

APPENDIX A

Response to Washington State Department of Ecology Comments (dated August 2, 2011) on the

Draft Supplemental Upland Data Collection Technical Memorandum for the Upland Portion of the Study Area (dated June 15, 2011)

General comment: For the most part, the data and conclusions presented in the Draft Supplemental Upland Data Collection Technical Memo appear to summarize and draw conclusions based on just the sampling and work done in this investigation. Since these samples were designed to fill data gaps, the conclusions in Volume I will be expected to draw conclusions based on all the available upland data.

Response to general comment: The conclusions in Volume I are based on all the available representative upland data. Section 6.1 provides a summary of the data that are included in the chemical analytical data evaluation presented in Volume I.

Comment 1: <u>Section 2.2.2.2.</u>, page 6, second full paragraph: A boring log for GWG-7A is included in Appendix B, but no explanation for the additional boring is included here. The log shows two soil samples collected, but no results are included. Were these samples discarded? Why? The location of GWG-7A is not shown on Figure 2. Please include an explanation of boring 7A in the Volume I report.

Response to Comment 1: Boring GWG-7A was the initial attempt to complete boring GWG-7; it was drilled at the location proposed in the July 20, 2010 work plan (GeoEngineers, 2010). At a depth of approximately 10 feet below ground surface in the GWG-7A boring, the augers punctured an unmarked, 2- to 3-foot diameter fiberglass pipe, and silty/sandy water temporarily flowed up through the augers. The water was odorless. It was determined that the pipe was most likely a treated water effluent pipe associated with the mill's former wastewater treatment system, and the water that flowed into the augers was most likely rainwater or groundwater that had become trapped in the pipe under hydrostatic head. Boring GWG-7A was abandoned and backfilled with bentonite chips, and boring GWG-7 was then drilled. Soil samples and a groundwater grab sample were collected from the GWG-7 boring. No samples were submitted for analysis from GWG-7A.

Comment 2: Section 2.2.3.1, page 8, first full paragraph and Section 2.2.3.2, page 8, first paragraph: In section 2.2.3.1 it is stated that soil with apparent petroleum hydrocarbon staining was encountered in test pits TP-18 and TP-19. In section 2.2.3.2, which discusses contaminated soil removal, TP-19 is not included in the list of test pits with apparent petroleum staining. Please correct or explain this contradiction in the Volume I report.

Response to Comment 2: The text in Section 2.2.3.1 is correct – soil with apparent petroleum hydrocarbon staining was encountered in test pit TP-19. However, no visibly impacted soil was removed from TP-19 for off-site disposal because the soil staining in this test pit was less significant than in the other test pits identified in Section 2.2.3.2, and excavation of TP-19 was discontinued when stained soil was encountered.

Comment 3: Section 3.0, page 13, last sentence: This sentence states that method reporting limits (MRLs) exceeded screening levels in a small number of samples due to various reasons. Please include in the upcoming Volume I report, a table that lists these samples and the specific reason for each sample.

Response to Comment 3: The requested table is included in Appendix A of the Volume I report.

Comment 4: <u>Section 3.1.2, page 14, third bullet</u>: This bullet says that dioxins/furans were detected at concentrations slightly above the MRLs. In the Volume I, please also include what the specific MRLs were for these samples.

Response to Comment 4: A table listing the laboratory results and MRLs for the individual dioxin/furan congeners analyzed in the surface water samples collected from Ennis Creek and White Creek is included in Appendix A of the Volume I report. It should be noted that the original statement in the Technical Memorandum (that detections were slightly above MRLs) was correct for sample SW-1, but was incorrect for the other four samples (SW-2 through SW-5). The single congener (OCDD) detections in these samples were estimated concentrations (i.e., J-flagged data) between the method detection limit (MDL) and the MRL.

Comment 5: Section 3.1.2, page 15, last paragraph: This paragraph states that the surface water sample results "are considered to be representative of background concentrations in surface water in the Port Angeles area." Ecology disagrees with this statement, at least when considering dioxins. We know that the historical mill operations (air emissions from the hog fuel boiler) did impact soils off-property in the area drained by Ennis and White Creeks. It is quite likely that at least some of the dioxins in the surface water samples are from the mill, and not general urban sources. Additional evaluation of congener profiles would be necessary to determine how much of the dioxin is from mill emissions versus urban sources.

Response to Comment 5: Comment noted. The referenced statement/conclusion has been omitted from the Volume I report.

Comment 6: Section 3.1.3, page 15, last bullet and Section 3.2.1.7, page 21, end of first partial paragraph: As Ecology does not agree that the surface water dioxin concentrations are representative of background conditions, then it would not be appropriate to assume that the similar concentrations in groundwater are also representative of background concentrations. See above comment.

Response to Comment 6: Comment noted. The referenced statement/conclusion has been omitted from the Volume I report.

Comment 7: <u>Section 3.2.1.2</u>, page 17, first paragraph: The last sentence refers to a "regulatory criterion protective of groundwater" of 350 ug/kg TEC. In the Volume I report, please include a discussion of how this value was derived.

Response to Comment 7: The "regulatory criterion protective of groundwater" refers to the soil concentration protective of groundwater as marine surface water, calculated using the MTCA fixed parameter three-phase partitioning model as described in Section 5.1.1 of the July 20, 2010 work plan (GeoEngineers, 2010). A discussion of the derivation of screening levels, including soil screening levels based on protection of groundwater, is included in Section 6.2 of the Volume I report.

Comment 8: Section 3.2.1.3, page 17, second paragraph: The discussion of MW-60 does not mention that the screen for this well was submerged based on measurements in November 2010 and February and May 2011. Wells that monitor for TPH should have screens that straddle the water table. This could have the potential to affect the representativeness of the results from this well. A discussion of this should be included in the Volume I report.

Response to Comment 8: Comment noted. The Volume I report does not include a discussion specific to TPH analytical results for well MW-60. Therefore, a discussion of well screen depth vs. water table depth also is not included in the Volume I report.

Comment 9: <u>Section 3.2.1.4</u>, page 18, next to last sentence: The statement is made that elevated PCB concentration in soil may act as localized sources of contamination to groundwater but not surface water. Please explain the logic here more fully. Surface water downgradient of GWG-4 and MW-66 had not been tested for PCBs.

Response to Comment 9: Comment noted. The last part of the referenced sentence ("...but not surface water.") should not have been included in this sentence.

Comment 10: Section 3.2.1.6, page 19, paragraphs 2 and 3: The discussion concludes that certain results from MW-64 reflect a "site-specific background" for some metals. A site-specific background cannot be calculated from only one location (three samples). A conclusion is made, that with limited exceptions, these metals from MW-64 are "similar" to those in the majority of borings in the former mill operations areas. How was this calculation done? Was the average of three samples from MW-64 used? The highest result? How close is "similar"? Additional proof will have to be included in the Volume I report to establish "site-specific background" values.

Response to Comment 10: Comment noted. Well MW-64 is the southernmost exploration location in the Upland Study Area and is located in an area where no known pulp mill operations occurred. No field evidence of contamination was observed while drilling MW-64. No COPCs, other than metals, were detected in soil samples submitted for analysis from this location. Well MW-64 is hydraulically upgradient of the former mill operations. Based on these facts, it is our opinion that soil and groundwater samples from well MW-64 represent the best available "site-specific background" data for the Upland Study Area. Nevertheless, references to "site-specific background" have been omitted from the Volume I report.

The text comparing metals concentrations detected in soil at location MW-64 to the concentrations detected at boring locations in the former mill operations areas was intended to be a qualitative observation only, not a rigorous quantitative/statistical comparison. Similar qualitative comparisons of soil metals concentrations in former mill operations areas to concentrations at upgradient location MW-64 are included in the Volume I report.

Comment 11: <u>Section 3.4.2, page 33</u>: Please also include in the Volume I report a discussion of the vertical groundwater gradient.

Response to Comment 11: Estimates of vertical groundwater gradients are included in the Volume I report (Section 5.5).

Comment 12: Section 3.4.3, page 34, bullet 3, last sentence: It is presumptuous to make conclusions about groundwater background concentration in the Port Angeles area based on samples from within the Rayonier Study Area. Suggestions like this should not be made without some evidence from outside the study area.

Response to Comment 12: Comment noted. No such conclusions appear in the Volume I report.

Comment 13: <u>Section 4.0. page 40. third bullet from end</u>: This bullet says that further evaluation and discussion of the groundwater to surface water pathway for metals will be presented in Volume I. Please include in the Volume I report a discussion of groundwater chemistry and the potential for selected parameters (for example reducing conditions) to enhance metals mobility at the Site.

Response to Comment 13: A discussion of groundwater chemistry and the potential for selected parameters to enhance metals mobility is included in Section 8.0 (Fate and Transport of Constituents of Potential Concern) of the Volume I report.

Comment 14: Figures 3 - 6: For the Volume I report, please add the general tide measurement to the figures.

Response to Comment 14: The general tidal range is shown on the groundwater potentiometric maps in the Volume I report.

Groundwater Samples with MRLs Exceeding Screening Levels Port Angeles Rayonier Mill 2010-2011 Supplemental Upland Investigation

Sample ID	chemical_name	Result So	reening Level target_unit	lab_qualifiers	validator_qualifiers	interpreted_qualifiers	Comment
DUP-082610	gamma-Chlordane	0.011	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-23 100825	Total PCBs (sum of Aroclors)	0.025	0.01 UG/L	UV	UI	UIV	Matrix interference observed in at least one of the Aroclors in the summation
MW-28 100825	gamma-Chlordane	0.027	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-29 100825	gamma-Chlordane	0.018	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-51 100826	gamma-Chlordane	0.048	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-52 100825	gamma-Chlordane	0.0037	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-53_100826	gamma-Chlordane	0.0069	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-54 100826	Arsenic	0.01	0.005 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-54 100826	Lead	0.02	0.0081 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-54 100826	Silver	0.004	0.0019 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-54 100826	Thallium	0.004	0.00047 mg/l	Ü	UI	Ül	Dilution required prior to extraction/analysis
MW-55 100826	Arsenic	0.01	0.005 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-55 100826	Lead	0.02	0.0081 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-55 100826	Silver	0.004	0.0019 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-55 100826	Thallium	0.004	0.00047 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-56 100826	Lead	0.02	0.0081 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-56 100826	Silver	0.004	0.0019 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-56 100826	Thallium	0.004	0.00047 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
MW-56_100826	Aldrin	0.019	0.00083 UG/L	Ÿ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-56 100826	Heptachlor	0.024	0.00083 UG/L	Ÿ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-56_100826	Total PCBs (sum of Aroclors)	0.025	0.01 UG/L	UV	UI	UIV	Matrix interference observed in at least one of the Aroclors in the summation
MW-57 100826	gamma-Chlordane	0.0076	0.00083 UG/L	Y	UIJ	UIJ	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-58 100827	gamma-Chlordane	0.016	0.00083 UG/L	Y	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-59 100827	gamma-Chlordane	0.0053	0.00083 UG/L	Y	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
PZ-10 100826	gamma-Chlordane	0.017	0.00083 UG/L	Y	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
PZ-2 100825	Heptachlor Epoxide	0.0013	0.00083 UG/L	Y	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
PZ-3 100826	gamma-Chlordane	0.016	0.00083 UG/L	Y	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
PZ-9 100826	gamma-Chlordane	0.010	0.00083 UG/L	Y	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-1-W	Mercury	0.0004	2.5E-05 mg/l	Ü	UI	UI	Dilution required prior to extraction/analysis
GWG-1-W	4,4'-DDT	0.0024	0.0017 UG/L	Y	UIJ	UIJ	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-1-W	Aldrin	0.0024	0.0017 UG/L	Y	UIJ	UIJ	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-1-W GWG-1-W	Heptachlor	0.0028	0.00083 UG/L	Y	UIJ	UIJ	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-1-W	•	0.0014	0.00083 UG/L	Y	UIJ	UIJ	•
GWG-1-W GWG-1-W	Heptachlor Epoxide	0.0012 5	0.00083 UG/L 1 UG/L	T U	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph Dilution required prior to extraction/analysis
	Acrylonitrile	5	0.39 UG/L	U		UI	' '
GWG-1-W	Tetrachloroethylene	0.0074		U	UI U		Dilution required prior to extraction/analysis
MW-60_101111	Copper	0.0074	0.0024 mg/l		~	U	MRL elevated due to blank contamination
PIPE-1-SR23	Mercury	0.0002	2.5E-05 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
PIPE-1-SR23	Acrylonitrile	20	1 UG/L	U	UI	UI	Dilution required prior to extraction/analysis
PIPE-1-SR23	Tetrachloroethylene	4	0.39 UG/L	U	UI	UI	Dilution required prior to extraction/analysis
PIPE-1-SR23	Vinyl chloride	4	2.4 UG/L	U	UI	UI	Dilution required prior to extraction/analysis
MW-66-110311-W	•	0.00008	2.5E-05 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-54_110210	Lead	0.01	0.0081 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-55_110210	Lead	0.01	0.0081 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-56_110211	Heptachlor	0.011	0.00083 UG/L	Y	UIJ	UIJ	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
PA-19_110209	alpha-Chlordane	0.0029	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph

Groundwater Samples

PA-19_110209D	alpha-Chlordane	0.0021	0.00083 UG/L	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
MW-54-110518	Copper	0.005	0.0024 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-54_101111	Lead	0.01	0.0081 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-55_101108	Copper	0.008	0.0024 mg/l		U	U	MRL elevated due to blank contamination
MW-55_101108	Lead	0.01	0.0081 mg/l	U	UI	UI	Dilution required prior to extraction/analysis
MW-55_101108	Manganese	0.18	0.100000005 mg/l		U	U	MRL elevated due to blank contamination
MW-57_101108	Copper	0.0061	0.0024 mg/l		U	U	MRL elevated due to blank contamination
MW-58_101111	Copper	0.0033	0.0024 mg/l		U	U	MRL elevated due to blank contamination
PA-15_101109	Copper	0.005	0.0024 mg/l		U	U	MRL elevated due to blank contamination
PA-19_101111	Copper	0.0059	0.0024 mg/l		U	U	MRL elevated due to blank contamination
PZ-9 101110	Mercury	0.0004	2.5E-05 ma/l	U	UI	UI	Dilution required prior to extraction/analysis

Soil Samples with MRLs Exceeding Screening Levels Port Angeles Rayonier Mill 2010-2011 Supplemental Upland Investigation

Sample ID	chemical_name	Result S	Screening Level	target_unit	lab_qualifiers	validator_qualifiers	interpreted_qualifiers	Comment
DUPE1-102110	4,4'-DDD	0.0096	0.00	2 mg/kg	U	Ul	UI .	Dilution required prior to extraction/analysis
DUPE1-102110	4,4'-DDE	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	4,4'-DDT	0.0096	0.00	3 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Aldrin	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	alpha-BHC	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	alpha-Chlordane	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	beta-BHC	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Dieldrin	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Endosulfan I	0.0048	0.001	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Endosulfan II	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Endosulfan Sulfate	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Endrin	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Endrin Aldehyde	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Endrin Ketone	0.0096	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	gamma-BHC (Lindane)	0.0048	0.001	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Heptachlor	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Heptachlor Epoxide	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
	Hexachlorobenzene	0.0048		1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	Toxaphene	0.48		1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	2,4-Dinitrotoluene	320	10	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	2,4-Dinitrotoluene	290	10	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	3,3'-Dichlorobenzidine	320	10	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	3,3'-Dichlorobenzidine	290		0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	bis(2-Chloroethyl)ether	64	2	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE1-102110	bis(2-Chloroethyl)ether	58	2	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE2-102510	1,4-Dichlorobenzene	91	8	0 ug/kg	В	U	U	MRL elevated due to blank contamination
DUPE2-102510	1,4-Dichlorobenzene	91	8	0 ug/kg	В	U	U	MRL elevated due to blank contamination
DUPE2-102510	2,4-Dinitrotoluene	220	10	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE2-102510	3,3'-Dichlorobenzidine	220	10	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
DUPE2-102510	bis(2-Chloroethyl)ether	43	2	0 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-4-8-9.5	Dieldrin	0.0048	0.00	2 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-4-8-9.5	Heptachlor Epoxide	0.0031	0.00	1 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-4-8-9.5	Toxaphene	0.16	0.	1 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-5-2-3.5	4,4'-DDD	0.0097	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	4,4'-DDE	0.0097	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	4,4'-DDT	0.0097	0.00	3 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Aldrin	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	alpha-BHC	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	alpha-Chlordane	0.0069		1 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
GWG-5-2-3.5	beta-BHC	0.0048	0.00	1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Dieldrin	0.0097	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Endosulfan I	0.0048	0.001	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Endosulfan II	0.0097	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Endosulfan Sulfate	0.0097		2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Endrin	0.0097	0.00	2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis

CMC E 2.2 E	Finalsia Alalahuda	0.0007	0.000				Dilution as suited enter automation (analysis
GWG-5-2-3.5	Endrin Aldehyde	0.0097	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Endrin Ketone	0.0097	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	gamma-BHC (Lindane)	0.0048	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Heptachlor	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Heptachlor Epoxide	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Hexachlorobenzene	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-2-3.5	Toxaphene	0.48	0.1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	4,4'-DDD	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	4,4'-DDE	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	4,4'-DDT	0.0098	0.003 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Aldrin	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	alpha-BHC	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	alpha-Chlordane	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	beta-BHC	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Dieldrin	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Endosulfan I	0.0049	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Endosulfan II	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Endosulfan Sulfate	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Endrin	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Endrin Aldehyde	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Endrin Ketone	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	gamma-BHC (Lindane)	0.0049	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Heptachlor	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Heptachlor Epoxide	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Hexachlorobenzene	0.0049	0.001 mg/kg	Ū	Ül	Ül	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Methoxychlor	0.049	0.048 mg/kg	Ū	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	Toxaphene	0.49	0.1 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	2,4-Dinitrotoluene	300	100 ug/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	3,3'-Dichlorobenzidine	300	100 ug/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
GWG-5-5-6.5	bis(2-Chloroethyl)ether	59	20 ug/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
GWG-5A-5-6.5		4	1.2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
GWG-5A-5-6.5		1	0.61 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
GWG-5A-5-6.5		1	0.66928 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
GWG-5A-5-6.5		1	0 0	U	UI	UI	· · · · · · · · · · · · · · · · · · ·
	Total PCBs (sum of Aroclors)	0.025	0.78 mg/kg	UV	UI	UIV	Dilution required prior to extraction/analysis Matrix interference observed in at least one of the Aroclors in the summation
	,		0.004 mg/kg		UI		
	1,4-Dichlorobenzene	570	80 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	1,4-Dichlorobenzene	570	80 ug/kg	U		UI	Dilution required prior to extraction/analysis
	2,4-Dinitrotoluene	2800	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	3,3'-Dichlorobenzidine	2800	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	Bis(2-chloro-1-methylethyl) ether	570	209.540324 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	bis(2-Chloroethyl)ether	570	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	Hexachloroethane	570	130 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	N-Nitroso-di-n-propylamine	570	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	N-Nitrosodiphenylamine	570	180 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	2,4-Dinitrotoluene	290	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	3,3'-Dichlorobenzidine	290	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
	bis(2-Chloroethyl)ether	59	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
MW-60-2-3.5	2,4-Dinitrotoluene	300	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
MW-60-2-3.5	3,3'-Dichlorobenzidine	300	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis

MW-60-2-3.5	bis(2-Chloroethyl)ether	59	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-10-11.5	2,4-Dinitrotoluene	130	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-10-11.5	3,3'-Dichlorobenzidine	130	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-10-11.5	bis(2-Chloroethyl)ether	27	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	4,4'-DDD	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	4,4'-DDE	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	4,4'-DDT	0.0096	0.003 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Aldrin	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	alpha-BHC	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	alpha-Chlordane	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	beta-BHC	0.0048	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Dieldrin	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Endosulfan I	0.0048	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Endosulfan II	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Endosulfan Sulfate	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Endrin	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Endrin Aldehyde	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Endrin Ketone	0.0096	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	gamma-BHC (Lindane)	0.0048	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Heptachlor	0.0048	0.001 mg/kg	Ū	UI	Ül	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Heptachlor Epoxide	0.0048	0.001 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Hexachlorobenzene	0.0048	0.001 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	Toxaphene	0.48	0.1 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	2,4-Dinitrotoluene	330	100 ug/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	3,3'-Dichlorobenzidine	330	100 ug/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-1-7-8.5	bis(2-Chloroethyl)ether	66	20 ug/kg	Ü	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
SSB-2-2-3.5	4,4'-DDD	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	4,4'-DDE	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
SSB-2-2-3.5	4,4'-DDT	0.0099	0.002 mg/kg 0.003 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
SSB-2-2-3.5	Aldrin	0.005		U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
SSB-2-2-3.5		0.005	0.001 mg/kg	U	UI	UI	
	alpha-BHC		0.001 mg/kg				Dilution required prior to extraction/analysis
SSB-2-2-3.5	alpha-Chlordane	0.005	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	beta-BHC	0.005	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Dieldrin	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Endosulfan I	0.005	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Endosulfan II	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Endosulfan Sulfate	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Endrin	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Endrin Aldehyde	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Endrin Ketone	0.0099	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	gamma-BHC (Lindane)	0.005	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Heptachlor	0.005	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Heptachlor Epoxide	0.005	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Hexachlorobenzene	0.005	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Methoxychlor	0.05	0.048 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	Toxaphene	0.5	0.1 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	2,4-Dinitrotoluene	320	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	2,4-Dinitrotoluene	300	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	3,3'-Dichlorobenzidine	320	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
							· · · · · · · · · · · · · · · · · · ·

000 000 5	0.01.51.11	200	100 "				
SSB-2-2-3.5	3,3'-Dichlorobenzidine	300	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	bis(2-Chloroethyl)ether	60	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-2-3.5	bis(2-Chloroethyl)ether	63	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-5-6.5	Cadmium	2	1.2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-2-5-6.5	Selenium	0.8	0.78 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-3-2-3.5	2,4-Dinitrotoluene	300	100 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
SSB-3-2-3.5	3,3'-Dichlorobenzidine	300	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-3-2-3.5	bis(2-Chloroethyl)ether	59	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-6-10-11.5		0.0022	0.001 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
SSB-6-5-6.5	4,4'-DDE	0.0034	0.002 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
SSB-6-5-6.5	Heptachlor Epoxide	0.0038	0.001 mg/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
SSB-7-2-3.5	4,4'-DDD	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	4,4'-DDE	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	4,4'-DDT	0.0098	0.003 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Aldrin	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	alpha-BHC	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	alpha-Chlordane	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	beta-BHC	0.0049	0.001 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Dieldrin	0.0098	0.002 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Endosulfan I	0.0049	0.0012 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Endosulfan II	0.0098	0.002 mg/kg	Ū	Ül	Ül	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Endosulfan Sulfate	0.0098	0.002 mg/kg	Ū	UI	Üİ	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Endrin	0.0098	0.002 mg/kg	Ū	Ül	Ül	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Endrin Aldehyde	0.0098	0.002 mg/kg	Ū	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Endrin Ketone	0.0098	0.002 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	gamma-BHC (Lindane)	0.0049	0.0012 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Heptachlor	0.0049	0.0012 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Heptachlor Epoxide	0.0049	0.001 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Hexachlorobenzene	0.0049	0.001 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis
SSB-7-2-3.5	Methoxychlor	0.049	0.048 mg/kg	Ü	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
SSB-7-2-3.5	Toxaphene	0.49	0.046 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
SSB-8-5-6.5	Cadmium	2	1.2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
TP-02-8'	1,4-Dichlorobenzene	180		U	UIJ	UIJ	Dilution required prior to extraction/analysis Dilution required prior to extraction/analysis
TP-02-8'			80 ug/kg	U	UIJ		
	1,4-Dichlorobenzene	180	80 ug/kg		UIJ	UIJ	Dilution required prior to extraction/analysis
TP-02-8'	2,4-Dinitrotoluene	910	100 ug/kg	U		UIJ	Dilution required prior to extraction/analysis
TP-02-8'	3,3'-Dichlorobenzidine	910	100 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-02-8'	bis(2-Chloroethyl)ether	180	20 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-02-8'	Hexachloroethane	180	130 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-02-8'	N-Nitroso-di-n-propylamine	180	100 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-03-7'	2,4-Dinitrotoluene	190	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-03-7'	3,3'-Dichlorobenzidine	190	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-03-7'	bis(2-Chloroethyl)ether	38	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-07-6'	Cadmium	2	1.2 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-07-6'	Total PCBs (sum of Aroclors)	0.012	0.004 mg/kg	UV	UI	UIV	Matrix interference observed in at least one of the Aroclors in the summation
TP-07-6'	Selenium	0.8	0.78 mg/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-11-5'	2,4-Dinitrotoluene	360	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-11-5'	3,3'-Dichlorobenzidine	360	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-11-5'	bis(2-Chloroethyl)ether	72	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-12-2'	2,4-Dinitrotoluene	340	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis

TP-12-2'	3,3'-Dichlorobenzidine	340	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-12-2'	bis(2-Chloroethyl)ether	67	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-12-2'	Pentachlorophenol	53	48 ug/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
TP-12-4'	2,4-Dinitrotoluene	310	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-12-4'	3,3'-Dichlorobenzidine	310	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-12-4'	bis(2-Chloroethyl)ether	62	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-14-3'	2,4-Dinitrotoluene	320	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-14-3'	3,3'-Dichlorobenzidine	320	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-14-3'	bis(2-Chloroethyl)ether	65	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-15-2'	1,4-Dichlorobenzene	85	80 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-15-2'	1,4-Dichlorobenzene	85	80 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-15-2'	2,4-Dinitrotoluene	420	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-15-2'	3,3'-Dichlorobenzidine	420	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-15-2'	bis(2-Chloroethyl)ether	85	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-15-2'	Pentachlorophenol	52	48 ug/kg	Υ	UI	UI	Matrix interference observed, MRL was elevated to avoid ambiguous chromatograph
TP-DUPE-1	1,4-Dichlorobenzene	550	80 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	1,4-Dichlorobenzene	550	80 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	2,4-Dinitrotoluene	2800	100 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	3,3'-Dichlorobenzidine	2800	100 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	Bis(2-chloro-1-methylethyl) ether	550	209.540324 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	bis(2-Chloroethyl)ether	550	20 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	Hexachloroethane	550	130 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	N-Nitroso-di-n-propylamine	550	100 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-1	N-Nitrosodiphenylamine	550	180 ug/kg	U	UIJ	UIJ	Dilution required prior to extraction/analysis
TP-DUPE-3	2,4-Dinitrotoluene	330	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-DUPE-3	3,3'-Dichlorobenzidine	330	100 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis
TP-DUPE-3	bis(2-Chloroethyl)ether	67	20 ug/kg	U	UI	UI	Dilution required prior to extraction/analysis

SOIL CLASSIFICATION CHART

M	AJOR DIVISI	IONS	SYMI	BOLS	TYPICAL
IVI	AJOK DIVISI	10143		LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GF	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
MORE THAN 50% RETAINED ON NO. 200 SIEVE	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS
	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS LEAN CLAYS
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
			h	ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY
H	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Shelby tube

Piston

Direct-Push

Bulk or grab

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

A "P" indicates sampler pushed using the weight of the drill rig.

ADDITIONAL MATERIAL SYMBOLS

SYMI	BOLS	TYPICAL					
GRAPH	LETTER	DESCRIPTIONS					
	CC	Cement Concrete					
	AC	Asphalt Concrete					
33	CR	Crushed Rock/ Quarry Spalls					
	TS	Topsoil/ Forest Duff/Sod					

Ī

Measured groundwater level in exploration, well, or piezometer

 $\overline{\sum}$

Groundwater observed at time of exploration

Perched water observed at time of exploration

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Material Description Contact

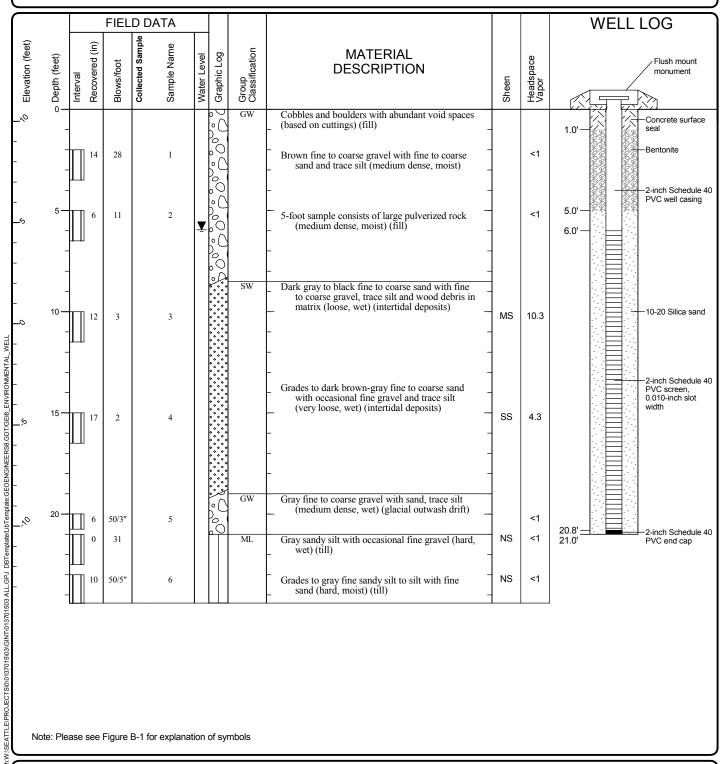
Distinct contact between soil strata or geologic units

Approximate location of soil strata change within a geologic soil unit

Laboratory / Field Tests

Percent fines %F Atterberg limits ΑL CA Chemical analysis CP Laboratory compaction test CS Consolidation test DS Direct shear HA Hydrometer analysis MC Moisture content MD Moisture content and dry density OC Organic content PΜ Permeability or hydraulic conductivity PP Pocket penetrometer SA Sieve analysis ΤX Triaxial compression UC Unconfined compression Vane shear

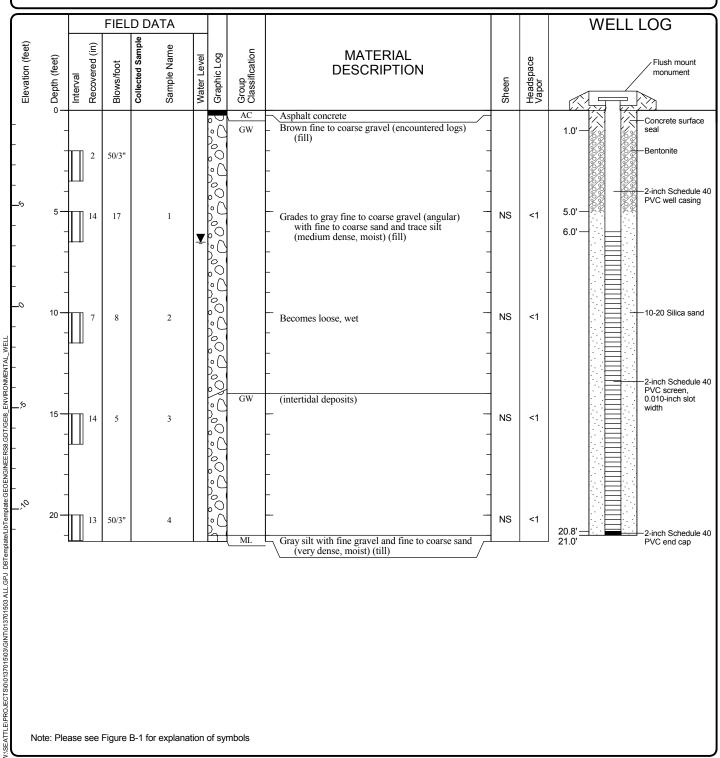
Sheen Classification


NS No Visible Sheen
SS Slight Sheen
MS Moderate Sheen
HS Heavy Sheen
NT Not Tested

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLORATION LOGS

Start Drilled 10/19/2010	<u>End</u> 10/19/2010	Total Depth (ft)	24.4	Logged By Checked By	_{Driller} Boart Longyear		Drilling Hollow S	Stem Auger
Hammer Data	Wirelin 300 (lbs) / 30	-		Drilling Equipment	Mobile B59	A 2 (in) well wa	cy well number: BA is installed on 10/19/2	
Surface Elevation (f Vertical Datum	,).6 /D29		Top of Casing Elevation (ft)	10.1	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)	1011 417	1053 636		Horizontal Datum	NAD83	<u>Date Measured</u> 11/12/2010	<u>Water (ft)</u> 5.96	Elevation (ft) 4.15
Notes: Auge	r Data: 4¼-incl	h I.D.				1		

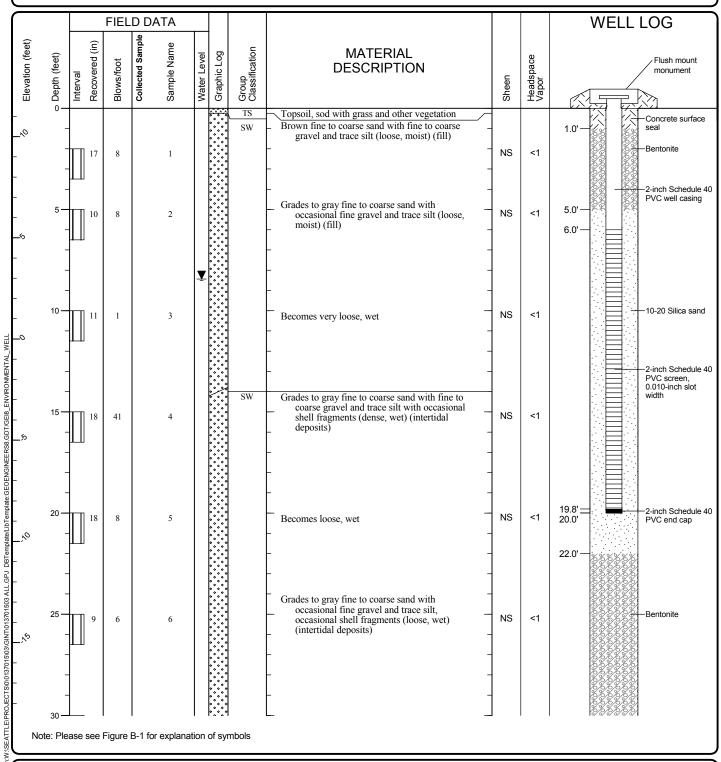

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-2 Sheet 1 of 1

<u>Start</u> Drilled 10/19/2010		Total Depth (ft)	21.3	Logged By Checked By	AMW RCL	Driller Boart Longyear		Drilling Hollov Method	v Stem Auger
Hammer Data	Wirelin 300 (lbs) / 30 (-		Drilling Equipment		Mobile B59	A 2 (in) well wa	cy well number: E installed on 10/19	AM 432 1/2010 to a depth of 21
Surface Elevation (f Vertical Datum	t) 9. NGV			Top of Casing Elevation (ft)		9.5	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)	1010 417			Horizontal Datum		NAD83	Date Measured 11/12/2010	<u>Water (ft)</u> 6.52	Elevation (ft) 2.98
Notes: Auge	r Data: 4¼-inch	ı I.D.							

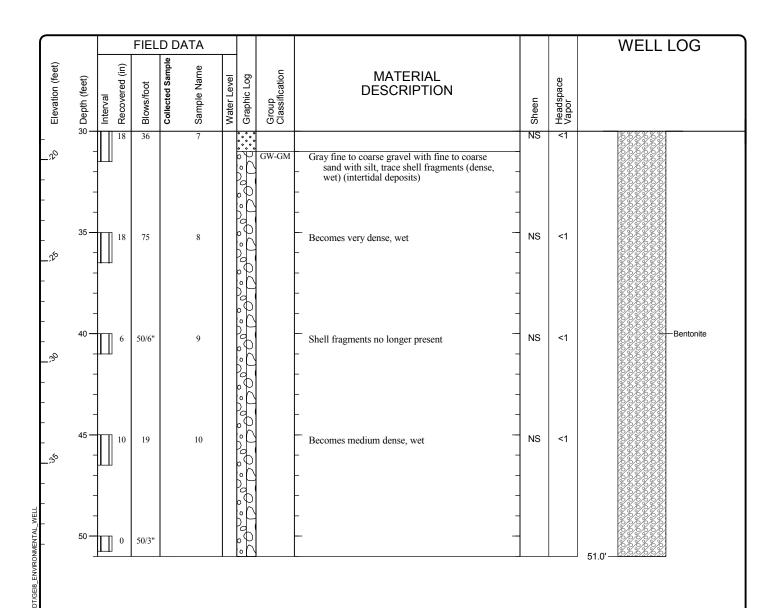

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-3 Sheet 1 of 1

Start Drilled 10/20/2010	<u>End</u> 10/20/2010	Total Depth (ft)	51	Logged By A	AMW RCL	Driller Boart Longyear		Drilling Hollow S	Stem Auger
Hammer Data	Wireli 300 (lbs) / 30			Drilling Equipment		Mobile B59	A 2 (in) well wa	cy well number: BAI is installed on 10/20/2	
Surface Elevation (f Vertical Datum	,	1.4 VD29		Top of Casing Elevation (ft)		10.9	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)		2203 8060		Horizontal Datum		NAD83	Date Measured 11/12/2010	<u>Water (ft)</u> 8.44	Elevation (ft) 2.46
Notes: Auge	r Data: 41/4-ind	ch I.D.							



Project: Rayonier Mill

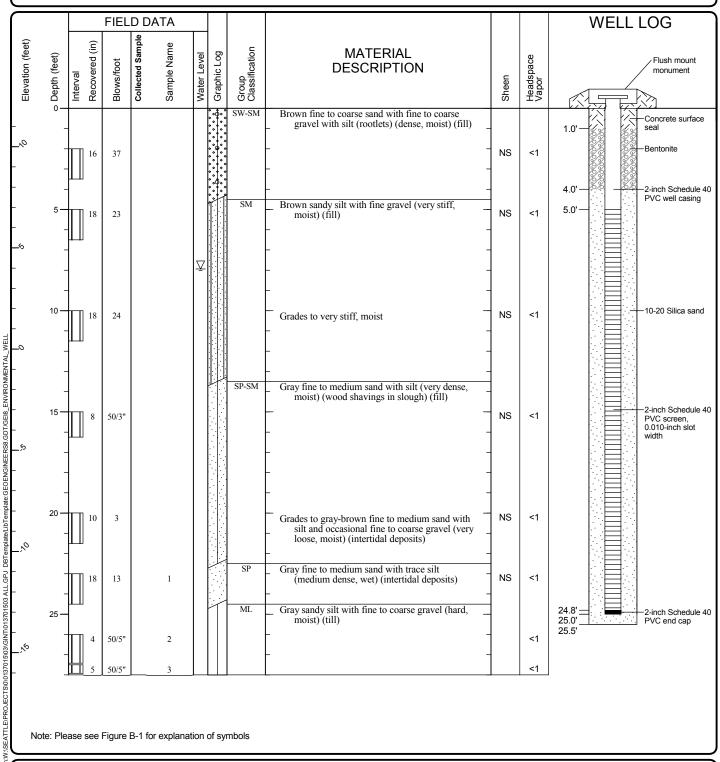
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-4 Sheet 1 of 2

Note: Please see Figure B-1 for explanation of symbols

Log of Monitoring Well MW-62 (continued)

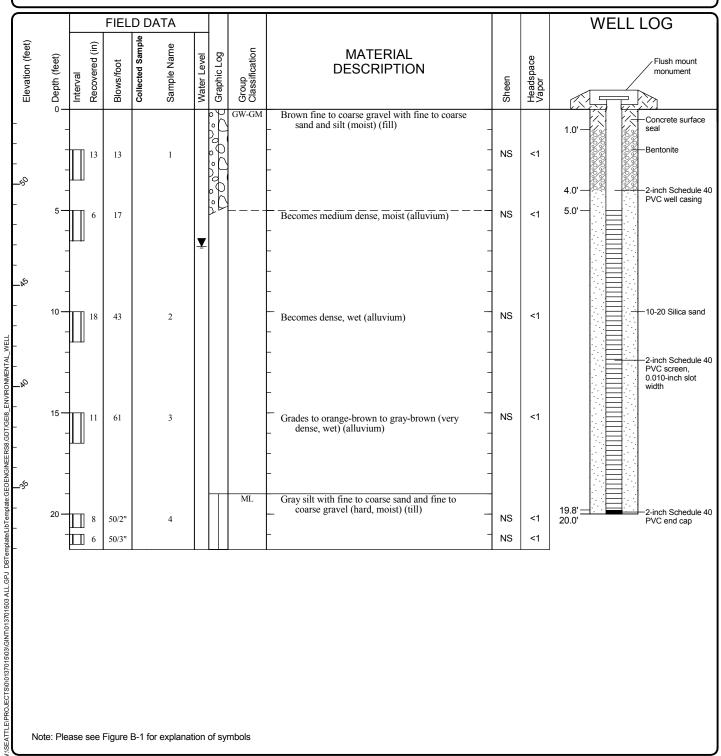

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-4 Sheet 2 of 2

Start Drilled 10/21/2010	<u>End</u> 10/21/2010	Total Depth (ft)	28	Logged By A Checked By	AMW RCL	Driller Boart Longyear		Drilling Hollow S	Stem Auger
Hammer Data	Wireli 300 (lbs) / 30			Drilling Equipment		Mobile B59	A 2 (in) well wa	cy well number: BAI is installed on 10/21/2	
Surface Elevation (f Vertical Datum	,	1.9 VD29		Top of Casing Elevation (ft)		11.5	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)		1165 7728		Horizontal Datum		NAD83	Date Measured 11/12/2010	<u>Water (ft)</u> 7.94	Elevation (ft) 3.60
Notes: Auge	r Data: 41/4-ind	ch I.D.							

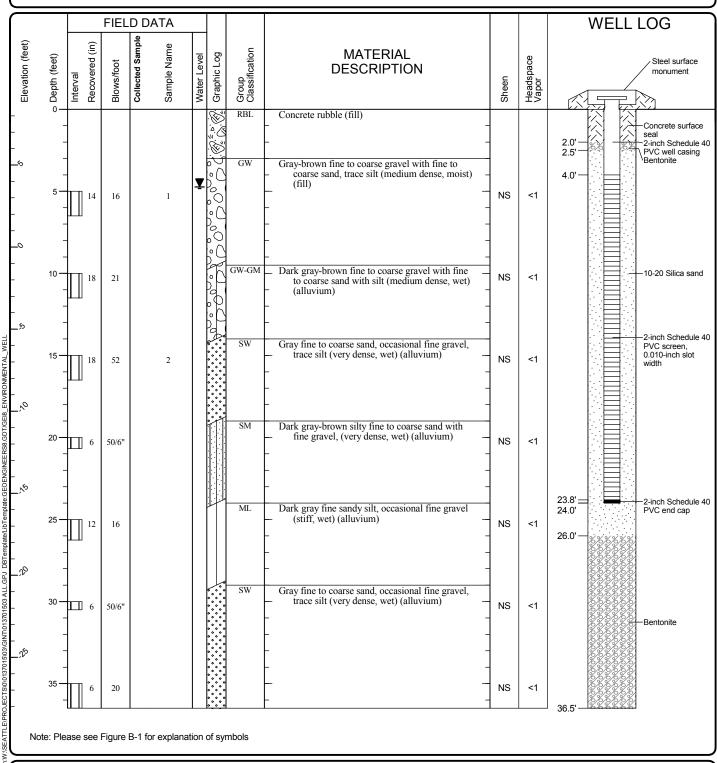

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-5 Sheet 1 of 1

Start Drilled 10/18/2010	End Total 10/18/2010 Depth (ft)	21.75	Logged By AM\ Checked By RC	Drillor BOATTLODOVEAL		Drilling Hollow S	Stem Auger
Hammer Data	Wireline 300 (lbs) / 30 (in) Drop		Drilling Equipment	Mobile B59	A 2 (in) well wa	ncy well number: BAN as installed on 10/18/20	
Surface Elevation (f Vertical Datum	t) 53.7 NGVD29		Top of Casing Elevation (ft)	53.0	Groundwater	Depth to	
Easting (X) Northing (Y)	1012869 415231		Horizontal Datum	NAD83	Date Measured 11/12/2010	<u>Water (ft)</u> 6.78	Elevation (ft) 46.18
Notes: Auge	r Data: 4¼-inch I.D.						

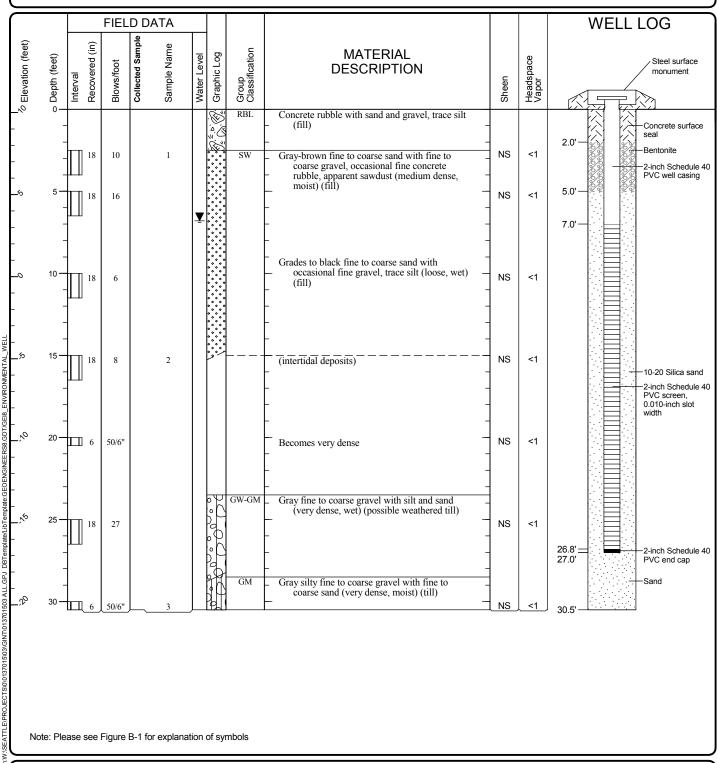

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-6 Sheet 1 of 1

Start Drilled 3/10/2011	End Total 3/10/2011 Depth (f	36.5	Logged By AMW Checked By RCL	Driller Cascade Drilling		Drilling Hollow S	Stem Auger
Hammer Data	Wireline 300 (lbs) / 30 (in) Dro	р	Drilling Equipment	CME 75	A 2 (in) well wa	cy well number: BHE is installed on 3/10/20	
Surface Elevation (f Vertical Datum	t) 8.4 NGVD29		Top of Casing Elevation (ft)	7.9	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)	1012154 417791		Horizontal Datum	NAD83	<u>Date Measured</u> 3/11/2011	Water (ft) 4.71	Elevation (ft) 3.23
Notes:							

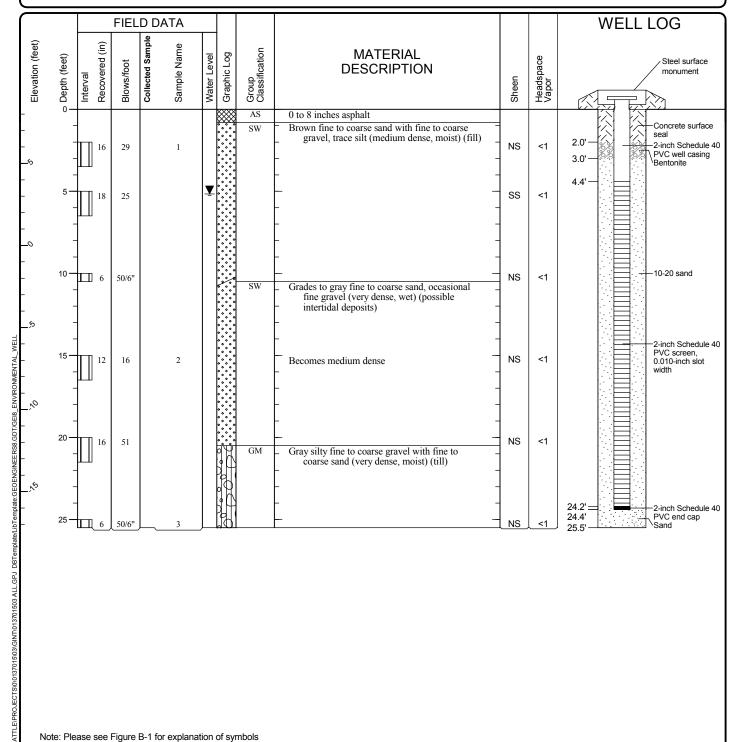

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-7 Sheet 1 of 1

Start Drilled 3/9/2011		Total Depth (ft)	30.5	Logged By AMW Checked By RCL	Driller Cascade Drilling		Drilling Hollow S	Stem Auger
Hammer Data	Wireline 300 (lbs) / 30 (i	-		Drilling Equipment	CME 75	A 2 (in) well wa	cy well number: BH is installed on 3/11/20	
Surface Elevation (Vertical Datum	ft) 10. NGVI	_		Top of Casing Elevation (ft)	9.9	(ft). Groundwater	Depth to	
Easting (X) Northing (Y)	10118 4181			Horizontal Datum	NAD83	<u>Date Measured</u> 3/11/2011	<u>Water (ft)</u> 6.80	Elevation (ft) 3.10
Notes:								

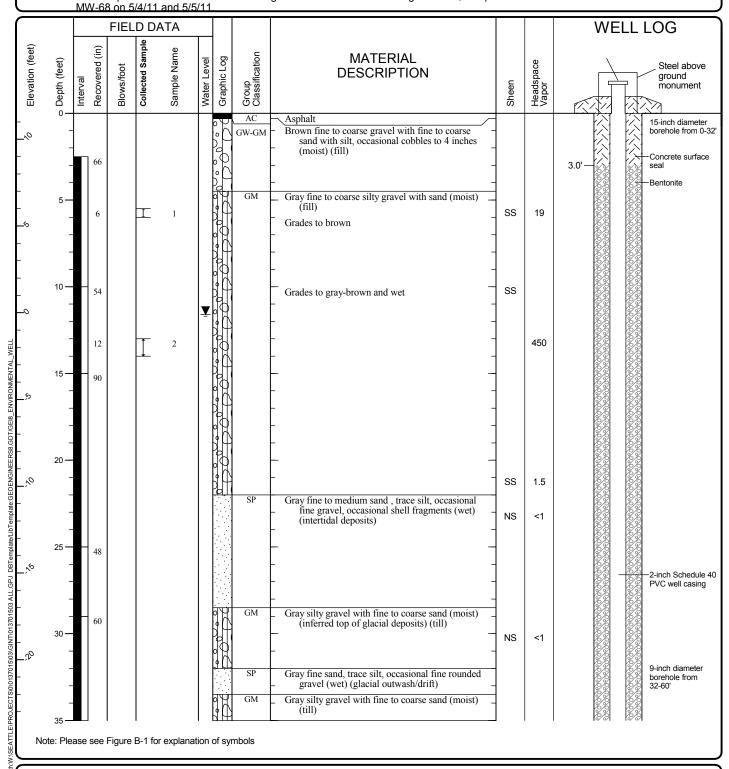

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-8 Sheet 1 of 1

Drilled	<u>Start</u> 3/9/2011	<u>End</u> 3/9/2011	Total Depth (ft)	25.5	Logged By AM' Checked By RC	Drillor	Cascade Drilling		Drilling Method Hollow	Stem Auger
Hammer Data	•	Wirel 300 (lbs) / 30			Drilling Equipment	CME	75	A 2 (in) well wa	cy well number: BH s installed on 3/9/201	
Surface Vertical I	Elevation (i	,	8.3 SVD29		Top of Casing Elevation (ft)	8.0		(ft). Groundwater	Depth to	
Easting Northing			11067 7834		Horizontal Datum	NAD8	3	<u>Date Measured</u> 3/11/2011	<u>Water (ft)</u> 5.16	Elevation (ft) 2.83
Notes:										

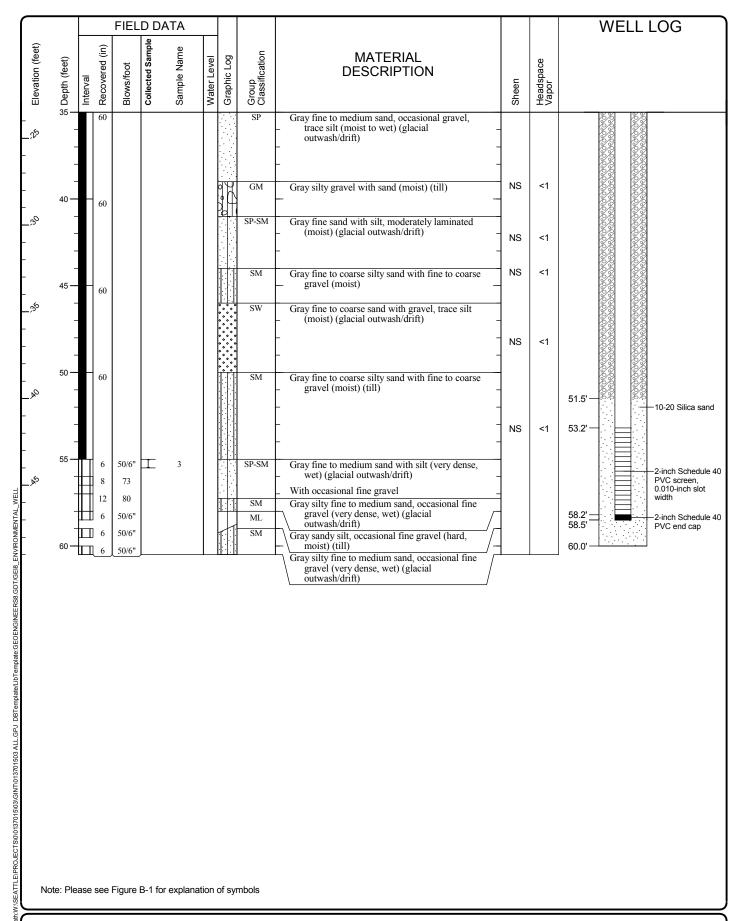

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-9 Sheet 1 of 1

Start Drilled 5/17/2011	<u>End</u> 5/18/2011	Total Depth (ft)	60.5	Logged By Checked By		Driller	Cascade Drilling		Drilling Method	Rotosonic Hollow Sten	n Auger
Hammer Data	Wireli 300 (lbs) / 30			Drilling Equipment	Sonic	Drill Cor	p/CME 75	A 2 (in) well wa		mber: BHB 01 ° on 5/18/2011 to	a depth of 58.5
Surface Elevation (Vertical Datum	,	1.5 VD29		Top of Casing Elevation (ft)		14.3	3	(ft). Groundwater		epth to	
Easting (X) Northing (Y)		11128 7714		Horizontal Datum		NAD8	3	Date Measured 5/18/2011	_	Vater (ft) 11.61	Elevation (ft) 2.70
Notes: Soil	samples obtain	ned from 0	to 55 fe	et bgs are from	n abando	ned borii	ng MW-68a, com	oleted 7.5 fee	t northea	ast of well	



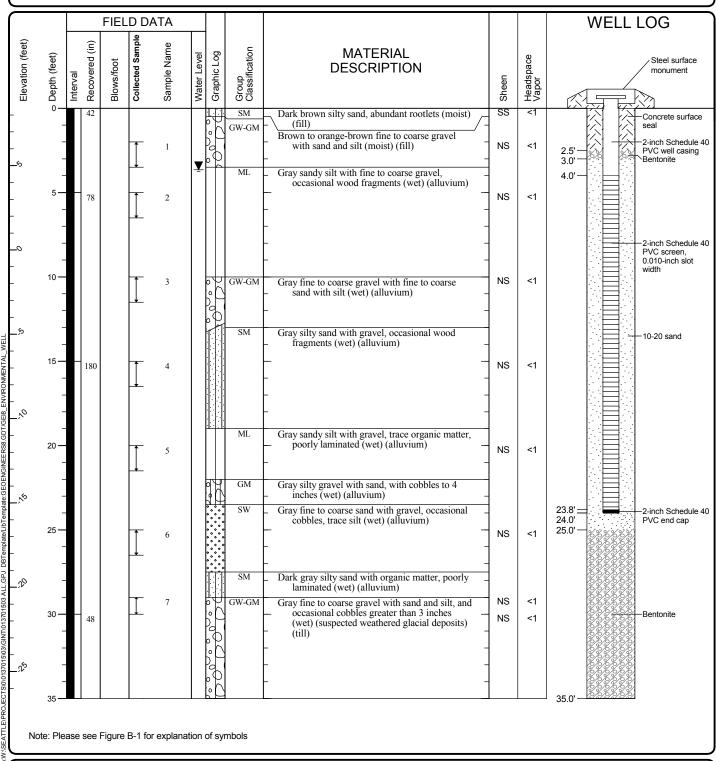
Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-10 Sheet 1 of 2

Log of Monitoring Well MW-68 (continued)

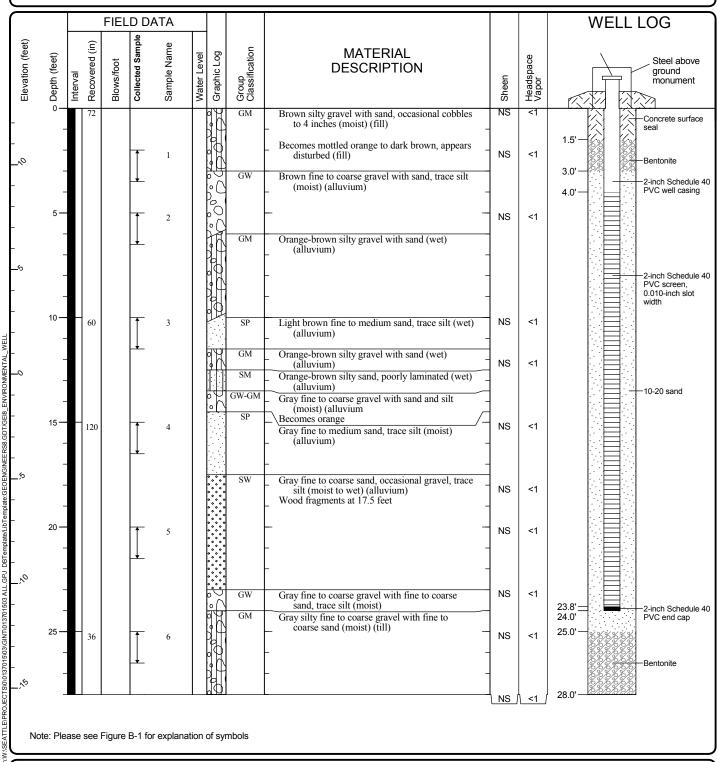

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-10 Sheet 2 of 2

Start Drilled 5/6/2011	<u>End</u> 5/7/2011	Total Depth (ft)	35	Logged By Checked By	AMW RCL	Driller Cascade Drilling	Drilling Rotosonic Method			
Hammer Data	Continuous	s coring		Drilling Equipment	S	onic Drill Corp	A 2 (in) well wa	cy well number: BCN s installed on 5/7/2011		
Surface Elevation (ft) Vertical Datum		3.4 VD29		Top of Casing Elevation (ft)		8.2	(ft). Groundwater	Depth to		
Easting (X) Northing (Y)		2063 7454		Horizontal Datum		NAD83	Date Measured 5/7/2011	<u>Water (ft)</u> 3.65	Elevation (ft) 4.75	
Notes:										

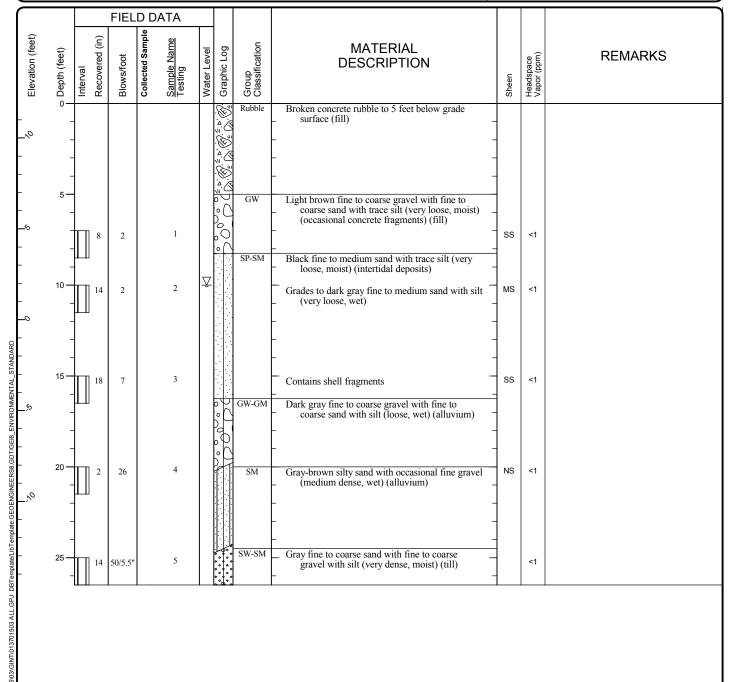

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-11 Sheet 1 of 1

Start Drilled 5/6/2011	<u>End</u> 5/6/2011	Total Depth (ft)	28	Logged By Checked By	AMW RCL	Driller Cascade Drilling	Drilling Rotosonic Method			
Hammer Data	Continuous	coring		Drilling Equipment	S	onic Drill Corp	A 2 (in) well wa	cy well number: BCN s installed on 5/6/2011		
Surface Elevation (ft) Vertical Datum		2.7 /D29		Top of Casing Elevation (ft)		15.0	(ft). Groundwater	Depth to		
Easting (X) Northing (Y)	1012 417	2249 324		Horizontal Datum		NAD83	Date Measured 5/7/2011	Water (ft) 8.69	Elevation (ft) 4.01	
Notes:										


Project: Rayonier Mill

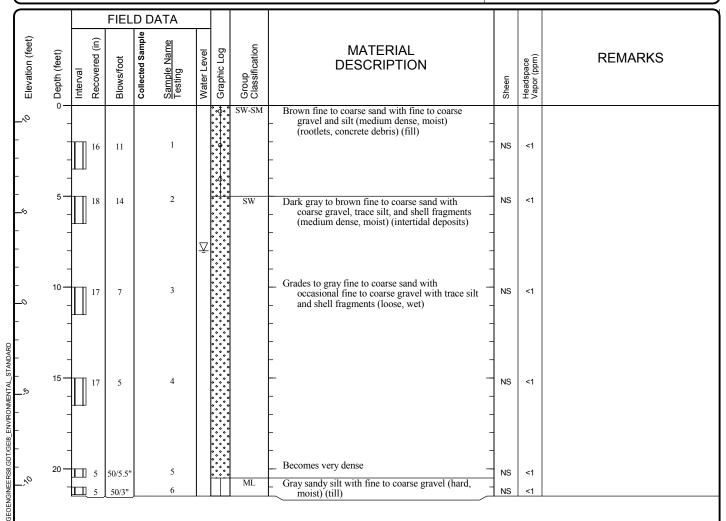
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-12 Sheet 1 of 1

<u>Start</u> Drilled 10/25/2010	<u>End</u> 10/25/2010	Total Depth (ft)	26.5	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	Hollow Ste	em Auger
Surface Elevation (ft) Vertical Datum	-	1.9 VD29		Hammer Data	300	Wireline (lbs) / 30 (in) Drop	Drilling Equipment		Mobile	B59
Easting (X) Northing (Y)		1585 7794		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/4-inch I.D.						10/25/201	0	10.00	1.90

Note: Please see Figure B-1 for explanation of symbols


Project: Rayonier Mill

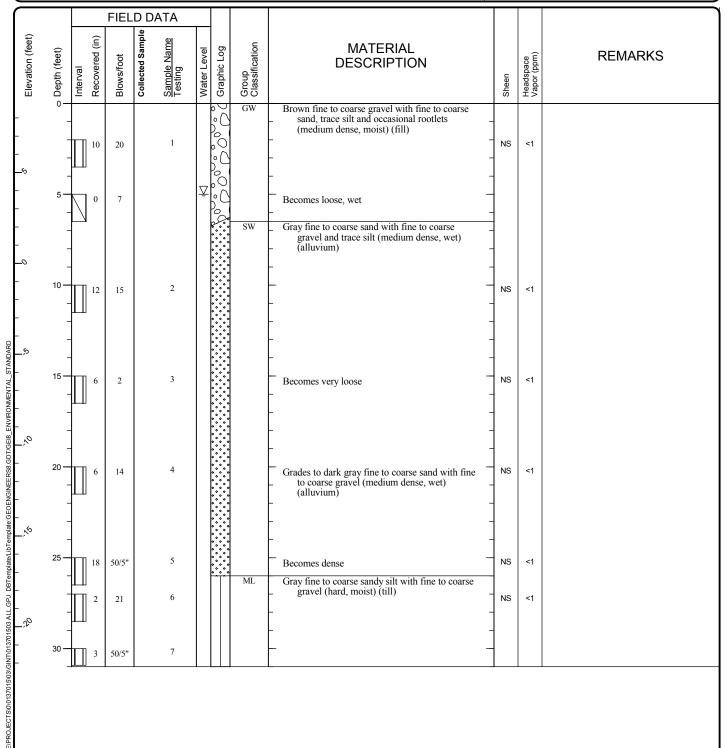
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-13 Sheet 1 of 1

<u>Start</u> Drilled 10/21/2010	<u>End</u> 10/21/2010	Total Depth (ft)	21.5	Logged By Checked By	AMW RCL	_{Driller} Boart Longyear		Drilling Method	Hollow St	em Auger
Surface Elevation (ft) Vertical Datum	-	0.9 VD29		Hammer Data	300	Wireline (lbs) / 30 (in) Drop	Drilling Equipment		Mobile	e B59
Easting (X) Northing (Y)		1263 7785		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	½-inch I.D.						10/21/201	_	8.00	2.90

Note: Please see Figure B-1 for explanation of symbols

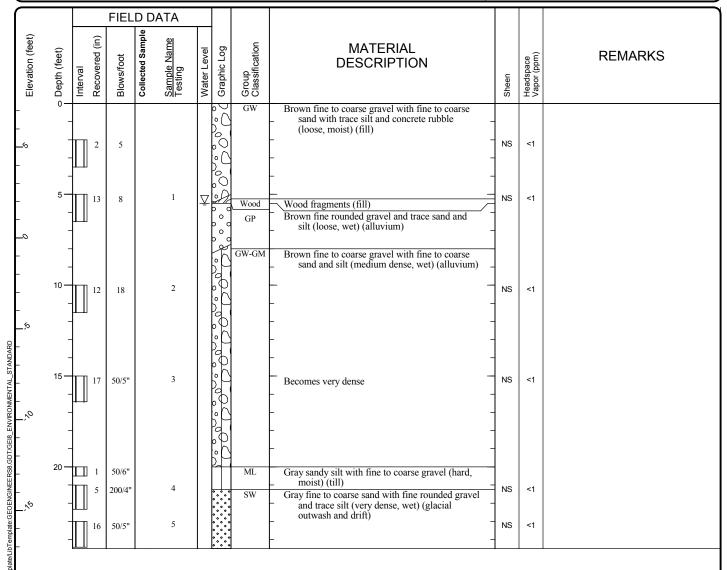

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

<u>Start</u> Drilled 10/22/2010	<u>End</u> 10/22/2010	Total Depth (ft)	31	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	Hollow St	em Auger
Surface Elevation (ft) Vertical Datum	-	3.8 VD29		Hammer Data	300	Wireline (lbs) / 30 (in) Drop	Drilling Equipment		Mobile	e B59
Easting (X) Northing (Y)		1615 7718		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/4-inch I.D.						10/22/2010	0	5.00	3.80

Note: Please see Figure B-1 for explanation of symbols


Project: Rayonier Mill

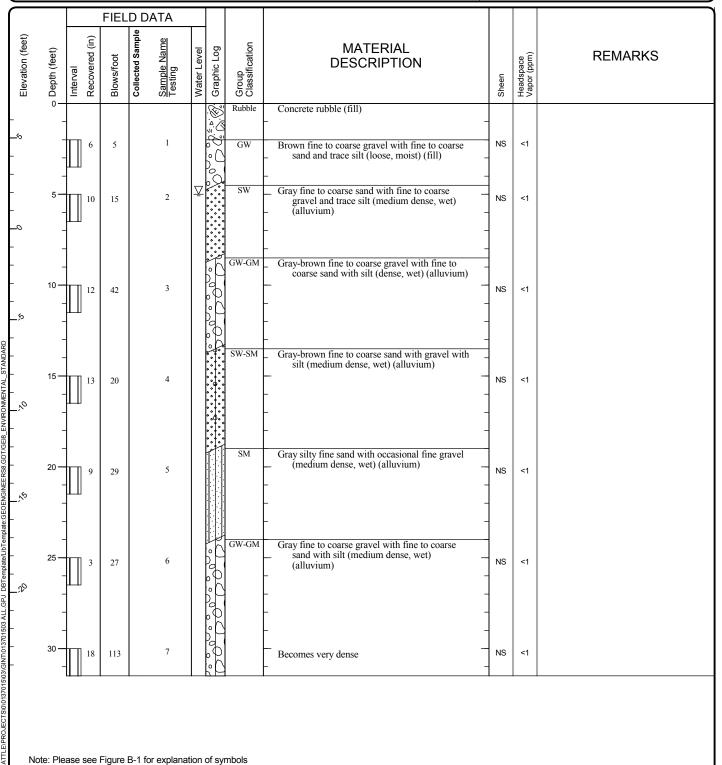
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-15 Sheet 1 of 1

<u>Start</u> Drilled 10/22/2010	<u>End</u> 10/22/2010	Total Depth (ft)	24.5	Logged By Checked By	AMW RCL	_{Driller} Boart Longyear		Drilling Method	Hollow St	em Auger
Surface Elevation (ft) Vertical Datum	-	7.4 VD29		Hammer Data	300	Wireline (lbs) / 30 (in) Drop	Drilling Equipment		Mobile	B59
Easting (X) Northing (Y)		1603 7586		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/₄-inch I.D.						10/22/201	0	5.50	1.90

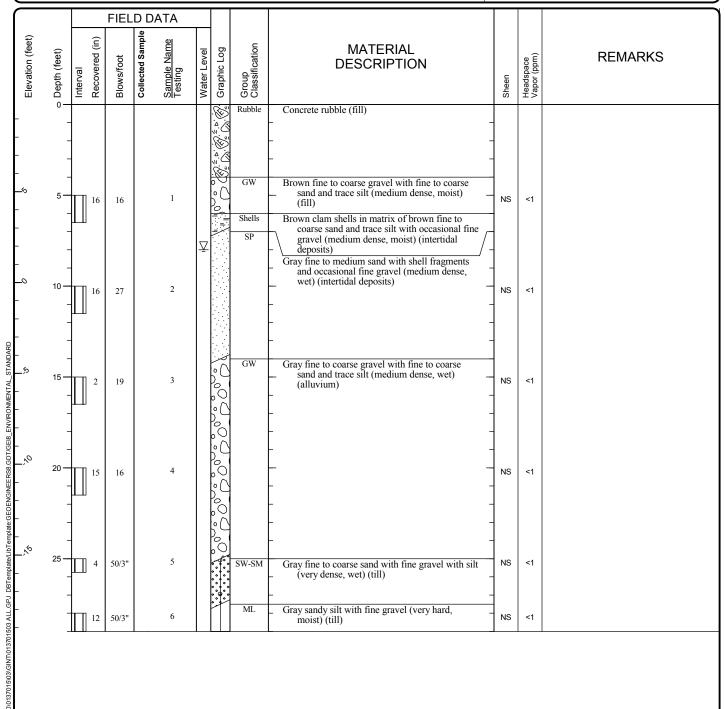
Note: Please see Figure B-1 for explanation of symbols


Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

<u>Start</u> Drilled 10/26/2010	<u>End</u> 10/27/2010	Total Depth (ft)	31.5	Logged By Checked By	AMW RCL	_{Driller} Boart Longyear		Drilling Method	S HOHOW STEM AHOER		
Surface Elevation (ft) Vertical Datum	6.9 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	B59	
Easting (X) Northing (Y)		2186 770		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data: 4	½-inch I.D.		10/26/2010	0	5.00	1.90					


Project: Rayonier Mill

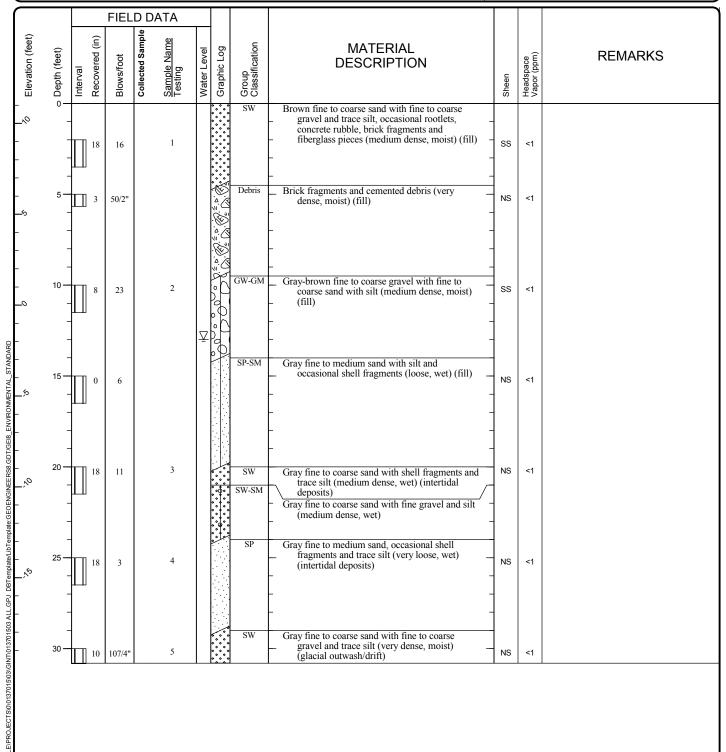
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-17 Sheet 1 of 1

<u>Start</u> Drilled 10/26/2010	End 10/26/2010	Total Depth (ft)	29	Logged By AMW Checked By RCL Driller Boart Longyear				Drilling Method Hollow Stem Auger			
Surface Elevation (ft) Vertical Datum				Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59	
Easting (X) Northing (Y)				System Datum		NAD83	Groundwate	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data: 4	¼-inch I.D.						10/26/201		8.00	1.80	

Note: Please see Figure B-1 for explanation of symbols


Project: Rayonier Mill

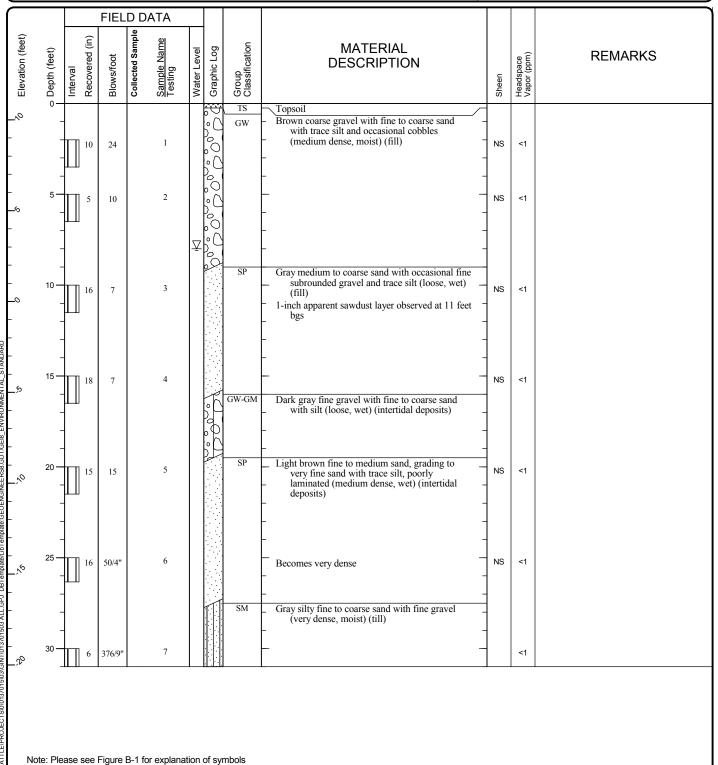
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-18 Sheet 1 of 1

<u>Start</u> Drilled 10/26/2010	<u>End</u> 10/26/2010	Total Depth (ft)	30.8	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	S HOHOW STEM ATIME		
Surface Elevation (ft) Vertical Datum) 11.1 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59	
Easting (X) Northing (Y)		1458 8071		System Datum		NAD83	Groundwate	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data: 4		10/26/201	0	13.00	-1.90						

Note: Please see Figure B-1 for explanation of symbols


Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-19 Sheet 1 of 1

<u>Start</u> Drilled 10/25/2010	<u>End</u> 10/25/2010	Total Depth (ft)	31	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	> HOHOW STAM ALIGA		
Surface Elevation (ft) Vertical Datum	t) 10.9 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	B59	
Easting (X) Northing (Y)		0709 7602		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data: 4	1/4-inch I.D.						10/25/201	0	8.00	2.90	

Project: Rayonier Mill

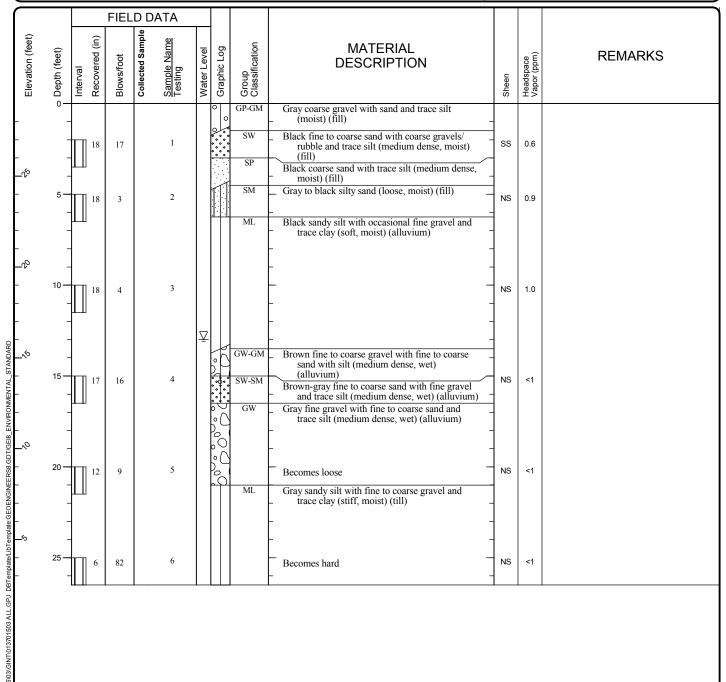
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-20 Sheet 1 of 1

Start Drilled 10/27/2010		Total Depth (ft)	31.5	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method Hollow Stem Aug		
Surface Elevation (ft) Vertical Datum				Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	B59
Easting (X) Northing (Y)				System Datum		NAD83	Groundwate		Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/4-inch I.D.						10/27/201		20.0	0.9

				D D/		_						
Elevation (feet)	⊃ Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
_∿	- -							GW	Dark brown fine gravel with fine to coarse sand and trace silt (moist) (fill)			
- - -	- -	18	7		1			ML	Brown sandy silt, occasional fine rounded gravel and trace clay (medium stiff, moist) (alluvium)	NS	<1	
- -や -	5 -	18	5		2					NS	<1	
- - - -	- 10 - -	18	8		3		• • • • • • • • • • • • • • • • • • • •	SW-SM	Orange-brown fine to coarse sand with silt and occasional fine gravel (loose, moist) (alluvium)	NS	<1	
- —స -	- 15 — - -	18	3		4			SM	Becomes very loose Gray fine sand with silt (very loose, moist) (alluvium)	NS	<1	
- - - -	20 —	16	50		5	Ā		GW	Gray fine to coarse gravel with fine to coarse sand and trace silt (very dense, wet) (alluvium)	NS	<1	
- - - - - - - - - -	25 	12	53/1"		6				- · · · · · · · · · · · · · · · · · · ·	NS	<1	
- - -,%	30 —	16	40		7			GW-GM	Gray fine to coarse gravel with fine to coarse sand with silt (dense, wet) (till)	NS	<1	


Project: Rayonier Mill

Project Location: Port Angeles, Washington

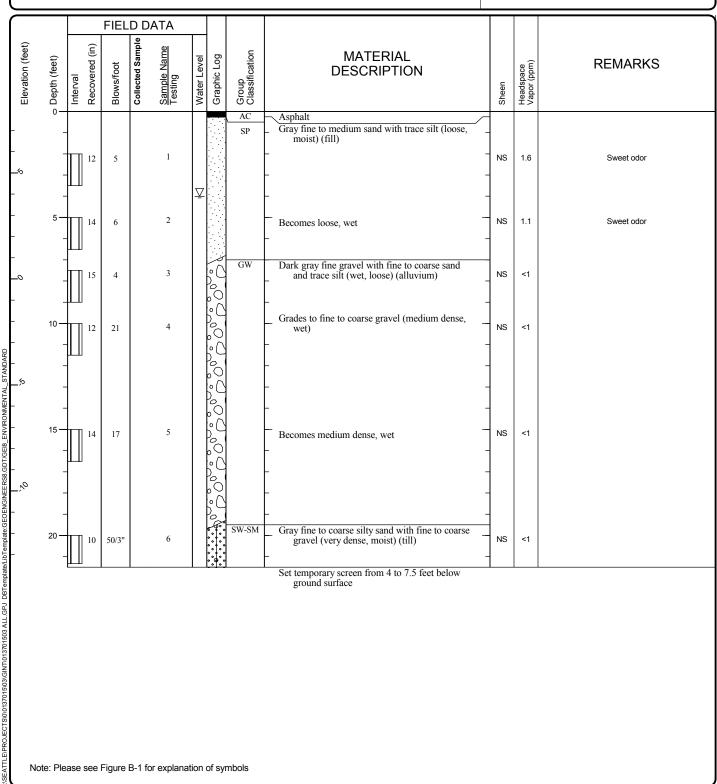
Project Number: 0137-015-03

Figure B-21 Sheet 1 of 1

<u>Start</u> Drilled 10/28/2010	<u>End</u> 10/28/2010	Total Depth (ft)	26.5	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	S HOHOW STEM ALIGER		
Surface Elevation (ft) Vertical Datum	(ft) 29.0 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	B59	
Easting (X) Northing (Y)		2622 6781		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data: 4	1/4-inch I.D.						10/28/201	0	13.00	16.00	

Note: Please see Figure B-1 for explanation of symbols

Log of Boring SSB-10


Project: Rayonier Mill

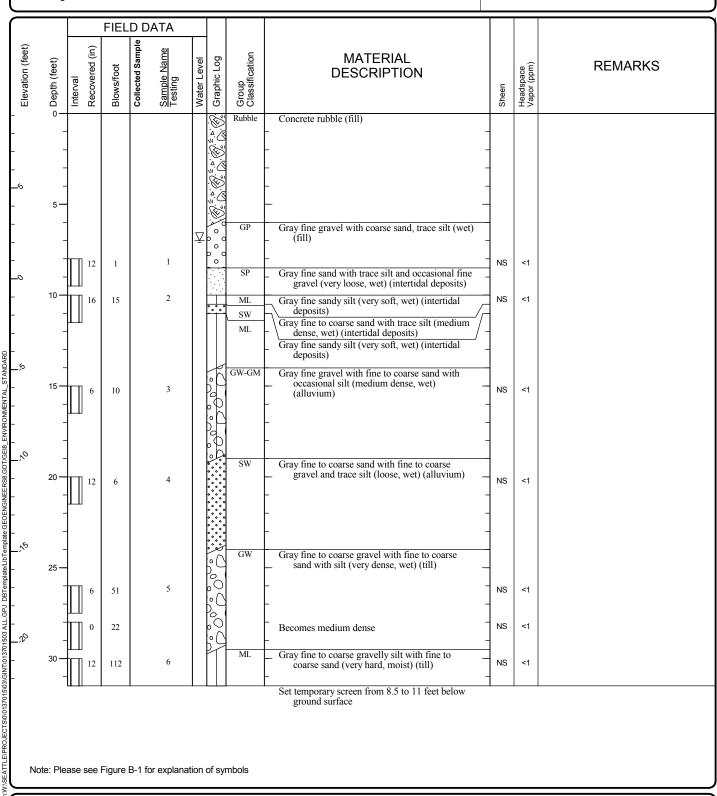
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-22 Sheet 1 of 1

<u>Start</u> Drilled 11/3/2010	End 11/4/2010	Total Depth (ft)	21.5	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	em Auger	
Surface Elevation (ft) Vertical Datum	n (ft) 7.9 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59
Easting (X) Northing (Y)				System Datum		NAD83	Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/4-inch I.D.						11/3/2010	_	4.00	3.90

GEOENGINEERS


Log of Boring GWG-1

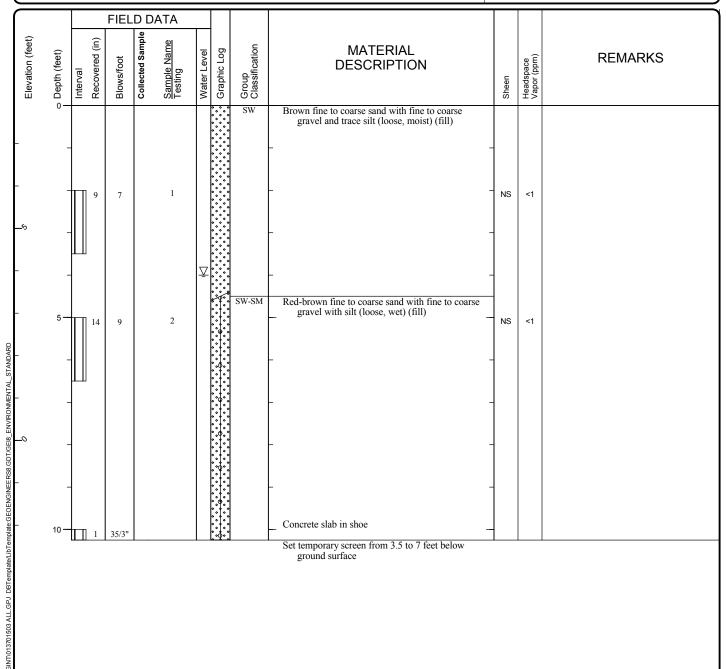
Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

<u>Start</u> Drilled 11/1/2010		Total Depth (ft)	31.5	Logged By Checked By	AMW RCL	_{Driller} Boart Longyear		Drilling Method	S HOHOW STEM ATIMEL		
Surface Elevation (ft) Vertical Datum	9.1 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	B59	
Easting (X) Northing (Y)	10121 41799			System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data: 4	1/4-inch I.D.						11/1/2010	_	7.00	2.10	

Log of Boring GWG-4

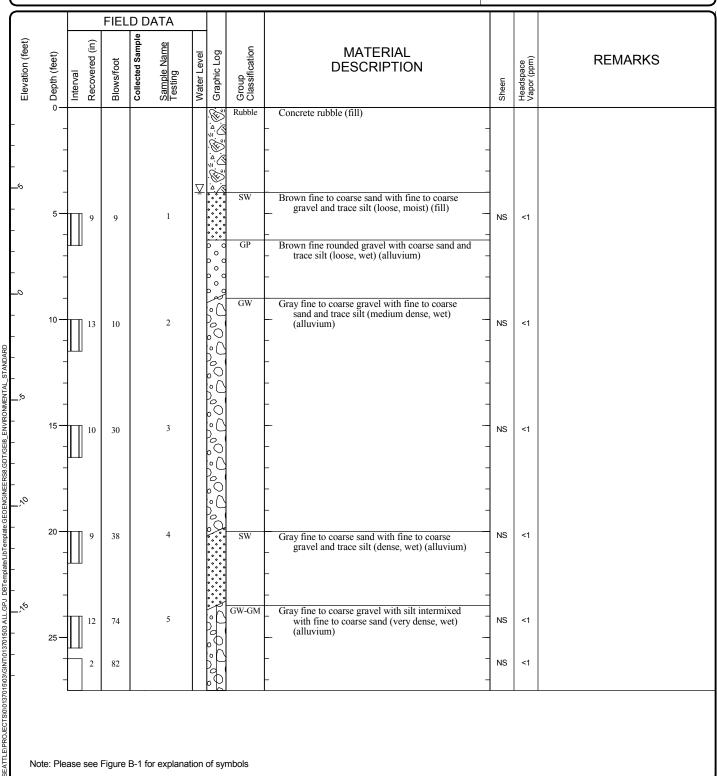

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-24 Sheet 1 of 1

<u>Start</u> Drilled 11/3/2010	<u>End</u> 11/3/2010	Total Depth (ft)	10.25	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	em Auger	
Surface Elevation (ft) Vertical Datum	n (ft) 7.9 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59
Easting (X) Northing (Y)				System Datum		NAD83	Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/4-inch I.D.						11/3/2010		4.00	3.90


Log of Boring GWG-5

Project: Rayonier Mill

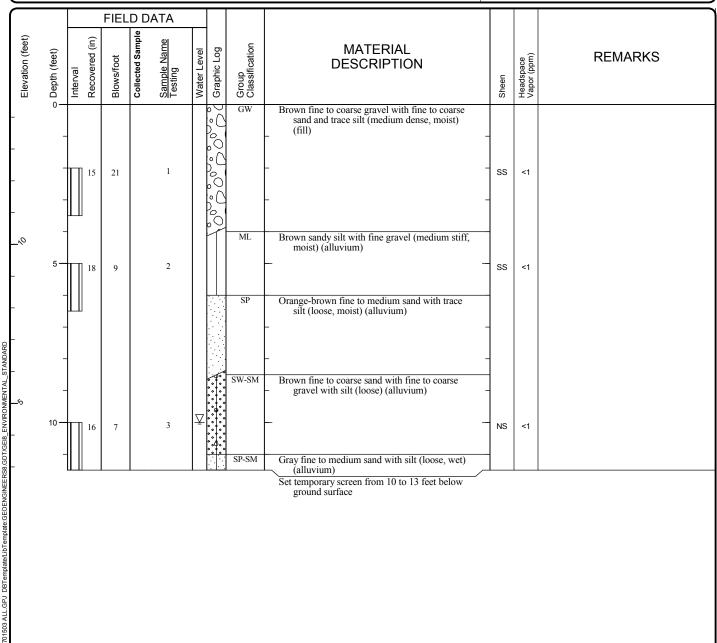
Project Location: Port Angeles, Washington

Project Number: 0137-015-03

<u>Start</u> Drilled 11/4/201	<u>End</u> 0 11/5/2010	Total Depth (ft)	27.5	Logged By Checked By		Driller Boart Longyear		Drilling Method	S HOHOW STEM ALIGER		
Surface Elevation Vertical Datum	t) 8.8 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59	
Easting (X) Northing (Y)		12142 7823		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Da	a: 41/4-inch I.D.						11/4/2010	_	4.00	4.80	

GEOENGINEERS

Log of Boring GWG-5A

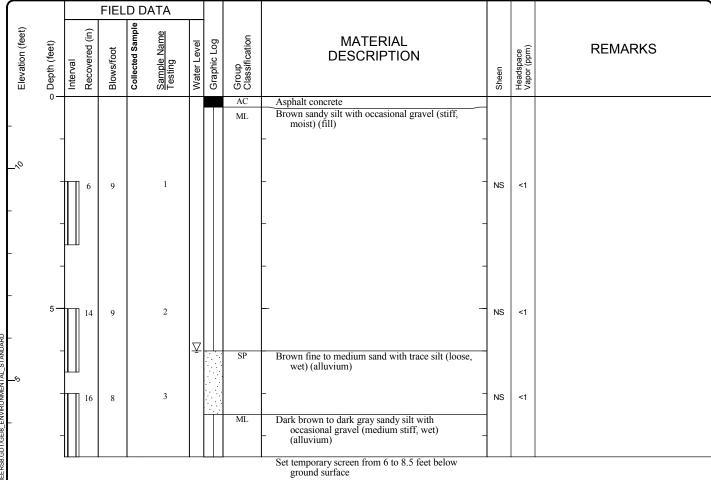

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-26 Sheet 1 of 1

Start Drilled 11/2/2010	<u>End</u> 11/2/2010	Total Depth (ft)	11.5	Logged By Checked By	AMW RCL	_{Driller} Boart Longyear		Drilling Method	S HOHOW STEM ALIGER		
Surface Elevation (ft) Vertical Datum	(ft) 14.4 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59	
Easting (X) Northing (Y)		12321 7284		System Datum		NAD83	Groundwate Date Measure	_	Depth to Water (ft)	Elevation (ft)	
Notes: Auger Data:	I¼-inch I.D.						11/2/2010	_	10.00	4.40	


Log of Boring GWG-6

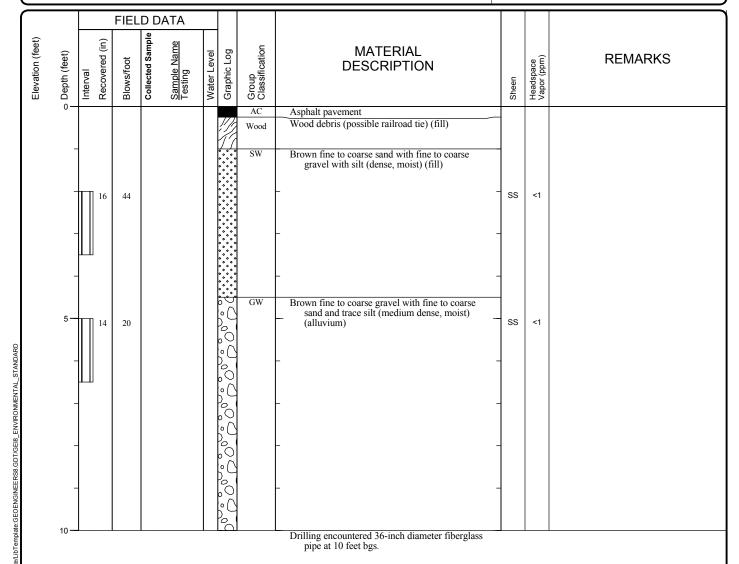
Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

<u>Start</u> Drilled 11/2/2010	<u>End</u> 11/2/2010	Total Depth (ft)	8.5	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	em Auger	
Surface Elevation (ft) Vertical Datum				Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59
Easting (X) Northing (Y)					System Datum NAD83				Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	1/4-inch I.D.						Date Measure 11/2/2010		6.00	5.70

Log of Boring GWG-7

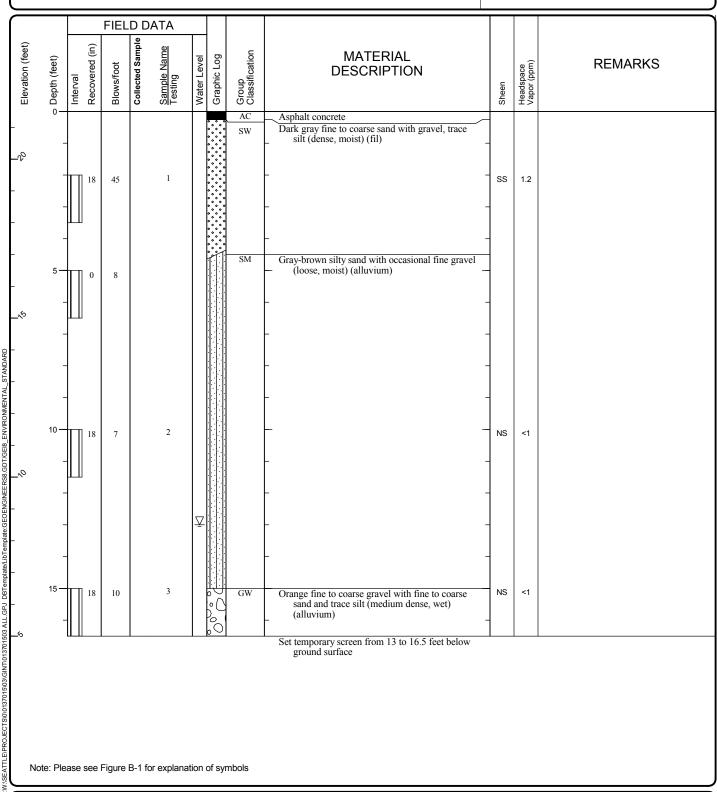

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-28 Sheet 1 of 1

<u>Start</u> Drilled 11/1/2010	<u>End</u> 11/1/2010	Total Depth (ft)	10	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	Hollow Stem A	uger
Surface Elevation (ft) Vertical Datum	Undet	termined		Hammer Data	300	Wireline (lbs) / 30 (in) Drop	Drilling Equipment		Mobile B59)
Easting (X) Northing (Y)				System Datum		NA	Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4	¼-inch I.D.							_		


Log of Boring GWG-7A

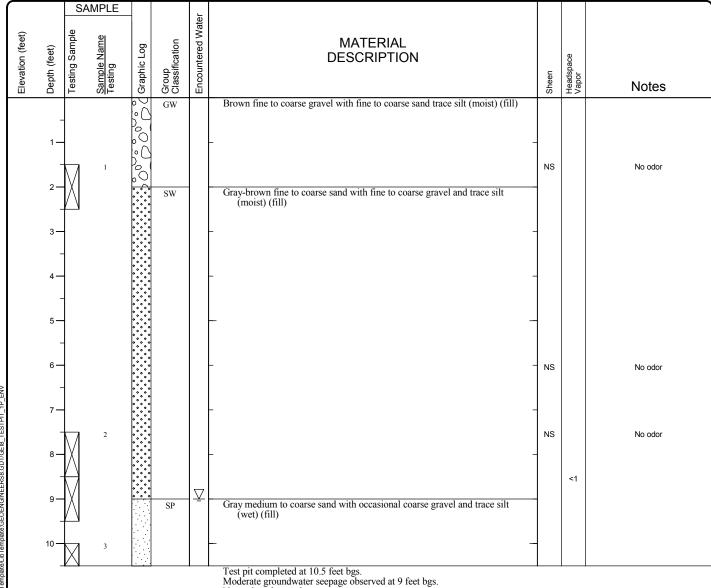
Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Start Drilled 10/28/2010	<u>End</u> 10/28/2010	Total Depth (ft)	16.5	Logged By Checked By		_{Driller} Boart Longyear		Drilling Method	em Auger	
Surface Elevation (ft) Vertical Datum	(ft) 21.5 NGVD29			Hammer Wireline Data 300 (lbs) / 30 (in) Drop			Drilling Equipment		Mobile	e B59
Easting (X) Northing (Y)				System Datum		NAD83	Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes: Auger Data: 4						10/28/201		13.00	8.50	

GEOENGINEERS D


Log of Boring GWG-8

Project: Rayonier Mill

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Date Excavated:1/4/2011	Logged By:	AMW
Equipment: CAT 321LCR Trackhoe	Total Depth (ft)	10.5

No caving observed.

Concrete footers along west and north sidewalls.

Concrete structure at ~7 feet bgs in northeast corner of test pit.

East sidewall has apparent backfill material against the north footer down to the concrete structure at ~7 feet bgs.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-01

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-31 Sheet 1 of 1

Date Excavated: ______1/4/2011 **AMW** Logged By: _____ CAT 321LCR Trackhoe 9.5 Equipment: _ Total Depth (ft)

		SA	MPLE			<u></u>				
Elevation (feet)	Depth (feet)	Testing Sample	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
				000	GW		Brown fine to coarse gravel with fine to coarse sand and trace silt (moist) (fill)			
	1 —			000			-			
	-		1					NS		No odor
	2—			0	SW		Gray-brown fine to coarse sand with fine gravel and trace silt (moist) (fill)			
	-									
	3-						-			
	4 —						-	NS		No odor
	-									
	5—						_			
	6—						_	NS		No odor
<u> </u>	-							INS		NO OGOI
- - - - - - - - - - - - -	7—						-			
81 21 21 21 21 21 21 21 21 21 21 21 21 21	-		2					HS	1.3	HC odor
ipare:GEOENGINEEKS8:GD1/GE18_1ES1 P11_1P_EN	8 —				SP		Dark gray medium to coarse sand with fine to coarse gravel (moist) (fill)	1		
S S S S S S S S S S S S S S S S S S S	9—		3			$ \underline{\nabla} $		ss		
GEOENG	-	\mathbb{M}_{-}					Becomes wet	35		
Diate							Test pit completed at 9.5 feet bgs. Slow to moderate groundwater seepage observed at 9 feet bgs.			

No caving observed.

Concrete structures in south and east sidewalls, wood piling in center of test pit.
Dimensional lumber (apparent beam) and iron pipe crossing excavation at

approximately 2 feet bgs.

Concrete slab at approximately 9.5 feet to 10 feet bgs, north of piling.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-02

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-32 Sheet 1 of 1

Date Excavated:	1/4/2011	Logged By:	AMW
Equipment:	CAT 321LCR Trackhoe	Total Depth (ft)	9.5

		SAI	MPLE			7				
Elevation (feet)	feet)	Testing Sample	Name	: Log	cation	Encountered Water	MATERIAL DESCRIPTION		93	
Elevatic	Depth (feet)	Testing	Sample Name Testing	Graphic Log	Group Classification	Encoun		Sheen	Headspace Vapor	Notes
	_				Concrete Rubble		Concrete rubble with sand and gravel matrix (fill)			
	1 —						-			
	+	\bigvee	1					NS	<1	No odor
	2	\bigwedge			GM		Grayish-green to gray-brown silty gravel with sand (moist) (fill)			
	3 —						-			
	1	\bigvee	2					SS	<1	Slight odor
	4 —	\bigwedge			Woodwaste		Dark brown to black apparent charred woodwaste with dimensional lumber (moist) (fill)			
	5 —						_			
	-									
	6 —						-			
T1P_ENV	7—	\bigvee	3		OW OM		Two >12-inch boulders in south and west sidewalls	MS	<1	HC odor
3_TESTPII	_	\triangle			SW-SM		Dark brown to black fine to coarse sand with fine to coarse gravel with silt (moist) (fill)			
.GDT/GEI	8 —						-			
INEERS8	9—					$ \Psi $				
ate:GEOENGINEERS8.GDT/GEI8_TESTPIT_1P_ENV							Test pit completed at 9.5 feet bgs.			

Slow to moderate groundwater seepage observed at 8.5 feet bgs.

No caving observed.

6-inch-diameter fiberglass pipe with 90° elbow in SW corner of test pit. Three pilings exposed at SE corner, SW corner, and north sidewall.

Notes: Please see Figure B-1 for explanation of symbols.

The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-03

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Date Excavated: _____1/5/2011 Logged By: _____ AMW 7.0 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

Elevation (feet)	Depth (feet) Testing Sample	Sample Name Testing T	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	1-2-3-	1		Concrete		Concrete rubble with sand and gravel matrix (fill) Brown fine to coarse silty gravel with fine to coarse sand (moist) (includes concrete rubble, weathered lime rock, apparent clinker and iron scrap) (fill)	NS	<1	No odor
	- 4 — - 5 — - 6 —						-		
;	7	2			Ţ	Apparent sawdust in northeast corner of test pit; becomes wet at 7 feet bgs. Test pit completed at 7 feet bgs.	NS	<1	No odor

Slow groundwater seepage observed at 7 feet bgs. No caving observed.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

GEOENGINEERS /

Log of Test Pit TP-04 Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-34 Sheet 1 of 1

Date Excavated: _____1/5/2011 Logged By: _____ **AMW** CAT 321LCR Trackhoe 8.0 Equipment: _ Total Depth (ft)

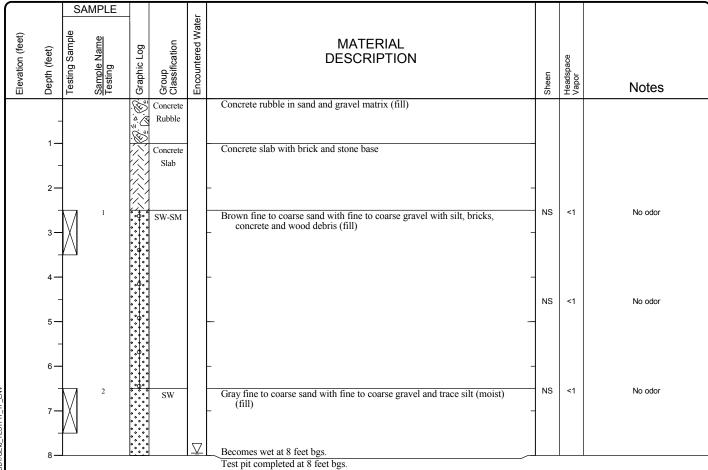
Elevation (feet)	Depth (feet) Testing Sample	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	1—		00000	GW		Brown fine to coarse gravel with fine to coarse sand, occasional cobbles (up to 6 inches) and trace silt (moist) (fill)			
	2	1				-	NS	<1	No odor
	3—					-	NS	<1	No odor
	4—			SW-SM		Dark brown fine to coarse sand with fine to coarse gravel with silt, bricks, concrete, clinker and minor amounts of wood debris (moist) (fill)			
	6-	2			$\overline{\Delta}$	_	NS	<1	No odor
GDT/GE/8_TESTPIT_1P_ENV	7—			SW		Gray fine to coarse sand with fine to coarse gravel, trace silt, and abundant shell fragments (wet) (intertidal deposits)			
3DT/GEI8_TE	8	3	****			Test pit completed at 8 feet bgs.	NS	<1	No odor

Plast groundwater seepage observed at 6 feet bgs.
No caving observed.
Plastic 4-inch-diameter pipe observed in south sidewall at approximately
1.5 feet bgs.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-05


Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-35 Sheet 1 of 1

Date Excavated: _____1/5/2011 Logged By: _____ CAT 321LCR Trackhoe 8.0 Equipment: Total Depth (ft)

Slow groundwater seepage observed at 8 feet bgs.

No caving observed.

Wood pilings in center of test pit at approximately 1-foot bgs and in NW

corner of test pit.

Wire wrapped 12-inch-diameter wood pipe at approximately 45° angle along south sidewall, angled from east down to the west. 2-inch-diameter gray PVC pipe encased in red concrete running along south side of test pit.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-06

GEOENGINEERS /

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-36 Sheet 1 of 1

Date Excavated: _____1/5/2011 Logged By: _____ **AMW** CAT 321LCR Trackhoe 8.0 Equipment: _ Total Depth (ft)

			SAN	MPLE			١				
	Elevation (feet)	Depth (feet)	Testing Sample	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
					00	GW-GM		Brown fine to coarse gravel with fine to coarse sand with silt, bricks, concrete and apparent clinker (moist) (fill)			
		1—						<u>-</u> -			
		-	M	1	00				NS	<1	No odor
		2—						2-inch-diameter polyethylene pipe coming out of east sidewall extending to the west at 2 feet bgs			
		3—						-			
		-			30						
		4—						12-inch-diameter x 2-foot-long iron pipe in southeast corner of test pit			
		5—									
		_		2		Sawdust		12-inch-thick dark brown to black apparent sawdust layer (moist) (fill)	NS	<1	No odor
		6 —	M	2			$ \nabla $		INS	`	140 0001
>		_	\triangle			SW		Orange-brown fine to coarse sand with fine to coarse gravel, bricks and concrete rubble intermixed (moist to wet) (fill)			
T_1P_EN		7—				SP		Gray-brown medium to coarse sand with fine to coarse gravel and trace silt (wet) (fill)	-		
GDT/GEI8_TESTPIT_1P_ENV		-	M	3					NS	<1	HC odor
3DT/(0-						Test pit completed at 8 feet bgs.			

Fast groundwater seepage observed at 6 feet bgs.

No caving observed.
Concrete rubble observed from surface to 6 feet bgs.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

GEOENGINEERS /

Log of Test Pit TP-07

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-37 Sheet 1 of 1

Date Excavated: _____1/5/2011 Logged By: _____ AMW 7.5 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

Elevation (feet)	Depth (feet)	Testing Sample S	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	- 1— - 2—		1		GM GW-GM		Brown fine to coarse silty gravel with fine to coarse sand (moist) (fill) Dark brown fine to coarse gravel with fine to coarse sand with silt, occasional cobbles, steel and iron debris (fill)	- NS	<1	No odor
	3 — - 4 — - 5 —		2		GW		Black stained gravel with sand (fill)	NS	<1	No odor
	6 	<u> </u>		0 ()	SM	Ţ	Gray-brown silty fine to coarse sand with fine to coarse gravel (moist) (fill)	HS NS	5.7	HC odor No odor
	7—				SP		Gray medium to coarse sand with occasional gravel and trace silt (moist) (fill) Test pit completed at 7.5 feet bgs. Slow to moderate groundwater seenage observed at 6 feet bgs.	NS	<1	No odor

No caving observed.

Removed Bunker C oil located near base of utility pole at southeast corner of the tank #1 excavation.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

GEOENGINEERS /

Log of Test Pit TP-08

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-38 Sheet 1 of 1

Date Excavated: ______1/6/2011 Logged By: _____ **AMW** CAT 321LCR Trackhoe 5.0 Equipment: _ Total Depth (ft)

\bigcap		SA	MPLE			<u></u>				
Elevation (feet)	Depth (feet)	Testing Sample	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
					SW		Light brown fine to coarse sand with fine to coarse gravel and trace silt (moist) (fill)			
	-							NS	<1	No odor
	1-			***						
	·				GW-GM		Gray-brown fine to coarse gravel with fine to coarse sand with silt, bricks and concrete rubble (moist) (fill)			
	-			90						
	2-		1	50	<i>a</i>		Dayly become to blook concerns abound you od with corne incur bricke, along	NS	<1	No odor
		X			Charred Wood		Dark brown to black apparent charred wood with scrap iron, bricks, glass and one railroad tie (moist) (fill)			
	-	\bigcap	2					NS	<1	No odor
	3 —	1)				$ \underline{\nabla} $	-			
		\mathbb{N}								
	-				SW		Gray fine to coarse sand with fine to coarse gravel and trace silt (wet) (alluvium)			
	4 —	-					·			
ž										
- - -	-	M	3					NS	<1	No odor
	5—	<u>/</u> \					Test pit completed at 5 feet bgs.			

Slow groundwater seepage observed at 3 feet bgs. No caving observed.

4-foot long railroad iron running across south end of test pit; possible scrap iron pile.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-09

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

GEOENGINEERS /

Date Excavated: ______1/6/2011 Logged By: _____ **AMW** CAT 321LCR Trackhoe 4.0 Equipment: _ Total Depth (ft)

\bigcap		SAMPI	LE			_				
Elevation (feet)	Depth (feet)	Testing Sample	Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
			Š		SW		Gray-brown fine to coarse sand with fine to coarse gravel and trace silt (moist) (fill)			
	_							NS	<1	No odor
			Š	••••						
	1—		Č	M	GM		Brown fine to coarse silty gravel with fine to coarse sand, bricks and clay tile (moist) (fill)			
	_	1					()	NS	<1	No odor
		\/								
	2—	X					-			
	_	2			***		Apparent charred wood, trash, broken glass, and steel and iron scrap (fill)	NS	<1	No odor
		\mathbb{N}			Waste Material		Apparent charred wood, trash, broken grass, and steer and from scrap (fill)			
	3—	X					-	-		
	_					∇		NS	<1	No odor
			ŀ		SP		Gray medium to coarse sand with fine to coarse gravel and trace silt (wet) (fill)	INS	`'	INO OUOI
	4 —		ŀ	<u>: ::1</u>			Test pit completed at 4 feet bgs.	<u> </u>		

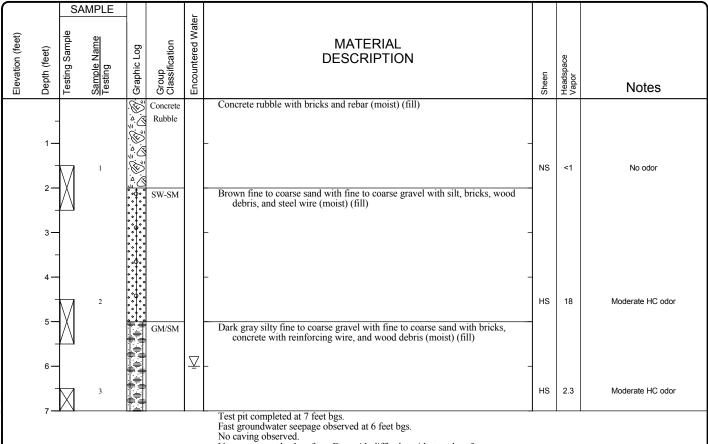
Moderate groundwater seepage observed at 3.5 feet bgs. No caving observed.

2-foot-wide concrete structure along north sidewall. Clay tile pipe immediately south of concrete structure at 1-foot bgs.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Project:

Log of Test Pit TP-10 Rayonier Mill


Project Location: Port Angeles, Washington

Project Number: 0137-015-03

GEOENGINEERS /

Figure B-40 Sheet 1 of 1

Date Excavated: _____1/7/2011 Logged By: _____ CAT 321LCR Trackhoe 7.0 Equipment: Total Depth (ft)

Very compacted subsurface. Dug with difficulty without subsurface

structures or pilings.

Diesel-like odor with sheen in silty gravel horizon.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-11

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-41 Sheet 1 of 1

Date Excavated: _____1/4/2011 **AMW** Logged By: _____ 5.0 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

Elevation (feet) Depth (feet)	 Sample Name Testing T	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
2-	1		Concrete		Concrete rubble in sand and gravel matrix (fill) Brown fine to coarse gravel with fine to coarse sand and trace silt (moist) (fill)	NS	<1	No odor
4 -				Ţ	Test pit completed at 5 feet bgs.			

Fast groundwater seepage observed at 4.5 feet bgs. No caving observed.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-12

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-42 Sheet 1 of 1

Date Excavated: _____1/7/2011 Logged By: _____ **AMW** 4.5 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

Elevation (feet) Depth (feet)	Testing Sample Sample Name Testing	Graphic Log Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
1.	_	Concre a Rubble a Concre a Concre a Concre a Concre a Concre	te	Concrete rubble to below water table with rebar, PVC pipe and stainless steel pipe pieces, bricks, and sections of broken electrical conduit and wire (fill)	NS		No odor
2.	_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-			
3.				-			
4 ·			⊻.	Test nit completed at 4.5 feet has			

Test pit completed at 4.5 feet bgs. Fast groundwater seepage observed at 4 feet bgs. No caving observed.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

GEOENGINEERS /

Log of Test Pit TP-13

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-43 Sheet 1 of 1

Date Excavated: ______1/6/2011 Logged By: _____ AMW 5.5 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

(_		SAN	/IPLE			er				
	Elevation (feet)	Depth (feet)	Testing Sample	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
		-				GW		Brown-gray fine to coarse gravel with fine to coarse sand and trace silt with bricks, concrete and scrap iron (fill)	NS	<1	No odor
		1-	\bigvee	1	000000				HS	3.2	H₂S odor, HC odor
		2—	Å	2		Woodwasto		Black to dark brown wood chips (fill)	NS	<1	No odor
		3—	\bigwedge			SP-SM	-	Gray-brown fine to medium sand with silt and occasional fine gravel (moist) (fill)	-		
T_1P_ENV		4 —	abla	3				_	NS	<1	No odor
88.GDT/GEI8_TESTP		5 —			***	SW	Ţ	Gray fine to coarse sand with fine to coarse gravel and trace silt (wet) (fill) Test pit completed at 5.5 feet bgs.			
late:GEOENGINEERS								Slow groundwater seepage observed at 5 to 5.5 feet bgs. No caving observed. Apparent wood layer with hydrocarbon staining and odor (2 to 3.5 feet bgs).			
DBTemplate/LibTemp											
015\03\GINT\013701503 TEST PITS.GPJ DBTemplate\LIbTemplate:GEOENGINEERS8.GDT/GE18_TESTPIT_1P_ENV											
015\03\GINT\01370											

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-14

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-44 Sheet 1 of 1

Date Excavated: _____1/6/2011 Logged By: _____ AMW CAT 321LCR Trackhoe 5.0 Equipment: _ Total Depth (ft)

$\overline{}$		SAMPL	.E		ū				
Elevation (feet)	Depth (feet)	Testing Sample	resung Graphic Loa		Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
			. Þ.	Rubble		Concrete rubble in sand and gravel matrix (moist) (fill)			
	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3					
	1—		, A. C.	3		_			
	-	1	. <u>\\</u>				NS	<1	No odor
	2—	X	. <u>k</u>	Woodwast	e	Scraps of lumber (fill)			
	-	<u>/ </u>	•	Lime Rock	c	Brown 4- to 12-inch cobbles (angular) with fine to coarse gravel, trace sand and trace silt (fill)	-		
	3—		3	Deons		- -	1		
	-	2							
	4—	X	7/	Sawdust	-	Dark brown apparent sawdust (fill)	-		
:	-	3			$ \underline{\nabla} $		ss	<1	No odor
				SW		Gray fine to coarse sand with occasional fine gravel and trace silt (moist) (fill)			
!	5—	<i>y</i> 1		٨		Test pit completed at 5 feet bgs. Slow to moderate groundwater seepage observed at 4.5 feet bgs.	NS	<u> </u>	No odor ,

Slow to moderate groundwater seepage observed at 4.5 feet bgs. No caving observed.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-15

Figure B-45 Sheet 1 of 1

Date Excavated: ______1/6/2011 Logged By: _____ **AMW** 5.0 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

		SAMPLE			er				
Elevation (feet)	Depth (feet) Testing Sample	Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	1—		(\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Concrete Rubble		Concrete rubble with bricks, pieces of rebar and pipe intermixed (moist) (fill)			
	2-	1		SW-SM		Gray fine to coarse sand with fine to coarse gravel with silt and occasional cobbles (up to 4-inch diameter); partially cemented at upper contact (moist) (fill)	NS	<1	No odor
	3-	1				- -	NS	<1	No odor
****	4-	2		SW	Δ	Gray fine to coarse sand with fine to coarse gravel with trace silt (wet) (fill)	NS	<1	No odor

Test pit completed at 5 feet bgs. Fast groundwater seepage observed at 4.5 feet bgs.

No caving observed.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-16

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-46 Sheet 1 of 1

Date Excavated: _____1/6/2011 Logged By: _____ **AMW** 5.0 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

Elevation (feet)	Depth (feet)	Testing Sample SSAMPLE SAMPLE Name Testing Tes	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	-		\(\text{\omega}\) \(\om	Concrete Rubble		Concrete rubble with bricks and occasional scrap iron (fill)			
	1-					-			
	-		\$ \times						
:	2-		% .			-			
	-								
	3—		\$ \$ \$ \$ \$ \$			-			
	4—		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		∇	-	NS		No odor
	5					Test pit completed at 5 feet bgs.			

Fast groundwater seepage observed at 4 feet bgs.

No caving observed.

Assumed concrete rubble backfill from hog fuel interim action area excavation.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-17

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-47 Sheet 1 of 1

Date Excavated: _____1/7/2011 Logged By: _____ **AMW** 5.0 CAT 321LCR Trackhoe Equipment: _ Total Depth (ft)

Elevation (feet)	Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	1—			Concrete Rubble		Concrete rubble with debris (fill) Brown fine to coarse sand with fine to coarse gravel with silt, occasional bricks and concrete debris (moist) (fill)	NS	<1	No odor
	2—					-			
	3-4-					- -	NS	<1	No odor
	5					Becomes dark gray; wood debris Test pit completed at 5 feet bgs.	HS	23	HC odor

No groundwater seepage observed. No caving observed.

Stainless steel pipe, approximately 8-inch-diameter x 10-feet long, crossing the test pit north to south. No samples collected.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

GEOENGINEERS /

Log of Test Pit TP-18

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-48 Sheet 1 of 1

Date Excavated: _____1/7/2011 Logged By: _____ **AMW** CAT 321LCR Trackhoe 7.0 Equipment: _ Total Depth (ft)

\bigcap		SAMPLE			J.				
Elevation (feet)	Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	-			Concrete Rubble		Concrete rubble with rebar and bricks (fill)			
	-			SW-SM		Brown fine to coarse sand with fine to coarse gravel with silt, occasional bricks and concrete rubble (fill)	NS	<1	No odor
	2-					-			
	3—					-	NS	<1	No odor
	4					-			
	5—					_			
l	6 —			SP	∇	Gray medium to coarse sand with fine gravel and trace silt with shell fragments, broken glass and a section of chainlink fence (fill)	HS	<1	HC odor
	7 —					Test pit completed at 7 feet bgs.			

Test pit compreted at 7 feet bgs.
Slow groundwater seepage observed at 7 feet bgs.
No caving observed.
Concrete footer in northeast corner of test pit.
No samples collected.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-19

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-49 Sheet 1 of 1

Date Excavated:1/7/2011	Logged By:	AMW
Equipment: CAT 321LCR Trackhoe	Total Depth (ft)	3.5

\bigcap		SAMPLE)
Elevation (feet)	Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
			·	Concrete		Concrete rubble with bricks and rebar (fill)			
	-			Rubble			NS	<1	No odor
	1						NS	<1	No odor
	2-			GW-GM		Brown fine to coarse gravel with fine to coarse sand with silt, wood debris (apparent sawdust, wood chips, and wood beams set vertically in subsurface) (fill)			
	3—					Tent wit completed at 2.5 Coat has	NS	<1	No odor

Test pit completed at 3.5 feet bgs. No groundwater seepage observed. No caving observed.

Step-out exploration approximately 50 feet east of TP-02.

Three attempts yielded no information below 4 feet bgs due to abundant concrete structures. First attempt was 50 feet east of TP-02, second attempt was 45 feet east of TP-02, and third attempt was 30 feet east of TP-02.

Square grid pattern of concrete footer walls, approximately 4 feet square, backfilled to grade with debris. No samples collected.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-20

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-50 Sheet 1 of 1

Date Excavated: _____1/7/2011 Logged By: _____ AMW CAT 321LCR Trackhoe 3.0 Equipment: _ Total Depth (ft)

\bigcap		SAMPLE			٦				
Elevation (feet)	Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
			·(Ø)	Concrete		Concrete rubble (fill)			
	-						NS	<1	No odor
	1 —		\$\frac{2}{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac	GW	¥	Dark brown fine to coarse gravel with fine to coarse sand and trace silt,			
			60	3"		abundant bricks, lime rock, and apparent charred wood (fill)			
	-		60	(NS	<1	No odor
			60						
	2-			ML		Dark brown to black sandy silt with abundant wood debris (apparent sawdust and wood chips) (moist) (fill)			
	-	1					NS	<1	No odor
	3	<u> </u>			∇				
	9					Test pit completed at 3 feet bgs.			

Test pit completed at 3 feet bgs. Fast groundwater seepage observed at 1 and 3 feet bgs.

No caving observed.

Perched water in concrete rubble and standing water at ground surface approximately 5 feet south of test pit.

GEOENGINEERS /

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit TP-21

Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-51 Sheet 1 of 1

Date Excavated: _____1/7/2011 Logged By: _____ **AMW** CAT 321LCR Trackhoe 8.0 Equipment: _ Total Depth (ft)

$\overline{}$		SAMPLE			J.				
Elevation (feet)	Depth (feet)	Testing Sample Sample Name Testing	Graphic Log	Group Classification	Encountered Water	MATERIAL DESCRIPTION	Sheen	Headspace Vapor	Notes
	_		.a.	Concrete Rubble		Concrete rubble with rebar, bricks and other debris (fill)	NS	<1	Sweet odor
	1-						"	.,	CWCCI OUCI
	-			SM		Dark gray silty fine to medium sand with gravel and fill debris (including bricks, concrete rubble, lime rock, wood debris, wire and occasional scrap iron) (fill)			
	2-	-				-			
	-								
	3 —	-				-	-		
	-	-			¥		NS	<1	Sweet odor
	4 —	-			<u>*</u>	-			
	_						NS	<1	Sweet odor
	5 —	1							
	6—								
	-0					_			
	7-					_			
2	,						NS	<1	Sweet odor
	8-				∇		INS	<u> </u>	Sweet oddi
<u>.</u>						Test pit completed at 8 feet bgs. Moderately slow groundwater seepage observed at 1.4 and 8 feet bgs.			

Moderately slow groundwater seepage observed at 1, 4 and 8 feet bgs. No caving observed.

Excavated at location of survey stake down to 8 feet bgs; did not encounter a green pipe (the pipe that was expected based on prior RI sampling).

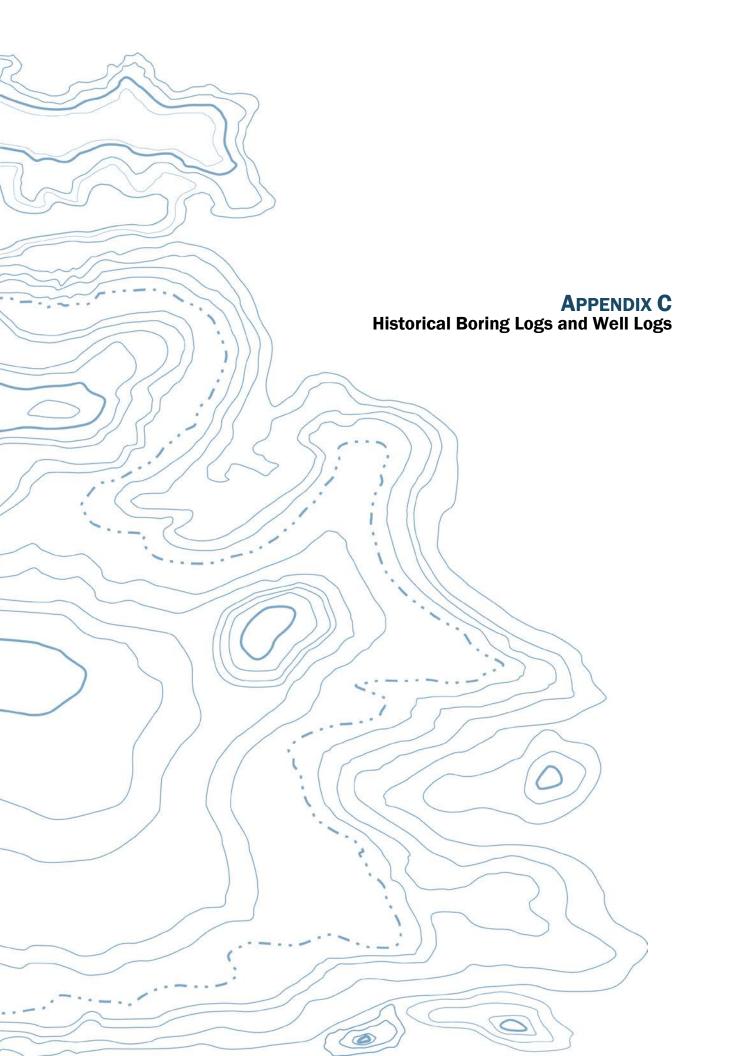
Continued west at same depth and eventually exposed an iron pipe
(approximately 10-inch-diameter) running parallel to excavation along the north sidewall, at approximately 6 feet bgs; pipe had belled joints.

Trench was approximately 30 feet long east to west, 7 feet wide, and approximately 8 feet deep

approximately 8 feet deep.
Collected grab groundwater sample.

Notes: Please see Figure B-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to 0.5 feet.

Log of Test Pit PIPE-1-SR23



Rayonier Mill Project:

Project Location: Port Angeles, Washington

Project Number: 0137-015-03

Figure B-52 Sheet 1 of 1

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: RB01 AREA: Recovery Boiler

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/13/03

TOTAL DEPTH: 8 ft WATER DEPTH: 7 ft

Depth Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1-	13 25 25 50	RY03-87 ISU: 106	Dry	25	20	25	20	10			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND 0.3 - 2.0 ft. Same as above
3—	19 15 12 4		Dry	10	20	40	20	10			0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Gravelly Sand 2.5 - 4.0 ft. Brown/grey, loose, dry, gravelly SAND, oxidized layer at 4 ft. 4.0 - 5.0 ft. No recovery
6	4 6 11 23	RY03-52 ISU: 71			10	25	30	25	10		0.6		5.0-5.5 ft. Same as above, poor recovery, fine grain percentage increases, color is getting blacker 6.0 ft. Wood debris in sampler, no soil collected. No sample recovery from 5.5 ft to 8.0 ft. Large pieces of wood fill sampler each time it is driven.
8	50		Wet										End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SSL22 AREA: Spent Sulfite Liquor Lagoon

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 8 ft

WATER DEPTH: 7.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-	- 12. 20.21	48	RY03-79 ISU: 98	Dry	25	25	20	20	10) 	SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry loose, gravelly SAND 0.3 - 1.5 ft. No recovery
1— 2— 3— 4—		34 50 50 25 50 22 22 22 18	RY03-80 ISU: 99	Dry								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP SP	1.5 - 3.5 ft. Same as above 3.5 - 4.0 ft. No recovery 4.0 - 5.0 ft. Same as above
6— 7— 8— 9—		15 16 15 28 34 21		Wet	30	10	40	30	15	5			GP SP	Sandy Gravel 5.5 - 6.5 ft. Grey, dry, sandy GRAVEL Sand 6.5 - 8.0 ft. Grey/black/white, damp to wet, medium dense, SAND End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: WM21

AREA: Wood Mill CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/13/30

TOTAL DEPTH: 10 ft WATER DEPTH: 9.5 ft

The content of the	
150 1SU: 102 Dry 0.0 - 0.3 ft. Brown, dry, loose, g	
1 0.3 - 1.3 It. No recovery	
20	
	ravelly SAND
28 5 10 35 30 20 5 5P 5P	
3 — 29 المالية	
26	
3.5 ft. Silt content increases slight 0.5 ft.	ntly
14 4-4.5 ft. No recovery	
5 15 4.5 - 5.5 ft. Same as above	
16	
6— ISU: 103 Dry	
7 10 SP 6.5 - 7.0 ft. Same as above 7.0 - 8.0 ft No recovery	
8 21 Sp 8.0 - 8.5 ft. Same as above	
9	· · · · · · · · · · · · · · · · · · ·
Wet SP	
10 8	
I -	d of Borehole
12-	

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SR22 AREA: Screen Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 5 ft WATER DEPTH: 5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 4- 5- 6- 7- 8- 9-		20 35 30 12 13 10 5 10 9	RY03-69 ISU: 88 RY03-70 ISU: 89	Dry	15	5	15	50	30	Т) d () () () () () () () () ()	SW SW	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown_dry_gravelly SAND, fine grained gravel 1.0 - 2.0 ft. Slight petroleum odor Sand 2.0 - 4.5 ft. Grey, dry, well sorted, medium grained, SAND, no odor Sand 4.5 - 5.0 ft, Black/grey/white, damp to wet, coarse grained, SAND, minor gravel, some wood chips at interface at 4.5 ft. End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SR23
AREA: Screen Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Back Hoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/20/03

TOTAL DEPTH: 13.5 ft
WATER DEPTH: 13 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-		,	RY03-71 ISU: 90	Dry	30	20	25	25	20			% % %	GP	Ground Surface Sandy Gravel 0.0 - 1.5 ft. Brown, dry, sandy GRAVEL, fill material?
1- 2- 3- 4-				•		5	5	30	30			.06 202	sw	Sand 1.5 - 5.0 ft. Grey/black, damp, fine SAND, minor silt
5— 6— 7— 8—			RY03-102 ISU: 121	Dry	20	20	25	15	20	30		5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Gravelly Sand 5.0 - 13.5 ft. Grey/black, damp to wet, gravelly SAND, minor silt. A stell pipe was encountered in the trench sidewall during excavation. The pipe was damaged and pulp liquor was visible in the pipe. None of the liquid was released into the trench, thus the subsurface sample was not compromised.
10-		-		Dry)	GP	
14-						·								End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SR24 AREA: Screen Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Back Hoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/20/03

TOTAL DEPTH: 16 ft WATER DEPTH: 16 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-		-	RY03-73 ISU: 92	Dry	25	30	20	15	10			780 00 780 780	GP	Ground Surface Sandy Gravel 0.0 - 2.0 ft. Brown, dry, sandy GRAVEL, plastic, metal, assorted debris, fill material?, surface sample from 0 to 3 inches below grade
3 - 4 - 5 - 5				Dry	10	20	20	30	20				SP	Sand 2.0 - 6.0 ft. Brown, dry, SAND, minor gravel, medium to coarse grained, steel pipe on south side of excavation
7			RY03-74 ISU: 93			15	30	25	20	10			SP	Sulfur Debris 6.0 - 7.0 ft. Yellow, medium to loose, sulfur cake Sand 7.0 - 9.0 ft. Grey, damp, SAND, some silt and gravel
9-		a de la companya de l	,	Dry			10	30	30	30			SM	Silty Sand 9.0 - 16.0 ft. Grey to black, silty SAND, pulp liquor odor, perched water in gravel lenses at a depth of 9 ft, subsurface sample from 3 inches to 16 feet below grade
13-					***************************************									16 ft. Groundwater percolating from bottom of trench
16				Wet	***************************************									End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: RS20 AREA: Recovery Boiler

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Back Hoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 2.5 ft WATER DEPTH: 2 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1 2- 3- 4- 5- 6- 7- 8- 9-			RY03-61 ISU: 80 RY03-93 ISU: 112 RY03-62 ISU: 81	Dry Wet		25	25	20	10	30			SP	Ground Surface Sity Sand 0.0 - 0.3 ft. Brown/grey, damp, loose to medium, banded, silty SAND, fine grained, roots, duplicate sample collected Gravelly Sand 0.3 - 2.5 ft. Brown/grey/orange, moist, gravelly SAND, rounded to subangular End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: RS21 AREA: Recovery Boiler

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Back Hoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 9.5 ft
WATER DEPTH: 9.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel.	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 3- 5- 6- 7- 8- 9- 11- 12-			RY03-59 ISU: 78 RY03-95 ISU: 114	Dry	10	20	35	35 30	45 25	20			GP SM	Ground Surface Railroad Bedding 0.0 - 3.5 ft. Railroad bedding, coarse gravel, duplicate sample collected Sity Sand 3.5 - 4.0 ft. Grey_dry_medium_dense, silty SAND, some wood debris. Sand 4.0 - 9.5 ft. Brown to grey, dry, medium dense, coarse to medium grained, SAND, some shells, metal, oxidized orange layers, two big pillings on either side of trench 9.5 ft. Color change to grey, more gravel End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SR03
AREA: Screen Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/19/03

TOTAL DEPTH: 11 ft
WATER DEPTH: 11 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1-			RY03-63 ISU: 83	Dry	25	15	35	25	10			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SP	Ground Surface Gravelly Sand 0 - 3.0 ft. Brown, dry, loose, gravelly SAND, organics
3- 4- 5-		NA	RY03-64 ISU: 84	Dry				20	70	10		ره د	sw	Sand 3.0 - 7.0 ft. Grey, damp, fine grained SAND, minor silt layered grey to black
6— 7— 8— 8—				Dry	10	25	30	25	10	,		\$ 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP	Gravelly Sand 7.0 - 11.0 ft. Black to grey, damp to wet, medium to coarse grained, gravelly SAND, pulp liquor odor
11-				Wet										End of Borehole
13-			-			٠								

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SR20 AREA: Screen Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 7 ft
WATER DEPTH: 7 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
2-		NA	RY03-65 ISU: 84	Dry	25	30	20	15	10				GP	Ground Surface Concrete Rubble 0.0 -1.5 ft. Concrete rubble from demolition activities Sandy Gravel 1.5 - 7.0 ft. Brown to grey, dry, loose to medium, sandy GRAVEL, sand bags, vertical pilings, brick, woody debris, fill material ?, concrete slab on north side, green 8-inch pipe on south side, wood slats at a depth of 7.0 ft
5—————————————————————————————————————			ISU: 85	Wet		5	10	30	35	20			GP	Sand 7.0 ft. Black, wet, silty fine SAND, minor gravel End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SR21
AREA: Screen Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 3.5 ft
WATER DEPTH: 3 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Chs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 3- 4- 5- 6- 7- 8- 9- 10-		6 7 9 11 13 7	RY03-67 ISU: 86	Dry	10	30	30	15	15	5			SP	Ground Surface Gravelly Sand 0.0 - 2.0 ft. Brown, damp, gravelly SAND, fine grained gravel 2.0 - 2.5 ft. No recovery Sand 2.5 - 3.5 ft. Black, wet, coarse grained, SAND, shells End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: RB20 **AREA:** Recovery Boiler

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/13/03

TOTAL DEPTH: 9 ft

WATER DEPTH: 8 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-		50 50	RY03-53 ISU: 72	Dry	10	20	35	25	10) . î	SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND, brick debris 0.3 - 2.0 ft. No recovery
3-		34 24 19 18 22 19		Dry	30	30	30	10					GP	Fill Material 2.0 - 5.5 ft Pulvarized limestone, very little soil
6-		26 19 15	RY03-54 ISU: 73	Dry		10	30	30	20	10			SP	5.5 - 6.0 ft. No recovery Sand 6.0 - 7.5 ft. Black, moist, SAND, minor gravel and silt
8-		12 13 12 15		Wet	15	25	35	20	5	V. T. W.		\$ 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Gravelly Sand 7.5 - 9.0 ft. Grey, moist to wet, gravelly SAND, subangular to subrounded gravel
10-														End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: RB22 AREA: Recovery Boiler

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/13/03

TOTAL DEPTH: 8 ft WATER DEPTH: 7.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1-		23 50 18	RY03-86 ISU: 105	Dry	25	20	25	20	10			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND, glass, plastic, fill material? 0.3 - 1.0 ft. No recovery 1.0 - 3.0 ft. Same as above, color change at 2.5 ft.
3-		12 13 7										0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SP	3.0 - 3.5 ft. No recovery 3.5 - 4.5 ft. Same as above
4 - - 5-		9 11 13	RY03-58 ISU: 77	Dry								6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SP SP	4.5 - 5.0 ft. No recovery Gravelly Sand 5.0 - 6.0 ft. Black, dry, loose, gravelly SAND, angular gravel
6 - -		13 16 40		Wet	30	30	25	15	10				SP	6.5 - 7.0 ft. No recovery 7.5 - 7.5 ft. Same as above 7.5 - 8.0 ft. No recovery
9		50			25	20	15	15	15					End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: PC20

AREA: Air Pollution Control Equip.

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/19/03

TOTAL DEPTH: 12 ft

WATER DEPTH: 11 ft

				_										
Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	%Clay	Graphic Log	USCS Symbol	Soil Description
0-	0.850,000											200		Ground Surface
-	10.00		RY03-97 ISU: 116									000	GP	Concrete Rubble 0.0 - 1.0. Concrete Rubble from demolition activities
1-												000	-	
2— 3— 4—			RY03-44 ISU: 63	Dry	20	20	25	25	10			,	SP	Gravelly Sand 1.0 - 7.0 ft. Grey to brown, dry, gravelly SAND, fill material?, wire, chunks of concrete, asphalt, metals debris, buried steel pipe in headwall (west)
5— 6— 7—		NA	RY03-45 ISU: 64	Dry		10	40	35	15			60000000000000000000000000000000000000	SP	Sand
9-			ISU: 04										51	7.0 - 12 ft. Black to grey, moist, medium to coarse grained, SAND, pulp liquor odor
11				Wet										
12														
"]				ĺ				}						End of Borehole
12										ļ				
13-											Ì			
. , , ,														
14-								_						

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: PF02

AREA: Prefab

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Stainless steel spoon

DRILLING CONTRACTOR: TTFW

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 3 inches

WATER DEPTH: NA

RY03-96 Dry 20 35 25 15 5	Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
			<u> </u>								6				0.0 - 0.3 ft. Grey, dry, sandy GRAVEL, duplicate sample collected

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: PS20

AREA: Paint Shop

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 7.5 ft

WATER DEPTH: 6.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-			RY03-47 ISU: 66	Dry	5	20	25	25	25	Т) g. G.	SP	Ground Surface Gravelly Sand 0.0 - 5.0 ft. Brown, dry, loose, gravelly SAND, subrounded to subangular gravel
2-		22 24 27 35		Dry	10	20	25	25	20	Т		2, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,		
3-		50 38 26 31	RY03-48 ISU: 67									6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6		
5 -		20 15 9		Dry	25	20	25	20	10				GP	Sandy Gravel 5.0 - 6.0 ft. Black to orange-brown, moist, sandy GRAVEL 6.0 - 7.2 ft. No recovery
7- 8-		5		Wet								700	GP	7.2 - 7.5 ft. Same as above End of Borehole
9-														

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: PW20 AREA: Pulp Storage Warehouse

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 9.5 ft WATER DEPTH: 8.5 ft

				·						Ī		1		
Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3-		21 50 45 43 21 43 50	RY03-49 ISU: 68	Dry	20	15	25	25	15			6 (5 a (5 a c) 5 a c) 6	SP	Ground Surface Gravelly Sand 0.0 - 3.5 ft. Brown, dry, loose, gravelly SAND 3.5 - 4.0 ft. No recovery
4- 5- 6- 7-		27 50 45 27 20 9 10	RY03-50 ISU: 69	Dry	10	10	30	30	20			5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	SP	4.0 - 6.5 ft. Same as above 6.5 - 8.5 ft. Black, damp, gravelly SAND, possibly stained, sulfur odor
8- - 9- 10- 11- 12- 13-		4 6 4		Wet		5	40	35	20	20	80		SP CL SP	Sand 8.5 - 9.0 ft. Black/grey/white, coarse grained, SAND, minor gravel Clay 9.0 - 9.3 ft. Grey, damp, soft, CLAY, intertidal mud?, sulfur odor Sand 9.3 - 9.5 ft. Grey/black/white, wet, coarse grained, SAND, minor gravel End of Borehole
14														

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: LY25

AREA: Log Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/12/03

TOTAL DEPTH: 8 ft WATER DEPTH: 8 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-		38	RY03-36 ISU: 55	Dry	30	25	30	10	5			2.0	SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND 0.3 - 1.5 ft. Traces of gravelly sand but no significant recovery
1-		50												
2-		45 50	:			25	45	25	5					Sand 1.5 - 2.5 ft. Brown, moist, SAND, minor gravel, coarse grained
3-		50			15	30	40	10	5			۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰		2.5 - 3.0 ft. Gravel percentage increases 3.0 - 5.0 ft. Gravel percentage decreases
4-		50 32	RY03-37 ISU: 56	Dry		30	45	15	10					
5-		50 31	·		15	25	40	10	10				SP	5.0 - 5.5 ft. No recovery
6-		50 26												5.5 - 8.0 ft. Same as above
7—		25 19						The second secon						
8-		16		Wet										End of Borehole
9-							-							
10-														

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: MR03 AREA: Machine Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Hand Auger DRILLING CONTRACTOR: TTFW

DATE COMPLETED: 5/20/03

TOTAL DEPTH: 4 ft WATER DEPTH: 3.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1 2		NA	RY03-38 ISU: 57 RY03-39 ISU: 58	Dry	20	20	20	20	15	5			SP	Ground Surface Gravelly Sand 0.0 - 2.5 ft. Brown to orange, damp, gravelly SAND
- 3- - 4-				Wet		5	10	20	40	25			SP/SM	Sand 2.5 - 3.0 ft. Black, damp, fine SAND and silt, some wood 3.5 ft. Color change to grey/black/white, sample is saturated Water may be perched based on trenching observations in nearby SR03 and SR23 End of Borehole
5— 6— 7—														
8 - 9-					•						•			
10-														

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: MR20 AREA: Machine Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 3 ft

WATER DEPTH: 3 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1-		17 10 11 8	RY03-40	Damp	25	25	25	15	10			7,00 3	GP	Ground Surface Sandy Gravel 0.0 - 0.3 ft. Brown, damp, sandy GRAVEL, big cobble in sampler. Due to limited sample recovery, material from the surface sample (0 - 3 inches) was not analyzed for conventionals. A subsurface sample was not collected either due to poor recovery. 0.3 - 2.5 ft. No recovery
3- 4-		14		Wet	10	15	40	25	10			0.0	SP	Gravelly Sand 2.5 - 3.0 ft. Grey/black/white, wet, damp, coarse grained, gravelly SAND, some shells End of Borehole
6-														
8 9 -			·			-								

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: MS20 AREA: Maintenance Shop

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 7 ft WATER DEPTH: 5 ft

RY03-42 ISU: 61 Dry 30 20 25 20 5	Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
	0- 1- 2- 3- 3- 4- 5- 6- 7- 8-	as a second seco	5 5 5 3 4 4 5 5 5 8	RY03-42 ISU: 61	Dry Dry			10	20	30	25	%	\$ 2 0 5 2 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5	SP	O.0 - 0.3 ft. Black to dark brown, dry, loose, gravelly SAND 0.3 - 1.0 ft. No recovery Gravelly Sand 1.0 - 4.0 ft. Same as above, unevenly spaced layers of wood chips, fill material? Sand 4.0 - 5.5 ft. Grey/black/white, wet at 5 ft., medium to coarse grained, SAND, siltier lenses, wood chips Sand 5.5 - 7.0 ft. Grey/black/white, wet, medium to coarse grained, SAND, siltier lenses, no wood chips

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: LY21

AREA: Log Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 5 ft WATER DEPTH: 5 ft

1	Sample Recovery	50 Blow Counts	의 원 RY03-28 ISU: 47	Ad Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	20 % Fine Sand		% Clay	ि Graphic Log	USCS Symbol	Ground Surface Sand 0.0 - 0.3 ft. Dark brown to black, dry, loose, fine SAND and silt, trace of organics 0.3 - 1.5 ft. No recovery Gravelty Sand 1.5 - 2.0 ft. Brown to black, dry, gravelly SAND, moderately sorted, sligh 2.0 - 2.3 ft. No recovery
3- 4- 5- 6- 7- 8-		37 43 35 25 21	RY03-29 ISU: 48	Dry	15	20	15	65	35	70	30		sw sw	Silt 2.3 - 2.5 ft. Gray, dry, dense, SILT, some clay Sand 2.5 - 3.5 ft. Grey/black/white, medium dense, damp, SAND, well sorted, m gravel, strong petroleum odor, oily sheen on water, black streaks on outside sampler 3.5 - 4.0 ft. No recovery Sand 4.0 - 5.0 ft. Grey/black/white, medium dense, damp, SAND, well sorted, m gravel, strong petroleum odor, oily sheen on water, black streaks on outside sampler End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: LY22

AREA: Log Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

KA IECH FW

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/12/03

TOTAL DEPTH: 7 ft
WATER DEPTH: 7 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-	111		RY03-30 ISU: 49	Dry								9.0	SP	Ground Surface Gravelly Sand
-			130.49	Diy								و دوري		0.0 - 2.0 ft. Brown, dry , loose, gravelly SAND, organics
1-		50										9 G		
-												ن می م د		
2-		50										ر. ده		2.0 - 2.5 ft. Color change to grey to black, woody debris
-		40			10	15	15	35	25	Т		9. G		2.5 - 3.0 ft. No recovery
<u> </u>	- 0	50										ە ە	SP	3.0 - 4.0 ft. Same as above
_		29	•		5	5	25	35	30	Т		. g. G	DI.	3.0 - 4.0 ft. Same as above
4-		50		Dry	30	25	26	1,5						
_		15		-	30	25	25	15	5				GP .	Gravel and Sand 4.0 - 4.5 ft. Black, dry, medium dense, Gravel and sand, asphalt or oil stained ?
5-		14	RY03-31		5	5	25	35	30	T				Sand 4.5 - 5.5 ft. Color change back to grey, moist, SAND, coarse to medium, minor gravel, no odor
		14	ISU: 50							•			SP	graves, no odos
6_		9												
		13												
		20												
7				Wet				Ì						7.0 ft. Color change to black/white/grey, beach sand ? End of Borehole
			•											Ent of Bolegioje
8-														
-														
9-														
10-														

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: LY23

AREA: Log Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/12/03

TOTAL DEPTH: 5 ft

WATER DEPTH: 4.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 1- 2- 3- 5- 6- 7- 8- 9- 10-		50 50 50 33 14 60 50 50	RY03-32 ISU: 51	Wet	20	15	25	25	15				SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry_loose, gravelly SAND, no odor, bedding gravel? 0.3 - 0.8 ft. Same as above 0.8 - 1.0. No recovery 1.0 - 1.3 ft. Brown, damp, gravelly coarse SAND 1.3 - 2.5 ft. No recovery 2.5 - 3.5 ft. Same as above 3.5 - 4.0 ft. No recovery 4.0 - 5.0 ft. Black, wet, gravelly coarse SAND, oil smell, organics End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: FR20 **AREA:** Finishing Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 4.5 ft WATER DEPTH: 4.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0— 1— 2— 3— 4— 5— 6— 7— 8— 9— 10—		NA	RY03-23 ISU: 42 RY03-24 ISU: 43	Dry	15 30 10	25	25	25 15 25	10 5 20 30	70			SP GP SP ML	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Grey, brown, dry, Gravelly SAND Sandy Gravel 0.3 - 1.0 ft. Grey to brown, dry, coarse sandy GRAVEL, fill material? Gravelly Sand 1.0 ft. Brown to grey, dry, gravelly SAND 1.5 - 2.0 ft. Color change to dark brown, organics, former paleosol? (buried former surface soil) Silt 2.0 - 4.3 ft. Grey, moist, SILT, some fine sand, minor clay Sand 4.3 ft. Grey/black/white, wet, coarse to medium SAND End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: LY20

AREA: Log Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Trench

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/20/03

TOTAL DEPTH: 11.5 ft
WATER DEPTH: 11.5 ft

											-			WAIER DEI III. 11.5 it
Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1-			RY03-26 ISU: 45	Dry	30	20	15	20	15			60 Sec.	SP	Ground Surface Gravelly Sand 0.0 - 1.5 ft. Brown to dark brown, dry, sandy GRAVEL
3-				Dry		5	10	40	40	5		3 G 6 6 6	sw	Sand 1.5 - 3.5 ft. Light brown to tan, dry, medium to fine SAND, minor gravel, discontinuous wood chip layers on south sidewall, vertical piling on north side of trench terminating beneath fine sand Gravelly Sand 3.5 - 8.5 ft. Brown to grey, damp, gravelly SAND, woody debris (driftwood?)
5- 6- 7-		NA	RY03-27 ISU: 46		10	15	25	25	20	5		2	SP	
8- 9- 10-				Damp								9 5 50 0 50 0 50 0 50 0 50 0 50 0 50 0		8.5 ft. Gravel increases, water seeps out of gravel lenses
11-				Wet								S. 50 S.		End of Borehole
14-					,			•					- · .	

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: DK20 AREA: Wood Breakdown Mill

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 8.5 ft
WATER DEPTH: 7 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 4-		7 9 12 4 4 5	RY03-19 RY03-92 ISU: 38	Dry Dry	30	25	25	15	5 25	15		(a)	GP SM	Ground Surface Asphalt 0.0 - 0.75 ft. Asphalt Sandy Gravel 0.75 - 1.0 ft. Brown to grey, dry to moist, sandy GRAVEL, angular fill material duplicate sample collected Silty Sand 1.0 - 3.5 ft. Black to grey, dry, silty SAND, minor gravel, wood chips, fill material?, slight odor Gravelly Sand 3.5 - 4.0 ft. Brown, dry, gravelly SAND 4.0 - 5.0 ft. No recovery
5— 6— 7— 8— 9—		2 2 2 2 2 3 4 2	RY03-20 ISU: 39	Wet	25	30	25	25	5				GP	Sandy Gravel 5.0 - 5.5 ft. Brown, moist, sandy GRAVEL, Fill material?, plastic woven fabric debris 5.5 - 8.5 ft. No recovery 7.0 ft. Very little gravel in sampler, wet End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: FR02 AREA: Finishing Room

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 5.5 ft WATER DEPTH: 5.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 3- 4- 5- 6- 7- 8- 9-	S	NA	RY03-21 ISU: 40	Dry Wet	20	25	25	20	10		*		n SP	Ground Surface Gravelly Sand 0 - 5.5 ft. Grey to brown, damp, gravelly SAND, rounded to subangular gravel, some debris, concrete footing on south side of excivation. Same material throughout excavation. End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: BY20

AREA: Bone Yard CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 8.5 ft

WATER DEPTH: 8.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 4- 5- 6- 7- 8-		NA	RY03-11 ISU: 30 RY03-12 ISU: 31	Dry	20		10		10	40		,	SM	Ground Surface Gravelly Sand 0 - 3.0 ft. Brown, dry, loose, gravelly SAND, organics, subrounded to angular gravel, fill material? Gravelly Sand 3.0 - 4.5 ft. Black, dry, medium dense, gravelly SAND, metals shavings, wood debris, brick, fill material? Silty Sand 4.5 - 8.5 ft. Grey to black, dry, medium dense, silty SAND

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: CS20 AREA: Chip Storage

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/19/03

TOTAL DEPTH: 9 ft WATER DEPTH: 9 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1 2 2 -			RY03-13 ISU: 32	Dry	5	15	30	30		American		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	GP SP	Ground Surface Wood Chips 0 - 1.0 ft. Wood Chips Gravelly Sand 1.0 - 2.0 ft. Brown, dry, gravelly SAND, medium to coarse sand, surface sample collected from this interval beneath overlying wood chip layer
3— 4— 5—		(A	RY03-14 ISU: 33	Dry			30	40				5, 50, 50, 50, 50, 50, 50, 50, 50, 50, 5	SP	Gravelly Sand 2.0 - 9.0 ft. Grey to black, damp to wet, medium to coarse grained, gravelly SAND, siltier layers, gravel lenses with water, strong petroleum/liquor odor
7				Wet			30	40	40	60			SP	9.0 ft. Groundwater with yellow surfactant on water, possible pulp liquor impacts. Split sample collected by Tribe. End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: BP20 AREA: Power Boilers

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/13/03

TOTAL DEPTH: 8 ft
WATER DEPTH: 8 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-		11	RY03-07 ISU: 26	Dry	20	20	20	20	20) (i) (i)		Ground Surface Gravelly Sand 0 - 0.3 ft. Brown, dry, gravelly SAND, poorly sorted, minor debris 0.3 - 1.0 ft. No recovery
1- 2- 3- 4- 5- 6- 7- 8-		111 20 6 7 8 8 10 10 8 5 9 6 19	RY03-08 ISU: 27	Dry	10	10	20	30	30	Т			SP SP	1.0 - 2.0 ft. Same as above 2.0 - 2.5 ft. No recovery 2.5 - 3.5 ft. Grain size decreases 3.5 - 4.0 ft. No recovery 4.0 - 5.0 ft. Same as above 5.0 - 5.5 ft. No recovery 5.5 - 8.0 ft. Black, dry, gravelly SAND, possible pulp liquor impacts from 6.0 to 6.5 ft below grade End of Borehole
9-											_			

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: BY02

AREA: Bone Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 9.5 ft WATER DEPTH: 8.5 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
1		16 21 30	RY03-09 ISU: 28	Dry	20	25	25	15	10			, e. c, e. c, e. c, c	SP	Ground Surface Gravelly Sand 0 - 2.5 ft. Brown, dry, loose, gravelly SAND, organics, subrounded to angular gravel, fill material?
3 4		12 14 20 12 16	RY03-10	Dry			10	20	30	40			SP SM	Gravelly Sand 2.5 - 3.5 ft. Black, dry, medium dense, gravelly SAND, metals shavings, wood debris Silty Sand 3.5 - 5.0 ft. Grey to black, dry, medium dense, silty SAND
5		21 7 8 8	ISU: 29										:	5.0 - 6.5 ft. Silt color changes to black 6.5 - 8.0 ft. Sandier interval
7		5 5 8	-	Wet			10	40	30	20			SM/SP	
9—		7					10	20	50	20			SP	Silty Sand 8.5 - 8.9 ft. Grey, loose, Silty SAND, poorly sorted 8.9 ft. Color change to orange/red, oxidized layer? End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: AP20 AREA: Main Process Area

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 11 ft WATER DEPTH: 9 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3- 4- 5- 6- 8- 9- 10- 11- 12-		40 13 13 19 30 21 12 12 8 4 5 5	RY03-94 RY03-01 ISU: 20 RY03-02 ISU: 21	Dry		30	T 25	20	10				GP GP SP	Concrete Rubble 0.0 - 3.5 ft. Concrete rubble from demolition of site structures, graphic log inferred based on drill cuttings and feedback from the driller, split spoon samples were not collected. Sandy Gravel 3.5 - 5.0 ft. Brown to grey, dry, sandy GRAVEL, gravelly fill material ?, poorly sorted 5.0 - 5.5 ft. No recovery Sand 5.5 - 6.5 ft. Brown, dry, medium dense, gravelly SAND, sample RY03-01 collected from 9 inch composite due to low sample recovery 6.5 - 7.0 ft. No recovery 7.0 - 8.0 ft. Same as above 8.0 - 10.5 ft. No recovery End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: AP03 AREA: Main Process Area

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 6 ft WATER DEPTH: 6 ft

Depth	Sample Recovery	Blow Counts	Sample ID	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description Ground Surface
0- 1- 2- 3- 3- 4- 5- 6- 7- 8- 9-		11 16 15 6 5 7	RY03-03 ISU: 22 RY03-04 ISU: 23	Dry	40 20 5	40 40 25 15	15 30 30	20 30	20				GP SP SP	Concrete Rubble 0 - 3 ft. Concrete rubble from demolition activities, graphic log inferred based on drill cuttings and feedback from driller, split spoon samples were not collected. Concrete Rubble 2 - 3.5 ft. Black, dry, CONCRETE rubble, solidified in sample shoe, asphalt?, stained rubble? Gravel 3.5 - 5 ft. Grey to brown, dry, sandy GRAVEL, poorly sorted Gravelly Sand 5 - 5.5 ft. Brown, damp, gravelly SAND, sampler has a black smear on the outside Sand 5.5 - 6.0 ft. Black, damp to wet, SAND, poorly sorted, some layering, sulfur odor End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: BL20 AREA: Main Process Area

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/15/03

TOTAL DEPTH: 3.5 ft WATER DEPTH: 3.5 ft

Дерів Зніпріа Recovery	Blow Counts	Sumple IIO	Moisture	% Crs. Gravel	% Fine Gravel	% Cre. Sund	% Mcd. Sand	% Fine Sand	% Sil	% Chy	Omphie Lag	USCS Synabol	Soil Deseription
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	7 7 10 14	RY03-05 ISU: 24	Dry	10		45	25	10	10		The second secon	9P - GP	Grovelly Sand 2.5 - 3.5 ft. No recovery Gravelly Sand 2.5 - 3.5 ft. Grey, moist, gravelly coarse SAND Gravel 3.5 ft. Grey, wet, Gravel, silty sand matrix. Possible perchet water more based of evidence from trenching at nearby locations SR03 and SR23. Unable to access BL20 using other means End of Berehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: DB02 AREA: Main Process Area

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/16/03

TOTAL DEPTH: 4 R

WATER DEPTH: -2.5 ft during drilling

				- Comment								- Statement		And the same terms
Depith	Sample Recovery	Elew Counts	Sumple 113	Moisture	% Crr. Gravel	% Fine Gravel	% Crs. Sand	% Mod. Sand	% Fine Sand	% Silt	% Clay	Graphie Log	USCS Symbol	Soil Description
0		7 8 5	RY03-15 ISU: 34	Ury Wet	5	15)		35	15				SP SP	Gravelly Sand 0.0.0.3 ft. Grey, damp, gravelly SAND, wood chirds 0.32.5 ft. Auger spinning and do flot recover material, suger may be bouncing off wood Gravelly Sand 2.5.4.0 ft. Black, wet, gravelly SAND, wood, fill material?, possible pulp liquor impacted soil, subsurface sample was not collected due to poor recovery Notes Drill rig was stationed on an elevated building slab. The distance from the slab to ground surface is 4.4 ft. Water fills boring to within 0.5 ft of ground surface, possible perched water based on trenching observations in nearby SR03 and SR23, no sheen on water, water does not react with bentantits End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: DB21 AREA: Main Process Area

CLIENT: Reyonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: Backhoe

DRILLING CONTRACTOR: Bruch and Bruch

DATE COMPLETED: 5/19/03

TOTAL DEPTH: 11.5 ft WATER DEPTH: 11 ft

Depth	Sumple Recovery	Blaw Counts	Sample 110	Moisture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fire Sand	% SIII	% Clay	Graphic Log	USCS Symbol	Soil Description
0- 1- 2- 3-		ACA CLASSIC CONTROL CO	RY03-17 ISU: 36	Dry	1 1	20	25	20	20				57	Ground Surface Gravelly Sand 0 - 7.0 ft. Brown, dry, gravelly SAND, subrounded to angular gravel, debris (brick, metal), vertical piling on north side of excavation, horizontal wood beam on either side of trench
4- 5- 6-		NA A	RY03-18 ISU: 37	Dry						on personal de la propessa de la companya del la companya de la companya de la c				
7- 8- 9-		веного доставляний в под пределений в под п	· •	Dry				10	60	30			SM	Sity Sand 7.0 - 11.3 ft. Grey, moist, silty fine SAND, gravelly layers with minor water
11		на удинальную двигорум муницентра — «Мейлей од надайнён (Мейлей Аймай Аймай Аймай Аймай Аймай Аймай Аймай Айма		Wet		\$	25	30	30				ŠP -	Sand 11.3-31-Black, wet, coarse to medium SAND, oily water in excavations petroleum End of Borebole End of Borebole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: GB08

AREA: Log Yard

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA
DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/12/03

TOTAL DEPTH: 7.5 ft WATER DEPTH: 7 ft

Depth	Saungle Recovery	Dilow Courie	Տուրյից ID	Moisture	% Cts. Gravel	% Fine Gravel	% Ora, Sand	% Med. Sand	% Pine Sand	% Silt	% Clay	Graphic Log	USCS Symbol	Soil Description
0-		14 15 30 30 30 30 30 30 30 30 30 30 30 30 30	RY03-85 ISU: 104	Dry		20	25		10				GP SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND, organics 0.3 - 2.0 ft. Grey to black, dry, gravelly SAND, wood, fill material?, subreamded to angular gravel 2.0 - 2.5 ft. No recovery 2.5 - 3.0 ft. Gravel content increases 3.0 - 4.5 ft. Approximately 2 inches of recovery
3- 4- 5-	Andrewskie desirated and the second s	9 37 19	RY03-25 ISU: 44			30	15	20	5				Œ	4.5 - 6.0 (Chuck of timestone in sampler spoon, fill material?
6- 7- 8-	Activities of the continue of	S S		Wet	metatererentamise de descriptor mentanos estados de la companda de la companda de la companda de la companda d		· (*) mar (*) de particular (1980) (1			iki dikanjaran da matan da ma		ALCONE AND REPORT OF THE VEHICLE OF	æ	6.9 - 7.5 ft. No recovery End of Borehole
9-							adder#FF000x0000piahr0e-Mn000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx					regional de la company de la c		

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: LY24

AREA: Log Yest CLIENT: Rayonics

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cocade Drilling

DATE COMPLETED: 5/12/03

TOTAL DEPTH: 8 ft WATER DEPTH: 6.5 ft

Depth	Sample Recovery	Dlow Counts	Sacripte 1D	Molature	% Cra. Gravel	% Fine Gravel	% Crs. Sand	% Med. Send	% Fine Sand	* XIII	* CLy	Compliste LANG	USCS Symbol	Soil Description
ē-			kY05-34 50-59	Day	25	25	25	13	10	egapt period in the control			S P	Growth Sent Growth Sent 00.03 ft. Brown, dry , loose, providy SAND, no odar, nagatar provid
i-		50		option); Springer and Lore	ALCONOMICS STATES AND ALCONOMICS AND								is,	03-151 Series bove
-	The second	50 50		en de de de la constante de la	Market South Andrews				The second secon			2		1.5 - 2.0 2. No recovery
2-	- <u>-</u> -	33		work factorises to a factorise to a	10	15	35	30	10		Value of the control	9 3		20-35 ft. Brown, grey to black, dry, gravelly SAND, subrounded to migrafur
- -		23									1000	ي مي د و		
		30							TOTAL		COLOR WOOD WATER	3°3 ••••		Gravel Ftli
4=	editorial designation	50 50	RY03-35 15U: 54	Dry	40	30	20	10		A CONTRACTOR				3.5 - 5.5 ft, Large chunks of limestone in sampler, fill material, no recovery from 3.5 to 4.5, limestone cobbles believed to be present based on way drill rig is responding and lack or material recovered.
·		iš	±eren	Vorusto validados estados esta	The state of the s				AND THE PROPERTY.	Anderson management				Control of the contro
>-		Ħ		Annual to recently	000pmanh000000000000000000000000000000000000				eptendendaddor (*) 1900			****		
£-		27 30		MANUEL SALVANCOUR	25	15	25	20	10	4				Gravelly Sand 5.5-7.5 ft. Gray to black, moist, SAND, less gravel
		24 15		Wes	e Control de la	10	40	30	20				SP	Manager of Age (Calaborate)
7-		10			Vennosia de la composito de la				national designation of the control		S O D D D D D D D D D D D D D D D D D D			· marinus/decitables
8-		27		The second secon	- Company of the Comp				Site Comments and the second					Police Fig. 1.1.
	- Communication of the Communi			District Control of the Control of t						And of the second secon				End of Borehole
9	to the second second second	A continue of the continue of		Spilonesses						and the Control of th				The remaining of the second se
10-	· Practical department of the	TOTAL BANK THOUSE		Materiory Stylichts and gain	And the Commission of				and the second s	Total Budding of the COST of the				When the control of t

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: RB21 AREA: Recovery Boiler

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/13/03

TOTAL DEPTH: 9.5 ft

WATER DEPTH: 8 ft

Depth	Sangilo Receivery	Diese Counts	Sample ID	Moisture	% Cra. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% SUc	% Clay	Gruphic Log	USCS Symbol	Soil Description
0- 1- 2- 3-		16 12 15 12 14	RY03-55 ISU: 74	Dry	25	20	25	20	10				SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND, organies 0.3 - 3.5 ft. Same as above
4 5	inger manamakalaksi ja k	14	RY03-56 ISU: 75	Dry	an van van van van van van van van van v				THE	Additional and the state of the		000 2	25	4.5 - 5.0 ft. Same as above 5.0 - 6.1 ft. No recovery
6 -	activities and activities activities and activities activities activities and activities activities and activities activitie	17		or experimental and the property of the proper	SERVICE CONTRACTOR OF THE PROPERTY OF THE PROP	Newsoning Materials and Australia (Materials). And a control of the control of t							œ	Sandy Gravel 6.1-6.5 ft. Brown/red/black, sandy GRAVEL, weed, poorty serted 6.5-7.5 ft. No recovery
\$ -		23 21 32			30	30	25	15	10			7787 210	Ð	7.5 - 8.0 ft. Same as above 8.0 - 8.5 ft. No recovery
9=		43 28		Wd Water	25	20	15	15	15		engagement mit verschieder (Colorisature of Marie	0 8 G 0	8	Gravelly Sand 8.5 - 9.5 ft. Black, wet, medium dense, gravelly SAND, petroleum coor, sheen on water and sampler
10-				minimorement	and the second	*** Production								End of Borehole

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SSL20 AREA: Spent Sulfite Liquor Lagoon

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-mch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 8 ft WATER DEPTH: 7 ft

Depth	Sample Recovery	ТИрм Сапан	Semple ID	Molsture	% Crs. Gravel	% Fine Gravel	% Crs. Sand	% Med. Sand	% Fine Sand	% 83lc	%Q _{IIV}	Graphic Log	USCS Symbol	Soil Description
0- 1 2-		19 24 28	RY03-75 ISU: 94 RY03-90 ISU: 109	Dry	2.5	20	20	25	10	en de la composition della com		8	SP SP	Ground Surface Gravelly Sand 0.0-0.3 ft. Brown, dry, loose, gravelly SAND, angular graveling 0.3-1.0 ft. No recovery 1.0-2.0 ft. Brown to black, dry, loose, gravelly SAND, some crange oxidized layers, black pulp liquor-like stains ? 2.0-3.0 ft. No recovery
3		7 2 8 11 10	RY03-76 ISU: 95	Dry	Š	10	40	30					SP SW	3.0 - 3.5 ft. Same as above except no staining 3.5 - 4.0 ft. No recovery Sand 4.0 - 5.0 ft. Black, dry, poorly sorted, SAND, minor gravel, less staining 5.0 - 5.5 ft. No recovery
6- 7- 8-	The second secon	18 26 18 26 27		W &		20	25	25	30	NORTHWORKSHALDS STORES TO STORE STORES TO THE STORES THE STORES TO THE STORES			w2 w2	5.5 - 6.5 ft. Same as above 6.5 - 7.0 ft. No recovery 7.0 - 8.0 ft. Same as above End of Borehole
9-	Order Designation of the Communication of the Commu	www.common.common.common.com/					over the state of	and the state of t		ATTO THE STATE OF THE PROPERTY OF THE STATE		A GRANING OF THE		

TETRA TECH FW

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER: SSL21 AREA: Spens Solfae Liquer Lagoon

CLIENT: Rayonier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Delling

DATE COMPLETED: 5/14/03

TOTAL DEPTH: 8 ft WATER DEPTH: 6.5 ft

(Negut)	Simple Recivery	Direct Counts	Sample ID	Mulsture	% Cr. Greel	% Fine Gravel	A Chr. Stond	% Mod Sant	% Fine Sund	% Sitt	% Clay	Ompalio Lag	USCS Symbol	Sáil Description
2 3-		25	RY03-77 BU-96 RY03-91 BU: 110	 And the state of t		20	25	B		managaran da	And the second s			Greedy Senter Greedy Senter On - 0.5 ft. Brown, dry, house, pravelly SAND 0.3 - 2.5 ft. Brown to black, dry, loose, gravelly SAND, some compensational layers, shells 2.3 - 2.5 ft. Black, dry, Gravelly SAND, SSL impacts 7 2.5 - 3.5 ft. Color change torown, dry, gravelly SAND, so SSL impacts, churk of yellow sulfur in sampler
- - - - -		15 20 20	RY03-78 ISU: 97	TO your INTERCRETATION OF THE PERSON IN A THROUGH IN A THROUGH AND A THROUGH AND A THROUGH A THR	AND THE PROPERTY OF THE PROPER	Company (Normal Anna Caraman and Anna Caraman and Anna Caraman and Carama	45	30	entablement and all the property of the control of	Vijteskijkajaski i delandernam demostratik	TO THE STATE OF TH		SP	Sand 3.5 - 8.0 ft. Black/grey/white, dry to damp, coarse grained, SAND, minor gravel, exidized layers at 5 ft 5.0 ft. Color change to brown, exidized layers increase, gravel increases
- - - 8-		22			Address of the control of the contro	- Company of the Comp			To Confession of the Confessio	Technology Vertical and the Company of the Company	A STATE OF THE STA			End of Borebole
iệ-	Commission	APARTIMAN VEALOUS STORY MARKETS		concentration of the confined adjustment	management of the court of the	Managada ang panggang panggang ang panggang ang panggang panggang panggang panggang panggang panggang panggang	An About the Person of the Control o		A 2 1000 Current Park and American Control of Control o	S (TC-change) (Mindle formacen and servicement	Countries (spikkingstallonasosentronum servitat	mentioned protect of the second state of the s		

TETRA TECH FW

PROJECT NAME: Uplands Remedial Investigation

BORING NUMBER; WM20

AREA: Wood Mill

CLIENT: Rayozier

SITE MANAGER: Jack Anderson

DRILLING METHOD: 4-inch HSA

DRILLING CONTRACTOR: Cascade Drilling

DATE COMPLETED: 5/12/03

TOTAL DEPTH: 8.5 ft

WATER DEPTH: 8 ft

Depth	Swample Recovery	Blow Counts	Sumple ID	Modsture	% Ors. Grayel	% Fine Gravel	% Crs. Sand	% Med, Sand	% Fine Sand	% SIIt	% Clay	Gmphic Log	USCS Symbol	Seil Description
0-		.50	RY05-100 ISU: 100	Ъŋ									SP	Ground Surface Gravelly Sand 0.0 - 0.3 ft. Brown, dry, loose, gravelly SAND. 0.3 - 2.0 ft. Woody debels, some sandy gravel, very poor recovery.
2-		50 50 24		Average Mark Andreas on the communication of the co	**************************************								SP/GP	2.0 - 2.5 ft. Same as above, gravel descreases and woody debris increases 2.5 - 5.5 ft. No recovery
3-	era	14				,						erenney-personal control to the Art Administration development according to the control of the c		
5-		7 8 5	RY03-101 ISU: 101	Dа го р		5	10	40	40	5				Sand 5.5 - 7.0 ft. Dark brown to black, moist, fine to medium grained SAND, some sit, woody debris, IDS odog when broken, sample at depth collected from recovered partions only (2.5 - 6.0 ft and 1.5 - 5.2 ft)
7-		7		Wet			Welling.	- Control of the cont		MANAGEMENTAL IN A SECOND STATE OF THE SECOND S			SP	7.0 - 8.0 ft. No recovery
9-		O				Wedgement (LLAS) (10 - 00 COST WARD BASE AND	egonopiero-openigionomo per el El El El El Constitución con con con cioner semanente			And the state of t				8.0 ft. Woody debris and fine sand and silt, sampler falls through hole under its own weight, sampler fills mostly with wood End of Berchole

	MAJOR DIV	ISIONS			TYPICAL NAMES
		CLEAN GRAVELS WITH	GW	100 ASTA	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES
SOILS . 200 SEVE	GRAVELS	LITTLE OR NO FINES	GP	100 - 100 -	POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES
No. 200	MORE THAN HALF COARSE FRACTION IS LARGER THAN No. 4 SIEVE SIZE	GRAVELS WITH OVER	GM	10 10 10 10 10 10 10 10 10 10 10 10 10 1	SILTY GRAVELS, POORLY CRADED GRAVEL-SAND-SILT MIXTURES
GRAINED SI LARCER THAN NO.		12% FINES	GC		CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND-CLAY MIXTURES
-GRA		CLEAN SANDS WITH	sw		WELL-GRADED SANDS, GRAVELLY SANDS
COARSE—(SANDS	LITTLE OR NO FINES	SP		POORLY GRADED SANDS, GRAVELLY SANDS
COA.	MORE THAN HALF COARSE FRACTION IS SMALLER THAN No. 4 SIEVE SIZE	SANDS WITH OVER	SM		SILTY SANDS, POORLY GRADEO SAND—SILT MIXTURES
		12% FINES	sc		CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES
α			MI		INORGANIC SILTS AND VERY FINE SANOS. ROCK FLOUR, SILTY OR CLAYEY FINE SANDS, OR CLAYEY SILTS WITH SLIGHT PLASTICITY
SOILS		ND CLAYS 50% or less	CL		MORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
NED F 1S SKA			OL	22222	ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
E—GRAINED SC MORE THAN HALF IS SMALLER THAN NO. 200 SIEVE			мн		INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FINE—(ND CLAYS REATER THAN 50%	СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
FI			ОН		ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	HIGHLY ORGAN	IC SOILS	Pt	<u> </u>	PEAT AND OTHER HIGHLY ORGANIC SOILS

- "Undisturbed" S&H or Shelby tube sample

D - Bulk or classification sample

🛛 - Standard Penetrolian Test sample

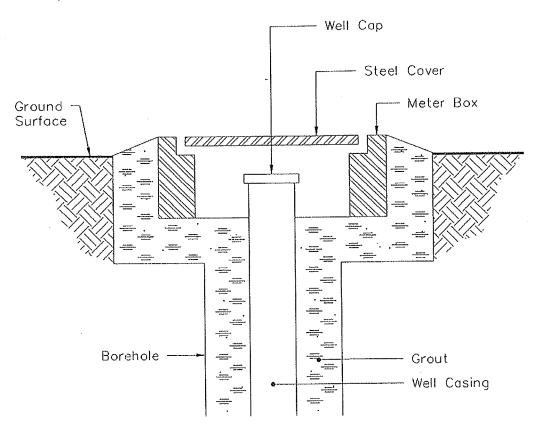
- No sample recovered

T - Core sample

Blows/II - Blows required to drive sampler 12 inches with a 140-pound hammer falling 30 inches. Blow counts for 5&H samplers are converted to approximate "equivalent" SPT N values (N = 0.5 X S&H blows per foot)

DRAFT

KEY TO BORING LOG


Harding Lawson Associates
Engineering and
Environmental Services

SOIL CLASSIFICATION CHART & KEY TO BORING LOG ITT Royonier Pulp Division Port Angeles, Washington

B1

ORAWN PROJECT NUMBER APPROVED OATE REVISED DATE
HK 22271-3 9/93

WELLHEAD DETAIL

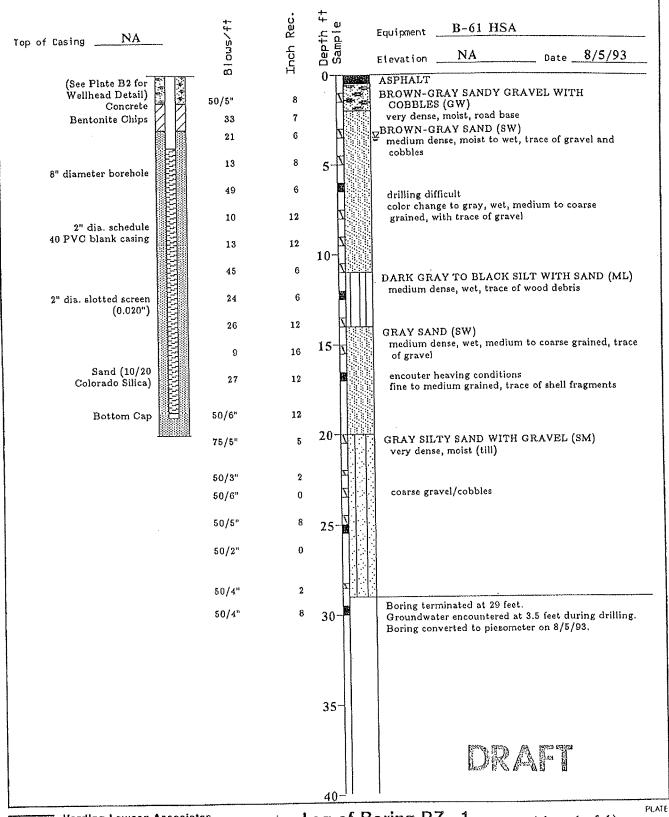
Concrete/Gravel

Blank PVC Casing

Bentonite Seal

Filter Sond

Slotted PVC Casing


Slough

KEY TO WELL DETAIL (ON LOGS OF BORINGS)

Harding Lawson Associates Engineering and Environmental Services WELLHEAD DETAIL ITT Rayonier Pulp Division Port Angeles, Colifornia

B2

DRAWN PROJECT NUMBER APPROVED DATE REVISED DATE
HK 22271---3 9/93

Log of Boring PZ-1

(sheet 1 of 1)

ITT Rayonier Pulp Division

Port Angeles, Washington


REVISED

DATE

PROJECT NUMBER 22271-3

APPROVED

10/93

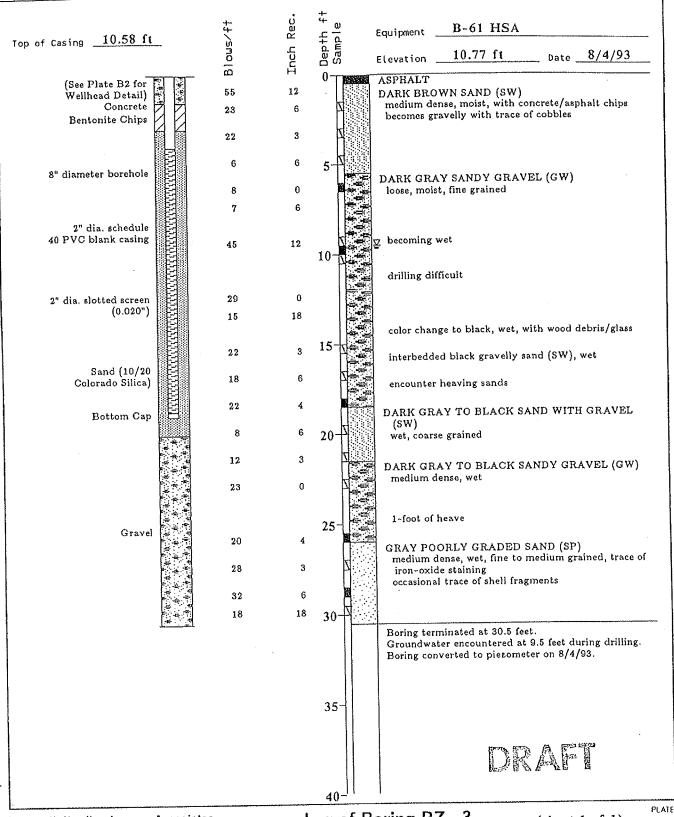
Log of Boring PZ- 2

(sheet 1 of 1)

ITT Rayonier Pulp Division Port Angeles, Washington

STAC

DATE REVISED


PROJECT NUMBER NWARD

APPROVED

10/93

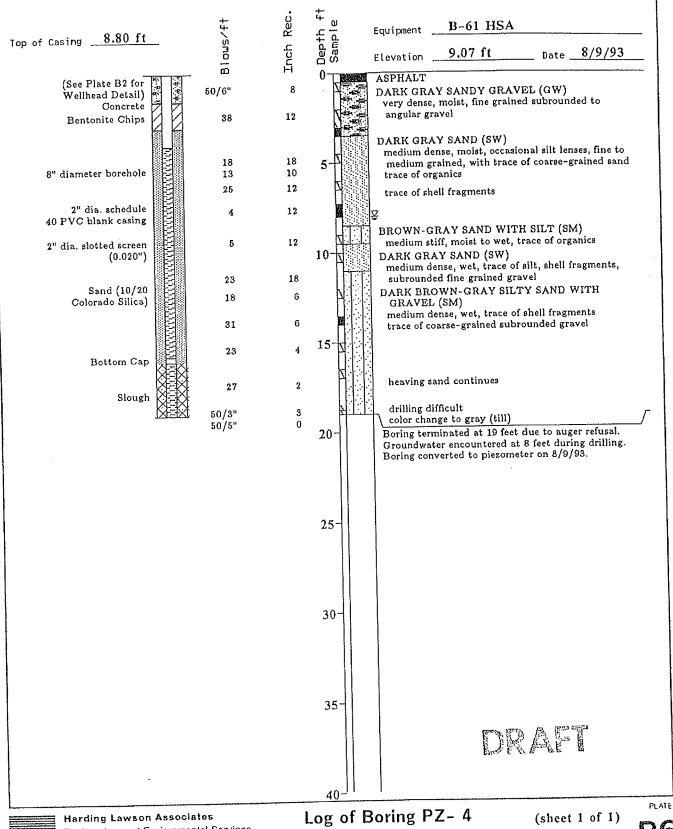
НK

22271-3

Log of Boring PZ- 3

(sheet 1 of 1)

ITT Rayonier Pulp Division


Port Angeles, Washington DATE

REVISEO

PROJECT NUMBER 22271-3

APPROVED

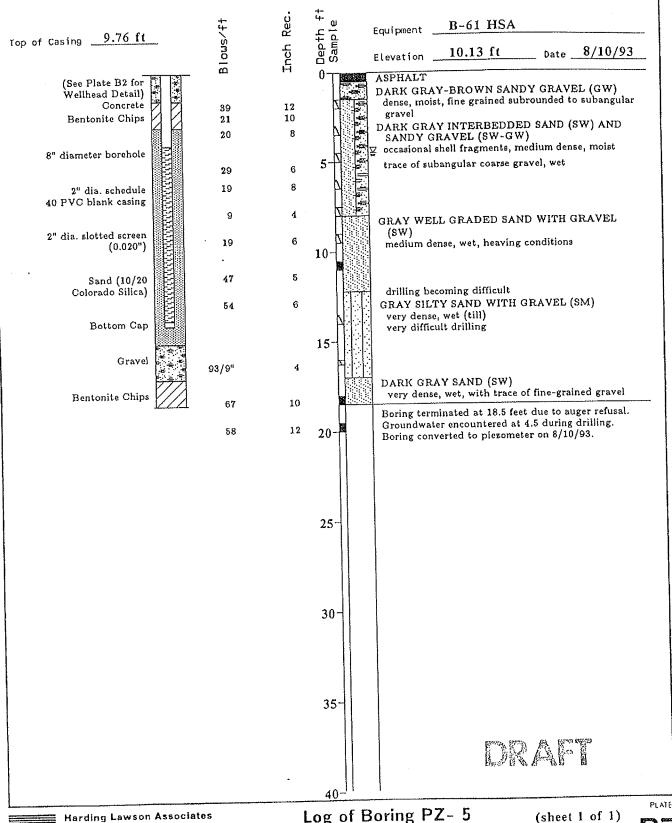
10/93

Engineering and Environmental Services

ITT Rayonier Pulp Division Port Angeles, Washington

OBASS

PROJECT NUMBER


APPROVED

REVISED

НK

22271-3

10/93

Engineering and Environmental Services

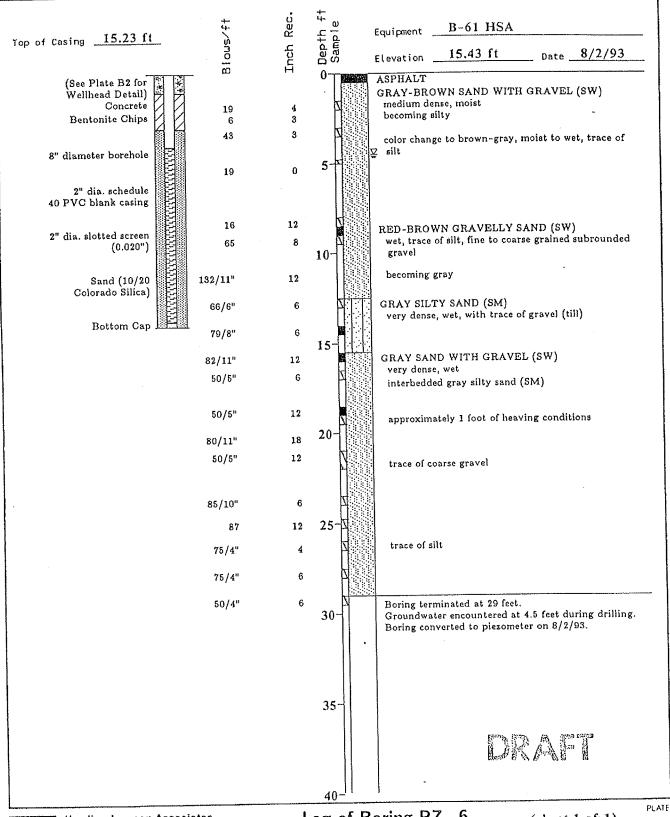
Log of Boring PZ- 5

ITT Rayonier Pulp Division Port Angeles, Washington

REVISED

DATE

PROJECT NUMBER DRAWN


APPROVED

10/93

DATE

HK

22271-3

Log of Boring PZ-6

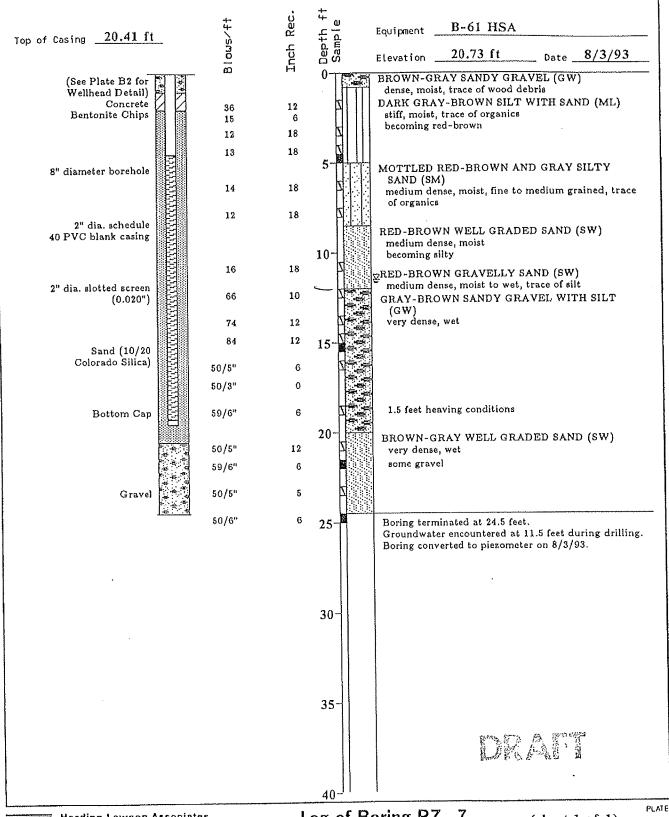
(sheet 1 of 1)

ITT Rayonier Pulp Division Port Angeles, Washington

APPROVED

DATE

DRAWN


PROJECT NUMBER

10/93

REVISED

HK

22271-3

Log of Boring PZ-7

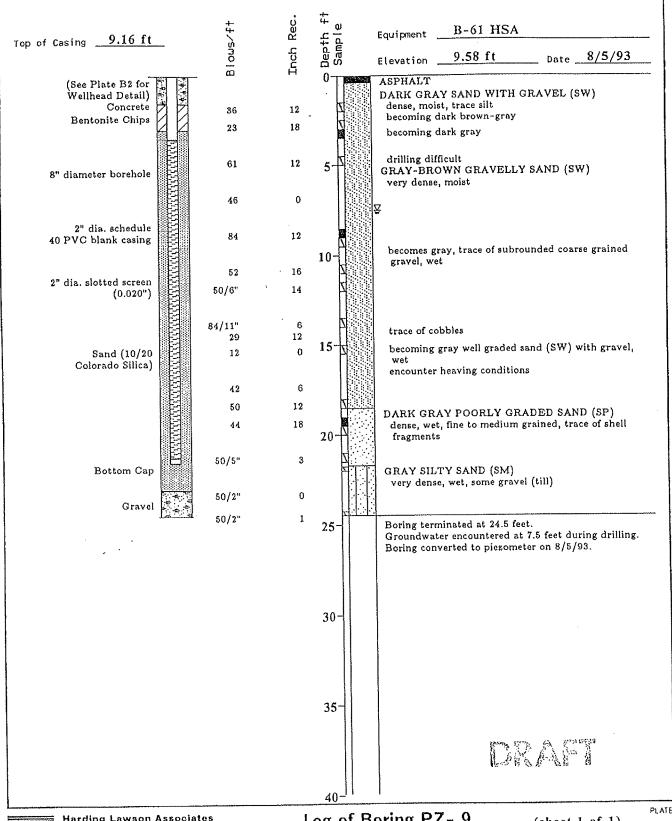
(sheet 1 of 1)

ITT Rayonier Pulp Division Port Angeles, Washington

REVISED

DATE

DRAWN


PROJECT NUMBER

APPROVED

10/93

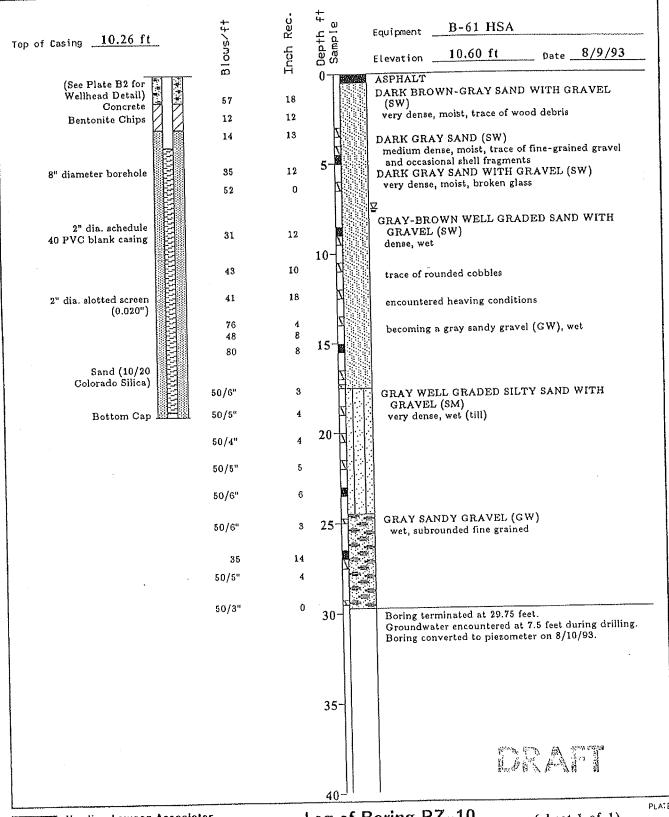
HK

22271-3

Log of Boring PZ-9

(sheet 1 of 1)

1TT Rayonier Pulp Division Port Angeles, Washington


CEVORAGA

REVISED

DATE

DRAWN PROJECT NUMBER НK 22271-3

10/93

Log of Boring PZ-10

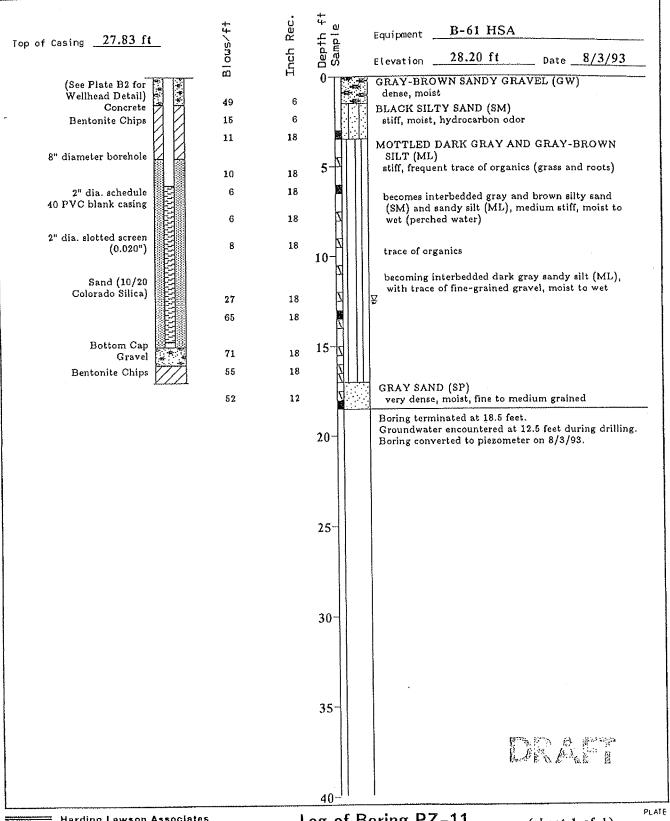
(sheet 1 of 1)

ITT Rayonier Pulp Division Port Angeles, Washington

APPROVED

REVISED

DATE


DRAWN

PROJECT NUMBER

10/93

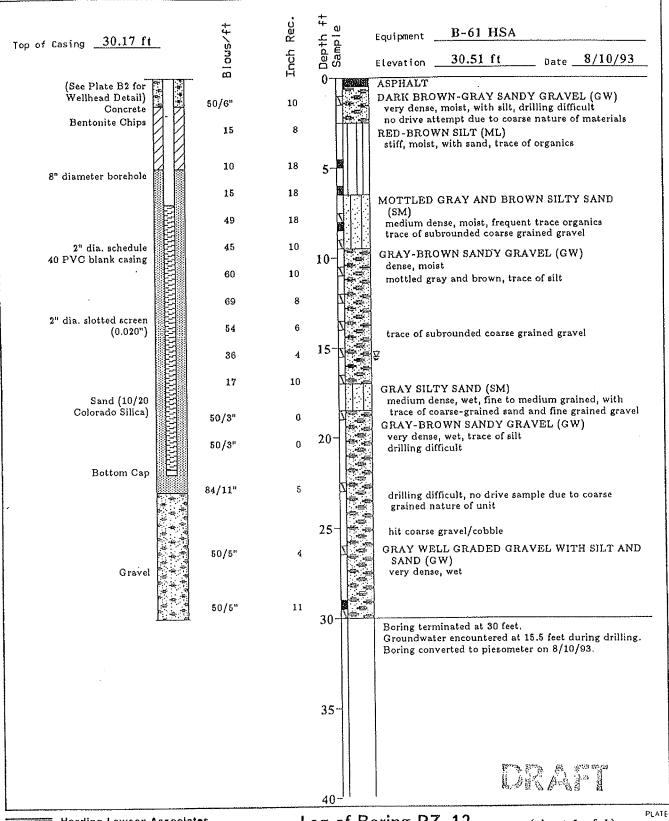
НK

22271.3

Log of Boring PZ-11

(sheet 1 of 1)

ITT Rayonier Pulp Division Port Angeles, Washington


REVISED

DRAWN

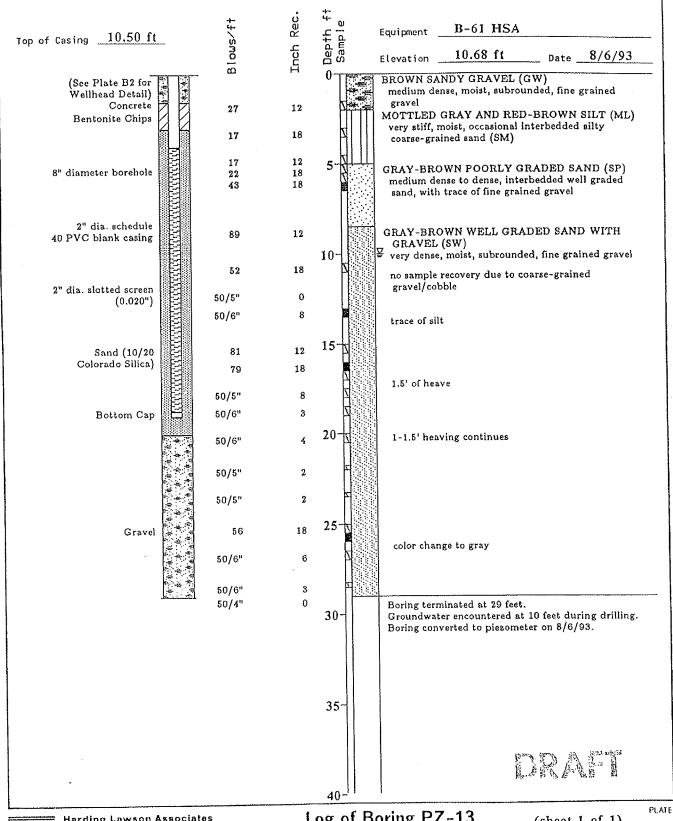
PROJECT NUMBER

APPROVEC

DATE 10/93

Log of Boring PZ-12

(sheet 1 of 1)


A 679

ITT Rayonier Pulp Division Port Angeles, Washington

......

