW-9-111620	011339-05	Water	11/16/20
6	MW-10-111720 P2	011339-06	Water	11/17/20
7	MW-11-111720	011339-07	Water	11/17/20
8	MW-12-111620	011339-08	Water	11/16/20
9	MW-13-111720	011339-09	Water	11/17/20
10	MW-14-111820	011339-10	Water	11/18/20
11	MW-16-111620	011339-11	Water	11/16/20
12	MW-17-111620	011339-12	Water	11/16/20
13	MW-18-111620 D ₁	011339-13	Water	11/16/20
14_	MW-19-111720	011339-14	Water	11/17/20
15	MW-20-111720	011339-15	Water	11/17/20
16	MW-21-111720	011339-16	Water	11/17/20
17	MW-22-111620	011339-17	Water	11/16/20

_ VALIDATION COMPLETENESS WORKSHEET LDC #: 49889B8 SDG #: 011339 Level II

Page: 2 of 2 2nd Reviewer:

METHOD: GC TPH as Diesel (NWTPH-Dx)

Laboratory: Friedman & Bruya, Inc.

18	MW-23-111820	011339-18	Water	11/18/20
19	MW-24-111720	011339-19	Water	11/17/20
20_	MW-25-111620	011339-20	Water	11/16/20
21_	MW-26-111620	011339-21	Water	11/16/20
22	CMW-1-111720	011339-22	Water	11/17/20
23	CMW-4-111720	011339-23	Water	11/17/20
24	DUP-01-1116260	011339-24	Water	11/16/20
25_	DUP-02-111720 02	011339-25	Water	11/17/20
26 ⊁	RB-01-111720	011339-26	Water	11/17/20
بر ب 27	RB-02-111820	011339-27	Water	13 11/1 7 /20
28				
29				
30				
lotes:				
1	W-2573-MB			· · · · · · · · · · · · · · · · · · ·

I	00-2573-MB				
2	W-2542 J				

LDC#:49889B8

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC TPHE (NWTPH-Dx)

	Conce			
Compound	6	25	RPD (≤35)	Diff (≤500)
Diesel Range (C10-C25)	1400	1700	19	
Motor Oil Range (C25-C36)	250U	280		30

	Concent			
Compound	13	24	RPD (≤35)	Diff (≤100)
Diesel Range (C10-C25)	59	59		0

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: December 29, 2020

Parameters: Volatiles

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-27-112020	011403-01	Water	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

SDG	#:49889C1aVALIDATIC #:011403 ratory:_Friedman & Bruya, Inc.		LETENESS Level II	S WORKSHEET	F Revi	Date: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
MET	HOD: GC/MS Volatiles (EPA SW 846 Me	ethod 8260D))			
	samples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	ition areas. Validation	findings are note	ed in attached
	Validation Area			Comme	nts	
ļ.	Sample receipt/Technical holding times	A, A				
II.	GC/MS Instrument performance check	N_		***************************************		
III.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	N				
VII.	Surrogate spikes	\$A				
VIII.	Matrix spike/Matrix spike duplicates	N	Non air	9WT		
IX.	Laboratory control samples	A,	LC510			
X.	Field duplicates	N				
XI.	Internal standards	N				
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.	Target compound identification	N				
XIV.	System performance	N				
XV.		A				
Note:	N = Not provided/applicable R = R	No compounds insate Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1	MW-27-112020			011403-01	Water	11/20/20
2						
3						
4						
5						
6						
7						
8						
9						
lotes:						
1	00-2550 MB					
_						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: December 29, 2020

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-27-112020	011403-01	Water	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

SDG # Labora	#: 49889C7 VALIDATION #: 011403 atory: Friedman & Bruya, Inc. HOD: GC TPH as Gasoline (NWTPH-G)	L	LETENESS Level II	S WORKSHE	ΞT F 2nd F	Date: 14 Au Page: Lof \ Reviewer: VT Reviewer: KV
The sa	amples listed below were reviewed for e tion findings worksheets.		ollowing valida	ition areas. Valid	ation findings are	noted in attached
	Validation Area			Cor	mments	
l.	Sample receipt/Technical holding times	AIA				
11.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks					
VI.	Surrogate spikes	À				
VII.	Matrix spike/Matrix spike duplicates	7	Non Clie	WH		
VIII.	Laboratory control samples	A	LC5			
IX.	Field duplicates	7				
X.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = R	No compounds Rinsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment	OTHER:	rce blank Date
1 1	MW-27-112020			011403-01	Water	11/20/20
2						
3						
4						
5						
6				 		
└						
₇						
7	-					
8						
9						
8 9 10						
8 9 10 11						
8 9 10 11 12 Notes:						
8 9 10 11 12 Notes:	70-2593 MB					
8 9 10 11 12 Notes:	10- 2593 MB					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: December 29, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-27-112020	011403-01	Water	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
MW-27-112020	ortho-Terphenyl	151 (47-140)	All compounds	NA	-

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 011403

No Sample Data Qualified in this SDG

SDG Labo	#:49889C8VALIDATIC #:011403 ratory: Friedman & Bruya, Inc. TPUE HOD: GC TPH as Diesel (NWTPH-Dx)		LETENE Level II	ESS WORKSHEE	T I 2nd I	Date: 12/18/20 Page: lof \ Reviewer: V Reviewer: KW
	samples listed below were reviewed for ea ation findings worksheets.	ach of the fo	ollowing va	ilidation areas. Valida	tion findings are	noted in attached
	Validation Area			Com	ments	
I.	Sample receipt/Technical holding times	A, A				
II.	Initial calibration/ICV	N/N		·		
111.	Continuing calibration	N				
IV.	Laboratory Blanks	A				
V.	Field blanks	7				
VI.	Surrogate spikes	SW				
VII.	Matrix spike/Matrix spike duplicates	12				
VIII	. Laboratory control samples	A	L C510			
IX.	Field duplicates	7				
Χ.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N A				
XII	Overall assessment of data	A				
Note:	N = Not provided/applicable R = Ri	No compounds nsate field blank	detected	D = Duplicate TB = Trip blank EB = Equipment bl	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	MW-27-112020			011403-01	Water	11/20/20
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
Notes:	4					
Ш	00-2585 MB					

LDC #: 49889C8

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_	1	_of_	1
Reviewer:		LT	

MET	HOD:	_X_	GC	HPLC
Are s	urroga	tes re	quired by	the method? Yesx or No
Pleas	se see	qualifi	cations b	below for all questions answered "N". Not applicable questions are identified as "N/A".
Y <u>x</u>	N	N/A _	W	/ere surrogates spiked into all samples and blanks?
Υ	Νx	N/A		old all surrogate recoveries (%R) meet the QC limits?

#	Sample ID	Detector/ Column	Surrogate Compound	%R (Limits)	Qualifications
	1 (ND) (1X)		Н	151 (47 - 140)	J/P DETS
<u> </u>					
-			 		
			<u> </u>		
<u> </u>			 		
<u> </u>					

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	1,2-Dinitrobenzene
С	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin		
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin		·
E	1,4-Dichlorobutane	ĸ	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate		
E	1.4-Difluorobenzene (DFB)		Bromobenzene	R	4-Nitrophenol	х	Triphenyl Phosphate		

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh January 6, 2021

Jyabandeh@aspectconsulting.com

Dear Mr. Yabandeh.

SUBJECT:

Enclosed are the final validation reports for the fractions listed below. This SDG was received on December 14, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49980:

SDG # Fraction

011402 Volatiles, Helium, Fixed Gases

Aloha Café, Data Validation

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink

crink@lab-data.com

Project Manager/Senior Chemist

32 pages-EM Attachment 1 LDC #49980 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A EDD Fixed VOA VOA (MA-Helium DATE DATE Gases LDC SDG# **REC'D** DUE (TO-15) ÀPH) (D1946) (3C) | w | s | w | A S S A S A S Matrix: Air/Water/Soil 4 6 0 4 12/14/20 01/06/21 011402 0 0 0 0 0 0 0 T/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/m³)			
Compound	GP-05-112020	SV-DUP-112020	RPD (Limits)	Difference (Limits)
m,p-Xylene	37U	37	-	0 (≤75)

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

LDC #: 49980A48a **VALIDATION COMPLETENESS WORKSHEET** SDG #: 011402

Laboratory: Friedman & Bruya, Inc.

Stage 2A

Date: 01/05/21 Page: 1 of 1 Reviewer: 2nd Reviewer: 4

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A/A	
II.	GC/MS Instrument performance check	N_	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
VI.	Field blanks	ND	TB = 6
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(7)
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	sw	D = 3 + 5
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
XVI	Overall assessment of data	<u> </u>	

A = Acceptable Note:

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	GP-02-112020	011402-01	Air	11/20/20
2	GP-03-112020	011402-02	Air	11/20/20
3	GP-05-112020	011402-03	Air	11/20/20
4	GP-06-112020	011402-04	Air	11/20/20
5	SV-DUP-112020	011402-05	Air	11/20/20
6	Trip Blank	011402-06	Air	11/20/20
7_	GP-02-112020DUP	011402-01DUP	Air	11/20/20
8		·		

INOTE	· · · · · · · · · · · · · · · · · · ·	 	 	
1	00-2555 MB			

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:<u>49980A48a</u> VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT

METHOD: GC/MS VOA (TO-15)

	Concentration (ug/m3)				
Compound	3	5	RPD (≤35)	Diff (≤75)	
RRR	37U	37		0	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
SV-DUP-112020DL	011402-05DL	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 and samples GP-05-112020 and SV-DUP-112020DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/m³)			
Compound	GP-05-112020	12020 SV-DUP-112020		Difference (Limits)
APH EC5-8 aliphatics	22000	24000	9 (≤35)	-
APH EC9-12 aliphatics	5000	6000	-	1000 (≤4300)

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

All compound quantitations met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SV-DUP-112020	APH EC5-8 aliphatics	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
SV-DUP-112020DL	APH EC5-8 aliphatics	Results from undiluted analyses were more usable.	DNR	-

Due to results exceeding the calibration range, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 011402

Sample	Compound	Flag	A or P	Reason
SV-DUP-112020	APH EC5-8 aliphatics	J (all detects)	А	Compound quantitation (exceeded range)
SV-DUP-112020DL	APH EC5-8 aliphatics	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49980A48b Date: 01/05/21 Stage 2A Page: 1 of 1 SDG #: 011402 Laboratory: Friedman & Bruya, Inc. Reviewer: LT 2nd Reviewer: METHOD: GC/MS Volatiles (MA-APH) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area Comments Sample receipt/Technical holding times A/A 11. GC/MS Instrument performance check Ν 111. Initial calibration/ICV N/N IV. Continuing calibration Ν ٧. Laboratory Blanks/Canister Blanks A/A Individually certified VI. Field blanks ND TB = 7VII. Surrogate spikes Α VIII. Matrix spike/Matrix spike duplicates/DUP N/A (8) LCS IX. Laboratory control samples Α X. Field duplicates SW D = 3 + 5, 3 + 6XI. Internal standards Ν XII. Compound quantitation RL/LOQ/LODs sw XIII. Target compound identification Ν XIV. Ν System performance XV. Leak Check Compounds Ν SW Overall assessment of data Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank Client ID Lab ID Matrix Date GP-02-112020 011402-01 Air 11/20/20 GP-03-112020 011402-02 Air 11/20/20

GP-05-112020 011402-03 Air 11/20/20 GP-06-112020 011402-04 Air 11/20/20 SV-DUP-112020 011402-05 Air 11/20/20 SV-DUP-112020DL 6 011402-05DL Air 11/20/20 Trip Blank 011402-06 Air 11/20/20 GP-02-112020DUP 011402-01DUP 11/20/20 Notes: 00-2555 MB

LDC#:49980A48b

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (MA-APH)

	Concentra	ation (ug/m3)			
Compound	3	5	RPD (≤35)	Diff (≤4300)	
APH EC5-8 aliphatics	22000	24000	9		
APH EC9-12 aliphatics	5000	6000		1000	

LDC #: 49980A48b

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	_1	_of_	1_
Reviewer:	_	LT	

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

N/A Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Compound	Finding	Associated Samples	Qualifications
		APH EC5-8 aliphatics	exceeded calibration range	5 (DET)	J/A dets

Comments:	ents: See sample calculation verification worksheet for recalculations					
·						

LDC #: 49980A48b

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _	1	_of_	1	
Reviewe	r:	L	Γ	

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Commonad	Finding	Our P.G. and Land
	Date	Sample ID	Compound	Finding	Qualifications
		6	APH EC5-8 aliphatics	diluted	DNR
-					
 					
	ļ				

Comments:	 					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Helium

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Helium by American Society for Testing and Materials (ASTM) D1946

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were not required by the method.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Helium - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café

Helium - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café

Helium - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

	#: <u>49980A50</u> VALIDATIO #: 011402		PLETENES: Stage 2A	S WORKSHEET	-	Date: <u>01/05/21</u> Page: <u>1</u> of <u>1</u>
abor	atory: Friedman & Bruya, Inc.		_			eviewer: LT
ИЕТН	IOD: GC Helium (ASTM D1946)				2nd	Reviewer:
	, ,					
	amples listed below were reviewed for e tion findings worksheets.	each of the f	following valida	ation areas. Validati	on findings are	e noted in attached
undu						
	Validation Area			Comn	nents	
I.	Sample receipt/Technical holding times	A/A				
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks/Canister Blanks	A/A	Individually certi	ified		
V.	Field blanks	N				
VI.	Surrogate spikes	N				
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)			
VIII.	Laboratory control samples	N				
IX.	Field duplicates	N				
Х.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	Α				
ote:	A = Acceptable ND = N = Not provided/applicable R = R	No compound insate Field blank	ls detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	urce blank ::
	Client ID			Lab ID	Matrix	Date
1 (GP-02-112020			011402-01	Air	11/20/20
2 (GP-03-112020			011402-02	Air	11/20/20
3 (GP-05-112020		**	011402-03	Air	11/20/20
4 (GP-06-112020			011402-04	Air	11/20/20
	GP-02-112020DUP			011402-01DUP	Air	11/20/20
3			-			
7						
3						
9						
10						
11						
12			-			
otes:						

1	МВ				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Fixed Gases

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc./Fremont Analytical

Sample Delivery Group (SDG): 011402/2011458

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01/2011458-001	Air	11/20/20
GP-03-112020	011402-02/2011458-002	Air	11/20/20
GP-05-112020	011402-03/2011458-003	Air	11/20/20
GP-06-112020	011402-04/2011458-004	Air	11/20/20
GP-02-112020DUP	011402-01/2011458-001DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Fixed Gases by Method 3C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks are not required for this method.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Fixed Gases - Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café

Fixed Gases - Laboratory Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café

Fixed Gases - Field Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

LDC #: 49980A51 VALIDATION COMPLETENESS WORKSHEET SDG #: 011402/2011458 Stage 2A Laboratory: Friedman & Bruya, Inc./Fremont Analytical Re

Date: 01/05/21
Page: 1_of 1
Reviewer: LT
2nd Reviewer:

METHOD: GC Fixed Gases (Method 3C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A_	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	N_	Tedlar bags
V.	Field blanks	N	
VI.	Surrogate spikes	N_	
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	N_	
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	Δ_	

Note: A = Acceptable

ND = No compounds detected

D = Duplicate TB = Trip blank SB=Source blank

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Sub lab ID	Lab ID	Matrix	Date
1	GP-02-112020	2011458-001	011402-01	Air	11/20/20
2	GP-03-112020	2011458-002	011402-02	Air	11/20/20
3	GP-05-112020	2011458-003	011402-03	Air	11/20/20
4	GP-06-112020	2011458-004	011402-04	Air	11/20/20
5	GP-02-112020DUP	2011458-001DUP	011402-01DUP	Air	11/20/20
6					
7					
8					
9					
10					
11					
12					
13					
otes	:				

Notes.							

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com January 14, 2021

SUBJECT: Revised Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the revised validation reports for the fractions listed below. This SDG was received on December 14, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

FD evaluation updated to include Benzene results.

LDC Project #49980_RV1:

SDG #	<u>Fraction</u>
011402	Volatiles, Helium, Fixed Gases

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

Christina Rink

Project Manager/Senior Chemist

32 pages-EM Attachment 1 LDC #49980 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A EDD Fixed VOA VOA (MA-Helium DATE DATE Gases LDC SDG# **REC'D** DUE (TO-15) ÀPH) (D1946) (3C) | w | s | w | A S S A S A S Matrix: Air/Water/Soil 4 6 0 4 12/14/20 01/06/21 011402 0 0 0 0 0 0 0 T/CR

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Aloha Café

LDC Report Date:

January 14, 2021

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- Χ The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/m³)				
Compound	GP-05-112020	-05-112020 SV-DUP-112020		Difference (Limits)	
Benzene	7.1	5.8	-	1.3 (≤28)	
m,p-Xylene	37U	37	_	0 (≤74)	

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café **Volatiles - Data Qualification Summary - SDG 011402**

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café **Volatiles - Field Blank Data Qualification Summary - SDG 011402**

No Sample Data Qualified in this SDG

SD(Lab ME	C#: 49980A48a G#: 011402 oratory: Friedman & Bruya, THOD: GC/MS Volatiles (E samples listed below were dation findings worksheets.	PA	<u>:</u> Method TO-	15)	Stage 2	2A	ation areas. Validation	n fii	F Review 2nd Revi	ate: 01/05/21 Page: 1 of 1 ver: LT ewer:
<u></u>	Validation	Are	a				Comme	ant	<u>s</u>	
	Sample receipt/Technical ho	olding	times	A/A						
	. GC/MS Instrument performa	nce	check	N						
111	Initial calibration/ICV			N/N						
ΙV	/. Continuing calibration			N						
V	. Laboratory Blanks/Canister B	3ianl	(S	A/A	Individua	ally cer	tified			
VI	l. Field blanks			ND	TB = 6					
VI	I. Surrogate spikes			А						
VII	II. Matrix spike/Matrix spike dup	olicat	es/DUP	N/A	(7)					
IX				А	LCS					
X.	. Field duplicates			sw	D = 3 +	 5				
XI				N						
XII		OQ/	LODs	N						
XII				N						
ΧIV				N						
xv				N						
xv				Α						
Note:			R = Rin	o compound sate eld blank	s detected	d	D = Duplicate TB = Trip blank EB = Equipment blank		SB=Source b OTHER:	lank
	Client ID						Lab ID	N	fatrix	Date
1	GP-02-112020						011402-01	A	ir	11/20/20
2	GP-03-112020						011402-02	A	ir	11/20/20
3	GP-05-112020						011402-03	A	ir	11/20/20
4	GP-06-112020			011402-04	Δ	ir	11/20/20			
5	SV-DUP-112020			011402-05		ir	11/20/20			
6	Trip Blank			011402-06	T	ir	11/20/20			
7	GP-02-112020DUP				011402-01DUP		ir	11/20/20		
8										
lotes	:					7				
1	00-2555 MB									
- }						-				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	Ilil. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-triffuoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:49980A48a

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (TO-15)

	Concentration (ug/m3)				
Compound	3	5	RPD (≤35)	Diff	Diff Limit
v	7.1	5.8		1.3	(≤28)
RRR	37U	37		0	(≤74)

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
SV-DUP-112020	011402-05	Air	11/20/20
SV-DUP-112020DL	011402-05DL	Air	11/20/20
Trip Blank	011402-06	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E. CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-05-112020 and SV-DUP-112020 and samples GP-05-112020 and SV-DUP-112020DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Con		tion (ug/m³)			
Compound	GP-05-112020	SV-DUP-112020	RPD (Limits)	Difference (Limits)	
APH EC5-8 aliphatics	22000	24000	9 (≤35)	-	
APH EC9-12 aliphatics	5000	6000	-	1000 (≤4300)	

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

All compound quantitations met validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SV-DUP-112020	APH EC5-8 aliphatics	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
SV-DUP-112020DL	APH EC5-8 aliphatics	Results from undiluted analyses were more usable.	DNR	-

Due to results exceeding the calibration range, data were qualified as estimated in one sample.

No results were rejected in this SDG.

Aloha Café

Volatiles - Data Qualification Summary - SDG 011402

Sample	Compound	Flag	A or P	Reason
SV-DUP-112020	APH EC5-8 aliphatics	J (all detects)	A	Compound quantitation (exceeded range)
SV-DUP-112020DL	APH EC5-8 aliphatics	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

LDC #: 49980A48b VALIDATION COMPLETENESS WORKSHEET SDG #: 011402 Stage 2A Page: 1 of 1 Laboratory: Friedman & Bruya, Inc. Reviewer: LT 2nd Reviewer: V

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
II.	GC/MS Instrument performance check	N	
III.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks/Canister Blanks	A/A	Individually certified
VI.	Field blanks	ND	TB = 7
VII.	Surrogate spikes	Α	
VIII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(8)
IX.	Laboratory control samples	Α	LCS
X.	Field duplicates	sw	D = 3 + 5, 3 + 6
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	sw	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
χVI	Overall assessment of data	sw	

Note:	A = Acceptable	ND = No compounds detected	D = Duplicate	SB=Source blank
	N = Not provided/applicable	R = Rinsate	TB = Trip blank	OTHER:
	SW = See worksheet	FB = Field blank	EB = Equipment blank	

Client ID		Lab ID	Matrix	Date
1 GP-02-112020		011402-01	Air	11/20/20
2 GP-03-112020		011402-02	Air	11/20/20
3 GP-05-112020		011402-03	Air	11/20/20
4 GP-06-112020	·	011402-04	Air	11/20/20
5 SV-DUP-112020		011402-05	Air	11/20/20
6 SV-DUP-112020	DL	011402-05DL	Air	11/20/20
7 Trip Blank		011402-06	Air	11/20/20
8 GP-02-112020D	UP	011402-01DUP	Air	11/20/20

1	00-2555 MB				

LDC#:49980A48b

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_	_1_	of_	_1_
Reviewer:	L	Т	

METHOD: GC/MS VOA (MA-APH)

	Concentra	Concentration (ug/m3)		
Compound	3	5	RPD (≤35)	Diff (≤4300)
APH EC5-8 aliphatics	22000	24000	9	
APH EC9-12 aliphatics	5000	6000		1000

LDC #: 49980A48b

N/A

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page:	_1	_of_	1
Reviewer:		LT	

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

#	Date	Compound	Finding	Associated Samples	Qualifications
		APH EC5-8 aliphatics	exceeded calibration range	5 (DET)	J/A dets
-					

Comments:	See sample calculation verification worksheet for recalculations
-	

LDC #: 49980A48b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	1	_of_	1	
Reviewe	r:	L-	Γ	

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		6	APH EC5-8 aliphatics	diluted	DNR
 					

Comments:						 _		
			 	 	 			-

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Helium

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 011402

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01	Air	11/20/20
GP-03-112020	011402-02	Air	11/20/20
GP-05-112020	011402-03	Air	11/20/20
GP-06-112020	011402-04	Air	11/20/20
GP-02-112020DUP	011402-01DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Helium by American Society for Testing and Materials (ASTM) D1946

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were not required by the method.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Helium - Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café

Helium - Laboratory Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

Aloha Café

Helium - Field Blank Data Qualification Summary - SDG 011402

No Sample Data Qualified in this SDG

DG#	: 49980A50 VALIDATIO t: 011402 atory: <u>Friedman & Bruya</u> , Inc.		PLETENESS Stage 2A	S WORKSHEET	Re	Date: <u>01/05/2</u> Page: <u>1</u> of <u>1</u> viewer: <u>LT</u>
ETH	OD : GC Helium (ASTM D1946)				2nd	Reviewer:
	amples listed below were reviewed for e ion findings worksheets.	each of the	following valida	tion areas. Validati	on findings are	noted in attach
	Validation Area			Comr	nents	
I.	Sample receipt/Technical holding times	A/A			_	
II.	Initial calibration/ICV	N/N				
III.	Continuing calibration	N				
IV.	Laboratory Blanks/Canister Blanks	A/A	Individually certif	fied		
V.	Field blanks	N				
VI.	Surrogate spikes	N				
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)			
VIII.	Laboratory control samples	N				
IX.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/LODs	N				
XI.	Target compound identification	N				
XII	Overall assessment of data	<u> </u>				
te:	N = Not provided/applicable R = R	No compound insate Field blank	ls detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER	irce blank :
C	Client ID	_		Lab ID	Matrix	Date
- 0	GP-02-112020			011402-01	Air	11/20/20
	GP-03-112020			011402-02	Air	11/20/20
	GP-05-112020			011402-03	Air	11/20/20
	GP-06-112020			011402-04	Air	11/20/20
c	GP-02-112020DUP			011402-01DUP	Air	11/20/20
,						
$\neg \vdash$						

МВ

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

January 6, 2021

Parameters:

Fixed Gases

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc./Fremont Analytical

Sample Delivery Group (SDG): 011402/2011458

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
GP-02-112020	011402-01/2011458-001	Air	11/20/20
GP-03-112020	011402-02/2011458-002	Air	11/20/20
GP-05-112020	011402-03/2011458-003	Air	11/20/20
GP-06-112020	011402-04/2011458-004	Air	11/20/20
GP-02-112020DUP	011402-01/2011458-001DUP	Air	11/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Fixed Gases by Method 3C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks are not required for this method.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Fixed Gases - Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café

Fixed Gases - Laboratory Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

Aloha Café

Fixed Gases - Field Blank Data Qualification Summary - SDG 011402/2011458

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49980A51

SDG #: 011402/2011458

Stage 2A

Laboratory: Friedman & Bruya, Inc./Fremont Analytical

Date: 01/05/21 Page: 1 of 1 Reviewer:

2nd Reviewer;

METHOD: GC Fixed Gases (Method 3C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

		T	
	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
H.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	N	Tedlar bags
V.	Field blanks	N	
VI.	Surrogate spikes	N_	
VII.	Matrix spike/Matrix spike duplicates/DUP	N/A	(5)
VIII.	Laboratory control samples	А	LCS
IX.	Field duplicates	N	
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	_ A _	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Sub lab ID	Lab ID	Matrix	Date
1	GP-02-112020	2011458-001	011402-01	Air	11/20/20
2	GP-03-112020	2011458-002	011402-02	Air	11/20/20
3	GP-05-112020	2011458-003	011402-03	Air	11/20/20
4	GP-06-112020	2011458-004	011402-04	Air	11/20/20
5	GP-02-112020DUP	2011458-001DUP	011402-01DUP	Air	11/20/20
6					
7					
8					
9					
10					
11					
12					
13					
Votes					

1000	voies.					

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 8, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #49089:

SDG #	<u>Fraction</u>				
008318/2008283	Volatiles, Total Petroleum Hydrocarbons as Gasoline, Total				
008261	Petroleum Hydrocarbons as Extractables, Helium, Fixed Gases				

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6; September 2016
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

heisting Rink

Project Manager/Senior Chemist

October 15, 2020

92 pages-EM Attachment 1 LDC #49089 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A EDD VOA TPH-G TPH-E Fixed VOA (NWTPH (NWTPH Helium VOA (MA-DATE DATE Gases LDC SDG# **REC'D** DUE (TO-15) (8260D) ÀPH) -Gx) -Dx) (D1946) (3C) A W A W A W A W A W A W A W Matrix: Air/Water/Soil 10 0 6 6 0 008318/2008283 09/08/20 09/29/20 8 0 В 09/08/20 09/29/20 0 33 0 28 0 27 008261 0 28 0 27 6 0 0 0 0 0 0 Total J/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 28, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008318

Samula Identification	Laboratory Sample Identification	Modelin	Collection
Sample Identification	identification	Matrix	Date
SVS-01-082020	008318-01	Air	08/20/20
SVS-02-082020	008318-02	Air	08/20/20
GP-01-082020	008318-03	Air	08/20/20
GP-02-082020	008318-04	Air	08/20/20
GP-03-082020	008318-05	Air	08/20/20
GP-04-082020	008318-06	Air	08/20/20
GP-DUP-082020	008318-07	Air	08/20/20
Trip Blank	008318-08	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) Method TO-15

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Although surrogates were not required by the method, surrogate analysis was performed by the laboratory. Surrogate recoveries (%R) were within QC limits.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-082020 and GP-DUP-082020 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/m³)			
Compound	GP-03-082020 GP-DUP-082020		RPD (Limits)	Difference (Limits)	
Benzene	5.7	6.4	-	0.7 (≤5.6)	
Ethylbenzene	80	60	29 (≤35)	-	
m,p-Xylene	300	230	26 (≤35)	-	
o-Xylene	82	63	26 (≤35)	-	

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café **Volatiles - Data Qualification Summary - SDG 008318**

No Sample Data Qualified in this SDG

Aloha Café **Volatiles - Laboratory Blank Data Qualification Summary - SDG 008318**

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

METHOD: GC/MS Volatiles (EPA Method TO-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
<u> </u>	GC/MS Instrument performance check	N	
III.	Initial calibration/ICV	N, N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks / Can'ister Blanks	A/A	Individually certified
VI.	Field blanks	No	TB=8
VII.	Surrogate spikes	AN	
VIII.	Matrix spike/Matrix spike duplicates	N	Non Client
IX.	Laboratory control samples	A	LG
X.	Field duplicates	52	D= 577
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	N	
XVI	Overall assessment of data	K	

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank
N = Not provided/applicable R = Rinsate TB = Trip blank OTHER:
SW = See worksheet FB = Field blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	SVS-01-082020	008318-01	Air	08/20/20
2	SVS-02-082020	008318-02	Air	08/20/20
3	GP-01-082020	008318-03	Air	08/20/20
4	GP-02-082020	008318-04	Air	08/20/20
5	GP-03-082020	008318-05	Air	08/20/20
6	GP-04-082020	008318-06	Air	08/20/20
7	GP-DUP-082020	008318-07	Air	08/20/20
8	Trip Blank	008318-08	Air	08/20/20
9				
10_				
Notes				

0U-1937MB			

TARGET COMPOUND WORKSHEET

METHOD: VOA

				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:49089A48a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC/MS VOA (TO-15)

	Concentra			
Compound	5	7	RPD (≤35)	Diff (≤5.6)
V	5.7	6.4		0.7
EE	80	60	29	
RRR	300	230	26	
SSS	82	63	26	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 28, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008318

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SVS-01-082020	008318-01	Air	08/20/20
SVS-02-082020	008318-02	Air	08/20/20
GP-01-082020	008318-03	Air	08/20/20
GP-02-082020	008318-04	Air	08/20/20
GP-03-082020	008318-05	Air	08/20/20
GP-03-082020DL	008318-05DL	Air	08/20/20
GP-04-082020	008318-06	Air	08/20/20
GP-DUP-082020	008318-07	Air	08/20/20
GP-DUP-082020DL	008318-07DL	Air	08/20/20
Trip Blank	008318-08	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (September 2016), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by MA-APH

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

The canisters were properly pressurized and handled.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
Trip Blank	08/20/20	APH EC5-8 aliphatics	390 ug/m³	SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-082020 GP-03-082020DL GP-04-082020 GP-DUP-082020 GP-DUP-082020DL

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks.

VII. Surrogates

Surrogates were not required by the method.

VIII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples GP-03-082020 and GP-DUP-082020 and samples GP-03-082020DL and GP-DUP-082020DL were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/m³) GP-03-082020 GP-DUP-082020			
Compound			RPD (Limits)	Difference (Limits)
APH EC9-12 aliphatics	2200	2300	4 (≤35)	<u>-</u>
APH EC9-10 aliphatics	220	220U	-	0 (≤220)

	Concentra	tion (ug/m³)			
Compound	GP-03-082020DL	GP-DUP-082020DL	RPD (Limits)	Difference (Limits)	
APH EC5-8 aliphatics	13000	15000	14 (≤35)	-	

XI. Internal Standards

Internal standards data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
GP-03-082020 GP-DUP-082020	APH EC5-8 aliphatics	Results exceeded calibration range.	DNR	-
GP-03-082020DL GP-DUP-082020DL	APH EC9-12 aliphatics APH EC9-10 aromatics	Results from diluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008318

Sample	Compound	Flag	A or P	Reason
GP-03-082020 GP-DUP-082020	APH EC5-8 aliphatics	DNR	-	Overall assessment of data
GP-03-082020DL GP-DUP-082020DL	APH EC9-12 aliphatics APH EC9-10 aromatics	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008318

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49089A48b Stage 2A SDG #: 008318

Date: 01/19/20 Reviewer:__ 2nd Reviewer:

Laboratory: Friedman & Bruya, Inc.

METHOD: GC/MS Volatiles (MA-APH)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I	Sample receipt/Technical holding times	A,A	
<u>II.</u>	GC/MS Instrument performance check	N	
	Initial calibration/ICV	N,N	
IV.	Continuing calibration	N.	
V.	Laboratory Blanks / Camistar Hault	A/A	Individually certified.
VI.	Field blanks	SN	TB=10
VII.	Surrogate spikes	AN	
VIII.	Matrix spike/Matrix spike duplicates	7	Non Client
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	بہو	D=518,649
XI.	Internal standards		•
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Leak Check Compounds	7	
XVI	Overall assessment of data	لہي	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	SVS-01-082020	008318-01	Air	08/20/20
2	SVS-02-082020	008318-02	Air	08/20/20
3	GP-01-082020	008318-03	Air	08/20/20
4	GP-02-082020	008318-04	Air	08/20/20
5	GP-03-082020	008318-05	Air	08/20/20
6	GP-03-082020REDL	008318-05BE D -	Air	08/20/20
7	GP-04-082020	008318-06	Air	08/20/20
8	GP-DUP-082020	008318-07	Air	08/20/20
9	GP-DUP-082020R€	008318-07BEDL	Air	08/20/20
10	Trip Blank	008318-08	Air	08/20/20
11_				
12_	1. 00-1933 MB			
13_				

LDC #:_49089A48b

Sampling date:

VALIDATION FINDINGS WORKSHEET Field Blanks

Page	e: <u>1_</u> of <u>1</u>
Reviewer:	LT

MA-VPH

METHOD: GC/MS VOA (EPA SW-846 Method 8260B)

Blank units:_____ Associated sample units:_____

Yes_x_ No_ N/A_ Were field blanks identified in this SDG?

Yes<u>x</u> No_ N/A_ Were target compounds detected in the field blanks?

Blank units: ug/m3 Associated sample units: ug/m3

Sampling date: 08/20/20

Field blank type: (circle one) Field Blank / Rinsate / Trip Blank / Other: TB Associated Samples: 1-9 > CRQL and TB

Compound	Blank ID	Sample Identification					
	10						
APH EC5-8 aliphatics	390						

Field blank type: (circle or	ne) Field Blank	/ Rinsate / Trip Blank / Other:	Associated Sampl	les:			
Compound	Blank ID	Sample Identification					

Methylene chloride		 			 	
Acetone		 			 <u></u>	
Chloroform	•					
				 - 18.1.	 ****	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC#:49089A48b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__<u>LT</u>__

METHOD: GC/MS VOA (MA-APH)

	Concen	tration (ug/m3)			
Compound	5	8	RPD (≤35)	Diff (≤220)	
APH EC9-12 aliphatics	2200	2300	. 4		
APH EC9-10 aliphatics	220	220U		0	

	Concent			
Compound	6	9	RPD (≤35)	Diff
APH EC5-8 aliphatics	13000	15000	14	

LDC #: 49089A48b

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: _1	of1
Reviewer:	LT

METHOD: GC/MS Volatiles (MA-APH)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No N/A Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		5,8	APH EC5-8 aliphatics	exceed calibration range	DNR
		<u> </u>			
		6,9	APH EC9-12 aliphatics and APH EC9-10 aliphatics	diluted	DNR

<u></u>					
ļ					

Comments:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 28, 2020

Parameters: Helium

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008318/2008283

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SVS-01-082020	008318-01/2008283-001	Air	08/20/20
SVS-02-082020	008318-02/2008283-002	Air	08/20/20
GP-01-082020	008318-03/2008283-003	Air	08/20/20
GP-02-082020	008318-04/2008283-004	Air	08/20/20
GP-03-082020	008318-05/2008283-005	Air	08/20/20
GP-04-082020	008318-06/2008283-006	Air	08/20/20
SVS-01-082020DUP	008318-01/2008283-001DUP	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Helium by American Society for Testing and Materials (ASTM) D1946

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

Canister blank analyses were performed for every sample canister. No contaminants were found in the canister blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were not required by the method.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Helium - Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Helium - Laboratory Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Helium - Field Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

LDC #: 49089A50 VALIDATION COMPLETENESS WORKSHEET

SDG #: 008318 /2008283

Stage 2A

Date: عام الم	19/20
Page:_\ o	f_)
Reviewer: L	<u> </u>
2nd Reviewer:	

Laboratory: Friedman & Bruya, Inc.

METHOD: GC Helium (ASTM D1946)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

<u> </u>	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
11.	Initial calibration/ICV	N/N	
<u>III.</u>	Continuing calibration	N	
IV.	Laboratory Blanks /Canistry Blanks	A/A	Individually certified
V.	Field blanks	N	
VI.	Surrogate spikes	N	
VII.	Matrix spike/Matrix spike duplicates /DVP	NIA	(+)
VIII.	Laboratory control samples	N	
IX.	Field duplicates	N	
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	<u> </u>	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Su	6 Lab 1D	Lab ID	Matrix	Date
1	SVS-01-082020	2008	1283 -001/	008318-01	Air	08/20/20
2	SVS-02-082020		-002/	008318-02	Air	08/20/20
3	GP-01-082020		- 003 /	008318-03	Air	08/20/20
4	GP-02-082020		-004/	008318-04	Air	08/20/20
5	GP-03-082020		-005/	008318-05	Air	08/20/20
6	GP-04-082020		-006/	008318-06	Air	08/20/20
7_	515-01-082020 PUP		-001 DUP	V-010UP	_ ↓ ↓	1
8			·			
9						
10						
11						
12						
lotes						
1	MB					
$\neg \neg$				<u>-</u>		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 28, 2020

Parameters:

Fixed Gases

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc./Fremont Analytical

Sample Delivery Group (SDG): 008318/2008283

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
SVS-01-082020	008318-01/2008283-001	Air	08/20/20
SVS-02-082020	008318-02/2008283-002	Air	08/20/20
GP-01-082020	008318-03/2008283-003	Air	08/20/20
GP-02-082020	008318-04/2008283-004	Air	08/20/20
GP-03-082020	008318-05/2008283-005	Air	08/20/20
GP-04-082020	008318-06/2008283-006	Air	08/20/20
SVS-01-082020DUP	008318-01/2008283-001DUP	Air	08/20/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Fixed Gases by Method 3C

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks are not required for this method.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

VIII. Field Duplicates

No field duplicates were identified in this SDG.

IX. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

X. Target Compound Identification

Raw data were not reviewed for Stage 2A validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Fixed Gases - Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Laboratory Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

Aloha Café Fixed Gases - Field Blank Data Qualification Summary - SDG 008318/2008283

No Sample Data Qualified in this SDG

LDC#:	49089A51	VALIDATION COMPLETENESS WORKSHEET
	10000/101	

SDG #: 008318/2008283

Stage 2A

Laboratory: Friedman & Bruya, Inc./Fremont Analytical

Reviewer: 2nd Reviewer:

METHOD: GC Fixed Gases (Method 3C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
<u>II.</u>	Initial calibration/ICV	N/N	
111.	Continuing calibration	, N,	
IV.	Laboratory Blanks	N/	Tedlar Bags
V.	Field blanks	7	,
VI.	Surrogate spikes	2	
VII.	Matrix spike/Matrix spike duplicates	MA	(7)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	7	
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

Client ID	Sur lar 10	Lab ID	Matrix	Date	
SVS-01-082020	2008283 -011	008318-01	Air	08/20/20	
SVS-02-082020	-072	008318-02	Air	08/20/20	
GP-01-082020	-03	008318-03	Air	08/20/20	
GP-02-082020	-004	008318-04	Air	08/20/20	
GP-03-082020	-ws	008318-05	Air	08/20/20	
GP-04-082020	-06	008318-06	Air	08/20/20	
SVS-01-082020DUP	J -001 DUP	008318-01DUP	Air	08/20/20	
	SVS-01-082020 SVS-02-082020 GP-01-082020 GP-02-082020 GP-03-082020 GP-04-082020	SVS-01-082020 2408 263 - 00 SVS-02-082020 -072 GP-01-082020 -03 GP-02-082020 -004 GP-03-082020 -005 GP-04-082020 -06	SVS-01-082020 2408 263 - 00 l 008318-01 SVS-02-082020 -000 008318-02 GP-01-082020 -000 008318-03 GP-02-082020 -000 008318-04 GP-03-082020 -000 008318-05 GP-04-082020 -000 008318-06	SVS-01-082020 2/09/26/3 - 00 l 008318-01 Air SVS-02-082020 -000 008318-02 Air GP-01-082020 -000 008318-03 Air GP-02-082020 -000 008318-04 Air GP-03-082020 -000 008318-05 Air GP-04-082020 -000 008318-06 Air	

Notes.	·	 	 	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 28, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008261

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-081820	008261-01	Water	08/18/20
MW-1-081820DL	008261-01DL	Water	08/18/20
MW-2-081720	008261-02	Water	08/17/20
MW-4-081820	008261-03	Water	08/18/20
MW-4-081820DL	008261-03DL	Water	08/18/20
MW-6-081720	008261-04	Water	08/17/20
MW-7-081720	008261-05	Water	08/17/20
MW-8-081820	008261-06	Water	08/18/20
MW-8-081820DL	008261-06DL	Water	08/18/20
MW-9-081820	008261-07	Water	08/18/20
MW-10-081820	008261-08	Water	08/18/20
MW-11-081720	008261-09	Water	08/17/20
MW-12-081720	008261-10	Water	08/17/20
MW-13-081720	008261-11	Water	08/17/20
MW-14-081820	008261-12	Water	08/18/20
MW-14-081820DL	008261-12DL	Water	08/18/20
MW-16-081720	008261-13	Water	08/17/20
MW-17-081720	008261-14	Water	08/17/20
MW-18-081820	008261-15	Water	08/18/20
MW-19-081820	008261-16	Water	08/18/20
MW-20-081720	008261-17	Water	08/17/20
MW-21-081720	008261-18	Water	08/17/20
MW-22-081720	008261-19	Water	08/17/20
MW-23-081820	008261-20	Water	08/18/20
MW-23-081820DL	008261-20DL	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720	008261-24	Water	08/17/20
DUP-02-0819820	008261-25	Water	08/19/20
RB-01-081720	008261-26	Water	08/17/20
RB-02-081820	008261-27	Water	08/18/20
Trip Blank	008261-28	Water	08/18/20
MW-6-081720MS	008261-04MS	Water	08/17/20
MW-26-081820MS	008261-23MS	Water	08/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

Samples RB-01-081720 and RB-02-081820 were identified as rinsate blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-18-081820 and MW-22-081720 and samples DUP-01-081720 and DUP-02-0819820 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)			
Compound	MW-18-081820	MW-22-081720	RPD (Limits)	Difference (Limits)
Benzene	1.2	1.2	-	0 (≤0.70)

	Concentra	ition (ug/L)		
Compound	DUP-01-081720	DUP-02-0819820	RPD (Limits)	Difference (Limits)
Benzene	540	500	8 (≤35)	-
Toluene	56	52	7 (≤35)	-
Ethylbenzene	630	570	10 (≤35)	-
m,p-Xylene	1200	1100	9 (≤35)	-
o-Xylene	150	140	7 (≤35)	-
Naphthalene	220	200	10 (≤35)	-

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
MW-1-081820	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	Results exceeded calibration range.	DNR	-
MW-1-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	Results from undiluted analyses were more usable.	DNR	-
MW-4-081820 MW-8-081820	Toluene	Results exceeded calibration range.	DNR	-
MW-4-081820DL MW-8-081820DL	All compounds except Toluene	Results from undiluted analyses were more usable.	DNR	-
MW-14-081820	Benzene	Results exceeded calibration range.	DNR	-
MW-14-081820DL	All compounds except Benzene	Results from undiluted analyses were more usable.	DNR	-
MW-23-081820	Benzene Toluene Ethylbenzene m,p-Xylene	Results exceeded calibration range.	DNR	-
MW-23-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene	Results from undiluted analyses were more usable.	DNR	-

No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008261

Sample	Compound	Flag	A or P	Reason
MW-1-081820	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	DNR	-	Overall assessment of data
MW-1-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	DNR	_	Overall assessment of data
MW-4-081820 MW-8-081820	Toluene	DNR	-	Overall assessment of data
MW-4-081820DL MW-8-081820DL	All compounds except Toluene	DNR	-	Overall assessment of data
MW-14-081820	Benzene	DNR	-	Overall assessment of data
MW-14-081820DL	All compounds except Benzene	DNR	-	Overall assessment of data
MW-23-081820	Benzene Toluene Ethylbenzene m,p-Xylene	DNR	-	Overall assessment of data
MW-23-081820DL	All compounds except Benzene Toluene Ethylbenzene m,p-Xylene	DNR	-	Overall assessment of data

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49089B1a SDG #: 008261

Laboratory: Friedman & Bruya, Inc.

Level II

Page: Lof2-Reviewer: 2nd Reviewer:_

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A,A	
II.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	NÓ	RB=31,32 TB=33
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	A	(34)* (35)* MS OMY
IX.	Laboratory control samples	A	LC8/D
X.	Field duplicates	Sh	D=23+29, 19+30
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	SW	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1,	MW-1-081820	008261-01	Water	08/18/20
2 .	MW-1-081820R€ DL	008261-01R€ DL	Water	08/18/20
3 -	MW-2-081720	008261-02	Water	08/17/20
4 .	MW-4-081820	008261-03	Water	08/18/20
5	MW-4-081820R₽♪└	008261-03₽€₽L	Water	08/18/20
6 ·	MW-6-081720	008261-04	Water	08/17/20
7 -	MW-7-081720	008261-05	Water	08/17/20
8 .	MW-8-081820	008261-06	Water	08/18/20
9 ·	MW-8-081820RED L	008261-06₽€ DL	Water	08/18/20
10 *	MW-9-081820	008261-07	Water	08/18/20
11 -	MW-10-081820	008261-08	Water	08/18/20
12 -	MW-11-081720	008261-09	Water	08/17/20
13 .	MW-12-081720	008261-10	Water	08/17/20

LDC #: 49089B1a VALIDATION COMPLETENESS WORKSHEET

SDG #: 008261 Laboratory: Friedman & Bruya, Inc. Level II

Date: 04/19/hp
Page: 20f2
Reviewer: 47
2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

	Client ID	Lab ID	Matrix	Date
14	MW-13-081720	008261-11	Water	08/17/20
15 <i>-</i>	MW-14-081820	008261-12	Water	08/18/20
16 -	MW-14-081820B€ ▶	008261-12BEDL	Water	08/18/20
17 .	MW-16-081720	008261-13	Water	08/17/20
18	MW-17-081720	008261-14	Water	08/17/20
19 ⁻	MW-18-081820 Dv	008261-15	Water	08/18/20
20 1	MW-19-081820	008261-16	Water	08/18/20
21 '	MW-20-081720	008261-17	Water	08/17/20
22 ·	MW-21-081720	008261-18	Water	08/17/20
23 ·	MW-22-081720	008261-19	Water	08/17/20
24 `	MW-23-081820	008261-20	Water	08/18/20
25 -	MW-23-081820RED	008261-20RE Dレ	Water	08/18/20
26 ·	MW-24-081820	008261-21	Water	08/18/20
27 .	MW-25-081820	008261-22	Water	08/18/20
28	MW-26-081820	008261-23	Water	08/18/20
29 .	DUP-01-081720 ,	008261-24	Water	08/17/20
30	DUP-02-081 / 820	008261-25	Water	08/1 % /20
31	RB-01-081720	008261-26	Water	08/17/20
32 .	RB-02-081820	008261-27	Water	08/18/20
33 .	Trip Blank	008261-28	Water	08/18/20
34	MW-6-081720MS	008261-04MS	Water	08/17/20
35	MW-26-081820MS	008261-23MS	Water	08/18/20
36				
37				
38				
lote	s: W-1968 MB			

1 W-1968 MB 2 W-1857 MB 3 W-1853 MB

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:49089B1a

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>__

METHOD: GC/MS VOA (EPA SW846 Method 8260D)

	Concentration (ug/L)			
Compound	19	30	RPD (≤35)	Diff (≤0.70)
v	1.2	1.2		0

	Concentra	ation (ug/L)	RPD	D:
Compound	23	29	(≤35)	Diff
V	540	500	8	
СС	56	52	7	
EE	630	570	10	
RRR	1200	1100	9	
SSS	150	140	7	
MMM	220	200	10	

LDC #: 49089B1a

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _1	_of_1_
Reviewer:	LT

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Yes x No_ N/A_ Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
		1	V,CC,EE,RRR,SSS	exceed calibration range	DNR
		2	All except V,CC,EE,RRR,SSS	diluted	DNR
ļ					
		4,8	СС	exceed calibration range	DNR
			No. of the state o		
ļ		5,9	All except CC	diluted	DNR
 		15	V	exceed calibration range	DNR
<u> </u>					
<u> </u>	1	16	All except V	diluted	DNR
<u> </u>					
		24	V,CC,EE,RRR	exceed calibration range	DNR
-					
		25	All except V,CC,EE,RRR	diluted	DNR
L	L			<u>L</u>	

Comments:			 	 		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 28, 2020

Parameters:

Total Petroleum Hydrocarbons as Gasoline

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008261

Sample Identification	Laboratory Sample Identification		Collection Date
MVV-1-081820	008261-01	Water	08/18/20
MW-2-081720	008261-02	Water	08/17/20
MW-4-081820	008261-03	Water	08/18/20
MVV-6-081720	008261-04	Water	08/17/20
MVV-7-081720	008261-05	Water	08/17/20
MW-8-081820	008261-06	Water	08/18/20
MW-9-081820	008261-07	Water	08/18/20
MW-10-081820	008261-08	Water	08/18/20
MVV-11-081720	008261-09	Water	08/17/20
MW-12-081720	008261-10	Water	08/17/20
MVV-13-081720	008261-11	Water	08/17/20
MW-14-081820	008261-12	Water	08/18/20
MW-16-081720	008261-13	Water	08/17/20
MW-17-081720	008261-14	Water	08/17/20
MW-18-081820	008261-15	Water	08/18/20
MW-19-081820	008261-16	Water	08/18/20
MVV-20-081720	008261-17	Water	08/17/20
MW-21-081720	008261-18	Water	08/17/20
MVV-22-081720	008261-19	Water	08/17/20
MW-23-081820	008261-20	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20
MW-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720	008261-24	Water	08/17/20
DUP-02-081820	008261-25	Water	08/18/20
RB-01-081720	008261-26	Water	08/17/20

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
RB-02-081820	008261-27	Water	08/18/20
Trip Blank	008261-28	Water	08/18/20
MW-7-081720DUP	008261-05DUP	Water	08/17/20
MW-24-081820DUP	008261-21DUP	Water	08/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a rinsate. No contaminants were found.

Samples RB-01-081720 and RB-02-081820 were identified as rinsate blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-18-081820 and DUP-02-081820 and samples MW-22-081720 and DUP-01-081720 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ation (ug/L)		
Compound	MW-22-081720	DUP-01-081720	RPD (Limits)	Difference (Limits)
Gasoline range	14000	13000	7 (≤35)	-

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49089B7 SDG #: 008261

Laboratory: Friedman & Bruya, Inc.

Level II

Page: Lo Reviewer: 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V	Field blanks	ND	PB= 26,27 TB=28
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	NA	(29) (30)
VIII.	Laboratory control samples	A.	LS
IX.	Field duplicates	لهو	D=15+25* 19+24
X .	Compound quantitation RL/LOQ/LODs	N	,
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

A = Acceptable Note:

N = Not provided/applicable SW = See worksheet

₩ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-081820	008261-01	Water	08/18/20
2	MW-2-081720	008261-02	Water	08/17/20
3	MW-4-081820	008261-03	Water	08/18/20
4	MW-6-081720	008261-04	Water	08/17/20
5	MW-7-081720	008261-05	Water	08/17/20
6	MW-8-081820	008261-06	Water	08/18/20
7	MW-9-081820	008261-07	Water	08/18/20
8	MW-10-081820	008261-08	Water	08/18/20
9	MW-11-081720	008261-09	Water	08/17/20
10_	MW-12-081720	008261-10	Water	08/17/20
11_	MW-13-081720	008261-11	Water	08/17/20
12	MW-14-081820	008261-12	Water	08/18/20
13	MW-16-081720	008261-13	Water	08/17/20
14	MW-17-081720	008261-14	Water	08/17/20
15	MW-18-081820	008261-15	Water	08/18/20
16	MW-19-081820	008261-16	Water	08/18/20
17	MW-20-081720	008261-17	Water	08/17/20

_DC #:_49089B7	VALIDATION COMPLETENESS WORKSHEET
SDG #: 008261	Level II

Laboratory: Friedman & Bruya, Inc.