B13

DRANN PROJECT NUMBER APPROVED DATE REVISED DATE
HK 22271-3 10/93

Log of Boring PZ-13

(sheet 1 of 1)

ITT Rayonier Pulp Division Port Angeles, Washington

DATE REVISED DATE APPROVED DRAWN PROJECT NUMBER 10/93 22271-3 НK

Shannon & Wilson, Inc. (S&W), uses a soil classification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D 2488-93) unless otherwise noted.

S&W CLASSIFICATION OF SOIL CONSTITUENTS

- MAJOR constituents compose more than 50 percent, by weight, of the soil. Major consituents are capitalized (i.e., SAND).
- Minor constituents compose 12 to 50 percent of the soil and precede the major constituents (i.e., silty SAND). Minor constituents preceded by "slightly" compose 5 to 12 percent of the soil (i.e., slightly silty SAND).
- Trace constituents compose 0 to 5 percent of the soil (i.e., slightly silty SAND, trace of gravel).

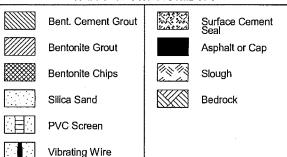
MOISTURE CONTENT DEFINITIONS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below water table

GRAIN SIZE DEFINITION

DESCRIPTION	SIEVE NUMBER AND/OR SIZE
FINES	< #200 (0.08 mm)
SAND* - Fine - Medium - Coarse	#200 to #40 (0.08 to 0.4 mm) #40 to #10 (0.4 to 2 mm) #10 to #4 (2 to 5 mm)
GRAVEL* - Fine - Coarse	#4 to 3/4 inch (5 to 19 mm) 3/4 to 3 inches (19 to 76 mm)
COBBLES	3 to 12 inches (76 to 305 mm)
BOULDERS	> 12 inches (305 mm)

^{*} Unless otherwise noted, sand and gravel, when present, range from fine to coarse in grain size.


RELATIVE DENSITY / CONSISTENCY

COARSE-GF	RAINED SOILS	FINE-GR/	AINED SOILS
N, SPT, BLOWS/FT.	RELATIVE DENSITY	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
0 - 4	Very loose	Under 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
Over 50	Very dense	15 - 30	Very stiff
		Over 30	Hard

ABBREVIATIONS

ATD	At Time of Drilling
Elev.	Elevation
ft	feet
. FeO	Iron Oxide
MgO	Magnesium Oxide
HSA	Hollow Stem Auger
ID	Inside Diameter
in	inches
lbs	pounds
Mon.	Monument cover
Ν	Blows for last two 6-inch increments
NA	Not applicable or not available
NP	Non plastic
OD	Outside diameter
OVA	Organic vapor analyzer
PID	Photo-ionization detector
ppm	parts per million
PVC	Polyvinyl Chloride
SS	Split spoon sampler
SPT	Standard penetration test
USC	Unified soil classification
WLI	Water level indicator

WELL AND OTHER SYMBOLS

City of Port Angeles Francis Street CSO Diversion Port Angeles, Washington

SOIL CLASSIFICATION AND LOG KEY

September 2006

21-1-20617-001

SHANNON & WILSON, INC. Geolechnical and Environmental Consultants

FIG. A-1 Sheet 1 of 2

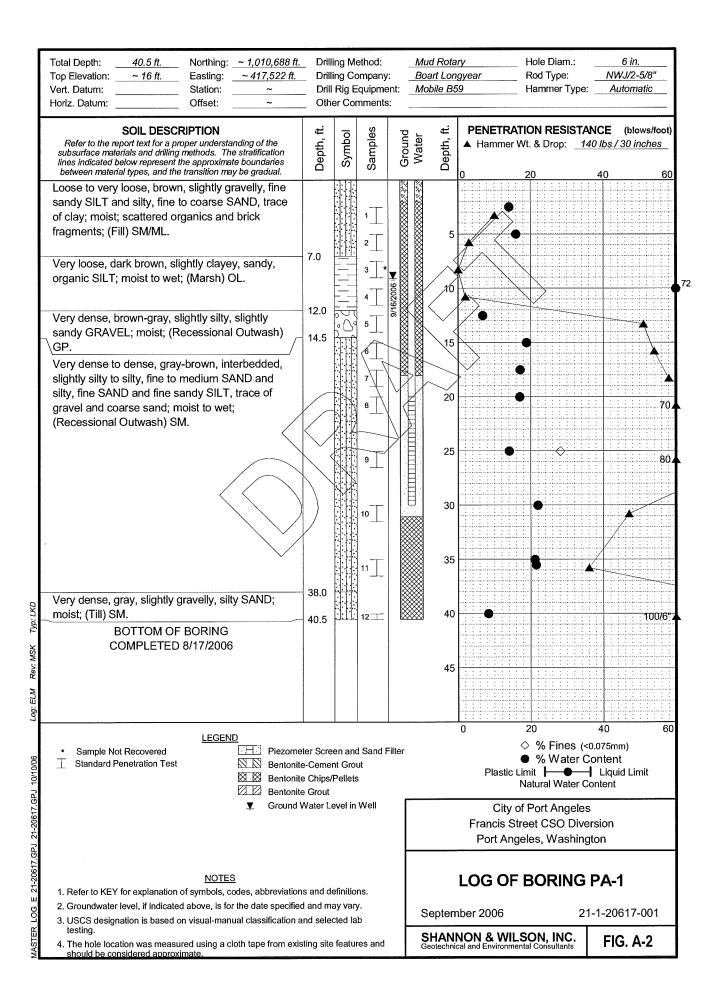
NOTE: No. 4 size = 5 mm; No. 200 size = 0.075 mm

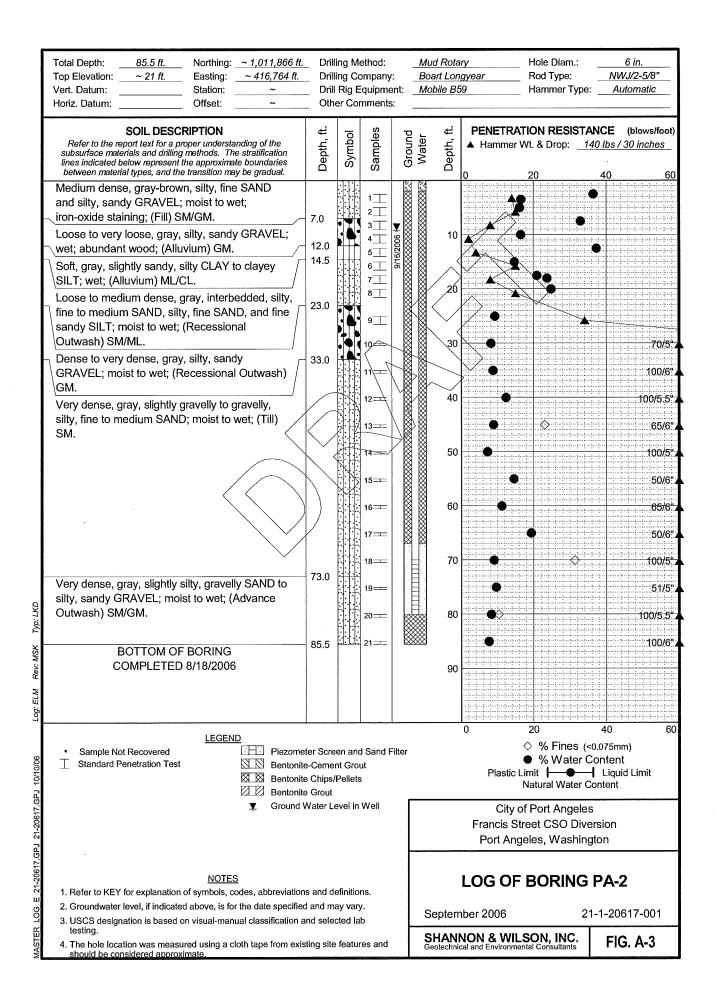
NOTES

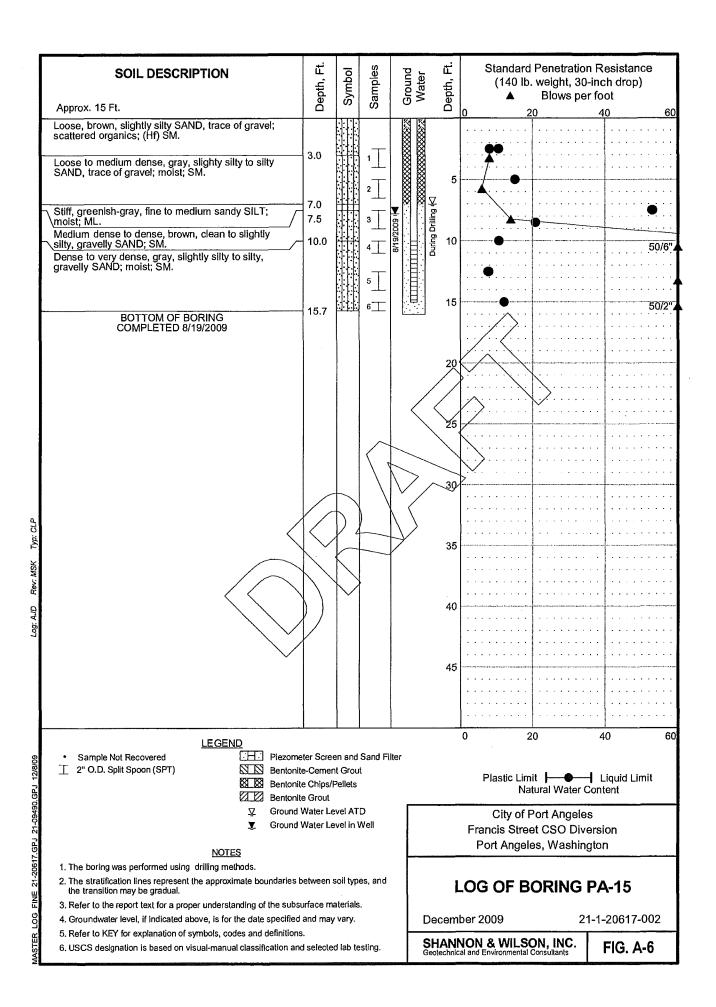
- Dual symbols (symbols separated by a hyphen, i.e., SP-SM, slightly silty fine SAND) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.
- Borderline symbols (symbols separated by a slash, i.e., CL/ML, silty CLAY/clayey SILT; GW/SW, sandy GRAVEL/gravelly SAND) indicate that the soil may fall into one of two possible basic groups.

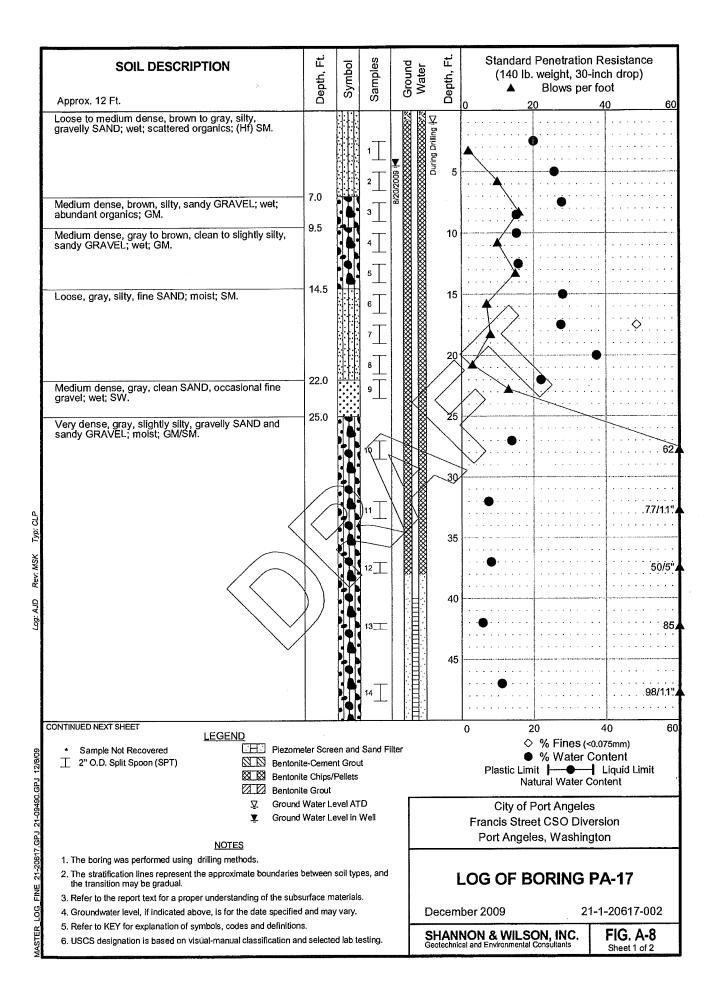
City of Port Angeles
Francis Street CSO Diversion
Port Angeles, Washington

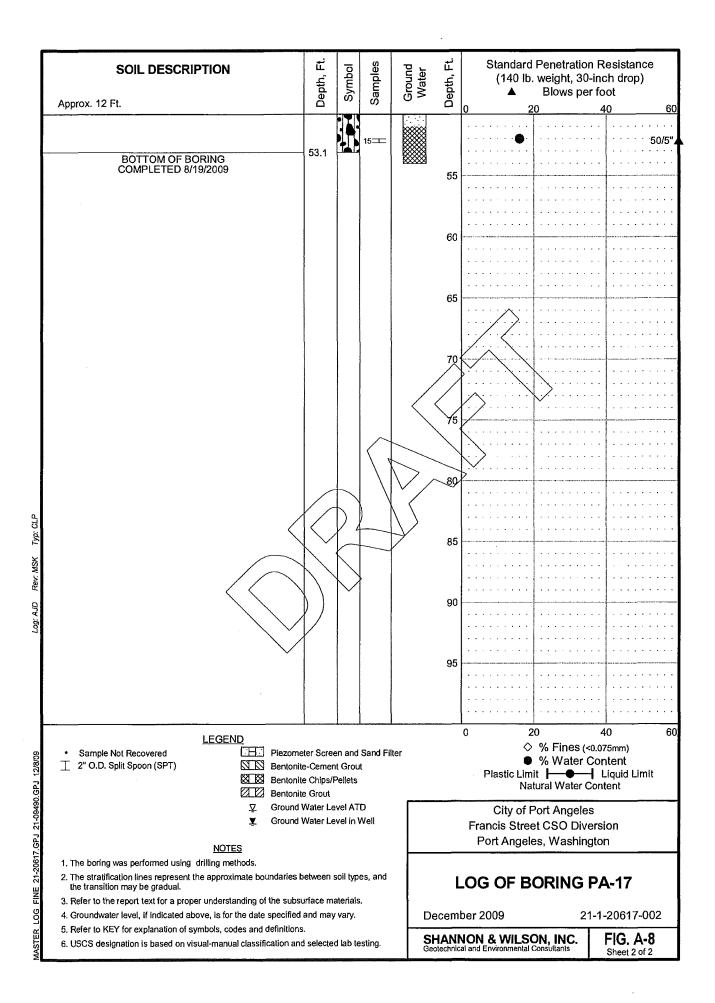
SOIL CLASSIFICATION AND LOG KEY

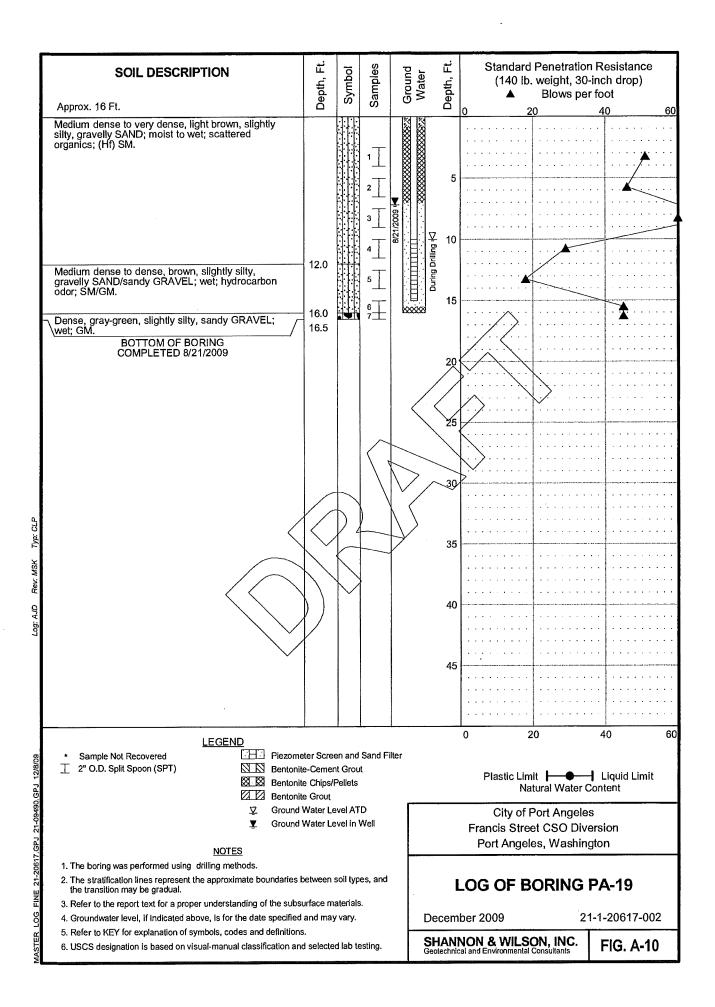

September 2006

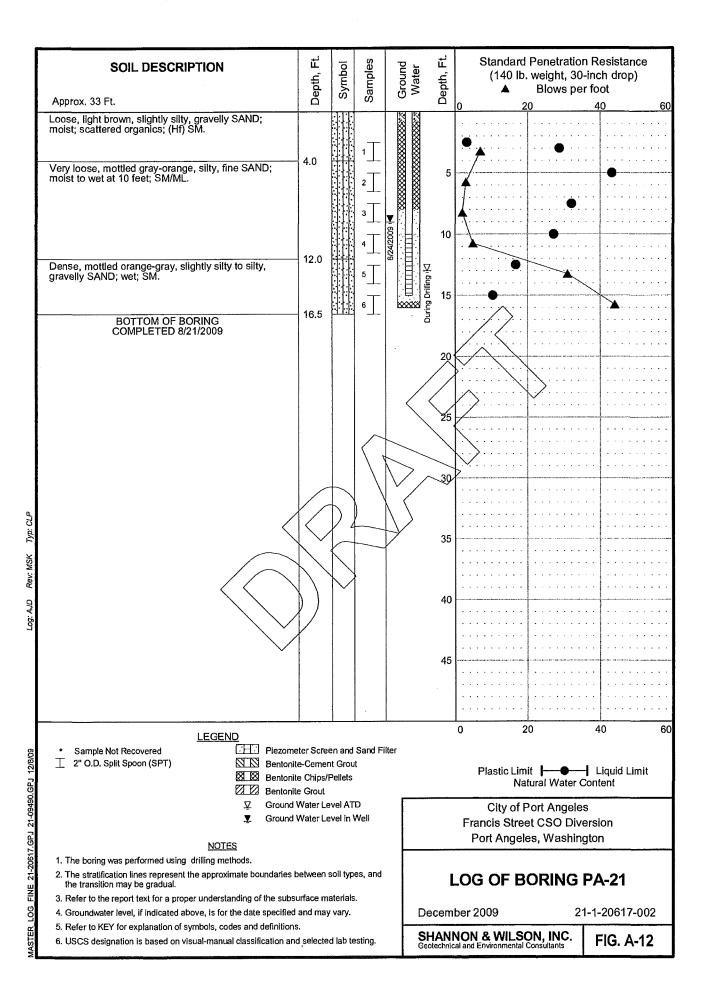

21-1-20617-001

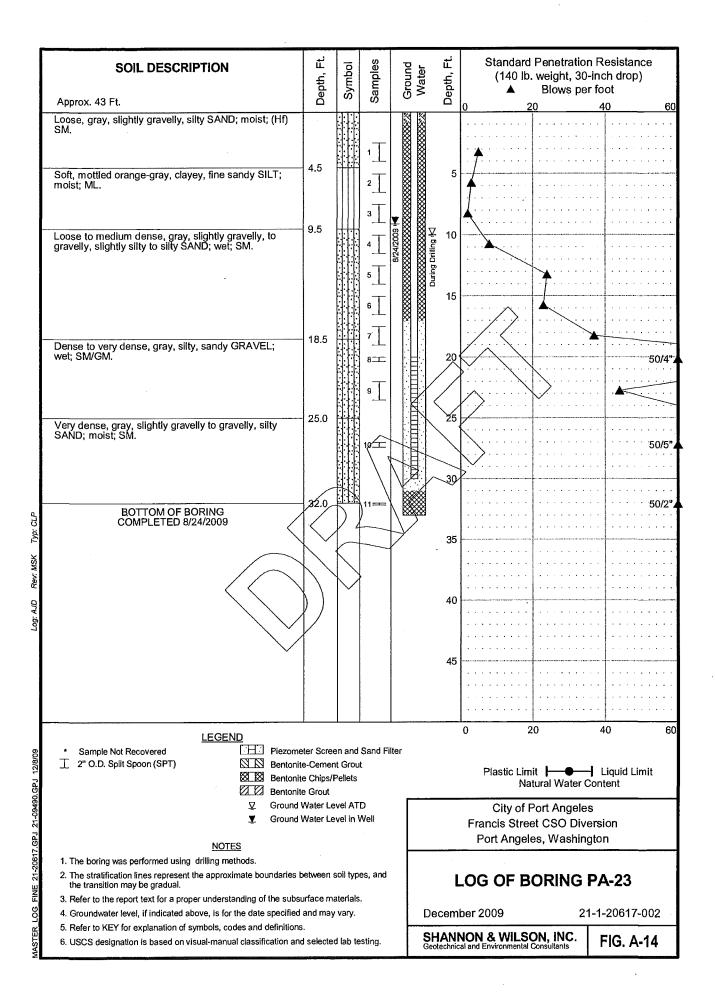

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

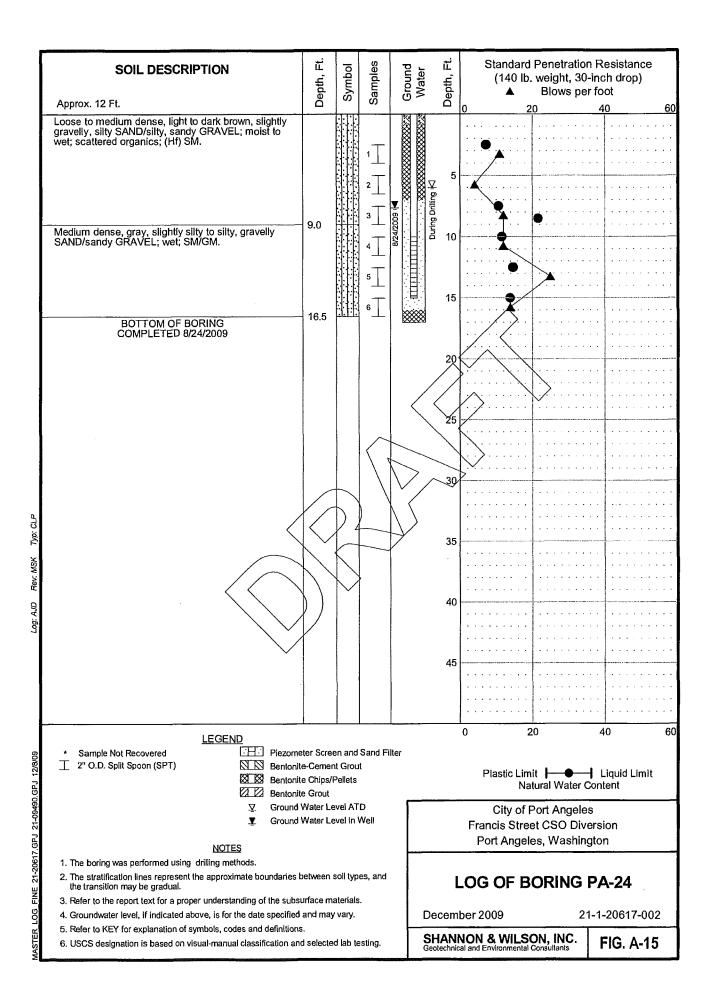

FIG. A-1 Sheet 2 of 2

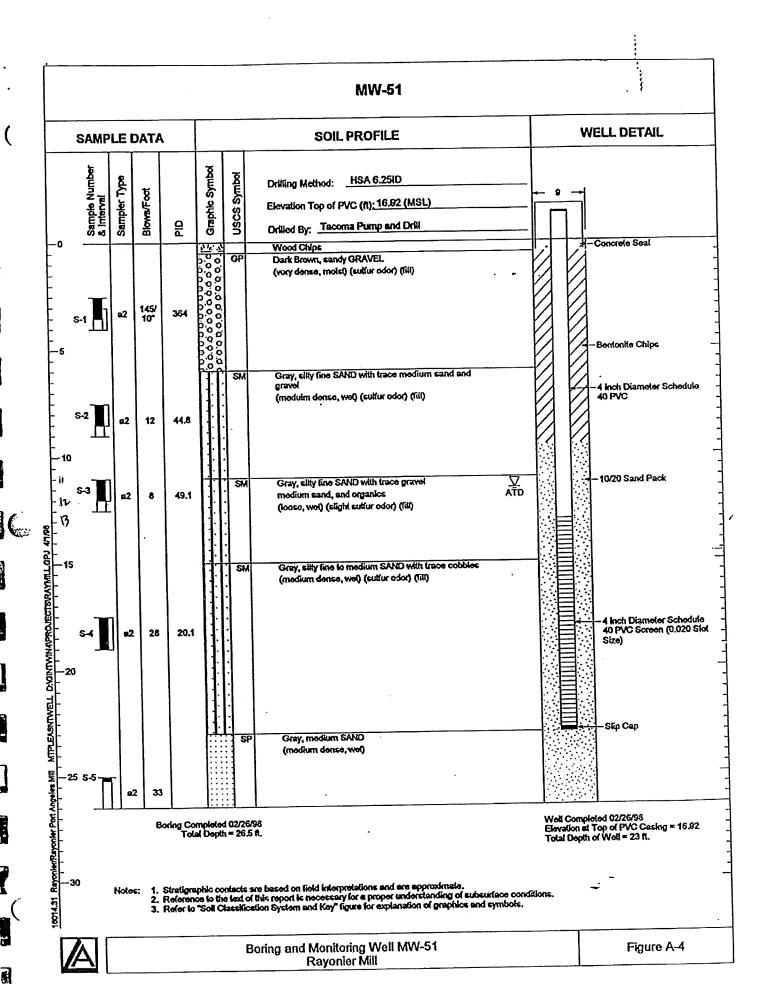

BORING CLASS2 21-20617.GPJ SWNEW.GDT 10/10/06

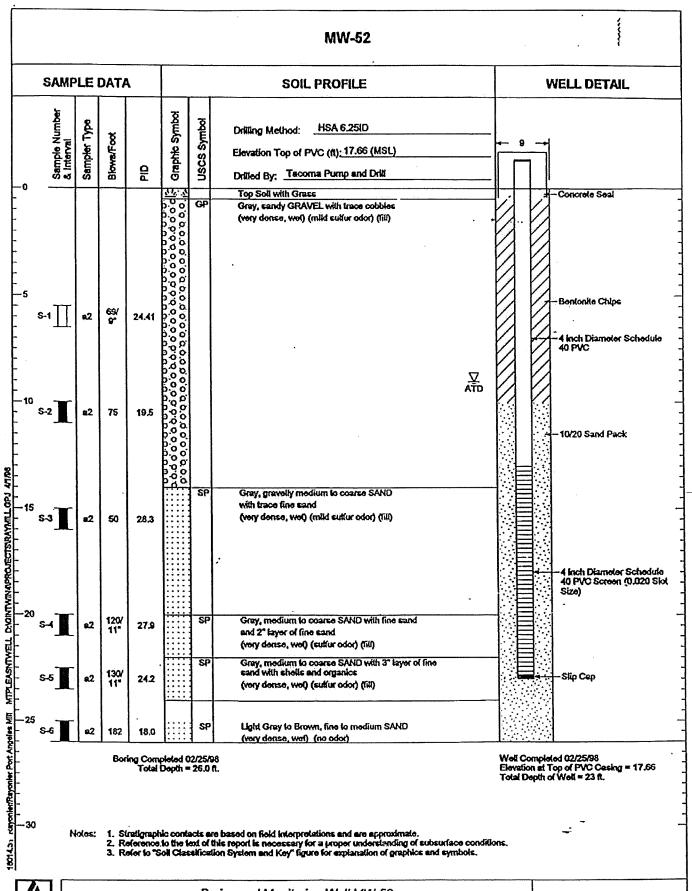


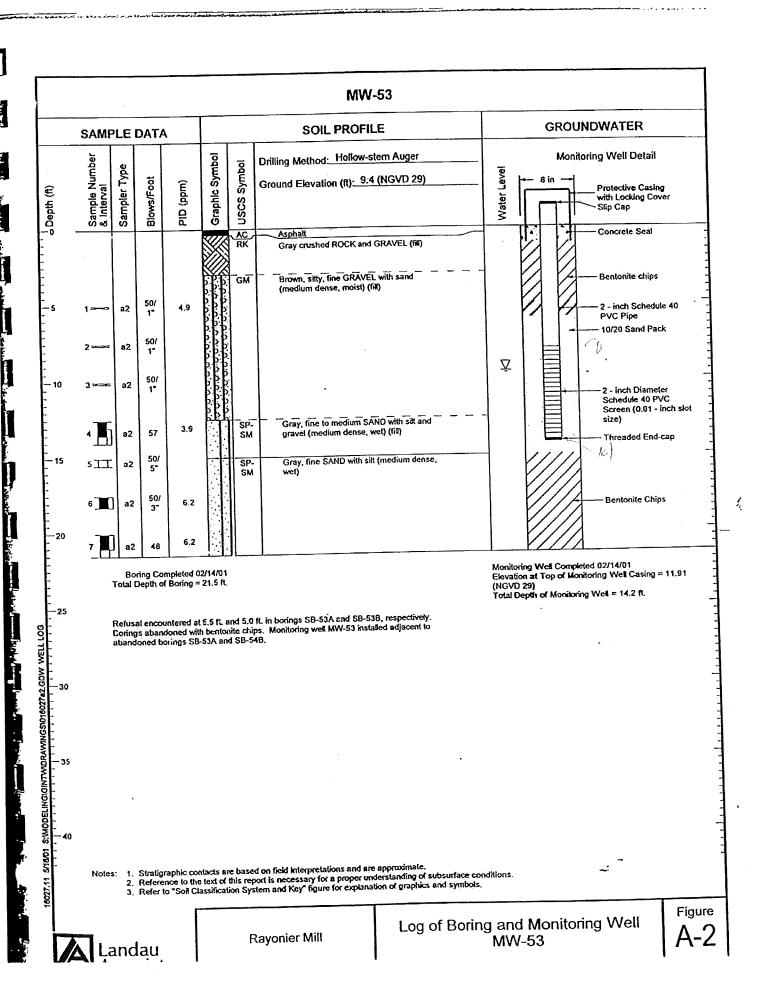


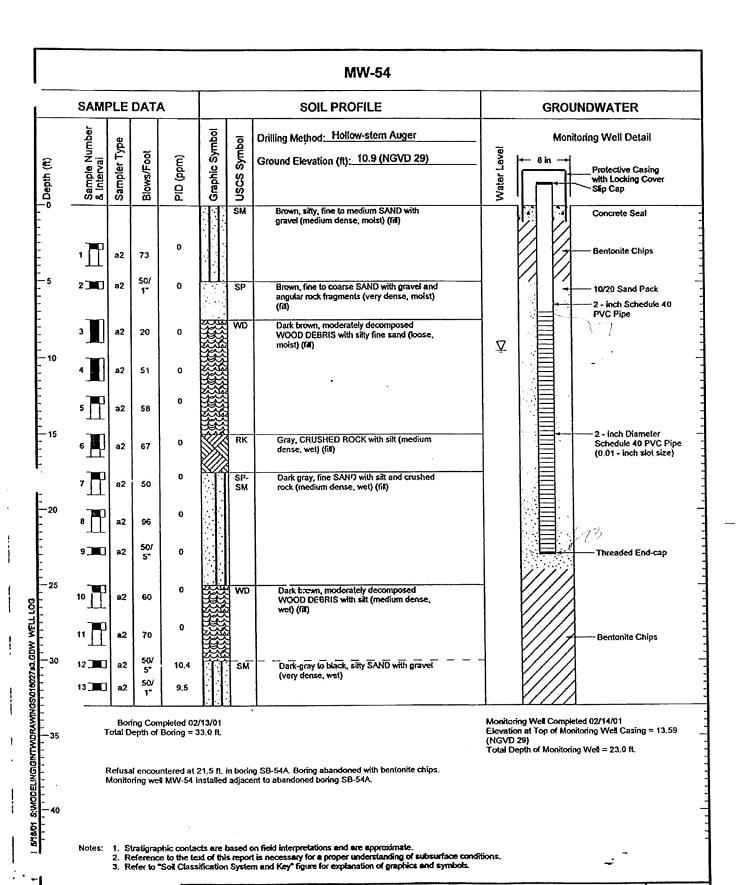








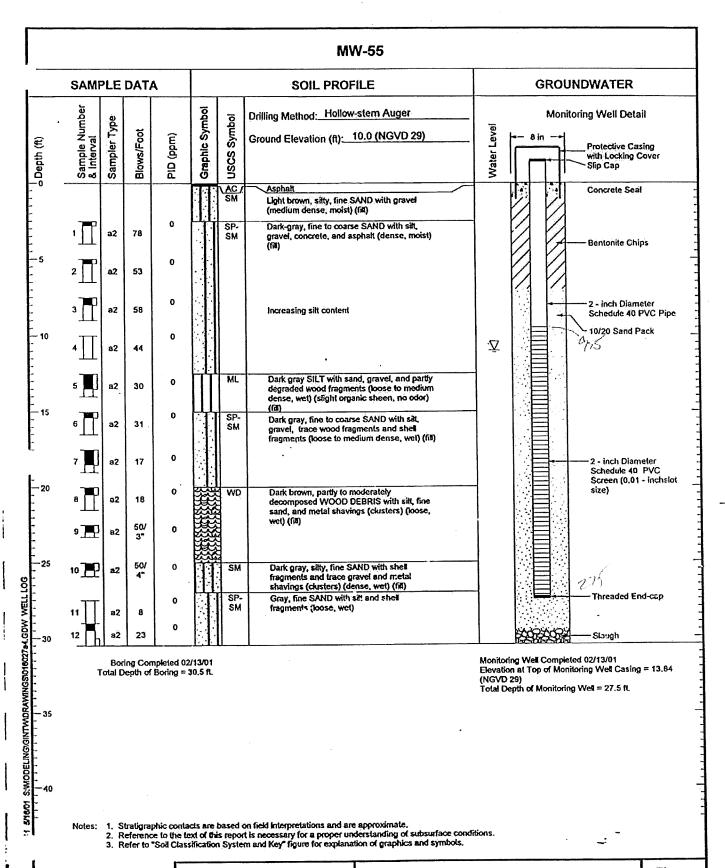




A

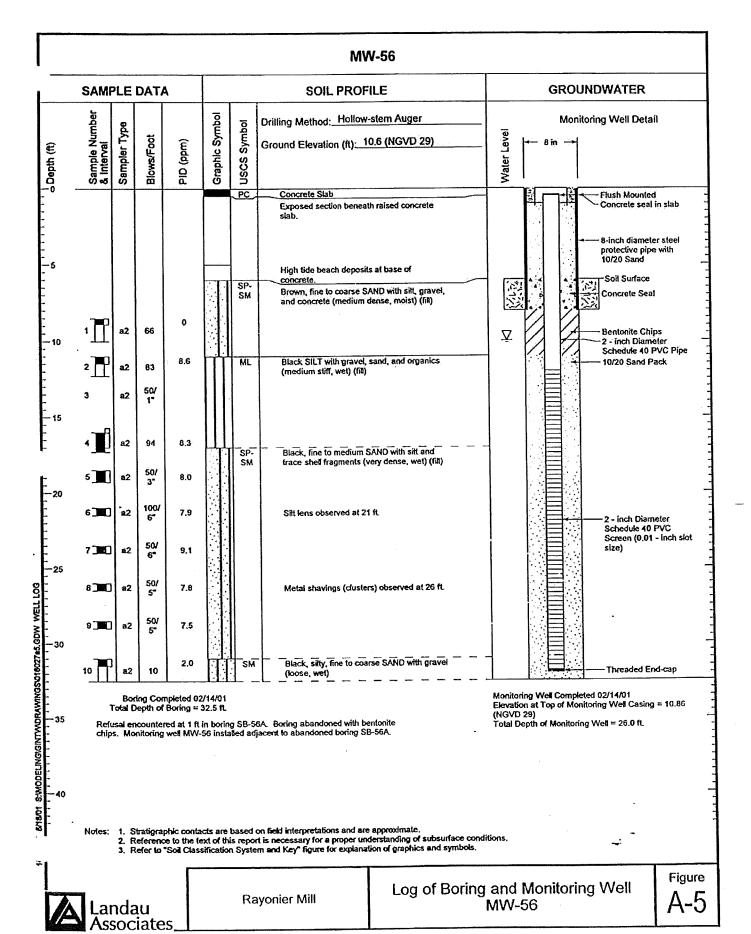
(3,

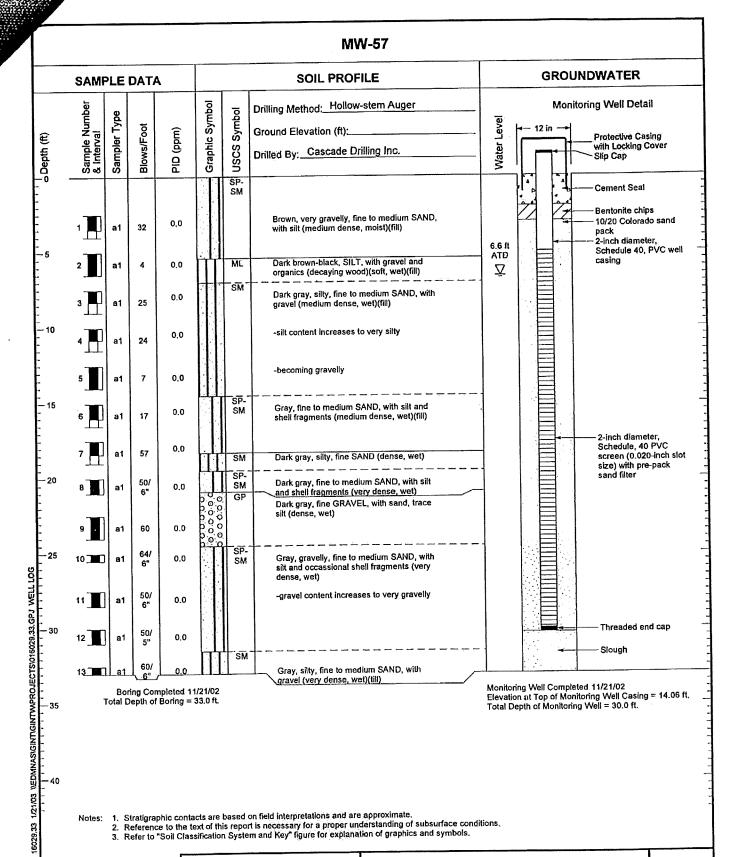
1



Landau Associates

Rayonier Mill

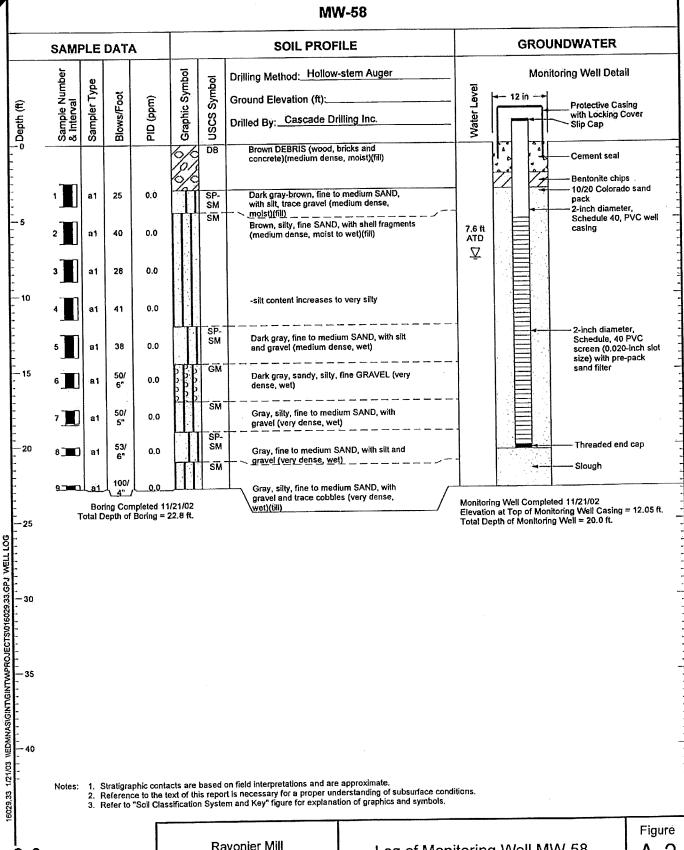

Log of Boring and Monitoring Well MW-54 Figure A-3



Landau Associates

Rayonier Mill

Log of Boring and Monitoring Well MW-55 Figure A-4



LANDAU ASSOCIATES Rayonier Mill Port Angeles, Washington

Log of Monitoring Well MW-57

Figure A-2

LANDAU ASSOCIATES

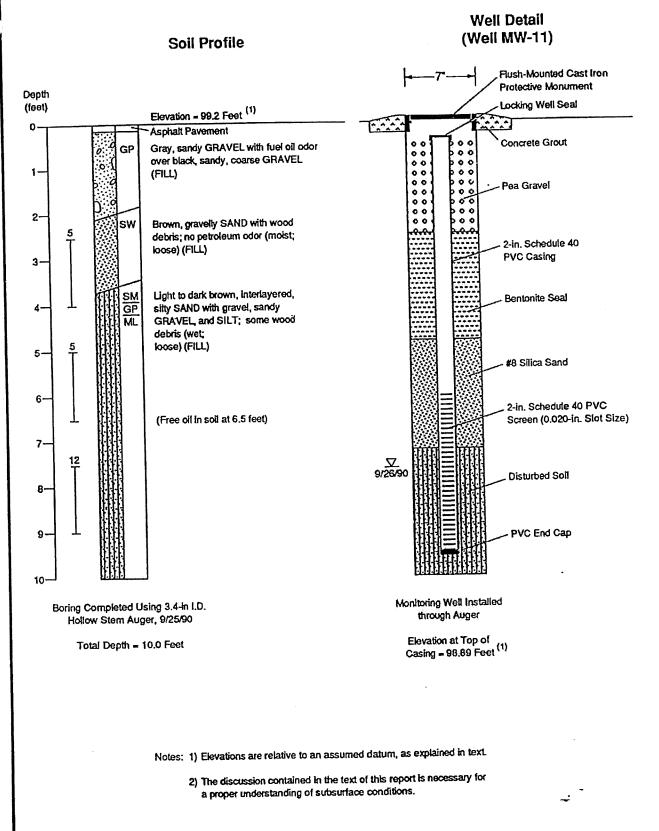
Rayonier Mill Port Angeles, Washington

Log of Monitoring Well MW-58

A-3

Log of Monitoring Well MW-59

A-4


Rayonier Mill

Port Angeles, Washington

LANDAU

ASSOCIATES

Boring B-11

LANDAU ASSOCIATES, INC.

Log of Boring B-11 and Well Detail

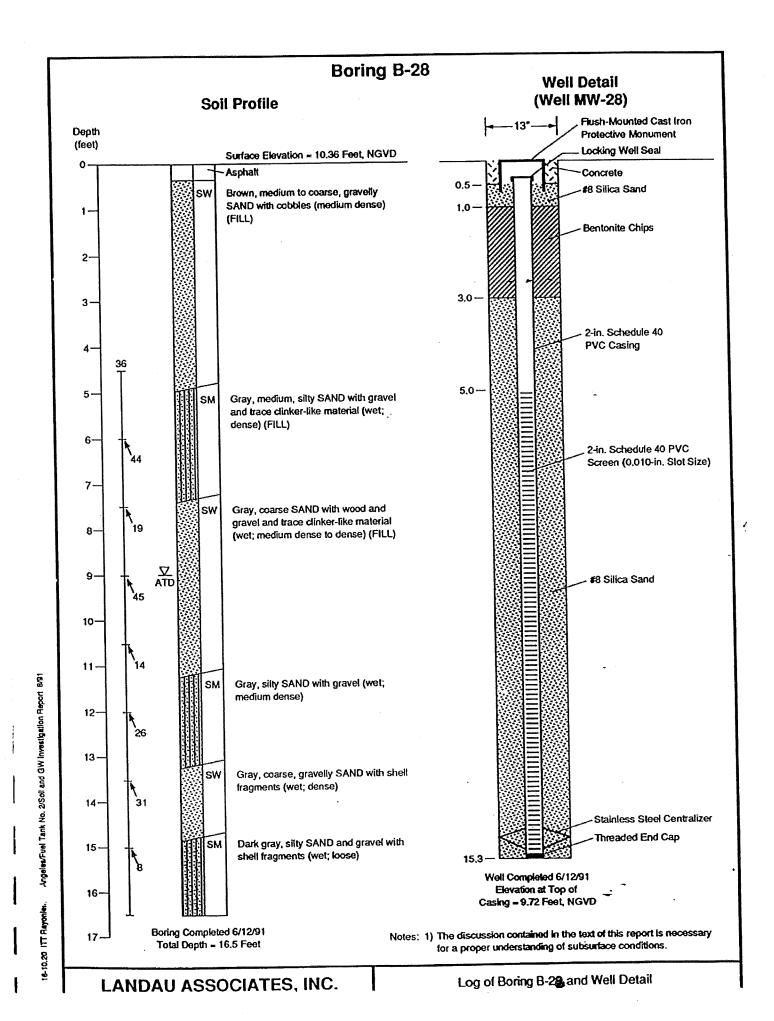
Flush-Mounted Cast Iron

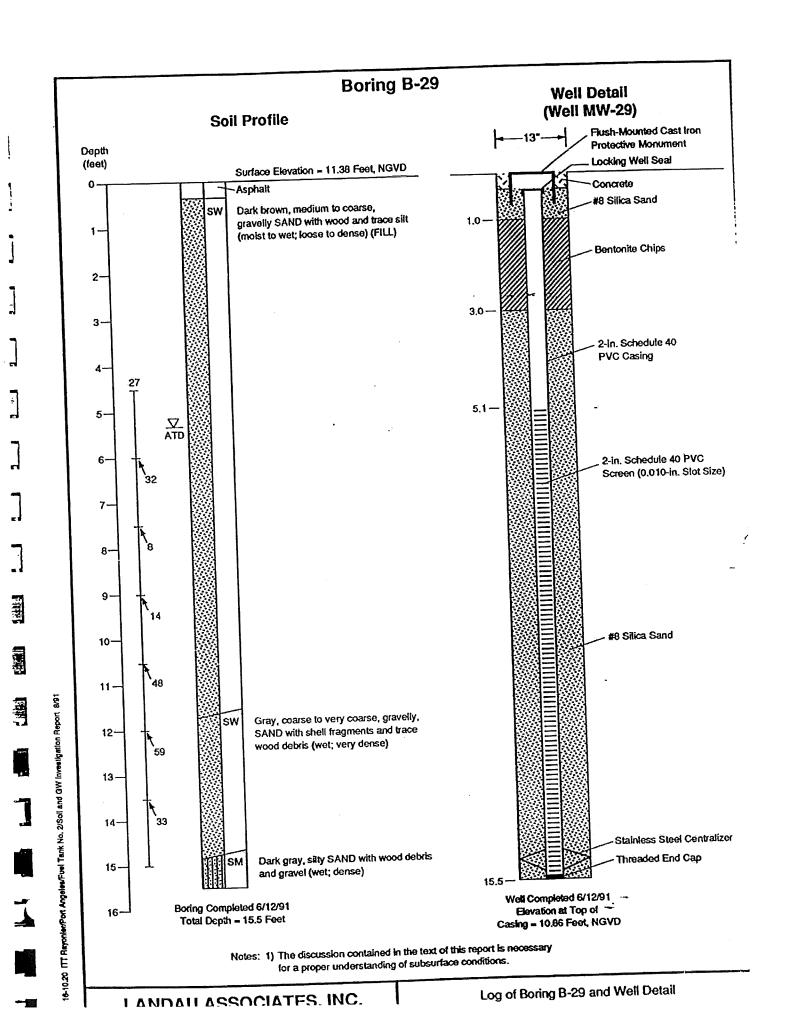
Notes: 1) Elevations are relative to an assumed datum, as explained in text.

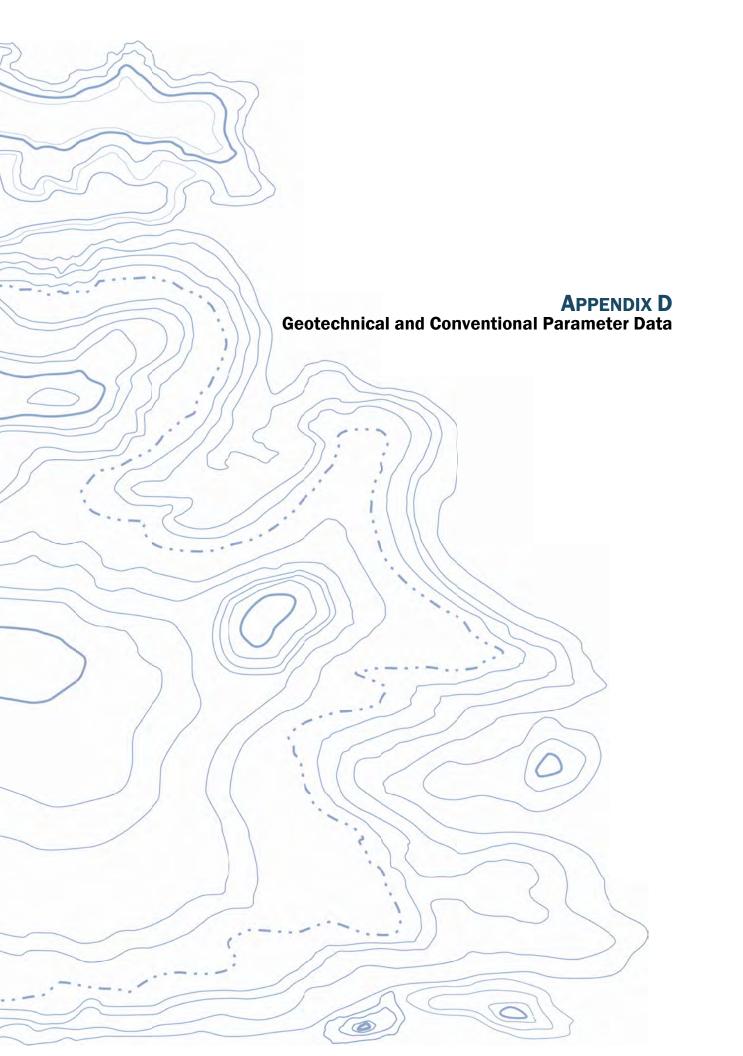
The discussion contained in the text of this report is necessary for a proper understanding of subsurface conditions.

16-10.10 ITT REP.

Boring Completed Using 6.25-in I.D. Hollow Stem Auger, 2/21/91


Total Depth = 16.5 Feet


ANDAH ACCOCIATES INC


Monitoring Well Installed through Auger

Elevation at Top of Casing = 12.53 Feet, NGVD

Notes: 1) The discussion contained in the text of this report is necessary for a proper understanding of subsurface conditions.

Soil Hydraulic Conductivity Results

Port Angeles Rayonier Mill Study Area Port Angeles, Washington

	Hydraulic Conductivity (cm/s)	Hydraulic Conductivity (cm/s)
Sample ID	ASTM D-5084 (Flexible Wall Apparatus)	ASTM D-2434 (Rigid Wall Apparatus)
GWG-1-20.75-21	8.81E-07	
GWG-4-31-31.25	1.55E-07	
MW-60-24-24.25	8.45E-06	
MW-63-27.25-28	2.06E-05	
MW-64-21.25-21.5		2.88E-03
SSB-1-26.25-26.5	2.34E-06	
SSB-3-30.5-30.75		8.64E-03
SSB-4-22-22.25	1.14E-03	
SSB-6-28.5-28.75	3.87E-06	
SSB-7-30.5-30.75		1.43E-02
SSB-8-30.5-30.75	1.43E-05	
SSB-10-26.25-26.5	1.45E-06	

Notes:

--- = Indicates sample not analyzed cm/s = Centimeters per second

Soil Bulk Density and Total Organic Carbon Results

Port Angeles Rayonier Mill Study Area Port Angeles, Washington

	Start Depth	End Depth			Bulk Density (Dry Basis)	Total Organic Carbon
Location	(feet bgs)	(feet bgs)	Sample Date	Sample ID	(lb/ft ³)	(%)
GWG-1	2	3.5	11/4/2010	GWG-1-2-3.5		0.64
GWG-1	5	6.5	11/4/2010	GWG-1-5-6.5		1.07
GWG-1	7.5	9	11/4/2010	GWG-1-7.5-9		1.14
GWG-4	8	9.5	11/2/2010	GWG-4-8-9.5		0.13
GWG-5	2	3.5	11/3/2010	GWG-5-2-3.5		0.85
GWG-5	5	6.5	11/3/2010	GWG-5-5-6.5		1.08
GWG-5A	5	6.5	11/4/2010	GWG-5A-5-6.5		0.60
GWG-5A	10	11.5	11/4/2010	GWG-5A-10-11.5		0.35
GWG-6	2	3.5	11/2/2010	GWG-6-2-3.5		2.17
GWG-6	5	6.5	11/2/2010	GWG-6-5-6.5		0.38
GWG-6	10	11.5	11/2/2010	GWG-6-10-11.5		0.41
GWG-7	2	3.5	11/3/2010	GWG-7-2-3.5		1.50
GWG-7	5	6.5	11/3/2010	GWG-7-5-6.5		1.38
GWG-7	7	8.5	11/3/2010	GWG-7-7-8.5		0.60
GWG-8	2	3.5	10/28/2010	GWG-8-2-3.5		0.91
GWG-8	10	11.5	10/28/2010	GWG-8-10-11.5		0.65
GWG-8	15	16.5	10/28/2010	GWG-8-15-16.5		0.30
MW-62	2	3.5	10/20/2010	MW-62-2-3.5		0.56
MW-62	5	6.5	10/20/2010	MW-62-5-6.5		0.20
MW-62	10	11.5	10/20/2010	MW-62-10-11.5		0.17
SSB-5	2	3.5	10/26/2010	SSB-5-2-3.5		1.24
SSB-5	5	6.5	10/26/2010	SSB-5-5-6.5		1.73
SSB-5	20	21.5	10/26/2010	SSB-5-20-21.5		0.35
SSB-6	5	6.5	10/26/2010	SSB-6-5-6.5		1.62
SSB-6	10	11.5	10/26/2010	SSB-6-10-11.5		0.50
SSB-6	15	16.5	11/1/2010	SSB-6-15-16.5		0.26
SSB-8	2	3.5	10/25/2010	SSB-8-2-3.5		0.69
SSB-8	5	6.5	10/25/2010	SSB-8-5-6.5		0.64
SSB-8	15	16.5	10/25/2010	SSB-8-15-16.5		0.88
SSB-9	2	3.5	10/23/2010	SSB-9-2-3.5		0.52
SSB-9	5	6.5	10/27/2010	SSB-9-5-6.5		0.47
SSB-9	20	21.25	10/27/2010	SSB-9-20-21.5		0.24
SSB-9	20	3.5		SSB-10-2-3.5		1.97
SSB-10	5	6.5	10/28/2010 10/28/2010	SSB-10-5-6.5		1.66
SSB-10	15	16.5	- ' '	SSB-10-3-6.5 SSB-10-15-16.5		0.30
	2	2	10/28/2010 1/4/2011	TP-01-2'		5.23
TP-01	8	8	1/4/2011			
TP-01			1/4/2011	TP-01-8'		3.98
TP-01	10	10		TP-01-10'		0.46
TP-02	2	2	1/4/2011	TP-02-2'		1.66
TP-02	8	8	1/4/2011	TP-02-8'	112.0	4.90
TP-02	9	9	1/4/2011	TP-02-9'	102.8	0.54
TP-05	2	2	1/5/2011	TP-05-2'		0.31
TP-05	6	6	1/5/2011	TP-05-6'		0.77
TP-05	8	8	1/5/2011	TP-05-8'		0.35
TP-07	2	2	1/5/2011	TP-07-2'		0.54
TP-07	6	6	1/5/2011	TP-07-6'	59.9	1.74
TP-07	8	8	1/5/2011	TP-07-8'	120.4	0.35
TP-09	2	2	1/6/2011	TP-09-2'		0.21
TP-09	3	3	1/6/2011	TP-09-3'		1.59

1/2/2013 1 of 2

TP-09	5	5	1/6/2011	TP-09-5'	1	0.37
TP-11	2	2	1/7/2011	TP-11-2'	-	2.65
TP-11	5	5	1/7/2011	TP-11-5'	73.1	2.07
TP-11	7	7	1/7/2011	TP-11-7'	85.0	3.45
TP-15	2	2	1/6/2011	TP-15-2'	-	31.4
TP-15	4	4	1/6/2011	TP-15-4'		5.10
TP-15	5	5	1/6/2011	TP-15-5'		0.63

Notes:

-- = Indicates sample not analyzed

lb/ft³ = Pounds per cubic foot

bgs = Below ground surface

1/2/2013 2 of 2

Soil Sieve Analysis Results - Phase 2 Investigation Port Angeles Rayonier Mill Study Area Port Angeles, Washington

Sample ID	GWG-4-10-11.5	GWG-8-10-11.5	GWG-8-15-16.5	MW-62-2-3.5	MW-62-15-16.5	SSB-5-5-6.5	SSB-5-10-11.5	SSB-5-30-31.5	SSB-6-20-21.5	SSB-6-28-29	SSB-8-2-3.5
Sample Depth (feet bgs)	10-11.5	10-11.5	15-16.5	2-3.5	15-16.5	5-6.5	10-11.5	30-31.5	20-21.5	28-29	2-3.5
Sieve Size										Percent Passing	
3.0 in. (75.0-mm)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1.5 in. (38.1-mm)	77.8	100.0	82.8	100.0	100.0	100.0	83.5	52.1	100.0	100.0	69.3
3/4 in. (19.0-mm)	55.1	85.2	38.8	75.0	85.9	69.8	72.4	33.8	71.5	100.0	47.5
3/8 in. (9.5-mm)	52.4	79.5	17.8	64.8	78.2	49.3	62.7	26.3	60.0	83.3	38.9
No. 4 (4.75-mm)	49.3	76.3	16.0	53.4	69.0	42.8	51.8	22.5	57.8	74.5	34.3
No. 10 (2.00-mm)	42.5	74.1	13.4	42.0	55.5	35.3	40.1	16.6	48.0	65.6	31.7
No. 20 (.850-mm)	36.7	72.3	11.1	33.7	40.3	28.6	32.0	11.5	38.9	57.9	30.0
No. 40 (.425-mm)	30.2	69.3	9.3	26.2	25.1	21.2	25.9	8.0	28.4	50.2	17.3
No. 60 (.250-mm)	22.7	64.4	7.6	18.8	13.9	14.5	19.5	6.0	16.1	40.7	11.7
No. 100 (.150-mm)	18.7	59.1	6.3	13.9	9.1	11.0	12.3	4.8	10.0	32.3	7.3
No. 200 (.075-mm)	16.0	49.4	4.7	9.4	6.5	8.7	6.9	3.6	6.5	24.1	3.7

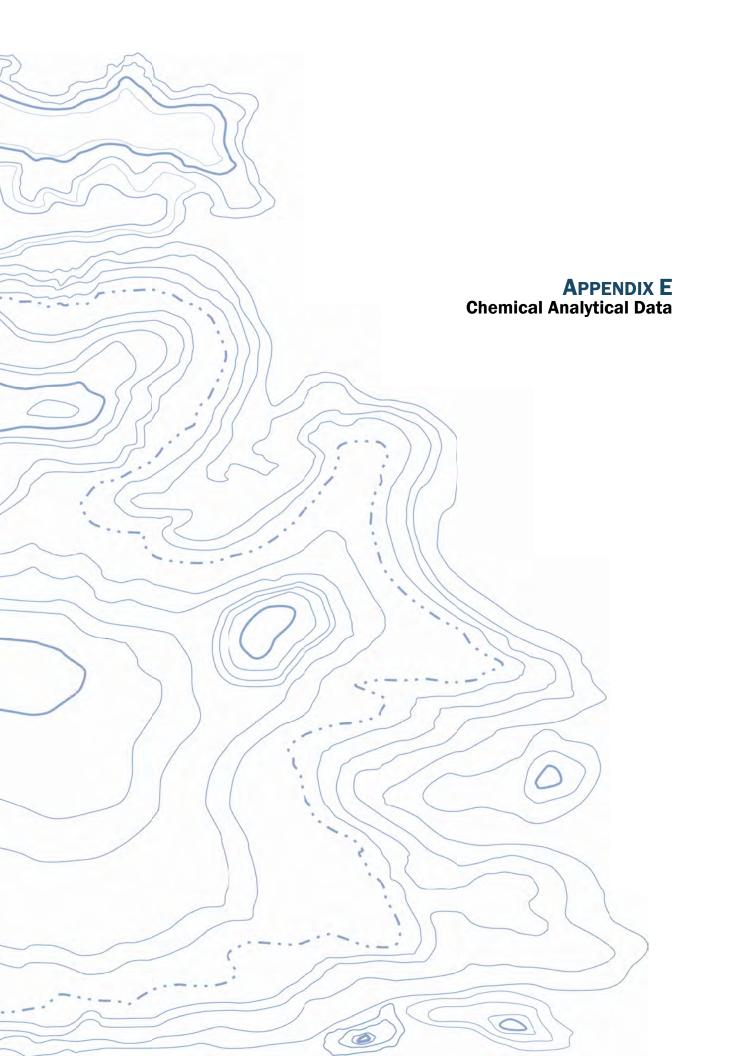
Notes:

mm = Millimeters

SSB-8-10-11.5 10-11.5	SSB-8-30-31 30-31	SSB-9-5-6.5 5-6.5	SSB-9-20-21.5 20-21.5	SSB-9-30-31.5 30-31.5	SSB-10-5-6.5 5-6.5	SSB-10-15-16.5 15-16.5	SSB-10-25-26.5 25-26.5
100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
100.0	100.0	100.0	87.8	77.1	100.0	100.0	100.0
85.7	92.0	100.0	68.5	63.6	100.0	33.7	76.4
82.2	80.8	95.6	49.4	56.3	98.5	30.7	63.6
70.5	72.5	93.8	37.4	47.3	92.8	27.3	48.5
54.5	64.9	92.2	28.2	36.3	87.4	22.5	35.8
41.2	59.1	90.9	22.8	27.4	81.5	17.4	28.1
30.6	52.4	88.7	18.7	20.2	75.7	12.7	22.4
20.5	44.5	84.4	15.2	14.2	70.9	8.5	17.6
12.7	37.2	78.6	12.6	9.9	65.6	6.1	14.5
7.6	28.4	65.9	9.6	6.2	51.5	4.3	11.4

Soil Sieve Analysis Results - Phase 3 Investigation Port Angeles Rayonier Mill Study Area Port Angeles, Washington

					T					I=																T
					Passing	Retained	Retained	Retained	Retained				Retained 75	Retained												
					<1.3 um	1.3 um	3.2 um	7 um	9 um	um	um	um	um	150 um	250 um	425 um	850 um	2000 um	4750 um	9500 um	12500 um	19000 um	25K um	27.5K um	50K um	75K um
	Start Depth	End Depth			%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Location	(feet bgs)	(feet bgs)	Sample Date	Sample ID																						
TP-01	8	8	1/4/2011	TP-01-8'	1.6	0.3	3.2	0.1 U	0.5	0.8	0.1 U	0.3	1.8	3.2	6.9	9.7	16.9	13.0	12.3	4.9	8.8	5.6	10.3	0.1 U	0.1 U	0.1 U
TP-01	10	10	1/4/2011	TP-01-10'	0.8	0.2	1.2	0.2	0.4	1.4	0.6	0.3	3.3	5.6	9.6	8.6	13.7	10.9	9.6	4.6	4.5	3.6	20.9	0.1 U	0.1 U	0.1 U
TP-02	8	8	1/4/2011	TP-02-8'	0.5	0.3	1.3	0.1 U	0.1 U	1.1	0.3	0.8	1.7	4.6	14.6	16.9	19.5	11.0	7.5	3.2	2.0	2.6	2.1	10.1	0.1 U	0.1 U
TP-02	9	9	1/4/2011	TP-02-9'	0.1 U	0.1 U	0.3	0.1 U	0.5	0.3	0.1 U	0.1	1.1	4.0	14.8	22.7	19.3	12.3	8.2	3.3	4.3	0.1 U	4.1	4.8	0.1 U	0.1 U
TP-05	6	6	1/5/2011	TP-05-6'	0.1 U	0.3	1.6	1.0	1.3	1.9	1.6	1.2	7.0	6.8	9.8	14.0	21.5	6.4	4.4	2.6	5.5	11.1	1.9	0.1 U	0.1 U	0.1 U
TP-05	8	8	1/5/2011	TP-05-8'	0.2	0.1 U	0.2	0.4	0.1 U	0.2	0.1 U	0.3	0.7	3.3	14.0	13.8	8.2	4.9	5.5	4.1	10.9	9.2	8.3	5.9	9.9	0.1 U
TP-07	6	6	1/5/2011	TP-07-6'	0.9	0.6	1.8	0.9	0.9	1.5	1.8	3.7	4.0	4.4	6.6	7.8	16.7	9.1	5.8	1.8	4.3	2.7	12.0	12.7	0.1 U	0.1 U
TP-07	8	8	1/5/2011	TP-07-8'	0.1 U	0.1 U	0.4	0.1 U	0.1 U	0.2	0.2	0.3	0.2	1.6	10.5	13.8	18.4	12.4	10.4	4.4	12.3	3.8	11.0	0.1 U	0.1 U	0.1 U
TP-09	3	3	1/6/2011	TP-09-3'	0.7	0.2	0.7	0.7	0.2	1.3	0.2	1.8	2.9	4.7	8.8	8.5	12.9	12.4	11.9	5.1	9.3	2.7	5.7	9.4	0.1 U	0.1 U
TP-09	5	5	1/6/2011	TP-09-5'	0.4	0.1 U	0.3	0.3	0.3	0.1	0.1 U	0.4	0.6	0.9	3.5	10.5	22.0	21.3	17.6	6.0	8.3	3.5	3.8	0.1 U	0.1 U	0.1 U
TP-11	5	5	1/7/2011	TP-11-5'	0.4	0.2	0.7	0.4	0.7	0.7	0.4	0.4	4.4	4.7	7.0	8.9	18.0	11.3	9.1	3.3	9.7	4.0	8.1	7.4	0.1 U	0.1 U
TP-11	7	7	1/7/2011	TP-11-7'	0.8	0.4	1.0	0.8	0.4	0.6	1.0	4.9	2.2	2.5	4.1	5.1	10.0	9.0	9.1	3.9	10.4	10.6	19.5	3.7	0.1 U	0.1 U
TP-15	4	4	1/6/2011	TP-15-4'	1.5	0.7	1.9	0.7	0.7	2.6	1.5	3.5	3.5	4.4	16.2	18.4	18.0	7.5	5.4	2.7	6.2	1.4	3.0	0.1 U	0.1 U	0.1 U
TP-15	5	5	1/6/2011	TP-15-5'	1.3	1.0	1.3	0.7	0.7	2.0	1.3	0.3	1.9	4.3	13.3	22.0	27.0	14.7	4.8	0.7	2.9	0.1 U				


Notes:

um = Micrometers

bgs = Below ground surface

U = Less than the listed value

1/2/2013 1 of 1

Ammonia as (N) in Groundwater Port Angeles Rayonier Mill Uplands Study Area

					Ammonia-N (un-ionized)*
					ize
					ö
					≐
					2
					<u>-</u>
					oni
					Ē
				Parameter	Æ
				Units	(mg/L)
			MTCA-B	GW AS MSW	0.035
Funct. Area	Loc ID	Date	Sample ID	Sample Type	
City Purchase	PA-19	8/26/2010	PA-19_100826	N	1.28e-005 V
City Purchase	PA-19	11/11/2010	PA-19_101111	N	1.4e-005 V
City Purchase	PA-23	11/8/2010	PA-23_101108	N	0.000148 V
City Purchase	PZ-11	2/14/1997	R661D	N	0.000248005
City Purchase	PZ-11	8/28/1997	T609D	N	0.00139294
City Purchase	PZ-11	8/23/2001	DN28A	N	0.000953439
City Purchase	PZ-11	12/11/2002	FB89B	N	0.000768327
City Purchase	PZ-11	8/27/2010	PZ-11_100827	N	0.000492 V
City Purchase	PZ-12	2/28/1997	R796B	N	2.79351E-05
City Purchase	PZ-12	8/28/1997	T609E	N	0.000173553
City Purchase	PZ-12	8/21/2001	DN18H	N	0.000252341
City Purchase	PZ-12	12/11/2002	FB89C	N	0.000232323
City Purchase	PZ-12	8/27/2010	PZ-12_100827	N	0.000118 V
CSO	PA-15	11/9/2010	PA-15_101109	N	4e-005 V
East Former Mill	PA-24	11/9/2010	PA-24_101109	N	0.000478 V
East Former Mill	PA-24	2/10/2011	PA-24 110210	N	7.1955e-005 V
East Former Mill	PA-24	5/18/2011	PA-24-110518	N	0.0001 V
East Former Mill	PZ-10	2/28/1997	R796A	N	0.00107223
East Former Mill	PZ-10	8/27/1997	T609I	N	0.000609559
East Former Mill	PZ-10	8/22/2001	DN25D	N	0.0004077
East Former Mill	PZ-10	12/13/2002	FB89O	N	0.000530219
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N	0.000174 V
East Former Mill	PZ-13	2/14/1997	R661A	N	1.23999E-06
East Former Mill	PZ-13	8/27/1997	T609H	N	3.42064E-05
East Shoreline	MW-59	12/13/2002	FB89T	N	0.0308963
East Shoreline	MW-59	6/19/2003	MW-59-06192003	N	0.03
East Shoreline	MW-59	8/27/2010	MW-59_100827	N	0.00972 V
East Shoreline	MW-59	2/10/2011	MW-59 110210	N	0.034 V
East Shoreline	MW-59	5/18/2011	MW-59-110518	N	0.0264 V
East Shoreline	PZ-9	2/14/1997	R661B	N	0.0302082
East Shoreline	PZ-9	8/27/1997	T609J	N	0.0777973
East Shoreline	PZ-9	8/21/2001	DN18D	N	0.078922
East Shoreline	PZ-9	12/13/2002	FB89N	N	0.0314256
East Shoreline	PZ-9	6/19/2003	PZ-9-06192003	N	0.09
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD	0.0359 V
East Shoreline	PZ-9	8/26/2010	PZ-9_100826	N	0.0348 V
East Shoreline	PZ-9	11/10/2010	PZ-9_101110	N	0.102 V
East Shoreline	PZ-9	2/8/2011	PZ-9_110208	N	0.033 V
East Shoreline	PZ-9	5/20/2011	PZ-09-110520	N	0.0274 V
Ennis Creek	PZ-5	2/13/1997	R652D	N	0.000227724
Ennis Creek	PZ-5	8/28/1997	T609C	N	0.000536623
Ennis Creek	PZ-5	8/21/2001	DN18G	N	0.000157137
Ennis Creek	PZ-5	12/12/2002	FB89F	N	0.000223437
Ennis Creek	PZ-5	6/18/2003	PZ-5-06182003	N	0.001
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827	N	0.000135 V
Ennis Creek	PZ-6	2/13/1997	R652C	N	0.000148272
Ennis Creek	PZ-6	8/28/1997	T609B	N	4.05851E-05
Ennis Creek	PZ-6	8/23/2001	DN28B	N	8.9231E-06
Ennis Creek	PZ-6	12/11/2002	FB89A	N	4.27038E-06
Ennis Creek	PZ-6	6/18/2003	PZ-6-06182003	N	0.0000203
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827	N	2.11e-005 V

Ammonia as (N) in Groundwater Port Angeles Rayonier Mill Uplands Study Area

				Parameter	Ammonia-N (un-ionized)*
			MTOAR	Units	(mg/L)
Funct. Area	Loc ID	Date	Sample ID	Sample Type	0.035
Estuary	FR-1	8/22/2001	DN25B	N	0.000122655
Estuary	MW-62	11/9/2010	MW-62_101109	N	0.015 V
Estuary	MW-62	2/10/2011	MW-62_110210	N	0.29 V
Estuary	MW-62	5/18/2011	MW-62-110518	N	0.0004 V
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N	0.542 V
Main Former Mill Main Former Mill	GWG-2 GWG-3	11/1/2010 11/1/2010	GWG-2-W GWG-3-W	N N	0.005 V 0.055 V
Main Former Mill	GWG-4	11/2/2010	GWG-4-W	N	0.003 V
Main Former Mill	GWG-5	11/3/2010	GWG-5-W	N	0.144 V
Main Former Mill	MW-58	12/13/2002	FB89S	N	0.0152856
Main Former Mill Main Former Mill	MW-58	6/18/2003	MW-58-06192003	N N	0.01 0.0087 V
Main Former Mill	MW-58 MW-58	8/27/2010 2/11/2011	MW-58_100827 MW-58_110211	N N	0.0087 V 0.005 V
Main Former Mill	MW-58	5/19/2011	MW-58-110519	N	0.0044 V
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W	N	0.0005263
Main Former Mill	MW-65	5/18/2011	MW-65-110518	N	0.0007 V
Main Former Mill Main Former Mill	MW-66 MW-66	3/11/2011 5/18/2011	MW-66-110311-W MW-66-110518	N N	0.1133
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23	N N	0.0429 V 0.216 V
Main Former Mill	PZ-4	2/13/1997	R652E	N	0.00464159
Main Former Mill	PZ-4	8/27/1997	T609G	N	0.00650361
Main Former Mill	PZ-4	8/21/2001	DN18F	N	0.00463214
Main Former Mill Main Former Mill	PZ-4 PZ-4	12/12/2002 6/17/2003	FB89E PZ-4-06172003	N N	0.00829465 0.00002
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	N	0.001872 V
North Shoreline	MW-51	8/4/1998	Y129C	N	0.0243346
North Shoreline	MW-51	8/21/2001	DN18C	N	0.0428624
North Shoreline North Shoreline	MW-51	12/12/2002	FB89H MW-51-06182003	N N	0.0769823
North Shoreline	MW-51 MW-51	6/18/2003 8/26/2010	MW-51_100826	N N	0.04 0.0191 V
North Shoreline	MW-51	11/10/2010	MW-51_101110	N	0.223 V
North Shoreline	MW-51	2/11/2011	MW-51_110211	N	0.036 V
North Shoreline	MW-51	5/19/2011	MW-51-110519	N	0.0048 V
North Shoreline North Shoreline	MW-56 MW-56	8/22/2001 12/12/2002	DN25E FB89M	N N	4.46698 7.227
North Shoreline	MW-56	6/19/2003	MW-56-06192003	N	3.3
North Shoreline	MW-56	8/26/2010	MW-56_100826	N	3.02702 V
North Shoreline	MW-56	11/9/2010	MW-56_101109 MW-56_110211	N	2.783 V
North Shoreline North Shoreline	MW-56 MW-56	2/11/2011 5/18/2011	MW-56-110518	N N	2.172 V 2.2517 V
NW Shoreline	MW-28	8/25/2010	MW-28 100825	N	0.63744 V
NW Shoreline	MW-28	11/10/2010	MW-28_101110	N	0.679 V
NW Shoreline	MW-28	2/8/2011	MW-28_110208	N	0.515 V
NW Shoreline NW Shoreline	MW-28 MW-52	5/20/2011 8/4/1998	MW-28-110520 Y129A	N N	0.3732 V 0.00290253
NW Shoreline	MW-52	8/22/2001	DN25G	N	0.00290233
NW Shoreline	MW-52	12/12/2002	FB89I	N	0.000782502
NW Shoreline	MW-52	6/16/2003	MW-52-06162003	N	0.0002
NW Shoreline NW Shoreline	MW-52 MW-53	8/25/2010 8/21/2001	MW-52_100825 DN18A	N N	0.00046 V 0.00334907
NW Shoreline	MW-53	12/12/2002	FB89J	N	0.00334907
NW Shoreline	MW-53	6/16/2003	MW-53-06162003	N	0.0033
NW Shoreline	MW-53	8/26/2010	MW-53_100826	N	0.00394 V
NW Shoreline NW Shoreline	MW-61 MW-61	11/11/2010 2/11/2011	MW-61_101111 MW-61_110211	N N	0.002 V 0.001 V
NW Shoreline	MW-61	5/18/2011	MW-61-110518	N	0.001 V 0.0014 V
NW Shoreline	MW-67	3/11/2011	MW-67-110311-W	N	0.014765
NW Shoreline	MW-67	5/18/2011	MW-67-110518	N	0.0187 V
NW Shoreline NW Shoreline	PZ-1 PZ-2	8/22/2001 2/13/1997	DN25C R652B	FD N	0.00252318 0.727245
51101011116		_, .0, 1001	.10020	· ''	J.12124J

Ammonia as (N) in Groundwater Port Angeles Rayonier Mill Uplands Study Area

1					
				Parameter Units	Ammonia-N (un-ionized)*
			MEGA		(mg/L)
L				GW AS MSW	0.035
Funct. Area	Loc ID	Date	Sample ID	Sample Type	
NW Shoreline	PZ-2	8/27/1997	T609F	N	0.784397
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825	N	0.016368 V
NW Shoreline	PZ-2	11/11/2010	PZ-2_101111	N	0.009 V
NW Shoreline	PZ-2	2/7/2011	PZ-2_110207	N	0.001 V
NW Shoreline	PZ-2	5/17/2011	PZ-02-110517	N	0.0033 V
Prefab	PZ-7	2/14/1997	R661C	N	9.14965E-05
Prefab	PZ-7	8/27/1997	T609K	N	0.00060616
Prefab	PZ-7	12/12/2002	FB89G	N	0.000376374
Prefab	PZ-7	8/27/2010	PZ-7_100827	N	2.1e-005 V
West Former Mill	MW-19	8/22/2001	DN25I	N	0.0173187
West Former Mill	MW-20	9/2/1997	T609N	N	0.0882543
West Former Mill	MW-23	10/15/1997	U167A	N	0.037788
West Former Mill	MW-23	8/21/2001	DN18E	N	0.0983464
West Former Mill	MW-23	12/13/2002	FB89Q	N	0.0116271
West Former Mill	MW-23	6/16/2003	MW-23-06162003	N	0.07
West Former Mill	MW-23	8/25/2010	MW-23 100825	N	0.023133 V
West Former Mill	MW-23	11/10/2010	MW-23_101110	N	0.01 V
West Former Mill	MW-23	2/9/2011	MW-23_110209	N	0.004 V
West Former Mill	MW-23	5/19/2011	MW-23-110519	N	0.006 V
West Former Mill	MW-29	9/2/1997	T609O	N	1.19055
West Former Mill	MW-29	6/17/2003	MW-29-06172003	N	0.9
West Former Mill	MW-29	8/25/2010	MW-29_100825	N	0.527544 V
West Former Mill	MW-29	11/11/2010	MW-29 101111	N	0.542 V
West Former Mill	MW-29	2/8/2011	MW-29 110208	N	0.449 V
West Former Mill	MW-29	5/20/2011	MW-29-110520	N	0.2867 V
West Former Mill	MW-54	8/22/2001	DN25H	N	0.000635866
West Former Mill	MW-54	12/12/2002	FB89K	N	0.000572403
West Former Mill	MW-54	6/17/2003	MW-54-06172003	N	0.0008
West Former Mill	MW-54	8/26/2010	MW-54_100826	N	0.000629 V
West Former Mill	MW-55	8/22/2001	DN25F	N	0.00136157
West Former Mill	MW-55	12/12/2002	FB89L	N	0.000961013
West Former Mill	MW-55	6/18/2003	MW-55-06182003	N	0.0007
West Former Mill	MW-55	8/26/2010	MW-55_100826	N	0.001728 V
West Former Mill	MW-57	12/13/2002	FB89R	N	0.235707
West Former Mill	MW-57	6/17/2003	MW-57-06172003	N	4.64
West Former Mill	MW-57	8/26/2010	MW-57_100826	N	0.0364 V
West Former Mill	MW-57	11/8/2010	MW-57_101108	N	0.077 V
West Former Mill	MW-57	2/11/2011	MW-57_110211	N	0.076 V
West Former Mill	MW-57	5/20/2011	MW-57-110520	N	0.05 V
West Former Mill	MW-60	11/11/2010	MW-60_101111	N	0.002 V
West Former Mill	PZ-3	2/14/1997	R661E	N	0.028161
West Former Mill	PZ-3	8/28/1997	T609A	N	0.00648347
West Former Mill	PZ-3	8/21/2001	DN18B	N	0.0342668
West Former Mill	PZ-3	12/12/2002	FB89D	N	0.0771656
West Former Mill	PZ-3	6/17/2003	PZ-3-06172003	N	0.11
West Former Mill	PZ-3	8/26/2010	PZ-3_100826	N	0.0302 V
West Former Mill	PZ-3	11/9/2010	PZ-3_101109	N	0.238 V
West Former Mill	PZ-3	2/10/2011	PZ-3_110210	N	0.049 V
West Former Mill	PZ-3	5/19/2011	PZ-03-110519	N	0.0289 V

												*(s
												Total PCBs (sum of Aroclors)*
												Arc
												n of
												uns]
					9	-	2	7	80	4	0	Bs (
					B-1016	122	123	124	124	125	126	PC
				Parameter	PCB	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	ota
				Units	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
				GW AS MSW	NL	ŇL	ŇL	NL /	ŇL	ŇL	NL	0.01
Funct. Area City Purchase	Loc ID GWG-8	Date 10/28/2010	Sample ID GWG-8-W	Sample Type N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
City Purchase	PA-19	8/21/2009	PA-19_090821	N								0.65 UV
City Purchase	PA-19	8/26/2010	PA-19_100826	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
City Purchase	PA-19	11/11/2010	PA-19_101111	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
City Purchase	PA-19	2/9/2011	PA-19_110209	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.017	0.01 U	0.017 V
City Purchase City Purchase	PA-19 PA-19	5/18/2011	PA-19_110209D PA-19-110518	FD N	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 UV 0.01 UV
City Purchase	PZ-11	2/14/1997	97-2103-R661D	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
City Purchase	PZ-11	8/28/1997	97-15170-T609D	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
City Purchase	PZ-11	6/19/2003	K2304594-002	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
City Purchase City Purchase	PZ-11 PZ-11	8/27/2010 2/8/2011	PZ-11_100827 PZ-11_110208	N N	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 UV 0.01 UV
City Purchase	PZ-12	2/28/1997	97-2822-R796B	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
City Purchase	PZ-12	8/28/1997	97-15171-T609E	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
City Purchase	PZ-12	6/19/2003	K2304594-003	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
City Purchase	PZ-12	8/27/2010	PZ-12_100827	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
CSO	GWG-6	11/2/2010	GWG-6-W	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
CSO	MW-70	5/18/2011	MW-70-110518	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
CSO	MW-70	5/18/2011	MW-70-110518D	FD	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
CSO	PA-15	11/9/2010	PA-15_101109	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Former Mill	GWG-7	11/3/2010	GWG-7-W	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Former Mill	PA-24	11/9/2010	PA-24_101109	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Former Mill	PA-24	2/10/2011	PA-24_110210	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Former Mill East Former Mill	PZ-10 PZ-10	2/28/1997 8/27/1997	97-2821-R796A 97-15175-T609I	N N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV 2 UV
East Former Mill	PZ-10	6/19/2003	K2304594-001	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Former Mill	PZ-13	2/14/1997	97-2100-R661A	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	N	0.11 UJ	0.22 UJ	0.11 UJ	0.11 UJ	0.11 UJ	0.11 UJ	0.13	0.13 V
East Shoreline	MW-59	6/19/2003	K2304594-006	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.045	0.045 V
East Shoreline	MW-59	8/27/2010	MW-59_100827	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Shoreline East Shoreline	MW-59 MW-59	11/10/2010 2/10/2011	MW-59_101110 MW-59_110210	N N	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 UV 0.01 UV
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
East Shoreline	PZ-9	8/27/1997	97-15176-T609J	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
East Shoreline	PZ-9	8/21/2001	PZ-9_010821	N								0.2 UV
East Shoreline East Shoreline	PZ-9 PZ-9	12/13/2002 6/19/2003	02-18586-FB89N K2304594-005	N FD	0.12 U 0.005 U	0.23 U 0.01 U	0.12 U 0.005 U	0.12 U 0.005 U	0.12 U 0.005 U	0.12 U 0.005 U	0.12 U 0.005 U	0.23 UV 0.01 UV
East Shoreline	PZ-9	6/19/2003	K2304594-007	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
East Shoreline	PZ-9	8/26/2010	PZ-9_100826	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
Ennis Creek	PZ-5	8/28/1997	97-15169-T609C	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
Ennis Creek	PZ-5	6/18/2003	K2304556-001	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
Ennis Creek Ennis Creek	PZ-6 PZ-6	2/13/1997 8/28/1997	97-1958-R652C 97-15168-T609B	N N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV 2 UV
Ennis Creek	PZ-6	6/18/2003	K2304556-005	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
Fatura	MM/ 00	44/0/2245	MM/ 60 40440-		0.0111	0.0111	0.0111	0.64.11	0.0111	0.0111	0.0111	0.04 1.0.
Estuary Estuary	MW-62 MW-62	11/9/2010 2/10/2011	MW-62_101109 MW-62_110210	N N	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 UV 0.01 UV
_ Studi y	IVIVV*UZ	2/10/2011	.vivv-02_110210	ıN.	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.0107
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N	0.01 UJ	0.01 UJ	0.01 UJ	0.01 UJ	0.01 UJ	0.026 J	0.01 UJ	0.026 JV
Main Former Mill	GWG-2	11/1/2010	GWG-2-W	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
Main Former Mill Main Former Mill	GWG-3 GWG-4	11/1/2010	GWG-3-W GWG-4-W	N N	0.01 UJ 0.01 U	0.01 UJ 0.01 U	0.01 UJ 0.01 U	0.01 UJ 0.01 U	0.01 UJ 0.01 U	0.01 UJ 0.03 U	0.01 UJ 0.071	0.01 UJV 0.071 V
Main Former Mill	GWG-4	11/3/2010	GWG-5-W	N N	0.01 U	0.01 U	0.01 U	0.010	0.01 U	0.053	0.069	0.071 V
Main Former Mill	MW-58	6/18/2003	K2304556-002	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
Main Former Mill	MW-58	8/27/2010	MW-58_100827	N	0.01 U	0.01 U	0.01 U	0.01 U	0.015 U	0.021	0.014	0.035 V
Main Former Mill Main Former Mill	MW-58 MW-58	11/11/2010 2/11/2011	MW-58_101111 MW-58_110211	N N	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.014	0.01 U 0.014	0.01 UV 0.028 V
Main Former Mill	MW-58	5/19/2011	MW-58-110519	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.014 0.01 U	0.014 0.01 U	0.028 V
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
Main Former Mill	MW-65	5/18/2011	MW-65-110518	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
Main Former Mill Main Former Mill	MW-66 MW-66	3/11/2011 5/18/2011	MW-66-110311-W MW-66-110518	N N	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.013 0.01 U	0.026 0.01 U	0.039 V 0.01 UV
Main Former Mill	MW-69	5/18/2011	MW-69-110518	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UV
												0.01 UV
Main Former Mill	PA-17	2/11/2011	PA-17_110211	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	
	PA-17 PIPE-1-SR23 PZ-4	2/11/2011 1/7/2011 2/13/1997	PA-17_110211 PIPE-1-SR23 97-1960-R652E	N N	0.01 U 0.01 U	0.01 U 0.01 U 2 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 1 U	0.01 U	0.01 U 0.12	0.57 V 2 UV

						ı	ı			ı		
												Total PCBs (sum of Aroclors)*
												l ock
												of Ar
												Ě
												s (si
					B-1016	221	232	242	248	B-1254	260	82
					7	PCB-122	PCB-1232	PCB-1242	PCB-1248	<u>~</u>	PCB-1260	i i
				Parameter Units	να(I)					2		(ug/L)
			MTCA-E	GW AS MSW	(ug/L) NL	0.01						
Funct. Area	Loc ID	Date	Sample ID	Sample Type	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
Main Former Mill Main Former Mill	PZ-4 PZ-4	8/27/1997 12/12/2002	97-15173-T609G 02-18577-FB89E	N N	0.14 U	0.28 U	0.14 U	0.28 UV				
Main Former Mill	PZ-4	6/17/2003	K2304497-004	N	0.0024 U	0.0024 UV						
Main Former Mill	PZ-4 P7-4	8/25/2010	PZ-4_100825	N N	0.01 U	0.01 UV						
Main Former Mill Main Former Mill	PZ-4 PZ-4	2/8/2011 5/17/2011	PZ-4_110208 PZ-04-110517	N N	0.01 U 0.01 U	0.01 UV 0.01 UV						
North Shoreline	MW-51 MW-51	8/4/1998	98-15871-Y129C 02-18580-FB89H	N N	10	2 U	10	1 U	1 U	1 U	1 U	2 UV 0.21 UV
North Shoreline North Shoreline	MW-51	12/12/2002 6/18/2003	K2304556-003	N N	0.1 U 0.005 U	0.21 U 0.01 U	0.1 U 0.005 U	0.1 U 0.005 U	0.1 U 0.005 U	0.1 U 0.005 U	0.1 U 0.0035 J	0.0035 JV
North Shoreline	MW-51	8/26/2010	MW-51_100826	N	0.01 U	0.01 UV						
North Shoreline	MW-51	2/11/2011	MW-51_110211	N	0.01 UJ	0.01 UJV						
North Shoreline North Shoreline	MW-56 MW-56	2/22/2001 2/22/2001	01-2365-CU22C 01-2764-CU22C	N N	1 U 0.1 U	2 U 0.2 U	1 U 0.1 U	1 U 0.1 U	1 U 1.8	1 U 0.1 U	1 U 0.1 U	2 UV 1.8 V
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	N	0.1 U	0.21 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.21 UV
North Shoreline North Shoreline	MW-56 MW-56	6/19/2003	K2304594-008	N N	0.05 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U 0.01 U	0.05 U	0.1 UV
North Shoreline North Shoreline	MW-56	8/26/2010 11/9/2010	MW-56_100826 MW-56_101109	N N	0.01 U 0.01 U	0.01 U 0.01 U	0.025 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U	0.01 U 0.01 U	0.025 UIV 0.01 UV
North Shoreline	MW-56	2/11/2011	MW-56_110211	N	0.01 UJ	0.01 UJV						
NW Shoreline	MW-28	8/25/2010	MW-28_100825	N	0.01 U	0.01 UV						
NW Shoreline	MW-28	11/10/2010	MW-28_100825 MW-28_101110	N N	0.01 U	0.01 UV						
NW Shoreline	MW-28	2/8/2011	MW-28_110208	N	0.01 U	0.011	0.01 U	0.011 V				
NW Shoreline	MW-28	5/20/2011	MW-28-110520	N	0.01 U	0.01 UV						
NW Shoreline NW Shoreline	MW-52 MW-52	8/4/1998 6/16/2003	98-15869-Y129A K2304466-002	N N	1 U 0.005 U	2 U 0.01 U	1 U 0.005 U	1 U 0.005 U	1 U 0.005 U	1 U 0.005 U	1 U 0.005 U	2 UV 0.01 UV
NW Shoreline	MW-52	8/25/2010	MW-52_100825	N	0.01 U	0.01 UV						
NW Shoreline	MW-53	2/21/2001	01-2275-CU06A	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
NW Shoreline NW Shoreline	MW-53 MW-53	2/21/2001 6/16/2003	01-2761-CU06A K2304466-003	N N	0.1 U 0.005 U	0.2 U 0.01 U	0.1 U 0.005 U	0.1 U 0.005 U	0.1 U 0.005 U	0.1 U 0.005 U	0.1 U 0.0042 J	0.2 UV 0.0042 JV
NW Shoreline	MW-53	8/26/2010	MW-53_100826	N	0.01 U	0.01 UV						
NW Shoreline	MW-53	2/11/2011	MW-53_110211	N	0.01 U	0.01 UV						
NW Shoreline NW Shoreline	MW-61 MW-61	11/11/2010 2/11/2011	MW-61_101111 MW-61_110211	N N	0.01 U 0.01 U	0.01 UV 0.01 UV						
NW Shoreline	MW-67	5/18/2011	MW-67-110518	N	0.01 U	0.01 UV						
NW Shoreline	PZ-2	2/13/1997	97-1957-R652B	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
NW Shoreline NW Shoreline	PZ-2 PZ-2	8/27/1997 8/25/2010	97-15172-T609F PZ-2_100825	N N	1 U 0.01 U	2 U 0.01 U	1 U 0.01 U	1 U 0.01 U	1 U 0.01 U	1 U 0.012	1 U 0.01 U	2 UV 0.012 V
NW Shoreline	PZ-2	11/11/2010	PZ-2_101111	N	0.01 U	0.01 UV						
NW Shoreline NW Shoreline	PZ-2 PZ-2	2/7/2011 5/17/2011	PZ-2_110207 PZ-02-110517	N N	0.01 U 0.01 U	0.01 UV 0.01 UV						
NVV Shoreline	PZ-Z	5/17/2011	PZ-02-110517	IN	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.01 00
Prefab	PZ-7	2/14/1997	97-2102-R661C	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
Prefab Prefab	PZ-7 PZ-7	8/27/1997 12/12/2002	97-15177-T609K 02-18579-FB89G	N N	1 U 0.12 U	2 U 0.23 U	1 U 0.12 U	2 UV 0.23 UV				
Prefab	PZ-7	8/27/2010	PZ-7_100827	N N	0.12 U	0.23 U	0.12 U	0.23 UV				
West Former Mill West Former Mill	MW-20 MW-23	9/2/1997 10/15/1997	97-15361-T609N 97-19428-U167A	N N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV 2 UV
West Former Mill	MW-23	6/16/2003	K2304466-001	N	0.05 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UV
West Former Mill	MW-23	8/25/2010	MW-23_100825	N	0.01 U	0.025 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.025 UIV
West Former Mill West Former Mill	MW-23 MW-23	11/10/2010 2/9/2011	MW-23_101110 MW-23_110209	N N	0.01 U 0.01 U	0.01 UV 0.01 UV						
West Former Mill	MW-29	9/2/1997	97-15362-T609O	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
West Former Mill	MW-29	6/17/2003	K2304497-006	N	0.0024 U	0.0024 UV						
West Former Mill West Former Mill	MW-29 MW-29	8/25/2010 11/11/2010	MW-29_100825 MW-29_101111	N N	0.01 U 0.01 U	0.01 UV 0.01 UV						
West Former Mill	MW-29	2/8/2011	MW-29_110208	N	0.01 U	0.01 UV						
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	N	10	2 U	1 U	10	10	1 U	10	2 UV
West Former Mill West Former Mill	MW-54 MW-54	2/21/2001 6/17/2003	01-2762-CU06B K2304497-001	N N	0.1 U 0.0024 U	0.2 U 0.0024 U	0.1 U 0.0024 U	0.2 UV 0.0024 UV				
West Former Mill	MW-54	8/26/2010	MW-54_100826	N	0.01 U	0.01 UV						
West Former Mill	MW-54	2/10/2011	MW-54_110210	N	0.01 U	0.01 UV						
West Former Mill West Former Mill	MW-55 MW-55	2/21/2001 2/21/2001	01-2277-CU06C 01-2763-CU06C	N N	1 U 0.1 U	2 U 0.2 U	1 U 0.1 U	2 UV 0.2 UV				
West Former Mill	MW-55	6/18/2003	K2304556-004	N	0.005 U	0.01 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.01 UV
West Former Mill	MW-55	8/26/2010	MW-55_100826	N	0.01 U	0.01 UV						
West Former Mill West Former Mill	MW-55 MW-57	2/10/2011 12/13/2002	MW-55_110210 02-18590-FB89R	N N	0.01 U 0.11 U	0.01 U 0.23 U	0.01 U 0.11 U	0.01 UV 0.23 UV				
West Former Mill	MW-57	6/17/2003	K2304497-007	N	0.0024 U	0.0024 UV						
West Former Mill	MW-57	8/26/2010	MW-57_100826 MW-60_101111	N	0.01 UJ	0.01 UJV						
West Former Mill West Former Mill	MW-60 MW-60	11/11/2010 2/9/2011	MW-60_101111 MW-60_110209	N N	0.01 U 0.01 U	0.01 UV 0.01 UV						
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	N	1 U	2 U	1 U	1 U	1 U	1 U	1 U	2 UV
West Former Mill West Former Mill	PZ-3 PZ-3	6/17/2003 8/26/2010	K2304497-002 PZ-3_100826	N N	0.0024 U 0.01 U	0.0024 UV 0.01 UV						
West Former Mill	PZ-3	2/10/2011	PZ-3_110210	N	0.01 U	0.01 UV						
						•	•			•		

Parameter Units	0.018 J 0.00705 UV J 0.00714 V J 0.00705 UV J 0.00705 UV J 0.00705 UV O.755 UV O.755 UV O.755 UV O.755 UV
Units Unit	Ug/L) 0.018 J 0.00705 UV J 0.00714 V J 0.00705 UV J 0.00705 UV J 0.00705 UV O.755 UV O.755 UV O.755 UV O.755 UV
MTCA-B GW AS MSW NL NL NL NL NL NL NL N	0.018 J 0.00705 UV J 0.00714 V J 0.00705 UV J 0.00705 UV J 0.00705 UV O.755 UV O.755 UV O.755 UV O.755 UV
City Purchase PA-19 8/26/2010 PA-19_100826 N 0.01 U 0.01 U 0.01 U	J 0.00714 V J 0.00705 UV J 0.00705 UV J 0.00705 UV 0.755 UV 0.755 UV 0.755 UV 0.00755 UV
City Purchase PA-19 8/26/2010 PA-19_100826 N 0.01 U 0.01 U 0.01 U	J 0.00714 V J 0.00705 UV J 0.00705 UV J 0.00705 UV 0.755 UV 0.755 UV 0.755 UV 0.00755 UV
City Purchase	J 0.00705 UV J 0.00705 UV J 0.00705 UV 0.755 UV 0.755 UV 0.755 UV
City Purchase PA-19 2/9/2011 PA-19_110209D FD 0.01 U 0.01 U 0.01 U 0.	0.00705 UV 0.755 UV 0.755 UV 0.755 UV 0.0755 UV
City Purchase PZ-11 2/14/1997 97-2103-R661D N 1 U 1 U 1 U 1 U 1 U 1	0.755 UV 0.755 UV 0.755 UV 0.0755 UV
City Purchase PZ-11 8/28/1997 97-15170-T609D N 1 U 1	0.755 UV 0.755 UV 0.0755 UV
City Purchase PZ-11 2/22/2001 01-2349-CU21G N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.755 UV 0.0755 UV
City Purchase PZ-11 8/23/2001 01-14633-DN28A N 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.0 EV 0.002 J 0.002 J 0.002 J 0.008 J J 0.	0.0755 UV
City Purchase PZ-11 6/19/2003 K2304594-002 N 0.02 U 0.02 U 0.002 J 0.0017 J 0.0019 J 0.085 J 0.00 City Purchase PZ-11 8/27/2010 PZ-11_100827 N 0.01 U 0.01 U 0.01 U <	
City Purchase PZ-11 8/27/2010 PZ-11_100827 N 0.01 U 0.01 U 0.01 U 0.0	
City Purchase PZ-12 2/28/1997 97-2822-R796B N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	
City Purchase PZ-12 8/28/1997 97-15171-T609E N 1 U 1	0.00705 UV 0.755 UV
City Purchase PZ-12 2/22/2001 01-2348-CU21F N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.755 UV
	0.755 UV
City Purchase PZ-12 8/21/2001 DN18H N 0.1 U 0.0 U 0.1	0.0755 U
City Purchase PZ-12 12/11/2002 02-18575-FB89C N 0.1 U	
City Purchase PZ-12 6/19/2003 K2304594-003 N 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.003 J 0.00 City Purchase PZ-12 8/27/2010 PZ-12_100827 N 0.01 U	
UNI F UIUII 100 F L-12 0/2/1/2010 F L-12 10002/ IN	, 0.00705 UV
CSO GWG-6 11/2/2010 GWG-6-W N 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01	J 0.00705 UV
CSO MW-70 5/18/2011 MW-70-110518 N 0.01 U 0.	
CSO MW-70 5/18/2011 MW-70-110518D FD 0.01 U	
CSO PA-15 11/9/2010 PA-15_101109 N 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01	J 0.00705 UV
East Former Mill GWG-7 11/3/2010 GWG-7-W N 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01	J 0.00705 UV
East Former Mill PA-24 11/9/2010 PA-24_101109 N 0.01 U 0.	
East Former Mill PA-24 2/10/2011 PA-24_110210 N 0.01 U	
East Former Mill PZ-10 2/28/1997 97-2821-R796A N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.755 UV
East Former Mill PZ-10 8/27/1997 97-15175-T609I N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.755 UV
East Former Mill PZ-10 2/22/2001 01-2350-CU21H N 1 U 1 U 1 U 1 U 1 U 1 U 1 East Former Mill PZ-10 8/22/2001 DN25D N 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1	0.755 UV 0.0755 U
East Former Mill P2-10 12/12/2002 02-18587-FB990 N 0.11U 0.11U 0.11U 0.11U 0.11U 0.11U 0.11U 0.	
East Former Mill PZ-10 6/19/2003 K2304594-001 N 0.02 U 0.0038 J 0.0044 J 0.0039 J 0.0018 J 0.012 J 0.0	
East Former Mill PZ-10 8/26/2010 PZ-10_100826 N 0.01 U	J 0.00705 UV
East Former Mill PZ-13 2/14/1997 97-2100-R661A N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.755 UV
East Former Mill PZ-13 8/27/1997 97-15174-T609H N 1U 1U 1U 1U 1U 1U 1	0.755 UV
East Shoreline MW-59 12/13/2002 02-18592-FB89T N 0.1 U	0.0755 UV
East Shoreline MW-59 6/19/2003 K2304594-006 N 0.015 J 0.005 J 0.016 J 0.0063 J 0.041 0.0024 J 0.00	
East Shoreline MW-59 8/27/2010 MW-59_100827 N 0.01 U 0.01	J 0.00705 UV
East Shoreline MW-59 2/10/2011 MW-59_110210 N 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01	
East Shoreline PZ-9 2/14/1997 97-2101-R661B N 1U 1U 1U 1U 1U 1U 1	0.755 UV
East Shoreline PZ-9 8/27/1997 97-15176-T609J N 1 U 1	0.755 UV 0.755 UV
East Shoreline PZ-9 8/21/2001 PZ-9 010821 N 0.1U 0.1U 0.1U 0.1U 0.1U 0.	
East Shoreline PZ-9 12/13/2002 02-18586-FB89N N 0.11 U 0.1	J 0.08305 UV
East Shoreline PZ-9 6/19/2003 K2304594-005 FD 0.0035 J 0.02 U 0.0028 J 0.0018 J 0.0072 J 0.0028 J 0.00	
East Shoreline PZ-9 6/19/2003 K2304594-007 N 0.0062 J 0.02 U 0.0028 J 0.0018 J 0.0084 J 0.02 U 0.00 East Shoreline PZ-9 8/26/2010 DUP-082610 FD 0.01 U	
East Shoreline PZ-9 8/26/2010 DUP-082610 FD 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.00 U	_
East Shoreline PZ-9 0/20/2010 PZ-9_100200 N 0.01 U	
Emis Creek PZ-5 2/13/1997 97-1959-R652D N 1U 1U 1U 1U 1U 1U 1 U 1	0.755 UV
Ennis Creek PZ-5 8/28/1997 97-15169-T609C N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U<	0.755 UV 0.755 UV
Ennis Creek PZ-5 2/2/2001 01-2366-G022D N 10 10 10 10 10 10 10 1 Ennis Creek PZ-5 8/21/2001 DN18G N 0.1 U 0.1	
Enris Creek PZ-5 12/12/2002 02-18578-FB9F N 0.1 U 0.1	
Ennis Creek PZ-5 6/18/2003 K2304556-001 N 0.02 U 0.02	J 0.0151 UV
Ennis Creek PZ-5 8/27/2010 PZ-5_100827 N 0.01 U 0.	
Ennis Creek PZ-6 2/13/1997 97-1958-R652C N 1 U 1 U 1 U 1 U 1 U 1 U </td <td>0.755 UV 0.755 UV</td>	0.755 UV 0.755 UV
Ennis Creek PZ-6 8/28/1997 97-15168-T609B N 1 U<	0.755 UV
Ennis Creek PZ-6 8/23/2001 01-14634-DN28B N 0.1 U 0.1	
Ennis Creek PZ-6 12/11/2002 02-18573-FB89A N 0.1 U 0.0 U 0.1 U	0.0755 UV
Ennis Creek PZ-6 6/18/2003 K2304556-005 N 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.005 J 0.005	
Ennis Creek PZ-6 8/27/2010 PZ-6_100827 N 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01	J 0.00705 UV
Estuary FR-1 2/22/2001 01-2367-CU22E N 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	0.755 UV
Estuary FR-1 2/22/2001 01-2367-0022E N 10 10 10 10 10 10 10 1 Estuary FR-1 8/22/2001 DN25B N 0.1 U	
Estuary MW-62 11/9/2010 MW-62_101109 N 0.01 U 0.01	
Estuary MW-62 2/10/2011 MW-62_110210 N 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01 U 0.01	J 0.00705 UV
Main Former Mill GWG-1 11/4/2010 GWG-1-W N 0.46 0.25 0.51 0.67 0.16 0	0.0047.11
Main Former Mill GWG-1 11/4/2010 GWG-1-W N 0.46 0.25 0.51 0.67 0.16 0. Main Former Mill MW-58 12/13/2002 02-18591-FB89S N 0.11 U 0.11 U </td <td></td>	
Main Former Mill MW-58 6/18/2003 K2304556-002 N 0.02 U 0.02 U 0.02 U 0.02 U 0.0024 J 0.02 U 0.0	
Main Former Mill MW-58 8/27/2010 MW-58_100827 N 0.01 U 0.	
Main Former Mill MW-58 2/11/2011 MW-58_110211 N 0.036 0.011 0.024 0.029 0.01 U 0.0	0.01829 V

Carcinogenic Polycyclic Aromatic Hydrocarbons in Groundwater Port Angeles Rayonier Mill Uplands Study Area

									(±)				
									Total (b+k+j)				
									otal		_		
					9		ene	au e	L, S		ene	rene	
					acer	Φ	i i	튙	hene		hrac	g g	
					Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzofluoranthenes,		Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	*.
					(a)aı	(a)b	J)(a)	(k)	Ē	a.	(a,h	(1,2	сРАН ТЕС
					ozu	ozu	ozu	ozu	uzo	Chrysene	penz	deno	AH
				Parameter									
			MTCA-B	Units GW AS MSW	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 0.018
Funct. Area	Loc ID	Date	Sample ID	Sample Type									
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Main Former Mill Main Former Mill	MW-65 MW-66	5/18/2011 3/11/2011	MW-65-110518 MW-66-110311-W	N N	0.01 U 0.61	0.01 U 0.15			0.01 U	0.01 U 0.61	0.01 U 0.012 NJ	0.01 U 0.024	0.00705 UV 0.3907 JV
Main Former Mill	MW-66	5/18/2011	MW-66-110518	N	0.2	0.043			0.11	0.16	0.01 U	0.01 U	0.0766 V
Main Former Mill	MW-69	5/18/2011	MW-69-110518	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Main Former Mill Main Former Mill	PA-17 PIPE-1-SR23	2/11/2011 1/7/2011	PA-17_110211 PIPE-1-SR23	N N	0.01 U 0.51	0.01 U 0.18			0.01 U	0.01 U 0.55	0.01 U 0.016	0.01 U 0.033	0.00705 UV 0.2744 V
Main Former Mill	PZ-4	2/13/1997	97-1960-R652E	N N	1 U	1 U	1 U	1 U	0.33	1 U	1 U	1 U	0.2744 V 0.755 UV
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
Main Former Mill	PZ-4	8/21/2001	DN18F	N	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.0755 U
Main Former Mill Main Former Mill	PZ-4 PZ-4	12/12/2002 6/17/2003	02-18577-FB89E K2304497-004	N N	0.12 U 0.0021 U	0.12 U 0.0016 U	0.12 U 0.002 U	0.12 U 0.0014 U		0.12 U 0.0021 J	0.12 U 0.0026 J	0.12 U 0.0028 J	0.0906 UV 0.001636 JV
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Neat O	AMA: 51	0/4/2005	00 45071 1/1005		4	4	4	4		4	4	4	0.755.404
North Shoreline North Shoreline	MW-51 MW-51	8/4/1998 2/22/2001	98-15871-Y129C 01-2351-CU21I	N N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV 0.755 UV
North Shoreline	MW-51	8/21/2001	DN18C	N	0.12	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.083 V
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	N	0.12	0.11 U	0.11 U	0.11 U		0.11	0.11 U	0.11 U	0.0901 V
North Shoreline	MW-51	6/18/2003	K2304556-003 MW-51 100826	N N	0.066	0.0088 J	0.016 J	0.0085 J		0.058 0.058	0.02 U	0.02 U	0.02043 JV
North Shoreline North Shoreline	MW-51 MW-51	8/26/2010 11/10/2010	MW-51_100826 MW-51_101110	N N	0.082 0.036	0.028 0.014			0.056	0.058	0.01 U 0.01 U	0.01 U 0.01 U	0.04338 V 0.02166 V
North Shoreline	MW-51	2/11/2011	MW-51_110211	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
North Shoreline	MW-51	5/19/2011	MW-51-110519	N	0.033	0.011	-		0.025	0.031	0.01 U	0.01 U	0.01811 V
North Shoreline North Shoreline	MW-56 MW-56	2/22/2001 8/22/2001	01-2365-CU22C DN25E	N N	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U		1 U 0.1 U	1 U 0.1 U	1 U 0.1 U	0.755 UV 0.0755 U
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	N N	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.0755 UV
North Shoreline	MW-56	6/19/2003	K2304594-008	N	0.0061 J	0.02 U	0.0034 J	0.0026 J		0.0086 J	0.02 U	0.02 U	0.013296 JV
North Shoreline	MW-56	8/26/2010	MW-56_100826	N	0.01 U	0.01 U			0.01 U	0.01	0.01 U	0.01 U	0.0071 V
North Shoreline	MW-56	2/11/2011	MW-56_110211	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
NW Shoreline	MW-28	8/25/2010	MW-28_100825	N	0.014	0.017			0.021	0.018	0.01 U	0.01 U	0.02168 V
NW Shoreline	MW-28	11/10/2010	MW-28_101110	N	0.053	0.068	-		0.073	0.065	0.01 U	0.023	0.08405 V
NW Shoreline NW Shoreline	MW-28 MW-28	2/8/2011 5/20/2011	MW-28_110208 MW-28-110520	N N	0.019 0.067	0.025 0.056			0.027	0.023	0.01 U 0.01 U	0.01 U 0.018	0.03083 V 0.07462 V
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.07402 V
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
NW Shoreline	MW-52	8/22/2001	DN25G	N	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.0755 U
NW Shoreline NW Shoreline	MW-52 MW-52	12/12/2002 6/16/2003	02-18581-FB89I K2304466-002	N N	0.11 U 0.02 U	0.11 U 0.02 U	0.11 U 0.02 U	0.11 U 0.02 U		0.11 U 0.02 U	0.11 U 0.02 U	0.11 U 0.02 U	0.08305 UV 0.0151 UV
NW Shoreline	MW-52	8/25/2010	MW-52_100825	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
NW Shoreline	MW-52	2/9/2011	MW-52_110209	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
NW Shoreline NW Shoreline	MW-53 MW-53	2/21/2001 8/21/2001	01-2275-CU06A DN18A	N N	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U		1 U 0.1 U	1 U 0.1 U	1 U 0.1 U	0.755 UV 0.0755 U
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	N	0.11 U	0.11 U	0.11 U	0.11 U		0.11 U	0.11 U	0.11 U	0.08305 UV
NW Shoreline	MW-53	6/16/2003	K2304466-003	N	0.02 U	0.02 U	0.02 U	0.02 U		0.0022 J	0.02 U	0.02 U	0.015022 JV
NW Shoreline	MW-53	8/26/2010	MW-53_100826	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
NW Shoreline NW Shoreline	MW-53 MW-61	2/11/2011 11/11/2010	MW-53_110211 MW-61_101111	N N	0.01 U 0.01 U	0.01 U 0.01 U			0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.00705 UV 0.00705 UV
NW Shoreline	MW-61	2/11/2011	MW-61_110211	N	0.01 U	0.01 U	-		0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
NW Shoreline	MW-67	3/11/2011	MW-67-110311-W	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
NW Shoreline NW Shoreline	MW-67 PZ-1	5/18/2011 8/22/2001	MW-67-110518 DN25C	N FD	0.01 U 0.1 U	0.01 U 0.1 U	0.1 U	0.1 U	0.01 U	0.01 U 0.1 U	0.01 U 0.1 U	0.01 U 0.1 U	0.00705 UV 0.0755 U
NW Shoreline	PZ-1	2/13/1997	97-1957-R652B	N N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.0755 UV
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
NW Shoreline NW Shoreline	PZ-2 PZ-2	8/25/2010 2/7/2011	PZ-2_100825 PZ-2_110207	N N	0.02 0.01 U	0.01 0.01 U			0.018 0.01 U	0.03 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.0151 V 0.00705 UV
1444 SHOIGHIE	F 4-2	2/1/2011	F 4-4_1 10201	IN	0.010	0.010			0.01 0	0.010	0.010	0.010	J.00703 UV
Prefab	PZ-7	2/14/1997	97-2102-R661C	N	1 U	1 U	1 U	1 U	-	1 U	1 U	1 U	0.755 UV
Prefab	PZ-7	8/27/1997	97-15177-T609K	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
Prefab Prefab	PZ-7 PZ-7	2/22/2001 12/12/2002	01-2347-CU21E 02-18579-FB89G	N N	1 U 0.13 U	1 U 0.13 U	1 U 0.13 U	1 U 0.13 U		1 U 0.13 U	1 U 0.13 U	1 U 0.13 U	0.755 UV 0.09815 UV
Prefab	PZ-7	8/27/2010	PZ-7_100827	N	0.01 U	0.01 U			0.011	0.011	0.01 U	0.01 U	0.00771 V
		0.00-1-	04.05:- 5::										0.555
West Former Mill West Former Mill	MW-19 MW-19	2/22/2001 8/22/2001	01-2345-CU21C DN25I	N N	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U	1 U 0.1 U		1 U 0.1 U	1 U 0.1 U	1 U 0.1 U	0.755 UV
West Former Mill	MW-20	9/2/1997	97-15361-T609N	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
West Former Mill	MW-23	10/15/1997	97-19428-U167A	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	N	1 U	1 U	10	1 U		1 U	1 U	1 U	0.755 UV
West Former Mill West Former Mill	MW-23 MW-23	8/21/2001 12/13/2002	DN18E 02-18589-FB89Q	N N	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U		0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.0755 U 0.0755 UV
West Former Mill	MW-23	6/16/2003	K2304466-001	N	0.02 U	0.02 U	0.02 U	0.02 U		0.003 J	0.02 U	0.02 U	0.01503 JV
West Former Mill	MW-23	8/25/2010	MW-23_100825	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill West Former Mill	MW-29 MW-29	9/2/1997 6/17/2003	97-15362-T609O K2304497-006	N N	1 U 0.0021 U	1 U 0.0016 U	1 U 0.002 U	1 U 0.0014 U		1 U 0.0025 J	1 U 0.0017 U	1 U 0.0024 J	0.755 UV 0.001425 JV
West Former Mill	MW-29	8/25/2010	MW-29_100825	N	0.00210	0.063			0.066	0.0025 3	0.0017 U	0.0024 3	0.001425 JV
West Former Mill	MW-29	11/11/2010	MW-29_101111	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill	MW-29	2/8/2011	MW-29_110208	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV

Carcinogenic Polycyclic Aromatic Hydrocarbons in Groundwater Port Angeles Rayonier Mill Uplands Study Area

				Parameter Units	on) (¬j') (¬j') Benzo(a)anthracene	on) (-)-Benzo(a)pyrene	on)/j' Benzo(b)fluoranthene	on (7) Benzo(k)fluoranthene	© Benzofluoranthenes, Total (b+k+j)	on (¬) (¬)	© Dibenz(a,h)anthracene	© ∏ Indeno(1,2,3-cd)pyrene	⁽⁶⁶⁾ cPAH TEC⁴
		_		GW AS MSW	NL	NL	NL	NL	NL	NL	NL	NL	0.018
Funct. Area	Loc ID	Date	Sample ID	Sample Type									
West Former Mill	MW-29	5/20/2011	MW-29-110520	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV
West Former Mill	MW-54	8/22/2001	DN25H	N	0.1	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.0805 V
West Former Mill	MW-54	12/12/2002	02-18583-FB89K	N	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.0755 UV
West Former Mill West Former Mill	MW-54	6/17/2003	K2304497-001	N N	0.0072 J	0.002 J	0.0021 J	0.0016 J		0.0048 J	0.0024 J	0.0051 J	0.003888 JV
	MW-54	8/26/2010	MW-54_100826		0.079	0.081			0.14	0.089	0.013	0.024	0.10749 V
West Former Mill	MW-54	11/11/2010	MW-54_101111	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill	MW-54	2/10/2011	MW-54_110210	N	0.01 U	0.01 U			0.017	0.014	0.01 U	0.01 U	0.00834 V
West Former Mill	MW-54	5/18/2011	MW-54-110518	N	0.01 U	0.01 U			0.01 U	0.01	0.01 U	0.01 U	0.0071 V
West Former Mill	MW-55	2/21/2001	01-2277-CU06C DN25F	N N	1 U	1 U	1 U 0.1 U	1 U		1 U 0.12	1 U	1 U	0.755 UV
West Former Mill	MW-55	8/22/2001			0.1 U	0.1		0.1 U			0.1 U	0.1 U	0.126 V
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	N	0.11 U	0.11 U	0.11 U	0.11 U		0.11 U	0.11 U	0.11 U	0.08305 UV
West Former Mill	MW-55	6/18/2003	K2304556-004	N	0.0046 J	0.0079 J	0.0062 J	0.0054 J		0.006 J	0.011 J	0.012 J	0.01188 JV
West Former Mill	MW-55	8/26/2010	MW-55_100826	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill	MW-55	2/10/2011	MW-55_110210	N N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	N N	0.11 U	0.11 U	0.11 U	0.11 U 0.0014 U		0.11 U	0.11 U	0.11 U	0.08305 UV
West Former Mill	MW-57	6/17/2003	K2304497-007		0.0021 U	0.0016 U	0.002 U			0.0018 J	0.0017 U	0.0021 U	0.001283 JV
West Former Mill	MW-57	8/26/2010	MW-57_100826	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill	MW-60	11/11/2010	MW-60_101111	N	0.019	0.015			0.012	0.037	0.01 U	0.01 U	0.01947 V
West Former Mill	MW-60	2/9/2011	MW-60_110209	N	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
West Former Mill West Former Mill	MW-60 MW-68	5/19/2011 6/7/2011	MW-60-110519 MW-68-110607	N N	0.01 U 0.01 U	0.01 U 0.01 U			0.01 U 0.01 U	0.014 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.00714 V 0.00705 UV
West Former Mill West Former Mill	PZ-3 PZ-3	2/14/1997 8/28/1997	97-2104-R661E 97-15167-T609A	N N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV 0.755 UV
West Former Mill	PZ-3 PZ-3	2/22/2001	CU21A	N N	1 U	1 U	1 U	1 U		1 U	1 U	1 U	0.755 UV 0.755 UV
West Former Mill	PZ-3 PZ-3	8/21/2001	DN18B	N N	0.1 U	0.1 U	0.26	0.38		0.1 U	0.1 U	0.1 U	0.755 UV 0.0755 U
West Former Mill	PZ-3 PZ-3	12/12/2002	02-18576-FB89D	N N	0.1 U	0.1 U	0.26 0.1 U	0.38 0.1 U		0.1 U	0.1 U	0.1 U	0.0755 UV
West Former Mill	PZ-3	6/17/2003	K2304497-002	N N	0.10 0.0042 J	0.10 0.0027 J	0.10 0.0026 J	0.0018 J		0.0046 J	0.0065 J	0.0079 J	0.0755 0 V 0.005046 JV
West Former Mill	PZ-3 PZ-3	8/26/2010	PZ-3_100826	N N	0.0042 3	0.0027 J	0.0026 J	0.0018 J	0.01 U	0.0046 J 0.017	0.0065 J	0.0079 J	0.005046 JV 0.00817 V
West Former Mill	PZ-3	2/10/2011	PZ-3_100626 PZ-3_110210	N	0.015	0.01 U			0.01 U	0.017	0.01 U	0.01 U	0.00817 V 0.0088 V
West Former Mill	PZ-3	5/19/2011	PZ-3_110210 PZ-03-110519	N N	0.021	0.01 U			0.01 U	0.02	0.01 U	0.01 U	0.0085 V
AACSEL OULIGE MIIII	r Z-3	3/13/2011	F Z-03-110519	IN.	0.018	0.010			0.010	0.02	0.010	0.010	U.UU85 V

Dioxins/Furans in Groundwater Port Angeles Rayonier Mill Uplands Study Area

					,4,6,7,8-HpCDD	,4,7,8-HxCDD	,6,7,8-HxCDD	7,8,9-HxCDD	3,7,8-PeCDD	,8-TCDD		,4,6,7,8-HpCDF	,4,7,8,9-HpCDF	,2,3,4,7,8-HxCDF	,7,8-HxCDF	,7,8,9-HxCDF	3,7,8-PeCDF	,7,8-HxCDF	2,3,4,7,8-PeCDF	,8-TCDF		Dioxins/Furans TEC*
					3,4	3,4	3,6	3,7	3,7	7,8	90	3,4	3,4	3,4	,2,3,6,7	3,7	3,7	,4,6,7	7,4	7,8	씸	ř
			Para	meter	1,2,3,	1,2,3,	1,2,3,	1,2,3,	1,2,	2,3,7	00	1,2,3	1,2,3	7,7	1,2,	1,2,3,	1,2,	2,3,	2,3	2,3,7	OCDF	ei G
				Units	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)
			B GW Protective of	MSW	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.0051
Funct. Area	Loc ID	Date	Sample ID	Туре																		
City Purchase	PA-19	8/26/2010	PA-19_100826	N	901	2.45 J	38.9	2.81 J	0.766 U	0.655 U	18900	69.8	3.53 J	4.96	3.28 J	2.52 J	1.71 J	6.74	2.72 J	0.28 U	42.1	23.2 J
City Purchase	PA-19	11/11/2010	PA-19_101111	N	34.6	0.694 U	2.58 J	0.772 U	0.945 U	0.508 U	486	3.03 J	0.793 U	0.778 U	0.746 U	0.737 U		0.805 U	0.58 U	0.31 U	2.78 U	1.85 J
City Purchase	PA-19	2/9/2011	PA-19_110209	N	26	0.808 U	2.75 J	0.876 U	1.16 U	0.669 U	203	4.05 J	1.87 U	0.868 U	0.806 U	0.913 U	0.599 U	0.887 U	0.609 U	0.475 U	2.8 U	1.94 J
City Purchase	PA-19	2/9/2011	PA-19_110209D	FD	168	1.49 U	5.4	1.61 U	1.76 U	0.717 U	2050	4.41 J	2.04 U	1.46 U	1.42 U	1.45 U	1.15 U	1.46 U	1.21 U	0.593 U	2.92 U	4.8 J
City Purchase	PA-23	11/8/2010	PA-23_101108	N	2.42 U	1.37 U	1.83 U	1.58 U	1.02 U	0.798 U	24.8	0.793 U	1.1 U	0.696 U	0.7 U	0.625 U	0.63 U	0.716 U	0.639 U	0.454 U	1.81 U	1.44
City Purchase	PZ-11	8/27/2010	PZ-11_100827	N	18.7	1.93 U	2.43 U	2.16 U	1.46 U	0.864 U	89.7	3.07 J	1.56 U	0.8 U	0.814 U	0.841 U	0.985 U	0.917 U	1.05 U	0.719 U	3.86 J	2.12 J
City Purchase	PZ-12	8/27/2010	PZ-12_100827	N	6.07	2.67 U	3.45 U	3.02 U	1.98 U	0.965 U	25.2	1.46 U	2.17 U	1.36 U	1.3 U	1.27 U	1.09 U	1.43 U	1.07 U	0.634 U	3.45 U	2.49
		=//										. ==		. =	. =	. =				. =		
CSO	MW-70	5/18/2011	MW-70-110518	N	2.34 U	1.12 U	1.46 U	1.24 U	1.02 U	0.854 U	8.81 J	1.52 U	2.11 U	0.764 U	0.744 U	0.793 U		0.804 U	1.37 U	0.741 U		1.58 J
CSO	MW-70	5/18/2011	MW-70-110518D	FD	2.5 U	1.51 U	1.95 U	1.67 U	1.37 U	0.704 U	7.94 J	1.26 U	1.75 U	1.14 U	1.02 U	1.05 U	1.49 U	1.13 U	1.63 U	0.62 U	2.61 U	1.84 J
CSO	PA-15	11/9/2010	PA-15_101109	N	1.57 U	0.989 U	1.22 U	1.09 U	0.947 U	0.798 U	6.49 J	0.769 U	1.08 U	0.6 U	0.556 U	0.532 U	0.513 U	0.62 U	0.542 U	0.477 U	1.79 U	1.29 J
Гаат Ганная Мііі	PA-24	44/0/0040	DA 04 404400	N.I.	40.0	2.41 J	6.2	2001	4.00.11	0.040.11	040	5.52	4411	4.04.1	4.75	0.540.11	0.04711	1.7 J	0.00 1	0.07.1	0.04 1	4.43 J
East Former Mill	PA-24 PA-24	11/9/2010	PA-24_101109	N	40.8 2.7 U	1.08 U	1.26 U	2.96 J 1.13 U	1.29 U 0.915 U	0.943 U 0.735 U	249 9.8	1.21 U	1.1 U 1.74 U	1.91 J 0.792 U	1.75 J 0.778 U	0.513 U	0.947 U 0.581 U	0.829 U	2.69 J 0.637 U	2.27 J 0.439 U	9.21 J 2.19 U	4.43 J 1.32
East Former Mill	PA-24 PA-24	2/10/2011 5/18/2011	PA-24_110210 PA-24-110518	N N	4.32 J	1.46 U	1.26 U	1.13 U	1.22 U	0.735 U	13.9	1.21 U	1.74 U	0.792 U	0.778 U	0.781 U	1.09 U	0.829 U	1.22 U	0.439 U	2.19 U	1.32 1.81 J
East Former Mill East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N	9.22	0.978 J	1.75 J		1.48 J	1.62	34.1	1.33 J	0.731 U	0.672 J	0.842 U	0.84 U	0.827 J	0.653 J	1.56 J		2.45 U	4.5 J
Last Former Willi	FZ-10	8/20/2010	FZ-10_100620	IN	9.22	0.976 J	1.753	1.77 J	1.40 J	1.02	34.1	1.33 J	0.7310	0.6723	0.754 3	0.390 0	0.027 3	0.055 3	1.36 J	1.1	2.43 0	4.5 J
East Shoreline	MW-59	8/27/2010	MW-59 100827	N	5.01	2.25 U	2.77 U	2.49 U	1.56 U	0.784 U	31.9	2.03 J	1.79 U	0.716 U	0.699 U	0.813 U	0.949 U	0.837 U	1.11 U	0.606 U	2.99 U	2 J
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD	9.98	1.38 U	1.69 U	1.53 U	1.15 U	0.65 U	44.1	2.23 J	1.28 U	0.716 U	0.706 U	0.798 U	1.44 U	0.848 U	1.66 U	0.775 U	3.54 U	1.74 J
East Shoreline	PZ-9	8/26/2010	PZ-9_100826	N	10.4	1.91 U	2.3 U	2.09 U	1.35 U	0.97 U	59.3	2.64 J	1.69 U	1.14 U	1.16 U	1.28 U	1.74 U	1.31 U	1.92 U	0.9 U	4.81 J	2.24 J
Edot Onoromio		0/20/2010	120_100020				2.00	2.00 0	1.00 0	0.07	00.0					1.20 0			1.02 0	0.00		2.2.0
Ennis Creek	MW-64	11/8/2010	MW-64_101108	N	1.6 U	0.852 U	1.09 U	0.963 U	1 U	0.663 U	3.58 U	0.995 U	1.28 U	0.85 U	0.822 U	0.781 U	0.715 U	0.889 U	0.768 U	0.602 U	1.82 U	1.32 U
Ennis Creek	MW-64	2/7/2011	MW-64_110207	N	2.26 U	1.36 U	1.64 U	1.45 U	0.977 U	0.699 U	3.46 U	1.31 U	2.14 U	1.1 U	1.09 U	1.09 U	0.781 U	1.15 U	0.809 U	0.515 U	3.13 U	1.47 U
Ennis Creek	PZ-5	8/27/2010	PZ-5 100827	N	43.5	4.45 J	7.35	6.72	4.38 J	2.73	161	7.05	2.15 U	2.37 J	6.32	1.49 U	3.14 J	5.15	6.97	3.19	9.47 J	13.5 J
Ennis Creek	PZ-5	2/8/2011	PZ-5_110208	N	2.16 U	2.26 U	2.62 U	2.36 U	1.09 U	0.694 U	3.6 U	1.59 U	2.46 U	0.798 U	0.782 U	0.96 U	0.887 U	0.823 U	0.977 U	0.506 U	3.77 U	1.64 U
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827	N	26.6	1.91 U	2.31 U	2.09 U	1.4 U	0.901 U	339	5.1	1.99 U	1.09 U	1.04 U	1.08 U	0.924 U	1.13 U	0.918 U	0.585 U	15.9	2.3
Estuary	MW-62	11/9/2010	MW-62_101109	N	12.4	1.59 U	2.07 U	1.81 U	0.951 U	0.968 U	48.5	1.49 U	2.09 U	0.993 U	0.962 U	0.897 U	0.907 U	0.968 U	0.991 U	0.737 U	3.36 U	1.78
Estuary	MW-62	2/10/2011	MW-62_110210	N	8.49	1.99 U	2.5 U	2.16 U	1.26 U	0.595 U	56.7	2.11 U	3.06 U	0.921 U	0.86 U	0.903 U	0.728 U	0.941 U	0.737 U	0.421 U	15.2	1.72
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N	222	9.75 U	29.7	10.8 U	5.41 U	3.62 U	1110	38.4 J	9.71 U	7.48 U	7.32 U	7.55 U	4.84 U	8.04 U	16.5 J	10.8 J	104	19.2 J
Main Former Mill	GWG-2	11/1/2010	GWG-2-W	N	22.7	1.93 U	2.22 U	2.06 U	1.44 U	0.998 U	242	4 J	1.77 U	1.5 U	1.49 U	1.32 U	0.944 U	1.54 U	0.965 U	0.995 U	12.2	2.38 J
Main Former Mill	GWG-3	11/1/2010	GWG-3-W	N	319	4.16 J	25.2	5.87	5.3	0.971 U	3700	37.7	2.1 U	4.03 J	5.56	1.14 U	1.89 U	4.81 J	2.27 U	3.04 J	106	16.2 J
Main Former Mill	GWG-4	11/2/2010	GWG-4-W	Ν	15.4	1.25 U	1.59 U	1.4 U	0.899 U	0.954 U	203	3.27 J	1.15 U	1.03 U	1.04 U	0.946 U	1.32 U	1.13 U	1.34 U	0.723 U	13	1.86 J
Main Former Mill	GWG-5	11/3/2010	GWG-5-W	N	2470	9.62	73.3	21.2	5.05	0.998 U	57700	312	27.2	27.3	36.5 U	5.41	6.97	16.4	8.11	3.79 J	1610	71.6031 JV

Dioxins/Furans in Groundwater Port Angeles Rayonier Mill Uplands Study Area

					,4,6,7,8-HpCDD	8-HxCDD	8-HxCDD	,8,9-HxCDD	,8-PeCDD	90		,4,6,7,8-HpCDF	9-нрср	,8-HxCDF	1,2,3,6,7,8-HxCDF	9-HxCDF	,8-PeCDF	,8-HxCDF	,8-PeCDF	FO		Dioxins/Furans TEC*
					3,7,	φ.		6,	ď.	윤		3,7,	-6,8,7	φ.	φ.	-6,8,	ď.	φ,	ď.	덛		Ē
					4,	,4,7	,6,7	3,7,	-	F-8,	۵	4,	,4,7	,4,7,	,6,	7	7	,4,6,7,	4,7,8	,8-TCDF	ų.	ü
			_		2,3	,2,3	2,3	,2,3,7,	,2,3	3,7	осор	,2,3	2,3	,2,3	2,3	,2,3,	,2,3	6	2,3,4	2,3,7,	OCDF	ŏ
			Para	meter	_	-	-	_	_	. 7		. –	-	_		-	Ψ	ν, (//)				
	M	TCA Mathad	B GW Protective of	Units	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l)	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l)	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) NL	(pg/l) 0.0051
Funct, Area	Loc ID	Date	Sample ID	Type	INL	INL	INL	INL	INL	NL	INL	INL	INL	INL	INL	NL	INL	INL	INL	INL	INL	0.0051
Main Former Mill	MW-58	8/27/2010	MW-58 100827	N	283	1.5 J	12.7	3.32 J	1.16 U	0.625 U	3650	51.8	3.98 J	6.47	3.38 J	1.79 J	1.89 J	2.83 J	1.96 J	1.26	142	9.39 J
Main Former Mill	MW-58	2/11/2011	MW-58_110211	N	9.34	1.29 U	1.61 U	1.4 U	1.18 U	0.891 U	101	2.42 U	3.73 U	0.975 U	0.936 U	1.07 U	1.56 U	1.07 U	1.75 U	0.962 U	4.65 U	1.94
Main Former Mill	MW-65	5/18/2011	MW-65-110518	N	4.98	1.26 U	1.69 U	1.41 U	1.16 U	0.72 U	44.1	1.14 U	1.55 U	1.35 U	1.3 U	1.33 U	1.3 U	1.37 U	1.41 U	0.597 U	3.37 U	1.76
Main Former Mill	MW-69	5/18/2011	MW-69-110518	N	1.99 U	1.2 U	1.62 U	1.34 U	1.06 U	0.827 U	4.49 J	1.08 U	1.45 U	0.796 U	0.769 U	0.829 U	1.19 U	0.832 U	1.33 U	0.7 U	2.71 U	1.59 J
Main Former Mill	PA-17	2/11/2011	PA-17 110211	N	1.87 U	1.13 U	1.42 U	1.23 U	1.08 U	0.763 U	3.08 U	1.28 U	1.99 U	0.881 U	0.835 U	0.93 U	0.735 U	0.921 U	0.775 U	0.459 U	2.86 U	1.47 U
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23	N	22200	120	1040	295	52.6	7.07	201000	4670	239	240	648	39	128	209	52.4	37.9 J	13600	678 J
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	N	17	1.35 J	2.51 J	2.15 J	1.55 U	0.623 U	108	2.71 J	1.33 U	0.98 U	0.98 U	0.942 U	1.36 J	1.03 U	1.59 J	2.2 J	5.83 J	2.86 J
	127	5,20,2010	. 2 100020	- · ·	l .,	1.000		200	1.00 0	3.020 0			1.00 0	3.55 5	3.55 5	5.542 0	1.000	1.00 0	1.000		3.00 0	2.000
North Shoreline	MW-51	8/26/2010	MW-51_100826	N	30.5	3.98 J	6.58	5.4	5.61	0.971 U	75.7	4.84 J	4.71 U	1.63 U	2.07 J	1.76 U	1.86 U	1.84 U	2.15 U	2.94 J	5.97 J	9.21 J
North Shoreline	MW-51	2/11/2011	MW-51_100020	N	3 U	1.7 U	2.23 U	1.88 U	1.92 U	0.964 U	9.06 U	1.73 U	2.68 U	1.21 U	1.14 U	1.42 U	1.01 U	1.47 U	1.38 U	0.974 U	3.83 U	2.3 U
North Shoreline	MW-56	8/26/2010	MW-56_100826	N	20.6	1.9 U	2.36 U	2.12 U	1.3 U	0.711 U	150	2.71 U	4.39 U	1.33 U	1.28 U	1.56 U	1.03 U	1.4 U	1.05 U	0.729 U	4.06 U	2.1
TTOTAL CHOICING	10100 00	0/20/2010	100020	.,	20.0	1.00	2.00 0	2.12 0	1.00	0.7110	100	2.710	4.00 0	1.00 0	1.20 0	1.00 0	1.00 0	1.40	1.00 0	0.7200	4.00 0	
NW Shoreline	MW-28	8/25/2010	MW-28 100825	N	34.4	3.98 J	7.49	5.86	4.4 J	2.5	59.2	8.14	1.51 J	3.62 J	3.91 J	1.09 J	4.85 J	3.11 J	4.53 J	6.51 J	4.57 J	12.4 J
NW Shoreline	MW-28	2/8/2011	MW-28 110208	N	11.1	1.35 U	1.8 U	1.51 U	1.28 U	0.811 U	14.1	1.55 U	2.42 U	1.15 U	1.1 U	1.14 U	1.9 J	1.13 U	1.99 J	2.44 J	1.84 U	2.54 J
NW Shoreline	MW-52	8/25/2010	MW-52 100825	N	13.8	1.98 J	3.55 J	2.69 J	1.17 U	0.703 U	16.3	1.37 U	2.05 U	1.13 U	1.23 U	1.31 U	1.23 U	1.32 U	1.25 U	0.737 U	3.04 U	2.42 J
NW Shoreline	MW-52	5/17/2011	MW-52_100023	N	3.77 U	1.71 U	2.12 U	1.84 U	1.17 U	0.929 U	6.58 J	1.38 U	2.05 U	3.61 J	0.875 U	0.865 U	1.7 U	0.945 U	1.86 U	0.596 U	2.69 U	2.42 J
NW Shoreline	MW-53	8/26/2010	MW-53 100826	N	7.99	0.944 U	1.14 U	1.03 U	0.705 U	0.625 U	123	2.48 J	1.21 U	0.831 U	0.874 U	0.826 U	0.617 U	0.873 U	0.636 U	0.330 U	29.9	1.28 J
NW Shoreline	MW-53	2/11/2011	MW-53_100020	N	2.04 U	1.34 U	1.63 U	1.44 U	1.04 U	0.646 U	3.14 U	1.16 U	1.84 U	0.903 U	0.859 U	0.911 U	0.678 U	0.903 U	0.74 U	0.47 U	2.46 U	1.20 J
NW Shoreline	MW-61	11/11/2010	MW-61_101111	N	2.83 U	1.94 U	2.44 U	2.16 U	1.04 U	0.998 U	4.95 U	1.66 U	2.38 U	1.41 U	1.47 U	1.45 U	1.21 U	1.53 U	1.28 U	0.48 U	4.11 U	2.4 U
NW Shoreline	MW-61	2/11/2011	MW-61_101111	N	2.04 U	1.52 U	1.97 U	1.68 U	1.54 U	0.936 U	3.93 U	1.36 U	2.06 U	1.41 U	1.47 U	1.43 U	1.01 U	1.23 U	0.992 U	0.553 U	4.11 U	1.99 U
NW Shoreline	PZ-2	8/25/2010	_	N	97	1.52 0	22.9	15.8	1.54 0	2.49	263	11.3		4.37 J	3.85 J	1.59 U	4.93	3.04 J	3.75 J	4.59 J	4.25 U	21.9 J
NW Shoreline	PZ-2 PZ-2	11/11/2010	PZ-2_100825	N	1.88 U	1.56 U	1.94 U		1.64 U	0.451 U	6.11 J	0.997 U	1.84 U 1.41 U	0.8 U	0.796 U	0.763 U	0.812 U	0.88 U	0.819 U	0.57 U	1.95 U	1.66 J
	PZ-2 PZ-2	2/7/2011	PZ-2_101111	N	2.13 J	0.866 U	1.94 U	1.73 U 0.949 U	0.805 U	0.451 U	16.1	1.52 U	2.19 U	0.8 U	0.796 U	0.763 U	0.812 U	0.88 U		0.57 U	3.32 U	1.06 J
NW Shoreline	PZ-2	2/1/2011	PZ-2_110207	IN	2.13 J	U.866 U	1.11 0	0.949 0	0.805 U	0.76 0	16.1	1.52 U	2.19 0	0.94 0	0.933 0	0.993 U	0.81 0	0.981 0	0.837 U	0.539 0	3.32 U	1.33 J
Prefab	PZ-7	8/27/2010	PZ-7_100827	NI.	22.9	16411	3.38 J	4.67 J	3.97 J	3.26	102	2.89 J	1.31 U	0.788 U	0.778 U	0.806 U	1.49 U	0.838 U	1.58 U	0.733 U	5.56 J	8.87 J
Prefab	PZ-7	2/8/2011	PZ-7_100827 PZ-7_110208	N N	2.05 U	1.64 U 1.6 U	1.94 U	1.71 U	1.09 U	0.782 U	3.07 U	1.15 U	1.31 U	0.766 U	0.778 U	0.806 U	0.908 U	0.897 U	0.953 U	0.733 U	2.36 U	1.58 U
Fleiab	PZ-1	2/0/2011	PZ-7_110206	IN	2.05 0	1.6 U	1.94 0	1.710	1.09 0	0.762 0	3.07 0	1.15 U	1.77 0	0.000 U	0.639 0	0.65 0	0.906 0	0.697 0	0.953 0	0.567 0	2.30 0	1.56 U
West Former Mill	MW-23	8/25/2010	MM 22 40002E	NI.	7.0	1.03 U	1 22 11	1 16 11	0.792 U	0.665 U	F7.4	1 05 11	1711	0.633.11	0.630.11	0.624 U	0.818 U	0.654.11	0.842 U	4.45.1	2 5 5 11	4.20.1
West Former Mill	MW-29	8/25/2010	MW-23_100825 MW-29_100825	N N	7.3 385	33.2	1.33 U 63	1.16 U 51.2	0.792 U 26.9	0.665 U	57.4 565	1.25 U 39.6	1.7 U 5	0.622 U 13	0.628 U 12.9	0.624 U	0.818 U	0.651 U 11.7	0.842 U	1.15 J 11.1 J	2.55 U 18.8	1.39 J 62.4 J
West Former Mill	MW-29	11/11/2010	_	N		1.37 U			1.23 U	0.376 U		1.23 U	1.73 U	0.923 U	0.884 U	0.907 U	12.1 0.585 U	11.7 1.01 U	0.616 U	0.553 U	18.8 1.55 U	
West Former Mill	MW-29	2/8/2011	MW-29_101111 MW-29_110208	N	54 17	1.37 U	4.95 1.39 U	1.96 J 1.2 U	0.954 U	0.376 U	58.1 19.4	0.924 U	1.73 U	0.923 U	0.884 U	0.907 U	0.585 U	0.664 U	0.816 U	0.553 U	1.84 U	2.45 J
			_																			1.33
West Former Mill	MW-54	8/26/2010	MW-54_100826	N	731	7.11	16.5	9.46	6.45	0.956 U	2770	16.5	1.38 U	1.86 J	2.96 J	0.551 U	2.9 J	1.87 J	4.31 J	3.64 J	82	21 J
West Former Mill	MW-54	11/11/2010	MW-54_101111	N	35.1	1.27 U	1.59 U	1.41 U	1.1 U	0.7 U	141	1.37 J	1.1 U	0.719 U	0.714 U	0.69 U	0.942 U	0.757 U	0.986 U	0.8 U	5.37 J	1.87 J
West Former Mill	MW-54	2/10/2011	MW-54_110210	N	72.5	1.41 U	1.77 U	1.53 U	0.766 U	0.465 U	265	1.56 U	2.29 U	1.16 U	1.09 U	1.16 U	0.732 U	1.17 U	0.847 U	0.586 U	10.4	2.07
West Former Mill	MW-55	8/26/2010	MW-55_100826	N	23.5	1.6 U	2.08 U	1.82 U	0.936 U	0.854 U	199	3.28 J	0.973 U	0.765 U	0.736 U	0.777 U	1.1 U	0.796 U	1.12 U	0.731 U	5.86 J	1.88 J
West Former Mill	MW-55	2/10/2011	MW-55_110210	N	3.05 U	1.44 U	1.87 U	1.58 U	1.18 U	0.498 U	15.4	1.82 U	2.69 U	1.21 U	1.06 U	1.11 U	0.609 U	1.17 U	0.614 U	0.437 U	2.09 U	1.48
West Former Mill	MW-57	8/26/2010	MW-57_100826	N	9.09	1.3 U	1.56 U	1.43 U	1 J	0.763 U	91.3	1.66 J	0.936 U	0.804 U	0.796 U	0.872 U	0.957 U	0.878 U	1.07 U	0.529 U	5.52 J	2.11 J
West Former Mill	MW-60	11/11/2010	MW-60_101111	N	18.5	1.22 U	1.58 U	1.39 U	0.812 U	0.473 U	220	4.82	1.28 U	1.05 U	0.982 U	1.01 U	0.689 U	1.05 U	0.725 U	0.649 U	9.83 J	1.52 J
West Former Mill	MW-60	2/9/2011	MW-60_110209	N	4.2 J	1.53 U	1.95 U	1.67 U	1.2 U	0.825 U	27	1.47 U	2.21 U	1.44 U	1.32 U	1.41 U	1.2 U	1.41 U	1.29 U	0.687 U	3.01 U	1.86 J
West Former Mill	PZ-3	8/26/2010	PZ-3_100826	N	6.27	0.865 U	1.08 U	0.964 U	0.773 U	0.661 U	40.5	1.12 U	1.65 U	1.02 U	0.974 U	1 U	0.79 U	1.06 U	0.814 U	0.545 U	2.87 U	1.32

					Para	ameter Units	Aluminum (mg/L)	(mg/L)	(mg/L)	(Sarium	(mg/L)	Cadmium*	(T) Calcium	(T) Chromium	(F) Chromium, Hexavalent	Cobalt (Gpper*	uou (mg/L)	Fead*	(B) Magnesium	3) (7j Manganese*	(mg/L)	Nickel*	(L/Sw)	Selenium*	9) Silver*	wordium (Eg/L)	3 } - - -	3) (7/2 Vanadium	Zinc (mg/L)
	-	1	-	MTCA Method B		MSW	/ NL	0.64	0.005	NL	0.27	0.0088	NL	240**	0.05	NL	0.0024	NL	0.0081	NL	0.1	2.5e-005	0.0082	NL	0.071	0.0019	NL	0.00047	NL	0.081
Funct. Area	a Lo	Loc ID	Date	Sample ID	Total (T) or Dissolved (D)	Туре																								
City Purchase City Purchase		GWG-8 PA-19	10/28/2010 8/21/2009	GWG-8-W PA-19 090821	T	N N		0.0002 U	0.01 0.1 U	6.1		0.0002 U 0.31		0.054 3.2			0.0732		0.009		1.44	0.000179 0.002	0.0706		0.0008	0.0003 0.085		0.0002 U		0.081
City Purchase		PA-19	8/26/2010	PA-19_100826	D	N		0.0002 U	0.0002	0.013		0.0003		0.001 U		0.0007	0.0039		0.001 U		0.118	2e-005 U	0.002		0.0005 U	0.0002 U		0.0002 U	0.0006	0.09
City Purchase City Purchase		PA-19 PA-19	8/26/2010 11/11/2010	PA-19_100826 PA-19_101111	T T	N N		0.0002 U	0.0005 0.0002 U	0.018		0.0004		0.0022 0.0005 U		0.0016	0.0093 0.0059 U		0.001 U 0.001 U		0.118	2e-005 U 2e-005 U	0.0051 0.0022		0.0005 U	0.0002 U		0.0002 U	0.0058	0.119
City Purchase		PA-19	2/9/2011	PA-19_101111 PA-19_110209	D	N			0.0002 U								0.0053		0.001 U		0.035	2e-005 U	0.0022							0.072
City Purchase		PA-19	5/18/2011	PA-19-110518	T	N			0.0003						-		0.0076	-	0.0004		0.0544	2e-005 U	0.0021			-				0.048
City Purchase City Purchase		PA-23 PA-23	11/8/2010 2/7/2011	PA-23_101108 PA-23_110207	T	N N			0.0004					0.0008			0.0016 U 0.0013		0.001 U 0.001 U		0.222	2e-005 U 2e-005 U	0.0016 0.0013							0.004 U 0.004 U
City Purchase	Р	PA-23	5/17/2011	PA-23-110517	T	N															0.276									
City Purchase City Purchase		PZ-11 PZ-11	2/14/1997 8/28/1997	97-2103-R661D 97-15170-T609D	T D	N N		0.2 U 0.2 U	0.05 U 0.05 U		0.001 U 0.001 U	0.006 U 0.006 U		0.005 U 0.005 U			0.002 U 0.002 U	3.67 3.53	0.02 U 0.02 U		8.02 6.16	0.0001 U 0.0003 U	0.01 U 0.01 U		0.08 0.06 U	0.003 U 0.009 U		0.05 U 2 U		0.004 U 0.005 UJ
City Purchase	Р	PZ-11	11/6/1997	97454188	T	N	0.321	0.0048 U	0.0059 J	0.116 J		0.00071 J	118 J	0.0047 J		0.0057 J	0.0082 J	11.3	0.0018 U	95.1	9.06		0.0076 J	37.1 J		0.0008 U	289		0.015 J	0.0106 J
City Purchase City Purchase		PZ-11 PZ-11	2/22/2001 2/22/2001	01-2349-CU21G 01-2358-CU21P	T D	N N			0.007 0.005			0.002 U 0.002 U		0.02 0.005 U			0.134 0.002 U	38.4 5.94	0.004 0.001 U				0.03 0.01 U		0.05 U 0.05 U					0.067 0.006 U
City Purchase		PZ-11	8/23/2001	01-14633-DN28A	T	N			0.003		0.001 U		76.2	0.005 0			0.002 0	6.98	0.0010	55.9			0.0116	20	0.0016		160			0.016
City Purchase		PZ-11	8/23/2001	01-14636-DN28D	D	N			0.0034		0.001 U		78.1	0.0021			0.002	2.82	0.001 U	57.2			0.0052	20.9	0.002 U		170			0.004 U
City Purchase City Purchase		PZ-11 PZ-11	12/11/2002 12/11/2002	02-18574-FB89B 02-18601-FB89W	D	N N			0.0031 U 0.004 U		0.001 U 0.001 U		72.2 U 72.8 U	0.0074 U 0.0044 U			0.0239 U 0.0022 U	8.41 U 3.03 U	0.002 U 0.001 U	53.9 U 52.1 U			0.0136 U 0.0058 U	18 U 15.2 U	0.0013 U 0.0018 U		162 U 158 U			0.016 U 0.004 U
City Purchase	Р	PZ-11	6/19/2003	K2304594-002	D	N			0.0021		4e-005 U	0.00011	76.1	0.00345			0.00614		7e-005	55		1.42e-005	0.00625	13.5	0.001 U	4e-005 J	149	4e-005 U		0.0037
City Purchase City Purchase		PZ-11 PZ-11	6/19/2003 8/27/2010	K2304594-002 PZ-11 100827	T D	N N		0.0003	0.0034	0.055	0.00018	0.00014 0.0002 U	79.7	0.0153 0.003		0.0032	0.0265 0.0107		0.00245 0.001 U	61	3.53	7.73e-005 2e-005 U	0.017	14.3	0.0008 J 0.002	6e-005 J 0.0002 U	156	3.2e-005 J 0.0002 U	0.0114	0.0201
City Purchase		PZ-11	8/27/2010	PZ-11_100827	T	N		0.0003 0.0002 U	0.0023	0.055		0.0002		0.068		0.0032	0.0107		0.0010		4.4	0.000143	0.072		0.002	0.0002		0.0002 U	0.0114	0.085
City Purchase		PZ-11	11/9/2010	PZ-11_101109	D	N			0.0161					0.004			0.0025		0.001 U		6.42	2e-005 U	0.0067							0.004 U
City Purchase City Purchase		PZ-11 PZ-11	2/8/2011 5/17/2011	PZ-11_110208 PZ-11-110517	T T	N N			0.0092								0.002 0.0016		0.001 U 0.0001 U		5.84 5.88	2e-005 U 2e-005 U	0.0051 0.005							0.004 U 0.004 U
City Purchase	P	PZ-12	2/28/1997	97-2822-R796B	D	N						-		-								0.0003 U								
City Purchase City Purchase		PZ-12 PZ-12	2/28/1997 8/28/1997	97-2822-R796B 97-15171-T609E	T D	N N		0.2 U	0.2 U		0.001 U	0.006 U		0.02 U			0.006 U	2.1	0.06 U		1.02	0.0003 U	0.03 U		0.2 U	0.009 U		2 U		0.01 U
City Purchase	P	PZ-12	8/28/1997	97-15171-T609E	Т	N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U			0.002 U	4.76	0.02 U		1.69		0.01 U		0.05 U	0.009 U		2 U		0.006 UJ
City Purchase City Purchase		PZ-12 PZ-12	11/6/1997 2/22/2001	97454187 01-2348-CU21F	T	N N	0.0174 J	0.0048 U	0.0041 U 0.005	0.0217 J		0.00041 J 0.002 U	38.4 J	0.0007 U 0.007		0.0015 J	0.01 J 0.072	0.822 22.4	0.0018 U 0.003	22.1	0.397		0.0063 J 0.01	1.99 J	0.05	0.0008 U	39.5		0.0014 U	0.0181 J 0.03
City Purchase		PZ-12	2/22/2001	01-2356-CU21N	D	N			0.003			0.002 U		0.007 0.005 U			0.002 U	4.05	0.003 0.001 U				0.01 U		0.05 U					0.006 U
City Purchase		PZ-12	8/21/2001	DN18H DN18H	D T	N N			0.0021		0.001 U			0.0005 U			0.0005 U		0.001 U				0.0013		0.001					0.004 U
City Purchase City Purchase		PZ-12 PZ-12	8/21/2001 12/11/2002	02-18575-FB89C	T	N			0.0018 0.0022 U		0.001 U 0.001 U		 114 U	0.0006 0.0013 U			0.0019 0.0037 U	6.72 9.13 U	0.001 U 0.001 U	 58.5 U			0.0023 0.0026 U	 2 U	0.0009 0.0008 U		28.9 U			0.007 0.004 U
City Purchase	Р	PZ-12	12/11/2002	02-18602-FB89X	D	N			0.0025 U		0.001 U		115 U	0.0022 U			0.0011 U	7.86 U	0.001 U	60 U			0.0016 U	2.08 U	0.0011 U		29.1 U			0.004 U
City Purchase City Purchase		PZ-12 PZ-12	6/19/2003 6/19/2003	K2304594-003 K2304594-003	D T	N N			0.0019		4e-005 U 5e-005	4e-005 J 9e-005	115 121	0.00114			0.00284		5e-005 0.00038	59.7 64.8		6.7e-006 5.8e-006	0.00408	1.69 J 2.03	0.001 U 0.001 U	2e-005 UJ 2e-005 UJ	29.6 31	4e-005 U 4e-005 U		0.0024
City Purchase	. P	PZ-12	6/19/2003	K2304594-003D	T	FD			0.0028		6e-005	9e-005		0.00403			0.00492		0.0004				0.0073			2e-005 J		1.4e-005 J		0.0069
City Purchase City Purchase		PZ-12 PZ-12	8/27/2010 8/27/2010	PZ-12_100827 PZ-12_100827	D T	N N		0.0002 U 0.0002	0.0016	0.034 0.145		0.0002 U 0.0002 U		0.001 U 0.052		0.0015 0.016	0.0005		0.001 U 0.007		1.53	2e-005 U 9.64e-005	0.0016 0.0498		0.002 U 0.002 U	0.0002 U 0.0002		0.0002 U 0.0002 U	0.0088 0.115	0.004 U 0.062
City Purchase		PZ-12 PZ-12	11/9/2010	PZ-12_100827 PZ-12_101109	D	N		0.0002	0.0077	U. 140 				0.052 0.001 U		0.016	0.0005		0.007 0.001 U		1.97	2e-005 U	0.0498		0.002 0			U.UUU2 U	0.115	0.062 0.004 U
City Purchase		PZ-12	2/7/2011	PZ-12_110207	T	N			0.0016								0.0014		0.001 U		1.39	2e-005 U	0.0042							0.004 U
City Purchase		PZ-12	5/17/2011	PZ-12-110517	T	N			0.0019								0.0012		0.0001 U		1.57	2e-005 U	0.0035							0.004
CSO CSO		GWG-6 MW-70	11/2/2010 5/18/2011	GWG-6-W MW-70-110518	T T	N N			0.002 0.0002					0.01			0.016 0.0032		0.001 0.0001 U		0.123 0.0068	2.42e-005 2e-005 U	0.0134							0.02 0.004 U
CSO	М	MW-70	5/18/2011	MW-70-110518D	T	FD			0.0003								0.0035		0.0001 U		0.0084	2e-005 U	0.0018							0.004 U
CSO CSO		PA-15 PA-15	11/9/2010 2/8/2011	PA-15_101109 PA-15_110208	T	N N			0.0023 0.0023					0.001			0.005 U 0.007		0.001 U 0.001 U		0.56 0.534	2e-005 U 2e-005 U	0.0066 0.0064							0.004 U 0.004 U
CSO		PA-15 PA-15	5/18/2011	PA-15_110208 PA-15-110518	T	N			0.0023			-		1		1	0.0162		0.001 0		0.534	2e-005 U						-	-	0.004 0
East Former N	Aill G	GWG-7	11/3/2010	GWG-7-W	Т	N			0.0004					0.0006			0.0042	-	0.001 U		0.0396	2e-005 U	0.0031							0.004
East Former N		PA-24	11/9/2010	PA-24_101109	D	N			0.0034					0.0005 U			0.0009		0.001 U		0.518	2e-005 U	0.0019							0.004 U
East Former N East Former N		PA-24 PA-24	2/10/2011 5/18/2011	PA-24_110210 PA-24-110518	T T	N N			0.0008								0.0021		0.001 U		0.133	2e-005 U	0.0012							0.004 U
East Former N	ЛiII Р	PZ-10	2/28/1997	97-2821-R796A	D	N		0.2 U	0.05 U		0.001 U	0.005 U		0.005 U			0.002 U	1	0.02 U		1.24	0.0003 U	0.01 U		0.05 U	0.004 U		2 U		0.004 U
East Former N		PZ-10	8/27/1997	97-15175-T609I 97-15175-T609I	D T	N N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U			0.002 U	0.1	0.02 U		1.32	0.0003 U	0.01 U		 0.05 U	0.009 U		2 U		0.007 UJ
East Former N	Aill D	PZ-10	8/27/1997																											

						minum	timony	enic*	rium	yllium	dmium*	cium	romium	romium, Hexavalent	balt	pper*	-	, pr	gnesium	nganese⁺	reury*	kel*	assium	enium*	/er*	dium	allium*	nadium	v
				Para	Units	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	ලි (mg/L)	5 (mg/L)	රි (mg/L)	8 (mg/L)	(mg/L)	<u>ē</u> (mg/L)	(mg/L)	(mg/L)	re ∑ (mg/L)	© (mg/L)	(mg/L)	(mg/L)	y (mg/L)	(mg/L)	(mg/L)	Ĕ (mg/L)	e / (mg/L)	iz (mg/L)
		_	MTCA Method B	Total (T) or		NL	0.64	0.005	NL	0.27	0.0088	NL	240**	0.05	NL	0.0024	NL	0.0081	NL	0.1	2.5e-005	0.0082	NL	0.071	0.0019	NL	0.00047	NL	0.081
Funct. Area East Former Mill	Loc ID PZ-10	Date 2/22/2001	Sample ID 01-2359-CU21Q	Dissolved (D) D	Type N			0.003			0.002 U		0.005 U			0.002 U	0.16	0.001 U				0.01 U		0.05 U					0.006 U
East Former Mill East Former Mill	PZ-10 PZ-10	8/22/2001 8/22/2001	DN25D DN25D	D T	N N			0.0029		0.001 U 0.001 U			0.0005 U 0.0005 U			0.001 0.0013	0.02 J	0.001 U 0.001 J				0.0034		0.0006					0.004 U 0.005 J
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O	T	N			0.0028		0.001 U		85.8 U	0.0005			0.0021	0.17 U	0.001 U	39 U			0.0036	4.02 U	0.0005 U		28.1 U	***		0.004 U
East Former Mill East Former Mill	PZ-10 PZ-10	12/13/2002 6/19/2003	02-18614-FB89AJ K2304594-001	D D	N N			0.0028 U 0.0029		0.001 U 4e-005 U	8e-005	89.1 U 79.3	0.0009 U 0.00096			0.0013 U 0.00034 J	0.17 U	0.001 U 4e-005	40.4 U 36.8		7.5e-006	0.0033 U 0.00392	3.62 U 3.03	0.0006 U 0.001 U	3e-005 J	24.3 U 22.9	1.3e-005 J		0.004 U 0.0016
East Former Mill	PZ-10	6/19/2003	K2304594-001	T	N			0.0031		4e-005 U	0.00037	79.8	0.00131			0.00177		0.00018	37.8		1.74e-005	0.00442	3.14	0.0005 J	2e-005 UJ	23.2	4e-005 U		0.0022
East Former Mill East Former Mill	PZ-10 PZ-10	6/19/2003 8/26/2010	K2304594-001D PZ-10_100826	T D	FD N		0.0002 U	0.0031	0.0479	4e-005 U	0.00037 0.0002	79.8	0.00131 0.0005 U		0.0007	0.00177 0.0007		0.00018 0.001 U	37.8	2	2e-005 U	0.00442 0.003	3.14	0.0005 U 0.0005 U	4e-005 U 0.0002 U	23.2	1e-005 J 0.0002 U	0.0006	0.0022 0.004 U
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	T	N		0.0002 U	0.0049	0.122		0.0031		0.029		0.009	0.0514		0.004		2.04	0.000161	0.0414		0.0006	0.0002 U		0.0002 U	0.043	0.042
East Former Mill East Former Mill	PZ-13 PZ-13	2/14/1997 8/27/1997	97-2100-R661A 97-15174-T609H	T D	N N		0.2 U 	0.05 U		0.001 U	0.006 U		0.005 U			0.005	0.17	0.02 U		0.004	0.0001 U 0.0003 U	0.01 U		0.05 U	0.003 U		0.05 U		0.005 U
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	Т	N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U			0.008	0.17	0.02 U		0.005		0.01 U		0.05 U	0.009 U		2 U		0.005 UJ
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	T	N N			0.0898		0.001 U		107 U	0.302			0.0353	16.4 U	0.004	95.9 U			0.0179	48.7 U	0.0022		128 U			0.013
East Shoreline East Shoreline	MW-59 MW-59	12/13/2002 6/19/2003	02-18619-FB89AO K2304594-006	D D	N			0.09 U 0.0633		0.002 U 0.00013	0.00038	119 U 115	0.324 U 0.166			0.031 U 0.0255	17.2 U	0.01 U 0.00178	109 U 95.9		2.02e-005	0.016 U 0.0106	48 U 45	0.005 U 0.0007 J	0.00078 J	131 U 102	1.3e-005 J		0.04 U 0.0258
East Shoreline	MW-59	6/19/2003	K2304594-006	T	N			0.0649		0.00012	0.0004	112	0.17			0.0274		0.00195	93.3		2.1e-005	0.0111	43.4	0.0007 J	0.00083 J	102	1.4e-005 J		0.0261
East Shoreline East Shoreline	MW-59 MW-59	8/27/2010 8/27/2010	MW-59_100827 MW-59_100827	D T	N N		0.0004 0.0005	0.018 0.0194	0.0096		0.0002 U 0.0002 U		0.02 0.02		0.0008	0.0199		0.002 0.003		1.08	2.02e-005 3.09e-005	0.0017 0.0032		0.0005 U 0.0005	0.0002 U 0.0002 U		0.0002 U 0.0002 U	0.0711	0.004 U 0.006
East Shoreline	MW-59	11/10/2010	MW-59_101110	Т	N			0.0255					0.028	0.01 UJ		0.0448		0.004		1.16	4.56e-005	0.0024			-		-		0.005
East Shoreline East Shoreline	MW-59 MW-59	2/10/2011 5/18/2011	MW-59_110210 MW-59-110518	D T	N N			0.0132								0.0088		0.001 U 0.002		0.981	2e-005 U 2.3e-005	0.0009							0.004 U 0.004 U
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	T	N		0.2 U	0.1 U		0.001 U	0.006 U		0.49			0.02	35.3	0.02 U		10.2	0.0005 U	0.01 U		0.08	0.003 U		0.05 U		0.007 U
East Shoreline East Shoreline	PZ-9 PZ-9	8/27/1997 8/27/1997	97-15176-T609J 97-15176-T609J	D T	N N		0.2 U	0.2 U		0.005 U	0.01 U		1.15			0.03	102	0.1 U		13.9	0.0003 U	0.05 U		0.3	0.02 U		2 U		0.02 UJ
East Shoreline	PZ-9	11/5/1997	97454185	Ť	N			0.0367	0.0741 J		0.00074 J	146 J	0.128		0.0029 J	0.015 J	6.37	0.002 J	49.8	3.46		0.0013 U	42.2 J		0.0008 U	135		0.696	0.0033 J
East Shoreline East Shoreline	PZ-9 PZ-9	11/5/1997 11/5/1997	97454185-2 97454185-3	T	N N	1.04	0.0048 U																						
East Shoreline	PZ-9	2/22/2001	01-2369-CU22G	Ť	N			0.023			0.002 U		0.067			0.019	72.4	0.003				0.01		0.05 U					0.032
East Shoreline East Shoreline	PZ-9 PZ-9	2/22/2001 8/21/2001	01-2375-CU22M PZ-9 010821	D D	N N			0.088		0.001 U	0.002 U		0.171 0.094			0.016	19.9	0.001 U 0.005 U				0.01 U 0.004		0.05 U 0.002 U					0.007 0.02 U
East Shoreline	PZ-9	8/21/2001	PZ-9_010821	T	N			0.078		0.001 U		121	0.16			0.0403	21.7	0.004	35.7			0.0062	21	0.0009		80.5			0.009
East Shoreline East Shoreline	PZ-9 PZ-9	12/13/2002 12/13/2002	02-18586-FB89N 02-18613-FB89AI	T D	N N			0.0269 0.0399 U		0.001 U 0.001 U		113 U 133 U	0.0977 0.141 U			0.0247 0.022 U	12.4 U	0.003 0.002 U	30.4 U 38.4 U			0.0056 0.005 U	25.1 U 26.3 U	0.0006 0.001 U		90.6 U 101 U			0.008 0.008 U
East Shoreline	PZ-9	6/19/2003	K2304594-005	D	FD			0.0175		6e-005	0.00011	86.2	0.0608			0.0145		0.00281	21.8		1.71e-005	0.00366	17.7	0.001 U	0.00018 J	62.2	2.4e-005 J		0.0093
East Shoreline East Shoreline	PZ-9 PZ-9	6/19/2003 6/19/2003	K2304594-005 K2304594-007	T D	FD N			0.0138 0.0146		5e-005 4e-005	9e-005 0.0001	73.3 79.7	0.0403 0.045	-		0.0164 0.0162		0.00101 0.00074	17.9 19.7		1.2e-005 1.65e-005	0.00312 0.00305	18.1 19.7	0.001 U 0.001 U	9e-005 J 0.00011 J	59 60.2	2e-005 J 1.3e-005 J		0.0073 0.0072
East Shoreline	PZ-9 PZ-9	6/19/2003	K2304594-007 K2304594-007	T	N			0.0146		4e-005 7e-005	0.0001	77.4	0.045			0.0162		0.00074	19.7		2.38e-005	0.00305	22.6	0.001 U	0.00011 J	69.3	1.8e-005 J		0.0072
East Shoreline East Shoreline	PZ-9 PZ-9	8/26/2010 8/26/2010	DUP-082610 DUP-082610	D T	FD FD		0.0002 0.0003	0.0115 0.0125	0.0154 0.0158		0.0002 U 0.0002 U		0.02 0.02		0.0009 0.001	0.0148 0.0198		0.001 U 0.002		2.55 2.45	2e-005 U 2.25e-005	0.0021 0.0024		0.0005 U 0.0006	0.0002 U 0.0002 U		0.0002 U 0.0002 U	0.0794 0.0767	0.004 U 0.004 U
East Shoreline	PZ-9 PZ-9	8/26/2010	PZ-9_100826	D	N		0.0003	0.0125	0.0158		0.0002 U		0.02		0.001	0.0198		0.002 0.001 U		2.45	2e-005 U	0.0024		0.0006	0.0002 U		0.0002 U	0.0767	0.004 U
East Shoreline East Shoreline	PZ-9 PZ-9	8/26/2010 11/10/2010	PZ-9_100826 PZ-9_101110	T D	N N		0.0003	0.012 0.0387	0.017		0.0002 U		0.021 0.16	 0.01 UJ	0.0009	0.0196 0.023		0.002 0.001		2.57 4.89	2.52e-005 0.0004 UI	0.0022 0.005		0.0007	0.0002 U		0.0002 U	0.0741	0.004 U 0.02
East Shoreline	PZ-9 PZ-9	2/8/2011	PZ-9_101110 PZ-9_110208	T	N			0.0387			-		U. 10 		-	0.023		0.001		2.63	2e-005 U	0.005		-	1 1		1		0.02
East Shoreline	PZ-9 PZ-9	5/20/2011	PZ-09-110520	T T	N FD			0.0082								0.01 0.0106		0.0007		2.72	2e-005 U	0.0016							0.004 U
East Shoreline Ennis Creek	PZ-9 MW-64	5/20/2011	PZ-09-110520D MW-64 101108	T	FD N			0.0086 0.0002 U					0.0006			0.0106		0.0008 0.001 U		0.0166 U	2e-005 U 2e-005 U	0.0016							0.004 U
Ennis Creek	MW-64	2/7/2011	MW-64_110207	T	N			0.0002 U								0.0019 0		0.001 U		0.0166 U	2e-005 U	0.0011							0.004 U
Ennis Creek Ennis Creek	MW-64 PZ-5	5/17/2011 2/13/1997	MW-64-110517 97-1959-R652D	T T	N N		0.2 U	0.0002 U 0.05 U		0.001 U	0.006 U		0.005 U			0.0016 0.002 U	3.51	0.0001 U		0.002	2e-005 U	0.0011 0.01 U		0.05	0.003 U		0.05 U		0.004 U 0.004 U
Ennis Creek	PZ-5	8/28/1997	97-1959-R652D 97-15169-T609C	D	N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U			0.002 U	2.28	0.02 U		0.614	0.0001 U	0.01 U		0.05 0.05 U	0.003 U		2 U		0.004 U
Ennis Creek Ennis Creek	PZ-5 PZ-5	2/22/2001 2/22/2001	01-2366-CU22D 01-2373-CU22K	T D	N N			0.005 0.002			0.002 U		0.038 0.005 U			0.078 0.002 U	43.5 2.09	0.02 0.001 U				0.05 0.01 U		0.05 U	-		-		0.092 0.006 U
Ennis Creek Ennis Creek	PZ-5 PZ-5	8/21/2001	01-2373-CU22K DN18G	D D	N			0.002		0.001 U	0.002 U		0.005 U			0.002 U 0.0005 U	2.09	0.001 U				0.0009		0.05 U					0.006 U 0.004 U
Ennis Creek	PZ-5	8/21/2001	DN18G	T	N			0.0033		0.001 U			0.0005 U			0.0006	1.81	0.001 U				0.001		0.0005 U	-		-		0.004 U
Ennis Creek Ennis Creek	PZ-5 PZ-5	12/12/2002 12/12/2002	02-18578-FB89F 02-18605-FB89AA	T D	N N			0.0024 U 0.0027 U		0.001 U 0.001 U		33.1 U 33 U	0.0005 U 0.0006 U			0.001 U 0.0008 U	2.17 U 2.08 U	0.001 U 0.001 U	12.2 U 12.4 U			0.0013 U 0.0011 U	2.69 U 2.84 U	0.0005 U 0.0005 U		17.4 U 18.7 U			0.004 U 0.004 U
Ennis Creek	PZ-5	6/18/2003	K2304556-001	D	N			0.0027		2e-005 U	1e-005 J	44.6	0.00028			0.001 U		2e-005 U	15.3		2.7e-006 J	0.00116	3.93	0.001 U	0.0001 U	22.1	2e-005 U		0.00106
Ennis Creek	PZ-5	6/18/2003	K2304556-001	Т	N			0.0027		2e-005 U	1e-005 J	41.9	0.00024			0.001 U		4e-005	14.1		2e-006 U	0.00158	3.58	0.0004 J	3e-005 J	21.8	2e-005 U		0.00119

				Para	meter Units	(mg/L)	(mg/L)	(mg/L)	(T/Sw)	(mg/L)	(T) Cadmium*	Calcium (T/Sm)	(Eg/L)	(T) Chromium, Hexavalent	Cobalt (mg/L)	*raddoO (mg/L)	uo <u>l</u> (mg/L)	*pead**	(mg/L)	(T) Manganese*	(mg/L)	*Ieyson Nicke (mg/L)	(mg/L)	Selenium*	(mg/L)	mnipos (mg/L)	(Eg/L)	(mg/L)	Ziuc (mg/L)
			MTCA Method B	GW Protective of Total (T) or	MSW	NL	0.64	0.005	NL	0.27	0.0088	NL	240**	0.05	NL	0.0024	NL	0.0081	NL	0.1	2.5e-005	0.0082	NL	0.071	0.0019	NL	0.00047	NL	0.081
Funct. Area Ennis Creek	Loc ID PZ-5	Date 6/18/2003	Sample ID K2304556-001D	Dissolved (D)	Type FD			0.0027		2e-005 U	2e-005 U	41.9	0.00031			0.001 U		4e-005	14.1			0.00169	3.64	0.001 U	2e-005 J	21.9	2e-005 U		0.00117
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827	D	N		0.0002 U	0.0026	0.0139		0.0002 U		0.0009		0.0007	0.0017		0.001 U		0.475	2e-005 U	0.0018		0.0005 U	0.0002 U		0.0002 U	0.0025	0.004 U
Ennis Creek Ennis Creek	PZ-5 PZ-6	8/27/2010 2/13/1997	PZ-5_100827 97-1958-R652C	T	N N		0.0002 U 0.2 U	0.0027 0.05 U	0.0139	0.001 U	0.0002 U 0.006 U		0.0011 0.005 U		0.0007	0.0019 0.002 U	0.02 U	0.001 U 0.02 U		0.487 0.364	2e-005 U 0.0001 U	0.0019 0.01 U		0.0005 U 0.05	0.0002 U 0.003 U		0.0002 U 0.05 U	0.0026	0.004 U 0.004 U
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	D	N																0.0003 U								
Ennis Creek Ennis Creek	PZ-6 PZ-6	8/28/1997 2/22/2001	97-15168-T609B 01-2346-CU21D	T	N N		0.2 U	0.05 U 0.001		0.001 U	0.006 U 0.002 U		0.005 U 0.009			0.002 U 0.028	0.02 U 7.09	0.02 U 0.002		0.672		0.01 U 0.01		0.05 U 0.05 U	0.009 U		2 U		0.02 0.022
Ennis Creek	PZ-6	2/22/2001	01-2355-CU21M	D	N			0.001 U			0.002 U		0.005 U			0.002 U	0.02 U	0.001 U				0.01 U		0.05 U					0.006 U
Ennis Creek Ennis Creek	PZ-6 PZ-6	8/23/2001 8/23/2001	01-14634-DN28B 01-14635-DN28C	T D	N N			0.0002 U 0.0002 U		0.001 U 0.001 U		40.2 41.4	0.0005 U 0.0005 U			0.0018	0.1 0.02 U	0.001 U 0.001 U	20.7			0.0029	1.1	0.0005 U 0.0005 U		24 25.6			0.004 U 0.004 U
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	Т	N			0.0002 U		0.001 U		33 U	0.0005 U			0.0017 U	0.05 U	0.001 U	18 U			0.0023 U	0.68 U	0.0005 U		21.5 U			0.004 U
Ennis Creek Ennis Creek	PZ-6 PZ-6	12/11/2002 6/18/2003	02-18600-FB89V K2304556-005	D D	N N			0.0004 U 0.0005 U		0.001 U 2e-005 U	4e-005	32.4 U 37.3	0.001 U 0.00016 J			0.0016 U 0.0007 J	0.05 U	0.001 U 2e-005 U	17.4 U 19.1		2e-006 U	0.0022 U 0.00223	0.87 U	0.001 U 0.001 U	0.0001 U	21.3 U 25.5	 5e-006 J		0.004 U 0.00125
Ennis Creek	PZ-6	6/18/2003	K2304556-005	T	N			0.0005 U		2e-005 U	4e-005	36.3	0.00035			0.001		4e-005	18.6		2.5e-006 J	0.00249	1.88 J	0.001 U	0.0001 U	24.9	6e-006 J		0.00128
Ennis Creek Ennis Creek	PZ-6 PZ-6	8/27/2010 8/27/2010	PZ-6_100827 PZ-6_100827	D T	N N		0.0002 U 0.001 U	0.0003	0.0121 1.42		0.0002 U 0.002		0.0005 U 0.66		0.0003	0.0022 0.698		0.001 U 0.05		0.108 8.14	2e-005 U 0.00127	0.0028 0.738		0.0005 U 0.002 U	0.0002 U 0.001		0.0002 U 0.0004	0.0014 0.95	0.004 U 0.81
Ennis Creek	PZ-6	11/9/2010	PZ-6_101109	Ť	N			0.0002					0.0005			0.0019 U		0.001 U		0.102	2e-005 U	0.0031							0.004 U
Ennis Creek Ennis Creek	PZ-6 PZ-6	2/8/2011 5/17/2011	PZ-6_110208 PZ-06-110517	T T	N Z			0.0016 0.0002								0.0132 0.0029		0.001 0.0001		0.13 0.272	2.31e-005 2e-005 U	0.0134 0.0029							0.018 0.004 U
Estuary	FR-1	8/22/2001	DN25B	D	N			0.0002		0.001 U			0.0005 U			0.0029 0.0005 U		0.0001 0.001 U		0.272	2e-005 U	0.0029		0.0005 U					0.004 0
Estuary	FR-1	8/22/2001	DN25B	T	N			0.0008		0.001 U			0.0005 U			0.0009	3.96 J	0.001				0.001		0.0005 U					
Estuary	MW-62	11/9/2010	MW-62_101109	D	N			0.008					0.001	-		0.0015		0.001 U		0.277	2e-005 U	0.0043							0.004 U
Estuary Estuary	MW-62 MW-62	2/10/2011 5/18/2011	MW-62_110210 MW-62-110518	D T	N N			0.003 0.0038								0.0018		0.001 U		0.106 0.0426	2e-005 U	0.0038							0.004 U
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	т	N		0.0114	0.0968			0.0004 U		0.77			0.038		0.007		8.2	0.0004 UI	0.063		0.003	0.0017		0.0004 U		0.086
Main Former Mill	GWG-2	11/1/2010	GWG-2-W	T	N			0.0017					0.0052			0.0029		0.001		1.38	2e-005 U	0.007							0.012
Main Former Mill Main Former Mill	GWG-3 GWG-4	11/1/2010 11/2/2010	GWG-3-W GWG-4-W	T	N N			0.003 0.0013					0.035 0.0047			0.0113 0.0072		0.009		3.26 0.529	2e-005 U 2.57e-005	0.0194							0.022
Main Former Mill	GWG-5	11/3/2010	GWG-5-W	T	N			0.0127					0.008			0.0568		0.051		0.0413	0.000397	0.0399							0.134
Main Former Mill Main Former Mill	MW-58 MW-58	12/13/2002 12/13/2002	02-18591-FB89S 02-18618-FB89AN	T D	N N			0.0045 0.0058 U		0.001 U 0.001 U		81.2 U 80.1 U	0.005 0.006 U			0.0023 0.0019 U	3.29 U 3.06 U	0.001 U 0.001 U	21.1 U			0.0029 0.0024 U	10.5 U 9.17 U	0.0005 U 0.0006 U		117 U 112 U			0.004 U
Main Former Mill	MW-58	6/18/2003	K2304556-002	D	N			0.0043		4e-005 U	8e-005	101	0.0056			0.001 U		0.0001	22.5		2.9e-006 J	0.00276	9.18	0.001 U	0.0002 U	127	4e-005 U		0.00403
Main Former Mill Main Former Mill	MW-58 MW-58	6/18/2003 8/27/2010	K2304556-002 MW-58 100827	T D	N N		0.0002 U	0.0042 0.0022	0.008	4e-005 U	6e-005 0.0002 U	100	0.0051		0.0004	0.0008 J 0.0015		0.00018 0.001 U	22.2	1.8	2.6e-006 J 2e-005 U	0.00287	8.82	0.0004 J 0.0005 U	0.0002 U 0.0002 U	125	1.2e-005 J 0.0002 U	0.0203	0.00381 0.004 U
Main Former Mill	MW-58	8/27/2010	MW-58_100827	T	N		0.0002	0.0022	0.0282		0.0002 U		0.003		0.006	0.0013		0.005		1.86	3.92e-005	0.002		0.0005	0.0002 U		0.0002 U	0.0203	0.004 0
Main Former Mill Main Former Mill	MW-58 MW-58	11/11/2010 2/11/2011	MW-58_101111 MW-58_110211	T	N Z			0.0021 0.0011					0.004			0.0033 U 0.0036		0.001 U 0.001 U		1.74	2e-005 U 2e-005 U	0.002							0.004 U 0.006
Main Former Mill	MW-58	5/19/2011	MW-58-110519	T	N			0.0011								0.0056		0.0003		1.26	2e-005 U	0.002							0.004 U
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W	T T	N			0.0038								0.0034		0.001		0.726	2e-005 U	0.0017							0.004 U
Main Former Mill Main Former Mill	MW-65 MW-66	5/18/2011 3/11/2011	MW-65-110518 MW-66-110311-W	T	N N			0.0036 0.0289								0.0012 0.0098		0.0003 0.002		0.746 3.3	2e-005 U 8e-005 UI	0.0012 0.0278							0.004 U 0.027
Main Former Mill	MW-66	5/18/2011	MW-66-110518	T	N			0.0116								0.0075		0.0008		2.44	2e-005 U	0.0082							0.008
Main Former Mill Main Former Mill	MW-69 PA-17	5/18/2011 2/11/2011	MW-69-110518 PA-17_110211	T T	N N			0.003 0.0051								0.0064 0.0007		0.0016 0.001 U		0.986 1.23	2e-005 U 2e-005 U	0.0018 0.0016							0.004 U 0.004 U
Main Former Mill	PA-17	5/17/2011	PA-17-110517	T	N			0.0059								0.0005 U		0.0001 U		1.49	2e-005 U	0.0013							0.004 U
Main Former Mill Main Former Mill	PIPE-1-SR23 PZ-4	1/7/2011 2/13/1997	PIPE-1-SR23 97-1960-R652E	D T	N N		0.0247 0.2 U	0.0511 0.05 U		0.001 U	0.0002 U 0.006 U		0.28 0.005 U			0.0144 0.002 U	30.1	0.03 0.02 U		1.23 7.36	0.0002 UI 0.0001 U	0.0179 0.01 U		0.001	0.0005 0.003 U		0.0002 U 0.05 U		0.01 0.004 U
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	D	N																0.0003 U								
Main Former Mill Main Former Mill	PZ-4 PZ-4	8/27/1997 11/5/1997	97-15173-T609G 97454184	T	N N	0.178 J	0.2 U 0.0048 U	0.05 U 0.0048 J	0.204	0.001 U	0.006 U 0.0013 J	 204 J	0.005 U 0.0354		0.0018 J	0.002 U 0.0101 J	34.7 36.3	0.02 U 0.0018 U	 59	6.8 7.23		0.01 U 0.0214 J	 34 J	0.05 U	0.009 U 0.0014 J	256	2 U	 0.0413 J	0.004 UJ 0.0668
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	T	N			0.004			0.002 U		0.005 U			0.002	20.1	0.003				0.01 U		0.05 U					0.006 U
Main Former Mill Main Former Mill	PZ-4 PZ-4	2/22/2001 8/21/2001	01-2370-CU22H DN18F	D D	N Z			0.003 0.0014		0.001 U	0.002 U		0.005 U 0.0027			0.002 U 0.0014	13.2	0.001 U 0.001 U				0.01 U 0.003		0.05 U 0.0007					0.006 U 0.006
Main Former Mill	PZ-4 PZ-4	8/21/2001	DN18F	T	N			0.0014	-	0.001 U			0.0027			0.0014	17.7	0.001				0.003	<u> </u>	0.0007					0.008
Main Former Mill	PZ-4 PZ-4	12/12/2002	02-18577-FB89E 02-18604-FB89Z	T D	N			0.0041 U 0.0043 U		0.001 U		268 U	0.0026 U			0.0028 U 0.0018 U	20.4 U	0.001 U	63.9 U			0.0099 U 0.0081 U	41.7 U	0.0009 U		174 U 178 U			0.004 U 0.004 U
Main Former Mill Main Former Mill	PZ-4 PZ-4	12/12/2002 6/17/2003	02-18604-FB89Z K2304497-004	D	N N			0.0043 U 0.0015		0.001 U 4e-005 U	8e-005	280 U	0.0033 U 0.00198			0.0018 U 0.0102	18.9 U	0.001 U 2e-005 U	56.5 U		7e-007 J	0.0081 U 0.00739	41.4 U	0.0008 U	2e-005 U	1/8 U 168	1e-005 U		0.004 U 0.00716
Main Former Mill	PZ-4	6/17/2003	K2304497-004	T	N			0.002		4e-005 U	0.00012	260	0.00298			0.0115		0.00016	63.5		1.1e-006	0.0104	39.2	0.0003 U	2e-005 U	160	1e-005 U		0.00756
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	D	N		0.0003	0.0031	0.038		0.0002 U		0.002		0.0008	0.0012		0.001 U		2.35	2e-005 U	0.0046		0.0006	0.0002 U		0.0002 U	0.0088	0.004 U