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	T		
MW-21-081720	008261-18	Water	08/17/20
MW-22-081720 Oz	008261-19	Water	08/17/20
MW-23-081820	008261-20	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20
MW-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720 Dv	008261-24	Water	08/17/20
DUP-02-081\$820	008261-25	Water	8 08/1 % /20
RB-01-081720	008261-26	Water	08/17/20
RB-02-081820	008261-27	Water	08/18/20
Trip Blank	008261-28	Water	08/18/20
MW-7-081720DUP	008261-05DUP	Water	08/17/20
MW-24-081820DUP	008261-21DUP	Water	08/18/20
	MW-22-081720 MW-23-081820 MW-24-081820 MW-26-081820 DUP-01-081720 DUP-02-081 820 RB-01-081720 RB-02-081820 Trip Blank MW-7-081720DUP	MW-22-081720 ② 008261-19 MW-23-081820 008261-20 MW-24-081820 008261-21 MW-25-081820 008261-22 MW-26-081820 008261-23 DUP-01-081720 ○ 008261-24 DUP-02-081 820 ○ 008261-25 RB-01-081720 008261-26 008261-27 Trip Blank 008261-28 MW-7-081720DUP 008261-05DUP	MW-22-081720 O₂ 008261-19 Water MW-23-081820 008261-20 Water MW-24-081820 008261-21 Water MW-25-081820 008261-22 Water MW-26-081820 008261-23 Water DUP-01-081720 D → 008261-24 Water DUP-02-081 820 D → 008261-25 Water RB-01-081720 008261-26 Water RB-02-081820 008261-27 Water Trip Blank 008261-28 Water MW-7-081720DUP 008261-05DUP Water

Notes:

	00-1800 MB			
2	00-1801 MB			

LDC#:49089B7

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__<u>LT</u>__

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Conce		D:#	
Compound	19	24	RPD (≤35)	Diff
Gasoline Range	14000	13000	7	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 28, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008261

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-1-081820	008261-01	Water	08/18/20
MW-2-081720	008261-02	Water	08/17/20
MW-4-081820	008261-03	Water	08/18/20
MW-6-081720	008261-04	Water	08/17/20
MW-7-081720	008261-05	Water	08/17/20
MW-8-081820	008261-06	Water	08/18/20
MW-9-081820	008261-07	Water	08/18/20
MW-10-081820	008261-08	Water	08/18/20
MW-11-081720	008261-09	Water	08/17/20
MW-12-081720	008261-10	Water	08/17/20
MW-13-081720	008261-11	Water	08/17/20
MW-14-081820	008261-12	Water	08/18/20
MW-16-081720	008261-13	Water	08/17/20
MW-17-081720	008261-14	Water	08/17/20
MW-18-081820	008261-15	Water	08/18/20
MW-19-081820	008261-16	Water	08/18/20
MW-20-081720	008261-17	Water	08/17/20
MW-21-081720	008261-18	Water	08/17/20
MW-22-081720	008261-19	Water	08/17/20
MW-23-081820	008261-20	Water	08/18/20
MW-24-081820	008261-21	Water	08/18/20
MW-25-081820	008261-22	Water	08/18/20
MW-26-081820	008261-23	Water	08/18/20
DUP-01-081720	008261-24	Water	08/17/20
DUP-02-081820	008261-25	Water	08/18/20
RB-01-081720	008261-26	Water	08/17/20
RB-02-081820	008261-27	Water	08/18/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples RB-01-081720 and RB-02-081820 were identified as rinsate blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
RB-01-081720	08/17/20	Diesel range (C10-C25)	67 ug/L	MW-2-081720 MW-6-081720 MW-7-081720 MW-11-081720 MW-12-081720 MW-13-081720 MW-16-081720 MW-17-081720 MW-20-081720 MW-21-081720 MW-21-081720 MW-22-081720 DUP-01-081720

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-18-081820 and DUP-02-081820 and samples MW-22-081720 and DUP-01-081720 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	ntion (ug/L)		
Compound	MW-18-081820	DUP-02-081820	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	50U	53	_	3 (≤50)

	Concentra	ition (ug/L)		
Compound	MW-22-081720	DUP-01-081720	RPD (Limits)	Difference (Limits)
Diesel range (C10-C25)	2500	3100	21 (≤35)	-

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 008261

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 49089B8

SDG #: 008261

Level II

Page:___ of 2 Reviewer:_ 2nd Reviewer: _

Laboratory: Friedman & Bruya, Inc.

TRIE

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	SW	P= 26,27*
VI.	Surrogate spikes	A,	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	LC31P
IX.	Field duplicates	SW	D=19+24, 15+25
X.	Compound quantitation RL/LOQ/LODs	N	
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

★ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	MW-1-081820	008261-01	Water	08/18/20
2	MW-2-081720	008261-02	Water	08/17/20
3	MW-4-081820	008261-03	Water	08/18/20
4	MW-6-081720	008261-04	Water	08/17/20
5	MW-7-081720	008261-05	Water	08/17/20
6	MW-8-081820	008261-06	Water	08/18/20
7	MW-9-081820	008261-07	Water	08/18/20
8	MW-10-081820	008261-08	Water	08/18/20
9	MW-11-081720	008261-09	Water	08/17/20
10	MW-12-081720	008261-10	Water	08/17/20
11	MW-13-081720	008261-11	Water	08/17/20
12	MW-14-081820	008261-12	Water	08/18/20
13_	MW-16-081720	008261-13	Water	08/17/20
14_	MW-17-081720	008261-14	Water	08/17/20
15_	MW-18-081820 D2	008261-15	Water	08/18/20
16_	MW-19-081820	008261-16	Water	08/18/20
17	MW-20-081720	008261-17	Water	08/17/20

DC #: 49089B8	VALIDATION COMPLETENESS WORKSHEET
SDG #- 008261	l evel II

Laboratory: Friedman & Bruya, Inc.

Date: Of 19/20
Page: 2-of 2
Reviewer: 17
2nd Reviewer:

METHOD: GC TPH as Diesel (NWTPH-Dx)

18	MW-21-081720	008261-18	Water	08/17/20
19	MW-22-081720 D	008261-19	Water	08/17/20
20	MW-23-081820	008261-20	Water	08/18/20
21	MW-24-081820	008261-21	Water	08/18/20
22	MW-25-081820	008261-22	Water	08/18/20
23_	MW-26-081820	008261-23	Water	08/18/20
24	DUP-01-081720	008261-24	Water	08/17/20
25_	DUP-02-081/9820 02	008261-25	Water	08/1 /9 /20
26	RB-01-081720	008261-26	Water	08/17/20
27	RB-02-081820	008261-27	Water	08/18/20
28				
29				
30			L	

Notes:

1	00-1892 MB			
2	00 - 1893 MB			

LDC #: 47954A8

VALIDATION FINDINGS WORKSHEET Field Blanks

Pag	e: <u>1</u> _of <u>1</u> _
Reviewer:	LT
2nd Review	er:

	ment Rinsa	Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other: RB Compound Blank ID Blank ID					Sample Identification			
Compound	26	Blank ID	-			Sample Ide	entification	T		<u> </u>
esel Range (C10-C25)										
								 		
						<u> </u>				
	1	i				1				
nk units: npling date:_ d blank type: (circle Rins	e one) Field	d Blank / Tri _l	e units: p Blank/ Atmoste / Equipment		mbient Blank Blank / Other:	A	ssociated Samp	oles:		
npling date: d blank type: (circle Rins	e one) Field	d Blank / Tri _l	p Blank/ Atmos	spheric Blank/ A	mbient Blank Blank / Other:		ssociated Samp	oles:		
npling date: d blank type: (circle Rins	e one) Field sate / Equip	d Blank / Tri _l ment Rinsat	p Blank/ Atmos	spheric Blank/ A	mbient Blank Blank / Other:			oles:		
pling date: d blank type: (circle Rins	e one) Field sate / Equip	d Blank / Tri _l ment Rinsat	p Blank/ Atmos	spheric Blank/ A	mbient Blank Blank / Other:			oles:		
npling date: d blank type: (circle Rins	e one) Field sate / Equip	d Blank / Tri _l ment Rinsat	p Blank/ Atmos	spheric Blank/ A	mbient Blank Blank / Other:			oles:		
npling date: d blank type: (circle Rins	e one) Field sate / Equip	d Blank / Tri _l ment Rinsat	p Blank/ Atmos	spheric Blank/ A	mbient Blank Blank / Other:			oles:		

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

LDC#:49089B8

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC TPHE (NWTPH-Dx)

	Concer	tration (ug/L)		
Compound	19	24	RPD (≤35)	Diff
Diesel Range (C10-C25)	2500	3100	21	

	Concen	tration (ug/L)		
Compound	15	25	RPD (≤35)	Diff (≤50)
Diesel Range (C10-C25)	50U	53		3

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

Aspect Consulting LLC 701 Second Ave., Suite 550 Seattle, WA 98104 ATTN: Jason Yabandeh Jyabandeh@aspectconsulting.com September 4, 2020

SUBJECT: Aloha Café, Data Validation

Dear Mr. Yabandeh,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 17, 2020. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #48872:

SDG #	<u>Fraction</u>
007493, 007523	Volatiles, Total Petroleum Hydrocarbons as Gasoline, Total
008076	Petroleum Hydrocarbons as Extractables

The data validation was performed under Stage 2A guidelines. The analyses were validated using the following documents, as applicable to each method:

- Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan, February 2019
- USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4; October 2014
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review, January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink crink@lab-data.com

heisting Rink

Project Manager/Senior Chemist

123 pages-EM Attachment 1 LDC #48872 (Aspect Consulting, LLC - Seattle, WA / Aloha Cafe) Stage 2A EDD TPH-G TPH-E VOA (NWTPH (NWTPH DATE DATE LDC SDG# **REC'D** DUE (8260D) Gx) Dx) w s w s Matrix: Water/Soil 0 0 08/17/20 09/08/20 0 18 18 18 007493 В 08/17/20 09/08/20 9 1 9 0 007523 9 0 008076 08/17/20 09/08/20 0 0 0 0 0 0 0 Total T/CR

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 3, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007493

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-22-10	007493-02	Soil	07/28/20
MW-22-12.5	007493-03	Soil	07/28/20
MW-22-16	007493-04	Soil	07/28/20
MW-22-25	007493-05	Soil	07/28/20
MVV-23-8	007493-06	Soil	07/28/20
MVV-23-12.5	007493-07	Soil	07/28/20
MVV-23-18	007493-09	Soil	07/28/20
MVV-23-25	007493-10	Soil	07/28/20
MVV-21-5	007493-11	Soil	07/28/20
MVV-21-10	007493-12	Soil	07/28/20
MVV-21-17.5	007493-13	Soil	07/28/20
B-11-5.5	007493-15	Soil	07/28/20
B-11-10.5	007493-16	Soil	07/28/20
B-11-15	007493-17	Soil	07/28/20
MW-26-12.5	007493-22	Soil	07/29/20
MW-27-10.5	007493-25	Soil	07/29/20
MW-24-10.5	007493-29	Soil	07/29/20
DUP-3	007493-32	Soil	07/29/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples MW-27-10.5 and DUP-3 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Laboratory Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Volatiles - Field Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

LDC #: 48872A1a VALIDATION COMPLETENESS WORKSHEET SDG #: 007493 Level II

Laboratory: Friedman & Bruya, Inc.

Date: onlow/200
Page: lof2
Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A A	
II.	GC/MS Instrument performance check	. N	
III.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	2	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	2	Non aiat
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	No	D=16+18
XI.	Internal standards	12	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-18
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	MW-22-10 '	007493-02	Soil	07/28/20
2 .	MW-22-12.5	007493-03	Soil	07/28/20
3 .	MW-22-16	007493-04	Soil	07/28/20
4 .	MW-22-25	007493-05	Soil	07/28/20
5 •	MW-23-8	007493-06	Soil	07/28/20
6 .	MW-23-12.5	007493-07	Soil	07/28/20
7 .	MW-23-18	007493-09	Soil	07/28/20
8 .	MW-23-25	007493-10	Soil	07/28/20
9 .	MW-21-5	007493-11	Soil	07/28/20
10 '	MW-21-10 •	007493-12	Soil	07/28/20
11 .	MW-21-17.5	007493-13	Soil	07/28/20
12.	B-11-5.5	007493-15	Soil	07/28/20
13 '	B-11-10.5	007493-16	Soil	07/28/20
14	B-11-15	007493-17	Soil	07/28/20

LDC #: 48872A1a	VALIDATION COMPLETENESS WORKSHEET

SDG #: 007493 Laboratory: Friedman & Bruya, Inc. Level II

Date: 09/01/2 Page: 2of 2 Reviewer: 6

2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

	Client ID		Lab ID	Matrix	Date
15 •	MW-26-12.5	•	007493-22	Soil	07/29/20
16 -	MW-27-10.5	D .	007493-25	Soil	07/29/20
17	MW-24-10.5	•	007493-29	Soil	07/29/20
18 -	DUP-3	D.	007493-32	Soil	07/29/20
19					
20					
21					

	00-1719 MB				
2	10-1684-MB				
	•				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 3, 2020

Parameters:

Total Petroleum Hydrocarbons as Gasoline

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007493

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MVV-22-10	007493-02	Soil	07/28/20
MW-22-12.5	007493-03	Soil	07/28/20
MVV-22-16	007493-04	Soil	07/28/20
MW-22-25	007493-05	Soil	07/28/20
MW-23-8	007493-06	Soil	07/28/20
MW-23-12.5	007493-07	Soil	07/28/20
MVV-23-18	007493-09	Soil	07/28/20
MW-23-25	007493-10	Soil	07/28/20
MVV-21-5	007493-11	Soil	07/28/20
MVV-21-10	007493-12	Soil	07/28/20
MVV-21-17.5	007493-13	Soil	07/28/20
B-11-5.5	007493-15	Soil	07/28/20
B-11-10.5	007493-16	Soil	07/28/20
B-11-15	007493-17	Soil	07/28/20
MVV-26-12.5	007493-22	Soil	07/29/20
MW-27-10.5	007493-25	Soil	07/29/20
MW-24-10.5	007493-29	Soil	07/29/20
DUP-3	007493-32	Soil	07/29/20
MW-22-10DUP	007493-02DUP	Soil	07/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-27-10.5 and DUP-3 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 007493 Laboratory: Friedman & Bruya, Inc.

LDC #: 48872A7

Level II

Date:09/02/20 Page: l of2-Reviewer: 2nd Reviewer:

METHOD: GC TPH as Gasoline (NWTPH-Gx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
II.	Initial calibration/ICV	N/N	
III.	Continuing calibration	N	
IV.	Laboratory Blanks	<u> </u>	
V.	Field blanks	7	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N/A	(19,20) (19)
VIII.	Laboratory control samples	1	LCS
IX.	Field duplicates	ND	D=16+18
X.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-18
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

A = Acceptable Note:

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date Soil MW-22-10 007493-02 07/28/20 MW-22-12.5 007493-03 Soil 07/28/20 3 MW-22-16 007493-04 Soil 07/28/20 MW-22-25 007493-05 Soil 07/28/20 MW-23-8 007493-06 Soil 07/28/20 6 MW-23-12.5 007493-07 Soil 07/28/20 MW-23-18 007493-09 Soil 07/28/20 MW-23-25 007493-10 8 Soil 07/28/20 9 MW-21-5 007493-11 Soil 07/28/20 10 • MW-21-10 007493-12 Soil 07/28/20 11 ° MW-21-17.5 007493-13 Soil 07/28/20 12 * 007493-15 Soil B-11-5.5 07/28/20 13 * B-11-10.5 007493-16 Soil 07/28/20 14 ' B-11-15 007493-17 Soil 07/28/20 15 1 MW-26-12.5 007493-22 Soil 07/29/20 16 MW-27-10.5 007493-25 Soil 07/29/20 Soil MW-24-10.5 007493-29 07/29/20

LDC #: 48872A7 VALIDATION COMPLETENESS WORKSHEET SDG #: 007493 Level II Laboratory: Friedman & Bruya, Inc. METHOD: GC TPH as Gasoline (NWTPH-Gx)					2nd	Date: © lost2 Page: Reviewer: 67 Reviewer: 67
	Client ID			Lab ID	Matrix	Date
18 ·	DUP-3		Ŋ	007493-32	Soil	07/29/20
19	MW-22-10MS DWP			007493-02NSOW	Soil	07/28/20
20	MW-22-10MSD			-007493-02MSD	Soil	07/28/20
21						
22						
23						
Notes	:					
	00-1395 MB					
2	00-1395 MB 00-1390 MB					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 3, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007493

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
MW-22-10	007493-02	Soil	07/28/20
MW-22-12.5	007493-03	Soil	07/28/20
MW-22-16	007493-04	Soil	07/28/20
MW-22-25	007493-05	Soil	07/28/20
MW-23-8	007493-06	Soil	07/28/20
MW-23-12.5	007493-07	Soil	07/28/20
MVV-23-18	007493-09	Soil	07/28/20
MW-23-25	007493-10	Soil	07/28/20
MVV-21-5	007493-11	Soil	07/28/20
MW-21-10	007493-12	Soil	07/28/20
MW-21-17.5	007493-13	Soil	07/28/20
B-11-5.5	007493-15	Soil	07/28/20
B-11-10.5	007493-16	Soil	07/28/20
B-11-15	007493-17	Soil	07/28/20
MW-26-12.5	007493-22	Soil	07/29/20
MW-27-10.5	007493-25	Soil	07/29/20
MW-24-10.5	007493-29	Soil	07/29/20
DUP-3	007493-32	Soil	07/29/20
MW-22-16MS	007493-04MS	Soil	07/28/20
MW-22-16MSD	007493-04MSD	Soil	07/28/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-27-10.5 and DUP-3 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 007493

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

SDG #: 007493

LDC #: 48872A8

Level II

Page: \(\forall \forall \forall \)

Reviewer: \(\forall \for

Laboratory: Friedman & Bruya, Inc.

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AIA	
H.	Initial calibration/ICV	N/N	
<u>III.</u>	Continuing calibration	N	
IV.	Laboratory Blanks	Ą	
V.	Field blanks	2	
VI.	Surrogate spikes	ħ	
VII.	Matrix spike/Matrix spike duplicates	A	(19,20)
VIII.	Laboratory control samples	A	LCS
IX.	Field duplicates	ND	D=16+18
X.	Compound quantitation RL/LOQ/LODs	N	D=16+18 Only weight basis = 1-18
XI.	Target compound identification	Ŋ	·
LXIL	Overall assessment of data	A	

Note: A = Acceptable

Acceptable ND = No compounds detected

N = Not provided/applicable SW = See worksheet R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 .	MW-22-10 .	007493-02	Soil	07/28/20
2 •	MW-22-12.5	007493-03	Soil	07/28/20
з.	MW-22-16	007493-04	Soil	07/28/20
4 •	MW-22-25	007493-05	Soil	07/28/20
5 ·	MW-23-8	007493-06	Soil	07/28/20
6 ·	MW-23-12.5	007493-07	Soil	07/28/20
₇ •	MW-23-18	007493-09	Soil	07/28/20
8 .	MW-23-25	007493-10	Soil	07/28/20
9 .	MW-21-5	007493-11	Soil	07/28/20
10 •	MW-21-10	007493-12	Soil	07/28/20
11 •	MW-21-17.5	007493-13	Soil	07/28/20
12 •	B-11-5.5	007493-15	Soil	07/28/20
13 *	B-11-10.5	007493-16	Soil	07/28/20
14 •	B-11-15	007493-17	Soil	07/28/20
15 .	MW-26-12.5	007493-22	Soil	07/29/20
16	MW-27-10.5 D ·	007493-25	Soil	07/29/20
17"	MW-24-10.5	007493-29	Soil	07/29/20

Labo	G#: <u>007493</u> oratory: <u>Friedman & Bruya, Inc.</u> Tみモ THOD: GC TPH as Diese l (NWTPH-Dx)	Level II		2nd	Page: 2 of 2 Reviewer: 6 Reviewer:
	Client ID		Lab ID	Matrix	Date
18.	DUP-3	D	007493-32	Soil	07/29/20
19	MW-22-16MS		007493-04MS	Soil	07/28/20
20	MW-22-16MSD		007493-04MSD	Soil	07/28/20
21					
22		Personal Professional			
23					
Notes), ,				
1	00-1762 MB				
2	00-1762 MB				
				T	

VALIDATION COMPLETENESS WORKSHEET

LDC #: 48872A8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 3, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007523

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-20-5'	007523-01	Soil	07/30/20
MW-20-8'	007523-02	Soil	07/30/20
MW-20-13'	007523-04	Soil	07/30/20
MW-25-8'	007523-12	Soil	07/30/20
B-10-12.5	007523-23	Soil	07/30/20
MW-21A-2.5'	007523-29	Soil	07/30/20
MW-22A-2.5'	007523-30	Soil	07/30/20
MW-22B-5'	007523-31	Soil	07/30/20
DUP-4	007523-32	Soil	07/30/20
Trip Blank	007523-34	Water	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples MW-20-8' and DUP-4 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)					
Compound	MW-20-8'	DUP-4	RPD (Limits)	Difference (Limits)	Flag	A or P
Naphthalene	0.065	0.098	-	0.033 (≤0.10)	-	-

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET LDC #: 48872B1a SDG #: 007523

Laboratory: Friedman & Bruya, Inc.

Level II

Date: 09/02/20 Page:__\of_\ Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
II.	GC/MS Instrument performance check	N	
111.	Initial calibration/ICV	N/N	
IV.	Continuing calibration	N	
V.	Laboratory Blanks	A	
VI.	Field blanks	NiO	TB= 10
VII.	Surrogate spikes	A_	
VIII.	Matrix spike/Matrix spike duplicates	2	Non ains
IX.	Laboratory control samples	A	LC5/D
X.	Field duplicates	50	D=2+0
XI.	Internal standards	2	
XII.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 1-9
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

A = Acceptable Note:

ND = No compounds detected

D = Duplicate

SB=Source blank OTHER:

N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1 .	MW-20-5'	007523-01	Soil	07/30/20
2 .	MW-20-8'	007523-02	Soil	07/30/20
3 .	MW-20-13'	007523-04	Soil	07/30/20
4 .	MW-25-8'	007523-12	Soil	07/30/20
5	B-10-12.5	007523-23	Soil	07/30/20
6	MW-21A-2.5'	007523-29	Soil	07/30/20
7	MW-22A-2.5 *	007523-30	Soil	07/30/20
8 -	MW-22B-5'	007523-31	Soil	07/30/20
9	DUP-4	007523-32	Soil	07/30/20
10	Trip Blank	007523-34	Water	07/30/20
11				
12	1.00 1718 MB			
13	2.00-1684 MB			
14				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl chloride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyi alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC#:48872B1a

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1_ Reviewer:__LT__,

METHOD: GC/MS VOA (EPA SW846 Method 8260D)

	Concentration (mg/kg)			
Compound	2 9		RPD (≤35)	Diff (≤0.10)
ммм	0.065	0.098		0.033

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 3, 2020

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007523

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-20-5'	007523-01	Soil	07/30/20
MW-20-8'	007523-02	Soil	07/30/20
MW-20-13'	007523-04	Soil	07/30/20
MW-25-8'	007523-12	Soil	07/30/20
B-10-12.5	007523-23	Soil	07/30/20
MW-21A-2.5'	007523-29	Soil	07/30/20
MW-22A-2.5'	007523-30	Soil	07/30/20
MW-22B-5'	007523-31	Soil	07/30/20
DUP-4	007523-32	Soil	07/30/20
Trip Blank	007523-34	Water	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-20-8' and DUP-4 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (mg/Kg)		oncentration (mg/Kg)			
Compound	MW-20-8'	DUP-4	RPD (Limits)	Difference (Limits)	Flag	A or P
Gasoline range	5U	9.2	-	4.2 (≤10)	-	-

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Date: 69/02/20 LDC #: 48872B7 Page: _ l of \ Level II SDG #: 007<u>523</u> Laboratory: Friedman & Bruya, Inc. Reviewer:_ 2nd Reviewer; METHOD: GC TPH as Gasoline (NWTPH-Gx) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. Validation Area **Comments** Sample receipt/Technical holding times 11. Initial calibration/ICV N/N III. Continuing calibration Ν A IV. Laboratory Blanks ND TB=10 V. Field blanks VI. Surrogate spikes Non Client VII. Matrix spike/Matrix spike duplicates

-219

weight basis = 19

Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank

SW

Ν

Ν

	Client ID	Lab ID	Matrix	Date
1 .	MW-20-5'	007523-01	Soil	07/30/20
2 .	MW-20-8'	007523-02	Soil	07/30/20
₃ .	MW-20-13'	007523-04	Soil	07/30/20
4	MW-25-8'	007523-12	Soil	07/30/20
5 .	B-10-12.5	007523-23	Soil	07/30/20
6 ,	MW-21A-2.5'	007523-29	Soil	07/30/20
7 .	MW-22A-2.5′	007523-30	Soil	07/30/20
8 .	MW-22B-5'	007523-31	Soil	07/30/20
9 ,	DUP-4	007523-32	Soil	07/30/20
10	Trip Blank	007523-34	Water	07/30/20
11				
12				
13				

1 00 - 1392 MB 2 00 - 1393 MB		
2 00-1393 MB		

VIII.

IX.

X.

XI.

Notes:

Laboratory control samples

Target compound identification

Overall assessment of data

Compound quantitation RL/LOQ/LODs

Field duplicates

LDC#:48872B7

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:_1_of_1_ Reviewer:__LT___

METHOD: GC TPH as Gasoline (NWTPH-Gx)

	Concen			
Compound	2	RPD (≤35)	Diff (≤10)	
Gasoline Range	5U	9.2		4.2

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 3, 2020

Parameters:

Total Petroleum Hydrocarbons as Extractables

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 007523

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
MW-20-5'	007523-01	Soil	07/30/20
MW-20-8'	007523-02	Soil	07/30/20
	 		
MW-20-13'	007523-04	Soil	07/30/20
MW-25-8'	007523-12	Soil	07/30/20
B-10-12.5	007523-23	Soil	07/30/20
MW-21A-2.5'	007523-29	Soil	07/30/20
MW-22A-2.5'	007523-30	Soil	07/30/20
MW-22B-5'	007523-31	Soil	07/30/20
DUP-4	007523-32	Soil	07/30/20
MW-20-5'MS	007523-01MS	Soil	07/30/20
MW-20-5'MSD	007523-01MSD	Soil	07/30/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples MW-20-8' and DUP-4 were identified as field duplicates. No results were detected in any of the samples.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 007523

No Sample Data Qualified in this SDG

LDC #: 48872B8 **VALIDATION COMPLETENESS WORKSHEET**

SDG #: 007523

Level II

Page: Lof_ Reviewer: 2nd Reviewer

Laboratory: Friedman & Bruya, Inc.