													_	ı, Hexavalent					ε	*•									
			MTCA Mashad D		ameter Units	(S) Aluminum	(T) Antimony	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/gm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	*pead* (mg/L)	(S Magnesiur	(L) Manganes	(mg/L)	*In wickel*	S Potassium	(mg/L)	(mg/L)	mnipos (mg/L)	(mg/L)	(S) Vanadium	(mg/L)
Funct, Area	Loc ID	Date	MTCA Method B	Total (T) or		NL	0.64	0.005	NL	0.27	0.0088	NL	240**	0.05	NL	0.0024	NL	0.0081	NL	0.1	2.5e-005	0.0082	NL	0.071	0.0019	NL	0.00047	NL	0.081
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	Dissolved (D)	Type N		0.0011	0.0097	0.312		0.0008		0.079		0.024	0.0802		0.04		5.53	6.85e-005	0.0957		0.0005 U	0.0002 U		0.0002 U	0.11	0.11
Main Former Mill Main Former Mill	PZ-4 PZ-4	11/9/2010 2/8/2011	PZ-4_101109 PZ-4_110208	D T	N N			0.0012 0.0016					0.0015			0.0008		0.001 U 0.001 U		1.74 2.14	2e-005 U 2e-005 U	0.0018 0.0076							0.004 U 0.004
Main Former Mill	PZ-4	5/17/2011	PZ-04-110517	T	N			0.001		1						0.003		0.0001		3.64	2e-005 U	0.007			I				0.004
North Shoreline North Shoreline	MW-51 MW-51	8/4/1998 2/22/2001	98-15871-Y129C 01-2351-CU21I	D T	N N		0.05 U	0.05 U 0.005		0.001 U	0.002 U 0.002 U		0.081 0.061			0.002 U 0.004	2.99 4.5	0.02 U 0.036		2.79		0.01 U 0.01 U		0.06	0.009 U		0.05 U		0.005 U 0.008
North Shoreline	MW-51	2/22/2001	01-2360-CU21R	D	N			0.003			0.002 U		0.066			0.002 U	1.54	0.002				0.01 U		0.05 U					0.006 U
North Shoreline North Shoreline	MW-51 MW-51	8/21/2001 8/21/2001	DN18C DN18C	D T	N N			0.004 0.0045		0.001 U 0.001 U			0.058 0.0492			0.003 0.0038	0.86	0.005 U 0.008				0.005 0.0049		0.002 U 0.002 U					0.02 U 0.009
North Shoreline North Shoreline	MW-51 MW-51	12/12/2002 12/12/2002	02-18580-FB89H 02-18607-FB89AC	T D	N N			0.004 U 0.0049 U		0.001 U 0.001 U		118 U 135 U	0.0529 U 0.061 U			0.0048 U 0.004 U	0.65 U 0.43 U	0.013 U 0.007 U	29.4 U			0.0056 U 0.005 U	17.6 U 19.8 U	0.002 U 0.001 U		175 U 182 U			0.006 U 0.008 U
North Shoreline	MW-51	6/18/2003	K2304556-003	D	N			0.0063		4e-005 U	0.00018	225	0.0576			0.0003 J		0.00274	64.3		1.05e-005	0.00659	23.7	0.001 U	0.00014 J	403	4e-005 U		0.0104
North Shoreline North Shoreline	MW-51 MW-51	6/18/2003 8/26/2010	K2304556-003 MW-51_100826	T D	N N		0.0005	0.0059	0.245	4e-005 U	0.00018 0.0002 U	224	0.0542 0.06		0.0009	0.0003 J 0.0052		0.00645 0.001	64	2.16	3.49e-005 2e-005 U	0.00685	23.9	0.001 U 0.002 U	0.00012 J 0.0002 U	400	4e-005 U 0.0002 U	0.198	0.00996
North Shoreline	MW-51	8/26/2010	MW-51_100826	T	N N		0.0005	0.0028	0.247		0.0002 U		0.06		0.001	0.0062		0.007		2.13	2e-005 U	0.0072		0.002 U	0.0002 U		0.0002 U	0.196	0.007
North Shoreline North Shoreline	MW-51 MW-51	11/10/2010 2/11/2011	MW-51_101110 MW-51_110211	T	N			0.004 0.002 U					0.056	0.01 UJ		0.0043 0.0038		0.006 0.002		1.67 3.12	2e-005 U 2e-005 U	0.0035 0.0054							0.005 0.005
North Shoreline North Shoreline	MW-51 MW-56	5/19/2011 2/22/2001	MW-51-110519 01-2365-CU22C	T	N N			0.0032 0.018			0.002 U		0.017			0.0046 0.013	1.81	0.004		1.65		0.01 U		0.05 U					0.008
North Shoreline	MW-56	2/22/2001	01-2303-CU22C 01-2372-CU22J	D	N			0.002			0.002 U		0.017 0.02 U		-	0.013	1.6	0.004 0.005 U				0.01 U		0.03 U					0.03 U
North Shoreline North Shoreline	MW-56 MW-56	8/22/2001 8/22/2001	DN25E DN25E	D T	N N			0.0124 0.0136		0.005 U 0.001 U			0.02 0.023			0.009 0.0272	 1.14 J	0.002 U 0.005				0.016 0.0199		0.002 0.002 U					0.008 U 0.009 J
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	T	N			0.0108		0.001 U		4.2 U	0.044			0.03	2.07 U	0.005	0.06 U			0.023	12.2 U	0.002		1000 U			0.02
North Shoreline North Shoreline	MW-56 MW-56	12/12/2002 6/19/2003	02-18612-FB89AH K2304594-008	D D	N N			0.012 U 0.0085 J		0.005 U 0.0005 U	0.00049 J	4.89 U 3.71	0.05 U 0.0367			0.027 U 0.0345	2.14 U	0.004 U 0.00407	0.25 U 0.0479		3.85e-005	0.023 U 0.0152	13.4 U 12.7	0.004 U 0.0005 J	0.00025 UJ	1090 U 979	0.0005 U		0.011 U 0.0111 J
North Shoreline	MW-56	6/19/2003	K2304594-008	Т	N N			0.0084 J		0.0005 U	0.0004 J	3.65	0.0342		0.00411	0.0379		0.00466	0.0963		2.91e-005	0.0162	12.1	0.0005 J	0.00025 UJ	974	0.0005 U		0.0122 J
North Shoreline North Shoreline	MW-56 MW-56	8/26/2010 8/26/2010	MW-56_100826 MW-56_100826	D T	N		0.0018 0.004 U	0.0029	0.0085 0.015		0.0002 U 0.004 U		0.02 U 0.03		0.004 U 0.002	0.0154 0.04		0.002 0.02 UI		0.02 U 0.06	2e-005 U 2.19e-005	0.0124		0.002 U 0.01 U	0.0002 U 0.004 UI		0.0002 U 0.004 UI	0.134 0.114	0.006 0.08 U
North Shoreline North Shoreline	MW-56 MW-56	11/9/2010 2/11/2011	MW-56_101109 MW-56_110211	D T	N N			0.003 0.0021					0.029			0.0124 0.028		0.001 0.004		0.007 0.005	2e-005 U 2e-005 U	0.0124 0.0124							0.006 0.007
North Shoreline	MW-56	5/18/2011	MW-56-110518	T	N			0.0021								0.0306					4.27e-005	0.0124							
NW Shoreline	MW-28	8/25/2010	MW-28_100825	D	N		0.0074	0.0011	0.0242		0.0002 U		0.0005 U		0.0002 U	0.0012		0.001 U		0.0288	2e-005 U	0.0014		0.001	0.0002 U		0.0002 U	0.0034	0.004 U
NW Shoreline NW Shoreline	MW-28 MW-28	8/25/2010 11/10/2010	MW-28_100825 MW-28_101110	T T	N N		0.0079	0.0016	0.0514		0.0002 U		0.0068 0.0017		0.0012	0.0132 0.0028		0.095 0.024		0.48	2.66e-005 2e-005 U	0.0211		0.0008	0.0002 U		0.0002 U	0.0217	0.02 0.005
NW Shoreline	MW-28	2/8/2011	MW-28_110208	D	N			0.0013								0.0015		0.001		0.0252	2e-005 U	0.0018							0.004 U
NW Shoreline NW Shoreline	MW-28 MW-52	5/20/2011 8/4/1998	MW-28-110520 98-15869-Y129A	T D	N N		0.05 U	0.0009 0.05 U		0.001 U	0.002 U		0.005 U			0.0017 0.002 U	0.82	0.0005 0.02 U		0.022 0.174	2e-005 U	0.0013 0.01 U		0.05 U	0.009 U		0.05 U		0.004 U 0.01 U
NW Shoreline NW Shoreline	MW-52 MW-52	2/22/2001 2/22/2001	01-2368-CU22F 01-2374-CU22L	T D	N N			0.004 0.002			0.002 U 0.002 U		0.005 U 0.005 U			0.005 0.002 U	1.31 0.02 U	0.006 0.001 U				0.01 U 0.01 U		0.05 U 0.05 U					0.013 0.006 U
NW Shoreline	MW-52	8/22/2001	DN25G	D	N			0.0017		0.001 U			0.0005 U			0.0005 U		0.001 U				0.0012		0.0005 U					
NW Shoreline NW Shoreline	MW-52 MW-52	8/22/2001 12/12/2002	DN25G 02-18581-FB89I	T T	N N			0.0017 0.002 U		0.001 U 0.001 U		38.2 U	0.0005 U 0.0005 U			0.0007 0.0011 U	0.13 J 0.26 U	0.001 U 0.001 U	22.8 U			0.0014 0.0012 U	3.51 U	0.0005 U 0.0005 U		 16.3 U			0.011 U
NW Shoreline	MW-52	12/12/2002	02-18608-FB89AD	D	N			0.0021 U		0.001 U		38.7 U	0.0005 U			0.0008 U	0.13 U	0.001 U	22.9 U			0.0007 U	3.85 U	0.0005 U		16.4 U			0.004 U
NW Shoreline NW Shoreline	MW-52 MW-52	6/16/2003 6/16/2003	K2304466-002 K2304466-002	D T	N N			0.0017 0.0019		2e-005 U 2e-005 U	2e-005 2e-005 J	39.4 38.3	0.00044 0.00043			0.00059 0.00047 J		2e-005 U 0.00014	22.7 21.8		9e-007 J 2e-006	0.00197 0.00238	3.34 2.76	0.001 U 0.001 U	2e-005 U 1e-005 J	17.8 17	2e-005 U 2e-005 U		0.00281 0.0005
NW Shoreline NW Shoreline	MW-52 MW-52	8/25/2010 11/8/2010	MW-52_100825 MW-52_101108	T T	N N		0.0002 U	0.0022 0.003	0.0082		0.0002 U		0.0005 U 0.001 U		0.0006	0.0005 0.0005 U		0.001 U 0.001 U		0.76 0.314	2e-005 U 2e-005 U	0.0014 0.001		0.0005 U	0.0002 U		0.0002 U	0.0012	0.004 U 0.004 U
NW Shoreline	MW-52	2/9/2011	MW-52_110209	T	N			0.003		-						0.0005 0		0.001 U		0.251	2e-005 U	0.001						-	0.004 0
NW Shoreline NW Shoreline	MW-52 MW-53	5/17/2011 2/21/2001	MW-52-110517 01-2275-CU06A	T	Z Z			0.003 U			0.002 U		0.005 U			0.007	1.59	0.007		0.36		0.01 U		0.05 U					0.006
NW Shoreline	MW-53	2/22/2001	01-2361-CU21S	D	N			0.004			0.002 U		0.005 U			0.002 U	0.1	0.001 U				0.01 U		0.05 U					0.01
NW Shoreline NW Shoreline	MW-53 MW-53	8/21/2001 8/21/2001	DN18A DN18A	D T	N N			0.0018 0.0022		0.001 U 0.001 U			0.0005 U 0.0017			0.0015 0.0057	1.43	0.001 U 0.005				0.0009 0.0026		0.0008					0.004 U 0.006
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	T	N			0.0021 U		0.001 U		30.2 U	0.0016 U			0.0034 U	1.27 U	0.003 U	10.2 U			0.0026 U	45.5 U	0.001 U		206 U			0.004 U
NW Shoreline NW Shoreline	MW-53 MW-53	12/12/2002 6/16/2003	02-18609-FB89AE K2304466-003	D D	N N			0.0022 U 0.0025		0.001 U 4e-005 U	0.00077	34.4 U 30.8	0.0005 U 0.0009			0.0012 U 0.00367	0.45 U	0.001 U 0.0006	11.2 U 10.1		1.1e-006	0.0013 U 0.00201	44.9 U 43	0.0019 U 0.001 U	4e-005 U	212 U 186	4e-005 U		0.004 U 0.00473
NW Shoreline NW Shoreline	MW-53 MW-53	6/16/2003 6/16/2003	K2304466-003 K2304466-003D	T	N FD			0.0041 0.0039		5e-005 4e-005	0.00014 0.00013	31.1 31.4	0.00367 0.00361			0.0126 0.0122		0.00383 0.00344	10.4 10.6		1.44e-005	0.00638 0.00621	42 41.4	0.001 U 0.001 U	4e-005 J 5e-005	186 187	2.5e-005 J 2.1e-005 J		0.0103 0.00992
NW Shoreline	MW-53	8/26/2010	MW-53_100826	D	N		0.0002 U	0.0039	0.049	46-003	0.00013 0.0002 U	31.4	0.00361 0.0005 U		0.0002	0.0009		0.00344 0.001 U		1.19	2e-005 U	0.00621		0.0010	0.0002 U		0.0002 U	0.0013	0.00992 0.004 U

															Hexavalent						**									
						ameter Units	(Eg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Cadmium*	(J/gm)	(mg/L)	(T/Sw)	(mg/L)	*Copper*	ug/L)	*p Pead (mg/L)	S Magnesium	(mg/L)	(mg/L)	*Ing/L)	(T) Potassium	(mg/L)	(mg/L)	mnipos (mg/L)	(mg/L)	(mg/L)	Z Zinc
				MTCA Method B	GW Protective of Total (T) or	f MSW	NL	0.64	0.005	NL	0.27	0.0088	NL	240**	0.05	NL	0.0024	NL	0.0081	NL	0.1	2.5e-005	0.0082	NL	0.071	0.0019	NL	0.00047	NL	0.081
	nct. Area horeline	Loc ID MW-53	Date 8/26/2010	Sample ID MW-53 100826	Dissolved (D)	Type N		0.0002 U	0.0018	0.0495		0.0002 U		0.0005 U		0.0003	0.0017		0.001 U		1.21	2e-005 U	0.0015		0.0005 U	0.0002 U		0.0002 U	0.0018	0.004 U
NW S	horeline	MW-53 MW-53	2/11/2011 5/18/2011	MW-53_110211 MW-53-110518	T	N N			0.001								0.001		0.001 U		1.1	2e-005 U	0.001					-		0.004 U
NW S	horeline	MW-61	11/11/2010	MW-61_101111	T	N			0.0004				-	0.0005 U			0.0013 0.001 U		0.001 U		0.521	2e-005 U	0.0011							0.004 U
	horeline	MW-61 MW-61	2/11/2011 5/18/2011	MW-61_110211 MW-61-110518	T	N N			0.0005								0.001		0.001 U		0.69 0.532	2e-005 U	0.0024							0.004 U
NW S	horeline	MW-67	3/11/2011	MW-67-110311-W	T	N			0.0004								0.0014		0.001		0.161	2e-005 U	0.002							0.004 U
	horeline	MW-67 PZ-1	5/18/2011 8/22/2001	MW-67-110518 DN25C	T D	N FD			0.0004 0.0029		0.001 U			0.0005 U			0.0018 0.0009		0.0002 0.001 U		0.12	2e-005 U	0.0012 0.0033		0.0006					0.004 U
	horeline horeline	PZ-1 PZ-2	8/22/2001 2/13/1997	DN25C 97-1957-R652B	T	FD N		 0.2 U	0.0029 0.05 U		0.001 U 0.001 U	0.006 U		0.0005 U 0.005 U			0.001 0.002 U	0.03 J 0.02 U	0.003 J 0.02 U		0.002	0.0001 U	0.003 0.01 U		0.0005 U 0.05 U	0.003 U		0.05 U		0.004 U
NW S	horeline	PZ-2	8/27/1997	97-15172-T609F	D	N																0.0003 U								
	horeline	PZ-2 PZ-2	8/27/1997 11/5/1997	97-15172-T609F 97454182	T	N N	0.632	0.2 U 0.0077 J	0.05 U 0.0041 U	 0.0108 J	0.001 U	0.006 U 0.0003 U	10.4 J	0.005 U 0.0007 U		0.0011 U	0.002 U 0.0029 J	0.02 U 0.125	0.02 U 0.0018 U	1.5 J	0.003 U 0.0099 J		0.01 U 0.0013 U	33.5 J	0.05 U	0.009 U 0.0008 U	76.9	2 U	0.0052 J	0.006 U 0.0028 J
NW S	horeline horeline	PZ-2 PZ-2	8/25/2010 11/11/2010	PZ-2_100825 PZ-2_101111	T T	N N		0.0003	0.0004 0.0005	0.039		0.0002 U		0.0008 0.0007		0.0005 U	0.0016 0.0016 U		0.001 U 0.001 U		0.23 0.204	2e-005 U 2e-005 U	0.0026 0.0024		0.0005 U	0.0002 U		0.0002 U	0.0015	0.004 U 0.004 U
Prefal		PZ-2 PZ-7	2/14/1997	97-2102-R661C	T	N		0.2 U	0.0005 0.05 U		0.001 U	0.006 U		0.0007 0.005 U			0.0016 0	0.05	0.001 U		2.26	0.0001 U	0.0024 0.01 U		0.05	0.003 U		0.05 U		0.004 U
Prefal	b	PZ-7	8/27/1997	97-15177-T609K	D	N																0.0003 U								
Prefal Prefal		PZ-7 PZ-7	8/27/1997 11/5/1997	97-15177-T609K 97454189	T	N N	0.564	0.2 U 0.0048 U	0.05 U 0.0044 J	 0.0135 J	0.001 U	0.006 U 0.00047 J	26 J	0.005 U 0.0035 J		 0.0019 J	0.014 0.0206 J	0.46 1.43	0.02 U 0.0018 U	13.7	1.55 0.585		0.01 U 0.0076 J	3.25 J	0.05 U	0.009 U 0.0008 U	47.6	2 U	0.0257 J	0.006 UJ 0.0132 J
Prefal		PZ-7	2/22/2001	01-2347-CU21E	T	N			0.003			0.002 U		0.018			0.048	15	0.001 U				0.03		0.06					0.041
Prefal Prefal		PZ-7 PZ-7	2/22/2001 12/12/2002	01-2357-CU21O 02-18579-FB89G	D T	N N			0.001 U 0.0013 U		0.001 U	0.002 U	 65.5 U	0.005 U 0.0037 U			0.003 0.0138 U	0.02 U 3.39 U	0.001 U 0.001 U	36 U			0.01 U 0.0088 U	4.37 U	0.05 U 0.0006 U		 58.6 U			0.006 U 0.008 U
Prefal Prefal		PZ-7 PZ-7	12/12/2002 6/19/2003	02-18606-FB89AB K2304594-010	D D	N N			0.0014 U 0.0007 J		0.001 U 4e-005 U	0.00022	67.2 U 78.1	0.0017 U 0.00114	-		0.0065 U 0.00541	0.62 U	0.001 U 0.00013	36.9 U 43.9			0.0037 U 0.00727	4.23 U 5.03	0.0009 U 0.001 U	 2e-005 UJ	58.9 U 66.3	 4e-005 U		0.004 U 0.0144
Prefal		PZ-7	6/19/2003	K2304594-010	Т	N			0.0007 J		4e-005 U	0.00022	70.7	0.00058			0.00341		5e-005	39.6			0.00727	4.14	0.001 U	2e-005 UJ	61.8	4e-005 U		0.0144
Prefal		PZ-7 PZ-7	8/27/2010 11/10/2010	PZ-7_100827 PZ-7_101110	T	N N		0.0002 U	0.0121	0.271		0.0003		0.131 0.0005 U	 0.01 UJ	0.06	0.2		0.014 0.001 U		3.6 0.0376	0.000216 2e-005 U	0.145 0.0026		0.0007	0.0003		0.0002 U	0.34	0.153 0.004 U
Prefal	b	PZ-7	2/8/2011	PZ-7_110208	T	N			0.0008						-		0.0056		0.001 U		0.0326	2e-005 U	0.0034		-					0.004 U
Prefal		PZ-7	5/17/2011	PZ-07-110517	T	N			0.0008								0.0062	400.1	0.0001 U		0.05	2e-005 U	0.004							0.004 U
	Former Mill Former Mill	MW-19 MW-19	2/22/2001 2/22/2001	01-2345-CU21C 01-2354-CU21L	D	N N			0.002 0.002			0.002 U 0.002 U		0.005 U 0.005 U			0.002 U 0.002 U	4.38 J 5.2 J	0.001 U 0.001 U				0.01 U 0.01 U		0.05 U 0.05 U					0.006 U 0.006 U
	Former Mill Former Mill	MW-19 MW-19	8/22/2001 8/22/2001	DN25I DN25I	D T	N N			0.0027		0.001 U 0.001 U			0.0019 0.0062			0.002	 3.12 J	0.001 U 0.004				0.0015 0.0028		0.0006					0.004 0.038 J
West	Former Mill	MW-20	9/2/1997	97-15361-T609N	D	N												-				0.0003 U								
	Former Mill Former Mill	MW-20 MW-23	9/2/1997	97-15361-T609N 97-19428-U167A	T D	N N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U			0.002 U	0.09	0.02 U		0.339	0.0003 U	0.01 U		0.05 U	0.009 U		2 U		0.004 UJ
West	Former Mill	MW-23	10/15/1997	97-19428-U167A	Т	N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U			0.002 U	0.02 U	0.02 U		0.265		0.01 U		0.05 U	0.009 U		2 U		0.004 U
	Former Mill Former Mill	MW-23 MW-23	2/22/2001 2/22/2001	01-2364-CU22B 01-2371-CU22I	T D	N N			0.001 U 0.001 U			0.002 U 0.002 U		0.005 U 0.005 U			0.002 U 0.002 U	0.09 J 0.16 J	0.001 U 0.001 U				0.01 U 0.01 U		0.05 0.07					0.006 U 0.006 U
	Former Mill Former Mill	MW-23 MW-23	8/21/2001 8/21/2001	DN18E DN18E	D T	N N			0.0004 0.0005		0.001 U 0.001 U			0.0027 0.0068			0.0008	0.16	0.001 U 0.001 U				0.0018 0.0022		0.0005 U					0.004 U 0.004 U
West	Former Mill	MW-23	12/13/2002	02-18589-FB89Q	T	N			0.002		0.001 U		38.2 U	0.014			0.0025	0.05 U	0.001	40.8 U			0.0188	23.8 U	0.0006		127 U			0.033
	Former Mill Former Mill	MW-23 MW-23	12/13/2002 6/16/2003	02-18616-FB89AL K2304466-001	D D	N N			0.0021 U 0.0029		0.001 U 4e-005 U	0.00025	37.6 U 61.7	0.0084 U 0.00617	-		0.0016 U 0.00062	0.05 U	0.001 U 0.00015	39.7 U 22.8		8.8e-006	0.002 U 0.00414	21.6 U 29.1	0.0008 U 0.0006 J	 4e-005 U	123 U 164	4e-005 U		0.004 U 0.00216
West	Former Mill	MW-23	6/16/2003	K2304466-001	Т	N			0.0032		4e-005 U	0.00023	62.1	0.00532			0.00214		0.00032	21.2		1.43e-005	0.0044	28.1	0.0004 J	4e-005 J	163	4e-005 U		0.00553
	Former Mill Former Mill	MW-23 MW-23	8/25/2010 8/25/2010	MW-23_100825 MW-23_100825	D T	N N		0.0003 0.0004	0.0014 0.0015	0.0068 0.0081		0.0002 U 0.0002 U		0.0008 0.0064		0.0002 U 0.0002 U	0.0014 0.0023		0.001 U 0.001 U		0.21	2e-005 U 2e-005 U	0.0031 0.0029		0.0005 U 0.0005 U	0.0002 U 0.0002 U		0.0002 U 0.0002 U	0.0032 0.0042	0.004 U 0.004 U
West	Former Mill	MW-23 MW-23	11/10/2010	MW-23_101110 MW-23_110209	T	N N			0.0019					0.012			0.002		0.001 U		0.197	2e-005 U 2e-005 U	0.0026							0.004 U 0.004 U
	Former Mill	MW-23	2/9/2011	MW-23_110209D	T	FD			0.0017 0.0016								0.0016 0.0015		0.001 U 0.001 U		0.207 0.197	2e-005 U	0.0034 0.0037					1		0.004 U
	Former Mill Former Mill	MW-23 MW-29	5/19/2011 9/2/1997	MW-23-110519 97-15362-T609O	T D	N N															0.187	0.0003 U								
West	Former Mill	MW-29	9/2/1997	97-15362-T609O	Т	N		0.2 U	0.2 U		0.001 U	0.006 U		0.02 U			0.006 U	0.02 U	0.06 U		0.003 U		0.03 U		0.2 U	0.009 U		2 U		0.01 U
	Former Mill Former Mill	MW-29 MW-29	6/17/2003 6/17/2003	K2304497-006 K2304497-006	D T	N N			0.0013 0.0014		4e-005 U 4e-005 U	7e-005 9e-005	9.54 10.7	0.00068 0.00146			0.0067 0.00799		0.00169 0.00587	13.1 15.6		1.85e-005 3.62e-005	0.0025 0.00488	90.6 90.5	0.0003 U 0.0003 U	2e-005 U 2e-005 U	162 156	1e-005 U 1e-005 U		0.00741 0.0156
West	Former Mill	MW-29	8/25/2010	MW-29_100825	T	N		0.0025	0.0014	0.076		0.0002 U		0.0073		0.0022	0.021		0.056		0.36	0.000164	0.0464		0.0005 U	0.0002 U		0.0002 U	0.066	0.021
	Former Mill Former Mill	MW-29 MW-29	11/11/2010 2/8/2011	MW-29_101111 MW-29_110208	T D	N N			0.0006 0.0005					0.0005 U			0.0127 0.001		0.001 U 0.001 U		0.0031 U 0.0025	2e-005 U 2e-005 U	0.0013 0.0011							0.004 U 0.004 U

								ı			1			1		1		1	1	1	1						1		
														lent														 	
														xava														ļ 	
						_	_			_	*_		E	μ Έ					Ē	*es			E	*_			_	ا	
						in	non	nic*	Ē	E E	ie Ei	돌	Ē	ığ.	=	*_		*	esiu	yane	ury*	*	ssiur	mnic	Ł	Ę	in m*	di E	
				Para	meter	Alum	Antir	Arse	Barit	Berylli	Cadr	Calci	S S	5 2	Š	Sopi	<u>ro</u>	Lead	Magı	Mang	Merc	Ni CK	Pota	Selei	Silve	Sodi	Thalliu	Vana	Zinc
			MTOAMALAAD		Units	(mg/L)	(mg/L) 0.64	(mg/L) 0.005	(mg/L)	(mg/L) 0.27	(mg/L) 0.0088	(mg/L)	(mg/L) 240**	(mg/L)	(mg/L)	(mg/L) 0.0024	(mg/L)	(mg/L) 0.0081	(mg/L)	(mg/L)	(mg/L) 2.5e-005	(mg/L) 0.0082	(mg/L)	(mg/L) 0.071	(mg/L) 0.0019	(mg/L)	(mg/L) 0.00047	(mg/L)	(mg/L)
			MTCA Method B	GW Protective of Total (T) or	MSW	NL	0.64	0.005	NL	0.27	0.0088	NL	240***	0.05	NL	0.0024	NL	0.0081	NL	0.1	2.50-005	0.0082	NL	0.071	0.0019	NL	0.00047	NL	0.081
Funct. Area	Loc ID MW-29	Date 5/20/2011	Sample ID MW-29-110520	Dissolved (D)	Туре			0.0005								0.0044		0.0004		0.0004	2- 005 11	0.0045						j	0.004 U
West Former Mill West Former Mill	MW-54	2/21/2001	01-2276-CU06B	Ť	N N			0.0005 0.001			0.004 U		0.01 U			0.0011 0.004 U	6.31	0.0004 0.001 U		0.0031	2e-005 U	0.0015 0.02 U		0.2					0.004 U
West Former Mill West Former Mill	MW-54 MW-54	2/22/2001 8/22/2001	01-2376-CU22N DN25H	D D	N N			0.002 U 0.01 U		0.002 U	0.004 U		0.01 U 0.01 U			0.004 U 0.01 U	2.29	0.02 U				0.02 U 0.01		0.1 0.04 U					0.01 U 0.08 U
West Former Mill	MW-54	8/22/2001	DN25H	T	N			0.005 U		0.002 U			0.01 U			0.01 U	9.83 J	0.02 U				0.01		0.04					
West Former Mill West Former Mill	MW-54 MW-54	12/12/2002 12/12/2002	02-18583-FB89K 02-18610-FB89AF	T D	N			0.002 U 0.005 U		0.005 U 0.005 U		392 U 403 U	0.005 U 0.011 U			0.009 U 0.008 U	2.88 U 2.77 U	0.01 U	1140 U 1150 U			0.015 U 0.019 U	370 U 341 U	0.005 U 0.02 U		8950 U 9050 U			0.04 U 0.04 U
West Former Mill	MW-54	6/17/2003	K2304497-001	D	N				-	U.UUS U						0.008 0	2.77 U							0.02 U				-	
West Former Mill West Former Mill	MW-54 MW-54	6/17/2003 6/17/2003	K2304497-001 K2304497-001DISS	T D	N			0.0002 U 0.0007 J		1e-005 U	3e-005 U	380 401	0.0008 U 0.0008 U			0.0009		0.00022 J	1020 1080		7e-007 J	0.0017	325		0.0002	8550	2e-005 U 2e-005 U		0.0012 J 0.0008 U
West Former Mill	MW-54	6/17/2003	K2304497-001DISS K2304497-001DISS	T	N			0.0007 J			3e-005 U	401				0.0009		0.00017 J	1080			0.0016	329	0.0003 U	0.00015	8610			
West Former Mill	MW-54	8/26/2010	MW-54_100826	T	N N		0.004 U	0.01 UI 0.002	0.094		0.004 U		0.01 U 0.004		0.0016	0.01		0.02 UI		1.12	2e-005 U	0.01		0.05 U	0.004 UI		0.004 UI	0.002 U	0.08 U
West Former Mill West Former Mill	MW-54 MW-54	11/11/2010 2/10/2011	MW-54_101111 MW-54_110210	T	N			0.002					0.004			0.007		0.01 UI 0.01 UI		1.12 0.843	2e-005 U 2e-005 U	0.015 0.01							0.02 U 0.04 U
West Former Mill	MW-54	5/18/2011	MW-54-110518	T	N			0.006								0.005 UI		0.001 U		0.86	2e-005 U	0.007							0.04 U
West Former Mill West Former Mill	MW-55 MW-55	2/21/2001 2/22/2001	01-2277-CU06C 01-2377-CU22O	D	N N			0.002 0.003			0.002 U 0.002 U		0.005 U 0.005 U			0.002 U 0.002 U	0.64 0.73	0.001 U 0.005 U				0.01 U 0.01 U		0.05 U 0.05 U					0.006 U 0.006 U
West Former Mill	MW-55	8/22/2001	DN25F	D	N			0.01 U		0.002 U			0.01 U			0.01 U		0.02 U				0.01		0.04 U					0.08 U
West Former Mill West Former Mill	MW-55 MW-55	8/22/2001 12/12/2002	DN25F 02-18584-FB89L	T	N N			0.01 U 0.002 U		0.002 U 0.005 U		361 U	0.01 U 0.005 U			0.01 U 0.008 U	2.97 J 0.28 U	0.03 0.01 U	968 U			0.01 0.013 U	315 U	0.05 U 0.005 U		7140 U			0.04 U
West Former Mill	MW-55	12/12/2002	02-18611-FB89AG	D	N			0.005 U		0.005 U		389 U	0.005 U			0.006 U	0.0002 U	0.01 U	992 U			0.01 U	292 U	0.02 U		7520 U			0.04 U
West Former Mill West Former Mill	MW-55 MW-55	6/18/2003 6/18/2003	K2304556-004 K2304556-004	D T	N N			0.002 U 0.0003 J		8e-005 U 4e-005 J	8e-005 U 4e-005 J	425 424	0.0008 U 0.0042			0.0009 0.0124		0.00044 J 0.0279	1030		2e-006 U	0.0011 0.0043	298 287	0.001 U 0.001 U	0.00011	8600 8520	0.0008 U 0.0008 U		0.002 U 0.0152
West Former Mill	MW-55	8/26/2010	MW-55_100826	T	N		0.004 U	0.01 UI	0.103		0.004 U		0.01 U		0.0015	0.01		0.02 UI		0.28	2e-005 U	0.02		0.04 U	0.004 UI		0.004 UI	0.004 U	0.08 U
West Former Mill West Former Mill	MW-55 MW-55	11/8/2010 2/10/2011	MW-55_101108 MW-55_110210	T	N N			0.002 0.012					0.01 U			0.008 U 0.009		0.01 UI 0.01 UI		0.18 U 0.159	2e-005 U	0.014 0.012							0.04 U 0.04 U
West Former Mill	MW-55	5/19/2011	MW-55-110519	Ť	N			0.005								0.006		0.001 U		0.168	2e-005 U	0.012							0.04 U
West Former Mill West Former Mill	MW-57	12/13/2002 12/13/2002	02-18590-FB89R 02-18617-FB89AM	T D	N N			0.0033 0.0032 U		0.001 U 0.001 U		165 U	0.0334 0.0322 U			0.0097 0.0059 U	3.26 U 1.68 U	0.001 0.001 U	50.2 U 47.3 U			0.0099 0.0059 U	49 U 43.5 U	0.0011 0.0012 U		329 U 310 U			0.013 0.004 U
West Former Mill	MW-57	6/17/2003	K2304497-007	D	N			0.0026		4e-005 U	0.00012	127	0.0097			0.0136		3e-005 J	26.3		3.71e-005	0.00733	67.5	0.0003 U	2e-005 U	310	1e-005 U		0.0192
West Former Mill West Former Mill	MW-57 MW-57	6/17/2003 8/26/2010	K2304497-007 MW-57 100826	T D	N N		0.0003	0.0029 0.0012	0.016	4e-005 U	0.00021	131	0.00781		0.0015	0.014 0.0039		0.00012 0.001 U	27.1	0.68	3.59e-005 4.35e-005	0.00776 0.0246	71	0.0003 U 0.0007	2e-005 U 0.0002 U	329	1e-005 U 0.0002 U	0.0276	0.0332 0.075
West Former Mill	MW-57	8/26/2010	MW-57_100826	T	N		0.0004	0.0017	0.0182		0.0005		0.008		0.0019	0.0087		0.001 U		0.73	7.24e-005	0.0261		0.0007	0.0002 U		0.0002 U	0.0342	0.097
West Former Mill West Former Mill	MW-57 MW-57	11/8/2010 2/11/2011	MW-57_101108 MW-57_110211	T D	N N			0.0029 0.001					0.017			0.0061 U 0.0031		0.001 U 0.001 U		0.359 0.853	9.08e-005 2e-005 U	0.0122							0.035 0.115
West Former Mill	MW-57	5/20/2011	MW-57-110520	T	N			0.0009								0.0029		0.0001 U		0.724	2e-005 U	0.016							0.054
West Former Mill West Former Mill	MW-60 MW-60	11/11/2010 2/9/2011	MW-60_101111 MW-60_110209	T	N N			0.0118 0.0081					0.0032			0.0074 U 0.0153		0.003 0.003		4.34	2e-005 U 2e-005 U	0.0089 0.0122							0.059 0.07
West Former Mill	MW-60	5/19/2011	MW-60-110519	T	N			0.0081								0.0063		0.003		1.48	2e-005 U	0.0122							0.07
West Former Mill West Former Mill	MW-63 MW-63	2/8/2011 5/20/2011	MW-63_110208 MW-63-110520	D T	N N			0.0009 0.0012								0.0012 0.0022		0.001 U		2.09 2.98	2e-005 U 2e-005 U	0.0019 0.0021							0.004 U 0.004 U
West Former Mill	MW-68	6/7/2011	MW-68-110607	T	N			0.0012								0.0694		0.0002		0.416	2e-005 U	0.004							0.004 0
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	T D	N N		0.2 U	0.05 U		0.001 U	0.006 U		0.005 U 0.005 U			0.002 U	0.47	0.02 U		2.73	0.0001 U	0.01 U		0.05	0.003 U		0.05 U		0.004 U
West Former Mill West Former Mill	PZ-3 PZ-3	8/28/1997 11/5/1997	97-15167-T609A 97454183	T	N	0.114 J	0.2 U 0.0048 U	0.05 U 0.0041 U	0.0349 J	0.001 U	0.006 U 0.0003 U	97.5 J	0.005 U 0.0015 J		0.0011 U	0.003 U 0.0096 J	0.89 0.531	0.02 U 0.0018 U	19.4	0.443 1.64	0.0003 U	0.01 U 0.0067 J	16.8 J	0.05 U	0.009 U 0.0008 U	58	2 U 	0.0142 J	0.005 UJ 0.0182 J
West Former Mill	PZ-3	2/22/2001	CU21A	D T	N			0.001 U					0.005 U			0.002 U		0.001 U				0.01 U		0.06					0.006 U
West Former Mill West Former Mill	PZ-3 PZ-3	2/22/2001 8/21/2001	CU21A DN18B	T D	N N			0.001 U 0.0006		0.001 U			0.005 U 0.0021			0.003 J 0.0028	0.67 J	0.001 UJ 0.001 U				0.01 U 0.0064		0.05 0.0015					0.006 U 0.006
West Former Mill	PZ-3	8/21/2001	DN18B	T	N			0.0006		0.001 U			0.0018			0.0053	1.38	0.001 U	40.011			0.0064	40.01	0.0013					0.007
West Former Mill West Former Mill	PZ-3 PZ-3	12/12/2002 12/12/2002	02-18576-FB89D 02-18603-FB89Y	T D	N N			0.0007 U 0.0006 U		0.001 U 0.001 U		220 U 230 U	0.0025 U 0.0041 U			0.0081 U 0.0022 U	2.99 U 2.46 U	0.002 U 0.001 U	46.9 U 49.6 U			0.0084 U 0.0079 U	48.3 U 48.7 U	0.0013 U 0.0014 U		258 U 264 U			0.012 U 0.008 U
West Former Mill	PZ-3	6/17/2003	K2304497-002	D	N			0.0007 J		4e-005 U	0.00011	241	0.00285			0.012		6e-005	62.2		3.3e-006	0.0125	50.4	0.0003 U	2e-005 U	359	2.4e-005 J		0.0125
West Former Mill West Former Mill	PZ-3 PZ-3	6/17/2003 8/26/2010	K2304497-002 PZ-3 100826	T D	N		0.0002 U	0.0023 0.0005	0.0262	7e-005	0.00017 0.0002 U	227	0.00352		0.0004	0.0218 0.0018		0.0034 0.001 U	58.4	1.3	9.25e-005 2e-005 U	0.0117	51.4	0.0003 U 0.0009	2e-005 U 0.0002 U	348	1.9e-005 J 0.0002 U	0.0111	0.0153 0.004 U
West Former Mill	PZ-3	8/26/2010	PZ-3_100826	T	N		0.0002 U	0.0006	0.0261		0.0002 U		0.0023		0.0004	0.0122		0.004		1.21	6.87e-005	0.0053		0.0007	0.0002 U		0.0002 U	0.014	0.007
West Former Mill West Former Mill	PZ-3 PZ-3	11/9/2010 2/10/2011	PZ-3_101109 PZ-3_110210	D T	N N			0.0004					0.0013			0.0018 0.0056		0.001 U 0.001 U		1.3	2e-005 U 2e-005 U	0.004							0.004 U 0.01
West Former Mill	PZ-3	5/19/2011	PZ-03-110519	Ť	N			0.0004								0.0089		0.0008		1.01	3.56e-005	0.0101							0.009

^{**}Screening level for trivalent chromium - there is no established screening level for total chromium. The lack of hexavalent chromium detections in groundwater suggests that hexavalent chromium is not present.

		ATCA Method	Para B GW Protective of	ameter Units	0.00 (-)√4,4'-DDD*	0.00 () 4,4-DDE*	0.0017 (7/84-2007*	(3/2000) (7/80000) (800000)	(P. alpha-BHC (P. 000)	(alpha-Chlordane*	(ug/L)	≧ Ĝ Chlordane	(J/gu) (J/gu) (0.041	(ug/L) (ug/L) (0.0017	(ug/L) (ug/L) 0.0087	(ug/L) (ug/L) 0.0087	on (7) Endosulfan Sulfate* 28000 28000	(ng/L) Endrin*	(ngu)()(Endrin Aldehyde*	(ng/L) (ng/L) Endrin Ketone	88.50° S gamma-BHC (Lindane)*	(J/gamma-Chlordane*	(J/gu) (J/gu) (S8000.0	(1/gu) (1/gu) (8000.0	0.00000 (7) Hexachlorobenzene*	EO.0 F Methoxychlor*	(J/L) Toxaphene*
Funct. Area	Loc ID	Date	Sample ID	Type	0.0017	0.0017	0.0017	0.00063	0.0049	0.00063	0.017	INL	0.041	0.0017	0.0007	0.0067	0.0087	0.0023	0.0023	0.0023	0.036	0.00063	0.00003	0.00083	0.00063	0.03	0.063
City Purchase	PA-19	8/26/2010	PA-19_100826	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
City Purchase	PA-19	2/9/2011 2/9/2011	PA-19_110209 PA-19_110209D	N FD	0.0017 U 0.0017 U	0.0017 U 0.0017 U	0.0017 U 0.0017 U			0.0029 UI 0.0021 UI								0.0017 U 0.0017 U	0.0017 U 0.0017 U	0.0017 U 0.0017 U			0.00083 U 0.00083 U				
City Purchase	PA-23	11/8/2010	PA-23_101108	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
City Purchase	PA-23	2/7/2011	PA-23_110207	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
City Purchase City Purchase	PZ-11 PZ-11	8/23/2001 12/11/2002	01-14633-DN28A 02-18574-FB89B	N N	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U	0.05 U 0.051 U	0.1 U 0.1 U	0.05 U 0.051 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.05 U 0.051 U	0.051 U	0.05 U 0.051 U	0.05 U 0.051 U		0.5 U 0.51 U	5 U 5.1 U
City Purchase	PZ-11	6/19/2003	K2304594-002	N	0.0077 J	0.005 U	0.00086 UI	0.005 U	0.005 U	0.005 U	0.007 U		0.00072 J	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.00052 UI	0.005 U	0.005 U	0.005 U	0.005 U		0.005 U	0.25 U
City Purchase	PZ-11	8/27/2010	PZ-11_100827	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
City Purchase	PZ-11 PZ-11	11/9/2010 2/8/2011	PZ-11_101109 PZ-11_110208	N N	0.0017 U 0.0017 UJ	0.0017 UJ	0.0017 UJ			0.00083 UJ								0.0017 UJ	0.0017 UJ	0.0017 UJ			0.00083 UJ				
City Purchase City Purchase	PZ-11 PZ-12	8/21/2001	DN18H	N N	0.0017 UJ 0.1 U	0.0017 UJ	0.0017 UJ 0.1 U	0.05 U	0.05 U	0.00083 UJ 0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.0017 UJ 0.1 U	0.0017 UJ 0.1 U	0.0017 UJ 0.1 U	0.05 U	0.05 U	0.00083 UJ	0.05 U		0.5 U	5 U
City Purchase	PZ-12	12/11/2002	02-18575-FB89C	N	0.1 U	0.1 U	0.1 U	0.052 U	0.052 U	0.052 U	0.052 U		0.052 U	0.1 U	0.052 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.052 U	0.052 U	0.052 U	0.052 U		0.52 U	5.2 U
City Purchase City Purchase	PZ-12 PZ-12	6/19/2003 8/27/2010	K2304594-003	N N	0.0073 J 0.0016 U	0.003 UI	0.00038 UI	0.00094 UI	0.0025 U 0.00082 U	0.00079 J	0.0025 U 0.00082 U		0.0025 U	0.0025 U 0.0016 U	0.0025 U	0.00058 UI	0.0025 U	0.0025 U	0.0025 U	0.00057 J	0.0025 U	0.0025 U	0.0004 UI	0.0025 U 0.00082 U	0.00082 U	0.0025 U	0.13 U
City Purchase	PZ-12	11/9/2010	PZ-12_100827 PZ-12_101109	N	0.0016 U	0.0016 U	0.0016 U	0.00082 U	0.00062 0	0.00082 U	0.00082 0		0.00082 UJ	0.0016 0	0.00082 U	0.0016 U	0.0016 U	0.0016 U	0.0016 U	0.0016 U	0.00082 U	0.00082 U	0.00082 U	0.00082 0	0.00082 0	0.0082 U	0.082 U
City Purchase	PZ-12	2/7/2011	PZ-12_110207	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
CSO	PA-15	2/8/2011	PA-15_110208	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
East Former Mill	PA-24	2/10/2011	PA-24_110210	N	0.0017 U	0.0017 U	0.0017 U		-	0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
East Former Mill	PZ-10	8/22/2001	DN25D	N	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.5 U	5 U
East Former Mill East Former Mill	PZ-10 PZ-10	12/13/2002 6/19/2003	02-18587-FB89O K2304594-001	N N	0.1 U 0.00062	0.1 U 0.00016 J	0.1 U 0.0005 UI	0.051 U 0.00043 UI	0.051 U 0.0005 U	0.051 U 0.00027 J	0.051 U 0.0005 U		0.051 U 0.00013 UI	0.1 U 0.00019 J	0.051 U 0.00016 UI	0.1 U 0.00027 J	0.1 U 0.0005 U	0.1 U 0.0005 UI	0.1 U 0.00032 J	0.1 U 0.0005 UI	0.051 U 0.0005 U	0.051 U 9.6e-005 UI	0.051 U 0.00021 UI	0.051 U 0.0005 U		0.51 U 0.00068 UI	5.1 U 0.025 U
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N	0.00002 0.0017 U	0.00010 U	0.0003 UI	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.00027 UJ	0.0003 U	0.0003 UI	0.00032 U	0.0003 UI	0.00083 U	0.017 UI	0.00021 UI	0.00083 U	0.00083 U	0.00083 U	0.023 U
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	N	0.11 U	0.11 U	0.11 U	0.053 U	0.053 U	0.053 U	0.053 U		0.053 U	0.11 U	0.053 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.053 U	0.053 U	0.053 U	0.053 U		0.53 U	5.3 U
East Shoreline	MW-59	6/19/2003	K2304594-006	N	0.0098 J	0.005 U	0.0079 J	0.005 U	0.005 U	0.0011 UI	0.0072 UI		0.0017 J	0.005 U	0.005 UI	0.0012 J	0.0021 J	0.00088 J	0.0014 J	0.0048 J	0.005 U	0.00089 UI	0.005 U	0.0022 UI		0.005 UI	0.25 U
East Shoreline	MW-59	8/27/2010	MW-59_100827	N N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 UJ	0.0017 UJ	0.0017 U	0.0017 UJ	0.0017 U	0.00083 U	0.0053 UI	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
East Shoreline East Shoreline	MW-59	11/10/2010 2/10/2011	MW-59_101110 MW-59_110210	N	0.0017 UJ 0.0017 UJ	0.0017 UJ	0.0017 UJ 0.0017 UJ			0.00083 UJ								0.0017 UJ	0.0017 UJ	0.0017 UJ 0.0017 UJ			0.00083 UJ				
East Shoreline	PZ-9	8/21/2001	PZ-9_010821	N	0.1 UJ	0.1 UJ	0.1 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ		0.05 UJ	0.1 UJ	0.05 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.1 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ		0.5 UJ	5 UJ
East Shoreline	PZ-9	12/13/2002	02-18586-FB89N	N	0.11 UJ	0.11 UJ	0.11 UJ	0.053 UJ	0.053 UJ	0.053 UJ	0.053 UJ		0.053 UJ	0.11 UJ	0.053 UJ	0.11 UJ	0.11 UJ	0.11 UJ 0.00066 U	0.11 UJ	0.11 UJ	0.053 UJ	0.053 UJ	0.053 UJ	0.053 UJ		0.53 UJ	5.3 UJ
East Shoreline East Shoreline	PZ-9 PZ-9	6/19/2003	K2304594-005 K2304594-007	FD N	0.016 U 0.005 UI	0.014 U 0.005 U	0.0016 U 0.00069 UI	0.0041 U 0.005 U	0.005 U 0.005 U	0.0072 U 0.00051 UI	0.005 U 0.005 U		0.005 U 0.005 U	0.005 U	0.005 U 0.005 U	0.0032 J 0.005 U	0.005 U 0.005 U	0.0006 U	0.0019 J 0.0013 UI	0.005 U 0.00044 UI	0.005 U 0.005 U	0.00096 U 0.005 U	0.005 U 0.005 U	0.005 U 0.005 U		0.005 U 0.005 U	0.25 U 0.25 U
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 UJ	0.0017 UJ	0.0017 U	0.0017 UJ	0.0017 U	0.00083 U	0.011 UI	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
East Shoreline	PZ-9	8/26/2010	PZ-9_100826	N	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.00083 UJ	0.00083 UJ	0.00083 U	0.00083 U		0.00083 UJ	0.0017 UJ	0.00083 U	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0017 U	0.00083 U	0.012 UI	0.00083 UJ	0.00083 UJ	0.00083 U	0.0083 UJ	0.083 U
Ennis Creek	MW-64	11/8/2010	MW-64_101108	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
Ennis Creek Ennis Creek	MW-64 PZ-5	2/7/2011 8/21/2001	MW-64_110207 DN18G	N N	0.0017 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.0017 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.5 U	5 U
Ennis Creek	PZ-5	12/12/2002	02-18578-FB89F	N	0.1 U	0.1 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U		0.051 U	0.1 U	0.051 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U		0.51 U	5.1 U
Ennis Creek	PZ-5	6/18/2003	K2304556-001	N	0.0025 U	0.0025 U	0.00026 UI	0.0025 U	0.0025 U	0.0025 U	0.0025 U		0.00032 UI	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.00028 UI	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U		0.0025 U	0.13 U
Ennis Creek Ennis Creek	PZ-5 PZ-6	8/27/2010 8/23/2001	PZ-5_100827 01-14634-DN28B	N N	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.05 U	0.00083 UJ 0.05 U	0.0017 U 0.1 U	0.00083 U 0.05 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U	0.00083 U 0.05 U	0.00083 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U	0.0083 U 0.5 U	0.083 U
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	N	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.5 U	5 U
Ennis Creek	PZ-6	6/18/2003	K2304556-005	N	0.0058 J	0.0025 U	0.00053 J	0.0025 U	0.0025 U	0.0025 U	0.0025 U		0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.00029 UI	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U		0.0025 UI	0.13 U
Ennis Creek Ennis Creek	PZ-6 PZ-6	8/27/2010 11/9/2010	PZ-6_100827 PZ-6_101109	N N	0.0017 U 0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
Ennis Creek	PZ-6	2/8/2011	PZ-6_110208	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
Estuary	FR-1	8/22/2001	DN25B	N	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.5 U	5 U
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N	0.0017 UJ	0.0017 UJ	0.0024 UIJ	0.0028 UIJ	0.00083 UJ	0.00083 UJ	0.0022 UJ		0.0022 UJ	0.0017 UJ	0.00083 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0032 UJ	0.0021 UJ	0.0014 UIJ	0.0012 UIJ	0.00083 UJ	0.0083 UJ	0.083 UJ
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S	N	0.11 U	0.11 U	0.11 U	0.054 U	0.054 U	0.054 U	0.054 U		0.054 U	0.11 U	0.054 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.0052 US	0.054 U	0.054 U	0.054 U		0.54 U	5.4 U
Main Former Mill	MW-58	6/18/2003	K2304556-002	N	0.0029 J	0.0018 UI	0.005 U	0.0053 UI	0.005 U	0.00054 UI	0.005 U		0.0024 J	0.0011 J	0.005 U	0.00095 UI	0.005 U	0.005 U	0.00079 UI	0.00065 UI	0.005 U	0.0012 UI	0.005 U	0.005 U		0.005 UI	0.25 U
Main Former Mill Main Former Mill	MW-58 MW-58	8/27/2010 11/11/2010	MW-58_100827 MW-58_101111	N N	0.0017 U 0.0017 UJ	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 UJ	0.0017 UJ	0.0017 U	0.0017 UJ	0.0017 U	0.00083 U	0.016 UI	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
Main Former Mill	MW-58	2/11/2011	MW-58_110211	N	0.0017 UJ	0.0017 UJ	0.0017 UJ			0.00083 UJ								0.0017 UJ	0.0017 UJ	0.0017 UJ			0.00083 UJ				
Main Former Mill	PA-17	2/11/2011	PA-17_110211	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
Main Former Mill Main Former Mill	PZ-4 PZ-4	8/21/2001 12/12/2002	DN18F 02-18577-FB89E	N N	0.1 U 0.12 U	0.1 U 0.12 U	0.1 U 0.12 U	0.05 U 0.062 U	0.05 U 0.062 U	0.05 U 0.062 U	0.05 U 0.062 U		0.05 U 0.062 U	0.1 U 0.12 U	0.05 U 0.062 U	0.1 U 0.12 U	0.1 U 0.12 U	0.1 U 0.12 U	0.1 U 0.12 U	0.1 U 0.12 U	0.05 U 0.062 U	0.05 U 0.062 U	0.05 U 0.062 U	0.05 U 0.062 U		0.5 U 0.62 U	5 U 6.2 U
Main Former Mill	PZ-4 PZ-4	6/17/2003	K2304497-004	N	0.00094 UI	0.0017 J	0.00048 UI	0.002 U 0.0014 U	0.0025 U	0.002 U	0.002 U		0.00062 U	0.0017 UI	0.002 U	0.00063 U	0.0013 U	0.00054 U	0.00065 UI	0.00077 UI	0.002 U	0.002 U	0.002 U	0.002 U		0.0017 U	0.25 U
																										*	

										dane*					Ŀ	<u>=</u>	Sulfate*		hy de*	"eu	: (Lindane)*	ordane*		Epoxide*	enzene*	٢,	
					4'-DDD*	4'-DDE*	4'-DDT*	ldrin*	alpha-BHC*	alpha-Chlor	beta-BHC*	Chlordane	elta-BHC*	ieldrin*	ndosulfan	ndosulfan	ndosulfan	ndrin*	ndrin Alde	ndrin Keto	amma-BH(amma-Chk	eptachlor*	eptachlor	exachlorot	ethoxychle	oxaphene*
	м	TCA Method	B GW Protective of	Units MSW	(ug/L)	(ug/L) 0.0017	(ug/L) 0.0017	(ug/L) 0.00083	(ug/L) 0.0049	(ug/L)	(ug/L) 0.017	(ug/L)	(ug/L) 0.041	(ug/L) 0.0017	(ug/L) 0.0087	(ug/L) 0.0087	(ug/L) 0.0087	(ug/L) 0.0023	(ug/L) 0.0023	(ug/L) 0.0023	(ug/L)	(ug/L) 0.00083	(ug/L) 0.00083	(ug/L)	(ug/L)	(ug/L) 0.03	(ug/L) 0.083
Funct. Area Main Former Mill	Loc ID P7-4	Date 8/25/2010	Sample ID PZ-4 100825	Type	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.0028 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
Main Former Mill	PZ-4	11/9/2010	PZ-4_101109	N		0.0017 U																				0.0083 0	
Main Former Mill North Shoreline	PZ-4 MW-51	2/8/2011 8/21/2001	PZ-4_110208 DN18C	N N	0.0017 U	0.0017 U	0.0017 U	0.05 U	0.05 U	0.00083 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.0017 U	0.0017 U	0.0017 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.5 U	5 U
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	N	0.11 U	0.11 U	0.11 U	0.053 U	0.053 U	0.053 U	0.053 U		0.053 U	0.11 U	0.053 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.053 U	0.053 U	0.053 U	0.053 U		0.53 U	5.3 U
	MW-51 MW-51	6/18/2003 8/26/2010	K2304556-003 MW-51_100826	N N	0.005 UI 0.0017 U	0.005 UI 0.0017 U	0.0029 UI 0.0017 U	0.005 U 0.00083 U	0.005 U 0.00083 U	0.004 UI 0.00083 U	0.005 U 0.00083 U		0.005 U 0.00083 UJ	0.005 U 0.0017 U	0.005 U 0.00083 U	0.0036 J 0.0017 UJ	0.005 U 0.0017 UJ	0.0012 UI 0.0017 U	0.0011 J 0.0017 UJ	0.005 U 0.0017 U	0.005 U 0.00083 U	0.0016 UI 0.048 UI	0.005 U 0.00083 U	0.005 U 0.00083 U	0.00083 U	0.005 U 0.0083 U	0.25 U 0.083 U
	MW-56 MW-56	8/22/2001 12/12/2002	DN25E 02-18585-FB89M	N N	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U		0.05 U 0.051 U	0.1 U 0.1 U	0.05 U 0.051 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 3.6 U	0.05 U 0.051 U		0.5 U 0.51 U	5 U 5.1 U
North Shoreline	MW-56	6/19/2003	K2304594-008	N	0.16 UI	0.056 UI	0.11 UI	0.025 U	0.025 UI	0.014 UI	0.025 U		0.025 U	0.025 U	0.0072 J	0.025 UI	0.056 UI	0.025 U	0.14 J	0.028 J	0.023 UI	0.025 UI	0.025 U	0.025 U		0.038 UI	2.9 UI
North Shoreline North Shoreline	MW-56 MW-56	8/26/2010 11/9/2010	MW-56_100826 MW-56_101109	N N	0.0017 U	0.0017 U	0.0017 U	0.019 UI	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U 0.0017 UJ	0.0017 U 0.0017 UJ	0.00083 U	0.00083 U	0.024 UI	0.00083 U	0.00083 U	0.0083 U	0.083 U
North Shoreline	MW-56	2/11/2011	MW-56_110211	N	0.0017 UJ	0.0017 UJ	0.0017 UJ			0.00083 UJ								0.0017 UJ	0.0017 UJ	0.0017 UJ			0.011 UIJ		-	-	
NW Shoreline NW Shoreline	MW-28 MW-52	8/25/2010 8/22/2001	MW-28_100825 DN25G	N N	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U		0.00083 UJ 0.05 U	0.0017 U	0.00083 U	0.0017 UJ 0.1 U	0.0017 UJ 0.1 U	0.0017 U 0.1 U	0.0017 UJ 0.1 U	0.0017 U 0.1 U	0.00083 U	0.027 UI 0.05 U	0.00083 U 0.05 U	0.00083 U	0.00083 U	0.0083 U 0.5 U	0.083 U 5 U
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I	N	0.11 U	0.11 U	0.11 U	0.053 U	0.053 U	0.053 U	0.053 U		0.053 U	0.11 U	0.053 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.053 U	0.053 U	0.053 U	0.053 U		0.53 U	5.3 U
NW Shoreline NW Shoreline	MW-52 MW-52	6/16/2003 8/25/2010	K2304466-002 MW-52_100825	N N	0.00038 J 0.0017 U	0.00031 J 0.0017 U	0.0005 UI 0.0017 U	0.0005 U 0.00083 U	0.0005 U 0.00083 U	5.3e-005 J 0.00083 U	0.0005 U 0.00083 U		0.0005 U 0.00083 UJ	0.0005 UI 0.0017 U	0.0005 U 0.00083 U	0.00026 J 0.0017 UJ	0.0005 U 0.0017 UJ	0.00024 UI 0.0017 U	6.3e-005 UI 0.0017 UJ	0.00046 UI 0.0017 U	0.00034 UI 0.00083 U	0.00013 UI 0.0037 UI	0.0005 U 0.00083 U	0.0005 U 0.00083 U	0.00083 U	0.0005 U 0.0083 U	0.025 U 0.083 U
NW Shoreline NW Shoreline	MW-52 MW-53	2/9/2011 8/21/2001	MW-52_110209 DN18A	N N	0.0017 U 0.1 U	0.0017 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.0017 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.5 U	5 U
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	N	0.1 U	0.1 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U		0.051 U	0.1 U	0.051 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U		0.51 U	5.1 U
NW Shoreline NW Shoreline	MW-53 MW-53	6/16/2003 8/26/2010	K2304466-003 MW-53_100826	N N	0.0004 J 0.0017 U	0.00045 UI 0.0017 U	0.00088 0.0017 U	0.0005 U 0.00083 U	0.0005 U 0.00083 U	0.0005 U 0.00083 U	0.0005 U 0.00083 U		0.0005 U 0.00083 UJ	0.0005 U 0.0017 U	0.0005 U 0.00083 U	0.00029 UI 0.0017 UJ	0.0005 U 0.0017 UJ	0.0005 U 0.0017 U	4.6e-005 UI 0.0017 UJ	0.00012 UI 0.0017 U	0.0005 U 0.00083 U	0.0005 UI 0.0069 UI	0.0002 J 0.00083 U	0.00052 UI 0.00083 U	0.00083 U	0.00023 UI 0.0083 U	0.025 U 0.083 U
NW Shoreline NW Shoreline	MW-53 PZ-1	2/11/2011 8/22/2001	MW-53_110211 DN25C	N FD	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.5 U	5 U
NW Shoreline	PZ-1	8/25/2010	PZ-2_100825	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.0019 U	0.00083 U	0.0013 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.0013 UI	0.00083 U	0.0083 U	0.083 U
Prefab	PZ-7	12/12/2002	02-18579-FB89G	N N	0.11 U	0.11 U	0.11 U	0.057 U	0.057 U	0.057 U	0.057 U		0.057 U	0.11 U	0.057 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.057 U	0.057 U	0.057 U	0.057 U		0.57 U	5.7 U
Prefab West Former Mill	PZ-7 MW-19	8/27/2010 8/22/2001	PZ-7_100827 DN25I	N	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U		0.00083 UJ 0.05 U	0.0017 U 0.1 U	0.00083 U 0.05 U	0.0017 U	0.0017 UJ 0.1 U	0.0017 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U 0.05 U	0.00083 U	0.0083 U 0.5 U	0.083 U
West Former Mill	MW-23	8/21/2001	DN18E	N	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.5 U	5 U
	MW-23 MW-23	12/13/2002 6/16/2003	02-18589-FB89Q K2304466-001	N N	0.11 U 0.0042 UI	0.11 U 0.005 U	0.11 U 0.005 U	0.054 U 0.005 UI	0.054 U 0.005 UI	0.054 U 0.0061 UI	0.054 U 0.013 UI		0.054 U 0.005 UI	0.11 U 0.005 U	0.054 U 0.0022 UI	0.11 U 0.005 U	0.11 U 0.005 U	0.11 U 0.0014 UI	0.11 U 0.0024 UI	0.11 U 0.00045 UI	0.054 U 0.0061 J	0.054 U 0.0011 UI	0.054 U 0.0018 J	0.054 U 0.005 U		0.54 U 0.002 J	5.4 U 0.25 U
	MW-23 MW-23	8/25/2010 11/10/2010	MW-23_100825 MW-23_101110	N N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.002 U	0.00083 U	0.0036 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 UJ	0.0017 UJ	0.0017 U	0.0017 UJ	0.0017 U	0.00083 U	0.00083 U	0.00083 U 0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
West Former Mill	MW-23	2/9/2011	MW-23_110209	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U		***	-		-			0.0017 U	0.0017 U	0.0017 U			0.00083 U		-		
TT COL T CITTICI IVIII	MW-29 MW-29	6/17/2003 8/25/2010	K2304497-006 MW-29_100825	N N	0.00066 UI 0.0017 U	0.0012 U 0.0017 U	0.0006 J 0.0017 U	0.0014 U 0.00083 U	0.0025 U 0.00083 U	0.00044 U 0.00083 U	0.005 U 0.00083 U		0.00062 U 0.00083 UJ	0.00056 U 0.0017 U	0.001 U 0.00083 U	0.00063 U 0.0017 UJ	0.0013 U 0.0017 UJ	0.00054 U 0.0017 U	0.00057 J 0.0017 UJ	0.0003 U 0.0017 U	0.002 U 0.00083 U	0.00065 U 0.018 UI	0.00073 U 0.00083 U	0.0021 U 0.00083 U	0.00083 U	0.0017 U 0.0083 U	0.25 U 0.083 U
West Former Mill West Former Mill	MW-29 MW-54	2/8/2011 8/22/2001	MW-29_110208 DN25H	N	0.0017 U 0.1 U	0.0017 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.0017 U 0.1 U	0.05 U	0.05 U	0.00083 U 0.05 U	0.05 U		0.5 U	5 U
West Former Mill	MW-54	12/12/2002	02-18583-FB89K	N	0.1 U	0.1 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U		0.051 U	0.1 U	0.051 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U		0.51 U	5.1 U
West Former Mill West Former Mill	MW-54 MW-54	6/17/2003 8/26/2010	K2304497-001 MW-54_100826	N N	0.0021 UI 0.0017 U	0.0029 UI 0.0017 U	0.005 UI 0.0017 U	0.0014 U 0.00083 U	0.0025 U 0.00083 U	0.0016 J 0.00083 U	0.005 U 0.0027 U		0.00062 U 0.00083 UJ	0.00056 U 0.0017 U	0.001 U 0.00083 U	0.00072 UI 0.0017 U	0.0013 U 0.0017 UJ	0.00054 U 0.0017 U	0.0012 UI 0.0017 U	0.0003 U 0.0017 U	0.002 U 0.00083 U	0.00065 U 0.00083 U	0.00073 U 0.00083 U	0.0021 U 0.00083 U	0.00083 U	0.0017 U 0.0083 U	0.25 U 0.083 U
West Former Mill West Former Mill	MW-54 MW-54	11/11/2010 2/10/2011	MW-54_101111 MW-54_110210	N N	0.0017 U	0.0017 U	0.0017 U			0.00083 U 0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
West Former Mill	MW-55	8/22/2001	DN25F	N	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.05 U	0.1 U	0.05 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U		0.5 U	5 U
West Former Mill West Former Mill	MW-55 MW-55	12/12/2002 6/18/2003	02-18584-FB89L K2304556-004	N N	0.11 U 0.0024 UI	0.11 U 0.0029 UI	0.11 U 0.0013 UI	0.054 U 0.005 U	0.054 U 0.005 U	0.054 U 0.005 U	0.054 U 0.005 U		0.054 U 0.005 U	0.11 U 0.005 U	0.054 U 0.005 U	0.11 U 0.00085 UI	0.11 U 0.005 U	0.11 U 0.005 U	0.11 U 0.00076 UI	0.11 U 0.005 U	0.054 U 0.005 U	0.054 U 0.005 U	0.054 U 0.005 U	0.054 U 0.005 U		0.54 U 0.005 U	5.4 U 0.25 U
West Former Mill	MW-55	8/26/2010	MW-55_100826	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U		0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
West Former Mill	MW-57 MW-57	12/13/2002 6/17/2003	02-18590-FB89R K2304497-007	N N	0.11 U 0.0032 J	0.11 U 0.0029 J	0.11 U 0.00091 J	0.055 U 0.0014 U	0.055 U 0.0025 U	0.055 U 0.00044 U	0.055 U 0.005 U		0.055 U 0.00062 U	0.11 U 0.00056 U	0.055 U 0.001 U	0.11 U 0.00063 U	0.11 U 0.0013 U	0.11 U 0.00054 U	0.11 U 0.00038 U	0.11 U 0.00098 UI	0.055 U 0.002 U	0.055 U 0.00065 U	0.055 U 0.00075 UI	0.055 U 0.0021 U		0.55 U 0.0017 U	5.5 U 0.25 U
West Former Mill West Former Mill	MW-57 MW-57	8/26/2010 11/8/2010	MW-57_100826 MW-57_101108	N	0.0017 UJ 0.0017 U	0.0017 UJ 0.0017 U	0.0017 UJ	0.00083 UJ	0.00083 UJ	0.00083 UJ	0.00083 UJ		0.00083 UJ	0.0017 UJ	0.00083 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.0017 UJ	0.00083 UJ	0.0076 UIJ	0.00083 UJ	0.00083 UJ	0.00083 UJ	0.0083 UJ	0.083 UJ
West Former Mill	MW-57	2/11/2011	MW-57_110211	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				
West Former Mill West Former Mill	PZ-3 PZ-3	8/21/2001 12/12/2002	DN18B 02-18576-FB89D	N N	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U		0.05 U 0.051 U	0.1 U 0.1 U	0.05 U 0.051 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U	0.05 U 0.051 U		0.5 U 0.51 U	5 U 5.1 U
West Former Mill	PZ-3 PZ-3	6/17/2003 8/26/2010	K2304497-002 PZ-3_100826	N N	0.00047 U 0.0017 U	0.0025 UI 0.0017 U	0.00047 U 0.0017 U	0.005 UI 0.00083 U	0.0025 U 0.00083 U	0.0015 J 0.00083 U	0.005 U 0.0019 U		0.00062 U 0.00083 UJ	0.005 UI 0.0017 U	0.001 U 0.00083 U	0.00063 U 0.0017 UJ	0.0013 U 0.0017 UJ	0.0046 J 0.0017 U	0.00038 U 0.0017 UJ	0.0003 U 0.0017 U	0.002 U 0.00083 U	0.005 UI 0.016 UI	0.0018 J 0.00083 U	0.0021 U 0.00083 U	0.00083 U	0.0017 U 0.0083 U	0.25 U 0.083 U
West Former Mill	PZ-3	11/9/2010	PZ-3_101109	N	-					0.00083 U				0.0017 0				0.0017 U					0.00083 U	0.00083 0	0.00083 0	0.0083 0	
West Former Mill	PZ-3	2/10/2011	PZ-3_110210	N	0.0017 U	0.0017 U	0.0017 U			0.00083 U								0.0017 U	0.0017 U	0.0017 U			0.00083 U				

						•	,		•							,				,								
			Para	ameter Units	© 1,2-Dibromo-3-Chloropropane	© 2-Chloronaphthalene	(n) 2-Chlorophenol	(¬/S 2-Methylnaphthalene	. (n. 2-Methylphenol	. (¬D. 2-Nitroaniline	(n) 2-Nitrophenol	n,p-cRESOL	(ug/L)	© 1,2,4-Trichlorobenzene	© 1,2-Dichlorobenzene	(⊤) 1,3-Dichlorobenzene	Ĝ Ĉ 1,4-Dichlorobenzene	Ĝ Ĉ 2,4,5-Trichlorophenol	© 2,4,6-Trichlorophenol*	© 2,4-Dichlorophenol	6 2,4-Dimethylphenol	Ĝ Ĉ 2,4-Dinitrophenol	Ĝ Ĉ 2,4-Dinitrotoluene	© 2,6-Dinitrotoluene	(n) 3,3'-Dichlorobenzidine	6 3-Nitroaniline	ର 4,6-Dinitro-2-methylphenol	G 4-Bromophenyl-phenylether
			B GW Protective of		NL	1000	97	NL	NL	NL	NL	NL	NL	70	1300	960	4.9	3600	2.4	190	550	3500	5	NL	5	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Туре																								
City Purchase	GWG-8	10/28/2010	GWG-8-W	N															0.25 U									
City Purchase	PA-19	8/26/2010	PA-19_100826	N													1 U		0.25 U				5 U		5 U			
City Purchase	PA-19	11/11/2010	PA-19_101111	N															0.25 U									
City Purchase	PA-19	2/9/2011	PA-19_110209	N															0.25 U									
City Purchase	PA-19	2/9/2011	PA-19_110209D	FD															0.25 U									
City Purchase	PZ-11	2/14/1997	97-2103-R661D	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-11	8/28/1997	97-15170-T609D	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-11	11/6/1997	97454188	N																								
City Purchase	PZ-11	2/22/2001	01-2349-CU21G	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-11	8/23/2001	01-14633-DN28A	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-11	12/11/2002	02-18574-FB89B	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	25 U	5 U	5 U	5 U	6 U	15 U	1 U
City Purchase	PZ-11	6/19/2003	K2304594-002	N		0.19 U	0.48 U		0.48 U	0.19 U	0.48 U			0.19 U	0.19 U	0.19 U	0.19 U	0.48 U	0.48 U	0.48 U	1.9 U	3.8 U	0.19 U	0.19 U	1.9 U	0.95 U	1.9 U	0.19 U
City Purchase	PZ-11	8/27/2010	PZ-11_100827	N													1 UJ		0.25 U				5 UJ		5 UJ			
City Purchase	PZ-11	11/9/2010	PZ-11_101109	N			4.11								4.11		4.11					40.11					40.11	4.11
City Purchase	PZ-12	2/28/1997	97-2822-R796B	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-12	8/28/1997	97-15171-T609E	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-12	11/6/1997	97454187	N		4.11	4.11							4.11	4.11	4.11	4.11					40.11					40.11	4.11
City Purchase	PZ-12	2/22/2001	01-2348-CU21F	N		1 U	1 U	4.11	2 U	5 U	5 U	4.11		1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-12	8/21/2001	DN18H	N	 E 1 I I	1 U	1 U	1 U	1 U	5 U	5 U	1 U	4.11	4.11	4.11	4.11	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
City Purchase	PZ-12 PZ-12	12/11/2002 6/19/2003	02-18575-FB89C	N	5.1 U	1 U	1 U		1 U	5.1 U	5.1 U		1 U	1 U	1 U	1 U	1 U	5.1 U	5.1 U	3.1 U	3.1 U 2 U	26 U	5.1 U 0.2 U	5.1 U	5.1 U	6.1 U	15 U	1 U
City Purchase	PZ-12 PZ-12		K2304594-003	N		0.2 U	0.48 U		0.48 U	0.2 U	0.48 U			0.2 U	0.2 U	0.2 U	0.2 U 1 U	0.48 U	0.48 U	0.48 U		3.9 U	0.2 U	0.2 U	2 U 5 U	0.96 U	2 U	0.2 U
City Purchase		8/27/2010	PZ-12_100827	N															0.25 U									
City Purchase	PZ-12	11/9/2010	PZ-12_101109	N																								
CSO	GWG-6	11/2/2010	GWG-6-W	N															0.25 U									
CSO	MW-70	5/18/2011	MW-70-110518	N															0.25 U									
CSO	MW-70	5/18/2011	MW-70-110518D	FD															0.25 U									
CSO	PA-15	11/9/2010	PA-15_101109	N															0.25 U									
East Former Mill	GWG-7	11/3/2010	GWG-7-W	N															0.25 U									
East Former Mill	PA-24	11/9/2010	PA-24_101109	N															0.25 U									
East Former Mill	PA-24	2/10/2011	PA-24 110210	N															0.25 U									
East Former Mill	PZ-10	2/28/1997	97-2821-R796A	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Last FUITHEL IVIIII	FZ-10	2/20/199/	31-2021-N130A	IN		10	10		20	50	50			10	10	10	10	50	30	30	30	10 0	50	50	50	0.0	10 0	10

							1					l			1						1	1			1			
			Para	ameter Units	1,2-Dibromo-3-Chloropropane	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	m,p-cresol	m-Cresol	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl-phenylether
		MTCA Method	I B GW Protective of		(ug/L) NL	(ug/L) 1000	(ug/L) 97	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 70	(ug/L) 1300	(ug/L) 960	(ug/L) 4.9	(ug/L) 3600	(ug/L) 2.4	(ug/L) 190	(ug/L) 550	(ug/L) 3500	(ug/L) 5	(ug/L) NL	(ug/L) 5	(ug/L) NL	(ug/L) NL	(ug/L) NL
Funct. Area	Loc ID	Date	Sample ID	Туре			<u> </u>																					
East Former Mill	PZ-10	8/27/1997	97-15175-T609I	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Former Mill	PZ-10	2/22/2001	01-2350-CU21H	N		1 U	1 U	-	2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Former Mill	PZ-10	8/22/2001	DN25D	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O	N	5.6 U	1.1 U	1.1 U		1.1 U	5.6 U	5.6 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.6 U	5.6 U	3.3 U	3.3 U	28 U	5.6 U	5.6 U	5.6 U	6.7 U	17 U	1.1 U
East Former Mill	PZ-10	6/19/2003	K2304594-001	N		0.2 U	0.49 U		0.49 U	0.2 U	0.49 U			0.2 U	0.2 U	0.2 U	0.2 U	0.49 U	0.49 U	0.49 U	2 U	3.9 U	0.2 U	0.2 U	2 U	0.97 U	2 U	0.2 U
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N													1 U		0.25 U				5 U		5 U			
East Former Mill	PZ-13	2/14/1997	97-2100-R661A	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	N	5.2 U	1 U	1 U		1 U	5.2 U	5.2 U		1 U	1 U	1 U	1 U	1 U	5.2 U	5.2 U	3.1 U	3.1 U	26 U	5.2 U	5.2 U	5.2 U	6.2 U	16 U	1 U
East Shoreline	MW-59	6/19/2003	K2304594-006	N		0.19 U	0.48 U		0.48 U	0.19 U	0.48 U			0.19 U	0.19 U	0.19 U	0.19 U	0.48 U	0.48 U	0.48 U	1.9 U	3.8 U	0.19 U	0.19 U	1.9 U	0.95 U	1.9 U	0.19 U
East Shoreline	MW-59	8/27/2010	MW-59_100827	N				-									1 U		0.25 U				5 U		5 U			
East Shoreline	MW-59	11/10/2010	MW-59_101110	N																								
East Shoreline	MW-59	2/10/2011	MW-59_110210	N															0.25 U									
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Shoreline	PZ-9	8/27/1997	97-15176-T609J	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Shoreline	PZ-9	11/5/1997	97454185	N																								
East Shoreline	PZ-9	11/5/1997	97454185-1	N		4.11	4.11							4.11	4.11	4.11	4.11					40.11					40.11	4.11
East Shoreline	PZ-9	2/22/2001	01-2369-CU22G	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
East Shoreline East Shoreline	PZ-9 PZ-9	8/21/2001 12/13/2002	PZ-9_010821 02-18586-FB89N	N N	5 U	1 U 1.1 U	1 U		1 U 1.1 U	5 U 5.3 U	5 U		4 4 1 1	1 U 1.1 U	1 U	1 U	1 U 1.1 U	5 U	5 U 5.3 U	2 U 3.2 U	2 U 3.2 U	10 U 27 U	5 U 5.3 U	5 U	5 U 5.3 U	2 U 6.4 U	10 U 16 U	2 U 1.1 U
East Shoreline	PZ-9 PZ-9	6/19/2003	K2304594-005	FD	5.3 U	0.2 U	1.1 U 0.48 U		0.48 U	0.2 U	5.3 U 0.48 U		1.1 U	0.2 U	1.1 U 0.2 U	1.1 U 0.2 U	0.2 U	5.3 U 0.48 U	0.48 U	0.48 U	3.2 U	3.9 U	0.2 U	5.3 U 0.2 U	2 U	0.96 U	2 U	0.2 U
East Shoreline	PZ-9 PZ-9	6/19/2003	K2304594-005	N		0.2 U	0.48 U		0.48 U	0.2 U	0.48 U			0.2 U	0.2 U	0.2 U	0.2 U	0.48 U	0.48 U	0.48 U	2 U	3.9 U	0.2 U	0.2 U	2 U	0.96 U	2 U	0.2 U
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD		0.2 0	0.46 0		0.46 0	0.2 0	0.46 0			0.2 0	0.2 0	0.2 0	1 U	0.46 0	0.46 U	0.46 0		3.9 0	5 U	0.2 0	5 U	0.96 0		0.2 0
East Shoreline	PZ-9	8/26/2010	PZ-9 100826	N													1 U		0.25 U				5 U		5 R			
East Shoreline	PZ-9	11/10/2010	PZ-9_100020	N																								
East Shoreline	PZ-9	2/8/2011	PZ-9_110208	N															0.25 U									
Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-5	8/28/1997	97-15169-T609C	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-5	2/22/2001	01-2366-CU22D	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-5	8/21/2001	DN18G	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-5	12/12/2002	02-18578-FB89F	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	25 U	5 U	5 U	5 U	6 U	15 U	1 U

				1	l I		ı		1								I	1		I	l	l	1					
				ımeter Units	යි 1,2-Dibromo-3-Chloropropane	ි උ 2-Chloronaphthalene	(⊤) 2-Chlorophenol	ි ි 2-Methylnaphthalene උ	Ê Ç 2-Methylphenol	S 2-Nitroaniline	ê ⊖ 2-Nitrophenol	ß m,p-cRESOL	n-Cresol	Ĝ 1,2,4-Trichlorobenzene ┌	$\frac{\widehat{\mathbb{G}}}{\widehat{\mathbb{G}}}$ 1,2-Dichlorobenzene	ê ☐ 1,3-Dichlorobenzene	Ĝ T,4-Dichlorobenzene	ලි 2,4,5-Trichlorophenol උ	ê 2,4,6-Trichlorophenol*	Ĝ 2,4-Dichlorophenol	© 2,4-Dimethylphenol	© 2,4-Dinitrophenol	\$\frac{\hat{\phi}}{\phi} 2,4-Dinitrotoluene	රි 2,6-Dinitrotoluene (උ	Ĝ 3,3'-Dichlorobenzidine ┌	ි ලි 3-Nitroaniline උ	Ĝ 4,6-Dinitro-2-methylphenol	ලි 4-Bromophenyl-phenylether ලි
			B GW Protective of		NL	1000	97	NL	NL	NL	NL	NL	NL	70	1300	960	4.9	3600	2.4	190	550	3500	5	NL	5	NL	NL	NL
Funct. Area	Loc ID	Date		Туре		0.011	0.40.11		0.40.11	0.011	0.40.11			0.011	0.011	0.011	0.011	0.40.11	0.40.11	0.40.11	0.11	2011	0.011	0.011	0.11	0.00.11	011	0.011
Ennis Creek Ennis Creek	PZ-5 PZ-5	6/18/2003 8/27/2010	K2304556-001 PZ-5 100827	N N		0.2 U	0.48 U		0.48 U	0.2 U	0.48 U			0.2 U	0.2 U	0.2 U	0.2 U 1 U	0.48 U	0.48 U 0.25 U	0.48 U	2 U	3.9 U	0.2 U 5 U	0.2 U	2 U 5 U	0.96 U	2 U	0.2 U
Ennis Creek	PZ-6	2/13/1997	97-1958-R652C	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-6	2/22/2001	01-2346-CU21D	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	25 U	5 U	5 U	5 U	6 U	15 U	1 U
Ennis Creek	PZ-6	6/18/2003	K2304556-005	N		0.2 U	0.49 U		0.49 U	0.2 U	0.49 U			0.2 U	0.2 U	0.2 U	0.2 U	0.49 U	0.49 U	0.49 U	2 U	3.9 U	0.2 U	0.2 U	2 U	0.98 U	2 U	0.2 U
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827	N													1 U		0.25 U				5 U		5 U			
Estuary	FR-1	2/22/2001	01-2367-CU22E	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Estuary	FR-1	8/22/2001	DN25B	Ν		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Estuary	MW-62	11/9/2010	MW-62_101109	Ν															0.25 U									
Estuary	MW-62	2/10/2011	MW-62_110210	N															0.25 U									
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N													1 U		0.25 U				5 U		5 U			
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S	N	5.7 U	1.1 U	1.1 U		1.1 U	5.7 U	5.7 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.7 U	5.7 U	3.4 U	3.4 U	28 U	5.7 U	5.7 U	5.7 U	6.8 U	17 U	1.1 U
Main Former Mill	MW-58	6/18/2003	K2304556-002	N		0.2 U	0.49 U		0.49 U	0.2 U	0.49 U			0.2 U	0.2 U	0.2 U	0.2 U	0.49 U	0.49 U	0.49 U	2 U	3.9 U	0.2 U	0.2 U	2 U	0.97 U	2 U	0.2 U
Main Former Mill	MW-58	8/27/2010	MW-58_100827	N													1 U		0.25 U				5 U		5 U			
Main Former Mill	MW-58	2/11/2011	MW-58_110211	N															0.25 U									
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W	N															0.25 U									
Main Former Mill	MW-65	5/18/2011	MW-65-110518	N															0.25 U									
Main Former Mill	MW-66 MW-66	3/11/2011	MW-66-110311-W	N															0.25 U									
Main Former Mill Main Former Mill	MW-69	5/18/2011 5/18/2011	MW-66-110518 MW-69-110518	N N															0.25 U 0.25 U									
Main Former Mill	PA-17	2/11/2011	PA-17 110211	N															0.25 U									
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23	N													1 U		0.25 U				5 U		5 U			
Main Former Mill	PZ-4	2/13/1997	97-1960-R652E	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Main Former Mill	PZ-4	11/5/1997	97454184	N																								
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	Ν		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Main Former Mill	PZ-4	8/21/2001	DN18F	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E	N	6.2 U	1.2 U	1.2 U		1.2 U	6.2 U	6.2 U		1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	6.2 U	6.2 U	3.8 U	3.8 U	31 U	6.2 U	6.2 U	6.2 U	7.5 U	19 U	1.2 U

						ı			1				1		1	1	1	1		1								
				ımeter Units	$(\stackrel{\circ}{\stackrel{\leftarrow}{C}} 1,2-Dibromo-3-Chloropropane $	(c) 2-Chloronaphthalene	(c) 2-Chlorophenol	ි 2-Methylnaphthalene	(or 2-Methylphenol	n) 2-Nitroaniline	ରି 2-Nitrophenol	(o m,p-cRESOL	('a') m-Cresol	ີ່ດີ 1,2,4-Trichlorobenzene	© 1,2-Dichlorobenzene	(c) 1,3-Dichlorobenzene	n 1,4-Dichlorobenzene	(a) 2,4,5-Trichlorophenol	© 2,4,6-Trichlorophenol*	(c) 2,4-Dichlorophenol	(c) 2,4-Dimethylphenol	© 2,4-Dinitrophenol	ି 2,4-Dinitrotoluene	(on 2,6-Dinitrotoluene	6 3,3'-Dichlorobenzidine	(S) 3-Nitroaniline	Ĝ 4,6-Dinitro-2-methylphenol	6 4-Bromophenyl-phenylether
Funct. Area	Loc ID	Date	B GW Protective of		NL	1000	97	NL	NL	NL	NL	NL	NL	70	1300	960	4.9	3600	2.4	190	550	3500	5	NL	5	NL	NL	NL
Main Former Mill	PZ-4	6/17/2003	Sample ID K2304497-004	Type N		0.016 U	0.015 U		0.06 U	0.015 U	0.014 U			0.016 U	0.015 U	0.011 U	0.014 U	0.026 U	0.037 U	0.024 U	0.3211	0.53 U	0.02 U	0.0088 U	0.43 U	0.2311	0.013 U	0.018 U
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	N													1 U		0.25 U				5 U		5 U			
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
North Shoreline	MW-51	8/21/2001	DN18C	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	N	5.4 U	1.1 U	1.1 U		1.1 U	5.4 U	5.4 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.4 U	5.4 U	3.3 U	3.3 U	27 U	5.4 U	5.4 U	5.4 U	6.5 U	16 U	1.1 U
North Shoreline	MW-51	6/18/2003	K2304556-003	N		0.19 U	0.48 U		0.48 U	0.19 U	0.48 U			0.19 U	0.19 U	0.19 U	0.19 U	0.48 U	0.48 U	0.48 U	1.9 U	3.8 U	0.19 U	0.19 U	1.9 U	0.95 U	1.9 U	0.19 U
North Shoreline	MW-51	8/26/2010	MW-51_100826	N													1 U		0.25 U				5 U		5 U			
North Shoreline	MW-51	11/10/2010	MW-51_101110	N																								
North Shoreline	MW-51	2/11/2011	MW-51_110211	N															0.25 U									
North Shoreline North Shoreline	MW-51 MW-56	5/19/2011 2/22/2001	MW-51-110519 01-2365-CU22C	N N		1 U	1 U		4.5	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	5.6	10 U	5 U	5 U	5 U	6 U	10 U	1 U
North Shoreline	MW-56	8/22/2001	DN25E	N		1 U	1 U	1 U	2.8 J	5 U	5 U	16					1 U	5 U	5 U	3 U	3.5	10 U	5 U	5 U	5 U	6 U	10 U	1 U
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	N	5.1 U	1 U	1 U		1.8	5.1 U	5.1 U		10	1 U	1 U	1 U	1 U	5.1 U	5.1 U	3.1 U	3.1 U	26 U	5.1 U	5.1 U	5.1 U	6.1 U	15 U	1 U
North Shoreline	MW-56	6/19/2003	K2304594-008	N		0.19 U	0.14 J		3	0.19 U	0.48 U			0.19 U	0.19 U	0.19 U	0.19 U	0.48 U	0.91	0.31 J	3.7	3.8 U	0.19 U	0.19 U	1.9 U	0.95 U	1.9 U	0.19 U
North Shoreline	MW-56	8/26/2010	MW-56 100826	N													1 U		0.66				5 U		5 U			
North Shoreline	MW-56	11/9/2010	MW-56_101109	N															0.43									
North Shoreline	MW-56	2/11/2011	MW-56_110211	N															0.38									
NW Shoreline	MW-28	8/25/2010	MW-28_100825	N													1 U		0.25 U				5 U		5 U			
NW Shoreline	MW-28	11/10/2010	MW-28_101110	N															0.25 U									
NW Shoreline	MW-28	2/8/2011	MW-28_110208	N															0.25 U									
NW Shoreline	MW-28	5/20/2011	MW-28-110520	N																								
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	MW-52	8/22/2001	DN25G	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I	N	5.6 U	1.1 U	1.1 U		1.1 U	5.6 U	5.6 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.6 U	5.6 U	3.3 U	3.3 U	28 U	5.6 U	5.6 U	5.6 U	6.7 U	17 U	1.1 U
NW Shoreline	MW-52	6/16/2003	K2304466-002	N		0.2 U	0.48 U		0.48 U	0.2 U	0.48 U			0.2 U	0.2 U	0.2 U	0.2 U	0.48 U	0.48 U	0.48 U	2 U	3.9 U	0.2 U	0.2 U	2 U	0.96 U	2 U	0.2 U
NW Shoreline	MW-52	8/25/2010	MW-52_100825	N													1 U		0.25 U				5 U		5 U			
NW Shoreline NW Shoreline	MW-52 MW-52	11/8/2010 2/9/2011	MW-52_101108 MW-52_110209	N N															0.25.11									
NW Shoreline	MW-53	2/9/2011	01-2275-CU06A	N		1 U	1 U		2 U	5 U	5 U							5 U	0.25 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
INVV SHOTEIINE	CC-VVIVI	2/2 1/200 l	01-2210-CU00A	IN		10	10		20	50	ວບ							50	30	J 3 U	3 U	10 0	50	5 0	50	υU	10 0	1 U

			Para	ameter Units	Ĝ 1,2-Dibromo-3-Chloropropane	© 2-Chloronaphthalene	(F) 2-Chlorophenol	Ĝ 2-Methylnaphthalene ┌	© 2-Methylphenol	S 2-Nitroaniline	S 2-Nitrophenol	ß m,p-CRESOL	n-Cresol	g 1,2,4-Trichlorobenzene	ි 1,2-Dichlorobenzene	Ĝ 1,3-Dichlorobenzene	(E) 1,4-Dichlorobenzene	ê 2,4,5-Trichlorophenol	ê 2,4,6-Trichlorophenol*	ි 2,4-Dichlorophenol උ	ê 2,4-Dimethylphenol	Ĝ 2,4-Dinitrophenol	Ĝ 2,4-Dinitrotoluene	ි 2,6-Dinitrotoluene උ	Ĝ Ĉ 3,3'-Dichlorobenzidine	Ĝ Ĝ 3-Nitroaniline ┌	© 4,6-Dinitro-2-methylphenol	G 4-Bromophenyl-phenylether
		MTCA Method	B GW Protective of	MSW	NL	1000	97	NL	NL	NL	NL	NL	NL	70	1300	960	4.9	3600	2.4	190	550	3500	5	NL	5	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Type																								
NW Shoreline	MW-53	8/21/2001	DN18A	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	N	5.6 U	1.1 U	1.1 U		1.1 U	5.6 U	5.6 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.6 U	5.6 U	3.3 U	3.3 U	28 U	5.6 U	5.6 U	5.6 U	6.7 U	17 U	1.1 U
NW Shoreline	MW-53	6/16/2003	K2304466-003	N		0.2 U	0.48 U		0.48 U	0.2 U	0.48 U			0.2 U	0.2 U	0.2 U	0.2 U	0.48 U	0.48 U	0.48 U	2 U	3.9 U	0.2 U	0.2 U	2 U	0.96 U	2 U	0.2 U
NW Shoreline	MW-53	8/26/2010	MW-53_100826	N													1 U		0.25 U				5 U		5 U			
NW Shoreline	MW-53	2/11/2011	MW-53_110211	N															0.25 U									
NW Shoreline	MW-61	11/11/2010	MW-61_101111	N															0.25 U									
NW Shoreline	MW-61	2/11/2011	MW-61_110211	N															0.25 U									
NW Shoreline	MW-67	3/11/2011	MW-67-110311-W	N															0.25 U									
NW Shoreline	MW-67	5/18/2011	MW-67-110518	N															0.25 U									
NW Shoreline	PZ-1	8/22/2001	DN25C	FD		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	PZ-2	2/13/1997	97-1957-R652B	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
NW Shoreline	PZ-2	11/5/1997	97454182	N																								
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825	N													1 U		0.25 U				5 U		5 U			
NW Shoreline	PZ-2	11/11/2010	PZ-2_101111	N																								
NW Shoreline	PZ-2	2/7/2011	PZ-2_110207	N															0.25 U									
Prefab	PZ-7	2/14/1997	97-2102-R661C	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Prefab	PZ-7	8/27/1997	97-15177-T609K	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Prefab	PZ-7	11/5/1997	97454189	N																								
Prefab	PZ-7	2/22/2001	01-2347-CU21E	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
Prefab	PZ-7	12/12/2002	02-18579-FB89G	N	6.4 U	1.3 U	1.3 U		1.3 U	6.4 U	6.4 U		1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	6.4 U	6.4 U	3.8 U	3.8 U	32 U	6.4 U	6.4 U	6.4 U	7.7 U	19 U	1.3 U
Prefab	PZ-7	8/27/2010	PZ-7_100827	N													1 U		0.25 U				5 U		5 U			
Prefab	PZ-7	11/10/2010	PZ-7_101110	N																								
Prefab	PZ-7	2/8/2011	PZ-7_110208	N																								
Prefab	PZ-7	5/17/2011	PZ-07-110517	N																								
Most Former Mill	M/M/ 10	2/22/2004	04 2245 CLI24C	NI		4 11	111		211	<i>E</i> 11	<i>5</i> 1 1			111	111	111	111	<i>5</i> 11	511	211	211	10.11	511	EII	511	611	10.11	1 U
West Former Mill West Former Mill	MW-19 MW-19	2/22/2001 8/22/2001	01-2345-CU21C DN25I	N N		1 U	1 U	1 U	2 U 1 U	5 U	5 U	1 U		1 U	1 U	1 U	1 U	5 U	5 U 5 U	3 U 3 U	3 U	10 U	5 U	5 U 5 U	5 U	6 U	10 U 10 U	1 U
West Former Mill	MW-20	9/2/1997	97-15361-T609N	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	MW-23	10/15/1997	97-15361-1609N 97-19428-U167A	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
	MW-23								2 U										5 U		3 U	10 U	5 U	5 U	5 U	6 U		_
West Former Mill		2/22/2001	01-2364-CU22B	N		1 U	1 U	4.11		5 U	5 U	1.11		1 U	1 U	1 U	1 U	5 U		3 U							10 U	1 U
West Former Mill	MW-23	8/21/2001	DN18E	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U

			Para	ameter Units	Ĝ 1,2-Dibromo-3-Chloropropane	© 2-Chloronaphthalene	e 2-Chlorophenol	© 2-Methylnaphthalene ┌) 2-Methylphenol) 2-Nitroaniline	6n) (7/2) 2-Nitrophenol	n,p-CRESOL	(ng/F)	© 1,2,4-Trichlorobenzene	Ĝ 1,2-Dichlorobenzene	Ĝ Ĉ 1,3-Dichlorobenzene	Ĝ Ĉ 1,4-Dichlorobenzene	ି 2,4,5-Trichlorophenol	Ĝ Ĉ 2,4,6-Trichlorophenol*	Ĝ Ĉ 2,4-Dichlorophenol	6 2,4-Dimethylphenol	Ĝ Ĉ 2,4-Dinitrophenol	Ĝ Ĉ Ĉ	6.7 (¬/ (¬/	© 3,3'-Dichlorobenzidine	⊜ Ç Ĉ	e 4,6-Dinitro-2-methylphenol	G 4-Bromophenyl-phenylether
	•		B GW Protective of		NL	1000	97	NL	NL	NL	NL	NL	NL	70	1300	960	4.9	3600	2.4	190	550	3500	5	NL	5	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Туре		4.11	4.11						4.17	4.11	4.11	4.11	4.11			0.11	0.11	05.1				0.11	45.11	\sqcup
West Former Mill	MW-23	12/13/2002	02-18589-FB89Q	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	25 U	5 U	5 U	5 U	6 U	15 U	1 U
West Former Mill West Former Mill	MW-23 MW-23	6/16/2003 8/25/2010	K2304466-001 MW-23 100825	N N		0.2 U	0.069 J		0.34 J	0.2 U	0.48 U			0.2 U	0.2 U	0.2 U	0.2 U 1 U	7.9	7.7 0.25 U	3.9	0.44 J	3.9 U	0.2 U 5 U	0.2 U	2 U 5 U	0.96 U	2 U	0.2 U
West Former Mill	MW-23	11/10/2010	MW-23_100625	N															0.25 U				5 U 					
West Former Mill	MW-23	2/9/2011	MW-23_101110	N															0.25 U									
West Former Mill	MW-23	5/19/2011	MW-23-110519	N															0.25 U									
West Former Mill	MW-29	9/2/1997	97-15362-T609O	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	MW-29	6/17/2003	K2304497-006	N		0.016 U	0.033 J		0.096 J	0.015 U	0.014 U			0.016 U	0.015 U	0.011 U	0.014 U	0.1 J	0.085 J	0.024 U	0.32 U	0.53 U	0.02 U	0.0088 U	0.43 U	0.23 U		
West Former Mill	MW-29	8/25/2010	MW-29 100825	N													1 U		0.25 U				5 U		5 U			
West Former Mill	MW-29	11/11/2010	MW-29_101111	N																								
West Former Mill	MW-29	2/8/2011	MW-29 110208	N															0.25 U									
West Former Mill	MW-29	5/20/2011	MW-29-110520	N															0.25 U									
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	N		1 U	1 U		2 U	5 U	5 U				1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	MW-54	8/22/2001	DN25H	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	MW-54	12/12/2002	02-18583-FB89K	N	5.2 U	1 U	1 U		1 U	5.2 U	5.2 U		1 U	1 U	1 U	1 U	1 U	5.2 U	5.2 U	3.1 U	3.1 U	26 U	5.2 U	5.2 U	5.2 U	6.2 U	16 U	1 U
West Former Mill	MW-54	6/17/2003	K2304497-001	N		0.016 U	0.015 U		0.06 U	0.015 U	0.014 U			0.016 U	0.015 U	0.011 U	0.014 U	0.026 U	0.037 U	0.024 U	0.32 U	0.53 U	0.02 U	0.0088 U		0.23 U		0.018 U
West Former Mill	MW-54	8/26/2010	MW-54_100826	N													1 U		0.42				5 U		5 U			
West Former Mill	MW-54	11/11/2010	MW-54_101111	N																								
West Former Mill	MW-54	2/10/2011	MW-54_110210	N															0.25 U									
West Former Mill	MW-54	5/18/2011	MW-54-110518	N																								
West Former Mill	MW-55	2/21/2001	01-2277-CU06C	N		1 U	1 U		2 U	5 U	5 U						1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	MW-55	8/22/2001	DN25F	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	N	5.3 U	1.1 U	1.1 U		1.1 U	5.3 U	5.3 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.3 U	5.3 U	3.2 U	3.2 U	27 U	5.3 U	5.3 U	5.3 U	6.4 U	16 U	1.1 U
West Former Mill	MW-55	6/18/2003	K2304556-004	N		0.19 U	0.48 U		0.48 U	0.19 U	0.48 U			0.19 U	0.19 U	0.19 U	0.19 U	0.48 U	0.48 U	0.48 U	1.9 U	3.8 U	0.19 U	0.19 U	1.9 U	0.95 U	1.9 U	0.19 U
West Former Mill	MW-55	8/26/2010	MW-55_100826	N								-					1 U		0.87				5 U		5 U			
West Former Mill	MW-55	11/8/2010	MW-55_101108	N								-																
West Former Mill	MW-55	2/10/2011	MW-55_110210	N															0.25 U									
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	N	5.4 U	1.1 U	1.1 U		1.1 U	5.4 U	5.4 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.4 U	5.4 U	3.3 U	3.3 U	27 U	5.4 U	5.4 U	5.4 U	6.5 U	16 U	1.1 U
West Former Mill	MW-57	6/17/2003	K2304497-007	N		0.016 U	0.015 U		0.06 U	0.015 U	0.014 U			0.016 U	0.015 U	0.011 U	0.014 U	0.026 U	0.037 U	0.024 U	0.32 U	0.53 U	0.02 U	0.0088 U		0.23 U	0.013 U	0.018 U
West Former Mill	MW-57	8/26/2010	MW-57_100826	N													1 U		0.25 U				5 U		5 U			
West Former Mill	MW-60	11/11/2010	MW-60_101111	N															1.8 U									
West Former Mill	MW-60	2/9/2011	MW-60_110209	N															0.25 U									

				ameter	1,2-Dibromo-3-Chloropropane	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	m,p-CRESOL	m-Cresol	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl-phenylether
		MTCA Method	d B GW Protective of	Units MSW		(ug/L) 1000	(ug/L) 97	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 70	(ug/L) 1300	(ug/L) 960	(ug/L) 4.9	(ug/L) 3600	(ug/L) 2.4	(ug/L) 190	(ug/L) 550	(ug/L) 3500	(ug/L) 5	(ug/L) NL	(ug/L) 5	(ug/L) NL	(ug/L) NI	(ug/L) NL
Funct, Area	Loc ID	Date	Sample ID	Туре		1000	- 0.								1000			0000			000	0000						
West Former Mill	MW-60	5/19/2011	MW-60-110519	N																								
West Former Mill	MW-68	6/7/2011	MW-68-110607	N															0.25 U									
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	PZ-3	11/5/1997	97454183	N																								
West Former Mill	PZ-3	2/22/2001	CU21A	N		1 U	1 U		2 U	5 U	5 U			1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	PZ-3	8/21/2001	DN18B	N		1 U	1 U	1 U	1 U	5 U	5 U	1 U					1 U	5 U	5 U	3 U	3 U	10 U	5 U	5 U	5 U	6 U	10 U	1 U
West Former Mill	PZ-3	12/12/2002	02-18576-FB89D	N	5 U	1 U	1 U		1 U	5 U	5 U		1 U	1 U	1 U	1 U	1 U	5 U	5 U	3 U	3 U	25 U	5 U	5 U	5 U	6 U	15 U	1 U
West Former Mill	PZ-3	6/17/2003	K2304497-002	N		0.016 U	0.015 U		0.06 U	0.015 U	0.014 U			0.016 U	0.015 U	0.011 U	0.014 U	0.026 U	0.037 U	0.024 U	0.32 U	0.53 U	0.02 U	0.0088 U	0.43 U	0.23 U	0.013 U	0.018 U
West Former Mill	PZ-3	8/26/2010	PZ-3_100826	N													1 U		0.25 U				5 U		5 U			
West Former Mill	PZ-3	11/9/2010	PZ-3_101109	N																								
West Former Mill	PZ-3	2/10/2011	PZ-3_110210	N															0.25 U									
West Former Mill	PZ-3	5/19/2011	PZ-03-110519	N															0.25 U									

Funct. Area Loc ID Date Sample ID Sample ID	The transplant of the first of	bis(2-Chlor bis(2-Chlor bis(2-Ethyl bis(2-
Funct. Area Loc D Date Sample D NL NL NL NL NL NL N	IL NL NL NL 640 NL 26000 NL NL NL 37 NL 1 4200	
Funct. Area Loc ID Date Sample ID	1U 1U	2000 2.2 1300 NL 28000 2900 NL NL NL
City Purchase	1U 1U	
City Purchase PA-19 8/26/2010 PA-19_100826 -	1U 1U	1U
City Purchase PA-19 11/11/2010 PA-19_1010111		
City Purchase PA-19 2/9/2011 PA-19_110209D -		
City Purchase PZ-11 2/14/1997 97-2103-R661D 2 U 3 U 1 U		1U
City Purchase PZ-11 8/28/1997 97-15170-T609D 2 U 3 U 1 U <th< td=""><td></td><td> 1U</td></th<>		1U
City Purchase PZ-11 11/6/1997 97454188 5U 5U 0.1U 1U 1U 1U 4U 5U 1U 1U 1U 1U 1U 1U	U 1U 10U 5U 1U 1U 1U 1U 1U 5U 1U 1U 4U	3.5 J 1U 1U 1U 1U 1U 1U
City Purchase PZ-11 2/22/2001 01-2349-CU21G 2 U 3 U 1 U	U 1U 10U 5U 1U 1U 1U 10U 5U 1U 1U 4U	1U 1U 1U 1U 1U 1U 1U
City Purchase PZ-11 8/23/2001 01-14633-DN28A 2 U 3 U 1 U 5 U 5 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 1 U <t< td=""><td> 10 U</td><td> 10 U 10 U</td></t<>	10 U	10 U 10 U
City Purchase PZ-11 12/11/2002 02-18574-FB89B 2 U 3 U 1 U 5 U 5 U 5 U 0.1 U 0.1 U 0.1 U 5 U 5 U 5 U 1 U	U 1U 10U 5U 1U 1U 1U 10U 5U 1U 1U 4U	1U 1U 1U 1U 1 1U 1U
City Purchase PZ-11 6/19/2003 K2304594-002 0.078 J 0.19 U 0.02 U 0.02 U 0.02 U 0.015 J 0.006 J 4.8 U 4.8 U 0.19 U 0.19 U 0.19 U 0.19 U 0.12 J 0.19 U 0.051 J 0.079 J 0.38 U 0.19 U 0	U 5U 5U 0.15 0.1U 0.1U 0.1U 10U 5U 1U 1U 2 <i>U</i>	<i>5U</i> 1U 1U 1U 1U 1U 5U 1U
City Purchase PZ-11 8/27/2010 PZ-11_100827	U 5U 5U 0.1U 0.1U 0.1U 50U 5U 1U 1U 2 <i>U</i>	1U 1U 1U 1U 1U 1U 5U 1U
	9 U 0.48 U 0.95 U 1.9 U 0.02 U 0.02 U 0.0015 J 0.0096 J 4.8 U 4.8 U 0.19 U 0.19 U 0.19	19 U 1.9 U 0.12 J 0.19 U 0.051 J 0.079 J 0.38 U
City Purchase PZ-11 11/9/2010 PZ-11_101109	1UJ 1UJ	1 UJ
		1 U
City Purchase PZ-12 2/28/1997 97-2822-R796B 2 U 3 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	U 1U 10U 5U 1U 1U 1U 1U 1U 5U 1U 1U 2 <i>U</i>	10 10 10 10 10 10 10
City Purchase PZ-12 8/28/1997 97-15171-T609E 2U 3U 1U 1U 10 1U	U 1U 10U 5U 1U 1U 1U 1U 10U 5U 1U 1U 4 <i>U</i>	10 10 10 10 10 10 10 10
City Purchase PZ-12 11/6/1997 97454187 10 U 13 10 U		13 10 U
City Purchase PZ-12 2/22/2001 01-2348-CU21F 2 U 3 U 1 U 1 U 1 U 5 U 1 U 1 U 1 U 1 U 5 U 1 U 5 U 1 U 5 U 1 U 1 U 2 U 1 U	U 1U 10U 5U 1U 1U 1U 10U 5U 1U 1U 2 <i>U</i>	10 10 10 10 10 10 10
City Purchase PZ-12 8/21/2001 DN18H 2U 3U 1U 5U 5U 5U 0.1U 0.1U 0.1U 10U 5U 1U 1U 2 <i>U</i> 1.8U 1U	U 5U 5U 0.1U 0.1U 0.1U 0.1U 10U 5U 1U 1U 2 <i>U</i>	1.8 U 1 U 1 U 1 U 1 U 1 U
City Purchase PZ-12 12/11/2002 02-18575-FB89C 2 U 3.1 U 1 U 5.1 U 5.1 U 0.1 U 0.1 U 0.1 U 0.1 U 5.1 U 5.1 U 1 U 1 U 2 U 1 U 1	U 5.1U 5.1U 0.1U 0.1U 0.1U 0.1U 51U 5.1U 1U 1U 2 <i>U</i>	1U 1U 1U 1U 1U 1U 5.1U 1U
	2 U 0.48 U 0.96 U 2 U 0.02 U 0.02 U 0.02 U 0.0044 J 4.8 U 4.8 U 0.2 U 0.2 U 0.2 U	
City Purchase PZ-12 8/27/2010 PZ-12_100827		1U
City Purchase PZ-12 11/9/2010 PZ-12_101109	-	1U
CSO GWG-6 11/2/2010 GWG-6-W		1.8
CSO MW-70 5/18/2011 MW-70-110518		1U
CSO MW-70 5/18/2011 MW-70-110518D		1U
CSO PA-15 11/9/2010 PA-15_101109		1U
East Former Mill GWG-7 11/3/2010 GWG-7-W		1U
East Former Mill PA-24 11/9/2010 PA-24_101109		
East Former Mill PA-24 2/10/2011 PA-24 110210 1U		1 U

																								1			
				4-Chloro-3-methylphenol	4-Chloroaniline	Chlorophenyl-phenylether	Methylphenol	4-Nitroaniline	4-Nitrophenol	cenaphthene	Acenaphthylene	Anthracene	ənzo(g,h,i)perylene	Benzoic acid	Benzyl alcohol	Bis(2-chloro-1-methylethyl) ether	bis(2-Chloroethoxy)methane	s(2-Chloroethyl)ether*	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate*	Butylbenzylphthalate	Carbazole	Diethylphthalate	-n-butylphthalate	-n-octylphthalate	Diallate-Isomer 1	Dibenzofuran
			Para	I		4	4	_		Ă			ă "											∣਼ਠਂ	古		
		NATOA MAND	I D OW Destroy	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)			(ug/L)
Funct, Area	Loc ID	Date	d B GW Protective of Sample ID	f NL	NL	NL	NL	NL	NL	640	NL	26000	NL	NL	NL	37	NL	1	42000	2.2	1300	NL	28000	2900	NL	NL	NL
East Former Mill	PZ-10	8/27/1997	97-15175-T609I	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
East Former Mill	PZ-10	2/22/2001	01-2350-CU21H	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
East Former Mill	PZ-10	8/22/2001	DN25D	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		5.8 U	1 U	1 U	1 U	1 U	1 U		1 U
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O	2.2 U	3.3 U	1.1 U		5.6 U	5.6 U	0.11 U	0.11 U	0.11 U	0.11 U	56 U	5.6 U	1.1 U	1.1 U	2.2 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.6 U	1.1 U
East Former Mill	PZ-10	6/19/2003	K2304594-001	0.49 U	0.2 U	0.2 U	0.49 U	0.97 U	2 U	0.02 U	0.02 U	0.02 U	0.015 J	4.9 U	4.9 U		0.2 U	0.2 U	0.2 U	2 U	0.2 U	0.2 U	0.027 J	0.058 J	0.39 U		
East Former Mill	PZ-10	8/26/2010	PZ-10_100826										-			1 U		1 U		1 U							
East Former Mill	PZ-13	2/14/1997	97-2100-R661A	2 U	3 U	1 U	1 U	5 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	2 U	3 U	1 U	1 U	5 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	2 U		4	1 U	1 U	1 U	1 U	1 U		1 U
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	2.1 U	3.1 U	1 U		5.2 U	5.2 U	0.1 U	0.1 U	0.1 U	0.1 U	52 U	5.2 U	1 U	1 U	2.1 U		4.7	1 U	1 U	1 U	1 U	1 U	5.2 U	1 U
East Shoreline	104/50	-																									
	MW-59	6/19/2003	K2304594-006	0.48 U	0.19 U	0.19 U	0.48 U	0.95 U	1.9 U	0.022	0.02 U	0.0093 J	0.0074 J	4.8 U	4.8 U		0.19 U	0.19 U	0.19 U	1.9 U	0.19 U	0.19 U	0.036 J	0.094 J	0.38 U		
East Shoreline	MW-59	6/19/2003 8/27/2010	K2304594-006 MW-59_100827	0.48 U	0.19 U	0.19 U 	0.48 U		1.9 U 	0.022		0.0093 J	0.0074 J	4.8 U	4.8 U	 1 U	0.19 U 	0.19 U 1 U	0.19 U 		0.19 U 			0.094 J	0.38 U		
East Shoreline East Shoreline								0.95 U			0.02 U									1.9 U		0.19 U	0.036 J				
	MW-59	8/27/2010	MW-59_100827					0.95 U			0.02 U					1 U		1 U		1.9 U 1 U		0.19 U	0.036 J				
East Shoreline	MW-59 MW-59	8/27/2010 11/10/2010	MW-59_100827 MW-59_101110					0.95 U 			0.02 U					1 U		1 U 		1.9 U 1 U 1 U		0.19 U 	0.036 J 				
East Shoreline East Shoreline East Shoreline East Shoreline	MW-59 MW-59 MW-59 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J					0.95 U			0.02 U					1 U 		1 U 		1.9 U 1 U 1 U 1 U 2.2 J		0.19 U 1 U 1 U	0.036 J 				
East Shoreline East Shoreline East Shoreline East Shoreline East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185	 2 U	 3 U	 1 U	 1 U	0.95 U 10 U	 5 U	 1 U 1 U	0.02 U 1 U	 1 U	 1 U	 10 U	 5 U	1 U 1 U	 1 U	1 U 2 U		1.9 U 1 U 1 U 1 U 2.2 J	 1 U	0.19 U 1 U	0.036 J 1 U	 1 U	 1 U		 1 U
East Shoreline East Shoreline East Shoreline East Shoreline East Shoreline East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1	2 U 2 U	3 U 3 U	 1 U 1 U	1 U 1 U	0.95 U 10 U 10 U	5 U	 1 U 1 U 10 U	0.02 U 1 U 1 U	 1 U 1 U 	 1 U 1 U	 10 U 10 U	 5 U 5 U	1 U 1 U 1 U	 1 U 1 U	1 U 2 U 2 U		1.9 U 1 U 1 U 2.2 J 1 U 10 U	 1 U 1 U	0.19 U 1 U 1 U 10 U	0.036 J 1 U 1 U 	 1 U 1 U	1 U 1 U		 1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G	 2 U 2 U 2 U	3 U 3 U 3 U 	 1 U 1 U 1 U	 1 U 1 U 1 U	0.95 U 10 U 10 U 10 U	5 U 5 U 5 U	 1 U 1 U 10 U	0.02 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U	 1 U 1 U 1 U	 10 U 10 U 10 U	 5 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U	1 U 2 U 2 U 2 U		1.9 U 1 U 1 U 1 U 2.2 J 1 U 10 U 1 U	 1 U 1 U 1 U	0.19 U 1 U 10 U 10 U 1 U	0.036 J 1 U 1 U 1 U	 1 U 1 U 1 U	 1 U 1 U 1 U		 1 U 1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G PZ-9_010821	 2 U 2 U 2 U 2 U	3 U 3 U 3 U 3 U 2 U	 1 U 1 U 1 U	 1 U 1 U 1 U 1 U	0.95 U 10 U 10 U 10 U 5 U	5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 10 U 1 U 0.12	0.02 U 1 U 1 U 1 U 0.1 U	1 U 1 U 1 U	1 U 1 U 1 U 1 U 0.1 U	 10 U 10 U 10 U 10 U	 5 U 5 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U 1 U	1 U 2 U 2 U 2 U 2 U 2 U 2 U		1.9 U 1 U 1 U 1 U 2.2 J 1 U 10 U 1 U	 1 U 1 U 1 U	0.19 U 1 U 10 U 1 U 1 U 1 U 1 U 1 U	0.036 J 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U	 1 U 1 U 1 U 1 U	 	1 U 1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N	2 U 2 U 2 U 2 U 2 U 2 U 2 U	3 U 3 U 3 U 2 U 3.2 U	 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1 U	0.95 U 10 U 10 U 10 U 5 U 5.3 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 10 U 1 U 0.12	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U	1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 0.1 U	10 U 10 U 10 U 10 U 53 U	 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U 1 U 1.1 U	1 U 2 U 2 U 2 U 2 U 2.1 U		1.9 U 1 U 1 U 1 U 2.2 J 1 U 10 U 10 U 1 U 35	 1 U 1 U 1 U 1 U 1 U	0.19 U 1 U 10 U 1 U 1 U 1.1 U	0.036 J 1 U 1 U 1 U 1 U 1.1 U	 1 U 1 U 1 U 1 U	 1 U 1 U 1 U 1 U 1 U 1 U	 5.3 U	 1 U 1 U 1 U 1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005	2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2.1 U 0.48 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U	1 U 1 U 1.1 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 	0.95 U 10 U 10 U 10 U 5 U 5.3 U 0.96 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 0.12 0.11 U 0.046	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U 0.02 U	1 U 1 U 1 U 1 U 1 U 0.11 U 0.003 J	1 U 1 U 1 U 0.1 U 0.004 J	 10 U 10 U 10 U 10 U 53 U 4.8 U	 5 U 5 U 5 U 5 U 5 U 5 U 4.8 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1.1 U 0.2 U	1 U 2 U 2 U 2.1 U 0.2 U	 0.2 U	1.9 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.19 U 1 U 10 U 1 U 1 U 10 U 1 U 1 U 0.021 J	0.036 J 1 U 1 U 1 U 1 U 1 U 1 U 0.037 J	1 U 1 U 1 U 1 U 1 U 1 U 1.1 U	1 U 1 U 1.1 U 0.39 U	 5.3 U	 1 U 1 U 1 U 1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 6/19/2003	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007	2 U 2 U 2 U 2 U 2 U 2 U 2 U 2.1 U 0.48 U 0.48 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.48 U	10 U 10 U 5.3 U 0.96 U 0.96 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 0.12 0.11 U 0.046 0.045	0.02 U 1 U 1 U 1 U 0.1 U 0.1 U 0.02 U 0.02 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.11 U 0.003 J 0.0034 J	1 U 1 U 1 U 0.1 U 0.1 U 0.004 J 0.02 U	 10 U 10 U 10 U 10 U 53 U 4.8 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 3 U 4.8 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 2 U 2 U 2 U 2.1 U 0.2 U 0.2 U	 0.2 U	1.9 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U 2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.19 U 1 U 1 U 10 U 1 U 1 U 1.1 U 0.021 J 0.2 U	0.036 J 1 U 1 U 1 U 1 U 1 U 1 U 0.037 J 0.065 J	 1 U 1 U 1 U 1 U 1 U 1.1 U 0.047 J 0.082 J	1 U 1 U 1.1 U 0.39 U 0.39 U	 5.3 U	 1 U 1 U 1 U 1 U 1 U 1.1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610	2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2.1 U 0.48 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U	1 U 1 U 1.1 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 	0.95 U 10 U 10 U 10 U 5 U 5.3 U 0.96 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 0.12 0.11 U 0.046	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U 0.02 U	1 U 1 U 1 U 1 U 1 U 0.11 U 0.003 J	1 U 1 U 1 U 0.1 U 0.004 J	 10 U 10 U 10 U 10 U 53 U 4.8 U	 5 U 5 U 5 U 5 U 5 U 5 U 4.8 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1.1 U 1 U 1 U	1 U 1 U 1.1 U 0.2 U	1 U 2 U 2 U 2 U 2 U 2.1 U 0.2 U 0.2 U 1 U	 0.2 U	1.9 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U 2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.19 U 1 U 10 U 1 U 1 U 10 U 1 U 1 U 0.021 J	0.036 J 1 U 1 U 1 U 1 U 1 U 1 U 0.037 J	1 U 1 U 1 U 1 U 1 U 1 U 1.1 U	1 U 1 U 1.1 U 0.39 U	 5.3 U	 1 U 1 U 1 U 1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010 8/26/2010	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610 PZ-9_100826	 2 U 2 U 2 U 2 U 2 U 2 U 2.1 U 0.48 U 0.48 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U	1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 0.48 U	0.95 U 10 U 10 U 10 U 5 U 5.3 U 0.96 U 0.96 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 1 U 0.12 0.11 U 0.046 0.045	0.02 U 1 U 1 U 1 U 0.1 U 0.1 U 0.02 U 0.02 U	1 U 1 U 1 U 1 U 1 U 0.011 U 0.003 J 0.0034 J	1 U 1 U 1 U 0.1 U 0.1 U 0.004 J 0.02 U	10 U 10 U 10 U 10 U 53 U 4.8 U 4.8 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 2 U 2 U 2 U 2.1 U 0.2 U 0.2 U	 0.2 U	1.9 U 1 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U 2 U 1 U	 1 U 1 U 1 U 1 U 1 U 1 U 1 1 U 0.2 U 0.2 U	0.19 U 1 U 1 U 10 U 1 U 1 U 1.1 U 0.021 J 0.2 U	0.036 J 1 U 1 U 1 U 1 U 1 U 1 U 0.037 J 0.065 J	1 U 1 U 1.1 U 1.1 U 0.047 J 0.082 J	1 U 1 U 1.1 U 0.39 U 0.39 U	 5.3 U	 1 U 1 U 1 U 1 U 1 U 1.1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610	2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2.1 U 0.48 U 0.48 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 0.48 U	0.95 U 10 U 10 U 10 U 5 U 5.3 U 0.96 U	5 U 5 U 5 S U 5 S U 2 U 2 U	1 U 1 U 1 U 0.12 0.11 U 0.046 0.045	0.02 U 1 U 1 U 1 U 0.1 U 0.1 U 0.02 U 0.02 U	1 U 1 U 1 U 1 U 1 U 0.011 U 0.003 J 0.0034 J	1 U 1 U 1 U 0.1 U 0.1 U 0.004 J 0.02 U	10 U 10 U 10 U 10 U 10 U 53 U 4.8 U 4.8 U	5 U 5 U 5 U 5 U 5 U 4.8 U 4.8 U	1 U 1 U 1 U 1.1 U 1 U 1.1 U 1 U 1 U 1.1 U	1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 2 U 2 U 2 U 2 U 0.2 U 0.2 U 1 U 1 U	 0.2 U	1.9 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U 2 U	 1 U 1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U	0.19 U 1 U 1 U 10 U 1 U 1 U 1.1 U 0.021 J 0.2 U	0.036 J 1 U 1 U 1 U 1 U 1 U 1.1 U 0.037 J 0.065 J	1 U 1 U 1.1 U 1.1 U 0.047 J 0.082 J	1 U 1 U 1.1 U 0.39 U 0.39 U	 5.3 U	 1 U 1 U 1 U 1 U 1.1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010 8/26/2010 11/10/2010	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610 PZ-9_100826 PZ-9_101110	2 U 2 U 2.1 U 0.48 U 0.48 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 0.48 U	0.95 U 10 U 10 U 10 U 5 U 5.3 U 0.96 U 0.96 U	5 U 5 U 5 S U 2 U 2 U	1 U 1 U 1 U 0.12 0.11 U 0.046 0.045	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U 0.02 U	 1 U 1 U 1 U 0.11 U 0.003 J 0.0034 J	1 U 1 U 1 U 0.1 U 0.11 U 0.004 J 0.02 U	10 U 10 U 10 U 10 U 10 U 53 U 4.8 U 	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	1 U 1 U 1 U 1.1 U 1 U 1 U 1.1 U 1 U 1 U 1.1 U 1 U	1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 2 U 2 U 2 U 2.1 U 0.2 U 0.2 U 1 U 1 U	 0.2 U	1.9 U 1 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U 2 U 1 U 1 U	1 U 1 U 1.1 U 0.2 U 0.2 U	0.19 U 1 U 1 U 10 U 1 U 1.1 U 0.021 J 0.2 U	0.036 J 1 U 1 U 1 U 1 U 1.1 U 0.037 J 0.065 J	1 U 1 U 1.1 U 1.1 U 0.047 J 0.082 J	1 U 1 U 1.1 U 0.39 U 0.39 U	 5.3 U	1 U 1 U 1 U 1 U 1.1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010 8/26/2010 11/10/2010 2/8/2011	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610 PZ-9_100826 PZ-9_101110 PZ-9_110208	 2 U 2 U 2 U 2 U 2 U 2.1 U 0.48 U 	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U 1 U 0.48 U 0.48 U	0.95 U 10 U 10 U 5 U 5.3 U 0.96 U	5 U 5 U 5 U 2 U 2 U	1 U 1 U 1 U 0.12 0.11 U 0.046 0.045	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U 0.02 U	1 U 1 U 1 U 1 U 0.11 U 0.003 J	1 U 1 U 1 U 1 U 0.1 U 0.11 U 0.004 J 0.02 U	10 U 10 U 10 U 10 U 10 U 53 U 4.8 U 4.8 U	5 U 5 U 5 U 5 3 U 4.8 U 4.8 U	1 U 1 U 1 U 1 U 1 U 1.1 U 1 U 1.1 U 1 U 1 U 1.1 U 1 U 1 U	1 U 1 U 1.1 U 0.2 U 0.2 U	1 U 2 U 2 U 2.1 U 0.2 U 0.2 U 1 U 1 U		1.9 U 1 U 1 U 1 U 2.2 J 1 U 10 U 1 U 35 1.1 U 2 U 2 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U	0.19 U 1 U 1 U 10 U 1 U 1.1 U 0.021 J 0.2 U	0.036 J 1 U 1 U 1 U 1 U 1.1 U 0.037 J 0.065 J	1 U 1 U 1.1 U 0.047 J 0.082 J	1 U 1 U 1.1 U 0.39 U 0.39 U	 5.3 U	1 U 1 U 1 U 1 U 1.1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010 8/26/2010 11/10/2010 2/8/2011 2/13/1997	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610 PZ-9_100826 PZ-9_101110 PZ-9_110208 97-1959-R652D	 2 U 2 U 2 U 2 U 2.1 U 0.48 U 2 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U 3 U	1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U 1 U 0.48 U 0.48 U 	0.95 U 10 U 10 U 5 U 5.3 U 0.96 U 10 U 0.96 U	5 U 5 U 5 U 2 U 2 U 5 U 5 U	1 U 1 U 10 U 1 U 0.12 0.11 U 0.046 0.045 1 U	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U 0.02 U 1 U 0.1	 1 U 1 U 1 U 0.11 U 0.003 J 0.0034 J 1 U	1 U 1 U 1 U 0.1 U 0.11 U 0.004 J 0.02 U 1 U	10 U 10 U 53 U 4.8 U 10 U 10 U	5 U 5 U 5 U 5 3 U 4.8 U 4.8 U 5 U 5 U	1 U 1 U 1 U 1.1 U 1.	 1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U 1 U	1 U 2 U 2 U 2.1 U 0.2 U 1 U 1 U 2 U		1.9 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U 1 U	0.19 U 1 U 1 U 10 U 1 U 1.1 U 0.021 J 0.2 U 1 U 1 U	1 U 1.1 U 0.037 J 0.065 J	1 U 1 U 1 U 1 U 1.1 U 0.047 J 0.082 J 1 U	1 U 1 U 1.1 U 0.39 U 0.39 U 1 U	 5.3 U	 1 U 1 U 1 U 1 U 1.1 U 1 U
East Shoreline	MW-59 MW-59 MW-59 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-9 PZ-	8/27/2010 11/10/2010 2/10/2011 2/14/1997 8/27/1997 11/5/1997 11/5/1997 2/22/2001 8/21/2001 12/13/2002 6/19/2003 8/26/2010 8/26/2010 11/10/2010 2/8/2011 2/13/1997 8/28/1997	MW-59_100827 MW-59_101110 MW-59_110210 97-2101-R661B 97-15176-T609J 97454185 97454185-1 01-2369-CU22G PZ-9_010821 02-18586-FB89N K2304594-005 K2304594-007 DUP-082610 PZ-9_100826 PZ-9_101110 PZ-9_110208 97-1959-R652D 97-15169-T609C	 2 U 2 U 2 U 2 U 2.1 U 0.48 U 2 U	3 U 3 U 3 U 2 U 3.2 U 0.2 U 0.2 U 3 U 3.3 U 3.4 U	1 U 1 U 0.2 U 0.2 U 1 U 1 U 1 U 1 U	 1 U 1 U 1 U 1 U 0.48 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.95 U 10 U 10 U 5 U 5.3 U 0.96 U 10 U 10 U 5.0	5 U 5 U 5 U 2 U 2 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	1 U 1 U 10 U 1 U 0.12 0.11 U 0.046 0.045 1 U 1 U	0.02 U 1 U 1 U 1 U 0.1 U 0.11 U 0.02 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	1 U 1 U 1 U 1 U 0.011 U 0.003 J 0.0034 J 1 U 1 U	1 U 1 U 1 U 0.1 U 0.11 U 0.004 J 0.02 U 1 U 1 U	10 U 10 U 53 U 4.8 U 10	5 U 5 U 5 S U 4.8 U 4.8 U 5 U 5 U 5 U	1 U 1 U 1 U 1.1 U 1.	1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U 1 U 1 U	1 U 2 U 2 U 0.2 U 0.2 U 1 U 1 U 2 U 2 U 2 U 2 U 0.2 U 1 U 1 U 2 U 2 U 2 U 2 U		1.9 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1 U 1 U 1 U 1 U 1.1 U 0.2 U 0.2 U 1 U 1 U	0.19 U 1 U 1 U 10 U 1 U 1.1 U 0.021 J 0.2 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	0.036 J 1 U 1 U 1 U 1 U 1.1 U 0.037 J 0.065 J 1 U 1 U	1 U 1 U 1 U 1 U 1.1 U 0.047 J 0.082 J 1 U 1 U	 1 U 1 U 1 U 1 U 1.1 U 0.39 U 0.39 U 1 U 1 U	 5.3 U	1 U 1 U 1 U 1 U 1.1 U 1 U 1.1 U 1 U 1 U

				-3-methylphenol	oaniline	.Chlorophenyl-phenylether	henol	iline	enol	hene	hylene	9.	h,i)perylene	ıcid	alcohol	oro-1-methylethyl) ether	oroethoxy)methane	oroethyl)ether*	Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate*	zylphthalate		thalate	utylphthalate	ctylphthalate	somer 1	ıran
			Para	4-Chloro-	4-Chloroa	4-Chlorop	4-Methylpheno	4-Nitroaniline	4-Nitrophenol	Acenaphthe	Acenaphthylene	Anthracene	Benzo(g,ŀ	Benzoic a	Benzyl al	Bis(2-chlo	bis(2-Chlor	bis(2-Chlor	bis(2-Chle	bis(2-Eth)	Butylbenzylphth	Carbazole	Diethylphthalate	Di-n-buty	Di-n-octyl	Diallate-Isomer	Dibenzofu
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)
E A			B GW Protective of	NL	NL	NL	NL	NL	NL	640	NL	26000	NL	NL	NL	37	NL	1	42000	2.2	1300	NL	28000	2900	NL	NL	NL
Funct. Area Ennis Creek	Loc ID PZ-5	Date 6/18/2003	Sample ID K2304556-001	0.48 U	0.2 U	0.2 U	0.48 U	0.96 U	2 U	0.02 U	0.02 U	0.02 U	0.02 U	4.8 U	4.8 U		0.2 U	0.2 U	0.2 U	2 U	0.2 U	0.2 U	0.027 J	0.056 J	0.39 U		
Ennis Creek	PZ-5 PZ-5	8/27/2010	PZ-5_100827	0.46 0	0.2 0	0.2 0	0.46 U	0.96 0	20	0.02 0	0.02 0	0.02 0	0.02 0	4.6 U	4.6 U	1 U	0.2 0	1 U	0.2 0	1 U	0.2 0	0.2 0	0.027 J	0.056 J	0.39 0		
Ennis Creek	PZ-6	2/13/1997	97-1958-R652C	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1.7 J	1 U	1 U	1 U	1 U	1 U		1 U
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Ennis Creek	PZ-6	2/22/2001	01-2346-CU21D	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		1.9 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	50 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U
Ennis Creek	PZ-6	6/18/2003	K2304556-005	0.49 U	0.2 U	0.2 U	0.49 U	0.98 U	2 U	0.02 U	0.02 U	0.02 U	0.0056 J	4.9 U	4.9 U		0.2 U	0.2 U	0.2 U	2 U	0.2 U	0.2 U	0.031 J	0.056 J	0.39 U		
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827													1 U		1 U		1 U							
Estuary	FR-1	2/22/2001	01-2367-CU22E	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Estuary	FR-1	8/22/2001	DN25B	2 U	3 U	1 U		5 U	5 U	0.24	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Estuary	MW-62	11/9/2010	MW-62_101109																	1 U							
Estuary	MW-62	2/10/2011	MW-62_110210																	1 U							
Main Former Mill	GWG-1	11/4/2010	GWG-1-W													1 U		1 U		1 U							
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S	2.3 U	3.4 U	1.1 U		5.7 U	5.7 U	0.36	0.11 U	0.11 U	0.11 U	57 U		1.1 U	1.1 U	2.3 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.7 U	1.1 U
Main Former Mill	MW-58	6/18/2003	K2304556-002	0.037 J	0.2 U	0.2 U	0.49 U	0.97 U	2 U	0.37	0.0033 J	0.006 J	0.02 U	4.9 U	4.9 U		0.2 U	0.2 U	0.2 U	2 U	0.2 U	0.2 U	0.057 J	0.15 J	0.39 U		
Main Former Mill	MW-58	8/27/2010	MW-58_100827										-			1 U		1 U		1 U							
Main Former Mill	MW-58	2/11/2011	MW-58_110211																	1 U							
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W																								
Main Former Mill	MW-65	5/18/2011	MW-65-110518																	1 U							
Main Former Mill	MW-66	3/11/2011	MW-66-110311-W																								
Main Former Mill	MW-66	5/18/2011	MW-66-110518																	1 U							
Main Former Mill	MW-69	5/18/2011	MW-69-110518																	1.1 U							
Main Former Mill	PA-17	2/11/2011	PA-17_110211													4.11		4.11		1 U							
Main Former Mill Main Former Mill	PIPE-1-SR23 PZ-4	1/7/2011 2/13/1997	PIPE-1-SR23 97-1960-R652E	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U 2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Main Former Mill	PZ-4 PZ-4	8/27/1997	97-1960-R652E 97-15173-T609G	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Main Former Mill	PZ-4	11/5/1997	97454184							10 U										10 U		10 U					
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Main Former Mill	PZ-4	8/21/2001	DN18F	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		1.1 U	1 U	1 U	1 U	1 U	1 U		1 U
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E	2.5 U	3.8 U	1.2 U		6.2 U	6.2 U	0.12 U	0.12 U	0.12 U	0.12 U	62 U	6.2 U	1.2 U	1.2 U	2.5 U		1.2 U	1.2 U	1.2 U	1.2 U	1.2 U		6.2 U	1.2 U

				3-methylphenol		ohenylether							ene			-methylethyl) ether	oethoxy)methane	oethyl)ether*	ropyl)ether	phthalate*	alate			ıte	ıte		
			Para	4-Chloro	4-Chloroaniline	4-Chlorophenyl-phenylether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)peryle	Benzoic acid	Benzyl alcohol	Bis(2-chloro-1	bis(2-Chlor	bis(2-Chlor	bis(2-Chloroisopi	bis(2-Ethylhexyl)phthalat	Butylbenzylphth	Carbazole	Diethylphthalate	Di-n-butylphthal	Di-n-octylphthalat	Diallate-Isomer 1	Dibenzofuran
		MTCA Method	B GW Protective of	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 640	(ug/L) NL	(ug/L) 26000	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 37	(ug/L) NL	(ug/L) 1	(ug/L) 42000	(ug/L) 2.2	(ug/L) 1300	(ug/L) NL	(ug/L) 28000	(ug/L) 2900	(ug/L) NL	(ug/L) NL	(ug/L) NL
Funct, Area	Loc ID	Date	Sample ID	INL	145	145	145	, NL	, NL	040	145	20000	146	INL	145	31	145	-	72000	2.2	1300	INL	20000	2000	145	146	-142
Main Former Mill	PZ-4	6/17/2003	K2304497-004	0.029 U	0.018 U	0.0085 U	0.051 U	0.17 U	0.54 U	0.0024 J	0.0018 U	0.0016 J	0.0037 U	1.8 U	0.98 U		0.012 U	0.015 U	0.017 U	0.27 U	0.026 U	0.013 U	0.037 J	0.055 J	0.032 U		
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825													1 U		1 U		1 U							
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	2 U	3 U	1 U	1 U	10 U	5 U	4	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		2.6	1 U	1 U	1 U	1 U	1 U		1 U
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	2 U	3 U	1 U	1 U	10 U	5 U	4.8	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
North Shoreline	MW-51	8/21/2001	DN18C	2 U	3 U	1 U		5 U	5 U	5.7	0.1 U	0.1	0.1 U	10 U	5 U	1 U	1 U	2 U		15 U	1 U	1 U	1 U	1 U	1 U		1 U
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	2.2 U	3.3 U	1.1 U		5.4 U	5.4 U	5.4	0.11 U	0.11	0.11 U	54 U	5.4 U	1.1 U	1.1 U	2.2 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.4 U	1.1 U
North Shoreline	MW-51	6/18/2003	K2304556-003	0.48 U	0.19 U	0.19 U	0.48 U	0.95 U	1.9 U	5	0.032	0.072	0.02 U	4.8 U	4.8 U		0.19 U	0.19 U	0.19 U	0.33 J	0.19 U	0.063 J	0.047 J	0.067 J	0.38 U		
North Shoreline	MW-51	8/26/2010	MW-51_100826													1 U		1 U		1.3							
North Shoreline	MW-51	11/10/2010	MW-51_101110																	1 U							
North Shoreline	MW-51	2/11/2011	MW-51_110211																	1 U							
North Shoreline	MW-51	5/19/2011	MW-51-110519																								
North Shoreline	MW-56	2/22/2001	01-2365-CU22C	2 U	3 U	1 U	16	10 U	5 U	1 U	1 U	1 U	1 U	13	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1.4	1 U		1 U
North Shoreline	MW-56	8/22/2001	DN25E	2 U	3 U	1 U		5 U	5 U	0.1 J	0.1 U	0.12 J	0.1 U	23	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	2 U	3.1 U	1 U		5.1 U	5.1 U	0.1 U	0.1 U	0.1 U	0.1 U	51 U	5.1 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U	5.1 U	1 U
North Shoreline	MW-56	6/19/2003	K2304594-008	0.48 U	0.19 U	0.19 U	10	0.95 U	1.9 U	0.049	0.0051 J	0.013 J	0.02 U	9.2	4.8 U	4.11	0.19 U	0.19 U	0.19 U	1.9 U	0.19 U	0.19 U	0.19 U	0.19 U	0.38 U		
North Shoreline	MW-56	8/26/2010	MW-56_100826													1 U		1 U		1 U							
North Shoreline North Shoreline	MW-56 MW-56	11/9/2010 2/11/2011	MW-56_101109 MW-56_110211																	1 U							
NW Shoreline	MW-28	8/25/2010	MW-28_100825													1 U		1 U		1 U							
NW Shoreline	MW-28	11/10/2010	MW-28_101110																	1 U							
NW Shoreline	MW-28	2/8/2011	MW-28_110208																	1 U							
NW Shoreline	MW-28	5/20/2011	MW-28-110520			4.11	4.11	40.11		4.11	4.11	4.11	4.11	40.11		4.11	4.11	411		4.5	4.11	4.11	4.11		4.11		4.11
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		4.5	1 U	1 U	1 U	1.3	1 U		1 U
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		10	1 U	1 U	1 U	1 U	1 U		1 U
NW Shoreline	MW-52	8/22/2001	DN25G	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		2.2 U	1 U	1 U	1 U	1 U	1 U	 E C I I	1 U 1.1 U
NW Shoreline NW Shoreline	MW-52 MW-52	12/12/2002 6/16/2003	02-18581-FB89I K2304466-002	2.2 U 0.48 U	3.3 U 0.2 U	1.1 U 0.2 U	0.48 U	5.6 U 0.96 U	5.6 U	0.11 U 0.02 U	0.11 U 0.02 U	0.11 U 0.02 U	0.11 U 0.02 U	56 U 4.8 U	5.6 U 4.8 U	1.1 U	1.1 U 0.2 U	2.2 U 0.2 U	 0.2 U	1.1 U 2 U	1.1 U 0.2 U	1.1 U 0.2 U	1.1 U 0.026 J	1.1 U 0.03 J	1.1 U 0.39 U	5.6 U	1.1 U
NW Shoreline	MW-52	8/25/2010	MW-52_100825	0.46 0	0.2 0	0.2 0	0.46 0	0.96 0	20	0.02 0	0.02 0	0.02 0	0.02 0	4.6 U	4.6 U	1 U	0.2 0	1 U	0.2 0	1 U	0.2 0	0.2 0	0.026 J	0.03 J	0.39 0		
NW Shoreline	MW-52	11/8/2010	MW-52_100825																	1 U							
NW Shoreline	MW-52	2/9/2011	MW-52_101108																	1 U							
NW Shoreline	MW-53	2/21/2001	01-2275-CU06A	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
1444 OHOLEHILE	IVIVV-00	2/2 1/200 I	01-2210-000A		50	10	١٠	100	5.0	1 0	10	1 0	- 0	100	50	. 0	1 0	70	- 	. 0	10	' 0	٠ ٠	١U	1 0		1 0

				-3-methylphenol	oaniline	-Chlorophenyl-phenylether	henol	iline	enol	hene	hylene	92	h,i)perylene	ıcid	alcohol	oro-1-methylethyl) ether	oroethoxy)methane	oroethyl)ether*	Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate*	Butylbenzylphthalate		thalate	utylphthalate	ctylphthalate	somer 1	ıran
				4-Chloro-	4-Chloroa	Chlorop	-Methylpheno	4-Nitroaniline	4-Nitrophenol	cenaphthe	Acenaphthylene	Anthracene	enzo(g,ŀ	Benzoic a	Benzyl ale	Bis(2-chlo	bis(2-Chlor	s(2-Chlor	bis(2-Chle	s(2-Eth)	utylbenz	Carbazole	Diethylphthalate	d-	Di-n-octyl	Diallate-Isomer	Dibenzofu
			Para			4	4		_	Ă		_	Ä					pis(_		ے			_
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
First Area			B GW Protective of	NL	NL	NL	NL	NL	NL	640	NL	26000	NL	NL	NL	37	NL	1	42000	2.2	1300	NL	28000	2900	NL	NL	NL
Funct. Area NW Shoreline	Loc ID MW-53	Date 8/21/2001	Sample ID DN18A	2 U	211	1 U		5 U	5 U	0411	0.1 U	0.4.11	0.1 U	10 U	5 U	4.11	411	211		3.9 U	1 U	4.11	411	4.11	4.11		1 U
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	2.2 U	3 U 3.3 U	1.1 U				0.1 U	0.1 U	0.1 U 0.11 U	0.1 U	56 U	5.6 U	1 U 1.1 U	1 U	2 U 2.2 U		1.1 U	1.1 U	1 U	1 U 1.1 U	1 U	1 U	 5.6 U	1.1 U
NW Shoreline	MW-53	6/16/2003	K2304466-003	0.48 U	0.2 U	0.2 U	0.48 U	5.6 U 0.96 U	5.6 U	0.11 U 0.02 U	0.11 U	0.0012 J	0.11 U	4.8 U	4.8 U	1.10	1.1 U 0.2 U	0.2 U	0.2 U	2 U	0.2 U	1.1 U 0.2 U	0.035 J	1.1 U 0.037 J	1.1 U 0.39 U	5.6 U	1.10
NW Shoreline	MW-53	8/26/2010	MW-53 100826			0.2 0		0.90 0						4.0 0	4.0 0	1 U		1 U		1 U	0.2 0						
NW Shoreline	MW-53	2/11/2011	MW-53_100820																	1 U							
NW Shoreline	MW-61	11/11/2010	MW-61_101111																	1 U							
NW Shoreline	MW-61	2/11/2011	MW-61_110211																	1.4							
NW Shoreline	MW-67	3/11/2011	MW-67-110311-W																								
NW Shoreline	MW-67	5/18/2011	MW-67-110518																	1 U							
NW Shoreline	PZ-1	8/22/2001	DN25C	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
NW Shoreline	PZ-2	2/13/1997	97-1957-R652B	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		3.1 J	1 U	1 U	1 U	1 U	1 U		1 U
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
NW Shoreline	PZ-2	11/5/1997	97454182							10 U										10 U		10 U					
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825													1 U		1 U		1 U							
NW Shoreline	PZ-2	11/11/2010	PZ-2_101111																	1 U							
NW Shoreline	PZ-2	2/7/2011	PZ-2_110207																	1 U							
Prefab	PZ-7	2/14/1997	97-2102-R661C	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		3.4 J	1 U	1 U	1 U	1 U	1 U		1 U
Prefab	PZ-7	8/27/1997	97-15177-T609K	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
Prefab	PZ-7	11/5/1997	97454189							10 U										10 U		10 U					
Prefab	PZ-7	2/22/2001	01-2347-CU21E	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1	1 U		1 U
Prefab	PZ-7	12/12/2002	02-18579-FB89G	2.6 U	3.8 U	1.3 U		6.4 U	6.4 U	0.13 U	0.13 U	0.13 U	0.13 U	64 U	6.4 U	1.3 U	1.3 U	2.6 U		1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	6.4 U	1.3 U
Prefab	PZ-7	8/27/2010	PZ-7_100827													1 U		1 U		1.2							
Prefab	PZ-7	11/10/2010	PZ-7_101110																	4.2							
Prefab	PZ-7	2/8/2011	PZ-7_110208																	1 U							
Prefab	PZ-7	5/17/2011	PZ-07-110517																	1 U							
West Former Mill	MW-19	2/22/2001	01-2345-CU21C	2 U	3 U	1 U	1 U	10 U	5 U	46	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	MW-19	8/22/2001	DN25I	2 U	3 U	1 U		5 U	5 U	44	0.39	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		1.5 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	MW-20	9/2/1997	97-15361-T609N	2 U	3 U	1 U	1 U	10 U	5 U	3.7	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1.0 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	MW-23	10/15/1997	97-19428-U167A	2 U	3 U	1 U	1 U	10 U	5 U	27	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1.8	1 U	1 U	1 U		2
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	2 U	3 U	1 U	1 U	10 U	5 U	9.8 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	4.6	1 U	1 U	1 U		1.4
West Former Mill	MW-23	8/21/2001	DN18E	2 U	3 U	1 U		5 U	5 U	9.8	0.1 U	0.21	0.1 U	10 U	5 U	1 U	1 U	2 U		1.8 U	1 U	1 U	1 U	1 U	1 U		1.3
	25	3,2.,2001	202		, ,,				_ ~~	0.0	J 3 3	V.= .	J J							3				. •			

																										1	
				4-Chloro-3-methylphenol	4-Chloroaniline	-Chlorophenyl-phenylether	-Methylphenol	4-Nitroaniline	4-Nitrophenol	cenaphthene	Acenaphthylene	Anthracene	enzo(g,h,i)perylene	Benzoic acid	Benzyl alcohol	Bis(2-chloro-1-methylethyl) ether	bis(2-Chloroethoxy)methane	is(2-Chloroethyl)ether*	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate*	Butylbenzylphthalate	Carbazole	Diethylphthalate	i-n-butylphthalate	i-n-octylphthalate	Diallate-Isomer 1	Dibenzofuran
			Para			4	4	_	-	(ua/l)			<u> </u>					<u></u>						رايمرا) داريمرا)	<u></u>		_
		MTCA Mathad	B GW Protective of	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 640	(ug/L) NL	(ug/L) 26000	(ug/L) NL	(ug/L) NL	(ug/L) NL	(ug/L) 37	(ug/L) NL	(ug/L) 1	(ug/L) 42000	(ug/L) 2.2	(ug/L) 1300	(ug/L) NL	(ug/L) 28000	(ug/L) 2900	(ug/L) NL	(ug/L) NL	(ug/L) NL
Funct. Area	Loc ID	Date	Sample ID	INL	INL	INL	INL	INL	INL	040	INL	20000	INL	INL	INL	31	INL	ı	42000	۷.۷	1300	INL	20000	2300	INL	INL	INL
West Former Mill	MW-23	12/13/2002	02-18589-FB89Q	2 U	3 U	1 U		5 U	5 U	2.4	0.12 J	0.27	0.1 U	50 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U
West Former Mill	MW-23	6/16/2003	K2304466-001	0.48 U	0.2 U	0.2 U	0.31 J	0.96 U	2 U	2.6	0.02 U	0.14	0.02 U	4.8 U	4.8 U		0.2 U	0.2 U	0.2 U	2 U	0.2 U	0.98		0.052 J			
West Former Mill	MW-23	8/25/2010	MW-23_100825													1 U		1 U		1 U							
West Former Mill	MW-23	11/10/2010	MW-23_101110																								
West Former Mill	MW-23	2/9/2011	MW-23_110209																								
West Former Mill	MW-23	5/19/2011	MW-23-110519																								
West Former Mill	MW-29	9/2/1997	97-15362-T609O	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	MW-29	6/17/2003	K2304497-006	0.029 U	0.018 U	0.0085 U	0.63	0.17 U	0.54 U	0.043	0.0034 J	0.0028 J	0.0037 U	1.8 U	0.98 U		0.012 U	0.015 U	0.017 U	0.27 U	0.026 U	0.013 U	0.092 J	0.059 J	0.032 U		
West Former Mill	MW-29	8/25/2010	MW-29_100825													1 U		1 U		4.9							
West Former Mill	MW-29	11/11/2010	MW-29_101111																	1 U							
West Former Mill	MW-29	2/8/2011	MW-29_110208																	1 U							
West Former Mill	MW-29	5/20/2011	MW-29-110520			4.11	4.11	40.11			4.11	4.11	4.11			4.11	4.11			1 U	4.11		4.11		4.11		
West Former Mill	MW-54	2/21/2001	01-2276-CU06B DN25H	2 U	3 U	1 U	1 U	10 U	5 U	14	1 U	1 U	1 U	62	5 U	1 U	1 U	4 U		1 U	1 U	1.8	1 U	1 J	1 U		5.4 1 U
West Former Mill West Former Mill	MW-54 MW-54	8/22/2001 12/12/2002	02-18583-FB89K	2 U 2.1 U	3 U 3.1 U	1 U		5 U 5.2 U	5 U 5.2 U	3.8 0.1 U	0.1 U 0.1 U	0.22 0.1 U	0.1 U 0.1 U	10 U 52 U	5 U 5.2 U	1 U	1 U	2 U 2.1 U		1.9 U 1 U	1 U	1 U	1 U 1.1	1 U	1 U	5.2 U	1 U
West Former Mill	MW-54	6/17/2003	K2304497-001	0.095 J	0.018 U	-		0.17 U	0.54 U	0.10	0.0018 U	0.1 J	0.0069 J	1.8 U	0.98 U		0.012 U	0.015 U		0.27 U		0.013 U	0.041 J	0.058 J		5.2 0	
West Former Mill	MW-54	8/26/2010	MW-54 100826	0.093 3		0.0003 0	0.031 0	0.17 0	0.54 0	0.034		0.0133	0.0009 3	1.0 0	0.90 0	1 U	0.012 0	1 U	0.017 0	1 U	0.020 0		0.0413	0.030 3			
West Former Mill	MW-54	11/11/2010	MW-54_101111																								
West Former Mill	MW-54	2/10/2011	MW-54_110210																	1.4							
West Former Mill	MW-54	5/18/2011	MW-54-110518																								
West Former Mill	MW-55	2/21/2001	01-2277-CU06C	2 U	3 U	1 U	1 U	10 U	5 U	1 U	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	MW-55	8/22/2001	DN25F	2 U	3 U	1 U		5 U	5 U	0.17	0.1 U	0.1 U	0.1 U	10 U	5 U	1 U	1 U	2 U		7 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	2.1 U	3.2 U	1.1 U		5.3 U	5.3 U	0.11 U	0.11 U	0.11 U	0.11 U	53 U	5.3 U	1.1 U	1.1 U	2.1 U		3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.3 U	1.1 U
West Former Mill	MW-55	6/18/2003	K2304556-004	0.48 U	0.19 U	0.19 U	0.48 U	0.95 U	1.9 U	0.0092 J	0.0022 J	0.0045 J	0.017 J	4.8 U	4.8 U		0.19 U	0.19 U	0.19 U	0.77 J	0.19 U	0.19 U	0.036 J	0.063 J	0.38 U		
West Former Mill	MW-55	8/26/2010	MW-55_100826													1 U		1 U		1 U							
West Former Mill	MW-55	11/8/2010	MW-55_101108																	1 U							
West Former Mill	MW-55	2/10/2011	MW-55_110210																	1 U							
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	2.2 U	3.3 U	1.1 U		5.4 U	5.4 U	0.17	0.11 U	0.11 U	0.11 U	54 U	5.4 U	1.1 U		2.2 U		1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	5.4 U	1.1 U
West Former Mill	MW-57	6/17/2003	K2304497-007	0.029 U	0.018 U			0.17 U	0.54 U	0.51	0.011 J	0.002 J	0.0037 U	1.8 U	0.98 U	4.11	0.012 U	0.015 U	0.017 U	0.27 U	0.026 U	0.06 J	0.044 J	0.13 J	0.032 U		
West Former Mill	MW-57	8/26/2010	MW-57_100826													1 U		1 U		1 U							
West Former Mill	MW-60	11/11/2010	MW-60_101111																	1.6							
West Former Mill	MW-60	2/9/2011	MW-60_110209																	1 U							

		MTCA Methoo	Para	Z 은 4-Chloro-3-methylphenol	공요 구연 4-Chloroaniline	공율 구주	Z Ĝ 4-Methylphenol ├ ├ 4-Methylphenol	7Z Ĝ (β 4-Nitroaniline	PZ © 4-Nitrophenol	OF Acenaphthene	동 주 구	(nZ/En) Anthracene	지호 Benzo(g,h,i)perylene	R 6 F 6 F 6 Benzoic acid	R & Benzyl alcohol	ຊື່ Bis(2-chloro-1-methylethyl) ether ປັ່ງ	물을 bis(2-Chloroethoxy)methane	الله (ق ماد) الماد) bis(2-Chloroethyl)ether*	(7) bis(2-Chloroisopropyl)ether	8.7 6 bis(2-Ethylhexyl)phthalate*	0 (c) Butylbenzylphthalate	FZ (carbazole	(T) Diethylphthalate	OGC () OGC Di-n-butylphthalate	지 을 Di-n-octylphthalate	기 을 Diallate-Isomer 1	Z Ĝ Dibenzofuran ┌ ┌
Funct. Area	Loc ID	Date	Sample ID																								
West Former Mill	MW-60	5/19/2011	MW-60-110519																								
West Former Mill	MW-68	6/7/2011	MW-68-110607																	2.3							
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	2 U	3 U	1 U	1 U	10 U	5 U	27	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	6.8	1 U	1 U	1 U		1 U
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	2 U	3 U	1 U	1 U	10 U	5 U	22	1 U	1 U	1 U	10 U	5 U	1 U	1 U	4 U		1 U	1 U	6.7	1 U	1 U	1 U		1.2
West Former Mill	PZ-3	11/5/1997	97454183							25										10 U		7 J					
West Former Mill	PZ-3	2/22/2001	CU21A	2 U	3 U	1 U		5 U	5 U	29	1 U	1 U	1 U	10 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1.4	1 U		1 U
West Former Mill	PZ-3	8/21/2001	DN18B	2 U	3 U	1 U		5 U	5 U	0.1 U	0.1 U	21	0.82	10 U	5 U	1 U	1 U	2 U		4.9 U	1 U	1 U	1 U	1 U	1 U		1 U
West Former Mill	PZ-3	12/12/2002	02-18576-FB89D	2 U	3 U	1 U		5 U	5 U	17	0.1 U	0.15	0.1 U	50 U	5 U	1 U	1 U	2 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U
West Former Mill	PZ-3	6/17/2003	K2304497-002	0.088 J	0.018 U	0.0085 U	0.051 U	0.17 U	0.54 U	18 J	0.17	0.15	0.0073 J	1.8 U	0.98 U		0.012 U	0.015 U	0.017 U	0.27 U	0.026 U	0.21	0.037 J	0.06 J	0.032 U		
West Former Mill	PZ-3	8/26/2010	PZ-3_100826													1 U		1 U		2.3							
West Former Mill	PZ-3	11/9/2010	PZ-3_101109																	1 U							
West Former Mill	PZ-3	2/10/2011	PZ-3_110210																	1 U							
West Former Mill	PZ-3	5/19/2011	PZ-03-110519																	1 U							

							1	1					 		ı		ı	ı		
									эс						Φ.					
									Hexachlorocyclopentadiene						N-Nitroso-di-n-propylamine	<u>o</u>				
								9	ıta						<u>Y</u> a	N-Nitrosodiphenylamine				
				ø			au e	ien	per	ө					do	/lar	*			
				alat			uze	tad	clo	ıan					호	en)	l e			
				Ę	e e		pe	nqe	cy	ett		40	<u>e</u>	ne	<u>∓</u>	hdi	do	l eu		
				횰	.He	ø.	orc	orc	orc	orc		one	ler	ıze	ŏ	р	<u>o</u>	l ä		
				ŧ	a	e.	당	chl	chl	chl	<u>≓</u> .	יסנ	tha	ber	los So	ros	ာင္စ	aut	0	ခ
				Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	жа	Hexachloroethane	Isodrin	sophorone	Naphthalene	Nitrobenzene	ž	ž	Pentachlorophenol	Phenanthrene	Phenol	Pyrene
			Para									_								
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			B GW Protective of	72000	90	3500	0.00083	18	1100	3.3	NL	600	4900	450	1	6	3	NL	1.1e+006	2600
Funct. Area	Loc ID	Date	Sample ID										 				0.05.11			\vdash
City Purchase	GWG-8	10/28/2010	GWG-8-W							4.11					4.11		0.25 U			
City Purchase	PA-19	8/26/2010	PA-19_100826							1 U					1 U	5 U	0.71			0.16 J
City Purchase	PA-19	11/11/2010	PA-19_101111														0.46			0.012
City Purchase	PA-19 PA-19	2/9/2011 2/9/2011	PA-19_110209 PA-19_110209D														0.25			0.022 J 0.01 UJ
City Purchase	PA-19 PZ-11	2/9/2011	_	1 U	1 U	1 U		 2 U	 5 U	2 U		1 U	1 U	1 U	3 U	 1 U	0.26 5 U	1 U	 2 U	1 U
City Purchase	PZ-11 PZ-11	8/28/1997	97-2103-R661D 97-15170-T609D	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
City Purchase City Purchase	PZ-11 PZ-11	11/6/1997	97-15170-1609D		10 U	10 U			5 0						30					
City Purchase	PZ-11	2/22/2001	01-2349-CU21G	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
City Purchase	PZ-11	8/23/2001	01-14633-DN28A	1 U	0.1 U	0.1 U		2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
City Purchase	PZ-11	12/11/2002	02-18574-FB89B	1 U	0.1 U	0.1 U		2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
City Purchase	PZ-11	6/19/2003	K2304594-002	0.19 U	0.0032 J	0.02 U		0.19 U	0.95 U	0.19 U		0.19 U	0.0032 J	0.19 U	0.19 U	0.19 U	0.18 J	0.0037 J	0.067 J	0.0043 J
City Purchase	PZ-11	8/27/2010	PZ-11_100827					0.13 0		1 UJ		0.13 0			1 UJ	5 U	0.16 J		0.007 3	0.0043 3 0.017 J
City Purchase	PZ-11	11/9/2010	PZ-11_101109														0.20 0			
City Purchase	PZ-12	2/28/1997	97-2822-R796B	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
City Purchase	PZ-12	8/28/1997	97-15171-T609E	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
City Purchase	PZ-12	11/6/1997	97454187		10 U	10 U														
City Purchase	PZ-12	2/22/2001	01-2348-CU21F	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	2 U	1 U	5 U	1 U	2 U	1 U
City Purchase	PZ-12	8/21/2001	DN18H	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
City Purchase	PZ-12	12/11/2002	02-18575-FB89C	1 U	0.1 U	0.1 U		2 U	5.1 U	2 U	5.1 U	1 U	0.1 U	1 U	2 U	1 U	5.1 U	0.1 U	2 U	0.1 U
City Purchase	PZ-12	6/19/2003	K2304594-003	0.2 U	0.02 U	0.02 U		0.2 U	0.96 U	0.2 U		0.2 U	0.0035 J	0.2 U	0.2 U	0.2 U	0.05 J	0.02 U	0.028 J	0.02 U
City Purchase	PZ-12	8/27/2010	PZ-12_100827						-	1 U		1			1 U	5 UJ	0.25 U		i	0.01 U
City Purchase	PZ-12	11/9/2010	PZ-12_101109																	
CSO	GWG-6	11/2/2010	GWG-6-W														0.25 U			
CSO	MW-70	5/18/2011	MW-70-110518														0.25 U		-	
CSO	MW-70	5/18/2011	MW-70-110518D														0.25 U			
CSO	PA-15	11/9/2010	PA-15_101109														0.25 U			0.01 U
East Former Mill	GWG-7	11/3/2010	GWG-7-W														0.25 U			
East Former Mill	PA-24	11/9/2010	PA-24_101109														0.25 U			0.018 U
East Former Mill	PA-24	2/10/2011	PA-24_110210														0.25 U			0.01 U
East Former Mill	PZ-10	2/28/1997	97-2821-R796A	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	2 U	1 U	5 U	1 U	2 U	1 U

Part					1	1	1		ı			I I		1		ı					
MTCA Method B GW Protective of 12000 90 3500 0,00083 18 1100 0 450 450 1 6 3 NL 11-e606 2600				Door	imethylphthalate	luoranthene	luorene	exachlorobenzene	exachlorobutadiene	exachlorocyclopentadiene	exachloroethane	odrin	ophorone	aphthalene	itrobenzene	-Nitroso-di-n-propylamine	-Nitrosodiphenylamine	entachlorophenol*	henanthrene	henol	yrene
Funct. Area Loc D Date Sample D D Sample			Para																		
East Former Mill			MTCA Mothod	I P CW Protective of						-	-					_	-		-		
East Former Mill P2-10 8/27/1997 87-15175-1609 1U 1U 1U 1U 2U 5U 2U 1U 1U 1U 3U 1U 5U 1U 2U 1U 1U East Former Mill P2-10 8/22/2001 DNS50 1U 0.1U 0.2U 0.02U 0.0	Funct Area				12000	90	3300	0.00083	10	1100	3.3	INL	000	4900	450	'	υ	3	INL	1.18+006	2000
East Former Mill P2-10 22/2/2001 01-2396-CU21H 1U 1U 1U 2U 5U 2U 1U 1U 1U 3U 1U 5U 1U 5U 0.1U 2U 0.1U 61					1 1	111	111		211	511	211		111	111	111	311	1 11	511	111	211	111
East Former Mill P2-10 8/2/2001 NNS2D 1U 0.1 U 0.1 U 0.1 U 1U 2U 5U 5U 2U 5.0 U 2U 5.0 U 1U 0.1 U 1U 2U 1.1 U 5.0 U 0.1 U 2U 0.1 U 2U 0.1 U East Former Mill P2-10 6/19/2003 K/2304594-001 0.2 U 0.0						_															
East Former Mill P2-10 21/3/2002 02-1888/F8890 1.1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.034 0.02 0.034 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.034 0.02 0.034 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.034 0.02 0.034 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.034 0.02 0.02 0.034 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.034 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.034 0.02					_	_					_	5 U		_					_		
East Former Mill PZ-10																					
East Former Mill PZ-13 82/8/2010 PZ-10_100826																					
East Former Mill PZ-13 2/14/1997 97-2100-R661A 1U 1U 1U 2U 5U 2U 1U 1U 1U 2U 1U 5U 1U 2U 1U East Former Mill PZ-13 8/27/1997 97-15174-T699H 1U 1U 1U 2U 5U 2U 1U 1U 1U 2U 1U 5U 1U 2U 1U East Former Mill PZ-13 8/27/1997 97-15174-T699H 1U 1U 1U 2U 5U 2U 1U 1U 1U 2U 1U 5U 1U 2U 1U East Former Mill PZ-13 8/27/1997 97-15174-T699H 1U 0.12 0.014 2.1U 5.2U 2U 1U 1U 2.1U 1U 5U 0.1U 2U 1U East Shoreline MW-59 6/19/2003 K2304594-006 0.19 U 0.12 0.085 J 0.19 U 0.95 U 0.19																					
East Former Mill PZ-13 8/27/1997 97-15174-T609H 1U 1U 1U 2U 5U 2U 1U 1U 1U 2U 1U 5U 5					1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	_			1 U	2 U	
East Shoreline MW-59 12/13/2002 02-18592-FB89T 1U 0.12 0.10 2.1 U 5.2 U 2.1 U 5.2 U 1.1 U 0.1 U 1.0 2.7 U 1.0 5.2 U 0.1 U 0.14 East Shoreline MW-59 64/72/2010 MW-59 100827					1 U	1 U							1 U	1 U	1 U						1 U
East Shoreline MW-59 6/19/2003 K2304594-006 0.19 U 0.12 0.0085 J 0.19 U 0.95 U 0.19 U 0.19 U 0.02 U 0.19 U 0.19 U 0.19 U 0.19 U 0.19 U 0.48 U 0.15	East Charolina	MM FO	12/12/2002	02 10502 ED00T	4.11	0.42	0.111		2411	E 2 I I	2411	E 2 1 1	111	0.111	111	2111	111	5211	0.111	2411	0.44
East Shoreline																					
East Shoreline																					
East Shoreline PZ-9 2/10/2011 MW-59_110210 0.25 U 0.01 U East Shoreline PZ-9 2/14/1997 97-2101-R661B 1 U 1 U 1 U 2 U 5 U 2 U 1 U 1.2 1 U 3 U 1 U 5 U 1 U 2 U 1 U 2 U 1 U East Shoreline PZ-9 8/27/1997 97-15176-T6903 U 1 U 1 U 2 U 5 U 2 U 1 U 1.5 1 U 3 U 1 U 5 U 1 U 2 U 1 U 2 U 1 U East Shoreline PZ-9 11/5/1997 97-454185 10 U 10 U				_																	
East Shoreline PZ-9 2/14/1997 97-2101-R661B 1 U 1 U 1 U 2 U 5 U 2 U 1 U 1.2 1 U 3 U 1 U 5 U 1 U 2 U 2 U																		0.2511			0.01.11
East Shoreline PZ-9 8/27/1997 97-15176-T609J 1U 1U 1U 2U 5U 2U 1U 1.5 1U 3U 1U 5U 1U 2U 1U 2U 1U East Shoreline PZ-9 11/5/1997 97454185 10 U 10 U																					
East Shoreline PZ-9 11/5/1997 97454185 10 U 10 U																					
East Shoreline PZ-9 11/5/1997 97454185-1																					
East Shoreline PZ-9 2/22/2001 01-2369-CU22G 1 U 1 U 1 U 2 U 5 U 2 U 1 U 1 U 1 U 2 U 1 U 5 U 1 U 2 U 1 U East Shoreline PZ-9 8/21/2001 PZ-9_010821 1 U 0.1 U 1 U 2 U 5 U 2 U 5 U 2 U 5 U 1 U 0.44 1 U 2 U 1 U 5 U 0.1 U 2 U 0.1 U East Shoreline PZ-9 12/13/2002 02-18586-FB89N 1.1 U 0.11 U 1 U 0.1 U 1 U 0.27 1.1 U 0.27 1.1 U 0.27 1.1 U 0.27 1.1 U 0.1 U 0.27 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.0 U 0.2 U																					
East Shoreline PZ-9 8/21/2001 PZ-9_010821 1 U 0.1 U 1 U 2 U 5 U 2 U 5 U 1 U 0.44 1 U 2 U 1 U 5 U 0.1 U 2 U 0.1 U					1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	2 U	1 U	5 U	1 U	2 U	1 U
East Shoreline PZ-9 12/13/2002 02-18586-FB89N 1.1 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.27 1.1 U 0.27 1.1 U 0.27 0.2 U 0.2 U 0.2 U 0.11 U 0.11 U 0.11 U 0.11 U 0.27 0.2 U 0.96 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.023 0.043 J 0.022 0.2 U				1 U	0.1 U		1 U			2 U	5 U	1 U	0.44	1 U		1 U	5 U	0.1 U	2 U	0.1 U	
East Shoreline PZ-9 6/19/2003 K2304594-005 0.2 U 0.0092 J 0.2 U 0.96 U 0.2 U 0.2 U 0.19 0.2 U 0.2 U 0.02 J 0.003 0.043 J 0.022 East Shoreline PZ-9 6/19/2003 K2304594-007 0.2 U 0.007 0.0093 J 0.2 U 0.96 U 0.2 U 0.2 U 0.96 U 0.2 U 0.2 U 0.2 U 0.2 U 0.96 U 0.02 U 0.2 U 0.96 U 0.2 U 0.2 U 0.2 U 0.96 U 0.02 U 0.96 U 0.2 U 0.2 U 0.2 U 0.96 U 0.02 U 0.96 U 0.2 U 0.2 U 0.96 U 0.2 U 0.2 U 0.2 U 0.96 U 0.02 U 0.96 U 0.2 U 0.02 U 0.2 U		PZ-9	12/13/2002		1.1 U		0.11 U		2.1 U	5.3 U	2.1 U	5.3 U	1.1 U	_	1.1 U	2.1 U	1.1 U	5.3 U		2.1 U	0.11 U
East Shoreline PZ-9 6/19/2003 K2304594-007 0.2 U 0.027 0.0093 J 0.2 U 0.96 U 0.2 U 0.2 U 0.17 0.2 U 0.2 U 0.2 U 0.96 U 0.027 0.48 U 0.026 East Shoreline PZ-9 8/26/2010 DUP-082610 1U 1U 5 UJ 0.25 U 0.01 U East Shoreline PZ-9 8/26/2010 PZ-9_100826 1U 1U 5 UJ 0.25 U 0.01 U East Shoreline PZ-9 11/10/2010 PZ-9_101110 1U 1U 5 UJ 0.25 U 0.01 U East Shoreline PZ-9 11/10/2010 PZ-9_101110 1U 1U 5 UJ 0.25 U 0.01 U East Shoreline PZ-9 2/8/2011 PZ-9_110208	East Shoreline	PZ-9	6/19/2003	K2304594-005	0.2 U	0.021	0.0092 J		0.2 U		0.2 U		0.2 U	0.19	0.2 U		0.2 U	0.072 J	0.023	0.043 J	0.022
East Shoreline PZ-9 8/26/2010 PZ-9_100826 1 U 1 U 5 U 0.25 U 0.01 U East Shoreline PZ-9 11/10/2010 PZ-9_101110 <td< td=""><td>East Shoreline</td><td>PZ-9</td><td>6/19/2003</td><td>K2304594-007</td><td>0.2 U</td><td>0.027</td><td></td><td></td><td>0.2 U</td><td>0.96 U</td><td>0.2 U</td><td></td><td>0.2 U</td><td>0.17</td><td>0.2 U</td><td>0.2 U</td><td>0.2 U</td><td>0.96 U</td><td></td><td>0.48 U</td><td>0.026</td></td<>	East Shoreline	PZ-9	6/19/2003	K2304594-007	0.2 U	0.027			0.2 U	0.96 U	0.2 U		0.2 U	0.17	0.2 U	0.2 U	0.2 U	0.96 U		0.48 U	0.026
East Shoreline PZ-9 11/10/2010 PZ-9_101110	East Shoreline	PZ-9	8/26/2010	DUP-082610							1 U					1 U	5 UJ				
East Shoreline PZ-9 11/10/2010 PZ-9_101110		PZ-9									1 U					1 U					
East Shoreline PZ-9 2/8/2011 PZ-9_110208	East Shoreline	PZ-9	11/10/2010	_																	
Ennis Creek PZ-5 8/28/1997 97-15169-T609C 1 U 1 U 2 U 5 U 2 U 1 U 1 U 1 U 2 U 1 U Ennis Creek PZ-5 2/22/2001 01-2366-CU22D 1 U 1 U 1 U 2 U 5 U 2 U 1 U 1 U 3 U 1 U 5 U 1 U 2 U 1 U Ennis Creek PZ-5 8/21/2001 DN18G 1 U 0.1 U 0.1 U 2 U 5 U 2 U 5 U 1 U 0.1 U 2 U 0.1 U	East Shoreline	PZ-9	2/8/2011	_														0.25 U			0.01 U
Ennis Creek PZ-5 8/28/1997 97-15169-T609C 1 U 1 U 2 U 5 U 2 U 1 U 1 U 1 U 2 U 1 U Ennis Creek PZ-5 2/22/2001 01-2366-CU22D 1 U 1 U 1 U 2 U 5 U 2 U 1 U 1 U 3 U 1 U 5 U 1 U 2 U 1 U Ennis Creek PZ-5 8/21/2001 DN18G 1 U 0.1 U 0.1 U 2 U 5 U 2 U 5 U 1 U 0.1 U 2 U 0.1 U	Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Ennis Creek PZ-5 2/22/2001 01-2366-CU22D 1 U 1 U 1 U 2 U 5 U 2 U 1 U 1 U 1 U 5 U 1 U 2 U 1 U Ennis Creek PZ-5 8/21/2001 DN18G 1 U 0.1 U 0.1 U 2 U 5 U 2 U 5 U 1 U 0.1 U 1 U 2 U 0.1 U																					
Ennis Creek PZ-5 8/21/2001 DN18G 1U 0.1U 0.1U 1U 2U 5U 5U 1U 0.1U 1U 2U 1U 5U 0.1U 2U 0.1U						_														_	
						_	_				_			_					_	_	
					1 U							5 U			1 U						

			1		I						1		1			ı				
			Para	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Isodrin	Isophorone	Naphthalene	Nitrobenzene	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol*	Phenanthrene	Phenol	Pyrene
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			B GW Protective of	72000	90	3500	0.00083	18	1100	3.3	NL	600	4900	450	1	6	3	NL	1.1e+006	2600
Funct. Area	Loc ID	Date	Sample ID																	
Ennis Creek	PZ-5	6/18/2003	K2304556-001	0.2 U	0.02 U	0.02 U		0.2 U	0.96 U	0.2 U		0.2 U	0.02 U	0.2 U	0.2 U	0.2 U	0.96 U	0.02 U	0.043 J	0.02 U
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827							1 U					1 U	5 UJ	0.25 U			0.01 U
Ennis Creek	PZ-6	2/13/1997	97-1958-R652C	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Ennis Creek	PZ-6	2/22/2001	01-2346-CU21D	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B	1 U	0.1 U	0.1 U		2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	1 U	0.1 U	0.1 U		2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
Ennis Creek	PZ-6	6/18/2003	K2304556-005	0.2 U	0.02 U	0.02 U		0.2 U	0.98 U	0.2 U		0.2 U	0.02 U	0.2 U	0.2 U	0.2 U	0.98 U	0.02 U	0.024 J	0.02 U
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827							1 U					1 U	5 UJ	0.25 U			0.01 U
Estuary	FR-1	2/22/2001	01-2367-CU22E	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Estuary	FR-1	8/22/2001	DN25B	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
Estuary	MW-62	11/9/2010	MW-62_101109														0.25 U			0.01 U
Estuary	MW-62	2/10/2011	MW-62_110210														0.25 U			0.01 U
Main Former Mill	GWG-1	11/4/2010	GWG-1-W							1 U					1 U	1 U	0.25 U			3.5 B
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S	1.1 U	0.11 U	0.11 U		2.3 U	5.7 U	2.3 U	5.7 U	1.1 U	0.11 U	1.1 U	2.3 U	1.1 U	5.7 U	0.11 U	2.3 U	0.11 U
Main Former Mill	MW-58	6/18/2003	K2304556-002	0.2 U	0.011 J	0.02		0.2 U	0.97 U	0.2 U		0.2 U	0.013 J	0.2 U	0.2 U	0.2 U	0.088 J	0.025	0.034 J	0.019 J
Main Former Mill	MW-58	8/27/2010	MW-58_100827							1 U					1 U	5 UJ	0.25 U			0.051 Q
Main Former Mill	MW-58	2/11/2011	MW-58_110211														0.25 U			0.34
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W														0.25 U			0.01 U
Main Former Mill	MW-65	5/18/2011	MW-65-110518														0.25 U			
Main Former Mill	MW-66	3/11/2011	MW-66-110311-W														0.33			4.3
Main Former Mill	MW-66	5/18/2011	MW-66-110518														0.25 U			
Main Former Mill	MW-69	5/18/2011	MW-69-110518														0.25 U			
Main Former Mill	PA-17	2/11/2011	PA-17_110211														0.25 U			0.01 U
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23							1 U					1 U	1 U	2.8 NJ			3.8
Main Former Mill	PZ-4	2/13/1997	97-1960-R652E	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Main Former Mill	PZ-4	11/5/1997	97454184		10 U	10 U														
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Main Former Mill	PZ-4	8/21/2001	DN18F	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E	1.2 U	0.12 U	0.12 U		2.5 U	6.2 U	2.5 U	6.2 U	1.2 U	0.12 U	1.2 U	2.5 U	1.2 U	6.2 U	0.12 U	2.5 U	0.12 U

									Φ											
									Hexachlorocyclopentadiene						N-Nitroso-di-n-propylamine					1
								40	tad						aŭ.	N-Nitrosodiphenylamine				
							ЭC	Hexachlorobutadiene	ē						ğ	aπ	*_			1
				ate			zeı	adj	<u> </u>	ane					pro	2	enc			i
				ha	Q)eu	, t	Š	Ě			•	Φ	÷) he	hd	эс		i
				pht	Jen 1		ō	ē	Š	Š		ne	ene	Zen	ᅙ	ğ	oro	ıreı		i
				Ιγί	t t	au au	Plo	얼	욛	皇	_	oro .	hal	eu:	osc	osc	l i	ıŧ	_	60
				netl	ora	ore	cac	cac	cac	cac	Ë	phq	oht	<u> 6</u>	i i	ı≛	ıtac	ena	eno	e u
			Para	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	£	£	Hexachloroethane	Isodrin	Isophorone	Naphthalene	Nitrobenzene	Ż	ż	Pentachlorophenol	Phenanthrene	Phenol	Pyrene
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		MTCA Method	B GW Protective of	72000	90	3500	0.00083	18	1100	3.3	NL	600	4900	450	1	6	3	NL	1.1e+006	2600
Funct. Area	Loc ID	Date	Sample ID																	
Main Former Mill	PZ-4	6/17/2003	K2304497-004	0.013 U	0.005 J	0.0026 U		0.02 U	0.041 U	0.019 U		0.0085 U	0.004 J	0.0074 U	0.033 U	0.028 U	0.029 U	0.0034 J	0.045 J	0.0033 J
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825							1 U					1 U	5 U	0.25 U			0.01 U
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	1 U	1.3	1.1		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	1 U	0.9 J	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 J
North Shoreline	MW-51	8/21/2001	DN18C	1 U	1	0.57	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.94
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	1.1 U	1	0.17		2.2 U	5.4 U	2.2 U	5.4 U	1.1 U	0.11 U	1.1 U	2.2 U	1.1 U	5.4 U	0.11 U	2.2 U	0.91
North Shoreline	MW-51	6/18/2003	K2304556-003	0.19 U	1	0.13		0.19 U	0.95 U	0.19 U		0.19 U	0.01 J	0.19 U	0.19 U	0.19 U	0.95 U	0.03	0.042 J	0.93
North Shoreline	MW-51	8/26/2010	MW-51_100826							1 U					1 U	5 UJ	0.25 U			0.69 Q
North Shoreline	MW-51	11/10/2010	MW-51_101110																	0.4
North Shoreline	MW-51	2/11/2011	MW-51_110211														0.25 U			0.05
North Shoreline	MW-51	5/19/2011	MW-51-110519																	
North Shoreline	MW-56	2/22/2001	01-2365-CU22C	1 U	1 U	1 U		2 U	5 U	2 U		1 U	2.2	1 U	3 U	1 U	7.7	1 U	27	1 U
North Shoreline	MW-56	8/22/2001	DN25E	1 U	0.1 U	0.26 U	1 U	2 U	5 U	2 U	5 U	1 U	0.8	1 U	2 U	1 U	5 U	0.1 U	80	0.1 U
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	1 U	0.1 U	0.1 U		2 U	5.1 U	2 U	5.1 U	1 U	1.3	1 U	2 U	1 U	5.1 U	0.1 U	59	0.1 U
North Shoreline	MW-56	6/19/2003	K2304594-008	0.19 U	0.043	0.023		0.19 U	0.95 U	0.19 U		0.19 U	1.2 J	0.19 U	0.19 U	0.19 U	1.6	0.047	52 J	0.039
North Shoreline	MW-56	8/26/2010	MW-56_100826							1 U					1 U	5 U	0.52			0.043 J
North Shoreline	MW-56	11/9/2010	MW-56_101109														0.47			
North Shoreline	MW-56	2/11/2011	MW-56_110211														0.89			0.018
NW Shoreline	MW-28	8/25/2010	MW-28_100825							1 U					1 U	5 UJ	0.25 U			0.13 Q
NW Shoreline	MW-28	11/10/2010	MW-28_101110														0.25 U			0.34
NW Shoreline	MW-28	2/8/2011	MW-28_110208														0.25 U	-	-	0.18
NW Shoreline	MW-28	5/20/2011	MW-28-110520																-	
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
NW Shoreline	MW-52	8/22/2001	DN25G	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I	1.1 U	0.11 U	0.11 U		2.2 U	5.6 U	2.2 U	5.6 U	1.1 U	0.11 U	1.1 U	2.2 U	1.1 U	5.6 U	0.11 U	2.2 U	0.11 U
NW Shoreline	MW-52	6/16/2003	K2304466-002	0.2 U	0.02 U	0.02 U		0.2 U	0.96 U	0.2 U		0.2 U	0.02 U	0.2 U	0.2 U	0.2 U	0.96 U	0.02 U	0.48 U	0.02 U
NW Shoreline	MW-52	8/25/2010	MW-52_100825							1 U					1 U	5 UJ	0.25 U			0.01 U
NW Shoreline	MW-52	11/8/2010	MW-52_101108																	
NW Shoreline	MW-52	2/9/2011	MW-52_110209														0.25 U			0.01 U
NW Shoreline	MW-53	2/21/2001	01-2275-CU06A	1 U	1 U	1 U			5 U	2 U		1 U		1 U	3 U	1 U	5 U	1 U	2 U	1 U

			Para	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Isodrin	Isophorone	Naphthalene	Nitrobenzene	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol*	Phenanthrene	Phenol	Pyrene
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			B GW Protective of	72000	90	3500	0.00083	18	1100	3.3	NL	600	4900	450	1	6	3	NL	1.1e+006	2600
Funct. Area	Loc ID	Date	Sample ID	4 * *	0.4.11	0.4.11	4	0.11		0.11	-	4.11	0.411	4	0.11	4	5.11	0.4.11	0.11	0.4.11
NW Shoreline	MW-53	8/21/2001	DN18A	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	1.1 U	0.11 U	0.11 U		2.2 U	5.6 U	2.2 U	5.6 U	1.1 U	0.11 U	1.1 U	2.2 U	1.1 U	5.6 U	0.11 U	2.2 U	0.11 U
NW Shoreline	MW-53	6/16/2003	K2304466-003	0.2 U	0.0054 J	0.02 U		0.2 U	0.96 U	0.2 U		0.2 U	0.0055 J	0.2 U	0.2 U	0.2 U	0.96 U	0.0047 J	0.48 U	0.006 J
NW Shoreline	MW-53	8/26/2010	MW-53_100826							1 U					1 U	5 UJ	0.25 U			0.01 U
NW Shoreline	MW-53	2/11/2011	MW-53_110211														0.25 U			0.01 U
NW Shoreline	MW-61	11/11/2010	MW-61_101111														0.25 U			0.1
NW Shoreline	MW-61	2/11/2011	MW-61_110211														0.25 U			0.12
NW Shoreline	MW-67	3/11/2011	MW-67-110311-W														0.25 U			0.017
NW Shoreline	MW-67	5/18/2011	MW-67-110518														0.25 U			
NW Shoreline	PZ-1	8/22/2001	DN25C	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
NW Shoreline	PZ-2	2/13/1997	97-1957-R652B	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
NW Shoreline	PZ-2	11/5/1997	97454182		10 U	10 U														
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825							1 U					1 U	5 U	0.25 U			0.21 J
NW Shoreline	PZ-2	11/11/2010	PZ-2_101111																	
NW Shoreline	PZ-2	2/7/2011	PZ-2_110207														0.25 U			0.01 U
Prefab	PZ-7	2/14/1997	97-2102-R661C	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Prefab	PZ-7	8/27/1997	97-15177-T609K	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Prefab	PZ-7	11/5/1997	97454189		10 U	10 U														
Prefab	PZ-7	2/22/2001	01-2347-CU21E	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
Prefab	PZ-7	12/12/2002	02-18579-FB89G	1.3 U	0.13 U	0.13 U		2.6 U	6.4 U	2.6 U	6.4 U	1.3 U	0.13 U	1.3 U	2.6 U	1.3 U	6.4 U	0.13 U	2.6 U	0.13 U
Prefab	PZ-7	8/27/2010	PZ-7_100827							1 U					1 U	5 U	0.25 U			0.021 J
Prefab	PZ-7	11/10/2010	PZ-7_101110																	
Prefab	PZ-7	2/8/2011	PZ-7_110208																	
Prefab	PZ-7	5/17/2011	PZ-07-110517																	
West Former Mill	MW-19	2/22/2001	01-2345-CU21C	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	MW-19	8/22/2001	DN25I	1 U	0.91	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.53
West Former Mill	MW-20	9/2/1997	97-15361-T609N	1 U	1 U	1 U		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	MW-23	10/15/1997	97-19428-U167A	1 U	1 U	1.3		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1	2 U	1 U
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	1 U	1 U	0.8 J		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	MW-23	8/21/2001	DN18E	1 U	0.11	0.24	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1

								1						<u> </u>						
									Hexachlorocyclopentadiene						<u>e</u>					
									adji						N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine				
							ē	utadiene	ent						ğ	a	*			
				Dimethylphthalate			Hexachlorobenzene	ğ	ð	ıne					o.c	Ž	Pentachlorophenol ³			
				hal	σ		en	Ħ	S S	th			4	a)	Ę	a Pe	bhe	e.		
				bht	len Len		rok	힏	2	roe		ne	ene	Ğ	Ė	ğ	oro	rer		
				<u> </u>	ŧ	ne ne	Рю	욷	皇	임	_	oro	hal	enz	osc	osc	, i	ıt l	-	o o
				net	Fluoranthene	ore	кас	Hexachlorob	Kac	Hexachloroethane	dri	sophorone	oht	9 2	į	Ę	ıtaı	Phenanthrene	oue	en
			Para	i ii	문	Fluoren	He	He)	Ě	He)	Isodrin	os	Naphthalene	Nitrobenzene	ż	ż	Per	F.	Phenol	Pyrene
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		MTCA Method	B GW Protective of	72000	90	3500	0.00083	18	1100	3.3	NL	600	4900	450	1	6	3	NL	1.1e+006	2600
Funct. Area	Loc ID	Date	Sample ID																_	
West Former Mill	MW-23	12/13/2002	02-18589-FB89Q	1 U	0.1 U	0.22		2 U	5 U	2 U	5 U	1 U	0.78	1 U	2 U	1 U	120	0.12	2 U	0.1 U
West Former Mill	MW-23	6/16/2003	K2304466-001	0.2 U	0.051	0.94		0.2 U	0.96 U	0.2 U		0.2 U	1.6	0.2 U	0.2 U	0.2 U	5.6	0.046	0.5	0.088
West Former Mill	MW-23	8/25/2010	MW-23_100825							1 U					1 U	5 UJ	0.25 U			0.074 Q
West Former Mill	MW-23	11/10/2010	MW-23_101110														0.25 U			
West Former Mill	MW-23	2/9/2011	MW-23_110209														0.25 U			
West Former Mill	MW-23	5/19/2011	MW-23-110519	4.11	4.11	4.11		211	 E I I			4.11	1 U	1 U	211	4.11	0.25 U	4.11	2 U	1 U
West Former Mill	MW-29	9/2/1997 6/17/2003	97-15362-T609O	1 U	1 U	1 U		2 U	5 U	2 U		1 U		_	3 <i>U</i> 0.033 U	1 U 0.028 U	5 U	1 U		
West Former Mill West Former Mill	MW-29 MW-29	8/25/2010	K2304497-006 MW-29 100825	0.013 U	0.011 J	0.011 J		0.02 U	0.041 U	0.019 U 1 U		0.0085 U	0.42	0.0074 U	1 U	5 UJ	0.11 J 0.25 U	0.016 J	0.071 J	0.012 J 0.51 Q
West Former Mill	MW-29	11/11/2010	MW-29_100823													5 05	0.25 0			0.51 Q 0.01 U
West Former Mill	MW-29	2/8/2011	MW-29_101111 MW-29_110208														0.25 U			0.01 U
West Former Mill	MW-29	5/20/2011	MW-29_110520														0.25 U			
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	1 U	1 U	7.4			5 U	2 U		1 U	11	1 U	3 U	1 U	5 U	8.3	2.5	1 U
West Former Mill	MW-54	8/22/2001	DN25H	1 U	1.9	1.2	1 U	2 U	5 U	2 U	5 U	1 U	0.4	1 U	2 U	1 U	5 U	1.8	2 U	0.83
West Former Mill	MW-54	12/12/2002	02-18583-FB89K	1 U	0.98	0.1 U		2.1 U	5.2 U	2.1 U	5.2 U	1 U	0.1 U	1 U	2.1 U	1 U	5.2 U	0.1 U	2.1 U	0.67
West Former Mill	MW-54	6/17/2003	K2304497-001	0.013 U	0.8	0.0026 U		0.02 U	0.041 U	0.019 U		0.0085 U	0.013 J	0.0074 U	0.033 U	0.028 U	0.075 J	0.015 J	0.051 J	0.46
West Former Mill	MW-54	8/26/2010	MW-54_100826							1 U					1 U	5 U	0.25 U			1.5 J
West Former Mill	MW-54	11/11/2010	MW-54_101111																	0.7
West Former Mill	MW-54	2/10/2011	MW-54_110210														0.25 U			0.81
West Former Mill	MW-54	5/18/2011	MW-54-110518								-									
West Former Mill	MW-55	2/21/2001	01-2277-CU06C	1 U	1 U	1 U			5 U	2 U		1 U		1 U	3 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	MW-55	8/22/2001	DN25F	1 U	0.25	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.75	1 U	2 U	1 U	5 U	0.27	2 U	0.33
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	1.1 U	0.11 U	0.11 U		2.1 U	5.3 U	2.1 U	5.3 U	1.1 U	0.11 U	1.1 U	2.1 U	1.1 U	5.3 U	0.11 U	2.1 U	0.11 U
West Former Mill	MW-55	6/18/2003	K2304556-004	0.19 U	0.012 J	0.0038 J		0.19 U	0.95 U	0.19 U		0.19 U	0.04	0.19 U	0.19 U	0.19 U	0.95 U	0.015 J	0.033 J	0.014 J
West Former Mill	MW-55	8/26/2010	MW-55_100826							1 U					1 U	5 U	0.25 U			0.023 J
West Former Mill	MW-55	11/8/2010	MW-55_101108																	
West Former Mill	MW-55	2/10/2011	MW-55_110210														0.25 U			0.012
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	1.1 U	0.11 U	0.11 U		2.2 U	5.4 U	2.2 U	5.4 U	1.1 U	0.11 U	1.1 U	2.2 U	1.1 U	5.4 U	0.11 U	2.2 U	0.11 U
West Former Mill	MW-57	6/17/2003	K2304497-007	0.013 U	0.0054 J	0.024		0.02 U	0.041 U	0.019 U		0.0085 U	0.021	0.0074 U	0.033 U	0.028 U	0.029 U	0.0071 J	0.02 U	0.0044 J
West Former Mill	MW-57	8/26/2010	MW-57_100826							1 U					1 U	5 UJ	0.25 U			0.01 U
West Former Mill	MW-60	11/11/2010	MW-60_101111														0.25 U			0.15
West Former Mill	MW-60	2/9/2011	MW-60_110209														0.25 U			0.057

		MTCA Method	Para B GW Protective of	(ug/L)	© © Fluoranthene C ← Fluoranthene	(ug/L) Eluorene	S8000.0 (T) Hexachlorobenzene	ය යි ම රි Hexachlorobutadiene ල (උ	ර රි ට (උ රි (උ රි (උ	(n) Hexachloroethane	NS (n) Specification (n) NS (n	(Schorone (Schor	oo (c) Oobhthalene	(ng/L) Nitrobenzene	L 60 	o 6 () N-Nitrosodiphenylamine	& Gn Pentachlorophenol*	S S Phenanthrene ⊤ √ Phenanthrene	(ug/L) 1.1e+006	(ug/L) 2600
Funct, Area	Loc ID	Date	Sample ID	12000	00	0000	0.00000	10	1100	0.0		000	1000	100		Ŭ		112	1.101000	2000
West Former Mill	MW-60	5/19/2011	MW-60-110519																	
West Former Mill	MW-68	6/7/2011	MW-68-110607														0.25 U			
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	1 U	1.1	3.1		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	1 U	1	4.2		2 U	5 U	2 U		1 U	1 U	1 U	3 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	PZ-3	11/5/1997	97454183		2 J	4 J														
West Former Mill	PZ-3	2/22/2001	CU21A	1 U	1	1 U		2 U	5 U	2 U		1 U	1 U	1 U	2 U	1 U	5 U	1 U	2 U	1 U
West Former Mill	PZ-3	8/21/2001	DN18B	1 U	0.1 U	0.1 U	1 U	2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.1 U
West Former Mill	PZ-3	12/12/2002	02-18576-FB89D	1 U	0.56	0.1 U		2 U	5 U	2 U	5 U	1 U	0.1 U	1 U	2 U	1 U	5 U	0.1 U	2 U	0.31
West Former Mill	PZ-3	6/17/2003	K2304497-002	0.013 U	0.28	0.13		0.02 U	0.041 U	0.019 U		0.0085 U	0.015 J	0.0074 U	0.033 U	0.028 U	0.029 U	0.023	0.043 J	0.15
West Former Mill	PZ-3	8/26/2010	PZ-3_100826							1 U					1 U	5 UJ	0.25 U			0.4 Q
West Former Mill	PZ-3	11/9/2010	PZ-3_101109																	
West Former Mill	PZ-3	2/10/2011	PZ-3_110210														0.25 U			0.8
West Former Mill	PZ-3	5/19/2011	PZ-03-110519														0.25 U			

Total Petroleum Hydrocarbons in Groundwater Port Angeles Rayonier Mill Uplands Study Area

1									
			MTOA	Parameter Units) Aβ Gasoline-range TPH*) √ √ √) B AB Heavy oil-range TPH	S Residual Range Organics	(a) Total Petroleum Hydrocarbons
Funct Area	Loc ID	Date	Sample ID	Sample Type	8.0	0.5	0.5	0.5	NL
Funct. Area City Purchase	GWG-8	10/28/2010	GWG-8-W	N N		0.1 U	0.2 U		
City Purchase	PA-19	8/21/2009	PA-19 090821	N N	0.1 U	3	0.2 0	0.3 U	
City Purchase	PA-19 PA-19	8/26/2010	PA-19_090821 PA-19_100826	N N	0.1 U	0.1 U	0.2 U	0.5 0	
City Purchase	PA-19	11/11/2010	PA-19_100020	N	0.23 0	0.1 U	0.2 U		
	PA-19 PA-19	2/9/2011	PA-19_101111 PA-19_110209	N N			0.2 U		
City Purchase	PA-19 PA-19	2/9/2011		FD		0.1 U			
City Purchase	PA-19 PA-19	5/18/2011	PA-19_110209D PA-19-110518	N N		0.1 U 0.1 U	0.2 U 0.2 U		
City Purchase City Purchase	PA-19 PZ-11	2/14/1997	97-2103-R661D	N N		0.1 U	0.2 U		
	PZ-11	8/28/1997	97-15170-T609D	N N			0.5 U		
City Purchase	PZ-11 PZ-11			N N		0.25 U			
City Purchase		2/22/2001	01-2349-CU21G			0.25 U	0.5 U		
City Purchase	PZ-11	8/23/2001	01-14633-DN28A	N		0.25 U	0.5 U		
City Purchase	PZ-11	12/11/2002	02-18574-FB89B	N		0.25 U	0.5 U		
City Purchase	PZ-11	6/19/2003	K2304594-002	N		0.25 U	0.5 U		
City Purchase	PZ-11	8/27/2010	PZ-11_100827	N	0.25 U	0.1 U	0.2 U		
City Purchase	PZ-12	2/28/1997	97-2822-R796B	N		0.25 U	0.5 U		
City Purchase	PZ-12	8/28/1997	97-15171-T609E	N		0.25 U	0.5 U		
City Purchase	PZ-12	2/22/2001	01-2348-CU21F	N		0.25 U	0.5 U		
City Purchase	PZ-12	8/21/2001	DN18H	N		0.25 U	0.5 U		
City Purchase	PZ-12	12/11/2002	02-18575-FB89C	N		0.25 U	0.5 U		
City Purchase	PZ-12	6/19/2003	K2304594-003	N		0.25 U	0.5 U		
City Purchase	PZ-12	8/27/2010	PZ-12_100827	N	0.25 U	0.1 U	0.2 U		
CSO	GWG-6	11/2/2010	GWG-6-W	N		0.1 U	0.2 U		
CSO	MW-70	5/18/2011	MW-70-110518	N	0.25 U	0.1 U	0.2 U		
CSO	MW-70	5/18/2011	MW-70-110518D	FD	0.25 U	0.1 U	0.2 U		
CSO	PA-15	11/9/2010	PA-15_101109	N		0.1 U	0.2 U		
East Former Mill	GWG-7	11/3/2010	GWG-7-W	N		0.1 U	0.2 U		
East Former Mill	PA-24	11/9/2010	PA-24_101109	N		0.1 U	0.2 U		
East Former Mill	PZ-10	2/28/1997	97-2821-R796A	N		0.25 U	0.5 U		
East Former Mill	PZ-10	8/27/1997	97-15175-T609I	N		0.25 U	0.5 U		
East Former Mill	PZ-10	2/22/2001	01-2350-CU21H	N		0.25 U	0.5 U		
East Former Mill	PZ-10	8/22/2001	DN25D	N		0.25 U	0.5 U		
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O	N		0.25 U	0.5 U		
East Former Mill	PZ-10	6/19/2003	K2304594-001	N		0.26 U	0.52 U		
East Former Mill	PZ-10	6/19/2003	KWG0309158-2	FD		0.27 U	0.53 U		
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N	0.25 U	0.1 U	0.2 U		
East Former Mill	PZ-13	2/14/1997	97-2100-R661A	N		0.25 U	0.5 U		
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	N		0.25 U	0.5 U		
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	N		0.25 U	0.5 U		
East Shoreline	MW-59	6/19/2003	K2304594-006	N		0.25 U	0.5 U		
East Shoreline	MW-59	8/27/2010	MW-59_100827	N	0.25 U	0.1 U	0.2 U		
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	N		0.44	0.5 U		
East Shoreline	PZ-9	8/27/1997	97-15176-T609J	N		0.84	0.5 U		
East Shoreline	PZ-9	2/22/2001	01-2369-CU22G	N		0.25 U	0.5 U		
East Shoreline	PZ-9	8/21/2001	PZ-9_010821	N		0.25 UJ	0.5 UJ		
East Shoreline	PZ-9	12/13/2002	02-18586-FB89N	N		0.25 U	0.5 U		
East Shoreline	PZ-9	6/19/2003	K2304594-005	FD		0.25 U	0.5 U		
East Shoreline	PZ-9	6/19/2003	K2304594-007	N		0.26 U	0.06 J		
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD	0.25 U	0.1 U	0.2 U		
East Shoreline	PZ-9	8/26/2010	PZ-9_100826	N	0.25 U	0.1 U	0.2 U		
				<u> </u>		· · · •			

Total Petroleum Hydrocarbons in Groundwater Port Angeles Rayonier Mill Uplands Study Area

							Т		
			MTGA	Parameter Units	S) Diesel-range TPH*) S Heavy oil-range TPH	୍ର ਤ ୁ ନ Residual Range Organics	Total Petroleum Hydrocarbons
Funct. Area	Loc ID	Date	Sample ID	Sample Type	8.0	0.5	0.5	0.5	NL
Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	N		0.25 U	0.5 U		
Ennis Creek	PZ-5	8/28/1997	97-15169-T609C	N		0.25 U	0.5 U		
Ennis Creek	PZ-5	2/22/2001	01-2366-CU22D	N		0.25 U	0.5 U		
Ennis Creek	PZ-5	8/21/2001	DN18G	N		0.25 U	0.5 U		
Ennis Creek	PZ-5	12/12/2002	02-18578-FB89F	N		0.25 U	0.5 U		
Ennis Creek Ennis Creek	PZ-5 PZ-5	6/18/2003 6/18/2003	K2304556-001 KWG0309044-2	N FD		0.25 U 0.25 U	0.5 U 0.5 U		
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827	N	0.25 U	0.1 U	0.3 U		
Ennis Creek	PZ-6	2/13/1997	97-1958-R652C	N		0.25 U	0.5 U		
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	N		0.25 U	0.5 U		
Ennis Creek	PZ-6	2/22/2001	01-2346-CU21D	N		0.25 U	0.5 U		
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B	N		0.25 U	0.5 U		
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	N		0.25 U	0.5 U		
Ennis Creek	PZ-6	6/18/2003	K2304556-005	N		0.25 U	0.5 U		
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827	N	0.25 U	0.1 U	0.2 U		
Estuary	FR-1	2/22/2001	01-2367-CU22E	N		0.25 U	0.5 U		
Estuary	FR-1	8/22/2001	DN25B	N		0.25 U	0.5 U		
Estuary	MW-62	11/9/2010	MW-62_101109	N	0.25 U	0.1 U	0.2 U		
Estuary	MW-62 MW-62	2/10/2011 5/18/2011	MW-62_110210 MW-62-110518	N N		0.1 U 0.1 U	0.2 U 0.2 U		
Estuary									
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N		0.1	0.2 U		
Main Former Mill Main Former Mill	MW-58 MW-58	12/13/2002	02-18591-FB89S	N N		0.25 U	0.5 U		
Main Former Mill	MW-58	6/18/2003 8/27/2010	K2304556-002 MW-58_100827	N N	0.25 U	0.25 U 0.1 U	0.5 U 0.2 U		
Main Former Mill	MW-65	3/11/2011	MW-65-110311-W	N	0.25 0	0.1 U	0.2 U		
Main Former Mill	MW-65	5/18/2011	MW-65-110518	N		0.1 U	0.2 U		
Main Former Mill	MW-69	5/18/2011	MW-69-110518	N	0.25 U	0.1 U	0.2 U	-	
Main Former Mill	PA-17	2/11/2011	PA-17_110211	N		0.1 U	0.2 U		
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23	N		0.12	0.2 U		
Main Former Mill	PZ-4	2/13/1997	97-1960-R652E	N		0.4	0.5 U		
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	N		0.39	0.5 U		
Main Former Mill Main Former Mill	PZ-4 PZ-4	2/22/2001 8/21/2001	01-2363-CU22A DN18F	N N		0.25 U 0.25 U	0.5 U 0.5 U		
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E	N		0.25 U	0.5 U		
Main Former Mill	PZ-4	6/17/2003	K2304497-004	N		0.036 U	0.054 U		
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	N	0.25 U	0.1 U	0.2 U		
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	N	10 U	10 U	25 U		
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	N		0.25 U	0.5 U		
North Shoreline	MW-51	8/21/2001	DN18C	N		0.25 U	0.5 U		
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	N		0.25 U	0.5 U		
North Shoreline	MW-51	6/18/2003	K2304556-003	N		0.25 U	0.5 U		
North Shoreline	MW-51	8/26/2010	MW-51_100826	N	0.25 U	0.1 U	0.2 U		
North Shoreline North Shoreline	MW-56 MW-56	2/22/2001 8/22/2001	01-2365-CU22C DN25E	N N		0.25 U	0.5 U 0.5 U		
North Shoreline	MW-56	12/12/2001	02-18585-FB89M	N N		0.25 U 0.25 U	0.5 U		
North Shoreline	MW-56	6/19/2003	K2304594-008	N		0.25 U	0.5 U		
North Shoreline	MW-56	8/26/2010	MW-56_100826	N	0.25 U	0.1 U	0.2 U		
NW Shoreline	MW-28	8/25/2010	MW-28 100825	N	0.25 U	0.1 U	0.2 U		
NW Shoreline	MW-28	11/10/2010	MW-28_100825	N N	J.25 U	0.1 U	0.2 U		
NW Shoreline	MW-28	2/8/2011	MW-28_110208	N		0.1 U	0.2 U		
NW Shoreline	MW-28	5/20/2011	MW-28-110520	N		0.1 U	0.2 U		
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	N	10 U	10 U	25 U		
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	N		0.25 U	0.5 U		
NW Shoreline	MW-52	8/22/2001	DN25G	N		0.25 U	0.5 U		
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I	N		0.25 U	0.5 U		
NW Shoreline NW Shoreline	MW-52	6/16/2003 8/25/2010	K2304466-002 MW-52_100825	N N	 0.25 U	0.25 U 0.1 U	0.5 U 0.2 U		
		- U/ZU/ZU I U	14144-05-100053						
	MW-52 MW-53		01-2275-CLI064	N		0.25 11	()511		
NW Shoreline	MW-53	2/21/2001	01-2275-CU06A DN18A	N N		0.25 U 0.25 U	0.5 U 0.5 U		
			01-2275-CU06A DN18A 02-18582-FB89J			0.25 U 0.25 U 0.25 U	0.5 U 0.5 U		
NW Shoreline NW Shoreline	MW-53 MW-53	2/21/2001 8/21/2001	DN18A	N		0.25 U	0.5 U		
NW Shoreline NW Shoreline NW Shoreline	MW-53 MW-53 MW-53	2/21/2001 8/21/2001 12/12/2002	DN18A 02-18582-FB89J	N N		0.25 U 0.25 U	0.5 U 0.5 U	!	

Total Petroleum Hydrocarbons in Groundwater Port Angeles Rayonier Mill Uplands Study Area

				Parameter	Gasoline-range TPH∗	Diesel-range TPH⁵	Heavy oil-range TPH	Residual Range Organics	Total Petroleum Hydrocarbons
				Units	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Ford Area	1 15	D		GW AS MSW	8.0	0.5	0.5	0.5	NL
Funct. Area NW Shoreline	Loc ID MW-61	Date 11/11/2010	Sample ID MW-61 101111	Sample Type N	0.25 U				
NW Shoreline	MW-61	2/11/2011	MW-61_101111	N		0.1 U	0.2 U		
NW Shoreline	MW-61	5/18/2011	MW-61-110518	N		0.1 U	0.2 U		
NW Shoreline	MW-67	3/11/2011	MW-67-110311-W	N		0.1 U	0.2 U		
NW Shoreline	MW-67	5/18/2011	MW-67-110518	N		0.1 U	0.2 U		
NW Shoreline	PZ-1	8/22/2001	DN25C	FD		0.25 U	0.5 U		
NW Shoreline NW Shoreline	PZ-2 PZ-2	2/13/1997	97-1957-R652B 97-15172-T609F	N N		0.25 U	0.5 U		
NW Shoreline	PZ-2 PZ-2	8/27/1997 8/25/2010	PZ-2_100825	N N	0.25 U	0.25 U 0.1 U	0.5 U 0.2 U		
					0.23 0				
Prefab	PZ-7	2/14/1997	97-2102-R661C	N		0.25 U	0.5 U 0.24 J		
Prefab Prefab	PZ-7 PZ-7	8/27/1997 2/22/2001	97-15177-T609K 01-2347-CU21E	N N		0.25 U 0.25 U	0.24 J		
Prefab	PZ-7	12/12/2001	02-18579-FB89G	N		0.25 U	0.5 U		
Prefab	PZ-7	6/19/2003	K2304594-010	N		0.25 U	0.5 U		
Prefab	PZ-7	8/27/2010	PZ-7_100827	N	0.25 U	0.1 U	0.2 U		
West Former Mill	MW-13	3/18/1991	MW-13_910318	N	0.03 U				0.57
West Former Mill	MW-19	2/22/2001	01-2345-CU21C	N N	0.03 0	0.25 U	0.5 U		
West Former Mill	MW-19	8/22/2001	DN25I	N		0.25 U	0.5 U		
West Former Mill	MW-20	9/2/1997	97-15361-T609N	N		0.25 U	0.5 U		
West Former Mill	MW-23	10/15/1997	97-19428-U167A	N		0.4	0.5 U		
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	N	-	0.25 U	0.5 U		
West Former Mill	MW-23	8/21/2001	DN18E	N		0.25 U	0.5 U		
West Former Mill	MW-23	12/13/2002	02-18589-FB89Q	N		0.25 U	0.5 U		
West Former Mill	MW-23	6/16/2003	K2304466-001	N		0.096 J	0.5 U		
West Former Mill	MW-23	8/25/2010	MW-23_100825	N	0.25 U	0.1 U	0.2 U		
West Former Mill West Former Mill	MW-29 MW-29	9/2/1997	97-15362-T609O	N N		0.25 U	0.5 U		
West Former Mill	MW-29	6/17/2003 8/25/2010	K2304497-006 MW-29_100825	N N	0.25 U	0.036 U 0.1 U	0.054 U 0.2 U		
West Former Mill	MW-29	11/11/2010	MW-29_100023	N		0.1 U	0.2 U		
West Former Mill	MW-29	2/8/2011	MW-29_110208	N		0.1 U	0.2 U		
West Former Mill	MW-29	5/20/2011	MW-29-110520	N		0.1 U	0.2 U		
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	N		0.25 U	0.5 U		
West Former Mill	MW-54	8/22/2001	DN25H	N		0.25 U	0.5 U		
West Former Mill	MW-54	12/12/2002	02-18583-FB89K	N		0.25 U	0.5 U		
West Former Mill	MW-54	6/17/2003	K2304497-001	N		0.036 U	0.054 U		
West Former Mill West Former Mill	MW-54	8/26/2010	MW-54_100826 01-2277-CU06C	N	0.25 U	0.1 U	0.2 U		
West Former Mill	MW-55 MW-55	2/21/2001 8/22/2001	DN25F	N N		0.25 U 0.25 U	0.5 U 0.5 U		
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	N		0.25 U	0.5 U		
West Former Mill	MW-55	6/18/2003	K2304556-004	N		0.25 U	0.5 U		
West Former Mill	MW-55	8/26/2010	MW-55_100826	N	0.25 U	0.1 U	0.2 U		
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	N		0.25 U	0.5 U		
West Former Mill	MW-57	6/17/2003	K2304497-007	N		0.036 U	0.054 U		
West Former Mill	MW-57	6/17/2003	KWG0309044-1	FD		0.036 U			
West Former Mill	MW-57	8/26/2010	MW-57_100826	N	0.25 U	0.1 U	0.2 U		
West Former Mill West Former Mill	MW-60 MW-60	11/11/2010 2/9/2011	MW-60_101111 MW-60_110209	N N	0.25 U	0.1 U 0.1 U	0.2 U 0.2 U		
West Former Mill	MW-60	5/19/2011	MW-60-110519	N N		0.1 U	0.2 U		
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	N		0.10	0.2 U		
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	N		0.25 U	0.5 U		
West Former Mill	PZ-3	2/22/2001	CU21A	N	-	0.25 U	0.5 U		
West Former Mill	PZ-3	8/21/2001	DN18B	N		0.25 U	0.5 U		
West Former Mill	PZ-3	12/12/2002	02-18576-FB89D	N		0.25 U	0.5 U		
West Former Mill	PZ-3	6/17/2003	K2304497-002	N		0.036 U			
West Former Mill	PZ-3	8/26/2010	PZ-3_100826	N	0.25 U	0.1 U	0.2 U		

					,2-Tetrachloroethane	,1-Trichloroethane	etrachloroethane	2-Trichloroethane	oethane	oethene	opropene	orobenzene	oropropane	orobenzene	rimethylbenzene	Dibromo-3-Chloropropane	oethane	benzene	oethane*	ethene	propane	rimethylbenzene	obenzene	ppropane	obenzene	Dichloropropane		ıylvinylether	nene		euen
				Parameter Units	(T 1,1,1,2-Tetr	ng/s T/1,1,1-Trichl	© 1,1,2,2-Tetra ┌	(ng/ (T/2-Trichl	© 1,1-Dichloroethane	(T) 1,1-Dichloroethen	(T) 1,1-Dichlore	(T) 1,2,3-Trichl	© 1,2,3-Trichlor	සි 1,2,4-Trichlor	© 1,2,4-Trime	ි 1,2-Dibrom	୍ରି 1,2-Dibromoethane	Ĝ 1,2-Dichlorobenze	යි 1,2-Dichloroethane	ନ୍ତି 1,2-Dichloroethen	කි 1,2-Dichloropropa	(T) 1,3,5-Trime	© 1,3-Dichlor	ළි 1,3-Dichloropropa	ි රූ 1,4-Dichlor	ng 2,2-Dichlor	ි 2-B utanone	்த 2-Chloroethylvinyleth	© 2-Chlorotoluene	(n) 2-Hexanone	Sp. 4-Chlorotoluene
			MTCA-E	B GW AS MSW	NL	420000	4	16	NL	3.2	NL	NL	NL	70	NL	NL	NL	1300	37	NL	15	NL	960	NL	4.9	NL	NL	NL	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Sample Type																											
City Purchase	PA-19	8/26/2010	PA-19_100826	N															0.2 U												
City Purchase	PZ-11	2/14/1997	97-2103-R661D	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
City Purchase	PZ-11	8/28/1997	97-15170-T609D	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
City Purchase	PZ-11	11/6/1997	97454188	N																											
City Purchase	PZ-11	2/22/2001	01-2349-CU21G	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
City Purchase	PZ-11	8/23/2001	01-14633-DN28A	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
City Purchase	PZ-11	12/11/2002	02-18574-FB89B	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
City Purchase	PZ-11	6/19/2003	K2304594-002	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
City Purchase	PZ-11	8/27/2010	PZ-11_100827	N															0.2 U												
City Purchase	PZ-12	2/28/1997	97-2822-R796B	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5	1 U	5 U	1 U
City Purchase	PZ-12	8/28/1997	97-15171-T609E	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
City Purchase	PZ-12	11/6/1997	97454187	N																											
City Purchase	PZ-12	2/22/2001	01-2348-CU21F	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
City Purchase	PZ-12	8/21/2001	DN18H	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
City Purchase	PZ-12	12/11/2002	02-18575-FB89C	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
City Purchase	PZ-12	6/19/2003	K2304594-003	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
City Purchase	PZ-12	8/27/2010	PZ-12_100827	N															0.2 U												
East Former Mill	PZ-10	2/28/1997	97-2821-R796A	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5	1 U	5 U	1 U
East Former Mill	PZ-10	8/27/1997	97-15175-T609I	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
East Former Mill	PZ-10	2/22/2001	01-2350-CU21H	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
East Former Mill	PZ-10	8/22/2001	DN25D	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
East Former Mill	PZ-10	6/19/2003	K2304594-001	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
East Former Mill	PZ-10	8/26/2010	PZ-10_100826	N															0.2 U												
East Former Mill	PZ-13	2/14/1997	97-2100-R661A	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
East Shoreline	MW-59	6/19/2003	K2304594-006	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
East Shoreline	MW-59	8/27/2010	MW-59_100827	N															0.2 U												
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
East Shoreline	PZ-9	8/27/1997	97-15176-T609J	N	9 U	9 U	9 U	9 U	9 U	9 U	9 U	45 U	27 U	45 U	9 U	45 U	9 U	9 U	9 U		9 U	9 U	9 U	9 U	9 U	9 U	45 U	45 U	9 U	45 U	9 U

				Parameter Units 3 GW AS MSW	지 을 1,1,1,2-Tetrachloroethane	0000077 (7) 1,1,1-Trichloroethane	P © 1,1,2,2-Tetrachloroethane	9 © 1,1,2-Trichloroethane	Z © 1,1-Dichloroethane	8.5 (7,1-Dichloroethene	Z © 1,1-Dichloropropene	Z 은 1,2,3-Trichlorobenzene	지 을 1,2,3-Trichloropropane	이 후 1,2,4-Trichlorobenzene	구 중 1,2,4-Trimethylbenzene	구 중 1,2-Dibromo-3-Chloropropane	구 을 1,2-Dibromoethane	රිසි කි 1,2-Dichlorobenzene රිලි	25 G) (7/1,2-Dichloroethane*	序을 1,2-Dichloroethene	17/5n) 1,2-Dichloropropane	Z (2) 1,3,5-Trimethylbenzene	096 n 7 1,3-Dichlorobenzene (T	지 을 1,3-Dichloropropane	G G 1,4-Dichlorobenzene	지원 (2,2-Dichloropropane	Z 을 2-Butanone	돌을 2-Chloroethylvinylether	Z S 2-Chlorotoluene	اكر ك ركر 2-Hexanone	Z Ê 4-Chlorotoluene
Funct. Area	Loc ID	Date	Sample ID	Sample Type																											
East Shoreline	PZ-9	11/5/1997	97454185	N	4.11	4.11	4.11	4.11	4.11	4.11	4.11	 E I I	211	 E I I	4.11	 	4.11	4.11	4.11		4.11	4.11	4.11	4.11	4.11	4.11	 E I I	 E I I	4.11	 E I I	4.11
East Shoreline East Shoreline	PZ-9 PZ-9	2/22/2001 8/21/2001	01-2369-CU22G PZ-9 010821	N N	1 U	1 U 0.2 U	1 U 0.2 U	1 U 0.2 U	1 U 0.2 U	1 U 0.2 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U 0.2 U		1 U 0.2 U	1 U	1 U	1 U	1 U	1 U	5 U 1 U	5 U	1 U	5 U 1 U	1 U
East Shoreline	PZ-9 PZ-9	12/13/2002	02-18586-FB89N	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
East Shoreline	PZ-9	6/19/2003	K2304594-005	FD		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
East Shoreline	PZ-9	6/19/2003	K2304594-007	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
East Shoreline	PZ-9	8/26/2010	DUP-082610	FD															0.2 U												
East Shoreline	PZ-9	8/26/2010	PZ-9_100826	N															0.2 U												
East Shoreline	PZ-9	11/10/2010	PZ-9_101110	N															1 U												
East Shoreline	PZ-9	2/8/2011	PZ-9_110208	N					0.2 U	0.2 U									0.2 U												
East Shoreline	PZ-9	5/20/2011	PZ-09-110520	N				-	0.2 U	0.2 U									0.2 U												
East Shoreline	PZ-9	5/20/2011	PZ-09-110520D	FD					0.2 U	0.2 U									0.2 U												
Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	N	1 U	1 U	1 U	1 U	1.9	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Ennis Creek	PZ-5	8/28/1997	97-15169-T609C	N	1 U	1 U	1 U	1 U	3.2	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Ennis Creek	PZ-5	2/22/2001	01-2366-CU22D	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Ennis Creek	PZ-5	8/21/2001	DN18G	N		0.2 U	0.2 U	0.2 U	0.4	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
Ennis Creek	PZ-5	12/12/2002	02-18578-FB89F	N		0.2 U	0.2 U	0.2 U	0.3	0.2 U									0.2 U		0.2 U						1 U			1 U	
Ennis Creek	PZ-5	6/18/2003	K2304556-001	N		0.2 U	0.2 U	0.2 U	0.2	0.2 U									0.2 U		0.2 U						1 U			2 U	
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827	N	4.11	4.11	4.11	4.11	4.11	4.11	4.11	 E I I	211	 E I I	4.11	 E I I	4.11	4.11	0.2 U		4.11	4.11	4.11	4.11	4.11	4.11	 E I I	 	4.11	 E I I	4.11
Ennis Creek Ennis Creek	PZ-6 PZ-6	2/13/1997 8/28/1997	97-1958-R652C 97-15168-T609B	N N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U 1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Ennis Creek	PZ-6 PZ-6	2/22/2001	01-2346-CU21D	N N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
Ennis Creek	PZ-6	6/18/2003	K2304556-005	N		0.2 U	0.2 U		0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827	N															0.2 U												
Estuary	FR-1	2/22/2001	01-2367-CU22E	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Estuary	FR-1	8/22/2001	DN25B	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
Main Former Mill	GWG-1	11/4/2010	GWG-1-W	N															1 U												
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
Main Former Mill	MW-58	6/18/2003	K2304556-002	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	

				Ţ				1		1	1	1	1	1			1			-							1	ı			
																														,	
																ne														.	
					Ф		ø									opane														.	
					,2-Tetrachloroethane		ıan					e.	<u>e</u>	e e	Je	obre						e e						ē		.	
					et	ane	et	aue			e e	zer	opane	zer	ızeı	5	o)	ne L	***	an a	2	İzel	ne	2	e e	2		et		, ,	
					ō	<u>Ĕ</u>	orc	뚩	au	eu	be	obenzene	2	obenzene	per	딩	an	ıze	an	en	pa	ber	Jze	pa	Jze	pa		<u>F</u>	ø.	, ,	a l
					등	Š	당	Š	eth	et l	pro	oro	ropr		출	ကို	eth	pel	eth	eth	pro	출	robenzei	pro	leqo.	pro		Ξ	ien	.	ie
					¥ra	,1-Trichloroethane	etrachloroetha	,2-Trichloroethane	00	S	o o		3-Trichlo	-Trichlor	rimethylbenze	Dibromo-3-Chlor	Dibromoethane	oro	oro	Dichloroethen	-Dichloropropa	rimethylbenze		- S	S	Dichloropropane	ne	eth	덩	ne	덩
					Ϋ́	Ĕ	2-Te	差	l is	15	흥	richl	별	Ţ.	훋	P.	bro	;	chl	chi	흥	훋	chl	훙	훙	chi	SE	Š	ro	auc	Š
					Ψ,		ν,	, -, -,	1,1-Dichloroethane	1,1-Dichloroethen	1,1-Dichloroprope	٦.		4,	4			2-Dichlorobenze	1,2-Dichloroethane	Ģ	Ä	רָי	3-Dichlo	3-Dichloropropane	,4-Dichlor		Butanone	2-Chloroethylvinyleth	2-Chlorotoluene	2-Hexanon	4-Chlorotoluene
				Parameter	1,1	1,1	1,1	1,1	1,	1,1	1,1	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2-	1,2	1,3	1,3	1,3	4,1	2,2	2-E	2-0	2-0	7	4 O
				Units	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
				B GW AS MSW	NL	420000	4	16	NL	3.2	NL	NL	NL	70	NL	NL	NL	1300	37	NL	15	NL	960	NL	4.9	NL	NL	NL	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Sample Type																											
Main Former Mill	MW-58	8/27/2010	MW-58_100827	N															0.2 U												
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23	N	4.11	4.11	4.11	4.11	4.11	4.11	4.11				4.11		4.11	4.11	4 U		4.11	4.11	4.11	4.11	4.11	4.11			4.11		4.11
Main Former Mill	PZ-4 PZ-4	2/13/1997 8/27/1997	97-1960-R652E 97-15173-T609G	N N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Main Former Mill Main Former Mill	PZ-4 PZ-4	11/5/1997	97-15173-1609G 97454184	N N	1 U	1 U	1 U					50	3 U	50	1 U	5 U 					1 U						5 U 	50		50	
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Main Former Mill	PZ-4	8/21/2001	DN18F	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
Main Former Mill	PZ-4	6/17/2003	K2304497-004	N		0.099 U		0.053 L	0.1 U	0.14 U								(0.084 U		0.1 U						0.46 U			0.41 U	
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825	N															0.2 U												
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	10	5 U	1 U	5 U	1 U
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
North Shoreline	MW-51	8/21/2001	DN18C	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U		-				1 U			1 U	
North Shoreline	MW-51	6/18/2003	K2304556-003	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
North Shoreline	MW-51	8/26/2010	MW-51_100826	N															0.2 U												
North Shoreline	MW-56	2/22/2001	01-2365-CU22C	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	6.1	5 U	1 U	5 U	1 U
North Shoreline	MW-56	8/22/2001	DN25E	N		0.2 U	0.2 U	0.2 U	0.3	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				5.5			1 U	
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	N		0.2 U	0.2 U	0.2 U	0.3	0.2 U									0.2 U		0.2 U						1 U			1 U	
North Shoreline North Shoreline	MW-56 MW-56	6/19/2003 8/26/2010	K2304594-008 MW-56 100826	N N		0.2 U	0.2 U	0.2 U	0.22	0.2 U									0.2 U 0.2 U		0.2 U						1.9			2 U	
NW Shoreline	MW-28	8/25/2010	MW-28_100825	N															0.2 U												
NW Shoreline	MW-28	11/10/2010	MW-28_101110	N															0.2 U												
NW Shoreline	MW-28	2/8/2011	MW-28_110208	N					0.2 U	0.2 U									0.2 U												
NW Shoreline	MW-28	5/20/2011	MW-28-110520	N	4.11	4.11	4.11	4.11	0.2 U	0.2 U	4.11				4.11		4.11	4.11	0.2 U		4.11	4.11	4.11	4.11	4.11	4.11			4.11		4.11
NW Shoreline NW Shoreline	MW-52 MW-52	8/4/1998 2/22/2001	98-15869-Y129A 01-2368-CU22F	N N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
NW Shoreline	MW-52	8/22/2001	DN25G	N N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		50	30	1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U	50		1 U	
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
NW Shoreline	MW-52	6/16/2003	K2304466-002	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
NW Shoreline	MW-52	8/25/2010	MW-52 100825	N															0.2 U												
0	02	3, 23, 2010	52_100020			l				1		ļ .	l						J J					J							

					,2-Tetrachloroethane	,1-Trichloroethane	Fetrachloroethane	2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	iloropropene	richlorobenzene	ichloropropane	Trichlorobenzene	rimethylbenzene	Dibromo-3-Chloropropane	Dibromoethane	2-Dichlorobenzene	,2-Dichloroethane*	iloroethene	Dichloropropane	rimethylbenzene	ilorobenzene	-Dichloropropane	ilorobenzene	Dichloropropane	one	2-Chloroethylvinylether	2-Chlorotoluene	lone	4-Chlorotoluene
					1,1,2		1,2,2-		-Dicl	-Dicl	1,1-Dichlor	,2,3-Tr	2,3-Trichl	,2,4-Tr	,2,4-Tr	2-Dib	2-Dib	2-Dicl	2-Dicl	,2-Dichlor	,2-Dicl	3,5-Tr	3-Dichlo	3-Dicl	t-Dichlor	2-Dicl	Butanone	Chlor	Chlor	-Hexanon	Chlor
				Parameter Units	; (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	₹ (ug/L)	ั <mark>ง</mark> (ug/L)	₹ (ug/L)	⊼ (ug/L)	(ug/L)
			MTCA-E	B GW AS MSW	NL	420000	4	16	NL	3.2	NL	NL	NL	70	NL	NL	NL	1300	37	NL	15	NL	960	NL	4.9	NL	NL	NL	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Sample Type																											
NW Shoreline	MW-53	2/21/2001	01-2275-CU06A	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
NW Shoreline	MW-53	8/21/2001	DN18A	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
NW Shoreline	MW-53	6/16/2003	K2304466-003	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			2 U	
NW Shoreline NW Shoreline	MW-53 MW-61	8/26/2010 11/11/2010	MW-53_100826 MW-61_101111	N N															0.2 U 0.2 U												
NW Shoreline	PZ-1	8/22/2001	DN25C	FD		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			 1 U	
NW Shoreline	PZ-1	2/13/1997	97-1957-R652B	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
NW Shoreline	PZ-2	11/5/1997	97454182	N																											
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825	N												-			0.2 U												
Prefab	PZ-7	2/14/1997	97-2102-R661C	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Prefab	PZ-7	8/27/1997	97-15177-T609K	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Prefab	PZ-7	11/5/1997	97454189	N																											
Prefab	PZ-7	2/22/2001	01-2347-CU21E	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
Prefab	PZ-7	12/12/2002	02-18579-FB89G	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
Prefab	PZ-7	8/27/2010	PZ-7_100827	N									-						0.2 U												
West Former Mill	GWG-9	11/5/2010	GWG-9-W	N															0.2 U												
West Former Mill	MW-13	3/18/1991	MW-13_910318	N																93											
West Former Mill	MW-13	7/1/1991	MW-13_910701	N																72											
West Former Mill	MW-19	2/22/2001	01-2345-CU21C	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U	1	1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-19	8/22/2001	DN25I	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
West Former Mill	MW-20	9/2/1997	97-15361-T609N	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-23	10/15/1997	97-19428-U167A	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-23	8/21/2001	DN18E	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
West Former Mill	MW-23 MW-23	12/13/2002 6/16/2003	02-18589-FB89Q	N N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U 2 U	
West Former Mill West Former Mill	MW-23	8/25/2010	K2304466-001 MW-23_100825	N N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 0									0.2 U 0.2 U		0.2 U						1 U			20	
West Former Mill	MW-29	9/2/1997	97-15362-T609O	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-29	6/17/2003	K2304497-006	N		0.099 U							30						0.084 U		0.1 U						0.46 U			0.41 U	
300 00. 141111	3	3,, 2000							<u>, U</u>	, 0	L			لــــــا					J- 100 . C		, , J					L		l			

				1		1	1	1	1			1	1	ı	1		I I		1		1 1				1	ı	ı				
				Parameter Units	Ĝ 1,1,1,2-Tetrachloroethane ┌	© 1,1,1-Trichloroethane	Ĝ 1,1,2,2-Tetrachloroethane ┌	ලි 1,1,2-Trichloroethane ලි	n 1,1-Dichloroethane ⊤	© 1,1-Dichloroethene	© G 1,1-Dichloropropene ⊤	Ĝ Ĉ 1,2,3-Trichlorobenzene	Ĝ 1,2,3-Trichloropropane ┌	© 1,2,4-Trichlorobenzene	Ĝ Ĉ 1,2,4-Trimethylbenzene	Ĝ 1,2-Dibromo-3-Chloropropane	ରି T,2-Dibromoethane	© 1,2-Dichlorobenzene	ි 1,2-Dichloroethane*	n G 1,2-Dichloroethene	යි 1,2-Dichloropropane	ରି 1,3,5-Trimethylbenzene	ରି 1,3-Dichlorobenzene	ନ୍ଧି 1,3-Dichloropropane	© G 1,4-Dichlorobenzene ⊤	Ĝ 2,2-Dichloropropane ┌	n) 2-Butanone	© 2-Chloroethylvinylether	(T) 2-Chlorotoluene	© 2-Hexanone (⊤	R/G 4-Chlorotoluene
				GW AS MSW	NL	420000	4	16	NL	3.2	NL	NL	NL	70	NL	NL	NL	1300	37	NL	15	NL	960	NL	4.9	NL	NL	NL	NL	NL	NL
Funct. Area	Loc ID	Date	Sample ID	Sample Type																									<u> </u>		
West Former Mill	MW-29	8/25/2010	MW-29_100825	N															0.2 U												
West Former Mill	MW-29	11/11/2010	MW-29_101111	N															0.2 U												
West Former Mill	MW-29	2/8/2011	MW-29_110208	N					0.2 U										0.2 U												
West Former Mill	MW-29	5/20/2011	MW-29-110520	N	4.11	4.11	4.11	4.11	0.2 U		4.11				4.11		4.11		0.2 U		4.11	4.11		4.11		4.11			4.11		4.11
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	4.11	10		1 U	1 U	4.11	1 U		1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-54 MW-54	8/22/2001	DN25H 02-18583-FB89K	N N		0.2 U	0.2 U 0.2 U	0.2 U		0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
West Former Mill West Former Mill	MW-54	12/12/2002 6/17/2003	K2304497-001	N N		0.2 U 0.099 U		0.2 U		0.2 U 0.14 U									0.2 U 0.084 U		0.2 U 0.1 U						1 U 0.46 U			1 U 0.41 U	
West Former Mill	MW-54	8/26/2010	MW-54_100826	N N		0.099 0	0.06 0		0.10	0.14 0									0.064 U								0.46 0			0.410	
West Former Mill	MW-55	2/21/2001	01-2277-CU06C	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	MW-55	8/22/2001	DN25F	N		0.2 U			0.2 U					1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	N		0.2 U	0.2 U			0.2 U									0.2 U		0.2 U						1 U			1 U	
West Former Mill	MW-55	6/18/2003	K2304556-004	N		0.2 U	0.2 U		0.2 U										0.2 U		0.2 U						1 U			2 U	
West Former Mill	MW-55	8/26/2010	MW-55_100826	N			0.2 0		0.2 0										0.2 U												
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U									0.2 U		0.2 U						1 U			1 U	
West Former Mill	MW-57	6/17/2003	K2304497-007	N		0.099 U	0.2 U												0.2 U		0.2 U						0.46 U			0.41 U	
West Former Mill	MW-57	8/26/2010	MW-57_100826	N															0.004 U												
West Former Mill	MW-60	11/11/2010	MW-60_101111	N															0.2 U												
West Former Mill	MW-63	11/10/2010	MW-63_101110	N															0.2 U												
West Former Mill	MW-63	2/8/2011	MW-63_110208	N					0.2 U										0.2 U												
West Former Mill	MW-63	2/8/2011	MW-63_110208D	FD					0.2 U	0.2 U									0.2 U												
West Former Mill	MW-63	5/20/2011	MW-63-110520	N					0.2 U										0.2 U												
West Former Mill	MW-68	6/7/2011	MW-68-110607	N					0.2 U	0.2 U									0.2 U												
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	N	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	3 U	5 U	1 U	5 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	1 U	5 U	1 U
West Former Mill	PZ-3	11/5/1997	97-15167-1609A 97454183	N N																											
West Former Mill	PZ-3	2/22/2001	CU21A	N		1 U	1 U	1 U	1 U	1 U									1 U		1 U						5 U			5 U	
West Former Mill	PZ-3	8/21/2001	DN18B	N		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U				1 U		5 U		1 U	0.2 U		0.2 U		1 U				1 U			1 U	
West Former Mill	PZ-3	12/12/2002	02-18576-FB89D	N N		0.2 U	 	0.2 U		0.2 U									0.2 U		0.2 U						1 U			1 U	
West Former Mill	PZ-3	6/17/2003	K2304497-002	N		0.099 U				0.2 U									0.2 U		0.2 U						0.46 U			0.41 U	
West Former Mill	PZ-3	8/26/2010	PZ-3 100826	N															0.004 C												
AA COLLI OLLI ICI IVIIII	FZ-3	0/20/2010	1 2-3_100020	IN															0.2 0												

							1	1			1	1	1	1				1	1				1		1	1		1		
				4-isopropyltoluene	4-Methyl-2-Pentanone	Acetone	Acrolein	Acrylonitrile*	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-DICHLOROPROPENE	Dibromochloromethane	Dibromoethane	Ethyl Bromide	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Methyl iodide	Methylene chloride
			MTCA	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Funct. Area	Loc ID	Date	MTCA-E Sample ID	5 NL	NL	NL	290	1	23	NL	NL	17	140	970	NL	1.6	1600	NL	280	130	NL	NL	13	NL	NL	2100	NL	NL	NL	590
City Purchase	PA-19	8/26/2010	PA-19 100826					1 U																						
City Purchase	PZ-11	2/14/1997	97-2103-R661D	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
City Purchase	PZ-11	8/28/1997	97-15170-T609D	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
City Purchase	PZ-11	11/6/1997	97454188												10 U															10 U
City Purchase	PZ-11	2/22/2001	01-2349-CU21G	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
City Purchase	PZ-11	8/23/2001	01-14633-DN28A	0.2 U	1 U	1.6						0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
City Purchase	PZ-11	12/11/2002	02-18574-FB89B	0.2 U	1 U	3						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
City Purchase	PZ-11	6/19/2003	K2304594-002		2 U	2.8						0.2 U	-		0.2 U		0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
City Purchase	PZ-11	8/27/2010	PZ-11 100827					1 U																						
City Purchase	PZ-12	2/28/1997	97-2822-R796B	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
City Purchase	PZ-12	8/28/1997	97-15171-T609E	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
City Purchase	PZ-12	11/6/1997	97454187												10 U															10 U
City Purchase	PZ-12	2/22/2001	01-2348-CU21F	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
City Purchase	PZ-12	8/21/2001	DN18H	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
City Purchase	PZ-12	12/11/2002	02-18575-FB89C	0.2 U	1 U	1.1						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3
City Purchase	PZ-12	6/19/2003	K2304594-003		2 U	1 J						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
City Purchase	PZ-12	8/27/2010	PZ-12_100827					1 U																						
East Former Mill	PZ-10	2/28/1997	97-2821-R796A	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
East Former Mill	PZ-10	8/27/1997	97-15175-T609I	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
East Former Mill	PZ-10	2/22/2001	01-2350-CU21H	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
East Former Mill	PZ-10	8/22/2001	DN25D	0.2 U	1 U	1 U			0.2 U			0.2 U			0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O	0.2 U	1 U	1 U						0.2 U			0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			0.2 0				0.3 U
East Former Mill	PZ-10	6/19/2003	K2304594-001		2 U	2 U						0.2 U	-		0.2 U		0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
East Former Mill	PZ-10	8/26/2010	PZ-10_100826			20		1 U							0.2 0	0.2 0			0.2 0	0.2 0		0.2 0	0.2 0							
East Former Mill	PZ-10	2/14/1997	97-2100-R661A	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
East Shoreline	MW-59	12/13/2002	02-18592-FB89T	0.2 U	1 U	1 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
East Shoreline	MW-59	6/19/2003	K2304594-006		2 U	2 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
East Shoreline	MW-59	8/27/2010	MW-59_100827					1 U																						
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
East Shoreline	PZ-9	8/27/1997	97-15176-T609J	9 U	45 U	45 U	450 U	90 U		9 U	9 U	9 U	9 U	18 U	9 U	9 U	9 U	18 U	9 U	18 U	9 U	9 U	9 U	9 U	18 U		9 U		9 U	18 U

												1	1																	
																														1
																						3-DICHLOROPROPENE								i
												ē									4	OPE	<u>e</u>							i
				_	one						Bromochloromethane	Bromodichloromethane				ge					ene	PR(han							
				aue	anc						l i	net			ø	etrachloride					-Dichloroethen	<u>S</u>	net				ne			ide
				4-isopropyltoluene	-Pentan			*		ne ne	Ĕ	Ī		ıne	Disulfide	Sch Sch	ne I	a)		au e	oro	<u> </u>	ō	ane	<u>e</u>	e E	propylbenzene		a)	chlori
				¥	-2-P			ie.		nzen	loro	其	Ę	Bromomethane	isn	etra	nze	Chloroethane	E	Chloromethane	chl	끙	old:	ţ.	mide	Sen	ber	sət	dide	
				ō d	-l⁄r	<u>э</u> е	ᇣ	Acrylonitr	ne	Bromober	늉	ğ	ģ	, a	on D	L L	ope.	ett	ofor	l ii	Ģ	ᅙ	õ	ğ	Bro	eu:	pyl	-Xylen	iodi	Methylene
				do	4-Methyl	ţo	elo.	Š	Benzene	Ĕ	Ĕ	Ĕ	Bromofo	Ĕ	Ω	oq.	orc	oro		orc	-1,2	is-1,3	ē	Ş		ş	pro	Ž.	Ę.	Ē
				4-is	4-№	Ace	Acrolein	Acr	Ber	Bro	Bro	Bro	Bro	Bro	Car	Car	Chlor	당	Chlor	당	cis-1	cis	Θİ	Dib	Ethyl	Ethylber	Iso	ď,m	Methyl	Ğ.
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L) ((ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			MTCA-E	3 NL	NL	NL	290	1	23	NL	NL	17	140	970	NL	1.6	1600	NL	280	130	NL	NL	13	NL	NL	2100	NL	NL	NL	590
Funct. Area	Loc ID	Date	Sample ID												-															\vdash
East Shoreline	PZ-9	11/5/1997	97454185	4.11						4.11	4.11	4.11	4.11	4.11	2 J	4.11	4.11	4.11	4.11	4.11	4.11	4.11		4.11			4.11		4.11	42
East Shoreline	PZ-9 PZ-9	2/22/2001	01-2369-CU22G PZ-9 010821	1 U 0.2 U	5 U	5 U 1 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1.3	1 U 0.2 U	1 U	1 U 0.2 U	1 U	1 U 0.2 U	1 U 0.2 U	1 U 0.2 U	1 U		2 U		1 U		1 U	2 U
East Shoreline East Shoreline	PZ-9 PZ-9	8/21/2001 12/13/2002	02-18586-FB89N	0.2 U	1 U	1 U						0.2 U 0.2 U			0.3	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U 0.2 U							0.3 U 0.3 U
East Shoreline	PZ-9	6/19/2003	K2304594-005		2 U	1.1 J						0.2 U			0.3 0.13 J		0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
East Shoreline	PZ-9	6/19/2003	K2304594-007		2 U	1.3 J						0.2 U			0.13 J		0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
East Shoreline	PZ-9	8/26/2010	DUP-082610					1 U																						
East Shoreline	PZ-9	8/26/2010	PZ-9_100826					1 U																						
East Shoreline	PZ-9	11/10/2010	PZ-9_101110																											
East Shoreline	PZ-9	2/8/2011	PZ-9_110208						I												0.2 U				-					
East Shoreline	PZ-9	5/20/2011	PZ-09-110520																		0.2 U									
East Shoreline	PZ-9	5/20/2011	PZ-09-110520D																		0.2 U									
Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Ennis Creek	PZ-5	8/28/1997	97-15169-T609C	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Ennis Creek	PZ-5	2/22/2001	01-2366-CU22D	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Ennis Creek	PZ-5	8/21/2001	DN18G	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
Ennis Creek	PZ-5	12/12/2002	02-18578-FB89F	0.2 U	1 U	1.4						0.2 U			0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
Ennis Creek Ennis Creek	PZ-5 PZ-5	6/18/2003 8/27/2010	K2304556-001 PZ-5 100827		2 U	2 U		1 U				0.2 U			0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
Ennis Creek	PZ-5	2/13/1997	97-1958-R652C	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U		2 U		1 U		1 U	2 U
Ennis Creek	PZ-6	2/22/2001	01-2346-CU21D	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		2 U		1 U		1 U	2 U
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B	0.2 U	1 U	1 U						0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A	0.2 U	1 U	1						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
Ennis Creek	PZ-6	6/18/2003	K2304556-005		2 U	2 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827					1 U																						
Estuary	FR-1	2/22/2001	01-2367-CU22E	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Estuary	FR-1	8/22/2001	DN25B	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
Main Former Mill	GWG-1	11/4/2010	GWG-1-W					5 UI																						
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S	0.2 U	1 U	2 J						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
Main Former Mill	MW-58	6/18/2003	K2304556-002		2 U	2 U			-			0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U

						1	1		1				1			ı			ı			1	ı					ı		
				Ĝ 4-isopropyltoluene ┌	୍ଦ୍ରି 4-Methyl-2-Pentanone	(n/b/)/Acetone	n) (T)/ Acrolein	ß (T) Acrylonitrile*	Benzene	n Se Bromobenzene (T	Bromochloromethane	© Bromodichloromethane	na)(T)	n) (T) (T)	ි ි Carbon Disulfide උ	ි දි උ	(F) Chlorobenzene	© Chloroethane	(ng/c) Chloroform	Ĝ Chloromethane	cis-1,2-Dichloroethene	Ĝ cis-1,3-DICHLOROPROPENE	E Dibromochloromethane	n (¬/ (¬/	S (T) Ethyl Bromide	୍ରି Ethylbenzene	⊜ © Isopropylbenzene ∵	E © m,p-Xylenes ∵	© Methyl iodide	ි උ උ
			MTCA-E		NL	NL	290	1	23	NL	NL	17	140	970	NL	1.6	1600	NL	280	130	NL	NL	13	NL	NL	2100	NL	NL	NL	590
Funct. Area	Loc ID	Date	Sample ID																											
Main Former Mill	MW-58	8/27/2010	MW-58_100827					1 U																						
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23					20 UI																						
Main Former Mill	PZ-4	2/13/1997	97-1960-R652E	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	1 U	5 U	5.7	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Main Former Mill	PZ-4	11/5/1997	97454184												10 U							4.11	4.11							10 U
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	1 U	5 U	7.4	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Main Former Mill	PZ-4	8/21/2001	DN18F	0.2 U	1 U	3.3			0.2 U			0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E	0.2 U	1 U	4.1						0.2 U	0.2 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U							0.3 U
Main Former Mill	PZ-4	6/17/2003	K2304497-004		0.41 U	2.3		4.11				1	0.063 L			0.14 U		0.089 U	0.098 U	0.12 U	1	0.078 U	0.059 U							0.091 U
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825					1 U																						
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	1 U	5 U	28 J	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
North Shoreline	MW-51	8/21/2001	DN18C	0.2 U	1 U	1 U			0.2			0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
North Shoreline	MW-51	12/12/2002	02-18580-FB89H	0.2 U	1 U	1 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3
North Shoreline	MW-51	6/18/2003	K2304556-003		2 U	2 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
North Shoreline	MW-51	8/26/2010	MW-51_100826					1 U																						
North Shoreline	MW-56	2/22/2001	01-2365-CU22C	4.1	3.2 J	44	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
North Shoreline	MW-56	8/22/2001	DN25E	7.5	1.3	28			0.6			0.2 U	0.5 U		1.3	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.2 U	0.2 U			0.9		0.4 U		0.3 U
North Shoreline	MW-56	12/12/2002	02-18585-FB89M	8.1	1 U	1 U						0.2 U	0.2 U		0.7		0.2 U	0.2 U	0.2 U	0.2 U	0.2	0.2 U	0.2 U							0.3
North Shoreline	MW-56	6/19/2003	K2304594-008		2 U	13						0.2 U	0.2 U		0.29	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
North Shoreline	MW-56	8/26/2010	MW-56_100826					1 U																						
NW Shoreline	MW-28	8/25/2010	MW-28_100825					1 U																						
NW Shoreline	MW-28	11/10/2010	MW-28_101110																											
NW Shoreline	MW-28	2/8/2011	MW-28_110208																		0.3									
NW Shoreline	MW-28	5/20/2011	MW-28-110520																		0.3									
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
NW Shoreline	MW-52	8/22/2001	DN25G	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I	0.2 U	1 U	1 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3
NW Shoreline	MW-52	6/16/2003	K2304466-002		2 U	2 U						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
NW Shoreline	MW-52	8/25/2010	MW-52_100825					1 U																						

												1											•							
																						ENE								
												ø										ο.	a)							i
					e e						Je	Bromodichloromethane				<u>o</u>					au au	PROI	an							i
				Je	2						methane	et				etrachloride					roethene	ROP	Dibromochloromethan				o o			ge
				ie n	ıta					o o	let l	l E		Ф	g	ի	o o			Φ	8	O.R.	m o	Φ.	_		en:			ĕ
				ᅙ	-Pentano			*ω		Sen	ē	<u>o</u>	_	Jan	ΞĘ	rac	l se	2	_	Jar	흔	보	o	าลเ	mide	<u> </u>	enz	υ	g	chloric
				ğ	<u> </u>		_	<u>=</u>	40	en:	chloro	i	l E	<u>et</u>	Dis	Tel	eu:	tha	l F	<u>et</u>	Dichlo	3-ріснг	ch	et	οŭ	nze	ylb	ene	iodi	ene
				4-isopropyltoluene	4-Methyl-2	oue	Acrolein	Acrylonitrile	Benzene	Bromob	စ္ခ	0) de	Į g	pou	o	힏	Chloroethane	Chlorofo	ē	12,	اجر	ŭ	o O O	卤	Ethylbenze	propylbe	Ž	<u> </u>	. ≥
				<u>s</u>	Ĭ.	ceton	S.	<u> </u>	Zu:	o.	Bron	, io	, io	Bromor		Carbon	<u> </u>	<u>ē</u>	흔	9	S-1	cis-1	brc	Dibro	Ethyl	ķ	opr	m,p-Xyl	Methyl	Methyl
					-	⋖							ā		Car		ភ			5	Cis			. –			<u> 8</u>			
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)
Frank Area	L and ID	Dete	MTCA-E	3 NL	NL	NL	290	1	23	NL	NL	17	140	970	NL	1.6	1600	NL	280	130	NL	NL	13	NL	NL	2100	NL	NL	NL	590
Funct. Area NW Shoreline	Loc ID MW-53	Date 2/21/2001	Sample ID 01-2275-CU06A	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1 U	1 U	1 U	2 U		1 U		1 U	2 U
NW Shoreline	MW-53	8/21/2001	DN18A	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U	2	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U					
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J	0.2 U	1 U	1 U						0.2 U	0.2 U		0.2 U	1.7	0.2 U	0.2 U							0.3 U					
NW Shoreline	MW-53	6/16/2003	K2304466-003		2 U	1.2 J						0.2 U	0.2 U			0.2 U		0.2 U	0.2 U							0.3 U				
NW Shoreline	MW-53	8/26/2010	MW-53_100826					1 U																						
NW Shoreline	MW-61	11/11/2010	MW-61_101111																											
NW Shoreline	PZ-1	8/22/2001	DN25C	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U			0.2 U		0.4 U		0.3 U								
NW Shoreline	PZ-2	2/13/1997	97-1957-R652B	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1.3	1 U	1 U	1 U	2 U		1 U		1 U	2 U
NW Shoreline	PZ-2	11/5/1997	97454182												10 U															10 U
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825					1 U																						
Prefab	PZ-7	2/14/1997	97-2102-R661C	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Prefab	PZ-7	8/27/1997	97-15177-T609K	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Prefab	PZ-7	11/5/1997	97454189												10 U															42
Prefab	PZ-7	2/22/2001	01-2347-CU21E	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
Prefab	PZ-7	12/12/2002	02-18579-FB89G	0.2 U	1 U	1.8						0.2 U	0.2 U		0.2 U							0.3 U								
Prefab	PZ-7	8/27/2010	PZ-7_100827					1 U																						
West Former Mill	GWG-9	11/5/2010	GWG-9-W					1 U																						
West Former Mill	MW-13	3/18/1991	MW-13_910318			10 U																								
West Former Mill	MW-13	7/1/1991	MW-13_910701			10 U																								
West Former Mill	MW-19	2/22/2001	01-2345-CU21C	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	MW-19	8/22/2001	DN25I	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U		0.2 U			0.2 U		0.4 U		0.3 U								
West Former Mill	MW-20	9/2/1997	97-15361-T609N	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	MW-23	10/15/1997	97-19428-U167A	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	MW-23 MW-23	8/21/2001 12/13/2002	DN18E 02-18589-FB89Q	0.2 U 0.2 U	1 U	1 U			0.6			0.2 U 0.2 U	0.5 U 0.2 U		0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U			0.2 U		0.4 U		0.3 U
West Former Mill West Former Mill	MW-23	6/16/2003	K2304466-001	0.2 0	2 U							0.2 U	0.2 U			0.2 U	0.2 0	0.2 U	0.2 U							0.4				
West Former Mill	MW-23	8/25/2010	MW-23_100825			2.3		1 U				0.2 0	0.2 0		0.2 0	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0		0.2 0								0.1 J
West Former Mill	MW-29	9/2/1997	97-15362-T609O	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	MW-29	6/17/2003	K2304497-006		0.41 U								0.063 L				0.09 U					0.078 U								0.091 U
	=-			1	,	, 5			L	·	!	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		, 0	,	,	,		,				L	·					

				4-isopropyltoluene	4-Methyl-2-Pentanone	cetone	Acrolein	Acrylonitrile*	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Sromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-DICHLOROPROPENE	Dibromochloromethane	Dibromoethane	Ethyl Bromide	Ethylbenzene	Isopropylbenzene	m,p-Xylenes	Methyl iodide	Methylene chloride
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			MTCA-E		NL	NL	290	1	23	NL	NL	17	140	970	NL	1.6	1600	NL	280	130	NL	NL	13	NL	NL	2100	NL	NL	NL	590
Funct. Area	Loc ID	Date	Sample ID																											
West Former Mill	MW-29	8/25/2010	MW-29_100825					1 U																						
West Former Mill	MW-29	11/11/2010	MW-29_101111																											
West Former Mill	MW-29	2/8/2011	MW-29_110208																		0.2 U									
West Former Mill	MW-29	5/20/2011	MW-29-110520	4.11						4.11	4.11	4.12	4.11	4.11	4.11	4.11	4.11	4.11	4.11	4.11	0.2 U	4.11	4.11	4.11			4.11		4.11	
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	10	1 U	1 U	1 U	1 U	2 U		1 U	0.411	1 U	2 U
West Former Mill West Former Mill	MW-54 MW-54	8/22/2001	DN25H 02-18583-FB89K	0.2 U	1 U	1 U			0.2 U			0.2 U 0.2 U	0.5 U 0.2 U				0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U			0.2 U		0.4 U		0.3 U 0.3 U
West Former Mill	MW-54	12/12/2002 6/17/2003	K2304497-001	0.2 U	0.41 U	0.55 U							0.2 U 0.063 L			0.2 U 0.14 U		0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U 0.091 U
West Former Mill	MW-54	8/26/2010	MW-54_100826		0.41 0	0.55 0		1 U				J.U/5 C	 		0.12 0	0.14 0	0.09 0	0.069 0	0.096 0	0.12 0		0.076 0	0.059 0							0.091 0
West Former Mill	MW-55	2/21/2001	01-2277-CU06C	1 U	5 U	5 U	50 U	5 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	MW-55	8/22/2001	DN25F	0.2 U	1 U	1 U			0.2 U			0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
West Former Mill	MW-55	12/12/2002	02-18584-FB89L	0.2 U		1 U						0.2 U	0.2 U		0.2 U		0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U							0.3 U
West Former Mill	MW-55	6/18/2003	K2304556-004		2 U	2 U						0.2 U						0.2 U	0.2 U	0.2 U		0.2 U	0.2 U							0.3 U
West Former Mill	MW-55	8/26/2010	MW-55_100826					1 U																						
West Former Mill	MW-57	12/13/2002	02-18590-FB89R	0.2 U	1 U	1.9 J						0.2 U	0.2 U		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U							0.3 U
West Former Mill	MW-57	6/17/2003	K2304497-007		0.41 U	0.55 U						0.075 L	0.063 L			0.14 U		0.089 U		0.12 U		0.078 U	0.059 U							0.091 U
West Former Mill	MW-57	8/26/2010	MW-57_100826					1 U																						
West Former Mill	MW-60	11/11/2010	MW-60_101111																											
West Former Mill	MW-63	11/10/2010	MW-63_101110							-							-													
West Former Mill	MW-63	2/8/2011	MW-63_110208																		1.4									
West Former Mill	MW-63	2/8/2011	MW-63_110208D																		1.5									
West Former Mill	MW-63	5/20/2011	MW-63-110520																		1.4									
West Former Mill	MW-68	6/7/2011	MW-68-110607																		0.2 U									
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	1 U	5 U	5 U	50 U	10 U		1 U	1 U	1 U	1 U	2 U	1 U	1 U	1 U	2 U	1 U	2 U	1 U	1 U	1 U	1 U	2 U		1 U		1 U	2 U
West Former Mill	PZ-3	11/5/1997	97454183	4.11								4.11	4.11		10 U	4.11	4.11	4.11	4.11	4.11	4.11	4.11	4.11							10 U
West Former Mill	PZ-3	2/22/2001	CU21A	1 U	5 U	5 U						1 U	1 U		10	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U					0.411		2 U
West Former Mill	PZ-3	8/21/2001	DN18B	0.2 U	1 U	1 U			0.2 U			0.2 U	0.5 U				0.2 U	0.2 U	0.2 U		0.2 U	0.2 U	0.2 U			0.2 U		0.4 U		0.3 U
West Former Mill West Former Mill	PZ-3 PZ-3	12/12/2002 6/17/2003	02-18576-FB89D K2304497-002	0.2 U	1 U 0.41 U	1 U						0.2 U	0.2 U 0.063 L		0.2 U	0.2 U 0.14 U	0.2 U	0.2 U 0.089 U	0.2 U 0.098 U	0.2 U 0.12 U	0.2 U	0.2 U 0.078 U	0.2 U 0.059 U							0.3 U 0.091 U
West Former Mill	PZ-3 PZ-3	8/26/2010	PZ-3_100826		0.41 0	1.3 J		1 U				0.075 C	.U.U63 C		0.12 0	0.14 U	0.09 0	0.089 0	0.098 0	0.12 0		0.078 U	0.059 0							0.091 0
West Louiner Mill	PZ-3	0/20/2010	FZ-3_100626					1 0																						

				n 	S o-Xylene	ි උ උ	ଳ ଜୁ sec-Butylbenzene ୮	Syrene	S tert-Butylbenzene	ි උ උ	୍ଦି trans-1,2-Dichloroethene	É trans-1,3-DICHLOROPROPENE	G trans-1,4-DICHLORO-2-BUTENE	© Œ Trichloroethene (TCE)*	ରି Trichlorofluoromethane	ි Trichlorotrifluoroethane	Ĝ (¬ (¬) Vinyl Acetate	© (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)	(Z) Xylenes
			MTCA-B		NL	NL	NL	NL	NL	0.39	10000	NL	NL	6.7	NL	NL	NL	2.4	1000
Funct. Area	Loc ID	Date	Sample ID																
City Purchase	PA-19	8/26/2010	PA-19_100826							0.2 U				0.2 U				0.2 U	
City Purchase	PZ-11	2/14/1997	97-2103-R661D	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
City Purchase	PZ-11	8/28/1997	97-15170-T609D	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
City Purchase	PZ-11	11/6/1997	97454188																
City Purchase	PZ-11	2/22/2001	01-2349-CU21G	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
City Purchase	PZ-11	8/23/2001	01-14633-DN28A					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
City Purchase	PZ-11	12/11/2002	02-18574-FB89B					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
City Purchase	PZ-11	6/19/2003	K2304594-002					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
City Purchase	PZ-11	8/27/2010	PZ-11_100827							0.2 U				0.2 U				0.2 U	
City Purchase	PZ-12	2/28/1997	97-2822-R796B	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
City Purchase	PZ-12	8/28/1997	97-15171-T609E	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
City Purchase	PZ-12	11/6/1997	97454187																
City Purchase	PZ-12	2/22/2001	01-2348-CU21F	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
City Purchase	PZ-12	8/21/2001	DN18H		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
City Purchase	PZ-12	12/11/2002	02-18575-FB89C					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
City Purchase	PZ-12	6/19/2003	K2304594-003					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
City Purchase	PZ-12	8/27/2010	PZ-12_100827							0.2 U				0.2 U				0.2 U	
East Former Mill	PZ-10	2/28/1997	97-2821-R796A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
East Former Mill	PZ-10	8/27/1997	97-15175-T609I	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
East Former Mill	PZ-10	2/22/2001	01-2350-CU21H	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
East Former Mill	PZ-10	8/22/2001	DN25D		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
East Former Mill	PZ-10	12/13/2002	02-18587-FB89O					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Former Mill	PZ-10	6/19/2003	K2304594-001					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Former Mill	PZ-10	8/26/2010	PZ-10 100826							0.2 U				0.2 U				0.2 U	
East Former Mill	PZ-13	2/14/1997	97-2100-R661A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
East Former Mill	PZ-13	8/27/1997	97-15174-T609H	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
East Shoreline	MW-59	12/13/2002	02-18592-FB89T			-		0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Shoreline	MW-59	6/19/2003	K2304594-006					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Shoreline	MW-59	8/27/2010	MW-59_100827							0.2 U				0.2 U				0.2 U	
East Shoreline	PZ-9	2/14/1997	97-2101-R661B	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
East Shoreline	PZ-9	8/27/1997	97-15176-T609J	9 U		9 U	9 U	9 U	9 U	9 U	9 U	9 U	45 U	9 U	18 U	45 U	45 U	18 U	

													1						
				n-Butylbenzene	o-Xylene	Propylbenzene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene (PCE)∗	trans-1,2-Dichloroethene	trans-1,3-DICHLOROPROPENE	trans-1,4-DICHLORO-2-BUTENE	Trichloroethene (TCE)*	Trichlorofluoromethane	Trichlorotrifluoroethane	Vinyl Acetate	Vinyl chloride*	Xylenes
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Frank Area	L and ID	Dete	MTCA-B	NL	NL	NL	NL	NL	NL	0.39	10000	NL	NL	6.7	NL	NL	NL	2.4	1000
Funct. Area	Loc ID PZ-9	Date 11/5/1997	Sample ID																
East Shoreline East Shoreline	PZ-9 PZ-9	2/22/2001	97454185 01-2369-CU22G	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
East Shoreline	PZ-9 PZ-9	8/21/2001	PZ-9_010821					0.2 U		0.2 U	0.2 U	0.2 U		9.6			0.2 U	0.2 U	
East Shoreline	PZ-9	12/13/2002	02-18586-FB89N					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Shoreline	PZ-9	6/19/2003	K2304594-005					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Shoreline	PZ-9	6/19/2003	K2304594-007					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
East Shoreline	PZ-9	8/26/2010	DUP-082610							0.2 U				0.2 U				0.2 U	
East Shoreline	PZ-9	8/26/2010	PZ-9 100826							0.2 U				0.2 U				0.2 U	
East Shoreline	PZ-9	11/10/2010	PZ-9_101110											1 U				1 U	
East Shoreline	PZ-9	2/8/2011	PZ-9 110208							0.2 U	0.2 U			0.2 U				0.2 U	
East Shoreline	PZ-9	5/20/2011	PZ-09-110520							0.2 U	0.2 U			0.2 U				0.2 U	
East Shoreline	PZ-9	5/20/2011	PZ-09-110520D							0.2 U	0.2 U			0.2 U				0.2 U	
Ennis Creek	PZ-5	2/13/1997	97-1959-R652D	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Ennis Creek	PZ-5	8/28/1997	97-15169-T609C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Ennis Creek	PZ-5	2/22/2001	01-2366-CU22D	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
Ennis Creek	PZ-5	8/21/2001	DN18G		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
Ennis Creek	PZ-5	12/12/2002	02-18578-FB89F					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Ennis Creek	PZ-5	6/18/2003	K2304556-001					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Ennis Creek	PZ-5	8/27/2010	PZ-5_100827							0.2 U				0.2 U				0.2 U	
Ennis Creek	PZ-6	2/13/1997	97-1958-R652C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Ennis Creek	PZ-6	8/28/1997	97-15168-T609B	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Ennis Creek	PZ-6	2/22/2001	01-2346-CU21D	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
Ennis Creek	PZ-6	8/23/2001	01-14634-DN28B					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Ennis Creek	PZ-6	12/11/2002	02-18573-FB89A					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Ennis Creek	PZ-6	6/18/2003	K2304556-005					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Ennis Creek	PZ-6	8/27/2010	PZ-6_100827							0.2 U				0.2 U				0.2 U	
Estuary	FR-1	2/22/2001	01-2367-CU22E	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
Estuary	FR-1	8/22/2001	DN25B		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
Main Former Mill	GWG-1	11/4/2010	GWG-1-W							1 UI				1 U				1 U	
Main Former Mill	MW-58	12/13/2002	02-18591-FB89S					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Main Former Mill	MW-58	6/18/2003	K2304556-002					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	

			мтса-в	Z S n-Butylbenzene	الاكره الاكره أي الاكرام الاكرام	Z 을 Propylbenzene	الكالكالكالكالكالكالكالكالكالكالكالكالكا	RZ GS 7/Styrene	Z 을 tert-Butylbenzene	6.0 G (T) Tetrachloroethene (PCE)*	00 (c) trans-1,2-Dichloroethene	F & trans-1,3-DICHLOROPROPENE	ا trans-1,4-DICHLORO-2-BUTENE رُحَةً لا trans-1,4-DICHLORO-2-BUTENE	9 Ĝ ∵ Ĉ Trichloroethene (TCE)*	지원 (Anichlorofluoromethane	序을 Trichlorotrifluoroethane	FZ 습 다 (Vinyl Acetate	n) (n) Vinyl chloride*	(J/gu) Xylenes
Funct. Area	Loc ID	Date	Sample ID							0.00	10000			0					1000
Main Former Mill	MW-58	8/27/2010	MW-58 100827							0.2 U				0.2 U				0.2 U	
Main Former Mill	PIPE-1-SR23	1/7/2011	PIPE-1-SR23							4 UI				4 U				4 UI	
Main Former Mill	PZ-4	2/13/1997	97-1960-R652E	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Main Former Mill	PZ-4	8/27/1997	97-15173-T609G	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Main Former Mill	PZ-4	11/5/1997	97454184																
Main Former Mill	PZ-4	2/22/2001	01-2363-CU22A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
Main Former Mill	PZ-4	8/21/2001	DN18F		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
Main Former Mill	PZ-4	12/12/2002	02-18577-FB89E					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Main Former Mill	PZ-4	6/17/2003	K2304497-004					0.097 U		0.11 U	0.1 U	0.066 U		0.11 U			0.087 U	0.097 U	
Main Former Mill	PZ-4	8/25/2010	PZ-4_100825							0.2 U				0.2 U				0.2 U	
North Shoreline	MW-51	8/4/1998	98-15871-Y129C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
North Shoreline	MW-51	2/22/2001	01-2351-CU21I	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
North Shoreline	MW-51	8/21/2001	DN18C		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
North Shoreline	MW-51	12/12/2002	02-18580-FB89H					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
North Shoreline	MW-51	6/18/2003	K2304556-003					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.12 J	
North Shoreline	MW-51	8/26/2010	MW-51_100826							0.2 U				0.2 U				0.2 U	
North Shoreline	MW-56	2/22/2001	01-2365-CU22C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
North Shoreline	MW-56	8/22/2001	DN25E		0.3			0.2 U		0.2 U	0.2 U	0.2 U		0.3			0.2 U	0.2 U	0.6 U
North Shoreline	MW-56	12/12/2002	02-18585-FB89M					0.2 U		0.2 U	0.2 U	0.2 U		0.3			0.2 U	0.2 U	
North Shoreline	MW-56	6/19/2003	K2304594-008					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
North Shoreline	MW-56	8/26/2010	MW-56_100826							0.2 U				0.2 U				0.2 U	
NW Shoreline	MW-28	8/25/2010	MW-28_100825							0.2 U				0.2 U				0.2 U	
NW Shoreline	MW-28	11/10/2010	MW-28_101110											0.2 U				0.2 U	
NW Shoreline	MW-28	2/8/2011	MW-28_110208							0.2 U	0.2 U			0.2 U				0.2 U	
NW Shoreline	MW-28	5/20/2011	MW-28-110520							0.2 U	0.2 U			0.2 U				0.2 U	
NW Shoreline	MW-52	8/4/1998	98-15869-Y129A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
NW Shoreline	MW-52	2/22/2001	01-2368-CU22F	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
NW Shoreline	MW-52	8/22/2001	DN25G		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2			0.2 U	0.2 U	0.6 U
NW Shoreline	MW-52	12/12/2002	02-18581-FB89I					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
NW Shoreline	MW-52	6/16/2003	K2304466-002					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
NW Shoreline	MW-52	8/25/2010	MW-52_100825							0.2 U				0.2 U				0.2 U	

				n 	o-Xylene	© © Propylbenzene	n Sec-Butylbenzene (T	Syrene	E tert-Butylbenzene	ි උ Tetrachloroethene (PCE)*	Ĝ trans-1,2-Dichloroethene	ۋ trans-1,3-DICHLOROPROPENE	© trans-1,4-DICHLORO-2-BUTENE	© Trichloroethene (TCE)*	© Trichlorofluoromethane	© Trichlorotrifluoroethane	Ĝ Vinyl Acetate	© (⊤) (⊤)	Z Xylenes
			MTCA-B	-	NL	NL	NL	NL	NL	0.39	10000	NL	NL	6.7	NL	NL	NL	2.4	1000
Funct. Area	Loc ID	Date	Sample ID																
NW Shoreline	MW-53	2/21/2001	01-2275-CU06A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
NW Shoreline	MW-53	8/21/2001	DN18A		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
NW Shoreline	MW-53	12/12/2002	02-18582-FB89J					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
NW Shoreline	MW-53	6/16/2003	K2304466-003					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
NW Shoreline	MW-53	8/26/2010	MW-53_100826							0.2 U				0.2 U				0.2 U	
NW Shoreline	MW-61	11/11/2010	MW-61_101111											0.2 U				0.2 U	
NW Shoreline	PZ-1	8/22/2001	DN25C		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
NW Shoreline	PZ-2	2/13/1997	97-1957-R652B	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
NW Shoreline	PZ-2	8/27/1997	97-15172-T609F	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1	2 U	5 U	5 U	2 U	
NW Shoreline	PZ-2	11/5/1997	97454182					-											
NW Shoreline	PZ-2	8/25/2010	PZ-2_100825							0.2 U				0.2 U				0.2 U	
Prefab	PZ-7	2/14/1997	97-2102-R661C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Prefab	PZ-7	8/27/1997	97-15177-T609K	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
Prefab	PZ-7	11/5/1997	97454189																
Prefab	PZ-7	2/22/2001	01-2347-CU21E	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
Prefab	PZ-7	12/12/2002	02-18579-FB89G					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
Prefab	PZ-7	8/27/2010	PZ-7_100827							0.2 U				0.2 U				0.2 U	
West Former Mill	GWG-9	11/5/2010	GWG-9-W							0.2 U				0.2 U				0.2 U	
West Former Mill	MW-13	3/18/1991	MW-13 910318											7				26	
West Former Mill	MW-13	7/1/1991	MW-13_910310											2 U				34	
West Former Mill	MW-19	2/22/2001	01-2345-CU21C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
West Former Mill	MW-19	8/22/2001	DN25I		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2			0.2 U	0.2 U	0.6 U
West Former Mill	MW-20	9/2/1997	97-15361-T609N	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
West Former Mill	MW-23	10/15/1997	97-19428-U167A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
West Former Mill	MW-23	2/22/2001	01-2364-CU22B	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
West Former Mill	MW-23	8/21/2001	DN18E		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
West Former Mill	MW-23	12/13/2002	02-18589-FB89Q					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
West Former Mill	MW-23	6/16/2003	K2304466-001					0.2		0.2 U	0.2 U	0.2 U		0.14 J			0.2 U	0.2 U	
West Former Mill	MW-23	8/25/2010	MW-23_100825							0.2 U				0.2 U				0.2 U	
West Former Mill	MW-29	9/2/1997	97-15362-T609O	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
West Former Mill	MW-29	6/17/2003	K2304497-006					0.097 U		0.11 U	0.1 U	0.066 U		0.11 U			0.087 U	0.097 U	

				n-Butylbenzene	lene	Propylbenzene	sec-Butylbenzene	ne	tert-Butylbenzene	Tetrachloroethene (PCE)*	-1,2-Dichloroethene	-1,3-DICHLOROPROPENE	trans-1,4-DICHLORO-2-BUTENE	Trichloroethene (TCE)*	Trichlorofluoromethane	Trichlorotrifluoroethane	Acetate	chloride*	lenes
				-Bu	o-Xylene	rop	-Des	Styrene	ert-E	etra	trans-1,	trans-1,	rans	rich i	ric d	ric i	Vinyl	Vinyl	Xyleı
				(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
			MTCA-B		NL	NL	NL	NL	NL	0.39	10000	NL	NL	6.7	NL	NL	NL	2.4	1000
Funct. Area	Loc ID	Date	Sample ID																
West Former Mill	MW-29	8/25/2010	MW-29_100825						1	0.2 U				0.2 U				0.2 U	
West Former Mill	MW-29	11/11/2010	MW-29_101111											0.2 U				0.2 U	
West Former Mill	MW-29	2/8/2011	MW-29_110208							0.2 U	0.2 U			0.2 U				0.2 U	
West Former Mill	MW-29	5/20/2011	MW-29-110520					4.11		0.2 U	0.2 U			0.2 U				0.2 U	
West Former Mill	MW-54	2/21/2001	01-2276-CU06B	1 U		1 U	1 U	1 U	1 U	1 U	10	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
West Former Mill	MW-54	8/22/2001	DN25H		0.2 U			0.2 U 0.2 U		0.2 U 0.2 U	0.2 U	0.2 U		0.2 U			0.2 U 0.2 U	0.2 U 0.2 U	0.6 U
West Former Mill West Former Mill	MW-54 MW-54	12/12/2002 6/17/2003	02-18583-FB89K K2304497-001					0.2 U 0.097 U		0.2 U	0.2 U 0.1 U	0.2 U 0.066 U		0.2 U 0.11 U			0.2 U	0.2 U 0.097 U	
West Former Mill	MW-54	8/26/2010	MW-54_100826					0.097 0		0.11 U		0.000 0		0.11 U				0.097 U	
West Former Mill	MW-55	2/21/2001	01-2277-CU06C	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	1 U	2 U	5 U	1 U	
West Former Mill	MW-55	8/22/2001	DN25F		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
West Former Mill	MW-55	12/12/2002	02-18584-FB89L					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
West Former Mill	MW-55	6/18/2003	K2304556-004					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
West Former Mill	MW-55	8/26/2010	MW-55_100826							0.2 U				0.2 U				0.2 U	
West Former Mill	MW-57	12/13/2002	02-18590-FB89R					0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
West Former Mill	MW-57	6/17/2003	K2304497-007					0.097 U		0.11 U	0.1 U	0.066 U		0.11 U			0.087 U	0.097 U	
West Former Mill	MW-57	8/26/2010	MW-57_100826							0.2 U				0.2 U				0.2 U	
West Former Mill	MW-60	11/11/2010	MW-60_101111				-			-				0.2 U				0.2 U	
West Former Mill	MW-63	11/10/2010	MW-63_101110											0.8				0.7	
West Former Mill	MW-63	2/8/2011	MW-63_110208							0.2 U	0.2 U			2.7				0.2	
West Former Mill	MW-63	2/8/2011	MW-63_110208D							0.2 U	0.2 U			2.7				0.2	
West Former Mill	MW-63	5/20/2011	MW-63-110520							0.2 U	0.2 U			1.4				0.4	
West Former Mill	MW-68	6/7/2011	MW-68-110607	4.11		4.11	4.11	4.11		0.2 U	0.2 U	4.11		0.2 U				0.2 U	
West Former Mill	PZ-3	2/14/1997	97-2104-R661E	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
West Former Mill	PZ-3	8/28/1997	97-15167-T609A	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	1 U	2 U	5 U	5 U	2 U	
West Former Mill West Former Mill	PZ-3 PZ-3	11/5/1997 2/22/2001	97454183 CU21A					 1 U		1 U	 1 U	 1 U		 1 U			 5 U	1 U	
West Former Mill	PZ-3 PZ-3	8/21/2001	DN18B		0.2 U			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	0.6 U
West Former Mill	PZ-3	12/12/2002	02-18576-FB89D		0.2 0			0.2 U		0.2 U	0.2 U	0.2 U		0.2 U			0.2 U	0.2 U	
West Former Mill	PZ-3	6/17/2003	K2304497-002					0.2 U		0.2 U	0.2 U	0.066 U		0.2 U			0.087 U	0.2 U	
West Former Mill	PZ-3	8/26/2010	PZ-3_100826							0.2 U				0.2 U				0.2 U	

GROUNDWATER FIELD PARAMETERS
Port Angeles Rayonier Mill Upland Study Area
Port Angeles, Washington

	Sample	-11	Electrical Conductivity	Turbidity	D0	Temp	TDS	Redox	Salinity	Sea Water
Location	Date 8/25/2010	pH 8.04	(mS/cm) 1.37	(NTU) 66.0	(mg/l) 0.36	(Celsius) 16.66	(g/l) 0.9	(mV) 129	0.1	Potential 0
	11/10/2010	7.93	1.50	1.20	0.36	15.00	0.9	-144	0.1	0
MW-23	2/9/2011	8.06	1.45	0.600	1.76	11.96	0.9	-88	0.1	0
	5/19/2011	7.83	1.4	2.00	1.85	11.20	0.9	-45	0.1	0
	8/25/2010	9.49	1.86	54.0	0.00	17.15	1.2	-159	0.1	0
MW-28	11/10/2010	9.39	1.80	6.30	1.36	15.40	1.2	-248	0.1	0
20	2/8/2011	9.67	1.90	12.5	1.89	13.20	1.2	-229	0.1	0
	5/20/2011	9.33	2.09	11.4	0.60	14.06	1.3	-236	0.1	0
	8/25/2010	10.3	1.14	3.00	0.00	16.80	0.7	-264	0.1	0
MW-29	11/11/2010 2/8/2011	11.11	1.32 1.10	2.39 14.8	0.60	10.80 11.80	0.7	-358 -294	- 0	- 0
	5/20/2011	9.68	1.09	0.850	1.13	13.17	0.7	-302	0	0
	8/26/2010	6.73	5.10	29.0	0.00	13.75	3.2	-148	0.3	1
	11/10/2010	7.88	3.72	3.86	0.50	10.40	-	-243	-	-
MW-51	2/11/2011	6.88	7.30	9.80	1.17	12.10	4.6	-157	0.4	2
	5/19/2011	6.91	4.40	2.00	0.98	11.30	2.8	-128	0.2	1
	8/25/2010	7.25	0.456	8.00	0.00	14.25	0.3	-34	0	0
MW-52	11/8/2010	7.32	0.456	1.61	0.90	14.40	-	50	-	-
	2/9/2011	7.44	0.432	7.96	1.37	12.36	0.29	-39	0	0
	5/17/2011	7.33	0.42	1.00	1.43	11.20	0.28	104	0	0
	8/26/2010	6.87	1.28	24.0	0.00	17.61	0.8	-163	0.1	0
MW-53	2/11/2011	7.13	1.10 1.13	0.970	1.60	11.96 13.04	0.7	-89 -83	0.1	0
	5/18/2011 8/26/2010	6.97	1.13 41.6	0.940 8.40	0.37	13.04	0.7 25	-83 -333	2.6	20
	11/11/2010	7.96	55.8	2.16	0.98	10.20		-333	- -	-
MW-54	2/10/2011	6.70	33.3	2.00	1.50	12.08	20	-311	2.1	16
	5/18/2011	6.73	33.8	4.45	0.15	12.24	21	-280	2.1	16
	8/26/2010	7.22	41.8	7.80	1.98	13.40	26	-349	2.7	0
	11/8/2010	7.81	49.5	3.95	0.60	13.70	_	-180	_	_
MW-55	2/10/2011	7.49	37.7	2.12	1.47	11.89	23	-163	2.4	18
	5/19/2011	7.37	40.1	1.08	0.75	11.98	24	-231	2.5	19
	8/26/2010	11.47	3.60	41.0	0.98	13.10	2.3	-381	0.2	1
MW-56	11/9/2010	11.30	3.59	23.1	0.40	9.70	-	-372	-	-
	2/11/2011	11.59	3.30	8.50	0.82	11.10	2.1	-328	0.2	1
	5/18/2011	11.44	3.20	5.00	2.84	11.80	2.0	-271	0.1	1
	8/26/2010 11/8/2010	6.91 7.06	2.13 2.00	201	0.00	14.81 11.60	1.4	-121 -25	0.1	0
MW-57	2/11/2011	7.00	2.00	4.95 25.0	1.69	12.45	1.3	-25 -65	0.1	0
	5/20/2011	6.8	2.1	51.7	1.17	13.17	1.3	-60	0.1	0
	8/27/2010	6.84	0.904	320	0.00	14.00	0.58	-70	0	0
	11/11/2010	7.04	1.11	11.4	0.60	8.90	-	-78	_	_
MW-58	2/11/2011	6.98	0.835	8.90	0.78	10.20	0.54	-30	0	0
	5/19/2011	6.92	0.735	8.00	2.71	10.50	0.24	-91	0	0
	8/27/2010	6.84	0.712	41.7	0.00	14.61	0.46	-113	0	0
MW-59	11/10/2010	7.30	0.744	9.14	0.50	11.10	-	-138	-	-
	2/10/2011	6.80	0.667	27.2	0.87	10.90	0.43	-115	0	0
	5/18/2011	6.77	0.528	8.00	1.08	11.20	0.34	-112	0	0
MW-60	11/11/2010 2/9/2011	6.71	1.90 1.47	2.00 1.46	0.68 1.93	14.20 9.66	1.2 0.9	-299 -71	0.1	0
IVI VV-OU	5/19/2011	6.82	1.47	2.00	3.53	11.10	0.9	-71 -97	0.1	0
	11/11/2010	7.35	0.968	9.80	0.86	13.40	0.62	-228	0.1	0
MW-61	2/11/2011	7.30	1.09	0.91	1.81	9.98	0.7	-142	0	0
	5/18/2011	7.28	0.870	1.27	0.37	11.80	0.56	-131	0	0
	11/9/2010	7.68	9.00	278	1.18	13.70	5.6	-102	0.5	3
MW-62	2/10/2011	7.41	7.00	27.3	-	11.10	4.4	51	0.4	3
	5/18/2011	7.22	3.20	18.0	3.96	11.30	2.0	58	0.2	1
·	11/10/2010	6.98	1.70	8.30	0.85	14.80	1.1	-143	0.1	0
MW-63	2/8/2011	6.90	1.50	16.0	0.82	10.50	0.9	-97	0.1	0
	5/20/2011	6.90	1.80	3.00	0.86	11.20	1.2	-88	0.1	0
B #114 C #	11/8/2010	5.85	0.197	7.00	3.46	11.20	0.13	198	0	0
MW-64	2/7/2011	6.17	0.200	0.330	8.38	8.91	0.13	171	0	0
	5/17/2011	5.79	0.237 0.980	1.11	1.72	11.12 11.58	0.15	227 -118	0	0
MW-65	3/11/2011 5/18/2011	6.92 7.02	0.980	6.98 9.74	0.00	11.58 12.05	0.6	-118 -106	0	0
	3/11/2011	6.65	2.74	6.63	0.29	12.05	1.7	-106 -216	0.1	1
MW-66		0.00		0.00	U.U.		,		, v.±	

GROUNDWATER FIELD PARAMETERS
Port Angeles Rayonier Mill Upland Study Area
Port Angeles, Washington

Location	Sample Date	рН	Electrical Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/l)	Temp (Celsius)	TDS (g/I)	Redox (mV)	Salinity (%)	Sea Water Potential
	3/11/2011	7.72	1.30	4.54	0.07	11.98	0.8	-341	0.1	0
MW-67	5/18/2011	8.06	1.12	0.62	0.21	13.11	0.7	-181	0	0
MW-68	6/7/2011	7.91	1.50	8.50	0.98	13.40	1.0	131	0.1	0
MW-69	5/18/2011	6.82	0.634	5.00	1.26	12.30	0.43	-90	0	0
MW-70	5/18/2011	5.84	0.250	3.00	4.10	12.10	0.16	169	0	0
	11/9/2010	7.38	2.45	4.62	0.50	10.10	-	-70	-	-
PA-15	2/8/2011	7.47	2.10	5.23	1.48	9.46	1.3	-25	0.1	1
	5/18/2011	7.21	1.54	4.28	0.27	11.53	1.0	12	0.1	0
	2/11/2011	6.95	0.574	8.70	0.87	11.70	0.36	-64	0	0
PA-17	5/17/2011	6.85	0.605	17.0	1.93	12.60	0.42	-60	0	0
	8/26/2010	6.18	0.398	19.7	0.98	15.40	0.26	37	0	0
24.40	11/11/2010	6.40	0.411	6.60	0.89	13.90	0.27	86	0	0
PA-19	2/9/2011	6.34	0.338	19.2	0.85	9.20	0.22	105	0	0
	5/18/2011	6.31	0.351	5.00	1.24	11.40	0.23	32	0	0
	11/8/2010	6.40	0.283	3.00	0.98	13.50	0.18	-95	0	0
PA-23	2/7/2011	6.69	0.287	4.00	4.37	13.78	0.19	-68	0	0
	5/17/2011	6.38	0.333	4.64	0.62	12.85	0.22	-71	0	0
	11/9/2010	6.52	0.558	40.2	1.21	13.80	0.36	-20	0	0
PA-24	2/10/2011	6.71	0.210	8.10	6.84	8.90	0.14	64	0	0
	5/18/2011	6.74	0.272	5.00	0.82	10.90	0.18	28	0	0
	8/25/2010	8.05	1.36	8.30	0.72	16.60	0.9	-193	0.1	0
	11/11/2010	7.84	1.40	1.00	0.63	14.50	0.9	-219	0.1	0
PZ-2	2/7/2011	7.65	1.35	1.02	1.74	11.43	0.9	-109	0.1	0
	5/17/2011	7.78	1.30	5.00	1.13	11.90	0.8	-145	0.1	0
	8/26/2010	6.86	2.56	26.0	0.00	15.20	1.6	-190	0.1	0
	11/9/2010	7.66	2.65	11.1	0.50	13.10	-	-202	-	-
PZ-3	2/10/2011	7.04	2.40	5.20	1.79	12.31	1.5	-117	0.1	0
	5/19/2011	6.9	2.34	3.17	0.58	12.36	1.5	-192	0.1	0
	8/25/2010	6.74	1.10	99.0	1.95	15.10	0.8	27	0.1	0
PZ-4	11/9/2010	6.67	1.10	15.1	2.40	13.00	_	-38	_	-
PZ-4	2/8/2011	6.67	1.04	4.22	5.52	11.33	0.7	14	0	0
	5/17/2011	6.39	1.00	8.00	1.30	11.30	0.6	61	0	0
PZ-5	8/27/2010	6.64	0.462	7.00	10.72	14.51	0.3	62	0	0
P2-5	2/8/2011	6.81	0.476	4.50	1.86	8.13	0.31	-53	0	0
	8/27/2010	6.11	0.480	41.0	0.00	14.79	0.31	134	0	0
PZ-6	11/9/2010	6.14	0.403	6.80	0.31	12.60	0.26	144	0	0
P2-6	2/8/2011	6.22	0.451	5.79	2.04	9.58	0.29	174	0	0
	5/17/2011	6.19	0.509	1.00	0.98	9.90	0.33	192	0	0
	8/27/2010	6.62	2.20	198	0.93	14.10	0.9	30	0.1	0
PZ-7	11/10/2010	6.00	0.896	7.78	1.10	9.80	-	80	-	-
F2-1	2/8/2011	6.40	0.756	2.29	2.26	11.47	0.48	138	0	0
	5/17/2011	6.26	0.787	3.06	0.81	12.22	0.51	120	0	0
	8/26/2010	6.50	1.07	>10	0.00	15.19	0.7	-165	0	0
PZ-9	11/10/2010	7.14	1.35	11.0	0.70	11.50	-	-165	-	_
12-3	2/8/2011	6.62	0.902	8.00	1.02	12.40	0.6	-102	0	0
	5/20/2011	6.6	1.00	7.00	0.98	10.90	0.6	-159	0	0
PZ-10	8/26/2010	6.74	0.990	33.6	0.00	14.32	0.6	-150	0	0
	8/27/2010	6.49	1.40	157	1.67	14.80	0.9	33	0.1	0
PZ-11	11/9/2010	6.60	1.90	64.6	0.23	14.90	1.3	-93	0.1	0
1271	2/8/2011	6.72	1.68	2.02	1.40	11.43	1.1	-71	0.1	0
	5/17/2011	6.43	1.60	4.79	0.34	13.01	1.0	-64	0.1	0
	8/27/2010	6.49	0.936	32.0	0.00	13.60	0.59	6	0	0
PZ-12	11/9/2010	6.41	0.834	20.0	0.67	12.60	0.53	-49	0	0
1 2-12	2/7/2011	6.41	0.718	3.21	1.34	12.71	0.46	-1	0	0
	5/17/2011	6.37	0.883	3.41	0.24	12.72	0.57	-30	0	0

-- = No information

mS/cm = MilliSiemens per centimeter

NTU = Nephelometric turbidity units

DO = Dissolved oxygen

mg/I = Milligrams per liter

TDS = Total dissolved solids

g/I = Grams per liter

Redox = Oxidation-reduction potential

mV = Millivolts

						Paran MTCA Ecologica TCA Method B Protective of HH (: A Method B Protective of GW as N	Units I ISC SFV)	MS/Kgm) F Z Z S PCB-1016	mg/Kg) NL NL NL NL	FZ Z S S PCB-1232 (5 CB-1232 (5	(mg/Kg) NL NL NL	72 Z Z B 72 Z Z Z B 72 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	N N N N N N N N N N N N N N N N N N N	72 Z Z B 72 Z Z B 73 PCB-1260	0.0 0 9
Funct. Area	Loc ID	Str. Depth	Depth	Zone	Date		Туре								
City Purchase	BY01	0	0-2 ft	Surf (0-2ft)	11/17/1997	BY01-0SS	N	0.037 U	0.075 U	0.037 U	0.037 U	0.037 U	0.037 U	0.066	0.066 V
City Purchase	BY01	2	2-4 ft	SubSurf (>2ft)	11/17/1997	BY01-2SB	N	0.041 U	0.084 U	0.041 U	0.041 U	0.041 U	0.012 J	0.041 U	0.012 JV
City Purchase	BY02	0	0-2 ft	Surf (0-2ft)	11/17/1997	BY02-0SS	N	0.038 U	0.078 U	0.038 U	0.038 U	0.038 U	0.038 U	0.19 J	0.19 JV
City Purchase	BY02	2	2-4 ft	SubSurf (>2ft)	11/17/1997	BY02-2SB	N	0.042 U	0.086 U	0.042 U	0.042 U	0.042 U	0.077 J	0.042 U	0.077 JV
City Purchase	BY03	0	0-2 ft	Surf (0-2ft)	11/17/1997	BY03-0SS	N	0.037 U	0.075 U	0.037 U	0.037 U	0.037 U	0.037 U	0.054	0.054 V
City Purchase	BY03	2	2-4 ft	SubSurf (>2ft)	11/17/1997	BY03-2SB	N	0.045 U	0.091 U	0.045 U	0.045 U	0.045 U	0.045 U	0.021 J	0.021 JV
City Purchase	BY04	0	0-2 ft	Surf (0-2ft)	11/17/1997	BY04-0SS	N	0.039 U	0.08 U	0.039 U	0.039 U	0.039 U	0.039 U	0.065	0.065 V
City Purchase	BY04	2	2-4 ft	SubSurf (>2ft)	11/17/1997	BY04-2SB	N	0.043 U	0.088 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.088 UV
City Purchase	BY05	0	0-2 ft	Surf (0-2ft)	11/17/1997	BY05-0SS	N	0.04 U	0.082 U	0.04 U	0.04 U	0.04 U	0.04 U	0.087	0.087 V
City Purchase	BY05	2	2-4 ft	SubSurf (>2ft)	11/17/1997	BY05-2SB	N	0.039 U	0.08 U	0.039 U	0.039 U	0.039 U	0.039 U	0.0089 J	0.0089 JV
City Purchase	BY05	4	4-6 ft	SubSurf (>2ft)	11/17/1997	BY05-4SB	N	0.046 U	0.093 U	0.046 U	0.046 U	0.046 U	0.046 U	0.046 U	0.093 UV
City Purchase	BY05	6	6-8 ft	SubSurf (>2ft)	11/17/1997	BY05-6SB	Ν	0.046 U	0.093 U	0.046 U	0.046 U	0.046 U	0.046 U	0.046 U	0.093 UV
City Purchase	BY05	8	8-10 ft	SubSurf (>2ft)	11/17/1997	BY05-8SB	Ν	0.044 U	0.089 U	0.044 U	0.044 U	0.044 U	0.044 U	0.044 U	0.089 UV
City Purchase	GWG-8	2	2-3.5 ft	SubSurf (>2ft)	10/28/2010	DUPE3-102810	FD	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
City Purchase	GWG-8	2	2-3.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-2-3.5	Ν	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
City Purchase	GWG-8	10	10-11.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-10-11.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
City Purchase	GWG-8	15	15-16.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
City Purchase	PF01	0	0-2 ft	Surf (0-2ft)	11/18/1997	PF01-0SS	N	0.044 U	0.089 U	0.044 U	0.044 U	0.044 U	0.044 U	0.044 U	0.089 UV
City Purchase	PF01	2	2-4 ft	SubSurf (>2ft)	11/18/1997	PF01-2SB	N	0.044 U	0.089 U	0.044 U	0.044 U	0.044 U	0.044 U	0.044 U	0.089 UV
City Purchase	SSB-10	2	2-3.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0096	0.0096 V
City Purchase	SSB-10	5	5-6.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-5-6.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
City Purchase	SSB-10	10	10-11.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-10-11.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
City Purchase	SSB-10	15	15-16.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-15-16.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
City Purchase	SSB-10	20	20-21.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-20-21.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
CSO	FOT-EX-12	6	6-6 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-12-[080306]-6.0	N	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 UV
CSO	FOT-EX-13	13	13-13 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-13-[080306]-13.0	Ν	0.064 U	0.064 U	0.064 U	0.064 U	0.064 U	0.064 U	0.064 U	0.064 UV
CSO	FOT-EX-28	8	8-8 ft	SubSurf (>2ft)	8/9/2006	WM-EX-28-[080906]-8.0	Ν	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 UV
CSO	FOT-EX-6	3	3-3 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-6-[080206]-3.0	N	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 UV
CSO	FOT-EX-7	3	3-3 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-7-[080206]-3.0	Ν	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 UV
CSO	FOT-EX-8	8	8-8 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-8-[080206]-8.0	N	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 UV

000	FOT EV A	•	004	C L. C	0/0/0000	FOT EV 0 (0000001 0 0	l NI	0.05011	0.050.11	0.05011	0.05011	0.05011	0.05011	0.05011	0.050111/
CSO	FOT-EX-9	6	6-6 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-9-[080206]-6.0	N	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
CSO	GB02	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY17SS-GB02	N	0.04 U	0.081 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.081 UV
CSO	GB02	2	2-4 ft	SubSurf (>2ft)	11/10/1997	LY18SB-GB02	N	0.037 U	0.076 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.076 UV
CSO	GB03	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	N	0.038 U	0.077 U	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.077 UV
CSO	GB03	2	2-4 ft	SubSurf (>2ft)	11/10/1997	LY20SB-GB03	N	0.039 U	0.08 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.08 UV
CSO	GWG-6	2	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-2-3.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
CSO	GWG-6	5	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-5-6.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
CSO	GWG-6	10	10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-10-11.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
CSO	MW-70	2	2-3.5 ft	SubSurf (>2ft)	5/6/2011	MW70-2-3.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
CSO	MW-70	5	5-6.5 ft	SubSurf (>2ft)	5/6/2011	MW70-5-6.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
CSO	MW-70	10	10-11.5 ft	SubSurf (>2ft)	5/6/2011	MW70-10-11.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
CSO	MW-70	15	15-16.5 ft	SubSurf (>2ft)	5/6/2011	MW70-15-16.5	N	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 UV
CSO	MW-70	20	20-21.5 ft	SubSurf (>2ft)	5/6/2011	MW70-20-21.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
East Former Mill	CD02	0	0-2 ft	Surf (0-2ft)	11/19/1997	CD02-0SS	N	0.043 U	0.088 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.088 UV
East Former Mill	CD02	2	2-4 ft	SubSurf (>2ft)	11/19/1997	CD02-2SB	N	0.045 U	0.091 U	0.045 U	0.045 U	0.045 U	0.045 U	0.045 U	0.091 UV
East Former Mill	CD02	4	4-6 ft	SubSurf (>2ft)	11/19/1997	CD02-4SB	N	0.044 U	0.089 U	0.044 U	0.044 U	0.044 U	0.044 U	0.044 U	0.089 UV
East Former Mill	CD02	6	6-8 ft	SubSurf (>2ft)	11/19/1997	CD02-6SB	N	0.041 U	0.083 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.083 UV
East Former Mill	CD03	0	0-2 ft	Surf (0-2ft)	11/19/1997	CD03-0SS	N	0.036 U	0.073 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.073 UV
East Former Mill	CD03	2	2-4 ft	SubSurf (>2ft)	11/19/1997	CD03-3SB	N	0.036 U	0.073 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.073 UV
East Former Mill	GWG-7	2	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-2-3.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
East Former Mill	GWG-7	5	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-5-6.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
East Former Mill	GWG-7	7	7-8.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-7-8.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Estuary	CD01	0	0-2 ft	Surf (0-2ft)	11/19/1997	CD01-0SS	N	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.072 UV
Estuary	CD01	2	2-4 ft	SubSurf (>2ft)	11/19/1997	CD01-2SB	N	0.036 U	0.074 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.074 UV
Estuary	EC-11	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-020	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	EC-15	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-030	N	0.16 U	0.31 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.31 UV
Estuary	EC-15	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2205252-001	FD	0.16 U	0.31 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.31 UV
Estuary	EC-15	1	1-2 ft	Surf (0-2ft)	6/25/2002	K2204294-031	N	0.14 U	0.27 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.27 UV
Estuary	EC-15	1	1-2 ft	Surf (0-2ft)	6/25/2002	K2205252-002	FD	0.14 U	0.27 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.27 UV
Estuary	EC-17	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-035	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	EC-18	1	1-2 ft	Surf (0-2ft)	6/25/2002	K2204294-036	N	0.13 U	0.25 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.25 UV
Estuary	EC-18	2	2-3 ft	SubSurf (>2ft)	6/25/2002	K2204294-039	N	0.13 U	0.25 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.25 UV
Estuary	EC-19	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-040	N	0.13 U	0.25 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.25 UV
Estuary	EC-21	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-045	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	EC-22	0	0-0.5 ft	Surf (0-2ft)	6/25/2002	K2204294-046	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	EC-22	2	2-3 ft	SubSurf (>2ft)	6/25/2002	K2204294-051	N	0.17 U	0.24 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.24 UV
Estuary	EC-3	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-003	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
Estuary	EC-5	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-007	N	0.11 U	0.21 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.24 UV
,	EC-5	0	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-007	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
Estuary	EC-5	0	0-1 It 0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-008	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV 0.21 UV
Estuary	EC-7 ECO33	0	0-1 π 0-0.49 ft	` ,	5/15/2003	K2204294-012 K2303719-005	N	0.11 U	0.21 U 0.099 U	0.11 U	0.11 U	0.11 U	0.11 U		
Estuary	FR05			Surf (0-2ft)			N							0.044	0.044 V
Estuary		0	0-0.25 ft	Surf (0-2ft)	11/13/1997	FR05SS		0.062 U	0.13 U 0.25 U	0.062 U	0.062 U	0.062 U	0.062 U	0.41 J	0.41 JV
Estuary	FW0054	4.5	4.5-4.5 ft	SubSurf (>2ft)	8/9/2002	K2205480-003	N	0.13 U		0.13 U	0.25 UV				
Estuary	FW0055	1	1-1 ft	Surf (0-2ft)	8/9/2002	K2205480-004	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
Estuary	FW0056	1	1-1 ft	Surf (0-2ft)	8/10/2002	K2205480-005	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV

F-4	EW00E7	4.5	45454	CI- C (Of)	0/40/0000	K0005400.000	N.	0.4011	0.00.11	0.4011	0.40.11	0.4011	0.4011	0.4011	0.00111/
Estuary	FW0057	4.5	4.5-4.5 ft	SubSurf (>2ft)	8/10/2002	K2205480-006	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	FW0058	1	1-1 ft	Surf (0-2ft)	8/10/2002	K2205480-007	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
Estuary	FW0059	4.5	4.5-4.5 ft	SubSurf (>2ft)	8/10/2002	K2205480-008	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	FW0061	1	1-1 ft	Surf (0-2ft)	8/10/2002	K2205480-010	N	0.18 U	0.36 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.36 UV
Estuary	FW0062	1	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-011	N	0.11 U	0.22 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.22 UV
Estuary	FW0063	4.5	4.5-4.5 ft	SubSurf (>2ft)	8/12/2002	K2205480-012	N	0.099 U	0.2 U	0.099 U	0.099 U	0.099 U	0.099 U	0.099 U	0.2 UV
Estuary	FW0064	1	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-013	N	0.11 U	0.22 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.22 UV
Estuary	FW0065	4.5	4.5-4.5 ft	SubSurf (>2ft)	8/12/2002	K2205480-014	N	0.13 U	0.25 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.25 UV
Estuary	FW0067	1	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-016	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.23 UV
Estuary	FW0068	4.5	4.5-4.5 ft	SubSurf (>2ft)	8/12/2002	K2205480-017	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
Estuary	FW0069	1	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-018	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
Estuary	FW0070	1	1-1 ft	Surf (0-2ft)	8/12/2002	FW0070	N	0.12 U	0.23 U	0.12 U	0.12 U	0.12 U	0.12 U	0.39	<u>0.39 V</u>
Estuary	LC-1	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC 1	N							0.25	<u>0.25 V</u>
Estuary	LC12A	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 12A	N						-	0.4	<u>0.4 V</u>
Estuary	LC12D	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 12D	N							0.5 U	0.5 UV
Estuary	LC-2	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC 2	N							1.6	<u>1.6 V</u>
Estuary	LC23A	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 23A	N							0.06	<u>0.06 V</u>
Estuary	LC23D	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 23D	N							0.5 U	0.5 UV
Estuary	LC-3	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC 3	N							0.6	0.6 V
Estuary	LC34G	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 34G	N							0.05 U	0.05 UV
Estuary	LC34Z	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 34Z	N							0.06	0.06 V
Estuary	LC-4	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC 4	N							0.08	0.08 V
Estuary	LC45A	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 45A	N							0.06	0.06 V
Estuary	LC45G	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 45G	N							0.05 U	0.05 UV
Estuary	LC-5	4.5	4.5-4.5 ft	SubSurf (>2ft)	10/14/1998	LC 5	N							0.5 U	0.5 UV
Estuary	LC56A	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 56A	N							0.05 U	0.05 UV
Estuary	LC56G	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 56G	N							0.05 U	0.05 UV
Estuary	LC67A	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 67A	N							0.5 U	0.5 UV
Estuary	LC67D	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 67D	N							0.05 U	0.05 UV
Estuary	LC78A	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC 78A	N							0.5 U	0.5 UV
Estuary	LC78D	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 78D	N							0.05 U	0.05 UV
Estuary	LC89C	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 89C	N							0.5 U	0.5 UV
Estuary	LC89D	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC 89D	N							0.05 U	0.05 UV
Estuary	LCAB1	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC AB1	N							0.05 U	0.05 UV
Estuary	LCAB8	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC AB8	N							0.05 U	0.05 UV
Estuary	LCAZ2.5	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC AZ2.5	N							0.08	0.08 V
Estuary	LCBC1	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC BC1	N							0.05 U	0.05 UV
Estuary	LCBC8	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC BC8	N							0.05 U	0.05 UV
Estuary	LCCD1	1.5	1.5-1.5 ft	Surf (0-2ft)	10/14/1998	LC CD1	N							0.05 U	0.05 UV
Estuary	LCCD9	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC CD9	N							0.05 U	0.05 UV
Estuary	LCED2	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC ED2	N							0.05 U	0.05 UV
Estuary	LCED7	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC ED7	N							0.05 U	0.05 UV
Estuary	LCEF3	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC EF3	N							0.05 U	0.05 UV
Estuary	LCEF6	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC EF6	N							0.06	0.06 V
Estuary	LCFG3	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC FG3	N							0.06	0.06 V
	20, 00	1.0	1.0 11	Jun (5 211)	. 3/ 10/ 1000	20100								0.00	<u>0.00 ¥</u>

le .	10500			0 ((0.00)		10.500				ı	ı	ı	ı		0.05/0/
Estuary	LCFG6	1.5	1.5-1.5 ft	Surf (0-2ft)	10/15/1998	LC FG6	N							0.05 U	0.05 UV
Estuary	LCS-1	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-I	N							0.5 U	0.5 UV
Estuary	LCS-10	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-10	N							0.35	<u>0.35 V</u>
Estuary	LCS-16	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-16	N							0.59	0.59 V
Estuary	LCS-17	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-17	N							0.09	0.09 V
Estuary	LCS-18	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-18	N							0.82	0.82 V
Estuary	LCS-19	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-19	N							0.52	<u>0.52 V</u>
Estuary	LCS-2	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-2	N							0.5 U	0.5 UV
Estuary	LCS-20	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-20	N							0.16	<u>0.16 V</u>
Estuary	LCS-21	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-21	N							0.06	0.06 V
Estuary	LCS-22	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-22	N							0.05 U	0.05 UV
Estuary	LCS-23	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-23	N							0.05 U	0.05 UV
Estuary	LCS-24	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-24	N							0.05 U	0.05 UV
Estuary	LCS-25	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-25	N							0.05 U	0.05 UV
Estuary	LCS-26	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-26	N							0.05	<u>0.05 V</u>
Estuary	LCS-27	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-27	N							0.05 U	0.05 UV
Estuary	LCS-28	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-28	N							0.05 U	0.05 UV
Estuary	LCS-29	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LC S-29	N							0.05 U	0.05 UV
Estuary	LCS-3	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-3	N							0.5 U	0.5 UV
Estuary	LCS-30	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LCS S-30	N							0.1	<u>0.1 V</u>
Estuary	LCS-31	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LCS S-31	N							0.05 U	0.05 UV
Estuary	LCS-32	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/15/1998	LCS S-32	N							0.05 U	0.05 UV
Estuary	LCS-4	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-4	N							0.5 U	0.5 UV
Estuary	LCS-5	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-5	N							0.5 U	0.5 UV
Estuary	LCS-6	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-6	N							0.5 U	0.5 UV
Estuary	LCS-7	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-7	N							0.09	0.09 V
Estuary	LCS-8	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-8	N							0.1	<u>0.1 V</u>
Estuary	LCS-9	2.5	2.5-2.5 ft	SubSurf (>2ft)	10/14/1998	LC S-9	N							0.14	0.14 V
Estuary	MW-62	2	2-3.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-2-3.5	N	0.0072 U	0.0072 U	0.0072 U	0.0072 U	0.011 U	0.04	0.079	0.119 V
Estuary	MW-62	5	5-6.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-5-6.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0097 U	0.04	0.04 V
Estuary	MW-62	10	10-11.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-10-11.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0065	0.0065 V
Estuary	MW-62	15	15-16.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Estuary	MW-62	20	20-21.25 ft	SubSurf (>2ft)	10/20/2010	MW-62-20-21.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Estuary	MW-62	25	25-26.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-25-26.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.012 U	0.025	0.0065	0.0315 V
Estuary	MW-62	30	30-31.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-30-31.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U
Estuary	MW-62	35	35-36.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-35-36.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U
Estuary	RS20	0	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303678-013	N	0.015 U	0.088 U	0.033 U	0.026 U	0.021 U	0.077 U	0.082	0.082 V
Estuary	RS20	0	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303687-019	FD	0.015 U	0.11 U	0.015 U	0.02 U	0.018 U	0.061 U	0.074	0.074 V
Estuary	RS20	0.25	0.25-2 ft	Surf (0-2ft)	5/15/2003	K2303678-014	N	0.011 U	0.022 U	0.011 U	0.011 U	0.011 U	0.011 U	0.0064 J	0.0064 JV
Estuary	RS21	0	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-012	N	0.01 U	0.02 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.02 UV
Estuary	RS21	0	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-015	FD	0.0099 U	0.02 U	0.0099 U	0.0099 U	0.0099 U	0.0099 U	0.0099 U	0.02 UV
Estuary	RS21	0.25	0.25-9.5 ft	SubSurf (>2ft)	5/16/2003	K2303762-013	N	0.01 U	0.02 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0095 J	0.0095 JV
Estuary	SSB-5	2	2-3.5 ft	SubSurf (>2ft)	10/26/2010	SSB-5-2-3.5	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.026 U	0.069	0.069 V
Estuary	SSB-5	5	5-6.5 ft	SubSurf (>2ft)	10/26/2010	SSB-5-5-6.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.0041	0.0058	0.0099 V
Estuary	SSB-5	10	10-11.5 ft	SubSurf (>2ft)	10/26/2010	SSB-5-10-11.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
		. •		()	2 2 20 . 0										

Estuary	SSB-5	15	15-16.5 ft	SubSurf (>2ft)	10/26/2010	SSB-5-15-16.5	N	0.003811	0.0038 U	0 0038 11	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
Estuary	SSB-5	20	20-21.5 ft	SubSurf (>2ft)	10/26/2010	SSB-5-20-21.5	N	0.0039 U	0.0039 U	0.0039 U	0.0030 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Estuary	WEC-1	1.5	1.5-1.5 ft	Surf (0-2ft)	10/23/2010	NORTH WALL-3	N								0.0039 0 V
Estuary	WEC-10	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 2-3-(2)	N								0.05 U
Estuary	WEC-11	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 2-2-(2)	N								0.05 U
Estuary	WEC-12	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 1-3-(2)	N								0.05 U
Estuary	WEC-13	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	WEST WALL-8	N								0.05 U
Estuary	WEC-14	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-4-(1)	N								0.05 U
Estuary	WEC-15	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-1-(3)	N								0.05 U
Estuary	WEC-16	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 3-4-(3)	N								0.05 U
Estuary	WEC-17	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 3-1-(3)	N								0.05 U
Estuary	WEC-18	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	WEST WALL-9	N								0.05 U
Estuary	WEC-19	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-5-(1)	N								0.05 U
Estuary	WEC-2	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	NORTH WALL-2	N								0.05 U
Estuary	WEC-20	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 3-5-(3)	N								0.05 U
Estuary	WEC-21	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-3-(1)	N								0.05 U
Estuary	WEC-22	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-2-(3)	N								0.05 U
Estuary	WEC-23	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 3-3-(2)	N								0.05 U
Estuary	WEC-24	6	6-6 ft	SubSurf (>2ft)	10/13/1998	COMP 3-2-(2)	N								0.05 U
Estuary	WEC-25	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	WEST WALL-10	N								0.05 U
Estuary	WEC-26	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-4-(1)	N								0.05 U
Estuary	WEC-27	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-1-(2)	N								0.05 U
Estuary	WEC-28	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 5-4-(1)	N								0.05 U
Estuary	WEC-29	6	6-6 ft	SubSurf (>2ft)	10/13/1998	COMP 5-1-(3)	N								0.27
Estuary	WEC-3	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	NORTH WALL-1	N								0.05 U
Estuary	WEC-30	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	WEST WALL-11	N								0.05 U
Estuary	WEC-31	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-5-(1)	N								0.05 U
Estuary	WEC-33	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-3-(3)	N								0.05 U
Estuary	WEC-34	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-2-(3)	N								0.05 U
Estuary	WEC-35	6	6-6 ft	SubSurf (>2ft)	10/13/1998	COMP 5-3-(2)	N								0.06
Estuary	WEC-36	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	COMP 5-2-(2)	N								0.05 U
Estuary	WEC-38	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 8-4-(1)	N								0.05 U
Estuary	WEC-39	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 8-1-(1)	N								0.05 U
Estuary	WEC-4	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 2-4	N								0.05 U
Estuary	WEC-40	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 7-4-2	N								0.05 U
Estuary	WEC-41	6	6-6 ft	SubSurf (>2ft)	10/13/1998	COMP 7-1-(2)	N								0.05 U
Estuary	WEC-42	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	S-WALL-11	N								0.05 U
Estuary	WEC-43	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	S-WALL-10	N								0.05 U
Estuary	WEC-44	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	S-WALL-12	N								0.05 U
Estuary	WEC-45	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 7-3-(A)	N								0.05 U
Estuary	WEC-46	1.5	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	S-WALL-8	N								0.05 U
Estuary	WEC-47	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 7-5-(2)	N								0.05 U
Estuary	WEC-5	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 2-1-(2)	N								0.05 U
Estuary	WEC-6	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 1-4-(2)	N								0.05 U
Estuary	WEC-8	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 2-5	N								0.05 U

Estuary	WEC-9	3	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 1-5-(3)	l N								0.05 U
Main Former Mill	AP01	0	0-0.25 ft	` ′	11/13/1998	AP01SS	N	0.49 U	0.99 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.05 U 0.99 UV
Main Former Mill	AP01 AP02	0	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997	AP01SS AP02SS	N	0.49 U	0.99 U 0.094 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.99 UV 0.094 UV
Main Former Mill	AP02 AP03	0	0-0.25 ft	` '	11/13/1997	AP03SS	N	0.048 U	0.094 U	0.048 U	0.048 U	0.048 U	0.048 U	0.048 U	0.094 UV
Main Former Mill	AP03 AP04	0	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997	AP03SS AP04SS	N	0.048 U	0.097 U	0.048 U	0.048 U	0.048 U	0.048 U	0.048 U	0.097 UV 0.13 UV
Main Former Mill	BL01	0	0-0.25 ft	Surf (0-2ft)	11/13/1997	BL01SS	N	0.005 U	0.13 U	0.005 U	0.005 U	0.065 U	0.065 U	0.065 U	
Main Former Mill	BL01	0	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL02SS	N	0.036 U	0.074 U	0.036 U	0.036 U	0.036 U	0.036 U	0.8 J	<u>0.6 JV</u> 0.29 JV
Main Former Mill	BL02	0	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL03SS	N	0.037 U	0.12 U	0.037 U	0.037 U	0.037 U	0.037 U	1.1 J	1.1 JV
Main Former Mill	BP01	0	0-0.25 ft	Surf (0-2ft)	11/14/1997	BP01SS	N	0.036 U	0.078 U	0.036 U	0.036 U	0.036 U	0.036 U	0.22 U	0.44 UV
Main Former Mill	BP02	0	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP02SS	N	0.22 U	0.44 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.44 UV 0.61 UV
Main Former Mill	BP03	0	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP03SS	N	0.3 U	0.61 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.61 UV
Main Former Mill	BP03 BP04	0	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP04SS	N	0.22 U	0.45 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.45 UV 0.11 UV
Main Former Mill	DB02	0	0-0.25 ft	Surf (0-2ft)	11/11/1997	DB02SS	N	0.055 U	0.11 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.11 UV
Main Former Mill	ECO34	0	0-0.25 ft	Surf (0-2ft)	5/7/2003	K2303509-009	N	0.055 U	0.11 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 0	
Main Former Mill	FR02	0	0-0.49 ft	Surf (0-2ft)	11/12/1997	FR02SS	N	0.01 U	0.02 U	0.01 U	0.01 U	0.01 U	0.01 U	0.036 0.077 U	0.036 V 0.16 UV
Main Former Mill	FR04	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	FR04SS	N	0.077 U	0.16 U	0.077 U	0.077 U	0.077 U	0.077 U	0.077 0	0.10 UV
Main Former Mill	GWG-1	2	2-3.5 ft	SubSurf (>2ft)	11/3/2010	GWG-1-2-3.5	N	0.049 U	0.0039 U	0.049 U	0.049 U	0.049 U	0.049 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-1	5	5-6.5 ft	SubSurf (>2ft)	11/3/2010	GWG-1-2-3.5 GWG-1-5-6.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-1	7.5	7.5-9 ft	SubSurf (>2ft)	11/3/2010	GWG-1-5-6.5 GWG-1-7.5-9	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
Main Former Mill	GWG-1	10	10-11.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-7.5-9 GWG-1-10-11.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-1	15	15-16.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-1	20	20-21.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-10-10.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-1	8	8-9.5 ft	SubSurf (>2ft)	11/1/2010	GWG-4-8-9.5	N	0.0059 U	0.0058 U	0.0059 U	0.0059 U	0.0039 U	0.0039 U	0.0039 0	0.0039 UV
Main Former Mill	GWG-4	10	10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-10-11.5	N	0.0059 U	0.0059 U	0.0059 U	0.0059 U	0.0059 U	0.022 U	0.045	0.043 V
Main Former Mill	GWG-4	15	15-16.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.015 U	0.028	0.028 V 0.0097 V
Main Former Mill	GWG-4	20	20-21.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-10-10.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.0039 U	0.0097 0.0039 U	0.0037 V
Main Former Mill	GWG-4	26	26-27.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-26-27.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-4	30	30-31.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-20-27.5	N	0.0036 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0036 U	0.0038 U	0.0038 UV
Main Former Mill	GWG-5	2	2-3.5 ft	SubSurf (>2ft)	11/3/2010	GWG-5-2-3.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 0	0.004 0	0.004 0	0.004 0 V
Main Former Mill	GWG-5	5	5-6.5 ft	SubSurf (>2ft)	11/3/2010	GWG-5-5-6.5	N	0.0070 U	0.0070 U	0.0070 U	0.0070 U	0.032	0.044	0.007	0.143 V 0.151 V
Main Former Mill	GWG-5A	5	5-6.5 ft	SubSurf (>2ft)	11/4/2010	GWG-5A-5-6.5	N	0.0073 U	0.0073 U	0.0079 U	0.0073 U	0.0054 U	0.0054 U	0.078	0.0078 V
Main Former Mill	GWG-5A	10	10-11.5 ft	SubSurf (>2ft)	11/4/2010	GWG-5A-10-11.5	N	0.0034 U	0.0034 U	0.0034 U	0.0034 U	0.0034 U	0.0034 U	0.0078 0.0039 U	0.0078 V
Main Former Mill	GWG-5A	15	15-16.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-5A	20	20-21.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-20-21.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	GWG-5A	24	24-25.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-24-25.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	LB01	0	0-2 ft	Surf (0-2ft)	11/22/1997	LB01-0SS	N	0.038 U	0.077 U	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.077 UV
Main Former Mill	LB02	0	0-2 ft	Surf (0-2ft)	11/22/1997	LB02-0SS	N	0.043 U	0.087 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.087 UV
Main Former Mill	MCH0001	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-001	N	0.012 U	0.024 U	0.012 U	0.012 U	0.012 U	0.04	0.035	0.075 V
Main Former Mill	MCH0002	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-002	N	0.012 U	0.024 U	0.012 U	0.012 U	0.012 U	0.099	0.094	0.193 V
Main Former Mill	MCH0003	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-002	N	0.012 U	0.027 U	0.012 U	0.012 U	0.012 U	0.033 0.011 J	0.034 0.014 U	0.011 JV
Main Former Mill	MCH0004	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-003	N	0.014 U	0.027 U	0.014 U	0.014 U	0.014 U	0.011 U	0.36	0.36 V
Main Former Mill	MCH0005	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-005	N	0.012 U	0.024 U	0.012 U	0.012 U	0.012 U	0.012 U	0.011 U	0.022 UV
Main Former Mill	MCH0006	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-005	N	0.011 U	0.022 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.022 UV
Main Former Mill	MCH0007	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-007	N	0.012 U	0.023 U	0.012 U	0.012 U	0.012 U	0.012 0	0.012 0	0.5 V
Main Former Mill	MCH0007	9	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-007	N	0.012 U	0.024 U	0.012 U	0.012 U	0.012 U	0.20 0.0064 J	0.22 0.014 U	0.0064 JV
IVIGITI I OTTITOT IVIIII	1410110000	9	<i>3</i> -3 π	SubSuit (>Zit)	3/3/2002	112200204-000	''	3.0170	0.027 0	0.0140	0.0140	0.0140	0.0004 J	0.0170	0.0004 J V

				T =											1
Main Former Mill	MCH0009	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-001	N	0.013 U	0.026 U	0.013 U	0.013 U	0.013 U	0.013 U	0.014	<u>0.014 V</u>
Main Former Mill	MCH0010	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-002	N	0.015 U	0.029 U	0.015 U	0.015 U	0.015 U	0.015 U	0.015 U	0.029 UV
Main Former Mill	MCH0011	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-003	Ν	0.013 U	0.025 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.025 UV
Main Former Mill	MCH0012	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-004	N	0.014 U	0.027 U	0.014 U	0.014 U	0.014 U	0.014 U	0.014 U	0.027 UV
Main Former Mill	MCH0013	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-005	N	0.016 U	0.031 U	0.016 U	0.016 U	0.016 U	0.016 U	0.016 U	0.031 UV
Main Former Mill	MCH0014	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-006	N	0.014 U	0.028 U	0.014 U	0.014 U	0.014 U	0.014 U	0.014 U	0.028 UV
Main Former Mill	MCH0015	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-007	Ν	0.013 U	0.026 U	0.013 U	0.013 U	0.013 U	0.013 U	0.0017 J	0.0017 JV
Main Former Mill	MCH0016	9	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-008	Ν	0.011 U	0.022 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.022 UV
Main Former Mill	MR01	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR01SS	Ν	0.051 U	0.1 U	0.051 U	0.051 U	0.051 U	0.051 U	2.8 J	<u>2.8 JV</u>
Main Former Mill	MR02	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR02SS	Ν	0.036 U	0.073 U	0.036 U	0.036 U	0.036 U	0.036 U	1.1 J	1.1 JV
Main Former Mill	MR03	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR03SS	Ν	0.08 U	0.16 U	0.08 U	0.08 U	0.08 U	0.08 U	4.8 J	<u>4.8 JV</u>
Main Former Mill	MR04	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR04SS	Ν	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	3.1 J	3.1 JV
Main Former Mill	MR05	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR05SS	Ν	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.072 UV
Main Former Mill	MR06	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR06SS	Ν	0.041 U	0.083 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.083 UV
Main Former Mill	MR07	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR07SS	Ν	0.057 U	0.12 U	0.057 U	0.057 U	0.057 U	0.057 U	1.1	<u>1.1 V</u>
Main Former Mill	MR08	0	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR08SS	Ν	0.039 U	0.079 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.079 UV
Main Former Mill	MR09	0	0-0.25 ft	Surf (0-2ft)	11/15/1997	MR09SS	Ν	0.035 U	0.071 U	0.035 U	0.035 U	0.035 U	0.035 U	0.88 J	<u>0.88 JV</u>
Main Former Mill	MR10	0	0-0.25 ft	Surf (0-2ft)	11/13/1997	MR10SS	Ν	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	0.075	<u>0.075 V</u>
Main Former Mill	MR11	0	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR11SS	Ν	0.046 U	0.094 U	0.046 U	0.046 U	0.046 U	0.046 U	0.36 J	0.36 JV
Main Former Mill	MR12	0	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR12SS	Ν	0.037 U	0.074 U	0.037 U	0.037 U	0.037 U	0.037 U	0.81 J	<u>0.81 JV</u>
Main Former Mill	MW-65	5	5-6.5 ft	SubSurf (>2ft)	3/10/2011	MW-65-5-6.5	Ν	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
Main Former Mill	MW-65	15	15-16.5 ft	SubSurf (>2ft)	3/10/2011	MW-65-15-16.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	MW-66	2.5	2.5-4 ft	SubSurf (>2ft)	3/9/2011	MW-66-2.5-4	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0078 U	0.023	0.023 V
Main Former Mill	MW-66	15	15-16.5 ft	SubSurf (>2ft)	3/9/2011	MW-66-15-16.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	MW-69	2	2-3.5 ft	SubSurf (>2ft)	5/6/2011	MW69-2-3.5	Ν	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 UV
Main Former Mill	MW-69	5	5-6.5 ft	SubSurf (>2ft)	5/6/2011	MW69-5-6.5	Ν	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 UV
Main Former Mill	MW-69	10	10-11.5 ft	SubSurf (>2ft)	5/6/2011	MW69-10-11.5	Ν	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
Main Former Mill	MW-69	15	15-16.5 ft	SubSurf (>2ft)	5/6/2011	MW69-15-16.5	Ν	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
Main Former Mill	MW-69	20	20-21.5 ft	SubSurf (>2ft)	5/6/2011	MW69-20-21.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	MW-69	25	25-26.5 ft	SubSurf (>2ft)	5/6/2011	MW69-25-26.5	Ν	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 U	0.0037 UV
Main Former Mill	MW-69	29	29-30 ft	SubSurf (>2ft)	5/6/2011	MW69-29-30	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
Main Former Mill	PC01	0	0-0.25 ft	Surf (0-2ft)	11/10/1997	PC01SS	Ν	0.057 U	0.12 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.12 UV
Main Former Mill	SR01	0	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR01-SS	Ν	0.047 U	0.096 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U	0.096 UV
Main Former Mill	SR02	0	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR02-SS	Ν	0.052 U	0.11 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.11 UV
Main Former Mill	SR03	0	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR03-SS	Ν	0.059 U	0.12 U	0.059 U	0.059 U	0.059 U	0.059 U	0.059 U	0.12 UV
Main Former Mill	SR04	0	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR04-SS	Ν	0.066 U	0.13 U	0.066 U	0.066 U	0.066 U	0.066 U	0.066 U	0.13 UV
Main Former Mill	SSB-1	7	7-8.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-7-8.5	Ν	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.043 U	0.12	<u>0.12 V</u>
Main Former Mill	SSB-1	10	10-11.5 ft	SubSurf (>2ft)	10/25/2010	DUPE2-102510	FD	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.004	0.0039 U	0.004 V
Main Former Mill	SSB-1	10	10-11.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-10-11.5	Ν	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
Main Former Mill	SSB-1	15	15-16.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-15-16.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	SSB-1	25	25-26.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-25-26.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	SSB-4	5	5-6.5 ft	SubSurf (>2ft)	10/22/2010	SSB-4-5-6.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	SSB-4	10	10-11.5 ft	SubSurf (>2ft)	10/22/2010	SSB-4-10-11.5	Ν	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
Main Former Mill	SSB-4	15	15-16.5 ft	SubSurf (>2ft)	10/22/2010	SSB-4-15-16.5	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	SSB-4	21	21-22.33 ft	SubSurf (>2ft)	10/22/2010	SSB-4-21-22.33	Ν	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV

Main Former Mill	SSB-6	5	5-6.5 ft	SubSurf (>2ft)	10/26/2010	SSB-6-5-6.5	N	0.011 U	0.011 U	0.011 U	0.011 U	0.027 U	0.059	0.084	0.143 V
Main Former Mill	SSB-6	10	10-11.5 ft	SubSurf (>2ft)	10/26/2010	SSB-6-10-11.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0027 U	0.039	0.004	0.036 V
Main Former Mill	SSB-6	15	15-16.5 ft	SubSurf (>2ft)	11/1/2010	SSB-6-15-16.5	N	0.0055 U	0.0055 U	0.0055 U	0.0055 U	0.0098 0	0.017	0.019	0.036 V 0.067 V
Main Former Mill	SSB-6	20	20-21.5 ft	SubSurf (>2ft)	11/1/2010	SSB-6-20-21.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.026	0.0044	0.007 V
Main Former Mill	SSB-6	25	25-26.5 ft	SubSurf (>2ft)	11/1/2010	SSB-6-25-26.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.003 V
Main Former Mill	SSB-6	28	28-28.75 ft	SubSurf (>2ft)	11/1/2010	SSB-6-28-28.75	FD	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
Main Former Mill	SSB-6	28	28-29 ft	SubSurf (>2ft)	11/1/2010	SSB-6-28-29	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	TB01	0	0-0.25 ft	Surf (0-2ft)	11/12/1997	TB01SS	N	0.049 U	0.099 U	0.049 U	0.049 U	0.049 U	0.049 U	0.43	0.43 V
Main Former Mill	TB02	0	0-0.25 ft	Surf (0-2ft)	11/13/1997	TB02SS	N	0.035 U	0.071 U	0.035 U	0.035 U	0.035 U	0.035 U	0.19	0.19 V
Main Former Mill	TP-10	2	2-2 ft	Surf (0-2ft)	1/6/2011	TP-10-2'	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.017	0.017 V
Main Former Mill	TP-10	3	3-3 ft	SubSurf (>2ft)	1/6/2011	TP-10-3'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	TP-14	2	2-2 ft	Surf (0-2ft)	1/6/2011	TP-14-2'	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.005	0.005 V
Main Former Mill	TP-14	3	3-3 ft	SubSurf (>2ft)	1/6/2011	TP-14-3'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.014	0.014 V
Main Former Mill	TP-14	5	5-5 ft	SubSurf (>2ft)	1/6/2011	TP-14-5'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
Main Former Mill	TP-21	3	3-3 ft	SubSurf (>2ft)	1/7/2011	TP-21-3'	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
Main Former Mill	WEC-37	3	3-3 ft	SubSurf (>2ft)	10/13/1998	S-WALL-7	N								0.05 U
North Shoreline	BS01	0	0-0.25 ft	Surf (0-2ft)	11/21/1997	BS01-SS	N	0.036 U	0.074 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.074 UV
North Shoreline	BS02	0	0-0.25 ft	Surf (0-2ft)	11/21/1997	BS02-SS	N	0.039 U	0.079 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.079 UV
North Shoreline	PC02	0	0-0.25 ft	Surf (0-2ft)	11/10/1997	PC02SS	N	0.043 U	0.087 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.087 UV
NW Shoreline	GB01	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY07SS-GB01	N	0.06 U	0.12 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.12 UV
NW Shoreline	GB01	2	2-4 ft	SubSurf (>2ft)	11/11/1997	LY08SB-GB01	N	0.045 U	0.091 U	0.045 U	0.045 U	0.045 U	0.045 U	0.045 U	0.091 UV
NW Shoreline	GB01	4	4-6 ft	SubSurf (>2ft)	11/11/1997	LY25SB-GB01	N	0.038 U	0.078 U	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.078 UV
NW Shoreline	GB04	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY01SS-GB04	N	0.092 U	0.19 U	0.092 U	0.092 U	0.092 U	0.092 U	0.092 U	0.19 UV
NW Shoreline	GB04	2			11/11/1997	LY02SB-GB04	N	0.039 U	0.08 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.08 UV
NW Shoreline	GB05	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY05SS-GB05	N	0.12 U	0.24 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.24 UV
NW Shoreline	GB05	2	2-4 ft	SubSurf (>2ft)	11/10/1997	LY06SB-GB05	N	0.039 U	0.08 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.08 UV
NW Shoreline	GB06	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY09SS-GB06	N	0.037 U	0.074 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.074 UV
NW Shoreline	GB07	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY11SS-GB07	N	0.039 U	0.08 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.08 UV
NW Shoreline	GB07	2	2-4 ft	SubSurf (>2ft)	11/12/1997	LY12SB-GB07	N	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.072 UV
NW Shoreline	GB07	4	4-6 ft	SubSurf (>2ft)	11/12/1997	LY14SB-GB07	N	0.036 U	0.074 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.074 UV
NW Shoreline	GB07	6	6-8 ft	SubSurf (>2ft)	11/12/1997	LY27SB-GB07	N	0.037 U	0.075 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.075 UV
NW Shoreline	GB08	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY13SS-GB08	N	0.043 U	0.088 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.088 UV
NW Shoreline	GB08	2	2-4 ft	SubSurf (>2ft)	11/12/1997	LY29SB-GB08	N	0.036 U	0.074 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.074 UV
NW Shoreline	GB09	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY02SS-GB09	N	0.073 U	0.15 U	0.073 U	0.073 U	0.073 U	0.073 U	0.073 U	0.15 UV
NW Shoreline	GB09	2	2-4 ft	SubSurf (>2ft)	11/10/1997	LY04SB-GB09	N	0.034 U	0.07 U	0.034 U	0.034 U	0.034 U	0.034 U	0.034 U	0.07 UV
NW Shoreline	GB10	10	10-10 ft	SubSurf (>2ft)	11/11/1997	LY10SB-GB10	N	0.18 U	0.37 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.37 UV
NW Shoreline	LY15	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY15SS	N	0.05 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UV
NW Shoreline	LY16	0	0-2 ft	Surf (0-2ft)	11/4/1997	LY16SS	N	0.05 U	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.1 UV
NW Shoreline	MW-61	5	5-6.5 ft	SubSurf (>2ft)	10/19/2010	MW-61-5-6.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
NW Shoreline	MW-61	10	10-11.5 ft	SubSurf (>2ft)	10/19/2010	MW-61-10-11.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.0067	0.0069	<u>0.0136 V</u>
NW Shoreline	MW-61	15	15-16.5 ft	SubSurf (>2ft)	10/19/2010	MW-61-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
NW Shoreline	MW-61	20	20-21.25 ft	SubSurf (>2ft)	10/19/2010	MW-61-20.21.25	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
NW Shoreline	PA01	0	0-2 ft	Surf (0-2ft)	11/15/1997	PA01-0SS	N	0.04 U	0.081 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.081 UV
NW Shoreline	PA02	0	0-2 ft	Surf (0-2ft)	11/15/1997	PA02-0SS	N	0.035 U	0.071 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.071 UV
NW Shoreline	PA03	0	0-2 ft	Surf (0-2ft)	11/15/1997	PA03-0SS	N	0.035 U	0.071 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.071 UV

NW Shoreline	PA04	0	0-2 ft	Surf (0-2ft)	11/15/1997	PA04-0SS	N	0.034 U	0.07 U	0.034 U	0.034 U	0.034 U	0.034 U	0.034 U	0.07 UV
NW Shoreline	PA04 PA04	2	0-2 it 2-4 ft	Sun (0-2it) SubSurf (>2ft)	11/15/1997	PA04-055 PA04-2SB	N	0.034 U	0.07 U	0.034 U	0.034 U	0.034 U	0.034 U	0.034 U	0.07 UV
NW Shoreline	PA04 PA04	4	2-4 It 4-6 ft	SubSurf (>2ft)	11/15/1997	PA04-25B PA04-4SB	N	0.034 U	0.07 U	0.034 U	0.034 U	0.034 U	0.034 U	0.034 U	0.07 UV
Prefab	PF02	0	0-2 ft	Surf (0-2ft)	11/13/1997	PF02-0SS	N	0.035 U	0.071 U	0.035 U 0.042 U	0.035 U 0.042 U	0.035 U 0.042 U	0.035 U 0.042 U	0.035 U	0.071 UV
Prefab	PF02 PF02	2	0-2 it 2-4 ft	Sun (0-2n) SubSurf (>2ft)	11/18/1997	PF02-055 PF02-2SB	N	0.042 U	0.086 U	0.042 U	0.042 U	0.042 U	0.042 U	0.042 U	0.086 UV 0.091 UV
Prefab	PF02 PF03	0	0-2 ft	Surf (0-2ft)	11/18/1997	PF03-0SS	N	0.045 U	0.091 U	0.045 U	0.045 U	0.045 U	0.045 U	0.045 U	0.091 UV
		2		` '											
Prefab	PF03 PF03	4	2-4 ft 4-6 ft	SubSurf (>2ft)	11/18/1997	PF03-2SB	N N	0.042 U	0.085 U	0.042 U	0.042 U	0.042 U	0.042 U	0.042 U	0.085 UV 0.084 UV
Prefab				SubSurf (>2ft)	11/18/1997	PF03-4SB		0.041 U	0.084 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	
Prefab	PF03 PF03	6	6-8 ft	SubSurf (>2ft)	11/18/1997	PF03-6SB	N	0.044 U	0.089 U	0.044 U	0.044 U	0.044 U	0.044 U	0.044 U	0.089 UV
Prefab		8	8-10 ft	SubSurf (>2ft)	11/18/1997	PF03-8SB	N	0.045 U	0.091 U	0.045 U	0.045 U	0.045 U	0.045 U	0.045 U	0.091 UV
Prefab	PF03	16	16-18 ft	SubSurf (>2ft)	11/18/1997	PF03-16SB	N	0.037 U	0.076 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.076 UV
West Former Mill	FOT-0015	11	11-11 ft	SubSurf (>2ft)	8/7/2006	FOT-EX-15-[080706]-11.0-FD	FD	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	FOT-EX-1	9.5	9.5-9.5 ft	SubSurf (>2ft)	8/1/2006	FOT-EX-1-[080106]-9.5	N	0.062 U	0.062 U	0.062 U	0.062 U	0.062 U	0.062 U	0.062 U	0.062 UV
West Former Mill	FOT-EX-10	11.5	11.5-11.5 ft	SubSurf (>2ft)	8/7/2006	FOT-EX-10-[080706]-11.5	N	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 UV
West Former Mill	FOT-EX-11	9	9-9 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-19-[080806]-4.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	FOT-EX-14	9	9-9 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-14-[080306]-9.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	FOT-EX-15	11	11-11 ft	SubSurf (>2ft)	8/7/2006	FOT-EX-15-[080706]-11.0	N	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 UV
West Former Mill	FOT-EX-17	3	3-3 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-17-[080806]-3.0	N	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.25	<u>0.25 V</u>
West Former Mill	FOT-EX-18	7	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-18-[080806]-7.0	N	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 UV
West Former Mill	FOT-EX-19	9	9-9 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-19-[080806]-9.0	N	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 UV
West Former Mill	FOT-EX-2	9	9-9 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-2-[080206]-9.0	Ν	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 UV
West Former Mill	FOT-EX-20	7	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-20-[080806]-7.0	Ν	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	FOT-EX-21	7	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-21-[080806]-7.0	N	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 UV
West Former Mill	FOT-EX-22	5	5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-DUP-2-080806	FD	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 UV
West Former Mill	FOT-EX-22	5	5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-22-[080806]-5.0	N	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 U	0.054 UV
West Former Mill	FOT-EX-23	5	5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-23-[080806]-5.0	N	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 UV
West Former Mill	FOT-EX-24	5	5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-24-[080806]-5.0	N	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 UV
West Former Mill	FOT-EX-25	5	5-5 ft	SubSurf (>2ft)	8/9/2006	WM-EX-25-[080906]-5.0	N	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	FOT-EX-26	5	5-5 ft	SubSurf (>2ft)	8/9/2006	WM-EX-26-[080906]-5.0	N	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 UV
West Former Mill	FOT-EX-27	8	8-8 ft	SubSurf (>2ft)	8/9/2006	WM-EX-27-[080906]-8.0	N	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 UV
West Former Mill	FOT-EX-3	11	11-11 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-3-[080206]-11.0	N	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 UV
West Former Mill	FOT-EX-4	8	8-8 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-4-[080206]-8.0	N	0.059 U	0.059 U	0.059 U	0.059 U	0.059 U	0.059 U	0.059 U	0.059 UV
West Former Mill	FOT-EX-5	15	15-15 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-5-[080206]-15.0	N	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 U	0.063 UV
West Former Mill	HF01	0	0-2 ft	Surf (0-2ft)	11/13/1997	HF01-0SS	N	0.041 U	0.083 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.083 UV
West Former Mill	HF01	2	2-4 ft	SubSurf (>2ft)	11/13/1997	HF01-2SB	N	0.045 U	0.091 U	0.045 U	0.045 U	0.045 U	0.045 U	0.045 U	0.091 UV
West Former Mill	HF02	0	0-2 ft	Surf (0-2ft)	11/13/1997	HF02-0SS	N	0.039 U	0.079 U	0.039 U	0.039 U	0.039 U	0.039 U	0.039 U	0.079 UV
West Former Mill	HF02	2	2-4 ft	SubSurf (>2ft)	11/13/1997	HF02-2SB	N	0.037 U	0.074 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.074 UV
West Former Mill	HF03	0	0-2 ft	Surf (0-2ft)	11/14/1997	HF03-0SS	N	0.037 U	0.075 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.075 UV
West Former Mill	HF03	2	2-4 ft	SubSurf (>2ft)	11/14/1997	HF03-2SB	N	0.041 U	0.083 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.083 UV
West Former Mill	HF04	0	0-2 ft	Surf (0-2ft)	11/14/1997	HF04-0SS	N	0.04 U	0.082 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.082 UV
West Former Mill	HF04	2	2-4 ft	SubSurf (>2ft)	11/14/1997	HF04-2SB	N	0.042 U	0.086 U	0.042 U	0.042 U	0.042 U	0.042 U	0.042 U	0.086 UV
West Former Mill	HF05	0	0-2 ft	Surf (0-2ft)	11/14/1997	HF05-0SS	N	0.041 U	0.083 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.083 UV
West Former Mill	HF05	2	2-4 ft	SubSurf (>2ft)	11/14/1997	HF05-2SB	N	0.041 U	0.083 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.083 UV
West Former Mill	HF06	0	0-2 ft	Surf (0-2ft)	11/14/1997	HF06-0SS	N	0.041 U	0.085 U	0.041 U	0.041 U	0.041 U	0.041 U	0.041 U	0.085 UV
West Former Mill	HF06	2	2-4 ft	SubSurf (>2ft)		HF06-2SB	N	0.042 U	0.003 U	0.042 U	0.042 U	0.042 U	0.042 U	0.042 U	0.003 UV
AAGST LOULIGH IAIIII	ПГОО		2-4 II	SubSuii (>211)	11/14/1997	TIFUU-23D	IN	0.039 0	0.079 0	0.039 0	0.039 0	0.039 0	0.039 0	0.039 0	0.079 0 0

[_													
West Former Mill	HF07	0	0-2 ft	Surf (0-2ft)	11/20/1997	HF07-0SS	N	0.037 U	0.076 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.076 UV
West Former Mill	HF07	2	2-4 ft	SubSurf (>2ft)	11/20/1997	HF07-2SB	N	0.036 U	0.074 U	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.074 UV
West Former Mill	HF08	0	0-2 ft	Surf (0-2ft)	11/20/1997	HF08-0SS	N	0.037 U	0.074 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.074 UV
West Former Mill	HF08	2	2-4 ft	SubSurf (>2ft)	11/20/1997	HF08-2SB	N	0.037 U	0.076 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.076 UV
West Former Mill	HF09	0	0-2 ft	Surf (0-2ft)	11/19/1997	HF09-0SS	N	0.038 U	0.077 U	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.077 UV
West Former Mill	HF09	2	2-4 ft	SubSurf (>2ft)	11/19/1997	HF09-2SB	N	0.037 U	0.074 U	0.037 U	0.037 U	0.037 U	0.037 U	0.037 U	0.074 UV
West Former Mill	MW-60	2	2-3.5 ft	SubSurf (>2ft)	10/19/2010	MW-60-2-3.5	N	0.01 U	0.01 U	0.01 U	0.01 U	0.015 U	0.049	0.055	0.104 V
West Former Mill	MW-60	10	10-11.5 ft	SubSurf (>2ft)	10/19/2010	MW-60-10-11.5	N	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 UIV
West Former Mill	MW-60	15	15-16.5 ft	SubSurf (>2ft)	10/19/2010	MW-60-15-16.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	MW-60	20	20-20.75 ft	SubSurf (>2ft)	10/19/2010	MW-60-20-20.75	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	MW-60	23	23-24.4 ft	SubSurf (>2ft)	10/19/2010	MW-60-23-24.4	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	RB01	0	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB01SS	N	0.07 U	0.14 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.14 UV
West Former Mill	RB02	0	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB02SS	N	0.079 U	0.16 U	0.079 U	0.079 U	0.079 U	0.079 U	0.079 U	0.16 UV
West Former Mill	RB03	0	0-2 ft	Surf (0-2ft)	11/21/1997	RB03-0SS	N	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.072 UV
West Former Mill	RB03	8	8-10 ft	SubSurf (>2ft)	11/21/1997	RB03-8SB	N	0.043 U	0.087 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.087 UV
West Former Mill	RB04	0	0-2 ft	Surf (0-2ft)	11/21/1997	RB04-0SS	N	0.038 U	0.077 U	0.038 U	0.038 U	0.038 U	0.038 U	0.39 J	0.39 JV
West Former Mill	RB04	4	4-6 ft	SubSurf (>2ft)	11/21/1997	RB04-4SB	N	0.035 U	0.072 U	0.035 U	0.035 U	0.035 U	0.035 U	0.035 U	0.072 UV
West Former Mill	RB04	8	8-10 ft	SubSurf (>2ft)	11/21/1997	RB04-8SB	N	0.038 U	0.078 U	0.038 U	0.038 U	0.038 U	0.038 U	0.038 U	0.078 UV
West Former Mill	SMT01	0	0-0.25 ft	Surf (0-2ft)	11/20/1997	97474412	N							0.14 U	0.14 UV
West Former Mill	SMT02	0	0-0.25 ft	Surf (0-2ft)	11/20/1997	97474413	N							0.075 U	0.075 UV
West Former Mill	SSB-2	2	2-3.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-2-3.5	N	0.0083 U	0.0083 U	0.0083 U	0.0083 U	0.0083 U	0.012 U	0.097	0.097 V
West Former Mill	SSB-2	5	5-6.5 ft	SubSurf (>2ft)	10/21/2010	DUPE1-102110	FD	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.0084 U	0.015 U	0.12 J	0.12 JV
West Former Mill	SSB-2	5	5-6.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-5-6.5	N	0.0091 U	0.0091 U	0.0091 U	0.0091 U	0.0091 U	0.0091 U	0.056 J	0.056 JV
West Former Mill	SSB-2	10	10-11.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-10-11.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	SSB-2	15	15-16.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-15-16.5	N	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 U	0.0038 UV
West Former Mill	SSB-2	20	20-20.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-20-20.5	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
West Former Mill	SSB-7	2	2-3.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-2-3.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0045	0.0039 U	0.01 J	0.0145 JV
West Former Mill	SSB-7	10	10-11.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-10-11.5	N	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.04	0.04 V
West Former Mill	SSB-7	20	20-21.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-20-21.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	SSB-7	25	25-26.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-25-26.5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	SSB-7	30	30-30.75 ft	SubSurf (>2ft)	10/26/2010	SSB-7-30-30.75	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	TP-01	2	2-2 ft	Surf (0-2ft)	1/4/2011	TP-01-2'	N	0.0062 U	0.0062 U	0.0062 U	0.0062 U	0.0062 U	0.031 U	0.018	0.018 V
West Former Mill	TP-01	8	8-8 ft	SubSurf (>2ft)	1/4/2011	TP-01-8'	N	0.0059 U	0.0059 U	0.0059 U	0.0059 U	0.0059 U	0.024 U	0.05	0.05 V
West Former Mill	TP-02	2	2-2 ft	Surf (0-2ft)	1/4/2011	TP-02-2'	N	0.0056 U	0.0056 U	0.0056 U	0.0056 U	0.0056 U	0.022 U	0.07	0.07 V
West Former Mill	TP-02	8	8-8 ft	SubSurf (>2ft)	1/4/2011	TP-02-8'	N	0.0067 U	0.0067 U	0.0067 U	0.0067 U	0.0067 U	0.0067 U	0.012	0.012 V
l				` /			1	·	1	1	ı	1	1	·	

West Former Mill	TP-02	8	8-8 ft	SubSurf (>2ft)	1/4/2011	TP-DUPE-1	FD	0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.014	0.044.V
West Former Mill	TP-02	2	2-2 ft	` '	1/4/2011	TP-00PE-1	N	0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.0054 U	0.014	0.014 V
West Former Mill	TP-03	4	2-2 π 4-4 ft	Surf (0-2ft) SubSurf (>2ft)	1/4/2011	TP-03-2 TP-03-4'	N	0.004 U	0.004 U	0.004 U 0.058 U	0.004 U 0.058 U	0.004 U	0.014 U	0.026	0.026 V
West Former Mill	TP-03	7	7-7 ft	SubSurf (>2ft)	1/4/2011	TP-03-7'	N	0.038 U	0.0091 U	0.038 U	0.0091 U	0.036 U	0.18 U	0.4 0.17	0.4 V
West Former Mill	TP-03	2	2-2 ft	Surf (0-2ft)	1/4/2011	TP-03-7	N	0.0091 U	0.0091 U	0.0091 U	0.0091 U	0.014 U			0.17 V
West Former Mill	TP-04	7	7-7 ft	SubSurf (>2ft)	1/5/2011	TP-04-2'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.016 0.0039 U	0.014 0.0039 U	0.03 V 0.0039 UV
West Former Mill	TP-04	2	2-2 ft	Surf (0-2ft)	1/5/2011	TP-04-7	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	TP-05	6	6-6 ft	SubSurf (>2ft)	1/5/2011	TP-05-6'	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 0	0.004 0 V
West Former Mill	TP-05	3	3-3 ft	SubSurf (>2ft)	1/5/2011	TP-06-3'	N	0.0088 U	0.0088 U	0.0039 U	0.0039 U	0.0088 U	0.0039 U	0.012	0.012 V 0.0091 V
West Former Mill	TP-06	7	7-7 ft	SubSurf (>2ft)	1/5/2011	TP-06-7'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0091 0.004 U	0.0091 V 0.004 UV
West Former Mill	TP-07	2	2-2 ft	Surf (0-2ft)	1/5/2011	TP-00-7	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 0	0.004 0	0.004 UV
West Former Mill	TP-07	2	2-2 ft	Surf (0-2ft)	1/5/2011	TP-DUPE-2	FD	0.014 U	0.014 U	0.014 U	0.014 U	0.027 U	0.084	0.17	0.28 V 0.194 V
West Former Mill	TP-07	6	6-6 ft	SubSurf (>2ft)	1/5/2011	TP-07-6'	N	0.012 U	0.012 U	0.012 U	0.012 U	0.024 U	0.004 0.0039 U	0.11 0.012 U	0.194 V 0.012 UIV
West Former Mill	TP-07	2	2-2 ft	Surf (0-2ft)	1/5/2011	TP-08-2'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 0	0.012 0	0.012 01V
West Former Mill	TP-08	5	5-5 ft	SubSurf (>2ft)	1/5/2011	TP-08-5'	N	0.011 U	0.011 U	0.011 U	0.011 U	0.0011 U	0.047 0.0039 U	0.037 0.0039 U	0.0039 UV
West Former Mill	TP-06	2	2-2 ft	Surf (0-2ft)	1/5/2011	TP-06-5	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 0	0.0039 UV
West Former Mill	TP-11	5	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-11-5'	N	0.012 U	0.012 U	0.012 U	0.012 U	0.024 U	0.024 0	0.11	0.85 V
West Former Mill	TP-11	5	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-DUPE-3	FD	0.046 U	0.046 U	0.046 U	0.046 U	0.090 U	0.34	0.74	1.08 V
West Former Mill	TP-12	2	2-2 ft	Surf (0-2ft)	1/4/2011	TP-12-2'	N	0.0085 U	0.0085 U	0.0085 U	0.0085 U	0.095	0.12	0.74	0.515 V
West Former Mill	TP-12	4	4-4 ft	SubSurf (>2ft)	1/4/2011	TP-12-4'	N	0.0000 U	0.0003 U	0.0003 U	0.0003 U	0.78 U	0.12	1.2	2.1 V
West Former Mill	TP-15	2	2-2 ft	Surf (0-2ft)	1/6/2011	TP-15-2'	N	0.036 U	0.036 U	0.036 U	0.036 U	0.036 U	0.045 U	0.083	0.083 V
West Former Mill	TP-15	4	4-4 ft	SubSurf (>2ft)	1/6/2011	TP-15-4'	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.003 0.004 U	0.004 UV
West Former Mill	TP-16	2	2-2 ft	Surf (0-2ft)	1/6/2011	TP-16-2'	N	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 UV
West Former Mill	TP-16	5	5-5 ft	SubSurf (>2ft)	1/6/2011	TP-16-5'	N	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 UV
West Former Mill	WM21	0	0-0.25 ft	Surf (0-2ft)	5/13/2003	K2303600-003	N	0.0093 U	0.019 U	0.0093 U	0.0093 U	0.0093 U	0.0093 U	0.0093 U	0.019 UV
West Former Mill	WM21	0.25	0.25-9.5 ft	SubSurf (>2ft)	5/13/2003	K2303600-004	N	0.0095 U	0.019 U	0.0095 U	0.0095 U	0.0095 U	0.0041 J	0.0095 U	0.0041 JV
West Former Mill	WM-EX-1	8	8-8 ft	SubSurf (>2ft)	8/3/2006	WM-EX-1-[080306]-8.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-10	16	16-16 ft	SubSurf (>2ft)	8/8/2006	WM-DUP-1-080806	FD	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 UV
West Former Mill	WM-EX-10	16	16-16 ft	SubSurf (>2ft)	8/8/2006	WM-EX-10-[080806]-16.0	N	0.061 U	0.061 U	0.061 U	0.061 U	0.061 U	0.061 U	0.088	0.088 V
West Former Mill	WM-EX-11	17	17-17 ft	SubSurf (>2ft)	8/8/2006	WM-EX-11-[080806]-17.0	N	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.067 U	0.067 UV
West Former Mill	WM-EX-12	8	8-8 ft	SubSurf (>2ft)	8/8/2006	WM-EX-12-[080806]-8.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-13	9	9-9 ft	SubSurf (>2ft)	8/8/2006	WM-EX-13-[080806]-9.0	N	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 UV
West Former Mill	WM-EX-14	14	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-14-[080806]-14.0	N	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	WM-EX-15	14	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-15-[080806]-14.0	N	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 UV
West Former Mill	WM-EX-16	14	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-16-[080806]-14.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-17	14	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-17-[080806]-14.0	N	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	WM-EX-18	9	9-9 ft	SubSurf (>2ft)	8/9/2006	WM-EX-18-[080906]9.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-2	11	11-11 ft	SubSurf (>2ft)	8/3/2006	WM-EX-2-[080306]-11.0	N	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	WM-EX-3	10	10-10 ft	SubSurf (>2ft)	8/3/2006	WM-EX-3-[080306]-10.0	N	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U	0.056 UV
West Former Mill	WM-EX-4	13	13-13 ft	SubSurf (>2ft)	8/4/2006	WM-EX-4-[080406]-13.0	N	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 UV
West Former Mill	WM-EX-5	16	16-16 ft	SubSurf (>2ft)	8/4/2006	WM-EX-5-[080406]-16.0	N	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 U	0.057 UV
West Former Mill	WM-EX-6	9	9-9 ft	SubSurf (>2ft)	8/7/2006	WM-EX-6-[080706]-9.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-7	8.5	8.5-8.5 ft	SubSurf (>2ft)	8/7/2006	WM-EX-7-[080706]-8.5	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-8	15	15-15 ft	SubSurf (>2ft)	8/7/2006	WM-EX-8-[080706]-15.0	N	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 UV
West Former Mill	WM-EX-9	10	10-10 ft	SubSurf (>2ft)	8/7/2006	WM-EX-9-[080706]-10.0	N	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 U	0.058 UV
Joe i Gillioi Willi	***** L/\ 3	.0	10 10 11	Juboun (7211)	5,1,2000	ב	.,	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	0.000 0	5.005 O V

							Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzofluoranthenes, Total (b+k+j)	ine	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	сРАН ТЕС⁴
							OZU	OZU	ÖZ	OZU	OZU	Chrysene	enz	enc	Ŧ
					Para	meter									
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				МТС	MTCA Ecologic A Method B Protective of HH		NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	12000 140
					ethod B Protective of GW as		NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	350
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Type	142	142	1,4	142	142	1,42	1,4	142	550
City Purchase	BY01	0-2 ft	Surf (0-2ft)	11/17/1997	BY01-0SS	N	370 U	370 U	47	370 U		370 U	370 U	370 U	265.55 V
City Purchase	BY01	2-4 ft	SubSurf (>2ft)	11/17/1997	BY01-2SB	N	410 U	410 U	410 U	410 U		410 U	410 U	410 U	309.55 UV
City Purchase	BY02	0-2 ft	Surf (0-2ft)	11/17/1997	BY02-0SS	N	380 U	380 U	380 U	380 U		380 U	380 U	380 U	286.9 UV
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	11/17/1997	BY02-2SB	N	420 U	420 U	420 U	420 U		420 U	420 U	420 U	317.1 UV
City Purchase	BY03	0-2 ft	Surf (0-2ft)	11/17/1997	BY03-0SS	N	370 U	370 U	370 U	370 U	-	370 U	370 U	370 U	279.35 UV
City Purchase	BY03	2-4 ft	SubSurf (>2ft)	11/17/1997	BY03-2SB	N	110	130	160	65		120	450 U	83	195.5 V
City Purchase	BY04	0-2 ft	Surf (0-2ft)	11/17/1997	BY04-0SS	N	390 U	390 U	390 U	390 U		390 U	390 U	390 U	294.45 UV
City Purchase	BY04	2-4 ft	SubSurf (>2ft)	11/17/1997	BY04-2SB	N	430 U	430 U	430 U	430 U		430 U	430 U	430 U	324.65 UV
City Purchase	BY05	0-2 ft	Surf (0-2ft)	11/17/1997	BY05-0SS	N	90	110	110	65		99	400 U	68	164.29 V
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	11/17/1997	BY05-2SB	N	390 U	390 U	390 U	390 U		390 U	390 U	390 U	294.45 UV
City Purchase	BY05	4-6 ft	SubSurf (>2ft)	11/17/1997	BY05-4SB	N	460 U	460 U	460 U	460 U		460 U	460 U	460 U	347.3 UV
City Purchase	BY05 BY05	6-8 ft 8-10 ft	SubSurf (>2ft)	11/17/1997	BY05-6SB BY05-8SB	N N	460 U 440 U	460 U 440 U	460 U 440 U	460 U 440 U		460 U 440 U	460 U 440 U	460 U	347.3 UV
City Purchase City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/28/2010	DUPE3-102810	FD	14 U	14 U	440 0	440 0	20	24	14 U	14 U	332.2 UV 11.34 V
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-2-3.5	N	7.1	8.5			13	13	4.7 U	4.7 U	11.34 V 11.11 V
City Purchase	GWG-8	10-11.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-10-11.5	N	4.6 U	4.6 U			4.6 U	4.6 U	4.7 U	4.7 U	3.243 UV
City Purchase	GWG-8	15-16.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-15-16.5	N	4.9 U	4.9 U			4.9 U	4.9 U	4.0 U	4.9 U	3.4545 UV
City Purchase	PF01	0-2 ft	Surf (0-2ft)	11/18/1997	PF01-0SS	N	440 U	440 U	440 U	440 U		440 U	440 U	440 U	332.2 UV
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	11/18/1997	PF01-2SB	N	440 U	440 U	440 U	440 U		440 U	440 U	440 U	332.2 UV
City Purchase	SSB-10	2-3.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5	N	4.9 U	4.9 U			5.9	6.4	4.9 U	4.9 U	3.839 V
City Purchase	SSB-10	5-6.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-5-6.5	N	4.7 U	4.7 U			4.7 U	5.2	4.7 U	4.7 U	3.342 V
City Purchase	SSB-10	10-11.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-10-11.5	N	4.7 U	4.7 U			4.7 U	4.7 U	4.7 U	4.7 U	3.3135 UV
City Purchase	SSB-10	15-16.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-15-16.5	N	4.9 U	4.9 U			4.9 U	4.9 U	4.9 U	4.9 U	3.4545 UV
City Purchase	SSB-10	20-21.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-20-21.5	N	4.7 U	4.7 U			4.7 U	4.7 U	4.7 U	4.7 U	3.3135 UV
CSO	FOT-EX-12	6-6 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-12-[080306]-6.0	N	7.2 U	7.2 U	7.2 U	7.2 U		7.2 U	7.2 U	7.2 U	5.436 UV
	FOT-EX-13	13-13 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-13-[080306]-13.0	N	8.5 U	8.5 U	8.5 U	8.5 U		9.4	8.5 U	8.5 U	6.469 V
	FOT-EX-28	8-8 ft	SubSurf (>2ft)	8/9/2006	WM-EX-28-[080906]-8.0	N	7.8 U	7.8 U	7.8 U	7.8 U		7.8 U	7.8 U	7.8 U	5.889 UV
	FOT-EX-6	3-3 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-6-[080206]-3.0	N	8 U	8 U	8 U	8 U		8 U	8 U	8 U	6.04 UV
CSO	FOT-EX-7	3-3 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-7-[080206]-3.0	N	7.2 U	7.2 U	7.2 U	7.2 U		7.2 U	7.2 U	7.2 U	5.436 UV
CSO	FOT-EX-8	8-8 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-8-[080206]-8.0	N	7.8 U	7.8 U	7.8 U	7.8 U		10	7.8 U	7.8 U	5.95 V
CSO	FOT-EX-9	6-6 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-9-[080206]-6.0	N	7.5 U	7.5 U	7.5 U	7.5 U		7.5 U	7.5 U	7.5 U	5.6625 UV
CSO	GB02	0-2 ft	Surf (0-2ft)	11/4/1997	LY17SS-GB02	N	400 U	400 U	400 U	400 U		400 U	400 U	400 U	302 UV
CSO	GB02	2-4 ft	SubSurf (>2ft)	11/10/1997	LY18SB-GB02	N	88	63	56	370 U		170	370 U	370 U	134.6 V

									l		l .			l	
											(b+k+j)				
											Total (I				
							e e		a.e	ane			ene	Indeno(1,2,3-cd)pyrene	
							Benzo(a)anthracene	e	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzofluoranthenes,		Dibenz(a,h)anthracene	d)by	
							ınthr	Benzo(a)pyrene	luor	luora	rant		h)anı	2,3	t.
							o(a)s	o(a)t	o(b)	o(k)f	offuc	Chrysene	ız(a,	ر1)ور	сРАН ТЕС
					Para	meter	3enz	Senz	3enz	3enz	3enz	hry	Jiber	nder	.PA⊢
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				MTC	MTCA Ecologic A Method B Protective of HH		NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	12000 140
Funct. Area	Loc ID	Donth	Depth Zone	MTCA M	lethod B Protective of GW as Sample ID	_	NL	NL	NL	NL	NL	NL	NL	NL	350
CSO CSO	GB03	Depth 0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	Type N	380 U	380 U	380 U	380 U		380 U	380 U	380 U	286.9 UV
CSO	GB03	2-4 ft	SubSurf (>2ft)	11/10/1997	LY20SB-GB03	N	42	390 U	44	26		55	390 U	390 U	245.75 V
CSO CSO	GWG-6	2-3.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/2/2010 11/2/2010	GWG-6-2-3.5 GWG-6-5-6.5	N N	23 4.7 U	14 4.7 U			61 4.7 U	51 4.7 U	14 U 4.7 U	20 4.7 U	25.61 V 3.3135 UV
CSO	GWG-6	10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-10-11.5	N	4.8 U	4.8 U			4.8 U	4.8 U	4.8 U	4.8 U	3.384 UV
CSO CSO	MW-70 MW-70	2-3.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW70-2-3.5 MW70-5-6.5	N N	4.8 U 4.8 U	4.8 U 4.8 U			4.8 U 6.9	4.8 U 4.8 U	4.8 U 4.8 U	4.8 U 4.8 U	3.384 UV 3.834 V
CSO	MW-70	10-11.5 ft	SubSurf (>2ft)	5/6/2011	MW70-10-11.5	N	4.8 U	4.8 U			4.8 U	4.8 U	4.8 U	4.8 U	3.384 UV
CSO CSO	MW-70 MW-70	15-16.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW70-15-16.5 MW70-20-21.5	N N	4.6 U 4.9 U	4.6 U 4.9 U			4.6 U	4.7 4.9 U	4.6 U 4.9 U	4.6 U 4.9 U	3.267 V
East Former Mill	CD02	20-21.5 π 0-2 ft	SubSur (>2ft) Surf (0-2ft)	11/19/1997	CD02-0SS	N	4.9 U	4.9 U	91	35	5.6	4.9 U	4.9 U	4.9 U	3.7695 V 292.78 V
East Former Mill	CD02	2-4 ft	SubSurf (>2ft)	11/19/1997	CD02-2SB	N	450 U	450 U	450 U	450 U		450 U	450 U	450 U	339.75 UV
East Former Mill East Former Mill	CD02 CD02	4-6 ft 6-8 ft	SubSurf (>2ft) SubSurf (>2ft)	11/19/1997 11/19/1997	CD02-4SB CD02-6SB	N N	440 U 410 U	440 U 410 U	440 U 410 U	440 U 410 U		440 U 410 U	440 U 410 U	440 U 410 U	332.2 UV 309.55 UV
East Former Mill	CD03	0-2 ft	Surf (0-2ft)	11/19/1997	CD03-0SS	N	360 U	360 U	360 U	360 U		360 U	360 U	360 U	271.8 UV
East Former Mill East Former Mill	CD03 GWG-7	2-4 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/19/1997 11/2/2010	CD03-3SB GWG-7-2-3.5	N N	31 4.8 U	360 U 4.8 U	77	29	8.6	56 7.7	360 U 4.8 U	360 U 4.8 U	230.26 V 4.057 V
East Former Mill	GWG-7	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-5-6.5	N	4.5 U	4.5 U			4.5 U	4.5 U	4.5 U	4.5 U	3.1725 UV
East Former Mill East Former Mill	GWG-7 SL22	7-8.5 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	11/2/2010 5/14/2003	GWG-7-7-8.5 K2303687-013	N N	4.8 U 330 U	4.8 U 330 U	 330 U	 330 U	4.8 U	4.8 U 330 U	4.8 U 330 U	4.8 U 330 U	3.384 UV 249.15 UV
East Former Mill	SL22	0.25-7.5 ft	SubSurf (>2ft)	5/14/2003	K2303687-014	N	330 U	330 U	330 U	330 U		330 U	330 U	330 U	249.15 UV
East Shoreline	SL20	0.25-7 ft	SubSurf (>2ft)	5/14/2003	K2303687-010	N	330 U	330 U	330 U	330 U		330 U	330 U	330 U	249.15 UV
East Shoreline East Shoreline	SL21 SL21	0.25-6.5 ft 0.25-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003	K2303687-012 K2303687-016	N N	 92 J	 61 J	97 J	83 J		 150 J	330 U	330 U	122.7 JV
Ennis Creek	DD02	0-0.25 ft	Surf (0-2ft)	11/17/1997	97474373	N	730 U	730 U	730 U	730 U		100	730 U	730 U	548.5 V
Estuary Estuary	CD01 CD01	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/19/1997	CD01-0SS CD01-2SB	N N	67 360 U	72 360 U	96 360 U	100 360 U		160 33	350 U 360 U	350 U 360 U	134.9 V 270.33 V
Estuary	FR05	0-0.25 ft	Surf (0-2ft)	11/13/1997	FR05SS	N	620 U	620 U	67	39		160	620 U	620 U	415.2 V
Estuary Estuary	MW-62 MW-62	2-3.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/20/2010	MW-62-2-3.5 MW-62-5-6.5	N N	7.4 4.7 U	9.8 4.7 U			17 4.7 U	10 4.7 U	4.9 U 4.7 U	6.9 4.7 U	13.275 V 3.3135 UV
Estuary	MW-62	10-11.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-10-11.5	N	4.8 U	4.8 U			4.8 U	4.8 U	4.8 U	4.8 U	3.384 UV
Estuary Estuary	MW-62 MW-62	15-16.5 ft 20-21.25 ft	SubSurf (>2ft) SubSurf (>2ft)	10/20/2010	MW-62-15-16.5 MW-62-20-21.5	N N	5 U 4.9 U	5 U 4.9			6.4 5.4	5 U 4.9 U	5 U 4.9 U	5 U 4.9 U	3.915 V 6.1995 V
Estuary	MW-62	25-26.5 ft	SubSurf (>2ft)	10/20/2010	MW-62-25-26.5	N	4.8 U	4.8 U			4.8 U	4.8 U	4.8 U	4.8 U	3.384 UV
Estuary Estuary	RS20 RS20	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	5/15/2003 5/15/2003	K2303678-013 K2303687-019	N FD	80 J 130 J	54 J 89 J	95 J 150 J	84 J 150 J		210 J 320 J	330 U 340 U	75 J 72 J	106 JV 159.4 JV
Estuary	RS20	0.25-2 ft	Surf (0-2ft)	5/15/2003	K2303678-014	N	330 U	330 U	330 U	330 U		330 U	330 U	330 U	249.15 UV
Estuary	RS21 RS21	0-0.25 ft 0-0.25 ft	Surf (0-2ft)	5/16/2003 5/16/2003	K2303762-012 K2303762-015	N FD	160 J	140 J	250 J	180 J		300 J	37 J	120 J	217.7 JV
Estuary Estuary	RS21	0.25-9.5 ft	Surf (0-2ft) SubSurf (>2ft)	5/16/2003	K2303762-013	N	150 J 340 U	110 J 340 U	220 J 340 U	150 J 340 U		270 J 340 U	330 U 340 U	93 J 340 U	190.5 JV 256.7 UV
Main Former Mill	AP01	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP01SS	N	490	380	620	250		690	490 U	210	568.4 V
Main Former Mill Main Former Mill	AP02 AP03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997	AP02SS AP03SS	N N	6500 950	3300 730	460 U 480 U	8300 1900		3700 1200	620 480 U	350 110	4937 V 1086 V
Main Former Mill	AP04	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP04SS	N	1400	1000	650 U	2300		1900	140	120	1447.5 V
Main Former Mill Main Former Mill	BL01 BL02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/14/1997 11/14/1997	BL01SS BL02SS	N N	160 270	360 U 570 U	360 U 570 U	360 U 570 U		240 260	360 U 570 U	360 U 570 U	270.4 V 428.6 V
Main Former Mill	BL03	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL03SS	N	380 U	380 U	380 U	380 U		380 U	380 U	380 U	286.9 UV
Main Former Mill Main Former Mill	BL20 BP01	0.25-3.5 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	5/15/2003 11/11/1997	K2303678-002 BP01SS	N N	25 J 430 U	25 J 430 U	330 U 430 U	330 U 44		34 J 64	39 J 430 U	63 J 430 U	71.04 JV 306.04 V
Main Former Mill	BP01 BP02	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP02SS	N	500	3000 U	520	280		1000	3000 U	3000 U	1940 V
Main Former Mill	BP03 BP04	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP03SS BP04SS	N N	2200 U	2200 U 550 U	2200 U 550 U	2200 U		2200 U 550 U	2200 U	2200 U 550 U	1661 UV 415.25 UV
Main Former Mill Main Former Mill	DB02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/11/1997 11/13/1997	DB02SS	N	550 U 370	320	580	550 U 250		580 U	550 U 550 U	290	502.3 V
Main Former Mill	DB21	0.25-11 ft	SubSurf (>2ft)	5/19/2003	K2303762-019	N	110 J	76 J	81 J	89 J		120 J	330 U	63 J	128 JV
Main Former Mill Main Former Mill	FR02 FR02	0-0.25 ft 0.25-5.5 ft	Surf (0-2ft) SubSurf (>2ft)	11/12/1997 5/16/2003	FR02SS K2303762-007	N N	770 U 30 J	30 J	36 J	 32 J		360 52 J	330 U	330 U	1120.1 V 73.32 JV
Main Former Mill	FR04	0-0.25 ft	Surf (0-2ft)	11/14/1997	FR04SS	N									739.9 V
Main Former Mill Main Former Mill	FR20 GWG-1	0.25-4.5 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/16/2003 11/3/2010	K2303762-009 GWG-1-2-3.5	N N	25 J 4.8 U	31 J 4.8 U	26 J	330 U	4.8 U	47 J 4.8 U	330 U 4.8 U	330 U 4.8 U	86.07 JV 3.384 U
Main Former Mill	GWG-1	5-6.5 ft	SubSurf (>2ft)	11/3/2010	GWG-1-5-6.5	N	17	14			22	36	4.8 U	4.8 U	18.74
Main Former Mill Main Former Mill	GWG-1	7.5-9 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/3/2010 11/4/2010	GWG-1-7.5-9 GWG-1-10-11.5	N	12 4.9 U	4.7 U 4.9 U		1 1	8 4.9 U	14 4.9 U	4.7 U 4.9 U	4.7 U 4.9 U	4.96 3.4545 U
Main Former Mill	GWG-1	15-16.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-15-16.5	N	4.9 U	4.9 U			4.9 U	4.8 U	4.9 U	4.8 U	3.384 U
Main Former Mill	GWG-1	20-21.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-20-21.5 GWG-5-2-3.5	N N	4.8 U 170	4.8 U 190			4.8 U 350	4.8 U 270	4.8 U 35	4.8 U 95	3.384 U
Main Former Mill Main Former Mill	GWG-5	2-3.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/3/2010 11/3/2010	GWG-5-2-3.5 GWG-5-5-6.5	N N	210	190			350	290	35	95 79	257.7 V 246.2 V
Main Former Mill	GWG-5A	5-6.5 ft	SubSurf (>2ft)	11/4/2010	GWG-5A-5-6.5	N	5.5	11			24	17	4.6 U	7.8	15.13 V
Main Former Mill Main Former Mill	GWG-5A GWG-5A	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/4/2010 11/5/2010	GWG-5A-10-11.5 GWG-5A-15-16.5	N N	4.6 U	4.6 U 4.6 U			4.6 U	4.6 U	4.6 U	4.6 U 4.6 U	3.243 UV 3.243 UV
Main Former Mill	GWG-5A	20-21.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-20-21.5	N	4.5 U	4.5 U			4.5 U	4.5 U	4.5 U	4.5 U	3.1725 UV
Main Former Mill Main Former Mill	GWG-5A LB01	24-25.5 ft	SubSurf (>2ft) Surf (0-2ft)	11/5/2010 11/22/1997	GWG-5A-24-25.5 LB01-0SS	N N	4.7 U 380 U	4.7 U 380 U	380 U	380 U	4.7 U	4.7 U 380 U	4.7 U 380 U	4.7 U 380 U	3.3135 UV 286.9 UV
Main Former Mill	LB02		Surf (0-2ft)	11/22/1997	LB02-0SS	N	430 U	430 U	430 U	430 U		430 U	430 U	430 U	324.65 UV

											(
							ane		hene	nene	nes, Total (b+k+j)		асепе	yrene	
							Benzo(a)anthracene	yrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzofluoranthenes,		Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	
							nzo(a)a	Benzo(a)pyrene	nzo(b)f	nzo(k)f	nzofluc	Chrysene	benz(a,	Jeno(1,	сРАН ТЕС
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
					MTCA Ecologic A Method B Protective of HH lethod B Protective of GW as	(SFV)	NL NL NL	NL NL NL	NL NL NL	NL NL NL	NL NL NL	NL NL NL	NL NL NL	NL NL NL	12000 140 350
Funct. Area Main Former Mill	Loc ID MR01	Depth 0-0.25 ft	Depth Zone Surf (0-2ft)	Date 11/12/1997	Sample ID MR01SS	Type	2200	1300	1500	1700		2300	510 U	510 U	1914 V
Main Former Mill Main Former Mill	MR02 MR03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997	MR02SS MR03SS	N	360 U 820	360 U	360 U	360 U		360 U	360 U	360 U	271.8 UV
Main Former Mill	MR04	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR04SS	N						1100			1213 V 528.5 V
Main Former Mill Main Former Mill	MR05 MR06	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997 11/12/1997	MR05SS MR06SS	N N	93 270	350 U	350 U	350 U		170 530	350 U	350 U	256 V 606.3 V
Main Former Mill Main Former Mill	MR07 MR08	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997 11/14/1997	MR07SS MR08SS	Z Z	390 410	310	320	390		820 510	570 U	570 U	485.2 V 592.1 V
Main Former Mill Main Former Mill	MR09 MR10	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/15/1997 11/13/1997	MR09SS MR10SS	N N	160 57	130 38	270 99	100 46		280 100	350 U 350 U	120 350 U	215.3 V 94.2 V
Main Former Mill	MR11	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR11SS	N									694.6 V
Main Former Mill Main Former Mill	MR12 MR20	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/14/1997 5/15/2003	MR12SS K2303678-015	N N	36 J	35 J	53 J	45 J		46 J	340 U	340 U	558.7 V 82.86 JV
Main Former Mill Main Former Mill	MS20 MW-65	0.25-5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 3/10/2011	K2303687-004 MW-65-5-6.5	N N	120 J 18	1700 U 12 J	1700 U	1700 U	 26 J	94 J 21	1700 U 4.8 UJ	1700 U 7.4 J	1202.94 JV 17.59 JV
Main Former Mill Main Former Mill	MW-65 MW-66	15-16.5 ft 2.5-4 ft	SubSurf (>2ft) SubSurf (>2ft)	3/10/2011 3/9/2011	MW-65-15-16.5 MW-66-2.5-4	N N	4.8 UJ 260	4.8 U 240			4.8 U 460	4.8 UJ 270	4.8 U 42	4.8 U 130	3.384 UJV 331.9 V
Main Former Mill Main Former Mill	MW-66 MW-69	15-16.5 ft 2-3.5 ft	SubSurf (>2ft)	3/9/2011 5/6/2011	MW-66-15-16.5 MW69-2-3.5	N N	24 4.6 U	15			30	26	4.8 U 4.6 U	8.4 4.6 U	21.74 V 3.243 UV
Main Former Mill	MW-69	5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011	MW69-5-6.5	N	5 U	5 U			5 U	5.2	5 U	5 U	3.552 V
Main Former Mill Main Former Mill	MW-69 MW-69	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW69-10-11.5 MW69-15-16.5	N N	28 6.2	4.9 U 8.1			63 16	44 11	4.9 U 4.9 U	23 4.9 U	14.535 V 10.92 V
Main Former Mill Main Former Mill	MW-69 MW-69	20-21.5 ft 25-26.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW69-20-21.5 MW69-25-26.5	N	4.8 U 4.7 U	4.8 U 4.7 U			4.8 U 4.7 U	4.8 U 4.7 U	4.8 U 4.7 U	4.8 U 4.7 U	3.384 UV 3.3135 UV
Main Former Mill Main Former Mill	MW-69 PC01	29-30 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5/6/2011 11/10/1997	MW69-29-30 PC01SS	N N	4.6 U 570 U	4.6 U 570 U	 570 U	 570 U	4.6 U	6.2 570 U	4.6 U 570 U	4.6 U 570 U	3.282 V 430.35 UV
Main Former Mill	PW20	0.25-8.5 ft	SubSurf (>2ft)	5/15/2003	K2303678-012	N	330 U	330 U	330 U	330 U		330 U	330 U	330 U	249.15 UV
Main Former Mill Main Former Mill	SR01 SR02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997 11/21/1997	SR01-SS SR02-SS	N N	76 180	64 110	73 150	55 82		110 200	470 U 520 U	470 U 55	132.5 V 184.7 V
Main Former Mill Main Former Mill	SR03 SR03	0-0.25 ft 0.25-11 ft	Surf (0-2ft) SubSurf (>2ft)	11/21/1997 5/19/2003	SR03-SS K2303763-003	Z Z	1100 180 J	750 150 J	1300 300 J	560 220 J		1600 490	590 U 330 U	590 U	1121 V 251.4 JV
Main Former Mill Main Former Mill	SR04 SR20	0-0.25 ft 0.25-7 ft	Surf (0-2ft) SubSurf (>2ft)	11/21/1997 5/19/2003	SR04-SS K2303763-005	N N	250 130 J	190 74 J	330 110 J	160 97 J		570 180 J	660 U 330 U	660 U	335.7 V 132.5 JV
Main Former Mill	SR21	0.25-3 ft	Surf (0-2ft)	5/15/2003	K2303687-018	N	330 U	330 U	330 U	330 U		330 U	330 U	330 U	249.15 UV
Main Former Mill Main Former Mill	SR22 SR23	0.25-5 ft 0.25-13 ft	SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003	K2303687-006 K2303687-008	N N	600 180 J	250 J 190 J	420 210 J	260 J 200 J		660 250 J	340 U 40 J	85 J 140 J	410.1 JV 269.5 JV
Main Former Mill Main Former Mill	SR23 SR24	0.25-13 ft 0.25-16 ft	SubSurf (>2ft) SubSurf (>2ft)	5/20/2003 5/20/2003	K2303763-015 K2303763-014	N N	67 J 340 U	30 J 340 U	44 J 340 U	35 J 340 U		73 J 340 U	330 U 340 U	330 U 340 U	78.33 JV 256.7 UV
Main Former Mill Main Former Mill	SSB-1 SSB-1	7-8.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/25/2010 10/25/2010	SSB-1-7-8.5 DUPE2-102510	N FD	69 28	93 30			130 39	110 37	13 U 5.8 U	33 10	117.95 V 38.36 V
Main Former Mill	SSB-1	10-11.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-10-11.5	N	12	9.7			16	25	4.6 U	4.6 U	13.21 V
Main Former Mill Main Former Mill	SSB-1 SSB-1	15-16.5 ft 25-26.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/25/2010 10/25/2010	SSB-1-15-16.5 SSB-1-25-26.5	N N	4.8 U 4.4 U	4.8 U 4.4 U			4.8 U 4.4 U	4.8 U 4.4 U	4.8 U 4.4 U	4.8 U 4.4 U	3.384 UV 3.102 UV
Main Former Mill Main Former Mill	SSB-3 SSB-3	2-3.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/22/2010	SSB-3-2-3.5 SSB-3-10-11.5	N N	5.3 4.6 U	4.8 4.6 U			11 5.1	8.1 5.1	4.8 U 4.6 U	4.8 U 4.6 U	6.991 V 3.551 V
Main Former Mill Main Former Mill	SSB-3 SSB-3	15-16.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/22/2010	SSB-3-15-16.5 SSB-3-20-21.5	N N	4.8 U 4.9 U	4.8 U 4.9 U			4.8 U 4.9 U	4.8 U 4.9 U	4.8 U 4.9 U	4.8 U 4.9 U	3.384 UV 3.4545 UV
Main Former Mill Main Former Mill	SSB-3 SSB-3	25-26.5 ft 27-28.5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	10/22/2010	SSB-3-25-26.5	N N	4.9 U 4.8 U	4.9 U 4.8 U			4.9 U 4.8 U	4.9 U 4.8 U	4.9 U 4.8 U	4.9 U	3.4545 UV
Main Former Mill	TB01	0-0.25 ft	Surf (0-2ft)	11/12/1997	SSB-3-27-28.5 TB01SS	N	160	97	490 U	230		210	490 U	4.8 U 490 U	3.384 UV 211.6 V
Main Former Mill Main Former Mill	TB02 TP-09	0-0.25 ft 2-2 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997 1/6/2011	TB02SS TP-09-2'	N N	4.6 U	4.6 U	-		4.6 U	4.6 U	4.6 U	4.6 U	528.5 V 3.243 UV
Main Former Mill Main Former Mill	TP-09 TP-10	3-3 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/6/2011 1/6/2011	TP-09-3' TP-10-2'	N	66 12	65 18			77 26	65 14	4.8 U 5 U	26 12	82.79 V 23.39 V
Main Former Mill Main Former Mill	TP-10 TP-14	3-3 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/6/2011	TP-10-3' TP-14-2'	N N	4.9 U	4.9 U			4.9 U 25	4.9 U 21	4.9 U 4.6 U	4.9 U 5.5	3.4545 UV 18.99 V
Main Former Mill	TP-14	3-3 ft	SubSurf (>2ft)	1/6/2011	TP-14-3'	N	30	41			81	83	8.7 U	8.7 U	53.8 V
Main Former Mill Main Former Mill	TP-14 TP-21	5-5 ft 3-3 ft	SubSurf (>2ft) SubSurf (>2ft)	1/6/2011 1/7/2011	TP-14-5' TP-21-3'	N N	4.7 U 4.9	4.7 U 5.4			4.7 U 8.8	4.7 U 7.4	4.7 U 4.9 U	4.7 U 4.9 U	3.3135 UV 7.334 V
North Shoreline North Shoreline	BS01 BS02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997 11/21/1997	BS01-SS BS02-SS	N N	360 U 140	360 U 390 U	360 U 60	360 U 30		360 U 120	360 U 390 U	360 U 390 U	271.8 UV 258.2 V
North Shoreline North Shoreline	CS20 DK20	0.25-9 ft 0.25-7 ft	SubSurf (>2ft) SubSurf (>2ft)	5/19/2003 5/15/2003	K2303762-017 K2303678-008	N N	23 J 330 U	330 U 330 U	330 U 330 U	330 U 330 U		31 J 20 J	330 U 42 J	330 U 54 J	233.61 JV 224.3 JV
North Shoreline	PC02	0-0.25 ft	Surf (0-2ft)	11/10/1997	PC02SS	N	430 U	430 U	430 U	430 U		430 U	430 U	430 U	324.65 UV
North Shoreline NW Shoreline	PC20 GB01	0.25-11 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	5/19/2003 11/4/1997	K2303763-001 LY07SS-GB01	N N	34 J 87	24 J 600 U	31 J 62	27 J 56		42 J 160	330 U 600 U	330 U 600 U	66.62 JV 382.1 V
NW Shoreline NW Shoreline	GB01 GB01	2-4 ft 4-6 ft	SubSurf (>2ft) SubSurf (>2ft)	11/11/1997 11/11/1997	LY08SB-GB01 LY25SB-GB01	N N	450 U 380 U	50 380 U	450 U 380 U	450 U 380 U		50 380 U	450 U 380 U	450 U 380 U	163 V 286.9 UV
NW Shoreline NW Shoreline	GB04 GB05	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/4/1997 11/4/1997	LY01SS-GB04 LY05SS-GB05	N N	920 U 1200 U	920 U 1200 U	920 U 1200 U	920 U 130		920 U 1200 U	920 U 1200 U	920 U 1200 U	694.6 UV 859 V
NW Shoreline	GB05	2-4 ft	SubSurf (>2ft)	11/10/1997	LY06SB-GB05	N	390 U	390 U	390 U	390 U		390 U	390 U	390 U	294.45 UV
NW Shoreline	GB06 GB07	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/4/1997 11/4/1997	LY09SS-GB06 LY11SS-GB07	N N	44 51	50 390 U	54 43	52 40		98 77	370 U 390 U	370 U 390 U	102.98 V 248.17 V

											(b+k+j)				
				MTC/	Para MTCA Ecologic A Method B Protective of HH		Z Z S Benzo(a)anthracene G Benzo(a)anthracene	Z Z 을 Benzo(a)pyrene 는 는 는 것	Z Z 을 Benzo(b)fluoranthene (호)	Z Z 을 Benzo(k)fluoranthene 는 글 글	Z Z 을 Benzofluoranthenes, Total (b	Z Z Ĝ F Z β Chrysene (Θ	Z Z 을 Dibenz(a,h)anthracene 는 는 다 없	Z Z S S Indeno(1,2,3-cd)pyrene G G S S S S S S S S	cPAH TEC* (ng/kg) 12000 140
Funct. Area	Loc ID	Donth	Donth Zono	MTCA M Date	ethod B Protective of GW as Sample ID		NL	NL	NL	NL	NL	NL	NL	NL	350
NW Shoreline	GB07	Depth 2-4 ft	Depth Zone SubSurf (>2ft)	11/12/1997	LY12SB-GB07	Type N	350 U	350 U	350 U	350 U		350 U	350 U	350 U	264,25 UV
NW Shoreline	GB07	4-6 ft	SubSurf (>2ft)	11/12/1997	LY14SB-GB07	N	360 U	360 U	360 U	360 U		360 U	360 U	360 U	271.8 UV
NW Shoreline NW Shoreline	GB07 GB08	6-8 ft 0-2 ft	SubSurf (>2ft)	11/12/1997	LY27SB-GB07 LY13SS-GB08	N N	370 U	370 U 430 U	370 U 430 U	370 U		370 U	370 U	370 U	279.35 UV
NW Shoreline	GB08	0-2 It 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/4/1997 11/12/1997	LY29SB-GB08	N	52 360 U	360 U	360 U	430 U 360 U		75 360 U	430 U 360 U	430 U 360 U	306.95 V 271.8 UV
NW Shoreline	GB09	0-2 ft	Surf (0-2ft)	11/4/1997	LY02SS-GB09	N	730 U	730 U	730 U	730 U		560	730 U	730 U	<u>553.1 V</u>
NW Shoreline NW Shoreline	GB09 GB10	2-4 ft 10-10 ft	SubSurf (>2ft) SubSurf (>2ft)	11/10/1997 11/11/1997	LY04SB-GB09 LY10SB-GB10	N N	340 U 370 U	340 U 370 U	340 U 370 U	340 U 370 U		340 U 370 U	340 U 370 U	340 U 370 U	256.7 UV 279.35 UV
NW Shoreline	LY15	0-2 ft	Surf (0-2ft)	11/4/1997	LY15SS	N	500 U	500 U	500 U	500 U		500 U	500 U	500 U	377.5 UV
NW Shoreline	LY16	0-2 ft	Surf (0-2ft)	11/4/1997	LY16SS	N	63	68	56	44		110	500 U	500 U	135.4 V
NW Shoreline NW Shoreline	LY24 LY24	0-0.25 ft 0.25-6.5 ft	Surf (0-2ft) SubSurf (>2ft)	5/12/2003 5/12/2003	K2303593-005 K2303593-006	N N	6600 U 330 U	6600 U 47 J	550 51 J	440 41 J		440 20 J	970 50 J	1600 63 J	3990.4 V 84.2 JV
NW Shoreline	LY25	0-0.25 ft	Surf (0-2ft)	5/12/2003	K2303593-007	N	60 J	110 J	110 J	110 J		57 J	70 J	86 J	154.17 JV
NW Shoreline	LY25	0.25-8 ft	SubSurf (>2ft)	5/12/2003	K2303593-008	N	330 U	330 U	330 U	330 U	4011	330 U	330 U	330 U	249.15 UV
NW Shoreline NW Shoreline	MW-61 MW-61	5-6.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 10/19/2010	MW-61-5-6.5 MW-61-10-11.5	N N	4.9 U 4.8 U	4.9 U 4.8 U			4.9 U 7.7 U	4.9 U 7.7	4.9 U 4.8 U	4.9 U 4.8 U	3.4545 UV 3.967 V
NW Shoreline	MW-61	15-16.5 ft	SubSurf (>2ft)	10/19/2010	MW-61-15-16.5	N	4.7	6.1			9.4 U	6.6	4.7 U	4.7 U	8.046 V
NW Shoreline NW Shoreline	MW-61 MW-67	20-21.25 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 3/9/2011	MW-61-20.21.25 MW-67-2-3.5	z z	4.8 U 4.7 U	4.8 U 4.7 U			4.8 U 4.7 U	4.8 U 4.7 U	4.8 U 4.7 U	4.8 U 4.7 U	3.384 UV 3.3135 UV
NW Shoreline	MW-67	15-16.5 ft	SubSurf (>2ft)	3/9/2011	MW-67-15-16.5	N	4.7 U	4.7 U			4.7 U	4.7 U	4.7 U	4.7 U	3.243 UJV
NW Shoreline	PA01	0-2 ft	Surf (0-2ft)	11/15/1997	PA01-0SS	N	400 U	400 U	400 U	400 U		48	400 U	400 U	300.48 V
NW Shoreline NW Shoreline	PA02 PA03	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/15/1997 11/15/1997	PA02-0SS PA03-0SS	N N	420 U 350 U	420 U 350 U	420 U 350 U	420 U 350 U		420 U 350 U	420 U 350 U	420 U 350 U	317.1 UV 264.25 UV
NW Shoreline	PA04	0-2 ft	Surf (0-2ft)	11/15/1997	PA04-0SS	N	340 U	340 U	340 U	340 U		340 U	340 U	340 U	256.7 UV
NW Shoreline	PA04	2-4 ft	SubSurf (>2ft)	11/15/1997	PA04-2SB	N	340 U	340 U	340 U	340 U		340 U	340 U	340 U	256.7 UV
NW Shoreline Prefab	PA04 PF02	4-6 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/15/1997	PA04-4SB PF02-0SS	N N	350 U 420 U	350 U 420 U	350 U 420 U	350 U 420 U		350 U 420 U	350 U 420 U	350 U 420 U	264.25 UV 317.1 UV
Prefab	PF02	2-4 ft	SubSurf (>2ft)	11/18/1997	PF02-2SB	N	450 U	450 U	450 U	450 U		450 U	450 U	450 U	339.75 UV
Prefab	PF03	0-2 ft	Surf (0-2ft)	11/18/1997	PF03-0SS	N	410 U	410 U	410 U	410 U		410 U	410 U	410 U	309.55 UV
Prefab Prefab	PF03 PF03	2-4 ft 4-6 ft	SubSurf (>2ft) SubSurf (>2ft)	11/18/1997 11/18/1997	PF03-2SB PF03-4SB	N N	420 U 410 U	420 U 410 U	420 U 410 U	420 U 410 U		420 U 410 U	420 U 410 U	420 U 410 U	317.1 UV 309.55 UV
Prefab	PF03	6-8 ft	SubSurf (>2ft)	11/18/1997	PF03-6SB	N	440 U	440 U	440 U	440 U		440 U	440 U	440 U	332.2 UV
Prefab Prefab	PF03 PF03	8-10 ft 16-18 ft	SubSurf (>2ft) SubSurf (>2ft)	11/18/1997 11/18/1997	PF03-8SB PF03-16SB	N N	450 U 370 U	450 U 370 U	450 U 370 U	450 U 370 U		450 U 370 U	450 U 370 U	450 U 370 U	339.75 UV 279.35 UV
West Former Mill	BP20	0.25-8 ft	SubSurf (>2ft)	5/13/2003	K2303593-014	N	29 J	46 J	46 J	44 J		41 J	45 J	64 J	69.21 JV
West Former Mill	FOT-EX-1	9.5-9.5 ft	SubSurf (>2ft)	8/1/2006	FOT-EX-1-[080106]-9.5	N	8.2 U	8.2 U	8.2 U	8.2 U		8.2 U	8.2 U	8.2 U	6.191 UV
West Former Mill West Former Mill	FOT-EX-10	11.5-11.5 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006	FOT-EX-10-[080706]-11.5 FOT-EX-19-[080806]-4.0	N N	7.6 U 7.3 U	7.6 U 7.3 U	7.6 U 7.3 U	7.6 U 7.3 U		7.6 U 7.3 U	7.6 U 7.3 U	7.6 U 7.3 U	5.738 UV 5.5115 UV
West Former Mill	FOT-EX-14	9-9 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-14-[080306]-9.0	N	7.3 U	7.3 U	7.3 U	7.3 U		7.3 U	7.3 U	7.3 U	5.5115 UV
West Former Mill	FOT-EX-15	11-11 ft	SubSurf (>2ft)	8/7/2006	FOT-EX-15-[080706]-11.0	N	7.5 U	7.5 U	7.5 U	7.5 U		7.5 U	7.5 U	7.5 U	5.6625 UV
West Former Mill West Former Mill	FOT-EX-16 FOT-EX-17	8-8 ft 3-3 ft	SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0	N N	7.8 U 110	7.8 U 110	7.8 U 180	7.8 U 58		9.1 150	7.8 U 22	7.8 U 83	5.941 V 156.8 V
West Former Mill	FOT-EX-18	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-18-[080806]-7.0	N	6.9 U	6.9 U	6.9 U	6.9 U		6.9 U	6.9 U	6.9 U	5.2095 UV
West Former Mill West Former Mill	FOT-EX-19	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006 8/2/2006	FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0	N N	8 U 7.2 U	8 U 7.2 U	8 U 7.2 U	8 U 7.2 U		8 U 7.2 U	8 U 7.2 U	8 U 7.2 U	6.04 UV 5.436 UV
West Former Mill	FOT-EX-20	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-20-[080806]-7.0	N	7.5 U	7.5 U	7.5 U	7.5 U		7.5 U	7.5 U	7.2 U	5.436 UV 5.6625 UV
West Former Mill	FOT-EX-21	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-21-[080806]-7.0	N	7.1 U	7.1 U	7.1 U	7.1 U		7.1 U	7.1 U	7.1 U	5.3605 UV
West Former Mill West Former Mill	FOT-EX-22 FOT-EX-22	5-5 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006 8/8/2006	FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0	N N	7.9	17	15	7.2 U		14	7.2 U	13	21.45 V
West Former Mill	FOT-EX-23	5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-23-[080806]-5.0	N	7.1 U	7.1 U	7.1 U	7.1 U		7.1 U	7.1 U	7.1 U	5.3605 UV
West Former Mill	FOT-EX-25	5-5 ft	SubSurf (>2ft)	8/8/2006 8/9/2006	FOT-EX-24-[080806]-5.0	N	7.411	7.411	30 7.4 U	7.8		40 7.4 U	6.9 U	7.411	23.825 V
West Former Mill West Former Mill	FOT-EX-25 FOT-EX-26	5-5 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft)	8/9/2006	WM-EX-25-[080906]-5.0 WM-EX-26-[080906]-5.0	N N	7.4 U 14	7.4 U 27	7.4 U 21	7.4 U 7.1 U		7.4 U	7.4 U 8.9	7.4 U 22	5.587 UV 34.295 V
West Former Mill	FOT-EX-27	8-8 ft	SubSurf (>2ft)	8/9/2006	WM-EX-27-[080906]-8.0	N	7.8 U	7.8 U	7.8 U	7.8 U		9.6	7.8 U	7.8 U	5.946 V
West Former Mill West Former Mill	FOT-EX-3	11-11 ft 8-8 ft	SubSurf (>2ft) SubSurf (>2ft)	8/2/2006 8/2/2006	FOT-EX-3-[080206]-11.0 FOT-EX-4-[080206]-8.0	N N	160 7.8 U	100 7.8 U	68 7.8 U	11 7.8 U		310 7.8 U	18 7.8 U	19 7.8 U	130.7 V 5.889 UV
West Former Mill	FOT-EX-5	15-15 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-4-[080206]-8.0	N	8.3 U	8.3 U	8.3 U	8.3 U		8.3 U	8.3 U	8.3 U	6.2665 UV
West Former Mill	HF01	0-2 ft	Surf (0-2ft)	11/13/1997	HF01-0SS	N	410 U	410 U	410 U	410 U		410 U	410 U	410 U	309.55 UV
West Former Mill West Former Mill	HF01 HF02	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/13/1997 11/13/1997	HF01-2SB HF02-0SS	N N	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U		450 U 390 U	450 U 390 U	450 U 390 U	339.75 UV 294.45 UV
West Former Mill	HF02	2-4 ft	SubSurf (>2ft)	11/13/1997	HF02-2SB	N	370 U	370 U	370 U	370 U		370 U	370 U	370 U	279.35 UV
West Former Mill West Former Mill	HF03 HF03	0-2 ft 2-4 ft	Surf (0-2ft)	11/14/1997 11/14/1997	HF03-0SS HF03-2SB	N	370 U 410 U	370 U 410 U	370 U 410 U	370 U 410 U		370 U 410 U	370 U 410 U	370 U 410 U	279.35 UV
West Former Mill	HF04	2-4 π 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/14/1997	HF04-0SS	N	410 U	410 U	410 U	410 U		410 U	410 U	410 U	309.55 UV 300.58 V
West Former Mill	HF04	2-4 ft	SubSurf (>2ft)	11/14/1997	HF04-2SB	N	420 U	420 U	420 U	420 U		420 U	420 U	420 U	317.1 UV
West Former Mill West Former Mill	HF05 HF05	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/14/1997 11/14/1997	HF05-0SS HF05-2SB	N N	400 U 410 U	400 U 410 U	400 U 410 U	400 U 410 U		400 U 410 U	400 U 410 U	400 U 410 U	302 UV 309.55 UV
West Former Mill	HF06	0-2 ft	Surf (0-2ft)	11/14/1997	HF06-0SS	N	410 U	410 U	410 U	410 U		410 U	410 U	410 U	309.55 UV
West Former Mill	HF06	2-4 ft	SubSurf (>2ft)	11/14/1997	HF06-2SB	N	390 U	390 U	390 U	390 U		390 U	390 U	390 U	294.45 UV
West Former Mill	HF07 HF07	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/20/1997 11/20/1997	HF07-0SS HF07-2SB	N N	76 360 U	370 U 360 U	370 U 360 U	370 U 360 U		110 360 U	370 U 360 U	370 U 360 U	267.7 V 271.8 UV
West Former Mill															
West Former Mill West Former Mill West Former Mill	HF08	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/20/1997 11/20/1997	HF08-0SS HF08-2SB	N N	370 U 370 U	370 U 370 U	370 U	370 U		370 U	370 U	370 U 370 U	279.35 UV 279.35 UV