METHOD: GC TPH as Diesel (NWTPH-Dx)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A,A	
II.	Initial calibration/ICV	N/N	
111.	Continuing calibration	N	
IV.	Laboratory Blanks	A	
V.	Field blanks	7	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	K	(10,11)
VIII.	Laboratory control samples	A	L9
IX.	Field duplicates	W	D=2+9
X.	Compound quantitation RL/LOQ/LODs	N	Dry weight basis = 49
XI.	Target compound identification	N	
XII	Overall assessment of data	A	

Note: A = Acceptable

N = Not provided/applicable

ND = No compounds detected

D = Duplicate

SB=Source blank OTHER:

SW = See worksheet

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

	Client ID	Lab ID	Matrix	Date
1	MW-20-5'	007523-01	Soil	07/30/20
2	MW-20-8'	007523-02	Soil	07/30/20
3	MW-20-13'	007523-04	Soil	07/30/20
4	MW-25-8'	007523-12	Soil	07/30/20
5	B-10-12.5	007523-23	Soil	07/30/20
6	MW-21A-2.5°	007523-29	Soil	07/30/20
7	MW-22A-2.5′	007523-30	Soil	07/30/20
8	MW-22B-5'	007523-31	Soil	07/30/20
9	DUP-4	007523-32	Soil	07/30/20
10	MW-20-5'MS	007523-01MS	Soil	07/30/20
11	MW-20-5'MSD	007523-01MSD	Soil	07/30/20
12				
13				

Notes: 00-175MMB

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Aloha Café

LDC Report Date:

September 3, 2020

Parameters:

Volatiles

Validation Level:

Stage 2A

Laboratory:

Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008076

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B-09-2.5	008076-01	Soil	08/05/20
B-09-6	008076-03	Soil	08/05/20
Trip Blank	008076-06	Water	08/05/20
B-09-2.5MS	008076-01MS	Soil	08/05/20
B-09-2.5MSD	008076-01MSD	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019), the USEPA Region 2 Standard Operating Procedure for Validating Volatile Organic Compounds By Gas Chromatography/Mass Spectrometry SW-Method 8260B and 8260C, SOP HW-24, Revision 4 (October 2014), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260D

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- UJ (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check data were not reviewed for Stage 2A validation.

III. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

IV. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

Internal standard data were not reviewed for Stage 2A validation.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XIV. System Performance

Raw data were not reviewed for Stage 2A validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café Volatiles - Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Laboratory Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café Volatiles - Field Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

SDG #	#:_48872C1a		PLETENES Level II	SS WORKSHEET		Date: <u>Orl</u> Page: <u>L</u> of <u>l</u> Reviewer: <u>L</u>
	HOD: GC/MS Volatiles (EPA SW 846 N	Method 8260f	D)		2nd	Reviewer:
The sa	camples listed below were reviewed for attion findings worksheets.			dation areas. Validati	on findings are	e noted in attached
	Validation Area			Comn	nents	
1.	Sample receipt/Technical holding times	A A				
II.	GC/MS Instrument performance check	N				
III.	Initial calibration/ICV	N/N				
IV.	Continuing calibration	N				
V.	Laboratory Blanks	A				
VI.	Field blanks	ND	TB=3			
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	A	(4,5)			
IX.	Laboratory control samples	A	LC510			
X.	Field duplicates	7				
XI.	Internal standards	7				
XII.	Compound quantitation RL/LOQ/LODs	N	Dry Neio	jht basis = 4,2		
XIII.	Target compound identification	N				
XIV.	System performance	N				
XV.	Overall assessment of data	A				
Note:	N = Not provided/applicable R =	= No compounds : Rinsate = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER	urce blank R:
	Client ID			Lab ID	Matrix	Date
	B-09-2.5			008076-01	Soil	08/ 1 /5/20
	B-09-6			008076-03	Soil	<i>o</i> 08/ ∦ 5/20
	Trip Blank			008076-06	Water	08/ 1 /5/20
	B-09-2.5MS			008076-01MS	Soil	0 08//15/20
	B-09-2.5MSD			008076-01MSD	Soil	0 08/15/20
6						
7						
8						
9						
Notes:					T	
	10-1728 MB					
2 0	10-1729 MB		\longrightarrow			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 3, 2020

Parameters: Total Petroleum Hydrocarbons as Gasoline

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008076

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B-09-2.5	008076-01	Soil	08/05/20
B-09-6	008076-03	Soil	08/05/20
Trip Blank	008076-06	Water	08/05/20
B-09-2.5DUP	008076-01DUP	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Gasoline by NWTPH-Gx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be nondetect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample Trip Blank was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

)G #	#: <u>008076</u>			PLETENES Level II	SS WORKSHEET		Date: <u>៚/</u> o Page: <u></u> of Reviewer: <u></u> ك
bor	atory: <u>Friedman & Bruya, I</u>	nc.				and	Reviewer: \(\bullet \bullet
ETH	IOD: GC TPH as Gasoline	(NWTPH-Gx)				Zna	Reviewer:
	amples listed below were r tion findings worksheets.	eviewed for ea	ch of the f	ollowing vali	dation areas. Validatio	on findings are	e noted in attac
	Validation A	rea			Comm	ents	
l	Sample receipt/Technical hold	ling times	A,A				
I.	Initial calibration/ICV		N/N				
I.	Continuing calibration		N				
/.	Laboratory Blanks		A				
<u>'. </u>	Field blanks		ND	TB= 3			
ı.	Surrogate spikes		4		-		
I.	Matrix spike/Matrix spike dupli	cates / DVP	NA	(4,5)	(4)		
1.	Laboratory control samples	7	A	LCS		"	7.0
	Field duplicates		N				
	Compound quantitation RL/LO	Q/LODs	N	DNI Weigh	t basis = $1,2$		
	Target compound identification		N				
	Overall assessment of data		A				
	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rins	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	irce blank :
10	Client ID				Lab ID	Matrix	Date
Į.	3-09-2.5		···		008076-01	Soil	08/ 3 /5/20
E	3-09-6				008076-03	Soil	08/3/5/20
17	Гrip Blank				008076-06	Water	0 08/ 1 /5/20
E	3-09-2.5M&DUP				008076-01MS DUP	Soil	0 08/ / 15/20
-	3-09-2.5MSD				008076-01MSD	Soil	0 08/ 1 5/20
Γ				-			
Γ							
Ī							
Ī							
T							
İ							
<u> </u>							
ſ	10-1400MB						
U	<u> </u>						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Aloha Café

LDC Report Date: September 3, 2020

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2A

Laboratory: Friedman & Bruya, Inc.

Sample Delivery Group (SDG): 008076

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
B-09-2.5	008076-01	Soil	08/05/20
B-09-6	008076-03	Soil	08/05/20
B-09-2.5MS	008076-01MS	Soil	08/05/20
B-09-2.5MSD	008076-01MSD	Soil	08/05/20

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Appendix E, CEMC Review Draft, Sampling and Analysis/Quality Assurance Project Plan (February 2019) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by NWTPH-Dx

All sample results were subjected to Stage 2A data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U (Non-detected): The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- (Non-detected estimated): The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R (Rejected): The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- X The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- DNR (Do Not Report): Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

Initial calibration data were not reviewed for Stage 2A validation.

III. Continuing Calibration

Continuing calibration data were not reviewed for Stage 2A validation.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Compound Quantitation

Raw data were not reviewed for Stage 2A validation.

XI. Target Compound Identifications

Raw data were not reviewed for Stage 2A validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

Aloha Café

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 008076

No Sample Data Qualified in this SDG

SDG Labo MET	#:_48872C8 VALIDATION #:_008076 ratory:_Friedman & Bruya, Inc		Level II	S WORKSHEET ation areas. Validation	2nd	Date: <u>Olodo</u> Page: 1 of 1 Reviewer: W Reviewer: A Reviewer: Reviewer: A Revie
	Validation Area			Comm	ents	
1.	Sample receipt/Technical holding times	AA				
11.	Initial calibration/ICV	N/N				
111.	Continuing calibration	N_				
IV.	Laboratory Blanks	A				
V.	Field blanks	N				
VI.	Surrogate spikes	A				
VII.	Matrix spike/Matrix spike duplicates	A_	(3,4)			
VIII.	Laboratory control samples	A	LCS			
IX.	Field duplicates	N				
X.	Compound quantitation RL/LOQ/LODs	N	Dry weig	matherapidity = 1/2		
XI.	Target compound identification	N	'			
LXIL	Overall assessment of data	<u> </u>				
Note:	N = Not provided/applicable R = Ri	No compound nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blan	OTHER	ırce blank :
	Client ID			Lab ID	Matrix	Date
1	B-09-2.5			008076-01	Soil	08/) -5/20
2	B-09-6			008076-03	Soil	o 08/ 1/ 5/20
3	B-09-2.5MS			008076-01MS	Soil	08/ 3 /5/20
4	B-09-2.5MSD			008076-01MSD	Soil	0 08/ / 15/20
5						

1	B-09-2.5	_			008076-01	s	Soil	08/ <i>)</i> /5/20
2	B-09-6	_			008076-03	s	Soil	o 08/ / 5/20
3	B-09-2.5MS				008076-01MS	s	Soil	08/ 3 /5/20
4	B-09-2.5MSD				008076-01MSD	s	Soil	o 08/ / 5/20
5								
6								
7								
8								
9								
10								
11								
12								
13_								
Notes	S:							
1	00-17-77 MB							

APPENDIX D

Sampling and Analysis Plan / Quality Assurance Project Plan

Contents

D.1. In	troduction	1				
D.2. Fi	eld Sampling Plan	1				
D.2.1.						
D.2.						
D.2.						
D.2.2.	Groundwater Sampling	.3				
D.2.2	2.1. Monitoring Well Installation	3				
D.2.2	2.2. Monitoring Well Development	4				
D.2.2	1 0					
D.2.2						
D.2.2	•					
D.2.3.	Sample Custody and Field Documentation	6				
D.2.3	I /					
D.2.3	3.2. Field Documentation	6				
D.2.4.	Decontamination and Investigative-Derived Waste Management	7				
D.3. Q	uality Assurance Project Plan	7				
D.3.1.						
D.3.2.	Project Organization and Responsibilities					
D.3.3.						
D.3.3						
D.3.4.	Data Quality Objectives1					
D.3.4						
D.3.4						
D.3.4						
D.3.4	4.4. Comparability1	2				
D.3.4	•					
D.3.4	,					
D.3.5.	Quality Control Procedures1					
D.3.						
D.3.	5.2. Laboratory Quality Control1	3				
D.3.6.	Corrective Actions1	4				
D.3.7.	Data Reduction, Quality Review, and Reporting1	5				
D.3.7	7.1. Minimum Data Reporting Requirements1	5				
D.3.8.	Data Quality Verification and Validation1	6				
D.3.9. Preventative Maintenance Procedures and Schedules						
D 3 10 Performance and System Audits						

D.	3.11. Data and Records Management1	8
	D.3.11.1. Field Documentation1	8
	D.3.11.2. Analytical Data Management	9
D.	4. References1	9
List of Tables		
D-1	Analytical Methods, Sample Containers, Preservation, and Holding Times	
D-2	QC Parameters Associated with PARCCS	
D-3	Measurement Quality Objectives for Water Samples, Friedman and Bruya Inc.	,
D-4	Measurement Quality Objectives for Soil Samples, Friedman and Bruya, Inc.	
List of Attachments		

- D-1 Aspect Field Forms
- D-2 Aspect Field General Procedures

D.1. Introduction

This Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) has been prepared for the of the Texaco Strickland Cleanup Site at 6808 196th Street SW in Lynnwood, Washington (herein referred to as the Site) as Appendix D of the Interim Action Work Plan (IAWP). The purpose of this SAP/QAPP is to ensure that field sample collection, handling, and laboratory analysis will generate data to meet project-specific data quality objectives (DQOs) in accordance with the Model Toxics Control Act (MTCA) requirements (WAC 173-340-350). This SAP/QAPP is comprised of two major components: a Field Sampling Plan (FSP) defining field protocols and a QAPP defining analytical protocols.

Environmental investigation activities to be performed under this SAP/QAPP are on behalf of two parties, Strickland Real Estate, LLC (Strickland) and Chevron Environmental Management Company (CEMC) according to the Agreed Order 14315. The Field Sampling Plan (Section D.2) and Quality Assurance Project Plan (Section D.3) are presented below.

D.2. Field Sampling Plan

D.2.1. Soil Sampling

Soil performance monitoring associated with the interim cleanup action will include laboratory analysis of both excavation sidewall and excavation bottom samples. The distances between soil samples will not exceed 20 feet laterally and 5 feet vertically, and closer sample spacing may be necessary. The samples will be submitted for laboratory analysis of parameters described in the QAPP.

The soldier piles of the shoring system will be used as a reference point in the excavation areas for setting up a sampling grid. For performance monitoring of the assumed excavation bottoms, Aspect will establish a systematic 20-foot sampling grid. Within each grid area, Aspect will field-screen the soil headspace vapor for volatile organic chemicals (VOCs) using a photoionization detector (PID) for evidence of contamination, and samples will be collected for laboratory analysis described in the QAPP. Analytes include gasoline- and diesel-range hydrocarbons, benzene, toluene, ethylbenzene, and total xylenes (BTEX) based on field screening observations at the planned bottom elevations, as follows:

• If there are no field screening indicators of contamination within the entire grid area, a single soil sample will be collected for analysis from the approximate center of the square area (one sample per maximum 20-foot by 20-foot square) to document the remediation levels (Table B) have been met at depth.

- If field screening indications of contamination are observed at the planned excavation limit, the area will be immediately overexcavated by approximately 2 feet deep, and field screened.¹
- This overexcavation process will be repeated until there are no field indications of contamination, or until the maximum overexcavation depth is reached, whichever occurs first. Then excavation performance bottom samples will be collected as indicated above.

Aspect will subcontract with a Washington-licensed resource protection well driller to complete monitoring well installations in accordance with requirements of Chapter 173-160 WAC.

The following subsections detail the procedures for soil sample collection, handling, identification, and sample quality assurance/quality control (QA/QC).

D.2.1.1. Soil Sample Collection and Handling Procedures

Aspect field personnel, under the direction of a licensed geologist or engineer, will oversee the excavation activities. The field representative will visually classify the soils in accordance with ASTM International (ASTM) Method D2488 and record soil descriptions, field screening results, and other relevant details (e.g., staining, debris, odors, etc.) in the field notes. If samples are collected for chemical analysis, the sample ID and depth will also be recorded in the field notes.

The performance monitoring soil samples will be discrete grab samples of soil collected from within the excavation using the excavator bucket, or, if safely accessible to a worker, by hand using a decontaminated stainless-steel spoon or disposable spoon.

Headspace Vapor

Samples will be field screened to obtain a relative estimate of its total VOC concentration. This field screening will be performed by measuring the concentration of VOCs in the headspace above the sample in a closed container using a photoionization detector (PID). The field screening will be performed by placing the soil into a sealed plastic bag (e.g., Ziploc), disaggregating the soil by hand, allowing the sample to equilibrate, and then opening the bag slightly, inserting the instrument probe, and measuring the VOC concentration in the headspace. If the ambient temperature is below 65°F, the sample will be warmed (e.g., in a heated vehicle) before the headspace measurement is made.

The PID will be calibrated daily in the field using the manufacturer's calibration standard (100 parts per million [ppm] isobutylene gas). A calibration test, referred to as a "bump test," will be performed as necessary in the field using the calibration gas to check that the PID remains properly calibrated throughout the day.

Sheen Testing

Sheen testing will be conducted by placing soil in a pan of water and observing the water surface for signs of sheen. Sheens are classified as follows:

-

¹ Preliminary samples will be dual purposed; to document soil quality at the base of the planned excavation and to profile the stockpile as described above.

- No Sheen: No visible sheen on the surface of the water.
- **Slight Sheen:** Light, colorless, dull sheen. The spread is irregular and dissipates rapidly.
- **Moderate Sheen:** Light to heavy sheen, may show color/iridescence. The spread is irregular to flowing. Few remaining areas of no sheen are evident on the water surface.
- **Heavy Sheen:** Heavy sheen with color/iridescence. The spread is rapid and the entire water surface may be covered with sheen.

Sample Collection for Laboratory Analysis

All performance monitoring soil samples to be submitted for gasoline-range total petroleum hydrocarbons (by Ecology Method NWTPH-Gx) and VOC analyses (by EPA Methods 8021 or 8260C) and will be collected in accordance with EPA Method 5035A. The soil aliquot for these analyses will be collected using a laboratory-supplied modified disposable plastic syringe from the bucket as required by the EPA Method 5035A and placed in pre-weighed laboratory-supplied vials.

For all other analyses, the performance monitoring soil samples will be removed from the bucket using a stainless-steel spoon and placed in a stainless-steel bowl for homogenization with the stainless-steel spoon. Gravel-sized material greater than approximately 0.5 inches will be removed from the sample during mixing. A representative aliquot of the homogenized soil will be placed into certified-clean jars supplied by the analytical laboratory.

QC soil samples (e.g., field duplicates and trip blanks) will be collected at the respective frequencies prescribed in Section D.3.5 of the QAPP.

D.2.1.2. Soil Sample Identification

Each soil sample collected for chemical analysis will be assigned a unique sample identification number including the location ID and elevation from which the sample was collected. Location IDs will be determined using the shoring piles as reference. Samples will be named using the following conventions:

- **Bottom samples:** B east/west pile number north/south pile number elevation (e.g., B-P08-P23-425)
- Sidewall samples: SW pile number elevation (e.g., SW-P08-435)

D.2.2. Groundwater Sampling

D.2.2.1. Monitoring Well Installation

Monitoring wells are planned to be installed via hollow-stem auger methods. Soil samples from borings will be collected in stainless steel split spoon samplers using an autohammer prior to the installation of the monitoring well. Soils well be logged and sampled, and an appropriate well screen interval will be selected. Once the appropriate depth has been reached, the well will be constructed in accordance with Washington Administrative Code (WAC) 173-160. As the augers are removed from the boring, the

annulus of the well will be filled with sand and bentonite, as appropriate. Wells will consist of 2-inch-diameter, Schedule 40 PVC blank casing and 0.010-inch slot (10-slot) well screen. Well screens will be 15 feet in length to accommodate seasonal groundwater fluctuations. With documented depths to water of 7 to 15 feet below grade, the well screens are planned to be set from 5 to 20 feet below grade, contingent on field observations. All wells will be completed with an appropriate protective seal and secured with locking well caps.

D.2.2.2. Monitoring Well Development

Following installation, each monitoring well will be developed to remove fine-grained material from inside the well casing and filter pack, and to improve hydraulic communication between the well screen and the surrounding water-bearing formation. Wells containing light non-aqueous phase liquid (LNAPL) will be developed by hand using a bailer. All other wells will be developed using a 12-volt submersible pump. During development, the pump will be surged along the entire length of submerged well screen. Each well will be developed until visual turbidity is reduced to minimal levels, or until a maximum of 10 casing volumes of water has been removed. Field parameters will be recorded on a Well Development Record form. Groundwater produced during well development will be collected and stored at the Site in sealed and labeled 55-gallon drums pending profiling and disposal.

D.2.2.3. Groundwater Sampling Procedure

Groundwater samples will be collected and handled in accordance with the procedures described below:

- 1. The locking well cap will be removed, and the presence of LNAPL will be evaluated in all wells after installation. The depth-to-LNAPL and/or depth-to-water will be measured from the surveyed location to the nearest 0.01 foot using an electronic oil/water interface probe. The oil/water interface probe will be decontaminated between wells.
- 2. Each monitoring well will be purged at a low-flow rate less than 0.5 liter per minute (Puls and Barcelona, 1996; Ecology, 2012) using a peristaltic pump and dedicated tubing (polyethylene tubing with a short length of silicon tubing through the pump head) in order to minimize drawdown. The tubing intake will be placed just below the center of the saturated section of well screen. During purging, field parameters (temperature, pH, specific electrical conductance, dissolved oxygen, and oxidation-reduction potential [ORP]) will be monitored using a Yellow Springs Instrument (YSI) water quality meter and flow-through cell, or equivalent. These field parameters will be recorded at 2- to 5-minute intervals throughout well purging until they stabilize. Stabilization is defined as three successive readings where the parameter values vary by less than 10 percent (or 0.5 milligrams per liter [mg/L] dissolved oxygen if the readings are below 1 mg/L). However, no more than three well casing volumes will be purged prior to ground water sample collection. Three turbidity measurements will also be made before collecting the sample using a Hach 2100Q turbidimeter, or equivalent.

- 3. Samples with a field-measured specific electrical conductance greater than 1,000 microSiemans per centimeter (μS/cm) or turbidity greater than 25 nephelometric turbidity units (NTU) will be denoted as such on the chain-of-custody form, so that the laboratory can employ appropriate sample preparation techniques to avoid analytical interferences for specific analyses.
- **4.** If the monitoring well is completely dewatered during purging, samples will be collected when sufficient recharge has occurred to allow filling of all sample containers.
- 5. Once purging is complete, the ground water samples will be collected using the same low-flow rate directly into laboratory-supplied sample containers. Samples for dissolved metals analyses will be filtered using an in-line 0.45 micrometer (μm) filter.
- **6.** In wells that have measurable LNAPL, samples will not be collected.
- 7. QC ground water samples (e.g., field duplicates and trip blanks) will be collected at the respective frequencies prescribed in Section D.3.5
- **8.** Following sampling, the wells cap and monument cap will be secured. Each well's dedicated tubing will be retained in the monitoring well for subsequent sampling events. Any damaged or defective well caps or monuments will be noted and scheduled for replacement, if necessary.

D.2.2.4. Groundwater Sample Laboratory Analyses

Groundwater samples will be submitted to a state-certified laboratory and analyzed for the following COCs:

- Total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO) by Ecology Method NWTPH-Gx
- Total petroleum hydrocarbons (TPH) as diesel-range organics (DRO) and oilrange organics (ORO) by Ecology Method NWTPH-Dx (without Silica Gel Cleanup)
- Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method 8260

D.2.2.5. Groundwater Sample Identification

Each groundwater sample will be assigned a unique sample identification number that includes the well number and the six-digit date on which the sample was collected. For example, a groundwater sample collected from monitoring well MW-11 on May 30, 2021, would be identified as MW-11-053021.

D.2.3. Sample Custody and Field Documentation

D.2.3.1. Sample Custody

Upon collection, samples will be placed upright in a cooler. For soil and groundwater, ice or blue ice will be placed in each cooler to meet sample preservation requirements. Inert cushioning material will be placed in the remaining space of the cooler as needed to limit movement of the sample containers. If the sample coolers are being shipped, not hand delivered, to the laboratory, the COC form will be placed in a waterproof bag taped to the inside lid of the cooler for shipment.

After collection, samples will be maintained in the consultant's custody until formally transferred to the analytical laboratory, a shipping agency, or a lab-provided courier. For purposes of this work, custody of the samples will be defined as follows:

- In plain view of the field representatives
- Inside a cooler that is in plain view of the field representative
- Inside any locked space such as a cooler, locker, car, or truck to which the field representative has the only immediately available key(s)

A COC record provided by the laboratory will be initiated at the time of sampling for all samples collected. The record will be signed by the field representative and others who subsequently take custody of the sample. Couriers or other professional shipping representatives are not required to sign the COC form; however, shipping receipts will be collected and maintained as a part of custody documentation in project files. A copy of the COC form with appropriate signatures will be kept by the consultants' project manager.

Upon sample receipt, the laboratory will fill out a cooler receipt form to document sample delivery conditions. A designated sample custodian will accept custody of the shipped samples and will verify that the COC form matches the samples received. The laboratory will notify the project manager, as soon as possible, of any issues noted with the sample shipment or custody.

D.2.3.2. Field Documentation

While conducting field work, the field representative will document pertinent observations and events, specific to each activity, on field forms (e.g., boring log form, as-built well completion form, well development form, ground water sampling form, etc.; see Attachment D-1) and/or in a field notebook, and, when warranted, provide photographic documentation of specific sampling efforts. Field notes will include a description of the field activity, sample descriptions, and associated details such as the date, time, and field conditions. General Aspect field procedures are documented in Attachment D-2.

D.2.4. Decontamination and Investigative-Derived Waste Management

All non-disposable sampling equipment (stainless steel spoons and bowls) will be decontaminated before collection of each sample. The decontamination sequence consists of a scrub with a non-phosphate (Alconox or Liquinox) solution, followed by tap water (potable) rinse, and finished with thorough spraying with deionized or distilled water. A solvent rinse – methanol or hexane – may be used to remove petroleum product from sampling equipment prior to the decontamination procedure described above.

Investigation-derived waste (IDW) water generated during equipment decontamination and sampling will be containerized in labeled drums. The containerized IDW water will be disposed of appropriately at a permitted off-site disposal facility.

Soil cuttings from borings and disposable personal protective equipment (PPE) will be placed in labeled Department of Transportation (DOT)-approved drums pending the analytical results to determine appropriate disposal. Each drum will be labeled with the following information:

- Nonclassified IDW
- Content of the drum (soil, water, PPE) and its source (i.e., the exploration[s] from which the contents came)
- Date IDW was generated
- Name and telephone number of the contact person.

The drums of IDW will be temporarily consolidated on-site, profiled (in accordance with applicable waste regulations) based on available analytical data, and disposed of appropriately at a permitted off-site disposal facility. Containers of IDW will be on site less than 90 days from date of generation. Documentation for off-site disposal of IDW will be maintained in the project file.

D.3. Quality Assurance Project Plan

This QAPP identifies QC procedures and criteria required to ensure that data collected are of known quality and acceptable to achieve project objectives. Specific protocols and criteria are also set forth in this QAPP for data quality evaluation, upon the completion of data collection, to determine the level of completeness and usability of the data. It is the responsibility of the project personnel performing or overseeing the sampling and analysis activities to adhere to the requirements of the FSP and this QAPP.

D.3.1. Purpose of the QAPP

As stated in the Washington State Department of Ecology's (Ecology) Guidelines for Preparation of Quality Assurance Project Plans for Environmental Studies (Ecology Publication No. 04-03-030, July 2004), specific goals of this QAPP are as follows:

• Focus project manager and project team to factors affecting data quality during the planning stage of the project

- Facilitate communication among field, laboratory, and management staff as the project progresses
- Document the planning, implementation, and assessment procedures for QA/QC activities for the investigation
- Ensure that the DQOs are achieved
- Provide a record of the project to facilitate final report preparation

The DQOs for the project include both qualitative and quantitative objectives, which define the appropriate type of data and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support the environmental assessment. To ensure that the DQOs are achieved, this QAPP details aspects of data collection including analytical methods, QA/QC procedures, and data quality reviews. This QAPP describes both quantitative and qualitative measures of data to ensure that the DQOs are achieved. DQOs dictate data collection rationale, sampling and analysis designs that are presented in the main body of the IAWP, and sample collection procedures that are presented in the FSP (Section D.2).

D.3.2. Project Organization and Responsibilities

The project organization for completion of the interim action, including identification of key personnel and their responsibilities, is described below.

The current owner of the subject property is Strickland Real Estate Holdings, LLC. Aspect has been contracted by the owner to plan and implement the interim action as part of Ecology Agreed Order No. 14315. The project contact information for the current owner is:

Strickland Real Estate Holdings, LLC 12199 Village Center, Suite 201 Mukilteo, WA 98275

The Project Manager and primary contact for Aspect is Mr. Adam Griffin, PE, Associate Engineer. The document control clerk is Mr. Michael Maisen. The QA/QC officer is Mr. Jason Yabandeh. The contact information for Aspect is:

Aspect Consulting, LLC 710 Second Ave, Suite 550 Seattle, WA 98104

Telephone: (206) 328-7443

As a named potentially liable person in Ecology Agreed Order No. 14315, Chevron Environmental Management Company (CEMC) will review and approve the IAWP. The Project Manager for CEMC is Mr. Nate Blomgren, and the project contact information for CEMC is:

Chevron Environmental Management and Real Estate Company 6001 Bollinger Canyon Road, C2096 San Ramon, CA 94583

Ecology has jurisdiction over the remedial investigation and cleanup activities at the Site as stipulated in Chapter 70.105 of the Revised Code of Washington, and the MTCA. The remedial investigation is being conducted as part of Ecology's Agreed Order No. 14315. The Project Manager for Ecology is:

Mr. Dale Myers Washington State Department of Ecology Northwest Regional Office 3190 160th Avenue SE Bellevue, WA 98008

Aspect will contract with Friedman and Bruya, Inc. (F&B), a state-certified laboratory. The laboratory project manager is responsible for ensuring that all laboratory analytical work for soil and water media complies with project requirements, and acting as a liaison with the project manager, field manager, and data quality manager to fulfill project needs on the analytical laboratory work. This responsibility also applies to analyses the laboratory project manager subcontracts to another laboratory. The laboratory contact information is:

Friedman & Bruya, Inc. 3012 16th Ave SW Seattle, WA 98199

D.3.3. Analytical Methods and Reporting Limits

Laboratory analytical methods for soil and ground water analyses to be performed during this environmental characterization are as follow:

Chemical Group and Analyte	Analytical Method	Matrix
Gasoline Range Organics	NWTPH-Gx	Soil and Groundwater
Diesel & Residual Range Organics	NWTPH-Dx	Soil and Groundwater
BTEX	EPA 8260	Soil and Groundwater
BTEX, MTBE, EDB, EDC, and Naphthalene	EPA TO-15	Soil Vapor
Aliphatic and Aromatic Hydrocarbons	MA APH	Soil Vapor

Table E-1 lists samples containers, preservation, and analytical holding times for each analysis.

D.3.3.1. Method Detection Limit and Method Reporting Limit

The method detection limit (MDL) is the minimum concentration of a compound that can be measured and reported with a 99-percent confidence that the analyte concentration is greater than zero. MDLs are established by the laboratory using prepared samples, not samples of environmental media.

The method reporting limit (RL) is defined as the lowest concentration at which a chemical can be accurately and reproducibly quantified, within specified limits of precision and accuracy, for a given environmental sample. The RL can vary from sample

to sample depending on sample size, sample dilution, matrix interferences, moisture content, and other sample-specific conditions. As a minimum requirement for organic analyses, the RL should be equivalent to or greater than the concentration of the lowest calibration standard in the initial calibration curve. The expected MDLs and RLs from F&B laboratory are summarized in Tables D-3, D-4, and D-5 for groundwater, soil, and soil vapor samples, respectively.

D.3.4. Data Quality Objectives

DQOs, including the Measurement Quality Indicators (MQIs)—precision, accuracy, representativeness, comparability, completeness, and sensitivity (namely PARCCS parameters) —and sample-specific RLs are dictated by the data quality objectives, project requirements, and intended uses of the data. For this project, the analytical data must be of sufficient technical quality to determine whether contaminants are present and, if present, whether their concentrations are greater than or less than applicable screening criteria based on protection of human health and the environment.

The quality of data generated will be assessed against the MQIs set forth in this QAPP. Specific QC parameters associated with each of the MQIs are summarized in Table D-2. Specific MQI goals and evaluation criteria (i.e., MDLs, RLs, percent recovery (%R)) for accuracy measurements, relative percent difference (RPD) for precision measurements, are defined in Tables D-3 and D-4. Definitions of these parameters and the applicable QC procedures are presented below.

D.3.4.1. Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared with their average values. Analytical precision is measured through matrix spike/matrix spike duplicate (MS/MSD) samples and laboratory control samples/laboratory control sample duplicate (LCS/LCSD) when there is sufficient sample volume. A laboratory duplicate sample or just an LCS/LCSD may be used in place of an MS/MSD if there is insufficient volume.

Analytical precision is quantitatively expressed as the relative percent difference (RPD) between the LCS/LCSD, MS/MSD, or laboratory duplicate pairs and is calculated with the following formula:

$$RPD \ (\%) = 100 \times \frac{|S - D|}{(S + D)/2}$$

where:

S = analyte concentration in sample

D = analyte concentration in duplicate sample

Analytical precision measurements will be carried out at a minimum frequency of 1 per 20 samples for each matrix sampled, or one per laboratory analysis group. Laboratory precision will be evaluated against laboratory quantitative RPD performance criteria as defined in Tables D-3 and D-4 for specific analytical methods and sample matrices. If the

control criteria are not met, the laboratory will supply a justification of why the limits were exceeded and implement the appropriate corrective actions. The RPD will be evaluated during data review and validation. The data reviewer will note deviations from the specified limits and will comment on the effect of the deviations on reported data.

D.3.4.2. Accuracy

Accuracy measures the closeness of the measured value to the true value. The accuracy of chemical test results is assessed by "spiking" samples with known standards (surrogates, blank spikes, or matrix spikes) and establishing the average recovery. Accuracy is quantified as the %R. The closer the %R is to 100 percent, the more accurate the data.

Surrogate recovery will be calculated as follows:

Recovery (%) =
$$\frac{MC}{SC} \times 100$$

where:

SC = spiked concentration

MC = measured concentration

MS percent recovery will be calculated as follows:

Recovery (%) =
$$\frac{MC - USC}{SC} \times 100$$

where:

SC = spiked concentration

MC = measured concentration

USC = unspiked sample concentration

Accuracy measurements on MS samples will be carried out at a minimum frequency of 1 in 20 samples per matrix analyzed. Blank spikes will also be analyzed at a minimum frequency of 1 in 20 samples (not including QC samples) per matrix analyzed. Surrogate recoveries for organic compounds will be determined for each sample analyzed for respective compounds. Laboratory accuracy will be evaluated against the performance criteria defined in Tables D-3 and D-4 If the control criteria are not met, the laboratory will supply a justification of why the limits were exceeded and implement the appropriate corrective actions. Percent recoveries will be evaluated during data review and validation, and the data reviewer will comment on the effect of the deviations on the reported data.

D.3.4.3. Representativeness

Representativeness measures how closely the measured results reflect the actual concentration or distribution of the chemical compounds in the matrix sampled. The FSP sampling techniques and sample handling protocols (e.g., homogenizing, storage, preservation, and use of duplicates and blanks) have been developed to ensure representative samples. Only representative data will be deemed usable. Sampling

locations are described in Section 5.2 of the IAWP. The field sampling procedures are described in the FSP (Section D.2) of this SAP.

The representativeness of a data point is determined by assessing the integrity of the sample upon receipt at the laboratory (e.g., consistency of sample ID and collection date/time between container labels versus COC forms, breakage/leakage, cooler temperature, preservation, headspace for VOA containers, etc.); compliance of method required sample preparation and analysis holding times; the conditions of blanks (trip blank, rinsate blank, field blank, method/preparation blank, and calibration blank) associated with the sample; and the overall consistency of the results within a field duplicate pair.

D.3.4.4. Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal will be achieved through the use of standard techniques to collect samples, USEPA-approved standard methods to analyze samples, and consistent units to report analytical results. Data comparability also depends on data quality. Data of unknown quality cannot be compared.

D.3.4.5. Completeness

Completeness is defined as the percentage of measurements made that are judged to be valid. Results will be considered valid if the precision, accuracy, and representativeness objectives are met and if RLs are sufficient for the intended uses of the data. Completeness is calculated as follows:

Completeness (%) =
$$\frac{V}{P} \times 100$$

where:

V = number of valid measurements

P = number of measurements taken

Valid and invalid data (i.e., data qualified with the R flag [rejected]) will be identified during data validation. The target completeness goal for this project is 95 percent.

D.3.4.6. Sensitivity

Sensitivity depicts the level of ability an analytical system (i.e., sample preparation and instrumental analysis) has in detecting a target component in a given sample matrix with a defined level of confidence. Factors affecting the sensitivity of an analytical system include analytical system background (e.g., laboratory artifact or method blank contamination), sample matrix (e.g., mass spectrometry ion ratio change, co-elution of peaks, or baseline elevation), and instrument instability.

D.3.5. Quality Control Procedures

Field and laboratory QC procedures are outlined below.

D.3.5.1. Field Quality Control

Beyond use of standard sampling protocols defined in the FSP, field QC procedures include maintaining the field instrumentation used. Field instruments (e.g., PID for evaluating presence of VOCs in soil samples, and the YSI meter for measuring field parameters during ground water sampling) are maintained and calibrated regularly prior to use, in accordance with manufacturer recommendations.

In addition, field QC samples will be collected and submitted for analyses to monitor the precision and accuracy associated with field procedures. Field QC samples to be collected and analyzed for this RI include field duplicates, trip blanks, and equipment rinsate blanks. The definition and sampling requirements for field QC samples are presented below.

Blind Field Duplicates

Blind field duplicate samples are used to check for sampling and analysis reproducibility; however, the field duplicate sample results include variability introduced during both field sampling and laboratory preparation and analysis, and EPA data validation guidance provides no specific evaluation criteria for field duplicate samples. Advisory evaluation criteria are set forth at 35 percent for RPD (if both results are greater than five times the RL) and two times the RLs for concentration difference (if either result is less than five times the RL) between the original and field duplicate results.

Field Duplicates will be submitted "blind" to the laboratory as discrete samples (i.e., given unique sample identifiers to keep the duplicate identity unknown to the laboratory), but will be clearly identified in the field log. Field duplicate samples will be collected at a frequency of 5 percent (1 per 20) of the field samples for each matrix and analytical method, but not less than one duplicate per sampling event per matrix.

If a given soil sample depth interval lacks sufficient volume (recovery) to supply material for a planned analysis and its field duplicate analysis, the field duplicate aliquot will be collected for that analysis from another depth interval in that same location if practical.

Equipment Rinsate Blank

Equipment rinsate blanks are collected to determine the potential of cross-contamination introduced by nondedicated equipment (e.g., bladder pump and YSI meter) that is used at multiple sample locations. Deionized water (obtained from the laboratory) is rinsed through the decontaminated sampling equipment and collected into adequate sample containers for analysis. The equipment rinsate blank is then handled in a manner identical to the primary samples collected with that piece of equipment. The blank is then processed, analyzed, and reported as a regular field sample. The rinsate blank collection frequency will be 1 per 20 samples for each matrix and analytical method, but not less than one equipment rinsate per sampling event per matrix. When dedicated equipment is used, equipment rinsate blanks will not be collected.

D.3.5.2. Laboratory Quality Control

The laboratories' analytical procedures must meet requirements specified in the respective analytical methods or approved laboratory standard operating procedures

(SOPs), e.g., instrument performance check, initial calibration, calibration check, blanks, surrogate spikes, internal standards, and/or labeled compound spikes. Specific laboratory OC analyses required for this project will consist of the following at a minimum:

- Instrument tuning, instrument initial calibration, and calibration verification analyses as required in the analytical methods and the laboratory standard operating procedures (SOPs).
- Laboratory and/or instrument method blank measurements at a minimum frequency of 5 percent (1 per 20 samples) or in accordance with method requirements, whichever is more frequent.
- Accuracy and precision measurements as defined in Table D-2, at a minimum frequency of 5 percent (1 per 20 samples) or in accordance with method requirements, whichever is more frequent. In cases where a pair of MS/MSD or MS/laboratory duplicate analyses are not performed on a project sample, a set of LCS/LCSD analyses will be performed to provide sufficient measures for analytical precision and accuracy evaluation.

The laboratory's QA officers are responsible for ensuring that the laboratory implements the internal QC and QA procedures detailed in the laboratory's Quality Assurance Manual.

D.3.6. Corrective Actions

If routine QC audits by the laboratory result in detection of unacceptable conditions or data, actions specified in the laboratory SOPs will be taken. Specific corrective actions are outlined in each SOP used and can include the following:

- Identifying the source of the violation
- Reanalyzing samples if holding time criteria permit
- Resampling and analyzing
- · Evaluating and amending sampling and analytical procedures, and/or
- Accepting but qualifying data to indicate the level of uncertainty

If unacceptable conditions occur, the laboratory will contact the project manager to discuss the issues and determine the appropriate corrective action. Corrective actions taken by the laboratory during analysis of samples for this project will be documented by the laboratory in the case narrative associated with the affected samples.

In addition, the project data quality manager will review the laboratory data generated for this investigation to ensure that project DQOs are met. If the review indicates that non-conformances in the data have resulted from field sampling or documentation procedures or laboratory analytical or documentation procedures, the impact of those non-conformances on the overall project data usability will be assessed. Appropriate actions, including re-sampling and/or re-analysis of samples may be recommended to the project manager to achieve project objectives.

D.3.7. Data Reduction, Quality Review, and Reporting

All data will undergo a QA/QC evaluation at the laboratory which will then be reviewed by the responsible data quality manager. Initial data reduction, evaluation, and reporting at the laboratory will be carried out in full compliance with the method requirement and laboratory SOPs. The laboratory internal review will include verification (for correctness and completeness) of electronic data deliverable (EDD) accompanied with each laboratory report. The responsible database manager will verify the completeness and correctness of all laboratory deliverables (i.e., laboratory report and EDDs) before releasing the deliverables for data validation.

D.3.7.1. Minimum Data Reporting Requirements

The following sections specify general and specific requirements for analytical data reporting to provide sufficient deliverables for project documentation and data quality assessment.

General Requirements

The following requirements apply to laboratory reports for all types of analyses:

- A laboratory report will include a cover page signed by the laboratory director, the laboratory QA officer, or his/her designee to certify the eligibility of the reported contents and the conformance with applicable analytical methodology.
- Definitions of abbreviations, data flags and data qualifiers used in the report.
- Cross reference of field sample names and laboratory sample identity for all samples in the SDG.
- Completed COC document signed and dated by parties of acquiring and receiving.
- Completed sample receipt document with record of cooler temperature and sample conditions upon receipt at the laboratory. Anomalies such as inadequate sample preservation, inconsistent bottle counts, and sample container breakage, and communication record and corrective actions in response to the anomalies will be documented and incorporated in the sample receipt document. The document will be initialed and dated by personnel that complete the document.
- Case narrative that addresses any anomalies or QC outliers in relation to sample receiving, sample preparation, and sample analysis on samples in the sample delivery group (SDG). The narrative will be presented separately for each analytical method and each sample matrix.
- All pages in the report are to be paginated. Any insertion of pages after the laboratory report is issued will be paginated with starting page number suffixed with letters (e.g., pages inserted between pages 134 and 135 should be paginated as 134A, 134B, etc.)
- Any resubmitted or revised report pages will be submitted to project manager
 with a cover page stating the reason(s) and scope of resubmission or revision, and
 signed by laboratory director, QA officer, or the designee.

Specific Requirements

The following presents specific requirements for laboratory reports:

- Sample results: All soil sample results will be reported on a dry-weight basis. The report pages for sample results (namely Form 1s) will, at minimum, include sample results, RLs, unit, proper data flags, preparation, and analysis, dilution factor, and percent moisture (for solid samples).
- Method blank results.
- LCS and LCSD (if matrix spike duplicate analysis is not performed) results with laboratory acceptance criteria for %R and RPD.
- Surrogate spike results with laboratory acceptance criteria for %R.
- MS and MSD results with laboratory acceptance criteria for %R and RPD. In cases where MS/MSD analyses were not performed on a project sample, LCS/LCSD analyses should be performed and reported instead.

D.3.8. Data Quality Verification and Validation

Reported analytical results will be qualified by the laboratory to identify QC concerns in accordance with the specifications of the analytical methods. Additional laboratory data qualifiers may be defined and reported by the laboratory to more completely explain QC concerns regarding a particular sample result. All data qualifiers will be defined in the laboratory's narrative reports associated with each case.

Data validation will be performed on all data consistent with United States Environmental Protection Agency Stage 2A requirements. In cases where a systematic QC problem is suspected, such as unusual detections of an analyte or consistent outlying results of a QC parameter, a more detailed review will be performed on laboratory records pertinent to the concerned analysis to further evaluate the extend of the QC issue and the final data quality and usability. The actual level of validation for each data point will be entered in the electrical database submitted to the Ecology Environmental Information Management system (EIMs). Data validation will be conducted following the guidance below:

- EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-135, EPA-540-R-2017-001.
- EPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-136, EPA-540-R-2017-002.

The data validation will examine and verify the following parameters against the method requirements and laboratory control limits specified in Tables D-3 and D-5:

- Sample management and holding times
- Laboratory and field blank results
- Detection and reporting limits

- Laboratory replicate results
- MS/MSD results
- LCS and/or standard reference material results
- Field duplicate results
- Surrogate spike recovery (organic analyses only)
- Internal standard recovery (internal calibration methods only)
- Inter-element interference check (ICP analyses only)
- Serial dilution (metals only)

Data qualifiers will be assigned based on outcome of the data validation. Data qualifiers are limited to and defined as follows:

- U—The analyte was analyzed for but was determined to be non-detect above the reported sample quantitation limit, or the quantitation limit was raised to the concentration found in the sample due to blank contamination.
- J—The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ—The analyte was not detected above the reported quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- X—The numerical value of the result is accurate. However, the analyte was not positively identified at that value because the chromatographic pattern in the sample did not match that of the associated fuel standard. This qualifier is applicable only to TPH results.
- R—The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.
- DNR—Do not report from this analysis; the result for this analyte is to be reported from an alternative analysis.

In cases of multiple analyses (such as an undiluted and a diluted analysis) performed on one sample, the optimal result will be determined and only the determined result will be reported for the sample.

The scope and findings of the data validation will be documented and discussed in the Data Validation Report(s). The Data Validation Report(s) will be appended to the RI report.

D.3.9. Preventative Maintenance Procedures and Schedules

Preventative maintenance in the laboratory will be the responsibility of the laboratory personnel and analysts and ensured by the laboratory project manager. This maintenance includes routine care and cleaning of instruments and inspection and monitoring of carrier gases, solvents, and glassware used in analyses. Details of the maintenance procedures are addressed in the respective laboratory SOPs.

Precision and accuracy data are examined for trends and excursions beyond control limits to determine evidence of instrument malfunction. Maintenance will be performed when an instrument begins to change as indicated by the degradation of peak resolution, shift in calibration curves, decrease in sensitivity, or failure to meet one or another of the method-specific QC criteria.

Maintenance and calibration of instruments used in the field for sampling (e.g., PID for evaluating presence of VOCs in soil samples, and the YSI meter for measuring field parameters during ground water sampling) will be conducted regularly in accordance with manufacturer recommendations prior to use.

D.3.10. Performance and System Audits

The project manager has responsibility for reviewing the performance of the laboratory QA program; this review will be achieved through regular contact with the analytical laboratory's project manager. To ensure comparable data, all samples of a given matrix to be analyzed by each specified analytical method will be processed consistently by the same analytical laboratory.

D.3.11. Data and Records Management

Records will be maintained documenting all activities and data related to field sampling and chemical analyses.

D.3.11.1. Field Documentation

Raw data received from the analytical laboratory will be reviewed, entered into a computerized database, and verified for consistency and correctness. The database will be updated based on data review and independent validation if necessary.

The following field data will be included in the database:

- Sample location coordinates
- Sample type (i.e., groundwater or soil)
- Soil or groundwater sampling depth interval

Information regarding whether concentrations represent total phase (unfiltered samples) or dissolved phase (filtered samples) will be compiled and stored in the database. Data will be submitted to Ecology's Environmental Information Management (EIM) database once data have been reviewed and validated.

D.3.11.2. Analytical Data Management

Raw data received from the analytical laboratory will be reviewed, entered into a computerized database, and verified for consistency and correctness. The database will be updated based on data review and independent validation if necessary.

The following field data will be included in the database:

- Sample location coordinates
- Sample type (i.e., groundwater or soil)
- Soil or groundwater sampling depth interval

Information regarding whether concentrations represent total phase (unfiltered samples) or dissolved phase (filtered samples) will be compiled and stored in the database. Data will be submitted to Ecology's Environmental Information Management (EIM) database once data have been reviewed and validated.

D.4. References

- Puls, R.W. and M.J. Barcelona, 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA Ground Water Issue, EPA/540/S-95/504.
- U.S. Environmental Protection Agency (EPA), 2009, Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, January 13, 2009. EPA 540-R-08-005.
- U.S. Environmental Protection Agency (EPA), 2017a, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-135, EPA-540-R-2017-001.
- U.S. Environmental Protection Agency (EPA), 2017b, Contract Laboratory Program National Functional Guidelines for Organic Superfund Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, January 2017, OLEM 9355.0-135, EPA-540-R-2017-001.
- Washington State Department of Ecology (Ecology), 2004, Collecting and Preparing Soil Samples for VOC Analysis, Implementation Memorandum Number 5, June 17, 2004.
- Washington State Department of Ecology (Ecology), 2012, Guidance for Groundwater Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Publication No. 12-07-072.

Appendix D Tables

Table D-1. Analytical Methods, Sample Containers, Preservation, and Holding Times

Project No. 180357, Lynnwood, Washington

Sample Matrix	Analytical Parameter	Analytical Method	Sample Container	No. Containers	Preservation Requirements	Holding Time	
	Gasoline Range TPH	NWTPH-Gx	Method 5035A, 40-mL vials	4	4°C ±2°C, Freeze within 48 hours to <-7°C	14 days	
Soil	Diesel and Motor Oil Range TPH	NWTPH-Dx (without Silica Gel Cleanup)	4 ounce jar	1	4°C ±2°C	14 days for extraction; 40 days for analysis	
Soil	VOCs	Method 8260	Method 5035A, 40-mL vials	4	4°C ±2°C, Freeze within 48 hours to <-7°C	14 days	
	MTBE, EDC, EDB, Naphthalene Method 8260		Method 5035A, 40-mL vials	4	4°C ±2°C, Freeze within 48 hours to <-7°C	14 days	
	Lead	Method 6020	4-ounce jar	1	4°C ±2°C	6 months	
	Gasoline Range TPH	Method NWTPH-Gx	40-mL VOA vials	3	4°C ±2°C, HCl pH < 2	14 days	
	Diesel and Motor Oil Range TPH	NWTPH-Dx (without Silica Gel Cleanup)	500-mL amber glass bottle	1	4°C ±2°C	7 days for extraction, 40 days for analysis	
Water	MTBE, EDC, EDB, Naphthalene	Method 8260	40-mL VOA vials	3	4°C ±2°C, 1 with HCl pH < 2, 2 without HCl	· 14 days for analysis	
	Halogenated VOCs	Method 8260	40-mL VOA vials	3	4°C ±2°C, 1 with HCl pH < 2, 2 without HCl	14 days for analysis	
Soil Vapor	VOCs	Method TO-15	6L SUMMA Canister	1	N/A	28 days	

Notes:

HCl = hydrochloric acid

TPH = total petroleum hydrocarbons

VOA = volatile organic analysis

BTEX = benzene, toluene, ethylbenzene, xylenes

MTBE = methyl tert-butyl ether

Table D-2. QC Parameters Associated with PARCCS

Project No. 180357, Lynnwood, Washington

Data Quality Indicators	QC Parameters					
	RPD values of:					
Precision	(1) LCS/LCS Duplicate					
	2) MS/MSD					
	(3) Field Duplicates					
	Percent Recovery (%R) or Percent Difference (%D) values of:					
	(1) Initial Calibration and Calibration Verification					
	(2) LCS					
	(3) MS					
Accuracy/Bias	(4) Surrogate Spikes					
/ toodi acy, Diac	Results of:					
	(1) Instrument and Calibration Blank					
	(2) Method (Preparation) Blank					
	(3) Trip Blank					
	(4) Equipment Rinsate Blank (if appropriate)					
	Results of All Blanks					
Representativeness	Sample Integrity (Chain-of-Custody and Sample Receipt Forms)					
	Holding Times					
	Sample-specific Reporting Limits					
Comparability	Sample Collection Methods					
	Laboratory Analytical Methods					
	Data Qualifiers					
Completeness	Laboratory Deliverables					
	Requested/Reported Valid Results					
Sensitivity	MDLs and MRLs					

Notes:

LCS = laboratory control sample

MDL = method detection limit

MRL = method reporting limit

MS/MSD = matrix spike/matrix spike duplicate

QC = Quality Control

PARCCS = Precision, Accuracy, Representativeness, Comparability, Completeness, Sensistivity

Aspect Consulting

June 2021

Table D-2 SAP/QAPP Page 1 of 1

Table D-3. Measurement Quality Objectives for Water Samples

Friedman and Bruya, Inc

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) by S	W8260C (µg/L	.)			
1,1,1,2-Tetrachloroethane	0.040	0.2	80 – 128	≤40	n/a
1,1,1-Trichloroethane	0.041	0.2	79 – 124	≤40	n/a
1,1,2,2-Tetrachloroethane	0.060	0.2	80 – 120	≤40	n/a
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.043	0.2	76 – 124	≤40	n/a
1,1,2-Trichloroethane	0.129	0.2	80 – 120	≤40	n/a
1,1-Dichloroethane	0.053	0.2	80 – 120	≤40	n/a
1,1-Dichloroethene	0.054	0.2	74 – 120	≤40	n/a
1,1-Dichloropropene	0.034	0.2	80 – 120	≤40	n/a
1,2,3-Trichlorobenzene	0.110	0.5	80 -125	≤40	n/a
1,2,3-Trichloropropane	0.131	0.5	80 – 120	≤40	n/a
1,2,4-Trichlorobenzene	0.107	0.5	77 – 127	≤40	n/a
1,2,4-Trimethylbenzene	0.024	0.2	80 – 122	≤40	n/a
1,2-Dibromo 3-Chloropropane	0.366	0.5	79 – 129	≤40	n/a
1,2-Dibromoethane (Ethylene Dibromide	0.075	0.2	80 – 120	≤40	n/a
1,2-Dichlorobenzene	0.036	0.2	80 – 120	≤40	n/a
1,2-Dichloroethane	0.072	0.2	80 – 121	≤40	n/a
1,2-Dichloropropane	0.035	0.2	80 – 120	≤40	n/a
1,3,5-Trimethyl Benzene	0.015	0.2	80 – 120	≤40	n/a
1,3-Dichlorobenzene	0.036	0.2	80 – 120	≤40	n/a
1,3-Dichloropropane	0.062	0.2	80 – 120	≤40	n/a
1,4-Dichlorobenzene	0.040	0.2	80 – 120	≤40	n/a
2,2-Dichloropropane	0.052	0.2	72 – 133	≤40	n/a
2-Butanone	0.814	5.0	73 – 123	≤40	n/a
2-Chloro Toluene	0.024	0.2	80 – 120	≤40	n/a
2-Chloroethylvinyl Ether	0.250	1.0	62 – 130	≤40	n/a
2-Hexanone	0.902	5.0	80 – 129	≤40	n/a
4-Chloro Toluene	0.016	0.2	80 – 120	≤40	n/a
4-Isopropyl Toluene	0.026	0.2	80 – 124	≤40	n/a
4-Methyl-2-Pentanone	0.974	5.0	80 – 125	≤40	n/a
Acetone	2.057	5.0	64 – 125	≤40	n/a
Acrolein	2.476	5.0	60 – 124	≤40	n/a
Acrylonitrile	0.604	1.0	76 – 123	≤40	n/a
Benzene	0.027	0.2	80 – 120	≤40	n/a
Bromobenzene	0.060	0.2	80 – 120	≤40	n/a
Bromochloromethane	0.061	0.2	80 – 120	≤40	n/a
Bromodichloromethane	0.051	0.2	80 – 122	≤40	n/a
Bromoethane	0.041	0.2	77 – 122	≤40	n/a
Bromoform	0.062	0.2	62 – 149	≤40	n/a
Bromomethane	0.252	1.0	68 – 130	≤40	n/a
Carbon Disulfide	0.037	0.2	77 – 124	≤40	n/a
Carbon Tetrachloride	0.044	0.2	71 – 139	≤40	n/a
Chlorobenzene	0.023	0.2	80 – 120	≤40	n/a