											÷				
											al (b+k+j)				
							Q		ane	ane	s, Total		ene	rene	
							Benzo(a)anthracene	aue	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzofluoranthenes,		Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	
							(a)anth	Benzo(a)pyrene	onµ(q)	(k)fluo	fluorai	ane	:(a,h)a	(1,2,3-	TEC*
					Para	meter	genzo (Senzo	Senzo	genzo (Senzo	Chrysene	ibenz	ndeno	сРАН ТЕС
					MTCA Ecologica	Units	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 12000
					A Method B Protective of HH ethod B Protective of GW as	(SFV)	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	140 350
Funct. Area West Former Mill	Loc ID HF09	Depth 0-2 ft	Depth Zone Surf (0-2ft)	Date 11/19/1997	Sample ID HF09-0SS	Type	380 U	380 U	380 U	380 U		380 U	380 U	380 U	286.9 UV
West Former Mill West Former Mill	HF09 MW-60	2-4 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/19/1997	HF09-2SB MW-60-2-3.5	N N	370 U	370 U	370 U	370 U	 210	370 U	370 U	370 U	279.35 UV
West Former Mill	MW-60	10-11.5 ft	SubSurf (>2ft)	10/19/2010	MW-60-10-11.5	N	99 3400 J	2300 J			1900 J	150 6800 J	330 UJ	59 330 UJ	149 V 2931 JV
West Former Mill West Former Mill	MW-60 MW-60	15-16.5 ft 20-20.75 ft	SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 10/19/2010	MW-60-15-16.5 MW-60-20-20.75	N N	94 13	78 14			52 10 U	190 18	4.6 U 4.7 U	16 4.7 U	96.33 V 16.95 V
West Former Mill West Former Mill	MW-60 MW-68	23-24.4 ft 5.5-6 ft	SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 5/4/2011	MW-60-23-24.4 MW68-5.5-6	N N	4.9 U 26	4.9 U 27			4.9 U 23	4.9 U 40	4.9 U 7.1	4.9 U 10	3.4545 UV 34.01 V
West Former Mill West Former Mill	MW-68 MW-68	13-14 ft 55-55 ft	SubSurf (>2ft) SubSurf (>2ft)	5/4/2011 5/18/2011	MW68-13-14 MW-68-55	N	4.7 U 4.9 U	4.7 U 4.9 U			4.7 U 4.9 U	4.7 U 4.9 U	4.7 U 4.9 U	4.7 U 4.9 U	3.3135 UV 3.4545 UV
West Former Mill West Former Mill	PS20 RB01	0.25-6.5 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5/15/2003	K2303678-010 RB01SS	N N	330 U 3500	330 U 2400	330 U 2200	330 U 3800		330 U 4700	330 U 700 U	330 U 700 U	249.15 UV 3467 V
West Former Mill	RB01	0.25-7 ft	SubSurf (>2ft)	5/13/2003	K2303593-015	N	320 J	190 J	190 J	120 J		450	110 J	170 J	285.5 JV
West Former Mill West Former Mill	RB02 RB03	0-0.25 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/10/1997	RB02SS RB03-0SS	N N	230 350 U	190 350 U	230 350 U	240 350 U		410 350 U	790 U 350 U	120 350 U	315.6 V 264.25 UV
West Former Mill West Former Mill	RB03 RB04	8-10 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/21/1997 11/21/1997	RB03-8SB RB04-0SS	N N	430 U 57	430 U 370 U	430 U 55	430 U 22	-	430 U 93	430 U 370 U	430 U 370 U	324.65 UV 236.33 V
West Former Mill West Former Mill	RB04 RB04	4-6 ft 8-10 ft	SubSurf (>2ft) SubSurf (>2ft)	11/21/1997 11/21/1997	RB04-4SB RB04-8SB	z z	350 U 380 U	350 U 380 U	350 U 380 U	350 U 380 U		350 U 380 U	350 U 380 U	350 U 380 U	264.25 UV 286.9 UV
West Former Mill West Former Mill	RB20 RB21	0.25-8 ft 0.25-8 ft	SubSurf (>2ft) SubSurf (>2ft)	5/13/2003 5/13/2003	K2303593-017 K2303593-019	N N	120 J 460	160 J 280	110 J 300	140 J 170		160 J 600	42 J 660 U	150 J 120	217.8 JV 424 V
West Former Mill	SSB-2	2-3.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-2-3.5	N	85	120			170	110	24	53	154.3 V
West Former Mill West Former Mill	SSB-2 SSB-2	5-6.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/21/2010 10/21/2010	DUPE1-102110 SSB-2-5-6.5	FD N	140 J 23 J	200 J 27 J			270 J 38 J	170 J 25 J	34 J 4.9 UJ	84 J 14 J	254.5 JV 34.995 JV
West Former Mill West Former Mill	SSB-2 SSB-2	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/21/2010 10/21/2010	SSB-2-10-11.5 SSB-2-15-16.5	N N	4.7 U 4.8 U	4.7 U 4.8 U			4.7 U 6.2	4.7 U 6.2	4.7 U 4.8 U	4.7 U 4.8 U	3.3135 UV 3.802 V
West Former Mill West Former Mill	SSB-2 SSB-7	20-20.5 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/21/2010 10/26/2010	SSB-2-20-20.5 SSB-7-2-3.5	z z	5 U 160	5 U 150			5 U 230	5 U 190	5 U 17	5 U 49	3.525 UV 197.5 V
West Former Mill West Former Mill	SSB-7 SSB-7	10-11.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/26/2010 10/26/2010	SSB-7-10-11.5 SSB-7-20-21.5	N N	19 4.6 U	19 4.6 U			29 4.6 U	23 4.6 U	4.6 U 4.6 U	7.9 4.6 U	25.05 V 3.243 UV
West Former Mill West Former Mill	SSB-7 SSB-7	25-26.5 ft 30-30.75 ft	SubSurf (>2ft) SubSurf (>2ft)	10/26/2010	SSB-7-25-26.5 SSB-7-30-30.75	N N	4.7 U 4.6 U	4.7 U 4.6 U			4.7 U 4.6 U	4.7 U 4.6 U	4.7 U 4.6 U	4.7 U 4.6 U	3.3135 UV 3.243 UV
West Former Mill	TP-01	2-2 ft	Surf (0-2ft)	1/4/2011	TP-01-2'	N	18	19			47	36	4.6 U	18	27.89 V
West Former Mill West Former Mill	TP-01 TP-02	8-8 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/4/2011 1/4/2011	TP-01-8' TP-02-2'	N N	24 U 24 U	40 24 U			24 U 38 NJ	24 U 24 U	24 U 24 U	24 U 24 U	44.92 V 19.52 JV
West Former Mill West Former Mill	TP-02 TP-02	8-8 ft 8-8 ft	SubSurf (>2ft) SubSurf (>2ft)	1/4/2011 1/4/2011	TP-02-8' TP-DUPE-1	N FD	18 U 18 U	25 J 96 NJ			18 UJ 220 NJ	18 UJ 53 NJ	18 U 18 U	18 U	28.69 JV 121.23 JV
West Former Mill West Former Mill	TP-03 TP-03	2-2 ft 4-4 ft	Surf (0-2ft) SubSurf (>2ft)	1/4/2011 1/4/2011	TP-03-2' TP-03-4'	Z Z	19 210	18 150			24 250	23 210	4.8 U 9.4	6.2 23	23.39 V 201.34 V
West Former Mill West Former Mill	TP-03 TP-04	7-7 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/4/2011 1/5/2011	TP-03-7' TP-04-2'	N N	75 NJ 4.7	75 NJ 4.7			160 NJ 11	98 NJ 8	6.6 4.7 U	18 4.7 U	101.94 JV 6.82 V
West Former Mill West Former Mill	TP-04 TP-05	7-7 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/5/2011	TP-04-7' TP-05-2'	N N	4.9 U 4.9 U	4.9 U 4.9 U			4.9 U 4.9 U	4.9 U 4.9 U	4.9 U 4.9 U	4.9 U	3.4545 UV 3.4545 UV
West Former Mill	TP-05	6-6 ft	SubSurf (>2ft)	1/5/2011	TP-05-6'	N	4.7	8			21	9.9	4.7 U	11	12.004 V
West Former Mill West Former Mill	TP-06 TP-06	3-3 ft 7-7 ft	SubSurf (>2ft) SubSurf (>2ft)	1/5/2011 1/5/2011	TP-06-3' TP-06-7'	N N	4.8 U 4.6 U	4.8 U 4.6 U			4.8 U 4.6 U	4.8 U 4.6 U	4.8 U 4.6 U	4.8 U 4.6 U	3.384 UV 3.243 UV
West Former Mill West Former Mill	TP-07 TP-07	2-2 ft 2-2 ft	Surf (0-2ft) Surf (0-2ft)	1/5/2011 1/5/2011	TP-07-2' TP-DUPE-2	N FD	9.4 12	18 J 31 J			25 30	20 30	5 U 4.9 U	7.9 7.4	22.68 JV 36.485 JV
West Former Mill West Former Mill	TP-07 TP-08	6-6 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/5/2011 1/5/2011	TP-07-6' TP-08-2'	N N	4.9 U 36	4.9 U 44			5.4 77	4.9 U 61	4.9 U 4.7 U	4.9 U 20	3.7495 V 58.145 V
West Former Mill West Former Mill	TP-08 TP-11	5-5 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/5/2011 1/7/2011	TP-08-5' TP-11-2'	N N	4.9 U 82	4.9 U 120			4.9 U 200	4.9 U 190	4.9 U 15	4.9 U 48	3.4545 UV 156.4 V
West Former Mill West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-11-5' TP-DUPE-3	N FD	46 J 40	77 J 67			140 J 120	82 J	10 U	34 J 27	100.32 JV
West Former Mill	TP-11 TP-12	5-5 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/7/2011	TP-12-2'	N	810	660			1200	71 820	9.2 U 48	160	86.87 V 890 V
West Former Mill West Former Mill	TP-12 TP-15	4-4 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/4/2011 1/6/2011	TP-12-4' TP-15-2'	N N	790 36	780 39			1500 76	800 59	57 12 U	190 15	1041.7 V 52.89 V
West Former Mill West Former Mill	TP-15 TP-16	4-4 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	1/6/2011 1/6/2011	TP-15-4' TP-16-2'	N N	110 4.6 U	120 4.6 U			160 4.6 U	110 4.6 U	16 4.6 U	62 4.6 U	155.9 V 3.243 UV
West Former Mill West Former Mill	TP-16 WM21	5-5 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	1/6/2011 5/13/2003	TP-16-5' K2303600-003	N N	4.6 U 330 U	4.6 U 330 U	 330 U	 330 U	4.6 U	4.6 U 330 U	4.6 U 330 U	4.6 U 330 U	3.243 UV 249.15 UV
West Former Mill West Former Mill	WM21 WM-EX-1	0.25-9.5 ft 8-8 ft	SubSurf (>2ft) SubSurf (>2ft)	5/13/2003 8/3/2006	K2303600-004 WM-EX-1-[080306]-8.0	N N	320 U 7.3 U	320 U 7.3 U	320 U 7.3 U	320 U 7.3 U		19 J 7.3 U	320 U 7.3 U	320 U 7.3 U	240.19 JV
West Former Mill	WM-EX-10	16-16 ft	SubSurf (>2ft)	8/8/2006	WM-DUP-1-080806	FD	53	47	73	22		45	7.7 U	25	5.5115 UV 65.135 V
West Former Mill West Former Mill	WM-EX-10 WM-EX-11	16-16 ft 17-17 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006 8/8/2006	WM-EX-10-[080806]-16.0 WM-EX-11-[080806]-17.0	N N	480 8.9 U	330 8.9 U	500 8.9 U	180 8.9 U		390 8.9 U	54 8.9 U	160 8.9 U	471.3 V 6.7195 UV
West Former Mill West Former Mill	WM-EX-12 WM-EX-13	8-8 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006 8/8/2006	WM-EX-12-[080806]-8.0 WM-EX-13-[080806]-9.0	N	39 87	26 69	34 82	8.7 24		45 98	7.3 U 10	12 29	36.185 V 93.18 V
West Former Mill West Former Mill	WM-EX-14 WM-EX-15	14-14 ft 14-14 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006 8/8/2006	WM-EX-14-[080806]-14.0 WM-EX-15-[080806]-14.0	N N	7.5 U 170	7.5 U 140	7.5 U 80	7.5 U 15		7.5 U 260	7.5 U 34	7.5 U 34	5.6625 UV 175.9 V
West Former Mill West Former Mill	WM-EX-16 WM-EX-17	14-14 ft 14-14 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006 8/8/2006	WM-EX-16-[080806]-14.0 WM-EX-17-[080806]-14.0	N N	500 7.4 U	390 7.4 U	220 7.4 U	34 7.4 U		840 7.4 U	84 7.4 U	80 7.4 U	490.2 V 5.587 UV
West Former Mill	WM-EX-17	9-9 ft	SubSurf (>2ft)	8/9/2006	WM-EX-18-[080906]-9.0	N	180	130	120	25		230	26	49	172.3 V

				MTC.	Para MTCA Ecologic A Method B Protective of HH		NL	Z Z 등 Benzo(a)pyrene ക	지 교육 Benzo(b)fluoranthene	금 Z 등 로 공설 Benzo(k)fluoranthene 은	금 공 을 Benzofluoranthenes, Total (b+k+j)	NZ (B)/Sene	지 을 하는 Dibenz(a,h)anthracene 연연	NZ Z B S Indeno(1,2,3-cd)pyrene ⊕	(ug/Kg) (ug/Kg) 12000 140
					ethod B Protective of GW as	MSW	NL	NL	NL	NL	NL	NL	NL	NL	350
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Type									
West Former Mill	WM-EX-2	11-11 ft	SubSurf (>2ft)	8/3/2006	WM-EX-2-[080306]-11.0	N	31	27	39	9.2		36	7.5 U	19	37.555 V
West Former Mill	WM-EX-3	10-10 ft	SubSurf (>2ft)	8/3/2006	WM-EX-3-[080306]-10.0	N	9.2	9	17	7.5 U		11	7.5 U	7.5 U	12.855 V
West Former Mill	WM-EX-4	13-13 ft	SubSurf (>2ft)	8/4/2006	WM-EX-4-[080406]-13.0	N	7.7 U	7.7 U	7.7 U	7.7 U		7.7 U	7.7 U	7.7 U	5.8135 UV
West Former Mill	WM-EX-5	16-16 ft	SubSurf (>2ft)	8/4/2006	WM-EX-5-[080406]-16.0	N	13	7.7 U	8.3	7.7 U		8.7	7.7 U	7.7 U	7.222 V
West Former Mill	WM-EX-6	9-9 ft	SubSurf (>2ft)	8/7/2006	WM-EX-6-[080706]-9.0	N	13	7.3 U	7.3 U	7.3 U		10	7.3 U	7.3 U	6.51 V
West Former Mill	WM-EX-7	8.5-8.5 ft	SubSurf (>2ft)	8/7/2006	WM-EX-7-[080706]-8.5	N	64	31	55	18		80	7.3 U	17	47.565 V
West Former Mill	WM-EX-8	15-15 ft	SubSurf (>2ft)	8/7/2006	WM-EX-8-[080706]-15.0	N	7.3 U	7.3 U	7.3 U	7.3 U		7.3 U	7.3 U	7.3 U	5.5115 UV
West Former Mill	WM-EX-9	10-10 ft	SubSurf (>2ft)	8/7/2006	WM-EX-9-[080706]-10.0	N	7.8 U	7.8 U	7.8 U	7.8 U		7.8 U	7.8 U	7.8 U	5.889 UV

Dioxins/Furans in Soil Port Angeles Rayonier Mill Uplands Study Area

							٥	ų.	ų.															TEC*
							,4,6,7,8-HpCDD	нрсы	НрСБЕ	хСDD	,8-HxCDF	,8-HxCDD	,2,3,6,7,8-HxCDF	9-HxCDD	,9-HxCDF	PeCDD	PeCDF	,3,4,6,7,8-HxCDF	PeCDF					ans TE
							-8,7,	7,8	-6,8,	,4,7,8-HxC	Ŧ	H-8	H-8	H-6	표 도	-Pe	-Pe	# # E	-Pe(СОО	GPF			Dioxins/Furans
							4,6	4,6,	4,7	4,7,	4,7	6,7	6,7	7,8	,2,3,7,8,	,2,3,7,8-	-8,7,	6,7	-8,7,	T-8,	T-8,	۵	ш	ns/
							2,3	2,3	2,3	,2,3,	,2,3,	,2,3,	2,3	,2,3,	2,3	2,3	,2,3,	3,4	3,4	3,7	3,7	осрі	ОСБЕ	ioxi
					Para	ameter Units	← (ng/kg)	_	₹.	_	_	-	(ng/kg)	-	_	← (ng/kg)	-	7	7	8	7			(ng/kg)
					MTCA Ecologic		NL	(ng/kg) NI	(ng/kg) NL	(ng/kg) NL	(ng/kg) NL	(ng/kg) NL	(Hg/kg)	(ng/kg) NI	(ng/kg) NL	(Hg/kg) NL	(ng/kg) NL	(ng/kg) NL	(ng/kg) NL	(ng/kg) NL	(ng/kg) NL	(ng/kg) NI	(ng/kg) NL	(lig/kg) 5.2
				MTCA Method	d B Protective of HH		NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	11
					Protective of GW as	MSW	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	5.2
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Type																		
City Purchase	SSB-10	2-3.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5	N	211	35.7	2.7	2.7	7.04	26.5	7.17	9.64	1.53	4.9	6.04	7.54	8.22	1.68	6.65 J	2060	54.6	<u>19.2 J</u>
City Purchase	SSB-10	5-6.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-5-6.5	N	121	18.4	1.7	2.17	3.26	12.8	4.23	5.27	0.922 J	2.97	3.26	4.28	3.77	1.31	4.63 J	1140	27.8	<u>11 J</u>
City Purchase	SSB-10	10-11.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-10-11.5	N N	2.68	0.367 J	0.141 U	0.182 U	0.112 U	0.514 J	0.107 U	1.25	0.0976 U	1.09	0.096 U	0.115 U	0.103 U	0.933	0.0735 U	7.54	0.435 U	2.28 J
City Purchase City Purchase	SSB-10 SSB-10	15-16.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/28/2010 10/28/2010	SSB-10-15-16.5 SSB-10-20-21.5	N	0.276 U 0.625 J	0.133 U 0.116 U	0.151 U 0.131 U	0.151 U 0.172 U	0.132 U 0.124 U	0.192 U 0.222 U	0.134 U 0.123 U	0.169 U 0.194 U	0.126 U 0.118 U	0.155 U 0.155 U	0.118 U 0.0994 U	0.145 U 0.14 U	0.122 U 0.106 U	0.0831 U 0.133 U	0.0973 U 0.0905 U	0.629 U 1.84 J	0.397 U 0.381 U	0.199 U 0.229 J
Oity Fulcilase	330-10	20"Z1.0 Il	Jubbuil (>ZII)	10/20/2010	GGD-10-20-21.5	IN	J.U2J J	0.1100	0.1310	0.172 0	0.1240	U.ZZZ U	0.123 0	U.134 U	0.1100	0.100 0	0.0354 U	0.14 0	0.1000	0.133 0	0.0803 0	1.04 J	0.301 0	U.223 J
CSO	GB03	0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	N	85 J	2.3 U	0.71 U	7.7	2.4 J	17	1.6 U	18	0.44 U	5.2	1.9 U	1.6 U	2.9 J	0.92 J	1.6 U	120	3.1 U	12.692 JV
	-200	"	22 (0 2)	1007		† ¨																1.20	.	
East Former Mill	SL22	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-009	N	3.385 J	0.524 J	0.311 U	0.159 U	0.128 U	0.172 U	0.124 U	0.157 U	0.181 U	0.125 U	0.145 U	0.113 U	0.175 J	0.102 U	0.261 U	27.351	1.542 J	0.282 JV
East Former Mill	SL22	0.25-7.5 ft	SubSurf (>2ft)	5/14/2003	E2300323-010	N	5.765	0.903 J	0.13 U	0.223 J	0.171 J	0.686 J	0.063 U	0.595 J	0.06 U	0.333 J	0.059 U	0.054 U	0.054 U	0.091 U	0.245 U	32.678 J	1.987 J	0.654 JV
East Shoreline	SL20	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-007	N	555.554	51.35		11.113	9.175 J	41.561	4.129 J	39.689	0.661 U	10.841	4.541 J	5.168 J	5.548	1.659	5.108 J	3166.79	54.585	32.987 JV
East Shoreline	SL20	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-011	N			2.42 J															
East Shoreline	SL21	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-008	N	1541.44	194.593	18.419	26.45	15.304 J	72.366	14.983	62.736	0.417 U	22.415	6.234 J	14.839 J	6.084	6.256	3.315 J	12700.8 J	546.308	73.222 JV
			0 ((0.00)	=//=/0000	=======================================																			
Ennis Creek	ECO23	0-0.49 ft	Surf (0-2ft)	5/15/2003	E2300324-001	N	23.796	3.43 J	0.613 U	1.702 J	0.971 J	4.125 J	0.562 J	4.007 J	0.195 U	1.925 J	0.928 J	0.566 J	1.084 J	0.486 J	2.288 J	96.46	5.821 J	4.502 JV
Ennis Creek	ECO25	0-0.49 ft 0-0.33 ft	Surf (0-2ft)	5/16/2003	E2300324-002	N N	9.266	1.497 J 10.1	0.531 U	0.273 U	0.458 J 2.045 J	1.04 J 4.092 J	0.174 U 0.876 J	0.771 J	0.232 U	0.377 J	0.238 U 1.059 J	0.198 U	0.243 U	0.225 U 0.42 J	0.548 J	57.282	4.569 J 28.129	0.984 JV 4.327 JV
Ennis Creek Ennis Creek	ECO26 ECO27	0-0.33 ft	Surf (0-2ft) Surf (0-2ft)	5/7/2003 5/6/2003	E2300284-004 E2300284-005	N	53.778 90.856	11.386	0.565 J 0.756 U	1.316 J 4.035 J	3.702 J	4.092 J 10.525	2.39 J	3.811 J 9.879	0.191 J 0.162 U	1.233 J 4.866 J	4.164 J	1.031 J 2.518 J	1.358 J 5.223	2.131	1.312 J 6.265 J	382.569 J 237.389 J	15.814	4.327 JV 13.73 JV
Ennis Creek	ECO28	0-0.49 ft	Surf (0-2ft)	5/6/2003	E2300284-005	N	65.931	11.498	0.623 U	3.363 J	3.115 J	9.046	1.826 J	9.498	0.102 U	4.223 J	3.215 J	1.989 J	3.879 J	1.577	5.364 J	325.935 J	22.734	11.367 JV
Ennis Creek	ECO29	0-0.49 ft	Surf (0-2ft)	5/6/2003	E2300284-007	N	23.322	4.643 J	0.553 U	1.306 J	1.109 J	3.297 J	0.685 J	3.233 J	0.136 U	1.493 J	1.264 J	0.837 J	1.602 J	0.62 J	2.041 J	87.845 J	7.604 J	4.2 JV
Ennis Creek	MW-64	2-3.5 ft	SubSurf (>2ft)	10/18/2010	MW-64-2-3.5	N	0.387 U	0.195 U	0.229 U	0.198 U	0.172 U	0.253 U	0.17 U	0.222 U	0.16 U	0.154 U	0.187 U	0.173 U	0.192 U	0.132 U	0.13 U	0.884 U	0.44 U	0.253 U
Ennis Creek	MW-64	10-11.5 ft	SubSurf (>2ft)	10/18/2010	MW-64-10-11.5	N	0.274 U	0.199 U	0.243 U	0.218 U	0.182 U	0.285 U	0.182 U	0.248 U	0.188 U	0.21 U	0.142 U	0.197 U	0.154 U	0.104 U	0.0995 U	0.456 U	0.444 U	0.266 U
Estuary	ECO33	0-0.49 ft	Surf (0-2ft)	5/15/2003	E2300324-005	N	1318.16	186.961	9.991	34.238	31.489 J	132.246	15.854	83.939	1.953 J	41.079	28.149 J	17.464 J	30.116 J	11.182	76.367 J	6991.46	513.979	118.898 JV
Estuary	RS20	0-0.25 ft	Surf (0-2ft)	5/15/2003	E2300322-009	N	2.495 J	1.94 J	0.684 U	0.327 J	0.53 J	0.326 J	0.243 U	0.33 U	0.39 U	0.421 U	0.243 U	0.298 U	0.274 U	0.267 U	0.831 U	10.454 J	3.497 J	0.664 JV
Estuary	RS20	0.25-2 ft	Surf (0-2ft)	5/15/2003	E2300322-010	N	22.29	5.585	0.423 U	1.026 J	0.978 J	2.466 J	0.531 J	2.204 J	0.211 U	0.756 J	0.913 J	0.529 J	1.202 J	0.346 J	2.038 J	114.258	16.859	2.798 JV
A4.1. F	A Doc	0.005.5	0 ((0.00)	44/40/400=	4.0000	L	FF00 :	400	4-		400	500 /				000			100 /		70	07000	4000	500 00 Pr
Main Former Mill Main Former Mill	AP02 AP03	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP02SS AP03SS	N N	5500 J	490 1300	47 120	290	120 75	530 J 460	78	550 J	7.9	230 84	88 36	44 33	120 J 43	26 13	76 32	27000 81000	1300 8000	533.09 JV
Main Former Mill	AP03 AP03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997 5/16/2003	E2300325-001	N	12000 2791.95 J	1300 320.53	22.667	150 10.431	75 37.144	86.039	71 10.923	300 29.583	4 J 0.475 U	7.2	7.863 J	16.278	12.647	13 1.116 J	6.231 J	81000 27276.7 J	1307.69	384.38 JV 71.959 JV
Main Former Mill	AP03 AP03	0.25-6 ft	Surf (0-2ft) SubSurf (>2ft)	5/16/2003	E2300325-001	N	307.522	49.317	22.667 2.787 J	2.672 J	4.788 J	12.238	2.181 J	6.483	0.475 U	2.112 J	2.585 J	3.035 J	4.374 J	0.258 U	4.093 J	3544.08	285.443	11.956 JV
Main Former Mill	BL03	0.25-6 ft	Surf (0-2ft)	11/14/1997	BL03SS	N	370 J	46	5.2	10	34	36	5.9	33	0.314 3 0.29 U	6.8 J	12	5.5	21	1.9	64	1700	59	38.954 JV
Main Former Mill	BL20	0-0.25 ft	Surf (0-2ft)	5/15/2003	E2300322-001	N	1076.38	186.71	16.869	7.921	35.001 J	84.608	8.5 J	31.886	1.201 U	7.26	10.515 J	12.273 J	17.938 J	1.561	31.556 J	7789.18 J	450.467	51.024 JV
Main Former Mill	BL20	0.25-3.5 ft	Surf (0-2ft)	5/15/2003	E2300322-002	N	147.219	133.929	25.732	1.165 J	53.625	10.603	9.192	6.942	0.384 U	1.475 J	4.073 J	9.455	9.507	0.356 J	8.532 J	1031.49 J	222.728 J	18.221 JV
Main Former Mill	BP04	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP04SS	N	14000	2200	110	240	160	1100	110	510	7.7	130	75 U	86	78	15	57	67000	3700	580.905 V
Main Former Mill	DB21	0-0.25 ft	Surf (0-2ft)	5/19/2003	E2300325-009RE	N	5197.73	617.534	36.515 J	44.396	42.135	212.263	13.541 J	71.098	3.831 U	19.457 J	6.082 J	27.104 J	11.905 J	2.175 U	6.281 J	50916.9 J	2739.94	140.787 JV
Main Former Mill	DB21	0.25-11 ft	SubSurf (>2ft)	5/19/2003	E2300325-010	N	566.016	134.879	7.042	15.688	18.654	44.078	8.745	31.176	0.277 J	12.303	9.76 J	9.605	15.12 J	2.503	11.857 J	3646.45	206.007	41.878 JV
Main Former Mill	ECO34	0-0.49 ft	Surf (0-2ft)	5/7/2003	E2300284-009	N	1220.96	147.87	7.069	5.423 J	9.081	47.245	3.835 J	17.963	0.495 U	3.539 J	3.272 J	6.767	4.059 J	0.646 J	2.263 J	11270.9 J	596.315	32.102 JV
Main Former Mill	FR02	0-0.25 ft	Surf (0-2ft)	11/12/1997	FR02SS	N	120000	13000	1500	1400	570	3500	330	2800	14	580	140 U	180	190	74	140	250000 J	68000	3046.9 JV
Main Former Mill	FR02	0-0.25 ft	Surf (0-2ft)	5/16/2003	E2300325-003	N	5788.93 J	892.049	83.96	56.13	46.485 J	159.576	23.317	128.654	0.685 J	19.07	9.704 J	41.149 J	13.08 J	2.602	13.078 J	32274.5 J	4042.67 J	151.339 JV
Main Former Mill	FR02	0.25-5.5 ft	SubSurf (>2ft)	5/16/2003	E2300325-004RE	N	2570.16	343.597	35.106 J	22.434 J	14.841 J	63.391	5.479 J	43.074	1.537 U	7.461 J	2.399 J	12.898 J	3.878 J	1.391 J	12.406 J	23369.6 J	1960.08	64.704 JV
Main Former Mill	FR20	0-0.25 ft	Surf (0-2ft)	5/19/2003	E2300325-005	N	3183.46 J	271.819	23.301	11.59	16.94	79.151	6.287	29.624	0.433 J	5.801	3.385 J	11.417	4.311 J	0.702 J	8.141 J	42059.6 J	1672.79	72.162 JV
Main Former Mill	FR20	0.25-4.5 ft	SubSurf (>2ft)	5/19/2003	E2300325-006	N	474.029	43.536	3.983 J	7.239	5.934 J	28.601	2.572	17.802	0.205 U	6.314	3.599 J	3.399 J	5.064 J	1.412	7.507 J	5766.62	238.901	23.686 JV

Dioxins/Furans in Soil Port Angeles Rayonier Mill Uplands Study Area

					Para MTCA Ecologic I B Protective of HH Protective of GW as	(SFV)	Z Z Z (b) (1,2,3,4,6,7,8-HpCDD	드 Z Z 을 1,2,3,4,6,7,8-HpCDF	Z Z Z S 1,2,3,4,7,8,9-HpCDF	F Z Z S (3,4,7,8-HxCDD (6)	F Z Z S 1,2,3,4,7,8-HxCDF	Z Z Z U) PZ Z Z Z U) PZ Z Z Z (B) T,2,3,6,7,8-HxCDD	7 7 7 8 8 1,2,3,6,7,8-HxCDF	Z Z Z S 0 1,2,3,7,8,9-HxCDD	F F F € 1,2,3,7,8,9-HxCDF	Z Z Z ^Э 1,2,3,7,8-РеСDD © (б) (б) (б) (б) (б) (б) (б) (б) (б) (б)	지 점 을 1,2,3,7,8-PeCDF	두 돈 돈 을 2,3,4,6,7,8-HxCDF	Z Z Z Э Д Z,3,4,7,8-РеСDF ©	T X (ba) (ba) (ba) (ba) (ba) (ba) (ba) (ba)	72 Z Z (2,3,7,8-TCDF	OCDO (ng/kg)	Og/kg) NL NL NL	(by Dioxins/Furans TEC*
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре																		
Main Former Mill	GWG-1	2-3.5 ft	SubSurf (>2ft)	11/3/2010	GWG-1-2-3.5	N	0.876 J	0.251 U	0.323 U	0.238 U	0.195 U	0.307 U	0.189 U	0.269 U	0.209 U	0.159 U	0.144 U	0.219 U	0.159 U	0.144 U	0.116 U	5.09	0.548 U	0.278 J
Main Former Mill	GWG-1	5-6.5 ft	SubSurf (>2ft)	11/3/2010	GWG-1-5-6.5	N	2.46	0.546 J	0.147 U	0.21 U	0.153 U	0.27 U	0.149 U	0.237 U	0.147 U	0.169 U	0.154 U	0.158 U	0.152 U	0.147 U	0.308	18.2	1.23 J	0.317 J
Main Former Mill	GWG-1	7.5-9 ft	SubSurf (>2ft)	11/3/2010	GWG-1-7.5-9	N	3.59	0.757 J	0.16 U	0.206 U	0.108 U	0.256 U	0.103 U	0.228 U	0.106 U	0.303 U	0.135 U	0.117 U	0.139 U	0.144 U	0.126 U	30.4	1.68 J	0.363 J
Main Former Mill	GWG-1	10-11.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-10-11.5	N	11.1	1.79	0.199 U	0.228 U	0.239 U	1.38	0.224 U	0.256 U	0.243 U	0.182 U	0.173 U	0.243 U	0.181 U	0.0961 U	0.143 U	69.6	5.46	0.538
Main Former Mill	GWG-1	15-16.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-15-16.5	N	1.7	0.365 J	0.149 U	0.177 U	0.159 U	0.22 U	0.153 U	0.197 U	0.159 U	0.152 U	0.113 U	0.17 U	0.114 U	0.128 U	0.0814 U	14.5	1.01 J	0.251 J
Main Former Mill	GWG-1	20-21.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-20-21.5	N	0.399 U	0.144 U	0.18 U	0.171 U	0.126 U	0.209 U	0.121 U	0.188 U	0.122 U	0.124 U	0.11 U	0.134 U	0.109 U	0.118 U	0.0859 U	3.09	0.396 U	0.201
Main Former Mill	MR06	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR06SS	N	1900	210	20	18	24	61	12	34	0.54 U	9.9	8.3	4.5 J	10	1.9	28	27000 J	1300	63.016 JV
Main Former Mill	MR09	0-0.25 ft	Surf (0-2ft)	11/15/1997	MR09SS	N	5400 J	660	47	30	77	180	34	75	3.9 J	11	23	17	27	2	17	54000	1900	143.02 JV
Main Former Mill	MR11	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR11SS	Ν	2300	2100	85	44	190	130	74	95	1.9 U	24	12	30	20	2.9	11	20000	2300	142.295 V
Main Former Mill	MR20	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-001	N	69.313	16.689	1.519 J	1.681 J	2.246 J	5.674	1.386 J	5.418	0.264 U	1.726 J	1.159 J	1.796 J	1.426 J	0.284 J	1.269 J	586.366 J	42.484	<u>5.497 JV</u>
Main Former Mill	MR20	0-0.25 ft	Surf (0-2ft)	5/15/2003	E2300322-011	N	256.023	96.59	23.126	1.105 U	48.767	38.035	5.315	12.303	0.493 U	1.505 J	6.191	6.291	11.612	0.366 U	39.404 J	1608.61	221.262	24.755 JV
Main Former Mill	MS20	0.25-5 ft	SubSurf (>2ft)	5/14/2003	E2300323-002	N	21.261	16.284	0.553 J	0.578 J	1.646 J	1.812 J	0.895 J	1.494 J	0.053 U	0.509 J	0.705 J	1.208 J	1.098 J	0.293 J	1.016 J	147.02 J	17.432	2.45 JV
Main Former Mill	MW-65	5-6.5 ft	SubSurf (>2ft)	3/10/2011	MW-65-5-6.5	N	11.2	5.54	0.39 J	0.712 J	0.742 J	1.33	0.542 J	0.944 J	0.134 U	0.749 J	0.783 J	0.629 J	0.959 J	0.527	1.54 J	87.9	6.91	2.44 J
Main Former Mill	MW-65	15-16.5 ft	SubSurf (>2ft)	3/10/2011	MW-65-15-16.5	N	4.16	0.56 J	0.202 U	0.22 U	0.155 U	0.287 U	0.163 U	0.244 U	0.161 U	0.139 U	0.16 U	0.17 U	0.18 U	0.0965 U	0.0901 U	52.1	1.82 J	0.286 J
Main Former Mill	MW-66	2.5-4 ft	SubSurf (>2ft)	3/9/2011	MW-66-2.5-4	N	600	57.3	4.67	2.36	5.41	17	2.11	5.27	1.05	1.23	1.56	2.91	1.75	0.235	1.36 J	7280	332	14.7 J
Main Former Mill	MW-66	15-16.5 ft	SubSurf (>2ft)	3/9/2011	MW-66-15-16.5	N	141	14.3	1.62	0.597 J	0.904 J	4.22	0.46 J	1.07	0.254 U	0.432 U	0.351 J	0.582 J	0.548 J	0.0961 U	0.27 J	1440	85.4	3.29 J
Main Former Mill	SR03	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR03-SS	N	74000	6900	900	410	340	2600	130	830	9	120	39	98	39	12	20	530000 J	27000	1573.67 JV
Main Former Mill	SR03	0-0.25 ft	Surf (0-2ft)	5/19/2003	E2300326-002	N	47194.5 J	7084.57 J	559.998	284.744	400.206 J	3639.78 J	202.72	969.122	19.671	141.551	106.241 J	380.673	106.606 J	11.071	51.041 J	298491 J	26123 J	1428.36 JV
Main Former Mill	SR03	0.25-11 ft	SubSurf (>2ft)	5/19/2003	E2300326-003	N	7366.72 J	963.654	70.301	44.886	51.042	404.631	27.055 J	104.172	2.45	20.914	13.284 J	51.07 J	13.67	2.18	7.166 J	24500.5 J	2194.52	188.856 JV
Main Former Mill	SR20	0-0.25 ft	Surf (0-2ft)	5/19/2003	E2300326-004	N	5048.65 J	535.653	30.938	8.64	61.159	161.492	17.068	32.279	2.976	5.379	18.111	26.293	19.858	0.547 J	16.418 J	47370 J	1541.22	115.885 JV
Main Former Mill	SR20	0.25-7 ft	SubSurf (>2ft)	5/19/2003	E2300326-005	N	1671.56	270.13	12.145 J	3.138 J	28.616	106.224	9.379	28.269	1.306 J	2.699 J	8.187 J	14.094	9.816	0.719 J	8.171 J	19097.7 J	533.703	51.956 JV
Main Former Mill	SR21	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-012	N	795.645	121.564	8.794	7.695	12.239 J	43.477	5.06	21.885	0.153 U	6.122	4.47 J	7.436 J	5.931	1.043	5.747 J	6741.36 J	419.318	30.848 JV
Main Former Mill	SR21	0.25-3 ft	Surf (0-2ft)	5/15/2003	E2300323-013	N	31.246	7.25	0.416 J	0.651 J	0.976 J	2.37 J	0.459 J	1.629 J	0.395 J	0.722 J	0.639 J	0.61 J	0.778 J	0.269 J	1.674 J	246.875 J	21.904	2.59 JV
Main Former Mill	SR22	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-003	N	145.565			0.0313						·								
Main Former Mill	SR22	0.25-5 ft	SubSurf (>2ft)	5/14/2003	E0000000 004			18.463	0.858 J	1.028 J	1.066 J	5.726	0.525 J	2.702 J	0.189 U	0.673 J	0.249 J	0.876 J	0.492 J	0.128 U	0.474 U	1196.37 J	62.871	4.144 JV
Main Former Mill	0000			0/ 1 1/2000	E2300323-004	N	137.535	18.463 15.832	0.858 J 1.176 U			5.726 3.918 J		2.702 J 2.069 J	0.189 U 0.223 U				0.492 J 1.271 J			1196.37 J 1131.83	62.871 45.185	
	SR23	0-0.25 ft	Surf (0-2ft)	5/14/2003	E2300323-004 E2300323-005	N N	137.535 15564 J			1.028 J	1.066 J		0.525 J			0.673 J	0.249 J	0.876 J		0.128 U	0.474 U			4.144 JV
Main Former Mill	SR23	0-0.25 ft 0.25-13 ft	Surf (0-2ft) SubSurf (>2ft)					15.832	1.176 U	1.028 J 0.64 J	1.066 J 1.837 J	3.918 J	0.525 J 0.824 J	2.069 J	0.223 U	0.673 J 0.573 J	0.249 J 0.669 J	0.876 J 1.292 J	1.271 J	0.128 U 0.245 J	0.474 U 0.821 J	1131.83	45.185	4.144 JV 4.263 JV
Main Former Mill Main Former Mill	SR23 SR23	0.25-13 ft 0.25-13 ft	SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003	E2300323-005 E2300323-006 E2300326-013	N N N	15564 J 1073.87 201.902	15.832 3457.94 J 451.027 39.804	1.176 U 199.42 20.916 1.267 J	1.028 J 0.64 J 67.734 8.986 0.129 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J	3.918 J 938.462 60.086 12.406	0.525 J 0.824 J 96.206 14.367 1.032 J	2.069 J 218.199 22.457 2.918 J	0.223 U 4.981 U 1.244 U 0.41 U	0.673 J 0.573 J 37.801 5.363 0.447 J	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J	1.271 J 62.043 8.122 1.101 J	0.128 U 0.245 J 3.549 0.806 J 0.097 J	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J	1131.83 71457.6 J 7899.1 1355.74	45.185 4856.72 J 1135.73 84.196	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV
	SR23 SR23 SR24	0.25-13 ft	SubSurf (>2ft)	5/14/2003 5/14/2003	E2300323-005 E2300323-006	N N	15564 J 1073.87	15.832 3457.94 J 451.027	1.176 U 199.42 20.916	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26	1.066 J 1.837 J 367.906 J 33.783	3.918 J 938.462 60.086	0.525 J 0.824 J 96.206 14.367	2.069 J 218.199 22.457 2.918 J 35.3	0.223 U 4.981 U 1.244 U	0.673 J 0.573 J 37.801 5.363	0.249 J 0.669 J 38.145 J 4.547 J	0.876 J 1.292 J 163.635 J 20.001 J	1.271 J 62.043 8.122	0.128 U 0.245 J 3.549 0.806 J	0.474 U 0.821 J 16.642 J 4.645 J	1131.83 71457.6 J 7899.1	45.185 4856.72 J 1135.73	4.144 JV 4.263 JV 463.343 JV 43.405 JV
Main Former Mill	SR23 SR23	0.25-13 ft 0.25-13 ft	SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003	E2300323-005 E2300323-006 E2300326-013	N N N	15564 J 1073.87 201.902	15.832 3457.94 J 451.027 39.804	1.176 U 199.42 20.916 1.267 J	1.028 J 0.64 J 67.734 8.986 0.129 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J	3.918 J 938.462 60.086 12.406	0.525 J 0.824 J 96.206 14.367 1.032 J	2.069 J 218.199 22.457 2.918 J	0.223 U 4.981 U 1.244 U 0.41 U	0.673 J 0.573 J 37.801 5.363 0.447 J	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J	1.271 J 62.043 8.122 1.101 J	0.128 U 0.245 J 3.549 0.806 J 0.097 J	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J	1131.83 71457.6 J 7899.1 1355.74	45.185 4856.72 J 1135.73 84.196	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill	SR23 SR23 SR24 SR24 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft	SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5	N N N N N	15564 J 1073.87 201.902 2105.75 J	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J	1131.83 71457.6 J 7899.1 1355.74 17515.1 J	45.185 4856.72 J 1135.73 84.196 1099.43	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill	SR23 SR23 SR24 SR24 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5	N N N N	15564 J 1073.87 201.902 2105.75 J 12.958	15.832 3457.94 J 451.027 39.804 276.516 3.227 J	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J	3.918 J 938.462 60.086 12.406 71.578 0.538 J	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill	SR23 SR23 SR24 SR24 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5	N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.147 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U 0.102 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill	SR23 SR23 SR24 SR24 SSB-1 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5	N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.147 U 0.216 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.156 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U 0.155 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U 0.19 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U 0.102 U 0.144 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.169 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill	SR23 SR23 SR24 SR24 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5	N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.147 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U 0.102 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill	SR23 SR24 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010 10/25/2010 10/25/2010	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-78.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5	N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.147 U 0.216 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.156 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U 0.155 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U 0.19 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U 0.102 U 0.144 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.0988 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6 248 4.06	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill North Shoreline	SR23 SR24 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 0-0.25 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5 SSB-1-25-26.5	N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.216 U 0.157 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U 0.15 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05 0.216 U	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.156 U 0.148 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U 0.155 U 0.14 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U 0.19 U 0.138 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U 0.121 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.165 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U 0.102 U 0.144 U 0.147 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.169 U 0.0988 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6 248 4.06	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill North Shoreline North Shoreline	SR23 SR23 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1 CS20 CS20	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 25-26.5 ft 0-0.25 ft 0.25-9 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/19/2003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003 5/19/2003	E2300323-005 E2300323-006 E2300326-013 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5 SSB-1-25-26.5 E2300325-007 E2300325-008	N N N N N N N N N N N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U 28.403 31.056	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.147 U 0.216 U 0.157 U	1.028 J 0.64 J 67.734 8.986 0.129 d 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U 0.15 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05 0.216 U	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.156 U 0.148 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U 0.322 J 0.322 J	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.155 U 0.14 U 0.114 U	0.673 J 0.573 J 37.801 5.363 0.447 J 0.137 U 6.26 0.276 U 0.268 U 0.19 U 0.138 U 0.13 U 0.169 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U 0.083 U 0.083 U 0.14 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.165 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U 0.323 J 0.15 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.075 U 1.11 0.15 U 0.102 U 0.147 U 0.13 U 0.13 U 0.124 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.169 U 0.0988 U 0.538 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6 248 4.06	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U 26.518 24.911	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 5.7221 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233 0.887 JV 0.815 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill North Shoreline	SR23 SR24 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 0-0.25 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) Surf (0-2ft) Surf (0-2ft) Surf (0-2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5 SSB-1-25-26.5	N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.216 U 0.157 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U	1.066 J 1.837 J 367.906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U 0.15 U	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05 0.216 U	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.156 U 0.148 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U 0.155 U 0.14 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U 0.19 U 0.138 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U 0.121 U	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.165 U	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.075 U 1.11 0.15 U 0.102 U 0.144 U 0.147 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.169 U 0.0988 U	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6 248 4.06	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill North Shoreline North Shoreline	SR23 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1 SSB-1 CS20 CS20 DK20	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 25-26.5 ft 0-0.25 ft 0.25-9 ft 0.25-7 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 5/20/20003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003 5/19/2003 5/15/2003	E2300323-005 E2300323-006 E2300326-013 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5 SSB-1-25-26.5 E2300325-007 E2300325-008	N N N N N N N N N N N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U 28.403 31.056 1318.33	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U 4.973 4.638 115.549 38.837	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.147 U 0.216 U 0.157 U	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U 0.159 U 15.439 8.392	1.066 J 1.837 J 367:906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U 0.427 J 0.136 U 18.488 J 11.078 J	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 1.05 0.216 U 1.02 J 0.814 J 162.87 20.805	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.156 U 0.148 U	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U 0.322 J 0.322 J	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.155 U 0.14 U 0.114 U	0.673 J 0.573 J 37.801 5.363 8.391 0.137 U 6.26 0.276 U 0.19 U 0.138 U 0.13 U 0.13 U 0.13 U 0.13 U 0.13 U 0.15 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U 0.121 U 0.083 U 0.14 U 15.177 J 7.088 J	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.098 U 0.098 U 11.37 J 4.738	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U 0.323 J 0.15 U 16.72 8.903	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.075 U 1.11 0.15 U 0.102 U 0.147 U 0.13 U 0.13 U 0.124 U	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.169 U 0.538 U 0.538 U 79.233 J 13.786 J	1131.83 71457.6 J 7899.1 1355.74 95.11 49200 171 98.6 248 4.06 293.526 333.349 5786.61 J 1363.11 J	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U 26.518 24.911 273.236 J 94.473 J	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233 0.887 JV 0.815 JV 82.626 JV 27.498 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Moin Former Mill North Shoreline North Shoreline	SR23 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1 SSB-1 CS20 CS20 DK20 PC20	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 25-26.5 ft 0-0.25 ft 0-0.25 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) Surf (0-2ft) Surf (0-2ft) Surf (0-2ft)	5/14/2003 5/14/2003 5/20/2003 5/20/2003 5/20/2003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003 5/19/2003 5/15/2003 5/15/2003 5/19/2003	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-25-26.5 E2300325-007 E2300325-008 E2300322-005	N N N N N N N N N N N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U 28.403 31.056 1318.33 192.794	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U 4.973 4.638 115.549 38.837	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.167 U 0.216 U 0.57 U 0.382 U 0.904 U 6.947 2.482 J 66.168	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U 0.159 U 0.211 U 15.439 8.392 31.829	1.066 J 1.837 J 367:906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.152 U 0.15 U 0.427 J 0.136 U 18.488 J 11.078 J	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05 0.216 U 1.02 J 0.814 J 162.87 20.805 417.817	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.148 U 0.101 U 0.127 U 8.831 4.795 56.15	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U 0.322 J 0.274 J 79.373 18.56	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.155 U 0.147 U 0.117 U 0.117 U 0.181 U 0.404 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U 0.19 U 0.138 U 0.13 U 0.169 U 18.718 10.73 20.545	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.121 U 0.083 U 0.14 U 15.177 J 7.088 J 51.937	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.098 U 0.098 U 4.738 85.64	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U 0.323 J 0.15 U 16.72 8.903 57.372	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.75 U 1.11 0.15 U 0.102 U 0.144 U 0.13 U 0.13 U 4.63 2.872 2.02	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.538 U 0.538 U 0.538 U 2.553 J	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6 248 4.06 293.526 333.349 5786.61 J 1363.11 J 82894.1 J	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U 26.518 24.911 273.236 J 94.473 J 2681.99	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233 0.887 JV 0.815 JV 82.626 JV 27.498 JV 27.498 JV 274.557 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill North Shoreline North Shoreline North Shoreline	SR23 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1 SSB-1 CS20 CS20 DK20	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 25-26.5 ft 0-0.25 ft 0.25-9 ft 0.25-7 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) Surf (0-2ft) Surf (0-2ft) Surf (0-2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 5/20/2003 5/19/2003 5/20/2003 5/20/20003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003 5/19/2003 5/15/2003	E2300323-005 E2300323-006 E2300326-013 E2300326-011 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5 SSB-1-25-26.5 E2300325-007 E2300325-008 E2300322-005 E2300322-006	N N N N N N N N N N N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U 28.403 31.056 1318.33	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U 4.973 4.638 115.549 38.837	1.176 U 199.42 20.916 1.267 U 20.266 0.354 U 17.1 0.172 U 0.147 U 0.157 U 0.382 U 0.904 U 6.947 2.482 J	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U 0.159 U 15.439 8.392	1.066 J 1.837 J 367:906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.13 U 0.162 U 0.427 J 0.136 U 18.488 J 11.078 J	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 1.05 0.216 U 1.02 J 0.814 J 162.87 20.805	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 0.125 U 0.156 U 0.148 U 0.101 U 0.127 U 8.831 4.795	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U 0.322 J 0.322 J 79.373 18.56	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.12 U 0.155 U 0.14 U 0.191 U 0.191 U 0.191 U 0.191 U	0.673 J 0.573 J 37.801 5.363 8.391 0.137 U 6.26 0.276 U 0.19 U 0.138 U 0.13 U 0.13 U 0.13 U 0.13 U 0.13 U 0.15 U	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.247 U 0.121 U 0.083 U 0.14 U 15.177 J 7.088 J	0.876 J 1.292 J 163.635 J 20.001 J 1.903 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.098 U 0.098 U 11.37 J 4.738	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U 0.323 J 0.15 U 16.72 8.903	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.87 J 0.111 0.15 U 0.102 U 0.124 U 4.63 2.872	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.169 U 0.538 U 0.538 U 79.233 J 13.786 J	1131.83 71457.6 J 7899.1 1355.74 95.11 49200 171 98.6 248 4.06 293.526 333.349 5786.61 J 1363.11 J	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U 26.518 24.911 273.236 J 94.473 J	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233 0.887 JV 0.815 JV 82.626 JV 27.498 JV
Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill Main Former Mill North Shoreline North Shoreline North Shoreline North Shoreline	SR23 SR24 SR24 SSB-1 SSB-1 SSB-1 SSB-1 SSB-1 CS20 CS20 DK20 PC20	0.25-13 ft 0.25-13 ft 0-0.25 ft 0.25-16 ft 7-8.5 ft 10-11.5 ft 15-16.5 ft 20-21.5 ft 20-25-5 ft 0.25-9 ft 0.25-7 ft 0-0.25 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) Surf (0-2ft) SubSurf (>2ft) Surf (0-2ft)	5/14/2003 5/14/2003 5/20/2003 5/20/2003 5/20/2003 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 5/19/2003 5/19/2003 5/15/2003 5/15/2003 5/19/2003	E2300323-005 E2300326-013 E2300326-013 E2300326-012 SSB-1-7-8.5 SSB-1-10-11.5 SSB-1-15-16.5 SSB-1-20-21.5 SSB-1-20-20.5 E2300325-007 E2300325-007 E2300325-005 E2300322-006 E2300326-006	N N N N N N N N N N N N N N N N N N N	15564 J 1073.87 201.902 2105.75 J 12.958 2890 16.3 7.33 19.9 0.444 U 28.403 31.056 1318.33 192.794	15.832 3457.94 J 451.027 39.804 276.516 3.227 J 257 1.94 1.02 2.14 0.136 U 4.973 4.638 115.549 38.837	1.176 U 199.42 20.916 1.267 J 20.266 0.354 U 17.1 0.172 U 0.167 U 0.216 U 0.57 U 0.382 U 0.904 U 6.947 2.482 J 66.168	1.028 J 0.64 J 67.734 8.986 0.129 U 14.26 0.173 U 9.29 0.335 J 0.143 U 0.22 U 0.173 U 0.159 U 0.211 U 15.439 8.392 31.829	1.066 J 1.837 J 367:906 J 33.783 2.331 J 20.358 6.099 12.1 0.504 J 0.152 U 0.15 U 0.427 J 0.136 U 18.488 J 11.078 J	3.918 J 938.462 60.086 12.406 71.578 0.538 J 66.1 0.944 J 0.333 J 1.05 0.216 U 1.02 J 0.814 J 162.87 20.805 417.817	0.525 J 0.824 J 96.206 14.367 1.032 J 7.793 0.843 J 7.13 0.454 J 0.125 U 0.148 U 0.101 U 0.127 U 8.831 4.795 56.15	2.069 J 218.199 22.457 2.918 J 35.3 0.167 U 18.2 0.416 J 0.162 U 0.246 U 0.193 U 0.322 J 0.274 J 79.373 18.56	0.223 U 4.981 U 1.244 U 0.41 U 0.32 U 0.182 U 2.8 0.114 U 0.155 U 0.147 U 0.117 U 0.117 U 0.181 U 0.404 U	0.673 J 0.573 J 37.801 5.363 0.447 J 8.391 0.137 U 6.26 0.276 U 0.268 U 0.19 U 0.138 U 0.13 U 0.169 U 18.718 10.73 20.545	0.249 J 0.669 J 38.145 J 4.547 J 0.96 J 5.086 J 2.55 J 3.61 0.567 J 0.141 U 0.121 U 0.083 U 0.14 U 15.177 J 7.088 J 51.937	0.876 J 1.292 J 163.635 J 20.001 J 12.582 1.555 J 8.84 0.5 J 0.129 U 0.173 U 0.098 U 0.134 U 11.37 J 4.738 85.64	1.271 J 62.043 8.122 1.101 J 6.861 6.55 5.02 0.818 J 0.139 U 0.251 U 0.129 U 0.323 J 0.15 U 16.72 8.903 57.372	0.128 U 0.245 J 3.549 0.806 J 0.097 J 0.75 U 1.11 0.15 U 0.102 U 0.144 U 0.13 U 0.13 U 4.63 2.872 2.02	0.474 U 0.821 J 16.642 J 4.645 J 0.722 J 4.368 J 2.649 J 2.42 J 0.622 0.0985 U 0.538 U 0.538 U 0.538 U 2.553 J	1131.83 71457.6 J 7899.1 1355.74 17515.1 J 95.11 49200 171 98.6 248 4.06 293.526 333.349 5786.61 J 1363.11 J 82894.1 J	45.185 4856.72 J 1135.73 84.196 1099.43 7.116 J 1970 10.2 5.93 14 0.389 U 26.518 24.911 273.236 J 94.473 J 2681.99	4.144 JV 4.263 JV 463.343 JV 43.405 JV 5.923 JV 57.721 JV 3.536 JV 68.7 J 1.1 J 0.402 J 0.677 0.233 0.887 JV 0.815 JV 82.626 JV 27.498 JV 27.498 JV 274.557 JV

Dioxins/Furans in Soil Port Angeles Rayonier Mill Uplands Study Area

							,4,6,7,8-HpCDD	,4,6,7,8-HpCDF	,4,7,8,9-HpCDF	,4,7,8-HxCDD	,4,7,8-HxCDF	,6,7,8-HxCDD	,6,7,8-HxCDF	7,8,9-HxCDD	,7,8,9-HxCDF	,7,8-PeCDD	,7,8-PeCDF	,6,7,8-HxCDF	,7,8-PeCDF	,8-TCDD	,8-TCDF	Qı	ų.	ins/Furans TEC*
					Doro	ameter	2,3	2,3	,2,3	2,3	,2,3	,2,3	,2,3	,2,3	,2,3	,2,3	,2,3	,3,4	3,4	,3,7	,3,7	ОСБ	CDF	ě
					Para	urneter Units	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	ে (ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)	(ng/kg)
					MTCA Ecologic		NL	NL	NL	NL NL	NL	NL	NL	NL NL	NL NL	NL	NL	NL	NL	NL NL	NL	NL	NL	5.2
				MTCA Method	B Protective of HH		NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	11
			MT		Protective of GW as	MSW	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	5.2
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Type																		
NW Shoreline	GB07	2-4 ft	SubSurf (>2ft)	11/12/1997	LY12SB-GB07	N	5.9 J	3 J	0.27 U	0.37 U	0.45 U	0.69 U	0.4 U	0.83 U	0.16 U	0.32 U	0.52 U	0.42 U	0.57 U	0.23 U	0.87 J	28	3.8 U	0.721 JV
NW Shoreline	GB09	2-4 ft	SubSurf (>2ft)	11/10/1997	LY04SB-GB09	N	2.7 J	0.57 U	0.25 U	0.58 U	0.36 U	0.54 U	0.1 U	0.56 U	0.13 U	0.25 U	0.35 U	0.44 U	0.47 U	0.18 U	0.35 U	30	4.3 U	0.484 JV
NW Shoreline	LY15	0-2 ft	Surf (0-2ft)	11/4/1997	LY15SS	N	57 J	3.7 J	0.38 U	8	2.2 U	13	1.7 U	16	0.27 U	5.5	2.1 U	1.5 U	3.1 J	0.97 J	2.9	95	3.6 U	12.343 JV
NW Shoreline	LY20	0-0.25 ft	Surf (0-2ft)	5/19/2003	E2300326-009	N	122.641	14.682	0.76 J	7.982	5.886 J	17.448	3.265 J	17.918	0.158 J	8.575	4.336 J	3.131 J	5.527	1.785	4.843 J	537.743	19.018	19.759 JV
NW Shoreline	LY20	0.25-11.5 ft	SubSurf (>2ft)	5/19/2003	E2300326-010	N	4.134 J	0.418 J	0.142 U	0.311 J	0.353 J	0.77 J	0.153 J	0.771 J	0.046 U	0.376 J	0.23 J	0.168 J	0.42 J	0.124 J	0.882 J	8.988	0.59 J	1.025 JV
NW Shoreline	LY22	0-0.25 ft	Surf (0-2ft)	5/12/2003	E2300298-001	N	55.709	7.74	0.538 U	2.779 J	2.364 J	7.605	1.183 J	4.888 J	0.114 U	3.108 J	2.101 J	1.342 J	2.191 J	0.743 J	2.595 J	285.267	21.756	7.582 JV
NW Shoreline	LY22	0.25-7 ft	SubSurf (>2ft)	5/12/2003	E2300298-002	N	14.345	3.481 J	2.585 U	0.998 U	0.729 U	1.138 U	0.736 U	1.045 U	1.057 U	0.727 U	0.46 U	0.808 U	0.871 J	0.319 U	1.502 J	88.173 J	8.935 J	1.487 JV
NW Shoreline	LY23	0-0.25 ft	Surf (0-2ft)	5/12/2003	E2300298-003	N	3.504 J	0.948 U	1.923 U	0.685 U	0.414 U	0.738 U	0.431 U	0.674 U	0.691 U	0.283 U	0.236 U	0.447 U	0.222 U	0.178 U	0.38 U	18.378	5.175 U	0.546 JV
NW Shoreline	LY23	0.25-4.5 ft	SubSurf (>2ft)	5/12/2003	E2300298-004	N	13.906	3.324 J	1.96 U	0.512 U	1.555 J	0.596 U	0.374 U	0.542 U	0.593 U	0.236 U	0.994 J	0.41 U	1.813 J	0.113 U	1.502 J	195.675 J	32.028	1.456 JV
NW Shoreline	LY24	0-0.25 ft	Surf (0-2ft)	5/12/2003	E2300298-005	N	17.165	2.284 U	3.656 U	2.067 U	1.146 U	2.392 U	1.152 U	2.181 U	1.684 U	5.035	2.295 J	1.316 U	2.7 J	0.435 U	4.499 J	11.896 U	12.378 U	7.383 JV
NW Shoreline	LY24	0.25-6.5 ft	SubSurf (>2ft)	5/12/2003	E2300298-006	N	14.305	5.042	0.835 U	0.616 J	2.475 J	1.734 J	1.092 J	1.768 J	0.185 U	1.028 J	1.726 J	1.213 J	2.614 J	0.36 J	2.769 J	89.055	7.043	3.626 JV
NW Shoreline	LY25	0-0.25 ft	Surf (0-2ft)	5/12/2003	E2300298-007	N	39.239	7.236	0.689 U	0.23 U	1.114 J	2.133 J	0.208 U	1.172 J	0.333 U	0.146 U	0.144 U	0.204 U	0.139 U	0.098 U	0.444 U	396.486	21.825	1.252 JV
NW Shoreline	LY25	0.25-8 ft	SubSurf (>2ft)	5/12/2003	E2300298-008	N	4.113 J	0.218 U	0.368 U	0.184 U	0.152 U	0.202 U	0.148 U	0.183 U	0.216 U	0.104 U	0.148 U	0.153 U	0.158 U	0.086 U	0.317 U	13.555	1.003 U	0.247 JV
NW Shoreline	MW-67	2-3.5 ft	SubSurf (>2ft)	3/9/2011	MW-67-2-3.5	N	0.393 J	0.25 U	0.208 U	0.275 U	0.211 U	0.355 U	0.21 U	0.303 U	0.208 U	0.308 U	0.2 U	0.222 U	0.208 U	0.0991 U	0.0964 U	2.54	0.485 U	0.339 J
NW Shoreline	MW-67	15-16.5 ft	SubSurf (>2ft)	3/9/2011	MW-67-15-16.5	N	0.463 J	0.229 U	0.196 U	0.274 U	0.208 U	0.348 U	0.211 U	0.299 U	0.214 U	0.263 U	0.189 U	0.222 U	0.199 U	0.0959 U	0.0967 U	3.5	0.539 U	0.314 J
NW Shoreline	PA01	0-2 ft	Surf (0-2ft)	11/15/1997	PA01-0SS	N	15	3.4 J	0.42 U	0.78 U	1.4 U	2.2 U	0.64 U	2 U	0.19 U	0.84 U	1 U	0.12 U	1.1 U	0.32 U	1.7	78	8.3 J	1.508 JV
NW Shoreline	PA02 PA04	0-2 ft	Surf (0-2ft)	11/15/1997	PA02-0SS	N N	31 0.77 U	2 U 0.18 U	0.3 U 0.23 U	2.3 U 0.68 U	0.89 U	5.6 0.63 U	0.55 U 0.3 U	5.5	0.32 U 0.31 U	1.6 U	0.76 U	0.63 U	0.9 U 0.2 U	0.39 U	2.8 U 0.15 U	54	1.8 U	2.964 V
NW Shoreline	PAU4	2-4 ft	SubSurf (>2ft)	11/15/1997	PA04-2SB	IN	0.77 0	0.18 0	0.23 0	0.68 0	0.3 U	0.63 0	0.3 0	0.61 U	0.31 0	0.36 U	0.19 U	0.38 U	0.2 0	0.24 U	0.15 U	6.7 J	0.64 U	0.509 JV
Prefab	PF03	2-4 ft	SubSurf (>2ft)	11/19/1007	PF03-2SB	N	1.8 U	0.29 U	0.41 U	0.84 U	0.35 U	0.82 U	0.35 U	0.82 U	0.43 U	1.3 U	0.8 U	0.38 U	0.86 U	0.54 U	0.49 U	9.9 J	0.92 U	1.301 JV
FIEIAD	FF03	2-4 11	SubSuii (>Zii)	11/10/1997	FF03-23B	IN	1.0 0	0.29 0	0.410	0.04 0	0.33 0	0.02 0	0.33 0	0.02 0	0.43 0	1.5 0	0.0 0	0.36 0	0.00 0	0.54 0	0.49 0	9.9 J	0.92 0	1.301 37
West Former Mill	BP20	0-0.25 ft	Surf (0-2ft)	5/13/2003	E2300298-011	N							50.861											
West Former Mill	BP20	0-0.25 ft	Surf (0-2ft)	5/13/2003	E2300298-011RE	N	19312.5	930.437	85.706 J	143.74 J	111.102 J	467.814		353.405	5.587 U	102.542 J	65.787 J	61.985 J	88.495 J	18.877 J	98.327 J	139583 J	6795.81 J	525.673 JV
West Former Mill	BP20	0.25-8 ft	SubSurf (>2ft)	5/13/2003	E2300298-012	N	1587.6	106.543	8.286	18.534	22.074	66.022	11.633	48.806	0.735 J	18.809	13.76 J	11.484 J	16.6 J	4.091	20.718 J	9472.39 J	496.279 J	68.308 JV
West Former Mill	HF03	0-2 ft	Surf (0-2ft)	11/14/1997	HF03-0SS	N	2.1 U	0.53 U	0.14 U	0.32 U	0.16 U	0.43 U	0.16 U	0.38 U	0.17 U	0.26 U	0.17 U	0.26 U	0.22 U	0.29 U	0.63 J	11	1.5 U	0.485 JV
West Former Mill	HF07	2-4 ft	SubSurf (>2ft)	11/20/1997	HF07-2SB	N	0.57 U	0.17 U	0.23 U	0.86 U	0.31 U	0.83 U	0.31 U	0.84 U	0.38 U	1.2 U	0.93 U	0.33 U	0.99 U	0.58 U	0.4 U	1.5 U	0.62 U	1.271 UV
West Former Mill	HF08	0-2 ft	Surf (0-2ft)	11/20/1997	HF08-0SS	N	3.3 J	0.55 U	0.2 U	1.5 U	0.46 U	1.5 U	0.47 U	1.5 U	0.57 U	0.95 U	0.78 U	0.51 U	0.83 U	0.58 U	0.54 U	19	0.93 U	1.296 JV
West Former Mill	PS20	0-0.25 ft	Surf (0-2ft)	5/15/2003	E2300322-007	N	2.71 J	0.65 J	0.769 U	0.376 U	0.221 U	0.435 U	0.216 U	0.397 U	0.32 U	0.265 U	0.219 U	0.244 U	0.226 U	0.213 U	0.235 U	24.947 J	3.554 J	0.444 JV
West Former Mill	PS20	0.25-6.5 ft	SubSurf (>2ft)	5/15/2003	E2300322-008	N	0.62 J	0.237 U	0.405 U	0.237 U	0.145 U	0.274 U	0.135 U	0.25 U	0.202 U	0.182 U	0.163 U	0.157 U	0.176 U	0.224 U	0.224 U	3.007 J	0.782 J	0.324 JV
West Former Mill	RB01	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB01SS	N	3500	610	69	56	100	190	50 J	120	5.8	44	40	31	68	5.9	30	26000	1700	179.88 JV
West Former Mill	RB02	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB02SS	N	5900 J	940	90	86	140	300	50	210	5.7	46	25 U	32	33	5.3	14	48000 J	2200	229.705 JV
West Former Mill	RB04	0-2 ft	Surf (0-2ft)	11/21/1997	RB04-0SS	N	340	130	8.1	3.3 J	11 J	14	4.3 J	7.5	0.49 U	2.1 U	3.2 J	3.3 J	4.8 J	0.85 U	3.9	4100	860	14.035 JV
West Former Mill	RB04	4-6 ft	SubSurf (>2ft)	11/21/1997	RB04-4SB	N	9.4	2.9 J	0.57 U	0.64 U	1.4 U	0.81 U	0.27 U	1.1 U	0.24 U	1.3 U	1.2 U	0.51 U	1.3 U	0.38 U	0.95 U	79	14	1.503 JV
West Former Mill	RB04	8-10 ft	SubSurf (>2ft)	11/21/1997	RB04-8SB	N	1.1 U	0.45 U	0.25 U	0.11 U	0.2 U	0.19 U	0.23 U	0.16 U	0.14 U	0.16 U	0.36 U	0.37 U	0.37 U	0.12 U	0.23 U	10	1.6 U	0.295 V
West Former Mill	RB21	0-0.25 ft	Surf (0-2ft)	5/13/2003	E2300298-013	N	2135.24 J	333.844	18.813	54.234	46.347	139.547	19.701	85.394	0.781 J	51.632	18.913 J	22.715	26.479	6.615	31.965 J	17121 J	892.325	137.109 JV
West Former Mill	RB21	0.25-8 ft	SubSurf (>2ft)	5/13/2003	E2300298-014	N	55.268	8.91	1.886 U	2.397 J	1.787 J	5.349	0.817 J	4.559	0.394 U	1.902 J	1.023 J	0.843 J	1.323 J	0.402 J	1.818 J	378.776 J	19.776	5.279 JV
West Former Mill	SSB-7	2-3.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-2-3.5	N	26.6	4.07	0.261 U	0.54 J	0.759 J	1.85	0.556 J	0.9 J	0.297 U	0.342 U	0.284 U	0.34 U	0.298 U	0.102 U	0.163 U	293	12.6	1.17 J
West Former Mill	SSB-7	10-11.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-10-11.5	N	119	14	1.5	4.16	4.15	12.1	3.41	7.47	0.895 J	4.17	3.3	3.65	3.97	0.894	3.05 J	957	39.5	11.9 J
West Former Mill	SSB-7	20-21.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-20-21.5	N	5.89	0.693 J	0.211 U	0.281 U	0.234 U	0.764 J	0.232 U	0.319 U	0.232 U	0.241 U	0.286 U	0.28 U	0.298 U	0.112 U	0.099 U	43	0.975 U	0.466 J
West Former Mill	SSB-7	25-26.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-25-26.5	N	1.91	0.328 U	0.373 U	0.228 U	0.164 U	0.297 U	0.157 U	0.258 U	0.161 U	0.132 U	0.163 U	0.18 U	0.17 U	0.094 U	0.0994 U	7.2	0.658 U	0.243
West Former Mill	SSB-7	30-30.75 ft	SubSurf (>2ft)	10/26/2010	SSB-7-30-30.75	N	0.442 U	0.221 U	0.304 U	0.21 U	0.178 U	0.261 U	0.181 U	0.233 U	0.222 U	0.18 U	0.132 U	0.247 U	0.148 U	0.14 U	0.111 U	1.6 U	0.842 U	0.272 U
West Former Mill	WM21	0-0.25 ft	Surf (0-2ft)	5/13/2003	E2300301-001	N	12.16 J	1.177 J	0.515 U	0.293 U	0.214 U	0.317 U	0.207 U	0.289 U	0.343 U	0.262 U	0.241 U	0.207 U	0.23 U	0.268 U	0.333 U	82.789	3.955 J	0.575 JV
West Former Mill	WM21	0.25-9.5 ft	SubSurf (>2ft)	5/13/2003	E2300301-002	N	12.944 J	1.642 J	0.518 U	0.271 U	0.283 U	0.314 U	0.265 U	0.277 U	0.385 U	0.264 U	0.212 U	0.253 U	0.209 U	0.268 U	0.358 J	99.768	3.78 J	0.618 JV

														*					_	*									
							ᇤ	*un	*.	*_	Ę	* <u>E</u>	=	E E		*			sinu	nese	*^		E E	<u>*</u>		_	* E	*E	
							Ë	imo	enic	Ë	I €	Ē	i.	E O	alt	bei	_	*	aue:	ıgaı	cury*	*e	ass	jë	er*	<u>ii</u>	_	Vanadium	*o
					Parar	meter	Alu	Ant	Ars	Bar	Ber	Cac	Cal	l ë	Cok	Š	<u>5</u>	Lea	Мад	Z Z	Mer	Nic.	Pot	Seleniu	l≧	Sodiu	Thal	Van	Zin
						Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
					MTCA Ecologica		32600	5	20	102	10	4	NL	48	20	50	NL	50	NL	1200	0.1	48	NL	0.3	2	NL	1	297	86
					Method B Protective of HH (ethod B Protective of GW as I		32600 NL	32 580	20 20	16000 NL	160 4300	80 1.2	NL NL	120000 4.8e+006	NL NL	3000 50	NL NL	250 1600	NL NL	11000 1200	24 0.07	1600 48	NL NL	400 7.4	400 0.61	NL NL	5.6 0.67	560 NL	24000 100
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре	142	000	20	INE	4000	1.2	145	4.001000	INE	- 50	INE	1000	- 11-	1200	0.07		- 14-	7.4	0.01	1112	0.07	1112	100
City Purchase	BY01	0-2 ft	Surf (0-2ft)	11/17/1997	BY01-0SS	Ν	18100		3.2 J	37 J	0.22 J	0.86 J	11200	29.2 J	12.1 J	99.7 J	29700	28.6	8070	448	0.09 J	44.1 J	727 J	0.5 U	0.31 J	1260	0.64 U	69.5 J	73 J
City Purchase	BY01	2-4 ft	SubSurf (>2ft)	11/17/1997	BY01-2SB	N	31300		4.2 J	244 J	0.4 J	0.64 J	56100	43.4 J	16.7 J	<u>115 J</u>	30500	31.1	13500	<u>4290</u>	0.07 U	<u>150 J</u>	20800	0.69 U	0.49 J	13100	<u>1.2 J</u>	180 J	<u>152 J</u>
City Purchase City Purchase	BY02 BY02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	5/14/2003 5/14/2003	K2303687-001 K2303687-001D	N FD		0.04 J	0.7 0.5 J	10.4		0.12		16.9	30.8	194		8.36		867		39.2 J		1 U	0.03		0.021 U	119	78.2 J
City Purchase	BY02	0-2 ft	Surf (0-2ft)	11/17/1997	BY02-0SS	N	15400		27.5 J	96.6 J	0.24 J	0.36 J	12000	35.1 J	13.5 J	187 J	34000	151	7170	607	0.15	56.8 J	1120	0.51 U	0.18 J	623 J	0.65 U	84.4 J	163 J
City Purchase	BY02	0.25-8.5 ft	SubSurf (>2ft)	5/14/2003	K2303687-002	N			5.3																				
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	11/17/1997	BY02-2SB	N	10700		2.2 J	96.7 J	0.14 J	0.24 J	25900	23.6 J	8 J	92.9 J	14900	186	6110	<u>1790</u>	<u>0.1 J</u>	<u>101 J</u>	5020	0.55 U	0.36 J	3830	0.69 U	98.5 J	249 J
City Purchase	BY03	0-2 ft	Surf (0-2ft)	11/17/1997	BY03-0SS	N N	15500		3.9 J	75.7 J	0.21 J	0.14 J	11800	31.3 J	13.4 J	147 J	31400	90	7680	598	0.12	56.9 J	903 J	0.5 U	0.31 J	978 J	0.63 U	88.1 J	123 J
City Purchase City Purchase	BY03 BY04	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/17/1997 11/17/1997	BY03-2SB BY04-0SS	N N	17600 15000		3.6 J 3.1 J	131 J 78.5 J	0.27 J 0.27 J	0.3 J 0.16 J	25400 11500	60.8 J 27.7 J	15.3 12.8 J	68.7 J 132 J	27400 33700	54.1 166	9090 8170	3670 544	0.09 J 0.23	107 J 45.3 J	2120 789 J	0.66 U 0.53 U	0.96 J 0.19 U	844 J 526 J	0.83 U 0.67 U	115 J 75.4 J	133 J 237 J
City Purchase	BY04	2-4 ft	SubSurf (>2ft)	11/17/1997	BY04-2SB	N	23300		3.9 J	103 J	0.46 J	0.08 U	5900	45.4 J	18 J	39.4 J	31800	5.2	8750	547	0.07 J	42.1 J	1030 J	0.59 U	0.65 J	804 J	0.74 U	84.1 J	67.2 J
City Purchase	BY05	0-2 ft	Surf (0-2ft)	11/17/1997	BY05-0SS	N	18200		0.89 J	74.2 J	0.16 J	0.08 J	18000	49.4 J	13.9 J	<u>125 J</u>	24500	29.9	10900	<u>1590</u>	0.05 U	29.1 J	1300	0.49 U	0.44 J	1320	0.62 U	57.3 J	58.2 J
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	11/17/1997	BY05-2SB	N	18800		2.9 J	153 J	0.23 J	0.42 J	30900	29 J	8.3 J	96.3 J	20700	67.4	8660	2000	0.12	54.2 J	5240	0.54 U	0.6 J	5920	0.68 U	70.9 J	237 J
City Purchase City Purchase	BY05 BY05	4-6 ft 6-8 ft	SubSurf (>2ft) SubSurf (>2ft)	11/17/1997 11/17/1997	BY05-4SB BY05-6SB	N N	24500 27800		4.4 J 4.9 J	124 J 96.8 J	0.48 J 0.56 J	0.17 U 0.08 U	11700 6800	47.4 J 52 J	15.9 J 21.6 J	47.9 J 40 J	32900 41300	9.9 6.6	9590 10400	846 694	0.09 J 0.07 U	42.3 J 50.3 J	5280 J 3090	0.64 U 0.64 U	14.9 J 0.22 U	1740 581 J	0.81 U 0.82 J	87 J 89.4 J	86.1 J 83.5 J
City Purchase	BY05	8-10 ft	SubSurf (>2ft)	11/17/1997	BY05-8SB	N	19300		2 J	73.9 J	0.35 J	0.00 U	5110	38.6 J	13.9 J	34.3 J	27300	4.1	8700	301	0.05 U	34.4 J	941 J	0.5 U	0.18 J	561 J	0.63 U	65.5 J	51.2 J
City Purchase	BY20	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303678-003	N			3.7																				
City Purchase	BY20	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303678-003DUP	FD			2.3 J																				
City Purchase City Purchase	BY20 GWG-8	0.25-8.5 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/15/2003 10/28/2010	K2303678-004 DUPE3-102810	N FD		0.2 U	6.1 3.8	63		 0.5 U		42	11.8	43.9		6		618	0.02	47.2		0.2 U	 0.2 U		0.2 U	65	57
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-2-3.5	N		0.2 U	4.4	63.6		0.5 U		37	12.3	48.3		8		602	0.02	44.1		0.2 U	0.2 U		0.2 U	67	61
City Purchase	GWG-8	10-11.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-10-11.5	Ν		0.2 U	3.6	85.1		0.6 U		51	14.6	41.7		5		461	0.06	49.5	-	0.2 U	0.2 U		0.2 U	89	66
City Purchase	GWG-8	15-16.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-15-16.5	N		0.2 U	3.8	56.5		0.6 U		42	11.9	45.5		4		363	0.03	44.6		0.2 U	0.2 U		0.2 U	87	53
City Purchase City Purchase	PA-19 PF01	7.5-9 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	8/21/2009 11/18/1997	PA-19 PF01-0SS	N N	 11000 J	0.97 U	 1.4 J	37.2 J	0.2 J	0.12 J	5660 J	18.6 J	8.7 J	30.8 J	14600	 2.4 J	4780	303 J	0.015 0.07 J	 19 J	535 J	0.46 U	0.22 J	 514 J	0.58 U	 38 J	25.1 J
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	11/18/1997	PF01-2SB	N	16300 J	1 U	1.4 J	49.9 J	0.27 J	0.12 J	5130 J	29.8 J	11.7 J	148 J	24400	9.9 J	7600	456 J	0.07 U	33.5 J	653 J	0.5 U	0.22 J	446 J	0.63 U	52.7 J	63.6 J
City Purchase	SSB-10	2-3.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5	Ν		0.3 U	4.2	319		0.6 U		46	10	122		25		5790	0.03 U	<u>91</u>		0.7 U	0.3		0.3 U	115	81
City Purchase	SSB-10	5-6.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-5-6.5	N		0.3 U	5	162		0.7 U		54	16	89.3		19		2150	0.06	66.7		0.6 U	0.3 U		0.3 U	102	88
City Purchase	SSB-10	10-11.5 ft 15-16.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-10-11.5	N N		0.2 U	4.5 3.7	119 51.8		0.6 U 0.6 U		58	16 12.9	31.6 43.7		5		834 321	0.09	43.1		0.2 U	0.2 U 0.2 U		0.2 U	80	74 52
City Purchase City Purchase	SSB-10 SSB-10	20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/28/2010 10/28/2010	SSB-10-15-16.5 SSB-10-20-21.5	N		0.2 U 0.2 U	5.6	69.7		0.8 U		47 39.4	11	29.2		3		252	0.02 U 0.03	47.2 39.9		0.3 0.2 U	0.2 U		0.2 U 0.2 U	86 80	51
CSO	GB02	0-2 ft	Surf (0-2ft)	11/4/1997	LY17SS-GB02	N	18800	1.2 U	1.4 J	26.8 J	0.26 J	0.69 J	16200	22.8	12.7 J	49 J	28900	3.6	9360	411	0.03	22.2	1020 J	0.6 U	0.59 J	1400 J	0.75 U	59.1	49.6
CSO	GB02 GB02	0-2 π 2-4 ft	Sun (0-2n) SubSurf (>2ft)	11/4/1997	LY17SS-GB02 LY18SB-GB02	N	18800	1.2 U	1.4 J 2.7	26.8 J 46.3	0.26 J 0.24 J	0.69 J 0.06 U	11100	31.9 J	12.7 J 11.2	49 J 43.1	25800	3.6 12.3 J	9360	411 638	0.2 U	30.6	951 J	0.6 U	0.59 J 0.5 J	1400 J 2290 J	0.75 U	59.1 52.8	49.6 50.3
CSO	GB03	0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	N	32300	1 U	0.96 J	30.6 J	0.34 J	1.3	21400	29.3	23.3	101 J	46300	1.7	15600	660	0.2 U	31.8	1320	0.5 U	0.28 J	1760 J	0.63 U	103	57.5
CSO	GB03	2-4 ft	SubSurf (>2ft)	11/10/1997	LY20SB-GB03	N	17000	1.1 U	3.7 U	27.3 J	0.24 J	0.07 U	14600	30.3 J	11.1 J	51.4	25500	14.4 J	9060	353	0.06 U	32.3	1290	0.54 U	0.55 J	3140 J	0.68 U	58	85.4
CSO CSO	GWG-6 GWG-6	2-3.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/2/2010 11/2/2010	GWG-6-2-3.5 GWG-6-5-6.5	N N		0.2 U 0.2 U	3.1	55.1 59.9		0.5 U 0.6 U		34 50	10.2 15.3	40.8 47.4		15 3		514 466	0.03	42.7 64.7		0.5 U 0.6 U	0.2 U 0.2 U		0.2 U 0.2 U	41.7 99	53 73
CSO	GWG-6	5-6.5 π 10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-10-11.5	N		0.2 U	3.5	74.1		0.6 U		55	15.3	57.9		4		413	0.03	51.4		0.8 U	0.2 U		0.2 U	99	76
CSO	MW-70	2-3.5 ft	SubSurf (>2ft)	5/6/2011	MW70-2-3.5	N			4.5							58.7		4.4		1600	0.07	61.8							64
CSO	MW-70	5-6.5 ft	SubSurf (>2ft)	5/6/2011	MW70-5-6.5	N			3.5							44.5		2.5		611	0.04	57.9							52
CSO CSO	MW-70 MW-70	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW70-10-11.5 MW70-15-16.5	N N			1.2							32.9		3 2.6		214 463	0.04	45 55.6							55 66
CSO	MW-70	20-21.5 ft	SubSurf (>2ft)	5/6/2011	MW70-15-16.5 MW70-20-21.5	N			5.1							71.9 40.1		3.5		463 375	0.04	55.6 55.8							65
CSO	MW-70	25-26.5 ft	SubSurf (>2ft)	5/6/2011	MW70-25-26.5	N			1.8							61.2		2.2		554	0.05	55.9							69
CSO	SSB-8	2-3.5 ft	SubSurf (>2ft)	10/25/2010	SSB-8-2-3.5	N		0.2 U	9	74		2		11	4	31		65		510	0.09	40.8		0.5 U	0.2 U		0.2 U	52.9	<u>233</u>
CSO	SSB-8	5-6.5 ft	SubSurf (>2ft)	10/25/2010	SSB-8-5-6.5	N		0.2 U	10	40		2 UI		5 U	3 U	24		84		422	0.2	31.6		0.5 U	0.2 U		0.2 U	31	220
CSO CSO	SSB-8 SSB-8	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/25/2010 10/25/2010	SSB-8-10-11.5 SSB-8-15-16.5	N N		0.2 U 0.2 U	2.3 1.7	13 25.3		0.2 U 0.6 U		20.1 43	6.6 11.6	23.1 36.9		5 2		277 296	0.06 0.03 U	26.6 42.1		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	46 62	38 53
CSO	SSB-8	20-21.25 ft	SubSurf (>2ft)	10/25/2010	SSB-8-20-21.5	N		0.2 U	1.2	26.5		0.2 U		17.6	4.2	9		1 U		155	0.03 U	35.1		0.2 U	0.2 U		0.2 U	23	17
CSO	SSB-8	25-26.33 ft	SubSurf (>2ft)	10/25/2010	SSB-8-25-26.33	N		0.2 U	1.1	28.3		0.2 U		20.7	4.1	42.2		1		150	0.03 U	31.5		0.2 U	0.2 U		0.2 U	25.5	37
East Former Mill	CD02	0-2 ft	Surf (0-2ft)	11/19/1997	CD02-0SS	N	14000 J	1.1 U	4.2 J	58	0.27 J	0.63 J	4520 J	29 J	8.4 J	55.2 J	31300	79.3	5910	397	0.15	28.2 J	656 J	0.53 U	0.18 U	327 J	0.66 U	53 J	50.6 J
East Former Mill	CD02	2-4 ft	SubSurf (>2ft)	11/19/1997	CD02-2SB		28400 J	1.4 U	4.5 J	115	0.46 J	0.88 J	5560 J	47.4 J	20 J	118 J	33100	85.7	9090	372	0.14	43 J	1490	1.2 U	0.46 J	758 J	0.72 U	86.9 J	<u>106 J</u>
East Former Mill	CD02	4-6 ft	SubSurf (>2ft)	11/19/1997	CD02-4SB	N	24100 J	1.2 U	3.3 J	75	0.43 J	0.61 J 0.81 J	5670 J	43.4 J	14.4 J	69.8 J	31600	8	9230	385	0.07 J	35 J	1100 J	1.2 U	0.46 J	887 J	0.71 U	83.9 J	60.7 J
East Former Mill East Former Mill	CD02 CD03	6-8 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/19/1997 11/19/1997	CD02-6SB CD03-0SS	N N	28800 J 6340 J	1.2 U	4.8 J 4.7 J	82.6 60.9	0.47 J 0.1 J	0.81 J 0.55 J	8320 J 8120 J	50.7 J 25.7 J	16.4 J 3.7 J	73.5 J 32.7 J	37500 28000	5.8 42.9	13300 2780	494 139	0.06 J 0.11	54.6 J 11.7 J	863 J 1100	0.55 U 0.54 U	0.19 U 0.3 J	2890 530 J	0.7 U	83.6 J 51.6 J	83.8 J 18.2 J
East Former Mill	CD03	2-4 ft	SubSurf (>2ft)	11/19/1997	CD03-3SB	N	16700 J	1 U	2.6 J	50.3	0.13 0.25 J		22200 J	31.9 J	10 J	62.7 J	23000	21.1	6850	369	0.05 U	35.8 J	963 J	0.53 U	0.17 U	810 J	0.63 U	55.5 J	49.3 J
		1	,,		* *																								

							1			1							l				1			1	l	l			
							uminum	ıtimony*	senic*	ırium*	ıryllium	Cadmium*	ılcium	ıromium*	Cobalt*	ppper*	ron	ad*	agnesium	anganese*	ercury*	ckel*	ıtassium	Selenium*	Silver*	Sodium	allium*	ınadium*	*20
					Para	ameter Units	(mg/Kg)	(mg/Kg)	∀ (mg/Kg)	(mg/Kg)	mg/Kg)	ပြီ (mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	<u>₽</u> (mg/Kg)	(mg/Kg)	≝ (ma/Ka)	≝ (mg/Kg)	≝ (mg/Kg)	(mg/Kg)	(mg/Kg)	ශී (mg/Kg)	(mg/Kg)	ကg/Kg)	₽ (mg/Kg)	(mg/Kg)	(mg/Kg)
					MTCA Ecologic		32600	5	20	102	10	4	NL NL	48	20	50	NL	50	NL	1200	0.1	48	NL NL	0.3	2	NL	1	297	86
					Method B Protective of HH		32600	32	20	16000	160	80	NL	120000	NL	3000	NL	250	NL	11000	24	1600	NL	400	400	NL	5.6	560	24000
Funct. Area	Loc ID	Depth	Zone	Date Date	ethod B Protective of GW as Sample ID	Type	NL	580	20	NL	4300	1.2	NL	4.8e+006	NL	50	NL	1600	NL	1200	0.07	48	NL	7.4	0.61	NL	0.67	NL	100
East Former Mill	GWG-7	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-2-3.5	Ň		0.2 U	6.6	121		0.6 U		52	11.9	42.4		19		365	0.07	40.7		0.2	0.2 U		0.2 U	97	66
East Former Mill East Former Mill	GWG-7	5-6.5 ft 7-8.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/2/2010 11/2/2010	GWG-7-5-6.5 GWG-7-7-8.5	N N		0.3 U 0.2 U	5.2 3.7	72 58.2		0.6 U 0.6 U		48 53	20.1 14.5	39.4 35.9		5 3		727 305	0.07 0.05	45.7 37.1		0.4 0.2 U	0.3 U 0.2 U		0.3 U 0.2 U	96 100	71 62
East Former Mill	SL22	0-0.25 ft	Surf (0-2ft)	5/14/2003	K2303687-013	N		0.07 J	2.8	46		0.09		29.3	11	30.1 J		4.2		512	0.04	37.2 J		1.1 U	0.05 J		0.027	49.7	46.2 J
East Former Mill	SL22	0.25-7.5 ft	SubSurf (>2ft)	5/14/2003	K2303687-014	N		0.04 J	2.7	41.7		0.15		29	9.6	30.1 J		3.75		461	0.04	35.2 J		1.1 U	0.04 J		0.033	51.1	42.1 J
East Shoreline	SL20	0.25-7 ft	SubSurf (>2ft)	5/14/2003	K2303687-010	N		1.87 J	3	224		0.69		23.2	6.4	87.7 J		126		1040	0.02 J	41.2 J		1.1 U	0.1 J		0.033	44.5	309 J
East Shoreline	SL21		SubSurf (>2ft)	5/14/2003	K2303687-016	N		0.27 J	2.9	55.7		0.16		25.7	7.3	59.7 J		29		681	0.06	34.6 J		1.1 U	0.05 J		0.035	58.9	58.2 J
Ennis Creek Ennis Creek	ECO23 ECO25	0-0.49 ft 0-0.49 ft	Surf (0-2ft) Surf (0-2ft)	5/15/2003 5/16/2003	K2303719-001 K2303719-002	N N		0.06 J 0.06 J	4.4	75.9 J 79.6 J		0.15 0.15		45.3 46.5	16.3 16.8	38.1 40.9		23.6 J 6.43 J		551 613	0.05 0.05	47.1 49.7		1.3 U 0.6 J	0.07 0.09		0.047 J 0.06 J	83.3 82.7	64.3 64.9
Ennis Creek	ECO26	0-0.33 ft	Surf (0-2ft)	5/7/2003	K2303509-004	N		0.32 J	3.5	78.2		0.22		55.6 J	16.1	<u>53.1</u>		17.9		549 J	0.06	57.9		1.2 U	0.06 J		0.055	116 J	76.9
Ennis Creek Ennis Creek	ECO26 ECO27	0-0.33 ft 0-0.49 ft	Surf (0-2ft)	5/7/2003 5/6/2003	K2303509-004D K2303509-005	FD N		0.31 0.11 J	3.6 4.6	78.4 76.1		0.18 0.18		44.3 J 44.9 J	14.4 14.7	55.1 42.8		19.1 14.6		725 J 536 J	0.06	<u>50.5</u> 47		1.2 U 1.1 U	0.06 0.07 J		0.062 0.076	94.2 J 90.3 J	65.5 83.9
Ennis Creek	ECO27	0-0.49 ft	Surf (0-2ft)	5/6/2003	K2303509-005	N		0.11 J	4.0	105		0.18		56.3 J	19.9	49.7		18.8		649 J	0.07	65.9		0.7 J	0.07 J		0.076	107 J	200
Ennis Creek	ECO29	0-0.49 ft	Surf (0-2ft)	5/6/2003	K2303509-007	N		0.07 J	4	80.6		0.19		55.2 J	19.8	51.9		9.82		631 J	0.04	63.3		1.2 U	0.06 J		0.07	106 J	77.2
Ennis Creek Ennis Creek	MW-64 MW-64	2-3.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/18/2010 10/18/2010	MW-64-2-3.5 MW-64-10-11.5	N N		0.2 U 0.2 U	3 J 3.1 J	64.3 115		0.5 U 0.6 U		51 44	15.5 22.8	53.2 75.8		5 2		550 621	0.04	<u>48.4</u> <u>59.5</u>		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	78 105	56 68
Ennis Creek	MW-64	20-20.66 ft	SubSurf (>2ft)	10/18/2010	MW-64-20-20.66	N		0.2 UJ	1.9	48		0.3		25.1	6.3	17.9		2		258	0.03 U	21.8		0.2 U	0.2 U		0.2 U	37.5	30
Estuary	CD01	0-2 ft	Surf (0-2ft)	11/19/1997	CD01-0SS	N	17500 J	1.01 U	2.42 J	43.5	0.467 J	1 J	47300 J	37.1 J	10.5 J	140 J	27300	17.9	9670	496	0.06 J	31.4 J	880 J	0.49 U	0.17 U	534 J	0.61 U	71.8 J	61.3 J
Estuary	CD01	2-4 ft	SubSurf (>2ft)	11/19/1997	CD01-2SB	N	11600 J	1 U	2.3 J	63.3	0.19 J	0.71 J	83200 J	30.6 J	7.4 J	70.8 J	17000	276	9440	475	0.07 J	36 J	791 J	0.49 U	0.17 U	481 J	0.62 U	45.9 J	69.5 J
Estuary Estuary	ECO33 FR05	0-0.49 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	5/15/2003 11/13/1997	K2303719-005 FR05SS	N N	14100	0.16 J 1.7 U	7.3 13.3 J	107 J 49.2 J	0.16 J	0.52 0.41 J	3580 J	104 69.6 J	17.3 7.3 J	80.9 177 J	21000	80.8 J 123	6280	610 182 J	0.19 0.54	53.5 37.1 J	 599 J	0.8 J 1.2 J	0.14 1.4 J	203 J	0.075 J 1 U	94.4 64.8	173 109
Estuary	RS20	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303678-013	N		0.2 J	6.7	88.7 J		0.26		307	11.1	90.9		85.4 J		340	0.49	47.1		0.6 J	0.12		0.063 J	94.3	157
Estuary	RS20	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303687-019	FD		0.3 J	7.3	84.4		0.32		339	11	90.6 J		121		313	0.44	47.2 J		0.7 J	0.11 J		0.09	95.3	142 J
Estuary Estuary	RS20 RS21	0.25-2 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	5/15/2003 5/16/2003	K2303678-014 K2303762-012	N N		0.11 J 0.21 J	2.2	20 J 11.5		0.11 0.48		28.9 35.5	7.7 25.7	27 178 J		14 J 9.06		225 551	0.04 0.01 J	28.3 42.1		1.2 U 0.3 J	0.04 0.38		0.028 J 0.04	48 121	68.7 81.1
Estuary	RS21	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-012DUP	FD		0.21		11.7		0.55		38.5	24.9	161						39.9			0.38			110	73.9
Estuary Estuary	RS21 RS21	0-0.25 ft 0.25-9.5 ft	Surf (0-2ft) SubSurf (>2ft)	5/16/2003 5/16/2003	K2303762-015 K2303762-013	FD N		0.17 J	1.4	19.6		0.11		24.3	8.1	43.3 J		11.1 19.1		518 349	0.02 J 0.02	29.9		1.1 U 1.1 U	0.05		0.014 J 0.024	55.9	46.3
Main Former Mill	AP01	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP01SS	N	7990	12.4 U	51.4 J	518	0.12 J	1 U	11000 J	69.8 J	8.2 J	510 J	36500	323	4330	268 J	0.26	39.2 J	764 J	1.8	2.3 J	246 J	0.87 U	61.5	462
Main Former Mill	AP02	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP02SS	N	14900	27.5 J	122 J	340	0.12 J	3.1 J	62300 J	86.5 J	21.5	1590 J	144000	238	6100	693 J	0.14 J	61.5 J	3070 J	5.4	7.4	604 J	0.92 U	63.2	2940
Main Former Mill	AP03	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP03SS	N	20900	20.4 J	260 J	450	0.42 J	3.6 J	51800 J	176 J	30.9	1530 J	123000	7310	11600	1200 J	0.07 J	87.3 J	2930 J	4 U	6.5	756 J	0.85 U	99.7	2740
Main Former Mill	AP03	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-003	N												147											
Main Former Mill Main Former Mill	AP03 AP04	0.25-6 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5/16/2003 11/13/1997	K2303762-004 AP04SS	N N	13700	23.1 J	126 J	309	0.27 J	3 J	40800 J	153 J	20.9	1110 J	126000	355 411	7500	929 J	0.09 J	93.1 J	2380 J	6.4 U	6.6	555 J	1.1 U	129	<u>1590</u>
Main Former Mill	AP20	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-014	N												270											
Main Former Mill	AP20	0.25-9 ft	SubSurf (>2ft)	5/16/2003	K2303762-002	N												16											
Main Former Mill	BL01	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL01SS	N	7660	6.2 U	42.5	35.9 J	0.09 J	0.17 J	3780 J	104 J	4 J	154 J	14100	119	2780 J	135	0.11	44.1 J	650 J	0.49 U	0.38 J	468 J	0.62 U	26.1	245
Main Former Mill Main Former Mill	BL02 BL03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/14/1997 11/14/1997	BL02SS BL03SS	N N	9730 12400	1.7 J 1 J	16.2 1.6 J	30.3 J 40.7 J	0.16 J 0.2 J	0.1 U 0.08 J	7010 J 4540 J	116 J 32.1 J	19.8 9.3 J	211 J 157 J	50400 25700	65.4 110	5230 J 7090 J	303 216	0.08 U 2.8	106 J 34.4 J	406 J 440 J	0.8 U 0.5 U	1.4 J 0.57 J	307 J 505 J	1 U 0.63 U	62 43.3	<u>112</u> <u>250</u>
Main Former Mill	BL20	0.25-3.5 ft	Surf (0-2ft)	5/15/2003	K2303678-002	N		0.42 J	3.9	40.5 J		0.57		65.5	5.8	74.8		103 J		183	0.27	26.3		1.1 U	0.07		0.127 J	34.5	88.5
Main Former Mill Main Former Mill	BP01 BP02	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP01SS BP02SS	N	1160 3100	3.6 U 25.7 U	2.4 U 9.7 U	63.8 27.5 J	0.04 J 0.16 U	0.09 U 0.49 U	1250 J	7.9 J 40.6 J	1.4 J	1120	1390 6430	33.8 J 30.7 J	162 U 1380 U	13.7 93.6	0.08 U 0.41 U	3.4 U	321 792 U	0.65 U 5.2 U	0.51 J	329 J	0.82 U 4.7 U	6.9 J	9.3
Main Former Mill Main Former Mill	BP02 BP03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/11/1997	BP03SS	N N	1470	6.4 U	9.7 U 5.5 U	27.5 J 24.8 J	0.16 U 0.13 U	0.49 U	4590 J 2390 J	25.6 U	6.3 J 3 J	171 177	6430 4440	30.7 J 42.3 J	638 U	93.6 41.8	0.41 U 0.32 U	30.2 U 15.6 U	792 U 399 U	3.1 U	1.3 <i>U</i>	829 U	3.9 U	25.5 J 15.8 J	105 89
Main Former Mill	BP04	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP04SS	N	16400	2.7 U	8.6 U	85.9 J	0.33 J	0.16 J	9940	90.7 J	13.9 J	140	52600	60.2 J	9550	553	0.12 U	<u>91.2</u>	1140 J	1.1 U	2.2 J	934 J	1.4 U	59.3	<u>616</u>
Main Former Mill Main Former Mill	DB02 DB02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997 5/16/2003	DB02SS K2303762-005	N N	9600	32.2 J	<u>201 J</u>	221	0.1 J	<u>2.1 J</u>	5950 J	357 J	21.3	789 J	69400	2060 374	12300	446 J	0.09 J	<u>109 J</u>	1120 J	3.4 U	<u>4.7</u>	432 J	0.91 U	70.6	<u>1450</u>
Main Former Mill	DB02 DB21	0-0.25 ft 0.25-11 ft	Surf (0-2ft) SubSurf (>2ft)	5/16/2003	K2303762-005 K2303762-019	N		0.32 J	3.8	42		0.22		40.9	8.4	79 J		374 48.9		301	0.06	35.6		1.1 U	0.22		0.038	60.9	68.1
Main Former Mill	ECO34	0-0.49 ft	Surf (0-2ft)	5/7/2003	K2303509-009	N		8.02 J	4.1	71.8		0.36		37.2 J	12.2	77.8		102		360 J	0.08	47.8		1.1 U	0.12 J		0.030	49.2 J	329
Main Former Mill	FR02	0-0.25 ft	Surf (0-2ft)	11/12/1997	FR02SS	N	9580	8.4 U	16.4	673	0.14 J	0.14 U	6040	124	10.9 J	447 J	61900	296 J	5220	539	6.6	89.8	910 J	1.1 U	<u>2.1 J</u>	717 J	2.2 U	107	421
Main Former Mill Main Former Mill	FR02 FR02	0.25-5.5 ft 0.25-5.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/16/2003 5/16/2003	K2303762-007 K2303762-007DUP	N FD		0.57 J	3	30.3		0.21		22.4	6.3	34.7 J		26.4		253	0.16 0.17	31.7		1.1 U	0.04		0.031	45	<u>104</u>
			Surf (0-2ft)	11/14/1997				1.4 U	8.1	46.5 J										183 J	0.17					1080 J	0.0411		266
Main Former Mill	FR04	0-0.25 ft	Suii (0-211)	11/14/1997	FR04SS	N	11900	1.4 0	0.1	40.5 J	0.15 J	0.11 J	3820 J	99.9	9.3 J	446 J	16800	178	7060	103 J	0.53	61.5	541 J	0.66 U	0.45 J	1000 J	0.84 U	61.8	200

							E n	*yuc	*5	*-	Ę	* E	ε	*E ni	*	*_			sium	nese*	*^		ium	*#		_	* E	* En	
							E E	Antimo	Arsenic	ric	ı,	Ē	Calciu	For	Cobalt	Copper	5	ad*	Magne	anga	acui	ickeľ	tass	Seleniu	ver*	diur	allic	ınad	*2
					Para	ameter Units	₹ (ma/l/a)	-		Bari.	e e	Cadl	_	5	(mg/Kg)		<u>o</u>	(۳۵/۱۷۵)	≝ (mg/Kg)	E (ma/Ka)	ž (ma/Ka)	∰ (mg/Kg)	(mg/Kg)		≥ S (ma/l/a)	% (ma/ka)	£ (ma/Ka)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(mg/Kg)
					MTCA Ecologic		(mg/Kg) 32600	(mg/Kg) 5	(mg/Kg) 20	(mg/Kg) 102	(mg/Kg) 10	(mg/Kg) 4	(mg/Kg) NL	(mg/Kg) 48	20	(mg/Kg) 50	(mg/Kg) NL	(mg/Kg) 50	NL	(mg/Kg) 1200	(mg/Kg) 0.1	(IIIg/Kg) 48	(IIIg/Kg) NL	(mg/Kg) 0.3	(mg/Kg) 2	(mg/Kg) NL	(mg/Kg) 1	(mg/Kg) 297	86
					A Method B Protective of HH	(SFV)	32600	32	20	16000	160	80	NL	120000	NL	3000	NL	250	NL	11000	24	1600	NL	400	400	NL	5.6	560	24000
Funct, Area	Loc ID	Depth	Zone	Date MTCA Me	ethod B Protective of GW as Sample ID	Type	NL	580	20	NL	4300	1.2	NL	4.8e+006	NL	50	NL	1600	NL	1200	0.07	48	NL	7.4	0.61	NL	0.67	NL	100
Main Former Mill	GWG-1	2-3.5 ft	SubSurf (>2ft)	11/3/2010	GWG-1-2-3.5	N			2.1							26.4				333	0.02 U	32.3							39
Main Former Mill Main Former Mill	GWG-1	5-6.5 ft 7.5-9 ft	SubSurf (>2ft) SubSurf (>2ft)	11/3/2010 11/3/2010	GWG-1-5-6.5 GWG-1-7.5-9	N N			3.8							27.4 37.4				462 360	0.03 U 0.03	32.2 34.7							46 45
Main Former Mill	GWG-1	10-11.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-10-11.5	N			3.2							34.8				366	0.03	41.4							50
Main Former Mill	GWG-1	15-16.5 ft	SubSurf (>2ft)	11/4/2010	GWG-1-15-16.5	N			3.8							42.7				374	0.03 U	45.3							49
Main Former Mill Main Former Mill	GWG-1 GWG-5	20-21.5 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/4/2010 11/3/2010	GWG-1-20-21.5 GWG-5-2-3.5	N N		0.2 U	7.7	92.4		1		82	18	31.7 84.9		66		230 443	0.02 U 0.44	24.7 218		0.2 U	0.2 U		0.2 U	272	26 341
Main Former Mill	GWG-5	5-6.5 ft	SubSurf (>2ft)	11/3/2010	GWG-5-5-6.5	N		0.2 U	8.8	73.9		0.8		34	15.1	96.1		58		500	0.3	80.9		0.2 U	0.2 U		0.2 U	116	236
Main Former Mill	GWG-5A	5-6.5 ft	SubSurf (>2ft)	11/4/2010	GWG-5A-5-6.5	N		1 U	<u>71</u>	395		4 UI		270	84	<u>359</u>		774		<u>3520</u>	0.5	<u>299</u>		1 UI	1 UI		1 UI	375	<u>560</u>
Main Former Mill Main Former Mill	GWG-5A GWG-5A	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/4/2010 11/5/2010	GWG-5A-10-11.5 GWG-5A-15-16.5	N N		0.2 U 0.2 U	3.9 3.5	39.4 32.7		0.5 U 0.6 U		47 39	17.5 13.4	<u>52.2</u> 38.6		3 5		434 384	0.03 0.03 U	53.1 38.8		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	71.7 64.1	60 56
Main Former Mill	GWG-5A GWG-5A	20-21.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-15-16.5 GWG-5A-20-21.5	N		0.2 U	3.2	67.2		0.6 0		49	17.6	64		3		693	0.03 0	42		0.2 0	0.2 U		0.2 U	69.3	57
Main Former Mill	GWG-5A	24-25.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-24-25.5	N		0.2 U	2.7	53		0.5 U		47	18.7	60.7		2		538	0.02 U	<u>49.1</u>		0.2 U	0.2 U		0.2 U	70.1	73
Main Former Mill Main Former Mill	LB01 LB02	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/22/1997 11/22/1997	LB01-0SS LB02-0SS	N N	20100 21000	1.2 U 1.3 U	8.5 J 2.1 J	40.7 J 83.3 J	0.32 J 0.39 J	1 U	6610 J 6700 J	42.5 J 39.7 J	14.8 16.5	47.7 J 67.5 J	31800 30600	7.4 4.1	10100 J 10200 J	296 J 446 J	0.23 0.07 U	41.9 J 42.3 J	941 J 1100 J	1.1 U 0.63 U	0.58 J 0.65 J	1050 J 1300 J	0.73 U 0.79 U	80 70.7	72.3 J 111 J
Main Former Mill	MCH0001	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-001	N			5	45.3		1.1 U		26.3				28.4			0.07 U			2.9 U	2.3 U				
Main Former Mill Main Former Mill	MCH0001	9-9 ft 9-9 ft	SubSurf (>2ft)	9/3/2002 9/3/2002	K2206204-001DUP	FD						4.011									0.14 J								
Main Former Mill	MCH0002 MCH0003	9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/3/2002	K2206204-002 K2206204-003	N N			3.7 4.2	57.9 81.8		1.2 U		28.8 44				181 22.2 J			0.24 J 0.08 J			3 U 3.3 U	2.4 U 2.6 U				
Main Former Mill	MCH0003	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-003DUP	FD			4.4	72.1		1.3 U						8.2 J						3.3 U	2.6 U				
Main Former Mill	MCH0004	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-004	N			4.8	256		1.2 U		58				1110			<u>0.3 J</u>			0.6 J	2.4 U				
Main Former Mill Main Former Mill	MCH0005	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/3/2002 9/3/2002	K2206204-005 K2206204-006	N N			3.1	36.7 51.1		1.1 U		39.9 44.2				8.9 J			0.04 J 0.04 J			2.7 U 2.9 U	2.2 U 2.3 U				
Main Former Mill	MCH0007	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-007	N			4.1	66.1		1.2 U		40.1				38.7			0.14 J			3 U	2.4 U				
Main Former Mill	MCH0008	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-008	N			2.6 J	68.9		1.3 U		41.9				26.1 U			0.05 J			3.3 U	2.6 U				
Main Former Mill Main Former Mill	MCH0009 MCH0009	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/4/2002 9/4/2002	K2206250-001 K2206250-001DUP	N FD			4.6 4.4	70 73.4		0.19 J 0.3 J		48.8				8.3 J 5.7 J			0.04			0.9 J 0.7 J	2.1 U 1.2 J				
Main Former Mill	MCH0010	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-002	N			4.1	60		0.18 J		44.5				3.8 J			0.03			0.8 J	1.1 J				
Main Former Mill	MCH0011 MCH0012	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/4/2002 9/4/2002	K2206250-003 K2206250-004	N N			4.6 4.1	42.5 64.1		0.18 J 0.18 J		28.2 52.3				4.8 J 3.5 J			0.01			1.2 U 1.1 U	2.5 U 2.3 U				
Main Former Mill	MCH0012	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-004 K2206250-005	N			6.6	82.4		0.18 J		52.3				7.4 J			0.04			0.6 J	1.8 J				
Main Former Mill	MCH0014	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-006	N			3.5	42.9		0.24 J		32.7				23.3 U			0.04			1.2 U	1.6 J				
Main Former Mill Main Former Mill	MCH0015 MCH0016	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/4/2002 9/4/2002	K2206250-007 K2206250-008	N N			2.1 1.4	24.5 22.6		0.15 J		18.7 13.7				21.3 U 21.9 U			0.02 0.01 J			1.1 U 1.1 U	0.9 J 1.6 J				
Main Former Mill	MR01	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR01SS	N	11300	94 J	6.5	431	0.15 J	140	5970	162	6.6 J	182 J	25100	334 J	4760	189	0.013	36.7	477 J	0.7 U	0.67 J	666 J	0.88 U	48.1	618
Main Former Mill	MR02	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR02SS	N	11900	0.98 U	3.9	36.8 J	0.18 J	0.06 U	3990	35.6	9.6 J	<u>65.1 J</u>	29300	113 J	6040	318	0.05 U	35.5	666 J	0.47 U	0.7 J	539 J	0.67 U	47.4	225
Main Former Mill	MR03	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR03SS	N	10200	13.8 U	13.8	115	0.08 J	<u>7.5</u>	3910	109	4.5 J	<u>335 J</u>	19400	813 J	3960	150	0.83	39.9	619 J	1.1 U	<u>1.1 J</u>	616 J	1.4 U	88.6	<u>381</u>
Main Former Mill Main Former Mill	MR03 MR03	0-0.25 ft 0.25-3.5 ft	Surf (0-2ft) Surf (0-2ft)	5/20/2003 5/20/2003	K2303763-011 K2303763-012	N N												227 J 35.4 J											
Main Former Mill	MR04	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR04SS	N	10300	5.9 U	7	91.4	0.12 J	0.06 U	15500	39.6	15.1	<u>139 J</u>	62600	205 J	5820	407	0.17	<u>67.3</u>	919 J	0.48 U	<u>1 J</u>	944 J	1.7 U	50.5	1240
Main Former Mill	MR05	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR05SS	N	16300	1 U	2.7	48.5	0.24 J	0.06 U	5180	71.3	13.2	43.2 J	30400	19 J	10400	511	0.05 U	102	710 J	0.49 U	0.72 J	650 J	1.1 U	49.4	81.1
Main Former Mill Main Former Mill	MR06 MR07	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997 11/12/1997	MR06SS MR07SS	N N	16400 13100	1.1 U 2.7 U	5.1 23.9	138 168	0.26 J 0.25 J	0.07 U 3.5	5450 4690	116 62.2	13 7.8 J	71 J 498 J	36900 35000	87.6 J 318 J	9230 5080	613 267	1.3 1.3	100 45.9	725 J 897 J	0.52 U 0.85 U	0.88 J 1.3 J	1130 J 600 J	1.9 U 1.4 U	51.5 59.1	382 447
Main Former Mill	MR08	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR08SS	N	8670	9.6 J	34	90.8	0.13 J	0.07 U	4240 J	236 J	17.6	517 J	150000	481	5300 J	963	0.18 U	128 J	641 J	0.51 U	0.34 J	482 J	1.9 J	45.7	1690
Main Former Mill	MR09	0-0.25 ft	Surf (0-2ft)	11/15/1997	MR09SS	N	9940	1 J	5.5	56.2	0.12 J	0.68 J	2800 J	52.2 J	5.6 J	<u>197 J</u>	16200	159	4250 J	133	0.5	31 J	534 J	0.49 U	<u>0.63 J</u>	254 J	0.62 U	58.8	206
Main Former Mill Main Former Mill	MR10 MR11	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997 11/14/1997	MR10SS MR11SS	N N	12500 9680	1 U 2.8 J	5 J 10.8	54.5 153	0.19 J 0.11 J	0.44 U 0.08 U	4560 J 6630 J	77.5 J 171	9.6 J 8.3 J	64 J	25800 32000	31.1 220	6820 7660	290 J 227 J	0.13 0.57	106 J	724 J 464 J	0.58 U	1.2 J 0.78 J	525 J 566 J	0.61 U 0.82 U	54.3 39.1	<u>572</u>
Main Former Mill	MR11	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/14/1997	MR12SS	N	9240	1.1 U	3.1	35.4 J	0.11 J	0.08 U	4290 J	33.7	5.8 J	136 J 107 J	15300	86.2	4750	146 J	0.57	61.1 26.7	464 J 435 J	0.65 U 0.53 J	3	465 J	0.82 U	35.2	163 171
		0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303678-015	N		0.33 J	4.1	38.7 J		0.95		34.2	10.6	150		90.7 J		253	0.12	33.4		1.1 U	0.05		0.017 J	47.6	601
Main Former Mill	MR20							0.21 J	4.2	71.4		0.2		48.1	11.8	<u>899 J</u>		35.4		365	0.12	47.8 J		1.2 U	0.07 J		0.063	68.6	83.8 J
Main Former Mill	MS20	0.25-5 ft	SubSurf (>2ft)	5/14/2003 5/14/2003	K2303687-004	N FD															0.11								
			SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 5/14/2003 3/10/2011	K2303687-004 K2303687-004D MW-65-5-6.5	FD N			3	32.1		 0.5 U		33	11.4	44.7		7		297	0.11 0.06	36.8		0.2 U	0.2 U		 0.2 U	69	57
Main Former Mill Main Former Mill Main Former Mill Main Former Mill	MS20 MS20 MW-65 MW-65	0.25-5 ft 0.25-5 ft 5-6.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 3/10/2011 3/10/2011	K2303687-004D MW-65-5-6.5 MW-65-15-16.5	FD N N		0.2 U 0.2 U	3 3.1	32.1 25		0.5 U 0.6 U		33 34	11.4 15.7	44.7 48.5		7		297 389	0.06 0.03 U	36.8 <u>50.2</u>		0.2 U 0.2 U	0.2 U		0.2 U 0.2 U	97	57 52
Main Former Mill Main Former Mill Main Former Mill	MS20 MS20 MW-65	0.25-5 ft 0.25-5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/14/2003 3/10/2011	K2303687-004D MW-65-5-6.5	FD N		0.2 U	3	32.1		0.5 U		33	11.4	44.7		7		297	0.06	36.8		0.2 U			0.2 U		57

														ı			I												
																			_	*									i
							Ę	, Y	*.		Ε	*E	_	*E		*			Ë	ese	*_		Ē	* E			*=	<u>*</u>	ı
							n in	ē	nic Si	Ĩ.	Berylliu	Cadmiu	ium	Ē	a lt *	per		*-	nes	gan	l E	* 9	issi	i.	*_	in	Ē	adir	*.
					Para	meter	Alur.	Antin	Arse	Bari	3er)	Sad	Calci	į	Cobalt*	ဝိ	ē	-eac	Mag	Man	Mer	Sic.	ots	Seleniu	Silve	Sodi	Thal	/an	Zinc
					T die	Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
					MTCA Ecologic		32600	5	20	102	10	4	NL	48	20	50	NL	50	NL	1200	0.1	48	NL	0.3	2	NL	1	297	86
					Method B Protective of HH		32600	32	20	16000	160	80	NL	120000	NL	3000	NL	250	NL	11000	24	1600	NL	400	400	NL	5.6	560	24000
Funct. Area	Loc ID	Depth	Zone	Date N	ethod B Protective of GW as Sample ID	Type	NL	580	20	NL	4300	1.2	NL	4.8e+006	NL	50	NL	1600	NL	1200	0.07	48	NL	7.4	0.61	NL	0.67	NL	100
Main Former Mill	MW-69	2-3.5 ft	SubSurf (>2ft)	5/6/2011	MW69-2-3.5	N			3							30		5.9		512	0.04	45.6							59
Main Former Mill	MW-69	5-6.5 ft	SubSurf (>2ft)	5/6/2011	MW69-5-6.5	N			4.4							43.3		11.3		410	0.1	47.3							65
Main Former Mill Main Former Mill	MW-69 MW-69	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW69-10-11.5 MW69-15-16.5	N N			3.7 2.2							48.6 <u>64.7</u>		10 3.4		450 493	0.13 0.07	<u>55</u> <u>53.7</u>							75
Main Former Mill	MW-69	20-21.5 ft	SubSurf (>2ft)	5/6/2011	MW69-20-21.5	N			3.1							43.2		3.4		333	0.06	50.4							79 60
Main Former Mill	MW-69	25-26.5 ft	SubSurf (>2ft)	5/6/2011	MW69-25-26.5	N			4.7							53.8		3		599	0.06	56.9							73
Main Former Mill	MW-69	29-30 ft	SubSurf (>2ft)	5/6/2011	MW69-29-30	N			8.3							<u>56.9</u>		2.9		560	0.04	47.7							61
Main Former Mill Main Former Mill	PC01 PW20	0-0.25 ft 0.25-8.5 ft	Surf (0-2ft) SubSurf (>2ft)	11/10/1997 5/15/2003	PC01SS K2303678-012	N N	3170	7.2 U 0.05 J	10.1 2.7	273 40.5 J	0.03 U	0.09 U 0.08	133000	327 J	4.1 J	265 29	77100	120 J 3.87 J	1040 J	806	0.08 U 0.02	<u>62.6</u> 32.8	14600	0.67 U	0.6 J	1760 J	2.2 J 0.064 J	13.9 J	313 40.3
Main Former Mill	SR01	0.25-6.5 ft	Surf (0-2ft)	11/21/1997	SR01-SS	N	9960	1.1 U	2.7 2.8 J	40.5 J 29 J	0.13 J	1.1 J	3040 J	29 31.9 J	9.7 5.8 J	143 J	18700	3.87 J	5980 J	371 185 J	0.02 0.06 U	32.8 25.7 J	373 J	1.2 U	0.04 0.54 J	181 J	0.064 J	41.7 38.4	79.6 J
Main Former Mill	SR02	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR02-SS	N	7920	1.2 U	1.7 J	26.7 J	0.13	0.89	4130 J	14.6 J	6.1 J	38.7 J	12100	14.1	3950 J	145 J	0.07 U	22.7 J	428 J	0.71 U	0.3 J	345 J	0.75 U	25.9	193 J
Main Former Mill	SR03	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR03-SS	N	3810	3.8	<u>36.9 J</u>	56.3 J	0.04 U	4.4 U	3780 J	93.1 J	16 J	<u>613 J</u>	109000	53.9	2090 J	451 J	0.09 U	<u>74.3 J</u>	702 J	4.9 U	<u>2.5 J</u>	471 J	1.1 U	25.6	95.4 J
Main Former Mill	SR03	0.25-11 ft	SubSurf (>2ft)	5/19/2003	K2303763-003	N		1.41 J	3.2 J	32.4		0.18		38.5	12.5	<u>59.6 J</u>		16.8 J		252 J	0.64	49.8		0.3 J	0.06		0.123	49.5	60.2 J
Main Former Mill Main Former Mill	SR04 SR20	0-0.25 ft 0.25-7 ft	Surf (0-2ft)	11/21/1997 5/19/2003	SR04-SS K2303763-005	N N	9060	1.2 U	1.5 J	24.7 J	0.15 J	0.75 J	2670 J	20.4 J	7 J	48.6 J	16700	71.8	4070 J	183 J	0.06 U	18.3 J	357 J	0.57 U	0.45 J	1150 J	0.72 U	42.1	53.8 J
Main Former Mill	SR20 SR21	0.25-7 π 0.25-3 ft	SubSurf (>2ft) Surf (0-2ft)	5/19/2003	K2303763-005 K2303687-018	N		1.61 J 0.09 J	8.5 J 2.2	65.4 36.3		0.32		35.2 25.2	11 13.4	104 J 32.5 J		43.3 J 14.8		344 J 199	0.1 0.08	46.2 44.9 J		0.4 J 1.1 U	0.3 0.05 J		0.046 0.101	60.1 44.2	211 J 71.5 J
Main Former Mill	SR22	0.25-5 ft	SubSurf (>2ft)	5/14/2003	K2303687-006	N		0.16 J	2.5	53.1		0.12		33	11.4	36 J		11.7		416	0.09	35.9 J		1.2 U	0.04 J		0.028	72.6	42.3 J
Main Former Mill	SR23	0-0.25 ft	Surf (0-2ft)	5/14/2003	K2303687-007	N												199											
Main Former Mill	SR23 SR23	0.25-13 ft 0.25-13 ft	SubSurf (>2ft)	5/14/2003 5/20/2003	K2303687-008 K2303763-015	N N		0.42 J	3.5	55.5		0.27		30.2	8.7	126 J 28.3 J		150		277	0.9	42.6 J		1.2 U	0.05 J		0.028	41.8	106 J
Main Former Mill Main Former Mill	SR23	0.20 .0	SubSurf (>2ft) SubSurf (>2ft)	5/20/2003	K2303763-015	N		0.17 J 6.04 J	3.4 J 24.2 J	28 18.2		0.17 0.1		28.9 9.1	9.3 2.5	28.3 J		16.8 J 316 J		298 J 72.5 J	0.04 3.71	30.1 17		1.2 U 0.4 J	0.05 0.04		0.048	57.8 6.1	48.5 J 9.6 J
Main Former Mill	SSB-1	7-8.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-7-8.5	N		0.2 U	14.5	78.8		0.3		36.1	8.4	74.3		98		310	2.2	29.4		0.2 U	0.2 U		0.2 U	41.2	132
Main Former Mill	SSB-1	10-11.5 ft	SubSurf (>2ft)	10/25/2010	DUPE2-102510	FD		0.2 U	4.6	41.1		0.5		32.1	8.6	38.2		23		202	0.21	33.8		0.2 U	0.2 U		0.2 U	40.5	64
Main Former Mill	SSB-1	10-11.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-10-11.5	N		0.2 U	2.4	49.2		0.2 U		31.3	7.9	28.2		22		191	0.36	26.9		0.2 U	0.2 U		0.2 U	41.4	44
Main Former Mill Main Former Mill	SSB-1 SSB-1	15-16.5 ft 25-26.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/25/2010 10/25/2010	SSB-1-15-16.5 SSB-1-25-26.5	N N		0.2 U 0.2 U	3.3	22.2 30.8		0.2 U 0.2 U		28.7 26.8	8.3	24.7		2		397 252	0.03 U 0.02 U	40 28.1		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	57	39 47
Main Former Mill	SSB-4	5-6.5 ft	SubSurf (>2ft)	10/23/2010	SSB-4-5-6.5	N		0.2 U	1.3 4.3	55.3		0.2 U		58	8.3 15	<u>57</u> <u>56.5</u>		16		377	0.02 0	53.3		0.2 U	0.2 U		0.2 U	25.7 80.6	80
Main Former Mill	SSB-4	10-11.5 ft	SubSurf (>2ft)	10/22/2010	SSB-4-10-11.5	N		0.2 U	3.4	64		0.5 U		51	19.3	61.3		3		455	0.03	55.7		0.5 U	0.2 U		0.2 U	72.5	86
Main Former Mill	SSB-4	15-16.5 ft	SubSurf (>2ft)	10/22/2010	SSB-4-15-16.5	N		0.2 U	4.4	45.5		0.6 U		52	16	<u>52.7</u>		5		422	0.03	62.2		0.2 U	0.2 U		0.2 U	52.5	62
Main Former Mill Main Former Mill	SSB-4 TB01	21-22.33 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	10/22/2010	SSB-4-21-22.33 TB01SS	N N	13700	0.2 U 1.3 U	1.8	34 40 J	0.18 J	0.2 0.08 U	4590	28 41.3	7.3 7.3 J	118	20300	1 72 1	7120	279 197	0.02 U	37.3 31.9	404 J	0.2 U	0.2 U 0.48 J	 1430 J	0.2 U	45.8 49.2	83 73.2
Main Former Mill	TB01	0-0.25 ft	Surf (0-2ft)	11/13/1997	TB02SS	N	18100	1.3 U	3.3 J	45.9	0.18 J	0.51 U	6280 J	40.1 J	13.9	106 J 71.1 J	31000	73 J 38.9	10800	320 J	0.73 0.56	45.6 J	713 J	1.4	1.8 J	1660	0.82 J 0.62 U	70.3	79.8
Main Former Mill	TP-10	2-2 ft	Surf (0-2ft)	1/6/2011	TP-10-2'	N												330											
Main Former Mill	TP-10	3-3 ft	SubSurf (>2ft)	1/6/2011	TP-10-3'	N												72											
Main Former Mill	TP-14	2-2 ft	Surf (0-2ft)	1/6/2011	TP-14-2'	N												577											
Main Former Mill	TP-14	3-3 ft	SubSurf (>2ft)	1/6/2011	TP-14-3'	N												140											
Main Former Mill Main Former Mill	TP-14 TP-21	5-5 ft 3-3 ft	SubSurf (>2ft) SubSurf (>2ft)	1/6/2011 1/7/2011	TP-14-5' TP-21-3'	N N												4 10											
North Shoreline	BS01	0-0.25 ft	Surf (0-2ft)	11/21/1997	BS01-SS	N	9640	1 U	0.88 U	30.1 J	0.17 J	0.67 J	3330 J	20.4 J	7.3 J	25.2 J	16500	3.4		277 J		28 J	536 J	0.82 U	0.44 J	238 J	0.62 U		
North Shoreline	BS01 BS02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997	BS01-SS BS02-SS	N N	10900	1.1 U	0.88 U	30.1 J 32.1 J	0.17 J 0.21 J	0.67 J	3330 J 3840 J	20.4 J 22.9 J	7.3 J 7.7 J	25.2 J 37.9 J	18000	2.7	5120 J 5660 J	277 J 289 J	0.05 U 0.05 U	28 J 27.6 J	536 J 528 J	0.82 U	0.44 J 0.55 J	238 J 272 J	0.62 U	32.2 34.9	59.7 J 40.6 J
North Shoreline	CS20	0.25-9 ft	SubSurf (>2ft)	5/19/2003	K2303762-017	N		0.08 J	2.6	21.5		0.14		18.8	6.1	17 J		6.52		174	0.04	35.1		1.2 U	0.03		0.057	26	109
North Shoreline	DK20	0.25-7 ft	SubSurf (>2ft)	5/15/2003	K2303678-008	N		0.04 J	1.8	32.8 J		0.08		22.2	10	26.6		2.84 J		467	0.02 J	26.1		1.1 U	0.03		0.039 J	46.7	30.4
North Shoreline	PC02	0-0.25 ft	Surf (0-2ft)	11/10/1997	PC02SS	N	1310	1.3 U	1.8 U	20.4 J	0.03 U	0.08 U	768 J	15.6 J	1.1 J	20.3	7460	4.9 J	402 J	53.7	0.07 U	2.6 U	812 J	0.63 U	0.22 U	438 J	0.79 U	6.2 J	15.2
North Shoreline North Shoreline	PC20 PC20	0.25-11 ft 0.25-11 ft	SubSurf (>2ft) SubSurf (>2ft)	5/19/2003 5/19/2003	K2303763-001 K2303763-001D	N FD		0.62 J 0.44 J	2.8 J 3.8 J	23.4 23.1		0.15 0.15		18.1 18.9	7 5.9	22.9 J		8.37 J 12.5 J		252 J 220	<u>0.15</u>	25.7 24.1		1.1 U 1.1 U	0.04		0.07 0.053	33.5 30	57.8 J 45.7 J
NW Shoreline	GB01	0.25-11 It	Surf (0-2ft)	11/4/1997	LY07SS-GB01	N	21800	1.7 U	3.4 J	214	0.25 J	3.7	43600	35.5	13.9 J	129 J	27800	64.2	12000	1770	0.2 U	41.3	4720	0.8 U	0.03 0.79 J	4770 J	1 U	70.5	
NW Shoreline	GB01	0-2 ft 2-4 ft	Surr (0-2rt) SubSurf (>2ft)	11/4/1997	LY07SS-GB01 LY08SB-GB01	N	10800	1.7 U	2.6 U	55.4	0.25 J 0.14 J	0.42 J	68100	35.5 27.1 J	7.3 J	37.3	15200	9.1 J	7910	697	0.2 U	27.9	4110	0.8 U	0.79 J 0.33 J	2210 J	0.71 U	70.5 44.3	638 58.6
NW Shoreline	GB01	4-6 ft	SubSurf (>2ft)	11/11/1997	LY25SB-GB01	N	13000	1.1 U	2.2 U	31.9 J	0.2 J	0.07 U	56800	25.4 J	9.9 J	36.3	20000	24.7 J	7420	323	0.06 U	30.5	1810	0.53 U	4.2	983 J	0.67 U	44.7	37.3
NW Shoreline	GB04	0-2 ft	Surf (0-2ft)	11/4/1997	LY01SS-GB04	N	19300	2.2 U	2.7 J	133	0.19 J	3_	37000	27.7	12.8 J	<u>89 J</u>	25000	37.8	9800	<u>1230</u>	0.2 U	31.7	3660	1.1 U	0.69 J	3700 J	1.3 U	70	<u>402</u>
NW Shoreline	GB05	0-2 ft	Surf (0-2ft)	11/4/1997	LY05SS-GB05	N	11800	2.4 U	2 U	45 J	0.16 J	0.71 J	20000	17.3	8.9 J	47.2 J	17000	24	6540	627	0.2 U	23.4	1130 J	1.2	0.4 U	1680 J	1.4 U	46.5	69.1
NW Shoreline NW Shoreline	GB05 GB06	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/10/1997	LY06SB-GB05 LY09SS-GB06	N N	16600 31400	1.1 U 1 U	4.7 0.88 U	41.9 J 40.8 J	0.24 J 0.39 J	0.07 U 0.57 J	16900 21500	32.2 J 8.5	10.4 J 15.7	49.4 48.4 J	26200 24000	28 J 8.5	9480 8480	539 602	0.06 U 0.2 U	47.8 13.4	1240 1120	0.54 U 0.49 U	0.48 J 0.27 J	3370 J 3790 J	0.68 U 0.62 U	71.2 70.2	83.3 37.1
NW Shoreline	GB07	0-2 ft	Surf (0-2ft)	11/4/1997	LY11SS-GB07	N	9970	1.1 U	2.6	27.5 J	0.12 J	0.53 J	44100	14.9	8.8 J	37.2 J	16200	19.7	5410	565	0.2 U	24.1	777 J	0.53 U	0.27 J	690 J	0.67 U	38.9	58.3
NW Shoreline	GB07	2-4 ft	SubSurf (>2ft)	11/12/1997	LY12SB-GB07	N	14400	1 U	3	32.3 J	0.2 J	0.06 U	8820	23.1	8.7 J	30.5 J	19200	144 J	6340	298	0.05 U	27.9	822 J	0.49 U	0.39 J	1130 J	0.7 U	48.1	39.6
NW Shoreline	GB07	4-6 ft	SubSurf (>2ft)	11/12/1997	LY14SB-GB07	N	12900	1.1 U	2.4	36.9 J	0.21 J	0.07 U	12100	25.4	9.1 J	29.1 J	19900	51.6 J	6200	302	0.06 U	27.6	776 J	0.51 U	0.4 J	631 J	1.4 U	49.6	44.4

							ε	*>			_	*-		* # In					Ę	*es*			Ε	*-			*	*=	
							nin n	ntimon	*uic*	*E	erylliun	Cadmiun	Ë	hromiu	# <u></u>	per*		*	nesi	gane	cury*	* <u>-</u>	assiu	Selenium	*	in H	E E	adinı	*.
					Para	meter	- Alur	Anti	Arse	Barium	Bery	Cad	Calc	Chr	Cobal	Coppe	<u>10</u>	Lead	Mag	Man	Merc	Nickel*	Pota	Sele	Silve	Sod	Thall	Van	Zinc
						Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
				MTCA	MTCA Ecologic A Method B Protective of HH		32600 32600	5 32	20 20	102 16000	10 160	4 80	NL NL	48 120000	20 NL	50 3000	NL NL	50 250	NL NL	1200 11000	0.1 24	48 1600	NL NL	0.3 400	2 400	NL NL	1 5.6	297 560	86 24000
				MTCA M	ethod B Protective of GW as		NL	580	20	NL	4300	1.2	NL	4.8e+006	NL	50	NL	1600	NL	1200	0.07	48	NL	7.4	0.61	NL	0.67	NL	100
Funct. Area NW Shoreline	Loc ID GB07	Depth 6-8 ft	Zone SubSurf (>2ft)	Date 11/12/1997	Sample ID LY27SB-GB07	Type N	11300	1.1 U	1.5 J	25.6 J	0.18 J	0.07 U	4670	23	8.7 J	21.9 J	18500	7.5 J	6380	239	0.12	27.3	461 J	0.53 U	0.35 J	422 J	1.1 U	37.9	36.1
NW Shoreline	GB07	0-0.25 ft	Surf (0-2ft)	5/12/2003	K2303593-010	N			1.5 J	25.6 J	U. 16 J		4670		6.7 J			31.1			<u>0.12</u>		4613	0.53 0		422 J			30.1
NW Shoreline	GB08	0-2 ft	Surf (0-2ft)	11/4/1997	LY13SS-GB08	N	11500	1.2 U	2.9	49.8 J	0.19 J	0.56 J	28500	18.4	8.2 J	34.5 J	17200	33.2	6260	1320	0.2 U	27.9	948 J	0.59 U	0.44 J	723 J	0.75 U	38.8	83.2
NW Shoreline NW Shoreline	GB08 GB08	0.25-7 ft 2-4 ft	SubSurf (>2ft) SubSurf (>2ft)	5/12/2003 11/12/1997	K2303593-009 LY29SB-GB08	N N	1360	 1 U	9.2	28.7 J	0.02 U	0.07 U	102000	13.6	 1 J	18.8 J	3680	5.93 8610 J	999 J	132	0.05 U	8.9	395 J	0.5 U	 0.17 U	 279 J	0.62 U	43.8	28.6
NW Shoreline	GB09	0-2 ft	Surf (0-2ft)	11/4/1997	LY03SS-GB09	N	15100	1.3 U	2.4 J	52.6 J	0.23 J	0.95 J	11000	31.7	10.9 J	50 J	25600	65	8030	525	0.2 U	34.6	1080 J	0.62 U	0.49 J	1680 J	0.78 U	45.4	153
NW Shoreline	GB09	2-4 ft	SubSurf (>2ft)	11/10/1997	LY04SB-GB09	N	16600	0.99 U	2.4	46.6	0.27 J	0.06 U	5100	28.9 J	9.9 J	35.8	24200	4.8 J	8310	402	0.05 U	33.6	699 J	0.47 U	0.43 J	1580 J	0.6 U	47.5	40.6
NW Shoreline NW Shoreline	GB10 LY15	10-10 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/11/1997 11/4/1997	LY10SB-GB10 LY15SS	N	20800 13700	1.2 U	2.3 U 3.3	60.7 59.1	0.36 J 0.25 J	0.07 U 0.57 J	5680 9640	36.2 J 26	16.5 10.5 J	70.4 32.7 J	35700 21800	25 J 26.7	11300 6870	511 330	0.12 U 0.2 U	37.9 29.5	794 J 976 J	0.56 U 0.57 U	0.91 J 0.35 J	514 J 1240 J	1.1 J 0.71 U	85.4 48.2	58.8 55
NW Shoreline	LY16	0-2 ft	Surf (0-2ft)	11/4/1997	LY16SS	N	9460	1.4 U	2.5 J	28.4 J	0.23 J	0.96 J	22000	18.1	7.7 J	41.1 J	18700	62.8	6590	347	0.2 U	23.2	844 J	0.68 U	0.33 J	1860 J	0.71 U	38.5	142
NW Shoreline	LY24	0-0.25 ft	Surf (0-2ft)	5/12/2003	K2303593-005	N		0.04 J	2.1	48.7		0.12		33	14.2	<u>62.9</u>		3.59		572	0.01 J	39.4		1 U	0.07		0.04	85.2	49.2
NW Shoreline NW Shoreline	LY24 LY25	0.25-6.5 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5/12/2003 5/12/2003	K2303593-006 K2303593-007	N N		0.24 J 0.14 J	2.5	85.2 54.2		0.2		34.3 38.6	11.5 12.4	55.3 41.3		62.5 5.91		892 569	0.17 0.03	<u>57.8</u> 48.4		1.1 U	0.07		0.046	79.1 68.4	51.3 74
NW Shoreline	LY25	0.25-8 ft	SubSurf (>2ft)	5/12/2003	K2303593-008	N		0.07 J	2.3	59		0.09		34	12.4	39.4		3.85		486	0.03	43.1		1.1 U	0.06		0.039	58.1	48.5
NW Shoreline NW Shoreline	MW-61 MW-61	5-6.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 10/19/2010	MW-61-5-6.5 MW-61-10-11.5	N N												3 8											
NW Shoreline	MW-61	15-16.5 ft	SubSurf (>2ft)	10/19/2010	MW-61-15-16.5	N												2											
NW Shoreline	MW-61	20-21.25 ft	SubSurf (>2ft)	10/19/2010	MW-61-20.21.25	N												1											
NW Shoreline	MW-67	2-3.5 ft	SubSurf (>2ft)	3/9/2011	MW-67-2-3.5	N		0.2 U	3.5	50.4		0.5 U		30	11.6	38.8		1140		449	0.03	43.7		0.2 U	0.2 U		0.2 U	56	46
NW Shoreline NW Shoreline	MW-67 MW-67	15-16.5 ft 25-25.5 ft	SubSurf (>2ft) SubSurf (>2ft)	3/9/2011 3/9/2011	MW-67-15-16.5 MW-67-25-25.5	N N		0.2 U 0.2 U	2.9	44.5 31.9		0.6 U 0.2 U		34 20.8	13 6.2	37.7 12.4		37 2		426 224	0.03 U 0.02 U	43.2 36.1		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	70 35.3	49 22
NW Shoreline	PA01	0-2 ft	Surf (0-2ft)	11/15/1997	PA01-0SS	N	13600	1 J	3	102	0.19 J	0.06 U	37800 J	27 J	12.6	89.5 J	20300	30	12000 J	<u>1900</u>	0.22	<u>153 J</u>	799 J	0.49 U	0.58 J	1970	<u>1.4 J</u>	138	57.9
NW Shoreline NW Shoreline	PA02 PA03	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/15/1997 11/15/1997	PA02-0SS PA03-0SS	N N	20200 21500	0.98 J 0.94 J	1.8 J 1.9 J	37.3 J 27.8 J	0.29 J 0.25 J	0.06 U 0.06 U	6940 J 10100 J	34.3 J 19.9 J	14.5 13.3	65.9 J 79.7 J	30500 24500	9.2	10300 J 8390 J	506 334	0.05 U 0.05 U	36.4 J 26.3 J	751 J 551 J	0.47 U 0.45 U	0.51 J 0.49 J	980 J 2800	0.59 U 0.59	60.1 53.6	47.6 33.1
NW Shoreline	PA04	0-2 ft	Surf (0-2ft)	11/15/1997	PA04-0SS	N	17300	1 J	4	49.5	0.23 J	0.06 U	5120 J	32.3 J	11.1	48 J	27500	5.9	8010 J	510	0.05 U	31.1 J	924 J	0.48 U	0.49 J	498 J	0.61 U	52.4	49
NW Shoreline	PA04	2-4 ft	SubSurf (>2ft)	11/15/1997	PA04-2SB	N	15900	0.93 J	4.4	53	0.27 J	0.06 U	4960 J	31.7 J	10.5	45.1 J	25500	5.1	7360 J	408	0.05 U	32.1 J	758 J	0.45 U	0.63 J	495 J	<u>1.1 J</u>	47	43.5
NW Shoreline	PA04	4-6 ft	SubSurf (>2ft)	11/15/1997	PA04-4SB	N	15600	0.98 J	3	47.4	0.26 J	0.06 U	5040 J	29.5 J	10.8	32.2 J	24800	4.1	7220 J	419	0.05 U	28.6 J	825 J	0.47 U	0.5 J	351 J	0.59 U	49.1	43.7
Prefab Prefab	PF02 PF02	0-0.25 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	5/16/2003 11/18/1997	K2303762-010 PF02-0SS	N N	20900 J	0.95 U	 3.1 J	95.1 J	0.28 J	0.36 J	27900 J	63.8 J	 11.7 J	43.6 J 9370 J	25100	17.2 J	9650	1760 J	0.05 U	45.8 J	 5540 J	0.45 U	42.3 J	6020 J	 0.57 U	82.7 J	56.7 J
Prefab	PF02	2-4 ft	SubSurf (>2ft)	11/18/1997	PF02-2SB	N	19400 J	1.2 U	2.7 J	61.9 J	0.34 J	0.07 U	5760 J	36.2 J	11.3 J	165 J	29700	5.4 J	8440	417 J	0.06 U	33.6 J	898 J	0.56 U	0.7 J	644 J	0.71 U	62.7 J	63.5 J
Prefab	PF03	0-2 ft	Surf (0-2ft)	11/18/1997	PF03-0SS	N	16600 J	1 U	1.6 J	46.3 J	0.29 J	0.4 J	4240 J	30.7 J	12.4 J	<u>161 J</u>	27100	10 J	8320	486 J	0.06 U	34.1 J	642 J	0.5 U	0.3 J	1590 J	0.63 U	50.5 J	72.3 J
Prefab Prefab	PF03 PF03	2-4 ft 4-6 ft	SubSurf (>2ft) SubSurf (>2ft)	11/18/1997 11/18/1997	PF03-2SB PF03-4SB	N N	13000 J 19300 J	1.1 U 1.2 U	2.6 J 2.6 J	44.1 J 61.1 J	0.27 J 0.4 J	0.32 J 0.08 U	3420 J 4230 J	25 J 37.1 J	11.4 J 12.7 J	103 J 37.5 J	18800 28600	5.6 J 4.3 J	5480 7860	367 J 401 J	0.06 J 0.08 J	23.7 J 32 J	476 J 578 J	0.54 U 0.58 U	0.67 J 0.29 J	491 J 436 J	0.68 U 0.73 U	44.3 J 62.7 J	51.5 J 53.1 J
Prefab	PF03	6-8 ft	SubSurf (>2ft)	11/18/1997	PF03-6SB	N	20100 J	1.2 U	4.1 J	67 J	0.44 J	0.12 J	4930 J	40.8 J	14.9 J	88.7 J	28700	5.9 J	8650	483 J	0.06 U	36.4 J	590 J	0.59 U	0.3 J	436 J	0.74 U	65.4 J	65.3 J
Prefab	PF03	8-10 ft	SubSurf (>2ft)	11/18/1997	PF03-8SB	N	13200 J	1 U	1.6 J	48.3 J	0.24 J	0.06 U	3530 J	24.5 J	8 J	32.5 J	16500	3.5 J	5560	244 J	0.05 U	22 J	546 J	0.48 U	0.17 U	300 J	0.61 U	35.5 J	39.8 J
Prefab Prefab	PF03 SSB-9	16-18 ft 2-3.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/18/1997 10/27/2010	PF03-16SB SSB-9-2-3.5	N N	12300 J	0.97 U 0.2 U	2.3 J 5.3	27.9 J 85.4	0.2 J	0.63 J 0.6 U	5210 J	21.3 J 54	12.1 J 20.1	183 J 46.1	18500	5.8 J 5	6360	189 J 634	0.05 U 0.08	25.8 J 44.2	446 J	0.47 U 0.2 U	0.2 J 0.2 U	332 J	0.59 U 0.2 U	49.1 J 77	53.2 J 67
Prefab	SSB-9	5-6.5 ft	SubSurf (>2ft)	10/27/2010	SSB-9-5-6.5	N		0.2 U	4.7	82.3		0.6 U		55	17.9	45.2		5		564	0.08	41.2		0.2 U	0.2 U		0.2 U	75	66
Prefab Prefab	SSB-9 SSB-9	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/27/2010	SSB-9-10-11.5 SSB-9-15-16.5	N N		0.2 U 0.3 U	9.7 3.2	128 87.7		0.6 U 0.3 U		49 44.2	17.3 13.1	<u>54.3</u> 33.9		5 4		622 240	0.08 0.05	49.2 40.7		0.2 U 0.3 U	0.2 U 0.3 U		0.2 U 0.3 U	77 69	72 62
Prefab	SSB-9	20-21.25 ft	SubSurf (>2ft)	10/27/2010	SSB-9-20-21.5	N		0.3 U	1.3	45.8		0.5 U		43	17.5	82.9		2		413	0.03 U	48.5		0.3 U	0.3 U		0.3 U	94	57
Prefab	SSB-9	25-26 ft	SubSurf (>2ft)	10/27/2010	SSB-9-25-26	N										67.4						46.5						72	
Prefab	SSB-9	30-31.5 ft	SubSurf (>2ft)	10/27/2010	SSB-9-30-31.5	N										63.8						42.2						83	
West Former Mill West Former Mill	BP20 FOT-EX-10	0.25-8 ft 11.5-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/13/2003 8/7/2006	K2303593-014 FOT-EX-10-[080706]-11.5	N		0.76 J	4.9	93.9		0.57		44.7	25.1	66.4		44.7 1.3		465	<u>0.15</u>	<u>572</u>		2.2 U	0.07		0.032 J	1400	97.5
West Former Mill	HF01	0-2 ft	Surf (0-2ft)	11/13/1997	HF01-0SS	N	15900	1.2 U	5.1 J	56.9	0.24 J	0.18 J	4650 J	29.7 J	9.8 J	43.9 J	22300	6.8	6880	355 J	0.06 U	35.1 J	1000 J	1.2 U	1.2 J	533 J	0.71 U	53.5	48.2
West Former Mill	HF01	2-4 ft	SubSurf (>2ft)	11/13/1997	HF01-2SB	N	14700	1.2 U	3.2 J	16.6 J	0.18 J	0.16 J	6970 J	29.9 J	11 J	39.8 J	23200	2.7	9060	323 J	0.07 U	30.1 J	1160 J	0.82 U	1.3 J	915 J	0.73 U	58.9	42.3
West Former Mill West Former Mill	HF02 HF02	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/13/1997 11/13/1997	HF02-0SS HF02-2SB	N N	12100 19800	1.2 U 1 U	4.5 1.4 J	30.2 J 16.5 J	0.2 J 0.22 J	0.29 J 0.37 U	9830 J 8700 J	26.6 J 34.6 J	11.6 J 17.1	59.7 J 61.9 J	24800 30600	3.7	8890 12900	340 J 382 J	0.06 U 0.05 U	32.1 J 45.2 J	1220 J 937 J	1.1 U 1.6 U	1.4 J 1.5 J	1250 J 1850	0.71 U 0.62 U	55.4 72.9	46.8 51.8
West Former Mill	HF03	2-4 ft	SubSurf (>2ft)	11/13/1997	HF03-2SB	N	12500	1.2 U	1.4 J	12.4 J	0.22 J	0.07 U	9480 J	23.2	9.2 J	30.5 J	19800	1.9	7300	253 J	0.06 U	25.2	863 J	0.56 U	0.51 J	1510 J	0.02 U	39.5	34.7
West Former Mill	HF04	0-2 ft	Surf (0-2ft)	11/14/1997	HF04-0SS	N	7850	1.2 U	1.1 J	28.4 J	0.13 J	0.07 U	2600 J	15.7	5.3 J	15.3 J	10900	2.31	3330	150 J	0.06 U	17.2	770 J	0.56 U	0.25 J	414 J	0.71 U	27.4	21.1
West Former Mill West Former Mill	HF04 HF05	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/14/1997	HF04-2SB HF05-0SS	N N	10100 12200	1.2 U 1.1 U	3.7 3.3	15.7 J 87	0.18 J 0.22 J	0.08 U 0.07 U	5370 J 3450 J	21.5 148	7.1 J 7.8 J	20.6 J 29 J	17800 20500	5.5 8.2	5860 5210	246 J 327 J	0.06 U 0.06 U	22.9 37.8	850 J 1370 J	0.6 U 0.59 J	48.8 0.56 J	945 J 646 J	0.75 U 0.65 U	43.1 44	33.4 39.7
West Former Mill	HF05	2-4 ft	SubSurf (>2ft)	11/14/1997	HF05-2SB	N	9300	1.2 U	1.3 J	20.6 J	0.15 J	0.08 U	45900 J	18.1	6.4 J	32.3 J	14600	584	5010	211 J	0.06 U	18.7	1010 J	0.6 U	0.21 U	1610 J	0.75 U	35	28.4
West Former Mill	HF06	0-2 ft	Surf (0-2ft)	11/14/1997	HF06-0SS	N	15100	1.3 U	3.2	56.4	0.26 J	0.08 U	5370 J	28.1	10.4 J	29 J	21700	4	7470	350 J	0.07 U	33.7	1480 J	0.6 U	<u>0.84 J</u>	1280 J	0.76 U	50.3	45.4

																	1												
							E	*>			_	*_		*E					in m	*es			Ε	*_			*	*	I
							nin u	mon	enic*	*un	lim.	mig	E I	omiu	alt*	per*		*	Sət	gane	cury*	* <u>*</u>	assiu	Selenium	*_	in	E E	adiur	*.
					Para	ameter	Alur	Anti	Ars	Bari	Ber	Cad	Calc	r.	Cobalt*	Cop	<u>lo</u>	Leac	Magı	Man	Me	Nic	Pot	Sele	Silver*	Sodi	Tha	Van	Zinc
					MTCA Ecologic	Units	(mg/Kg) 32600	(mg/Kg) 5	(mg/Kg) 20	(mg/Kg) 102	(mg/Kg) 10	(mg/Kg)	(mg/Kg) NL	(mg/Kg) 48	(mg/Kg) 20	(mg/Kg) 50	(mg/Kg) NL	(mg/Kg) 50	(mg/Kg) NL	(mg/Kg) 1200	(mg/Kg) 0.1	(mg/Kg) 48	(mg/Kg) NL	(mg/Kg) 0.3	(mg/Kg)	(mg/Kg) NL	(mg/Kg)	(mg/Kg) 297	(mg/Kg) 86
					A Method B Protective of HH	(SFV)	32600	32	20	16000	160	80	NL	120000	NL	3000	NL	250	NL	11000	24	1600	NL	400	400	NL	5.6	560	24000
Funct. Area	Loc ID	Depth	Zone	MTCA Me	ethod B Protective of GW as Sample ID	Type	NL	580	20	NL	4300	1.2	NL	4.8e+006	NL	50	NL	1600	NL	1200	0.07	48	NL	7.4	0.61	NL	0.67	NL	100
West Former Mill	HF06	2-4 ft	SubSurf (>2ft)	11/14/1997	HF06-2SB	Ň	10300	1.1 U	0.93 U	15.4 J	0.19 J	0.07 U	3490 J	18.6	9 J	33.3 J	18100	1.4	6880	233 J	<u>0.08 J</u>	27.5	1260 J	0.52 U	0.46 J	994 J	0.66 U	35.3	32.7
West Former Mill West Former Mill	HF07 HF07	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/20/1997 11/20/1997	HF07-0SS HF07-2SB	N N	22100 13200	1 U 1.1 U	2.6 U 0.91 U	22.7 J 17.7 J	0.32 U 0.24 U	0.85 U 0.88 J	8270 J 5740 J	42.1 J 21.7 J	15.7 8.3 J	48.3 J 143 J	35400 20600	2.6 U 5.3 J	12100 J 6740 J	456 J 280 J	0.06 J 0.05 U	39.8 J 23.3 J	1800 J 756 J	0.59 J 0.51 U	0.22 J 0.22 J	1270 403 U	0.63 U 0.64 U	94.1 J 49.4 J	59.8 J 49.6 J
West Former Mill	HF08	0-2 ft	Surf (0-2ft)	11/20/1997	HF08-0SS	N	16200	1.1 U	3.2 U	20 J	0.25 U	0.65 U	7590 J	170 J	11.4	66.4 J	28100	10 J	8330 J	335 J	0.05 U	40.8 J	1170 J	0.51 U	0.18 U	842 J	0.64 U	77 J	55.8 J
West Former Mill West Former Mill	HF08 HF09	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/20/1997 11/19/1997	HF08-2SB HF09-0SS	N N	14500 8780 J	4.3 1.2 U	2.6 U 2.4 J	25.6 J 20.8 J	0.22 U 0.19 J	0.91 J 0.25 J	4640 J 3140 J	29 J 18.1 J	10 J 5.1 J	121 J 25.9 J	18900 12200	8.8 J 3.9	7220 J 4490	221 J 183	0.06 U 0.07 U	28.3 J 15.7 J	1190 J 770 J	0.62 J 0.67 J	0.19 U 0.2 U	687 J 537 J	0.69 U 0.74 U	50.8 J 35.5 J	58.6 J 27.7 J
West Former Mill	HF09	2-4 ft	SubSurf (>2ft)	11/19/1997	HF09-2SB	N	12800 J	1.1 U	1.5 J	16.5 J	0.22 J	0.49 J	5230 J	25 J	7.7 J	69.3 J	18800	7.5	6390	234	0.06 U	24.1 J	870 J	0.54 U	0.27 J	823 J	0.68 U	41.5 J	39.6 J
West Former Mill West Former Mill	MW-60 MW-60	2-3.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 10/19/2010	MW-60-2-3.5 MW-60-10-11.5	N N												32 10											
West Former Mill	MW-60		SubSurf (>2ft)	10/19/2010	MW-60-15-16.5	N												12											
West Former Mill West Former Mill	MW-60 MW-60		SubSurf (>2ft) SubSurf (>2ft)	10/19/2010 10/19/2010	MW-60-20-20.75 MW-60-23-24.4	N N												11 2											
West Former Mill	MW-68	55-55 ft	SubSurf (>2ft)	5/18/2011	MW-68-55	N			1.2							8.8		1.3		174	0.02 U	27.6							23
West Former Mill West Former Mill	PS20 RB01	0.25-6.5 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5/15/2003 11/10/1997	K2303678-010 RB01SS	N N	4790	0.47 J 46.5 J	4.6 250	303 J 169	0.05 U	0.11 0.14 U	4980	48.7 222 J	7.9 24.4	23.7 744	264000	3.83 J 336 J	 1640 J	1580 1220	0.02 0.13 U	33 149	1200 J	1.1 U 1 U	0.04 2.2 J	622 J	0.032 J <u>7</u>	38.7 88.8	26.1 2300
West Former Mill	RB01	0-0.25 ft	Surf (0-2ft)	5/13/2003	K2303600-001	N			4.7																				
West Former Mill West Former Mill	RB01 RB02	0.25-7 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5/13/2003 11/10/1997	K2303593-015 RB02SS	N N	3340	0.71 J 4 U	6.3 18.9	51.4 65.8 J	0.05 U	0.67 0.14 U	11600	33.2 89.7 J	10.2 13.4 J	43 220	108000	27.1 159 J	 1920 J	515 1720	0.04 0.11 U	35.8 77.3	949 J	1.1 U	0.06 2.4 J	768 J	0.047 1.4 U	52.6 30.2	372 672
West Former Mill	RB03	0-2 ft	Surf (0-2ft)	11/21/1997	RB03-0SS	N	18200	1.1 U	3.3 J	107 J	0.28 J	1 U	22700 J	33 J	10.7 J	60.3 J	22400	35.2	7840 J	1310 J	0.06 U	84.2 J	4050 J	0.67 U	0.65 J	4290	0.64 U	154	79.3 J
West Former Mill West Former Mill	RB03 RB04	8-10 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/21/1997 11/21/1997	RB03-8SB RB04-0SS	N N	9250 12400	1.2 U 2.2	2.2 J 7.9 J	14.2 J 77.3 J	0.17 J 0.16 J	0.63 J 1.9 U	5330 J 13200 J	19.8 J 35 J	6.5 J 9.5 J	16.1 J 119 J	14700 38700	2.6 77.9	4990 J 7010 J	215 J 763 J	0.06 U 0.05 U	19.5 J 42.9 J	843 J 2030 J	0.81 U 0.77 U	0.42 J 0.44 J	808 J 1510	0.7 U 0.6 U	55 38.8	35.9 J 152 J
West Former Mill	RB04	4-6 ft	SubSurf (>2ft)	11/21/1997	RB04-4SB	N	6720	1 U	1.5 J	28.4 J	0.12 J	0.5 J	3160 J	14.8 J	6.4 J	18.4 J	11600	3.6	4090 J	158 J	0.05 U	30.4 J	450 J	0.81 U	0.38 J	242 J	0.61 U	28.1	49 J
West Former Mill West Former Mill	RB04 RB20	8-10 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	11/21/1997 5/13/2003	RB04-8SB K2303593-016	N N	11500	1.2 U	0.98 U 15.1	21 J	0.19 J	0.74 J	4710 J	22.3 J	8.6 J	22.9 J	18600	2.58	6690 J	207 J	0.06 U	24.4 J	634 J	0.55 J	0.46 J	767 J	0.7 U	49.2	46.2 J
West Former Mill	RB20	0.25-8 ft	SubSurf (>2ft)	5/13/2003	K2303593-017	N		0.26 J	2.7	33.3		0.55		21.8	7.6	46		24.3		233	<u>0.19</u>	<u>122</u>		1.1 U	0.22		0.057	67.6	67.5
West Former Mill West Former Mill	RB21 RB21	0-0.25 ft 0.25-8 ft	Surf (0-2ft) SubSurf (>2ft)	5/13/2003 5/13/2003	K2303593-018 K2303593-019	N N		0.34 J	14.4 4.8	36.5		0.52		54.5	9.2	61		189		400	0.06	<u>50.1</u>		1.1 U	0.08		0.035	59.2	87
West Former Mill	SSB-2	2-3.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-2-3.5	N		0.7 J	7.3	408		1 U		56	9	221		152		7770	0.19	45.7		0.6 U	0.2 U		0.2 U	41.2	131
West Former Mill West Former Mill	SSB-2 SSB-2	5-6.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/21/2010	DUPE1-102110 SSB-2-5-6.5	FD N		0.5 0.4 J	7.7 6.8	440 626		1 U 2 UI		102 111	8 5	222 135		164 14		7040 11400	0.19 0.04	<u>59.3</u> 31.9		0.6 U 0.8 UI	0.2 U 0.3 U		0.2 U 0.3 U	47.3 43.2	131 34
West Former Mill	SSB-2	10-11.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-10-11.5	N		0.2 UJ	2.7	13.9		0.2 U		46.3	7.3	22		2		263	0.02 U	39.5		0.2 U	0.2 U		0.2 U	48	32
West Former Mill West Former Mill	SSB-2 SSB-2		SubSurf (>2ft) SubSurf (>2ft)	10/21/2010 10/21/2010	SSB-2-15-16.5 SSB-2-20-20.5	N N		0.2 UJ 0.2 UJ	3.4	21.7 47		0.6 U 0.2 U		34 31.1	11.5 7.9	31.1 25.2		3		302 314	0.03 U 0.02 U	37.3 43.9		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	73 40.6	48 36
West Former Mill	SSB-7	2-3.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-2-3.5	N		0.2 U	3.7	44.9		0.5 U		31.1	12.3	48		15		615	0.02 0	37.4	-	0.5 U	0.2 U		0.2 U	55	107
West Former Mill West Former Mill	SSB-7 SSB-7	10-11.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/26/2010 10/26/2010	SSB-7-10-11.5 SSB-7-20-21.5	N		0.2 U 0.2 U	3.4 2.4	67.8 15.5		0.4 0.2 U		35.7 20.5	9.3 6.3	<u>55.9</u> 20.8		23 2		464 271	0.05 0.02 U	46 24.4		0.6 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	52.1 33.1	156 32
West Former Mill	SSB-7	25-26.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-25-26.5	N		0.2 U	2.1	17.8		0.2 U		21.3	6.4	16.1		2		196	0.02 U	23.1		0.2 U	0.2 U		0.2 U	33.3	29
West Former Mill West Former Mill	SSB-7 TP-01	30-30.75 ft 2-2 ft	SubSurf (>2ft) Surf (0-2ft)	10/26/2010 1/4/2011	SSB-7-30-30.75 TP-01-2'	N N		0.2 U	1.8	19.8		0.2 U		21.6	6.1	60		2 37		231	0.02 U	30.2		0.2 U	0.2 U		0.2 U	28.2	49
West Former Mill	TP-01	8-8 ft	SubSurf (>2ft)	1/4/2011	TP-01-8'	N												46											
West Former Mill West Former Mill	TP-02 TP-02	2-2 ft 8-8 ft	Surf (0-2ft) SubSurf (>2ft)	1/4/2011 1/4/2011	TP-02-2' TP-02-8'	N N		0.2 U 0.2 U	3.6 1.5	60.3 21.9		0.3 0.2 U		33.5 25.5	10 7.3	40.9 14.8		25 2		344 231	0.09 0.07	44.8 27.8		0.2 U 0.2 U	0.2 U 0.2 U		0.2 U 0.2 U	59.8 32.7	100 40
West Former Mill	TP-02	8-8 ft	SubSurf (>2ft)	1/4/2011	TP-DUPE-1	FD		0.2 U	1.6	18.9		0.2 U		26.8	7.1	16.5		3		228	0.07	29.4		0.2 U	0.2 U		0.2 U	31.4	37
West Former Mill West Former Mill	TP-03 TP-03	2-2 ft 4-4 ft	Surf (0-2ft) SubSurf (>2ft)	1/4/2011 1/4/2011	TP-03-2' TP-03-4'	N N												23 85											
West Former Mill	TP-03	7-7 ft	SubSurf (>2ft)	1/4/2011	TP-03-7'	N												41											
West Former Mill West Former Mill	TP-04 TP-04	2-2 ft 7-7 ft	Surf (0-2ft) SubSurf (>2ft)	1/5/2011 1/5/2011	TP-04-2' TP-04-7'	N N												93 5											
West Former Mill	TP-05	2-2 ft	Surf (0-2ft)	1/5/2011	TP-05-2'	N		0.2 U	2.9 J	53.8		0.5 U		41	14.1	46.6		5		540	0.02 U	45.4		0.2 U	0.2 U		0.2 U	54	53
West Former Mill	TP-05	6-6 ft	SubSurf (>2ft)	1/5/2011	TP-05-6'	N		0.7	4.8 J	826		1 U		174	8	227		6		14100	0.03 U	72.4		0.7 U	0.3 U		0.3 U	44	87
West Former Mill West Former Mill	TP-06 TP-06	3-3 ft 7-7 ft	SubSurf (>2ft) SubSurf (>2ft)	1/5/2011 1/5/2011	TP-06-3' TP-06-7'	N N												5 2											
West Former Mill	TP-07	2-2 ft	Surf (0-2ft)	1/5/2011	TP-07-2'	N		0.2 U	7.4 J	87.3		0.5 U		47	11.9	64		63		1060	0.28	<u>51.8</u>		0.2 U	0.5		0.2 U	61	95
West Former Mill West Former Mill	TP-07 TP-07	2-2 ft 6-6 ft	Surf (0-2ft) SubSurf (>2ft)	1/5/2011 1/5/2011	TP-DUPE-2 TP-07-6'	FD N		0.2 U 0.4	3.4 J 8.3 J	89.7 296		0.5 U 2 UI		49 121	12 9	71.4 131		57 31		1140 9640	0.06	<u>56.3</u> 31.6		0.2 U 0.8 UI	0.2 U 0.3 U		0.2 U 0.3 U	64 48.6	93 275
West Former Mill	TP-08	2-2 ft	Surf (0-2ft)	1/5/2011	TP-08-2'	N												225											

					Pai MTCA Ecolog Method B Protective of Hi sthod B Protective of GW a	I (SFV)	32600 32600	*Munumannanananananananananananananananana	(mg/Kg) 20 20 20	* (mg/Kg) 102 16000 NL	(mg/Kg) 10 160 4300	*wninm* (mg/Kg) 4 80 1.2	(mg/Kg) NL NL NL	(mg/Kg) 48 120000 4.8e+006	(mg/Kgn) 20 JIN JIN	**************************************	uo <u>l</u> (mg/Kg) NL NL NL	*pead (mg/Kg) 50 250 1600	Z Z Z W Wagnesium	*eseuese Manganese (mg/Kg) 1200 11000 1200	(mg/Kg) 0.1 24 0.07	*Index 1600	(mg/Kg) NL NL NL NL	*wnium# (mg/Kg) 0.3 400 7.4	***********************************	unipos (Kg) NL NL NL	*mnilleuu * (mg/Kg) 1 5.6 0.67	*mnipeue A (mg/Kg) 297 560 NL	**************************************
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Type																							
West Former Mill	TP-08	5-5 ft	SubSurf (>2ft)	1/5/2011	TP-08-5'	N												4											
West Former Mill	TP-11	2-2 ft	Surf (0-2ft)	1/7/2011	TP-11-2'	N												52					-						
West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-11-5'	N												253											
West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-DUPE-3	FD												351											
West Former Mill	TP-12	2-2 ft	Surf (0-2ft)	1/4/2011	TP-12-2'	N												177											
West Former Mill	TP-12	4-4 ft	SubSurf (>2ft)	1/4/2011	TP-12-4'	N												90											
West Former Mill	TP-15	2-2 ft	Surf (0-2ft)	1/6/2011	TP-15-2'	N												800											
West Former Mill	TP-15	4-4 ft	SubSurf (>2ft)	1/6/2011	TP-15-4'	N												110											
West Former Mill	TP-16	2-2 ft	Surf (0-2ft)	1/6/2011	TP-16-2'	N												2					-						
West Former Mill	TP-16	5-5 ft	SubSurf (>2ft)	1/6/2011	TP-16-5'	N												2											
West Former Mill	WM21	0-0.25 ft	Surf (0-2ft)	5/13/2003	K2303600-003	N		0.46 J	3.5	53.2		0.1		34.3 J	28.6	36.7		7.26		566 J	0.02 J	45.4		1 U	0.14 J		0.037	56.7 J	54
West Former Mill	WM21	0.25-9.5 ft	SubSurf (>2ft)	5/13/2003	K2303600-004	N		0.11 J	3.2	59.1		0.11		30.4 J	10	36.4		13.8		389 J	0.03	42.2		1.1 U	0.06 J		0.046	49.9 J	46

							ı		ı		ı			1			ı		ı		1		1				I	
		*	*.	*		Ť.	-Chlordane*	*5	<u>5</u>		fan I*	fan II*	fan Sulfate*		Aldehyde*	Ketone*	BHC (Lindane)*	-Chlordane*	ılor*	ılor Epoxide⁴	lorobenzene*	rchlor	•ne*					
							4'-DDC	4'-DDE	4'-DDT	Aldrin*	alpha-BF	alpha-Cl	eta-BH	delta-BH	Dieldrin'	nsopu	nsopu	Endosulfan	Endrin*	drin	drin	amma-	gamma-	Heptachlo	eptach	exachl	Methoxychlo	oxaphe
					Para	ameter Units	(ug/Kg)	4 (ug/Kg)	(ug/Kg)	₹ (ug/Kg)	(ug/Kg)	ह्य (ug/Kg)	<u>ន័</u> (ug/Kg)	(ug/Kg)	(ug/Kg)	ய் (ug/Kg)	ய் (ug/Kg)	ш (ug/Kg)	ш (ug/Kg)	ய் (ug/Kg)	ធ្មី (ug/Kg)	(ug/Kg)	(ug/Kg)	± (ug/Kg)	Ť (ug/Kg)	± (ug/Kg)	∑ (ug/Kg)	(ug/Kg)
					MTCA Ecologic		750	750	750	100	NL	1000	NL NL	NL	70	NL	NL NL	NL	200	200	200	6000	1000	400	400	17000	NL	NL
			N	MTCA Method	B Protective of HH	(SFV)	4200	2900	2900	59	160	2900	560	NL	63	480000	480000	480000	24000	24000	24000	770	2900	220	110	630	400000	910
	1				Protective of GW as		2	2	3	1	1	1	1	NL	2	1.2	2	2	2	2	2	1.2	1	1	1	1	48	100
Funct. Area	Loc ID BY01	Depth	Zone	Date 11/17/1997	Sample ID	Type	2711	421	2711	1.9 U	1.9 U	1.9 U	2 J	1011	3.7 U	1.9 U	3.7 U	2711	3.7 U	3.7 U	2711	1011	1011	1.9 U	1011		19 U	100 11
City Purchase City Purchase	BY01	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/17/1997	BY01-0SS BY01-2SB	N N	3.7 U 4.1 U	1.3 J 4.1 U	3.7 <i>U</i>	1.4 J	2.1 U	2.1 U	3.9 U	1.9 U	4.1 U	2.1 U	4.1 U	3.7 U	4.1 U	4.1 U	3.7 U 4.1 U	1.9 U 2.1 U	1.9 U 2.1 U	2.1 U	1.9 U 2.1 U		21 U	190 U 210 U
City Purchase	BY02	0-2 ft	Surf (0-2ft)	11/17/1997	BY02-0SS	N	3.8 U	3.8 U	13 U	2 U	2.1 U	2.10 2 U	5.9 U	2.1 U	2.6 J	2.1 U	3.8 U	4 U	3.8 U	3.8 U	3.8 U	2.10 2 U	2.10 2 U	2.1 U	2.10 2 U		20 U	200 U
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	11/17/1997	BY02-2SB	N	4.2 U	1.1 J	5.1 U	2.2 U	2.2 U	2.2 U	11 U	2.2 U	4.2 U	2.2 U	4.2 U	2.2 U	4.2 U	4.2 U	4.2 U	2.2 U	2.2 U	2.2 U	2.2 U		22 U	220 U
City Purchase	BY03	0-2 ft	Surf (0-2ft)	11/17/1997	BY03-0SS	N	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.5 J	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
City Purchase	BY03	2-4 ft	SubSurf (>2ft)	11/17/1997	BY03-2SB	N	4.5 U	0.29 J	4.5 U	2.3 U	2.3 U	2.3 U	<u>5.2 J</u>	2.3 U	1.5 J	2.3 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	<u>1.8 J</u>		23 U	230 U
City Purchase	BY04	0-2 ft	Surf (0-2ft)	11/17/1997	BY04-0SS	N	3.9 U	0.86 J	3.9 U	2 U	2 U	2 U	2 U	2 U	2.5 J	2 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	2 U	2 U	2 U	2 U		20 U	200 U
City Purchase City Purchase	BY04 BY05	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/17/1997	BY04-2SB BY05-0SS	N N	4.3 U 4 U	4.3 U 4 U	4.3 U 2.2 U	2.2 U 2.1 U	2.2 U 2.1 U	2.2 U 2.1 U	2.2 <i>U</i>	2.2 U 2.1 U	4.3 U 4 U	2.2 U 2.1 U	4.3 U 4 U	4.3 U 4 U	4.3 U 4 U	4.3 U 12 U	4.3 U 4 U	2.2 U 2.1 U	2.2 U 2.1 U	2.2 U 2.1 U	2.2 U 0.34 J		22 U 21 U	220 U 210 U
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	11/17/1997	BY05-2SB	N	3.9 U	3.9 U	3.9 U	0.29 J	2.10 2 U	2.10 2 U	1.2 J	2.1 U	3.9 U	2.1 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	2.10 2 U	2.1 U	2.1 U	2 U		20 U	200 U
City Purchase	BY05	4-6 ft	SubSurf (>2ft)	11/17/1997	BY05-4SB	N	4.6 U	4.6 U	4.6 U	2.4 U	2.4 U	2.4 U	0.82 J	2.4 U	4.6 U	2.4 U	4.6 U	4.6 U	4.6 U	4.6 U	4.6 U	2.4 U	2.4 U	2.4 U	2.4 U		24 U	240 U
City Purchase	BY05	6-8 ft	SubSurf (>2ft)	11/17/1997	BY05-6SB	N	4.6 U	4.6 U	4.6 U	2.4 U	2.4 U	2.4 U	0.31 J	2.4 U	4.6 U	2.4 U	4.6 U	4.6 U	4.6 U	4.6 U	4.6 U	2.4 U	2.4 U	2.4 U	2.4 U		24 U	240 U
City Purchase	BY05	8-10 ft	SubSurf (>2ft)	11/17/1997	BY05-8SB	N	4.4 U	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.4 U	2.3 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
City Purchase	PF01	0-2 ft	Surf (0-2ft)	11/18/1997	PF01-0SS	N	4.4 U	4.4 U	0.8 J	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.4 U	2.3 U	4.4 U	4.4 U	0.44 J	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	11/18/1997	PF01-2SB	N	4.4 U	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.4 U	2.3 U	4.4 U	4.4 U	2.2 J	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
City Purchase	SSB-10	2-3.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5	N	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
City Purchase City Purchase	SSB-10 SSB-10	5-6.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/28/2010 10/28/2010	SSB-10-5-6.5 SSB-10-10-11.5	N N	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	0.97 U 0.97 U	0.97 U 0.97 U	0.97 U 0.97 U	0.97 U 0.97 U	0.97 U 0.97 U	2 U 1.9 U	0.97 U 0.97 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	0.97 U 0.97 U	0.97 U 0.97 U	0.97 U 0.97 U	0.97 U 0.97 U	0.97 U 0.97 U	9.7 U 9.7 U	97 U 97 U
City Purchase	SSB-10	15-16.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-10-11.5	N	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	2 U	0.98 U	2 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	0.97 U	0.98 U	0.98 U	9.8 U	98 U
City Purchase	SSB-10	20-21.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-20-21.5	N	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	2 U	0.98 U	2 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	9.8 U	98 U
CSO	GB02	0-2 ft	Surf (0-2ft)	11/4/1997	LY17SS-GB02	N	4 U	4 U	4 U	2 U	2 U	2 U	2 U	2 U	4 U	0.39 J	4 U	0.69 J	4 U	4 U	4 U	2 U	2 U	2 U	2 U		20 U	200 U
CSO	GB02	2-4 ft	SubSurf (>2ft)	11/10/1997	LY18SB-GB02	N	0.7 J	3.7 U	1.2 J	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.1 J	1.9 U	3.7 U	1 J	3.7 U	3.7 U	1.3 J	1.9 U	1.9 U	1.9 U	1.8 J		19 U	190 U
CSO	GB03	0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	N	3.8 U	0.68 J	0.97 J	2 U	2 U	2 U	2 U	2 U	3.8 U	2 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	2 U	2 U	2 U	2 U		20 U	200 U
CSO	GB03	2-4 ft	SubSurf (>2ft)	11/10/1997	LY20SB-GB03	N	3.9 U	3.9 U	1.2 J	2 U	2 U	2 U	<u>1.7 J</u>	2 U	3.9 U	2 U	3.9 U	1.5 J	3.9 U	3.9 U	3.9 U	2 U	2 U	2 U	2 U		20 U	200 U
East Former Mill	CD02	0-2 ft	Surf (0-2ft)	11/19/1997	CD02-0SS	N	4.3 U	1 J	1 J	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	4.3 U	2.2 U	4.3 U	0.76 J	4.3 U	4.3 U	11	0.41 J	2.2 U	2.2 U	2.2 U		22 U	220 U
East Former Mill	CD02	2-4 ft	SubSurf (>2ft)	11/19/1997	CD02-2SB	N	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.5 U	2.3 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
East Former Mill	CD02	4-6 ft	SubSurf (>2ft)	11/19/1997	CD02-4SB	N	4.4 U	4.4 U	4.4 U	0.57 J	0.31 J	2.3 U	2.3 U	2.3 U	4.4 U	2.3 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
East Former Mill	CD02	6-8 ft	SubSurf (>2ft)	11/19/1997	CD02-6SB	N	4.1 U	4.1 U	4.1 U	2.1 U	0.39 J	2.1 U	2.1 U	2.1 U	4.1 U	2.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	2.1 U		21 U	210 U
East Former Mill	CD03	0-2 ft	Surf (0-2ft)	11/19/1997	CD03-0SS	N	3.6 U	3.6 U	3.6 U	0.41 J	1.8 U	1.8 U	1.2 J	1.8 U	3.6 U	1.8 U	3.6 U	3.6 U	3.6 U	3.6 U	0.59 J	1.8 U	1.8 U	1.8 U	0.45 J		18 U	180 U
East Former Mill	CD03	2-4 ft	SubSurf (>2ft)	11/19/1997	CD03-3SB	N	3.6 U	3.6 U	3.6 U	0.49 J	1.8 U	1.8 U	<u>1.2 J</u>	1.8 U	3.6 U	1.8 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	1.8 U	1.8 U	1.8 U	0.34 J		18 U	180 U
Ennis Creek	DD02	0-0.25 ft	Surf (0-2ft)	11/17/1997	97474373	N	2.5 J	7.3 U	1.2 J	0.6 J			3 J		2.7 J		7.3 U	0.94 J	7.3 U		7.3 U		3.8 U					
Ennis Creek	MW-64	2-3.5 ft	SubSurf (>2ft)	10/18/2010	MW-64-2-3.5	N	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Ennis Creek	MW-64	10-11.5 ft	SubSurf (>2ft)	10/18/2010	MW-64-10-11.5	N	2 U	2 U	2 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	2 U	0.99 U	2 U	2 U	2 U	2 U	2 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	9.9 U	99 U
Estuary	CD01	0-2 ft	Surf (0-2ft)	11/19/1997	CD01-0SS	N	3.5 U	3.5 U	3.5 U	4.2	1.8 U	1.8 U	4.9 J	1.8 U	3.5 U	1.8 U	1.7 J	3.5 U	3.5 U	3.5 U	9.5 J	1.8 U	1.8 U	1.8 U	1.5 J		18 U	180 U
Estuary	CD01	2-4 ft	SubSurf (>2ft)	11/19/1997	CD01-2SB	N	3.6 U 6.2 U	3.6 U	3.6 U	0.39 J	1.9 U	1.9 U	1.2 J 3.2 U	1.9 U	3.6 U 6.2 U	1.9 U 3.2 U	3.6 U 6.2 U	3.6 U 6.2 U	3.6 U 6.2 U	3.6 U	0.69 J	1.9 U	1.9 U	1.9 U	0.4 J		19 U	190 U
Estuary Estuary	FR05 RS20	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997 5/15/2003	FR05SS K2303678-013	N N	1.5 U	6.2 U 0.34 U	3.1 U 7 U	3.2 U 4.7 J	0.37 J 1.5 U	0.51 U 0.75 J	3.2 U	3.2 U 2.3 U	6.2 U	2.2	6.2 U	1.6 U	1.3 U	6.2 U 3.4 U	6.2 U	1.8 J 4.1 U	2.1 J 1.5 U	3.2 U 0.9 J	5.6 U 2 U	0.67 J	32 U 1.5 U	320 U 280 U
Estuary	RS20	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303676-013	FD	1.5 U	1.2 J	7.6	6.5 J	1.5 U	0.75 J	2.1 U	2.3 U	2.7 U	1.5 U	3.1 U	1.5 U	1.8	3.4 U	1.5 U	14 J	1.5 U	0.9 J	1.8 U	1.5 U	1.5 U	230 U
Estuary	RS20	0.25-2 ft	Surf (0-2ft)	5/15/2003	K2303678-014	N	1.1 U	0.16 U	0.55 J	1.1 U	1.1 U	1.1 U	0.89 U	1.1 U	1.1 U	0.17 J	0.28 U	0.17 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.29 U	1.1 U	1.1 U	1.1 U	14 U
Estuary	RS21	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-012	N	1 U	1 U	4.2 J	1 U	1 U	1 U	1 U	1 U	1 U	1.1 U	0.76 U	1 U	0.89 U	1.7 U	1 U	2.3 U	1 U	1 U	1 U	1 U	1 U	59 U
Estuary	RS21	0-0.25 ft	Surf (0-2ft)	5/16/2003	K2303762-015	FD	0.99 U	0.99 U	4.3 J	0.99 U	0.15 U	0.44 U	0.99 U	0.99 U	0.99 U	0.99 U	0.93 U	0.99 U	0.82 U	1.9 U	0.99 U	3 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	50 U
Estuary	RS21	0.25-9.5 ft	SubSurf (>2ft)	5/16/2003	K2303762-013	N	1 U	1 U	1	1 U	1 U	1 U	1 U	1 U	0.79 J	1 U	1 U	1 U	1 U	1 U	0.2 U	1 U	1 U	0.61 J	1 U	0.55 J	1 U	19 U
Main Former Mill	AP01	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP01SS	N	34 U	49 U	49 U	25 U	25 U	25 U	91	25 U	49 U	6.5 J	49 U	49 U	49 U	49 U	49 U	43 J	25 U	30 J	25 U		250 U	2500 U
Main Former Mill	AP02	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP02SS	N	4.6 U	4.6 U	4.6 U	8.8 U	2.4 U	2.4 U	47 J	2.4 U	4.6 U	1.8 J	4.6 U	4.6 U	4.6 U	4.6 U	<u>21 J</u>	2.4 U	2.4 U	2.4 U	9.7 J		24 U	240 U

				·																		*(a						
							-DDD	t'-DDE*	#-DDT*	Aldrin*	pha-BHC*	oha-Chlordane*	ta-BHC*	elta-BHC	eldrin*	idosulfan I*	idosulfan II*	idosulfan Sulfate*	Endrin*	ıdrin Aldehyde*	ıdrin Ketone*	mma-BHC (Lindane)	amma-Chlordane*	Heptachlor*	ptachlor Epoxide*	:xachlorobenzene*	ethoxychlor	xaphene*
					Para	meter	4,4	4,	4,		а	a	pe	ō	Die	. E	. <u></u>	ᇤ	_	. <u></u>	<u>.</u>	ga	g		운	유	Š	P.
					MTCA Fastasia	Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
			N	ATCA Method	MTCA Ecologic B Protective of HH		750 4200	750 2900	750 2900	100 59	NL 160	1000 2900	NL 560	NL NL	70 63	NL 480000	NL 480000	NL 480000	200 24000	200 24000	200 24000	6000 770	1000 2900	400 220	400 110	17000 630	NL 400000	NL 910
					Protective of GW as		2	2	3	1	1	1	1	NL	2	1.2	2	2	2	2	2	1.2	1	1	1	1	48	100
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре																						
Main Former Mill	AP03	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP03SS	N	4.8 U	4.8 U	4.8 U	4.7 J	2.5 U	2.5 U	<u>14 J</u>	2.5 U	4.8 U	2.5 U	4.8 U	0.88 J	4.8 U	4.8 U	4.2 J	2.5 U	2.5 U	2.5 U	<u>3 J</u>		25 U	250 U
Main Former Mill	AP04	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP04SS	N	6.5 U	<u>2.8 J</u>	6.5 U	<u>22 J</u>	3.3 U	3.3 U	<u>76 J</u>	3.3 U	6.5 U	<u>3.3 J</u>	6.5 U	<u>16</u>	<u>5.2 J</u>	6.5 U	<u>18 J</u>	3.3 U	3.3 U	0.54 J	3.3 U		33 U	330 U
Main Former Mill	BL01	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL01SS	N	3.6 U	<u>12 J</u>	4.3 U	1.9 U	1.9 U	8.1 J	1.9 U	1.9 U	<u>17 J</u>	1.9 U	3.6 U	3.6 U	5.2 U	32	3.6 U	1.9 U	6.3 J	1.9 U	1.9 U		31 U	190 U
Main Former Mill	BL02	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL02SS	N	5.7 U	5.7 U	27 U	2.9 U	2.9 U	2.9 U	230 J	2.9 U	5.7 U	1.9 J	5.7 U	15 U	5.7 U	16 U	20 U	2 J	2.9 U	2.9 U	21 J		29 U	290 U
Main Former Mill Main Former Mill	BL03 BP01	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/14/1997 11/11/1997	BL03SS BP01SS	N N	3.8 U 22 U	5.1 J 22 U	15 U 22 U	2 U 11 U	2 U 11 U	0.74 J 11 U	1 J 11 U	2 U 11 U	3.8 U 22 U	2 U 11 U	3.8 U 22 U	14 22 U	3.8 U 22 U	4.5 U 22 U	3.8 U 22 U	2 U 11 U	5 U 11 U	2 <i>U</i> 7.7 J	0.78 J		20 U 110 U	200 U 1100 U
Main Former Mill	BP01 BP02	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/11/1997	BP01SS BP02SS	N N	30 U	30 U	30 U	15 U	15 U	15 U	15 U	15 U	30 U	15 U	30 U	30 U	30 U	30 U	30 U	15 U	15 U	9.5 J	11 U 4.8 J		150 U	1500 U
Main Former Mill	BP03	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP03SS	N	22 U	5.5 J	14 J	11 U	22 U	11 U	22 U	22 U	22 U	22 U	22 U	11 U	11 U	27	37 J		110 U	1100 U				
Main Former Mill	BP04	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP04SS	N	5.5 U	0.6 J	1.7 J	2.8 U	2.1 J	0.38 J	5.5 U	5.5 U	5.5 U	5.5 U	5.5 U	2.8 U	2.8 U	2.8 U	2.8 U		28 U	280 U				
Main Former Mill	DB02	0-0.25 ft	Surf (0-2ft)	11/13/1997	DB02SS	N	5.5 U	2.6 J	2.5 J	3.1 J	2.8 U	2.8 U	12 J	2.8 U	5.5 U	1.1 J	5.5 U	2.1 J	5.5 U	5.5 U	4.5 J	0.82 J	0.96 J	2.8 U	3.6 J		28 U	280 U
Main Former Mill	FR02	0-0.25 ft	Surf (0-2ft)	11/12/1997	FR02SS	N	7.7 U	9 J	19 J	4 U	4 U	4 U	4 U	4 U	7.7 U	4 U	7.7 U	11 J	7.7 U	7.7 U	29 U	4 U	4 U	15	15 J		40 U	400 U
Main Former Mill	FR04	0-0.25 ft	Surf (0-2ft)	11/14/1997	FR04SS	N	4.9 U	0.57 J	4.9 U	2.5 U	2.5 U	2.5 U	25	2.5 U	4.9 U	1.2 J	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	2.5 U	2.3 J	2.5 U	3.5 U		25 U	250 U
Main Former Mill	GWG-4	8-9.5 ft	SubSurf (>2ft)	11/1/2010	GWG-4-8-9.5	N	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	4.8 UI	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	3.1 UI	0.96 U	9.6 U	160 UI
Main Former Mill	GWG-4	10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-10-11.5	N	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	2 U	0.97 U	2 U	2 U	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Main Former Mill	GWG-4	15-16.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-15-16.5	N	2 U	2 U	2 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	2 U	0.99 U	2 U	2 U	2 U	2 U	2 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	9.9 U	99 U
Main Former Mill	GWG-4	20-21.5 ft	SubSurf (>2ft)	11/2/2010	GWG-4-20-21.5	N	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	2 U	0.97 U	2 U	2 U	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Main Former Mill Main Former Mill	GWG-4	26-27.5 ft 30-31.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/2/2010 11/2/2010	GWG-4-26-27.5 GWG-4-30-31.5	N N	1.9 U 2 U	1.9 U 2 U	1.9 U 2 U	0.96 U	0.96 U 1 U	0.96 U	0.96 U 1 U	0.96 U 1 U	1.9 U 2 U	0.96 U	1.9 U 2 U	1.9 U	1.9 U 2 U	1.9 U 2 U	1.9 U 2 U	0.96 U	0.96 U	0.96 U 1 U	0.96 U 1 U	0.96 U 1 U	9.6 U 10 U	96 U 100 U
Main Former Mill	GWG-4	2-3.5 ft	SubSurf (>2ft)	11/3/2010	GWG-5-2-3.5	N	9.7 UI	9.7 UI	9.7 UI	4.8 UI	4.8 UI	6.9 UI	4.8 UI	4.8 U	9.7 UI	4.8 UI	9.7 UI	9.7 UI	9.7 UI	9.7 UI	9.7 UI	4.8 UI	4.8 U	4.8 UI	4.8 UI	4.8 UI	48 U	480 UI
Main Former Mill	GWG-5	5-6.5 ft	SubSurf (>2ft)	11/3/2010	GWG-5-5-6.5	N	9.8 UI	9.8 UI	9.8 UI	4.9 UI	4.9 UI	4.9 UI	4.9 UI	4.9 U	9.8 UI	4.9 UI	9.8 UI	9.8 UI	9.8 UI	9.8 UI	9.8 UI	4.9 UI	4.9 U	4.9 UI	4.9 UI	4.9 UI	49 UI	490 UI
Main Former Mill	GWG-5A	5-6.5 ft	SubSurf (>2ft)	11/4/2010	GWG-5A-5-6.5	N	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Main Former Mill	GWG-5A	10-11.5 ft	SubSurf (>2ft)	11/4/2010	GWG-5A-10-11.5	N	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	2 U	0.98 U	2 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	9.8 U	98 U
Main Former Mill	GWG-5A	15-16.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-15-16.5	N	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	1.9 U	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	9.6 U	96 U
Main Former Mill	GWG-5A	20-21.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-20-21.5	N	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	2 U	0.97 U	2 U	2 U	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Main Former Mill	GWG-5A	24-25.5 ft	SubSurf (>2ft)	11/5/2010	GWG-5A-24-25.5	N	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	1.9 U	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	9.6 U	96 U
Main Former Mill	LB01	0-2 ft	Surf (0-2ft)	11/22/1997	LB01-0SS	N	3.8 U	3.8 U	0.78 J	2 U	2 U	2 U	2 U	2 U	0.39 J	2 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	2 U	2 U	2 U	2 U		20 U	200 U
Main Former Mill	LB02	0-2 ft	Surf (0-2ft)	11/22/1997	LB02-0SS	N	4.3 U	4.3 U	4.3 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	4.3 U	2.2 U	4.3 U	4.3 U	4.3 U	4.3 U	4.3 U	2.2 U	2.2 U	2.2 U	2.2 U		22 U	220 U
Main Former Mill	MR01	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR01SS	N	5.1 U	<u>8 J</u> 5.2 J	30 U	2.6 U 1.8 U	2.6 U 1.8 U	2.6 U	2.6 U	2.6 U	21 U	3.4 J 1.8 U	5.1 U	26 U	5.1 U	5.1 U	5.1 U	2.6 U	9.4 U	1.3 J	6.7 J		35 U 18 U	260 U 180 U
Main Former Mill Main Former Mill	MR02 MR03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997 11/12/1997	MR02SS MR03SS	N N	3.6 U 8 U	5.2 J	16 U 56 U	4.1 U	4.1 U	13 J 4.1 U	26 J 4.1 U	2.2 J 4.1 U	3.6 U 32 U	9.8 J	3.6 U 8 U	15 U 50 U	3.6 U 8 U	94 U 8 U	3.6 U 8 U	1.8 U 4.1 U	1.8 U 21 U	1.8 U 5.4 J	8.6 J 17 J		82 U	410 U
Main Former Mill	MR04	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR04SS	N	3.5 U	11 J	36 U	1.8 U	1.8 U	3.4 J	1.8 U	1.8 U	38 U	1.8 U	3.5 U	33 U	3.5 U	3.5 U	3.5 U	1.8 U	7.9 J	1.8 U	14 J		18 U	180 U
Main Former Mill	MR05	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR05SS	N	0.37 J	3.5 U	1.1 J	1.8 U	1.8 U	1.8 U	6.5 J	1.8 U	3.5 U	1.8 U	3.5 U	3.5 U	3.5 U	2 J	3.5 J	1.8 U	1.8 U	1.8 U	1.3 J		18 U	180 U
Main Former Mill	MR06	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR06SS	N	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	15 J	2.1 U	4.1 U	1.4 J	4.1 U	4.3 J	4.5 U	4.1 U	28 J	2.1 U	2.1 U	2.1 U	10 J		21 U	210 U
Main Former Mill	MR07	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR07SS	N	11 U	34	65 U	2.9 U	2.9 U	3.9 J	51 J	2.9 U	5.7 U	2.9 U	5.7 U	5.6 U	5.7 U	45 U	5.7 U	4.8 J	12 J	2.9 U	16 J		12 U	290 U
Main Former Mill	MR08	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR08SS	N	3.9 U	3.9 U	<u>16</u>	2 U	2 U	2 U	2 U	2 U	4.6 U	2 U	3.9 U	3.9 U	3.9 U	<u>3.2 J</u>	8.3 U	2 U	2 U	2 U	2 U		20 U	200 U
Main Former Mill	MR09	0-0.25 ft	Surf (0-2ft)	11/15/1997	MR09SS	N	3.5 U	8.9	16 U	1.8 U	1.8 U	1.4 J	1.8 U	1.8 U	6.6 J	1.8 U	3.5 U	11 U	3.5 U	6.2 U	3.5 U	1.8 U	4.8 J	1.8 U	2.6 U		18 U	180 U
Main Former Mill	MR10	0-0.25 ft	Surf (0-2ft)	11/13/1997	MR10SS	N	3.5 U	1.6 J	1.9 U	1.8 U	1.8 U	1.8 U	<u>4.8 J</u>	1.8 U	0.68 J	1.8 U	3.5 U	3.5 U	3.5 U	9.8 U	3.5 U	1.8 U	0.87 J	1.8 U	<u>1.3 J</u>		18 U	180 U
Main Former Mill	MR11	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR11SS	N	4.6 U	2.4 J	6.7 U	2.4 U	2.4 U	2.4 U	38 J	2.4 U	4.6 U	2.4 U	4.6 U	4.6 U	4.6 U	28 U	4.6 U	2.4 U	4.6 J	2.4 U	3.7 U		24 U	240 U
Main Former Mill	MR12	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR12SS	N	3.7 U	5.2	13 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	3.7 U	1.9 U	3.7 U	11 U	3.7 U	62 U	3.7 U	1.9 U	3.8 J	1.9 U	3.3 U		19 U	190 U
Main Former Mill	PC01 SR01	0-0.25 ft	Surf (0-2ft)	11/10/1997 11/21/1997	PC01SS	N N	5.7 U 4.7 U	5.7 U	5.7 U	0.58 J	2.9 U 2.4 U	2.9 U 2.4 U	2.9 U 2.4 U	2.9 U 2.4 U	5.7 U 4.7 U	2.9 U 2.4 U	5.7 U 4.7 U	5.7 U	5.7 U 4.7 U	5.7 U 4.7 U	5.7 U 4.7 U	2.9 U 2.4 U	2.9 U	2.9 U 2.4 U	2.9 U 2.4 U		29 U	290 U
Main Former Mill Main Former Mill	SR01 SR02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997	SR01-SS SR02-SS	N	4.7 U	0.84 J 5.2 U	<u>4 J</u> 5.2 U	2.4 U 2.7 U	2.4 U	2.4 U	2.4 U	2.4 U	2.7 U	2.4 U	4.7 U	2.1 J 1.4 J	4.7 U 5.2 U	4.7 U	4.7 U	2.4 U	1.6 J 1.5 J	2.4 U	0.51 J		24 U 27 U	240 U 270 U
Main Former Mill	SR02 SR03	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997	SR02-55 SR03-SS	N	5.9 U	8.5 J	33 J	3 U	3 U	3 U	3 U	3.5 U	8.6 J	8.1 J	20	1.4 J	21	5.2 U	5.9 U	3 U	1.5 J	3 U	3 <i>U</i>		48 J	300 U
Main Former Mill	SR04	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR04-SS	N	6.6 U	6.6 U	3.8 J	3.4 U	2.2 J	3.4 U	6.6 U	6.6 U	1.4 J	6.6 U	4.6 J	3.4 U	3.4 U	3.4 U	3.4 U		3.5 J	340 U				
Main Former Mill	SSB-1	7-8.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-7-8.5	N	9.6 UI	9.6 UI	9.6 UI	4.8 UI	4.8 UI	4.8 UI	4.8 UI	4.8 U	9.6 UI	4.8 UI	9.6 UI	9.6 UI	9.6 UI	9.6 UI	9.6 UI	4.8 UI	4.8 U	4.8 UI	4.8 UI	4.8 UI	48 U	480 UI
Main Former Mill	SSB-1	10-11.5 ft	SubSurf (>2ft)	10/25/2010	DUPE2-102510	FD	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	2 U	0.98 U	2 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	9.8 U	98 U

									1			1		1	1	1	1	1				1	1	1	1	1		
							*	ů.	*L		#C#	Chlordane*	внс*	9	*_	Ilfan I*	ılfan II*	Endosulfan Sulfate*		Aldehyde*	Ketone*	a-BHC (Lindane)*	-Chlordane*	hlor*	tachlor Epoxide*	lorobenzene*	xychlor	Toxaphene*
							999-	-ope	,4'-DDT	Aldrin*	alpha-BHC	pha-C	eta-Bŀ	ta-BH	ldrin	nsop	dosulfan	nsop	drin.	Endrin	ri E	nma	nma	otachi	otac	cachlor	Methox	kaph
					Para	ameter	4,4	4,4	4			a	۵	delta-	Die	ä	ᇤ	_	Ë	_	ä	gar	gar	포	Hep	Hex		-
					MTCA Ecologic	Units	(ug/Kg) 750	(ug/Kg) 750	(ug/Kg) 750	(ug/Kg) 100	(ug/Kg) NI	(ug/Kg) 1000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 70	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 200	(ug/Kg) 200	(ug/Kg) 200	(ug/Kg) 6000	(ug/Kg) 1000	(ug/Kg) 400	(ug/Kg) 400	(ug/Kg) 17000	(ug/Kg) NL	(ug/Kg) NL
			ı	MTCA Method	B Protective of HH		4200	2900	2900	59	160	2900	560	NL	63	480000	480000	480000	24000	24000	24000	770	2900	220	110	630	400000	910
			MTC	CA Method B P	rotective of GW as	MSW	2	2	3	1	1	1	1	NL	2	1.2	2	2	2	2	2	1.2	1	1	1	1	48	100
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре	4.0.11	4.011	4011	0.0011	0.0011	0.0011	0.0011	0.0011	4.0.11	0.0011	4011	4011	4011	4.011	4011	0.0011	0.0011	0.0011	0.0011	0.0011	0.011	00.11
Main Former Mill Main Former Mill	SSB-1	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/25/2010	SSB-1-10-11.5 SSB-1-15-16.5	N	1.9 U 1.9 U	1.9 U	1.9 U	0.96 U 0.96 U	0.96 U 0.96 U	0.96 U 0.96 U	0.96 U 0.96 U	0.96 U 0.96 U	1.9 U	0.96 U 0.96 U	1.9 U 1.9 U	1.9 U 1.9 U	1.9 U 1.9 U	1.9 U	1.9 U	0.96 U 0.96 U	0.96 U 0.96 U	0.96 U 0.96 U	0.96 U 0.96 U	0.96 U 0.96 U	9.6 U 9.6 U	96 U 96 U
Main Former Mill	SSB-1	20-21.5 ft	SubSurf (>2ft)		SSB-1-20-21.5	N	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	2 U	0.98 U	2 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	9.8 U	98 U
Main Former Mill	SSB-1	25-26.5 ft	SubSurf (>2ft)	10/25/2010	SSB-1-25-26.5	N	1.8 UJ	1.8 UJ	1.8 UJ	0.89 UJ	0.89 UJ	0.89 UJ	0.89 UJ	0.89 UJ	1.8 UJ	0.89 UJ	1.8 UJ	1.8 UJ	1.8 UJ	1.8 UJ	1.8 UJ	0.89 UJ	<u>3 J</u>	0.89 UJ	0.89 UJ	0.89 UJ	8.9 UJ	89 UJ
Main Former Mill	SSB-6	5-6.5 ft	SubSurf (>2ft)		SSB-6-5-6.5	N	1.9 U	3.4 UI	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	3.8 UI	0.97 U	9.7 U	97 U
Main Former Mill Main Former Mill	SSB-6 SSB-6	10-11.5 ft	SubSurf (>2ft)	10/26/2010	SSB-6-10-11.5	N N	2 U 1.9 U	2 U	2 U 1.9 U	0.98 U	0.98 U 0.97 U	0.98 U 0.97 U	0.98 U 0.97 U	0.98 U 0.97 U	2 U 1.9 U	0.98 U 0.97 U	2 U 1.9 U	2 U 1.9 U	2 U	2 U	2 U 1.9 U	0.98 U 0.97 U	0.98 U 0.97 U	0.98 U 0.97 U	0.98 U 0.97 U	2.2 UI 0.97 U	9.8 U 9.7 U	98 U 97 U
Main Former Mill	SSB-6	15-16.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)	11/1/2010	SSB-6-15-16.5 SSB-6-20-21.5	N N	1.9 U	1.9 U 2 U	1.9 U	0.97 U 0.98 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U 2 U	1.9 U 2 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U 0.98 U	9.7 U	97 U
Main Former Mill	SSB-6	25-26.5 ft	SubSurf (>2ft)		SSB-6-25-26.5	N	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	2 U	0.97 U	2 U	2 U	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Main Former Mill	SSB-6	28-28.75 ft	SubSurf (>2ft)	11/1/2010	SSB-6-28-28.75	FD	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	1.9 U	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	9.6 U	96 U
Main Former Mill	SSB-6	28-29 ft	SubSurf (>2ft)		SSB-6-28-29	N	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
Main Former Mill	TB01	0-0.25 ft	Surf (0-2ft)	11/12/1997	TB01SS	N N	4.9 U	0.97 J	5 U	2.5 U	2.5 U	1 J	2.5 U	2.5 U	4.9 U	2.5 U	4.9 U	4.9 U	4.9 U	4.9 U	4.9 U	2.5 U	2.9 J	2.5 U	1.5 J		25 U	250 U
Main Former Mill	TB02	0-0.25 ft	Surf (0-2ft)	11/13/1997	TB02SS		3.5 U	3.5 U	4.2 U	1.8 U	1.8 U	1.8 U	4.8 J	1.8 U	4.7 J	1.8 U	3.5 U	1.8 U	3.5 U	3.5 U	3.5 U	1.8 U	1.8 U	1.8 U	1.8 U		18 U	180 U
North Shoreline	BS01	0-0.25 ft	Surf (0-2ft)	11/21/1997	BS01-SS	N	3.6 U 3.9 U	3.6 U	3.6 U	1.9 U	1.9 U	1.9 U	0.28 J	1.9 U	3.6 U 3.9 U	1.9 U	3.6 U 3.9 U	3.6 U	3.6 U	3.6 U 3.9 U	3.6 U 3.9 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
North Shoreline North Shoreline	BS02 PC02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997 11/10/1997	BS02-SS PC02SS	N N	4.3 U	3.9 <i>U</i> 2.1 J	3.9 U 4.3 U	0.98 J 2.9 J	2 U 2.2 U	2 U 2.2 U	3.8 J 12 U	2 U 2.2 U	4.3 U	8.7 J	0.78 J	3.9 U 4.3 U	3.9 U 4.3 U	4.3 U	4.3 U	2.2 U	2.2 U	2 <i>U</i> 0.63 J	2 U 2.2 U		20 U 27 J	200 U 220 U
NW Shoreline	GB01	0-2 ft		11/4/1997		NI.	6 U		6 U	3.1 U		3.1 U	3.1 U	3.1 U	6 U	3.1 U	6 U	2.3 J			0.88 J	3.1 U	0.82 J		3.1 U			310 U
NW Shoreline	GB01	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/4/1997	LY07SS-GB01 LY08SB-GB01	N N	4.5 U	6 U 4.5 U	4.5 U	2.3 U	3.1 U 0.24 J	2.3 U	2.3 U	2.3 U	4.5 U	2.3 U	4.5 U	4.5 U	6 U 4.5 U	6 U 4.5 U	4.5 U	2.3 U	2.3 U	3.1 U 2.3 U	2.3 U		31 U 23 U	230 U
NW Shoreline	GB01	4-6 ft	SubSurf (>2ft)		LY25SB-GB01	N	3.8 U	3.8 U	3.8 U	2 U	2 U	2 U	2 U	2 U	3.8 U	2 U	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	2 U	2 U	1.1 J	2 U		20 U	200 U
NW Shoreline	GB04	0-2 ft	Surf (0-2ft)	11/4/1997	LY01SS-GB04	N	1.1 J	1.6 J	2.3 J	4.7 U	4.7 U	4.7 U	<u>3.7 J</u>	4.7 U	0.94 J	4.7 U	9.2 U	<u>3.4 J</u>	9.2 U	9.2 U	9.2 U	4.7 U	4.7 U	4.7 U	<u>3.9 J</u>		47 U	470 U
NW Shoreline	GB05	0-2 ft	Surf (0-2ft)	11/4/1997	LY05SS-GB05	N	3.8 J	12 U	12 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	12 U	6.1 U	12 U	<u>6.5 J</u>	12 U	12 U	12 U	6.1 U	<u>1.1 J</u>	6.1 U	6.1 U		61 U	610 U
NW Shoreline NW Shoreline	GB05 GB06	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/10/1997 11/4/1997	LY06SB-GB05 LY09SS-GB06	N N	3.9 U 3.7 U	3.9 U 3.7 U	1.3 J 3.7 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	1.1 J 1.9 U	2 U 1.9 U	3.9 U 3.7 U	2 U 1.9 U	3.9 U 3.7 U	1.8 J 3.7 U	3.9 U 3.7 U	3.9 U 3.7 U	3.9 U 3.7 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U		20 U 19 U	200 U 190 U
NW Shoreline	GB06 GB07	0-2 ft	Surf (0-2ft)	11/4/1997	LY11SS-GB07	N	0.5 J	3.7 U	3.7 U	2 U	2 U	2 U	2 U	2 U	3.7 U	0.28 J	3.7 U	3.7 U	3.7 U	3.9 U	0.52 J	2 U	0.26 J	2 U	2 U		20 U	200 U
NW Shoreline	GB07	2-4 ft	SubSurf (>2ft)		LY12SB-GB07	N	3.5 U	3.5 U	3.5 U	2.6	1.8 U	1.8 U	3.8 J	1.8 U	3.5 U	1.8 U	3.5 U	3.5 U	3.5 U	3.5 U	8.7 J	1.8 U	1.8 U	1.8 U	1.8 U		18 U	180 U
NW Shoreline	GB07	4-6 ft	SubSurf (>2ft)	11/12/1997	LY14SB-GB07	N	3.6 U	3.6 U	3.6 U	0.25 J	1.9 U	1.9 U	0.61 J	1.9 U	3.6 U	1.9 U	3.6 U	3.6 U	3.6 U	3.6 U	0.5 J	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
NW Shoreline	GB07	6-8 ft	SubSurf (>2ft)		LY27SB-GB07	N	3.7 U	3.7 U	3.7 U	0.76 J	1.9 U	1.9 U	1.6 J	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	1.1 J	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
NW Shoreline NW Shoreline	GB08 GB08	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/4/1997	LY13SS-GB08 LY29SB-GB08	N N	4.3 U 3.6 U	4.3 U 3.6 U	0.53 U 0.94 J	2.2 U 1.9 U	2.2 U 1.9 U	2.2 U 1.9 U	2.2 U 1.9 U	2.2 U 1.9 U	4.3 U 3.6 U	2.2 U 1.9 U	4.3 U 3.6 U	4.3 U 3.6 U	4.3 U 3.6 U	4.3 U 3.6 U	4.3 U 3.6 U	2.2 U 1.9 U	1.4 J 1.9 U	2.2 U 1.9 U	4.2 J 1.9 U		22 U 19 U	220 U 190 U
NW Shoreline	GB08 GB09	2-4 π 0-2 ft	SubSuri (>2it) Surf (0-2ft)	11/12/1997	LY02SS-GB09	N	7.3 U	7.3 U	1.2 J	3.8 U	7.3 U	3.8 U	7.3 U	7.3 U	7.3 U	7.3 U	14 J	3.8 U	0.82 J	3.8 U	3.8 U		38 U	380 U				
NW Shoreline	GB09	2-4 ft	SubSurf (>2ft)	11/10/1997	LY04SB-GB09	N	3.4 U	3.4 U	3.4 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	3.4 U	1.8 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	1.8 U	1.8 U	1.8 U	1.8 U		18 U	180 U
NW Shoreline	GB10	10-10 ft	SubSurf (>2ft)	11/11/1997	LY10SB-GB10	N	18 U	18 U	18 U	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U	18 U	9.4 U	18 U	18 U	18 U	18 U	18 U	9.4 U	9.4 U	9.4 U	9.4 U		94 U	940 U
NW Shoreline	LY15	0-2 ft	Surf (0-2ft)	11/4/1997	LY15SS	N	5 U	5 U	5 U	0.37 J	2.6 U	2.6 U	2.6 U	2.6 U	5 U	2.6 U	5 U	0.71 J	5 U	5 U	5 U	2.6 U	2.6 U	2.6 U	2.6 U		26 U	260 U
NW Shoreline NW Shoreline	LY16 PA01	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/4/1997	LY16SS PA01-0SS	N N	5 U 4 U	5 U 4 U	5 U 4 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	5 U 4 U	2.6 U	5 U 4 U	5 U 4 U	5 U 4 U	5 U 4 U	5 <i>U</i>	2.6 U	0.45 J 0.41 J	2.6 U	2.6 U		26 U 20 U	260 U
NW Shoreline	PA01 PA02	0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/15/1997	PA01-0SS PA02-0SS	N	3.5 U	3.5 U	3.5 U	1.8 U	1.8 U	1.8 U	0.56 J	1.8 U	3.5 U	1.8 U	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U	1.8 U	0.41 J 0.29 J	1.8 U	1.28 J 1.8 U		18 U	180 U
NW Shoreline	PA03	0-2 ft	Surf (0-2ft)	11/15/1997	PA03-0SS	N	3.5 U	3.5 U	3.5 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	3.5 U	1.8 U	3.5 U	3.5 U	3.5 U	3.5 U	1.4 J	1.8 U	1.8 U	1.8 U	1.1 J		18 U	180 U
NW Shoreline	PA04	0-2 ft	Surf (0-2ft)	11/15/1997	PA04-0SS	N	3.4 U	3.4 U	3.4 U	1.8 U	1.8 U	1.8 U	<u>8 J</u>	1.8 U	3.4 U	0.68 J	3.4 U	3.4 U	3.4 U	3.4 U	9.4	1.8 U	0.66 J	1.8 U	1.4 J		18 U	180 U
NW Shoreline	PA04	2-4 ft	SubSurf (>2ft)		PA04-2SB	N	3.4 U	3.4 U	3.4 U	0.22 J	1.8 U	1.8 U	0.55 J	1.8 U	3.4 U	1.8 U	3.4 U	3.4 U	3.4 U	3.4 U	3.4 U	1.8 U	1.8 U	1.8 U	1.8 U		18 U	180 U
NW Shoreline	PA04	4-6 ft	SubSurf (>2ft)	11/15/1997	PA04-4SB	N	3.5 U	3.5 U	3.5 U	1.8 U	1.8 U	1.8 U	<u>4.2 J</u>	1.8 U	3.5 U	1.8 U	3.5 U	3.5 U	3.5 U	3.5 U	6.3 J	1.8 U	1.8 U	1.8 U	0.91 J		18 U	180 U
Prefab	PF02	0-2 ft	Surf (0-2ft)	11/18/1997	PF02-0SS	N	4.2 U	4.2 U	4.2 U	2.2 U	4.2 U	2.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	2.2 U	0.49 J	2.2 U	2.2 U		22 U	220 U				
Prefab	PF02	2-4 ft	SubSurf (>2ft)	11/18/1997	PF02-2SB	N	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.5 U	2.3 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
Prefab	PF03	0-2 ft	Surf (0-2ft)	11/18/1997	PF03-0SS	N	4.1 U	4.1 U	0.47 J	2.1 U	4.1 U	2.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	2.1 U		21 U	210 U				

																						*(e)						
											.	ordane				*_ u	*	n Sulfate*		ldehyde*	one*	HC (Lindane)*	lordane*	ŧ.	r Epoxide*	obenzene*	ılor	***
							aac)DE	₽DT	*=	-BHC	-Chlo	BHC	윰	drin*	sulfa	sulfa	sulfa	* <u>=</u>	⋖	in Ke	na-Bł	amma-Chl	tachlor	achlo	chlor	Methoxychlo	phen
					Para	meter	4,4'-[4,4'-[4,4'-[Aldrin*	alpha	alpha	beta-	delta-	Dield	Endc	Endo	Endo	Endrin*	Endrin	Endrin	gamı	gamı	Hept	Hept	Неха	Meth	Тоха
					MTCA Faalasia	Units	(ug/Kg) 750	(ug/Kg)	(ug/Kg) 750	(ug/Kg) 100	(ug/Kg) NL	(ug/Kg) 1000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 70	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 200	(ug/Kg) 200	(ug/Kg) 200	(ug/Kg) 6000	(ug/Kg) 1000	(ug/Kg) 400	(ug/Kg) 400	(ug/Kg) 17000	(ug/Kg) NL	(ug/Kg) NL
			N	MTCA Method	MTCA Ecologic B Protective of HH		4200	750 2900	2900	59	160	2900	560	NL NL	63	480000	480000	480000	24000	24000	24000	770	2900	220	110	630	400000	910
	1				Protective of GW as		2	2	3	1	1	1	1	NL	2	1.2	2	2	2	2	2	1.2	1	1	1	1	48	100
Funct. Area Prefab	Loc ID PF03	Depth 2-4 ft	Zone SubSurf (>2ft)	Date 11/18/1997	Sample ID PF03-2SB	Type N	4.2 U	4.2 U	4.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	4.2 U	2.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	2.2 U	2.2 U	2.2 U	2.2 U		22 U	220 U
Prefab	PF03	4-6 ft	SubSurf (>2ft)	11/18/1997	PF03-4SB	N	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.2 U	2.1 U	2.1 U	4.1 U	2.2 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	2.2 U	2.2 U	2.2 U	2.1 U		21 U	210 U
Prefab	PF03	6-8 ft	SubSurf (>2ft)	11/18/1997	PF03-6SB	N	4.4 U	4.4 U	0.58 J	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.4 U	2.3 U	4.4 U	4.4 U	4.4 U	4.4 U	4.4 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
Prefab	PF03	8-10 ft	SubSurf (>2ft)	11/18/1997	PF03-8SB	N	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	2.3 U	2.3 U	4.5 U	2.3 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	2.3 U	2.3 U	2.3 U	2.3 U		23 U	230 U
Prefab	PF03	16-18 ft	SubSurf (>2ft)	11/18/1997	PF03-16SB	N	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
West Former Mill	HF01	0-2 ft	Surf (0-2ft)	11/13/1997	HF01-0SS	N	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	0.6 J	2.1 U	4.1 U	2.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	2.1 U		21 U	210 U
West Former Mill West Former Mill	HF01 HF02	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/13/1997 11/13/1997	HF01-2SB HF02-0SS	N N	4.5 U 3.9 U	4.5 U 3.9 U	4.5 U 3.9 U	2.3 U 2 U	2.3 U 2 U	2.3 U 2 U	0.24 J 0.3 J	2.3 U 2 U	4.5 U 3.9 U	2.3 U 2 U	4.5 U 3.9 U	4.5 U 3.9 U	4.5 U 3.9 U	4.5 U 3.9 U	4.5 U 3.9 U	2.3 U 2 U	2.3 U 2 U	2.3 U 2 U	2.3 U 2 U		23 U 20 U	230 U 200 U
West Former Mill	HF02	2-4 ft	SubSurf (>2ft)	11/13/1997	HF02-2SB	N	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	1.9 U	0.23 J	1.9 U	1.9 U		19 U	190 U
West Former Mill	HF03	0-2 ft	Surf (0-2ft)	11/14/1997	HF03-0SS	N	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
West Former Mill	HF03 HF04	2-4 ft	SubSurf (>2ft)	11/14/1997	HF03-2SB	N	4.1 U 4 U	4.1 U 4 U	4.1 U	2.1 U	2.1 U	2.1 U	0.45 J	2.1 U	4.1 U 4 U	2.1 U 2.1 U	4.1 U	4.1 U 4 U	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	2.1 U		21 U 21 U	210 U
West Former Mill West Former Mill	HF04 HF04	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/14/1997 11/14/1997	HF04-0SS HF04-2SB	N N	4.2 U	4.2 U	4 U 4.2 U	2.1 U 0.38 J	2.1 U 2.2 U	2.1 U 2.2 U	0.32 J 1.5 J	2.1 U 2.2 U	4.2 U	2.1 U	4 U 4.2 U	4.2 U	4 U 0.7 J	4 U 4.2 U	4.2 U	2.1 U 2.2 U	2.1 U 2.2 U	2.1 U 2.2 U	2.1 U 2.2 U		21 U	210 U 220 U
West Former Mill	HF05	0-2 ft	Surf (0-2ft)	11/14/1997	HF05-0SS	N	4.1 U	4.1 U	4.1 U	0.67 J	2.1 U	2.1 U	0.32 J	2.1 U	4.1 U	2.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	2.1 U		21 U	210 U
West Former Mill	HF05	2-4 ft	SubSurf (>2ft)	11/14/1997	HF05-2SB	N	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	0.35 J	2.1 U	4.1 U	2.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	2.1 U	2.1 U	2.1 U	2.1 U		21 U	210 U
West Former Mill	HF06 HF06	0-2 ft 2-4 ft	Surf (0-2ft)	11/14/1997	HF06-0SS HF06-2SB	N N	4.2 U 3.9 U	4.2 U 3.9 U	4.2 U 3.9 U	0.23 J	2.2 U	2.2 U	0.34 J	2.2 U	4.2 U 3.9 U	2.2 U	4.2 U 3.9 U	4.2 U 3.9 U	4.2 U 3.9 U	4.2 U 3.9 U	4.2 U 3.9 U	2.2 U	2.2 U	2.2 U	2.2 U		22 U 20 U	220 U 200 U
West Former Mill West Former Mill	HF06 HF07	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/14/1997	HF07-0SS	N	3.9 U	3.9 U	3.9 U	1.9 U	1.9 U	1.9 U	0.49 J	1.9 U	3.9 U	1.9 U	3.9 U	3.9 U	3.9 U	3.9 U	3.9 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
West Former Mill	HF07	2-4 ft	SubSurf (>2ft)	11/20/1997	HF07-2SB	N	3.6 U	3.6 U	3.6 U	1.9 U	1.9 U	1.9 U	0.3 J	1.9 U	3.6 U	1.9 U	3.6 U	3.6 U	3.6 U	3.6 U	3.6 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
West Former Mill	HF08	0-2 ft	Surf (0-2ft)	11/20/1997	HF08-0SS	N	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	0.23 J	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
West Former Mill	HF08	2-4 ft	SubSurf (>2ft)	11/20/1997	HF08-2SB	N	3.7 U	3.7 U	3.7 U	1.9 U	0.23 J	1.9 U	0.44 J	1.9 U	3.7 U	1.9 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U	1.9 U	1.9 U	1.9 U	1.9 U		19 U	190 U
West Former Mill West Former Mill	HF09 HF09	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/19/1997 11/19/1997	HF09-0SS HF09-2SB	N N	3.8 U 3.7 U	3.8 U 3.7 U	3.8 U 3.7 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	0.43 J 1.9 U	2 U 1.9 U	3.8 U 3.7 U	2 U 1.9 U	3.8 U 3.7 U	3.8 U 3.7 U	3.8 U 3.7 U	3.8 U 3.7 U	3.8 U 3.7 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U	2 U 1.9 U		20 U 19 U	200 U 190 U
West Former Mill	LYT01	0-0.25 ft	Surf (0-2ft)	11/20/1997	LYT01SS	N	4.8 U	4.8 U	4.8 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	4.8 U	2.5 U	4.8 U	4.8 U	4.8 U	4.8 U	4.8 U	2.5 U	2.5 U	2.5 U	2.5 U		25 U	
West Former Mill	LYT02	0-0.25 ft	Surf (0-2ft)	11/20/1997	LYT02SS	N	8.5 U	8.5 U	8.5 U	4.4 U	4.4 U	4.4 U	9.6 J	4.4 U	8.5 U	4.4 U	8.5 U	4.4 U	8.5 U	8.5 U	8.5 U	4.4 U	4.4 U	4.4 U	4.4 U		44 U	
West Former Mill	MW-60	23-24.4 ft	SubSurf (>2ft)	10/19/2010	MW-60-23-24.4	N	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	1.9 U	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	9.6 U	96 U
West Former Mill West Former Mill	RB01 RB02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/10/1997 11/10/1997	RB01SS RB02SS	N N	7 U 7.9 U	7 U 7.9 U	14 J 3 J	3.6 U 4 U	3.6 U 4 U	3.6 U 4 U	3.6 U 4 U	3.6 U 4 U	7 U 7.9 U	0.93 J 0.59 J	7 U 7.9 U	2.7 J 1.8 J	7 U 7.9 U	7 U 7.9 U	<u>57</u> 8.2 J	3.6 U 4 U	11 J 3.6 U	5.9 J 4 U	7.4 J 4 U		36 U 40 U	360 U 400 U
West Former Mill	RB03	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB03-0SS	N	3.5 U	3.5 U	1.4 J	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	0.69 J	1.8 U	3.5 U	3.5 U	3.5 U	0.46 J	3.5 U	1.8 U	1.8 U	1.8 U	1.8 U		18 U	180 U
West Former Mill	RB03	8-10 ft	SubSurf (>2ft)	11/21/1997	RB03-8SB	N	4.3 U	4.3 U	4.3 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	4.3 U	2.2 U	4.3 U	4.3 U	4.3 U	4.3 U	4.3 U	2.2 U	2.2 U	2.2 U	2.2 U		22 U	220 U
West Former Mill	RB04	0-2 ft	Surf (0-2ft)	11/21/1997	RB04-0SS	N	3.8 U	0.44	3.8 U	2 U	2 U	2 U	2 U	2 U	15 J	2 U	2 U	3.8 U	50 U	29 U	3.8 U	2 U	2 U	2 U	0.81 U		3.2 U	200 U
West Former Mill West Former Mill	RB04 RB04	4-6 ft 8-10 ft	SubSurf (>2ft) SubSurf (>2ft)	11/21/1997 11/21/1997	RB04-4SB RB04-8SB	N N	3.5 U 3.8 U	0.44 J 3.8 U	2.8 J 3.8 U	1.8 U 2 U	1.8 U 2 U	1.8 U 2 U	1.8 U 2 U	1.8 U	0.59 J 3.8 U	1.8 U 2 U	0.65 J 3.8 U	3.5 U 3.8 U	3.5 U 3.8 U	1.7 J 3.8 U	1.7 J 3.8 U	1.8 U 2 U	1.8 U 2 U	1.8 U 2 U	1.8 U 2 U		3.3 J 20 U	180 U 200 U
West Former Mill	SMT01	0-0.25 ft	Surf (0-2ft)	11/20/1997	97474412	N	14 U	14 U	46	7.4 U	7.4 U	1.2 J	7.4 U	7.4 U	14 U	7.4 U	14 U	18 J	14 U	14 U	14 U	7.4 U	4.4 J	3.2 J	7.4 U		21 J	
West Former Mill	SMT02	0-0.25 ft	Surf (0-2ft)	11/20/1997	97474413	N	7.5 U	7.5 U	26 J	3.9 U	3.9 U	1.7 J	3.9 U	3.9 U	7.5 U	<u>3.7 J</u>	7.2 J	10 U	12 J	7.5 U	7.5 U	3.9 U	2.7 J	3.9 U	3.9 U		15 J	
West Former Mill	SSB-2	2-3.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-2-3.5	N	9.9 UI	9.9 UI	9.9 UI	5 UI	5 UI	5 UI	5 UI	5 U	9.9 UI	5 UI	9.9 UI	9.9 UI	9.9 UI	9.9 UI	9.9 UI	5 UI	5 U	5 UI	5 UI	5 UI	50 UI	500 UI
West Former Mill West Former Mill	SSB-2 SSB-2	5-6.5 ft 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/21/2010	DUPE1-102110 SSB-2-5-6.5	FD N	9.6 UI 2 U	9.6 UI 2 U	9.6 UI 2 U	<i>4.8 UI</i> 0.99 U	4.8 UI 0.99 U	4.8 UI 0.99 U	<i>4.8 UI</i> 0.99 U	4.8 U 0.99 U	9.6 UI 2 U	4.8 UI 0.99 U	9.6 UI 2 U	9.6 UI 2 U	9.6 UI 2 U	9.6 UI 2 U	9.6 UI 2 U	<i>4.8 UI</i> 0.99 U	<i>4.8 U</i> 0.99 U	4.8 UI 0.99 U	4.8 UI 0.99 U	<i>4.8 UI</i> 0.99 U	48 U 9.9 U	480 UI 99 U
West Former Mill	SSB-2	10-11.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-10-11.5	N	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	1.9 U	0.97 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
West Former Mill	SSB-2	15-16.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-15-16.5	N	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	1.9 U	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	9.6 U	96 U
West Former Mill	SSB-2	20-20.5 ft	SubSurf (>2ft)	10/21/2010	SSB-2-20-20.5	N	2 U	2 U	2 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	2 U	0.99 U	2 U	2 U	2 U	2 U	2 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	9.9 U	99 U
West Former Mill West Former Mill	SSB-7 SSB-7	2-3.5 ft 10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)	10/26/2010 10/26/2010	SSB-7-2-3.5 SSB-7-10-11.5	N N	9.8 UI 1.9 U	9.8 UI 1.9 U	9.8 UI 1.9 U	4.9 UI 0.97 U	4.9 UI 0.97 U	<i>4.9 UI</i> 0.97 U	4.9 UI 0.97 U	4.9 U 0.97 U	9.8 UI 1.9 U	<i>4.9 UI</i> 0.97 U	9.8 UI 1.9 U	9.8 UI 1.9 U	9.8 UI 1.9 U	9.8 UI 1.9 U	9.8 UI 1.9 U	<i>4.9 UI</i> 0.97 U	<i>4.9 U</i> 0.97 U	<i>4.9 UI</i> 0.97 U	4.9 UI 0.97 U	<i>4.9 UI</i> 0.97 U	49 UI 9.7 U	490 UI 97 U
West Former Mill	SSB-7	20-21.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-10-11.5 SSB-7-20-21.5	N	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	2 U	0.97 U	1.9 U	2 U	2 U	2 U	2 U	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	9.7 U	97 U
West Former Mill	SSB-7	25-26.5 ft	SubSurf (>2ft)	10/26/2010	SSB-7-25-26.5	N	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	2 U	0.98 U	2 U	2 U	2 U	2 U	2 U	0.98 U	0.98 U	0.98 U	0.98 U	0.98 U	9.8 U	98 U
West Former Mill	SSB-7	30-30.75 ft	SubSurf (>2ft)	10/26/2010	SSB-7-30-30.75	N	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	1.9 U	0.96 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.96 U	9.6 U	96 U

							alene					enzene	zene	zene	zene*	alene	henol	henol*	lon	lone	lo	*•	ue L	rzidine*
					Para	meter	2-Chloronaphthalene	2-Chlorophenol	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotolue	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine*
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
					MTCA Ecologic		NL	NL NL	NL	NL	NL NL	20000	NL NL	NL NL	20000	NL	4000	10000	NL NL	NL	20000	NL NL	NL NL	NL NL
				MTC	A Method B Protective of HH		6.4e+006	400000	4e+006	NL	NL	800000	7.2e+006	NL	42000	NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
				MTCA M	ethod B Protective of GW as	MSW	54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре																		
City Purchase	BY01	0-2 ft	Surf (0-2ft)	11/17/1997	BY01-0SS	N	370 U	370 U	370 U	930 U	370 U	370 U	370 U	370 U	370 U		930 U	370 U	370 U	370 U	930 U	370 U	370 U	370 U
City Purchase	BY01	2-4 ft	SubSurf (>2ft)	11/17/1997	BY01-2SB	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
City Purchase	BY02	0-2 ft	Surf (0-2ft)	11/17/1997	BY02-0SS	N	380 U	380 U	380 U	970 U	380 U	380 U	380 U	380 U	380 U		970 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	11/17/1997	BY02-2SB	Ν	420 U	420 U	420 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
City Purchase	BY03	0-2 ft	Surf (0-2ft)	11/17/1997	BY03-0SS	N	370 U	370 U	370 U	930 U	370 U	370 U	370 U	370 U	370 U		930 U	370 U	370 U	370 U	930 U	370 U	370 U	370 U
City Purchase	BY03	2-4 ft	SubSurf (>2ft)	11/17/1997	BY03-2SB	N	450 U	450 U	450 U	1100 U	450 U	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	450 U	1100 U	450 U	450 U	450 U
City Purchase	BY04	0-2 ft	Surf (0-2ft)	11/17/1997	BY04-0SS	N	390 U	390 U	390 U	990 U	390 U	390 U	390 U	390 U	390 U		990 U	390 U	390 U	390 U	990 U	390 U	390 U	390 U
City Purchase	BY04	2-4 ft	SubSurf (>2ft)	11/17/1997	BY04-2SB	N	430 U	430 U	430 U	1100 U	430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
City Purchase	BY05	0-2 ft	Surf (0-2ft)	11/17/1997	BY05-0SS	N	400 U	400 U	400 U	1000 U	400 U	400 U	400 U	400 U	400 U		1000 U	400 U	400 U	400 U	1000 U	400 U	400 U	400 U
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	11/17/1997	BY05-2SB	N	390 U	390 U	390 U	990 U	390 U	390 U	390 U	390 U	390 U		990 U	390 U	390 U	390 U	990 U	390 U	390 U	390 U
City Purchase	BY05	4-6 ft	SubSurf (>2ft)	11/17/1997	BY05-4SB	N	460 U	460 U	460 U	1200 U	460 U	460 U	460 U	460 U	460 U		1200 U	460 U	460 U	460 U	1200 U	460 U	460 U	460 U
City Purchase	BY05	6-8 ft	SubSurf (>2ft)	11/17/1997	BY05-6SB	N	460 U	460 U	460 U	1200 U	460 U	460 U	460 U	460 U	460 U		1200 U	460 U	460 U	460 U	1200 U	460 U	460 U	460 U
City Purchase	BY05	8-10 ft	SubSurf (>2ft)	11/17/1997	BY05-8SB	N	440 U	440 U	440 U	1100 U	440 U	440 U	440 U	440 U	440 U		1100 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)	10/28/2010	DUPE3-102810	FD									24 U			6.4 U				97 U		97 U
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-2-3.5	N									25 U			6.4 U				98 U		98 U
City Purchase	GWG-8	10-11.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-10-11.5	N N									28 U			7.5 U				99 U 97 U		99 U 97 U
City Purchase City Purchase	PF01	15-16.5 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	10/28/2010 11/18/1997	GWG-8-15-16.5 PF01-0SS	N	440 U	 440 U	 440 U	 1100 U	 440 U	 440 U	440 U	 440 U	23 U 440 U		 1100 U	7.4 U 440 U	 440 U	440 U	1100 U	440 U	 440 U	440 U
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	11/18/1997	PF01-033	N	440 U	440 U	440 U	1100 U	440 U	440 U	440 U	440 U	440 U		1100 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
City Purchase	SSB-10	2-4 It	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5	N			440 0						19 U			7.7 R				96 U		96 U
City Purchase	SSB-10	5-6.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-2-3.5 SSB-10-5-6.5	N									19 U			8.1 R				96 U		97 U
City Purchase	SSB-10	10-11.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-0-0.5	N									19 U			8.2 R				97 U		97 U
City Purchase	SSB-10	15-16.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-15-16.5	N									21 U			7.1 U				98 U		98 U
City Purchase	SSB-10	20-21.5 ft	SubSurf (>2ft)	10/28/2010	SSB-10-20-21.5	N									27 U			7.1 U				99 U		99 U
			` '																					
CSO	FOT-EX-12	6-6 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-12-[080306]-6.0	N										7.2 U								
CSO	FOT-EX-13	13-13 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-13-[080306]-13.0	N										8.5 U								
CSO	FOT-EX-28	8-8 ft	SubSurf (>2ft)	8/9/2006	WM-EX-28-[080906]-8.0	N										7.8 U								
CSO	FOT-EX-6	3-3 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-6-[080206]-3.0	IN I										17								
CSO	FOT-EX-7	3-3 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-7-[080206]-3.0	IN N										15								
CSO	FOT-EX-8	8-8 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-8-[080206]-8.0	N										7.8 U								

							Chloronaphthalene	ienol	enol	ne	lou	4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	obenzene*	I-Methylnaphthalene	5-Trichlorophenol	4,6-Trichlorophenol*	4-Dichlorophenol	4-Dimethylphenol	4-Dinitrophenol	Dinitrotoluene*	6-Dinitrotoluene	3,3'-Dichlorobenzidine*
							orona	Chloropher	2-Methylphenol	2-Nitroaniline	obhe	Trich	ichlor	ichlor	4-Dichlorob	hylna	Trich	Trich	ichlor	imeth	initro	initro	initro	ichlo
					Para	meter	2-Chi	2-Chi	2-Met	2-Nitr	2-Nitrophenol	1,2,4-	1,2-Di	1,3-Di	1,4-Di	1-Met	2,4,5-	2,4,6-	2,4-Di	2,4-Di	2,4-Di	2,4-Di	2,6-Di	3,3'-D
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
					MTCA Ecologic	al ISC	NL	NL	NL	NL	NL	20000	NL	NL	20000	NL	4000	10000	NL	NL	20000	NL	NL	NL
				MTCA	A Method B Protective of HH		6.4e+006	400000	4e+006	NL	NL	800000	7.2e+006	NL	42000	NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
					ethod B Protective of GW as	, ,	54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре																		
CSO	FOT-EX-9	6-6 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-9-[080206]-6.0	N										7.5 U								
CSO	GB02	0-2 ft	Surf (0-2ft)	11/4/1997	LY17SS-GB02	N	400 U	400 U	400 U	1000 U	400 U	400 U	400 U	400 U	400 U		1000 U	400 U	400 U	400 U	1000 U	400 U	400 U	400 U
CSO	GB02	2-4 ft	SubSurf (>2ft)	11/10/1997	LY18SB-GB02	N	370 U	370 U	370 U	940 U	370 U	370 U	370 U	370 U	370 U		940 U	370 U	370 U	370 U		370 U	370 U	370 U
CSO	GB03	0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	N	380 U	380 U	380 U	950 U	380 U	380 U	380 U	380 U	380 U		950 U	380 U	380 U	380 U	950 U	380 U	380 U	380 U
CSO	GB03	2-4 ft	SubSurf (>2ft)	11/10/1997	LY20SB-GB03	N	390 U	390 U	390 U	990 U	390 U	390 U	390 U	390 U	390 U		990 U	390 U	390 U	390 U		390 U	390 U	390 U
CSO	GWG-6	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-2-3.5	N									29 U			6.6 U				99 UJ		99 U
CSO	GWG-6	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-5-6.5	N									28 U			7.5 U				97 UJ		97 U
CSO	GWG-6	10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-10-11.5	N									29 U			7.7 U				97 UJ		97 U
CSO	MW-70	2-3.5 ft	SubSurf (>2ft)	5/6/2011	MW70-2-3.5	N												7.4 U						
CSO	MW-70	5-6.5 ft	SubSurf (>2ft)	5/6/2011	MW70-5-6.5	N												7.3 U						
CSO	MW-70	10-11.5 ft	SubSurf (>2ft)	5/6/2011	MW70-10-11.5	N												7.7 U						
CSO	MW-70	15-16.5 ft	SubSurf (>2ft)	5/6/2011	MW70-15-16.5	N												7 U						
CSO	MW-70	20-21.5 ft	SubSurf (>2ft)	5/6/2011	MW70-20-21.5	N												7.3 U						
East Former Mill	CD02	0-2 ft	Surf (0-2ft)	11/19/1997	CD02-0SS	N	430 U	430 U	430 U	1100 U	430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
East Former Mill	CD02	2-4 ft	SubSurf (>2ft)	11/19/1997	CD02-033	N	450 U	450 U	450 U	1100 U	450 U	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	450 U	1100 U	450 U	450 U	450 U
East Former Mill	CD02	4-6 ft	SubSurf (>2ft)	11/19/1997	CD02-4SB	N	440 U	440 U	440 U	1100 U	440 U	440 U	440 U	440 U	440 U		1100 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
East Former Mill	CD02	6-8 ft	SubSurf (>2ft)	11/19/1997	CD02-43B	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
East Former Mill	CD02	0-0 ft 0-2 ft	Surf (0-2ft)	11/19/1997	CD03-0SS	N	360 U	360 U	360 U	900 U	360 U	360 U	360 U	360 U	360 U		900 U	360 U	360 U	360 U	900 U	360 U	360 U	360 U
East Former Mill	CD03	2-4 ft	SubSurf (>2ft)	11/19/1997	CD03-3SB	N	360 U	360 U	360 U	900 U	360 U	360 U	360 U	360 U	360 U		900 U	360 U	360 U	360 U	900 U	360 U	360 U	360 U
East Former Mill	GWG-7	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-2-3.5	N									26 U			7.8 U				98 UJ		98 U
East Former Mill	GWG-7	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-5-6.5	N									29 U			8 U				97 UJ		97 U
East Former Mill	GWG-7	7-8.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-3-0.5 GWG-7-7-8.5	N									25 U			7.7 U				97 UJ		97 U
East Former Mill	SL22	0-0.25 ft	Surf (0-2ft)	5/14/2003	K2303687-013	N												7.7 0						
East Former Mill	SL22	0.25-7.5 ft	SubSurf (>2ft)	5/14/2003	K2303687-013	N																		
East Shoreline	SL20	0.25-7 ft	SubSurf (>2ft)	5/14/2003	K2303687-010	N																		
East Shoreline	SL20	0.25-7 It	SubSurf (>2ft)	5/14/2003	K2303687-010	N																		
East Shoreline	SL21	0.25-6.5 ft	, ,	5/14/2003	K2303687-012	N																		
			` '																					
Ennis Creek	DD02	0-0.25 ft	Surf (0-2ft)	11/17/1997	97474373	N																		

						Chloronaphthalene	enol	enol	ue	lor	.4-Trichlorobenzene	robenzene	1,3-Dichlorobenzene	robenzene*	I-Methylnaphthalene	5-Trichlorophenol	2,4,6-Trichlorophenol*	ophenol	/Iphenol	henol	toluene*	oluene	-Dichlorobenzidine*
						Chlorona	2-Chloroph	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	,4-Trichl	,2-Dichlor	-Dichlor	,4-Dichlor	Methylna	i,5-Trichl	,6-Trichl	4-Dichlorophenol	4-Dimethylphenol	4-Dinitrophen	-Dinitrot	2,6-Dinitrotoluene	3'-Dichlor
				Par	ameter	Ä					1,2,	_		-	•	2,4		ر.	٧,	2,	2,		က်
				MTOA Feeles	Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
			MTC	MTCA Ecologi A Method B Protective of HF		NL 6.4e+006	NL 400000	NL 4e+006	NL NL	NL NL	20000 800000	NL 7.2e+006	NL NL	20000 42000	NL NL	4000 8e+006	10000 91000	NL 240000	NL 1.6e+006	20000 160000	NL 160000	NL 80000	NL 2200
				ethod B Protective of GW as	, ,	54000	1100	46+006 NL	NL	NL NL	2600	15000	11000	80	NL NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth Zone	Date	Sample ID	Type	01000	1100	112	112	1112	2000	10000	11000		112	100000		1000	1000	1 1000	100	142	100
Estuary	CD01	0-2 ft Surf (0-2ft)	11/19/1997	CD01-0SS	N	350 U	350 U	350 U	890 U	350 U	350 U	350 U	350 U	350 U		890 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
Estuary	CD01	2-4 ft SubSurf (>2ft)	11/19/1997	CD01-2SB	N	360 U	360 U	360 U	910 U	360 U	360 U	360 U	360 U	360 U		910 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
Estuary	FR05	0-0.25 ft Surf (0-2ft)	11/13/1997	FR05SS	N	620 U	620 U	620 U	1600 U	620 U	620 U	620 U	620 U	620 U		1600 U	620 U	620 U	620 U	1600 U	620 U	620 U	620 U
Estuary	MW-62	2-3.5 ft SubSurf (>2ft)	10/20/2010	MW-62-2-3.5	N									26 B			6.7 U				96 UJ		96 U
Estuary	MW-62	5-6.5 ft SubSurf (>2ft)	10/20/2010	MW-62-5-6.5	N									28 B			6.6 U				97 U		97 U
Estuary	MW-62	10-11.5 ft SubSurf (>2ft)	10/20/2010	MW-62-10-11.5	N									24 B			7.1 U				98 U		98 U
Estuary	MW-62 MW-62	15-16.5 ft SubSurf (>2ft) 20-21.25 ft SubSurf (>2ft)	10/20/2010 10/20/2010	MW-62-15-16.5 MW-62-20-21.5	N N									26 B			6.8 U 7.2 U				97 U 97 U		97 U 97 U
Estuary Estuary	MW-62	20-21.25 ft SubSurf (>2ft) 25-26.5 ft SubSurf (>2ft)	10/20/2010	MW-62-25-26.5	N									30 B 29 U			7.2 U				98 UJ		98 U
Estuary	RS20	0-0.25 ft Surf (0-2ft)	5/15/2003	K2303678-013	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	330 U	330 U	2000 U
Estuary	RS20	0-0.25 ft Surf (0-2ft)	5/15/2003	K2303687-019	FD	340 U	340 U	340 U	2100 U	340 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U	340 U	2100 U	340 U	340 U	2100 U
Estuary	RS20	0.25-2 ft Surf (0-2ft)	5/15/2003	K2303678-014	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	330 U	330 U	2000 U
Estuary	RS21	0-0.25 ft Surf (0-2ft)	5/16/2003	K2303762-012	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Estuary	RS21	0-0.25 ft Surf (0-2ft)	5/16/2003	K2303762-015	FD	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U	-	330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Estuary	RS21	0.25-9.5 ft SubSurf (>2ft)	5/16/2003	K2303762-013	N	340 U	340 U	340 U	2100 U	340 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U	340 U	2100 U	340 U	340 U	2100 U
Main Former Mill	AP01	0-0.25 ft Surf (0-2ft)	11/13/1997	AP01SS	N	490 U	490 U	490 U	1200 U	490 U	490 U	490 U	490 U	490 U		1200 U	490 U	490 U	490 U	1200 U	490 U	490 U	490 U
Main Former Mill	AP02	0-0.25 ft Surf (0-2ft)	11/13/1997	AP02SS	N	460 U	460 U	460 U	1200 U	460 U	460 U	460 U	460 U	460 U		1200 U	460 U	95 J	460 U	1200 U	460 U	460 U	460 U
Main Former Mill	AP03	0-0.25 ft Surf (0-2ft)	11/13/1997	AP03SS	N	480 U	480 U	480 U	1200 U	480 U	480 U	480 U	480 U	480 U		1200 U	480 U	480 U	480 U	1200 U	480 U	480 U	480 U
Main Former Mill	AP04	0-0.25 ft Surf (0-2ft)	11/13/1997	AP04SS	N	650 U	650 U	650 U	1600 U	650 U	650 U	650 U	650 U	650 U		1600 U	650 U	190 J	650 U	1600 U	650 U	650 U	650 U
Main Former Mill	BL01	0-0.25 ft Surf (0-2ft)	11/14/1997	BL01SS	N	360 U	360 U	360 U	910 U	360 U	360 U	360 U	360 U	360 U		910 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
Main Former Mill	BL02	0-0.25 ft Surf (0-2ft)	11/14/1997	BL02SS	N	570 U	570 U	570 U	1400 U	570 U	570 U	570 U	570 U	570 U		1400 U	570 U	570 U	570 U	1400 U	570 U	570 U	570 U
Main Former Mill	BL03	0-0.25 ft Surf (0-2ft)	11/14/1997	BL03SS	N	380 U	380 U	380 U	970 U	380 U	380 U	380 U	380 U	380 U		970 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
Main Former Mill	BL20	0.25-3.5 ft Surf (0-2ft)	5/15/2003	K2303678-002	N	330 U	330 U 430 U	330 U	2000 U	330 U	330 U	330 U	330 U	26 J		330 U	330 U	330 U	330 U	2000 U	330 U	330 U	2000 U
Main Former Mill Main Former Mill	BP01 BP02	0-0.25 ft Surf (0-2ft) 0-0.25 ft Surf (0-2ft)	11/11/1997	BP01SS BP02SS	N N	430 U 3000 U	3000 U	430 U 3000 U	1100 U 7500 U	430 U 3000 U	430 U 3000 U	430 U 3000 U	430 U 3000 U	430 U 3000 U		1100 U 7500 U	430 U 3000 U	430 U 3000 U	430 U 3000 U	1100 U 7500 U	430 U 3000 U	430 U 3000 U	430 U 3000 U
Main Former Mill	BP02 BP03	0-0.25 ft Surf (0-2ft)	11/11/1997	BP03SS	N	2200 U	2200 U	2200 U	5500 U	2200 U	2200 U	2200 U	2200 U	2200 U		5500 U	2200 U	2200 U	2200 U	5500 U	2200 U	2200 U	2200 U
Main Former Mill	BP04	0-0.25 ft Surf (0-2ft)	11/11/1997	BP04SS	N	550 U	550 U	550 U	1400 U	550 U	550 U	550 U	550 U	550 U		1400 U	550 U	550 U	550 U	1400 U	550 U	550 U	550 U
Main Former Mill	DB02	0-0.25 ft Surf (0-2ft)	11/13/1997	DB02SS	N	550 U	550 U	550 U	1400 U	550 U	550 U	550 U	550 U	550 U		1400 U	550 U	550 U	550 U	1400 U	550 U	550 U	550 U
Main Former Mill	DB21	0.25-11 ft SubSurf (>2ft)	5/19/2003	K2303762-019	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	FR02	0-0.25 ft Surf (0-2ft)	11/12/1997	FR02SS	N	770 U	770 U	770 U	1900 U	770 U	770 U	770 U	770 U	770 U		1900 U	770 U	770 U	770 U	1900 U	770 U	770 U	770 U

						ıthalene	loi	- Io			obenzene	enzene	enzene	enzene*	ıthalene	rophenol	ophenol*	henol	ohenol	enol	nene*	euen	obenzidine*
				ŗ	Parameter	2-Chloronaphthalene	2-Chlorophen	2-Methylphenol	2-Nitroaniline	2-Nitropheno	1,2,4-Trichlorobenzene	1,2-Dichlorobenzen	1,3-Dichlorobenzene	1,4-Dichlorobo	1-Methylnaphthale	2,4,5-Trichlor	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotolı	2,6-Dinitrotoluene	3,3'-Dichlorok
					Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				MTCA Ecolo	•	NL	NL	NL	NL	NL	20000	NL	NL	20000	NL	4000	10000	NL	NL	20000	NL	NL	NL
				A Method B Protective of	, ,	6.4e+006	400000	4e+006	NL	NL	800000	7.2e+006	NL	42000	NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
				ethod B Protective of GW		54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth Zone	Date	Sample ID	Туре	00011	000 11	000 11	000011	00011	000 11	000 17	000 11	000.11		00011	000.11	00011	00011	000071	04011	0401/	000011
Main Former Mill	FR02	0.25-5.5 ft SubSurf (>2ft)	5/16/2003	K2303762-007	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill Main Former Mill	FR04	0-0.25 ft Surf (0-2ft)	11/14/1997	FR04SS	N	490 U 330 U	490 U	490 U	1200 U	490 U	490 U 330 U	490 U	490 U	490 U		1200 U	490 U 330 U	490 U	490 U	1200 U	490 U	490 U	2000 11
Main Former Mill	FR20 GWG-1	0.25-4.5 ft SubSurf (>2ft) 2-3.5 ft SubSurf (>2ft)	5/16/2003	K2303762-009 GWG-1-2-3.5	N N	330 0	330 U	330 U	2000 U	330 U	330 0	330 U	330 U	330 U		330 U	330 0	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	GWG-1	2-3.5 ft SubSurf (>2ft) 5-6.5 ft SubSurf (>2ft)	11/3/2010 11/3/2010	GWG-1-2-3.5 GWG-1-5-6.5	N																		
Main Former Mill	GWG-1	7.5-9 ft SubSurf (>2ft)	11/3/2010	GWG-1-5-6.5 GWG-1-7.5-9	N																		
Main Former Mill	GWG-1	10-11.5 ft SubSurf (>2ft)	11/4/2010	GWG-1-10-11.5	N																		
Main Former Mill	GWG-1	15-16.5 ft SubSurf (>2ft)	11/4/2010	GWG-1-10-11.5 GWG-1-15-16.5	N																		
Main Former Mill	GWG-1	20-21.5 ft SubSurf (>2ft)	11/4/2010	GWG-1-13-10.5 GWG-1-20-21.5	N																		
Main Former Mill	GWG-5	2-3.5 ft SubSurf (>2ft)	11/3/2010	GWG-5-2-3.5	N									22 U			7 U				98 UJ		98 U
Main Former Mill	GWG-5	5-6.5 ft SubSurf (>2ft)	11/3/2010	GWG-5-5-6.5	N									59 U			7.2 U				300 UI		300 UI
Main Former Mill	GWG-5A	5-6.5 ft SubSurf (>2ft)	11/4/2010	GWG-5A-5-6.5	N									29 U			6.8 U				98 UJ		98 U
Main Former Mill	GWG-5A	10-11.5 ft SubSurf (>2ft)	11/4/2010	GWG-5A-10-11.5	N									34 U			6.6 U				97 UJ		97 U
Main Former Mill	GWG-5A	15-16.5 ft SubSurf (>2ft)	11/5/2010	GWG-5A-15-16.5	N									36 U			7.3 U				97 UJ		97 U
Main Former Mill	GWG-5A	20-21.5 ft SubSurf (>2ft)	11/5/2010	GWG-5A-20-21.5	N									30 U			6.7 U				97 UJ		97 U
Main Former Mill	GWG-5A	24-25.5 ft SubSurf (>2ft)	11/5/2010	GWG-5A-24-25.5	N									36 U			6.7 U				96 U		96 U
Main Former Mill	LB01	0-2 ft Surf (0-2ft)	11/22/1997	LB01-0SS	N	380 U	380 U	380 U	950 U	380 U	380 U	380 U	380 U	380 U		950 U	380 U	380 U	380 U	950 U	380 U	380 U	380 U
Main Former Mill	LB02	0-2 ft Surf (0-2ft)	11/22/1997	LB02-0SS	N	430 U	430 U	430 U	1100 U	430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
Main Former Mill	MR01	0-0.25 ft Surf (0-2ft)	11/12/1997	MR01SS	N	510 U	510 U	510 U	1300 U	510 U	510 U	510 U	510 U	510 U		1300 U	510 U	820	510 U	1300 U	510 U	510 U	510 U
Main Former Mill	MR02	0-0.25 ft Surf (0-2ft)	11/12/1997	MR02SS	N	360 U	360 U	360 U	900 U	360 U	360 U	360 U	360 U	360 U		900 U	360 U	360 U	360 U	900 U	360 U	360 U	360 U
Main Former Mill	MR03	0-0.25 ft Surf (0-2ft)	11/12/1997	MR03SS	N	800 U	800 U	800 U	2000 U	800 U	800 U	800 U	800 U	800 U		2000 U	800 U	800 U	800 U	2000 U	800 U	800 U	800 U
Main Former Mill	MR04	0-0.25 ft Surf (0-2ft)	11/12/1997	MR04SS	N	350 U	350 U	350 U	890 U	350 U	350 U	350 U	350 U	350 U		890 U	350 U	350 U	350 U	890 U	350 U	350 U	
Main Former Mill	MR05	0-0.25 ft Surf (0-2ft)	11/12/1997	MR05SS	N	350 U	350 U	350 U	890 U	350 U	350 U	350 U	350 U	350 U		890 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
Main Former Mill	MR06	0-0.25 ft Surf (0-2ft)	11/12/1997	MR06SS	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
Main Former Mill	MR07	0-0.25 ft Surf (0-2ft)	11/12/1997	MR07SS	N	570 U	570 U	570 U	1400 U	570 U	570 U	570 U	570 U	570 U		1400 U	570 U	570 U	570 U	1400 U	570 U	570 U	570 U
Main Former Mill	MR08	0-0.25 ft Surf (0-2ft)	11/14/1997	MR08SS	N	390 U	390 U	390 U	980 U	390 U	390 U	390 U	390 U	390 U		980 U	390 U	390 U	390 U	980 U	390 U	390 U	390 U
Main Former Mill	MR09	0-0.25 ft Surf (0-2ft)	11/15/1997	MR09SS	N	350 U	350 U	350 U	880 U	350 U	350 U	350 U	350 U	350 U		880 U	350 U	350 U	350 U	880 U	350 U	350 U	350 U
Main Former Mill	MR10	0-0.25 ft Surf (0-2ft)	11/13/1997	MR10SS	N	350 U	350 U	350 U	890 U	350 U	350 U	350 U	350 U	350 U		890 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
Main Former Mill	MR11	0-0.25 ft Surf (0-2ft)	11/14/1997	MR11SS	N	460 U	460 U	460 U	1200 U	460 U	460 U	460 U	460 U	460 U		1200 U	460 U	460 U	460 U	1200 U	460 U	460 U	
Main Former Mill	MR12	0-0.25 ft Surf (0-2ft)	11/14/1997	MR12SS	N	370 U	370 U	370 U	920 U	370 U	370 U	370 U	370 U	370 U		920 U	370 U	370 U	370 U	920 U	370 U	370 U	

						ene					nzene	ene	ene	enzene*	ene	enol	enol*	5	Į.		*****	0	idine*
				P	arameter	2-Chloronaphthalene	2-Chlorophenol	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	1,2,4-Trichlorobenzene	1,2-Dichlorobenzen	1,3-Dichlorobenzene	1,4-Dichlorob	1-Methylnaphthale	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluen	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine*
				MTCA Ecolo	Units	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) 4000	(ug/Kg) 10000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL
			MTCA	A Method B Protective of h		6.4e+006	400000	4e+006	NL	NL NL	800000	7.2e+006	NL	42000	NL NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
				ethod B Protective of GW	, ,	54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth Zone	Date	Sample ID	Туре								, , , ,									_	
Main Former Mill	MR20	0-0.25 ft Surf (0-2ft)	5/15/2003	K2303678-015	N	340 U	340 U	340 U	2100 U	340 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U	340 U	2100 U	340 U	340 U	2100 U
Main Former Mill	MS20	0.25-5 ft SubSurf (>2ft)	5/14/2003	K2303687-004	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	MW-65	5-6.5 ft SubSurf (>2ft)	3/10/2011	MW-65-5-6.5	N												7.1 U						
Main Former Mill	MW-65	15-16.5 ft SubSurf (>2ft)	3/10/2011	MW-65-15-16.5	N												7 U						
Main Former Mill	MW-66	2.5-4 ft SubSurf (>2ft)	3/9/2011	MW-66-2.5-4	N												8.3 U						
Main Former Mill	MW-66	15-16.5 ft SubSurf (>2ft)	3/9/2011	MW-66-15-16.5	N												7 U						
Main Former Mill	MW-69	2-3.5 ft SubSurf (>2ft)	5/6/2011	MW69-2-3.5	N												7.3 U						
Main Former Mill	MW-69	5-6.5 ft SubSurf (>2ft)	5/6/2011	MW69-5-6.5	N												7.3 U						
Main Former Mill	MW-69	10-11.5 ft SubSurf (>2ft)	5/6/2011	MW69-10-11.5	N												14 U						
Main Former Mill	MW-69	15-16.5 ft SubSurf (>2ft)	5/6/2011	MW69-15-16.5	N												7.3 U						
Main Former Mill	MW-69	20-21.5 ft SubSurf (>2ft)	5/6/2011	MW69-20-21.5	N												7.7 U						
Main Former Mill	MW-69	25-26.5 ft SubSurf (>2ft)	5/6/2011	MW69-25-26.5	N												7.8 U						
Main Former Mill	MW-69	29-30 ft SubSurf (>2ft)	5/6/2011	MW69-29-30	N												6.9 U						
Main Former Mill	PC01	0-0.25 ft Surf (0-2ft)	11/10/1997	PC01SS	N	570 U	570 U	570 U	1400 U	570 U	570 U	570 U	570 U	570 U		1400 U	570 U	570 U	570 U		570 U	570 U	570 U
Main Former Mill	PW20	0.25-8.5 ft SubSurf (>2ft)	5/15/2003	K2303678-012	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	330 U	330 U	2000 U
Main Former Mill	SR01	0-0.25 ft Surf (0-2ft)	11/21/1997	SR01-SS	N	470 U	470 U	470 U	1200 U	470 U	470 U	470 U	470 U	470 U		1200 U	470 U	470 U	470 U	1200 U	470 U	470 U	470 U
Main Former Mill	SR02	0-0.25 ft Surf (0-2ft)	11/21/1997	SR02-SS	N	520 U	520 U	520 U	1300 U	520 U	520 U	520 U	520 U	520 U		1300 U	520 U	520 U	520 U	1300 U	520 U	520 U	520 U
Main Former Mill	SR03	0-0.25 ft Surf (0-2ft)	11/21/1997	SR03-SS	N	590 U	590 U	590 U	1500 U	590 U	590 U	590 U	590 U	590 U		1500 U	590 U	590 U	590 U	1500 U	590 U	590 U	590 U
Main Former Mill	SR03	0.25-11 ft SubSurf (>2ft)	5/19/2003	K2303763-003	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	SR04	0-0.25 ft Surf (0-2ft)	11/21/1997	SR04-SS	N	660 U	660 U	660 U	1700 U	660 U	660 U	660 U	660 U	660 U		1700 U	660 U	660 U	660 U	1700 U	660 U	660 U	660 U
Main Former Mill	SR20	0.25-7 ft SubSurf (>2ft)	5/19/2003	K2303763-005	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	SR21	0.25-3 ft Surf (0-2ft)	5/15/2003	K2303687-018	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	SR22	0.25-5 ft SubSurf (>2ft)	5/14/2003	K2303687-006	N	340 U	340 U	340 U	2100 U	340 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U	340 U	2100 U	340 U	340 U	2100 U
Main Former Mill	SR23	0.25-13 ft SubSurf (>2ft)	5/14/2003	K2303687-008	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	SR23	0.25-13 ft SubSurf (>2ft)	5/20/2003	K2303763-015	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
Main Former Mill	SR24	0.25-16 ft SubSurf (>2ft)	5/20/2003	K2303763-014	N	340 U	340 U	340 U	2100 U	340 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U	340 U	2100 U	340 U	340 U	2100 U
Main Former Mill Main Former Mill	SSB-1 SSB-1	7-8.5 ft SubSurf (>2ft) 10-11.5 ft SubSurf (>2ft)	10/25/2010 10/25/2010	SSB-1-7-8.5 DUPE2-102510	N FD									66 U 91 U			7.5 R 8 R				330 UI 220 UI		330 UI 220 UI
Main Former Mill	SSB-1	10-11.5 ft SubSurf (>2ft)	10/25/2010	SSB-1-10-11.5	N N									74 U			7.6 R				130 UI		130 UI
Main Former Mill	SSB-1	15-16.5 ft SubSurf (>2ft)		SSB-1-10-11.5 SSB-1-15-16.5	N N									41 U			7.6 U				97 U		97 U
IVIAIII FUITIEI IVIIII	33D-1	13-10.3 π δαρδαπ (>2π)	10/23/2010	330-1-13-10.3	IN									41 U			1.00				91 0		91 0

						lene					nzene	ene	ene	ene*	ene	enol	enol*	Ю	loi		* o	a	zidine*
				Pa	arameter	2-Chloronaphthalene	2-Chlorophenol	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	1,2,4-Trichlorobenzene	1,2-Dichlorobenzen	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluen	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine
				MTCA Foolog	Units	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) 4000	(ug/Kg) 10000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL
			MTCA	MTCA Ecolo Method B Protective of H	-	NL 6.4e+006	400000	4e+006	NL NL	NL NL	800000	7.2e+006	NL NL	42000	NL NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	NL 2200
				ethod B Protective of GW	. ,	54000	1100	NL	NL NL	NL NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth Zone	Date	Sample ID	Type	04000	1100	142	140	142	2000	10000	11000	- 00	IVE	100000	20	1000	4000	14000	100	IVE	100
Main Former Mill	SSB-1	25-26.5 ft SubSurf (>2ft)	10/25/2010	SSB-1-25-26.5	N									41 U			6.5 U				96 U		96 U
Main Former Mill	SSB-3	2-3.5 ft SubSurf (>2ft)	10/22/2010	SSB-3-2-3.5	N									59 U			6.6 U				300 UIJ		300 UI
Main Former Mill	SSB-3	10-11.5 ft SubSurf (>2ft)	10/22/2010	SSB-3-10-11.5	N									25 B			7.4 U				97 UJ		97 U
Main Former Mill	SSB-3	15-16.5 ft SubSurf (>2ft)	10/22/2010	SSB-3-15-16.5	N						-			28 B			7.1 U				99 UJ		99 U
Main Former Mill	SSB-3	20-21.5 ft SubSurf (>2ft)	10/22/2010	SSB-3-20-21.5	N									21 B			6.8 U				98 UJ		98 U
Main Former Mill	SSB-3	25-26.5 ft SubSurf (>2ft)	10/22/2010	SSB-3-25-26.5	N									19 U			6.8 U				94 UJ		94 U
Main Former Mill	SSB-3	27-28.5 ft SubSurf (>2ft)	10/22/2010	SSB-3-27-28.5	N									25 B			7.2 U				97 UJ		97 U
Main Former Mill	TB01	0-0.25 ft Surf (0-2ft)	11/12/1997	TB01SS	N	490 U	490 U	490 U	1200 U	490 U	490 U	490 U	490 U	490 U		1200 U	490 U	490 U	490 U	1200 U	490 U	490 U	490 U
Main Former Mill	TB02	0-0.25 ft Surf (0-2ft)	11/13/1997	TB02SS	N	350 U	350 U	350 U	880 U	350 U	350 U	350 U	350 U	350 U		880 U	350 U	350 U	350 U	880 U	350 U	350 U	
Main Former Mill	TP-09	2-2 ft Surf (0-2ft)	1/6/2011	TP-09-2'	N									20 U			6.9 U				98 U		98 U
Main Former Mill	TP-09	3-3 ft SubSurf (>2ft)	1/6/2011	TP-09-3'	N									19 U			7.3 U				97 U		97 U
Main Former Mill	TP-10	2-2 ft Surf (0-2ft)	1/6/2011	TP-10-2'	N									20 U			9.9 U				100 U		100 U
Main Former Mill	TP-10	3-3 ft SubSurf (>2ft)	1/6/2011	TP-10-3'	N									20 U			7.3 U				98 U		98 U
Main Former Mill	TP-14	2-2 ft Surf (0-2ft)	1/6/2011	TP-14-2'	N									20 U			6.7 U				99 U		99 U
Main Former Mill	TP-14	3-3 ft SubSurf (>2ft)	1/6/2011	TP-14-3'	N									65 U			12 U				320 UI		320 UI
Main Former Mill	TP-14	5-5 ft SubSurf (>2ft)	1/6/2011	TP-14-5'	N						-			19 U			6.8 U				97 U		97 U
Main Former Mill	TP-21	3-3 ft SubSurf (>2ft)	1/7/2011	TP-21-3'	N									20 U			10 U				100 U		100 U
North Shoreline	BS01	0-0.25 ft Surf (0-2ft)	11/21/1997	BS01-SS	N	360 U	360 U	360 U	910 U	360 U	360 U	360 U	360 U	360 U		910 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
North Shoreline	BS02	0-0.25 ft Surf (0-2ft)	11/21/1997	BS02-SS	N	390 U	390 U	390 U	980 U	390 U	390 U	390 U	390 U	390 U		980 U	390 U	390 U	390 U	980 U	390 U	390 U	390 U
North Shoreline	CS20	0.25-9 ft SubSurf (>2ft)	5/19/2003	K2303762-017	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
North Shoreline	DK20	0.25-7 ft SubSurf (>2ft)	5/15/2003	K2303678-008	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	330 U	330 U	2000 U
North Shoreline	PC02	0-0.25 ft Surf (0-2ft)	11/10/1997	PC02SS	N	430 U	430 U	430 U	1100 U	430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
North Shoreline	PC20	0.25-11 ft SubSurf (>2ft)	5/19/2003	K2303763-001	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
NW Shoreline	GB01	` '		LY07SS-GB01	N		600 U			600 U		600 U						600 U		1500 U	600 U		600 U
NW Shoreline	GB01	- ' ' '	11/4/1997	LY07SS-GB01 LY08SB-GB01	N N	600 U		600 U	1500 U		600 U		600 U	600 U		1500 U	600 U		600 U		450 U	600 U	450 U
NW Shoreline	GB01 GB01	. ,	11/11/1997	LY08SB-GB01		450 U	450 U	450 U	1100 U	450 U	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	450 U	1100 U	380 U	450 U	380 U
NW Shoreline	GB01	4-6 ft SubSurf (>2ft) 0-2 ft Surf (0-2ft)	11/11/1997		N N	380 U	380 U 920 U	380 U	970 U	380 U 920 U	380 U	380 U	380 U	380 U		970 U	380 U	380 U 920 U	380 U	970 U 2300 U	920 U	380 U	
NW Shoreline	GB04 GB05	0-2 ft Surf (0-2ft) 0-2 ft Surf (0-2ft)	11/4/1997 11/4/1997	LY01SS-GB04 LY05SS-GB05		920 U 1200 U	1200 U	920 U 1200 U	2300 U 3000 U	1200 U	920 U 1200 U	920 U 1200 U	920 U 1200 U	920 U 1200 U		2300 U 3000 U	920 U 1200 U	1200 U	920 U 1200 U	3000 U	1200 U	920 U 1200 U	920 U 1200 U
		· , ,	ł		N															1			
NW Shoreline	GB05	2-4 ft SubSurf (>2ft)	11/10/1997	LY06SB-GB05	N	390 U	390 U	390 U	990 U	390 U	390 U	390 U	390 U	390 U		990 U	390 U	390 U	390 U	990 U	390 U	390 U	390 U

						oronaphthalene	lon	lon	Φ	lo	4-Trichlorobenzene	robenzene	,3-Dichlorobenzene	robenzene*	hthalene	5-Trichlorophenol	2,4,6-Trichlorophenol*	phenol	phenol	nenol	'luene*	luene	3'-Dichlorobenzidine*
						loronap	lorophe	2-Methylphenol	troaniline	trophenol	t-Trichlo	,2-Dichloro	Dichloro	4-Dichloro	I-Methylnaphthale	5-Trichlo	3-Trichlo	4-Dichlorophenol	4-Dimethylphenol	4-Dinitrophen	Dinitrotol	2,6-Dinitrotoluene	Dichlore
				Pa	arameter	2-CF	2-Ch	2-Me	2-Nitr	2-Nitr	1,2,4	1,2-1	1,3-1	1 .	1-Me	2,4,5	2,4,6	2,4-1	2,4-1	2,4-1	2,4-1	2,6-1	3,3'-
					Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				MTCA Ecolog	gical ISC	NL	NL	NL	NL	NL	20000	NL	NL	20000	NL	4000	10000	NL	NL	20000	NL	NL	NL
				A Method B Protective of H	, ,	6.4e+006	400000	4e+006	NL	NL	800000	7.2e+006	NL	42000	NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
				ethod B Protective of GW		54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth Zone	Date	Sample ID	Туре	0701:	0701:	0701:	0001:	0701:	0701:	0701:	0701:	0701:		0001:	070.1	0701:	0701:	2001:	070 1:	0701:	070.11
NW Shoreline	GB06	0-2 ft Surf (0-2ft)	11/4/1997	LY09SS-GB06	N	370 U	370 U	370 U	920 U	370 U	370 U	370 U	370 U	370 U		920 U	370 U	370 U	370 U	920 U	370 U	370 U	370 U
NW Shoreline	GB07	0-2 ft Surf (0-2ft)	11/4/1997	LY11SS-GB07	N	390 U	390 U	390 U	990 U	390 U	390 U	390 U	390 U	390 U		990 U	390 U	390 U	390 U	990 U	390 U	390 U	390 U
NW Shoreline	GB07	2-4 ft SubSurf (>2ft)	11/12/1997	LY12SB-GB07	N	350 U	350 U	350 U	890 U	350 U	350 U	350 U	350 U	350 U		890 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
NW Shoreline NW Shoreline	GB07 GB07	4-6 ft SubSurf (>2ft) 6-8 ft SubSurf (>2ft)	11/12/1997 11/12/1997	LY14SB-GB07 LY27SB-GB07	N	360 U 370 U	360 U 370 U	360 U 370 U	910 U 930 U	360 U 370 U	360 U 370 U	360 U 370 U	360 U 370 U	360 U 370 U		910 U 930 U	360 U 370 U	360 U 370 U	360 U 370 U	910 U 930 U	360 U 370 U	360 U 370 U	360 U 370 U
NW Shoreline	GB07 GB08	0-8 ft SubSuff (>2ft)	11/4/1997	LY13SS-GB07	N	430 U	430 U	430 U	1100 U	430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
NW Shoreline	GB08	2-4 ft SubSurf (>2ft)	11/12/1997	LY29SB-GB08	N	360 U	360 U	360 U	910 U	360 U	360 U	360 U	360 U	360 U		910 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
NW Shoreline	GB09	0-2 ft Surf (0-2ft)	11/4/1997	LY02SS-GB09	N	730 U	730 U	730 U	1800 U	730 U	730 U	730 U	730 U	730 U		1800 U	730 U	730 U	730 U	1800 U	730 U	730 U	730 U
NW Shoreline	GB09	2-4 ft SubSurf (>2ft)	11/10/1997	LY04SB-GB09	N	340 U	340 U	340 U	860 U	340 U	340 U	340 U	340 U	340 U		860 U	340 U	340 U	340 U	860 U	340 U	340 U	340 U
NW Shoreline	GB10	10-10 ft SubSurf (>2ft)	11/11/1997	LY10SB-GB10	N	370 U	370 U	370 U	920 U	370 U	370 U	370 U	370 U	370 U		920 U	370 U	370 U	370 U	920 U	370 U	370 U	370 U
NW Shoreline	LY15	0-2 ft Surf (0-2ft)	11/4/1997	LY15SS	N	500 U	500 U	500 U	1300 U	500 U	500 U	500 U	500 U	500 U		1300 U	500 U	500 U	500 U	1300 U	500 U	500 U	500 U
NW Shoreline	LY16	0-2 ft Surf (0-2ft)	11/4/1997	LY16SS	N	500 U	500 U	500 U	1300 U	500 U	500 U	500 U	500 U	500 U		1300 U	500 U	500 U	500 U	1300 U	500 U	500 U	500 U
NW Shoreline	LY24	0-0.25 ft Surf (0-2ft)	5/12/2003	K2303593-005	N																		
NW Shoreline	LY24	0.25-6.5 ft SubSurf (>2ft)	5/12/2003	K2303593-006	N																		
NW Shoreline	LY25	0-0.25 ft Surf (0-2ft)	5/12/2003	K2303593-007	N																		
NW Shoreline	LY25	0.25-8 ft SubSurf (>2ft)	5/12/2003	K2303593-008	N																		
NW Shoreline	MW-61	5-6.5 ft SubSurf (>2ft)	10/19/2010	MW-61-5-6.5	N									19 U			6.7 U				97 U		97 U
NW Shoreline	MW-61	10-11.5 ft SubSurf (>2ft)	10/19/2010	MW-61-10-11.5	N									20 U		-	7.2 U				98 U		98 U
NW Shoreline	MW-61	15-16.5 ft SubSurf (>2ft)	10/19/2010	MW-61-15-16.5	N									20 U			7.1 U				98 U		98 U
NW Shoreline	MW-61	20-21.25 ft SubSurf (>2ft)	10/19/2010	MW-61-20.21.25	N									20 U			7.2 U				98 U		98 U
NW Shoreline	MW-67	2-3.5 ft SubSurf (>2ft)	3/9/2011	MW-67-2-3.5	N												6.4 U						
NW Shoreline	MW-67	15-16.5 ft SubSurf (>2ft)	3/9/2011	MW-67-15-16.5	N												7.4 U						
NW Shoreline	PA01	0-2 ft Surf (0-2ft)	11/15/1997	PA01-0SS	N	400 U	400 U	400 U	1000 U	400 U	400 U	400 U	400 U	400 U		1000 U	400 U	400 U	400 U	1000 U	400 U	400 U	400 U
NW Shoreline	PA02	0-2 ft Surf (0-2ft)	11/15/1997	PA02-0SS	N	420 U	420 U	420 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
NW Shoreline	PA03	0-2 ft Surf (0-2ft)	11/15/1997	PA03-0SS	N	350 U	350 U	350 U	880 U	350 U	350 U	350 U	350 U	350 U		880 U	350 U	350 U	350 U	880 U	350 U	350 U	350 U
NW Shoreline	PA04	0-2 ft Surf (0-2ft)	11/15/1997	PA04-0SS	N	340 U	340 U	340 U	860 U	340 U	340 U	340 U	340 U	340 U		860 U	340 U	340 U	340 U	860 U	340 U	340 U	340 U
NW Shoreline	PA04	2-4 ft SubSurf (>2ft)	11/15/1997	PA04-2SB	N	340 U	340 U	340 U	860 U	340 U	340 U	340 U	340 U	340 U		860 U	340 U	340 U	340 U	860 U	340 U	340 U	340 U
NW Shoreline	PA04	4-6 ft SubSurf (>2ft)	11/15/1997	PA04-4SB	N	350 U	350 U	350 U	880 U	350 U	350 U	350 U	350 U	350 U		880 U	350 U	350 U	350 U	880 U	350 U	350 U	350 U
Prefab	PF02	0-2 ft Surf (0-2ft)	11/18/1997	PF02-0SS	N	420 U	420 U	420 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
Prefab	PF02	2-4 ft SubSurf (>2ft)	11/18/1997	PF02-2SB	N	450 U	450 U	450 U	1100 U	450 U	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	450 U	1100 U	450 U	450 U	450 U

							oronaphthalene	Chlorophenol	2-Methylphenol	line	lone	4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	4-Dichlorobenzene*	I-Methylnaphthalene	5-Trichlorophenol	2,4,6-Trichlorophenol*	4-Dichlorophenol	2,4-Dimethylphenol	4-Dinitrophenol	Dinitrotoluene*	2,6-Dinitrotoluene	3'-Dichlorobenzidine*
							loror	lorop	thylp	2-Nitroaniline	2-Nitropheno	-Trio	Dichlo	Dichlo	Dichlo	thylr	- Tric	- Tric	Dichlo	Jimet	Jinitr	Dinitro	Dinitro	Dich
					Para	meter	2-Ch	2-Ch	2-Me	2-Nit	2-Nit	1,2,	1,2-[1,4-[•	2,4,5	2,4,6	7,	2,4-[2,4-[2,4-[3,3'-
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				MTO	MTCA Ecologica		NL 6.45+006	NL	NL 40.006	NL	NL NI	20000	NL	NL	20000	NL	4000	10000	NL	NL 1.60+006	20000	NL 160000	NL 20000	NL 2200
					A Method B Protective of HH ethod B Protective of GW as	` '	6.4e+006 54000	400000 1100	4e+006 NL	NL NL	NL NL	800000 2600	7.2e+006 15000	NL 11000	42000 80	NL NL	8e+006 130000	91000 28	240000 1300	1.6e+006 4500	160000 14000	160000 100	80000 NL	2200 100
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Type	J-1000	1100	INL	IAL	INL	2000	13000	11000	00	INL	130000	20	1300	7500	1-1000	100	INL	100
Prefab	PF03	0-2 ft	Surf (0-2ft)	11/18/1997	PF03-0SS	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
Prefab	PF03	2-4 ft	SubSurf (>2ft)	11/18/1997	PF03-2SB	Ν	420 U	420 U	420 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
Prefab	PF03	4-6 ft	SubSurf (>2ft)	11/18/1997	PF03-4SB	Ν	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
Prefab	PF03		SubSurf (>2ft)	11/18/1997	PF03-6SB	N	440 U	440 U	440 U	1100 U	440 U	440 U	440 U	440 U	440 U		1100 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
Prefab	PF03		SubSurf (>2ft)	11/18/1997	PF03-8SB	N	450 U	450 U	450 U	1100 U	450 U	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	450 U	1100 U	450 U	450 U	450 U
Prefab	PF03	16-18 ft	SubSurf (>2ft)	11/18/1997	PF03-16SB	N	370 U	370 U	370 U	940 U	370 U	370 U	370 U	370 U	370 U		940 U	370 U	370 U	370 U	940 U	370 U	370 U	370 U
West Former Mill	BP20	0.25-8 ft	SubSurf (>2ft)	5/13/2003	K2303593-014	Ν	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
West Former Mill	FOT-EX-1		SubSurf (>2ft)	8/1/2006	FOT-EX-1-[080106]-9.5	Ν										8.2 U								
West Former Mill	FOT-EX-10		SubSurf (>2ft)	8/7/2006	FOT-EX-10-[080706]-11.5	N										7.6 U								
West Former Mill	FOT-EX-11		SubSurf (>2ft)	8/8/2006	FOT-EX-19-[080806]-4.0	N										7.3 U								
West Former Mill	FOT-EX-14		SubSurf (>2ft)	8/3/2006	FOT-EX-14-[080306]-9.0	N N										7.3 U 7.5 U								
West Former Mill West Former Mill	FOT-EX-16	11-11 ft	SubSurf (>2ft)													750								
		O O f+	CubCurf (> 2ft)	8/7/2006	FOT-EX-15-[080706]-11.0																			
			SubSurf (>2ft)	8/7/2006	FOT-EX-16-[080706]-8.0	N										7.8 U								
West Former Mill	FOT-EX-17	3-3 ft	SubSurf (>2ft)	8/7/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0	N N										7.8 U 9.4 U								
West Former Mill West Former Mill		3-3 ft 7-7 ft	, ,	8/7/2006	FOT-EX-16-[080706]-8.0	N										7.8 U								
West Former Mill	FOT-EX-17 FOT-EX-18	3-3 ft 7-7 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0	N N N										7.8 U 9.4 U 6.9 U								
West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-19 FOT-EX-2 FOT-EX-20	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0	N N N		 								7.8 U 9.4 U 6.9 U 8 U	 	 	 		 			
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-19 FOT-EX-2 FOT-EX-20 FOT-EX-21	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0	N N N N N N		 					 			7.8 U 9.4 U 6.9 U 8 U 7.2 U	 	 	 					
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-19 FOT-EX-2 FOT-EX-20 FOT-EX-21 FOT-EX-22	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806	N N N N N N	 	 	 		 	 	 			7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U	 	 	 	 	 			
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-19 FOT-EX-2 FOT-EX-20 FOT-EX-21 FOT-EX-22 FOT-EX-22	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0	N N N N N N N				 						7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U		 						
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-19 FOT-EX-2 FOT-EX-20 FOT-EX-21 FOT-EX-22 FOT-EX-22 FOT-EX-23	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-23-[080806]-5.0	N N N N N N N N			 	 						7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U								
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-2 FOT-EX-2 FOT-EX-21 FOT-EX-21 FOT-EX-22 FOT-EX-23 FOT-EX-24	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-23-[080806]-5.0 FOT-EX-24-[080806]-5.0	N N N N N N N N N			 	 						7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U 9.6		 						
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-2 FOT-EX-2 FOT-EX-21 FOT-EX-21 FOT-EX-22 FOT-EX-23 FOT-EX-24 FOT-EX-25	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-23-[080806]-5.0 WM-EX-25-[080906]-5.0	N N N N N N N N N N N N N N N N N N N		 								7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U 9.6 7.4 U	 	 						
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-2 FOT-EX-2 FOT-EX-21 FOT-EX-21 FOT-EX-22 FOT-EX-23 FOT-EX-24 FOT-EX-25 FOT-EX-26	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/9/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-23-[080806]-5.0 WM-EX-25-[080906]-5.0 WM-EX-26-[080906]-5.0	N N N N N N N N N			 	 						7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U 9.6 7.4 U		 						
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-2 FOT-EX-2 FOT-EX-21 FOT-EX-21 FOT-EX-22 FOT-EX-23 FOT-EX-24 FOT-EX-25	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 8-8 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/9/2006 8/9/2006 8/9/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-24-[080806]-5.0 WM-EX-25-[080906]-5.0 WM-EX-25-[080906]-5.0 WM-EX-26-[080906]-8.0	N N N N N N N N N N N N N N N N N N N										7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U 9.6 7.4 U								
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-2 FOT-EX-2 FOT-EX-21 FOT-EX-21 FOT-EX-22 FOT-EX-23 FOT-EX-24 FOT-EX-25 FOT-EX-26 FOT-EX-27	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 11-11 ft	SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/9/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-21-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-23-[080806]-5.0 WM-EX-25-[080906]-5.0 WM-EX-25-[080906]-5.0 WM-EX-27-[080906]-11.0	N N N N N N N N N N N N N N N N N N N										7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U 9.6 7.4 U 22 7.8 U								
West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill West Former Mill	FOT-EX-17 FOT-EX-18 FOT-EX-2 FOT-EX-2 FOT-EX-21 FOT-EX-21 FOT-EX-22 FOT-EX-23 FOT-EX-24 FOT-EX-25 FOT-EX-26 FOT-EX-27 FOT-EX-3	3-3 ft 7-7 ft 9-9 ft 9-9 ft 7-7 ft 7-7 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-5 ft 5-8 ft 8-8 ft 11-11 ft 8-8 ft	SubSurf (>2ft) SubSurf (>2ft)	8/7/2006 8/8/2006 8/8/2006 8/8/2006 8/2/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/8/2006 8/9/2006 8/9/2006 8/9/2006 8/2/2006	FOT-EX-16-[080706]-8.0 FOT-EX-17-[080806]-3.0 FOT-EX-18-[080806]-7.0 FOT-EX-19-[080806]-9.0 FOT-EX-2-[080206]-9.0 FOT-EX-20-[080806]-7.0 FOT-EX-21-[080806]-7.0 FOT-DUP-2-080806 FOT-EX-22-[080806]-5.0 FOT-EX-24-[080806]-5.0 WM-EX-25-[080906]-5.0 WM-EX-25-[080906]-5.0 WM-EX-26-[080906]-8.0	X X X X X X X X X X X X X X X X X X X										7.8 U 9.4 U 6.9 U 8 U 7.2 U 7.5 U 7.1 U 7.2 U 7.1 U 9.6 7.4 U 22 7.8 U								

						oronaphthalene	rophenol	Methylphenol	aniline	ophenol	4-Trichlorobenzene	2-Dichlorobenzene	3-Dichlorobenzene	:hlorobenzene*	1-Methylnaphthalene	Trichlorophenol	6-Trichlorophenol*	4-Dichlorophenol	Dimethylphenol	Dinitrophenol	nitrotoluene*	6-Dinitrotoluene	-Dichlorobenzidine
					Parameter	2-Chlo	2-Chlor	2	2-Nitro	2-Nitr	1,2,	₹,	-	1,4-Dichl		2,4,5-	2,4,	۷,	2,4-	2,4-Dir	2,4-Dir	2,	3,3
					Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
					ological ISC	NL	NL	NL	NL	NL	20000	NL	NL	20000	NL	4000	10000	NL	NL	20000	NL	NL	NL
				A Method B Protective of	. ,	6.4e+006	400000	4e+006	NL	NL	800000	7.2e+006	NL	42000	NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
Fire it Air	1 1 - 15	Danith 7.		ethod B Protective of G		54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area West Former Mill	Loc ID HF01	Depth Zone 2-4 ft SubSurf (>2t	Date t) 11/13/1997	Sample ID HF01-2SB	Туре	45011	450 U	450 U	1100 U	450.11	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	45011	1100 U	450 U	45011	150.11
West Former Mill	HF01 HF02	2-4 ft SubSurf (>2t 0-2 ft Surf (0-2ft)	11/13/1997	HF01-25B HF02-0SS	N N	450 U 390 U	390 U	390 U	980 U	450 U 390 U	390 U	390 U	390 U	390 U		980 U	390 U	390 U	450 U 390 U	980 U	390 U	450 U 390 U	450 U 390 U
West Former Mill	HF02	2-4 ft SubSurf (>2t)		HF02-2SB	N	370 U	370 U	370 U	920 U	370 U	370 U	370 U	390 U	370 U		920 U	370 U	370 U	370 U	920 U	390 U	370 U	390 U
West Former Mill	HF03	0-2 ft Surf (0-2ft)	11/14/1997	HF03-0SS	N	370 U	370 U	370 U	930 U	370 U	370 U	370 U	370 U	370 U		930 U	370 U	370 U	370 U	930 U	370 U	370 U	370 U
West Former Mill	HF03	2-4 ft SubSurf (>2t)		HF03-2SB	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
West Former Mill	HF04	0-2 ft Surf (0-2ft)	11/14/1997	HF04-0SS	N	400 U	400 U	400 U	1000 U	400 U	400 U	400 U	400 U	400 U		1000 U	400 U	400 U	400 U	1000 U	400 U	400 U	400 U
West Former Mill	HF04	2-4 ft SubSurf (>2t		HF04-2SB	N	420 U	420 U	420 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
West Former Mill	HF05	0-2 ft Surf (0-2ft)	11/14/1997	HF05-0SS	N	400 U	400 U	400 U	1000 U	400 U	400 U	400 U	400 U	400 U		1000 U	400 U	400 U	400 U	1000 U	400 U	400 U	400 U
West Former Mill	HF05	2-4 ft SubSurf (>2t		HF05-2SB	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
West Former Mill	HF06	0-2 ft Surf (0-2ft)	11/14/1997	HF06-0SS	N	410 U	410 U	410 U	1000 U	410 U	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
West Former Mill	HF06	2-4 ft SubSurf (>2f	t) 11/14/1997	HF06-2SB	N	390 U	390 U	390 U	980 U	390 U	390 U	390 U	390 U	390 U		980 U	390 U	390 U	390 U	980 U	390 U	390 U	390 U
West Former Mill	HF07	0-2 ft Surf (0-2ft)	11/20/1997	HF07-0SS	N	370 U	370 U	370 U	940 U	370 U	370 U	370 U	370 U	370 U		940 U	370 U	370 U	370 U	940 U	370 U	370 U	370 U
West Former Mill	HF07	2-4 ft SubSurf (>2t	t) 11/20/1997	HF07-2SB	N	360 U	360 U	360 U	910 U	360 U	360 U	360 U	360 U	360 U		910 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
West Former Mill	HF08	0-2 ft Surf (0-2ft)	11/20/1997	HF08-0SS	N	370 U	370 U	370 U	920 U	370 U	370 U	370 U	370 U	370 U		920 U	370 U	370 U	370 U	920 U	370 U	370 U	370 U
West Former Mill	HF08	2-4 ft SubSurf (>2t	t) 11/20/1997	HF08-2SB	N	370 U	370 U	370 U	940 U	370 U	370 U	370 U	370 U	370 U		940 U	370 U	370 U	370 U	940 U	370 U	370 U	370 U
West Former Mill	HF09	0-2 ft Surf (0-2ft)	11/19/1997	HF09-0SS	N	380 U	380 U	380 U	950 U	380 U	380 U	380 U	380 U	380 U		950 U	380 U	380 U	380 U	950 U	380 U	380 U	380 U
West Former Mill	HF09	2-4 ft SubSurf (>2f	,	HF09-2SB	N	370 U	370 U	370 U	920 U	370 U	370 U	370 U	370 U	370 U		920 U	370 U	370 U	370 U	920 U	370 U	370 U	370 U
West Former Mill	MW-60	2-3.5 ft SubSurf (>2t	,	MW-60-2-3.5	N									59 U			6.9 U				300 UI		300 UI
West Former Mill	MW-60	10-11.5 ft SubSurf (>21	,	MW-60-10-11.5	N									570 UI			8.3 U				2800 UI		2800 UI
West Former Mill	MW-60	15-16.5 ft SubSurf (>21	,	MW-60-15-16.5	N									59 U			7.6 U				290 UI		290 UI
West Former Mill	MW-60	20-20.75 ft SubSurf (>21	<i>'</i>	MW-60-20-20.75	N									20 U			7.1 U				98 U		98 U
West Former Mill	MW-60	23-24.4 ft SubSurf (>21	,	MW-60-23-24.4	N									20 U			7.3 U				96 U		96 U
West Former Mill	MW-68	5.5-6 ft SubSurf (>21	<i>'</i>	MW68-5.5-6	N																		
West Former Mill	MW-68	13-14 ft SubSurf (>21	,	MW68-13-14	N																		
West Former Mill	MW-68	55-55 ft SubSurf (>21	,	MW-68-55	N									20 U			7.4 U				98 U		98 U
West Former Mill	PS20	0.25-6.5 ft SubSurf (>21	,	K2303678-010	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 U	2000 U	330 U	330 U	2000 U
West Former Mill	RB01	0-0.25 ft Surf (0-2ft)	11/10/1997	RB01SS	N	700 U	700 U	700 U	1800 U	700 U	700 U	700 U	700 U	700 U		1800 U	700 U	700 U	700 U	1800 U	700 U	700 U	700 U
West Former Mill	RB01	0.25-7 ft SubSurf (>2f	,	K2303593-015	N	330 U	330 U	330 U	2000 U	330 U	330 U	330 U	330 U	330 U		330 U	330 U	48 J	330 U	2000 U	340 U	340 U	2000 U
West Former Mill	RB02 RB03	0-0.25 ft Surf (0-2ft)	11/10/1997	RB02SS RB03-0SS	N N	790 U 350 U	790 U 350 U	790 U	2000 U 890 U	790 U 350 U	790 U 350 U	790 U 350 U	790 U 350 U	790 U 350 U		2000 U 890 U	790 U 350 U	790 U 350 U	790 U 350 U	2000 U 890 U	790 U 350 U	790 U 350 U	790 U 350 U
West Former Mill	KB03	0-2 ft Surf (0-2ft)	11/21/1997	KB03-022	IN	350 U	350 U	350 U	890 U	350 U	35U U	350 U	350 U	3500		890 U	3500	350 U	350 U	890 U	350 0	350 U	350 0

							ene					nzene	ene	ene	ene*	ene	enol	enol*	Б	loi		****	0	idine*
						Parameter	2-Chloronaphthalene	2-Chlorophenol	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluen	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine*
					MTCA For	Units ological ISC	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) 4000	(ug/Kg) 10000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL
				MT	CA Method B Protective of	•	6.4e+006	400000	4e+006	NL	NL NL	800000	7.2e+006	NL NL	42000	NL NL	8e+006	91000	240000	1.6e+006	160000	160000	80000	2200
					Method B Protective of G	, ,	54000	1100	NL	NL	NL	2600	15000	11000	80	NL	130000	28	1300	4500	14000	100	NL	100
Funct. Are	a Loc	c ID	Depth Zone	Date	Sample ID	Туре																		
West Former	Mill RE	303	8-10 ft SubSurf (>	2ft) 11/21/1997	' RB03-8SB	N	430 U	430 U	430 U	1100 U	430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
West Former	Mill RE	304	0-2 ft Surf (0-2)	11/21/1997	RB04-0SS	N	370 U	370 U	370 U	940 U	370 U	370 U	370 U	370 U	370 U		940 U	370 U	370 U	370 U	940 U	370 U	370 U	370 U
West Former	Mill RE	304	4-6 ft SubSurf (>	2ft) 11/21/1997	RB04-4SB	N	350 U	350 U	350 U	890 U	350 U	350 U	350 U	350 U	350 U		890 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
West Former	Mill RE	304	8-10 ft SubSurf (>	2ft) 11/21/1997	RB04-8SB	N	380 U	380 U	380 U	970 U	380 U	380 U	380 U	380 U	380 U		970 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
West Former		320	0.25-8 ft SubSurf (>		K2303593-017	N	340 U	340 U	340 U	2100 U	340 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U	340 U	2100 U	340 U	340 U	2100 U
West Former		321	0.25-8 ft SubSurf (>	2ft) 5/13/2003	K2303593-019	N	330 U	330 U	330 U	2000 U	330 U	330 U	220 J	330 U	21 J		330 U	330 U	330 U	330 U	2000 U	340 U	340 U	2000 U
West Former		B-2	2-3.5 ft SubSurf (>	2ft) 10/21/2010		N									63 U			7.9 U				320 UI		320 UI
West Former		B-2	5-6.5 ft SubSurf (>	,		FD												8 U				320 UI		320 UI
West Former		B-2	5-6.5 ft SubSurf (>	,		N									24 B			8.6 U						
West Former		B-2	10-11.5 ft SubSurf (>			N									20 B			7 U				97 U		97 U
West Former		B-2	15-16.5 ft SubSurf (>			N									19 U			7.2 U				97 U		97 U
West Former		B-2	20-20.5 ft SubSurf (>			N									26 B			7.4 U				100 U		100 U
West Former	Mill SS	B-7	2-3.5 ft SubSurf (>	2ft) 10/26/2010	SSB-7-2-3.5	N												6.4 U				96 U		96 R
West Former		B-7	10-11.5 ft SubSurf (>	,		N												6.9 U				96 U		96 U
West Former		B-7	20-21.5 ft SubSurf (>			N												6.6 U				96 U		96 U
West Former		B-7	25-26.5 ft SubSurf (>			N												7 U				98 U		98 U
West Former		B-7	30-30.75 ft SubSurf (>	,		N												7 U				95 U		95 U
West Former		P-01	2-2 ft Surf (0-2)	·	TP-01-2'	N									20 U			6.9 U				100 U		100 U
West Former		P-01	8-8 ft SubSurf (>		TP-01-8'	N									20 U			8.2 U				98 U		98 UJ
West Former		9-02	2-2 ft Surf (0-2)		TP-02-2'	N									20 U			8.2 U				98 U		98 U
West Former		9-02	8-8 ft SubSurf (>	,	TP-02-8'	N									180 UIJ			6.9 U				910 UIJ		910 UIJ
West Former		9-02	8-8 ft SubSurf (>		TP-DUPE-1	FD									550 UIJ			6.7 U				2800 UIJ		2800 UIJ
West Former		9-03	2-2 ft Surf (0-2)	,	TP-03-2'	N									20 U			7.1 U				99 U		99 U
West Former		9-03	4-4 ft SubSurf (>	,	TP-03-4'	N									20 U			7.4 U				100 U		100 U
West Former		9-03	7-7 ft SubSurf (>		TP-03-7'	N									38 U			7.4 U				190 UI		190 UI
West Former		P-04	2-2 ft Surf (0-2)	<i>'</i>	TP-04-2'	N									20 U			7.6 U				98 U		98 U
West Former		9-04	7-7 ft SubSurf (>	- '	TP-04-7'	N									20 U			12 U				99 U		99 U
West Former		P-05	2-2 ft Surf (0-2)	<i>'</i>	TP-05-2'	N									20 U			6.4 U				99 U		99 U
West Former		P-05	6-6 ft SubSurf (>		TP-05-6'	N									19 U			8.3 U				97 U		97 U
West Former	Mill TP	9-06	3-3 ft SubSurf (>	2ft) 1/5/2011	TP-06-3'	N									20 U			20 U				98 U		98 U

						2-Chloronaphthalene	phenol	2-Methylphenol	illine	lenol	4-Trichlorobenzene	,2-Dichlorobenzene	1,3-Dichlorobenzene	.4-Dichlorobenzene*	1-Methylnaphthalene	5-Trichlorophenol	2,4,6-Trichlorophenol*	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	rotoluene*	2,6-Dinitrotoluene	3,3'-Dichlorobenzidine*
						Chloro	2-Chlorophen	Methyl	2-Nitroaniline	2-Nitropheno	,2,4-Tric	2-Dichl	3-Dichl	-Dichl	Methyl	t,5-Tric	t,6-Tric	-Dichl	-Dime	-Dinit	4-Dinit	3-Dinit	3'-Dich
				Para	ameter						_	_	_	₹		2,4,					2,		
				MTCA Factoria	Units	(ug/Kg)	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg) NL	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg)	(ug/Kg) NL	(ug/Kg)
			MTC	MTCA Ecologic A Method B Protective of HH			NL 400000	NL 4e+006	NL NL	NL NL	20000 800000	NL 7.2e+006	NL NL	20000 42000	NL NL	4000 8e+006	10000 91000	NL 240000	1.6e+006	160000	NL 160000	NL 80000	NL 2200
				Method B Protective of GW as		54000	1100	46+006 NL	NL	NL	2600	15000	11000	80	NL NL	130000	28	1300	4500	14000	100	NL	100
Funct. Area	Loc ID	Depth Zone	Date	Sample ID	Туре	0.000							7.000										
West Former Mill	TP-06	7-7 ft SubSurf (>2	ft) 1/5/2011	TP-06-7'	N									20 U			6.9 U				99 U		99 U
West Former Mill	TP-07	2-2 ft Surf (0-2ft) 1/5/2011	TP-07-2'	N									20 U			13				97 U		97 U
West Former Mill	TP-07	2-2 ft Surf (0-2ft) 1/5/2011	TP-DUPE-2	FD									19 U			17 U				97 U		97 U
West Former Mill	TP-07	6-6 ft SubSurf (>2	•	TP-07-6'	N									20 U			9.8 U				98 U		98 U
West Former Mill	TP-08	2-2 ft Surf (0-2ft		TP-08-2'	N									20 U			7.7 U				99 U		99 U
West Former Mill	TP-08	5-5 ft SubSurf (>2	,	TP-08-5'	N									20 U			7.3 U				98 U		98 U
West Former Mill	TP-11 TP-11	2-2 ft Surf (0-2ft		TP-11-2'	N									20 U			8.1 U				98 U		98 U
West Former Mill West Former Mill	TP-11	5-5 ft SubSurf (>2 5-5 ft SubSurf (>2	,	TP-11-5' TP-DUPE-3	N FD									72 U 67 U			9.2 U 9.1 U				360 UI 330 UI		360 UI 330 UI
West Former Mill	TP-11	2-2 ft Surf (0-2ft	*	TP-12-2'	N									67 U			7.1 U				340 UI		340 UI
West Former Mill	TP-12	4-4 ft SubSurf (>2		TP-12-4'	N									62 U			7.1 U				310 UI		310 UI
West Former Mill	TP-15	2-2 ft Surf (0-2ft		TP-15-2'	N									85 UI			20 U				420 UI		420 UI
West Former Mill	TP-15	4-4 ft SubSurf (>2		TP-15-4'	N									20 U			7.8 U				99 U		99 U
West Former Mill	TP-16	2-2 ft Surf (0-2ft		TP-16-2'	N									20 U			6.8 U				99 U		99 U
West Former Mill	TP-16	5-5 ft SubSurf (>2	ft) 1/6/2011	TP-16-5'	N									20 U			6.6 U				98 U		98 U
West Former Mill	WM21	0-0.25 ft Surf (0-2ft		K2303600-003	N																		
West Former Mill	WM21	0.25-9.5 ft SubSurf (>2	•	K2303600-004	N	320 U	320 U	320 U	1900 U	320 U	320 U	320 U	320 U	320 U		320 U	320 U	320 U	320 U	1900 U	320 U	320 U	1900 U
West Former Mill	WM-EX-1	8-8 ft SubSurf (>2		WM-EX-1-[080306]-8.0	N										7.3 U								
West Former Mill	WM-EX-10	16-16 ft SubSurf (>2		WM-DUP-1-080806	FD										11								
West Former Mill West Former Mill	WM-EX-10	16-16 ft SubSurf (>2 17-17 ft SubSurf (>2		WM-EX-10-[080806]-16.0 WM-EX-11-[080806]-17.0	N										81								
West Former Mill	WM-EX-11	8-8 ft SubSurf (>2	,	WM-EX-11-[080806]-17.0 WM-EX-12-[080806]-8.0	N N										8.9 U 7.3 U								
West Former Mill	WM-EX-12	9-9 ft SubSurf (>2		WM-EX-12-[080806]-9.0	N										7.9 U								
West Former Mill	WM-EX-14	14-14 ft SubSurf (>2	,	WM-EX-14-[080806]-14.0	N										7.5 U								
West Former Mill	WM-EX-15	14-14 ft SubSurf (>2	,	WM-EX-15-[080806]-14.0	N										7.6 U								
West Former Mill	WM-EX-16	14-14 ft SubSurf (>2		WM-EX-16-[080806]-14.0	N										1700								
West Former Mill	WM-EX-17	14-14 ft SubSurf (>2		WM-EX-17-[080806]-14.0	N										7.4 U								
West Former Mill	WM-EX-18	9-9 ft SubSurf (>2	ft) 8/9/2006	WM-EX-18-[080906]-9.0	N			I			-				53								
West Former Mill	WM-EX-2	11-11 ft SubSurf (>2	,	WM-EX-2-[080306]-11.0	N										7.5 U								
West Former Mill	WM-EX-3	10-10 ft SubSurf (>2	ft) 8/3/2006	WM-EX-3-[080306]-10.0	N										7.5 U								

					Pa MTCA Ecolog A Method B Protective of H lethod B Protective of GW	IH (SFV)	6.4e+006	2-Chlorophenol	NL	N N Shitroaniline (6 2-Nitroaniline	Z Z Z S/A 2-Nitrophenol	0090 000008 00000 (6) (1,2,4-Trichlorobenzene	7.2endorobenzene 7.2endorobenzene 7.2endorobenzene	DOOLT R (S) 1,3-Dichlorobenzene	08 00005 00007 00007 007,4-Dichlorobenzene*	Z Z Z X 1-Methylnaphthalene (원	000000 0000 9000 0000 9000 9000 0000 900000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 9000 90	82 00000 E 00000 S 2,4,6-Trichlorophenol*	00007 1300 1300 1300 1300 1300 1300 1300	000+000 000 000+000 00	14000 160000 160000 (bX/Sd) 2,4-Dinitrophenol	00000 100 (2,4-Dinitrotoluene*	78 8 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	MW 3,3-Dichlorobenzidine*
Funct. Area	Loc ID	Depth	Zone	Date	Sample ID	Туре																		
West Former Mill	WM-EX-4	13-13 ft	SubSurf (>2ft)	8/4/2006	WM-EX-4-[080406]-13.0) N										7.7 U								
West Former Mill	WM-EX-5	16-16 ft	SubSurf (>2ft)	8/4/2006	WM-EX-5-[080406]-16.0) N										7.7 U								
West Former Mill	WM-EX-6	9-9 ft	SubSurf (>2ft)		WM-EX-6-[080706]-9.0	N										7.3 U								
West Former Mill	WM-EX-7		SubSurf (>2ft)		WM-EX-7-[080706]-8.5											7.3 U								
West Former Mill	WM-EX-8		SubSurf (>2ft)		WM-EX-8-[080706]-15.0											7.3 U								
West Former Mill	WM-EX-9	10-10 ft	SubSurf (>2ft)	8/7/2006	WM-EX-9-[080706]-10.0) N										7.8 U								

				niline	ro-2-methylphenol	4-Bromophenyl-phenylether	4-Chloro-3-methylphenol	4-Chloroaniline	Chlorophenyl-phenylether	Methylphenol	niline	henol	Acenaphthene	Acenaphthylene	ene	Benzo(g,h,i)perylene	alcohol	bis(2-Chloro-1-methylethyl)ether*	bis(2-Chloroethoxy)methane	-Chloroethyl)ether*	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate*	Butylbenzylphthalate	9	Φ	Diethylphthalate
				3-Nitroaniline	6-Dinitro	Bromo	Chlor	Chlor	Chlor	Methy	4-Nitroaniline	4-Nitrophenol	cenap	cenap	Anthracene	enzo(ç	Benzyl a	s(2-Cł	s(2-C	bis(2-Cł	s(2-Ch	is(2-Et	utylbe	Carbazole	Chrysene	iethylp
					4,	•	-	•	4	(na/ka)	_	-		_										_	1	
				(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 100000
				NL	NL	NL	NL	320000	NL	400000	NL	NL	4.8e+006	NL	2.4e+007	NL	2.4e+007	14000	NL	910	3.2e+006	71000	1.6e+007	50000	NL	6.4e+007
				NL	NL	NL	NL	NL	NL	NL	NL	NL	65000	NL	1.2e+007	NL	NL	209.54	NL	20	240000	4900	360000	NL	NL	160000
Funct. Area	Loc ID	Depth	Zone																							
City Purchase	BY01	0-2 ft	Surf (0-2ft)	930 U	930 U	370 U	370 U	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	49 J		370 U	370 U	370 U		370 U	370 U	370 U	370 U	460 U
City Purchase	BY01	2-4 ft	SubSurf (>2ft)	1000 U	1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		410 U	410 U	410 U	410 U	500 U
City Purchase City Purchase	BY02 BY02	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	970 U 1100 U	970 U 1100 U	380 U 420 U	380 U 420 U	380 U 420 U	380 U 420 U	380 U 420 U	970 U 1100 U	970 U 1100 U	380 U 420 U	380 U 420 U	380 U 420 U	380 U 420 U		380 U 420 U	380 U 420 U	380 U 420 U		380 U 420 U	380 U 420 U	380 U 420 U	380 U 420 U	470 U 470 U
City Purchase	BY03	0-2 ft	Surf (0-2ft)	930 U	930 U	370 U	370 U	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	370 U
City Purchase	BY03	2-4 ft	SubSurf (>2ft)	1100 U	1100 U	450 U	450 U	450 U	450 U	1200		1100 U	450 U	450 U	48 J	100 J		450 U	450 U	450 U		450 U	450 U	450 U	120 J	470 U
City Purchase	BY04	0-2 ft	Surf (0-2ft)	990 U	990 U	390 U	390 U	390 U	390 U	390 U	990 U	990 U	390 U	390 U	390 U	390 U		390 U	390 U	390 U		390 U	390 U	390 U	390 U	390 U
City Purchase	BY04	2-4 ft	SubSurf (>2ft)	1100 U	1100 U	430 U	430 U	430 U	430 U	430 U	1100 U	1100 U	430 U	430 U	430 U	430 U		430 U	430 U	430 U		430 U	430 U	430 U	430 U	480 U
City Purchase	BY05	0-2 ft	Surf (0-2ft)	1000 U	1000 U	400 U	400 U	400 U	400 U	900	1000 U	1000 U	400 U	400 U	47 J	81 J		400 U	400 U	400 U		400 U	400 U	400 U	99 J	400 U
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	990 U	990 U	390 U	390 U	390 U	390 U	390 U	990 U	990 U	390 U	390 U	390 U	390 U		390 U	390 U	390 U		390 U	390 U	390 U	390 U	390 U
City Purchase	BY05	4-6 ft	SubSurf (>2ft)	1200 U	1200 U	460 U	460 U	460 U	460 U	460 U		1200 U	460 U	460 U	460 U	460 U		460 U	460 U	460 U		460 U	460 U	460 U	460 U	460 U
City Purchase	BY05 BY05	6-8 ft 8-10 ft	SubSurf (>2ft) SubSurf (>2ft)	1200 U 1100 U	1200 U 1100 U	460 U 440 U	460 U 440 U	460 U 440 U	460 U 440 U	460 U 440 U	1200 U 1100 U	1200 U 1100 U	460 U 440 U	460 U 440 U	460 U 440 U	460 U 440 U		460 U 440 U	460 U 440 U	460 U 440 U		460 U 440 U	460 U 440 U	460 U 440 U	460 U 440 U	460 U 440 U
City Purchase City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)				440 0		440 0				440 0	440 0	440 0			19 U		19 U		17000 J		440 0	24	
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)															20 U		20 U		44 J			13	
City Purchase	GWG-8	10-11.5 ft	SubSurf (>2ft)															20 U		20 U		84			4.6 U	
City Purchase	GWG-8	15-16.5 ft	SubSurf (>2ft)				-											19 U		19 U		310	-		4.9 U	
City Purchase	PF01	0-2 ft	Surf (0-2ft)	1100 U		440 U	440 U	440 U	440 U	440 U		1100 U	440 U	440 U	440 U	440 U		440 U	440 U	440 U		440 U	440 U	440 U	440 U	440 U
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	1100 U	1100 U	440 U	440 U	440 U	440 U	440 U	1100 U	1100 U	440 U	440 U	440 U	440 U		440 U	440 U	440 U		440 U	440 U	440 U	440 U	440 U
City Purchase	SSB-10	2-3.5 ft	SubSurf (>2ft)															19 U		19 U		120			6.4	
City Purchase	SSB-10 SSB-10	5-6.5 ft 10-11.5 ft	SubSurf (>2ft)															19 U		19 U		130			5.2 4.7 U	
City Purchase City Purchase	SSB-10	15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)															19 U 20 U		19 U 20 U		100			4.7 U	
City Purchase	SSB-10	20-21.5 ft	SubSurf (>2ft)															20 U		20 U		75			4.9 U	
			` '												7011											
CSO CSO	FOT-EX-12 FOT-EX-13	6-6 ft 13-13 ft	SubSurf (>2ft) SubSurf (>2ft)										7.2 U 8.5 U	7.2 U 8.5 U	7.2 U 8.5 U	7.2 U 8.5 U									7.2 U 9.4	
CSO	FOT-EX-28	8-8 ft	SubSurf (>2ft)										7.8 U	7.8 U	7.8 U	7.8 U									7.8 U	
CSO	FOT-EX-6	3-3 ft	SubSurf (>2ft)										8 U	8 U	8 U	8.3									8 U	
CSO	FOT-EX-7	3-3 ft	SubSurf (>2ft)										7.2 U	7.2 U	7.2 U	7.2 U									7.2 U	
CSO	FOT-EX-8	8-8 ft	SubSurf (>2ft)										7.8 U	7.8 U	7.8 U	7.8 U									10	

				NG/NG(n) 3-Nitroaniline	ZZ (SA) (Sh.) (SA) (Sh.) (SA) (Sh.)	ZZ (6n) 4-Bromophenyl-phenylether	ZZ A A Chloro-3-methylphenol	Z S 4-Chloroaniline	ZZ Z 4-Chlorophenyl-phenylether	Z S A 4-Methylphenol	FZ SA 4-Nitroaniline	RZ (BX) 4-Nitrophenol	(g/Kg) (20000	FZ Acenaphthylene	(by Anthracene	ZZ Benzo(g,h,i)perylene	R (Benzyl alcohol	Z & bis(2-Chloro-1-methylethyl)ether*	: 구 을 bis(2-Chloroethoxy)methane	Z S bis(2-Chloroethyl)ether*	Z & Dis(2-Chloroisopropyl)ether	IZ © Dis(2-Ethylhexyl)phthalate*	Butylbenzylphthalate	TN SS Carbazole	PA (SA) Chrysene	(6X)/6n) (6X)/6n) (6X)/6n) (6X)/6n)
				NL NL	NL NL	NL NL	NL NL	320000 NL	NL NL	400000 NL	NL NL	NL NL	4.8e+006 65000	NL NL	2.4e+007 1.2e+007	NL NL	2.4e+007 NL	14000 209.54	NL NL	910 20	3.2e+006 240000	71000 4900	1.6e+007 360000	50000 NL	NL NL	6.4e+007 160000
Funct. Area	Loc ID	Depth	Zone	INL	INL	INL	INL	INL	INL	INL	INL	INL	65000	INL	1.20+007	INL	INL	209.54	INL	20	240000	4900	300000	INL	INL	100000
CSO	FOT-EX-9	6-6 ft	SubSurf (>2ft)										7.5 U	7.5 U	7.5 U	7.5 U									7.5 U	
CSO	GB02	0-2 ft	Surf (0-2ft)	1000 U	1000 U	400 U	400 U	400 U	400 U	400 U	1000 U	1000 U	400 U	400 U	400 U	400 U		400 U	400 U	400 U		400 U	400 U	400 U	400 U	400 U
CSO	GB02	2-4 ft	SubSurf (>2ft)	940 U	940 U	370 U	370 U	370 U	370 U	370 U	940 U	940 U	370 U	370 U	63 J	370 U		370 U	370 U	370 U		370 U	370 U	370 U	170 J	370 U
CSO	GB03	0-2 ft	Surf (0-2ft)	950 U	950 U	380 U	380 U	380 U	380 U	380 U	950 U	950 U	380 U	380 U	380 U	46 J		380 U	380 U	380 U		380 U	380 U	380 U	380 U	380 U
CSO	GB03	2-4 ft	SubSurf (>2ft)	990 U	990 U	390 U	390 U	390 U	390 U	390 U	990 U	990 U	390 U	390 U	35 J	390 U		390 U	390 U	390 U		390 U	390 U	390 U	55 J	390 U
CSO	GWG-6	2-3.5 ft	SubSurf (>2ft)															20 U		20 U		28 U			51	
CSO	GWG-6	5-6.5 ft	SubSurf (>2ft)															19 U		19 U		19 U			4.7 U	
CSO	GWG-6	10-11.5 ft	SubSurf (>2ft)															19 U		19 U		36 U			4.8 U	
CSO	MW-70	2-3.5 ft	SubSurf (>2ft)																			26 U			4.8 U	
CSO	MW-70	5-6.5 ft	SubSurf (>2ft)																			110 U			4.8 U	
CSO	MW-70	10-11.5 ft	SubSurf (>2ft)																			19 U			4.8 U	
CSO	MW-70	15-16.5 ft	SubSurf (>2ft)																			19 U			4.7	
CSO	MW-70	20-21.5 ft	SubSurf (>2ft)					1														25 U			4.9 U	
East Former Mill	CD02	0-2 ft	Surf (0-2ft)	1100 U	1100 U	430 U	430 U	430 U	430 U	430 U	1100 U	1100 U	430 U	430 U	430 U	44 J		430 U	430 U	430 U		430 U	430 U	430 U	68 J	430 U
East Former Mill	CD02	2-4 ft	SubSurf (>2ft)	1100 U		+	450 U	450 U	450 U	450 U		1100 U	450 U	450 U	450 U	450 U		450 U	450 U	450 U		450 U	450 U	450 U	450 U	450 U
East Former Mill	CD02	4-6 ft	SubSurf (>2ft)	1100 U			440 U	440 U	440 U	440 U		1100 U	440 U	440 U	440 U	440 U		440 U	440 U	440 U		440 U	440 U	440 U	440 U	440 U
East Former Mill	CD02	6-8 ft	SubSurf (>2ft)	1000 U	1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		410 U	410 U	410 U	410 U	410 U
East Former Mill	CD03	0-2 ft	Surf (0-2ft)	900 U	900 U	360 U	360 U	360 U	360 U	360 U	900 U	900 U	360 U	360 U	360 U	360 U		360 U	360 U	360 U		360 U	360 U	360 U	360 U	360 U
East Former Mill	CD03 GWG-7	2-4 ft 2-3.5 ft	SubSurf (>2ft)	900 U	900 U	360 U	360 U	360 U	360 U	360 U	900 U	900 U	360 U	360 U	360 U	360 U		360 U 20 U	360 U	360 U		360 U	360 U	360 U	56 J	360 U
East Former Mill East Former Mill	GWG-7	2-3.5 π 5-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)															20 U		20 U 20 U		590 B 33 U			7.7 4.5 U	
East Former Mill	GWG-7	7-8.5 ft	SubSurf (>2ft)															19 U		19 U		22 U			4.5 U	
East Former Mill	SL22	0-0.25 ft	Surf (0-2ft)										330 U	330 U	330 U	330 U		19 0							330 U	
East Former Mill	SL22	0.25-7.5 ft											330 U	330 U	330 U	330 U									330 U	
			,																							
East Shoreline	SL20 SL21	0.25-7 ft 0.25-6.5 ft	SubSurf (>2ft)										330 U	330 U	330 U	330 U									330 U	
East Shoreline East Shoreline	SL21	0.25-6.5 ft	SubSurf (>2ft) SubSurf (>2ft)										330 U	330 U	330 U	45 J									150 J	
			` '																							
Ennis Creek	DD02	0-0.25 ft	Surf (0-2ft)							730 U			730 U		730 U	730 U						730 U		730 U	100 J	

			(pg/Kg) SL NL		ZZZZ & 4-Bromophenyl-phenylether	ZZZ Z	72 85 PA Chloroaniline (6.4 4 Chloroaniline	Z Z Z Ĝ PZ Z Z Ĝ 4-Chlorophenyl-phenylether	(ug/Kg) NL 400000	FZ Z Z S S 4-Nitroaniline	TZ Z Z S P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Venaphthene (mg/Kg) Acenaphthene (20000 4.8e+006 65000	ZZZB GACenaphthylene GACenaphthylene	(ug/Kg) NL 2.4e+007 1.2e+007	FZ Z Z S Benzo(g,h,i)perylene	(ug/Kg) NL 2.4e+007	000 H	ΓZ Z Z B is (2-Chloroethoxy)methane	05 G N S Dis(2-Chloroethyl)ether*	(ug/Kg) NL 3.2e+006 240000	000 H S bis(2-Ethylhexyl)phthalate*	(ug/Kg) NL NL 1.6e+007 360000	(By/6n) Nr Nr 00000	DZ Z DZ Chrysene	(ug/Kg) 100000 6.4e+007 160000
Funct. Area	Loc ID	Depth Zone	INL	INL	INL	INL	INL	INL	INL	INL	INL	65000	INL	1.20+007	INL	INL	209.54	INL	20	240000	4900	360000	INL	INL	160000
Estuary	CD01	0-2 ft Surf (0-2ft)	890 U	890 U	350 U	350 U	350 U	350 U	350 U	890 U	890 U	66 J	350 U	100 J	350 U		350 U	350 U	350 U		350 U	350 U	350 U	160 J	350 U
Estuary	CD01	2-4 ft SubSurf (>2ft)	910 U	910 U	360 U	360 U	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	360 U		360 U	360 U	360 U		360 U	360 U	360 U	33 J	360 U
Estuary	FR05	0-0.25 ft Surf (0-2ft)	1600 U	1600 U	620 U	620 U	620 U	620 U	620 U	1600 U	1600 U	620 U	620 U	33 J	620 U		620 U	620 U	620 U		70 J	620 U	620 U	160 J	620 U
Estuary	MW-62	2-3.5 ft SubSurf (>2ft)															19 U		19 U		19 U			10	
Estuary	MW-62	5-6.5 ft SubSurf (>2ft)															19 U		19 U		90 B			4.7 U	
Estuary	MW-62	10-11.5 ft SubSurf (>2ft)															20 U		20 U		50 B			4.8 U	
Estuary	MW-62	15-16.5 ft SubSurf (>2ft)															20 U		20 U		140 B			5 U	
Estuary	MW-62	20-21.25 ft SubSurf (>2ft)															19 U		19 U		97 B			4.9 U	
Estuary Estuary	MW-62 RS20	25-26.5 ft SubSurf (>2ft) 0-0.25 ft Surf (0-2ft)	2000 U	2000 U	330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	330 U	330 U	24 J	83 J	330 U	20 U		20 U 330 U	330 U	230 B 100 J	330 U	330 U	4.8 U 210 J	330 U
Estuary	RS20	0-0.25 ft Surf (0-2ft)	2100 U	2100 U	340 U	340 U	340 U	340 U	340 U	2100 U	2100 U	340 U	340 U	43 J	58 J	340 U			340 U	340 U	260 J	340 U	25 J	320 J	340 U
Estuary	RS20	0.25-2 ft Surf (0-2ft)	2000 U	2000 U	330 U	330 U	330 U	330 U	330 U		2000 U	330 U	330 U	330 U	330 U	330 U			330 U	330 U	330 U	330 U	330 U	330 U	330 U
Estuary	RS21	0-0.25 ft Surf (0-2ft)	2000 U		330 U	330 U	340 U	330 U	330 U		2000 U	22 J	330 U	47 J	110 J	330 U			330 U	330 U	43 J	330 U	39 J	300 J	330 U
Estuary	RS21	0-0.25 ft Surf (0-2ft)	2000 U	2000 U	330 U	330 U	340 U	330 U	330 U	2000 U	2000 U	18 J	330 U	34 J	85 J	330 U			330 U	330 U	1500	330 U	25 J	270 J	330 U
Estuary	RS21	0.25-9.5 ft SubSurf (>2ft)	2100 U	2100 U	340 U	340 U	340 U	340 U	340 U	2100 U	2100 U	340 U	340 U	340 U	340 U	340 U			340 U	340 U	51 J	340 U	340 U	340 U	340 U
Main Former Mill	AP01	0-0.25 ft Surf (0-2ft)	1200 U	1200 U	490 U	490 U	490 U	490 U	490 U	1200 U	1200 U	120 J	490 U	200 J	490 U		490 U	490 U	490 U		1400	490 U	120 J	690	490 U
Main Former Mill	AP02	0-0.25 ft Surf (0-2ft)	1200 U			460 U	460 U	460 U	460 U		1200 U	810	150 J	1300	460 U		460 U	460 U	460 U		1000	460 U	1000	3700	460 U
Main Former Mill	AP03	0-0.25 ft Surf (0-2ft)	1200 U	1200 U	480 U	480 U	480 U	480 U	480 U	1200 U	1200 U	75 J	98 J	280 J	59 J		480 U	480 U	480 U		2500	100 J	180 J	1200	480 U
Main Former Mill	AP04	0-0.25 ft Surf (0-2ft)	1600 U	1600 U	650 U	650 U	650 U	650 U	650 U	1600 U	1600 U	210 J	67 J	500 J	650 U		650 U	650 U	650 U		660	650 U	320 J	1900	650 U
Main Former Mill	BL01	0-0.25 ft Surf (0-2ft)	910 U	910 U	360 U	360 U	360 U	360 U	360 U	910 U	910 U	360 U	360 U	52 J	360 U		360 U	360 U	360 U		120 J	360 U	360 U	240 J	800
Main Former Mill	BL02	0-0.25 ft Surf (0-2ft)	1400 U			570 U	570 U	570 U	88 J	1400 U	1400 U	70 J	570 U	78 J	570 U		570 U	570 U	570 U		95 J	570 U	570 U	260 J	2700
Main Former Mill	BL03	0-0.25 ft Surf (0-2ft)	970 U	970 U	380 U	380 U	380 U	380 U	380 U	970 U	970 U	380 U	380 U	380 U	380 U		380 U	380 U	380 U		77 J	380 U	380 U	380 U	1200
Main Former Mill	BL20	0.25-3.5 ft Surf (0-2ft)	2000 U		330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	62 J	330 U	400.11	400.11	330 U	330 U	210 J	330 U	330 U	34 J	330 U
Main Former Mill	BP01	0-0.25 ft Surf (0-2ft)	1100 U		430 U	430 U	430 U	430 U	430 U	1100 U	1100 U	430 U	430 U	430 U	430 U		430 U	430 U	430 U		430 U	430 U	430 U	64 J	430 U
Main Former Mill Main Former Mill	BP02 BP03	0-0.25 ft Surf (0-2ft) 0-0.25 ft Surf (0-2ft)	7500 U 5500 U		3000 U 2200 U	3000 U 2200 U	3000 U 2200 U	3000 U 2200 U	2100 J 470 J	7500 U 5500 U	7500 U 5500 U	3000 U 2200 U	3000 U 2200 U	330 J 2200 U	3000 U 2200 U		3000 U 2200 U	3000 U 2200 U	3000 U 2200 U		3000 U 320 J	3000 U 2200 U	3000 U 2200 U	1000 J 2200 U	3000 U 2200 U
Main Former Mill	BP03 BP04	0-0.25 ft Surf (0-2ft)	1400 U		550 U	550 U	550 U	550 U	550 U	1400 U	1400 U	550 U	550 U	550 U	550 U		550 U	550 U	550 U		170 J	550 U	550 U	550 U	550 U
Main Former Mill	DB02	0-0.25 ft Surf (0-2ft)	1400 U	1400 U	550 U	550 U	550 U	550 U	550 U	1400 U	1400 U	550 U	550 U	110 J	74 J		550 U	550 U	550 U		930	550 U	68 J	580	550 U
Main Former Mill	DB21	0.25-11 ft SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	340 U	330 U	330 U	2000 U	2000 U	160 J	330 U	57 J	55 J	330 U			330 U	330 U	49 J	330 U	29 J	120 J	330 U
Main Former Mill	FR02	0-0.25 ft Surf (0-2ft)	1900 U	1900 U	770 U	770 U	770 U	770 U	680 J	1900 U	1900 U	770 U	770 U	290 J			770 U	770 U	770 U		4600 J	770 U	770 U	360 J	770 U

			NC NC S-Nitroaniline	7Z 7Z (h. 6-Dinitro-2-methylphenol	Z Z Z S 4-Bromophenyl-phenylether	돌 돌 (Archloro-3-methylphenol	30000 PX/8h) 4-Chloroaniline	Z Z Z X 4-Chlorophenyl-phenylether	00000 PZ 4-Methylphenol	7K 7K 7K 9K 4-Nitroaniline	7Z Z Z X XX 4-Nitrophenol	(g/Kg) 20000 4.8e+006	ア 子 Acenaphthylene (岛)	(ug/Kg) NL NL 2.4e+007	7Z 7Z/S/Benzo(g,h,i)perylene	(ug/Kg) NL 2.4e+007	D Z B Dis(2-Chloro-1-methylethyl)ether*	돌 를 bis(2-Chloroethoxy)methane	6 Z M bis(2-Chloroethyl)ether*	My bis(2-Chloroisopropyl)ether (6 2-Chloroisopropyl)ether (7 2-Chloroisopro	일 본 을 bis(2-Ethylhexyl)phthalate*	marking Butylbenzylphthalate (69.17 Butylbenzylphthalate (7004.007 Butylbenzylphthalate (7004.007 Butylpenzylphthalate (7004	Carbazole	Z Z S Chrysene	(ug/Kg) 100000 100000 100000
Franck Area	Las ID	Double Zana	NL	NL	NL	NL	NL	NL	NL	NL	NL	65000	NL	1.2e+007	NL	NL	209.54	NL	20	240000	4900	360000	NL	NL	160000
Funct. Area Main Former Mill	Loc ID FR02	Depth Zone 0.25-5.5 ft SubSurf (>2ft)	2000 11	2000 U	330 U	330 U	340 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	31 J	330 U			330 U	330 U	64 J	41 J	330 U	52 J	330 U
Main Former Mill	FR04	0-0.25 ft Surf (0-2ft)	1200 U	1	490 U	490 U	490 U	490 U	160 J	1200 U	1200 U	150 J	88 J	330 J			490 U	490 U			490 U	413	140 J		490 U
Main Former Mill	FR20	0.25-4.5 ft SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	340 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	330 U	70 J			330 U	330 U	46 J	330 U	330 U	47 J	330 U
Main Former Mill	GWG-1	2-3.5 ft SubSurf (>2ft)																						4.8 U	
Main Former Mill	GWG-1	5-6.5 ft SubSurf (>2ft)																						36	
Main Former Mill	GWG-1	7.5-9 ft SubSurf (>2ft)																						14	
Main Former Mill	GWG-1	10-11.5 ft SubSurf (>2ft)																						4.9 U	
Main Former Mill	GWG-1	15-16.5 ft SubSurf (>2ft)																						4.8 U	
Main Former Mill	GWG-1	20-21.5 ft SubSurf (>2ft)																						4.8 U	
Main Former Mill	GWG-5	2-3.5 ft SubSurf (>2ft)															20 U		20 U		160 B			270	
Main Former Mill	GWG-5	5-6.5 ft SubSurf (>2ft)															59 U		59 UI		540 B			290	
Main Former Mill	GWG-5A	5-6.5 ft SubSurf (>2ft)															20 U		20 U		45 U			17	
Main Former Mill	GWG-5A	10-11.5 ft SubSurf (>2ft)															20 U		20 U		43 U			4.6 U	
Main Former Mill	GWG-5A	15-16.5 ft SubSurf (>2ft)															20 U		20 U					4.6 U	
Main Former Mill	GWG-5A	20-21.5 ft SubSurf (>2ft)															19 U		19 U		33000 B			4.5 U	
Main Former Mill Main Former Mill	GWG-5A LB01	24-25.5 ft SubSurf (>2ft) 0-2 ft Surf (0-2ft)	950 U	950 U	380 U	380 U	380 U	380 U	380 U	950 U	950 U	380 U	380 U	380 U	380 U		19 U 380 U	380 U	19 U 380 U		380 U	380 U	380 U	4.7 U 380 U	380 U
Main Former Mill	LB01	0-2 ft Surf (0-2ft)	1100 U			430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	430 U		430 U	430 U	430 U		53 J	430 U	430 U	430 U	430 U
Main Former Mill	MR01	0-0.25 ft Surf (0-2ft)	1300 U			510 U	510 U	510 U	510 U		1300 U	1300	190 J	1600 J	510 U		510 U	510 U	510 U		8300 J	510 U	950 J	2300	510 U
Main Former Mill	MR02	0-0.25 ft Surf (0-2ft)	900 U	900 U	360 U	360 U	360 U	360 U	360 U	900 U	900 U	360 U	360 U	97 J	360 U		360 U	360 U	360 U		360 U	360 U	360 U	360 U	360 U
Main Former Mill	MR03	0-0.25 ft Surf (0-2ft)	2000 U	2000 U	800 U	800 U	800 U	800 U	800 U	2000 U	2000 U	120 J	190 J	400 J			800 U	800 U	800 U		2600 J	800 U	180 J	1100 J	800 U
Main Former Mill	MR04	0-0.25 ft Surf (0-2ft)		890 U		350 U	350 U	350 U	350 U	890 U	890 U	350 U	350 U				350 U	350 U	350 U						350 U
Main Former Mill	MR05	0-0.25 ft Surf (0-2ft)	890 U	890 U	350 U	350 U	350 U	350 U	350 U	890 U	890 U	350 U	350 U	350 U	350 U		350 U	350 U	350 U		350 U	350 U	350 U	170 J	350 U
Main Former Mill	MR06	0-0.25 ft Surf (0-2ft)	1000 U	1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	190 J	410 U	230 J			410 U	410 U	410 U		410 U	410 U	64 J	530	410 U
Main Former Mill	MR07	0-0.25 ft Surf (0-2ft)	1400 U	1400 U	570 U	570 U	570 U	570 U	570 U	1400 U	1400 U	110 J	64 J	1200	570 U		570 U	570 U	570 U		750	570 U	500 J	820	570 U
Main Former Mill	MR08	0-0.25 ft Surf (0-2ft)	980 U	980 U	390 U	390 U	390 U	390 U	390 U	980 U	110 J	390 U	110 J	83 J			390 U	390 U	390 U		690	390 U	390 U	510	600
Main Former Mill	MR09	0-0.25 ft Surf (0-2ft)	880 U	880 U	350 U	350 U	350 U	350 U	350 U	880 U	350 U	350 U	350 U	48 J	130 J		350 U	350 U	350 U		740	350 U	350 U	280 J	570
Main Former Mill	MR10	0-0.25 ft Surf (0-2ft)	890 U	890 U	350 U	350 U	350 U	350 U	350 U	890 U	890 U	350 U	350 U	350 U	350 U		350 U	350 U	350 U		170 J	350 U	350 U	100 J	350 U
Main Former Mill	MR11	0-0.25 ft Surf (0-2ft)	1200 U	1200 U	460 U	460 U	460 U	460 U	460 U	1200 U	1200 U	63 J	460 U	100 J			460 U	270.11	270.11				460 U		460 U
Main Former Mill	MR12	0-0.25 ft Surf (0-2ft)	920 U	920 U	370 U	370 U	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U			370 U	370 U	370 U				370 U		370 U

			d	-methylphenol	phenyl-phenylether	Chloro-3-methylphenol	ine	orophenyl-phenylether	lou	o.		er.	ene		oerylene .	loi	bis(2-Chloro-1-methylethyl)ether*	oethoxy)methane	Chloroethyl)ether*	isopropyl)ether	bis(2-Ethylhexyl)phthalate*	Iphthalate			late
			3-Nitroaniline	4,6-Dinitro-2	4-Bromophe	4-Chloro-3-n	4-Chloroanilii	4-Chlorophe	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)perylene	Benzyl alcoho	bis(2-Chloro	bis(2-Chloro	bis(2-Chloro	bis(2-Chloroiso	bis(2-Ethylho	Butylbenzylp	Carbazole	Chrysene	Diethylphthal
			(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
			NL	NL	NL	NL	NL	NL	NL	NL	NL	20000	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	100000
			NL	NL	NL	NL	320000	NL	400000	NL	NL	4.8e+006		2.4e+007	NL	2.4e+007	14000	NL	910	3.2e+006	71000	1.6e+007	50000	NL	6.4e+007
			NL	NL	NL	NL	NL	NL	NL	NL	NL	65000	NL	1.2e+007	NL	NL	209.54	NL	20	240000	4900	360000	NL	NL	160000
Funct. Area	Loc ID MR20	Depth Zone 0-0.25 ft Surf (0-2ft)	2400 11	2100 U	240 11	340 U	340 U	240 11	340 U	2100 U	2100 U	340 U	240 11	340 U	42.1	340 U			340 U	340 U	100 1	340 U	340 U	46 1	340 U
Main Former Mill Main Former Mill	MS20	0.25-5 ft SubSurf (>2ft)	2000 U		340 U 330 U	330 U	340 U	340 U 330 U	330 U	2000 U	2000 U	340 U	340 U 330 U	340 U	43 J 1700 U	340 U			330 U	340 U	190 J 1.8e+006 J	260 J	330 U	46 J 94 J	61 J
Main Former Mill	MW-65	5-6.5 ft SubSurf (>2ft)			330 0		340 0																	21	
Main Former Mill	MW-65	15-16.5 ft SubSurf (>2ft)																						4.8 UJ	
Main Former Mill	MW-66	2.5-4 ft SubSurf (>2ft)																						270	
Main Former Mill	MW-66	15-16.5 ft SubSurf (>2ft)																						26	
Main Former Mill	MW-69	2-3.5 ft SubSurf (>2ft)																			25 U			4.6 U	
Main Former Mill	MW-69	5-6.5 ft SubSurf (>2ft)																			20 U			5.2	
Main Former Mill	MW-69	10-11.5 ft SubSurf (>2ft)																			20 U			44	
Main Former Mill	MW-69	15-16.5 ft SubSurf (>2ft)																			36 U			11	
Main Former Mill	MW-69	20-21.5 ft SubSurf (>2ft)																			19 U			4.8 U	
Main Former Mill	MW-69	25-26.5 ft SubSurf (>2ft)																			19 U			4.7 U	
Main Former Mill	MW-69	29-30 ft SubSurf (>2ft)																			18 U			6.2	
Main Former Mill	PC01	0-0.25 ft Surf (0-2ft)	1400 U		570 U	570 U	570 U	570 U	570 U	1400 U	1400 U	570 U	570 U	570 U	570 U		570 U	570 U	570 U		640	570 U	570 U	570 U	570 U
Main Former Mill Main Former Mill	PW20 SR01	0.25-8.5 ft SubSurf (>2ft)	2000 U	2000 U 1200 U	330 U 470 U	330 U 470 U	330 U 470 U	330 U 470 U	330 U 470 U	2000 U 1200 U	2000 U	330 U 470 U	330 U	330 U	36 J	330 U	470 11	470 11	330 U 470 U	330 U	81 J	330 U 470 U	330 U 470 U	330 U	330 U
Main Former Mill	SR01 SR02	0-0.25 ft Surf (0-2ft) 0-0.25 ft Surf (0-2ft)	1200 U		520 U	520 U	520 U	520 U	80 J	1300 U	1200 U 1300 U	520 U	470 U 520 U	28 J 65 J	56 J 62 J		470 U 520 U	470 U 520 U	520 U		130 J 520 U	520 U	520 U	110 J 200 J	470 U 520 U
Main Former Mill	SR03	0-0.25 ft Surf (0-2ft)		1500 U	590 U	590 U	590 U	590 U	70 J		1500 U	300 J	110 J	480 J	590 U		590 U	590 U	590 U		710	590 U	430 J	1600	590 U
Main Former Mill	SR03	0.25-11 ft SubSurf (>2ft)	2000 U		330 U	330 U	340 U	330 U	31 J	2000 U	2000 U	93 J	330 U	100 J	89 J	330 U			330 U	330 U	150 J	330 U	69 J	490	330 U
Main Former Mill	SR04	0-0.25 ft Surf (0-2ft)	1700 U		660 U	660 U	660 U	660 U	150 J	1700 U	1700 U	660 U	660 U	160 J	660 U		660 U	660 U	660 U		670	660 U	130 J	570 J	660 U
Main Former Mill	SR20	0.25-7 ft SubSurf (>2ft)	2000 U		330 U	330 U	340 U	330 U	25 J	2000 U	2000 U	80 J	330 U	55 J	68 J	330 U			330 U	330 U	510	330 U	25 J	180 J	330 U
Main Former Mill	SR21	0.25-3 ft Surf (0-2ft)	2000 U		330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	330 U	330 U			330 U	330 U	41 J	330 U	330 U	330 U	330 U
Main Former Mill	SR22	0.25-5 ft SubSurf (>2ft)	2100 U		340 U	340 U	340 U	340 U	62 J	2100 U	2100 U	1900	19 J	480	68 J	340 U			340 U	340 U	150 J	340 U	77 J	660	340 U
Main Former Mill	SR23	0.25-13 ft SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	330 U	330 U	310 J	2000 U	2000 U	43 J	330 U	47 J	150 J	330 U			330 U	330 U	390	330 U	41 J	250 J	330 U
Main Former Mill	SR23	0.25-13 ft SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	340 U	330 U	1400	2000 U	2000 U	220 J	330 U	83 J	330 U	330 U			330 U	330 U	100 J	330 U	120 J	73 J	330 U
Main Former Mill	SR24	0.25-16 ft SubSurf (>2ft)	2100 U	2100 U	340 U	340 U	340 U	340 U	340 U	2100 U	2100 U	340 U	340 U	340 U	340 U	340 U			340 U	340 U	340 U	340 U	340 U	340 U	340 U
Main Former Mill	SSB-1	7-8.5 ft SubSurf (>2ft)															66 U		66 UI		320			110	
Main Former Mill	SSB-1	10-11.5 ft SubSurf (>2ft)															43 U		43 UI		9300			37	
Main Former Mill	SSB-1	10-11.5 ft SubSurf (>2ft)															27 U		27 UI		40			25	
Main Former Mill	SSB-1	15-16.5 ft SubSurf (>2ft)															19 U		19 U		130			4.8 U	

			(ug/Kgu) X/S J J S J Nitroaniline		Z Z Z S A-Bromophenyl-phenylether	ZZZ Z S 4-Chloro-3-methylphenol	O00028 TK (6M/6n) Ar Chloroaniline	FZ Z Z β FZ Z Z Z β Θ 4-Chlorophenyl-phenylether	ZZ 00000 ZZ (6) ZZ (7) 4-Methylphenol	FZ Z Z S S 4-Nitroaniline	FZ Z Z S S S S S S S S S S S S S S S S S	Venaphthene (ng/Kg) Acenaphthene (20000 4.8e+006 65000	TZ Z Z S Acenaphthylene	(ug/Kg) NL 2.4e+007 1.2e+007	Z Z Z S) X X/S Benzo(g,h,i)perylene	(ug/Kg) NL 2.4e+007	000 H	지 고 를 하 bis(2-Chloroethoxy)methane	05 G S S S S S S S S S S S S S S S S S S	(24000) sis(2-Chloroisopropyl)ether	0001 Z B) bis(2-Ethylhexyl)phthalate*	(ug/Kg) NL 1.6e+007 360000	NL S0000	my Chrysene	(ug/Kg) (00000 6.4e+007 160000
Funct. Area	Loc ID	Depth Zone	INL	INL	INL	INL	INL	INL	INL	INL	INL	03000	INL	1.26+007	INL	INL	203.04	INL	20	240000	+300	300000	INL	INL	100000
Main Former Mill	SSB-1	25-26.5 ft SubSurf (>2ft)															19 U		19 U		120			4.4 U	
Main Former Mill	SSB-3	2-3.5 ft SubSurf (>2ft)															59 U		59 UI		560 B			8.1	
Main Former Mill	SSB-3	10-11.5 ft SubSurf (>2ft)															20 U		20 U		67 B			5.1	
Main Former Mill	SSB-3	15-16.5 ft SubSurf (>2ft)															20 U		20 U		270 B			4.8 U	
Main Former Mill	SSB-3	20-21.5 ft SubSurf (>2ft)															20 U		20 U		71 B			4.9 U	
Main Former Mill	SSB-3	25-26.5 ft SubSurf (>2ft)															19 U		19 U		80 B			4.9 U	
Main Former Mill	SSB-3	27-28.5 ft SubSurf (>2ft)															19 U		19 U		510 B			4.8 U	
Main Former Mill	TB01	0-0.25 ft Surf (0-2ft)	1200 U	1200 U	490 U	490 U	490 U	490 U	490 U	1200 U	1200 U	490 U	490 U	78 J	490 U		490 U	490 U	490 U		490 U	490 U	490 U	210 J	490 U
Main Former Mill	TB02	0-0.25 ft Surf (0-2ft)	880 U	880 U	350 U	350 U	350 U	350 U	44 J	880 U	880 U	130 J	300 J	6100 J			350 U	350 U	350 U				1200		350 U
Main Former Mill	TP-09	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			4.6 U	
Main Former Mill	TP-09	3-3 ft SubSurf (>2ft)															19 U		19 U		19 U			65	
Main Former Mill	TP-10	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			14	
Main Former Mill	TP-10	3-3 ft SubSurf (>2ft)															20 U		20 U		20 U			4.9 U	
Main Former Mill	TP-14	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			21	
Main Former Mill	TP-14	3-3 ft SubSurf (>2ft)															65 U		65 UI		65 U			83	
Main Former Mill	TP-14	5-5 ft SubSurf (>2ft)															19 U		19 U		19 U			4.7 U	
Main Former Mill	TP-21	3-3 ft SubSurf (>2ft)															20 U		20 U		20 U			7.4	
North Shoreline	BS01	0-0.25 ft Surf (0-2ft)	910 U		360 U	360 U	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	360 U		360 U	360 U	360 U		360 U	360 U	360 U	360 U	360 U
North Shoreline	BS02	0-0.25 ft Surf (0-2ft)	980 U	980 U	390 U	390 U	390 U	390 U	390 U	980 U	980 U	410	390 U	210 J	390 U		390 U	390 U	390 U		390 U	390 U	61 J	120 J	390 U
North Shoreline	CS20	0.25-9 ft SubSurf (>2ft)	2000 U			330 U	340 U	330 U	27 J		2000 U	18 J	330 U	330 U	76 J	330 U			330 U	330 U	330 U	330 U	15 J	31 J	330 U
North Shoreline	DK20	0.25-7 ft SubSurf (>2ft)	2000 U		330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	68 J	330 U	400.11	400.11	330 U	330 U	330 U	330 U	330 U	20 J	330 U
North Shoreline	PC02	0-0.25 ft Surf (0-2ft)	1100 U		430 U	430 U	430 U	430 U	430 U		1100 U	430 U	430 U	430 U	430 U		430 U	430 U	430 U		430 U	430 U	430 U	430 U	430 U
North Shoreline	PC20	0.25-11 ft SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	340 U	330 U	330 U		2000 U	29 J	330 U	17 J	330 U	330 U			330 U	330 U	95 J	330 U	330 U	42 J	330 U
NW Shoreline	GB01	0-2 ft Surf (0-2ft)	1500 U		600 U	600 U	600 U	600 U	600 U		1500 U	600 U	600 U	80 J	89 J		600 U	600 U	600 U		600 U	600 U	600 U	160 J	600 U
NW Shoreline	GB01	2-4 ft SubSurf (>2ft)	1100 U	1	450 U	450 U	450 U	450 U	450 U	1100 U	1100 U	450 U	450 U	450 U	450 U		450 U	450 U	450 U		450 U	450 U	450 U	50 J	450 U
NW Shoreline	GB01	4-6 ft SubSurf (>2ft)	970 U	970 U	380 U	380 U	380 U	380 U	380 U	970 U	970 U	380 U	380 U	380 U	380 U		380 U	380 U	380 U		380 U	380 U	380 U	380 U	380 U
NW Shoreline	GB04	0-2 ft Surf (0-2ft)	2300 U	2300 U	920 U	920 U	920 U	920 U	920 U	2300 U	2300 U	920 U	920 U	920 U	920 U		920 U	920 U	920 U		920 U	95 J	920 U	920 U	920 U
NW Shoreline	GB05	0-2 ft Surf (0-2ft)	3000 U	-	1200 U	1200 U	1200 U	1200 U	160 J	3000 U	3000 U	1200 U	1200 U	1200 U	1200 U		1200 U	1200 U	1200 U		1200 U	1200 U	1200 U		1200 U
NW Shoreline	GB05	2-4 ft SubSurf (>2ft)	990 U	990 U	390 U	390 U	390 U	390 U	390 U	990 U	990 U	390 U	390 U	390 U	390 U		390 U	390 U	390 U		390 U	390 U	390 U	390 U	390 U

			(Z Z Z S Nitroaniline	≧ Z Z S 4,6-Dinitro-2-methylphenol	ZZZBA-Bromophenyl-phenylether	ZZZBA-Chloro-3-methylphenol	220000 DZ/KB) 4-Chloroaniline	ZZZZ SA 4-Chlorophenyl-phenylether	400000 PZ / A Methylphenol	ZZZBA-Nitroaniline	Z Z Z S A-Nitrophenol	(gX/g) 20000 4.8e+006	Z Z Z Acenaphthylene	(pX/gu) WL 2.4e+007	Z Z Z Benzo(g,h,i)perylene	(ug/Kg) NL 2.4e+007	2 P Z B bis(2-Chloro-1-methylethyl)ether*	音 呂 島 bis(2-Chloroethoxy)methane	5 G Z G bis(2-Chloroethyl)ether*	(2.0) Sis (2-Chloroisopropyl)ether	12 (S) bis(2-Ethylhexyl)phthalate*	(by Butylbenzylphthalate	Carbazole	NL NL	(b) No (c
Funct. Area	Loc ID	Depth Zone	_	NL	NL	NL	NL	NL	NL	NL	NL	NL	65000	NL	1.2e+007	NL	NL	209.54	NL	20	240000	4900	360000	NL	NL	160000
NW Shoreline	GB06	0-2 ft Surf (0-2	ft)	920 U	920 U	370 U	370 U	370 U	370 U	370 U	920 U	920 U	370 U	370 U	22 J	87 J		370 U	370 U	370 U		370 U	370 U	370 U	98 J	370 U
NW Shoreline	GB07	0-2 ft Surf (0-2		990 U	990 U	390 U	390 U	390 U	390 U	390 U	990 U	990 U	390 U	390 U	28 J	390 U		390 U	390 U	390 U		390 U	390 U	390 U	77 J	390 U
NW Shoreline	GB07	2-4 ft SubSurf (2ft)	890 U	890 U	350 U	350 U	350 U	350 U	350 U	890 U	890 U	350 U	350 U	80 J	350 U		350 U	350 U	350 U		350 U	350 U	350 U	350 U	350 U
NW Shoreline	GB07	4-6 ft SubSurf (:	-2ft)	910 U	910 U	360 U	360 U	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	360 U		360 U	360 U	360 U		360 U	360 U	360 U	360 U	360 U
NW Shoreline	GB07	6-8 ft SubSurf (-2ft)	930 U	930 U	370 U	370 U	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	370 U
NW Shoreline	GB08	0-2 ft Surf (0-2	ft) 1	1100 U	1100 U	430 U	430 U	430 U	430 U	430 U	1100 U	1100 U	430 U	430 U	34 J	430 U		430 U	430 U	430 U		430 U	430 U	430 U	75 J	430 U
NW Shoreline	GB08	2-4 ft SubSurf (910 U	910 U	360 U	360 U	360 U	360 U	360 U	910 U	910 U	360 U	360 U	360 U	360 U		360 U	360 U	360 U		360 U	360 U	360 U	360 U	360 U
NW Shoreline	GB09	0-2 ft Surf (0-2		1800 U	1800 U	730 U	730 U	730 U	730 U	730 U	1800 U	1800 U	730 U	730 U	110 J	730 U		730 U	730 U	730 U		730 U	730 U	730 U	560 J	730 U
NW Shoreline	GB09	2-4 ft SubSurf (:		860 U	860 U	340 U	340 U	340 U	340 U	340 U	860 U	860 U	340 U	340 U	340 U	340 U		340 U	340 U	340 U		210 J	340 U	340 U	340 U	340 U
NW Shoreline	GB10	10-10 ft SubSurf (:		920 U	920 U	370 U	370 U	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	370 U
NW Shoreline	LY15	0-2 ft Surf (0-2		1300 U	1300 U	500 U	500 U	500 U	500 U	500 U	1300 U	1300 U	500 U	500 U	500 U	500 U		500 U	500 U	500 U		500 U	500 U	500 U	500 U	500 U
NW Shoreline NW Shoreline	LY16 LY24	0-2 ft Surf (0-2 0-0.25 ft Surf (0-2		1300 U	1300 U	500 U	500 U	500 U	500 U	500 U	1300 U	1300 U	500 U 660 U	500 U 660 U	47 J 660 U	500 U 1200 J		500 U	500 U	500 U		500 U	500 U	500 U	110 J 440 J	500 U
NW Shoreline	LY24	0-0.25 ft Surf (0-2 0.25-6.5 ft SubSurf (:											330 U	330 U	330 U	81 J									20 J	
NW Shoreline	LY25	0-0.25 ft Surf (0-2											330 U	330 U	17 J	110 J									57 J	
NW Shoreline	LY25	0.25-8 ft SubSurf (:											330 U	330 U	330 U	330 U									330 U	
NW Shoreline	MW-61	5-6.5 ft SubSurf (:																19 U		19 U		41 U			4.9 U	
NW Shoreline	MW-61	10-11.5 ft SubSurf (:	-2ft)															20 U		20 U		590 B			7.7	
NW Shoreline	MW-61	15-16.5 ft SubSurf (:	2ft)															20 U		20 U		85 U			6.6	
NW Shoreline	MW-61	20-21.25 ft SubSurf (-2ft)															20 U		20 U		190 B			4.8 U	
NW Shoreline	MW-67	2-3.5 ft SubSurf (:																							4.7 U	
NW Shoreline	MW-67	15-16.5 ft SubSurf (4.6 UJ	
NW Shoreline	PA01	0-2 ft Surf (0-2		1000 U	1000 U	400 U	400 U	400 U	400 U	400 U	1000 U	1000 U	400 U	400 U	400 U	400 U		400 U	400 U	400 U		60 J	400 U	400 U	48 J	750
NW Shoreline	PA02	0-2 ft Surf (0-2		1100 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	420 U		420 U	420 U	420 U		420 U	420 U	420 U	420 U	800
NW Shoreline	PA03	0-2 ft Surf (0-2		880 U	880 U	350 U	350 U	350 U	350 U	350 U	880 U	880 U	350 U	350 U	350 U	350 U		350 U	350 U	350 U		36 J	350 U	350 U	350 U	660
NW Shoreline NW Shoreline	PA04 PA04	0-2 ft Surf (0-2 2-4 ft SubSurf (:	-,	860 U	860 U	340 U	340 U	340 U	340 U	340 U	860 U	860 U	340 U	340 U	340 U 340 U	340 U		340 U	340 U	340 U 340 U		340 U	340 U 340 U	340 U	340 U	380 U
NW Shoreline	PA04 PA04	2-4 ft SubSurf (: 4-6 ft SubSurf (:		860 U 880 U	860 U 880 U	340 U 350 U	340 U 350 U	340 U 350 U	340 U 350 U	340 U 350 U	860 U 880 U	860 U 880 U	340 U 350 U	340 U 350 U	340 U	340 U 350 U		340 U 350 U	340 U 350 U	340 U		340 U 350 U	340 U	340 U 350 U	340 U 350 U	440 U 360 U
Prefab	PF02	0-2 ft Surf (0-2	,	1100 U	1100 U	420 U	420 U	420 U	420 U	420 U	1100 U	1100 U	420 U	420 U	420 U	420 U		420 U	420 U	420 U		420 U	420 U	420 U	420 U	420 U
Prefab	PF02	2-4 ft SubSurf (2ft) 1	1100 U	1100 U	450 U	450 U	450 U	450 U	450 U	1100 U	1100 U	450 U	450 U	450 U	450 U		450 U	450 U	450 U		450 U	450 U	450 U	450 U	450 U

				N N N S Nitroaniline	ZZZZ% 4,6-Dinitro-2-methylphenol	Z Z 은 용 4-Bromophenyl-phenylether		DN ST (6/2/6/n) Ar Chloroaniline	Z Z Z B S A-Chlorophenyl-phenylether B Z Z Z B S S A-Chlorophenyl-phenylether	MS (BA)/8000 PT (C)/4-Methylphenol	ZZZZANitroaniline © ANitroaniline	TZ Z B) TZ Z Z A-Nitrophenol (5)	Wenderstein (ug/Kg) (ug/Kg) (20000 4.8e+006 65000	TZ Z Acenaphthylene	(ug/Kg) NL 2.4e+007 1.2e+007	지점 점을 지점 점점(g,h,i)perylene 의	(ug/Kg) NL 2.4e+007 NL	500 F X bis(2-Chloro-1-methylethyl)ether* 600 F X bis(2-Chloro-1-methylethyl)ether*	지 점 을 bis(2-Chloroethoxy)methane	05 G N S S S S S S S S S S S S S S S S S S	(B/Kg) NL 3.2e+006 240000	000 H X bis(2-Ethylhexyl)phthalate*	(Butylbenzylphthalate 390000 (Butylbenzylphthalate	DO0009 PN (627 Carbazole PN (627 Carbazole	Z Z Z Ghrysene PZ Z Z Ghrysene ©	00000 (160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 1600000 160000 160000 160000 160000 160000 160000 160000 160000 16000
Funct. Area	Loc ID	Depth	Zone	INL	INL	INL	INL	INL	INL	INL	INL	INL	65000	INL	1.20+007	INL	INL	209.54	NL	20	240000	4900	360000	INL	INL	160000
Prefab	PF03	0-2 ft	Surf (0-2ft)	1000 U	1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		70 J	410 U	410 U	410 U	410 U
Prefab	PF03	2-4 ft	SubSurf (>2ft)	1100 U	1100 U	420 U	420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	420 U		420 U	420 U	420 U		420 U	420 U	420 U	420 U	420 U
Prefab	PF03	4-6 ft	SubSurf (>2ft)	1000 U	1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		46 J	410 U	410 U	410 U	410 U
Prefab	PF03	6-8 ft	SubSurf (>2ft)	1100 U	1100 U	440 U	440 U	440 U	440 U	440 U	1100 U	1100 U	440 U	440 U	440 U	440 U		440 U	440 U	440 U		440 U	440 U	440 U	440 U	440 U
Prefab	PF03	8-10 ft	SubSurf (>2ft)	1100 U	1100 U	450 U	450 U	450 U	450 U	450 U	1100 U	1100 U	450 U	450 U	450 U	450 U		450 U	450 U	450 U		450 U	450 U	450 U	450 U	450 U
Prefab	PF03	16-18 ft	SubSurf (>2ft)	940 U	940 U	370 U	370 U	370 U	370 U	370 U	940 U	940 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	370 U
West Former Mill	BP20	0.25-8 ft	SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	84 J	330 U			330 U	330 U	130 J	330 U	330 U	41 J	330 U
West Former Mill	FOT-EX-1	9.5-9.5 ft	SubSurf (>2ft)										8.2 U	8.2 U	8.2 U	8.2 U									8.2 U	
West Former Mill	FOT-EX-10	11.5-11.5 ft	SubSurf (>2ft)										7.6 U	7.6 U	7.6 U	7.6 U									7.6 U	
West Former Mill	FOT-EX-11	9-9 ft	SubSurf (>2ft)										7.3 U	7.3 U	7.3 U	7.3 U									7.3 U	
West Former Mill	FOT-EX-14	9-9 ft	SubSurf (>2ft)										7.3 U	7.3 U	7.3 U	7.3 U									7.3 U	
West Former Mill	FOT-EX-15	11-11 ft	SubSurf (>2ft)										7.5 U	7.5 U	7.5 U	7.5 U									7.5 U	
West Former Mill	FOT-EX-16	8-8 ft	SubSurf (>2ft)										7.8 U	7.8 U	7.8 U	7.8 U									9.1	
West Former Mill	FOT-EX-17	3-3 ft	SubSurf (>2ft)										9.4 U	9.4 U	9.4 U	120									150	
West Former Mill	FOT-EX-18	7-7 ft	SubSurf (>2ft)										6.9 U	6.9 U	6.9 U	6.9 U									6.9 U	
West Former Mill West Former Mill	FOT-EX-19 FOT-EX-2	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)										8 U 7.2 U	8 U 7.2 U	8 U 7.2 U	8 U 7.2 U									8 U 7.2 U	
West Former Mill	FOT-EX-20	7-7 ft	SubSurf (>2ft)										7.2 U	7.5 U	7.5 U	7.5 U									7.5 U	
West Former Mill	FOT-EX-21	7-7 ft	SubSurf (>2ft)										7.5 U	7.3 U	7.3 U	7.3 U									7.1 U	
West Former Mill	FOT-EX-22	5-5 ft	SubSurf (>2ft)										7.2 U		7.2 U											
West Former Mill	FOT-EX-22	5-5 ft	SubSurf (>2ft)											7.2 U		35									14	
West Former Mill	FOT-EX-23	5-5 ft	SubSurf (>2ft)										7.1 U	7.1 U	7.1 U	7.1 U									7.1 U	
West Former Mill	FOT-EX-24	5-5 ft	SubSurf (>2ft)										6.9 U	6.9 U	6.9 U	18									40	
West Former Mill	FOT-EX-25	5-5 ft	SubSurf (>2ft)										7.4 U	7.4 U	7.4 U	7.4 U									7.4 U	
West Former Mill	FOT-EX-26	5-5 ft	SubSurf (>2ft)										7.1 U	7.1 U	10	120									35	
West Former Mill	FOT-EX-27	8-8 ft	SubSurf (>2ft)										7.8 U	7.8 U	7.8 U	7.8 U									9.6	
West Former Mill	FOT-EX-3	11-11 ft	SubSurf (>2ft)										19	8.3 U	17	45									310	
West Former Mill	FOT-EX-4	8-8 ft	SubSurf (>2ft)										7.8 U	7.8 U	7.8 U	7.8 U									7.8 U	
West Former Mill	FOT-EX-5	15-15 ft	SubSurf (>2ft)	1000 11	1000 11	440.11	440.11	440 11	440 11	440 11	1000 11	1000 11	8.3 U	8.3 U	8.3 U	8.3 U		410 11	440 11	410.11		440 11	440 11	440 11	8.3 U	440
West Former Mill	HF01	0-2 ft	Surf (0-2ft)	1000 0	1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		410 U	410 U	410 U	410 U	410 U

				ethylphenol	phenyl-phenylether	-3-methylphenol	ø.	orophenyl-phenylether	-				91		rylene		-methylethyl)ether*	ethoxy)methane	roethyl)ether*	opropyl)ether	yl)phthalate*	phthalate			te
			3-Nitroaniline	4,6-Dinitro-2-m	4-Bromo	4-Chloro	4-Chloroanilin	4-Chloropheny	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)peryle	Benzyl alcohol	bis(2-Chloro-1·	bis(2-Chloroet	bis(2-Chlo	bis(2-Chloroise	bis(2-Ethylhexyl)phthala	Butylbenzyl	Carbazole	Chrysene	Diethylphthalat
			(ug/Kg)		(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
			NL NL	NL NL	NL NL	NL NL	NL 320000	NL NL	NL 400000	NL NL	NL NL	20000 4.8e+006	NL NL	NL 2.4e+007	NL NL	NL 2.4e+007	NL 14000	NL NL	NL 910	NL	NL 71000	NL 1.6e+007	NL 50000	NL NL	100000 6.4e+007
			NL NL	NL NL	NL NL	NL NL	320000 NL	NL NL	400000 NL	NL NL	NL NL	65000	NL NL	1.2e+007	NL NL	2.4e+007 NL	209.54	NL NL	20	3.2e+006 240000	4900	360000	NL	NL NL	160000
Funct, Area	Loc ID	Depth Zone	111	111	IVE	140	IVE	146	IVE	142	IVE	00000	142	1.201007	IVE	145	200.04	IVE	20	240000	4300	300000	IVE	140	100000
West Former Mill	HF01	2-4 ft SubSurf (>2f) 1100 L	J 1100 U	450 U	450 U	450 U	450 U	450 U	1100 U	1100 U	450 U	450 U	450 U	450 U		450 U	450 U	450 U		450 U	450 U	450 U	450 U	450 U
West Former Mill	HF02	0-2 ft Surf (0-2ft)	980 U	980 U	390 U	390 U	390 U	390 U	390 U	980 U	980 U	390 U	390 U	390 U	390 U		390 U	390 U	390 U		390 U	390 U	390 U	390 U	390 U
West Former Mill	HF02	2-4 ft SubSurf (>2f) 920 U	920 U	370 U	370 U	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	370 U
West Former Mill	HF03	0-2 ft Surf (0-2ft)	930 U	930 U	370 U	370 U	370 U	370 U	370 U	930 U	930 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	1200
West Former Mill	HF03	2-4 ft SubSurf (>2f) 1000 U	J 1000 U	410 U	410 U	410 U	410 U	410 U	1000 U	1000 U	48 J	410 U	410 U	410 U		410 U	410 U	410 U		57 J	410 U	410 U	410 U	2100
West Former Mill	HF04	0-2 ft Surf (0-2ft)	1000 L			400 U	400 U	400 U	400 U	1000 U	1000 U	400 U	400 U	400 U	400 U		400 U	400 U	400 U		400 U	400 U	400 U	58 J	2100
West Former Mill	HF04	2-4 ft SubSurf (>2f	1100 U			420 U	420 U	420 U	420 U		1100 U	420 U	420 U	420 U	420 U		420 U	420 U	420 U		420 U	420 U	420 U	420 U	1400
West Former Mill	HF05	0-2 ft Surf (0-2ft)	1000 U			400 U	400 U	400 U	400 U		1000 U	400 U	400 U	400 U	400 U		400 U	400 U	400 U		400 U	400 U	400 U	400 U	1200
West Former Mill	HF05	2-4 ft SubSurf (>2f	1000 U			410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		49 J	410 U	410 U	410 U	1200
West Former Mill	HF06	0-2 ft Surf (0-2ft)	1000 U		1	410 U	410 U	410 U	410 U		1000 U	410 U	410 U	410 U	410 U		410 U	410 U	410 U		45 J	410 U	410 U	410 U	1300
West Former Mill	HF06	2-4 ft SubSurf (>2f		980 U	390 U	390 U	390 U	390 U	390 U	980 U	980 U	390 U	390 U	390 U	390 U		390 U	390 U	390 U		390 U	390 U	390 U	390 U	1200
West Former Mill	HF07	0-2 ft Surf (0-2ft)	940 U	940 U	370 U	370 U	370 U	370 U	370 U	940 U	940 U	52 J	370 U	45 J	370 U		370 U	370 U	370 U		370 U	370 U	370 U	110 J	370 U
West Former Mill	HF07	2-4 ft SubSurf (>2f	910 U 920 U	910 U	360 U 370 U	360 U 370 U	360 U 370 U	360 U	360 U	910 U 920 U	910 U	360 U	360 U 370 U	360 U	360 U		360 U	360 U	360 U		360 U	360 U	360 U 370 U	360 U	360 U 370 U
West Former Mill West Former Mill	HF08 HF08	0-2 ft Surf (0-2ft) 2-4 ft SubSurf (>2f		920 U 940 U	370 U	370 U	370 U	370 U	370 U 370 U	940 U	920 U 940 U	370 U 370 U	370 U	370 U 370 U	370 U 370 U		370 U 370 U	370 U 370 U	370 U 370 U		370 U 370 U	370 U 370 U	370 U	370 U 370 U	370 U
West Former Mill	HF09	0-2 ft Surf (0-2ft)	950 U	950 U	380 U	380 U	380 U	380 U	380 U	950 U	950 U	380 U	380 U	380 U	380 U		380 U	380 U	380 U		380 U	380 U	380 U	380 U	380 U
West Former Mill	HF09	2-4 ft SubSurf (>2f		920 U	1	370 U	370 U	370 U	370 U	920 U	920 U	370 U	370 U	370 U	370 U		370 U	370 U	370 U		370 U	370 U	370 U	370 U	370 U
West Former Mill	MW-60	2-3.5 ft SubSurf (>2f	,														59 U		59 UI		260 U			150	
West Former Mill	MW-60	10-11.5 ft SubSurf (>2f)														570 UI		570 UI		570 U			6800 J	
West Former Mill	MW-60	15-16.5 ft SubSurf (>2f)														59 U		59 UI		110 U			190	
West Former Mill	MW-60	20-20.75 ft SubSurf (>2f	,														20 U		20 U		85 U			18	
West Former Mill	MW-60	23-24.4 ft SubSurf (>2f	,														19 U		19 U		110 U			4.9 U	
West Former Mill	MW-68	5.5-6 ft SubSurf (>2f	,																		56 U			40	
West Former Mill	MW-68	13-14 ft SubSurf (>2f	·)																		75 U			4.7 U	
West Former Mill	MW-68	55-55 ft SubSurf (>2f)									1		I			20 U		20 U		62 U			4.9 U	
West Former Mill	PS20	0.25-6.5 ft SubSurf (>2f) 2000 U	J 2000 U	330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	330 U	330 U	330 U	330 U	330 U			330 U	330 U	110 J	330 U	330 U	330 U	330 U
West Former Mill	RB01	0-0.25 ft Surf (0-2ft)	1800 L	J 1800 U	700 U	700 U	700 U	700 U	700 U	1800 U	1800 U	800	270 J	1200	700 U		700 U	700 U	700 U		640 J	700 U	1300	4700	700 U
West Former Mill	RB01	0.25-7 ft SubSurf (>2f	2000 U	J 2000 U	330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	1100	330 U	570	220 J	62 J			330 U	330 U	200 J	330 U	150 J	450	330 U
West Former Mill	RB02	0-0.25 ft Surf (0-2ft)	2000 U		790 U	790 U	790 U	790 U	790 U	2000 U	2000 U	790 U	790 U	46 J	140 J		790 U	790 U	790 U		81 J	790 U	790 U	410 J	790 U
West Former Mill	RB03	0-2 ft Surf (0-2ft)	890 U	890 U	350 U	350 U	350 U	350 U	350 U	890 U	890 U	350 U	350 U	350 U	350 U		350 U	350 U	350 U		78 J	350 U	350 U	350 U	350 U

				ethylphenol	nylether	lenol		nylether									-methylethyl)ether*	methane	her*	propyl)ether	halate*	a			
			3-Nitroaniline	4,6-Dinitro-2-m	4-Bromophenyl-phenylether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl-phenylether	4-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)perylene	Benzyl alcohol	bis(2-Chloro-1	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ethe	bis(2-Chloroiso	bis(2-Ethylhexyl)phthalate	Butylbenzylphthalate	Carbazole	Chrysene	Diethylphthalate
			(ug/Kg)	(ug/Kg)			(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
			NL NL	NL NI	NL NL	NL	NL	NL	NL 400000	NL NI	NL NL	20000	NL NL	NL	NL NL	NL	NL 14000	NL NL	NL 010	NL 2 20 LOOG	NL 71000	NL	NL 50000	NL NL	100000
			NL	NL NL	NL NL	NL NL	320000 NL	NL NL	400000 NL	NL NL	NL NL	4.8e+006 65000	NL NL	2.4e+007 1.2e+007	NL NL	2.4e+007 NL	209.54	NL NL	910 20	3.2e+006 240000	4900	1.6e+007 360000	50000 NL	NL NL	6.4e+007 160000
Funct, Area	Loc ID	Depth Zone	IVE	140	INE	145	142	142	IVE	142	INL	00000	142	1.201007	142	142	200.04	IVL	20	240000	4300	300000	IVE	140	100000
West Former Mill	RB03	8-10 ft SubSurf (>2ft)	1100 U	1100 U	430 U	430 U	430 U	430 U	430 U	1100 U	1100 U	430 U	430 U	430 U	430 U		430 U	430 U	430 U		430 U	430 U	430 U	430 U	430 U
West Former Mill	RB04	0-2 ft Surf (0-2ft)	940 U	940 U	370 U	370 U	370 U	370 U	370 U	940 U	940 U	370 U	370 U	42 J	370 U		370 U	370 U	370 U		53 J	370 U	370 U	93 J	370 U
West Former Mill	RB04	4-6 ft SubSurf (>2ft)	890 U	890 U	350 U	350 U	350 U	350 U	350 U	890 U	890 U	350 U	350 U	350 U	350 U		350 U	350 U	350 U		350 U	350 U	350 U	350 U	350 U
West Former Mill	RB04	8-10 ft SubSurf (>2ft)	970 U	970 U	380 U	380 U	380 U	380 U	380 U	970 U	970 U	380 U	380 U	380 U	380 U		380 U	380 U	380 U		380 U	380 U	380 U	380 U	380 U
West Former Mill	RB20	0.25-8 ft SubSurf (>2ft)	2100 U	2100 U	340 U	340 U	340 U	340 U	340 U	2100 U	2100 U	16 J	340 U	61 J	160 J	340 U			340 U	340 U	170 J	340 U	19 J	160 J	340 U
West Former Mill	RB21	0.25-8 ft SubSurf (>2ft)	2000 U	2000 U	330 U	330 U	330 U	330 U	330 U	2000 U	2000 U	1400	330 U	770	200 J	330 U			330 U	330 U	240 J	330 U	200 J	600	330 U
West Former Mill	SSB-2	2-3.5 ft SubSurf (>2ft)															63 U		63 UI		250 B			110	
West Former Mill	SSB-2	5-6.5 ft SubSurf (>2ft)															64 U		64 UI		450			170 J	
West Former Mill	SSB-2	5-6.5 ft SubSurf (>2ft)																						25 J	
West Former Mill	SSB-2	10-11.5 ft SubSurf (>2ft)															19 U		19 U		21 B			4.7 U	
West Former Mill	SSB-2	15-16.5 ft SubSurf (>2ft)															19 U		19 U		38 B			6.2	
West Former Mill	SSB-2	20-20.5 ft SubSurf (>2ft)															20 U		20 U		500 B			5 U	
West Former Mill	SSB-7	2-3.5 ft SubSurf (>2ft)															19 U		19 U		150			190	
West Former Mill	SSB-7	10-11.5 ft SubSurf (>2ft)															19 U		19 U		100			23	
West Former Mill	SSB-7	20-21.5 ft SubSurf (>2ft)															19 U		19 U					4.6 U	
West Former Mill	SSB-7	25-26.5 ft SubSurf (>2ft)															20 U		20 U		270			4.7 U	
West Former Mill	SSB-7	30-30.75 ft SubSurf (>2ft)															19 U		19 U		1200			4.6 U	
West Former Mill	TP-01	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			36	
West Former Mill	TP-01	8-8 ft SubSurf (>2ft)															20 U		20 U		20 U			24 U	
West Former Mill	TP-02	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			24 U	
West Former Mill	TP-02	8-8 ft SubSurf (>2ft)															180 UJ		180 UIJ		180 UJ			18 UJ	
West Former Mill	TP-02	8-8 ft SubSurf (>2ft)															550 UIJ		550 UIJ		550 UJ			53 NJ	
West Former Mill	TP-03	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			23	
West Former Mill	TP-03	4-4 ft SubSurf (>2ft)															20 U		20 U		35			210	
West Former Mill	TP-03	7-7 ft SubSurf (>2ft)															38 U		38 UI		38 U			98 NJ	
West Former Mill	TP-04	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			8	
West Former Mill	TP-04	7-7 ft SubSurf (>2ft)															20 U		20 U		20 U			4.9 U	
West Former Mill	TP-05	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			4.9 U	
West Former Mill	TP-05	6-6 ft SubSurf (>2ft)															19 U		19 U		19 U			9.9	
West Former Mill	TP-06	3-3 ft SubSurf (>2ft)															20 U		20 U		20 U			4.8 U	

			N N/6n)	ZZZ (A) A, 6-Dinitro-2-methylphenol	ZZZ € 4-Bromophenyl-phenylether	ZZZ & 4-Chloro-3-methylphenol	300000 Sy/A-Chloroaniline	: Z Z 을 4-Chlorophenyl-phenylether	40000 AM/Rathylphenol	7Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ZZZ & 4-Nitrophenol	Wenaphthene (ng/Kg) Acenaphthene (ng/Kg) (ng/K		(g/Xg) NL NL 2.4e+007	ZZZ Benzo(g,h,i)perylene	(ug/Kg) NL NL 2.4e+007	DONE (S) bis(2-Chloro-1-methylethyl)ether*	: 呂 島 bis(2-Chloroethoxy)methane	6 Z Z & bis(2-Chloroethyl)ether*	(By Dis (2-Chloroisopropyl)ether	5 0 Z & bis(2-Ethylhexyl)phthalate*	(Butylbenzylphthalate	SOOS SOOS SAAA Carbazole	ZZZ S Chrysene SZ Chrysene SZ Chrysene	(%X/6n) Diethylphthalate (%2,4%) Diethylphthalate (%4,4%) Diethylphthalate
Funct Area	LocID	Donth Zono	NL	NL	NL	NL	NL	NL	NL	NL	NL	65000	NL	1.2e+007	NL	NL	209.54	NL	20	240000	4900	360000	NL	NL	160000
Funct. Area West Former Mill	Loc ID TP-06	Depth Zone 7-7 ft SubSurf (>2ft)															20 U		20 U		20 U			4.6 U	
West Former Mill	TP-07	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			20	
West Former Mill	TP-07	2-2 ft Surf (0-2ft)															19 U		19 U		19 U			30	
West Former Mill	TP-07	6-6 ft SubSurf (>2ft)															20 U		20 U		1300			4.9 U	
West Former Mill	TP-08	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			61	
West Former Mill	TP-08	5-5 ft SubSurf (>2ft)															20 U		20 U		20 U			4.9 U	
West Former Mill	TP-11	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			190	
West Former Mill	TP-11	5-5 ft SubSurf (>2ft)															72 U		72 UI		72 U			82 J	
West Former Mill	TP-11	5-5 ft SubSurf (>2ft)															67 U		67 UI		67 U			71	
West Former Mill	TP-12	2-2 ft Surf (0-2ft)															67 U		67 UI		300			820	
West Former Mill	TP-12	4-4 ft SubSurf (>2ft)															62 U		62 UI		1600			800	
West Former Mill	TP-15	2-2 ft Surf (0-2ft)															85 U		85 UI		85 U			59	
West Former Mill	TP-15	4-4 ft SubSurf (>2ft)															20 U		20 U		20 U			110	
West Former Mill	TP-16	2-2 ft Surf (0-2ft)															20 U		20 U		20 U			4.6 U	
West Former Mill West Former Mill	TP-16 WM21	5-5 ft SubSurf (>2ft) 0-0.25 ft Surf (0-2ft)										330 U	330 U	330 U	330 U		20 U		20 U		20 U 			4.6 U 330 U	
West Former Mill	WM21	0.25-9.5 ft SubSurf (>2ft)	1900 U		320 U	320 U	320 U	320 U	320 U	1900 U	1900 U	320 U	320 U	320 U	320 U	320 U			320 U	320 U	200 J	320 U	320 U	19 J	320 U
West Former Mill	WM-EX-1	8-8 ft SubSurf (>2ft)										7.3 U	7.3 U	7.3 U	7.3 U									7.3 U	
West Former Mill	WM-EX-10	16-16 ft SubSurf (>2ft)										39	7.7 U	19	27									45	
West Former Mill	WM-EX-10	16-16 ft SubSurf (>2ft)										260	19	180	160									390	
West Former Mill	WM-EX-11	17-17 ft SubSurf (>2ft)										300	8.9 U	12	8.9 U									8.9 U	
West Former Mill	WM-EX-12	8-8 ft SubSurf (>2ft)										16	7.3 U	14	19									45	
West Former Mill	WM-EX-13	9-9 ft SubSurf (>2ft)										7.9 U	7.9 U	7.9 U	38									98	
West Former Mill	WM-EX-14	14-14 ft SubSurf (>2ft)										7.5 U	7.5 U	7.5 U	7.5 U									7.5 U	
West Former Mill	WM-EX-15	14-14 ft SubSurf (>2ft)										26	7.6 U	14	110									260	
West Former Mill	WM-EX-16	14-14 ft SubSurf (>2ft)										210	30	150	240									840	
West Former Mill	WM-EX-17	14-14 ft SubSurf (>2ft)										19	7.4 U	7.4 U	7.4 U									7.4 U	
West Former Mill West Former Mill	WM-EX-18 WM-EX-2	9-9 ft SubSurf (>2ft)										180 14	7.7 7.5 U	51 20	110 39									230 36	
West Former Mill	WM-EX-2	11-11 ft SubSurf (>2ft) 10-10 ft SubSurf (>2ft)										7.5 U	7.5 U	7.5 U	9.3									11	
WEST LOUINET MIII	AAIAI-EV-2	10-10 IL SUDSUII (>2IL)										7.50	1.50	1.50	ყ.ა									11	

	(ug/Kg)	A/A/4,6-Dinitro-2-methylphenol	A/A/2 4-Bromophenyl-phenylether	A/A/A 4-Chloro-3-methylphenol	R) XX 4-Chloroaniline	S) 4-Chlorophenyl-phenylether	(6) A-Methylphenol	A/A/A 4-Nitroaniline	ng/kg/ A/A/4-Nitrophenol		(ng/kg) (mg/kg) (mg/kg)	(ng/Kgn)	E) S/S Benzo(g,h,i)perylene ©	(B) XX/Benzyl alcohol	© bis(2-Chloro-1-methylethyl)ether*	E bis(2-Chloroethoxy)methane	n N/S bis(2-Chloroethyl)ether*	(b) bis(2-Chloroisopropyl)ether	டு தி bis(2-Ethylhexyl)phthalate* டூ	(B) X/S/ (b) (b)	S)/bn (Garbazole	©) (©) (©) (©)	nô MS/S (Ĝ
	NL	NL	NL	NL	NL	NL	NL	NL	NL	20000	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	100000
	NL	NL	NL	NL	320000	NL	400000	NL	NL	4.8e+006		2.4e+007	NL	2.4e+007	14000	NL	910	3.2e+006	71000	1.6e+007	50000	NL	6.4e+007
Funct. Area Loc ID Depth Zone	NL	NL	NL	NL	NL	NL	NL	NL	NL	65000	NL	1.2e+007	NL	NL	209.54	NL	20	240000	4900	360000	NL	NL	160000
West Former Mill WM-EX-4 13-13 ft SubSurf (>2ft)										12	7.7 U	7.7 U	7.7 U									7.7 U	
West Former Mill WM-EX-5 16-16 ft SubSurf (>2ft)										22	7.7 U	7.7 U	7.7 U									8.7	
West Former Mill WM-EX-6 9-9 ft SubSurf (>2ft)										47	7.3 U	12	7.3 U									10	
West Former Mill WM-EX-7 8.5-8.5 ft SubSurf (>2ft)										34	7.3 U	22	26									80	
West Former Mill WM-EX-8 15-15 ft SubSurf (>2ft)										42	7.3 U	7.3 U	7.3 U									7.3 U	
West Former Mill WM-EX-9 10-10 ft SubSurf (>2ft)										17	7.8 U	7.8 U	7.8 U									7.8 U	

				1			ı	ı									ı	1			
				Di-n-butylphthalate	B. S. Di-n-octylphthalate (6)	Dibenzofuran	B) A/A Dimethylphthalate (5)	(SA)/Sr) (SA	(ng/Kg) Fluorene	Hexachlorobutadiene	B XX Hexachlorocyclopentadiene	n) Ay Hexachloroethane* (6	Sophorone	ß Sy Sy Sy Naphthalene	Nitrobenzene	n Sy n-Nitroso-di-n-propylamine* ©	n-Nitrosodiphenylamine*	Pentachlorophenol*	Phenanthrene	Phenol	on Byrene*
				(ug/Kg) 200000	(ug/Ng) NL	(ug/Kg) NL	200000	(ug/Rg) NL	30000	(ug/Kg) NL	(ug/Kg) 10000	(ug/Rg) NL	(ug/Kg) NL	(ug/Rg) NL	(ug/Kg) 40000	(ug/Rg) NL	(ug/Kg) 20000	(ug/Kg) 3000	(ug/Kg) NL	(ug/Kg) 30000	(ug/Ng) NL
				8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
				100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Funct. Area	Loc ID	Depth	Zone																		
City Purchase	BY01	0-2 ft	Surf (0-2ft)	370 U	370 U	370 U	370 U	59 J	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	930 U	49 J	370 U	67 J
City Purchase	BY01	2-4 ft	SubSurf (>2ft)	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	1000 U	77 J	410 U	410 U
City Purchase	BY02	0-2 ft	Surf (0-2ft)	380 U	380 U	380 U	380 U	40 J	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
City Purchase	BY03	0-2 ft	Surf (0-2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	930 U	370 U	370 U	370 U
City Purchase	BY03 BY04	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	280 J 48 J	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	450 U 390 U	1100 U 990 U	240 J	450 U 390 U	210 J 390 U
City Purchase City Purchase	BY04	2-4 ft	Sun (0-2it) SubSurf (>2ft)	430 U	430 U	430 U	430 U	48 J 430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	1100 U	43 J 430 U	430 U	430 U
City Purchase	BY05	0-2 ft	Surf (0-2ft)	400 U	400 U	400 U	400 U	240 J	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	1000 U	180 J	400 U	180 J
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	990 U	390 U	390 U	390 U
City Purchase	BY05	4-6 ft	SubSurf (>2ft)	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	1200 U	460 U	460 U	460 U
City Purchase	BY05	6-8 ft	SubSurf (>2ft)	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	460 U	1200 U	460 U	460 U	460 U
City Purchase	BY05	8-10 ft	SubSurf (>2ft)	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.4 U			18
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	6.4 U			20
City Purchase	GWG-8	10-11.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.5 U			4.6 U
City Purchase	GWG-8	15-16.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.4 U	-		4.9 U
City Purchase	PF01	0-2 ft	Surf (0-2ft)	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
City Purchase	SSB-10	2-3.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.7 R			15
City Purchase	SSB-10	5-6.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	8.1 R			9.4
City Purchase	SSB-10 SSB-10	10-11.5 ft	SubSurf (>2ft)									19 U 20 U				19 U 20 U	19 U 20 U	8.2 R 7.1 U			4.7 U 4.9 U
City Purchase City Purchase	SSB-10 SSB-10	15-16.5 ft 20-21.5 ft	SubSurf (>2ft) SubSurf (>2ft)									20 U				20 U	20 U	7.1 U			4.9 U 4.7 U
			, ,																		
CSO	FOT-EX-12	6-6 ft	SubSurf (>2ft)					7.2 U	7.2 U					7.2 U					7.2 U		7.2 U
CSO	FOT-EX-13	13-13 ft	SubSurf (>2ft)					8.5 U	8.5 U					8.5 U					8.6		9.2
CSO	FOT-EX-28	8-8 ft	SubSurf (>2ft)					7.8 U	7.8 U					7.8 U					7.8 U		7.8 U
CSO CSO	FOT-EX-6	3-3 ft 3-3 ft	SubSurf (>2ft)					8 U 7.2 U	8 U 7.2 U					8 U 7.2 U					8.4		8 U 7.2 U
CSO	FOT-EX-7	3-3 π 8-8 ft	SubSurf (>2ft) SubSurf (>2ft)					7.2 U 7.8 U	7.2 U					7.2 U					9.8 7.8 U		7.2 U
030	I-OI-EV-0	0-0 II	Jubbull (>211)					7.00	7.00					1.00					1.0 U		12