Table D-3. Measurement Quality Objectives for Water Samples

Friedman and Bruya, Inc

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) b	y SW8260C (μg/L)			
Chloroethane	0.086	0.2	68 – 133	≤40	n/a
Chloroform	0.027	0.2	80 – 120	≤40	n/a
Chloromethane	0.095	0.5	77 – 122	≤40	n/a
cis 1,3-dichloropropene	0.061	0.2	80 – 127	≤40	n/a
cis-1,2-Dichloroethene	0.043	0.2	78 – 120	≤40	n/a
Dibromochloromethane	0.048	0.2	80 – 120	≤40	n/a
Dibromomethane	0.145	0.2	80 – 120	≤40	n/a
Dichlorodifluoromethane	0.052	0.2	68 – 133	≤40	n/a
Ethyl Benzene	0.037	0.2	80 – 120	≤40	n/a
Hexachloro-1,3-Butadiene	0.073	0.5	80 – 135	≤40	n/a
Iodomethane (Methyl Iodide)	0.227	1.0	76 – 123	≤40	n/a
iso-propyl Benzene	0.021	0.2	80 – 120	≤40	n/a
Methylene Chloride	0.485	1.0	71 – 125	≤40	n/a
Methyl-tert-butyl ether	0.073	0.5	79 – 121	≤40	n/a
Naphthalene	0.118	0.5	80 – 128	≤40	n/a
n-Butyl Benzene	0.025	0.2	80 – 125	≤40	n/a
n-Propyl Benzene	0.023	0.2	80 – 120	≤40	n/a
sec-Butyl Benzene	0.024	0.2	80 – 121	≤40	n/a
Styrene	0.045	0.2	80 – 121	≤40	n/a
tert-Butyl Benzene	0.026	0.2	80 – 121	≤40	n/a
Tetrachloroethene	0.047	0.2	80 – 120	≤40	n/a
Toluene	0.040	0.2	80 – 120	≤40	n/a
trans 1,3-Dichloropropene	0.081	0.2	79 – 132	≤40	n/a
trans-1,2-Dichloroethene	0.048	0.2	75 – 120	≤40	n/a
trans-1,4-Dichloro 2-Butene	0.324	1.0	47 – 147	≤40	n/a
Trichloroethene	0.049	0.2	80 – 120	≤40	n/a
Trichlorofluoromethane	0.037	0.2	74 – 135	≤40	n/a
Vinyl Acetate	0.069	0.2	74 – 120	≤40	n/a
Vinyl Chloride	0.069	0.2	74 – 120	≤40	n/a
m,p-xylene	0.052	0.4	80 – 120	≤40	n/a
o-Xylene	0.035	0.2	80 – 120	≤40	n/a
1,2-Dichloroethane-d4	n/a	n/a	80 – 130	≤40	80 – 120
1,2-Dichlorobenzene-d4	n/a	n/a	80 – 120	≤40	80 – 120
Toluene-d8	n/a	n/a	80 – 120	≤40	80 – 120
4-Bromofluorobenzene	n/a	n/a	80 – 120	≤40	80 – 120
Gasoline Range Hydrocarbons by NWT	ΓPH-Gx (μg/L)				
Gasoline Range Hydrocarbons	0.057	0.25	80 – 120	≤40	n/a
Bromobenzene	n/a	n/a	77 – 120	≤40	n/a
Diesel and Motor Oil Range Hydrocarb	ons by NWTPH-D	x without Si	lica Gel Cleanup (µg/	'L)	
Diesel Range Hydrocarbons	39	100	61-104	≤40	n/a
Oil Range Hydrocarbons	10	200	60 – 130	≤40	n/a
o-Terphenyl	n/a	n/a	50 – 150	≤40	n/a
Metals					
Lead	0.046	0.1	80 – 120	≤20	n/a

Notes

(A) = Based on current laboratory control criteria. Some values may vary slightly between instruments and can be subject to change as the laboratory updates the charted values periodically.

%R = percent recovery

LCS/LCSD = laboratory control samples and laboratory control sample duplicate

MDL = method detection limit

MRL = method reporting limit

n/a = not applicable

RPD = relative percent difference

μg/L = microgram per liter

(--) = No PSL identified

Table D-4. Measurement Quality Objectives for Soil Samples

Friedman and Bruya, Inc.

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOCs) by	SW8260C (mg/	/kg)			
1,1,1,2-Tetrachloroethane	0.000233	0.001	80 – 120	≤40	n/a
1,1,1-Trichloroethane	0.000226	0.001	78 – 133	≤40	n/a
1,1,2,2-Tetrachloroethane	0.000253	0.001	71 – 120	≤40	n/a
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.000287	0.002	72 – 142	≤40	n/a
1,1,2-Trichloroethane	0.000286	0.001	77 – 120	≤40	n/a
1,1-Dichloroethane	0.000203	0.001	65 – 139	≤40	n/a
1,1-Dichloroethene	0.000336	0.001	73 – 138	≤40	n/a
1,1-Dichloropropene	0.000312	0.001	80 – 123	≤40	n/a
1,2,3-Trichlorobenzene	0.000305	0.005	76 – 122	≤40	n/a
1,2,3-Trichloropropane	0.000517	0.002	75 – 120	≤40	n/a
1,2,4-Trichlorobenzene	0.000332	0.005	75 – 130	≤40	n/a
1,2,4-Trimethylbenzene	0.00023	0.001	77 – 125	≤40	n/a
1,2-Dibromo-3-Chloropropane	0.000586	0.005	61 – 128	≤40	n/a
1,2-Dibromoethane (Ethylene Dibromide)	0.000176	0.001	79 – 120	≤40	n/a
1,2-Dichlorobenzene	0.000293	0.001	77 – 120	≤40	n/a
1,2-Dichloroethane	0.000191	0.001	77 – 120	≤40	n/a
1,2-Dichloropropane	0.000162	0.001	74 – 120	≤40	n/a
1,3,5-Trimethylbenzene	0.000254	0.001	77 – 126	≤40	n/a
1,3-Dichlorobenzene	0.000227	0.001	76 – 120	≤40	n/a
1,3-Dichloropropane	0.000209	0.001	77 – 120	≤40	n/a
1,4-Dichlorobenzene	0.000232	0.001	75 – 120	≤40	n/a
2,2-Dichloropropane	0.000292	0.001	77 – 137	≤40	n/a
2-Butanone	0.000513	0.005	64 – 120	≤40	n/a
2-Chloroethyl Vinyl Ether	0.000276	0.005	20 – 157	≤40	n/a
2-Chlorotoluene	0.0003	0.001	76 – 120	≤40	n/a
2-Hexanone	0.000439	0.005	62 – 128	≤40	n/a
4-Chlorotoluene	0.000277	0.001	75 – 121	≤40	n/a
4-Isopropyl Toluene	0.000236	0.001	78 – 131	≤40	n/a
4-Methyl-2-Pentanone	0.00042	0.005	70 – 124	≤40	n/a
Acetone	0.000482	0.005	48 – 132	≤40	n/a
Acrolein	0.003809	0.05	60 – 130	≤40	n/a
Acrylonitrile	0.001026	0.005	59 – 124	≤40	n/a
Benzene	0.000296	0.001	80 – 120	≤40	n/a
Bromobenzene	0.000153	0.001	75 – 120	≤40	n/a
Bromochloromethane	0.000323	0.001	69 – 133	≤40	n/a
Bromodichloromethane	0.000254	0.001	80 – 122	≤40	n/a
Bromoethane	0.00044	0.002	74 – 132	≤40	n/a
Bromoform	0.000297	0.001	63 – 120	≤40	n/a
Bromomethane	0.000187	0.001	40 – 172	≤40	n/a

Aspect Consulting
June 2021

SAP/QAPP

Table D-4. Measurement Quality Objectives for Soil Samples

Friedman and Bruya, Inc.

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Volatile Organic Compounds (VOC	cs) by SW8260C (mg/	/kg)			
Carbon Disulfide	0.000559	0.001	72 – 146	≤40	n/a
Carbon Tetrachloride	0.000213	0.001	76 – 136	≤40	n/a
Chlorobenzene	0.000219	0.001	80 – 120	≤40	n/a
Chloroethane	0.000462	0.001	53 – 154	≤40	n/a
Chloroform	0.000234	0.001	75 – 126	≤40	n/a
Chloromethane	0.000263	0.001	65 – 129	≤40	n/a
cis-1,2-Dichloroethene	0.00024	0.001	75 – 124	≤40	n/a
cis-1,3-Dichloropropene	0.000226	0.001	80 – 124	≤40	n/a
Dibromochloromethane	0.000266	0.001	77 – 123	≤40	n/a
Dibromomethane	0.000147	0.001	80 – 120	≤40	n/a
Dichlorodifluoromethane	0.000207	0.001	67 – 142	≤40	n/a
Ethyl Benzene	0.000202	0.001	80 – 120	≤40	n/a
Hexachloro-1,3-Butadiene	0.00041	0.005	72 – 135	≤40	n/a
lodomethane (Methyl lodide)	0.000215	0.001	34 – 181	≤40	n/a
Isopropyl Benzene	0.000233	0.001	77 – 127	≤40	n/a
Methylene Chloride	0.000635	0.002	61 – 128	≤40	n/a
Methyl-t-butyl ether (MTBE)	0.000231	0.001	68 – 124	≤40	n/a
Naphthalene	0.000429	0.005	71 – 122	≤40	n/a
n-Butylbenzene	0.000262	0.001	75 – 134	≤40	n/a
n-Propyl Benzene	0.000272	0.001	76 – 126	≤40	n/a
s-Butylbenzene	0.00024	0.001	77 – 127	≤40	n/a
Styrene	0.000138	0.001	80 – 122	≤40	n/a
t-Butylbenzene	0.000306	0.001	77 – 125	≤40	n/a
Tetrachloroethene	0.000257	0.001	76 – 131	≤40	n/a
Toluene	0.000151	0.001	78 – 120	≤40	n/a
trans-1,2-Dichloroethene	0.000266	0.001	73 – 131	≤40	n/a
trans-1,3-Dichloropropene	0.000216	0.001	80 – 126	≤40	n/a
trans-1,4-Dichloro-2-Butene	0.000437	0.005	62 – 127	≤40	n/a
Trichloroethene	0.000212	0.001	80 – 120	≤40	n/a
Trichlorofluoromethane	0.000266	0.001	57 – 161	≤40	n/a
Vinyl Acetate	0.000381	0.005	54 – 138	≤40	n/a
Vinyl Chloride	0.000235	0.001	74 – 134	≤40	n/a
m,p-Xylene	0.000392	0.001	80 – 123	≤40	n/a
o-Xylene	0.000224	0.001	80 – 120	≤40	n/a
1,2-Dichloroethane-d4	n/a	n/a	80 – 149	≤40	80 – 122
1,2-Dichlorobenzene-d4	n/a	n/a	80 – 120	≤40	80 – 120
Toluene-d8	n/a	n/a	77 – 120	≤40	80 – 120
4-Bromofluorobenzene	n/a	n/a	80 – 120	≤40	80 – 120

Aspect Consulting
June 2021

SAP/QAPP

Table D-4. Measurement Quality Objectives for Soil Samples

Friedman and Bruya, Inc.

Project No. 180357, Lynnwood, Washington

Analyte Name	MDL ^(A)	MRL	LCS/LCS %R ^(A)	RPD (%)	Surrogate %R ^(A)
Gasoline Range Hydrocarbons by NWT	PH-Gx (mg/kg)				
Gasoline Range Hydrocarbons	0.057	0.25	80 – 120	≤40	n/a
Bromobenzene	n/a	n/a	49 – 143	≤40	n/a
Diesel and Motor Oil Range Hydrocarbo	ons by NWTPH-	Dx without Si	lica Gel Cleanup	(mg/kg)	
Diesel Range Hydrocarbons	1.28	5	60 – 108	≤40	n/a
Oil Range Hydrocarbons	1.57	10	60 – 130	≤40	n/a
o-Terphenyl	n/a	n/a	50 – 150	≤40	n/a
Metals					
Lead	n/a	0.1	80-120	≤20	75-125

Notes:

(A) = Based on current laboratory control criteria. Some values may vary slightly between instruments and can be subject to change as the laboratory updates the charted values periodically.

%R = Percent recovery

LCS/LCSD = Laboratory control samples and laboratory control sample duplicate

MDL = Method detection limit

mg/kg = milligram per kilogram

MRL = Method reporting limit

n/a = not applicable

RPD = Relative percent difference

Aspect Consulting
June 2021

Table D-4
SAP/QAPP

Attachment D-1

Aspect Field Forms

	As-B	uilt Well Cor	npletion Diagram					
Project Number:			Boring/Monitoring Well Number: Sheet: of:					
Project:			Location:					
Elevation:			Drilling Contractor:					
Drilling Method a	and Equipment Used:		Logged By:					
Water Levels:			Completion Start: Finish:					
Ecology Well I	D							
			- Monument Type/Height					
Soil Type/ Depth	Completion Depths		- Well Cap Type					
			- Surface Seal Material					
			- Seal Material(list NSF/ANSI certification)					
		-	- Well Casing ID					
	H H	+ +	Type of Casing					
			Type of Connection					
		 	- Filter Pack/Size					
			Filter Pack Interval					
			- Well Screen ID					
			Type of Screen					
			Slot Size					
			Screen Interval					
			Centralizers					
			- Diameter of Borehole					
			- Sump					
		_						
	L	Bottom of Bo	- Diameter of Borehole					
		Two careers						
Acr	Dectconsulting	Materials Used:	Screen:					
Ash	JEC (consulting earth+water	Sand:	Bentonite:					
w _w	ww.aspectconsulting.com	Blank:	Monument:					
	a limited liability company	Concrete:	Other:					

Field Staff:

DAILY REPORT

Date:	Equipment used:
Project Name:	
Project Number:	
Weather:	
Arrival on site:	
Departure from site:	Calibration:
-	

	pec'			Sample number							
GROUNI	OWATER S	SAMPLING R	ECORD		WELL NUMBER:				Page: of	_	
Project Name: Date: Sampled by: Measuring Point of Well: Screened Interval (ft. TOC) Filter Pack Interval (ft. TOC) Casing Volume (ft Water) x Casing volumes: 3/4"= 0.02 gpf 2" = 0.16 gpf 3/4"= 0.09 Lpf 2" = 0.62 Lpf				(Lpfv) 4" =	(gpf) =	6" = 1.47 gpf Sample Int					
PURGIN	G MEASU	REMENTS									
Criteria:		Typical 0.1-0.5 Lpm	Stable	na	± 3%	± 10%	± 0.1	± 10 mV	± 10%		
Time	Cumul. Volume (gal or L)	Purge Rate (gpm or Lpm)	Water Level (ft)	Temp.	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	ORP (mv)	Turbidity (NTU)	Comments	
	_	ГОС):		_		Total Casing Ending Tota					
SAMPLE	INVENTO				T	1		1			
Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appea Color	Turbidity & Sediment			Remarks	
	s measured v	with (instrument		_		Decon Equ	ipment:				
		Water:									
		s:									

BORING LOG

LOCAT	TON OF BO	RING							PROJECT NO.					BORING NO.	
									PROJECT NAME						
SKETO	CH OF LOCA	TION						· <u> </u>	DRILLING METHOD:	:					
									LOGGED BY:						
									DRILLER:						
									SAMPLING METHOD	D:					
									HAMMER WEIGHT/S	SAMPLER DIAM	IETER				
									OBSERVATION WE	LL INSTALL	YES	NO	-	START	FINISH
									WATER LEVEL					TIME	TIME
									TIME					1	
									DATE					DATE	DATE
DATUM	Л				GRADE ELEV.				CASING DEPTH						
	SIZE (%)		Ö. /	E	RIVEN	l 6	z	≿	SURFACE CONDITIO	NC					
	3E)		AMPL	DEP.	OHES D	E Z	ANCE	MMAF							
GRAVEL	SAND (SIZE RANGE)	FINES	SAMPLE TYPE	SAMPLE DEPTH	INCHES RECV'D	DEPTH IN FEET	PENETRATION RESISTANCE	USCS SUMMARY	DESCRIPTION: Den MAJOR CONSTITUE NON-SOIL SUBSTAN	NT.		crap, slag, etc.	DRILL ACTION	N	
						1									
						2									
						· -									
						3									
						4									
						5									
					/	6									
						7 —									
						8									
					$\overline{}$	9									
							-								
						0 —									
						1	<u> </u>								
			<u>/_</u> ,			2									
					+	3									
						4		-							
						1 [·] -									
			/			5									
						6									
						7		•							
			<u>/</u>			8									
					+	9									
						0									
			_	i	V			i							

Soil Vapor Port Sample Collection Form

Page	of
rage	UI

Project Name:	Address:	Aspect Project No.:
Date:	Field Representative:	
Brand and Model of Field Meters Used: Photoionization Detector:		
Multi-Gas Meter:		
Helium Monitor:		

Soil Va	por Samp	le Na	me:			Cannister ID: Gauge ID:							
		Shu	t-In Va	cuum Test Readings		Final Purge Readings							
START	TART Time: Vacuum (inches Hg):					PID (pp	m)	CH ₄ (%LEL)		CO ₂ (%)	O ₂ (%)	He (%)	
END	Time:			Vacuum (inches Hg):									
					Sampli	ng Readir	ıgs						
			STAR	Γ	Sample Time	Interval	I END						
Helium S	Shroud:	Υ	N	(%)	Start:		Helium \$	Shroud:	Υ	N	(%)		
Canister	Canister Vacuum (inches Hg): End:							Canister Vacuum (inches Hg):					

Notes:

Soil Va	por Samp	le Na	me:			Cannister ID:				Gauge ID:			
		Shu	ıt-In Va	cuum Test Readings		Final Purge Readings							
START	START Time: Vacuum (inches Hg):					PID (ppm)		CH ₄ (%LEL)	1	CO ₂ (%)	0 ₂ (%)	He (%)	
END	Time:			Vacuum (inches Hg):									
					Sampli	ng Readin	ıgs						
START Sample Time							Interval END						
Helium Shroud: Y N (%) St					Start:	Helium Shroud: Y		Υ	N (%)				
Canister	Canister Vacuum (inches Hg): End:							Canister Vacuum (inches Hg):					

Notes:

Soil Va	por Samp	le Na	me:			Cannister ID: Gauge ID:						
		Shu	t-In Va	cuum Test Readings			Final Purge Readings					
START	TART Time: Vacuum (inches Hg):					PID (pp	om) (CH ₄ (%LEL)		CO ₂ (%)	0 ₂ (%)	He (%)
END	Time:			Vacuum (inches Hg):								
					Sampl	ing Readir	ngs					
			STAR	Γ	Sample Time	Interval	END					
Helium S	Shroud:	Υ	N	(%)	Start:		Helium S	Shroud:	Υ	N	(%)	
Canister Vacuum (inches Hg): End:							Canister Vacuum (inches Hg):					

Notes:

WELL DE	VELOPMENT	RECORD			WELL NUMBER:						
Project Nar	ne:				Project Number:						
Date:					Starting Water Level (ft TOC):						
Developed	by:				Casing Stickup (ft BGS):						
	Point of Well:				Total Depth (ft		_				
_	nterval (ft. BGS):				Casing Diame	•)·				
	Interval (ft. BGS):	-			Odding Diame	ter (menes	<i>)</i> ·				
Casing Vol		ft Water x		gpf =							
	imes: 2" = 0.16 g		= 0.65 gpf		1.47 gpf						
Odoling voic		3P1 - 1	- 0.00 gpi	0 -	T. 47 gpi						
DEVELO	PMENT MEAS	UREMEN	TS								
Elapsed	Cumul. Vol.	Purge	Temp.	рН	Specific	Turbidity	Imhoff Cone	Comments			
Time (min)	(gallons)	Rate (gpm)	(C or F)		Conductance (µmhos/cm)	(NTU)	(ml/L)				
Total Disch	arge (gallons):				_Total Casing \	olumes Re	emoved (gallor	ns):			
Ending Wat	er Level (ft TOC):				_Ending Total [Depth (ft TO	DC):				
METHOD	S										
Cleaning E											
	nt Equipment:										
	Discharged Wate	er:									
	ns/Comments:										

Attachment D-2

Aspect Field General Procedures

FIELD NOTES

Provided below are general field documentation procedures for all environmental field staff. The Project Manager should discuss additional project-specific requirements with staff. Regardless of the documentation needs of the project, all written documentation of field tasks is discoverable as evidence and should be kept neat, professional and factual.

A field logbook or field form should be completed daily for each field job at each Site visited, regardless of the scope of work. Before field notes are provided to the Project Manager, all information should be accurate, complete and neat. The field staff shall sign or initial and date each page/sheet. At a minimum, field notes should include the following, as applicable:

- The times of arrival to and departure from the Site.
- Any unique weather conditions.
- Project name and project number.
- A list of all personnel on the job Site during the day, including contractors, subconsultants, other consultants, clients, regulators, etc.
- A description, and general times for completion, of the activities conducted (however there is no need to duplicate information that may be provided on another field form, i.e. lithology type in a boring that is logged on a boring log or volume of groundwater purged from a well).
- A description of any unanticipated Site conditions.
- A description of any problems encountered and resolutions taken, including times and reasons for work delays.
- Rationale/description for any deviations from the Proposal, Work Plan, Sampling Plan, etc.
- A summary of equipment used (make, model and condition) and calibration information, if applicable (reference calibration log, if applicable).
- A description of waste generated (amount, type, container, location, etc.).
- A description of any photographic documentation of the site conditions and field work.
- A description of the samples collected and procedures to get the samples to the analytical laboratory.

Your field notes should be scanned to a PDF file and saved in the appropriate project folder with the other field documentation from the day. When all field documentation is complete, combine into a single PDF and send the link to the file to the PM.

X:\Aspect Forms\Field Forms\Field Procedures Guidance\Procedures_Field Notes.docx

GROUNDWATER SAMPLING

Field Procedures

Gauging Water Levels

- Decontaminate the water level meter tape and probe.
- Don the appropriate PPE as defined in the Site-specific Health and Safety Plan.
- Unlock and open the well monument and remove the well cap. Observe the well and document any damage to the monument, monument cover, or well cap in the daily field log.
- Remove any water that may have accumulated inside well monument using a hand pump (e.g. thirsty mate).
- Open the well and remove any dedicated equipment.
- Wait at least 30 minutes after opening/removing equipment to allow water levels to equilibrate to atmospheric pressure.
- Measure and record the depth to water from the marked reference point, or the north side of the well casing if no reference point is marked, to the nearest 0.01 foot.
- Record the time and water level measurement in a field logbook or on a field form. All times and water level measurements should be in one place (not on individual purge forms).

Low-Flow Purging and Sample Collection

Unless directed otherwise by the Project Manager or a site-specific work plan, all monitoring wells should be purged using the standard low-flow purge techniques¹. The purging equipment will vary depending on the water level in the well and the screened interval.

- If using an aboveground pump, attach and secure the dedicated tubing to the sampling pump. Lower the tubing or, if using a submersible pump, the pump slowly into the well.
- Set the water intake (end of the tubing or pump intake) at the approximate middle of the saturated screened interval, unless directed otherwise by the Project Manager.
- Slowly lower the water level probe until it is just at the water surface and record initial water level on the purge form.
- Connect the discharge end of the tubing to a flow-through cell containing the water quality meter.

¹ United States Environmental Protection Agency (EPA). 1996. Low Stress (low flow) Purging and Sampling Procedures for the Collection of Ground Water Samples from Monitoring Wells. Revision 2. July 30.

GROUNDWATER SAMPLING

- Start pumping the well by selecting the lowest pump speed. Ideally, the pump rate should equal to the recharge rate with little or no water level drawdown in the well (total drawdown should be 0.3 foot or less).
- The maximum flow rate during purging should be 0.1 to 0.5 liters (100 to 500 milliliters) per minute. Measure the pumping rate using a graduated cylinder and stopwatch. Record the pumping rate and depth to water.
- Allow the flow-through cell to be "flushed" with purged groundwater twice. Monitor field parameters (temperature, pH, ORP, specific conductance and dissolved oxygen) in 3- to 5-minute intervals during purging, maintaining a consistent time interval for a single well.
- The well is considered stabilized and ready for sample collection when the indicator parameters have stabilized for three consecutive readings, as follows²:
 - \circ ±0.1 for pH
 - \circ ±3-percent for specific conductance
 - ±10-percent for dissolved oxygen
 - ±10mV for ORP
- If the recharge rate of the well is very low, do not purge the well dry. Lower the flow rate if the water level drops more than 0.3 foot or if air bubbles are observed in the purge stream. Do not lower the water intake. Turn off the pump and allow the well to recover before sampling.
- Once the field parameters have stabilized, disconnect the tubing from the flow-through cell in preparation for sampling. Gloves should be changed between purging and sampling.
- Samples should be collected by filling laboratory-supplied containers to the top. Samples for volatiles should be collected first VOAs should be filled with no headspace or bubbles. For dissolved metals analysis, field filtering may be necessary prior to sample collection (check with your Project Manager).
- After samples have been collected, measure and record the final water level.
- Stop the pump and disconnect the tubing from the pump. Dedicated tubing can be left inside the well for future sampling events; secure the tubing so that it doesn't fall down the well.
- Close and lock the well.
- Once samples are collected, label each sample and record them on the COC form. Sample labels should be smudge-proof or covered with transparent tape. Place sample containers

² In some cases, duration of purging may be appropriate to determine sampling. Contact the Project Manager if parameters do not stabilize after 1 hour of purging.

GROUNDWATER SAMPLING

into a Ziploc bag and immediately put into an iced cooler for shipment to the laboratory. Segregate larger bottles with bubble wrap. Ice in coolers should be double-bagged to prevent leakage. Coolers should be paced to the top with bagged ice to prevent warming and bottle breakage.

Documentation

Daily field logbook or field notes Water level summary form (or single logbook page/notes) Groundwater Purge Form COC copy

X:\Aspect Forms\Field Forms\Field Procedures Guidance\Procedures_GW Sampling.docx

SOIL LOGGING & SAMPLING

Documentation

Field documentation for soil sampling varies depending on the type of work being conducted, but should include, at a minimum:

Daily field logbook or field notes (see Field Notes procedures) Boring log/test pit log (see Soil Description guidance)

Field Procedures

Logging and Soil Descriptions

General soil logging procedures specific to drilling are provided here. These general procedures can also be applied to other types of soil explorations. Site-specific deviations should be discussed with the Project Manager. Soil classification will be addressed in a separate guidance.

- Visually classify the soils in general accordance with ASTM Method D 2488 and record soil
 descriptions in accordance with Aspect soil logging standards, field screening results, and
 other relevant details (e.g., staining, debris, odors, etc.) on the boring log.
- Record the total pounded/advanced length of core, the amount of soil recovery within that length, sampler type and diameter, and the blow counts and hammer weight or SPT data (if applicable), on the boring log.
- Note the location of each soil sample collected for potential chemical analysis, including the
 depth interval represented and the name, time of collection and number of sample containers.
 These can be noted on the boring log or in the field notes but do not need to be documented in
 multiple places.
- Document the depth to water at the time of drilling on the boring log, and make any notations about the observed conditions (odors, color, sheen, etc.) of the water on the boring log or in field notes.
- Note whether the water level was measured in an open hole or a cased hole, and if so, the depth of the casing at time of measurement.
- If applicable, document the temporary screened interval and specific depth of water intake (tubing, casing or pump intake) from which a grab groundwater sample is collected in the field notes.
- Document the total boring depth on the boring log.

Field Screening

Field screening procedures may vary from site to site depending on the investigation objectives. At a minimum, field screening of soil samples – whether collected from drilling samplers, test pits/excavations or stockpiles – should consist of the following.

- Visual examination Observe the soil visually for staining and evidence of NAPL. If NAPL is observed, note its occurrence in the context of the soil lithology:
 - o Sheen as described below

SOIL LOGGING & SAMPLING

- Staining Visible brown or black staining on soil. Can be visible as mottling or in bands. Typically associated with fine-grained soil.
- o Coating Visible brown or black oil coating soil grains. Typically associated with coarse-grained soil.
- Oil wetted Visible brown or black oil wetting the soil. Oil appears as a liquid and is not held by soil grains.
- Olfactory Observe and document any odor associated with the soil sample. Unless
 confident in contaminant odor identification, all odor notations should be described as
 contaminant-like (e.g. petroleum-like odor). Odors can be quantified as slight or strong, if
 applicable.
- Volatile organic vapor screening Measure and record the volatile organic vapors present in the headspace of each soil sample using a photoionization detector (PID).
 - After collecting soil in laboratory-supplied containers for chemical analysis, as described below, place remaining soil into a disposable plastic bag, seal, and gently shake.
 - o Let the bag sit for at least 2 minutes.
 - Open or puncture the bag (do not use the tip of the PID, as it may become clogged with plastic from the bag, and do not use the tip of a pen, as the ink may contain volatile compounds) and insert the tip of the PID into the headspace in the Ziploc bag.
 - o Record the PID reading.
- Water Sheen Test Test and observe water for the presence of sheen.
 - O Place approximately 1 Tablespoon of soil into disposable container or a blackplastic gold plan that is approximately ¼ full of water. For gravel, you may need to use 4 Tablespoons of soil in a larger container that is approximately ¼ full of water.
 - Observe the water surface and sidewalls of the jar for signs of sheen, according to the nomenclature below.
 - Gently agitate the soil and record observations. Naturally-occurring sheen will
 dissolve or break-up upon agitation. If only naturally-occurring sheen is observed,
 the recorded observations should be "No Sheen".
 - o Sheen nomenclature:
 - No Sheen (NS) no visible sheen on water surface.
 - Slight Sheen (SS) light, colorless or dull sheen on water. Spotty to globular; spread is irregular, not rapid; areas of no sheen remain; sheen dissipates rapidly.
 - Moderate Sheen (MS) light to heavy sheen. May have some color or iridescence, globular to stringy; spread is irregular to flowing; few remaining areas of no sheen on water surface.
 - Heavy Sheen (HS) Heavy colorful film with iridescence. Spread is rapid; sheen flows off the sample; most of water surface covered with sheen.
 - Organic Sheen (OS) Blocky, irregular sheen with little or no color. Where
 petroleum sheen is fluid looking and flowy, organic sheen is square and
 moves across the surface of the water very little, if at all.
 - o If observed, quantify the spatial coverage (as % of total water surface), size/diameter and color of NAPL blebs.

SOIL LOGGING & SAMPLING

The results of field screening activities should be recorded on the boring log when samples originate from a drilling sampler, on a test pit log or in the field logbook/field forms for other excavation or stockpile sampling.

Soil Sample Collection

As with field screening, soil samples can be collected from drilling samplers, excavator buckets, test pit sidewalls and stockpiles using variable methods. The general procedures described below should be used when collecting soil samples from a potentially-contaminated site for chemical analysis.

- Gloves should be changed between collection of each soil sample.
- If collecting soil for VOC analysis (EPA 5035A), use the laboratory-provided, dedicated sampling syringe to collect approximately 5 grams of soil from an undisturbed soil surface and insert the soil into the 40-mL VOA vial (see Ecology Technical Memoranda #5). Quickly brush off the vial threads and seal immediately with the screw cap.
- From the same soil surface, use a freshly-gloved hand or a decontaminated stainless-steel spoon/hand shovel to collect the rest of the soil into laboratory-prepared sample jars. Fill the jars as full as possible, brush off the jar threads and seal immediately with the screw cap.
- Once sample collection is complete, label each sample and record them on the COC form. Sample labels should be smudge-proof or covered with transparent tape. Place sample containers into a Ziploc bag and immediately put into an iced cooler for shipment to the laboratory. Segregate VOA vials from sample jars. Ice in coolers should be double-bagged to prevent leakage. Coolers should be paced to the top with bagged ice to prevent warming and bottle breakage.

Grab Groundwater Sample Collection

The collection of grab groundwater samples will usually be facilitated by the driller. Once groundwater is encountered and a screened interval is agreed upon, the driller will install a temporary well screen. The driller will install tubing and/or a pump and start purging water from the screen. The general grab groundwater sample collection procedures are as follows:

- Allow the pump to purge at a low-flow rate (100- to 500-mL per minute) until turbidity is reduced as much as possible (i.e., further pumping does not visibly improve groundwater quality).
- Once turbidity stabilizes, measure and record field parameters (check with the Project Manager, this step may be skipped for some projects).
- Gloves should be changed before collecting the sample.
- Fill all sample bottles by allowing the pump discharge to flow gently down the inside of the bottle with minimal turbulence. Samples for volatile analysis should be collected first. VOAs should be filled to just overflowing so that no air bubbles are entrapped inside. Other containers should be filled to nearly the top and capped thereafter.

SOIL LOGGING & SAMPLING

• Once container filling is complete, label each sample and record them on the COC form. Sample labels should be smudge-proof or covered with transparent tape. Place sample containers into a Ziploc bag and immediately put into an iced cooler for shipment to the laboratory. Segregate larger bottles with bubble wrap. Ice in coolers should be double-bagged to prevent leakage. Coolers should be paced to the top with bagged ice to prevent warming and bottle breakage.

X:\Aspect Forms\Field Forms\Field Procedures Guidance\Procedures_Soil Logging and Sampling.docx

Field Guidance for Installing and Sampling Sub-Slab Soil Gas Using Vapor Monitoring Points

1 Sub-Slab Soil Vapor Point Installation and Sampling Procedures

The purpose of this Field Guidance Procedure Field Guidance Procedure is to provide field personnel with an outline of the specific information needed to collect and document representative sub-slab soil gas samples. The recommended sub-slab soil gas sampling technique, as presented in this Field Guidance Procedure, is based on the assumption that soil gas samples should be representative of chemicals that may volatilize from the uppermost aquifer into the vadose zone.

1.1 Equipment and Materials

Temporary Installation

The following equipment and materials are required for temporary Vapor Pin™ installation:

- Rotary hammer drill.
- 5/8-inch diameter drill bit.
- 1½-inch diameter drill bit.
- ³/₄-inch diameter bottle brush.
- Wet/dry vacuum.
- Extension cord.
- Generator (if no power is available on site).
- Assembled Vapor Pin[™].
- Vapor Pin[™] installation/extraction tool.
- Dead blow hammer.
- VOC-free hole patch material (hydraulic cement) and putty knife, for hole repair after sampling.
- Appropriate personal protective equipment(PPE).

Permanent Installation

The following equipment and materials are necessary for permanent AMS vapor point installation:

- Rotary hammer drill with a 1-inch and a 2-inch carbide tipped bit.
- Extension cord and generator (if no power outlets are available).
- 3-inch (length) stainless steel (SS) screen assembly with locking cap (AMS GVP probe assembly or equivalent).
- Hose barb, stainless steel (1/4-inch).
- Teflon® tape.

Revised February 2019 1

- 100% Beeswax, to seal vapor port borehole annulus.
- Quick Set Concrete Patch, to seal vapor port borehole annulus.

Sample Collection

The following equipment and materials are necessary to properly conduct sub-slab soil gas sampling (see Figure 1):

- Air pump and appropriate 1/4-inch fluoropolymer and silicone #15 connection tubing, tee fittings, valves, and flow metering device for purging and sampling vapor ports.
- Sufficient number of Summa canisters with appropriate flow controllers.
- Equipment required for collection of samples using Summa canisters, including appropriate wrenches and pressure gauges.
- An accurate and reliable watch that has been properly set.
- A calculator.
- Field notebook, applicable sampling analysis plan, and Chain of Custody.
- Health-and-safety equipment and supplies (e.g., personal protective equipment [PPE]) as described in the relevant site health-and-safety plan (HSP).
- Shipping package for the Summa canisters.

Leak testing equipment and materials include:

- Syringe or vacuum pump for shut-in testing.
- Leak test shroud of sufficient size to cover soil gas vapor probe or vapor pin.
- 1-liter Tedlar® bags to collect purged vapors and test for tracer gas (helium).
- A soft gasket to seal the leak test shroud to the floor.
- Tracer gas (helium).
- Flow regulator with 1/8-inch barbed outlet and tubing to connect the helium gas cylinder to the shroud.
- MGD-2002 helium meter or equivalent.

2 Revised February 2019

1.2 Sub-Slab Soil Vapor Point Installation

Temporary Installation

Use the following steps to install Vapor Pins™:

- Prior to beginning, clear sampling locations for utilities, verify access agreements are in place, and obtain required permits, as appropriate.
- Set up wet/dry vacuum to collect drill cuttings.
- Drill a 5/8-inch diameter hole through the slab and approximately 1-inch into the underlying soil (if present).
- Remove the drill bit, brush the hole with the bottle brush, and remove loose cuttings with the vacuum.
- Place the lower end of the Vapor Pin[™] assembly into the drilled hole. Unscrew the threaded coupling from the handle of installation/extraction tool, place the small hole located in the handle of the installation/extraction tool over the Vapor Pin[™] to protect the barb fitting/cap, and tap the Vapor Pin[™] into place using a dead blow hammer. Make sure the installation/extraction tool is aligned parallel to the Vapor Pin[™] to avoid damaging the barb fitting.

Permanent Installation

Prior to sampling, it is recommended that the sub-slab vapor point be installed at least one day in advance to allow the seal to set up properly. However, the use of quick-setting concrete will allow for same day sampling if desired.

- Prior to beginning, clear sampling locations for utilities, verify access agreements are in place, and obtain required permits, as appropriate.
- Drill a 2-inch borehole to a depth of approximately 3 inches.
- Drill a 1-inch borehole through the center of the 2-inch borehole through the floor slab of the building foundation to a depth of approximately 12 inches below the surface.
- Construct the vapor point as shown in Figure 1 and insert such that the top of the assembly is set approximately 1/8-inch below the top of the slab.
- Seal the vapor port by melting the beeswax with a small butane torch. Pour the beeswax from the rubber plug up to the bottom ½-inch of the 2-inch borehole.
- Allow beeswax to solidify and harden.
- Mix Quick Set concrete patch and apply from top of beeswax seal to within \(^1/4\)-inch of the top of the slab.

Revised February 2019 3

1.3 Sampling Procedure

Sample Train Assembly

Assemble sampling train. The sampling train will be set up so that the Summa canister is in-line between the vapor port and the air pump, with a valve between the canister and the pump (see Figure 1):

- Verify the Summa canister number engraved on the canister matches the number listed on the certified clean tag to insure proper decontamination of the canister was completed. Fill out the sample tag.
- Verify the canister valve is closed tightly and remove the threaded cap at the inlet of the canister.
- Attach the flow controller to the inlet of the canister; the flow controller will have a built in pressure gauge.
- Connect the tubing from vapor port to inlet of a ¼-inch tee fitting.
- Connect the Summa canister/flow controller to one outlet of the tee fitting.
- Connect air pump to the other outlet of the tee fitting, insert a ½-inch shutoff valve between the tee fitting and the air pump.

Leak Testing

Where leak testing is required, shut-in testing of the sample train will be conducted to test the sample train (excluding the vapor point) for leaks. A shroud containing tracer gas will be used to test the vapor point. The shroud consists of a plastic PVC cap or equivalent. Three holes will be drilled near the top of the shroud; one for connection of the helium gas cylinder, one for connection of the helium gas meter, and one for connection of the sample train located outside the shroud (see Figure 1).

- Before purging or sampling begins, assemble the sample train and vaporshroud. Crimp or plug the silicon tubing connection at the vapor point.
- Attach either a syringe or vacuum pump to the downstream end of the purge point valve. Draw a vacuum of at least 15 inches of mercury and shut the valve.
- The sample train should hold vacuum for 5 minutes. If the gauge vacuum decreases during this time period, check/tighten all connections and retest.
- After successful shut-in test, remove the crimp or plug and attach to the vapor point. The tubing from the tee connection above the canister will pass through the wall of the shroud to connect with the air pump outside.
- Connect the helium cylinder to the leak test shroud using tubing from the flow regulator on the cylinder, through a hole in the top of the shroud.
- Connect the helium meter to the leak test shroud.
- Use the flow regulator to slowly release helium into the leak test shroud until a concentration of 100% helium is contained within the shroud. The helium

4 Revised February 2019

concentration will be measured using the helium meter. Maintain helium concentrations throughout the purging and sampling period by continuously bleeding cylinder gas into the shroud as needed.

Sample Collection

Prior to collecting the canister sample, the vapor port will be purged as described below. If leak testing is performed with helium, purged vapor contained in the Tedlar® bags will be field screened using the helium meter to ensure that the concentration of helium inside the bags is less than 5 percent of the shroud concentration. If leakage is detected, the vapor port seal will be enhanced and connections will be inspected and tightened. This process will be repeated until no significant leakage has been demonstrated.

• Purge the vapor port and sampling train at approximately 100-200 ml/min using the air pump to ensure the sample is representative of subsurface conditions. Capture purged vapor in 1-liter Tedlar® bags at the outlet of the air pump and release the vapor outdoors. Three-to-five tubing volumes should be removed. If the slab is greater than 6-inches thick, the borehole volume should also be purged. Use the following equation to calculate volume to be purged:

$$V = (\pi x r_t^2 x l_t) + (\pi x r_h^2 x l_h)$$

Where:

V = Volume of tubing and sampling train (cubic inches)

 $\pi = 3.14$

 r_t = the inner radius of the tubing[inches]

 l_t = the length of the tubing [inches]

 r_h = the inner radius of the hole in the slab beneath vapor pin (inches)

 l_h = the length of the hole in the slab beneath vapor pin (inches)

- Convert to ml using 1-inch 3 = 16.387 ml to determine purge volume, then divide it by the pumping rate to determine purge time for one volume.
- If leak testing is performed with helium, purged soil gas collected in the Tedlar® bag will be field screened using the tracer gas (e.g., helium) using handheld meter to ensure that leakage is less than 5 percent of the shroud concentration.
- Begin sample collection by closing the ¼-inch shutoff valve between the Summa canister and the air pump and opening the valve on the Summa canister.
 Immediately record the pressure on the gauge as the "initial pressure" on the tag attached to the canister.
- After sampling begins and the apparatus is verified to be operating correctly, leave the canister to fill.
- Record all sample information in the field book and applicable field forms including the following:
 - Canister number and sample identification,
 - Weather including barometric pressure,

Revised February 2019 5

ASPECT CONSULTING

- Purge time and purge volume, Sample start date and times,
- Location of sample (distance from walls shown on building floorplan),
- Initial and final pressure of canister, and
- Notes regarding leak test, if applicable.
- Monitor canisters continuously to ensure proper operation. It is necessary to check the canister prior to completion because the accuracy of the flow regulators can vary, causing the canisters to fill faster than expected. The final pressure at the end of sampling should be approximately -5 inches mercury (Hg). If the canister has already reached this point, sampling is complete, the canister valve should be closed, and the pressure recorded as the "final pressure" on the sample tag, the field book, and applicable field forms. Sample collection will be considered complete, regardless of final pressure, after the stated sample period has elapsed.
- Record the exact pressure of the canister and time at the end of sampling on the sample tag for that canister, in the field book, and on the applicable field forms.
- Verify that the canister valve is closed tightly, remove the flow controller, and replace the threaded cap at the top of the canister. Discard all sample tubing.
- Replace the vapor point cap using Teflon tape to seal the threads if permanently installed. If using temporary vapor pints, remove them from the hole using the manufacturer-suppled extraction tool. The hole in the slab must be filled with hydraulic cement, fast-cure epoxy, or similar.

Post-Sample-Collection Procedures

Pack all Summa canisters in the original shipping containers, sealed with a custody seal, and send to the lab for analysis. The official holding time for this analysis is 30 days. However, attempt to get samples to the lab as soon as possible to allow lab time to conduct re-runs, dilutions, and low-level analyses, as necessary prior to sample expiration.

Analysis

The soil gas samples should be analyzed using EPA Methods TO-15, and when necessary/possible, low-level analysis or Selective Ion Mode (SIM) analysis to obtain the lowest achievable detection and reporting limits. When leak testing is performed, samples should additionally be analyzed for helium. Other analysis will be included on a project-specific basis. Note the desired analytical methods on the Chain-of-Custody form and be sure analysis for helium is specified for leak-tested samples.

Decontamination

Temporary vapor points must be decontaminated prior to re-use. Decontamination procedures include Alconox® wash, deionized water rinse, and heated in an oven to 130C for 30 minutes.

The Summa canisters will be individually cleaned and certified to 0.02 ppbv THC for the project-specific analyte list by the contract laboratory prior to shipment. Ensure that documentation of this certification is included on a tag attached to the canister and in the paperwork that accompanies the canister shipment from the lab.

Documentation

Label all sample containers with the following information: sample identification, date and time sample was collected, the starting and ending canister pressure, the site name,

6 Revised February 2019

and the company name.

Include all this information in the field book plus the ending time of sample collection and transfer pertinent information to the Chain-of-Custody record. Record all field activities, environmental and building conditions, and sample documentation on the appropriate field forms and field notebook.

2 Related Field Guidance Documents

Related field guidance documents that may be relevant for completing field sampling are listed below.

- Field Notes
- Indoor Air Sampling
- Soil Gas Sampling Using Sorbent Tubes
- Sample Handling

3 References

- Department of Environmental Protection, Commonwealth of Massachusetts, Indoor Air Sampling and Evaluation Guide, WSC Policy #02-430, Boston, Massachusetts, April 2002.
- EPRI, Reference Handbook for Site Specific Assessment of Sub-Surface Vapor Intrusion to Indoor Air, March 2005.
- New Jersey Department of Environmental Protection, Vapor Intrusion Guidance, October 2005.
- New York State Department of Health, Guidance for Evaluation Soil Vapor Intrusion in the State of New York, October 2006.
- USEPA, Center for Environmental Research Information, Office of Research and Development, Compendium of Methods for Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method To-14A, Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography, January 1999.
- USEPA, Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway Form Groundwater and Soils, EPA530-F-02-052, November 2002.

S:\Bremerton School District\Remedy Implementation\Soil Vapor Sampling\SS Vapor Sampling FIELD GUIDANCE PROCEDURE Nov2015.doc

Revised February 2019 7

APPENDIX E

State Environmental Policy Act Checklist

SEPA ENVIRONMENTAL CHECKLIST

Purpose of checklist:

Governmental agencies use this checklist to help determine whether the environmental impacts of your proposal are significant. This information is also helpful to determine if available avoidance, minimization or compensatory mitigation measures will address the probable significant impacts or if an environmental impact statement will be prepared to further analyze the proposal.

Instructions for applicants:

This environmental checklist asks you to describe some basic information about your proposal. Please answer each question accurately and carefully, to the best of your knowledge. You may need to consult with an agency specialist or private consultant for some questions. You may use "not applicable" or "does not apply" only when you can explain why it does not apply and not when the answer is unknown. You may also attach or incorporate by reference additional studies reports. Complete and accurate answers to these questions often avoid delays with the SEPA process as well as later in the decision-making process.

The checklist questions apply to <u>all parts of your proposal</u>, even if you plan to do them over a period of time or on different parcels of land. Attach any additional information that will help describe your proposal or its environmental effects. The agency to which you submit this checklist may ask you to explain your answers or provide additional information reasonably related to determining if there may be significant adverse impact.

Instructions for Lead Agencies:

Please adjust the format of this template as needed. Additional information may be necessary to evaluate the existing environment, all interrelated aspects of the proposal and an analysis of adverse impacts. The checklist is considered the first but not necessarily the only source of information needed to make an adequate threshold determination. Once a threshold determination is made, the lead agency is responsible for the completeness and accuracy of the checklist and other supporting documents.

Use of checklist for nonproject proposals:

For nonproject proposals (such as ordinances, regulations, plans and programs), complete the applicable parts of sections A and B plus the <u>SUPPLEMENTAL SHEET FOR NONPROJECT ACTIONS (part D)</u>. Please completely answer all questions that apply and note that the words "project," "applicant," and "property or site" should be read as "proposal," "proponent," and "affected geographic area," respectively. The lead agency may exclude (for non-projects) questions in Part B - Environmental Elements –that do not contribute meaningfully to the analysis of the proposal.

A. Background [HELP]

- 1. Name of proposed project, if applicable: Texaco Strickland Interim Action
- 2. Name of applicant: Rainier Property Management Company, LLC
- 3. Address and phone number of applicant and contact person:

Ryan Megenity 425.252.3626 ryan@rpmcousa.com 12199 Village Center Place, Suite 201, Mukilteo WA, 98275

4. Date checklist prepared:

3/8/2021

5. Agency requesting checklist:

Wasthington State Department of Ecology (Ecology) Toxics Cleanup Program

- 6. Proposed timing or schedule (including phasing, if applicable): Interim Action conducted in dry season after Ecology approval of Interim Action Work Plan.
- 7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.
- 8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

The proposal is an Interim Action Work Plan (IAWP) to be conducted under Agreed Order No. 14315 with Ecology.

- 9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain. No.
- 10. List any government approvals or permits that will be needed for your proposal, if known. Permitting with the City of Lynnwood is required for the proposal and is outlined in the IAWP.
- 11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.)

The IAWP implementation will consist of a planned excavation to an average depth of 18 feet below ground surface (bgs) with the ability to overexcavate deeper to an average maximum depth of 30 feet bgs, if warranted, based on soil performance monitoring. Contamianted soil will be removed from the Site and transported to a permitted disposal facility. Demolition of the building, removal of underground storage tanks and temporary shoring on the northern and western Property extents is required for IAWP implementation. The remedial excavation will be backfilled and the Site restored to original grade.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic

map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

Project address is 6808 196th Street NW, Lynnwood WA, 98036. NW 1/4, Section 20, Township 27, Range 4. Parcel Number 27042000200600.

B. Environmental Elements [HELP]

1. Earth [help]

a. General description of the site: The Site is a corner parcel at the intersection of 196th Street NW and 68th Avenue W to the east in Lynnwood. There is a single-story, unoccupied building (former service station) with an asphalt parking lot, curbs, and planter boxes.

(circle one):	Flat,	rolling,	hilly,	steep	slopes,	mountainous,	other	
,		•	•	•				

- b. What is the steepest slope on the site (approximate percent slope)? <10%.
- c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.
 - The geology at the Site is imported fill to depths of approximately 10 feet bgs. This fill soil is underlain by unconsolidated silt, sand, gravel, and clay characteristic of a weathered glacial till deposit.
- d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.

No.

e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation, and grading proposed. Indicate source of fill.

Planned net-zero export and fill soils. A planned excavation, 5,800 cubic yards will be removed from the Site, and the Site restored with the same quantity of imported virgin backfill will be used to restore the Site to approximately current grade. The imported fill source will be approved by Ecology during the IAWP implementation.

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe. Contractor will implement a temporary erosion and sediment control (TESC) plan to protect from erosion during construction, and to demonstrate final stabilization at project completion. Limited erosion is anticipated because all earthwork will be conducted subgrade. Erosion of any soil stockpiles will also be managed in acoordance with TESC Plan, and the IAWP contractor requirements.

g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?

Approximately 10 percent of the Site will remain asphalt that is not removed during construction.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any: Contractor will implement a temporary erosion and sediment control (TESC) plan to protect from erosion during construction, and to demonstrate final stabilization at project completion. Standard TESC includes silt fence or straw wattle perimeter, silt sock in vicinity of catch basins, stabilized truck entrance, and street sweeping.

2. Air [help]

a. What types of emissions to the air would result from the proposal during construction, operation, and maintenance when the project is completed? If any, generally describe and give approximate quantities if known.

Construction vehicle emissions, and fugitive dust emissions can temporarily occur during construction, and it's the Contractor responsibility to comply with all local (City of Lynnwood) and state requirements.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe.

No.

c. Proposed measures to reduce or control emissions or other impacts to air, if any: The Contractor is responsible for implementing measures to manage fugitive dust emissions in accordance local (City of Lynnwood) and state requirements.

3. Water [help]

- a. Surface Water: [help]
 - Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

No surface water in the immediate Site vicinity.

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

No surface water in immediate Site vicinity.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

No fill or dredge material associated with proposal.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

No surface water withdrawals or diversions.

- 5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan. No, work not within a 100-year floodplain.
- 6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

No discharge to surface water. If construction discharges are required, they will be discharged to sanitary sewer to Public Owned Treatment Works (POTW) prior to any surface water discharge.

- b. Ground Water: [help]
 - 1) Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known.
 - No groundwater withdrawal.
 - 2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, containing the following chemicals. . . ; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve.
 - No waste material discharged into the ground.
- c. Water runoff (including stormwater):
 - Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.

During construction, the excavation will self-contain any stormwater (via direct precipitation or run-on) and be collected using excavation sumps. The perimeter of the property will be protected with straw wattles and/or silt fence and any runoff that enters a catch basin will pass through a silt sock. Contaminated soils will not come in contact with surface water that may enter the storm system.