No. No.					(BD)-n-butylphthalate	G S Di-n-octylphthalate Ó	© X∕A Dibenzofuran ©	த Ag Dimethylphthalate கு	(pg/Kgn)	(ng/Kg)	B. X/A Hexachlorobutadiene (6)	A Hexachlorocyclopentadiene	(B) Hexachloroethane*	(ng/kg)	(S)/KB)	Nitrobenzene (ug/Kg)	ß XX n-Nitroso-di-n-propylamine* ⊛	n-Nitrosodiphenylamine* ⊗A (G	(B) Xy Pentachlorophenol*	S/K) (S/A) Phenanthrene	(ug/Kg)	(ng/Kg)
Funct Area																						
Fund. Area Loc D Depth Zone					8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
CSO GB02 2-4 ft SubSurf (>2th) 0-0 400 400 400 400 400 400 400 400 400					100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
CSO GB02 Q-2 ft Suff (0-27t) 400 U			Depth																			
CSO GB02 2-4 ft SubSurf (-2th) 370 U 380 U	CSO	FOT-EX-9	6-6 ft	SubSurf (>2ft)					7.5 U	7.5 U					7.5 U					7.5 U		7.5 U
CSO GB03 0-2 ft Subf (-2ft) 80 U 380	CSO	GB02	0-2 ft	Surf (0-2ft)	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	43 J	400 U	400 U	400 U
CSO GB03 2-4 ft SubSurf (-2th) 390 U 380 U			2-4 ft	SubSurf (>2ft)	370 U	370 U	370 U	370 U	110 J	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U		89 J	370 U	160 J
CSO GWG-6 2-3.5 ft SubSur (>2ft)				Surf (0-2ft)	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	950 U	380 U	380 U	380 U
CSO GWG-6 10-11.5 ft SubSurf (>2th)				` '	390 U	390 U	390 U	390 U	130 J	390 U	390 U	390 U		390 U	390 U	390 U				79 J	390 U	
CSO MW-70 2-3.5 ft SubSurf (>2ft)			2-3.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	6.6 U			85
CSO MW-70 2-3.5 ft SubSurf (-2ft)				` '																		
CSO MW-70 5-6.5 ft SubSurf (>2ft)													19 U				19 U	19 U				
CSO MW-70 10-11.5 ft SubSurf (>2ft)				` '																		
CSO MW-70 15-16.5 ft SubSurf (>2ft)																						
East Former Mill CD02 0-2 ft SubSurf (>2ft) 430 U 430 U 430 U 430 U 450		_																				
East Former Mill CD02 0-2 ft Surf (0-2ft) 430 U 440 U				` ′																		
East Former Mill CD02 2-4 ft SubSurf (>2th 450 U 440 U 4	CSO	MW-70	20-21.5 ft	SubSurf (>2ft)															7.3 U			4.9 U
East Former Mill CD02 2-4 ft SubSurf (>2th 450 U 440 U 4	East Former Mill	CD02	0-2 ft	Surf (0-2ft)	430 U	430 U	430 U	430 U	81 J	430 U	110 J	430 U	430 U	430 U	430 U	430 U	430 U	430 U	1100 U	63 J	430 U	430 U
East Former Mill CD02 4-6 ft SubSurf (>2tt) 440 U 440	East Former Mill			. ,																		
East Former Mill CD02 6-8 ft SubSurf (>2ft) 410 U 410	East Former Mill	CD02	4-6 ft		440 U	440 U	440 U			440 U	440 U	440 U	440 U		440 U		440 U		1100 U		440 U	
East Former Mill CD03 0-2 ft Surf (0-2ft) 360 U				. ,																	410 U	410 U
East Former Mill GWG-7 2-3.5 ft SubSurf (>2ft)	East Former Mill	CD03	0-2 ft		360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	70 J	360 U	360 U	360 U	900 U	360 U	360 U	360 U
East Former Mill GWG-7 2-3.5 ft SubSurf (>2ft)	East Former Mill	CD03	2-4 ft	SubSurf (>2ft)	360 U	360 U	360 U	57 J	75 J	360 U	61 J	360 U	360 U	360 U	360 U	360 U	360 U	360 U	900 U	64 J	360 U	65 J
East Former Mill GWG-7 7-8.5 ft SubSurf (>2ft) 330 U 3	East Former Mill	GWG-7	2-3.5 ft										20 U				20 U	20 U	7.8 U			20
East Former Mill GWG-7 7-8.5 ft SubSurf (>2ft) 330 U 3	East Former Mill	GWG-7	5-6.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	8 U			4.5 U
East Former Mill SL22 0.25-7.5 ft SubSurf (>2ft) 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U 330 U	East Former Mill	GWG-7	7-8.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.7 U			4.8 U
East Shoreline SL20 0.25-7 ft SubSurf (>2ft) 330 U 17 J 330 U 330 U 330 U 18 J 330 U 3	East Former Mill	SL22	0-0.25 ft	Surf (0-2ft)			330 U		330 U	330 U					330 U					330 U		330 U
East Shoreline SL21 0.25-6.5 ft SubSurf (>2ft) 330 U 330 U 82 J 220 J 230 J	East Former Mill	SL22	0.25-7.5 ft	SubSurf (>2ft)			330 U		330 U	330 U					330 U					330 U		330 U
East Shoreline SL21 0.25-6.5 ft SubSurf (>2ft) 330 U 330 U 82 J 220 J 230 J	Fast Shoreline	SI 20	0.25-7 ft	SubSurf (>2ft)			330 U		17 J	330 U					330 U					18 J		330 U
East Shoreline SL21 0.25-6.5 ft SubSurf (>2ft) 32 J 240 J 18 J 82 J 82 J 220 J 230 J				` ′																		
				` ′											82 J							
	Ennis Creek																					

										l						1	l				
				ق ک ک ش Di-n-butylphthalate	ج ک کج ف	E) X∕A Bibenzofuran G	E) X/Dimethylphthalate (5)	S) Sy Fluoranthene (6	(pg/Kg)	E)/A/Hexachlorobutadiene	ج چ العرام شخطانانوس	op) My/Hexachloroethane* (6	RS) Sy Isophorone	ھ چ ک کا کا کا	(ng/Kg) (mtrobenzene	B X n-Nitroso-di-n-propylamine* (6	S) Xy n-Nitrosodiphenylamine* (G	© ≫y Pentachlorophenol* ©	E) X/B (b) (b)	ng/Kg)	(ng/Kg)
				200000	NL	NL	200000	NL	30000	NL	10000	NL	NL	NL	40000	NL	20000	3000	NL	30000	NL
				8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
				100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Funct. Area	Loc ID	Depth	Zone						_	_											
Estuary	CD01	0-2 ft	Surf (0-2ft)	350 U	350 U	41 J	350 U	230 J	68 J	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	890 U	380	350 U	220 J
Estuary	CD01	2-4 ft	SubSurf (>2ft)	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	910 U	42 J	360 U	360 U
Estuary	FR05	0-0.25 ft	Surf (0-2ft)	620 U	620 U	620 U	620 U	490 J	620 U	620 U	620 U	620 U	620 U	620 U	620 U	620 U	620 U	<u>92 J</u>	430 J	620 U	400 J
Estuary	MW-62	2-3.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.7 U			16
Estuary	MW-62	5-6.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.6 U			4.7 U
Estuary	MW-62	10-11.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.1 U			4.8 U
Estuary	MW-62	15-16.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	6.8 U			9.4
Estuary	MW-62 MW-62	20-21.25 ft 25-26.5 ft	SubSurf (>2ft) SubSurf (>2ft)									19 U 20 U				19 U 20 U	19 U 20 U	7.2 U 7.8 U			4.9 U 4.8 U
Estuary Estuary	RS20	0-0.25 ft	Surf (0-2ft)	35 J	330 U	31 J	500	500	330 U	330 U	340 U	330 U	330 U	43 J	330 U	330 U	330 U	2000 U	270 J	330 U	350
Estuary	RS20	0-0.25 ft	Surf (0-2ft)	21 J	340 U	27 J	340	320 J	22 J	340 U	340 U	340 U	340 U	43 J 32 J	340 U	340 U	340 U	2100 U	240 J	340 U	310 J
Estuary	RS20	0-0.25 ft 0.25-2 ft	Surf (0-2ft)	330 U	330 U	330 U	330 U	330 U	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	330 U	330 U	330 U
Estuary	RS21	0.25-2 ft	Surf (0-2ft)	330 U	330 U	34 J	26 J	390	20 J	330 U	340 U	330 U	330 U	35 J	330 U	330 U	330 U	2000 U	220 J	330 U	330
Estuary	RS21	0-0.25 ft	Surf (0-2ft)	330 U	330 U	40 J	330 U	280 J	330 U	330 U	340 U	330 U	330 U	47 J	330 U	330 U	330 U	2000 U	120 J	330 U	260 J
Estuary	RS21	0.25-9.5 ft	SubSurf (>2ft)	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	2100 U	340 U	340 U	340 U
Í			` ′																		
Main Former Mill Main Former Mill	AP01 AP02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	490 U 460 U	490 U 460 U	490 U 370 J	160 J 100 J	1100 5900 J	140 J 810	490 U 460 U	490 U 460 U	490 U 460 U	490 U 460 U	110 J 280 J	490 U 460 U	490 U 460 U	490 U 460 U	<u>65 J</u> 570 J	960 7500 J	490 U 400 J	1000 8600 J
Main Former Mill	AP03	0-0.25 ft	Surf (0-2ft)	82 J	480 U	57 J	100 J	1700	97 J	480 U	480 U	480 U	480 U	480 U	480 U	480 U	480 U	5300 J	1200	480 U	2000
Main Former Mill	AP04	0-0.25 ft	Surf (0-2ft)	66 J	650 U	120 J	510 J	2400	260 J	650 U	650 U	650 U	650 U	97 J	650 U	650 U	650 U	1700	2500	530 J	2900
Main Former Mill	BL01	0-0.25 ft	Surf (0-2ft)	180 J	360 U	360 U	240 J	330 J	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	910 U	240 J	360 U	360 U
Main Former Mill	BL02	0-0.25 ft	Surf (0-2ft)	570 U	570 U	570 U	160 J	460 J	570 U	570 U	570 U	570 U	570 U	100 J	570 U	570 U	570 U	1400 U	510 J	570 U	570 U
Main Former Mill	BL03	0-0.25 ft	Surf (0-2ft)	380 U	380 U	380 U	380 U	49 J	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
Main Former Mill	BL20	0.25-3.5 ft	Surf (0-2ft)	330 U	330 U	330 U	330 U	67 J	330 U	330 U	340 U	330 U	330 U	29 J	330 U	330 U	330 U	2000 U	61 J	330 U	68 J
Main Former Mill	BP01	0-0.25 ft	Surf (0-2ft)	430 U	430 U	430 U	120 J	130 J	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	1100 U	120 J	430 U	96 J
Main Former Mill	BP02	0-0.25 ft	Surf (0-2ft)	3000 U	3000 U	3000 U	3000 U	2300 J	350 J	3000 U	3000 U	3000 U	3000 U	3000 U	3000 U	3000 U	3000 U	4300 J	1600 J	3000 U	1400 J
Main Former Mill	BP03	0-0.25 ft	Surf (0-2ft)	2200 U	2200 U	2200 U	2200 U	440 J	2200 U	2200 U	2200 U	2200 U	2200 U	2200 U	2200 U	2200 U	2200 U	5500 U	350 J	2200 U	390 J
Main Former Mill	BP04	0-0.25 ft	Surf (0-2ft)	550 U	550 U	550 U	74 J	170 J	550 U	550 U	550 U	550 U	550 U	550 U	550 U	550 U	550 U	1400 U	110 J	550 U	150 J
Main Former Mill	DB02	0-0.25 ft	Surf (0-2ft)	550 U	550 U	550 U	550 U	670	550 U	550 U	550 U	550 U	550 U	550 U	550 U	550 U	550 U	<u>460 J</u>	470 J	550 U	580
Main Former Mill	DB21	0.25-11 ft	SubSurf (>2ft)	15 J	330 U	81 J	120 J	410	110 J	330 U	340 U	330 U	330 U	34 J	330 U	330 U	330 U	2000 U	410	330 U	370
Main Former Mill	FR02	0-0.25 ft	Surf (0-2ft)	770 U		87 J	1100	1100 J	770 U	770 U	770 U	770 U	770 U	87 J	770 U	770 U	770 U	<u>7100 J</u>	1300 J	770 U	780 J

				(B)/N Di-n-butylphthalate	Ĝ Sy Di-n-octylphthalate ⊛	n Dibenzofuran	(B)/N Dimethylphthalate	(b/Kan)	(ng/Kg)	B)/A/A/Hexachlorobutadiene	(S) A) Hexachlorocyclopentadiene	(b/Sn) Hexachloroethane*	(ng/Kg)	(B) (S) Naphthalene	(B)/N Nitrobenzene	(B) N/S n-Nitroso-di-n-propylamine* (G	(a) Nay n-Nitrosodiphenylamine*	(a) Ay Pentachlorophenol*	S) X/B Phenanthrene ©	(ug/Kg)	66) (S Pyrene⁴
				200000	NL	NL	200000	NL	30000	NL	10000	NL	NL	NL	40000	NL	20000	3000	NL	30000	NL
				8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
Funct. Area	Loc ID	Depth	Zone	100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Main Former Mill	FR02	0.25-5.5 ft	SubSurf (>2ft)	330 U	330 U	330 U	24 J	57 J	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	50 J	330 U	55 J
Main Former Mill	FR04	0-0.25 ft	Surf (0-2ft)	84 J		140 J	200 J	1500	180 J	490 U	490 U	490 U	490 U	200 J	490 U	490 U	490 U	1200 U	1300	490 U	940 J
Main Former Mill	FR20	0.25-4.5 ft	SubSurf (>2ft)	32 J	330 U	330 U	58 J	48 J	330 U	330 U	340 U	330 U	330 U	23 J	330 U	330 U	330 U	2000 U	88 J	330 U	67 J
Main Former Mill	GWG-1	2-3.5 ft	SubSurf (>2ft)																		
Main Former Mill	GWG-1	5-6.5 ft	SubSurf (>2ft)																		
Main Former Mill	GWG-1	7.5-9 ft	SubSurf (>2ft)																		
Main Former Mill	GWG-1	10-11.5 ft	SubSurf (>2ft)																		
Main Former Mill	GWG-1	15-16.5 ft	SubSurf (>2ft)																		
Main Former Mill	GWG-1	20-21.5 ft	SubSurf (>2ft)																		
Main Former Mill	GWG-5	2-3.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	13			430
Main Former Mill	GWG-5	5-6.5 ft	SubSurf (>2ft)									59 U				59 U	59 U	<u>170</u>			440
Main Former Mill	GWG-5A GWG-5A	5-6.5 ft 10-11.5 ft	SubSurf (>2ft)									20 U 20 U				20 U 20 U	20 U	16 6.6 U			15 4.6 U
Main Former Mill Main Former Mill	GWG-5A	15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)									20 U				20 U	20 U 20 U	7.3 U			4.6 U
Main Former Mill	GWG-5A	20-21.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.7 U			4.5 U
Main Former Mill	GWG-5A	24-25.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.7 U			4.7 U
Main Former Mill	LB01	0-2 ft	Surf (0-2ft)	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	950 U	380 U	380 U	380 U
Main Former Mill	LB02	0-2 ft	Surf (0-2ft)	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
Main Former Mill	MR01	0-0.25 ft	Surf (0-2ft)	510 U	310 J	1100	280 J	6400 J	1300	510 U	510 U	510 U	510 U	270 J	510 U	510 U	510 U	1300 U	8000 J	220 J	3700
Main Former Mill	MR02	0-0.25 ft	Surf (0-2ft)	360 U	360 U	360 U	55 J	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	900 U	120 J	360 U	360 U
Main Former Mill	MR03	0-0.25 ft	Surf (0-2ft)	800 U	22000 J	95 J	500 J	1500 J	110 J	800 U	800 U	800 U	800 U	800 U	800 U	800 U	800 U	2000 U	1300 J	800 U	1400 J
Main Former Mill	MR04	0-0.25 ft	Surf (0-2ft)			350 U	350 U		350 U	350 U	350 U	350 U	350 U	43 J	350 U		350 U			350 U	
Main Former Mill	MR05	0-0.25 ft	Surf (0-2ft)	350 U	350 U	350 U	350 U	140 J	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	890 U	140 J	350 U	140 J
Main Former Mill	MR06	0-0.25 ft	Surf (0-2ft)	59 J		79 J	98 J	1100	180 J	410 U	410 U	410 U	620	46 J	410 U	410 U	410 U	1000 U	730	410 U	1100
Main Former Mill	MR07	0-0.25 ft	Surf (0-2ft)	570 U	570 U	230 J	120 J	1300	290 J	570 U	570 U	570 U	570 U	160 J	570 U	570 U	570 U	150 J	1300	570 U	570 U
Main Former Mill	MR08	0-0.25 ft	Surf (0-2ft)	370 J	25011	390 U	84 J	670	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	980 U	330 J	390 U	390 U
Main Former Mill	MR09	0-0.25 ft	Surf (0-2ft)	350 U	350 U	350 U	93 J	310 J	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	69 J	110 J	350 U	280 J
Main Former Mill Main Former Mill	MR10 MR11	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	350 U 460 U	350 U 460 U	350 U 58 J	56 J 460 U	190 J 260 J	350 U 94 J	350 U 460 U	350 U 460 U	350 U 460 U	350 U 460 U	350 U 120 J	350 U 460 U	350 U 460 U	350 U 460 U	890 U 1200 U	160 J 410 J	350 U 460 U	140 J 110 J
Main Former Mill	MR12	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	370 U	460 U	370 U	130 J	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	920 U	370 U	370 U	110 J
IVIAIITT OTTIET IVIIII	IVII\ IZ	U-U.25 II	Juli (U-ZII)	3/00		3/00	130 J	3100	3/00	3/00	3/00	3/00	3100	3/00	3/00	3/00	3/00	9200	3/00	3100	

				(B)/Di-n-buty/phthalate	Z & Di-n-octylphthalate S Di-n-octylphthalate	FZ 윤 PZ 첫 Dibenzofuran 연	000 S S Dimethylphthalate 0 S	NZ (Sp.) Fluoranthene	(ng/Kg) Suoroene	nd (g)/N (g)/Al Hexachlorobutadiene	DOOD (Signated) (Signa	n Y Sh T Sh (6) (6) (7) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	RA (Since	n (G Sy Naphthalene (G	(ug/Kg) (ug/Kg) 40000	B ZX n-Nitroso-di-n-propylamine* (6	(m) Nitrosodiphenylamine*	00% Pentachlorophenol* (G	NS//Sn TV (GA//Sn (Ga//Sn (Ga/	(ug/Kg) 30000	(ng/Kg) Syrene*
				8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
Funct Area	Locin	Donth	7000	100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Funct. Area Main Former Mill	Loc ID MR20	Depth 0-0.25 ft	Zone Surf (0-2ft)	340 U	340 U	340 U	340 U	55 J	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	2100 U	35 J	340 U	57 J
Main Former Mill	MS20	0.25-5 ft	SubSurf (>2ft)	520	960 J	330 U	330 U	72 J	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	79 J	330 U	150 J
Main Former Mill	MW-65	5-6.5 ft	SubSurf (>2ft)															9.8 U			76
Main Former Mill	MW-65	15-16.5 ft	SubSurf (>2ft)															7 U			4.8 UJ
Main Former Mill	MW-66	2.5-4 ft	SubSurf (>2ft)															51			560
Main Former Mill	MW-66	15-16.5 ft	SubSurf (>2ft)															9.9 U			64
Main Former Mill	MW-69	2-3.5 ft	SubSurf (>2ft)															7.3 U			6.4
Main Former Mill	MW-69	5-6.5 ft	SubSurf (>2ft)															7.3 U			8.4
Main Former Mill	MW-69	10-11.5 ft	SubSurf (>2ft)															14 U			120
Main Former Mill	MW-69	15-16.5 ft	SubSurf (>2ft)															7.3 U			11
Main Former Mill	MW-69	20-21.5 ft	SubSurf (>2ft)															7.7 U			4.8 U
Main Former Mill	MW-69	25-26.5 ft	SubSurf (>2ft)															7.8 U			4.7 U
Main Former Mill	MW-69	29-30 ft	SubSurf (>2ft)															6.9 U			4.6 U
Main Former Mill	PC01	0-0.25 ft	Surf (0-2ft)	570 U	570 U	570 U	220 J	63 J	570 U	570 U	570 U	570 U	570 U	570 U	570 U	570 U	570 U	1400 U	60 J	570 U	59 J
Main Former Mill	PW20	0.25-8.5 ft	SubSurf (>2ft)	330 U	330 U	330 U	330 U	330 U	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	330 U	330 U	330 U
Main Former Mill Main Former Mill	SR01 SR02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	140 J 520 U	470 U 520 U	51 J 520 U	470 U 520 U	270 J 450 J	57 J 66 J	470 U 520 U	470 U 520 U	470 U 520 U	470 U 520 U	88 J 67 J	470 U 520 U	470 U 520 U	470 U 520 U	110 J 1300 U	380 J 210 J	470 U 520 U	260 J 360 J
Main Former Mill	SR02 SR03	0-0.25 ft	Surf (0-2ft)	760	520 U	190 J	590 U	2600	210 J	590 U	520 U	590 U	520 U	400 J	590 U	590 U	590 U	15000 J	2200	89 J	1500
Main Former Mill	SR03	0.25-11 ft	SubSurf (>2ft)	20 J	330 U	75 J	110 J	500	84 J	330 U	340 U	330 U	330 U	53 J	330 U	330 U	330 U	2000 U	370	330 U	410
Main Former Mill	SR03 SR04	0.25-11 It	Surf (0-2ft)	660 U	660 U	660 U	660 U	1000	660 U	660 U	660 U	660 U	660 U	660 U	660 U	660 U	660 U	530 J	660	660 U	680
Main Former Mill	SR20	0-0.25 ft	SubSurf (>2ft)	23 J	330 U	61 J	500	520	69 J	330 U	340 U	330 U	330 U	75 J	330 U	330 U	330 U	400 J	310 J	330 U	540
Main Former Mill	SR21	0.25-7 ft 0.25-3 ft	Surf (0-2ft)	330 U	340 U	330 U	330 U	330 U	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	17 J	330 U	330 U
Main Former Mill	SR22	0.25-5 ft	SubSurf (>2ft)	17 J	340 U	970	340 U	2900	1900	340 U	340 U	340 U	340 U	420	340 U	340 U	340 U	2100 U	4100	340 U	2700
Main Former Mill	SR23	0.25-13 ft	SubSurf (>2ft)	22 J	340 U	22 J	330 U	370	36 J	330 U	340 U	330 U	330 U	110 J	330 U	330 U	330 U	2000 U	300 J	330 U	410
Main Former Mill	SR23	0.25-13 ft	SubSurf (>2ft)	330 U	330 U	170 J	330 U	400	240 J	330 U	340 U	330 U	330 U	360	330 U	330 U	330 U	2000 U	790	61 J	290 J
Main Former Mill	SR24	0.25-16 ft	SubSurf (>2ft)	340 U	340 U	340 U	340 U	34 J	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	2100 U	37 J	340 U	24 J
Main Former Mill	SSB-1	7-8.5 ft	SubSurf (>2ft)									66 U				66 U	66 U	<u>110 J</u>			160
Main Former Mill	SSB-1	10-11.5 ft	SubSurf (>2ft)									43 U				43 U	43 U	27 R			85
Main Former Mill	SSB-1	10-11.5 ft	SubSurf (>2ft)									27 U				27 U	27 U	7.6 R			69
Main Former Mill	SSB-1	15-16.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.6 U			7.7

				I					Ī				1			I	I	I			
				Di-n-butylphthalate	Di-n-octy/phthalate	Dibenzofuran	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane*	Sophorone	Naphthalene	Nitrobenzene	n-Nitroso-di-n-propylamine*	n-Nitrosodiphenylamine*	Pentachlorophenol*	Phenanthrene	Phenol	Pyrene*
				(ug/Kg) 200000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 200000	(ug/Kg) NL	(ug/Kg) 30000	(ug/Kg) NL	(ug/Kg) 10000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 40000	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) 3000	(ug/Kg) NL	(ug/Kg) 30000	(ug/Kg) NL
				8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
				100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Funct. Area	Loc ID	Depth	Zone			.,_	20000	22000	223000	.5500		. 50	2300	5000		.00	.50	.0		55.000	3.557000
Main Former Mill	SSB-1	25-26.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.5 U			4.4 U
Main Former Mill	SSB-3	2-3.5 ft	SubSurf (>2ft)									59 U				59 U	59 U	6.6 U			9.6
Main Former Mill	SSB-3	10-11.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.4 U		-	25
Main Former Mill	SSB-3	15-16.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.1 U			13
Main Former Mill	SSB-3	20-21.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	6.8 U			4.9 U
Main Former Mill	SSB-3	25-26.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.8 U			7.3
Main Former Mill	SSB-3	27-28.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.2 U			4.8 U
Main Former Mill	TB01	0-0.25 ft	Surf (0-2ft)	490 U	490 U	490 U	600	360 J	490 U	490 U	490 U	490 U	490 U	490 U	490 U	490 U	490 U	1200 U	330 J	490 U	320 J
Main Former Mill	TB02	0-0.25 ft	Surf (0-2ft)	350 U		190 J	160 J	6000 J	210 J	350 U	350 U	350 U	350 U	120 J	350 U	350 U	350 U	3900 J	3200 J	59 J	1.4e+007 J
Main Former Mill	TP-09	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	6.9 U			4.6 U
Main Former Mill	TP-09	3-3 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.3 U			110
Main Former Mill	TP-10	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	9.9 U			16
Main Former Mill	TP-10	3-3 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.3 U			4.9 U
Main Former Mill	TP-14	2-2 ft	Surf (0-2ft)			-						20 U				20 U	20 U	6.7 U		-	23
Main Former Mill	TP-14	3-3 ft	SubSurf (>2ft)									65 U				65 U	65 U	12 U			130
Main Former Mill	TP-14	5-5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.8 U			4.7 U
Main Former Mill	TP-21	3-3 ft	SubSurf (>2ft)									20 U				20 U	20 U	10 U			11
North Shoreline	BS01	0-0.25 ft	Surf (0-2ft)	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
North Shoreline	BS02	0-0.25 ft	Surf (0-2ft)	390 U	390 U	320 J	390 U	810	490	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	980 U	1300	390 U	540
North Shoreline	CS20	0.25-9 ft	SubSurf (>2ft)	330 U	330 U	15 J	330 U	63 J	16 J	330 U	340 U	330 U	330 U	19 J	330 U	330 U	330 U	2000 U	67 J	330 U	43 J
North Shoreline	DK20	0.25-7 ft	SubSurf (>2ft)	330 U	330 U	330 U	330 U	330 U	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	330 U	330 U	330 U
North Shoreline	PC02	0-0.25 ft	Surf (0-2ft)	430 U	430 U	430 U	430 U	430 U	430 U	430 U		430 U	430 U	430 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
North Shoreline	PC20	0.25-11 ft	SubSurf (>2ft)	30 J	330 U	24 J	260 J	130 J	30 J	330 U	340 U	330 U	330 U	19 J	330 U	330 U	330 U	2000 U	100 J	330 U	110 J
NW Shoreline	GB01	0-2 ft	Surf (0-2ft)	600 U	600 U	600 U	200 J	340 J	600 U	600 U	600 U	600 U	600 U	70 J	600 U	600 U	600 U	1500 U	280 J	600 U	270 J
NW Shoreline	GB01	2-4 ft	SubSurf (>2ft)	450 U	450 U	450 U	450 U	85 J	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	1100 U	96 J	96 J	450 U
NW Shoreline	GB01	4-6 ft	SubSurf (>2ft)	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
NW Shoreline	GB04	0-2 ft	Surf (0-2ft)	920 U	920 U	920 U	920 U	160 J	920 U	920 U	920 U	920 U	920 U	920 U	920 U	920 U	920 U	110 J	160 J	920 U	140 J
NW Shoreline	GB05	0-2 ft	Surf (0-2ft)	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	1200 U	3000 U	1200 U	1200 U	140 J
NW Shoreline	GB05	2-4 ft	SubSurf (>2ft)	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	990 U	390 U	390 U	390 U

				Di-n-buty/phthalate	Di-n-octylphthalate	Dibenzofuran	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane*	Isophorone	Naphthalene	Nitrobenzene	n-Nitroso-di-n-propylamine*	n-Nitrosodiphenylamine*	Pentachlorophenol*	Phenanthrene	Phenol	Pyrene*
				(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				200000	NL	NL	200000	NL	30000	NL	10000	NL 71000	NL	NL	40000	NL 140	20000	3000	NL NI	30000	NL 2.45+006
				8e+006 100000	1.6e+006 NL	160000 NL	8e+007 330000	3.2e+006 89000	3.2e+006 550000	13000 19000	480000 4.4e+006	71000 130	1.1e+006 3000	1.6e+006 140000	40000 2900	140 100	200000 180	8300 48	NL NL	4.8e+007 5e+006	2.4e+006 3.5e+006
Funct. Area	Loc ID	Depth	Zone	100000	INL	INL	550000	03000	330000	13000	7. 7 67000	150	3000	1-0000	2300	100	100	70	INL	36+000	J.JG+000
NW Shoreline	GB06	0-2 ft	Surf (0-2ft)	370 U	370 U	370 U	370 U	100 J	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	920 U	50 J	370 U	370 U
NW Shoreline	GB07	0-2 ft	Surf (0-2ft)	390 U	390 U	390 U	390 U	90 J	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	990 U	84 J	390 U	390 U
NW Shoreline	GB07	2-4 ft	SubSurf (>2ft)	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
NW Shoreline	GB07	4-6 ft	SubSurf (>2ft)	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
NW Shoreline	GB07	6-8 ft	SubSurf (>2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	930 U	41 J	370 U	370 U
NW Shoreline	GB08	0-2 ft	Surf (0-2ft)	430 U	430 U	430 U	430 U	160 J	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	1100 U	78 J	430 U	110 J
NW Shoreline	GB08	2-4 ft	SubSurf (>2ft)	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
NW Shoreline	GB09	0-2 ft	Surf (0-2ft)	730 U	730 U	730 U	730 U	440 J	730 U	730 U	730 U	730 U	730 U	730 U	730 U	730 U 340 U	730 U	1800 U	200 J	730 U	790
NW Shoreline NW Shoreline	GB09 GB10	2-4 ft	SubSurf (>2ft)	340 U	340 U 370 U	340 U 370 U	340 U 370 U	340 U 370 U	340 U 370 U	340 U	340 U 370 U	340 U 370 U	340 U 370 U	340 U 370 U	340 U 370 U	340 U	340 U 370 U	860 U 920 U	340 U 370 U	340 U 370 U	340 U 370 U
NW Shoreline	LY15	10-10 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	370 U 500 U	500 U	500 U	500 U	500 U	500 U	370 U 500 U	500 U	500 U	500 U	500 U	500 U	500 U	500 U	1300 U	500 U	500 U	500 U
NW Shoreline	LY16	0-2 ft	Surf (0-2ft)	500 U	500 U	500 U	500 U	160 J	500 U	500 U	500 U	500 U	500 U	500 U	500 U	500 U	500 U	1300 U	150 J	500 U	140 J
NW Shoreline	LY24	0-0.25 ft	Surf (0-2ft)			660 U		35 J	660 U					660 U					230 J		6600 U
NW Shoreline	LY24	0.25-6.5 ft	SubSurf (>2ft)			330 U		18 J	330 U					330 U					34 J		19 J
NW Shoreline	LY25	0-0.25 ft	Surf (0-2ft)			330 U		100 J	330 U					330 U					90 J		76 J
NW Shoreline	LY25	0.25-8 ft	SubSurf (>2ft)			330 U		330 U	330 U					330 U					330 U		330 U
NW Shoreline	MW-61	5-6.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.7 U			4.9 U
NW Shoreline	MW-61	10-11.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.2 U			14 B
NW Shoreline	MW-61	15-16.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.1 U			35 B
NW Shoreline	MW-61	20-21.25 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.2 U			6.7 U
NW Shoreline	MW-67	2-3.5 ft	SubSurf (>2ft)															6.4 U			4.7 U
NW Shoreline	MW-67	15-16.5 ft	SubSurf (>2ft)	400.11	400.11		400.11				400.11		400.11		400.11	400.11	400.11	7.4 U		400.11	4.6 UJ
NW Shoreline	PA01	0-2 ft	Surf (0-2ft)	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	1000 U	400 U	400 U	400 U
NW Shoreline	PA02	0-2 ft	Surf (0-2ft)	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U 350 U	420 U 350 U	1100 U 880 U	420 U	420 U	420 U
NW Shoreline NW Shoreline	PA03 PA04	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U 340 U	350 U	350 U	860 U	350 U 340 U	350 U 340 U	350 U 340 U
NW Shoreline	PA04 PA04	2-4 ft	SubSurf (>2ft)	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	860 U	340 U	340 U	340 U
NW Shoreline	PA04	4-6 ft	SubSurf (>2ft)	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	880 U	350 U	350 U	350 U
Prefab	PF02 PF02	0-2 ft	Surf (0-2ft)	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
Prefab	PF02	2-4 ft	SubSurf (>2ft)	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	1100 U	450 U	450 U	450 U

				Di-n-butylphthalate	octylphthalate	uran	Dimethylphthalate	lene		Hexachlorobutadiene	Hexachlorocyclopentadiene	roethane*	ne	ene	enzene	n-Nitroso-di-n-propylamine*	n-Nitrosodiphenylamine*	Pentachlorophenol*	ırene		
				i-n-buty	Di-n-octy	Dibenzofuran	imethyl	Fluoranthene	Fluorene	exachlo	exachlo	Hexachloroetha	Isophoron	Naphthalene	Nitroben:	-Nitroso	-Nitroso	entachl	Phenanthrene	Phenol	Pyrene*
				(ug/Kg) 200000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 200000	(ug/Kg) NL	(ug/Kg) 30000	(ug/Kg) NL	(ug/Kg) 10000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 40000	(ug/Kg) NL	(ug/Kg) 20000	(ug/Kg) 3000	(ug/Kg) NL	(ug/Kg) 30000	(ug/Kg) NL
				8e+006	1.6e+006	160000	8e+007	3.2e+006	3.2e+006	13000	480000	71000	1.1e+006	1.6e+006	40000	140	200000	8300	NL	4.8e+007	2.4e+006
				100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Funct. Area	Loc ID	Depth	Zone																		
Prefab	PF03	0-2 ft	Surf (0-2ft)	410 U	410 U	410 U	410 U	42 J	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	1000 U	410 U	410 U	50 J
Prefab	PF03	2-4 ft	SubSurf (>2ft)	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
Prefab	PF03	4-6 ft	SubSurf (>2ft)	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
Prefab	PF03	6-8 ft	SubSurf (>2ft)	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	440 U	1100 U	440 U	440 U	440 U
Prefab	PF03	8-10 ft	SubSurf (>2ft)	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	1100 U	450 U	450 U	450 U
Prefab	PF03	16-18 ft	SubSurf (>2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	940 U	370 U	370 U	370 U
West Former Mill	BP20	0.25-8 ft	SubSurf (>2ft)	330 U	340 U	330 U	330 U	60 J	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	49 J	330 U	57 J
West Former Mill	FOT-EX-1	9.5-9.5 ft	SubSurf (>2ft)					8.2 U	8.2 U					8.2 U					8.2 U		8.2 U
West Former Mill	FOT-EX-10	11.5-11.5 ft	SubSurf (>2ft)					7.6 U	7.6 U					7.6 U					11		8.1
West Former Mill	FOT-EX-11	9-9 ft	SubSurf (>2ft)					7.3 U	7.3 U					7.3 U					7.3 U		7.3 U
West Former Mill	FOT-EX-14	9-9 ft	SubSurf (>2ft)					7.3 U	7.3 U					7.3 U					7.3 U		7.3 U
West Former Mill	FOT-EX-15	11-11 ft	SubSurf (>2ft)					7.5 U	7.5 U					7.5 U					7.5 U		7.5 U
West Former Mill	FOT-EX-16 FOT-EX-17	8-8 ft	SubSurf (>2ft)					7.8 U	7.8 U					7.8 U					7.8 U		16 180
West Former Mill West Former Mill	FOT-EX-17	3-3 ft 7-7 ft	SubSurf (>2ft) SubSurf (>2ft)					160 6.9 U	9.4 U 6.9 U					9.4 U 6.9 U					50 6.9 U		6.9 U
West Former Mill	FOT-EX-19	9-9 ft	SubSurf (>2ft)					8 U	8 U					8 U					8 U		8 U
West Former Mill	FOT-EX-2	9-9 ft	SubSurf (>2ft)					7.2 U	7.2 U					7.2 U					7.2 U		7.2 U
West Former Mill	FOT-EX-20	7-7 ft	SubSurf (>2ft)					7.5 U	7.5 U					7.5 U					7.5 U		7.5 U
West Former Mill	FOT-EX-21	7-7 ft	SubSurf (>2ft)					7.1 U	7.1 U					7.1 U					7.1 U		7.1 U
West Former Mill	FOT-EX-22	5-5 ft	SubSurf (>2ft)																		
West Former Mill	FOT-EX-22	5-5 ft	SubSurf (>2ft)					11	7.2 U					7.2 U					12		18
West Former Mill	FOT-EX-23	5-5 ft	SubSurf (>2ft)					8.1	7.1 U					7.1 U					7.1 U		9.1
West Former Mill	FOT-EX-24	5-5 ft	SubSurf (>2ft)					64	6.9 U					6.9 U					40		56
West Former Mill	FOT-EX-25	5-5 ft	SubSurf (>2ft)					10	7.4 U			-	-	7.4 U					10		9
West Former Mill	FOT-EX-26	5-5 ft	SubSurf (>2ft)					23	7.1 U					8.8					37		30
West Former Mill	FOT-EX-27	8-8 ft	SubSurf (>2ft)					8	7.8 U					7.8 U					12		9.5
West Former Mill	FOT-EX-3	11-11 ft	SubSurf (>2ft)					51	28					8.3 U					170		390
West Former Mill	FOT-EX-4	8-8 ft	SubSurf (>2ft)					7.8 U	7.8 U					7.8 U					7.8 U		7.8 U
West Former Mill	FOT-EX-5	15-15 ft	SubSurf (>2ft)					8.3 U	8.3 U					8.3 U					8.3 U		8.3 U
West Former Mill	HF01	0-2 ft	Surf (0-2ft)	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U

				(EX) Di-n-butylphthalate	9.1 (S) Di-n-octylphthalate	78 91 (S) Dibenzofuran	(50,000 Dimethylphthalate 000000 Se +000 00000 330000	(pg/Kgu) LI 3.2e+006 89000	(ug/Kg) 30000 3.2e+006 550000	(By)6n) Hexachlorobutadiene (1900)	00008 00004 00004 00004 00004 00004	(ug/Kgu) NL 71000 130	(ug/Kg) NL 1.1e+006 3000	(w Ky Naphthalene (p 000 + 000	Witrobenzene (8/000 A0000 (2900 2900	001 Nitroso-di-n-propylamine*	n-Nitrosodiphenylamine*	(ug/Kg) 3000 8300 48	N N N Phenanthrene © Phenanthrene	louadd (ug/Kg) 30000 4.8e+007 5e+006	*apau. (ug/Kg) NL 2.4e+006 3.5e+006
Funct. Area	Loc ID	Depth	Zone																		
West Former Mill	HF01	2-4 ft	SubSurf (>2ft)	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	450 U	49 J	450 U	450 U	450 U	1100 U	450 U	450 U	450 U
West Former Mill	HF02	0-2 ft	Surf (0-2ft)	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	390 U	980 U	390 U	390 U	390 U
West Former Mill	HF02	2-4 ft	SubSurf (>2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	920 U	370 U	370 U	370 U
West Former Mill	HF03	0-2 ft	Surf (0-2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	930 U	370 U	370 U	370 U
West Former Mill	HF03	2-4 ft	SubSurf (>2ft)	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
West Former Mill	HF04	0-2 ft	Surf (0-2ft)	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	1000 U	70 J	400 U	400 U
West Former Mill	HF04	2-4 ft	SubSurf (>2ft)	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	420 U	1100 U	420 U	420 U	420 U
West Former Mill	HF05	0-2 ft	Surf (0-2ft)	400 U	400 U	400 U	400 U	150 J	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	400 U	1000 U	160 J	400 U	400 U
West Former Mill	HF05	2-4 ft	SubSurf (>2ft)	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	410 U	1000 U	410 U	410 U	410 U
West Former Mill West Former Mill	HF06	0-2 ft	Surf (0-2ft)	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	410 U 390 U	1000 U 980 U	410 U 390 U	410 U 390 U	410 U 390 U
West Former Mill	HF07	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	390 U	390 U	940 U	170 J	390 U	160 J
West Former Mill	HF07	2-4 ft	SubSurf (>2ft)	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	360 U	910 U	360 U	360 U	360 U
West Former Mill	HF08	0-2 ft	Surf (0-2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	920 U	43 J	370 U	370 U
West Former Mill	HF08	2-4 ft	SubSurf (>2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	940 U	370 U	370 U	370 U
West Former Mill	HF09	0-2 ft	Surf (0-2ft)	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	950 U	380 U	380 U	380 U
West Former Mill	HF09	2-4 ft	SubSurf (>2ft)	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	920 U	370 U	370 U	370 U
West Former Mill	MW-60	2-3.5 ft	SubSurf (>2ft)									59 U				59 U	59 U	260			230 B
West Former Mill	MW-60	10-11.5 ft	SubSurf (>2ft)									570 UI				570 UI	570 UI	8.3 U			15000 J
West Former Mill	MW-60	15-16.5 ft	SubSurf (>2ft)		-				-			59 U				59 U	59 U	7.6 U			680 B
West Former Mill	MW-60	20-20.75 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.1 U			54 B
West Former Mill	MW-60	23-24.4 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.3 U		-	5.4 U
West Former Mill	MW-68	5.5-6 ft	SubSurf (>2ft)																		110
West Former Mill	MW-68	13-14 ft	SubSurf (>2ft)																		19
West Former Mill	MW-68	55-55 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.4 U			4.9 U
West Former Mill	PS20	0.25-6.5 ft	SubSurf (>2ft)	330 U	330 U	330 U	330 U	330 U	330 U	330 U	340 U	330 U	330 U	330 U	330 U	330 U	330 U	2000 U	330 U	330 U	330 U
West Former Mill	RB01	0-0.25 ft	Surf (0-2ft)	700 U	700 U	980	270 J	6700 J	1300	700 U	700 U	700 U	700 U	1800	700 U	700 U	700 U	460 J	6100 J	350 J	5000
West Former Mill	RB01	0.25-7 ft	SubSurf (>2ft)	330 U	250 J	870	330 U	1300 570 J	1200	330 U	340 U	330 U	330 U	2100 700 H	330 U	330 U	330 U	2000 U	3200	53 J	1300
West Former Mill	RB02 RB03	0-0.25 ft 0-2 ft	Surf (0-2ft)	790 U	790 U	790 U	790 U		790 U	790 U	790 U	790 U	790 U	790 U	790 U	790 U	790 U	100 J	480 J	790 U	490 J
West Former Mill	KBU3	U-2 II	Surf (0-2ft)	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U

				(B) Di-n-butylphthalate	N	Z 91	2000 (E) Dimethylphthalate	(pg/Kg) NL 3.2e+006 89000	(ug/Kg) 30000 3.2e+006 550000	(egy) Hexachlorobutadiene	(p) Hexachlorocyclopentadiene (p) Hexachlorocyclopentadiene (p) (p) (p) (p) (p) (p) (p) (p) (p) (p)	(gy/gu) Hexachloroethane*	(ug/Kg) NL 1.1e+006 3000	000+090 1.60+090 1.000+090 1.000	Wittobenzene (5000 A0000 A0000 2900	001 PS (Sh. n-Nitroso-di-n-propylamine*	00000 000 000 000 000 000 000 000 000	88 00 % Pentachlorophenol*	Z Z Z Ĝ P r r ∞ Phenanthrene ©	louadd (ug/Kg) 30000 4.8e+007 5e+006	*anauka (ug/Kg) NL 2.4e+006 3.5e+006
Funct. Area	Loc ID	Depth	Zone																		
West Former Mill	RB03	8-10 ft	SubSurf (>2ft)	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	430 U	1100 U	430 U	430 U	430 U
West Former Mill	RB04	0-2 ft	Surf (0-2ft)	370 U	370 U	370 U	370 U	120 J	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	370 U	940 U	140 J	370 U	150 J
West Former Mill	RB04	4-6 ft	SubSurf (>2ft)	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	350 U	890 U	350 U	350 U	350 U
West Former Mill	RB04	8-10 ft	SubSurf (>2ft)	380 U	380 U	380 U	380 U	43 J	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	970 U	380 U	380 U	380 U
West Former Mill	RB20	0.25-8 ft	SubSurf (>2ft)	340 U	340 U	340 U	340 U	330 J	19 J	340 U	340 U	340 U	340 U	340 U	340 U	340 U	340 U	2100 U	220 J	340 U	290 J
West Former Mill	RB21	0.25-8 ft	SubSurf (>2ft)	330 U	670 U	1100	330 U	1500	1400	330 U	340 U	330 U	330 U	2300	330 U	330 U	330 U	2000 U	3800	330 U	2000
West Former Mill	SSB-2 SSB-2	2-3.5 ft 5-6.5 ft	SubSurf (>2ft)									63 U				63 U 64 U	63 U	7.9 U 8 U			160
West Former Mill	SSB-2	5-6.5 ft	SubSurf (>2ft)									64 U 				64 U 	 20 U	8.6 U			270 J
West Former Mill West Former Mill	SSB-2	10-11.5 ft	SubSurf (>2ft) SubSurf (>2ft)									19 U				19 U	19 U	7 U			44 J 7
West Former Mill	SSB-2	15-16.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	7.2 U			17
West Former Mill	SSB-2	20-20.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.2 U			5
West Former Mill	SSB-7	2-3.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.4 U			280
West Former Mill	SSB-7	10-11.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.9 U			48
West Former Mill	SSB-7	20-21.5 ft	SubSurf (>2ft)									19 U				19 U	19 U	6.6 U			4.6 U
West Former Mill	SSB-7	25-26.5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7 U			13
West Former Mill	SSB-7	30-30.75 ft	SubSurf (>2ft)									19 U				19 U	19 U	7 U			4.6 U
West Former Mill	TP-01	2-2 ft	Surf (0-2ft)						-			20 U		-		20 U	20 U	6.9 U			46
West Former Mill	TP-01	8-8 ft	SubSurf (>2ft)									20 U				20 U	20 U	8.2 U			83
West Former Mill	TP-02	2-2 ft	Surf (0-2ft)									20 U		-		20 U	20 U	7 U			24 U
West Former Mill	TP-02	8-8 ft	SubSurf (>2ft)									180 UIJ				180 UIJ	180 UJ	6.9 U			86 NJ
West Former Mill	TP-02	8-8 ft	SubSurf (>2ft)									550 UIJ				550 UIJ	550 UIJ	6.7 U			100 NJ
West Former Mill	TP-03	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	7.1 U			39
West Former Mill	TP-03	4-4 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.4 U			540
West Former Mill	TP-03 TP-04	7-7 ft	SubSurf (>2ft)									38 U				38 U 20 U	38 U	8.4 U			380 15
West Former Mill	TP-04 TP-04	2-2 ft 7-7 ft	Surf (0-2ft) SubSurf (>2ft)									20 U				20 U	20 U 20 U	7.6 U 12 U			4.9 U
West Former Mill West Former Mill	TP-04	7-7 π 2-2 ft	SubSurr (>2rt) Surf (0-2ft)									20 U 20 U				20 U	20 U	6.4 U			4.9 U
West Former Mill	TP-05	6-6 ft	SubSurf (>2ft)									19 U				19 U	19 U	8.3 U			13
West Former Mill	TP-06	3-3 ft	SubSurf (>2ft)									20 U				20 U	20 U	6.5 U			10
AAGSE LOUTING IMIII	1 5-00	3-3 II	Jubouii (>ZII)									20 U				20 U	20 U	บ.5 บ			IU

				00000 Din-butylphthalate	TX 9 7 8 Di-n-octylphthalate	TZ S Dibenzofuran	(By) Dimethylphthalate	(ug/Kg) NL 3.2e+006 89000	(ug/Kg) 30000 3.2e+006 550000	(687) Hexachlorobutadiene (69061	(PX) (PX) (PX) (PX) (PX) (PX) (PX) (PX)	(gX/gu) Hexachloroethane*	(ug/Kg) NL 1.1e+006 3000	(ug/Kg) NL 1.6e+006 140000	Nitrobenzene (M/Sin) Nitropenzene (M/Sin) Nitropenzene (M/Sin) Nitropenzene	001 Using the second of the se	00000 180	88 00 SX Pentachlorophenol*	Z Z Z S P P P S Phenanthrene © Phenanthrene	(ug/Kg) 30000 4.8e+007 5e+006	**************************************
Funct. Area	Loc ID	Depth	Zone																		
West Former Mill	TP-06	7-7 ft	SubSurf (>2ft)									20 U				20 U	20 U	6.9 U			19
West Former Mill	TP-07	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	9.9			20
West Former Mill	TP-07	2-2 ft	Surf (0-2ft)									19 U				19 U	19 U	10			21
West Former Mill	TP-07	6-6 ft	SubSurf (>2ft)									20 U				20 U	20 U	9.8 U			4.9 U
West Former Mill	TP-08	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	15 U			63
West Former Mill	TP-08	5-5 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.3 U			4.9 U
West Former Mill	TP-11	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	16			120
West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)									72 U				72 U	72 U	9.2 U			160 J
West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)									67 U				67 U	67 U	9.1 U			150
West Former Mill	TP-12	2-2 ft	Surf (0-2ft)									67 U				67 U	67 U	53 UI			1800
West Former Mill	TP-12	4-4 ft	SubSurf (>2ft)									62 U				62 U	62 U	<u>230</u>			1500
West Former Mill	TP-15	2-2 ft	Surf (0-2ft)									85 U				85 U	85 U	52 UI			91
West Former Mill	TP-15	4-4 ft	SubSurf (>2ft)									20 U				20 U	20 U	7.8 U			190
West Former Mill	TP-16	2-2 ft	Surf (0-2ft)									20 U				20 U	20 U	6.8 U			4.6 U
West Former Mill West Former Mill	TP-16 WM21	5-5 ft	SubSurf (>2ft)			220 11		220 11	330 U			20 U		330 U		20 U	20 U	6.6 U	330 U		4.6 U 330 U
West Former Mill	WM21	0-0.25 ft 0.25-9.5 ft	Surf (0-2ft) SubSurf (>2ft)	320 U	320 U	330 U 320 U	320 U	330 U 320 U	320 U	320 U	320 U	320 U	320 U	330 U	320 U	320 U	320 U	1900 U	330 U	320 U	25 J
West Former Mill	WM-EX-1	8-8 ft	SubSurf (>2ft)		320 0	320 0		12	7.3 U		320 0	320 0		7.3 U	320 0	3200	3200	1900 0	19 3	320 0	14
West Former Mill	WM-EX-10	16-16 ft	SubSurf (>2ft)					210	35					19					110		150
West Former Mill	WM-EX-10	16-16 ft	SubSurf (>2ft)					1800	320					210					1400		1200
West Former Mill	WM-EX-11	17-17 ft	SubSurf (>2ft)					31	95					23					31		23
West Former Mill	WM-EX-12	8-8 ft	SubSurf (>2ft)					140	14					17					69		110
West Former Mill	WM-EX-13	9-9 ft	SubSurf (>2ft)					120	7.9 U					7.9 U					33		160
West Former Mill	WM-EX-14	14-14 ft	SubSurf (>2ft)					7.5 U	7.5 U					7.5 U					7.5 U		7.5 U
West Former Mill	WM-EX-15	14-14 ft	SubSurf (>2ft)					150	14					10					56		260
West Former Mill	WM-EX-16	14-14 ft	SubSurf (>2ft)					1200	250					170					990		1300
West Former Mill	WM-EX-17	14-14 ft	SubSurf (>2ft)					34	20					9.6					27		22
West Former Mill	WM-EX-18	9-9 ft	SubSurf (>2ft)					510	150					33					410		430
West Former Mill	WM-EX-2	11-11 ft	SubSurf (>2ft)					66	7.5 U					10					23		110
West Former Mill	WM-EX-3	10-10 ft	SubSurf (>2ft)					35	7.5 U			-		7.5 U					13		50

				90000 (2000) Di-n-butylphthalate	900 Di-n-octylphthalate	997 Z S Dibenzofuran	(6) Dimethylphthalate	(ng/Kg) NL NL S2e+006	(ug/Kg) 30000 3.2e+006	D PZ Mexachlorobutadiene	10000 480000	D N N Hexachloroethane*	(ug/Kg) NL 1.1e+006	(by Naphthalene	0000 Nitrobenzene	n-Nitroso-di-n-propylamine*	(ng/Kg) 20000 20000	(ma/Ka) 3000 8300 8300	NL NL	(ug/Kg) 30000 4.8e+007	*aua-x' (ug/Kg) NL 2.4e+006
Funct Area	LocID	Donth	7000	100000	NL	NL	330000	89000	550000	19000	4.4e+006	130	3000	140000	2900	100	180	48	NL	5e+006	3.5e+006
Funct. Area	Loc ID	Depth	Zone					40	7711					7711					40		40
West Former Mill	WM-EX-4	13-13 ft	SubSurf (>2ft)					13	7.7 U					7.7 U					10		19
West Former Mill	WM-EX-5	16-16 ft	SubSurf (>2ft)					110	27					19					26		74
West Former Mill	WM-EX-6	9-9 ft	SubSurf (>2ft)					71	45					14					95		44
West Former Mill	WM-EX-7	8.5-8.5 ft	SubSurf (>2ft)					210	12					8.4					54		130
West Former Mill	WM-EX-8	15-15 ft	SubSurf (>2ft)					72	7.7					7.3 U					12		42
West Former Mill	WM-EX-9	10-10 ft	SubSurf (>2ft)					7.8 U	7.8 U					7.8 U					7.8 U		7.8 U

										1
							Gasoline-range TPH*	Diesel-range TPH*	Fuel oil-range TPH*	Heavy oil-range TPH*
							soli	sel	el o	avy
					Para	meter	Ga	Die	Fu	Ĕ
						Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
				MTC	MTCA Ecologic		100	200	200	200
					A Method B Protective of HH ethod B Protective of GW as	, ,	30 30	2000 2000	2000 2000	2000 2000
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Type	30	2000	2000	2000
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)	10/28/2010	DUPE3-102810	FD		7.2		42
City Purchase	GWG-8	2-3.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-2-3.5	N		5.4 U		16
City Purchase	GWG-8	10-11.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-10-11.5	N		6.1 U		12 U
City Purchase	GWG-8	15-16.5 ft	SubSurf (>2ft)	10/28/2010	GWG-8-15-16.5	N		5.9 U		12 U
CSO	FOT-EX-12	6-6 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-12-[080306]-6.0	Ν		25 U	40 U	80 U
CSO	FOT-EX-13	13-13 ft	SubSurf (>2ft)	8/3/2006	FOT-EX-13-[080306]-13.0	N		25 U	40 U	80 U
CSO CSO	FOT-EX-28 FOT-EX-6	8-8 ft 3-3 ft	SubSurf (>2ft)	8/9/2006	WM-EX-28-[080906]-8.0	N		25 U	40 U 40 U	80 U
CSO	FOT-EX-6	3-3 π 3-3 ft	SubSurf (>2ft) SubSurf (>2ft)	8/2/2006 8/2/2006	FOT-EX-6-[080206]-3.0 FOT-EX-7-[080206]-3.0	N N		25 U 25 U	40 U	80 U 80 U
CSO	FOT-EX-7	8-8 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-8-[080206]-8.0	N		25 U	40 U	80 U
CSO	FOT-EX-9	6-6 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-9-[080206]-6.0	N		25 U	40 U	80 U
CSO	GWG-6	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-2-3.5	N		58		200
CSO	GWG-6	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-5-6.5	N		6 U		12 U
CSO	GWG-6	10-11.5 ft	SubSurf (>2ft)	11/2/2010	GWG-6-10-11.5	N		6.2 U		12 U
CSO	MW-70	2-3.5 ft	SubSurf (>2ft)	5/6/2011	MW70-2-3.5	N	6.5 U	5.9 U		12 U
CSO CSO	MW-70 MW-70	5-6.5 ft	SubSurf (>2ft)	5/6/2011	MW70-5-6.5	N N	6.3 U	5.7 U		11 U 13 U
CSO	MW-70	10-11.5 ft 15-16.5 ft	SubSurf (>2ft) SubSurf (>2ft)	5/6/2011 5/6/2011	MW70-10-11.5 MW70-15-16.5	N	7.1 U 5.8 U	6.3 U 5.4 U		11 U
CSO	MW-70	20-21.5 ft	SubSurf (>2ft)	5/6/2011	MW70-20-21.5	N	5.7 U	5.8 U		12 U
East Former Mill	GWG-7	2-3.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-2-3.5	Ν		6.3 U		20
East Former Mill	GWG-7	5-6.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-5-6.5	N		6.5 U		13 U
East Former Mill	GWG-7	7-8.5 ft	SubSurf (>2ft)	11/2/2010	GWG-7-7-8.5	N		6.2 U		12 U
Estuary	EC-11	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-020	N		28 U		12 J
Estuary	EC-11	0-1 ft	Surf (0-2ft)	6/25/2002	KWG0204679-2	FD		30 U		19
Estuary	EC-15	0-1 ft	Surf (0-2ft)	6/25/2002	K2205252-001	N		38 J		260
Estuary	EC-15	0-1 ft	Surf (0-2ft)	6/25/2002	K2205252-001-FD	FD		36 J		130 J
Estuary	EC-15	1-2 ft	Surf (0-2ft)	6/25/2002	K2205252-002	N		26 J		200 J
Estuary Estuary	EC-17 EC-18	0-1 ft 1-2 ft	Surf (0-2ft) Surf (0-2ft)	6/25/2002 6/25/2002	K2204294-035 K2204294-036	N N		6.2 J 6.2 J		34 29
Estuary	EC-18	2-3 ft	SubSurf (>2ft)	6/25/2002	K2204294-039	N		38		120
Estuary	EC-19	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-040	N		16 J		77
Estuary	EC-21	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-045	N		28 U		16
Estuary	EC-22	0-0.5 ft	Surf (0-2ft)	6/25/2002	K2204294-046	N		27 J		160
Estuary	EC-22	0-0.5 ft	Surf (0-2ft)	6/25/2002	KWG0204724-3	FD		21		150
Estuary	EC-22	2-3 ft	SubSurf (>2ft)	6/25/2002	K2204294-051	N		29 U		18
Estuary Estuary	EC-3 EC-3	0-1 ft 0-1 ft	Surf (0-2ft) Surf (0-2ft)	6/25/2002 6/25/2002	K2204294-003 K2204294-003DUP	N FD		26 U 26 U		10 J
Estuary	EC-3 EC-5	0-1 ft	Surf (0-2ft) Surf (0-2ft)	6/25/2002	K2204294-003D0P K2204294-007	N N		26 U		7.9 J 21
Estuary	EC-7	0-1 ft	Surf (0-2ft)	6/25/2002	K2204294-012	N		26 U		18
Estuary	FW0054	4.5-4.5 ft	SubSurf (>2ft)	8/9/2002	K2205480-003	N		240		440
Estuary	FW0055	1-1 ft	Surf (0-2ft)	8/9/2002	K2205480-004	N		8.6 J		31 J
Estuary	FW0056	1-1 ft	Surf (0-2ft)	8/10/2002	K2205480-005	N		29 U		19 J
Estuary	FW0057	4.5-4.5 ft	SubSurf (>2ft)	8/10/2002	K2205480-006	N		100		250
Estuary Estuary	FW0058 FW0059	1-1 ft 4.5-4.5 ft	Surf (0-2ft) SubSurf (>2ft)	8/10/2002 8/10/2002	K2205480-007 K2205480-008	N N		30 U 340		23 J 1700
Estuary	FW0059 FW0061	4.5-4.5 It	Surf (0-2ft)	8/10/2002	K2205480-008	N		48		350
Estuary	FW0062	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-011	N		130		600
Estuary	FW0063	4.5-4.5 ft	SubSurf (>2ft)	8/12/2002	K2205480-012	N		140		170
Estuary	FW0064	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-013	N		8.8 J		57 J
Estuary	FW0065	4.5-4.5 ft	SubSurf (>2ft)	8/12/2002	K2205480-014	N		300		470
Estuary	FW0067	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-016	N		1100		<u>3000</u>
Estuary	FW0067	1-1 ft	Surf (0-2ft)	8/12/2002	KWG0206007-2	FD		1100		<u>3000</u>
Estuary	FW0068	4.5-4.5 ft	SubSurf (>2ft)	8/12/2002	K2205480-017	N		380		1000
Estuary	FW0069	1-1 ft	Surf (0-2ft)	8/12/2002	K2205480-018	N		26 J		68 J
Estuary	FW0070	1-1 ft	Surf (0-2ft)	8/12/2002	FW0070	N		1300		<u>6600</u>

Parameter Para	_										_
### MTCA Method B Protective of HM (FSP) 30 2000 2000 2000 Enucl. Area Loc ID Depth Depth Zone Date Sample ID Type ### Struct Area Loc ID Depth Depth Zone Date Sample ID Type ### Struct Area Type Depth Zone Date Sample ID Type ### Struct Area Type Depth Zone Date Sample ID Type ### Struct Area Type Depth Zone Date Sample ID Type ### Struct Area Type Depth Zone Date Sample ID Type ### Struct Area Type Depth Zone Date Sample ID Type ### Struct Area Type Type Type Type Type Type ### Struct Area Type Type Type Type Type Type ### Struct Area Type Type Type Type Type Type Type ### Struct Area Type Type Type Type Type Type Type Type Type ### Struct Area Type					Para		_		Fuel		
MTCA Nethood B Protective of HH (SFV) 30 2000						MTCA Ecologic					
Funct. Area Loc D Depth Depth Depth Zone Date Sample Depth Sample Depth Sample Depth Sample Depth Sample Sample Depth Sample					MTC	•					
Estuary							٠,				
Estuary FW0070 1-1 ft Surf (0-2ft) 8-1/22002 FW0070-FD FD 1200 9800 Estuary MW-42 3-5 ft Subsul (-2ft) 10/20/2010 MW-82-3-5 ft N 5-5 LU 11 U Estuary MW-42 5-6.5 ft Subsul (-2ft) 10/20/2010 MW-82-6-6 ft N 5-2 LU 10 U Estuary MW-82 15-16 ft Subsul (-2ft) 10/20/2010 MW-82-6-6 ft N 5-2 LU 11 U Estuary MW-82 15-16 ft Subsul (-2ft) 10/20/2010 MW-82-16-16 ft N 5-5 LU 11 U Estuary MW-82 15-16 ft Subsul (-2ft) 10/20/2010 MW-82-16-16 ft N 5-5 LU 11 U Estuary MW-82 25-26 ft Subsul (-2ft) 10/20/2010 MW-82-16-16 ft N 5-5 LU 11 U Estuary WEC-1 3-3 ft Subsul (-2ft) 10/20/2010 MW-82-25-26 ft N 5-5 LU 12 U Estuary WEC-10 3-3 ft Subsul (-2ft) 10/20/2010 MW-82-25-26 ft N 5-6 LU 12 U Estuary WEC-11 3-3 ft Subsul (-2ft) 10/31/398 COMP 2-3-(2) N 180 Estuary WEC-12 3-3 ft Subsul (-2ft) 10/31/398 COMP 2-3-(2) N 65 t Estuary WEC-13 3-3 ft Subsul (-2ft) 10/31/398 COMP 2-3-(2) N 670 Estuary WEC-14 3-3 ft Subsul (-2ft) 10/31/398 COMP 2-3-(2) N 670 Estuary WEC-16 3-3 ft Subsul (-2ft) 10/31/398 WEST WALL-3 N 670 Estuary WEC-16 3-3 ft Subsul (-2ft) 10/31/398 WEST WALL-3 N Estuary WEC-16 3-3 ft Subsul (-2ft) 10/31/398 WEST WALL-3 N	Funct, Area	Loc ID	Depth	Depth Zone				- 00	2000	2000	2000
Estuary MW-62									1200		6600
Estuary MW-62 6-6.5 ft SubSuf (52t) 10202010 MW-62-6.5 N 5.2 U 10 U Estuary MW-62 15-16.5 ft SubSuf (52t) 10202010 MW-62-16-15.5 N 5.4 U 11 U Estuary MW-62 15-16.5 ft SubSuf (52t) 10202010 MW-62-16-16.5 N 5.4 U 11 U Estuary MW-62 15-16.5 ft SubSuf (52t) 10202010 MW-62-15-16.5 N 5.4 U 11 U Estuary MW-62 25-26.5 ft SubSuf (52t) 10202010 MW-62-15-16.5 N 5.4 U 11 U Estuary MW-62 25-26.5 ft SubSuf (52t) 10202010 MW-62-26-26.5 N 5.4 U 12 U Estuary WEC-10 3-3 ft SubSuf (52t) 10202010 MW-62-25-26.5 N 5.4 U 12 U 1				` '							
Estuary MW-62 10-11.5 ft SubSurf (>21) 1020/2010 MW-62-10-11.5 N 5.7 U 11.U	-			, ,							
Estuary MV-62 15-16.5 ft SubSurl (>21) 1020/2010 MW-62-19-16.5 N N				, ,			_				
Estuary MV-62 20-21.5 ft SubSurf (>27) 1072/02/01 MV-62-20-21.5 N				. ,			_				
Estuary WEC-1 3-3 ft SubSurf (>27) 10720/2010 MW-62-25-6.5 N N 6.1 U 12 U Estuary WEC-1 3-3 ft SubSurf (>27) 1073/1998 NORTH WAIL-3 N N				. ,							
Estuary WEC-10 1.5-1.5 ft Suff (0-2ft) 10/13/1998 NORTH WALL-3 N 590 Estuary WEC-11 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 2-3-2(2) N 65 Estuary WEC-13 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 2-3-2(2) N 65 Estuary WEC-13 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 1-3-2(3) N 65 Estuary WEC-14 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 1-3-2(3) N 65 Estuary WEC-15 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 4-4-(1) N 65 Estuary WEC-16 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 4-4-(1) N 40 U Estuary WEC-16 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 3-4-(3) N 40 U Estuary WEC-17 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 3-4-(3) N 220 Estuary WEC-18 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 3-4-(3) N 20 Estuary WEC-18 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 3-4-(3) N 20 Estuary WEC-19 3-3 ft SubSurf (2-2ft) 10/13/1998 COMP 3-4-(3) N				. ,							
Estuary WEC-10 3-3 ft SubSurf (-22th) 10/13/1989 COMP 2-2-(2) N 65 Estuary WEC-13 3-3 ft SubSurf (-22th) 10/13/1989 COMP 2-2-(2) N 65 Estuary WEC-13 1-5-1.5 ft Surf (0-2th) 10/13/1989 COMP 4-1-4(1) N							1				
Estuary WEC-13 3-3 ft SubSurf (-22th) 10/13/1998 COMP 2-2-(2) N 670 Estuary WEC-13 1.5-1.5 ft Surf (0-2th) 10/13/1998 WEST WALL-8 N 70 Estuary WEC-14 3-3 ft SubSurf (-22th) 10/13/1998 COMP 4-1-(1) N 40 U Estuary WEC-14 3-3 ft SubSurf (-22th) 10/13/1998 COMP 4-1-(1) N 40 U Estuary WEC-15 3-3 ft SubSurf (-22th) 10/13/1998 COMP 4-1-(1) N 40 U Estuary WEC-16 3-3 ft SubSurf (-22th) 10/13/1998 COMP 4-1-(3) N 40 U Estuary WEC-17 3-3 ft SubSurf (-22th) 10/13/1998 COMP 3-1-(3) N	-						1				1
Estuary WEC-12 3-3 ft SubSurf (>2th 10/13/1998 COMP 1-3-(2) N						()					1
Estuary WEC-13 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL-8 N 40 U				, ,							
Estuary WEC-14 3-3 ft SubSurf (-2ft) 10/13/1998 COMP 44-f(1) N				. ,							
Estuary WEC-15 3-3 ft SubSurf (-2rt) 10/13/1998 COMP 4-1-(3) N 40 U							N				
Estuary WEC-16 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 3-4(-3) N							N				
Estuary WEC-17 3-3 ft SubSur (>2ft) 10/13/1998 COMP 3-1-(3) N							N				
Estuary WEC-18 1.5-1.5 ft Surf (0-2tr) 10/13/1998 WEST WALL-9 N							N				480
Estuary WEC-29 1.5-1.5 ft Suff (0-2ft) 10/13/1998 COMP 4-5-(1) N				Surf (0-2ft)			N				
Estuary WEC-20 3-3 ft SubSurf (-2th) 10/13/1998 COMP 3-5-(3) N	Estuary	WEC-19	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-5-(1)	N				150
Estuary WEC-21 3-3 ft SubSurf (>2th) 10/13/1998 COMP 4-3-(1) N 40 U	Estuary	WEC-2	1.5-1.5 ft		10/13/1998		N				40 U
Estuary WEC-22 3-3 ft SubSurf (>27t) 10/13/1998 COMP 4-2-(3) N 40 U Estuary WEC-24 6-6 ft SubSurf (>27t) 10/13/1998 COMP 3-2-(2) N 40 U Estuary WEC-25 1.5-1.5 ft SubSurf (>27t) 10/13/1998 COMP 3-2-(2) N 40 U Estuary WEC-25 1.5-1.5 ft SubSurf (>27t) 10/13/1998 WEST WALL-10 N 40 U Estuary WEC-26 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-4-(1) N 320 Estuary WEC-27 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-4-(1) N 320 Estuary WEC-27 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-4-(1) N 320 Estuary WEC-29 6-6 ft SubSurf (>27t) 10/13/1998 COMP 6-4-(1) N 790 Estuary WEC-29 6-6 ft SubSurf (>27t) 10/13/1998 COMP 6-4-(1) N 670 Estuary WEC-30 1.5-1.5 ft Surf (0-2ft) 10/13/1998 NORTH WALL-11 N 40 U Estuary WEC-31 3-3 ft SubSurf (>27t) 10/13/1998 WEST WALL-11 N 40 U Estuary WEC-31 3-3 ft SubSurf (>27t) 10/13/1998 WEST WALL-11 N 40 U Estuary WEC-32 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-5-(2) N 40 U Estuary WEC-34 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-5-(2) N 40 U Estuary WEC-34 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-35 6-6 ft SubSurf (>27t) 10/13/1998 COMP 6-3-(2) N 40 U Estuary WEC-38 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-2-(2) N 40 U Estuary WEC-38 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-3-(2) N 40 U Estuary WEC-38 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-2-(2) N 40 U Estuary WEC-38 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-2-(2) N 40 U Estuary WEC-34 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6-3-(2) N 40 U Estuary WEC-40 3-3 ft SubSurf (>27t) 10/13/1998 COMP 6	Estuary	WEC-20	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 3-5-(3)	N				45
Estuary WEC-23 3-3 ft SubSurf (>2th 10/13/1998 COMP 3-3-(2) N 40 U	Estuary	WEC-21	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-3-(1)	N				40 U
Estuary WEC-24 6-6 ft SubSurf (-2th) 10/13/1998 COMP 3-2-(2) N 640	Estuary	WEC-22	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 4-2-(3)	N				300
Estuary WEC-26 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 6-4-(1) N 40 U Estuary WEC-26 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-4-(1) N 230 Estuary WEC-27 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-4-(1) N	Estuary	WEC-23	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 3-3-(2)	N				40 U
Estuary WEC-26 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-4-(1) N 320	Estuary	WEC-24	6-6 ft	SubSurf (>2ft)	10/13/1998	COMP 3-2-(2)	N				640
Estuary WEC-27 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-1-(2) N 230 Estuary WEC-28 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 5-4-(1) N 790 Estuary WEC-29 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 5-1-(3) N 670 Estuary WEC-30 1.5-1.5 ft Surf (0>2ft) 10/13/1998 NORTH WALL-1 N 40 U Estuary WEC-30 1.5-1.5 ft Surf (0>2ft) 10/13/1998 WEST WALL-11 N 40 U Estuary WEC-31 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(1) N 40 U Estuary WEC-32 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(2) N 40 U Estuary WEC-33 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-34 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-35 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(2) N 40 U Estuary WEC-36 1.5-1.5 ft Surf (0>2ft) 10/13/1998 COMP 6-3-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(2) N 420 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(2) N 40 U Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(2) N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(2) N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(2) N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(2) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft	Estuary	WEC-25	1.5-1.5 ft	Surf (0-2ft)	10/13/1998	WEST WALL-10	Ν				40 U
Estuary WEC-28 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 5-4-(1) N 790	Estuary	WEC-26	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-4-(1)	Ν				320
Estuary WEC-39 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 5-1-(3) N 40 U Estuary WEC-30 1.5-1.5 ft Surf (0-2ft) 10/13/1998 NORTH WALL-11 N 40 U Estuary WEC-31 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(1) N 40 U Estuary WEC-32 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(1) N 40 U Estuary WEC-32 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(2) N 40 U Estuary WEC-33 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-34 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 40 U Estuary WEC-35 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 410 Estuary WEC-36 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 5-3-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 5-3-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-4 N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 3-5 ft Surf (0-2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-11 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft)	Estuary	WEC-27	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 6-1-(2)	N				230
Estuary WEC-30 1.5-1.5 ft Surf (0-2ft) 10/13/1998 NORTH WALL-1 N 40 U Estuary WEC-30 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL-11 N 850 Estuary WEC-31 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(1) N 40 U Estuary WEC-32 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(2) N 40 U Estuary WEC-33 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-34 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 40 U Estuary WEC-35 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 40 U Estuary WEC-36 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 5-3-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(2) N 420 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(2) N 420 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 40 U Estuary WEC-30 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 40 U Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 40 U Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 f	Estuary		3-3 ft			COMP 5-4-(1)	N				790
Estuary WEC-30 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL-11 N 850	Estuary			, ,		, ,					
Estuary WEC-31 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-5-(1) N 40 U				, ,							
Estuary WEC-32 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 5-5-(2) N 1100 Estuary WEC-33 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-34 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 40 U Estuary WEC-35 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 5-3-(2) N 420 Estuary WEC-36 1.5-1.5 ft Surf (>2ft) 10/13/1998 COMP 5-2-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 5-2-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-4 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-4 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 140 U Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(3) N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(3) N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft)				, ,			_				
Estuary WEC-33 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-3-(3) N 40 U Estuary WEC-34 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 40 U Estuary WEC-35 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 5-3-(2) N 410 Estuary WEC-36 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 5-3-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 5-2-(2) N 420 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-4 N 40 U Estuary WEC-41 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-1-(2) N				. ,		. ,					
Estuary WEC-34 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 6-2-(3) N 40 U Estuary WEC-36 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 5-3-(2) N 410 Estuary WEC-36 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 5-2-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 71 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 140 U Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 40 U Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-46 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U M U M Complete Add to the following and the following and the following and the following and the following and the foll						\ /					
Estuary WEC-35 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 5-3-(2) N 440 Estuary WEC-36 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 5-2-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 71 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 40 Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-4 N 40 Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-1-(2) N 140 Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-12 N 40 Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2f				. ,							
Estuary WEC-36 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 5-2-(2) N 420 Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 71 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-4 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 140 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998				. ,		. ,					
Estuary WEC-38 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-4-(1) N 71 Estuary WEC-39 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-4 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-4 N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-1-(2) N 140 Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 1050 Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-10-11.5 N 9.2 24											
Estuary WEC-39 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 8-1-(1) N 40 U Estuary WEC-4 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-4 N 40 U Estuary WEC-40 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2tt) 10/13/1998 COMP 7-1-(2) N 140 U Estuary WEC-42 1.5-1.5 ft Surf (0-2tt) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2tt) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2tt) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2tt) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2tt) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-5 N 450 U Estuary WEC-8 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-5 N 1050 Estuary WEC-8 3-3 ft SubSurf (>2tt) 10/13/1998 COMP 2-5 N 115 M SubSurf (>2tt) 10/13/1998 COMP 2-5 N 115 M SubSurf (>2tt) 10/13/1998 COMP 2-5 N 115 M Main Former Mill GWG-4 8-9.5 ft SubSurf (>2tt) 10/13/1998 COMP 2-5 N 115 M Main Former Mill GWG-4 8-9.5 ft SubSurf (>2tt) 11/1/2010 GWG-4-8-9.5 N 5.8 U 24 M M M M M M M M M M M M M M M M M M						()					
Estuary WEC-4 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-4 N 40 U Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-1-(2) N 140 U Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 40 U Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 COMP 1-4-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 40 U Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 40 U Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 40 U M 40 U				. ,			1				
Estuary WEC-40 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-4-2 N 40 U Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-1-(2) N 140 Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N <t< td=""><td></td><td></td><td></td><td></td><td></td><td>, ,</td><td>1</td><td></td><td></td><td></td><td></td></t<>						, ,	1				
Estuary WEC-41 6-6 ft SubSurf (>2ft) 10/13/1998 COMP 7-1-(2) N 140 Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary							1				
Estuary WEC-42 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-11 N 120 Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary				. ,			_				-
Estuary WEC-43 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-10 N 40 U Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 650 Estuary WEC-7						, ,	1				
Estuary WEC-44 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-12 N 40 U Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 40 U Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL -1 N 650 Estuary WEC-8 <td< td=""><td></td><td></td><td></td><td>, ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				, ,							
Estuary WEC-45 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-3-(A) N 40 U Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 40 U Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL -1 N 650 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115				, ,			1				
Estuary WEC-46 1.5-1.5 ft Surf (0-2ft) 10/13/1998 S-WALL-8 N 40 U Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 650 Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL -1 N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 115 Estuary WEC-9 3-3 ft	,			. ,							
Estuary WEC-47 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 7-5-(2) N 40 U Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 650 Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL -1 N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 800 Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-8-9.5 N 5.8 U 21 Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4	•			, ,		, ,	N				40 U
Estuary WEC-5 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-1-(2) N 40 U Estuary WEC-6 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-4-(2) N 650 Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL -1 N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 800 Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-8-9.5 N 5.8 U 21 Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24	Estuary	WEC-47	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 7-5-(2)	N				40 U
Estuary WEC-7 1.5-1.5 ft Surf (0-2ft) 10/13/1998 WEST WALL -1 N 1050 Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 800 Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-8-9.5 N 5.8 U 21 Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24	Estuary	WEC-5	3-3 ft	SubSurf (>2ft)	10/13/1998		N				40 U
Estuary WEC-8 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 2-5 N 115 Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 800 Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-8-9.5 N 5.8 U 21 Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24	Estuary	WEC-6	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 1-4-(2)	N				650
Estuary WEC-9 3-3 ft SubSurf (>2ft) 10/13/1998 COMP 1-5-(3) N 800 Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-8-9.5 N 5.8 U 21 Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24	Estuary	WEC-7	1.5-1.5 ft		10/13/1998	WEST WALL -1	N				1050
Main Former Mill GWG-4 8-9.5 ft SubSurf (>2ft) 11/1/2010 GWG-4-8-9.5 N 5.8 U 21 Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24							1				
Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24	Estuary	WEC-9	3-3 ft	SubSurf (>2ft)	10/13/1998	COMP 1-5-(3)	N				800
Main Former Mill GWG-4 10-11.5 ft SubSurf (>2ft) 11/2/2010 GWG-4-10-11.5 N 9.2 24	Main Former Mill	GWG-4	8-9.5 ft	SubSurf (>2ft)	11/1/2010	GWG-4-8-9.5	N		5.8 U		21
· · ·				. ,							
	Main Former Mill			. ,			N				11 U

Parameter								*			*
MITCA Method B Protective of Hrl (FPV)								TPH*	*H	.PH*	TP.
MITCA Method B Protective of Hrl (FPV)								nge	е ТЕ	ge T	nge
MITCA Method B Protective of Hrl (FPV)								<u>2</u>	ınge	ranç	l-ra
MITCA Method B Protective of Hrl (FPV)								ii ii	el-ra	oiF	y o
MITCA Method B Protective of Hrl (FPV)						Dave		aso	ies(nel	eav
MTCA Method 8 Protective of HM (SP) 30 2000 2000 2000						Para		_		_	
MTCA Method B Protective of HH (SFV)						MTCA Ecologic				-	
Funct. Area					MTCA	A Method B Protective of HH	(SFV)	30	2000	2000	2000
Main Former Mill GWG4								30	2000	2000	2000
Main Former Mill GWG-4 26-27.5 ft SubSulf (2011) 11/2/2010 GWG-4-26-27.5 ft N 5.6 U 11 U Main Former Mill GWG-4 30-31.5 ft SubSulf (2011) 11/2/2010 GWG-4-26-27.5 ft N 5.6 U 11 U Main Former Mill GWG-4 30-31.5 ft SubSulf (2011) 9/3/2002 K2206204-001 N 120 140 Main Former Mill MCH00003 9-9 ft SubSulf (2011) 9/3/2002 K2206204-002 N 100 130 Main Former Mill MCH00003 9-9 ft SubSulf (2011) 9/3/2002 K2206204-003 N 100 350 Main Former Mill MCH00004 9-9 ft SubSulf (2011) 9/3/2002 K2206204-003 N 100 350 Main Former Mill MCH00005 9-9 ft SubSulf (2011) 9/3/2002 K2206204-005 N 63 26 J Main Former Mill MCH00005 9-9 ft SubSulf (2011) 9/3/2002 K2206204-005 N 63 26 J Main Former Mill MCH00007 9-9 ft SubSulf (2011) 9/3/2002 K2206204-006 N 28 J 11 J Main Former Mill MCH00007 9-9 ft SubSulf (2011) 9/3/2002 K2206204-006 N 28 J 11 J Main Former Mill MCH00008 9-9 ft SubSulf (2011) 9/3/2002 K2206204-006 N 32 U 14 J Main Former Mill MCH00010 9-9 ft SubSulf (2011) 9/3/2002 K2206200-001 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-001 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-001 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-000 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-000 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-000 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-000 N 38 U 15 J Main Former Mill MCH00101 9-9 ft SubSulf (2011) 9/4/2002 K2206250-000 N 38 U 1									5611		11 11
Main Former Mill GWG-4 30-31.5 ft SubSuff (27t) 11/2/2010 GWG-4-30-31.5 N 5.6 U 11 U Main Former Mill MCH00002 9-9 ft SubSuff (27t) 9/3/2002 K2206204-001 N 100 140 Main Former Mill MCH00003 9-9 ft SubSuff (27t) 9/3/2002 K2206204-002 N 100 180 Main Former Mill MCH00004 9-9 ft SubSuff (27t) 9/3/2002 K2206204-003 N 100 180 Main Former Mill MCH00006 9-9 ft SubSuff (27t) 9/3/2002 K2206204-004 N 550 1700 Main Former Mill MCH00006 9-9 ft SubSuff (27t) 9/3/2002 K2206204-006 N 28 U 11 J Main Former Mill MCH00006 9-9 ft SubSuff (27t) 9/3/2002 K2206204-006 N 28 U 11 J Main Former Mill MCH00007 9-9 ft SubSuff (27t) 9/3/2002 K2206204-006 N 28 U 11 J Main Former Mill MCH00008 9-9 ft SubSuff (27t) 9/3/2002 K2206204-006 N 32 U 13 J Main Former Mill MCH00007 9-9 ft SubSuff (27t) 9/3/2002 K2206204-006 N 32 U 13 J Main Former Mill MCH00010 9-9 ft SubSuff (27t) 9/4/2002 K2206250-001 N 31 U 22 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-001 N 31 U 22 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-005 N 38 U 27 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-005 N 38 U 27 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-005 N 38 U 27 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-005 N 38 U 27 J 14 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-005 N 38 U 27 J 14 J Main Former Mill MCH0011 9-9 ft SubSuff (27t) 9/4/2002 K2206250-005 N 38 U 14 J							_				
Main Former Mill MCH0003 9-9 ft SubSurf (>21) 93/2002 K2206204-002 N 190 350 Main Former Mill MCH0003 9-9 ft SubSurf (>21) 93/2002 K2206204-003 N 190 350 Main Former Mill MCH0005 9-9 ft SubSurf (>21) 93/2002 K2206204-006 N 63 26 Main Former Mill MCH0005 9-9 ft SubSurf (>21) 93/2002 K2206204-006 N 60 790 Main Former Mill MCH0007 9-9 ft SubSurf (>21) 93/2002 K2206204-006 N 28 U 11 J Main Former Mill MCH0007 9-9 ft SubSurf (>21) 93/2002 K2206204-006 N 28 U 14 J Main Former Mill MCH0007 9-9 ft SubSurf (>21) 93/2002 K2206204-008 N 32 U 14 J Main Former Mill MCH0009 9-9 ft SubSurf (>21) 93/2002 K2206204-008 N 32 U 14 J Main Former Mill MCH0010 9-9 ft SubSurf (>21) 93/2002 K2206204-008 N 32 U 14 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206205-001 N 31 U 20 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0013 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (>21) 93/2002 K2206205-003 N 11 U											
Main Former Mill MCH0001 9-9 ft SubSurf (>21) 93/2002 K2206204-003 N 150 1700 Main Former Mill MCH0006 9-9 ft SubSurf (>21) 93/2002 K2206204-005 N 63 26 J Main Former Mill MCH0006 9-9 ft SubSurf (>21) 93/2002 K2206204-005 N 28 J 11 J Main Former Mill MCH0007 9-9 ft SubSurf (>21) 93/2002 K2206204-006 N 28 J 11 J Main Former Mill MCH0008 9-9 ft SubSurf (>21) 93/2002 K2206204-007 N 60 79 J Main Former Mill MCH0008 9-9 ft SubSurf (>21) 93/2002 K2206204-008 N 32 U 13 J 14 J Main Former Mill MCH0008 9-9 ft SubSurf (>21) 93/2002 K2206204-008 N 32 U 13 J 14 J Main Former Mill MCH0001 9-9 ft SubSurf (>21) 93/2002 K2206205-001 N 36 U 15 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206250-001 N 36 U 15 J Main Former Mill MCH0011 9-9 ft SubSurf (>21) 93/2002 K2206250-003 N 31 U 14 J Main Former Mill MCH0013 9-9 ft SubSurf (>21) 93/2002 K2206250-005 N 38 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (>21) 93/2002 K2206250-005 N 38 U 22 J Main Former Mill MCH0015 9-9 ft SubSurf (>21) 93/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (>21) 93/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>21) 93/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>21) 93/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>21) 93/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>21) 93/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>21) 93/2002									120		140
Main Former Mill MCH0005 9-9 ft SubSurf (>27) 93/2002 K2206204-006 N											
Main Former Mill MCH0005 9-9 ft SubSurf 2-71 9/3/2002 K2206204-005 N 63 26 J Main Former Mill MCH0007 9-9 ft SubSurf 2-71 9/3/2002 K2206204-007 N 60 79 J Main Former Mill MCH0008 9-9 ft SubSurf 2-71 9/3/2002 K2206204-007 N 60 79 J Main Former Mill MCH0009 9-9 ft SubSurf 2-71 9/3/2002 K2206204-008 N 32 U 13 J Main Former Mill MCH0009 9-9 ft SubSurf 2-71 9/3/2002 KWG0207078-1 FD 32 U 13 J Main Former Mill MCH00109 9-9 ft SubSurf 2-71 9/3/2002 KWG0207078-1 FD 32 U 14 J Main Former Mill MCH0017 9-9 ft SubSurf 2-71 9/4/2002 K2206250-001 N 36 U 15 J Main Former Mill MCH0017 9-9 ft SubSurf 2-71 9/4/2002 K2206250-003 N 31 U 14 J Main Former Mill MCH0017 9-9 ft SubSurf 2-71 9/4/2002 K2206250-005 N 33 U 22 J Main Former Mill MCH0017 9-9 ft SubSurf 2-71 9/4/2002 K2206250-005 N 38 U 2-7 Main Former Mill MCH0015 9-9 ft SubSurf 2-71 9/4/2002 K2206250-005 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf 2-71 9/4/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf 2-71 9/4/2002 K2206250-006 N 31 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf 2-71 9/4/2002 K2206250-008 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf 2-71 9/4/2002 K2206250-008 N 31 U 14 J Main Former Mill MW405 S-6.5 ft SubSurf 2-71 9/4/2002 K2206250-008 N 31 U 14 J Main Former Mill MW405 S-6.5 ft SubSurf 2-71 9/4/2003 K230687-004 N S-J 110 320 320 320 320 320 320 320 320 320 320 320 320 320 320 32				. ,							
Main Former Mill MCH0006 9-9 ft SubSurf (-27t) 9/3/2002 X2206204-006 N 60 79 J Main Former Mill MCH0008 9-9 ft SubSurf (-27t) 9/3/2002 X2206204-008 N 30 U 13 J Main Former Mill MCH0008 9-9 ft SubSurf (-27t) 9/3/2002 X2206204-008 N 30 U 14 J Main Former Mill MCH0009 9-9 ft SubSurf (-27t) 9/3/2002 X2206204-008 N 30 U 14 J Main Former Mill MCH0010 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-002 N 36 U 15 J Main Former Mill MCH0011 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-002 N 36 U 14 J Main Former Mill MCH0011 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-003 N 36 U 14 J Main Former Mill MCH0012 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-004 N 8.3 J 20 J Main Former Mill MCH0013 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-004 N 8.3 U 20 J Main Former Mill MCH0014 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-006 N 64 U 29 J Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-006 N 64 U 29 J Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-006 N 64 U 29 J Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-008 N 77 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-008 N 37 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 9/4/2002 X2206250-008 N 37 U 14 J Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 3/4/2002 X2206250-008 N 27 U 31 J 31 U 31 U 32 U 31 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32 U 32											
Main Former Mill MCH0008 9-9 ft SubSurf (>2th 93/2002 K2/206204-008 N 32 U 14											
Main Former Mill MCH0009 9-9 ft SubSurf (-27t) 94/2002 MCZ00207078-1 FD 32 U 14 Main Former Mill MCH0010 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0002 N 36 U 15 Main Former Mill MCH0011 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0002 N 36 U 14 J Main Former Mill MCH0012 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0004 N 36 U 14 J Main Former Mill MCH0013 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0004 N 38 U 22 U Main Former Mill MCH0013 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0006 N 64 U 29 U Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0006 N 64 U 29 U Main Former Mill MCH0015 9-9 ft SubSurf (-27t) 94/2002 MCZ200250-0007 N 31 U 14 U Main Former Mill MCH0016 9-9 ft SubSurf (-27t) 94/2002 MCZ200520-0007 N 31 U 14 U Main Former Mill MCH0016 9-9 ft SubSurf (-27t) 94/2002 MCZ200520-0008 N 27 U 13 U 14 U Main Former Mill MCZ00 0-25 ft SubSurf (-27t) 94/2002 MCZ200520-0008 N 27 U 13 U 14 U Mcan Former Mill MCZ00 0-25 ft SubSurf (-27t) 54/42003 MCZ200500-0008 N 27 U 13 U 14 U Mcan Former Mill MCZ00 0-25 ft SubSurf (-27t) 54/42003 MCZ200500-0008 N 27 U 13 U 14 U Mcan Former Mill MCZ00 0-25 ft SubSurf (-27t) 54/42003 MCZ200500-0008 N 27 U 13 U 14 U Mcan Former Mill MCZ00 0-25 ft SubSurf (-27t) 54/42003 MCZ200500-0008 N 57 U 13 U Mcan Former Mill MCZ00 0-25 ft SubSurf (-27t) 54/2001 MCZ00500-0008 N 5-1 U 10 U Mcan Former Mill MCZ00 0-25 ft SubSurf (-27t) 56/2011 MCC00500-0008 N 5-1 U 10 U Mcan Former Mill MCZ00 0-5 ft SubSurf (-27t) 56/2011 MCC00500-0008 N 5-1 U											
Main Former Mill MCH0000							_				
Main Former Mill MCH0010 9-9 ft SubSurf (-2th) 9/4/2002 K2206250-0002 N \$6 U 15.J											
Main Former Mill MCH0011 9-9 ft SubSurf (-2rt) 9/4/2002 K2206250-003 N 31 U 14 J											
Main Former Mill MCH0013 9-9 ft SubSurf (>2ft) 94/2002 K2206250-005 N 38 U 29 J											
Main Former Mill MCH0014 9-9 ft SubSurf (>2ft) 94/2002 K2206250-006 N 64 U 29 J							N				
Main Former Mill MCH0015 9-9 ft SubSurf (>2ft) 94/2002 K2206250-007 N 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>2ft) 94/2002 K2206250-008 N 27 U 13 J Main Former Mill MCH0016 9-9 ft SubSurf (>2ft) 94/2002 K2206250-008 N 27 U 13 J Main Former Mill MCH0016 9-9 ft SubSurf (>2ft) 94/2002 K2206250-008 N 27 U 13 J Main Former Mill MCH0016 9-9 ft SubSurf (>2ft) 94/2003 K2303687-003 N 33 U 150 1300 Main Former Mill MW-65 5-6.5 ft SubSurf (>2ft) 54/42003 K2303687-003 N 33 U 150 1300 Main Former Mill MW-65 5-6.5 ft SubSurf (>2ft) 34/02011 MW-65-6.5 N 20 100 Main Former Mill MW-65 5-6.5 ft SubSurf (>2ft) 34/02011 MW-65-6.5 N 20 110 Main Former Mill MW-69 2-3.5 ft SubSurf (>2ft) 56/2011 MW-69-6.5 N 5.1 U 6 U 12 U Main Former Mill MW-69 10-11.5 ft SubSurf (>2ft) 56/2011 MW69-6.5 N 5.8 U 6 U 12 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 56/2011 MW69-16-15 N 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 56/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 56/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 56/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 20-22.5 ft SubSurf (>2ft) 56/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 20-22.5 ft SubSurf (>2ft) 56/2011 MW69-20-20.5 N 5.1 U 5.7 U 11 U Main Former Mill MW-69 20-25.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 6.2 U 12 U Main Former Mill MW-69 20-25.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 5.5 U 11 U Main Former Mill SSB-1 15-15.6 ft SubSurf				. ,							
Main Former Mill MCH0015 9-9 ft SubSurf (>2ft) 94/2002 KYZ00207094-1 FD 31 U 14 J Main Former Mill MCH0016 9-9 ft SubSurf (>2ft) 94/2002 KYZ0020-008 N 27 U 13 J U 14 J Main Former Mill MR20 0-0.25 ft SubSurf (>2ft) 94/2003 KYZ002687-003 N 33 U 150 1300 Main Former Mill MX20 0-0.25 ft SubSurf (>2ft) 5/14/2003 KYZ003687-004 N 5 J 110 320 Main Former Mill MW-65 5-6.5 ft SubSurf (>2ft) 5/14/2003 KYZ003687-004 N 5 J 110 320 Main Former Mill MW-65 5-6.5 ft SubSurf (>2ft) 3/10/2011 MW-65-6.5 ft N 20 100 Main Former Mill MW-65 5-6.5 ft SubSurf (>2ft) 3/10/2011 MW-65-6.5 ft N 5.7 U 11 U Main Former Mill MW-69 5-6.5 ft SubSurf (>2ft) 5/6/2011 MW69-2-3.5 ft N 5.8 U 6 U 12 U Main Former Mill MW-69 5-6.5 ft SubSurf (>2ft) 5/6/2011 MW69-5-6.5 N 5.8 U 6 U 12 U Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-10-11.5 N 5.7 U 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 25-25.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 29-30 N 5.1 U 5.7 U 11 U Main Former Mill MW-69 29-30 SubSurf (>2ft) 5/6/2011 MW69-20-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1				. ,							
Main Former Mill MR20											
Main Former Mill MW-65 5-5.5 ft SubSurf (-27t) 5/14/2003 K2303687-004 N 5 J 110 320 Main Former Mill MW-65 5-5.5 ft SubSurf (-27t) 3/10/2011 MW-65-5-6.5 N 5.7 U 110 Main Former Mill MW-69 2-3.5 ft SubSurf (-27t) 3/10/2011 MW-65-5-6.5 N 5.7 U 111 Main Former Mill MW-69 5-6.5 ft SubSurf (-27t) 5/6/2011 MW69-2-3.5 N 6.1 U 6 U 12 U Main Former Mill MW-69 5-6.5 ft SubSurf (-27t) 5/6/2011 MW69-5-6.5 N 5.8 U 6 U 12 U Main Former Mill MW-69 10-11.5 ft SubSurf (-27t) 5/6/2011 MW69-16-16.5 N 5.7 U 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (-27t) 5/6/2011 MW69-16-16.5 N 5.7 U 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (-27t) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 20-21.5 ft SubSurf (-27t) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 20-21.5 ft SubSurf (-27t) 5/6/2011 MW69-20-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (-27t) 0/25/2010 DUPE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (-27t) 0/25/2010 SSB-1-10-11.5 N 380 12 U Main Former Mill SSB-1 15-16.5 ft SubSurf (-27t) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 15-16.5 ft SubSurf (-27t) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (-27t) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (-27t) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-14 2-2 ft Surf (0-2tt) 1/6/2011 TP-09-2 N 5.5 U 11 U Main Former Mill TP-14 3-3 ft SubSurf (-27t) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former											
Main Former Mill MW-65 5-6.5 ft SubSurf (>2th 3/10/2011 MW-65-6-6.5 N 20 100 Main Former Mill MW-69 2-3.5 ft SubSurf (>2th 3/10/2011 MW-65-16.5 N 5.7 U 11 U Main Former Mill MW-69 2-3.5 ft SubSurf (>2th 5/6/2011 MW-69-2-3.5 N 6.1 U 6 U 12 U Main Former Mill MW-69 5-6.5 ft SubSurf (>2th 5/6/2011 MW69-2-3.5 N 6.1 U 6 U 12 U Main Former Mill MW-69 15-16.5 ft SubSurf (>2th 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2th 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2th 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 25-26.5 ft SubSurf (>2th 5/6/2011 MW69-10-11.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 25-26.5 ft SubSurf (>2th 5/6/2011 MW69-25-26.5 N 6.3 U 6.2 U 12 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2th 10/25/2010 MW69-25-26.5 N 6.6 U 7 12 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2th 10/25/2010 DUPE2-10/2510 FD 580 170 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2th 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 SSB-1 SubSurf (>2th 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 SSB-1 SubSurf (>2th 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-09 2-2 ft Surf (0-2th 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-10 2-2 ft Surf (0-2th 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-10 3-3 ft SubSurf (>2th 1/6/2011 TP-10-3' N 5.80 11 U Main Former Mill TP-14 2-2 ft Surf (0-2th 1/6/2011 TP-14-3' N 6.9 30 Main Former Mill TP-14 2-2 ft Surf (0-2th 1/6/2011 TP-14-3'	Main Former Mill	MR20	0-0.25 ft	Surf (0-2ft)	5/14/2003	K2303687-003	N	33 U	150		1300
Main Former Mill MW-65 15-16.5 ft SubSurf (>2th 3/10/2011 MW-69-15-16.5 N 5.7 U 11 U Main Former Mill MW-69 2-3.5 ft SubSurf (>2th 5/6/2011 MW/69-2-3.5 N 6.1 U 6 U 12 U Main Former Mill MW-69 5-6.5 ft SubSurf (>2th 5/6/2011 MW/69-5-6.5 N 5.8 U 6 U 12 U Main Former Mill MW-69 10-11.5 ft SubSurf (>2th 5/6/2011 MW/69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2th 5/6/2011 MW/69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 20-21.5 ft SubSurf (>2th 5/6/2011 MW/69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 25-26.5 ft SubSurf (>2th 5/6/2011 MW/69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2th 5/6/2011 MW/69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2th 10/25/2010 SSB-1-011.5 N S.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2th 10/25/2010 SSB-1-011.5 N 380 170 Main Former Mill SSB-1 51-16.5 ft SubSurf (>2th 10/25/2010 SSB-1-011.5 N 380 170 Main Former Mill SSB-1 51-16.5 ft SubSurf (>2th 10/25/2010 SSB-1-011.5 N 380 170 Main Former Mill TP-09 3-3 ft Surf (0-2th) 1/6/2011 TP-09-2 N 5.5 U 11 U Main Former Mill TP-10 2-2 ft Surf (0-2th) 1/6/2011 TP-09-2 N 5.5 U 11 U Main Former Mill TP-14 2-2 ft Surf (0-2th) 1/6/2011 TP-10-2 N 5.5 U 11 U Main Former Mill TP-14 2-2 ft Surf (0-2th) 1/6/2011 TP-10-2 N 5.5 U 11 U Main Former Mill TP-14 2-2 ft Surf (0-2th) 1/6/2011 TP-10-2 N 5.5 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2th) 1/6/2011 TP-10-3 N 5.5 U 13 U Main Former Mill TP-14 2-2 ft Surf (0-2th) 1/6/2011 TP-10-3 N											
Main Former Mill MW-69 2-3.5 ft SubSurf (>2ft) 5/6/2011 MW69-2-3.5 N 6.1 U 6 U 12 U Main Former Mill MW-69 5-6.5 ft SubSurf (>2ft) 5/6/2011 MW69-5-6.5 N 5.8 U 6 U 12 U Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 5.7 U 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-20-20.5 N 6.6 U 7 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-20-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 DUPE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 380 12 U Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill TP-09 2-2 ft Suf (0-2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill TP-09 2-2 ft Suf (0-2ft) 1/6/2011 TP-09-3 N 5.5 U 11 U Main Former Mill TP-10 2-2 ft Suf (0-2ft) 1/6/2011 TP-10-2 N 5.5 U 11 U Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-2 N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-2 N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3 N 6.0 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3 N				, ,							
Main Former Mill MW-69 5-6.5 ft SubSurf (>2ft) 5/6/2011 MW69-5-6.5 N 5.8 U 6 U 12 U Main Former Mill MW-69 10-11.5 ft SubSurf (>2ft) 5/6/2011 MW69-10-11.5 N 16 U 12 25 Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-10-11.5 N 5.7 U 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 25-26.5 ft SubSurf (>2ft) 5/6/2011 MW69-25-26.5 N 6.6 U 7 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-25-26.5 N 6.6 U 7 12 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 DUPE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 12 U Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 12 U Main Former Mill SSB-1 25-26.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 12 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 10/25/2010 SSB-1-25-26.5 N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 10/25/2010 SSB-1-25-26.5 N 5.5 U 11 U Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-3 N 41 150 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3 N 5.8 U 18 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3 N 5.8 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2 N 5.6 U 11 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2 N 5.6 U 11 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2 N 5.6 U 11 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 T											
Main Former Mill MW-69 15-16.5 ft SubSurf (>2ft) 5/6/2011 MW69-15-16.5 N 5.7 U 5.7 U 11 U Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 25-26.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.6 U 7 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-29-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 DUFE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 120 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 120 Main Former Mill SSB-1 25-26.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 6.2 U 12 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-3' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 41 150 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-2' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.5 U 19 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.5 U 19 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.5 U 19 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 2000 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 5.5 U 11 U Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 5.5 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N				. ,							
Main Former Mill MW-69 20-21.5 ft SubSurf (>2ft) 5/6/2011 MW69-20-21.5 N 6.3 U 6.2 U 12 U Main Former Mill MW-69 25-26.5 ft SubSurf (>2ft) 5/6/2011 MW69-25-26.5 N 6.6 U 7 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-29-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 DUPE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 120 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 120 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill SSB-1 25-26.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 5.5 U 11 U Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-2' N 5.8 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2010 TP-14-5'	Main Former Mill										
Main Former Mill MW-69 25-26.5 ft SubSurf (>2ft) 5/6/2011 MW69-25-26.5 N 6.6 U 7 12 U Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-29-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 DUPE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 170 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 170 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-25-26.5 N 5.5 U 11 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 41 150 Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-3' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 200 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 200 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.0 U							_				
Main Former Mill MW-69 29-30 ft SubSurf (>2ft) 5/6/2011 MW69-29-30 N 5.1 U 5.7 U 11 U Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 DUPE2-102510 FD 580 170 Main Former Mill SSB-1 10-11.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-10-11.5 N 380 120 Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 25-26.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 5.5 U 11 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 41 150 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-2' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.5 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-3' N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.5 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 680 2000 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2010 Mr-61-5-6.5 N 5.7 U 11 U							_				
Main Former Mill SSB-1 10-11.5 ft SubSurf (>2tt) 10/25/2010 DUPE2-102510 FD 580 170				. ,							
Main Former Mill SSB-1 15-16.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-15-16.5 N 6.2 U 12 U Main Former Mill SSB-1 25-26.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-25-26.5 N 5.5 U 11 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-2' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 6.80 2000 Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 6.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-21-3' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/6/2011 TP-21-3' N 5.6 U 11 U North Shoreline DK20 0-0.25 ft Surf (0-2ft) 5/15/2003 K2303678-007 N 36 U 79 340 North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-008 N 33 U 14 J 190 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.7 U 12 U NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 N 5.7 U 12 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N 5.7 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N 5.7 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 3/9/2011	Main Former Mill						FD				
Main Former Mill SSB-1 25-26.5 ft SubSurf (>2ft) 10/25/2010 SSB-1-25-26.5 N 5.5 U 11 U Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 41 150 Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-3' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-3' N 5.6 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-2' N 5.6 U 11 U <t< td=""><td></td><td></td><td></td><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				. ,							
Main Former Mill TP-09 2-2 ft Surf (0-2ft) 1/6/2011 TP-09-2' N 5.5 U 11 U Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 41 150 Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-2' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 2000 Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 5.6 U 11 U Main Form				. ,							
Main Former Mill TP-09 3-3 ft SubSurf (>2ft) 1/6/2011 TP-09-3' N 41 150 Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-2' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 2000 Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/7/2011 TP-14-5' N 5.6 U 11 U				, ,							
Main Former Mill TP-10 2-2 ft Surf (0-2ft) 1/6/2011 TP-10-2' N 8 U 18 Main Former Mill TP-10 3-3 ft SubSurf (>2ft) 1/6/2011 TP-10-3' N 5.8 U 12 U Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 2000 Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/7/2011 TP-21-3' N 5.6 U 11 U Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 10/13/1988 S-WALL-7 N 110 North				, ,							
Main Former Mill TP-14 2-2 ft Surf (0-2ft) 1/6/2011 TP-14-2' N 5.5 U 30 Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 2000 Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/7/2011 TP-21-3' N 14 26 Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-7 N 110 North Shoreline DK20 0-0.25 ft Surf (0-2ft) 5/15/2003 K2303678-007 N 36 U 79 340 North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-007 N 36 U 79 <t< td=""><td>Main Former Mill</td><td>TP-10</td><td>2-2 ft</td><td>Surf (0-2ft)</td><td>1/6/2011</td><td>TP-10-2'</td><td>N</td><td></td><td>8 U</td><td></td><td></td></t<>	Main Former Mill	TP-10	2-2 ft	Surf (0-2ft)	1/6/2011	TP-10-2'	N		8 U		
Main Former Mill TP-14 3-3 ft SubSurf (>2ft) 1/6/2011 TP-14-3' N 680 2000 Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/7/2011 TP-21-3' N 14 26 Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-7 N 110 North Shoreline DK20 0-0.25 ft Suff (0-2ft) 5/15/2003 K2303678-007 N 36 U 79 340 North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-007 N 36 U 79 340 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 11 U				, ,			_				
Main Former Mill TP-14 5-5 ft SubSurf (>2ft) 1/6/2011 TP-14-5' N 5.6 U 11 U Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/7/2011 TP-21-3' N 14 26 Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-7 N 110 North Shoreline DK20 0-0.25 ft Surf (0-2ft) 5/15/2003 K2303678-007 N 36 U 79 340 NW Shoreline DK20 0.25-7 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 190 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 11 U NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 N 5.7 U 11 U <t< td=""><td></td><td></td><td></td><td>, ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				, ,							
Main Former Mill TP-21 3-3 ft SubSurf (>2ft) 1/7/2011 TP-21-3' N 14 26 Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-7 N 110 North Shoreline DK20 0-0.25 ft Surf (0-2ft) 5/15/2003 K2303678-007 N 36 U 79 340 North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-008 N 33 U 14 J 190 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 11 U NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 N 6.9 49 NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 N 5.7 U 11 U				. ,							
Main Former Mill WEC-37 3-3 ft SubSurf (>2ft) 10/13/1998 S-WALL-7 N 110 North Shoreline DK20 0-0.25 ft Surf (0-2ft) 5/15/2003 K2303678-007 N 36 U 79 340 North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-008 N 33 U 14 J 190 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 190 NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 N 6.9 49 NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 N 5.7 U 11 U NW Shoreline MW-61 20-21.25 ft SubSurf (>2ft) 10/19/2010 MW-61-20.21.25 N 5.7 U 12 U <td></td> <td></td> <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				. ,							
North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-008 N 33 U 14 J 190 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 11 U NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 N 6.9 49 NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 N 5.7 U 11 U NW Shoreline MW-61 20-21.25 ft SubSurf (>2ft) 10/19/2010 MW-61-20.21.25 N 5.7 U 12 U NW Shoreline MW-67 2-3.5 ft SubSurf (>2ft) 3/9/2011 MW-67-2-3.5 N 5.1 U 10 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N 6 U 12				. ,		S-WALL-7	_				110
North Shoreline DK20 0.25-7 ft SubSurf (>2ft) 5/15/2003 K2303678-008 N 33 U 14 J 190 NW Shoreline MW-61 5-6.5 ft SubSurf (>2ft) 10/19/2010 MW-61-5-6.5 N 5.4 U 11 U NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 N 6.9 49 NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 N 5.7 U 11 U NW Shoreline MW-61 20-21.25 ft SubSurf (>2ft) 10/19/2010 MW-61-20.21.25 N 5.7 U 12 U NW Shoreline MW-67 2-3.5 ft SubSurf (>2ft) 3/9/2011 MW-67-2-3.5 N 5.1 U 10 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N 6 U 12	North Shoreline	DK20	0-0.25 ft	Surf (0-2ft)	5/15/2003	K2303678-007	N	36 U	79		340
NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 M N 6.9 49 NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 M N 5.7 U 11 U NW Shoreline MW-61 20-21.25 ft SubSurf (>2ft) 10/19/2010 MW-61-20.21.25 M N 5.7 U 12 U NW Shoreline MW-67 2-3.5 ft SubSurf (>2ft) 3/9/2011 MW-67-2-3.5 M N 5.1 U 10 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 M N 6 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-2.5 N 240											
NW Shoreline MW-61 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-61-10-11.5 M N 6.9 49 NW Shoreline MW-61 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-61-15-16.5 M N 5.7 U 11 U NW Shoreline MW-61 20-21.25 ft SubSurf (>2ft) 10/19/2010 MW-61-20.21.25 M N 5.7 U 12 U NW Shoreline MW-67 2-3.5 ft SubSurf (>2ft) 3/9/2011 MW-67-2-3.5 M N 5.1 U 10 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 M N 6 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-2.5 N 240	NW Shoreline	MW-61	5-6.5 ft	SubSurf (>2ft)	10/19/2010	MW-61-5-6.5	N		5.4 U		11 U
NW Shoreline MW-61 20-21.25 ft SubSurf (>2ft) 10/19/2010 MW-61-20.21.25 N 5.7 U 12 U NW Shoreline MW-67 2-3.5 ft SubSurf (>2ft) 3/9/2011 MW-67-2-3.5 N 5.1 U 10 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N 6 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-2.5 N 85 West Former Mill B-11 7.5-7.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-7.5 N 240			10-11.5 ft	SubSurf (>2ft)							
NW Shoreline MW-67 2-3.5 ft SubSurf (>2ft) 3/9/2011 MW-67-2-3.5 N N 5.1 U 10 U NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N N 6 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-2.5 N N 85 West Former Mill B-11 7.5-7.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-7.5 N N 240											
NW Shoreline MW-67 15-16.5 ft SubSurf (>2ft) 3/9/2011 MW-67-15-16.5 N 6 U 12 U West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-2.5 N 85 West Former Mill B-11 7.5-7.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-7.5 N 240				. ,			_				
West Former Mill B-11 2.5-2.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-2.5 N 85 West Former Mill B-11 7.5-7.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-7.5 N 240				. ,			_				
West Former Mill B-11 7.5-7.5 ft SubSurf (>2ft) 9/25/1990 LANDAUB-11-7.5 N 240				` ′							
				. ,			_				
				. ,			_				

					Para	ameter	Gasoline-range TPH*	Diesel-range TPH*	Fuel oil-range TPH*	Heavy oil-range TPH*
						Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
					MTCA Ecologic		100	200	200	200
				MTC	A Method B Protective of HH		30	2000	2000	2000
					ethod B Protective of GW as	. ,	30	2000	2000	2000
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Type	- 00	2000	2000	2000
West Former Mill	B-13	7.5-7.5 ft	SubSurf (>2ft)	9/24/1990	LANDAUB-13-7.5	N			5 U	
West Former Mill	B-14	7.5-7.5 ft	SubSurf (>2ft)	9/25/1990	LANDAUB-14-7.5	N			5 U	
West Former Mill	B-15	7.5-7.5 ft	SubSurf (>2ft)	9/25/1990	LANDAUB-15-7.5	N			5 U	
West Former Mill	B-17	5-5 ft	SubSurf (>2ft)	2/20/1991	LANDAUB-17-5.0	N			18	
West Former Mill	B-17	7.5-7.5 ft	SubSurf (>2ft)	2/20/1991	LANDAUB-17-7.5	N			13	
West Former Mill	B-21	2.5-2.5 ft	SubSurf (>2ft)	2/21/1991	LANDAUB-21-2.5	N			5 U	
West Former Mill	B-21	5-5 ft	SubSurf (>2ft)	2/21/1991	LANDAUB-21-5.0	N			5 U	
West Former Mill	B-23	5-5 ft	SubSurf (>2ft)	2/21/1991	LANDAUB-23-5.0	N			5 U	
West Former Mill	B-23	7.5-7.5 ft	SubSurf (>2ft)	2/21/1991	LANDAUB-23	N			5 U	
West Former Mill	B-9	10-10 ft	SubSurf (>2ft)	9/24/1990	LANDAUB-9	N			1400	
West Former Mill	FOT-0001	10-10 ft	SubSurf (>2ft)	7/29/2002	K2205162-001	N		<u>5000</u>		<u>3500</u>
West Former Mill	FOT-0002	10-10 ft	SubSurf (>2ft)	7/30/2002	K2205162-002	N		5.9 J		13 J
West Former Mill	FOT-0002	10-10 ft	SubSurf (>2ft)	7/30/2002	KWG0205625-1	FD		7.9		44
West Former Mill	FOT-0003	10-10 ft	SubSurf (>2ft)	7/30/2002	K2205162-003	N		30 U		9.4 J
West Former Mill	FOT-0003	10-10 ft	SubSurf (>2ft)	7/30/2002	K2205162-003-SPLIT	SP		5 U		
West Former Mill	FOT-0004	6-6 ft	SubSurf (>2ft)	7/30/2002	K2205162-004	N		87		210
West Former Mill	FOT-0005	6-6 ft	SubSurf (>2ft)	7/30/2002	K2205162-005	N		9.1 J		13 J
West Former Mill	FOT-0006	10-10 ft	SubSurf (>2ft)	7/30/2002	K2205162-006	N		36 J		150 J
West Former Mill	FOT-0008	10-10 ft	SubSurf (>2ft)	7/31/2002	K2205162-007	N		6.9 J		13 J
West Former Mill	FOT-0009	10-10 ft	SubSurf (>2ft)	7/31/2002	K2205162-008	N		480		340
West Former Mill	FOT-0010	10-10 ft	SubSurf (>2ft)	7/31/2002	K2205162-009	N		<u>2300</u>		1000
West Former Mill	FOT-0012	10-10 ft	SubSurf (>2ft)	8/1/2002	K2205235-001	N		32 U		11 J
West Former Mill	FOT-0012	10-10 ft	SubSurf (>2ft)	8/1/2002	K2205235-001-SPLIT	SP		5.4 U		
West Former Mill	FOT-0013	10-10 ft	SubSurf (>2ft)	8/1/2002	K2205235-002	N		6.9 J		16 J
West Former Mill	FOT-0014	10-10 ft	SubSurf (>2ft)	8/1/2002	K2205235-003	N		29 U		10 J
West Former Mill	FOT-0014	10-10 ft	SubSurf (>2ft)	8/1/2002	KWG0205679-1	FD		4.9 U		8.6 J
West Former Mill	FOT-0015	10-10 ft	SubSurf (>2ft)	8/1/2002	K2205235-004	N		7.5 J		13 J
West Former Mill West Former Mill	FOT-0016 FOT-0017	10-10 ft 10-10 ft	SubSurf (>2ft) SubSurf (>2ft)	8/1/2002 8/1/2002	K2205235-005 K2205235-006	N N		110 150		280 170
West Former Mill	FOT-0017	6-6 ft	SubSurf (>2ft)	8/2/2002	K2205235-006 K2205235-012	N		9.6 J		29 J
West Former Mill	FOT-0026	6-6 ft	SubSurf (>2ft)	8/2/2002	K2205235-012	N		38		29 J
West Former Mill	FOT-0027	6-6 ft	SubSurf (>2ft)	8/6/2002	K2205299-001	N		9.7 J		29 J
West Former Mill	FOT-0028	6-6 ft	SubSurf (>2ft)	8/6/2002	K2205299-002	N		6.9 J		14 J
West Former Mill	FOT-0028	6-6 ft	SubSurf (>2ft)	8/6/2002	KWG0205846-1	FD		7.8		14
West Former Mill	FOT-0029	6-6 ft	SubSurf (>2ft)	8/6/2002	K2205299-003	N		140		250
West Former Mill	FOT-0030	10-10 ft	SubSurf (>2ft)	8/6/2002	K2205301-001	N		<u>15000</u>		6600
West Former Mill	FOT-0030	10-10 ft	SubSurf (>2ft)	8/6/2002	K2205301-001DUP	FD		<u>15000</u>		7300
West Former Mill	FOT-0031	6-6 ft	SubSurf (>2ft)	8/8/2002	K2205415-001	N		19 J		60 J
West Former Mill	FOT-0031	6-6 ft	SubSurf (>2ft)	8/8/2002	K2205415-001DUP	FD		11		32
West Former Mill	FOT-0032	6-6 ft	SubSurf (>2ft)	8/8/2002	K2205415-002	N		12 J		17 J
West Former Mill	FOT-0033	6-6 ft	SubSurf (>2ft)	8/8/2002	K2205415-003	N		150		140
West Former Mill	FOT-0034	6-6 ft	SubSurf (>2ft)	8/8/2002	K2205415-004	N		6.2 J		11 J
West Former Mill	FOT-0035	6-6 ft	SubSurf (>2ft)	8/8/2002	K2205415-005	N		59		20 J
West Former Mill	FOT-0071	10-10 ft	SubSurf (>2ft)	8/29/2002	K2206190-001	N		27 U		7.9 J
West Former Mill	FOT-0072	10-10 ft	SubSurf (>2ft)	8/29/2002	K2206190-002	N		18 J		29 J
West Former Mill	FOT-0072	10-10 ft	SubSurf (>2ft)	8/29/2002	KWG0206855-1	FD		31		53
West Former Mill	FOT-0073	10-10 ft	SubSurf (>2ft)	8/29/2002	K2206190-003	N		27 U		4.9 J
West Former Mill	FOT-0074	10-10 ft	SubSurf (>2ft)	8/29/2002	K2206190-004	N		7.2 J		11 J
West Former Mill	FOT-0075	10-10 ft	SubSurf (>2ft)	8/29/2002	K2206190-005	N		36		32 J
West Former Mill West Former Mill	FOT-0076 FOT-0081	10-10 ft	SubSurf (>2ft) SubSurf (>2ft)	8/29/2002 8/30/2002	K2206190-006 K2206190-011	N N		32 7 J		56 J 43 J
West Former Mill	FOT-0081	6-6 ft 6-6 ft	SubSurf (>2ft)	8/30/2002	KWG0206855-2	FD		7.8		43 J 18
West Former Mill	FOT-0081	6-6 ft	SubSurf (>2ft)	8/30/2002	K2206190-012	N		7.6 5.2 J		7.5 J
West Former Mill	FOT-0083	6-6 ft	SubSurf (>2ft)	8/30/2002	K2206190-012	N		1500		1100
West Former Mill	FOT-0085	10-10 ft	SubSurf (>2ft)	9/6/2002	K2206278-001	N		26 J		48 J
West Former Mill	FOT-0086	7-7 ft	SubSurf (>2ft)	9/6/2002	K2206278-002	N		39000		25000
		<u> </u>	`	·						

Parameter Para											
MITCA Method B Protective of Hir (\$FV) 000 200 200 200 200 200 MITCA Method B Protective of Hir (\$FV) 30 200 200 200 200 200 200 MITCA Method B Protective of Hir (\$FV) 30 2000 200 200 200 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA METHOD B MSW as MSW								soline-range TPH*	sel-range TPH*	oil-range	ıvy oil-range TPH⁴
MITCA Method B Protective of Hir (\$FV) 000 200 200 200 200 200 MITCA Method B Protective of Hir (\$FV) 30 200 200 200 200 200 200 MITCA Method B Protective of Hir (\$FV) 30 2000 200 200 200 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA Method B Protective of GW as MSW) 30 2000 2000 2000 MITCA METHOD B MSW as MSW						Para	meter	3a8)ie	an <u>.</u>	le ₂
MTCA Method B Protective of HH (5PT) 30						. 4.4					
Finch, Area Loc D Depth Depth Depth Depth Depth Depth Depth Sample D Sample D Type Sample D Sample						MTCA Ecologic					
Funct. Area					MTCA	•					
Funds Area Loc D Depth Zone Date Sample D Type							,				
West Former Mill FOT-0087 10-10 ft SubSuf (220) 96/20002 K2206278-003 N N 5500 400 West Former Mill FOT-0089 10-10 ft SubSuf (220) 96/20002 K2206278-005 N N 5500 400 West Former Mill FOT-0089 10-10 ft SubSuf (220) 96/20002 K2206278-006 N N 55.0 68.3 N 85.0 West Former Mill FOT-0091 10-10 ft SubSuf (220) 96/20002 K2206278-006 N N 82.0 N 82.0 West Former Mill FOT-0091 10-10 ft SubSuf (220) 96/20002 K2206278-006 N N 82.0 N 82.0 N 82.0 West Former Mill FOT-0091 10-10 ft SubSuf (220) 96/20002 K2206278-007 N N 82.0 N	Funct, Area	Loc ID	Depth	Depth Zone				- 00	2000	2000	2000
West Former Mill						•			61		260
West Former Mill											
West Former Mill FOT-0000											
West Former Mill FOT-0991 10-10 ft SubSurf (>21) 96/2002 K220627F8-07 N = 34				, ,							
West Former Mill FOT-EX-19 9-96.8 ft SubSurf (>279 96/2002				, ,							
West Former Mill											
West Former Mill FOT-EX-10 13-51-15; ft SubSurf (>20) 87/2006 FOT-EX-10-(080706)-11-5 N											
West Former Mill						•					
West Former Mill				,							
West Former Mill											
West Former Mill											
West Former Mill				, ,							
West Former Mill				, ,							
West Former Mill											
West Former Mill											
West Former Mill			9-9 ft	, ,	8/8/2006	FOT-EX-19-[080806]-9.0	N		25 U		
West Former Mill FOT-Ex-21 7-7 ft SubSurf (>2th) 8/8/2006 FOT-Ex-21-(080086)-F.0 N 25 U 40 U 760	West Former Mill	FOT-EX-2	9-9 ft	SubSurf (>2ft)	8/2/2006		N		25 U	40 U	80 U
West Former Mill FOT-EX-22 5-5 ft SubSurf (>2th 8/8/2006 FOT-EX-22 (080806) 5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-24 5-5 ft SubSurf (>2th 8/8/2006 FOT-EX-23 (080806) 5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-25 5-5 ft SubSurf (>2th 8/8/2006 FOT-EX-24 (080806) 5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-25 5-5 ft SubSurf (>2th 8/8/2006 WM-EX-25 (080906) 5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-27 8-8 ft SubSurf (>2th 8/8/2006 WM-EX-25 (080906) 5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-27 8-8 ft SubSurf (>2th 8/8/2006 WM-EX-27 (080906) 5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-27 8-8 ft SubSurf (>2th 8/2/2006 WM-EX-27 (080906) 8.0 N 25 U 40 U 80 U West Former Mill FOT-EX-4 8-8 ft SubSurf (>2th 8/2/2006 FOT-EX-3 (080206) 1.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2th 8/2/2006 FOT-EX-4 (080206) 15.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2th 01/9/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 2-3.5 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 2-20.275 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 5.8 U 12 U West Former Mill MW-60 2-20.275 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 5.8 U 12 U West Former Mill MW-60 2-20.275 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 5.8 U 12 U West Former Mill MW-60 2-20.275 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 5.8 U 12 U West Former Mill MW-60 2-20.275 ft SubSurf (>2th 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U 12 U 12 U 12 U 12 U 12 U 12 U 12 U 12 U	West Former Mill	FOT-EX-20	7-7 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-20-[080806]-7.0	N		25 U	40 U	80 U
West Former Mill FOT-EX-23 5-5 ft SubSurf (-2th) 8/2/2006 FOT-EX-24-[080806]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-25 5-5 ft SubSurf (-2th) 8/9/2006 WM-EX-26-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-26 5-5 ft SubSurf (-2th) 8/9/2006 WM-EX-26-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-26 5-5 ft SubSurf (-2th) 8/9/2006 WM-EX-26-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-27 8-8 ft SubSurf (-2th) 8/9/2006 WM-EX-26-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-3 SubSurf (-2th) 8/9/2006 FOT-EX-3-[080206]-11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (-2th) 8/2/2006 FOT-EX-3-[080206]-10.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (-2th) 8/2/2006 FOT-EX-3-[080206]-10.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (-2th) 8/2/2006 FOT-EX-3-[080206]-10.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (-2th) 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 15-16.5 ft SubSurf (-2th) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 2-3.24.4 ft SubSurf (-2th) 10/19/2010 MW-60-10-11.5 N 6200 9100	West Former Mill	FOT-EX-21	7-7 ft			FOT-EX-21-[080806]-7.0	N		25 U	40 U	516
West Former Mill FOT-EX-24 5-5 ft SubSurf (>2th 89/2006 FOT-EX-24-[08096]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-25 5-5 ft SubSurf (>2th 89/2006 WM-EX-25-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-26 5-5 ft SubSurf (>2th 89/2006 WM-EX-26-[080906]-5.0 N 25 U 40 U 204 West Former Mill FOT-EX-27 8-8 ft SubSurf (>2th 89/2006 WM-EX-26-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-3 11-11 ft SubSurf (>2th 89/2006 FOT-EX-37-[080206]-11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-4 8-8 ft SubSurf (>2th 89/2006 FOT-EX-37-[080206]-11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-4 8-8 ft SubSurf (>2th 89/2006 FOT-EX-37-[080206]-11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2th 89/2006 FOT-EX-5-[080206]-15.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2th 10/19/2010 MW-60-23.5 N 31 240 U West Former Mill MW-60 15-16.5 ft SubSurf (>2th 10/19/2010 MW-60-15-16.5 N 51 U 10/19/2010 MW-60-15-16.5 N 10/19/2010 MW-60-15-16.5 N 10/19/2010 MW-60-15-16.5 N 10/19/2010 MW-60-20-20.75 N 21 34 U West Former Mill MW-60 23-24.4 ft SubSurf (>2th 10/19/2010 MW-60-20-20.75 N 21 34 U West Former Mill MW-68 3.5-6 ft SubSurf (>2th 51/3/2003 K2303593-016 N 3.3 U 110 U 110 U West Former Mill MW-68 3.5-6 ft SubSurf (>2th 51/3/2003 K2303593-016 N 3.3 U 110 U 160 U West Former Mill RB20 0.0.25 ft SubSurf (>2th 51/3/2003 K2303593-016 N 3.3 U 22 U 110 U West Former Mill SSB-2 0.0.25 ft SubSurf (>2th 51/3/2003 K2303593-016 N 3.3 U 22 U 100 U West Former Mill SSB-2 0.0.25 ft SubSurf (>2th 51/3/2003 K2303593-016 N 3.3 U 110 U 166	West Former Mill		5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-22-[080806]-5.0	Ν	-	25 U	40 U	760
West Former Mill FOT-EX-25 5-5 ft SubSurf (>2ft) 8/9/2006 WM-EX-25-[080906]-5.0 N 25 U 40 U 204 West Former Mill FOT-EX-27 8-8 ft SubSurf (>2ft) 8/9/2006 WM-EX-27-[080906]-5.0 N 25 U 40 U 204 West Former Mill FOT-EX-37 8-8 ft SubSurf (>2ft) 8/9/2006 WM-EX-27-[080906]-5.0 N 25 U 40 U 80 U West Former Mill FOT-EX-31 11-11 ft SubSurf (>2ft) 8/9/2006 FOT-EX-37-[080206]-11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2ft) 8/2/2006 FOT-EX-3-[080206]-15.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2ft) 8/2/2006 FOT-EX-4-(080206]-15.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2ft) 8/2/2006 FOT-EX-5-[080206]-15.0 N 25 U 40 U 80 U West Former Mill MW-60 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 2-20.75 ft SubSurf (>2ft) 10/19/2010 MW-60-10-11.5 N 160 250 West Former Mill MW-60 2-32-44 ft SubSurf (>2ft) 10/19/2010 MW-60-20-20.75 N 21 34 West Former Mill MW-68 5-5-6 ft SubSurf (>2ft) 5/4/2011 MW-60-20-20.75 N 5.8 U 110 West Former Mill MW-68 5-5-6 ft SubSurf (>2ft) 5/4/2011 MW-60-20-20.75 N 5.8 U 12 West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303593-015 N 33 U 2.2 J 170 J West Former Mill RB20 0.25-7 ft SubSurf (>2ft) 5/13/2003 K2303593-015 N 33 U 2.2 J 170 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303593-015 N 33 U 2.2 J 170 J West Former Mill RB22 0-0.25 ft SubSurf (>2ft) 5/13/2003 K2303593-015 N 33 U 2.2 J 170 J West Former Mill SSB-2 3-5 ft SubSurf	West Former Mill	FOT-EX-23	5-5 ft	SubSurf (>2ft)	8/8/2006		Ν	-	25 U	40 U	80 U
West Former Mill FOT-EX-26 5-5 ft SubSurf (>2th 8/9/2006 WM-EX-26-108906 -5.0 N 25 U 40 U 204 West Former Mill FOT-EX-3 11-11 ft SubSurf (>2th 8/9/2006 FOT-EX-37-1089096 -8.0 N 25 U 40 U 80 U West Former Mill FOT-EX-3 11-11 ft SubSurf (>2th 8/9/2006 FOT-EX-37-1089096 -8.0 N 25 U 40 U 80 U West Former Mill FOT-EX-4 8-8 ft SubSurf (>2th 8/9/2006 FOT-EX-3-1080206 -11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2th 8/9/2006 FOT-EX-4-1080206 -8.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2th 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 10-11.5 ft SubSurf (>2th 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 10-11.5 ft SubSurf (>2th 10/19/2010 MW-60-15-16.5 N 6200 9100 West Former Mill MW-60 20-20.75 ft SubSurf (>2th 10/19/2010 MW-60-20.75 N 160 250 34 West Former Mill MW-60 23-24.4 ft SubSurf (>2th 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U West Former Mill MW-68 13-14 ft SubSurf (>2th 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U West Former Mill MW-68 13-14 ft SubSurf (>2th 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U West Former Mill RB01 0-0.25 ft Surf (0-2th 5/13/2003 K2303593-015 N 5.4 U 18 West Former Mill RB20 0-0.25 ft Surf (0-2th 5/13/2003 K2303593-016 N 34 U 530 22 J 170 J West Former Mill RB22 0-0.25 ft Surf (0-2th 5/13/2003 K2303593-017 N 33 U 110 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2th 5/13/2003 K2303593-017 N 33 U 50 U 150 J 165 J 10/19/2010 SSB-2-6.5 N 7 U 14 U 14 West Former Mill SSB-2 2-3.5 ft SubSurf (>2th 10/21/2010 SSB-2-6.5 N 5.6 U	West Former Mill	FOT-EX-24	5-5 ft	SubSurf (>2ft)	8/8/2006	FOT-EX-24-[080806]-5.0	Ν		25 U	40 U	80 U
West Former Mill FOT-EX-27 8-8 ft SubSurf (>2th 8/9/2006 WM-EX-27-(80906)-8.0 N 25 U 40 U 80 U West Former Mill FOT-EX-4 8-8 ft SubSurf (>2th 8/2/2006 FOT-EX-3-(980206)-11.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2th 8/2/2006 FOT-EX-4-(980206)-15.0 N 25 U 40 U 80 U West Former Mill WM-60 -2-3.5 ft SubSurf (>2th 8/2/2006 FOT-EX-4-(980206)-15.0 N 25 U 40 U 80 U West Former Mill MW-60 -2-3.5 ft SubSurf (>2th 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 10-11.5 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 8200 9100 West Former Mill MW-60 15-16.5 ft SubSurf (>2th 10/19/2010 MW-60-10-11.5 N 160 250 West Former Mill MW-60 20-20.75 ft SubSurf (>2th 10/19/2010 MW-60-20-20.75 N 21 34 West Former Mill MW-60 23-24.4 ft SubSurf (>2th 10/19/2010 MW-60-23-24.4 N 5.8 U 12 West Former Mill MW-68 5.5-6 ft SubSurf (>2th 5/14/2011 MW68-3-3-4 N 5.4 U 18 West Former Mill MW-68 5.5-6 ft SubSurf (>2th 5/14/2011 MW68-3-3-4 N 5.4 U 18 West Former Mill RB01 0.0-25 ft Surf (0-2th) 5/13/2003 K2303593-016 N 3.4 U 580 250 J West Former Mill RB20 0.0-25 ft Surf (0-2th) 5/13/2003 K2303593-016 N 3.4 U 580 250 J West Former Mill RB22 0.0-25 ft Surf (0-2th) 5/13/2003 K2303593-016 N 3.4 U 580 21 J 65 J West Former Mill RB22 0.0-25 ft Surf (0-2th) 5/13/2003 K2303593-016 N 3.4 U 580 21 J 65 J West Former Mill RB22 0.0-25 ft Surf (0-2th) 5/13/2003 K2303593-016 N 3.4 U 580 21 J 65 J West Former Mill RB22 0.0-25 ft Surf (0-2th) 5/13/2003 K2303590-005 N 6.6 J J J J 65 J West Former Mill SSB-2 2.3-5 ft SubSurf (>2th) 10/21/2010	West Former Mill	FOT-EX-25	5-5 ft	SubSurf (>2ft)	8/9/2006	WM-EX-25-[080906]-5.0	Ν		25 U	40 U	80 U
West Former Mill FOT-EX-3 11-11 ft SubSurf (>2ft) 8/2/2006 FOT-EX-3-(080206]-1.0 N 25 U 40 U 80 U West Former Mill FOT-EX-4 8-8 ft SubSurf (>2ft) 8/2/2006 FOT-EX-4-(080206]-8.0 N 25 U 40 U 80 U West Former Mill FOT-EX-5 15-15 ft SubSurf (>2ft) 8/2/2006 FOT-EX-5-(080206]-15.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2ft) 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 20-20.75 SubSurf (>2ft) 10/19/2010 MW-60-15-16.5 N 160 250 West Former Mill MW-60 23-24.4 ft SubSurf (>2ft) 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U West Former Mill MW-68 5.5-6 ft SubSurf (>2ft) 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U West Former Mill MW-68 13-14 ft SubSurf (>2ft) 5/4/2011 MW-68-13-14 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (0-2ft) 5/4/2003 K2303560-001 N 5.4 J 14 J 110 J West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303560-001 N 5.4 J 14 J 110 J West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303560-001 N 5.4 J 11 J 160 J	West Former Mill	FOT-EX-26	5-5 ft	SubSurf (>2ft)	8/9/2006	WM-EX-26-[080906]-5.0	N		25 U	40 U	204
West Former Mill FOT-EX-4 8-8 ft SubSurf (>2ft) 8/2/2006 FOT-EX-4-[080206]-8.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2ft) 8/2/2006 FOT-EX-4-[080206]-15.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (>2ft) 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-60-15-16.5 N 160 250 West Former Mill MW-60 20-20.75 ft SubSurf (>2ft) 10/19/2010 MW-60-15-16.5 N 160 250 West Former Mill MW-60 20-20.75 ft SubSurf (>2ft) 10/19/2010 MW-60-20-20.75 N 21 34 West Former Mill MW-60 20-24.4 ft SubSurf (>2ft) 10/19/2010 MW-60-25-24.4 N 5.8 U 12 U West Former Mill MW-68 5.5-6 ft SubSurf (>2ft) 5/4/2011 MW-60-23-24.4 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (>2ft) 5/4/2011 MW-68-13-14 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (>2ft) 5/13/2003 K2303500-001 N 5.4 J 14 J 110 J West Former Mill RB20 0-0.25 ft Surf (>2ft) 5/13/2003 K2303593-015 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (>2ft) 5/13/2003 K2303593-015 N 33 U 10 J 160 J West Former Mill RB20 0-0.25 ft Surf (>2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB20 0-0.25 ft Surf (>2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0.25-5 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J 46 J	West Former Mill	FOT-EX-27	8-8 ft	SubSurf (>2ft)	8/9/2006	WM-EX-27-[080906]-8.0	Ν		25 U	40 U	80 U
West Former Mill FOT-EX-5 15-15 the SubSurf (-2th) 8/2/2006 FOT-EX-5-[080206]-15.0 N 25 U 40 U 80 U West Former Mill MW-60 2-3.5 ft SubSurf (-2th) 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 15-16.5 the SubSurf (-2th) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 15-16.5 the SubSurf (-2th) 10/19/2010 MW-60-15-16.5 N 160 250 West Former Mill MW-60 20-20.75 the SubSurf (-2th) 10/19/2010 MW-60-20-20.75 N 21 34 West Former Mill MW-60 23-24.4 the SubSurf (-2th) 10/19/2010 MW-60-20-20.75 N 5.8 U 12 U West Former Mill MW-68 5-6 ft SubSurf (-2th) 5/4/2011 MW68-5-6 N 5.8 U 12 U West Former Mill MW-68 13-14 ft SubSurf (-2th) 5/4/2011 MW68-13-14 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (0-2t) 5/13/2003 K2303593-015 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (0-2t) 5/13/2003 K2303593-016 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (0-2t) 5/13/2003 K2303593-016 N 33 U 22 J 160 J West Former Mill RB20 0-0.25 ft Surf (0-2t) 5/13/2003 K2303593-016 N 33 U 110 J 160 J West Former Mill RB20 0-0.25 ft Surf (0-2t) 5/13/2003 K2303593-016 N 33 U 20 J 21 J 65 J West Former Mill RB22 0-0.25 ft Surf (0-2t) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-2.5 ft Surf (0-2t) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-2.5 ft Surf (0-2t) 5/13/2003 K2303600-005 N 6.6 J 19 J 6.1 J West Former Mill SSB-2 2-3.5 ft SubSurf (-2t) 10/21/2010 SSB-2-3.5 N 21 J 6.1 J West Former Mill SSB-2 2-3.5 ft SubSurf (-2t) 10/21/2010 SSB-2-10-11.5 N	West Former Mill	FOT-EX-3	11-11 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-3-[080206]-11.0	Ν		25 U	40 U	80 U
West Former Mill MW-60 2-3.5 ft SubSurf (>2t) 10/19/2010 MW-60-2-3.5 N 31 240 West Former Mill MW-60 10-11.5 ft SubSurf (>2t) 10/19/2010 MW-60-10-11.5 N 6200 9100 West Former Mill MW-60 20-20.75 ft SubSurf (>2t) 10/19/2010 MW-60-15-16.5 N 10 250 West Former Mill MW-60 23-24.4 ft SubSurf (>2t) 10/19/2010 MW-60-22-9.075 N 21 34 West Former Mill MW-60 23-24.4 ft SubSurf (>2t) 51/4/2011 MW-60-23-24.4 N 5.8 U 12 U West Former Mill MW-68 5.5-6 ft SubSurf (>2t) 51/4/2011 MW-60-23-24.4 N 5.8 U 11 U West Former Mill RB01 0-0.25 ft SubSurf (>2t) 5/13/2003 K2303600-001 N 5.4 J 3.1 J -	West Former Mill	FOT-EX-4	8-8 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-4-[080206]-8.0	Ν		25 U	40 U	80 U
West Former Mill MW-60 10-11.5 ft SubSurf (>2ft) 10/19/2010 MW-60-10-11.5 N 6200 9100	West Former Mill	FOT-EX-5	15-15 ft	SubSurf (>2ft)	8/2/2006	FOT-EX-5-[080206]-15.0	Ν		25 U	40 U	80 U
West Former Mill MW-60 15-16.5 ft SubSurf (>2ft) 10/19/2010 MW-60-15-16.5 N 160 250 West Former Mill MW-60 20-20.75 ft SubSurf (>2ft) 10/19/2010 MW-60-20-20.75 N 21 34 West Former Mill MW-60 23-24.4 ft SubSurf (>2ft) 10/19/2010 MW-60-20-24.4 N 5.8 U 12 U West Former Mill MW-68 5.5-6 ft SubSurf (>2ft) 5/4/2011 MW-68-5.5-6 N 53 110 West Former Mill MW-68 13-14 ft SubSurf (>2ft) 5/4/2011 MW-68-5.5-6 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (0-2ft) 5/4/2003 K2303600-001 N 5.4 J J J J J J J J J J	West Former Mill	MW-60	2-3.5 ft	SubSurf (>2ft)	10/19/2010	MW-60-2-3.5	Ν		31		240
West Former Mill MW-60 20-20.75 ft SubSurf (>2ft) 10/19/2010 MW-60-20-20.75 N 21 34	West Former Mill	MW-60	10-11.5 ft	SubSurf (>2ft)	10/19/2010	MW-60-10-11.5	N		6200		9100
West Former Mill MW-60 20-20.75 ft SubSurf (>2ft) 10/19/2010 MW-60-20-20.75 N 21 34	West Former Mill	MW-60	15-16.5 ft		10/19/2010	MW-60-15-16.5	N		160		250
West Former Mill MW-60 23-24.4 ft SubSurf (>2th 10/19/2010 MW-60-23-24.4 N 5.8 U 12 U West Former Mill MW-68 5.5-6 ft SubSurf (>2th 5/4/2011 MW68-5.5-6 N 53 110 West Former Mill MW-68 13-14 ft SubSurf (>2th 5/4/2011 MW68-5.5-6 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (0-2th 5/13/2003 K2303600-001 N 5.4 J 14 J 110 J West Former Mill RB01 0.25-7 ft SubSurf (>2th 5/13/2003 K2303593-015 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (0-2th 5/13/2003 K2303593-016 N 34 U 580 250 J West Former Mill RB20 0.25-8 ft SubSurf (>2th 5/13/2003 K2303593-017 N 33 U 110 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2th 5/13/2003 K2303593-017 N 33 U 110 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2th 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2th 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0.25-7.5 ft SubSurf (>2th 5/13/2003 K2303600-002 N 9.8 J 270 U 6.1 J West Former Mill SB2-2 2-3.5 ft SubSurf (>2th 5/13/2003 K2303600-002 N 9.8 J 270 U 6.1 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2th 10/21/2010 SB8-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2th 10/21/2010 SSB-2-10-11.5 N 5.6 U 110 West Former Mill SSB-2 10-11.5 ft SubSurf (>2th 10/21/2010 SSB-2-10-11.5 N 5.6 U 12 U West Former Mill SSB-2 20-20.5 ft SubSurf (>2th 10/21/2010 SSB-2-10-11.5 N 5.6 U 12 U West Former Mill SSB-7 2-2.5 ft SubSurf (>2th 10/26/2010 SSB-7-20-21.5 N 5.6 U 11 U West Former Mill SSB-7 2-2.5 ft SubSurf (>2th 10/26/2010 SSB-7-20-21.5 N 5.5 U 11 U West Former Mill SS				, ,							
West Former Mill MW-68 5.5-6 ft SubSurf (>2ft) 5/4/2011 MW68-5.5-6 N 53 110				, ,							
West Former Mill MW-68 13-14 ft SubSurf (>2ft) 5/4/2011 MW68-13-14 N 5.4 U 18 West Former Mill RB01 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-001 N 5.4 J 14 J 110 J West Former Mill RB01 0.25-7 ft SubSurf (>2ft) 5/13/2003 K2303593-015 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303593-016 N 34 U 580 250 J West Former Mill RB20 0.25-8 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U						** -*					
West Former Mill RB01 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-001 N 5.4 J 14 J 110 J West Former Mill RB01 0.25-7 ft SubSurf (>2ft) 5/13/2003 K2303593-015 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303593-016 N 34 U 580 250 J West Former Mill RB20 0.25-8 ft SubSurf (>2ft) 5/13/2003 K2303600-005 N 6.6 J 110 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 61 J West Former Mill RB22 0-25 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 21 J </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
West Former Mill RB01 0.25-7 ft SubSurf (>2ft) 5/13/2003 K2303593-015 N 33 U 22 J 170 J West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303593-016 N 34 U 580 250 J West Former Mill RB20 0.25-8 ft SubSurf (>2ft) 5/13/2003 K2303690-005 N 6.6 J 19 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 9.8 J 270 U 65 J West Former Mill RB22 0.25-7.5 ft SubSurf (>2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 65 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 7U -				, ,							
West Former Mill RB20 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303593-016 N 34 U 580 250 J West Former Mill RB20 0.25-8 ft SubSurf (>2ft) 5/13/2003 K2303593-017 N 33 U 110 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 KWG0306962-1 FD 21 J 65 J West Former Mill RB22 0.25-7.5 ft SubSurf (>2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 65 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U <				` '							
West Former Mill RB20 0.25-8 ft SubSurf (>2ft) 5/13/2003 K2303593-017 N 33 U 110 J 160 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 KWG0306962-1 FD 21 J 65 J West Former Mill RB22 0-2.5-7.5 ft SubSurf (>2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 65 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 7U				, ,							
West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 K2303600-005 N 6.6 J 19 J 45 J West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 KWG0306962-1 FD 21 J 65 J West Former Mill RB22 0.25-7.5 ft SubSurf (>2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 6.1 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 DUPE1-102110 FD 35 110 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U 14 West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U				` '							
West Former Mill RB22 0-0.25 ft Surf (0-2ft) 5/13/2003 KWG0306962-1 FD 21 J 65 J West Former Mill RB22 0.25-7.5 ft SubSurf (>2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 6.1 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 DUPE1-102110 FD 35 110 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U 14 West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U 13 West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.8 U				, ,							
West Former Mill RB22 0.25-7.5 ft SubSurf (>2ft) 5/13/2003 K2303600-002 N 9.8 J 270 U 6.1 J West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 DUPE1-102110 FD 35 110 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U 14 West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U 13 West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-7 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-7-20-20.5 N 5.9 U				. ,							
West Former Mill SSB-2 2-3.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-2-3.5 N 24 99 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 DUPE1-102110 FD 35 110 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U 14 West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U 13 West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-2 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 5.9 U				. ,							
West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 DUPE1-102110 FD 35 110 West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U 14 West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U 13 West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-2 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 5.9 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 6.3											
West Former Mill SSB-2 5-6.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-5-6.5 N 7 U 14 West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U 13 West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-2 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-20-20.5 N 5.9 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 5.9 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U				, ,							
West Former Mill SSB-2 10-11.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-10-11.5 N 5.6 U 13 West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-2 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-20-20.5 N 5.9 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-3.5 N 6.3 46 West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U <td< td=""><td></td><td></td><td></td><td>, ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				, ,							
West Former Mill SSB-2 15-16.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-15-16.5 N 5.8 U 12 U West Former Mill SSB-2 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-20-20.5 N 5.9 U 12 U West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-3.5 N 6.3 46 West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U 11 U West Former Mill SSB-7 25-26.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-25-26.5 N 5.7 U <				, ,							
West Former Mill SSB-2 20-20.5 ft SubSurf (>2ft) 10/21/2010 SSB-2-20-20.5 N 5.9 U 12 West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-10-11.5 N 6.3 46 West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U 11 U West Former Mill SSB-7 25-26.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-25-26.5 N 5.7 U 11 U West Former Mill SSB-7 30-30.75 ft SubSurf (>2ft) 10/26/2010 SSB-7-30-30.75 N 5.5 U 11 U West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U				, ,							
West Former Mill SSB-7 2-3.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-2-3.5 N 7.2 39 West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-10-11.5 N 6.3 46 West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U 11 U West Former Mill SSB-7 25-26.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-25-26.5 N 5.7 U 11 U West Former Mill SSB-7 30-30.75 ft SubSurf (>2ft) 10/26/2010 SSB-7-30-30.75 N 5.5 U 11 U West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U 20 West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26				. ,							
West Former Mill SSB-7 10-11.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-10-11.5 N 6.3 46 West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U 11 U West Former Mill SSB-7 25-26.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-25-26.5 N 5.7 U 11 U West Former Mill SSB-7 30-30.75 ft SubSurf (>2ft) 10/26/2010 SSB-7-30-30.75 N 5.5 U 11 U West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U 20 West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26 150 West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
West Former Mill SSB-7 20-21.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-20-21.5 N 5.6 U 11 U West Former Mill SSB-7 25-26.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-25-26.5 N 5.7 U 11 U West Former Mill SSB-7 30-30.75 ft SubSurf (>2ft) 10/26/2010 SSB-7-30-30.75 N 5.5 U 11 U West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U 20 West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26 150 West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180				. ,							
West Former Mill SSB-7 25-26.5 ft SubSurf (>2ft) 10/26/2010 SSB-7-25-26.5 N 5.7 U 11 U West Former Mill SSB-7 30-30.75 ft SubSurf (>2ft) 10/26/2010 SSB-7-30-30.75 N 5.5 U 11 U West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U 20 West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26 150 West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180											
West Former Mill SSB-7 30-30.75 ft SubSurf (>2ft) 10/26/2010 SSB-7-30-30.75 N 5.5 U 11 U West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U 20 West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26 150 West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180				, ,							
West Former Mill TP-01 2-2 ft Surf (0-2ft) 1/4/2011 TP-01-2' N 5.5 U 20 West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26 150 West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180				, ,							
West Former Mill TP-01 8-8 ft SubSurf (>2ft) 1/4/2011 TP-01-8' N 26 150 West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180				. ,							
West Former Mill TP-02 2-2 ft Surf (0-2ft) 1/4/2011 TP-02-2' N 14 180											
				, ,							
17-02 0-0 IL SUDSUII (>2IL) 1/4/2011 17-02-8 N 2100 12000										1	
	vvest Former Mill	1 P-02	о-ŏ П	SUDSUIT (>2It)	1/4/2011	1 M-02-8	IN		<u> 2100</u>		12000

Total Petroleum Hydrocarbons in Soil Port Angeles Rayonier Mill Uplands Study Area

					Para	ımeter	Gasoline-range TPH*	Diesel-range TPH*	Fuel oil-range TPH*	Heavy oil-range TPH*
						Units	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
					MTCA Ecologic	al ISC	100	200	200	200
				MTCA	A Method B Protective of HH	(SFV)	30	2000	2000	2000
				MTCA M	ethod B Protective of GW as	MSW	30	2000	2000	2000
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Type				
West Former Mill	TP-02	8-8 ft	SubSurf (>2ft)	1/4/2011	TP-DUPE-1	FD		1700		<u>9600</u>
West Former Mill	TP-03	2-2 ft	Surf (0-2ft)	1/4/2011	TP-03-2'	Ν		7.2		58
West Former Mill	TP-03	4-4 ft	SubSurf (>2ft)	1/4/2011	TP-03-4'	N		86		560
West Former Mill	TP-03	7-7 ft	SubSurf (>2ft)	1/4/2011	TP-03-7'	N		280		1400
West Former Mill	TP-04	2-2 ft	Surf (0-2ft)	1/5/2011	TP-04-2'	N		9		12 U
West Former Mill	TP-04	7-7 ft	SubSurf (>2ft)	1/5/2011	TP-04-7'	N		9.3 U		19 U
West Former Mill	TP-05	2-2 ft	Surf (0-2ft)	1/5/2011	TP-05-2'	N		5.3 U		11 U
West Former Mill	TP-05	6-6 ft	SubSurf (>2ft)	1/5/2011	TP-05-6'	Ν		6.6 U		13 U
West Former Mill	TP-06	3-3 ft	SubSurf (>2ft)	1/5/2011	TP-06-3'	N		5.3 U		11
West Former Mill	TP-06	7-7 ft	SubSurf (>2ft)	1/5/2011	TP-06-7'	N		5.6 U		11 U
West Former Mill	TP-07	2-2 ft	Surf (0-2ft)	1/5/2011	TP-07-2'	N		7.3		46
West Former Mill	TP-07	2-2 ft	Surf (0-2ft)	1/5/2011	TP-DUPE-2	FD		32		170
West Former Mill	TP-07	6-6 ft	SubSurf (>2ft)	1/5/2011	TP-07-6'	N		7.8 U		16 U
West Former Mill	TP-08	2-2 ft	Surf (0-2ft)	1/5/2011	TP-08-2'	N		12		92
West Former Mill	TP-08	5-5 ft	SubSurf (>2ft)	1/5/2011	TP-08-5'	N		5.8 U		12 U
West Former Mill	TP-11	2-2 ft	Surf (0-2ft)	1/7/2011	TP-11-2'	N		14		100
West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-11-5'	N		330		2000
West Former Mill	TP-11	5-5 ft	SubSurf (>2ft)	1/7/2011	TP-DUPE-3	FD		300		1900
West Former Mill	TP-12	2-2 ft	Surf (0-2ft)	1/4/2011	TP-12-2'	N		71		490
West Former Mill	TP-12	4-4 ft	SubSurf (>2ft)	1/4/2011	TP-12-4'	N		58		430
West Former Mill	TP-15	2-2 ft	Surf (0-2ft)	1/6/2011	TP-15-2'	N		1000		1700
West Former Mill	TP-15	4-4 ft	SubSurf (>2ft)	1/6/2011	TP-15-4'	N		6.3 U		20
West Former Mill	TP-16	2-2 ft	Surf (0-2ft)	1/6/2011	TP-16-2'	N		5.5 U		11 U
West Former Mill	TP-16	5-5 ft	SubSurf (>2ft)	1/6/2011	TP-16-5'	N		5.5 U		11 U
West Former Mill	WM21	0-0.25 ft	Surf (0-2ft)	5/13/2003	K2303600-003	N	6.7 J	260 U		5.2 J
West Former Mill	WM21	0.25-9.5 ft	SubSurf (>2ft)	5/13/2003	K2303600-004	N	23 J	270 U	40.11	9.5 J
West Former Mill	WM-EX-1	8-8 ft 16-16 ft	SubSurf (>2ft)	8/3/2006	WM-EX-1-[080306]-8.0	N		25 U	40 U	80 U
West Former Mill West Former Mill	WM-EX-10 WM-EX-10		SubSurf (>2ft)	8/8/2006 8/8/2006	WM-DUP-1-[080806]	FD N		25 U	40 U 40 U	730 709
West Former Mill	WM-EX-10	16-16 ft 17-17 ft	SubSurf (>2ft) SubSurf (>2ft)	8/8/2006	WM-EX-10-[080806]-16.0 WM-EX-11-[080806]-17.0	N		25 U 25 U	40 U	80 U
West Former Mill	WM-EX-11	8-8 ft	SubSurf (>2ft)	8/8/2006	WM-EX-11-[080806]-8.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-12	9-9 ft	SubSurf (>2ft)	8/8/2006	WM-EX-13-[080806]-9.0	N		25 U	40 U	300
West Former Mill	WM-EX-14	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-14-[080806]-14.0	N		25 U	40 U	184
West Former Mill	WM-EX-14	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-14-[080806]-14.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-16	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-16-[080806]-14.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-17	14-14 ft	SubSurf (>2ft)	8/8/2006	WM-EX-17-[080806]-14.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-18	9-9 ft	SubSurf (>2ft)	8/9/2006	WM-EX-18-[080906]-9.0	N		25 U	40 U	1780
West Former Mill	WM-EX-2	11-11 ft	SubSurf (>2ft)	8/3/2006	WM-EX-2-[080306]-11.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-3	10-10 ft	SubSurf (>2ft)	8/3/2006	WM-EX-3-[080306]-10.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-4	13-13 ft	SubSurf (>2ft)	8/4/2006	WM-EX-4-[080406]-13.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-5	16-16 ft	SubSurf (>2ft)	8/4/2006	WM-EX-5-[080406]-16.0	N		25 U	40 U	1440
West Former Mill	WM-EX-6	9-9 ft	SubSurf (>2ft)	8/7/2006	WM-EX-6-[080706]-9.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-7	8.5-8.5 ft	SubSurf (>2ft)	8/7/2006	WM-EX-7-[080706]-8.5	N		25 U	40 U	80 U
West Former Mill	WM-EX-8	15-15 ft	SubSurf (>2ft)	8/7/2006	WM-EX-8-[080706]-15.0	N		25 U	40 U	80 U
West Former Mill	WM-EX-9	10-10 ft	SubSurf (>2ft)	8/7/2006	WM-EX-9-[080706]-10.0	N		25 U	40 U	80 U
West Former Mill	WWHF-10	2-4 ft	SubSurf (>2ft)	10/4/2000	WWHF-10D	N		1400		3600
West Former Mill	WWHF-9	0-2 ft	Surf (0-2ft)	10/4/2000	WWHF-9D	N		220		650
			ν- 7							

										ı	ı — —					1			
								1,1,2,2-Tetrachloroethane									•		
							1,1,1-Trichloroethane	roet	1,1,2-Trichloroethane	9	e e	a e	une	oane			4-Methyl-2-Pentanone		
							roet	chlo	roet	1,1-Dichloroethane	,1-Dichloroethene	2-Dichloroethane	2-Dichloroethene	2-Dichloropropane			enta		
							양	etra	양	00	loro	o o	loro	loro	one	one	-2-P		Acrylonitrile
							Ę	,2-T	Ě	jë.	Ę	lich.	oich	Jich	utanone	Hexanone	fhyl	Acetone	je je
					Para	meter	1,1,	1,1,2	1,1	7,	7,	1,54	1,2-	1,2-	2-Bu	2-He	-Me	Acet	Acry
						Units	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
				ATCA Mathad	MTCA Ecologic		NL 7 20 : 007	NL	NL 18000	NL	NL 40.006	NL	NL	700000	NL	NL	NL 6.4a+006	NL 90.006	NL
					B Protective of HH Protective of GW as		7.2e+007 3.3e+006	5000 22	89	1.6e+007 NL	4e+006 23	11000 180	720000 NL	15000 77	4.8e+007 NL	NL NL	6.4e+006 NL	8e+006 NL	NL NL
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Type													
City Purchase City Purchase	BY01 BY01	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/17/1997	BY01-0SS BY01-2SB	N N	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	 12 U	 12 U	11 U 170	
City Purchase	BY02	0-2 ft	Surf (0-2ft)	11/17/1997	BY02-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			170 12 U	
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	11/17/1997	BY02-2SB	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
City Purchase	BY03 BY03	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/17/1997	BY03-0SS BY03-2SB	N N	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	
City Purchase City Purchase	BY04	0-2 ft	Surf (0-2ft)	11/17/1997	BY04-0SS	N	14 U	12 U	12 U	14 U	12 U	12 U	12 U	12 U	12 U	12 U	14 U	12 U	
City Purchase	BY04	2-4 ft	SubSurf (>2ft)	11/17/1997	BY04-2SB	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	110	
City Purchase	BY05	0-2 ft	Surf (0-2ft)	11/17/1997	BY05-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
City Purchase City Purchase	BY05 BY05	2-4 ft 4-6 ft	SubSurf (>2ft) SubSurf (>2ft)	11/17/1997	BY05-2SB BY05-4SB	N N	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 14 U	12 U 22 U	
City Purchase	BY05	6-8 ft	SubSurf (>2ft)	11/17/1997	BY05-6SB	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	
City Purchase	BY05	8-10 ft	SubSurf (>2ft)	11/17/1997	BY05-8SB	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
City Purchase City Purchase	PA-19 PF01	7.5-9 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	8/21/2009 11/18/1997	PA-19 PF01-0SS	N N	 13 U	 13 U	 13 U	 13 U	13 U	 13 U	13 U	 13 U	 13 U	 13 U	 13 U	31 13 U	
City Purchase	PF01	2-4 ft	SubSurf (>2ft)	11/18/1997	PF01-033	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
CSO	GB02	0-2 ft	Surf (0-2ft)	11/4/1997	LY17SS-GB02	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			12 U	
CSO	GB02	2-4 ft	SubSurf (>2ft)	11/10/1997	LY18SB-GB02	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U			11 U	
CSO	GB03	0-2 ft	Surf (0-2ft)	11/4/1997	LY19SS-GB03	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U			11 U	
CSO	GB03	2-4 ft	SubSurf (>2ft)	11/10/1997	LY20SB-GB03	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			12 U	
East Former Mill East Former Mill	CD02 CD02	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/19/1997 11/19/1997	CD02-0SS CD02-2SB	N N	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 100	
East Former Mill	CD02	4-6 ft	SubSurf (>2ft)	11/19/1997	CD02-23B CD02-4SB	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
East Former Mill	CD02	6-8 ft	SubSurf (>2ft)	11/19/1997	CD02-6SB	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
East Former Mill	CD03	0-2 ft	Surf (0-2ft)	11/19/1997	CD03-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
East Former Mill	CD03	2-4 ft	SubSurf (>2ft)	11/19/1997	CD03-3SB	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	26	
Estuary Estuary	CD01 CD01	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/19/1997	CD01-0SS CD01-2SB	N N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
Estuary	FR05	0-0.25 ft	Surf (0-2ft)	11/13/1997	FR05SS	N	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	
Main Former Mill	AP01	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP01SS	N	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U			15 U	
Main Former Mill	AP02	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP02SS	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U			14 U	
Main Former Mill	AP03	0-0.25 ft	Surf (0-2ft)	11/13/1997	AP03SS	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U			14 U	
Main Former Mill Main Former Mill	AP04 BL01	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/13/1997 11/14/1997	AP04SS BL01SS	N N	20 U 11 U	20 U 11 U	20 U 11 U	20 U 11 U	20 U 11 U	20 U 11 U	20 U	20 U 11 U	20 U 11 U	20 U	20 U	20 U 11 U	
Main Former Mill	BL02	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL02SS	N	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	21	17 U	17 U	28 U	
Main Former Mill	BL03	0-0.25 ft	Surf (0-2ft)	11/14/1997	BL03SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
Main Former Mill Main Former Mill	BP01 BP02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/11/1997	BP01SS BP02SS	N N	13 U 450 U	13 U 450 U	13 U 450 U	13 U 450 U	13 U 450 U	13 U 450 U	13 U 450 U	13 U 450 U	13 U 2200		13 U 450 U	96 10000	
Main Former Mill	BP02 BP03	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP03SS	N	67 U	67 U	67 U	67 U	67 U	67 U	67 U	67 U	3100		67 U	3900	
Main Former Mill	BP04	0-0.25 ft	Surf (0-2ft)	11/11/1997	BP04SS	N	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	
Main Former Mill	DB02	0-0.25 ft	Surf (0-2ft)	11/13/1997	DB02SS	N	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U			17 U	
Main Former Mill Main Former Mill	FR02 FR04	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997	FR02SS FR04SS	N N	23 U 15 U	23 <i>U</i> 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 15 U	23 U 19 U	
Main Former Mill	LB01		Surf (0-2ft)	11/22/1997	LB01-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
Main Former Mill	LB02	0.5.5	Surf (0-2ft)	11/22/1997	LB02-0SS	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
Main Former Mill Main Former Mill	MCH0001 MCH0002	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/3/2002 9/3/2002	K2206204-001 K2206204-002	N N	4.3 U 5.4 U	4.3 U 5.4 U	4.3 U 5.4 U	4.3 U 5.4 U	4.3 U 5.4 U	4.3 U 5.4 U		4.3 U 5.4 U	18 U 22 U	18 U 22 U	18 U 22 U	12 J 14 J	
waili Fulliel Will	IVICTIO002	וו פייפ	SubSuii (>ZII)	3/3/2002	112200204-002	IN	3.4 U	J.4 U	5.4 U	3.4 U	5.4 U	5.4 U		5.4 U	22 0	22 0	22 0	14 J	

							ı					ı			ı		1		
							1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	I,1-Dichloroethene	2-Dichloroethane	2-Dichloroethene	2-Dichloropropane	Butanone	2-Hexanone	4-Methyl-2-Pentanone	oue.	Acrylonitrile
					Para	meter	1,1,1	1,1,2,	1,1,2	1,1-D	1,1-0	1,2-D	۲,	1,2-D	2-But	2-He	4-Met	Acetone	Acryl
					MTCA Ecologic	Units	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 700000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL
					B Protective of HH	(SFV)	7.2e+007	5000	18000	1.6e+007	4e+006	11000	720000	15000	4.8e+007	NL	6.4e+006	8e+006	NL
Funct. Area	Loc ID	Depth	MTC Depth Zone	A Method B F Date	Protective of GW as Sample ID	MSW Type	3.3e+006	22	89	NL	23	180	NL	77	NL	NL	NL	NL	NL
Main Former Mill	MCH0003	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-003	N	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U		6.5 U	26 U	26 U	26 U	20 J	
Main Former Mill	MCH0004	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-004	N	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U		5.2 U	21 U	21 U	21 U	23 J	
Main Former Mill Main Former Mill	MCH0005 MCH0006	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/3/2002 9/3/2002	K2206204-005 K2206204-006	N N	4.6 U 5.8 U	4.6 U 5.8 U	4.6 U 5.8 U	4.6 U 5.8 U	4.6 U 5.8 U	4.6 U 5.8 U		4.6 U 5.8 U	19 U 24 U	19 U 24 U	19 U 24 U	12 J 18 J	
Main Former Mill	MCH0007	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-007	N	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U	5.2 U		5.2 U	21 U	21 U	21 U	19 J	
Main Former Mill	MCH0008	9-9 ft	SubSurf (>2ft)	9/3/2002	K2206204-008	N	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U	6.4 U		6.4 U	26 U	26 U	26 U	21 J	
Main Former Mill Main Former Mill	MCH0009 MCH0010	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/4/2002 9/4/2002	K2206250-001 K2206250-002	N N	6.3 U 6.2 U	6.3 U 6.2 U	6.3 U 6.2 U	6.3 U 6.2 U	6.3 U 6.2 U	6.3 U 6.2 U		6.3 U 6.2 U	26 U 25 U	26 U 25 U	26 U 25 U	39 J 22 J	
Main Former Mill	MCH0010	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-002	N	5.5 U	5.5 U	5.5 U	5.5 U	5.5 U	5.5 U		5.5 U	22 U	22 U	22 U	20 J	
Main Former Mill	MCH0012	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-004	N	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U		6.6 U	27 U	27 U	27 U	30 J	
Main Former Mill	MCH0013	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-005	N	8.3 U	8.3 U	8.3 U	8.3 U	8.3 U	8.3 U		8.3 U	34 U	34 U	34 U	24 J	
Main Former Mill Main Former Mill	MCH0014 MCH0015	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	9/4/2002 9/4/2002	K2206250-006 K2206250-007	N N	5.2 U 5.8 U	5.2 U 5.8 U	5.2 U 5.8 U	5.2 U 5.8 U	5.2 U 5.8 U	5.2 U 5.8 U		5.2 U 5.8 U	21 U 24 U	21 U 24 U	21 U 24 U	52 U 21 J	
Main Former Mill	MCH0016	9-9 ft	SubSurf (>2ft)	9/4/2002	K2206250-008	N	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U		5.3 U	22 U	22 U	22 U	69	
Main Former Mill	MR01	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR01SS	N	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	
Main Former Mill	MR02 MR03	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR02SS MR03SS	N N	11 U 24 U	11 U	11 U 24 U	11 U	11 U	11 U 24 U	11 U 24 U	11 U	11 U 24 U	11 U 24 U	11 U 24 U	11 U 24 U	
Main Former Mill Main Former Mill	MR04	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997 11/12/1997	MR04SS	N	11 U	24 U 11 U	11 U	24 U 11 U	24 U 11 U	11 U	11 U	24 U 11 U	11 U	11 U	11 U	11 U	
Main Former Mill	MR05	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR05SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
Main Former Mill	MR06	0-0.25 ft	Surf (0-2ft)	11/12/1997	MR06SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
Main Former Mill Main Former Mill	MR07 MR08	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/12/1997 11/14/1997	MR07SS MR08SS	N N	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	17 U 12 U	
Main Former Mill	MR09	0-0.25 ft	Surf (0-2ft)	11/15/1997	MR09SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	4	11 U	11 U	11 U	
Main Former Mill	MR10	0-0.25 ft	Surf (0-2ft)	11/13/1997	MR10SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
Main Former Mill	MR11	0-0.25 ft	Surf (0-2ft)	11/14/1997	MR11SS	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U			14 U	
Main Former Mill Main Former Mill	MR12 PC01	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/14/1997 11/10/1997	MR12SS PC01SS	N N	11 U 17 U	11 U 17 U	11 U 17 U	11 U 17 U	11 U 17 U	11 U 17 U	11 U 17 U	11 U 17 U	11 U 17 U			11 U 17 U	
Main Former Mill	SR01	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR01-SS	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	20 U	
Main Former Mill	SR02	0-0.25 ft	Surf (0-2ft)	11/21/1997	SR02-SS	N	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	9	16 U	16 U	17 U	
Main Former Mill	SR03 SR04	0-0.25 ft 0-0.25 ft	Surf (0-2ft)	11/21/1997 11/21/1997	SR03-SS SR04-SS	N N	18 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U	18 U	18 U 20 U	18 U 20 U	18 U 20 U	
Main Former Mill Main Former Mill	TB01	0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11/21/1997	TB01SS	N	20 U 15 U	15 U	20 U	15 U	20 U	20 U	20 U	20 U 15 U	7 15 U	20 0	20 0	74	
Main Former Mill	TB02	0-0.25 ft	Surf (0-2ft)	11/13/1997	TB02SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
North Shoreline	BS01	0-0.25 ft	Surf (0-2ft)	11/21/1997	BS01-SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
North Shoreline	BS02	0-0.25 ft	Surf (0-2ft)	11/21/1997	BS02-SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
North Shoreline	PC02	0-0.25 ft	Surf (0-2ft)	11/10/1997	PC02SS	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U			13 U	
NW Shoreline	GB01	0-2 ft	Surf (0-2ft)	11/4/1997	LY07SS-GB01	N	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U			18 U	
NW Shoreline NW Shoreline	GB01 GB01	2-4 ft 4-6 ft	SubSurf (>2ft)	11/11/1997	LY08SB-GB01 LY25SB-GB01	N N	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U		 12 U	14 U 12 U	
NW Shoreline NW Shoreline	GB01 GB04	4-6 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/11/1997	LY25SB-GB01 LY01SS-GB04	N N	12 U 28 U	12 U	12 U 28 U	12 U 28 U	12 U 28 U	12 U 28 U	12 U 28 U	12 U 28 U	12 U 28 U		12 U	12 U 28 U	
NW Shoreline	GB05	0-2 ft	Surf (0-2ft)	11/4/1997	LY05SS-GB05	N	36 U	36 U	36 U	36 U	36 U	36 U	36 U	36 U	36 U			36 U	
NW Shoreline	GB05	2-4 ft	SubSurf (>2ft)	11/10/1997	LY06SB-GB05	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			12 U	
NW Shoreline NW Shoreline	GB06 GB07	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11/4/1997 11/4/1997	LY09SS-GB06 LY11SS-GB07	N N	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	6 12 U			11 U 12 U	
NW Shoreline	GB07	2-4 ft	SubSurf (>2ft)	11/4/1997	LY12SB-GB07	N	12 U	11 U	12 U	11 U	11 U	11 U	11 U	11 U	12 U	11 U	11 U	11 U	
NW Shoreline	GB07	4-6 ft	SubSurf (>2ft)	11/12/1997	LY14SB-GB07	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	
NW Shoreline	GB07	6-8 ft	SubSurf (>2ft)	11/12/1997	LY27SB-GB07	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
NW Shoreline NW Shoreline	GB08 GB08	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/4/1997 11/12/1997	LY13SS-GB08 LY29SB-GB08	N N	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 7	 11 U	 11 U	13 U 20 U	
NW Shoreline	GB09	0-2 ft	Surf (0-2ft)	11/4/1997	LY02SS-GB09	N	22 U	22 U	22 U	22 U	22 U	22 U	22 U	22 U	22 U			22 U	
			,									•			•				

							ı					1			ı				
								ıne											
							1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	ethane	iane	ene	ane	eue	pane			4-Methyl-2-Pentanone		
							chloro	etrach	chloro	loroeth	loroeth	oroeth	loroeth	loropre	one	one	-2-Pen		trile
					_		1,1-Tri	1,2,2-T	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	2-Dichloroethane	2-Dichloroethene	2-Dichloropi	Butanone	2-Hexanone	Methyl	Acetone	Acrylonitrile
					Para MTCA Ecologica	meter Units	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 700000	່ ປ (ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL
			N	MTCA Method	I B Protective of HH		7.2e+007	5000	18000	1.6e+007	4e+006	11000	720000	15000	4.8e+007	NL	6.4e+006	8e+006	NL
			MTC		Protective of GW as		3.3e+006	22	89	NL	23	180	NL	77	NL	NL	NL	NL	NL
Funct. Area	Loc ID	Depth	Depth Zone	Date	Sample ID	Туре													
NW Shoreline NW Shoreline	GB09 GB10	2-4 ft 10-10 ft	SubSurf (>2ft) SubSurf (>2ft)	11/10/1997 11/11/1997	LY04SB-GB09 LY10SB-GB10	N N	10 U 11 U	10 U	10 U	10 U 11 U	10 U	10 U	10 U	10 U	14 11 U	11	11	10 U	
NW Shoreline	LY15	0-2 ft	Surf (0-2ft)	11/4/1997	LY15SS	N	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U			15 U	
NW Shoreline	LY16	0-2 ft	Surf (0-2ft)	11/4/1997	LY16SS	N	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U			15 U	
NW Shoreline	PA01	0-2 ft	Surf (0-2ft)	11/15/1997	PA01-0SS	Ν	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
NW Shoreline	PA02	0-2 ft	Surf (0-2ft)	11/15/1997	PA02-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
NW Shoreline	PA03	0-2 ft	Surf (0-2ft)	11/15/1997	PA03-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
NW Shoreline NW Shoreline	PA04 PA04	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/15/1997 11/15/1997	PA04-0SS PA04-2SB	N N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U			10 U	
NW Shoreline	PA04 PA04	4-6 ft	SubSurf (>2ft)		PA04-2SB PA04-4SB	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U			11 U	
Prefab	PF02		, ,	11/18/1997	PF02-0SS	N	13 U		13 U		13 U			13 U		13 U			
Prefab	PF02 PF02	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11/18/1997	PF02-0SS PF02-2SB	N	13 U	13 U 14 U	13 U	13 U 14 U	13 U	13 U 14 U	13 U 14 U	13 U	13 U 14 U	13 U	13 U 14 U	13 U 14 U	
Prefab	PF03	0-2 ft	Surf (0-2ft)	11/18/1997	PF03-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
Prefab	PF03	2-4 ft	SubSurf (>2ft)		PF03-2SB	N	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
Prefab	PF03	4-6 ft	SubSurf (>2ft)		PF03-4SB	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	67 U	
Prefab	PF03	6-8 ft	SubSurf (>2ft)		PF03-6SB	Ν	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	
Prefab	PF03	8-10 ft	SubSurf (>2ft)		PF03-8SB	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	
Prefab	PF03	16-18 ft	SubSurf (>2ft)	11/18/1997	PF03-16SB	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
West Former Mill	B-21	2.5-2.5 ft	SubSurf (>2ft)	2/21/1991	LANDAUB-21-2.5	N									750 U				
West Former Mill	B-21	5-5 ft	SubSurf (>2ft)		LANDAUB-21-5.0	N									750 U				
West Former Mill	B-23	5-5 ft	SubSurf (>2ft)	2/21/1991	LANDAUB-23-5.0	N									750 U				
West Former Mill West Former Mill	FOT-0027 FOT-0028	6-6 ft 6-6 ft	SubSurf (>2ft) SubSurf (>2ft)	8/6/2002 8/6/2002	K2205299-001 K2205299-002	N N	6.2 U 5.7 U	6.2 U 5.7 U	6.2 U 5.7 U	6.2 U 5.7 U	6.2 U 5.7 U	6.2 U 5.7 U		6.2 U 5.7 U	37 23 U	23 U	25 U 23 U	160	
West Former Mill	HF01	0-0 ft	Surf (0-2ft)	11/13/1997	HF01-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	19 12 U	
West Former Mill	HF01	2-4 ft	SubSurf (>2ft)	11/13/1997	HF01-2SB	N	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U			14 U	
West Former Mill	HF02	0-2 ft	Surf (0-2ft)	11/13/1997	HF02-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			10	
West Former Mill	HF02	2-4 ft	SubSurf (>2ft)	11/13/1997	HF02-2SB	Ν	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U			11 U	
West Former Mill	HF03	0-2 ft	Surf (0-2ft)	11/14/1997	HF03-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U			11 U	
West Former Mill	HF03	2-4 ft	SubSurf (>2ft)		HF03-2SB	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	97	
West Former Mill	HF04	0-2 ft	Surf (0-2ft)	11/14/1997	HF04-0SS	N N	12 U	12 U 13 U	12 U 13 U	12 U	12 U	12 U	12 U 13 U	12 U	12 U 13 U	42.11	42.11	12 U	
West Former Mill West Former Mill	HF04 HF05	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/14/1997 11/14/1997	HF04-2SB HF05-0SS	N	13 U 12 U	13 U	13 U	13 U 12 U	13 U 12 U	13 U 12 U	13 U	13 U 12 U	13 U	13 U	13 U	42 20 U	
West Former Mill	HF05	2-4 ft	SubSurf (>2ft)	11/14/1997	HF05-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			12 U	
West Former Mill	HF06	0-2 ft	Surf (0-2ft)	11/14/1997	HF06-0SS	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			15	
West Former Mill	HF06	2-4 ft	SubSurf (>2ft)	11/14/1997	HF06-2SB	Ν	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U			12 U	
West Former Mill	HF07	0-2 ft	Surf (0-2ft)	11/20/1997	HF07-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	20	
West Former Mill	HF07	2-4 ft	SubSurf (>2ft)		HF07-2SB	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	1400	
West Former Mill	HF08	0-2 ft	Surf (0-2ft)	11/20/1997	HF08-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
West Former Mill West Former Mill	HF08 HF09	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11/20/1997 11/19/1997	HF08-2SB HF09-0SS	N N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U 11 U	11 U	11 U	53	
West Former Mill	HF09	2-4 ft	SubSurf (>2ft)	11/19/1997	HF09-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U			11 U	
West Former Mill	MW-63	23-24.5 ft	SubSurf (>2ft)	10/21/2010	MW-63-23-24.5	N						0.7 U							3.6 U
West Former Mill	MW-63	26-27.5 ft	SubSurf (>2ft)	10/21/2010	MW-63-26-27.5	N						0.5 U							2.6 U
West Former Mill	MW-68	55-55 ft	SubSurf (>2ft)	5/18/2011	MW-68-55	Ν				1 U	1 U	1 U							
West Former Mill	RB01	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB01SS	N	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U			21 U	
West Former Mill	RB02	0-0.25 ft	Surf (0-2ft)	11/10/1997	RB02SS	N	24 U	24 U	24 U	24 U	24 U	24 U	24 U	24 U	24 U			24 U	
West Former Mill	RB03	0-2 ft	Surf (0-2ft)	11/21/1997	RB03-0SS	N	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	
West Former Mill West Former Mill	RB04 RB04	0-2 ft 4-6 ft	Surf (0-2ft) SubSurf (>2ft)	11/21/1997 11/21/1997	RB04-0SS RB04-4SB	N N	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	
West Former Mill	RB04	8-10 ft	SubSurf (>2ft)		RB04-4SB	N	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	
VIIII	TOO	0 10 A	Cabouri (2211)	. 1/2 1/ 1001	11004 000	- ''	120	12.0	12.0	12.0	12.0	12.0	12.0	12.0	120	12.0	12.0	12.0	

														E NE							ENE			
				Bromodichloromethane	Bromoform	Bromomethane	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-DICHLOROPROP	Dibromochloromethane	Methylene chloride	МТВЕ	Styrene	Tetrachloroethene (PCE)*	trans-1,2-Dichloroethene	trans-1,3-DICHLOROPROP	Trichloroethene (TCE)	Vinyl Acetate	Vinyl chloride
				(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 40000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) 300000	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL	(ug/Kg) NL
			MTC	/ 16000 2 89	130000 920	110000 4500	8e+006 NL	7700 15	1.6e+006 14000	350000 NL	160000 1500	77000 620	800000 NL	NL NL	12000 69	130000 2600	560000 NL	33000 NL	1900 4.1	1.6e+006 54000	NL NL	11000 44	8e+007 NL	670 15
Funct. Area	Loc ID	Depth	Depth Zone		020	1000			11000		1000	020		.,_	- 00	2000	.,_			0.000	.,_		- 112	
City Purchase	BY01	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	15 U		11 U	11 U		11 U	11 U		11 U
City Purchase City Purchase	BY01 BY02	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	12 U 12 U	12 U 12 U	12 U 12 U	12 U 12 U	12 U	12 U 12 U	12 U	12 U 12 U	12 U		12 U	12 U 12 U	17 U 13 U		12 U 12 U	12 U 12 U		12 U 12 U	12 U 12 U		12 U 12 U
City Purchase	BY02	2-4 ft	SubSurf (>2ft)	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U		13 U	13 U	18 U		13 U	13 U		13 U	13 U		13 U
City Purchase	BY03	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	15 U		11 U	11 U		11 U	11 U		11 U
City Purchase	BY03	2-4 ft	SubSurf (>2ft)	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U		14 U	14 U	19 U		14 U	14 U		14 U	14 U		14 U
City Purchase	BY04	0-2 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	18 U		12 U	12 U		12 U	12 U		12 U
City Purchase City Purchase	BY04 BY05	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	13 U 12 U	13 U 12 U	13 U 12 U	13 U 12 U	13 U 12 U	13 U 12 U	13 U 12 U	13 U 12 U	13 U 12 U		13 U 12 U	13 U 12 U	20 U 14 U		13 U 12 U	13 U 12 U		13 U 12 U	13 U 12 U		13 U 12 U
City Purchase	BY05	2-4 ft	SubSurf (>2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	16 U		12 U	12 U		12 U	12 U		12 U
City Purchase	BY05	4-6 ft	SubSurf (>2ft)	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U		14 U	14 U	18 U		14 U	14 U		14 U	14 U		14 U
City Purchase	BY05	6-8 ft	SubSurf (>2ft)	14 U	14 U	15 U	14 U	14 U	14 U	14 U	14 U	14 U		14 U	14 U	16 U		14 U	14 U		14 U	14 U		14 U
City Purchase	BY05	8-10 ft	SubSurf (>2ft)	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U		13 U	13 U	16 U		13 U	13 U		13 U	13 U		13 U
City Purchase	PA-19	7.5-9 ft	SubSurf (>2ft)	40.11	40.11	40.11	40.11	40.11	40.11	40.11	40.11	40.11		40.11	40.11	40.11	0.28 U	40.11	40.11		40.11	40.11		40.11
City Purchase City Purchase	PF01 PF01	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	13 U 13 U	13 U 13 U	13 U	13 U 13 U	13 U	13 U	13 U	13 U 13 U	13 U		13 U	13 U	13 U 13 U		13 U	13 U		13 U 13 U	13 U 13 U		13 U 13 U
-																								
CSO CSO	GB02 GB02	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U		12 U 11 U	12 U 11 U	19 U 8		12 U 11 U	12 U 11 U		12 U 11 U	12 U 11 U		12 U 11 U
CSO	GB02 GB03	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	15 U		11 U	11 U		11 U	11 U		11 U
CSO	GB03	2-4 ft	SubSurf (>2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	8		12 U	12 U		12 U	12 U		12 U
East Former Mill	CD02	0-2 ft	Surf (0-2ft)	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U		13 U	13 U	19 U		13 U	13 U		13 U	13 U		13 U
East Former Mill	CD02	2-4 ft	SubSurf (>2ft)	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U		14 U	14 U	19 U		14 U	14 U		14 U	14 U		14 U
East Former Mill	CD02	4-6 ft	SubSurf (>2ft)	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U		13 U	13 U	15 U		13 U	13 U		13 U	13 U		13 U
East Former Mill	CD02	6-8 ft	SubSurf (>2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	13 U		12 U	12 U		12 U	12 U		12 U
East Former Mill	CD03	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	14	11 U	11 U	11 U	11 U	11 U		11 U	11 U	13 U		11 U	11 U		11 U	11 U		11 U
East Former Mill	CD03	2-4 ft	SubSurf (>2ft)	11 U	11 U	11 U	5	11 U	11 U	11 U	11 U	11 U		11 U	11 U	13 U		11 U	11 U		11 U	11 U		11 U
Estuary	CD01	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	15 U		11 U	11 U		11 U	11 U		11 U
Estuary	CD01	2-4 ft	SubSurf (>2ft)	11 U	11 U	11 U	3	11 U	11 U	11 U	11 U	11 U		11 U	11 U	15 U		11 U	11 U		11 U	11 U		11 U
Estuary	FR05	0-0.25 ft	Surf (0-2ft)	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U		19 U	19 U	26 U		19 U	19 U		19 U	19 U		19 U
Main Former Mill	AP01	0-0.25 ft	Surf (0-2ft)	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U		15 U	15 U	18 U		15 U	15 U		15 U	15 U		15 U
Main Former Mill Main Former Mill	AP02 AP03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	14 U	14 U	14 U	14 U 14 U	14 U	14 U	14 U	14 U	14 U		14 U	14 U	17 U		14 U	14 U		14 U	14 U		14 U
Main Former Mill	AP03 AP04	0-0.25 ft	Surf (0-2ft)	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U		20 U	20 U	28 U		20 U	20 U		20 U	20 U		20 U
Main Former Mill	BL01	0-0.25 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	22 U		11 U	11 U		11 U	11 U		11 U
Main Former Mill	BL02	0-0.25 ft	Surf (0-2ft)	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U		17 U	17 U	22 U		17 U	17 U		17 U	17 U		17 U
Main Former Mill	BL03	0-0.25 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	14 U		12 U	12 U		12 U	12 U		12 U
Main Former Mill	BP01	0-0.25 ft	Surf (0-2ft)	13 U	13 U	13 U	450 11	13 U	13 U	13 U	13 U	13 U		13 U	13 U	31 U		13 U	13 U		13 U	13 U		13 U
Main Former Mill Main Former Mill	BP02 BP03	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	450 U 67 U	450 U 67 U	450 U 67 U	450 U 46	450 U 67 U	450 U 67 U	450 U 67 U	65 11	450 U 67 U		450 U 67 U	450 U 67 U	1500 200 U		450 U 67 U	450 U 67 U		450 U 67 U	450 U 67 U		450 U 67 U
Main Former Mill	BP03	0-0.25 ft	Surf (0-2ft)	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U		17 U	17 U	17 U		17 U	17 U		17 U	17 U		17 U
Main Former Mill	DB02	0-0.25 ft	Surf (0-2ft)	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U	17 U		17 U	17 U	19 U		17 U	17 U		17 U	17 U		17 U
Main Former Mill	FR02	0-0.25 ft	Surf (0-2ft)	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U		23 U	23 U	24 U		23 U	23 U		23 U	23 U		23 U
Main Former Mill	FR04	0-0.25 ft	Surf (0-2ft)	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U		15 U	15 U	24 U		15 U	15 U		15 U	15 U		15 U
Main Former Mill	LB01		Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	11 U		11 U	11 U		11 U	11 U		11 U
Main Former Mill Main Former Mill	LB02 MCH0001	9-9 ft	Surf (0-2ft) SubSurf (>2ft)	13 U 4.3 U	13 U 4.3 U	13 U	13 U 4.3 U	13 U 4.3 U	13 U 4.3 U	13 U 4.3 U	13 U 4.3 U	13 U 4.3 U	4.3 U	13 U 4.3 U	13 U 4.3 U	13 U 8.6 U		13 U 4.3 U	13 U 4.3 U	4.3 U	13 U 4.3 U	13 U 4.3 U	18 U	13 U
Main Former Mill	MCH0001	9-9 ft	SubSurf (>2ft)		5.4 U		5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	11 U		5.4 U	5.4 U	5.4 U	5.4 U	5.4 U	22 U	
		5 5 K	- 400 GIT (/ 211)	0.70	0.70		0.70	0.70	5. 7 0	J. 7 U	J. 7 U	J. T U	J. 7 U	0.70	0.70			J. T U	0.70	5.75	5. 7 5	0.70	0	

														ENE							ROPENE			
				ane				•					ne L	ROP	ane				(PCE)*	trans-1,2-Dichloroethene	PRO	(ii)		
				omodichloromethane			e	loride					,2-Dichloroethene	ICHLOROP	ibromochloromethane	ride) eue	oroet	DICHLOROP	(TCE)		
				loro	_	omomethane	Disulfide	Carbon Tetrachlor	zene	ane	_	Chloromethane	hlorc	HLO	oloro	chloride			Tetrachloroethene	ichlo	ICHI	Trichloroethene	ate	ide
				odict	отобоги	omet	n Dis	n Te	pen	oeth?	oforn	omet	S-Dic	3-DIC	noch	lene		9	hlor	1,2-0	ęί	oroel	Acetate	hlor
							Carbon	arbo	Chlorobenze	Chloroethane	Chloroform	hlor	s-1	s-1	ibro	lethyl	TBE	tyrene	etrac	ans-	trans-1	rich	Vinyl	Vinyl chloride
				m (ug/Kg)	m (ug/Kg)	m (ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	ច (ug/Kg)	□ (ug/Kg)	E (ug/Kg)	≥ (ug/Kg)	(ug/Kg)	(ug/Kg)	₽ (ug/Kg)	₽ (ug/Kg)	(ug/Kg)	> (ug/Kg)	> (ug/Kg)
			M	NL 1 16000	NL 130000	NL 110000	NL 8e+006	NL 7700	40000 1.6e+006	NL 350000	NL 160000	NL 77000	NL 800000	NL NL	NL 12000	NL 130000	NL 560000	300000 33000	NL 1900	NL 1.6e+006	NL NL	NL 11000	NL 8e+007	NL 670
Frank Assa	1 15	Dooth	MTC		920	4500	NL	15	14000	NL	1500	620	NL	NL	69	2600	NL	NL	4.1	54000	NL	44	NL	15
Funct. Area Main Former Mill	Loc ID MCH0003	Depth 9-9 ft	Depth Zone SubSurf (>2ft)	6.5 U	6.5 U		6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	13 U		6.5 U	6.5 U	6.5 U	6.5 U	6.5 U	26 U	
Main Former Mill Main Former Mill	MCH0004 MCH0005	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	5.2 U 4.6 U	5.2 U 4.6 U		5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	11 U 9.2 U		5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	5.2 U 4.6 U	21 U 19 U	
Main Former Mill	MCH0006	9-9 ft	SubSurf (>2ft)	5.8 U	5.8 U		5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	12 U		5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	24 U	
Main Former Mill Main Former Mill	MCH0007 MCH0008	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	5.2 U 6.4 U	5.2 U 6.4 U		5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	11 U 13 U		5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	5.2 U 6.4 U	21 U 26 U	
Main Former Mill	MCH0009	9-9 ft	SubSurf (>2ft)	6.3 U	6.3 U		6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	13 U		6.3 U	6.3 U	6.3 U	6.3 U	6.3 U	26 U	
Main Former Mill Main Former Mill	MCH0010 MCH0011	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	6.2 U 5.5 U	6.2 U 5.5 U		6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	13 U 11 U		6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	6.2 U 5.5 U	25 U 22 U	
Main Former Mill	MCH0012	9-9 ft	SubSurf (>2ft)	6.6 U	6.6 U		6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	14 U		6.6 U	6.6 U	6.6 U	6.6 U	6.6 U	27 U	
Main Former Mill Main Former Mill	MCH0013 MCH0014	9-9 ft 9-9 ft	SubSurf (>2ft) SubSurf (>2ft)	8.3 U 5.2 U	8.3 U 5.2 U		8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	17 U		8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	8.3 U 5.2 U	34 U 21 U	
Main Former Mill	MCH0015	9-9 ft	SubSurf (>2ft)	5.8 U	5.8 U		5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	12 U		5.8 U	5.8 U	5.8 U	5.8 U	5.8 U	24 U	
Main Former Mill Main Former Mill	MCH0016 MR01	9-9 ft 0-0.25 ft	SubSurf (>2ft) Surf (0-2ft)	5.3 U 15 U	5.3 U 15 U	 15 U	5.3 U 15 U	5.3 U 15 U	5.3 U 15 U	5.3 U 15 U	5.3 U 15 U	5.3 U 15 U	5.3 U	5.3 U 15 U	5.3 U 15 U	11 U 18 U		5.3 U 15 U	5.3 U 15 U	5.3 U	5.3 U 15 U	5.3 U 15 U	22 U	 15 U
Main Former Mill	MR02	0-0.25 ft	Surf (0-2ft)	11 U	11 U	18 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	11 U		11 U	11 U		11 U	11 U		11 U
Main Former Mill	MR03 MR04	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	24 U 11 U	24 U 11 U	24 U 13 U	24 U 11 U	24 U	24 U 11 U	24 U 11 U	24 U 11 U	24 U 11 U		24 U 11 U	24 U 11 U	83 U 11 U		24 U 11 U	24 U 11 U		24 U 11 U	24 U 11 U		24 U 11 U
Main Former Mill Main Former Mill	MR05	0-0.25 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	12 U		11 U	11 U		11 U	11 U		11 U
Main Former Mill Main Former Mill	MR06 MR07	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	12 U 17 U	12 U 17 U	12 U 29 U	12 U 17 U	12 U	12 U 17 U	12 U 17 U	12 U 17 U	12 U 17 U		12 U 17 U	12 U 17 U	14 U 17 U		12 U 17 U	12 U 17 U		12 U 17 U	12 U 17 U		12 U
Main Former Mill	MR08	0-0.25 ft	Surf (0-2ft)	17 U	17 U	12 U	17 U	17 U	17 U	17 U	17 U	17 U		17 U	12 U	17 U		17 U	17 U		17 U	17 U		17 U
Main Former Mill	MR09	0-0.25 ft	Surf (0-2ft)	11 U	11 U	13 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	14 U		11 U	11 U		11 U	11 U		11 U
Main Former Mill Main Former Mill	MR10 MR11	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U	11 U 14 U		11 U 14 U	11 U 14 U	15 U 19 U		11 U 14 U	11 U 14 U		11 U 14 U	11 U 14 U		11 U 14 U
Main Former Mill	MR12	0-0.25 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	14 U		11 U	11 U		11 U	11 U		11 U
Main Former Mill Main Former Mill	PC01 SR01	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	17 U	17 U 14 U	17 U 14 U	17 U 14 U	17 U	17 U 14 U	17 U 14 U	17 U 14 U	17 U		17 U 14 U	17 U	8 29 U		17 U 14 U	17 U		17 U 14 U	17 U		17 U
Main Former Mill	SR02	0-0.25 ft	Surf (0-2ft)	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U	16 U		16 U	16 U	16 U		16 U	16 U		16 U	16 U		16 U
Main Former Mill Main Former Mill	SR03 SR04	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U	18 U 20 U		18 U 20 U	18 U 20 U	18 U 37 U		18 U 20 U	18 U 20 U		18 U 20 U	18 U 20 U		18 U 20 U
Main Former Mill	TB01	0-0.25 ft	Surf (0-2ft)	15 U	15 U	15 U	15 U	15 U	15 U	15 U	7	15 U		15 U	15 U	19 U		15 U	15 U		15 U	15 U		15 U
Main Former Mill	TB02	0-0.25 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	13 U		11 U	11 U		11 U	11 U		11 U
North Shoreline North Shoreline	BS01 BS02	0-0.25 ft 0-0.25 ft	Surf (0-2ft) Surf (0-2ft)	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U		11 U 12 U	11 U 12 U	11 U 12 U		11 U 12 U	11 U 12 U		11 U 12 U	11 U 12 U		11 U 12 U
North Shoreline	PC02	0-0.25 ft	Surf (0-2ft)	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U		13 U	13 U	6		13 U	13 U		13 U	13 U		13 U
NW Shoreline	GB01	0-2 ft	Surf (0-2ft)	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U		18 U	18 U	18 U		18 U	18 U		18 U	18 U		18 U
NW Shoreline NW Shoreline	GB01 GB01	2-4 ft 4-6 ft	SubSurf (>2ft) SubSurf (>2ft)	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U 12 U	14 U		14 U 12 U	14 U 12 U	6 12 U		14 U 12 U	14 U 12 U		14 U 12 U	14 U 12 U		14 U 12 U
NW Shoreline	GB04	0-2 ft	Surf (0-2ft)	28 U	28 U	28 U	28 U	28 U	28 U	28 U	28 U	28 U		28 U	28 U	18 U		28 U	28 U		28 U	28 U		28 U
NW Shoreline NW Shoreline	GB05 GB05	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	36 U 12 U	36 U 12 U	36 U 12 U	36 U 12 U	36 U	36 U 12 U	36 U 12 U	36 U 12 U	36 U		36 U 12 U	36 U	24 8		36 U 12 U	36 U 12 U		36 U 12 U	36 U 12 U		36 U
NW Shoreline	GB06	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	19 U		11 U	11 U		11 U	11 U		11 U
NW Shoreline NW Shoreline	GB07 GB07	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	12 U 11 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U	12 U 11 U	12 U 11 U	12 U 11 U	12 U		12 U	12 U	20 U 11 U		12 U 11 U	12 U		12 U 11 U	12 U		12 U 11 U
NW Shoreline	GB07	2-4 It 4-6 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	12		11 U	11 U		11 U	11 U		11 U
NW Shoreline	GB07	6-8 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	12 U		11 U	11 U		11 U	11 U		11 U
NW Shoreline NW Shoreline	GB08 GB08	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	13 U 11 U	13 U 11 U	13 U 13 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U	13 U 11 U		13 U 11 U	13 U 11 U	21 U 11 U		13 U 11 U	13 U 11 U		13 U 11 U	13 U 11 U		13 U 11 U
NW Shoreline	GB09	0-2 ft	Surf (0-2ft)	22 U	22 U	22 U	22 U	22 U	22 U	22 U	22 U	22 U		22 U	22 U	16 U		22 U	22 U		22 U	22 U		22 U

				romodichloromethane	Ε	thane	Disulfide	Tetrachloride	Jzene	ane	Ε	thane	chloroethene	ICHLOROPROPENE	ibromochloromethane	chloride			Tetrachloroethene (PCE)*	,2-Dichloroethene	-DICHLOROPROPENE	thene (TCE)	ate	loride
				omodic	omoform	omomethane	Carbon D	Carbon T	lorobe	Chloroethane	Chloroform	Chlorometh	s-1,2-Di	cis-1,3-DI	bromoc	Methylene	BE	Styrene	trachlo	rans-1,2-	trans-1,3-	Trichloroethene	Vinyl Acetate	Vinyl chlo
				ភ្នំ (ug/Kg)	ug/Kg)	ug/Kg)	ပို (ug/Kg)	ပို (ug/Kg)	ម្រ (ug/Kg)	່ວ (ug/Kg)	່ວັ (ug/Kg)	់ (ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	≚ (ug/Kg)	∑ (ug/Kg)	(ug/Kg)	e (ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	₩ (ug/Kg)	; (ug/Kg)
			M	NL 1 16000	NL 130000	NL 110000	NL 8e+006	NL 7700	40000 1.6e+006	NL 350000	NL 160000	NL 77000	NL 800000	NL NL	NL 12000	NL 130000	NL 560000	300000 33000	NL 1900	NL 1.6e+006	NL NL	NL 11000	NL 8e+007	NL 670
			MTC	89	920	4500	NL	15	14000	NL	1500	620	NL	NL	69	2600	NL	NL	4.1	54000	NL	44	NL	15
Funct. Area NW Shoreline	Loc ID GB09	Depth 2-4 ft	Depth Zone SubSurf (>2ft)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	7		10 U	10 U		10 U	10 U		10 U
NW Shoreline	GB10	10-10 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	14 U		11 U	11 U		11 U	11 U		11 U
NW Shoreline	LY15	0-2 ft	Surf (0-2ft)	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U		15 U	15 U	23 U		15 U	15 U		15 U	15 U		15 U
NW Shoreline NW Shoreline	LY16 PA01	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	15 U	15 U 12 U	15 U 12 U	15 U 12 U	15 U 12 U	15 U 12 U	15 U 12 U	15 U 12 U	15 U 12 U		15 U 12 U	15 U 12 U	22 U 18 U		15 U 12 U	15 U 12 U		15 U 12 U	15 U 12 U		15 U 12 U
NW Shoreline	PA01 PA02	0-2 π 0-2 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	18 U		12 U	12 U		12 U	12 U		12 U
NW Shoreline	PA03	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	13 U		11 U	11 U		11 U	11 U		11 U
NW Shoreline	PA04	0-2 ft	Surf (0-2ft)	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	11 U		10 U	10 U		10 U	10 U		10 U
NW Shoreline NW Shoreline	PA04 PA04	2-4 ft 4-6 ft	SubSurf (>2ft) SubSurf (>2ft)	10 U	10 U 11 U	10 U 11 U	10 U 11 U	10 U	10 U	10 U	10 U	10 U		10 U 11 U	10 U 11 U	10 U		10 U	10 U		10 U 11 U	10 U		10 U 11 U
			, ,																					
Prefab Prefab	PF02 PF02	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U		13 U 14 U	13 U 14 U	13 U		13 U	13 U 14 U		13 U 14 U	13 U		13 U 14 U
Prefab	PF03	0-2 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	12 U		12 U	12 U		12 U	12 U		12 U
Prefab	PF03	2-4 ft	SubSurf (>2ft)	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U	13 U		13 U	13 U	18 U		13 U	13 U		13 U	13 U		13 U
Prefab	PF03	4-6 ft	SubSurf (>2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	14 U		12 U	12 U		12 U	12 U		12 U
Prefab Prefab	PF03 PF03	6-8 ft 8-10 ft	SubSurf (>2ft) SubSurf (>2ft)	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U	13 U 14 U		13 U 14 U	13 U 14 U	16 U		13 U 14 U	13 U 14 U		13 U 14 U	13 U		13 U 14 U
Prefab	PF03	16-18 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	11 U		11 U	11 U		11 U	11 U		11 U
West Former Mill	B-21	2.5-2.5 ft	SubSurf (>2ft)																100 U					
West Former Mill	B-21	5-5 ft	SubSurf (>2ft)																100 U					
West Former Mill	B-23	5-5 ft	SubSurf (>2ft)																100 U					
West Former Mill	FOT-0027	6-6 ft	SubSurf (>2ft)	6.2 U	6.2 U		6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	6.2 U	4.3 J		1.2 J	6.2 U	6.2 U	6.2 U	6.2 U	25 U	
West Former Mill West Former Mill	FOT-0028 HF01	6-6 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	5.7 U 12 U	5.7 U 12 U	 12 U	5.7 U 12 U	5.7 U 12 U	5.7 U 12 U	5.7 U 12 U	5.7 U 12 U	5.7 U 12 U	5.7 U	5.7 U 12 U	5.7 U 12 U	12 J 17 U		5.7 U 12 U	5.7 U 12 U	5.7 U	5.7 U 12 U	5.7 U 12 U	23 U	12 U
West Former Mill	HF01	2-4 ft	SubSurf (>2ft)	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U	14 U		14 U	14 U	22 U		14 U	14 U		14 U	14 U		14 U
West Former Mill	HF02	0-2 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	19 U		12 U	12 U		12 U	12 U		12 U
West Former Mill	HF02	2-4 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	14 U		11 U	11 U		11 U	11 U		11 U
West Former Mill West Former Mill	HF03 HF03	0-2 ft 2-4 ft	Surf (0-2ft) SubSurf (>2ft)	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U	11 U 12 U		11 U 12 U	11 U 12 U	24 U 16 U		11 U 12 U	11 U 12 U		11 U 12 U	11 U 12 U		11 U 12 U
West Former Mill	HF04	0-2 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	22 U		12 U	12 U		12 U	12 U		12 U
West Former Mill	HF04	2-4 ft	SubSurf (>2ft)	13 U	13 U	13 U	4 J	13 U	13 U	13 U	13 U	13 U		13 U	13 U	18 U		13 U	13 U		13 U	13 U		13 U
West Former Mill	HF05	0-2 ft	Surf (0-2ft)	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U		12 U	12 U	25 U		12 U	12 U		12 U	12 U		12 U
West Former Mill West Former Mill	HF05 HF06	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	12 U	12 U 12 U	12 U 12 U	12 U 12 U	12 U	12 U 12 U	12 U	12 U	12 U		12 U	12 U	28 U 25 U		12 U	12 U		12 U	12 U		12 U 12 U
West Former Mill	HF06	2-4 ft	SubSurf (>2ft)	12 U	12 U	12 U	3	12 U	12 U	12 U	12 U	12 U		12 U	12 U	22 U		12 U	12 U		12 U	12 U		12 U
West Former Mill	HF07	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	21 U		11 U	11 U		11 U	11 U		11 U
West Former Mill West Former Mill	HF07 HF08	2-4 ft 0-2 ft	SubSurf (>2ft) Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	11 U 21 U		11 U	11 U		11 U	11 U		11 U
West Former Mill	HF08	0-2 π 2-4 ft	Sun (0-2it) SubSurf (>2ft)	11 U	11 U	11 U	11 0	11 U	11 U	11 U	11 U	11 U		11 U	11 U	21 U		11 U	11 U		11 U	11 U		11 U
West Former Mill	HF09	0-2 ft	Surf (0-2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	13 U		11 U	11 U		11 U	11 U		11 U
West Former Mill	HF09	2-4 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	13 U		11 U	11 U		11 U	11 U		11 U
West Former Mill West Former Mill	MW-63 MW-63	23-24.5 ft 26-27.5 ft	SubSurf (>2ft) SubSurf (>2ft)																0.7 U 0.5 U			0.7 U 0.5 U		0.7 U 0.5 U
West Former Mill	MW-68	55-55 ft	SubSurf (>2ft)										1 U						1 U	1 U		1 U		1 U
West Former Mill	RB01	0-0.25 ft	Surf (0-2ft)	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	. !	21 U	21 U	10		21 U	21 U	-	21 U	21 U		21 U
West Former Mill	RB02	0-0.25 ft	Surf (0-2ft)	24 U	24 U	24 U	24 U	24 U	24 U	24 U	24 U	24 U		24 U	24 U	110 U		24 U	24 U		24 U	24 U		24 U
West Former Mill West Former Mill	RB03 RB04	0-2 ft 0-2 ft	Surf (0-2ft) Surf (0-2ft)	11 U 13 U	11 U 13 U	11 U 13 U	11 U 13 U	11 U 13 U	11 U 13 U	11 U 13 U	11 U 13 U	11 U		11 U 13 U	11 U 13 U	11 U 13 U		11 U 13 U	11 U 13 U		11 U 13 U	11 U 13 U		11 U 13 U
** COL I OTHER IVIIII	11004	U-7 II	Jun (U-ZII)																					11 U
West Former Mill	RB04	4-6 ft	SubSurf (>2ft)	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U	11 U		11 U	11 U	11 U		11 U	11 U		11 U	11 U		11 0

Ammonia as (N) in Surface Water Port Angeles Rayonier Mill Uplands Study Area

			Parameter	Ammonia-N (un-ionized)
			Units	(mg/L)
		MTCA-B	GW AS MSW	0.035
Funct. Area	Loc ID	sys_sample_code	Sample Type	
Ennis Creek	SW-4	SW-4_100827	N	1.72e-005 V
Ennis Creek	SW-5	SW-5_100827	N	1.34e-005 V
Estuary	SW-1	SW-1_100826	N	0.0001028 V
Estuary	SW-2	SW-2_100826	N	9.56e-005 V
Estuary	SW-3	SW-3_100826	N	8.62e-005 V

Aroclors in Surface Water Port Angeles Rayonier Mill Uplands Study Area

			Parameter	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Total PCBs (sum of Aroclors)
		MTCAD	Units	(' 3' /	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Funct. Area	Loc ID	Sample ID	GW AS MSW Sample Type	NL	NL	NL	NL	NL	NL	NL	0.01
Ennis Creek	SW-4	SW-4 100827	N	0.01 U	0.04.11	0.01 UV					
Ennis Creek	SW-5	SW-5_100827	N	0.01 U							
Estuary	SW-1	SW-1_100826	N	0.01 U							
Estuary	SW-2	SW-2_100826	N	0.01 U							
Estuary	SW-3	SW-3_100826	N	0.01 U							

Carcinogenic Polycyclic Aromatic Hydrocarbons in Surface Water Port Angeles Rayonier Mill Uplands Study Area

			Parameter Units	© © Benzo(a)anthracene ∵	© ⊕ ⊢ Tenzo(a)pyrene	© Benzofluoranthenes, Total (b+k+j)	(Chrysene	Ĝ Ĝ Dibenz(a,h)anthracene ┌	© Indeno(1,2,3-cd)pyrene	on (-) (-) (-)
		MTCA-B	GW AS MSW	NL	NL	NL	NL	NL	NL	0.018
Funct. Area	Loc ID	Sample ID	Sample Type							
Ennis Creek	SW-4	SW-4_100827	Ν	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Ennis Creek	SW-5	SW-5_100827	Ν	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Estuary	SW-1	SW-1_100826	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Estuary	SW-2	SW-2_100826	N	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.00705 UV
Estuary	SW-3	SW-3 100826	N	0.0111	0.01.11	0.0111	0.01 U	0.01 U	0.01 U	0.00705 UV

Dioxins/Furans in Surface Water Port Angeles Rayonier Mill Uplands Study Area

			Para	ameter	1,2,3,4,6,7,8-HpCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,7,8-PeCDD	2,3,7,8-TCDD	осрр	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	1,2,3,7,8-PeCDF	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDF	OCDF	Dioxins/Furans TEC
			MTCA Mathad D	Units	(10)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)	(pg/l)
			MTCA Method B			NL	NL	NL	NL	NL	INL	NL	NL	NL	NL	NL	NL	NL	NL	NL	NL	0.0051
Funct. Area	Loc ID	Date	Sample ID	Type																		
Ennis Creek	SW-4	8/27/2010	SW-4_100827	N	1.82 U	0.912 U	1.19 U	1.04 U	0.892 U	0.591 U	5.34 J	1.25 U	1.78 U	0.791 U	0.792 U	0.843 U	0.74 U	0.837 U	0.753 U	0.443 U	2.47 U	1.23 J
Ennis Creek	SW-5	8/27/2010	SW-5_100827	N	1.81 U	0.766 U	1.03 U	0.889 U	0.736 U	0.579 U	4.62 J	0.962 U	1.43 U	0.627 U	0.625 U	0.626 U	0.674 U	0.632 U	0.678 U	0.439 U	2.47 U	1.07 J
Estuary	SW-1	8/26/2010	SW-1_100826	N	2.4 U	1.04 U	1.34 U	1.19 U	0.913 U	0.47 U	17.6	1.1 U	1.79 U	0.645 U	0.678 U	0.766 U	0.664 U	0.745 U	0.686 U	0.289 U	2.5 U	1.17 J
Estuary	SW-2	8/26/2010	SW-2_100826	N	1.93 U	1.15 U	1.45 U	1.29 U	0.877 U	0.412 U	8.83 J	0.987 U	1.6 U	0.588 U	0.586 U	0.662 U	0.629 U	0.647 U	0.653 U	0.293 U	2.39 U	1.11 J
Estuary	SW-3	8/26/2010	SW-3 100826	N	1.81 U	1.07 U	1.36 U	1.2 U	1.02 U	0.632 U	6.48 J	1.01 U	1.74 U	0.578 U	0.583 U	0.665 U	0.791 U	0.616 U	0.807 U	0.3 U	2.42 U	1.3 J

Metals in Surface Water Port Angeles Rayonier Mill Uplands Study Area

				Para MTCA Method B	ameter Units MSW	(mg/L)	(mg/L)	(mg/L)	NL (mg/L)	Cadmium (L/Sm) (8800.0	(mg/L)	(mg/L) 240**	Cobalt (Mg/L)	o) (mg/L) 0.0024	(mg/L) NL	Pead (mg/L) 0.0081	NZ (T) Magnesium	(L.0 Manganese	(mg/L) 2.5e-005	(mg/L) 0.0082	NZ (Ed.)	(mg/L) 0.071	(mg/L) 0.0019	mnipos (mg/L) NL	mnilinm (mg/L) 0.00047	N Vanadium	DIZ (mg/L) 0.081
				Total (T) or																							
Funct. Area		Date	Sample ID	Dissolved (D)	Туре																						
Ennis Creek	EC05	11/18/1997	97474384	Т	N	0.058 J		0.0041 U	0.0045 J	0.00095 J	14.6	0.00092 J		0.259	0.0912 U	0.0094	5.34	0.0296		0.0074 J	0.862 J			13	0.0037 J	0.002 J	0.0655
Ennis Creek	EC06	11/18/1997	97474386	T	N	0.0723 J		0.0041 U	0.0064 J	0.0024 J	14.6	0.00088 J		0.541	0.0979 U	0.0134	4.43 J	0.0458		0.0029 J	0.555 J			11.9	0.0029 J	0.002 J	0.0757
Ennis Creek	EC07	11/18/1997	97474388	T	N	0.0504 J		0.0041 U	0.0078 J	0.0003 U	17.2	0.0007 U		0.02 J	0.23	0.0018 U	7.81	0.0444		0.003 J	1.55 J			13.4	0.004 J	0.0022 J	0.046
Ennis Creek	EC08	11/18/1997	97474390	Т	N	0.0435 J		0.0041 U	0.0033 J	0.0003 U	14.3	0.0007 U		0.0092 J	0.0932 U	0.0018 U	4.29 J	0.0073 J		0.0013 U	0.567 J			6.48	0.0029 U	0.0022 J	0.0039 J
Ennis Creek	SW-4	8/27/2010	SW-4_100827	T	N		0.0002 U	0.0002 U	0.0033	0.0002 U		0.0005 U	0.0002 U	0.0008		0.001 U		0.0054	2e-005 U	8000.0		0.0005 U	0.0002 U		0.0002 U	0.0022	0.004 U
Ennis Creek	SW-5	8/27/2010	SW-5 100827	Т	N		0.0002 U	0.0002 U	0.003	0.0002 U		0.0005 U	0.0002 U	0.0007		0.001 U		0.0039	2e-005 U	0.0007		0.0005 U	0.0002 U		0.0002 U	0.0025	0.004 U
				_	L																						
Estuary		11/17/1997	97474370	Т	N	0.136 J			0.0124 J		135	0.0007 U		0.238	0.0967 J	0.0069	439	0.0227		0.0018 J				3320			
Estuary		11/18/1997	97474378	Т	N	0.115 J			0.0209 J		15.7	0.0017 J		0.747	0.222	0.031	5.25	0.0997		0.0084 J				9.04	0.0029 U		0.11
Estuary		11/18/1997	97474380	T	N	0.148 J			0.0056 J		14.9	0.0342		0.273	0.258	0.0125	4.86	0.0337		0.0198 J				7.91	0.0029 U	0.0024 J	
Estuary		11/18/1997	97474382	T	N	0.0975 J			0.0107 J	0.0012 J	14.5	0.0007 U		0.322	0.153	0.0076	4.65 J	0.0377		0.002 J	0.642 J			7.37	0.0032 J	0.0024 J	0.0697
Estuary	SW-1	8/26/2010	SW-1_100826	T	N		0.0002 U	0.0002	0.003	0.0002 U		0.0005 U	0.0002 U	0.0008		0.001 U		0.0077	2e-005 U	0.0007		0.0005 U	0.0002 U		0.0002 U	0.0024	0.004 U
Estuary	SW-2	8/26/2010	SW-2_100826	Т	N		0.0002 U	0.0002	0.004	0.0002 U		0.0005 U	0.0002 U	0.001		0.001 U		0.0127	2e-005 U	0.0009		0.0005 U	0.0002 U		0.0002 U	0.0029	0.004 U
Estuary	SW-3	8/26/2010	SW-3_100826	Т	N		0.0002 U	0.0002	0.004	0.0002 U		0.0005 U	0.0002 U	0.0008		0.001 U		0.0071	2e-005 U	0.0007		0.0005 U	0.0002 U		0.0002 U	0.0024	0.004 U

^{**}Screening level for trivalent chromium - there is no established screening level for total chromium. The lack of hexavalent chromium detections in groundwater suggests that hexavalent chromium is not present.