- 2) Could waste materials enter ground or surface waters? If so, generally describe. No waste material discharged onto the ground or to surface water.
- 3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.
 - After excavation, the Site will be restored to current grade and drainage patterns.
- d. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any:

Standard TESC measures will be used to prevent any sedimentation of surface waters, groundwater quality will eventually improve as the results of source material excavation.

4. Plants [help] Check the types of vegetation found on the site: __X__deciduous tree: alder, maple, aspen, other – Purple Plum Trees evergreen tree: fir, cedar, pine, other __X__shrubs: Evergreen __X__grass: Urban Weeds pasture ____crop or grain Orchards, vineyards or other permanent crops. ___ wet soil plants: cattail, buttercup, bullrush, skunk cabbage, other water plants: water lily, eelgrass, milfoil, other ___other types of vegetation b. What kind and amount of vegetation will be removed or altered? Only the vegetation in the northwest corner and along the western property boundary will be removed. c. List threatened and endangered species known to be on or near the site. None. d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any: None. e. List all noxious weeds and invasive species known to be on or near the site. None / Unknown. 5. Animals [help] a. List any birds and other animals which have been observed on or near the site or are known to be on or near the site. Numerous birds, including hawks, eagles, songbirds, and other bird species. b. List any threatened and endangered species known to be on or near the site. None known. c. Is the site part of a migration route? If so, explain. No.

None.

d. Proposed measures to preserve or enhance wildlife, if any:

e. List any invasive animal species known to be on or near the site.

None known.

6. Energy and Natural Resources [help]

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project's energy needs? Describe whether it will be used for heating, manufacturing, etc.

None. The completed project is a stabilized lot.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

No, the project would not affect potential use of solar energy.

c. What kinds of energy conservation features are included in the plans of this proposal?
 List other proposed measures to reduce or control energy impacts, if any:
 None.

7. Environmental Health [help]

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so, describe.

The proposal is an Interim Action Work Plan (IAWP) to be conducted under Agreed Order No. 14315 with Ecology. All potential exposure hazards and other risks will be mitigated in accordance with the Ecology-approved Final IAWP and contract documents.

- 1) Describe any known or possible contamination at the site from present or past uses. Contamination consists of gasoline-, diesel-, and oil- range organics, as well as benzene, toluene, ethylbenzene, xylenes, and naphthalene in soil and groundwater. The property uses include a Texaco service station (1959-1977) and a Lube Facility (1977-2006).
- 2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity. The project will remove the contaminated soil and groundwater that exist at the property. Exposure to hazardous building materials is also possible during building demolition.
- Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project's development or construction, or at any time during the operating life of the project.
 - Contaminated soil and groundwater will be produced. Diesel and hydraulic oil will be stored on site and used for earth work activities.
- 4) Describe special emergency services that might be required. None.
- 5) Proposed measures to reduce or control environmental health hazards, if any:

Licensed asbestos and lead removal contractor along with undergound storage tank decommissioner, marine chemist (if needed), and environmental consultant oversight during the conduct of the IAWP.

b. Noise

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other)?

Traffic.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

Noise from dump trucks and other excavation equipment, during business hours.

3) Proposed measures to reduce or control noise impacts, if any:

Contractor will meet City of Lynnwood noise control standards.

8. Land and Shoreline Use [help]

a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe.

The property is currently a vacant building (former service station). The project will temporarily affect land uses on adjacent properties and in rights-of-way during construction, but it will not permanently impact land uses of adjacent properties.

b. Has the project site been used as working farmlands or working forest lands? If so, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use?

No – project Site not used as farmland or forest land.

1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how:

No.

c. Describe any structures on the site.

Vacant one-story building.

d. Will any structures be demolished? If so, what?

Yes, the vacant one-story building will be demolished, and the majority of asphalt will be removed.

e. What is the current zoning classification of the site?

College District Mixed Use

f. What is the current comprehensive plan designation of the site?

5508000 – Existing as commercial proposed as local commercial.

- g. If applicable, what is the current shoreline master program designation of the site? No shoreline applicable to proposal or site.
- h. Has any part of the site been classified as a critical area by the city or county? If so, specify. No.
- i. Approximately how many people would reside or work in the completed project? A future commercial use could employ up to 20 people.
- j. Approximately how many people would the completed project displace? None, existing property use is vacant.
- k. Proposed measures to avoid or reduce displacement impacts, if any: No displacement proposed.
- L. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any:

Proposal is compatibale with City of Lynnwood Municipal Code and facilitates property use consistent with projected land uses.

m. Proposed measures to reduce or control impacts to agricultural and forest lands of long-term commercial significance, if any:

No impacts to agriculatural or forest land.

9. Housing [help]

a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing.

No housing included in proposal.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing.

No units eliminated.

c. Proposed measures to reduce or control housing impacts, if any:

No housing impacts proposed.

10. Aesthetics [help]

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

No structures proposed.

b. What views in the immediate vicinity would be altered or obstructed?

No views obstructed. Views may be improved by building demolition.

c. Proposed measures to reduce or control aesthetic impacts, if any:

Temporary aesthetic impacts during construction. Completed proposal and cleanup allows for property resuse and improved aesthetic permanently.

11. Light and Glare [help]

a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

No light or glare proposed.

- b. Could light or glare from the finished project be a safety hazard or interfere with views?
- c. What existing off-site sources of light or glare may affect your proposal? None.
- d. Proposed measures to reduce or control light and glare impacts, if any: None.

12. Recreation [help]

- a. What designated and informal recreational opportunities are in the immediate vicinity? Informal restreation includes dining, shopping, walking, and public parks are in the immediate vicinity.
- b. Would the proposed project displace any existing recreational uses? If so, describe. No, project would not displace any recreational uses.
- c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:

No, the completed project would not impact any recreational uses and no control measures proposed.

13. Historic and cultural preservation [help]

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers? If so, specifically describe.

Existing building on Site is over 45 years old and is not on DAHP register.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.

No known.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

A DAHP consult was completed to understand any potential impacts to cultural or historical resources. The project is located within the area of interest specified for consultation for the following tribes: Tulalip, Swinomish, Suquamish, Snoqualmie, Sauk Sittle, Samish, Muckleshoot, and Stillaguamish.

 d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.
 IAWP implementation includes an Inadvertant Discovery Plan (IDP).

14. Transportation [help]

 a. Identify public streets and highways serving the site or affected geographic area and describe proposed access to the existing street system. Show on site plans, if any.

The project is at the southwest corner of the intersection of 196th Street SW and 68th Avenue W.

- b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop?
 Yes, there are bus routes along 196th Street SW.
- c. How many additional parking spaces would the completed project or non-project proposal have? How many would the project or proposal eliminate?
 None eliminated and none created.
- d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private).

No.

e. Will the project or proposal use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

No.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles). What data or transportation models were used to make these estimates?

The completed project will result in no change in vehicular trips per day. The completion of the project will require the temporary traffic of 300 trucks for transport of contaminated soil.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe.

No.

h. Proposed measures to reduce or control transportation impacts, if any:

N/A, no transportation impacts involved and no control measures planned.

15. Public Services [help]

a. Would the project result in an increased need for public services (for example: fire protection, police protection, public transit, health care, schools, other)? If so, generally describe.
 No.

b. Proposed measures to reduce or control direct impacts on public services, if any. None.

16. Utilities [help]

- a. Circle utilities currently available at the site:
 electricity, natural gas, water, refuse service, telephone, sanitary sewer, septic system, other ______
- Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

No utilities proposed.

C. Signature [HELP]

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature: _	Idam C	suff.	
Name of signee	_Adam Griffin	VV	
· ·			

Position and Agency/Organization _Project Manager, Aspect Consulting on behalf of Strickland

Real Estate Holdings LLC

Date Submitted: _May 10, 2021_

D. Supplemental sheet for nonproject actions [HELP]

(IT IS NOT NECESSARY to use this sheet for project actions)

Because these questions are very general, it may be helpful to read them in conjunction with the list of the elements of the environment.

When answering these questions, be aware of the extent the proposal, or the types of activities likely to result from the proposal, would affect the item at a greater intensity or at a faster rate than if the proposal were not implemented. Respond briefly and in general terms.

1.	How would the proposal be likely to increase discharge to water; emissions to air; production, storage, or release of toxic or hazardous substances; or production of noise?
	Proposed measures to avoid or reduce such increases are:
2.	How would the proposal be likely to affect plants, animals, fish, or marine life?
	Proposed measures to protect or conserve plants, animals, fish, or marine life are:
3.	How would the proposal be likely to deplete energy or natural resources?
	Proposed measures to protect or conserve energy and natural resources are:
4.	How would the proposal be likely to use or affect environmentally sensitive areas or areas designated (or eligible or under study) for governmental protection; such as parks, wilderness, wild and scenic rivers, threatened or endangered species habitat, historic or cultural sites, wetlands, floodplains, or prime farmlands?
	Proposed measures to protect such resources or to avoid or reduce impacts are:
5.	How would the proposal be likely to affect land and shoreline use, including whether it would allow or encourage land or shoreline uses incompatible with existing plans?
	Proposed measures to avoid or reduce shoreline and land use impacts are:

6.	How would the proposal be likely to increase demands on transportation or public services and utilities?
	Proposed measures to reduce or respond to such demand(s) are:
7.	Identify, if possible, whether the proposal may conflict with local, state, or federal laws or requirements for the protection of the environment.

APPENDIX F

Inadvertent Discovery Plan

INADVERTENT DISCOVERY PLAN PLAN AND PROCEDURES FOR THE DISCOVERY OF CULTURAL RESOURCES AND HUMAN SKELETAL REMAINS

To request ADA accommodation, including materials in a format for the visually impaired, call Ecology at 360-407-6000 or visit https://ecology.wa.gov/accessibility. People with impaired hearing may call Washington Relay Service at 711. People with a speech disability may call TTY at 877-833-6341.

Site Name(s):	Location:
Project Lead/Organization:	County:

If this Inadvertent Discovery Plan (IDP) is for multiple (batched) projects, ensure the location information covers all project areas.

1. INTRODUCTION

The IDP outlines procedures to perform in the event of a discovery of archaeological materials or human remains, in accordance with applicable state and federal laws. An IDP is required, as part of Agency Terms and Conditions for all grants and loans, for any project that creates disturbance above or below the ground. An IDP is not a substitute for a formal cultural resource review (Executive 05-05 or Section 106).

Once completed, **the IDP should always be kept at the project site** during all project activities. All staff, contractors, and volunteers should be familiar with its contents and know where to find it.

2. CULTURAL RESOURCE DISCOVERIES

A cultural resource discovery could be prehistoric or historic. Examples include (see images for further examples):

- An accumulation of shell, burned rocks, or other food related materials.
- Bones, intact or in small pieces.
- An area of charcoal or very dark stained soil with artifacts.
- Stone tools or waste flakes (for example, an arrowhead or stone chips).
- Modified or stripped trees, often cedar or aspen, or other modified natural features, such as rock drawings.
- Agricultural or logging materials that appear older than 50 years. These could include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, and many other items.
- Clusters of tin cans or bottles, or other debris that appear older than 50 years.
- Old munitions casings. Always assume these are live and never touch or move.
- Buried railroad tracks, decking, foundations, or other industrial materials.
- Remnants of homesteading. These could include bricks, nails, household items, toys, food containers, and other items associated with homes or farming sites.

The above list does not cover every possible cultural resource. When in doubt, assume the material is a cultural resource.

3. ON-SITE RESPONSIBILITIES

If any employee, contractor, or subcontractor believes that they have uncovered cultural resources or human remains at any point in the project, take the following steps to *Stop-Protect-Notify*. If you suspect that the discovery includes human remains, also follow Sections 5 and 6.

STEP A: Stop Work.

All work must stop immediately in the vicinity of the discovery.

STEP B: Protect the Discovery.

Leave the discovery and the surrounding area untouched and create a clear, identifiable, and wide boundary (30 feet or larger) with temporary fencing, flagging, stakes, or other clear markings. Provide protection and ensure integrity of the discovery until cleared by the Department of Archaeological and Historical Preservation (DAHP) or a licensed, professional archaeologist.

Do not permit vehicles, equipment, or unauthorized personnel to traverse the discovery site. Do not allow work to resume within the boundary until the requirements of this IDP are met.

STEP C: Notify Project Archaeologist (if applicable).

If the project has an archaeologist, notify that person. If there is a monitoring plan in place, the archaeologist will follow the outlined procedure.

STEP D: Notify Project and Washington Department of Ecology (Ecology) contacts.

Project Lead Contacts

Primary Contact

	Name:	Name:			
	Phone:	Phone:			
	Email:	Email:			
Ed	Ecology Contacts (completed by Ecology Project Manager)				
	Ecology Project Manager	Alternate or Cultural Resource Contact			
	Name:	Name:			
	Program:	Program:			
	Phone:	Phone:			
	Email:	Email:			

Alternate Contact

STEP E: Ecology will notify DAHP.

Once notified, the Ecology Cultural Resource Contact or the Ecology Project Manager will contact DAHP to report and confirm the discovery. To avoid delay, the Project Lead/Organization will contact DAHP if they are not able to reach Ecology.

DAHP will provide the steps to assist with identification. DAHP, Ecology, and Tribal representatives may coordinate a site visit following any necessary safety protocols. DAHP may also inform the Project Lead/Organization and Ecology of additional steps to further protect the site.

Do not continue work until DAHP has issued an approval for work to proceed in the area of, or near, the discovery.

DAHP Contacts:

Name: Rob Whitlam, PhD
Title: State Archaeologist
Cell: 360-890-2615
Email: Rob.Whitlam@dahp.wa.gov

Human Remains/Bones:
Name: Guy Tasa, PhD
Title: State Anthropologist
Cell: 360-790-1633 (24/7)

Main Office: 360-586-3065 Email: Guy.Tasa@dahp.wa.gov

4. TRIBAL CONTACTS

In the event cultural resources are discovered, the following tribes will be contacted. See Section 10 for Additional Resources.

Tribe:	Tribe:
Name:	Name:
Title:	Title:
Phone:	Phone:
Email:	Email:
Tribe:	Tribe:
Name:	Name:
Title:	Title:
Phone:	Phone:

Please provide contact information for additional tribes within your project area, if needed, in Section 11.

5. FURTHER CONTACTS (if applicable)

If the discovery is confirmed by DAHP as a cultural or archaeological resource, or as human remains, and there is a partnering federal or state agency, Ecology or the Project Lead/Organization will ensure the partnering agency is immediately notified.

Federal Agency: State Agency:

Agency: Agency
Name: Name:
Title: Title:
Phone: Phone:
Email: Email:

6. SPECIAL PROCEDURES FOR THE DISCOVERY OF HUMAN SKELETAL MATERIAL

Any human skeletal remains, regardless of antiquity or ethnic origin, will at all times be treated with dignity and respect. Follow the steps under **Stop-Protect-Notify**. For specific instructions on how to handle a human remains discovery, see: <u>RCW 68.50.645</u>: <u>Skeletal human remains—Duty to notify—Ground disturbing activities—Coroner determination—Definitions</u>.

Suggestion: If you are unsure whether the discovery is human bone or not, contact Guy Tasa with DAHP, for identification and next steps. Do not pick up the discovery.

Guy Tasa, PhD State Physical Anthropologist Guy.Tasa@dahp.wa.gov (360) 790-1633 (Cell/Office)

For discoveries that are confirmed or suspected human remains, follow these steps:

1. Notify law enforcement and the Medical Examiner/Coroner using the contacts below. **Do not call 911** unless it is the only number available to you.

Enter contact information below (required):

- Local Medical Examiner or Coroner name and phone:
- Local Law Enforcement main name and phone:
- Local Non-Emergency phone number (911 if without a non-emergency number):
- 2. The Medical Examiner/Coroner (with assistance of law enforcement personnel) will determine if the remains are human or if the discovery site constitutes a crime scene and will notify DAHP.
- 3. DO NOT speak with the media, allow photography or disturbance of the remains, or release any information about the discovery on social media.
- 4. If the remains are determined to be non-forensic, Cover the remains with a tarp or other materials (not soil or rocks) for temporary protection and to shield them from being photographed by others or disturbed.

IDP Form

Further activities:

- Per <u>RCW 27.44.055</u>, <u>RCW 68.50</u>, and <u>RCW 68.60</u>, DAHP will have jurisdiction over non-forensic human remains. Ecology staff will participate in consultation. Organizations may also participate in consultation.
- Documentation of human skeletal remains and funerary objects will be agreed upon through the consultation process described in <u>RCW 27.44.055</u>, <u>RCW 68.50</u>, and <u>RCW 68.60</u>.
- When consultation and documentation activities are complete, work in the discovery area may resume as described in Section 8.

If the project occurs on federal lands (such as a national forest or park or a military reservation) the provisions of the Native American Graves Protection and Repatriation Act of 1990 (NAGPRA) apply and the responsible federal agency will follow its provisions. Note that state highways that cross federal lands are on an easement and are not owned by the state.

If the project occurs on non-federal lands, the Project Lead/Organization will comply with applicable state and federal laws, and the above protocol.

7. DOCUMENTATION OF ARCHAEOLOGICAL MATERIALS

Archaeological resources discovered during construction are protected by state law RCW 27.56 and assumed eligible for inclusion in the National Register of Historic Places under Criterion D until a formal Determination of Eligibility is made.

The Project Lead/Organization must ensure that proper documentation and field assessment are made of all discovered cultural resources in cooperation with all parties: the federal agencies (if any), DAHP, Ecology, affected tribes, and the archaeologist.

The archaeologist will record all prehistoric and historic cultural material discovered during project construction on a standard DAHP archaeological site or isolate inventory form. They will photograph site overviews, features, and artifacts and prepare stratigraphic profiles and soil/sediment descriptions for minimal subsurface exposures. They will document discovery locations on scaled site plans and site location maps.

Cultural features, horizons, and artifacts detected in buried sediments may require the archaeologist to conduct further evaluation using hand-dug test units. They will excavate units in a controlled fashion to expose features, collect samples from undisturbed contexts, or to interpret complex stratigraphy. They may also use a test unit or trench excavation to determine if an intact occupation surface is present. They will only use test units when necessary to gather information on the nature, extent, and integrity of subsurface cultural deposits to evaluate the site's significance. They will conduct excavations using standard archaeological techniques to precisely document the location of cultural deposits, artifacts, and features.

The archaeologist will record spatial information, depth of excavation levels, natural and cultural stratigraphy, presence or absence of cultural material, and depth to sterile soil, regolith, or bedrock for each unit on a standard form. They will complete test excavation unit level forms, which will include plan maps for each excavation level and artifact counts and material types, number, and vertical provenience (depth below

surface and stratum association where applicable) for all recovered artifacts. They will draw a stratigraphic profile for at least one wall of each test excavation unit.

The archaeologist will screen sediments excavated for purposes of cultural resources investigation through 1/8-inch mesh, unless soil conditions warrant 1/4-inch mesh.

The archaeologist will analyze, catalogue, and temporarily curate all prehistoric and historic artifacts collected from the surface and from probes and excavation units. The ultimate disposition of cultural materials will be determined in consultation with the federal agencies (if any), DAHP, Ecology, and the affected tribe(s).

Within 90 days of concluding fieldwork, the archaeologist will provide a technical report describing any and all monitoring and resultant archaeological excavations to the Project Lead/Organization, who will forward the report to Ecology, the federal agencies (if any), DAHP, and the affected tribe(s) for review and comment.

If assessment activities expose human remains (burials, isolated teeth, or bones), the archaeologist and Project Lead/Organization will follow the process described in **Section 6**.

8. PROCEEDING WITH WORK

The Project Lead/Organization shall work with the archaeologist, DAHP, and affected tribe(s) to determine the appropriate discovery boundary and where work can continue.

Work may continue at the discovery location only after the process outlined in this plan is followed and the Project Lead/Organization, DAHP, any affected tribe(s), Ecology, and the federal agencies (if any) determine that compliance with state and federal laws is complete.

9. ORGANIZATION RESPONSIBILITY

The Project Lead/Organization is responsible for ensuring:

- This IDP has complete and accurate information.
- This IDP is immediately available to all field staff at the sites and available by request to any party.
- This IDP is implemented to address any discovery at the site.
- That all field staff, contractors, and volunteers are instructed on how to implement this IDP.

10. ADDITIONAL RESOURCES

Informative Video

Ecology recommends that all project staff, contractors, and volunteers view this informative video explaining the value of IDP protocol and what to do in the event of a discovery. The target audience is anyone working on the project who could unexpectedly find cultural resources or human remains while excavating or digging. The video is also posted on DAHP's inadvertent discovery language website.

Ecology's IDP Video (https://www.youtube.com/watch?v=ioX-4cXfbDY)

Informational Resources

DAHP (https://dahp.wa.gov)

Washington State Archeology (DAHP 2003)

(https://dahp.wa.gov/sites/default/files/Field%20Guide%20to%20WA%20Arch 0.pdf)

Association of Washington Archaeologists (https://www.archaeologyinwashington.com)

Potentially Interested Tribes

Interactive Map of Tribes by Area

(https://dahp.wa.gov/archaeology/tribal-consultation-information)

WSDOT Tribal Contact Website

(https://wsdot.wa.gov/tribal/TribalContacts.htm)

11. ADDITIONAL INFORMATION

Please add any additional contact information or other information needed within this IDP.

Implement the IDP if you see...

Chipped stone artifacts.

Examples are:

- Glass-like material.
- Angular material.
- "Unusual" material or shape for the area.
- Regularity of flaking.
- Variability of size.

Stone artifacts from Washington.

Stone artifacts from Oregon.

Biface-knife, scraper, or pre-form found in NE Washington. Thought to be a well knapped object of great antiquity. Courtesy of Methow Salmon Rec. Foundation.

Implement the IDP if you see...

Ground stone artifacts.

Examples are:

- Unusual or unnatural shapes or unusual stone.
- · Striations or scratching.
- Etching, perforations, or pecking.
- Regularity in modifications.
- Variability of size, function, or complexity.

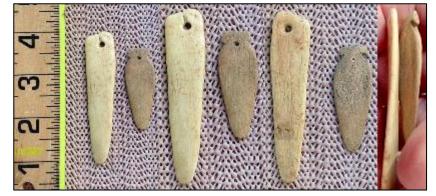
Above: Fishing Weight - credit CRITFC Treaty Fishing Rights website.

Artifacts from unknown locations (left and right images).

Bone or shell artifacts, tools, or beads.

Examples are:

- Smooth or carved materials.
- Unusual shape.
- Pointed as if used as a tool.
- Wedge shaped like a "shoehorn".
- Variability of size.
- Beads from shell (-'---' or tusk.



Upper Left: Bone Awls from Oregon.

Upper Center: Bone Wedge from California.

Upper Right: Plateau dentalium choker and bracelet, from <u>Nez Perce National Historical Park</u>, 19th century, made using <u>Antalis pretiosa</u> shells Credit: Nez Perce - Nez Perce National Historical Park, NEPE 8762, <u>Public Domain</u>.

Above: Tooth Pendants. Right: Bone Pendants. Both from Oregon and Washington.

Culturally modified trees, fiber, or wood artifacts.

Examples are:

- Trees with bark stripped or peeled, carvings, axe cuts, de-limbing, wood removal, and other human modifications.
- Fiber or wood artifacts in a wet environment.
- Variability of size, function, and complexity.

Left and Below: Culturally modified tree and an old carving on an aspen (Courtesy of DAHP).

Right, Top to Bottom: Artifacts from Mud Bay, Olympia: Toy war club, two strand cedar rope, wet basketry.

Strange, different, or interesting looking dirt, rocks, or shells.

Human activities leave traces in the ground that may or may not have artifacts associated with them. Examples are:

- "Unusual" accumulations of rock (especially fire-cracked rock).
- "Unusual" shaped accumulations of rock (such as a shape similar to a fire ring).
- Charcoal or charcoal-stained soils, burnt-looking soils, or soil that has a "layer cake" appearance.
- Accumulations of shell, bones, or artifacts. Shells may be crushed.
- Look for the "unusual" or out of place (for example, rock piles in areas with otherwise few rocks).

Shell Midden pocket in modern fill discovered in sewer trench.

Underground oven. Courtesy of DAHP.

Shell midden with fire cracked rock.

Para de la constante de la con

Hearth excavated near Hamilton, WA.

ECY 070-560 (rev. 12/20) 12 IDP Form

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Agricultural or logging equipment. May include equipment, fencing, canals, spillways, chutes, derelict sawmills, tools, etc.
- Domestic items including square or wire nails, amethyst colored glass, or painted stoneware.

Left: Top to Bottom: Willow pattern serving bowl and slip joint pocket knife discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

Right: Collections of historic artifacts discovered during excavations in eastern Washington cities.

Historic period artifacts (historic archaeology considered older than 50 years).

Examples are:

- Railway tokens, coins, and buttons.
- Spectacles, toys, clothing, and personal items.
- Items helping to understand a culture or identity.
- Food containers and dishware.

Main Image: Dishes, bottles, workboot found at the North Shore Japanese bath house (ofuro) site, Courtesy Bob Muckle, Archaeologist, Capilano University, B.C. This is an example of an above ground resource.

Right, from Top to Bottom: Coins, token, spectacles and Montgomery Ward pitchfork toy discovered during Seattle Smith Cove shantytown (45-KI-1200) excavation.

- Old munition casings if you see ammunition of any type always assume they are live and never touch or move!
- Tin cans or glass bottles with an older manufacturer's technique maker's mark, distinct colors such as turquoise, or an older method of opening the container.

Far Left: .303 British cartridge found by a WCC planting crew on Skagit River. Don't ever touch something like this!
Left: Maker's mark on bottom of old bottle.

Right: Old beer can found in Oregon. ACME was owned by Olympia Brewery. Courtesy of Heather Simmons.

Logo employed by Whithall Tatum & Co. between 1924 to 1938 (Lockhart et al. 2016).

Can opening dates, courtesy of W.M. Schroeder.

You see historic foundations or buried structures.

Examples are:

- Foundations.
- Railroad and trolley tracks.
- Remnants of structures.

Counter Clockwise, Left to Right: Historic structure 45Kl924, in WSDOT right of way for SR99 tunnel. Remnants of Smith Cove shantytown (45-Kl-1200) discovered during Ecology CSO excavation, City of Spokane historic trolley tracks uncovered during stormwater project, intact foundation of historic home that survived the Great Ellensburg Fire of July 4, 1889, uncovered beneath parking lot in Ellensburg.

Potential human remains.

Examples are:

- Grave headstones that appear to be older than 50 years.
- Bones or bone tools--intact or in small pieces. It can be difficult to differentiate animal from human so they must be identified by an expert.
- These are all examples of animal bones and are not human.

Center: Bone wedge tool, courtesy of Smith Cove Shantytown excavation (45KI1200).

Other images (Top Right, Bottom Left, and Bottom) Center: Courtesy of DAHP.

Directly Above: This is a real discovery at an Ecology sewer project site.

What would you do if you found these items at a site? Who would be the first person you would call?

Hint: Read the plan!

APPENDIX G

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.