Organochlorine Pestcides in Surface Water Port Angeles Rayonier Mill Uplands Study Area

			Para	meter Units	7/5/4/4-DDD	C/D 4,4'-DDE	7/5 4,4'-DDT	(ng/L)	É alpha-BHC	E alpha-Chlordane	(7/5 peta-BHC	On) delta-BHC	(ug/L)	(7/5n) Endosulfan I	Endosulfan II	C) Endosulfan Sulfate	(ng/r) Endrin	C/D Endrin Aldehyde	(7/6n) (7) Endrin Ketone	G gamma-BHC (Lindane)	C) gamma-Chlordane	(T/D Heptachlor	C) Heptachlor Epoxide	E Hexachlorobenzene	D Methoxychlor	Toxaphene
			MTCA Method B	MSW		0.0017	0.0017	0.00083	0.0049	0.00083	0.017	0.041	0.0017	0.0087	0.0087	0.0087	0.0023	0.0023	0.0023	0.038	0.00083	0.00083	0.00083	0.00083	0.03	0.083
Funct. Area	Loc ID	Date	Sample ID	Type																						
Ennis Creek	SW-4	8/27/2010	SW-4_100827	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
Ennis Creek	SW-5	8/27/2010	SW-5_100827	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U
Estuary	SW-1	8/26/2010	SW-1_100826									0.00083 UJ												0.00083 U		0.083 U
Estuary	SW-2	8/26/2010	SW-2_100826									0.00083 UJ														
Estuary	SW-3	8/26/2010	SW-3 100826	N	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 UJ	0.0017 U	0.00083 U	0.0017 U	0.0017 UJ	0.0017 U	0.0017 U	0.0017 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.00083 U	0.0083 U	0.083 U

Semi-Volatile Organic Compounds in Surface Water Port Angeles Rayonier Mill Uplands Study Area

					,4-Dichlorobenzene	2,4,6-Trichlorophenol	2,4-Dinitrotoluene	3,3'-Dichlorobenzidine	Bis(2-chloro-1-methylethyl) ether	bis(2-Chloroethyl)ether	bis(2-Ethylhexyl)phthalate	Chrysene	Hexachloroethane	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	90
			Para	meter Units	(ng/L)	(ng/L)	(ng/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	ug/L)	11. (ug/L)	(ug/L)	(ug/L)
		ı	MTCA Method B	MSW	4.9	2.4	5	5	37	1	2.2	NL	3.3	1	6	3	2600
Funct. Area	Loc ID	Date	Sample ID	Туре													
Ennis Creek	EC05	11/18/1997	97474384	N							10 U						
Ennis Creek	EC06	11/18/1997	97474386	Ζ							10 U						
Ennis Creek	EC07	11/18/1997	97474388	Ζ							10 U						
Ennis Creek	EC08	11/18/1997	97474390	N							10 U						
Ennis Creek	SW-4	8/27/2010	SW-4_100827	N	1 UJ	0.25 U	5 UJ	5 UJ	1 UJ	1 UJ	1 UJ	0.01 U	1 UJ	1 UJ	5 UJ	0.25 U	0.01 U
Ennis Creek	SW-5	8/27/2010	SW-5_100827	Ν	1 U	0.25 U	5 U	5 U	1 U	1 U	1 U	0.01 U	1 U	1 U	5 UJ	0.25 U	0.01 U
Estuary	EC01	11/17/1997	97474370	N							10 U						
Estuary	EC02	11/18/1997	97474378	N							31						
Estuary	EC03	11/18/1997	97474380	N							10 U						
Estuary	EC04	11/18/1997	97474382	N							10 U						
Estuary	SW-1	8/26/2010	SW-1_100826	Ν	1 U	0.25 U	5 U	5 U	1 U	1 U	1 U	0.01 U	1 U	1 U	5 UJ	0.25 U	0.01 U
Estuary	SW-2	8/26/2010	SW-2_100826	N	1 U	0.25 U	5 U	5 U	1 U	1 U	1 U	0.01 U	1 U	1 U	5 UJ	0.25 U	0.01 U
Estuary	SW-3	8/26/2010	SW-3_100826	N	1 U	0.25 U	5 U	5 U	1 U	1 U	1 U	0.01 U	1 U	1 U	5 UJ	0.25 U	0.01 U

Total Petroleum Hydrocarbons in Surface Water Port Angeles Rayonier Mill Uplands Study Area

			Parameter	Gasoline-range TPH	Diesel-range TPH	Heavy oil-range TPH
			Units	(mg/L)	(mg/L)	(mg/L)
		MTCA-B	GW AS MSW	0.8	0.5	0.5
Funct. Area	Loc ID	Sample ID	Sample Type			
Ennis Creek	SW-4	SW-4_100827	N	0.25 U	0.1 U	0.2 U
Ennis Creek	SW-5	SW-5_100827	Ν	0.25 U	0.1 U	0.2 U
Estuary	SW-1	SW-1_100826	N	0.25 U	0.1 U	0.2 U
Estuary	SW-2	SW-2_100826	N	0.25 U	0.1 U	0.2 U
Estuary	SW-3	SW-3 100826	N	0.25 U	0.1 U	0211

			Parameter	Carbon Disulfide
			Units	(ug/L)
		MTCA-B	GW AS MSW	NL
Funct. Area	Loc ID	Sample ID	Sample Type	
Ennis Creek	EC05	97474384	N	11000
Ennis Creek	EC06	97474386	N	10000 U
Ennis Creek	EC07	97474388	N	1000 J
Ennis Creek	EC08	97474390	N	8000 J
Estuary	EC01	97474370	N	10000 U
Estuary	EC02	97474378	N	10000 U
Estuary	EC03	97474380	N	19000
Estuary	EC04	97474382	N	59000

Footnotes for Analytical Data Summary Tables Port Angeles Rayonier Mill Upland Study Area

Notes:

N = normal (primary) sample; FD = field duplicate sample; SP = split sample; RE = reanalysis.

mg/l = milligrams per liter; ug/l = micrograms per liter; pg/l = picograms per liter.

mg/kg = milligrams per kilogram; ug/kg = micrograms per kilogram; ng/kg = nanograms per kiligram.

Total carcinogenic polycyclic aromatic hydrocarbons (cPAHs) calculated using toxic equivalent concentration (TEC) methodology relative to benzo(a)pyrene. Non-detect results for individual cPAH compounds ("U" qualifier) were assigned a value of one half of the method reporting limit for these calculations.

Total dioxins/furans calculated using toxic equivalent concentration (TEC) methodology relative to 2,3,7,8-TCDD. Non-detect results for individual dioxin/furan congeners ("U" qualifier) were assigned a value of one half of the method reporting limit for these calculations.

Total PCBs (sum of Aroclors) calculated by summing positive detections of individual Aroclors. If there were no positive detections in the sample, then the Total PCBs result is reported as not detected ("U" qualifier) at the highest individual Aroclor method reporting limit.

J = Estimated concentration detected above the method detection limit but below the method reporting limit.

R = Rejected datum.

V = Total value was calculated or selected from one or more positive detections of individual constituents.

U = Not detected at or above the listed method reporting limit.

UV = There were no positive detections of individual constituents; total value was calculated or selected from the non-detect results for individual constituents.

BOLD = Result detected above the method reporting limit.

= For soil, indicates the result exceeds the screening level protective of terrestrial ecological receptors (Ecological Indicator Soil Concentrations);

for groundwater and surface water, indicates the result exceeds the screening level protective of marine surface water.

Soil result exceeds the screening level protective of human health (direct contact/ingestion pathway; MTCA Method B Standard Formula Value).

Underline = Soil result exceeds the screening level protective of groundwater as marine surface water.

Italics = Not detected at or above the listed method reporting limit; the listed method reporting limit exceeds a screening level.

cPAHs = Carcinogenic polycyclic aromatic hydrocarbons.

TEC = Total toxic equivalent concentration.

PCBs = Polychlorinated biphenyls.

TPH = Total petroleum hydrocarbons.

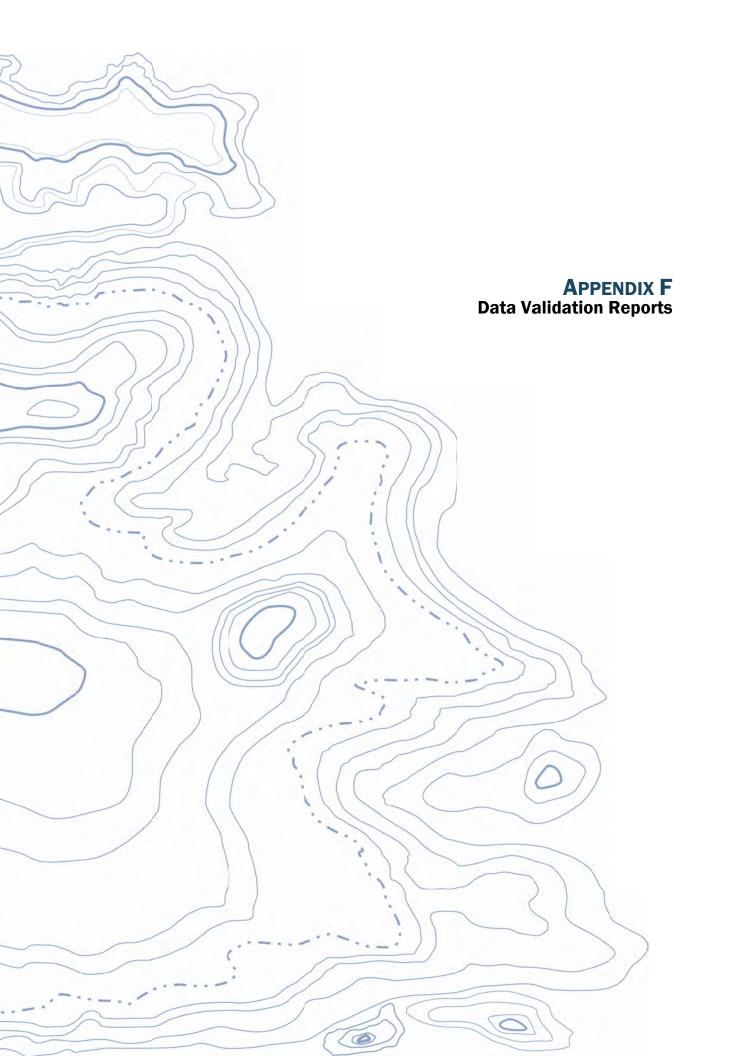
MTCA = Washington State Model Toxics Control Act.

ISC = Indicator Soil Concentrations.

HH = Human health.

SFV = Standard Formula Value.

GW = Groundwater.


MSW = Marine surface water.

NL = Screening level not established.

Filtered (dissolved) vs. unfiltered (total) metals results for groundwater: for the 2010-2011 groundwater monitoring events, only those groundwater samples with turbidity > 10 nephelometric turbidity units (field measurement) were field-filtered with a 0.45-micron filter prior to laboratory analysis.

* Constituents marked with an asterisk were identified as confirmed or suspected COPCs for the Upland Study Area in the Supplemental Upland Data Collection Work Plan (GeoEngineers, 2010).

VALIDATION QUALIFIER SUMMARY

The analytical data validation for this project was divided up into seven separate reporting segments, correlating with the major sampling events of the project. They are listed chronologically below:

Baseline Sampling Event, Quarterly Monitoring 1 - (August 2010)

23 groundwater samples, 5 surface water samples, 1 field duplicate, 3 equipment rinsate blanks, and 7 trip blanks

Groundwaters including field duplicates (2687 Data Points):

- √ 141 estimated positive detections/non-detected MRLs
- ✓ 28 elevated MRLs due to matrix interference

Surface waters including field duplicates (480 Data Points):

√ 23 estimated positive detections/non-detected MRLs

Equipment Blanks (300 Data Points):

- √ 5 rejected non-detected MRLs
- √ 12 estimated positive detections/non-detected MRLs

Trip Blank (35 Data Points - No qualifications)

• Phase 2 Investigation (October 2010)

104 soil samples, 9 grab water samples, 5 groundwater samples, 4 field duplicates, and 12 equipment rinsate blanks

Soils, including field duplicates (4543 Data Points):

- √ 12 rejected non-detected MRLs
- √ 81 estimated positive detections/non-detected MRLs
- √ 43 detections qualified as "not-detected" because of blank contamination
- √ 172 elevated MRLs due to matrix interference

Groundwaters & grab waters (606 Data Points):

- √ 45 estimated positive detections/non-detected MRLs
- ✓ 5 detections qualified as "not-detected" because of blank contamination
- √ 7 elevated MRLs due to matrix interference

Equipment Rinsate Blanks (812 Data Points):

- √ 42 estimated positive detections/non-detected MRLs
- ✓ 2 detections qualified as "not-detected" because of blank contamination

Quarterly Monitoring 2 (November 2010)

23 groundwater samples, 4 equipment rinsate blanks, and 2 trip blanks

Groundwaters including field duplicates (629 Data Points):

- ✓ 13 estimated positive detections/non-detected MRLs
- ✓ 3 elevated MRLs due to matrix interference

√ 11 detections qualified as "not-detected" because of blank contamination

Equipment Blanks (210 Data Points - No qualifications)

Trip Blank (6 Data Points - No qualifications)

Phase 3 Investigation (January 2011)

40 soil samples, 3 field duplicates, and 1 water sample

Soils, including field duplicates (1545 Data Points):

- √ 40 estimated positive detections/non-detected MRLs
- √ 10 tentatively identified positive detections
- √ 41 elevated MRLs due to matrix interference

Water (75 Data Points):

- ✓ 1 tentatively identified positive detection
- ✓ 4 elevated MRLs due to matrix interference

Quarterly Monitoring 3 (February 2011)

31 groundwater samples, 3 field duplicates, 1 equipment rinsate blank, and 1 trip blank Groundwaters including field duplicates (1322 Data Points):

- √ 53 estimated positive detections/non-detected MRLs
- √ 5 elevated MRLs due to matrix interference

Equipment Blanks (71 Data Points – No qualifications)

Trip Blank (8 Data Points - No qualifications)

Phase 4 Investigation (March 2011)

24 soil samples, 3 groundwater samples, and 2 equipment rinsate blanks

Soils (797 Data Points):

- √ 16 estimated positive detections/non-detected MRLs
- √ 8 detections qualified as "not-detected" because of blank contamination

Groundwaters (77 Data Points):

- ✓ 1 tentatively identified positive detection
- ✓ 1 elevated MRL due to matrix interference

Equipment Blanks (124 Data Points - No qualifications)

Quarterly Monitoring 4 (May 2011)

36 groundwater samples, 2 field duplicates, 2 equipment rinsate blanks, and 3 trip blanks Groundwaters including field duplicates (679 Data Points):

- ✓ 1 elevated MRL due to matrix interference
- ✓ 1 detection qualified as "not-detected" because of blank contamination

Equipment Blanks (62 Data Points - No qualifications)

Trip Blanks (25 Data Points - No qualifications)

• Totals

175 soil samples (including field duplicates), 137 groundwater & grab water samples (including field duplicates), 24 equipment rinsate blanks, and 13 trip blanks

Soils, including field duplicates (6885 Data Points):

- ✓ 12 rejected non-detected MRLs
- √ 137 estimated positive detections/non-detected MRLs
- ✓ 51 detections qualified as "not-detected" because of blank contamination
- ✓ 213 elevated MRLs due to matrix interference
- √ 10 tentatively identified positive detection

Groundwaters & Grab samples, including field duplicates (6075 Data Points):

- √ 252 estimated positive detections/non-detected MRLs
- √ 17 detections qualified as "not-detected" because of blank contamination
- √ 49 elevated MRLs due to matrix interference
- ✓ 2 tentatively identified positive detection

Equipment Blanks (1579 Data Points)

- ✓ <u>5 rejected non-detected MRLs</u>
- √ 54 estimated positive detections/non-detected MRLs
- ✓ 2 detections qualified as "not-detected" because of blank contamination

Trip Blanks (74 Data Points – No qualifications)

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613, VOLATILES BY METHOD SW8260, SEMIVOLATILES BY METHOD SW8270, PAHS BY METHOD SW8270-SIM, PESTICIDES BY METHOD SW8081, PCBS BY METHOD SW8082,

TOTAL METALS (INCLUDING MERCURY) BY METHOD EPA6010, 200.8, 7471A, TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-GX AND NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
RK98 (6327)	MW-23, MW-52, MW-28, MW-29, RINSE082510, MW-51, PZ-3, MW-53, MW-57, PZ-9, PZ-10, RINSE082610, DUP082610, MW-58, MW-59, TB082510GRL, TB082610GRL, and TB082710GRL
RL06 (6328)	PZ-12, PZ-6, PZ-5, and TRIP BLANK
RK99 (6329)	PZ-11, PZ-7, RINSE082710, MW-55, MW-54, MW-56, PA-19, SW-1, SW-2, SW-3, SW-4, SW-5, PZ-2, PZ-4, TB082510JBA, TB082610JBA, TB082710JBA, RINSE-082710

PROJECT: RAYONIER MILL (00137-015-03)

This report documents the results of an EPA level II-B data validation of analytical data from the analyses of groundwater and surface water samples and the associated laboratory quality control (QC) samples. This standard review normally includes the following:

- Chain of Custody
- Holding Times
- Surrogates
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards
- DDT/Endrin Breakdown confirmations (Pesticides only)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)
- Instrument Tunes
- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution

- 2. Selected Ion Monitoring switching times
- 3. GC Resolution

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

The following sections discuss the data. Based on the review, qualification of the laboratory data was performed because of no secondary column confirmation being performed at low levels in the dioxin analysis.

Based on this validation, data were qualified because of surrogate %R values, LCS/LCSD & MS %R outliers, and continuing calibration %D outliers, and because of no secondary column confirmation being performed at low levels in the dioxin analysis.

Based on this validation, data were rejected because of volatile temperature and holding time outliers, and an MS %R value being less than 10%.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analysis, with the following exceptions:

SDG RK99 (Volatiles): Sample RINSE-082710 was analyzed 4 days outside of the maximum hold time of 14 days. The laboratory noted in the case narrative that the sample containers had been stored at room temperature for at least 24 hours prior to the analysis. There were no positive results for any target analytes in the sample. Therefore, all reporting limits were rejected (R) because of the combined effect of the outliers on a volatile analysis.

SDG RK99 (Semivolatiles): Samples SW-4 and PZ-11 were analyzed 4 days outside of the holding time of 7 days. There were no positive results for any target analytes in these samples. All reporting limits were qualified as estimated (UJ) in these samples.

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exception below:

SDG RK98 (Semivolatiles): The percent recovery (%R) for one of four base/neutral surrogates, d4-1,2-dichlorobenzene, was less than the lower control limit (32%) in Sample MW-51. As the %R values in the other three base-neutral surrogates were within the control limits, and the outlier was not less than 10%, no action was taken.

SDG RK98 (Pesticides): The %R for the surrogate tetrachloromethylxylene (TCMX) was less than the lower control limit (30%) in Sample MW-57. There were no positive results for any target analytes in the sample. Therefore, the reporting limits for all target analytes were qualified as estimated (UJ) in this sample.

SDG RK98 (PCBs): The %R for the surrogate tetrachloromethylxylene (TCMX) was less than the lower control limit (30%) in Sample MW-57. There were no positive results for any target analytes in the sample. Therefore, the reporting limits for all target analytes were qualified as estimated (UJ) in this sample.

Method Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Three equipment rinsate blanks were collected: RINSE082510, RINSE082610, and RINSE082710.

SDG RK98, RK99, RL06 (Metals): There was a positive result for manganese in the Equipment Blank RINSE082510. The positive results for manganese in the associated field samples were all greater than the appropriate action levels. No qualifiers were required.

Dioxin/Furans by 1613: There was a positive result for OCDD in the equipment blank RINSE082510 at a level that was below the QAPP required reporting limit of 10 pg/L. No further action was necessary.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. Typically, samples are stored in a cooler for as much as 24 hours before arriving at the laboratory. Seven trip blanks were collected: TB082510GRL, TB082610GRL, TB082710GRL, TB082510JBA, TB082610JBA, TB082710JBA, and TRIP BLANK. None of the volatiles analytes were detected above the reporting limits in any of the trip blanks.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample". In this case, the laboratory did not analyze a post spike sample. No other action was taken other than to note it here.

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the following exceptions:

SDG RK98, RK99, RL06 (Metals): A single MS sample was performed on Sample PZ-9. There was no recovery for total manganese in this QC sample. There was no positive result for this compound in the parent sample. The parent concentration of total manganese was greater than four times the concentration spiked into the sample, no qualifiers were required.

SDG RK98: (SVOCs) A single MS sample was performed on Sample PZ-9. The MS %R values for N-Nitrosodiphenylamine was less than the control limit of 60%. There was no positive result for this compound in the parent sample. The reporting limits for N-Nitrosodiphenylamine were qualified (UJ) in the parent sample. Also, there was no recovery for 3,3'-Dichlorobenzidine in the same MS sample. As there was no positive result for this compound in the parent sample, the reporting limit for 3,3'-Dichlorobenzidine was rejected (R) in the parent sample.

SDG RK98: (Pesticides) A MS/MSD sample set was performed on Sample PZ-9. The %R values for 13 compounds exceeded their respective control limits. There were no positive results for these compounds in the parent sample. The reporting limits for all 13 compounds were qualified (UJ) in the parent sample only. The list of the 13 compounds are listed below:

4,4'DDE, 4,4'DDT, 4,4'DDD, Alpha-BHC, Delta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, Dieldrin, Endrin, Endosulfan II, Endosulfan Sulfate, Methoxychlor

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy

and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the following exceptions:

SDG RK98 & RL06: (SVOCs) The %R values for N-Nitrosodiphenylamine were less than the control limit of 60% in the LCS/LCSD samples extracted on 8/30/10. There were no positive results for this compound in the associated batched samples. The reporting limits for N-Nitrosodiphenylamine were qualified (UJ) in all of the associated samples.

SDG RK98: (Pesticides) The %R values for delta-BHC, endosulfan II, endosulfan sulfate, and endrin aldehyde were less than the control limits of 30%, 68%, 60%, and 27% in the LCS sample extracted on 8/31/10. There were no positive results for these compounds in the associated batched samples. The reporting limits for delta-BHC, endosulfan II, endosulfan sulfate, and endrin aldehyde were qualified (UJ) in all of the associated samples.

SDG RL06: (Pesticides) The %R values for delta-BHC was less than the control limit of 30%in the LCS sample extracted on 9/2/10. There were no positive results for this compound in the associated batched samples. The reporting limits for delta-BHC were qualified (UJ) in all of the associated samples.

SDG RK99: (Pesticides) The %R values for delta-BHC and endosulfan sulfate were less than the control limits of 59%, and 60% in the LCS/LCSD sample set extracted on 9/7/10. There were no positive results for these compounds in the associated batched samples. The reporting limits for delta-BHC and endosulfan sulfate were qualified (UJ) in all of the associated samples.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

SDG RK98: One set of field duplicates, Samples PZ-9 and DUP082610, was submitted to the laboratory. All RPD and absolute difference values were within the control limits.

Pesticide Breakdown Check Standards

The laboratory analyzed a DDT Breakdown check standard at the beginning and end of every analytical

batch, All of the % breakdown results were greater than the control limit of 20 %.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry (MS) instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12 hour sample run and the control limits for internal standard recoveries are -50% to +100% of the calibration standard. All internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than +/- 25% and all relative response factors (RRF) were greater than 0.05, with the following exceptions:

SDG RK99 (PAHs): The percent difference (%D) values for pyrene were greater than the control limits of $\pm 25\%$ in the continuing calibration (CCAL) standards analyzed on 9/21/10 and 9/22/10. As this outlier is indicative of a high bias, only the positive results for this compound were qualified as estimated (J) in Samples MW-54, MW-55, MW-56, PA-19, PZ-2, PZ-7, and PZ-11.

Additional Data Quality Issues

The positive results for 2,3,7,8-TCDF were qualified as estimated (J) in Samples MW-23 and PZ-4 because this compound was not confirmed by a secondary column by the laboratory. The positive result for the corresponding TEC value was also qualified as estimated (J).

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions below. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions below:

Based on this validation, data were qualified because of surrogate %R values, LCS/LCSD & MS %R outliers, and continuing calibration %D outliers, and because of no secondary column confirmation being performed at low levels in the dioxin analysis.

Based on this validation, data were rejected because of volatile temperature and holding time outliers, and an MS %R value being less than 10%.

In general, the data are acceptable for use as qualified.

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613, VOLATILES BY METHOD SW8260, SEMIVOLATILES BY METHOD SW8270, PAHS BY METHOD SW8270-SIM, PESTICIDES BY METHOD SW8081, PCBS BY METHOD SW8082, CHLOROPHENOLS BY METHOD SW8041,

TOTAL METALS (INCLUDING MERCURY) BY METHOD EPA6010, 200.8, 7471A TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-GX AND NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
RT41, RT46	MW-62-2-3.5, MW-62-5-6.5, MW-62-10-11.5, MW-62-15-16.5, MW-62-20-21.5, MW-62-25-26.5, MW-62-30-31.5, MW-62-35-36.5, SSB-2-2-3.5, SSB-2-5-6.5, SSB-2-10-11.5, SSB-2-15-16.5, SSB-2-20-20.5, DUPE1-102110
RT40 (6433)	MW-60-2-3.5, MW-60-10-11.5, MW-60-15-16.5, MW-60-20-20.75, MW-60-23-24.4, MW-61-5-6.5, MW-61-10-11.5, MW-61-15-16.5, MW-61-20-21.25, MW-64-2-3.5, MW-64-10-11.5, MW-64-20-20.66, RB-10/18/10-W, RB-102110-W
RT02	SSB-3-2-3.5, SSB-3-10-11.5, SSB-3-15-16.5, SSB-3-20-21.5, SSB-3-25-26.5, SSB-3-27-28.5, SSB-4-5-6.5, SSB-4-10-11.5, SSB-4-15-16.5, SSB-4-21-22.33, RB-102210-W
RU19 (6432)	SSB-1-7-8.5, SSB-1-10-11.5, SSB-1-15-16.5, SSB-20-21.5, SSB-1-25-26.5, SSB-8-2-3.5, SSB-8-5-6.5, SSB-8-10-11.5, SSB-8-15-16.5, SSB-8-20-21.5, SSB-8-25-26.33, DUPE2-102510
RU30, RU69, RU70	RB-102510-W, RB-102610-W, RB-102810-W, GWG-8-W
RS79	MW-63-23-24.5, MW-63-26-27.5
RU43, RU61 (6435, 6436)	GWG-8-2-3.5, GWG-8-10-11.5, GWG-8-15-16.5, DUPE3-102810, SSB-5-10-11.5, SSB-5-15-16.5, SSB-5-20-21.5, SSB-6-5-6.5, SSB-6-10-11.5, SSB-7-2-3.5, SSB-7-10-11.5, SSB-7-20-21.5, SSB-7-25-26.5, SSB-7-30-30.75, SSB-9-2-3.5, SSB-9-5-6.5, SSB-9-10-11.5, SSB-9-15-16.5, SSB-9-20-21.5, SSB-10-2-3.5, SSB-10-5-6.5, SSB-10-10-11.5, SSB-10-15-16.5, SSB-10-20-21.5
RV28, RV17 (6446)	GWG-1-2-3.5, GWG-1-5-6.5, GWG-1-7.5-9, GWG-1-10-11.5, GWG-1-15-16.5, GWG-1-20-21.5, GWG-4-8-9.5, GWG-4-10-11.5, GWG-4-15-16.5, GWG-4-20-21.5, GWG-4-26-27.5, GWG-4-30-31.5, GWG-5-2-3.5, GWG-5-5-6.5, GWG-5A-5-6.5, GWG-5A-10-11.5, GWG-5A-15-16.5, GWG-5A-20-21.5, GWG-5A-24-25.5, GWG-6-2-3.5, GWG-6-5-6.5, GWG-6-10-11.5, GWG-7-2-3.5, GWG-7-5-6.5, GWG-7-7-8.5, RB-110410, RB-110510-W, SSB-6-15-16.5, SSB-6-20-21.5, SSB-6-25-26.5, SSB-6-28-28.75, SSB-6-28-29
RV10, RV13 (6448)	GWG-1-W , GWG-2-W, GWG-3-W , GWG-4-W, GWG-5-W , GWG-6-W, GWG-7-W, RB-110110-W, RB-110210-W, RB-110310-W
RV24	GWG-9-W
RW11, RW18, RW23	MW-62_101109, MW-63_101110, MW-64_101108

RW56, RW60	MW-60_101111, MW-61_101111
------------	----------------------------

PROJECT: RAYONIER MILL (00137-015-03)

This report documents the results of an EPA level III and EPA level IV (one SDG) data validation of analytical data from the analyses of soil and groundwater samples and the associated laboratory quality control (QC) samples. This standard review included the following:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards (Mass Spectrometry)
- DDT/Endrin Breakdown and column confirmations (Pesticides only)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)
- Instrument Tunes
- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution
 - 2. Selected Ion Monitoring switching times
 - 3. GC Resolution
- Reporting Limits
- 2,3,7,8-TCDF secondary column confirmation

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008), National functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (USEPA 2005).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for the analysis, with the following exceptions:

SDG RT40 (Semivolatiles, CPAHs, & Pesticides): The Rinse Blank RB-10/18/10-W was analyzed 3 days outside of the holding time of 7 days. There were no positive results for any semivolatile, CPAH, or pesticides target analytes in this sample. All reporting limits for these three analyses were qualified as estimated (UJ) in this sample.

SDG RU19 (Pesticides): Sample SSB-1-25-26.5 was analyzed 32 days outside of the holding time of 14 days. The positive results and reporting limits for all target analytes were qualified as estimated (J/UJ) in this sample.

SDG RV10 (PCBs): Samples GWG-1-W and GWG-3-W were analyzed several days outside of the holding time of 14 days. These samples were originally extracted/analyzed within holding time, although one or more surrogate %R values were low in each sample. For this reason, the second set of data was chosen for use. The positive results and reporting limits for all target analytes were qualified as estimated (J/UJ) in these samples.

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis.

All surrogate recoveries for field samples were within the laboratory control limits, with the following exceptions:

SDG RT41, RT46 (Semivolatiles): The percent recovery (%R) for at least one of four acid fraction surrogates were less than the laboratory lower control limits in Samples SSB-2-2-3.5, SSB-2-2-3.5 (Re-extraction), SSB-2-5-6.5, DUPE1-102110. As the %R values in at least two other acid-fraction surrogates were within the control limits, no action was taken.

SDG RT40 (CPAHs): The %R value for the surrogate d10-2-methylnapthalene was less than 10% in Sample MW-60-10-11.5. All positive results were qualified as estimated (J) in this sample.

SDG RT40 (VOCs): The %R value for the surrogate d4-1,2-dichloroethane exceeded the control limits in Sample MW-RB-102110-W. As the %R values in three other surrogates were within the control limits, no action was taken.

SDG 6448 (Dioxins): The %R value for the labeled compound 13C-1,2,3,4,6,7,8-HpCDF was less than the control limit of 28% in Sample GWG-1-W. The positive result for the only associated compound 1,2,3,4,6,7,8-HpCDF was qualified as estimated (J) in this sample.

SDG RU19 (Pesticides): The %R for both surrogates were less than the lower control limits in Sample SSB-1-25-26.5. The positive results and reporting limits for all target analytes were qualified as estimated (J/UJ) in this sample.

SDG RU19 (Chlorophenols): There was no surrogate recovery in Samples SSB-1-7-8.5, SSB-1-10-11.5, and DUPE2-102510. The positive results were qualified as estimated (J) in these samples, while the reporting limits for any analytes that were not detected were rejected (R).

SDG RU43 (Chlorophenols): There was no surrogate recovery in Samples SSB-10-2-3.5, SSB-10-5-6.5, and SSB-10-11.5. The positive results were qualified as estimated (J) in these samples, while the reporting limits for any analytes that were not detected were rejected (R).

SDG RV10 (Pesticides): There was no recovery value for tetrachlorometaxylene (TCMX) in Sample GWG-1-W. The %R value for the surrogate decachlorobiphenyl (DCBP) was within the control limits. For this reason, the reporting limits for all target analytes were qualified (UJ), rather than rejected in Sample GWG-1-W.

Method Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks, with the following exceptions:

SDG RT41, RT46 (Semivolatiles): The method blank analyzed on 11/2/10 reported positive detections for 1,4-dichlorobenzene and bis(2-ethylhexyl)phthalate. These compounds were also reported in the associated field samples at levels below the respective action limits. The positive results for this 1,4-dichlorobenzene were qualified as not detected (U) in Samples MW-62-2-3.5, MW-62-5-6.5, MW-62-10-11.5, MW-62-15-16.5, MW-62-20-21.5, SSB-2-5-6.5, SSB-2-10-11.5, SSB-2-15-16.5, SSB-2-20-20.5, SSB-2-25-26.5. The positive results for this bis(2-ethylhexyl)phthalate were qualified as not detected (U) in Samples MW-62-5-6.5, MW-62-10-11.5, MW-62-15-16.5, MW-62-20-21.5, SSB-2-10-11.5.

The method blank analyzed on 11/12/10 reported a positive detection for 1,4-dichlorobenzene. There were no positive results for these compounds greater than the action levels. No further action was

necessary.

SDG RT40 (Semivolatiles): The method blank analyzed on 10/30/10 reported positive detections for 1,4-dichlorobenzene and bis(2-ethylhexyl)phthalate. These compounds were also reported in the associated field samples at levels below the respective action limits. The positive results for this 1,4-dichlorobenzene were qualified as not detected (U) in Samples MW-60-20-20.75 and MW-60-23-24.4. The positive results for this bis(2-ethylhexyl)phthalate were qualified as not detected (U) in Samples MW-61-5-6.5, MW-61-15-16.5, MW-60-2-3.5, MW-60-15-16.5, MW-60-20-20.75, MW-60-23-24.4.

SDG RT40 (CPAHs): The method blank analyzed on 10/30/10 reported positive detections for pyrene and total benzofluoranthenes. These compounds were also reported in the associated field samples at levels below the respective action limits. The positive results for pyrene were qualified as not detected (U) in Samples MW-61-20-21.25 and MW-60-23-24.4. The positive results for total benzofluoranthenes were qualified as not detected (U) in Samples MW-61-10-11.5, MW-61-15-16.5 and MW-60-20-20.75.

SDG RT02 (Semivolatiles): The method blank analyzed on 11/2/10 reported positive detections for 1,4-dichlorobenzene and bis(2-ethylhexyl)phthalate. These compounds were also reported in the associated field samples at levels below the respective action limits. The positive results for 1,4-dichlorobenzene were qualified as not detected (U) in Samples SSB-3-10-11.5, SSB-3-15-16.5, SSB-3-20-21.5, SSB-3-27-28.5. The positive results for this bis(2-ethylhexyl)phthalate were qualified as not detected (U) in Samples SSB-3-10-11.5, SSB-3-15-16.5, SSB-3-20-21.5, SSB-3-25-26.5.

SDG RU30, RU69, RU70 (CPAHs): The method blank analyzed on 11/1/10 reported positive detections for six out of the seven target analytes. Of these compounds, only pyrene and benzo(a)anthracene were also reported in any of the associated field samples at levels below the respective action limits. The positive results for pyrene and benzo(a)anthracene were qualified as not detected (U) in Sample RB-102610-W.

SDG RU43, RU61 (Semivolatiles): The method blank analyzed on 11/8/10 reported a positive detection for 1,4-dichlorobenzene. This compound was also reported in the associated field samples at levels below the respective action limits. The positive results for this 1,4-dichlorobenzene were qualified as not detected (U) in Samples SSB-10-15-16.5, SSB-10-20-21.5, GWG-8-2-3.5, GWG-8-10-11.5, GWG-8-15-16.5, DUPE3-102810, SSB-7-2-3.5, SSB-7-10-11.5, SSB-7-20-21.5, SSB-7-25-26.5, SSB-7-30-30.75.

SDG RU28, RV17 (Semivolatiles): The method blank analyzed on 11/10/10 reported positive detections for 1,4-dichlorobenzene and bis(2-ethylhexyl)phthalate. These compounds were also reported in the associated field samples at levels below the respective action limits. The positive results for 1,4-dichlorobenzene were qualified as not detected (U) in Samples GWG-6-2-3.5, GWG-6-5-6.5, GWG-6-10-11.5, GWG-7-2-3.5, GWG-7-5-6.5, GWG-7-7-8.5, GWG-5A-10-11.5, GWG-5A-15-16.5, GWG-5A-24-25.5. The positive results for bis(2-ethylhexyl)phthalate were qualified as not detected (U) in Samples GWG-6-2-3.5, GWG-6-10-11.5, GWG-7-5-6.5, GWG-7-7-8.5, GWG-5A-5-6.5, GWG-5A-10-11.5, GWG-5A-10-11.5, GWG-5A-15-16.5, GWG-5A-24-25.5.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Three equipment rinsate blanks were collected: RB-10/18/10-W, RB-102110-W, RB-102210-W, RB-102510-W, RB-102610-W, RB-102710-W, RB-102810-W, RB-110110-W, RB-110210-W, RB-110310-W, RB-110410-W.

SDG RT40 & RT02 (Metals): There were positive results for copper, manganese, nickel, and vanadium in the equipment blanks RB-102110-W and RB-102210-W. The associated field samples for these rinsate blanks reported positive results for these elements at levels greater than the action levels. No further action was required.

SDG RV10 (Metals): There was a positive result for copper in the equipment blank RB-110210-W. Also, there was a positive result for manganese in the equipment blank RB-110310-W. The associated field samples for this rinsate blank reported positive results for this element at levels greater than the action levels. No further action was required.

SDG RV28 (Metals): There was a positive result for copper in the equipment blank RB-110410-W. The associated field samples for this rinsate blank reported positive results for this element at levels greater than the action levels. No further action was required.

SDG RU30, RU69, RU70 (Semivolatiles): There was a positive result for bis(2-ethylhexyl)phthalate in the equipment blank RB-102510-W. The associated field Samples SSB-1-7-8.5, SSB-1-10-11.5, SSB-1-15-16.5, SSB-1-25-26.5 reported positive results for this compound at levels greater than the action level for this compound. No further action was necessary.

SDG RV10, RV13 (Semivolatiles): There was a positive result for bis(2-ethylhexyl)phthalate in the equipment blank RB-110210-W. The associated field Sample GWG-6-W reported a positive result for this compound at levels that were less than the action level for this compound. The positive result for bis(2-ethylhexyl)phthalate was qualified as not detected (U) in Sample GWG-6-W.

SDG RU19 and RU30 (Dioxins): There was a positive result for OCDD in the equipment blank RB-102510-W. The associated field Samples SSB-1-7-8.5, SSB-1-10-11.5, SSB-1-15-16.5, SSB-1-20-21.5, SSB-1-25-26.5 reported positive results at levels greater than ten times the blank concentration for this compound. No further action was necessary.

SDG RV10 (Dioxins): There was a positive result for OCDD in the equipment blank RB-110310-W. The associated field Samples GWG-1-2-3.5, GWG-1-5-6.5, GWG-1-7.5-9 and GWG-5-W reported positive results at levels greater than ten times the blank concentration for this compound. No further action was necessary.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. Typically, samples are stored in a cooler for as much as 24 hours before arriving at the laboratory. Seven trip blanks were collected: TB082510GRL, TB082610GRL, TB082710GRL, TB082510JBA, TB082610JBA, TB082710JBA, and TRIP BLANK. None of the volatiles analytes were detected above the reporting limits in any of the trip blanks.

In all cases, the blank contamination qualified results should be recognized as a reporting limit, instead of a positive result for data users.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the following exceptions:

SDG RU43, RU61 (Semivolatiles): A MS/MSD sample set was performed on Sample SSB-7-2-3.5. There were no recovery values for 3,3'-Dichlorobenzidine in either the MS or the MSD. There was no positive

result for this compound in the parent sample. The reporting limits for 3,3'-Dichlorobenzidine were rejected (R) in the parent sample.

SDG RU28, RV17 (Semivolatiles): A MS/MSD sample set was performed on Sample GWG-6-5-6.5. The %R values for 2,4'-Dinitrotoluene were less than the control limits in both the MS and the MSD. There was no positive result for this compound in the parent sample. The reporting limits for 2,4'-Dinitrotoluene were qualified as estimated (UJ) in the parent sample.

SDG RT40 (Total Metals): A matrix spike sample set was performed on Sample MW-64-2-3.5. The %R value for antimony was less than 10% in the spiked sample. The %R values for antimony was within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

SDG RT41 (Total Metals): A matrix spike sample set was performed on Sample SSB-2-2-3.5. The %R value for antimony was less than 10% in the spiked sample. The %R values for antimony was within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

SDG RT02 (Total Metals): A matrix spike sample set was performed on Sample SSB-4-5-6.5. The %R values for antimony, lead, nickel, and selenium were outside of the control limits in the spiked sample. The %R values for these elements were within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

SDG RU19 (Total Metals): A matrix spike sample set was performed on Sample SSB-8-2-3.5. The %R values for antimony, lead, nickel, and vanadium were outside of the control limits in the spiked sample. The %R values for these elements were within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

SDG RU43 (Total Metals): A matrix spike sample set was performed on Sample SSB-10-2-3.5. The %R values for antimony and nickel were outside of the control limits in the spiked sample. The %R values for these elements were within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

SDG RV17 (Total Metals): A matrix spike sample set was performed on Sample GWG-6-2-3.5. The %R value for antimony was outside of the control limits in the spiked sample. The %R value for this element was within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

SDG RV28 (Total Metals): A matrix spike sample set was performed on Sample GWG-5-2-3.5. The %R values for antimony, chromium, copper, lead, and mercury were outside of the control limits in the spiked sample. The %R value for these elements was within the control limits in the post digest spike sample. According to the National Functional Guidelines, no further action is required.

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field

samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

The RPD control limits for soil samples is 50%, while the RPD control limits for water samples is 35%. The absolute difference control limits for soil samples is twice the PQL value, while the absolute difference control limits for water samples is the same as the PQL value.

In cases where any of the cPAH compounds or Dioxin/Furan congeners were qualified for precision, the resulting TEC value was also qualified as estimated (J) in that sample.

SDG RT41,46 (CPAHs): One set of field duplicates, Samples SSB-2-5-6.5 & DUPE1-102110, was submitted to the laboratory. The RPD/absolute difference values for all CPAH compounds exceeded the control limits described above. All positive results were qualified as estimated (J) in both samples.

SDG RT41,46 (PCBs): One set of field duplicates, Samples SSB-2-5-6.5 & DUPE1-102110, was submitted to the laboratory. The RPD/absolute difference values for PCB 1260 and Total PCBs (sum of Aroclors) exceeded the control limits described above. All positive results were qualified as estimated (J) in both samples.

SDG RT43, RU61 (Semivolatiles): One set of field duplicates, Samples GWG-8-2-3.5 & DUPE3-102810, was submitted to the laboratory. The absolute difference value for bis(2-ethylhexyl)phthalate exceeded the control limit. This compound was qualified as estimated (J) in both parent and duplicate samples.

SDG RT43, RU61 (CPAHs), (Metals), (Fuels), (Chlorophenols): One set of field duplicates, Samples GWG-8-2-3.5 & DUPE3-102810, was submitted to the laboratory. The absolute difference value for chrysene exceeded the control limit. This compound was qualified as estimated (J) in both parent and duplicate samples.

SDG RT43, RU61 (Metals), (Fuels), (Chlorophenols): One set of field duplicates, Samples GWG-8-2-3.5 & DUPE3-102810, was submitted to the laboratory.

SDG RU19 (Pesticides & PCBs): One set of field duplicates, Samples SSB-1-10-11.5 & DUPE2-102510, was submitted to the laboratory. The precision requirements mentioned above were met for all target analytes.

Pesticide Breakdown Check Standards and Dual Column Confirmations

The laboratory analyzed a DDT Breakdown check standard at the beginning and end of every analytical batch, All of the % breakdown results were greater than the control limit of 20 %.

SDG RU61 (Pesticides): The Aroclor 1260 column confirmation RPD value was greater than 40% in Sample SSB-7-23.5. This positive result was qualified as estimated (J).

Internal Standards (Low Resolution Mass Spectroscopy)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry (MS) instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12 hour sample run and the control limits for internal standard recoveries are -50% to +100% of the calibration standard. All internal standard recoveries were within the control limits.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

SDG RU30 (Pesticides): The initial calibration (secondary column 11/11/10) used less than five standards for the analyte delta-BHC. However, this analyte was appropriately calibrated for on the primary column, and there were no positive detections for this compound in the associated field samples. No action was required.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than +/- 25% and all relative response factors (RRF) were greater than 0.05, with the following exceptions:

SDG RT41,46 (Semivolatiles): The percent difference (%D) values for 2,4-Dinitrotoluene were less than the control limits of $\pm 25\%$ in the continuing calibration (CCAL) standards analyzed on 11/5/10 and 11/15/10. The reporting limits for this compound were qualified as estimated (UJ) in Samples MW-62-2-3.5, SSB-2-2-3.5, DUPE1-102110.

SDG RT40 (Semivolatiles): The %D values for 2,4-Dinitrotoluene were less than the control limits of $\pm 25\%$ in the continuing calibration (CCAL) standards analyzed on 11/4/10. The reporting limits for this compound were qualified as estimated (UJ) in Samples RB-10/18/10-W, RB-102110-W.

SDG RT02 (Semivolatiles): The %D values for 2,4-Dinitrotoluene were less than the control limits of $\pm 25\%$ in the continuing calibration (CCAL) standards analyzed on 11/4/10. The reporting limit for this compound was qualified as estimated (UJ) in Sample RB-102210-W.

The %D values for 2,4-Dinitrotoluene were less than the control limits of $\pm 25\%$ in the continuing calibration (CCAL) standards analyzed on 11/5/10. The reporting limits for this compound were qualified as estimated (UJ) in Samples SSB-3-2-3.5, SSB-3-10-11.5, SSB-3-15-16.5, SSB-3-20-21.5, SSB-3-25-26.5, SSB-3-27-28.5.

SDG RU28, RV17 (Semivolatiles): The %D values for 2,4-Dinitrotoluene were less than the control limits of ±25% in the continuing calibration (CCAL) standards analyzed on 11/15/10. The reporting limits for this compound were qualified as estimated (UJ) in Samples GWG-6-2-3.5, GWG-6-5-6.5, GWG-6-10-11.5, GWG-7-2-3.5, GWG-7-5-6.5, GWG-7-7-8.5, GWG-5-2-3.5, GWG-5A-5-6.5, GWG-5A-10-11.5, GWG-5A-15-16.5, GWG-5A-20-21.5.

SDG RU19 (Pesticides): The secondary column %D values for delta-BHC and heptachlor were both outside of the control limits of $\pm 25\%$ in the opening and closing CCAL standards analyzed on 12/10/10 (18:09 and 20:35). The primary column %D values for these analytes were within the control limits, no qualification was required.

SDG RV17 (Pesticides): The secondary column %D value for 4,4-'DDD was outside of the control limit of $\pm 25\%$ in the CCAL standard analyzed on 11/28/10 (02:13). The primary column %D value for this analyte was within the control limits, no qualification was required.

Internal Standards (Low Resolution Mass Spectroscopy)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry (MS) instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12 hour sample run and the control limits for internal standard recoveries are -50% to +100% of the calibration standard. All internal standard recoveries were within the control limits.

SDG 6432 (Dioxins): The positive result for 2,3,7,8-TCDF in Sample SSB-1-10-11.5 was not verified by a secondary column as described above. For this reason, the positive result for 2,3,7,8-TCDF was qualified as estimated (J) in this sample.

SDG 6448 (Dioxins): The positive results for 2,3,7,8-TCDF in Samples GWG-1-W, GWG-3-W, and GWG-5-W were not verified by a secondary column as described above. For this reason, the positive result for 2,3,7,8-TCDF was qualified as estimated (J) in this sample.

SDG 6446 (Dioxins): The positive result for 2,3,7,8-TCDF in Sample GWG-1-5-6.5 was not verified by a secondary column as described above. For this reason, the positive result for 2,3,7,8-TCDF was qualified as estimated (J) in this sample.

Reporting Limits and Miscellaneous

SDG RU43, RU61 (Semivolatiles): The compound bis(2-ethylhexyl)phthalate exceeded the linear range of the instrument in Samples SSB-7-20-21.5, SSB-10-10-11.5 and DUPE3-102810. For this reason, these samples were diluted by the laboratory and re-analyzed. Both sets of data were reported. In each sample, the initial reported result for bis(2-ethylhexyl)phthalate was labeled as "Not reportable" in the database. Also in each sample, the diluted reporting limits for all target analytes except bis(2-ethylhexyl)phthalate were labeled as "Not reportable" in the database.

SDG RU28, RV17 (Semivolatiles): The compound bis(2-ethylhexyl)phthalate exceeded the linear range of the instrument in Sample GWG-5A-20-21.5. For this reason, this sample was diluted by the laboratory and re-analyzed. Both sets of data were reported. In this sample, the initial reported result for bis(2-ethylhexyl)phthalate was labeled as "Not reportable" in the database. Also, the diluted reporting limits for all target analytes except bis(2-ethylhexyl)phthalate were labeled as "Not reportable" in the database.

These database qualifiers were assigned so that only one set of target analytes would be displayed in any data tables derived from the database.

SDG RT40 (CPAHs): The compound pyrene exceeded the linear range of the instrument in Sample MW-60-15-16.5. For this reason, this sample was diluted by the laboratory and re-analyzed. Both sets of data were reported. In each sample, the initial reported result for pyrene was labeled as "Not reportable" in the database. Also in each sample, the diluted reporting limits for all target analytes except pyrene were labeled as "Not reportable" in the database.

All Pesticides and PCBs: The laboratory indicated that several samples were screened before extraction because of the probable affects of natural matrix interference. In cases where certain Aroclors and pesticides could not be distinguished because of chromatographic interference, the laboratory raised the reporting limits, and indicated this with a "Y" qualifier. These data points were appropriately taken through the validation process, and these reporting limits were qualified (UI) in GeoEngineer's database.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions mentioned above. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions mentioned above.

Data were qualified because of holding time, surrogate %R, MS/MSD %R, field duplicate RPD/absolute difference, dual column confirmation precision, CCAL %D outliers, and because of no secondary column confirmation being performed at low levels in the dioxin analysis.

Data were qualified as not detected because of method blank and equipment blank contamination.

In general, the data are acceptable for use as qualified.

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613, SEMIVOLATILES BY METHOD SW8270, PAHS BY METHOD SW8270-SIM, PCBs BY METHOD SW8082, CHLOROPHENOLS BY METHOD SW8041,

TOTAL & DISSOLVED METALS (INCLUDING MERCURY) BY METHODS 200.8, 6010A & 7470A
TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-GX & NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
SD95, SD99 (6524)	PIPE-1-SR23
SD94, SF62 (TCLP only)	TP-01-2', TP-01-8' , TP-01-10', TP-02-2' , TP-02-8' , TP-02-9', TP-03-2', TP-03-4', TP-03-7' , TP-12-2' , TP-12-4' , TP-DUPE-1
SD96, SE71 (TCLP only)	TP-09-2', TP-09-3', TP-09-5', TP-10-2', TP-10-3', TP-11-2', TP-11-5' , TP-11-7', TP-14-2', TP-14-3' , TP-14-5', TP-15-2' , TP-15-4', TP-15-5', TP-16-5', TP-21-3', TP-DUPE-3
SD98	TP-04-2', TP-04-7', TP-05-2' , TP-05-6' , TP-05-8', TP-06-3', TP-06-7', TP-07-2' , TP-07-6' , TP-07-8', TP-08-2', TP-08-5', TP-DUPE-2

PROJECT: RAYONIER MILL (00137-015-03)

This report documents the results of an EPA level III data validation of analytical data from the analyses of groundwater and the associated laboratory quality control (QC) samples. This standard review normally includes the following:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards (Mass Spectrometry)
- DDT/Endrin Breakdown confirmations (Pesticides only)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)

- Instrument Tunes
- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution
 - 2. Selected Ion Monitoring switching times
 - 3. GC Resolution
- Reporting Limits and Miscellaneous
- 2,3,7,8-TCDF secondary column confirmation

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 2002) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 2008), National functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (USEPA 2005).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses, with the exceptions below:

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

SD94 (Semivolatiles): The percent recovery (%R) value for 2,4,6-tribromophenol was less than the control limit in Sample TP-12-2'. There were three other acidic surrogates with %R values that were within the control limits. No qualifiers were required.

SD95 (Semivolatiles): The %R value for d14-p-Terphenyl was less than the control limits in Sample PIPE-1-SR23. There were three other base-neutral surrogates with %R values that were within the control limits. No qualifiers were required.

SD98 (Semivolatiles): The %R values for the acidic fraction surrogates d5-phenol, 2-fluorophenol, 2,4,6-tribromophenol, and d4-2-chlorophenol were all less than 10% in Samples TP-4-2' and TP-4-7'. The SVOC target analyte list only included base-neutral compounds in this phase of the project. For this reason, no qualifiers were required in either case.

SD94 (CPAHs): The %R value for d10-2-methylnapthalene was greater than the control limit in Sample TP-2-8'. The positive results for pyrene, benzo(a)pyrene, and the resulting TEQ value were qualified as estimated (J) in this sample.

SD96 (CPAHs): The %R value for d10-2-methylnapthalene was greater than the control limit in Sample TP-11-5'. The positive results for six target analytes and the resulting TEQ value were qualified as estimated (J) in this sample.

Method Blanks, Trip Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks.

In all cases, any blank contamination qualified results should be recognized as a reporting limit, instead of a positive result for data users.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses and the relative percent difference (RPD) is used as a measurement of precision. For some organic analytical methods, such as

NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the exception below:

SD94 (Semivolatiles): An MS/MSD sample set was performed on Sample TP-01-8'. The %R value for 3,3'-dichlorobenzidine was less than 10% in the MS, while the %R value was acceptable in the MSD. The reporting limit for this analyte was qualified as estimated (UJ), rather than rejected (R) in the parent sample.

SD94 (CPAHs): An MS/MSD sample set was performed on Sample TP-03-4'. The %R values for several analytes were greater than the control limits in the MS and MSD. The parent sample had at least one analyte that had a concentration that exceeded the linear range of the instrument. For this reason, no qualifiers were required.

SD94 (Metals): The laboratory performed a matrix spike on Sample TP-02-2'. The %R values for Total Antimony and Total Manganese were greater outside of the control limits of 75% to 125%. The Total Antimony recovery in the post spike was within the control limits. The parent sample concentration of manganese was greater than four times the amount spiked into the sample, no action was required.

SD96 (Metals): The laboratory performed a matrix spike on Sample TP-05-2'. The %R values for Total Antimony and Total Manganese were greater outside of the control limits of 75% to 125%. The Total Antimony recovery in the post spike was within the control limits. The parent sample concentration of manganese was greater than four times the amount spiked into the sample, no action was required.

SD98 (Metals): The laboratory performed a matrix spike on Sample TP-05-2'. The %R values for Total Antimony and Total Manganese were greater outside of the control limits of 75% to 125%. The Total Antimony recovery in the post spike was within the control limits. The parent sample concentration of manganese was greater than four times the amount spiked into the sample, no action was required.

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

The RPD control limits for soil samples is 50%, while the RPD control limits for water samples is 35%. The absolute difference control limits for soil samples is twice the PQL value, while the absolute difference control limits for water samples is the same as the PQL value.

In cases where any of the cPAH compounds or Dioxin/Furan congeners were qualified for precision, the resulting TEC value was also qualified as estimated (J) in that sample.

SDG SD94: One set of field duplicates, Samples TP-02-8' & TP-DUPE-1, was submitted to the laboratory.

(SVOCs): There were no positive results in either sample. However, the reporting limits for Sample TP-DUPE-1 were more than twice the reporting limits in Sample TP-02-8'. This indicates a potential lack of precision in the field duplicates. For this reason, all reporting limits in both samples were qualified as estimated (UJ).

(CPAHs): The RPD/absolute difference values for chrysene, benzo(a)pyrene, total benzofluoranthenes, and the TEQ value exceeded the control limits described above. All positive results and reporting limits were qualified as estimated (J/UJ) in both samples.

(PCBs, Chlorophenols, Fuels, Metals): The precision requirements mentioned above were met for all target analytes.

SDG SD96: One set of field duplicates, Samples TP-11-5' & TP-DUPE-3, was submitted to the laboratory.

(SVOCs, CPAHs, PCBs, Chlorophenols, Fuels, Metals): The precision requirements mentioned above were met for all target analytes.

SDG SD98: One set of field duplicates, Samples TP-07-2' & TP-DUPE-2, was submitted to the laboratory.

(SVOCs, PCBs, Chlorophenols, Fuels): The precision requirements mentioned above were met for all target analytes.

(CPAHs): The absolute difference value for benzo(a)pyrene exceeded the control limits described above. The positive results were qualified as estimated (J) in both samples.

(PCBs): The absolute difference value for benzo(a)pyrene exceeded the control limits described above. The positive results were qualified as estimated (J) in both samples.

(Total Metals): The RPD value for arsenic exceeded the control limits described above. The positive results were arsenic were qualified as estimated (J) in all samples in the sample delivery group.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry (MS) instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12 hour sample run and the control limits for internal standard recoveries are -50% to +100% of the calibration standard. All internal standard recoveries were within the control limits.

(CPAHs): Several internal standard recovery values were greater than the control limits mentioned above. These outliers were indicative of an instrumental high bias, leaving the reporting limits for non-detected analytes unaffected.

(SDG SD94): The positive results for all target analytes and the resulting TEQ values were qualified as estimated (J) in Samples TP-03-2', TP-03-4', and TP-01-8' because the internal standards d12-chrysene and d12-perylene were outside the control limits. The positive results for pyrene, benzo(a)anthracene, chrysene, and the resulting TEQ values were qualified as estimated (J) in Samples TP-02-4', TP-12-2', and TP-12-4' because the internal standard d12-chrysene was outside the control limits.

(SDG SD96): The positive results for all target analytes and the resulting TEQ values were qualified as estimated (J) in Samples TP-11-5', TP-15-2', and TP-DUPE-3' because the internal standards d12-chrysene and d12-perylene were outside the control limits. The positive results for pyrene, benzo(a)anthracene, chrysene, and the resulting TEQ value were qualified as estimated (J) in Sample TP-14-3' because the internal standard d12-chrysene was outside the control limits. The positive results for benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, total benzofluoranthenes, and the resulting TEQ values were qualified as estimated (J) in Samples TP-09-3' and TP-11-2' because the internal standard d12-perylene was outside the control limits.

(SDG SD98): The positive results for benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, total benzofluoranthenes, and the resulting TEQ values were qualified as estimated (J) in Samples TP-07-2' and TP-08-2' because the internal standard d12-perylene was outside the control limits.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than +/-25% and all relative response factors (RRF) were greater than 0.05.

Initial Three HRGC/HRMS system performance checks (Dioxins/Furans only)

There are three fundamental system performance checks that must be conducted for every analytical batch of dioxin/furan samples, according to method EPA 1613. Mass calibration and resolution is the first part of the three fundamental High Resolution Gas Chromatography/HRMS (HRGC/HRMS) system performance checks. The second fundamental performance check is the Mass Spectrometer Selected Ion Monitoring (SIM) scan descriptor switching times. The third fundamental performance check is Gas Chromatograph (GC) resolution.

All three of these performance checks were appropriately conducted and no findings of significance were observed from this validation.

Reporting Limits and Miscellaneous

CPAHs: The laboratory flagged several results with an "M", indicating that there was a low spectral match which reduced confidence in the qualitative analysis of the sample result. Consequently, the results listed below were qualified as tentatively identified (NJ) in the associated samples. The resulting TEQ values from these samples should be considered estimates.

Sample ID	Analytes
TP-02-2'	Total Benzofluoranthenes
TP-02-8'	Pyrene
TP-03-7'	Benzo(a)anthracene, Benzo(a)pyrene, Total Benzofluoranthenes, Chrysene
TP-DUPE-1	Benzo(a)pyrene, Total Benzofluoranthenes, Chrysene, pyrene

SDG SD95 (CPAHs): The compound pyrene exceeded the linear range of the instrument in Sample PIPE-1-SR23. For this reason, this sample was diluted by the laboratory and re-analyzed. Both sets of data were reported. In each sample, the initial reported result for pyrene was qualified as "Not reportable" in the database. Also in each sample, the diluted reporting limits for all target analytes except pyrene were qualified as "Not reportable" in the database.

SDG SD95 (Chlorophenols): The positive result for pentachlorophenol in Sample PIPE-1-SR23 could not be confirmed by a secondary column confirmation by the laboratory because of chromatographic interference. For this reason, the positive result for this target analyte was qualified as tentatively identified (NJ).

Reporting Limits

SVOCs: Samples TP-02-8', TP-03-7', TP-12-2', TP-12-4', TP-DUPE-1, TP-11-5', TP-14-3; TP-15-2', and TP-DUPE-3' were analyzed at dilutions or used a lower amount of mass in the initial extraction. In any case the outcome was to effectively raise the reporting limits to levels greater than those prescribed in the QAPP due to potential matrix interference. There were no positive results for any target analytes in these samples.

CPAHs: Samples TP-01-8', TP-02-2', TP-02-8', TP-12-2', TP-12-4, 'TP-DUPE-1, TP-11-5', TP-14-3; TP-15-2', and TP-DUPE-3' were analyzed at dilutions or used a lower amount of mass in the initial extraction. In any case the outcome was to effectively raise the reporting limits to levels greater than those prescribed in

the QAPP due to potential matrix interference. There were no positive results for any target analytes in these samples.

All Chlorophenols and/or PCBs: The laboratory indicated that several samples were screened before extraction because of the probable affects of natural matrix interference. In cases where certain Aroclors and pesticides could not be distinguished because of chromatographic interference, the laboratory raised the reporting limits, and indicated this with a "Y" qualifier. These data points were appropriately taken through the validation process, and these reporting limits were qualified (UI) in GeoEngineer's database.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions mentioned above. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions noted above.

Data were qualified as estimated because of surrogate outliers, MS/MSD %R outliers, field duplicate precision outliers, and internal standard recovery outliers.

Data were tentatively identified because of LR/MS poor spectral matches.

Several reporting limits were elevated because of chromatographic/spectral interferences.

In general, the data are acceptable for use as qualified.

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613,
PAHS BY METHOD SW8270-SIM,
PCBS BY METHOD SW8082,
CHLOROPHENOLS BY METHOD SW8041,
TOTAL METALS (INCLUDING MERCURY) BY METHOD EPA6010, 200.8, 7471A
TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-GX AND NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
SN00, SN06, SN01 (Mercury only) (6667)	MW-65-110311-W, MW-66-110311-W , MW-67-110311-W, RB-110309-W_*2011, RB-110310-W_*2011
SN03 (6667)	MW-65-5-6.5 , MW-65-15-16.5 , MW-66-2.5-4 , MW-66-15-16.5 , MW-66-30-30.5, MW-67-2-3.5, MW-67-15-16.5 , MW-67-25-25.5
SV93	MW68-5.5-6, MW68-13-14 , MW69-2-3.5 , MW69-5-6.5, MW69-10-11.5, MW69-15-16.5 , MW69-20-21.5, MW69-25-26.5, MW69-29-30 , MW70-2-3.5 , MW70-5-6.5 , MW70-10-11.5, MW70-15-16.5, MW70-20-21.5 , MW70-25-26.5
SX49	MW-68-55

PROJECT: RAYONIER MILL (00137-015-03)

This report documents the results of an EPA level III data validation of analytical data from the analyses of groundwater and the associated laboratory quality control (QC) samples. This standard review normally includes the following:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards (Mass Spectrometry)
- DDT/Endrin Breakdown confirmations (Pesticides only)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)
- Instrument Tunes

- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution
 - 2. Selected Ion Monitoring switching times
 - 3. GC Resolution
- 2,3,7,8-TCDF secondary column confirmation

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data: and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008), National functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (USEPA 2005).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection.

Established holding times were met for all analyses.

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

SDG SV93 (Chlorophenols): The %R value for 2,4,6-tribromophenol was less than 10% in Sample MW70-2-3.5. For this reason, the laboratory re-extracted and analyzed this sample a second time with the surrogate value being within the control limit. Only the re-extracted data was used for the purposes of this report.

Method Blanks, Trip Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks, with the exceptions below:

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Two equipment rinsate blanks were collected: RB-110309-W (collected on 3/9/11) and RB-110310-W (collected on 3/10/11).

SDG SN06 (Metals): There was a positive result for manganese in the equipment blank collected on 3/9/11. The associated field Samples MW-66-2.5-4, MW-66-15-16.5, MW-66-30-30.5, MW-67-2-3.5, MW-67-15-16.5, and MW-67-25-25.5 reported positive results for this compound at a levels greater than the action level for this compound. No qualifiers were required.

SDG SV93 (Semivolatiles): The method blank analyzed on 5/17/11 reported a positive detection for bis(2-ethylhexyl)phthalate. The positive results for bis(2-ethylhexyl)phthalate were qualified as not detected (U) in Samples MW68-13-14, MW69-2-3.5, MW69-15-16.5, MW69-29-30, MW69-2-3.5, MW70-5-6.5, MW70-20-21.5.

SDG SX49 (Semivolatiles): The method blank analyzed on 5/28/11 reported a positive detection for bis(2-ethylhexyl)phthalate. The positive result for bis(2-ethylhexyl)phthalate was qualified as not detected (U) in Sample MW68-55.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. No Trip Blanks were collected in this sampling event.

In all cases, the blank contamination qualified results should be recognized as a reporting limit, instead of a positive result for data users.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of

analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spiked sample". If the post spiked sample recoveries are within the control limits, no qualifiers are required.

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

SNO3 (Metals): The laboratory performed a matrix spike on Sample MW-65-5-6.5. The %R values for Total Antimony and Total Vanadium were less than the control limits of 75% to 125%. The Total Antimony and Total Vanadium recoveries in the post spike were within the control limits, no action was required.

Laboratory Control Samples / Laboratory Control Sample Duplicates (LCS/LCSD) or Ongoing Precision & Accuracy (OPR) Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

The RPD control limits for soil samples is 50%, while the RPD control limits for water samples is 35%. The absolute difference control limits for soil samples is twice the PQL value, while the absolute difference control limits for water samples is the same as the PQL value.

In cases where any of the cPAH compounds or Dioxin/Furan congeners were qualified for precision, the resulting TEC value was also qualified as estimated (J) in that sample.

Pesticide Breakdown Check Standards

The laboratory analyzed a DDT Breakdown check standard at the beginning and end of every analytical batch, All of the % breakdown results were greater than the control limit of 20 %.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry (MS) instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12 hour sample run and the control limits for internal standard recoveries are -50% to +100% of the calibration standard. All internal standard recoveries were within the control limits.

(CPAHs): Several internal standard recovery values were less than the control limits mentioned above. These outliers were indicative of an instrumental low bias. Therefore, the reporting limits for non-detected analytes were qualified as well as the positive results.

(SDG SN03): The reporting limits for pyrene, benzo(a)anthracene, chrysene, and the resulting TEQ value were qualified as estimated (UJ) in Samples MW-65-15-16.5 and MW-67-15-16.5 because the internal standard d12-chrysene was lower than the control limits. The positive results and reporting limits for benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, total benzofluoranthenes, and the resulting TEQ value were qualified as estimated (J/UJ) in Sample MW-65-5-6.5 because the internal standard d12-perylene was outside the control limits.

Initial Three HRGC/HRMS system performance checks (Dioxins/Furans only)

There are three fundamental system performance checks that must be conducted for every analytical batch of dioxin/furan samples, according to method EPA 1613. Mass calibration and resolution is the first part of the three fundamental High Resolution Gas Chromatography/HRMS (HRGC/HRMS) system performance checks. The second fundamental performance check is the Mass Spectrometer Selected Ion Monitoring (SIM) scan descriptor switching times. The third fundamental performance check is Gas Chromatograph (GC) resolution.

All three of these performance checks were appropriately conducted and no findings of significance were observed from this validation.

3,7,8-TCDF secondary column confirmation

Isomer specificity for all 2,3,7,8-substituted dioxins and furans cannot be achieved on the one 60-meter DB-5 column alone. Historically, problems have been associated with the separation of 2,3,7,8-TCDF from 1,2,3,9-TCDF and 2,3,4,7-TCDF. There are significant toxicological concerns associated with 2,3,7,8-TCDF; therefore, a second column confirmation is used and additional analyses may be required for some samples.

The National Functional Guidelines state "If second-column confirmation is required but was not performed, qualify the 2,3,7,8-TCDF detects as unusable "R"". However, the laboratory (Frontier Analytical) is using calibration standards that are lower than the levels prescribed by EPA Method 1613 in order to achieve the concentration levels prescribed in the QAPP. In this analysis, the confirmation column (DB-225) cannot be relied on to see below 10 pg/L, as the target analyte peaks cannot be

separated from chromatographic noise. For this reason, any positive results that have not been confirmed by a secondary column were qualified as estimated (J), rather than rejected, in the following samples.

SDG 6667: MW-65-5-6.5, MW-66-2.5-4, MW-66-15-16.5

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than +/- 25% and all relative response factors (RRF) were greater than 0.05.

Reporting Limits and Miscellaneous

CPAHs: The laboratory flagged several results with an "M", indicating that there was a low spectral match which reduced confidence in the qualitative analysis of the sample result. Consequently, the results listed below were qualified as tentatively identified (NJ) in the associated samples. The resulting TEQ values from these samples should be considered estimates.

Sample ID	Analytes
MW-66-110311-W	Dibenz(a,h)anthracene

SDG SN00 (CPAHs): The compound pyrene exceeded the linear range of the instrument in Samples MW-66-110311-W and MW-66-2.5-4. For this reason, these samples were diluted by the laboratory and reanalyzed. Both sets of data were reported. In each sample, the initial reported result for pyrene was qualified as "Not reportable" in the database. Also in each sample, the diluted reporting limits for all target analytes except pyrene were qualified as "Not reportable" in the database.

These database qualifiers were assigned so that only one set of target analytes would be displayed in any data tables derived from the database.

SDG SV93 (Chlorophenols): Sample MW70-2-3.5 was re-extracted and analyzed because the %R value for the surrogate 2,4,6-tribromophenol was less than the control limits. Both sets of data were reported. The initial reported results for pentachlorophenol and 2,4,6-trichlorophenol were qualified as "Not reportable" in the database.

These database qualifiers were assigned so that only one set of target analytes would be displayed in any data tables derived from the database.

All Chlorophenols and/or PCBs: The laboratory indicated that several samples were screened before extraction because of the probable affects of natural matrix interference. In cases where certain Aroclors and pesticides could not be distinguished because of chromatographic interference, the laboratory raised

the reporting limits, and indicated this with a "Y" qualifier. These data points were appropriately taken through the validation process, and these reporting limits were qualified (UI) in GeoEngineer's database.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions mentioned above. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions mentioned above.

Data were tentatively identified because of LR/MS poor spectral matches.

Several reporting limits were elevated because of chromatographic/spectral interferences.

Data were qualified as estimated because there no secondary column confirmation could be performed at low levels.

Data were qualified as not detected because of method blank contamination.

In general, the data are acceptable for use as qualified.

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613,
VOLATILES BY METHOD SW8260,
SEMIVOLATILES BY METHOD SW8270,
PAHS BY METHOD SW8270-SIM,
PESTICIDES BY METHOD SW8081,
PCBS BY METHOD SW8082,
CHLOROPHENOLS BY METHOD SW8041,

TOTAL & DISSOLVED METALS (INCLUDING MERCURY) BY METHODS 200.8 & 7470A
TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-GX & NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
RW11, RW23 Mercury only – (6460)	MW-51_101110, MW-52_101108, MW-55_101108, MW-56_101109, MW-57_101108, MW-59_101110, PA-15_101109, PZ-3_101109, PZ-4_101109, PZ-6_101109, PZ-7_101110, PZ-9_101110, PZ-11_101109, PZ-12_101109, PA-23_101108, PA-24_101109, R-101108, R-101109,
RW18, RW23 (Mercury only)	MW-23_101110 , MW-28_101110, and TRIP BLANK_101108
RW56, RW23, RW60 (Mercury only) - (6464)	MW-29_101111, MW-54_101111, MW-58_101111, PA-19_101111, PZ-2_101111, R-101110, R-101111, and TRIP BLANK_101110

PROJECT: RAYONIER MILL (00137-015-06)

This report documents the results of an EPA level III data validation of analytical data from the analyses of groundwater and the associated laboratory quality control (QC) samples. This standard review normally includes the following:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards (Mass Spectrometry)
- DDT/Endrin Breakdown confirmations (Pesticides only)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)
- Instrument Tunes

- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution
 - 2. Selected Ion Monitoring switching times
 - 3. GC Resolution
- 2,3,7,8-TCDF secondary column confirmation

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data: and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008), National functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (USEPA 2005).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection.

Established holding times were met for all analyses, with the exceptions below:

RW11 (Semivolatiles): Sample PA-24_101109 was re-extracted and re-analyzed outside of the holding time of seven days because of low surrogate recoveries in the first analysis. Only the re-analyzed, second set of data was used in order to avoid duplicate reporting for the same sample information. The positive result was qualified as estimated (J) in the usable set of data for this sample.

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

RW56 (Volatiles): The percent recovery (%R) values for d4-dichloroethane were greater than the upper control limits of 120% in Samples MW-29_101111 and the Trip Blank taken on 11/11/10. The samples were each spiked with three other surrogates that exhibited %R values that were within control limits. No qualifiers were required.

RW11, RW56 (Pesticides): The %R values for decachlorobiphenyl were less than the lower control limits of 30% in Samples MW-56_101109, MW-58_101111, and MW-59_101110. These outliers were indicative of a low bias, and the reporting limits for all target analytes were qualified as estimated (UJ).

Method Blanks, Trip Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks, with the exceptions below:

(Metals): The method blank for dissolved metals prepared on 11/19/10 reported a positive detection for manganese. The positive results for this element in the associated field samples were all greater than the action level. No qualifiers were required.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Four equipment rinsate blanks were collected: R-101108, R-101109, R-101110, and R-101111.

RW11 (PAHs): There was a positive result for pyrene in the equipment blank R-101109. The associated field Sample PA-24_101109 reported a positive result for this compound, and this positive result was qualified as not-detected (U) in this sample.

RW11 (Metals): The equipment blank R-101108 reported positive detections for copper and manganese. The positive results for these elements in the associated field Samples MW-55_101108 and MW-64_101108 were qualified as not detected (U) in these samples. Also, the positive results for copper only in the associated field Samples MW-57_101108 and PA-23_101108 were qualified as not detected (U) in these samples.

The equipment blank R-101109 reported a positive detection for copper. The positive results for this element in the associated field Samples PA-15_101109 and PZ-6_101109 were qualified as not detected (U) in these samples.

The equipment blank R-101110 reported a positive detection for manganese. There were no positive

results for this element in the associated field samples that were less than the action level. No qualifiers were required.

The equipment blank R-101111 reported positive detections for copper and manganese. The positive results for copper in the associated field Samples MW-58_10111, MW-60_10111 (phase 2 investigation), MW-61_10111 (phase 2 investigation), PA-19_101111, and PZ-2_101111 were qualified as not detected (U) in these samples. Also, the positive results for manganese in the associated field Sample MW-29_101111 was qualified as not detected (U) in this sample.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. Typically, samples are stored in a cooler for as long as 24 hours before arriving at the laboratory. Two trip blanks were collected in this sampling event: TRIP BLANK_101108 and TRIP BLANK_101110. There were no positive results for any volatile analytes above the reporting limits in these field QC samples.

In all cases, any blank contamination qualified results should be recognized as a reporting limit, instead of a positive result for data users.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses and the relative percent difference (RPD) is used as a measurement of precision. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the following exceptions:

(PCBs): The laboratory performed a MS/MSD sample set on Sample MW-60_101111. The RPD values for Aroclor 1016 and Aroclor 1260 were both greater than the control limit of 30%. There were no positive results for either of these two target analytes, no action was required.

(Metals): The laboratory performed a matrix spike on Sample MW-60_101111. The %R value for Total manganese was greater than the control limit of 125%. The parent sample concentration was greater than four times the amount spiked into the sample, no action was required.

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field

samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

There were no field duplicates for this phase of the project.

Pesticide Breakdown Check Standards

The laboratory analyzed a DDT Breakdown check standard at the beginning and end of every analytical batch, All of the % breakdown results were greater than the control limit of 20 %.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than \pm 1-25% and all relative response factors (RRF) were greater than 0.05, with the exceptions below:

(**Pesticides**): The secondary column %D value for 4,4-'DDD was outside of the control limit of $\pm 25\%$ in the CCAL standards analyzed on 11/20/10 (20:13) and 11/21/10 (01:05). The primary column %D values for this analyte were within the control limits, no qualification was required.

Initial Three HRGC/HRMS system performance checks (Dioxins/Furans only)

There are three fundamental system performance checks that must be conducted for every analytical batch of dioxin/furan samples, according to method EPA 1613. Mass calibration and resolution is the first part of the three fundamental High Resolution Gas Chromatography/HRMS (HRGC/HRMS) system performance checks. The second fundamental performance check is the Mass Spectrometer Selected Ion Monitoring (SIM) scan descriptor switching times. The third fundamental performance check is Gas Chromatograph (GC) resolution.

All three of these performance checks were appropriately conducted and no findings of significance were observed from this validation.

2,3,7,8-TCDF secondary column confirmation

Isomer specificity for all 2,3,7,8-substituted dioxins and furans cannot be achieved on the one 60-meter DB-5 column alone. Historically, problems have been associated with the separation of 2,3,7,8-TCDF from 1,2,3,9-TCDF and 2,3,4,7-TCDF. There are significant toxicological concerns associated with 2,3,7,8-TCDF; therefore, a second column confirmation is used and additional analyses may be required for some samples.

The National Functional Guidelines state "If second-column confirmation is required but was not performed, qualify the 2,3,7,8-TCDF detects as unusable "R"". However, the laboratory (Frontier Analytical) is using calibration standards that are lower than the levels prescribed by EPA Method 1613 in order to achieve the concentration levels prescribed in the QAPP. In this analysis, the confirmation column (DB-225) cannot be relied on to see below 10 pg/L, as the target analyte peaks cannot be separated from chromatographic noise.

Reporting Limits

All Pesticides and PCBs: The laboratory indicated that several samples were screened before extraction because of the probable affects of natural matrix interference. In cases where certain Aroclors and pesticides could not be distinguished because of chromatographic interference, the laboratory raised the reporting limits, and indicated this with a "Y" qualifier. These data points were appropriately taken through the validation process, and these reporting limits were qualified (UI) in GeoEngineer's database.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions mentioned above. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions noted above.

Data were qualified as estimated because of holding time outliers, surrogate %R outliers.

Data were qualified as not detected because of equipment rinsate blank contamination.

In general, the data are acceptable for use as qualified.

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613,
VOLATILES BY METHOD SW8260,
SEMIVOLATILES BY METHOD SW8270,
PAHS BY METHOD SW8270-SIM,
PESTICIDES BY METHOD SW8081,
PCBS BY METHOD SW8082,
CHLOROPHENOLS BY METHOD SW8041,
TOTAL METALS (INCLUDING MERCURY) BY METHOD EPA6010, 200.8, 7471A
TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
SI14 (6593)	MW-23_110209, MW-28_110208, MW-29_110208, MW-52_110209, MW-60_110209, MW-63_110208, MW-63_110208D, MW-64_110207, PZ-2_110207, PZ-5_110208, PZ-7_110208, PZ-9_110208, PZ-11_110208, PA-19_110209, PA-19_110209D, RINSE_110208
SI67 (6594)	MW-51_110211, MW-53_110211, MW-54_110211, MW-55_110211, MW-56_110211, MW-58_110211, MW-59_110210, MW-61_110211, MW-62_110210, PA-17_110211, PA-24_110211, PZ-3_110210

PROJECT: RAYONIER MILL (00137-015-05)

This report documents the results of an EPA level III data validation of analytical data from the analyses of groundwater and the associated laboratory quality control (QC) samples. This standard review normally includes the following:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards (Mass Spectrometry)
- DDT/Endrin Breakdown confirmations (Pesticides only)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)
- Instrument Tunes
- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution

- 2. Selected Ion Monitoring switching times
- 3. GC Resolution

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008), National functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (USEPA 2005).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

SDG Sl14 and Sl67 (Pesticides): The percent recovery (%R) values for decachlorobiphenyl were less than the lower control limits of 30% in Samples MW-56_110211, MW-58_110211, MW-59_110211, and PZ-11_110208. There were no positive results for any target analytes in these samples. These outliers were indicative of a low bias; for this reason, all reporting limits were qualified as estimated (UJ) in each of these samples.

SDG SI14 and **SI67** (**PCBs**): The %R values for decachlorobiphenyl were less than the lower control limits of 30% in Samples MW-51_110211 and MW-56_110211. There were no positive results for any target analytes in these samples. These outliers were indicative of a low bias; for this reason, all reporting limits were qualified as estimated (UJ) in each of these samples.

Method Blanks, Trip Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks, with the exceptions below:

SDG SI14 (Semivolatiles): The method blank extracted on 2/10/11 reported a positive detection for bis(2-ethylhexyl)phthalate. There were no positive results for this compound in the associated samples. No qualifiers were required.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. One equipment rinsate blank was collected: Rinse (collected on 2/8/11).

SDG SI14 (PAHs): There was a positive result for pyrene in the equipment blank collected on 2/8/11. The associated field Sample SSB MW-28_110208 reported a positive result for this compound at a level greater than the action level for this compound. No qualifiers were required.

Trip blanks are analyzed to provide an indication as to whether volatile compounds have cross-contaminated other like samples within the transportation process to the laboratory. Typically, samples are stored in a cooler for as long as 24 hours before arriving at the laboratory. One trip blank was collected in this sampling event: TRIP BLANK (collected on 2/7/11). None of the volatiles analytes were detected above the reporting limits in this sample.

In all cases, the blank contamination qualified results should be recognized as a reporting limit, instead of a positive result for data users.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix

spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Control Samples/ Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

The RPD control limits for soil samples is 50%, while the RPD control limits for water samples is 35%. The absolute difference control limits for soil samples is twice the PQL value, while the absolute difference control limits for water samples is the same as the PQL value.

In cases where any of the cPAH compounds or Dioxin/Furan congeners were qualified for precision, the resulting TEC value was also qualified as estimated (J) in that sample.

SDG SI14 (6593)

(Dioxin/Furans): One set of field duplicates, Samples PA-19_110209 & PA-19_110209D, was submitted to the laboratory. The RPD value for the Total Dioxin/Furan TEQ value exceeded the control limits described above. The positive results were qualified as estimated (J) in both samples.

(PAHs): One set of field duplicates, Samples PA-19_110209 & PA-19_110209D, was submitted to the laboratory. Pyrene was detected in Sample PA-19_110209, while reported as being not detected in Sample PA-19_110209D. In this case, the positive result was greater than twice the reporting limit. For this reason, the positive result and reporting limit for this compound was qualified (J/UJ) in the respective samples.

(Pesticides, PCBs, and Chlorophenols): One set of field duplicates, Samples PA-19_110209 & PA-19_110209D, was submitted to the laboratory. The RPD/absolute difference values for all target analytes were within the control limits described above. No qualifiers were required.

(Volatiles and Semivolatiles): One set of field duplicates, Samples MW-63_110208 & MW-63_110208D, was submitted to the laboratory. The RPD/absolute difference values for all target analytes were within the control limits described above. No qualifiers were required.

Pesticide Breakdown Check Standards

The laboratory analyzed a DDT Breakdown check standard at the beginning and end of every analytical batch, All of the % breakdown results were greater than the control limit of 20 %.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than +/-25% and all relative response factors (RRF) were greater than 0.05.

Additional Data Quality Issues

The laboratory flagged several results with a "D" (polychlorinated diphenyl ether [PCDE] interference) where interfering substances reduced confidence in the sample result. Consequently, the results listed below were qualified as not detected in the associated samples.

Sample ID	Analytes
*MW-28_110208	None

^{* =} The positive results for 2,3,7,8-TCDF were qualified as estimated (J) because this compound was not confirmed by a secondary column by the laboratory. The positive result for the corresponding TEC value was also qualified as estimated (J).

Reporting Limits and Miscellaneous

SDG SI14 and **SI67** (**Pesticides**): The reporting limits for certain analytes in the following samples were elevated because of chromatographic interference. The reporting limits for these compounds were qualified (UY) in order to specify this discrepency:

Sample ID	Analytes
MW-56_110211	Heptachlor
PA-19_110209	alpha-Chlordane
PA-19_110209D	alpha-Chlordane

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions mentioned above. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions mentioned above.

Data were qualified because of surrogate %R outliers and field duplicate precision outliers. Data were also qualified because the appropriate column confirmation was not performed.

Reporting limits were qualified in order to indicate elevated reporting limits.

In general, the data are acceptable for use as qualified.

DATA QUALITY ASSESSMENT SUMMARY

DIOXINS/FURANS EPA 1613,
VOLATILES BY METHOD SW8260,
SEMIVOLATILES BY METHOD SW8270,
PAHS BY METHOD SW8270-SIM,
PCBS BY METHOD SW8082,
CHLOROPHENOLS BY METHOD SW8041,

TOTAL METALS (INCLUDING MERCURY) BY METHOD EPA6010, 200.8, 7471A

TOTAL PETROLEUM HYDROCARBONS BY METHODS NWTPH-GX & NWTPH-DX

ARI Laboratory SDG (Frontier SDG)	Samples Validated (Bold indicates the sample was qualified)
SX49	MW-68 RINSATE, TRIP BLANK_110519
SX93	MW-23-110519, MW-28-110520, MW-29-110520, MW-51-110519, MW-52-110517, MW-53-110518, MW-54-110518 , MW-55-110519, MW-56-110518, MW-57-110520, MW-58-110519, MW-59-110518, MW-60-110519, MW-61-110518, MW-62-110518, MW-63-110520, MW-64-110517, MW-65-110518, MW-66-110518, MW-67-110518,
SX95	MW-69-110518 , MW-70-110518, MW-70-110518D, PA-15-110518, PA-17-110517, PA-19-110518, PA-23-110517, PA-24-110518, PZ-02-110517, PZ-03-110519, PZ-04-110517, PZ-06-110517, PZ-07-110517, PZ-09-110520, PZ-09-110520D, PZ-11-110517, PZ-12-110517, RINSE_110520, TRIP BLANK_110520
SZ90	MW-68-110607, TRIP BLANKS_110607

PROJECT: RAYONIER MILL (00137-015-05)

This report documents the results of an EPA level III and one EPA level IV data validation of analytical data from the analyses of groundwater and the associated laboratory quality control (QC) samples. This standard review normally includes the following:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates
- Internal Standards (Mass Spectrometry)
- Instrument Initial Calibrations (ICALs)
- Instrument Continuing Calibrations (CCALs)

- Instrument Tunes
- Three HRGC/HRMS system performance checks (Dioxins/Furans only)
 - 1. Mass Calibration and Resolution
 - 2. Selected Ion Monitoring switching times
 - 3. GC Resolution

DATA PACKAGE COMPLETENESS

ARI, located in Tukwila, Washington, was the primary sub-contracted laboratory analyzing the samples evaluated as part of this data validation review. ARI analyzed all chemical parameters, with the exception of the dioxin/furan analyses. Frontier Analytical Laboratory in El Dorado Hills, California, as sub-contracted through ARI, conducted the Dioxin/Furan analyses. Both laboratories provided all required deliverables for the validation according to the National Functional Guidelines. Both laboratories followed adequate corrective action processes and all identified anomalies were discussed in the representative case narratives.

OBJECTIVE

The objective of the data validation was to review laboratory analytical procedures and quality control (QC) results to evaluate whether:

- The samples were analyzed using well-defined and acceptable methods that provide detection limits below applicable regulatory criteria;
- The precision and accuracy of the data are well defined and sufficient to provide defensible data: and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in the USEPA Contract Laboratory Program *National Functional Guidelines for Inorganic Data Review* (USEPA 2002) and USEPA Contract Laboratory Program *National Functional Guidelines for Organic Data Review* (USEPA 2008), National functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (USEPA 2005).

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. There were no anomalies noted on the COC forms; proper COC protocols appear to have been followed for this sampling event.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection.

Established holding times were met for all analyses.

Surrogate/Labeled Compound Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits.

Method Blanks, Trip Blanks & Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency.

None of the analytes of interest were detected above the reporting limits in any of the method blanks.

SDG SX49 (Semivolatiles): The method blank analyzed on 5/28/11 reported a positive detection for bis(2-ethylhexyl)phthalate. This compound was reported in the associated field sample at a level greater than the respective action limits. No qualifiers were required.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Two equipment rinsate blanks were collected: MW-68 RINSATE (collected on 5/18/11) and RINSE_110520 (collected on 5/20/11).

SDG SX49 (Semivolatiles): The rinsate blank collected on 5/20/11 reported a positive detection for bis(2-ethylhexyl)phthalate. The positive result for bis(2-ethylhexyl)phthalate was qualified as not detected (U) in Sample MW-69-110518.

SDG SX49 (Metals): The rinsate blank collected on 5/20/11 reported a positive detection for copper, manganese, and nickel. These elements were also detected in the associated soil Sample MW-68-55 at levels greater than the action level. No qualifiers were required for these outliers.

In all cases, the blank contamination qualified results should be recognized as a reporting limit, instead of a positive result for data users.

Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Because actual analyte concentration in environmental samples is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, than a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, such as NWTPH-Dx, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample" is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spike sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the exceptions below:

SNO3 (Metals): The laboratory performed a matrix spike on Sample MW-68-55. The %R value for Total Manganese was greater than the control limits of 75% to 125%. The native sample concentration for Total manganese was greater than four times the amount spiked into the sample. No action was required.

SX95 (Metals): The laboratory performed a matrix spike on Sample PZ-09-110520. The %R value for Total Manganese was greater than the control limits of 75% to 125%. The native sample concentration for Total manganese was greater than four times the amount spiked into the sample. No action was required.

Laboratory Control Samples / Laboratory Control Sample Duplicates (LCS/LCSD)

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the relative percent difference values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Inorganics analyses only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met in all cases.

Field Replicates/Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, unless one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD.

The RPD control limits for soil samples is 50%, while the RPD control limits for water samples is 35%. The absolute difference control limits for soil samples is twice the PQL value, while the absolute difference control limits for water samples is the same as the PQL value.

In cases where any of the cPAH compounds or Dioxin/Furan congeners were qualified for precision, the resulting TEC value was also qualified as estimated (J) in that sample.

SDG SX95

(Volatiles): One set of field duplicates, Samples PZ-09-110520 & PZ-09-110520D, was submitted to the laboratory. There were no positive results in either sample. No qualifiers were required.

(Semivolatiles, PAHs, PCBs, Chlorophenols, NWTPH-Gx & NWTPH-Dx): One set of field duplicates, Samples MW-70-110518 & MW-70-110518D, was submitted to the laboratory. There were no positive results in either sample. No qualifiers were required.

(Metals): Two sets of field duplicates, Samples MW-70-110518 & MW-70-110518D and PZ-09-110520 & PZ-09-110520D, was submitted to the laboratory. The precision requirements above were met for all target analytes.

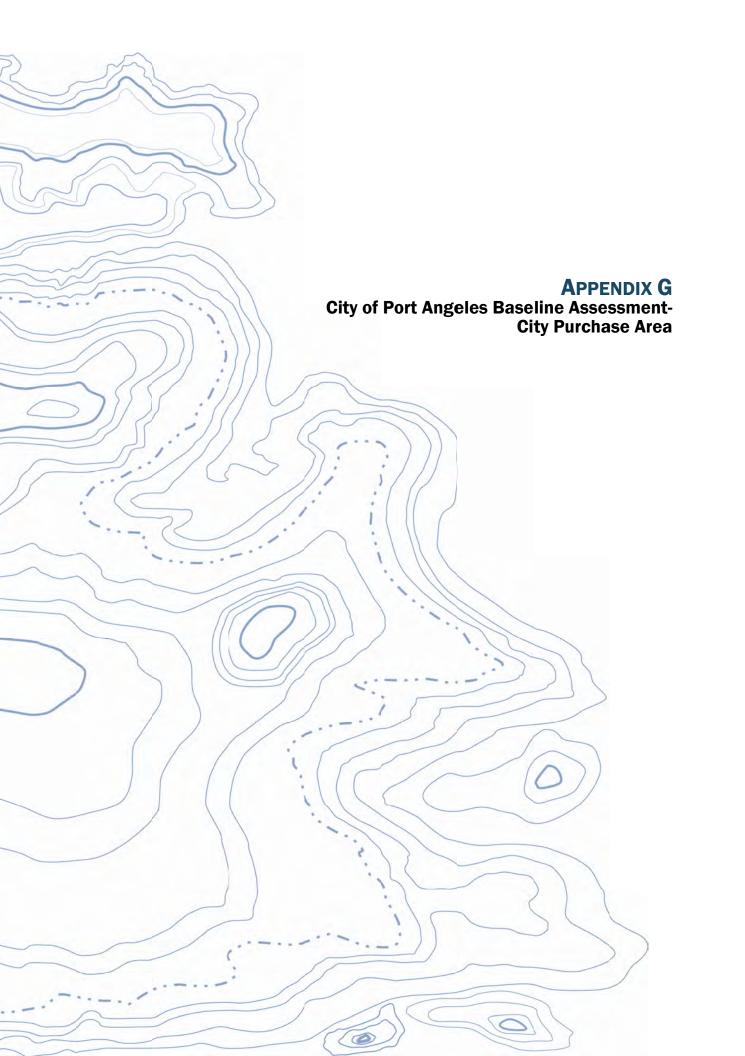
(**Dioxins**): One set of field duplicates, Samples MW-70-110518 & MW-70-110518D, was submitted to the laboratory. The precision requirements above were met for all target analytes.

Initial Calibrations (ICALs)

All initial calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent relative standard deviation (%RSD) values were less than +/- 30% and all relative response factors (RRF) were greater than 0.05.

Continuing Calibration (CCALs)

All continuing calibrations were conducted according to the laboratory methods, and consisted of the appropriate number of standards. For the organics analyses, all percent difference (%D) values were less than +/- 25% and all relative response factors (RRF) were greater than 0.05.


OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD and MS/MSD %R values, with the exceptions mentioned above. Precision was also acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD and absolute difference values, with the exceptions mentioned above.

Data were qualified as not-detected because of blank contamination.

In general, the data are acceptable for use as qualified.

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT

PORTION OF RAYONIER MILL PROPERTY 700 NORTH ENNIS STREET PORT ANGELES, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1005-001

For:

City of Port Angeles/Public Works and Utilities 321 East 5th Street Port Angeles, Washington

November 10, 2011

Prepared by:

Hydrogeolydist 1275
Sact Gao

Thaddeus Cline, P.E., L.G., L.H.G. Senior Civil Engineer/Hydrogeologist

Reviewed by:
Morel T. Selund

Clifford Schmitt, L.G., L.H.G. Principal Hydrogeologist

TABLE OF CONTENTS

ACR	ONYN	AS AND ABBREVIATIONS	iii			
1.0	INT	RODUCTION1	-1			
2.0	SITI	E DESCRIPTION AND BACKGROUND2	-1			
3.0	BAS	ELINE ASSESSMENT ACTIVITIES	-1			
	3.1	DIRECT-PUSH BORINGS 3	-1			
	3.2	MONITORING WELL INSTALLATION	-2			
	3.3	SURFACE SOIL SAMPLING	-3			
	3.4	CATCH BASIN SEDIMENT SAMPLING 3	-3			
	3.5	GROUNDWATER SAMPLING	-4			
4.0	RESULTS 4-1					
	4.1	SOIL CONDITIONS4				
	4.2	GROUNDWATER CONDITIONS4	-1			
	4.3	AOPC-2: PIEZOMETER PA-19 AREA4	-2			
	4.4	AOPC-4: STORAGE AREA AND DRAINAGE DITCH4	-3			
	4.5	AOPC-6: LABORATORY AND FORMER CONTROL BUILDINGS 4	-4			
	4.6	AOPC-8: SECONDARY TREATMENT AST AND FORMER AST 4				
3.0 4.0 5.0 6.0	4.7	AOPC-9: UPPER YARD4				
	4.8	AOPC-12: LEACHATE TRANSFER AST AREA4-	10			
5.0	SUM	IMARY OF FINDINGS5	-1			
6.0	REFERENCES6-3					
7.0	LIM	IITATIONS7	-1			

FIGURES

Figure 1 Site Vicinity Map

Figure 2 Baseline Assessment Sampling Locations

TABLES

 Table 1
 Sampling Rationale

Table 2 Field Sampling and Chemical Analyses

APPENDICES

Appendix A Soil and Groundwater Screening Levels (GeoEngineers, Inc. 2010)

Appendix B Boring and Well Construction Logs

Appendix C Analytical Results

Appendix D Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

Agreed Order No. DE 6815 between Rayonier and the Washington

State Department of Ecology

AOPCS Areas of Potential Concern

AST aboveground storage tank

Baseline Assessment baseline subsurface environmental assessment

bgs below ground surface

City of Port Angeles, Washington

COPCs constituents of potential concern

cPAHs carcinogenic polycyclic aromatic hydrocarbons

CSO Combined Sewer Overflow

DRO total petroleum hydrocarbons as diesel-range organics

EPA U.S. Environmental Protection Agency

ESN Northwest Environmental Services Northwest of Olympia, Washington

Farallon Farallon Consulting, L.L.C.

GeoEngineers, Inc.

GRO total petroleum hydrocarbons as gasoline-range organics

Mill Property former Rayonier Mill facility at 700 North Ennis Street in Port

Angeles, Washington

MTCA Washington State Model Toxics Control Act Cleanup Regulation

ORO total petroleum hydrocarbons as oil-range organics

PCBs polychlorinated biphenyls

Phase I ESA Report Phase I Environmental Site Assessment Report, Rayonier Property

Lots 1 and 2, Port Angeles, Washington dated May 11, 2011

prepared by Farallon Consulting, L.L.C.

PQL practical quantitation limit

RI/FS remedial investigation/feasibility study

SAP Sampling and Analysis Plan, Sale Parcel Baseline Assessment,

Former Rayonier Mill Facility, 700 North Ennis Street, Port Angeles, Washington dated June 3, 2011, prepared by Farallon

Consulting, L.L.C.

Site land purchased by the City of Port Angeles on May 12, 2011

comprising the southeastern portion of the former Rayonier Mill

facility

SVOCs semivolatile organic compounds

TEC toxic equivalent concentration

TPH total petroleum hydrocarbons

USCS Unified Soil Classification System

VOCs volatile organic compounds

WAC Washington Administrative Code

Work Plan Supplemental Upland Data Collection Work Plan, Port Angeles

Rayonier Mill Site, Port Angeles, Washington dated July 20, 2010

prepared by GeoEngineers, Inc.

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Baseline Assessment Report to document the field work and results for the baseline subsurface environmental assessment (Baseline Assessment) of land purchased by the City of Port Angeles (City) on May 12, 2011 comprising the southeastern portion of the former Rayonier Mill facility (Mill Property) at 700 North Ennis Street in Port Angeles, Washington (Figure 1). The land purchased by the City is herein referred to as the Site (Figure 2).

The overall objective of the Baseline Assessment was to collect soil, groundwater, and catch basin sediment samples for analysis for constituents of potential concern (COPCs) to enable assessment of subsurface environmental conditions at the Site at the time of purchase by the City. The scope of work for the Baseline Assessment was described in the Sampling and Analysis Plan, Sale Parcel Baseline Assessment, Former Rayonier Mill Facility, 700 North Ennis Street, Port Angeles, Washington dated June 3, 2011 prepared by Farallon (2011b) (SAP). The scope of work for the Baseline Assessment was developed based on what was known of past Rayonier operations at the Site; information provided in the Supplemental Upland Data Collection Work Plan, Port Angeles Rayonier Mill Site, Port Angeles, Washington dated July 20, 2010 prepared by GeoEngineers, Inc. (GeoEngineers) (2010) (Work Plan) and from subsequent GeoEngineers sampling through November 2010; and the findings presented in the Phase I Environmental Site Assessment Report, Rayonier Property Lots 1 and 2, Port Angeles, Washington dated May 11, 2011 prepared by Farallon (2011a) (Phase I ESA Report). Data collected from the Baseline Assessment were used herein to assess whether COPCs were released at the Site prior to the City's purchase.

As discussed in the Work Plan, Rayonier is completing a supplemental data collection program for the upland portion of the Mill Property, including work on the Site. Work by Rayonier at the Mill Property is being conducted under Agreed Order No. DE 6815 between Rayonier and the Washington State Department of Ecology (Agreed Order). Supplemental upland data collection conducted by Rayonier since July 2010 is summarized in the *Draft Supplemental Upland Data Collection Technical Memorandum for the Upland Portion of the Study Area, Port Angeles Rayonier Mill Site, Port Angeles, Washington dated June 15, 2011* prepared by GeoEngineers (2011). The objective of the supplemental upland data collection field investigation was to complete the characterization of the nature and extent of contamination within the upland study area, with a focus on filling the data gaps identified in Exhibit B of the Agreed Order. Results of supplemental upland data collection are necessary for Rayonier to complete the Upland Data Summary Report and the Interim Action Alternatives Evaluation Report that will outline the cleanup action alternatives for the upland study area, including the Site.

COPCs identified by Rayonier for the upland portion of the Mill Property are listed in the Work Plan. Screening levels used in the Baseline Assessment were derived by Rayonier for the purpose of its work at the upland portion of the Mill Property and are provided in Appendix A of this Baseline Assessment Report.

The Baseline Assessment Report includes a brief description of physical features and a summary of background information regarding the Site, an overview of the Baseline Assessment activities and results, and a summary of Farallon's conclusions based on the results of the Baseline Assessment.

2.0 SITE DESCRIPTION AND BACKGROUND

This section presents a brief description of the Site features and historical use. More-detailed information for the Site and the Mill Property is provided in the Work Plan and the Phase I ESA Report.

The Site comprises portions of Clallam County, Washington Tax Parcel Nos. 063000570150, 063000100120, and 063000100130 located on the southeast portion of the former Rayonier Mill and total approximately 35 acres of land. Site features include various pieces of equipment, including an unused 5-million-gallon secondary treatment aboveground storage tank (AST) that was used to contain wastewater (secondary treatment AST); an out-of-service 2,000-gallon AST and pump that was used to store landfill leachate transported from an off-Site source (leachate transfer AST); a laboratory building; the concrete foundation for a former secondary treatment control building; and a concrete foundation for a former storage building. The remaining portions of the Site include a paved former parking area on the southern portion of the Site, a former equipment storage area that was used to store unused equipment and materials on the eastern portion of the Site, and a stormwater runoff ditch and wetland area on the northern portion of the Site. A stormwater collection system comprising seven catch basins conveys stormwater runoff from the southern portion of the Site to the ditch and ultimately to Ennis Creek. Access to the Site is gained from East Ennis Creek Road, which transects the Site from north to south.

The City acquired the Site as part of a pending Phase 1 Combined Sewer Overflow (CSO) project, which will involve trenching along a piping alignment that crosses the Mill Property to the west and north and through the eastern portion of the Site, and ultimately to the City wastewater treatment plant adjacent to and southeast of the Site (Figure 2). Phase I CSO construction is planned to commence in mid-2012 and will entail installation of underground piping and utilities, construction of a bridge over Ennis Creek, use of the secondary treatment AST, and improvements to the sewer outfall to the Strait of Juan de Fuca.

For the purposes of the Baseline Assessment, the Site and proximate area was divided into 12 Areas of Potential Concern (AOPCs) based on what was known of past Site use during operation of the Rayonier Mill, results of prior sampling by Rayonier, and findings presented in the Phase I ESA Report. Figure 2 shows the 12 AOPCs. The sampling rationale for the Baseline Assessment was outlined in the SAP and is summarized in Table 1.

The Baseline Assessment focused on COPCs identified for Rayonier in the Work Plan, which include:

- Total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO), as diesel-range organics (DRO), and as oil-range organics (ORO); and benzene, toluene, ethylbenzene, and xylenes;
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs);
- Volatile organic compounds (VOCs);

- Semivolatile organic compounds (SVOCs);
- Polychlorinated biphenyls (PCBs);
- Pesticides; and
- Metals.

As noted in the Work Plan, dioxins and furans also were considered to be COPCs, but will not be evaluated further as part of the Baseline Assessment. It is assumed that dioxins and furans at the Site will be characterized by Rayonier as part of the remedial investigation for the upland areas of the Mill Property under the Agreed Order. Concentrations of COPCs detected in soil and groundwater at the Site during the Baseline Assessment were compared to conservative screening levels developed as part of the Rayonier Mill RI/FS and are presented in Tables 1 and 2, respectively, of the Work Plan. The screening levels are based on the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340) and consider potentially applicable or relevant and appropriate standards, background concentrations, and achievable laboratory practical quantitation limits. These screening levels were used in the Baseline Assessment for comparison purposes only and do not indicate that they have been reviewed or selected as appropriate screening levels, or that they are appropriate for use as action levels, cleanup levels, remediation levels, or other triggering concentrations at the Site. The soil and groundwater screening levels as established in the Work Plan are presented in Appendix A.

Because of the potential for encountering culturally significant archeological artifacts during the Baseline Assessment, a City archeologist monitored aspects of the work involving drilling. No artifacts were observed during the Baseline Assessment field investigation activities.

3.0 BASELINE ASSESSMENT ACTIVITIES

Baseline Assessment sampling locations and AOPCs are shown on Figure 2. The Baseline Assessment included:

- Advancing 19 direct-push Geoprobe borings and sampling soil and groundwater (where encountered);
- Installing and sampling two groundwater monitoring wells;
- Collecting two surface soil grab samples from the base of the drainage ditch on the northern portion of the Site;
- Collecting two sediment grab samples from catch basins in the central portion of the Site;
- Collecting groundwater samples from previously installed piezometers PA-12 and PZ-19.

The sampling rationale for the Baseline Assessment is summarized in Table 1. Table 2 summarizes sampling location, media, and depth information and the associated chemical analyses for each sample. A description of the Baseline Assessment sampling activities is presented in the following sections.

3.1 DIRECT-PUSH BORINGS

In June 2011, direct-push borings FAR1 through FAR4, FAR7 through FAR17, and FAR20 through FAR23 were advanced at locations shown on Figure 2 using a Geoprobe push-probe drill rig. Locations FAR5 and FAR6 (ditch surface soil sampling locations) and FAR18 and FAR19 (storm drain catch basin sediment sampling locations) were sampled using hand tools, as described in Sections 3.3 and 3.4, respectively. Direct-push borings were advanced to depths ranging from 13 to 22 feet below ground surface (bgs). Drilling services for the advancement of the borings were provided by Environmental Services Northwest of Olympia, Washington (ESN Northwest). Before drilling activities commenced, a private utility location survey was conducted by Applied Professional Services, Inc. of North Bend, Washington to locate on-Site utilities, in addition to the public One-Call utility locating service.

Soil samples were collected continuously from each boring to the maximum depth explored using a 4-foot macrocore sampler lined with a disposable acetate sleeve. Soil samples were collected in accordance with ASTM International and U.S. Environmental Protection Agency (EPA) standard protocols, and were classified in accordance with the Unified Soil Classification System (USCS). Field-screening included noting indications of visual or olfactory evidence of contamination and conducting headspace analysis for the presence of volatile organic vapors using a photoionization detector. Headspace analysis was conducted by placing a portion of soil from each sample interval into a resealable plastic bag and allowing the sample to warm for several minutes. The probe of the photoionization detector was then inserted into the bag, and the highest reading obtained over an approximate 30-second interval was recorded. The USCS symbol, visual and olfactory notations regarding the samples, and photoionization detector readings were recorded on boring log forms. The boring logs are provided in Appendix B.

Soil samples were collected directly from the disposable sampling sleeve using plastic sampling tools. Non-dedicated sampling equipment was decontaminated between uses. Soil samples were transferred immediately into laboratory-supplied sample containers. Samples to be analyzed for VOCs were collected in accordance with EPA Method 5035A. Care was taken not to handle the seal or inside cap of the container when the sample was placed into the container. The containers were filled to eliminate headspace (when applicable) and the seal/cap was secured.

Reconnaissance groundwater samples were collected from each boring where groundwater was encountered. Groundwater was not encountered in direct-push borings FAR4, FAR7 through FAR10, FAR20, FAR21, and FAR23.

Reconnaissance groundwater samples were not collected at borings FAR11 or FAR16 because monitoring wells were subsequently constructed at these locations and sampled. Reconnaissance groundwater samples were collected using a 2-inch-outside-diameter tool driven to approximately 36 inches below the depth at which groundwater was encountered. The outer casing of the tool was then partially withdrawn, exposing a 5-foot well screen. Groundwater samples were collected using low-flow methodology according to EPA standard protocols. Groundwater was extracted through a 0.25-inch-diameter tube inserted at the approximate midpoint of the well screen interval using a peristaltic pump at a low-flow rate of less than 500 milliliters per minute. Groundwater was purged until a steady flow was established and observed turbidity was minimized. Reconnaissance groundwater samples were collected directly from the pump outlet into laboratory-prepared containers. Care was taken to minimize turbulence and to not handle the seals or lids of the containers when the samples were placed into the containers. The containers were filled to eliminate headspace and the seals/lids were secured. Dedicated tubing was used for collection of each reconnaissance groundwater sample. Non-dedicated equipment was decontaminated between sampling locations.

Soil and reconnaissance groundwater sample containers were placed on ice in a cooler pending transport to the analytical laboratory. Samples were delivered to OnSite Environmental Inc. of Redmond, Washington under standard chain-of-custody protocols. Select soil samples and reconnaissance groundwater samples collected from each boring were submitted for laboratory analysis for the COPCs established for the Site as applicable to each AOPC (Table 1). The analyses conducted for each sample are presented in Table 2. Upon completion of soil and reconnaissance groundwater sampling, each of the borings was abandoned by backfilling with bentonite. The soil cuttings, decontamination water, and purge water generated during the drilling activities were placed into 55-gallon drums and labeled. The drums were stored at the Site pending waste profiling.

3.2 MONITORING WELL INSTALLATION

Monitoring wells constructed at borings FAR11 and FAR16 were installed at the Site in June 2011 by ESN Northwest (Figure 2). Monitoring well FAR11 was installed in AOPC-8, west-adjacent to the secondary treatment AST. Monitoring well FAR16 was installed in AOPC-9, in the paved parking area south of the secondary treatment AST (Figure 2). The monitoring well borings were advanced using a hollow-stem auger drilling rig. No soil samples were

collected during drilling at these locations because the monitoring wells were co-located with borings FAR11 and FAR16 that were sampled during advancement of the direct-push borings.

Each monitoring well boring was advanced to a depth of 22 feet bgs. The monitoring wells were constructed in accordance with the *Minimum Standards for Construction and Maintenance of Wells*, as established in WAC 173-160. The monitoring wells were constructed using polyvinyl chloride casings with 10 feet of screen and completed with flush-mounted monuments. Each monitoring well was constructed with a screened interval extending from 12 to 22 feet bgs. Following installation, the monitoring wells were developed using a surge block and centrifugal pump. Detailed well construction information was noted on the boring logs for each location. The boring logs are included in Appendix B.

3.3 SURFACE SOIL SAMPLING

Surface soil samples were collected from locations FAR5 and FAR6 at the base of the drainage ditch on the northern portion of the Site (Figure 2). Field-screening included noting indications of visual or olfactory evidence of contamination. Soil samples were collected using disposable plastic sampling tools. Non-dedicated sampling equipment was decontaminated between uses. Soil samples were transferred immediately into laboratory-supplied sample containers. Samples to be analyzed for VOCs were collected in accordance with EPA Method 5035A. Care was taken not to handle the seal or inside cap of the container when placing the sample into the container. The containers were filled to eliminate headspace (when applicable) and the seal/cap was secured. Sample containers were placed on ice in a cooler pending transport to the analytical laboratory. Samples were delivered to OnSite Environmental Inc. under standard chain-of-custody protocols. Surface soil samples were submitted for laboratory analysis for the COPCs established for the Site as applicable to each AOPC (Table 1). Analyses conducted for each sample are summarized in Table 2.

3.4 CATCH BASIN SEDIMENT SAMPLING

Catch basin sediment samples were collected from two catch basins in the central portion of the Site at locations FAR18 and FAR19 (Figure 2). Field-screening included noting indications of visual or olfactory evidence of contamination. Catch basin sediment samples were collected using disposable plastic sampling tools. Non-dedicated sampling equipment was decontaminated between uses. Catch basin sediment samples were transferred immediately into laboratory-supplied sample containers. Samples for analysis for VOCs were collected in accordance with EPA Method 5035A. Care was taken not to handle the seal or inside cap of the container when the sample was placed into the container. The containers were filled to eliminate headspace (when applicable) and the seal/cap was secured. Sample containers were placed on ice in a cooler pending transport to the analytical laboratory. Samples were delivered to OnSite Environmental Inc. under standard chain-of-custody protocols. Catch basin sediment samples were submitted for laboratory analysis for the COPCs established for the Site as applicable to each AOPC (Table 1). Analyses conducted for each sample are summarized in Table 2.

3.5 GROUNDWATER SAMPLING

Groundwater monitoring and sampling at the Site occurred on June 28, 2011. Groundwater monitoring included collection of groundwater samples from the monitoring wells constructed at boring locations FAR11 and FAR16 and from previously installed piezometers PA-12 and PZ-19 (Figure 2). The scope of work for the groundwater monitoring and sampling event included:

- Measuring water levels in the wells/piezometers;
- Purging groundwater and monitoring groundwater quality parameters using low-flow sampling techniques per EPA protocols to ensure aquifer stabilization prior to collecting groundwater samples; and
- Collecting and submitting groundwater samples to the analytical laboratory for analysis for COPCs established for the Site as applicable to the AOPC (Table 1). Analyses conducted for each sample are summarized in Table 2.

The monitoring wells were opened and the water level in the wells was permitted to equilibrate with atmospheric pressure for approximately 30 minutes before groundwater level measurements were obtained. Groundwater levels were measured to an accuracy of 0.01 foot using an electronic water-level meter.

Groundwater sampling was conducted in accordance with the EPA (1996) guidance document Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures dated April 1996. The well purging and sampling was performed using a peristaltic pump and dedicated polyethylene tubing at flow rates ranging from 100 to 300 milliliters per minute. The tubing intake was placed at approximately mid-screen in each monitoring well, or at the midpoint between the water table and the bottom of the well screen if the water table was lower than the top of the screen interval. During purging, water quality was monitored using a YSI water quality system equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, oxidation-reduction potential, and dissolved oxygen. The wells were purged until the water quality parameters stabilized. Following purging, groundwater samples were collected directly from the tubing into laboratory-prepared containers, placed on ice in a cooler, and transported to OnSite Environmental Inc. under standard chain-of-custody protocols for analysis for COPCs.

Purge water generated during the groundwater sampling event was placed in a labeled 55-gallon steel drum and stored at the Site pending waste profiling.

4.0 RESULTS

The results of the Baseline Assessment are presented in the following sections, including a general discussion of soil and groundwater conditions encountered during the Baseline Assessment, and specific observations, measurements, and analytical results for soil, groundwater, and catch basin sediment samples collected during the Baseline Assessment. Sampling locations are shown on Figure 2. The sampling rationale is summarized in Table 1. Table 2 presents sampling and chemical analytical information. Appendix A provides the screening levels for soil and groundwater proposed by Rayonier for the RI/FS work at the Mill Property. Logs for the soil borings and well construction details are provided in Appendix B. Appendix C presents tabulated analytical results. Laboratory analytical reports for the samples collected during the Baseline Assessment are provided in Appendix D.

4.1 SOIL CONDITIONS

The Site is partially paved with asphalt or concrete, which ranges from 2 to 4 inches in thickness. Unpaved areas are covered by 2 to 4 inches of topsoil and vegetation. Underlying soil in most locations includes 0.5 foot to 6 feet of fill material consisting of sands and gravels with varying amounts of silt. Lithologic logs from some locations (e.g., borings FAR3 and FAR4) indicate that fill in these areas may be as thick as 10 feet. Fill material was not noted to be present in borings FAR9 or FAR12. Underlying native soils generally consist of sands and silts and an occasional gravel lens. Charcoal was observed in boring FAR3, as was a piece of plastic and shell fragments. Shell fragments were observed also in boring FAR11. Wood fragments were observed in boring FAR4. A fragment of red brick was observed in boring FAR7. Approximately 0.5 foot of sediment was observed in Site catch basins at the time catch basin sediment samples were collected at locations FAR18 and FAR19. Levels of volatile organic vapors measured in soil using the photoionization detector in the field were negligible, ranging from 0 to 0.2 units. The field-screening of soil and sediment samples, including visual and olfactory observations, did not identify evidence of obvious contamination.

4.2 GROUNDWATER CONDITIONS

The depth to groundwater measured at the Site during drilling activities, including both the soil boring investigation and the monitoring well installation, ranged from less than 5 to 15 feet bgs. Groundwater was not encountered during drilling at borings FAR4, FAR7 through FAR10, FAR20, FAR21, or FAR23. The depth to groundwater measured in the monitoring wells and piezometers ranged from 4.90 feet below the top of the casing at piezometer PA-19 to 15.32 feet below the top of the casing at monitoring well FAR16. Observations at boring FAR14 indicate that groundwater elevations are relatively high in this area at the base of the slope east of the Site. Groundwater in the area around the laboratory building is relatively deep and was not encountered during drilling to the maximum depth of 15 feet bgs in AOPC-6. Based on the topography and proximity to Ennis Creek and Port Angeles Harbor, groundwater flow direction at the Site is estimated to be generally toward the west-northwest.

4.3 AOPC-2: PIEZOMETER PA-19 AREA

Direct-push borings FAR1 and FAR2 were advanced in AOPC-2 at the north end of the Site for collection of soil and reconnaissance groundwater samples (Figure 2). A groundwater sample was collected also from piezometer PA-19 installed by the City in August 2010. Soil and groundwater quality in the area around piezometer PA-19 was identified in the Phase I ESA Report as a recognized environmental condition because of the analytical results for a groundwater sample collected from the borehole during construction of piezometer PA-19 in August 2010. These results indicated the presence of SVOCs, DRO, and metals. Analysis of a soil sample collected during installation of piezometer PA-19 identified detectable concentrations of metals and the VOC acetone.

Table 2 presents sample information and chemical analyses conducted on samples collected at AOPC-2. Tables C-1A and C-1B in Appendix C present analytical results for soil and reconnaissance groundwater samples collected at AOPC-2, respectively. Tables C-7A and C-7B summarize analytes detected in soil and groundwater samples collected during the Baseline Assessment, respectively. Table C-8 compares detected analytical results for samples collected during the Baseline Assessment to screening levels presented in the Work Plan.

Boring FAR1 was located near the west boundary of AOPC-2 adjacent to the Pre-Fabrication Area and on the alignment for the CSO. Boring FAR2 was located proximate to piezometer PA-19 and also on a section of the CSO alignment near the north boundary of the Site. Groundwater was encountered at depths of 11 and 6 feet bgs during drilling at borings FAR1 and FAR2, respectively. Soil samples were collected from boring FAR1 at depths of 6 and 10 feet bgs and from boring FAR2 at depths of 2.5 and 5.5 feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling, although an ash layer was noted at boring FAR1 at depths between 6 and 6.2 feet bgs.

Piezometer PA-19 is located near the center of AOPC-2, between two sections of the CSO alignment. Depth to groundwater was measured at 4.9 feet bgs during sampling of piezometer PA-19. Volatile organic vapors reportedly were noted during drilling of piezometer PA-19 in August 2010, but no odors were noted during the June 2011 sampling event.

Concentrations of the following COPCs above the laboratory method practical quantitation limit (PQL) were detected in soil samples collected from locations within AOPC-2 (Tables C-1A, C-7A):

- Acetone was detected in soil samples collected from each of the sampling intervals at both borings FAR1 and FAR2;
- Chromium, lead, and 14 SVOCs were detected in a soil sample collected from boring FAR1 at a depth of 10 feet bgs near the water table encountered during drilling; and
- Chromium was detected in a soil sample collected from boring FAR2 at a depth of 5.5 feet bgs near the water table encountered during drilling.

When establishing compliance with cleanup levels under MTCA, mixtures of cPAHs are evaluated as a single hazardous substance by calculating the total toxic equivalent concentration (TEC) relative to benzo(a)pyrene for each constituent of the mixture using methodology specified by WAC 173-340-708(8)(e) for seven cPAH constituents. The method entails a summation of detected concentrations, each multiplied by a specified toxicity equivalency factor. When a cPAH constituent was not detected, one-half of the PQL was used in the calculation. Of all detections in soil samples collected from AOPC-2, only the calculated cPAH TEC in the soil sample collected from FAR1 at 10 feet bgs exceeded the screening levels established in the Work Plan.

Concentrations of nine SVOCs above the PQL were detected in the reconnaissance groundwater sample collected from boring FAR2 within AOPC-2 (Tables C-1B, C-7B). Calculated TECs for cPAHs in the reconnaissance groundwater sample collected from boring FAR2 exceeded the screening levels established in the Work Plan. No COPCs above the PQL were detected in groundwater samples collected from boring FAR1 or piezometer PA-19.

Based on the analytical results for samples collected during the Baseline Assessment, the sample locations where screening levels were exceeded at AOPC-2 are summarized below:

Vadose Zone Soil: FAR1—calculated cPAH TEC

• Groundwater: FAR2—calculated cPAH TEC

4.4 AOPC-4: STORAGE AREA AND DRAINAGE DITCH

Direct-push borings FAR3 and FAR4 were advanced in AOPC-4 in areas around the former storage building and the drainage ditch for collection of soil and reconnaissance groundwater samples south-adjacent to AOPC-2 and north of the laboratory and former control buildings. In addition, one surface soil sample was collected from the drainage ditch at location FAR5. Because portions of the area comprising AOPC-4 reportedly were used to store unknown materials, a recognized environmental condition was identified in the Phase I ESA Report. The drainage ditch also was identified as a recognized environmental condition because it receives runoff from other areas within AOPC-4 where unknown materials reportedly were stored, and from areas with known environmental concerns such as the equipment storage area at AOPC-7.

Table 2 presents sample information and identified the chemical analyses conducted on samples collected at AOPC-4. Tables C-2A and C-2B in Appendix C present analytical results for soil and reconnaissance groundwater samples collected at AOPC-4, respectively. Tables C-7A and C-7B summarize analytes detected in soil and groundwater samples, respectively, during the Baseline Assessment. Table C-8 compares detected analytical results for samples collected during the Baseline Assessment to the screening levels presented in the Work Plan.

Boring FAR3 was located near the northern boundary of AOPC-4, north of the former storage building and on the alignment for the CSO. Groundwater was encountered at a depth of 13 feet bgs during drilling, and soil samples submitted for chemical analysis were collected from a depth of 12.5 feet bgs. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Boring FAR4 was located near the southern boundary of AOPC-4, proximate to the drainage ditch. Groundwater was not encountered in this boring, which was advanced to a depth of 16 feet bgs. Soil samples were collected from depths of 4 and 9 feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

A surface soil sample was collected from the drainage ditch at location FAR5 at a depth at 0.5 foot bgs. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during collection of this sample.

Concentrations of the following COPCs above the PQL were detected in soil samples collected from locations within AOPC-4 (Tables C-2A, C-7A):

- Chromium, acetone, and carbon disulfide were detected in a soil sample collected from boring FAR3 at 12.5 feet bgs near the water table encountered during drilling;
- Cadmium, chromium, lead, 4,4'-DDT, Aroclor 1260, DRO, ORO, and 17 SVOCs were detected in the soil sample collected from boring FAR4 at a depth of 4 feet bgs; and
- Chromium, lead, Beta-BHC, and nine SVOCs were detected in the surface soil sample collected from location FAR5

Concentrations of COPCs above the PQL were not detected in the reconnaissance groundwater sample collected from boring FAR3, the only reconnaissance groundwater sampling location within AOPC-4 (Tables C-2B, C-7B).

Chromium detected in the soil sample collected from boring FAR3 at a depth of 12.5 feet bgs exceeded the screening levels established in the Work Plan. The soil sample collected from boring FAR4 at 4 feet bgs exceeded screening levels for chromium, lead, 4,4'-DDT, and calculated total Aroclors based on one detected concentration of Aroclor 1260. Total Aroclors was calculated by summing the detected Aroclor concentrations and using half the PQL for those not detected. The surface soil ditch sample at location FAR5 exceeded the screening level for the pesticide Beta-BHC.

Based on the analytical results for samples collected during the Baseline Assessment, the sample locations where screening levels were exceeded at AOPC-4 are summarized below:

Vadose Zone Soil: FAR3—chromium

FAR4—chromium, lead, 4,4'-DDT, calculated total Aroclors

• Ditch Surface Soil: FAR5—Beta-BHC

4.5 AOPC-6: LABORATORY AND FORMER CONTROL BUILDINGS

Direct-push borings FAR7 through FAR9, FAR20, and FAR21 were advanced in AOPC-6 in the area around the laboratory and the former control buildings for collection of soil and reconnaissance groundwater samples. In addition, a surface soil sample was collected from location FAR6 in the drainage ditch on the east side of AOPC-6, upstream of the FAR5 location

sampled in AOPC-4. Soil and groundwater quality in the area around the laboratory and former control buildings was identified in the Phase I ESA Report as a recognized environmental condition because of the potential for releases of hazardous substances possibly used in the laboratory and former control buildings during operation of the Rayonier Mill.

Table 2 presents sample information and chemical analyses conducted on samples collected at AOPC-6. Table C-3 in Appendix C presents analytical results for soil samples collected at AOPC-6. Groundwater was not encountered above the 15-foot total depth of the borings, and no reconnaissance groundwater samples were collected. Table C-7A summarizes analytes detected in soil samples collected during the Baseline Assessment. Table C-8 compares detected analytical results for samples collected during the Baseline Assessment to screening levels presented in the Work Plan.

Borings FAR7 through FAR9 were located along the north boundary of AOPC-6, north of the laboratory and former control buildings and proximate to sections of the CSO alignment. Borings FAR20 and FAR21 were located on the south side of AOPC-6, south of the laboratory building. These locations are not on the CSO alignment. Other than a small zone of yellow-colored powder observed at a depth of 3 feet bgs at boring FAR20, no indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

A surface soil sample was collected at a depth at 0.5 foot bgs in the drainage ditch at location FAR6. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during collection of this sample.

Concentrations of a number of COPCs above the PQL were detected in soil samples collected from locations within AOPC-6 (Tables C-3, C-7A). Concentrations of chromium, lead, Aroclor 1260, ORO, and two VOCs were detected in the soil sample collected at 2.5 feet bgs from boring FAR7 north of the laboratory building. Only the calculated total Aroclors exceeded its screening level in this sample (Table C-8). Concentrations of DRO and ORO below screening levels were detected in the sample collected from boring FAR7 at a depth of 6 feet bgs. Concentrations of chromium, lead, and ORO exceeding screening levels were detected in the soil sample collected at 2.5 feet bgs from boring FAR9, approximately 30 feet west of FAR7. Soil collected from boring FAR8 also was tested for SVOCs, and 16 constituents were detected at low concentrations. The calculated cPAH TEC was below its screening level.

Concentrations of chromium, lead, DRO, and ORO were detected in the soil sample collected at 5 feet bgs from boring FAR8, north of the former control buildings in the east part of AOPC-6. Concentrations of ORO were detected also in the soil sample collected at a depth of 11 feet bgs. Only the concentration of ORO detected in the sample collected from boring FAR8 at 5 feet bgs exceeded the screening level.

Concentrations of chromium; lead; the pesticides 4-4'-DDT, 4-4'-DDE, and dieldrin; Aroclor 1260; 18 SVOCs; ORO; 2-butanone; acetone; and benzene were detected in soil samples collected at 2.5 feet bgs from borings FAR20 and FAR21, south of the laboratory building. Several SVOCs and ORO were detected in the 5- and 6-foot samples collected from borings

FAR20 and FAR21, respectively. COPCs exceeding the soil screening levels in the 2.5-foot samples included lead, chromium (boring FAR20 only), the pesticides, calculated total Aroclors, and ORO. Only ORO exceeded the soil screening level in the deeper sampling intervals.

Chromium, lead, 4-4'-DDT, Aroclor 1260, 19 SVOCs, and ORO were detected in the surface soil sample collected from drainage ditch location FAR6. Lead, 4,4'-DDT, calculated the cPAHs TEC, and calculated total Aroclors exceeded screening levels (Table C-8).

Based on the analytical results for samples collected during the Baseline Assessment, the sample locations where screening levels were exceeded are summarized below:

• Vadose Zone Soil—Laboratory Building Area:

FAR7—calculated total Aroclors

FAR9—chromium, lead, ORO

FAR20—chromium, lead, 4,4'-DDT, calculated total Aroclors, ORO

FAR21—lead, 4,4'-DDE, 4,4'-DDT, dieldrin, calculated total Aroclors, ORO

 Vadose Zone Soil—Former Control Buildings Area: FAR8—ORO

TEC, ORO

• Ditch Surface Soil: FAR6—lead, 4,4'-DDT, calculated total Aroclors, calculated cPAH

4.6 AOPC-8: SECONDARY TREATMENT AST AND FORMER AST

Direct-push borings FAR10 through FAR12 and FAR23 were advanced in AOPC-8 around the secondary treatment AST, south-adjacent to AOPC-6, east of the chemical storage area (AOPC-5), and west of the equipment storage area (AOPC-7) for collection of soil and groundwater samples. One monitoring well subsequently was installed at the FAR11 boring location. A recognized environmental condition related to previously installed piezometer PZ-12 was identified in the Phase I ESA Report. Historical detections in groundwater samples collected from piezometer PZ-12 included SVOCs, pesticides, and metals. Other recognized environmental conditions were not specifically identified for this area in the Phase I ESA Report.

Table 2 presents sample information and chemical analyses conducted on samples collected at AOPC-8. Tables C-4A and C-4B in Appendix C present analytical results for soil and groundwater samples, respectively, collected at AOPC-8. Tables C-7A and C-7B summarize analytes detected in soil and groundwater samples, respectively, during the Baseline Assessment. Table C-8 compares detected analytical results in samples collected during the Baseline Assessment to screening levels presented in the Work Plan.

Boring FAR10 was located near the north boundary of AOPC-8, north of the secondary treatment AST and on the alignment for the CSO. Groundwater was not encountered above the total depth of the boring at 15 feet bgs. Soil samples were collected from depths of 2.5 and 15

feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Boring FAR11 subsequently was completed as a monitoring well and was located near the western boundary of AOPC-8 immediately west of the secondary treatment AST and east-adjacent to AOPC-5 (the chemical storage area). This location was selected for a monitoring well because of its inferred down-gradient direction for west-northwest groundwater flow across this portion of the Site. Therefore, any groundwater impacts at this location may be attributable to releases to the east. Groundwater was encountered in this boring at a depth of 15 feet bgs, and the well screen was installed between depths of 12 and 22 feet bgs. Soil samples were collected from depths of 2.5 and 14.5 feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Boring FAR12 was located near the east boundary of AOPC-8, west of the equipment storage area (AOPC-7). This location is not on the CSO alignment. Groundwater was encountered at a depth of 11 feet bgs during drilling. Soil samples were collected from a depth of 2.5 feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Boring FAR23 was located near the south boundary of AOPC-8, proximal to piezometer PZ-12 installed previously by Rayonier. This location is not on the CSO alignment. Groundwater was not encountered above the total depth of the boring at 15 feet bgs. Soil samples were collected from depths of 2.5 and 6 feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Piezometer PZ-12 is located south of the secondary treatment AST near the south boundary of AOPC-8. Depth to groundwater during sampling of piezometer PZ-12 was measured at 14.2 feet bgs.

Concentrations of COPCs above the PQL were detected in soil samples collected from locations within AOPC-8 (Tables C-4A and C-7A). Chromium, lead, Aroclor 1260, 11 SVOCs, ORO, and seven VOCs were detected in a soil sample collected from boring FAR10 at 2.5 feet bgs. Acetone also was detected in the soil sample retained from 15 feet bgs. Lead, calculated total Aroclors, ORO, and benzene detected in the 2.5 foot bgs sample were the only COPCs tested in soil samples collected from boring FAR10 that exceeded screening levels.

Concentrations of chromium, lead, endrin aldehyde, Aroclor 1260, 10 SVOCs, DRO, ORO, and two VOCs were detected in a soil sample collected from boring FAR11 at 2.5 feet bgs. Lead, endrin aldehyde, and calculated total Aroclors exceeded the screening levels in this sample.

Chromium was detected at a concentration exceeding the screening level in the soil sample collected from boring FAR12 at a depth of 2.5 feet bgs.

Chromium and acetone were detected in the soil sample collected from boring FAR23 at a depth of 2.5 feet bgs, and acetone was detected in the soil sample retained from 6 feet bgs. None of the concentrations detected exceeded the screening levels.

Concentrations of three VOCs above the PQL were detected at the monitoring well installed at boring FAR11 (Tables C-4B and C-7B). None of these detections exceeded the screening levels.

Based on the analytical results for samples collected during the Baseline Assessment, the sample locations where screening levels were exceeded at AOPC-8 are summarized below:

• Vadose Zone Soil: FAR10—lead, calculated total Aroclors, ORO, benzene

FAR11—lead, endrin aldehyde, calculated total Aroclors

FAR12—chromium

4.7 AOPC-9: UPPER YARD

Direct-push borings FAR13 through FAR16 were advanced in AOPC-9, a paved parking area south of AOPCs 7 and 8, for collection of soil and groundwater samples. One monitoring well subsequently was installed at the FAR16 boring location. The area is drained by a storm drain system with seven catch basins within AOPCs 8, 9, and 12 that discharges to the drainage ditches sampled at locations FAR6 (AOPC-6) and FAR4 (AOPC-4). Sediment in two of the five catch basins within AOPC-9 was sampled during the Baseline Assessment. Recognized environmental conditions were not specifically identified for this area in the Phase I ESA Report.

Table 2 presents sample information and chemical analyses conducted on samples collected at AOPC-9. Tables C-5A and C-5B in Appendix C present analytical results for soil and groundwater samples, respectively, collected at AOPC-9. Tables C-7A and C-7B summarize analytes detected in soil and groundwater samples, respectively, during the Baseline Assessment. Table C-8 compares detected analytical results for samples collected during the Baseline Assessment to screening levels presented in the Work Plan.

Borings FAR13 and FAR14 were located on the east side of AOPC-9 on the CSO alignment. Groundwater was encountered at a depth of 9 feet bgs at boring FAR13, and within 5 feet of the ground surface at boring FAR14. Soil samples were collected from boring FAR13 at depths of 2.5 and 6 feet bgs and from boring FAR14 at a depth of 3.5 feet bgs and submitted for laboratory analysis. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Boring FAR15 was located on the north-central portion of AOPC-9. This boring is not on the CSO alignment. Soil samples were collected from depths of 2.5 and 11 feet bgs and submitted for laboratory analysis. Groundwater was encountered at a depth of 12 feet bgs. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Boring FAR16 subsequently was completed as a monitoring well and was located near the western boundary of AOPC-9. This location was selected for a monitoring well because of its

inferred down-gradient direction for west-northwest groundwater flow across this portion of the Site. Therefore, any groundwater impacts at this location may be attributable to releases to the east. The soil sample submitted for chemical analysis was collected at a depth of 2.5 feet bgs. Groundwater was encountered in this boring at a depth of 15.7 feet bgs, and the well screen was installed between depths of 12 and 22 feet bgs. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Sediment samples were collected from two of the catch basins in AOPC-9 at locations FAR18 and FAR19. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during collection of the samples.

Concentrations of COPCs above the PQL were detected in soil samples collected from locations within AOPC-9 (Tables C-5A and C-7A). Chromium, lead, two SVOCs, and ORO were detected in the soil sample retained from boring FAR13 at a depth of 2.5 feet bgs. Only chromium was detected in the soil sample collected from boring FAR14 at a depth of 3.5 feet bgs. Chromium, lead, 16 SVOCs, and acetone were detected in soil samples retained from boring FAR15. Only chromium and lead were detected in soil samples collected from boring FAR16 that subsequently was completed as a monitoring well. The screening level for the calculated cPAH TEC was exceeded for the two soil samples retained from boring FAR15. Other COPCs detected in soil were at concentrations below screening levels.

COPCs detected in the sediment samples collected from catch basins at locations FAR18 and FAR19 included chromium, lead, Aroclor 1260 (location FAR18), several SVOCs, ORO and DRO (at location FAR18), and the VOCs toluene at location FAR18, and benzene, ethylbenzene, and m,p-xylene at location FAR19. Concentrations of COPCs detected in sediment samples collected from the catch basins were compared to soil screening levels for the purposes of the Baseline Assessment. Chromium and the calculated CPAH TEC exceeded soil screening levels in catch basin samples collected from locations FAR18 and FAR19. Calculated total Aroclors, DRO, and ORO exceeded soil screening levels at location FAR18. ORO and benzene exceeded soil screening levels at location FAR19.

Seven SVOCs were detected in the reconnaissance groundwater sample collected from boring FAR15, and arsenic was detected in the groundwater sample collected from monitoring well FAR16. The calculated cPAH TEC exceeded the screening level in the reconnaissance groundwater sample collected at boring FAR15, and arsenic exceeded the screening level in the groundwater sample collected from the monitoring well at location FAR16.

Based on the analytical results of samples collected during the Baseline Assessment, the sample locations where screening levels were exceeded at AOPC-9 are summarized below:

- Vadose Zone Soil: FAR15—calculated cPAH TEC, pentachlorophenol
- Groundwater: FAR15—calculated cPAH TEC, pentachlorophenol FAR16—arsenic

Catch Basin Sediment: FAR18—chromium, calculated total Aroclors, calculated cPAH TEC, DRO, ORO FAR19—chromium, calculated cPAH TEC, ORO, benzene

4.8 AOPC-12: LEACHATE TRANSFER AST AREA

Direct-push borings FAR17 and FAR19 were advanced in AOPC-12, a paved parking area between AOPC-8 and the City waste water treatment plant, for collection of soil and reconnaissance groundwater samples. The area is drained by a storm drain system with seven catch basins within AOPCs 8, 9, and 12 that discharges to the drainage ditches sampled at locations FAR6 (AOPC-6) and FAR4 (AOPC-4). Boring FAR17 was located proximate to the location of the leachate transfer AST reportedly used for containing leachate from an off-Site source prior to discharge to the waste water treatment plant. A recognized environmental condition associated with the leachate transfer AST was identified in the Phase I ESA Report.

Table 2 presents sample information and chemical analyses conducted on samples collected at AOPC-12. Tables C-6A and C-6B in Appendix C present analytical results for soil and groundwater samples, respectively, collected at AOPC-12. Tables C-7A and C-7B summarize analytes detected in soil and groundwater samples, respectively, during the Baseline Assessment. Table C-8 compares detected analytical results for samples collected during the Baseline Assessment to screening levels presented in the Work Plan.

Borings FAR17 and FAR22 were located in the interior of AOPC-12 near the location of the leachate transfer AST and the terminus of the CSO alignment. Soil samples were collected from boring FAR17 at depths of 2.5 and 8 feet bgs and from boring FAR22 at depths of 2.5, 6, and 10 feet bgs and submitted for laboratory analysis. Groundwater was encountered at a depth of 8.5 feet bgs in boring FAR17 and at 12 feet bgs at boring FAR22. No indications of contamination, based on the field-screening methods described in Section 3.1, were noted during drilling.

Concentrations of COPCs above the PQL were detected in soil samples collected from locations within AOPC-12 (Tables C-6A and C-7A). Chromium, two SVOCs, and two VOCs were detected in soil samples collected from both borings FAR17 and FAR22. Only chromium detected in the samples retained from a depth of 2.5 feet bgs at locations FAR17 and FAR22 exceeded the soil screening level.

The SVOC butyl benzyl phthalate was detected in both reconnaissance groundwater samples collected from borings FAR17 and FAR22. There were no exceedances of groundwater screening levels in the reconnaissance groundwater samples collected from borings FAR17 or FAR22.

Based on the analytical results for samples collected during the Baseline Assessment, the sample locations where screening levels were exceeded at AOPC-12 are summarized below:

• Vadose Zone Soil: FAR17—chromium FAR22—chromium

5.0 SUMMARY OF FINDINGS

The Baseline Assessment was conducted to evaluate whether hazardous materials were released at the Site prior to being purchased by the City in May 2011. The work was conducted to further evaluate recognized environmental conditions identified in the Phase I ESA Report. The term "recognized environmental condition" is defined as the presence or likely presence of any hazardous substance or petroleum product on the Site under conditions that indicate a past or existing release or material threat of release of any hazardous substance into a structure on the Site, or into the ground, groundwater, or surface water of the Site.

The Baseline Assessment was not intended to constitute elements of a remedial investigation under MTCA wherein contamination sources are identified and the nature and extent of contamination is determined. Supplemental upland study area characterization currently is being conducted by Rayonier to support completion of the Upland Data Summary Report and to provide sufficient information for completion of the Interim Action Alternatives Evaluation Report outlining cleanup action alternatives for the upland study area, including the Site, under terms of the Agreed Order.

Evidence of obvious contamination, based on the field-screening methods described in Section 3.1, was not noted, although a yellow-colored powder was noted at boring location FAR20. Soil at the Site consists of sands and silts with varying amounts of silt, sand, and gravel. Fill material was noted in most locations to a depth of approximately 10 feet bgs. Approximately 0.5 foot of sediment was noted in the two stormwater catch basins sampled for the Baseline Assessment. Depth to groundwater encountered during the Baseline Assessment varied from less than 5 feet to 15 feet bgs. Drilling in the vicinity of the laboratory building did not encounter groundwater above 15 feet bgs, the total depth of the borings. Based on the topography and proximity to Ennis Creek and Port Angeles Harbor, groundwater flow at the Site is estimated to be in a general west-northwest direction.

The major findings of the Baseline Assessment relative to the seven recognized environmental conditions identified in the Phase I ESA are summarized below.

1. The potential release of landfill leachate from the leachate transfer AST and pump on the southeast portion of the Site is a recognized environmental condition (AOPC-12).

This recognized environmental condition pertains to the leachate transfer AST in AOPC-12 as shown on Figure 2. Analytical results for samples collected during the Baseline Assessment at AOPC-12 at the locations of borings FAR17 and FAR22 identified the presence of low concentrations of one metal COPC and a limited number of VOCs and SVOCs in vadose zone soil. Chromium was the only COPC detected in soil at a concentration exceeding the screening level. Concentrations of one SVOC that were considerably below the screening level were detected in reconnaissance groundwater samples. These data do not indicate that a release of landfill leachate has affected AOPC-12. The source(s) and nature and extent of chromium in soil at AOPC-12 are not known

2. The potential release of hazardous substances in the vicinity of the laboratory building is a recognized environmental condition (west side of AOPC-6).

This recognized environmental condition pertains to the laboratory building on the west side of AOPC-6 as shown on Figure 2. Analytical results for samples collected during the Baseline Assessment at AOPC-6 at the locations of borings FAR7, FAR9, FAR20, and FAR21 proximate to the laboratory building identified the presence of metals, pesticides, Aroclors, SVOCs, TPH constituents, and VOCs in vadose zone soil. No groundwater was encountered above 15 feet bgs, the total depth of the borings, at locations around the laboratory building during the Baseline Assessment. COPCs detected in soil at concentrations exceeding soil screening levels in AOPC-6 in the vicinity of the laboratory building include the following:

- Metals
 - Chromium
 - Lead
- Pesticides
 - 4-4'-DDE
 - 4,4'-DDT
 - Dieldrin
- PCBs
 - Calculated total Aroclors
- SVOCs
 - Calculated cPAHs TEC
- TPH
 - ORO

The source(s) and nature and extent of COPCs in soil that exceed screening levels in the vicinity of the laboratory building are not known.

3. The potential release of hazardous substances in the vicinity of the former secondary treatment control buildings and the former storage building is a recognized environmental condition (AOPC-4 and east side of AOPC-6).

This recognized environmental condition pertains to the former control buildings east of the laboratory building in AOPC-6, and the former storage building in AOPC-4 north of the laboratory building as shown on Figure 2. These buildings reportedly were demolished by Rayonier in the 1990s. Analytical results for samples collected during the Baseline Assessment at the location of boring FAR8 identified the presence of metals and TPH constituents in vadose zone soil. Analytical results for samples collected at the locations of borings FAR3 and FAR4 indicate the presence of metals, a pesticide, PCBs, SVOCs, TPH constituents, and VOCs in

vadose zone soil. There were no analytes detected in the reconnaissance groundwater sample collected from boring FAR-3, the only groundwater sample collected in AOPC-4, and no groundwater was encountered in AOPC-6. COPCs detected in soil at concentrations exceeding soil screening levels at the locations of borings FAR3, FAR4, and FAR8 in the vicinity of the former control buildings and the former storage building include the following:

- Metals (AOPC-4)
 - Chromium
 - Lead
- Pesticides (AOPC-4)
 - 4,4'-DDT
- PCBs (AOPC-4)
 - Calculated total Aroclors
- TPH (AOPC-6)
 - ORO

The source(s) and nature and extent of COPCs in soil that exceed screening levels in the vicinity of the former control buildings and the former storage building are not known.

4. The potential release of hazardous substances to and along the boundaries of the ditch and wetland area is a recognized environmental condition (AOPCs 4, 6, 7, and 8).

This recognized environmental condition pertains to the drainage ditches receiving stormwater runoff from the storm drain system and from overland flow in AOPCs 4, 6, 7, and 8, and can be discerned in the aerial photograph on Figure 2. The downstream end of the ditch system in AOPC-4 includes a wetland area. Surface soil samples were collected in the drainage ditches proximate to the former control buildings (location FAR6 in AOPC-6) and to the former storage building (location FAR5 in AOPC-4 and within the wetland area). Analytical results for samples collected at these locations identified the presence of metals, pesticides, PCBs, SVOCs, and TPH constituents in surface soil in the ditches. COPCs detected at concentrations exceeding soil screening levels at surface soil sample locations FAR5 and FAR6 in the vicinity of the former control buildings and the former storage building include the following:

- Metals (AOPC-6)
 - Lead
- Pesticides (AOPC-4 and AOPC-6)
 - Beta-BHC
 - 4-4'-DDT
- PCBs (AOPC-6)

- Calculated total Aroclors
- SVOCs (AOPC-6)
 - Calculated cPAH TEC
- TPH (AOPC-6)
 - ORO

The source(s) and nature and extent of COPCs in surface soil within the ditches that exceed screening levels are not known.

5. The known concentrations of hazardous substances in soil and groundwater on the Site in the vicinity of the former equipment storage area, in a localized area on the southern portion of the Site, and on the northern portion of the Site is a recognized environmental condition (AOPCs 2, 7, 8, and 9).

This recognized environmental condition pertains to three general areas: the former equipment storage area (AOPC-7), the area around piezometer PZ-12 (on the boundary of AOPCs 8 and 9), and the area around piezometer PA-19 (AOPC-2) as shown on Figure 2. Prior work conducted by Rayonier has confirmed that soil and groundwater quality in the vicinity of the equipment storage area in AOPC-7 has been impacted, constituting a recognized environmental condition. Therefore, no additional characterization of subsurface conditions was conducted in AOPC-7 during the Baseline Assessment.

The localized area on the southern portion of the Site refers to the area around piezometer PZ-12 in AOPC-8. Analytical results for samples collected during the Baseline Assessment at AOPC-8 at the location of boring FAR23 identified the presence of concentrations of one metal and one VOC in vadose zone soil that were below soil screening levels. Groundwater from piezometer PZ-12 was sampled during the Baseline Assessment and no COPCs were detected. Historical detections in groundwater samples collected from piezometer PZ-12 included SVOCs, pesticides, and metals. Concentrations of one SVOC COPC, one pesticide COPC, and several metals previously have exceeded groundwater screening levels.

The northern portion of the Site refers to the area around piezometer PA-19 in AOPC-2. Analytical results for samples collected during the Baseline Assessment at AOPC-2 identified the presence of metals, SVOCs, and VOCs in vadose zone soil. Groundwater at borings FAR1, FAR2, and piezometer PA-19 was sampled during the Baseline Assessment and analytical results identified the presence of SVOCs in a reconnaissance groundwater sample collected from boring FAR2. No COPCs were detected in the groundwater samples collected from boring FAR1 or from piezometer PA-19. Detection constituents in a groundwater sample collected from the borehole during construction of piezometer PA-19 in August 2010 included SVOCs, DRO, and metals. Concentrations of DRO and some metals detected in the groundwater sample exceeded groundwater screening levels. Analysis of a soil sample collected during installation of piezometer PA-19 detected the presence of concentrations of metals and one VOC (acetone), none of which exceeded soil screening levels.

SVOC COPCs were detected in a soil sample collected from boring FAR1 at concentrations causing the calculated TEC for cPAHs to exceed the soil screening level. Concentrations of SVOCs detected in the reconnaissance groundwater sample collected from boring FAR2 resulted in exceedance of the groundwater screening level for the cPAH TEC. No other screening levels were exceeded at AOPC-2 for the COPCs studied in this Baseline Assessment.

The source(s) and nature and extent of COPCs in soil and groundwater in the areas around piezometers PZ-12 and PA-19 that exceed screening levels are not known.

6. The potential for localized areas of contamination not currently known on the Site due to former Rayonier Mill operations is a recognized environmental condition (AOPCs 2, 4, 6, 8, 9, and 12).

Prior to the Baseline Assessment, the only known areas of contamination at the Site were AOPC-7 and the area around piezometer PZ-12 (Figure 2). Conditions encountered in AOPCs 2, 4, 6, parts of 8, and 12 are discussed above. Analytical results for samples collected during the Baseline Assessment at other areas of the Site not previously discussed at AOPCs 8 and 9 address the potential for localized areas of contamination not currently known in these areas.

Analytical results for samples collected during the Baseline Assessment at AOPC-8 boring locations FAR10 through FAR12 identified the presence of metals, pesticides, PCBs, SVOCs, TPH COPCs, and VOCs in vadose zone soil. Groundwater samples were collected from monitoring well FAR11 and from boring FAR12. Analytical results for samples collected at these locations identified the presence of VOCs in a groundwater sample collected from monitoring well FAR11, although concentrations do not exceed groundwater screening levels. Constituents detected in soil at AOPC-8 at concentrations exceeding soil screening levels include the following:

- Metals
 - Chromium
 - Lead
- Pesticides
 - Endrin aldehyde
- PCBs
 - Calculated total Aroclors
- TPH
 - ORO

The source(s) and nature and extent of COPCs in soil that exceed screening levels at AOPC-8 are not known

Concentrations of metals, SVOCs, TPH constituents, and VOCs were detected in vadose zone soil samples collected during the Baseline Assessment at AOPC-9 boring locations FAR13

through FAR16. COPCs detected in AOPC-9 soil at boring location FAR15 exceeding soil screening levels include the following:

- SVOCs
 - Pentachlorophenol
 - Calculated cPAHs TEC

Groundwater samples were collected from the monitoring well installed at boring FAR16 and from borings FAR13 through FAR15. Concentrations of SVOCs were detected in a reconnaissance groundwater sample collected from boring FAR15, and one metal was detected in monitoring well FAR16. COPCs detected in groundwater samples collected at AOPC-9 exceeding groundwater screening levels include the following:

- Metals
 - Arsenic
- SVOCs
 - Calculated cPAHs TEC

The source(s) and nature and extent of COPCs in soil and groundwater that exceed the screening levels at AOPC-9 are not known.

Concentrations of metals, PCBs, SVOCs, TPH constituents, and VOCs were detected in catch basin sediment in samples collected during the Baseline Assessment at AOPC-9 catch basin sediment sampling locations FAR18 and FAR19. COPCs detected in AOPC-9 catch basin sediment above soil screening levels are the following:

- Metals
 - Chromium
- PCBs
 - Calculated total Aroclors
- SVOCs
 - Calculated cPAHs TEC
- TPH
 - DRO
 - ORO
- VOCs
 - Benzene

The source(s) of COPCs in catch basins sediment sampling locations FAR18 and FAR19 are not known.

7. The potential migration of hazardous substances from known and/or suspected impacts from former adjacent Rayonier Mill operations, including the pre-fab area, chemical storage area, and northern former mill area, is a recognized environmental condition (AOPC-1, AOPC-3, AOPC-5, and AOPC-11).

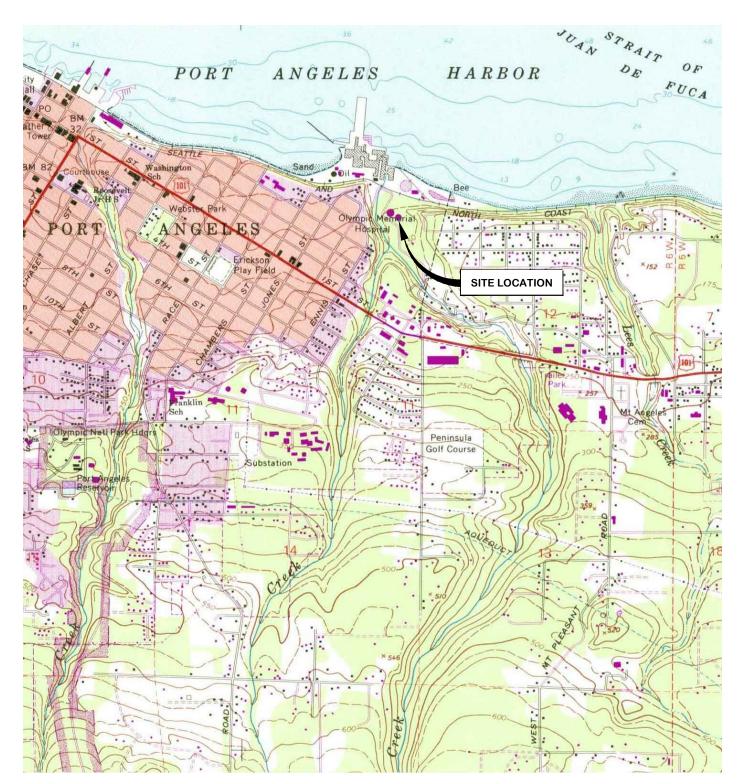
The potential for migration of hazardous substances from known and/or suspected adjacent and off-Site areas of Rayonier Mill operations via a groundwater or stormwater/surface water pathway was addressed with the Baseline Assessment sampling activities. Sampling locations proximate to adjacent impacted areas were selected based on the assumptions that groundwater at the Site flows to the west-northwest, and that surface water flows generally toward the lower elevations to the north and Port Angeles Harbor. AOPC-7, the equipment storage area that is a portion of the Site, is considered to be the most-likely known impacted area with the potential to affect conditions elsewhere at the Site. One monitoring well, eight borings, and two ditch soil sampling locations were located to the west and down-gradient/downhill of AOPC-7 to address this concern, and results of this sampling are summarized above. Rayonier has conducted investigations, including soil and/or groundwater sampling, at AOPCs 1, 3, 4, 7, 8, and 11, to support its work completing the characterization of the upland portion of the Mill Property, including the Site, and evaluating and selecting the most-appropriate cleanup remedy.

June 15.

6.0 REFERENCES

- Farallon Consulting, L.L.C. (Farallon). 2011a. Phase I Environmental Site Assessment Report, Rayonier Property Lots 1 and 2, Port Angeles, Washington. May 11.
 _____. 2011b. Sampling and Analysis Plan, Sale Parcel Baseline Assessment, Former Rayonier Mill Facility, 700 North Ennis Street, Port Angeles, Washington. June 3.
 GeoEngineers, Inc. (GeoEngineers). 2010. Supplemental Upland Data Collection Work Plan, Port Angeles Rayonier Mill Site, Port Angeles, Washington. July 20.
 _____. 2011. Supplemental Upland Data Collection Technical Memorandum for the Upland Portion of the Study Area, Port Angeles Rayonier Mill Site, Port Angeles, Washington.
- U.S. Environmental Protection Agency (EPA). 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA Publication /540/S-95/504. April.

7.0 LIMITATIONS


The conclusions and recommendations contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location and are subject to the following inherent limitations:

• Accuracy of Information. Certain information used by Farallon in this assessment has been obtained, reviewed, and evaluated from various sources believed to be reliable. Although Farallon's conclusions, opinions, and recommendations are based in part on such information, Farallon's services did not include verification of its accuracy or authenticity. Should such information prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.

FIGURES

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT
Portion of Rayonier Mill Property
700 North Ennis Street
Port Angeles, Washington

Farallon PN: 1005-001

REFERENCE: 7.5 MINUTE USGS QUADRANGLE PORT ANGELES, WASHINGTON. DATED 1983

FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, WA 98027

Drawn By: DEW

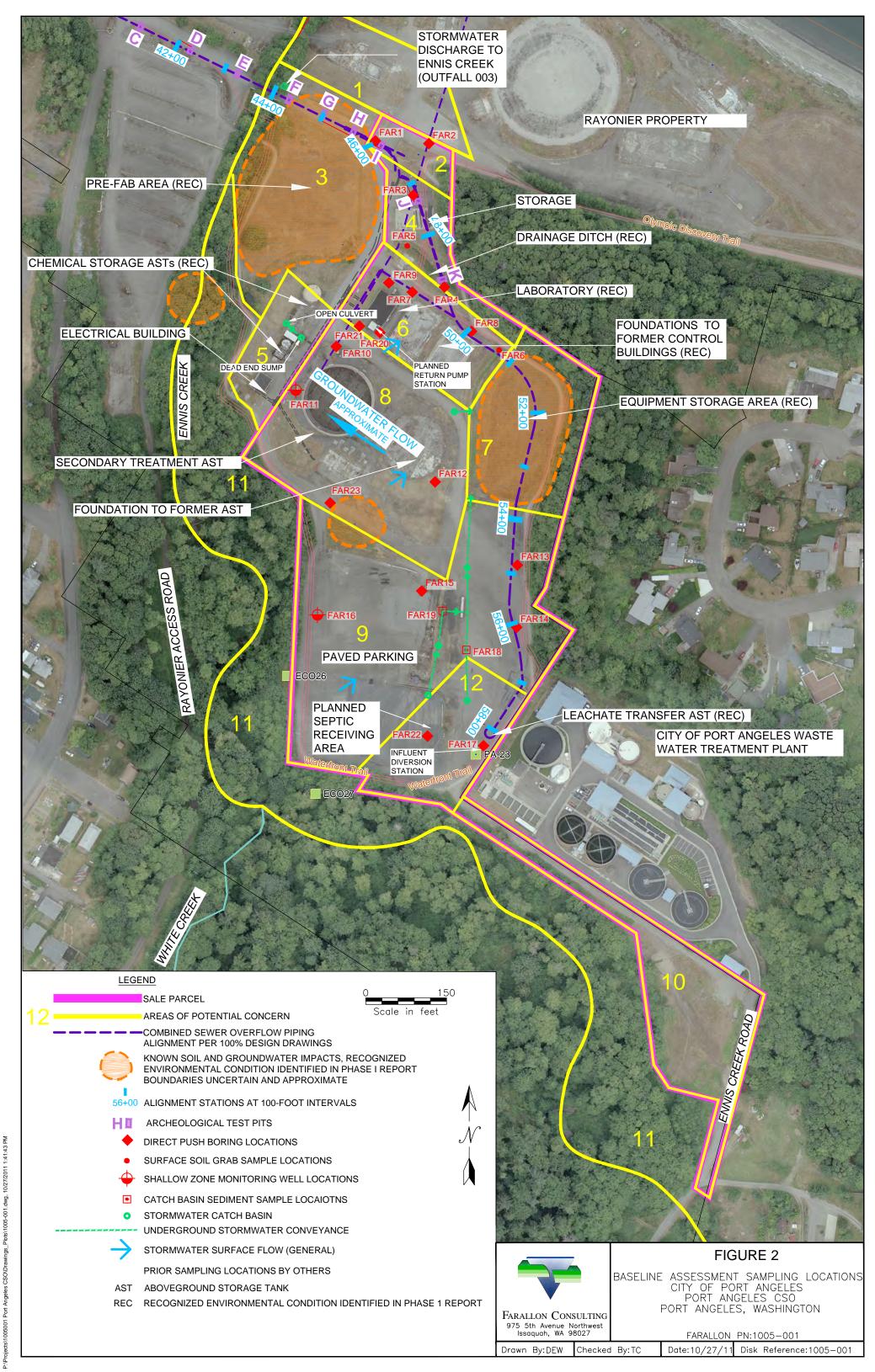

Checked By: TH

FIGURE 1

SITE VICINITY MAP
PORT ANGELES CSO
RAYONIER SALE PARCEL
PORT ANGELES, WASHINGTON

FARALLON PN: 1005

Date:2/14/11 Disk Reference: 1005-001

TABLES

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT
Portion of Rayonier Mill Property
700 North Ennis Street
Port Angeles, Washington

Farallon PN: 1005-001

Table 1

Sampling Rationale

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

		Constituents Tested in Prior Investigations				
Area of	Potential Concern (AOPC)	Soil	Groundwater	Data Gap For Baseline Assessment?	Sample Location Type	Comments
1	North Perimeter Area	cPAHs, TPH, Pesticides ³ , Metals ¹ , Dioxin/Furan	None Identified	No	None	Not on Purchase Parcel; no sampling to be conducted.
2	Piezometer PA-19 Area	cPAHs, TPH, PCBs, Pesticides ³ , Metals ¹ , Dioxin/Furan	VOCs, SVOCs, TPH, PCBs Pesticides ⁴ , Metals ² , Dioxin/Furan	Yes	Reconnaissance Geoprobe for soil and groundwater testing	Historical exceedances: <u>TPH and metals</u> in groundwater (not corroborated in follow-up sampling); only VOCs and metals tested in soil. No source identified. Proximal RECs: Pre-fab Area. CSO alignment goes through this AOPC.
3	Pre-fab Area	TPH, Metals1, Dioxin/Furan	SVOCs, PCBs, Metals ² , Dioxin/Furan	No	None	Not on Purchase Parcel; no sampling to be conducted.
4	Storage Area, Drainage Ditch	TPH, Pesticides ³ , Metals ¹ , Dioxin/Furan	None Identified	Yes	Reconnaissance Geoprobe for soil and groundwater testing; ditch grab sample for shallow soil testing	Historical exceedances: metals and pesticides in soil; groundwater not tested. Proximal RECs: Pre-fab Area, Equipment Storage Area, drainage ditch, laboratory & former control building. CSO alignment goes through this AOPC.
5	Chemical Storage Area	None Identified	None Identified	No	None	Not on Purchase Parcel; no sampling to be conducted.
6	Laboratory, Former Control Building	None Identified	None Identified	Yes	Reconnaissance Geoprobe for soil and groundwater testing, ditch grab sample for shallow soil testing	No soil or groundwater testing has been conducted. Proximal RECs: laboratory and former control building, Pre-fab Area, Chemical Storage Area, Equipment Storage Area. CSO alignment goes through this AOPC
7	Equipment Storage Area	cPAHs, TPH, PCBs, Pesticides ³ , Metals ¹ , Dioxin/Furan	SVOCs, PCBs, Pesticides ⁴ , Metals ² , Dioxin/Furan	No	None	On Purchase Parcel but Rayonier is currently investigating this area. CSO alignment goes through this AOPC.
8	Secondary Treatment AST, Former AST	None Identified	VOCs, SVOCs, cPAHs, TPH, PCBs Pesticides ⁴ , Metals ² , Dioxin/Furan	Yes	Reconnaissance Geoprobe and monitoring well for soil and groundwater testing	Historical exceedances of SVOCs, pesticides, and metals in groundwater; soil has not been tested. Proximal RECs: Equipment Storage Area, Chemical Storage Area, laboratory and former control building. Selected location for permanent monitoring well installation for ongoing down-gradient property line groundwater monitoring.
9	Upper Yard	None Identified	None Identified	Yes	Reconnaissance Geoprobe and monitoring well for soil and groundwater testing; catch basin grab sample for sediment testing	No soil or groundwater testing has been conducted. Proximal RECs: Leachate Transfer AST. Selected location for permanent monitoring well installation for ongoing down-gradient property line groundwater monitoring. CSO alignment goes through this AOPC.
10	South Section	VOCs, SVOCs, cPAHs, TPH, PCBs, Pesticides ³ , Metals ¹ , Dioxin/Furan	VOCs, SVOCs, cPAHs, TPH, PCBs, Pesticides ⁴ , Metals ² , Dioxin/Furan	No	None	No RECs identified.
11	General Perimeter	VOCs, cPAHs, TPH, PCBs, Pesticides ³ , Metals ¹ , Dioxin/Furan	None Identified	No	None	Not on Purchase Parcel; no sampling to be conducted.
12	Leachate Transfer AST Area	None Identified	Dioxin/Furan	Yes	Reconnaissance Geoprobe for soil and groundwater testing	No soil or groundwater testing has been conducted with the exception of one groundwater sample tested for <u>dioxins and furans</u> that exceeded its screening level Proximal RECs: Leachate Transfer AST. CSO alignment goes through this AOPC.

NOTES

AOPC = Area of Potential Concern (see Figure 2)

AST = aboveground storage tank

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

CSO = combined sewer overflow

PCBs = polychlorinated biphenyls

 $REC = Recognized \ Environmental \ Condition \ per \ Phase \ I \ Environmental \ Site \ Assessment \ Report, \ Rayonier \ Property \ Lots \ 1 \ and \ 2 \ Assessment \ Report, \ Rayonier \ Property \ Lots \ 1 \ and \ 2 \ Assessment \ Report, \ Rayonier \ Property \ Lots \ 1 \ and \ 2 \ Assessment \ Report, \ Rayonier \ Property \ Lots \ 1 \ and \ 2 \ Assessment \ Report, \ Rayonier \ Property \ Lots \ 1 \ and \ 2 \ Assessment \ Report, \ Rayonier \ Property \ Lots \ 1 \ and \ 2 \ Assessment \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Report, \ Rayonier \ Rayonier \ Report, \ Rayonier \ Ray$

Port Angeles, Washington dated May 11, 2011, prepared by Farallon Consulting, L.L.C.

SVOCs = semivolatile organic compounds

TPH = total petroleum hydrocarbons

VOCs = volatile organic compounds

Shading indicates no sampling proposed

¹Tested metals in soil = antimony, arsenic, barium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, selenium, silver, thallium, vanadium, and zinc

²Tested metals in groundwater = arsenic, cadmium, copper, lead, manganese, mercury, nickel, selenium, and silver.

³Tested pesticides in soil = 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, aldrin, alpha-chlordane, beta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan III, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone gamma-BHC (lindane), gamma-chlordane, heptachlor epoxide, hexachlorobenzene, alpha-BHC, and toxaphene.

⁴Tested pesticides in groundwater = 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-chlordane, endrin, endrin aldehyde, endrin ketone, heptachlor (aldrin, alpha-BHC, beta-BHC, delta-BHC, dieldrin, endosulfan I, endosulfan II, endosulfan sulfate, gamma-BHC, gamma-chlordane, heptachlor epoxide, hexachlorobenzene, methoxyclor, and toxaphene)

Table 2

Field Sampling and Chemical Analyses City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

											ANAI	LYSES		
	Area of Potential Concern (AOPC) North Perimeter Area	Location Identifier	Sample Location Type	Depth to Groundwater (approximate, feet bgs)	Matrix	Sample Identifier	Sample Depth (feet)	Sample Date	Metals (EPA Methods 6010B/SW7471A; water field filtered)	Pesticides (8081A)	Polychlorinated Biphenyls (EPA Method 8082)	Semi-Volatile Organic Compounds (EPA Method 8270)	Total Petroleum Hydrocarbons (Northwest Methods)	Volatile Organic Compounds (EPA Methods 8260, 8020)
2	Piezometer PA-19 Area					FAR1-6.0	6-6.5	6/22/2011	l			l		X
		FAR1	Geoprobe Boring	11	Subsurface Soil	FAR1-10.0	10-10.5	6/22/2011	X			X	X	X
					Groundwater	FAR1-062211-GW	12.5	6/22/2011				X	X	X
		2122			Subsurface Soil	FAR2-2.5	2.5-3	6/22/2011						X
		FAR2	Geoprobe Boring	6	Groundwater	FAR2-5.5 FAR2-062211-GW	5.5-6 9.5	6/22/2011 6/22/2011	X	X	X	X	X	X
												A	X	X
		PA-19	Previously-installed Piezometer	4.9	Groundwater	PA-19-062811-GW	12.3	6/28/2011	X				X	X
3	Pre-fab Area						ampling							
4	Storage Area, Drainage Ditch	FAR3	Geoprobe Boring	13	Subsurface Soil	FAR3-12.5 FAR3-062211-GW	12.5-13 14.5	6/22/2011 6/22/2011	X			X	X	X
					Groundwater	FAR3-062211-GW FAR4-4.0	4-4.5	6/22/2011	X	X	X	X X	X X	X
		FAR4	Geoprobe Boring	>15	Subsurface Soil	FAR4-9.0	9-9.5	6/22/2011	21	75	71	21	X	1
		FAR5	Ditch Grab Sample	NA	Surface Soil	FAR5-0.5	0.5-1	6/21/2011	X	X	X	X	X	X
5	Chemical Storage Area	n:-:					ampling		1			1		
6	Laboratory, Former Control Buildings	FAR6	Ditch Grab Sample	NA	Surface Soil	FAR6-0.5 FAR7-2.5	0.5-1 2.5-3	6/21/2011	X	X	X	X	X	X
		FAR7	Geoprobe Boring	>15	Subsurface Soil	FAR7-6.0	6-6.5	6/21/2011 6/21/2011	X	X	X		X	X
		EADO	Counche Desire	>15	Culture Caril	FAR8-5.0	5-5.5	6/22/2011	X		A		X	X
		FAR8	Geoprobe Boring	>15	Subsurface Soil	FAR8-11.0	11-11.5	6/22/2011					X	
		FAR9	Geoprobe Boring	>15	Subsurface Soil	FAR9-2.5	2.5-3	6/21/2011	X			X	X	X
			1 0			FAR9-6.0 FAR20-2.5	6-6.5 2.5-3	6/21/2011 6/21/2011	X	X	X	v	X X	X
		FAR20	Geoprobe Boring	>15	Subsurface Soil	FAR20-2.5 FAR20-5.0	5-5.5	6/21/2011	A	A	X	X	X	X
		EAD21	C I D :	>15	Culture Caril	FAR21-2.5	2.5-3	6/21/2011	X	X	X	X	X	X
		FAR21	Geoprobe Boring	>15	Subsurface Soil	FAR21-6.0	6-6.5	6/21/2011				X		
7	Equipment Storage Area			T	T		ampling		ı		1	ı		
8	Secondary Treatment AST, Former AST	FAR10	Committee	>15	Subsurface Soil	FAR10-2.5	2.5-3	6/21/2011	X	X	X	X	X	X
		PARIO	Geoprobe	>13	Subsurface Soff	FAR10-6.0 FAR10-15.0	6-6.5 15-15.5	6/21/2011 6/21/2011			X	X	X	X
					0.1 6 0.7	FAR11-2.5	2.5-3	6/23/2011	X	X	X	X	X	X
		FAR11	Geoprobe Boring & Monitoring Well	14.5	Subsurface Soil	FAR11-14.5	14.5-15	6/23/2011					X	X
			W CII		Groundwater	FAR-11-062811-GW	19.2	6/28/2011	X			X	X	X
		FAR12	Geoprobe Boring	11	Subsurface Soil	FAR12-2.5	2.5-3	6/20/2011	X				X	X
					Groundwater	FAR12-062011-GW FAR23-2.5	14.5 2.5-3	6/20/2011 6/24/2011	X	X	X	X	X X	X X
		FAR23	Geoprobe Boring	>15	Subsurface Soil	FAR23-6.0	6-6.5	6/24/2011	Α	A	A	А	A	X
		PZ-12	Previously-installed Piezometer	14.2	Groundwater	PZ-12-062811-GW	18.8	6/28/2011	X				X	X
9	Upper Yard				Subsurface Soil	FAR13-2.5	2.5-3	6/21/2011	X			X	X	X
		FAR13	Geoprobe Boring	9		FAR13-6.0	6-6.5	6/21/2011					X	N/
					Groundwater Subsurface Soil	FAR13-062111-GW FAR14-3.5	3.5-4	6/21/2011 6/22/2011	X				X X	X X
		FAR14	Geoprobe Boring	2	Groundwater	FAR14-062211-GW	3.5-4	6/22/2011	Λ				X	X
					Subsurface Soil	FAR15-2.5	2.5-3	6/20/2011	X	X	X	X	X	X
		FAR15	Geoprobe Boring	12		FAR15-11.0	11-11.5	6/20/2011				X		
			G 1 D : 034 :: :		Groundwater	FAR15-062011-GW	14.5	6/20/2011	**			X	X	X
		FAR16	Geoprobe Boring & Monitoring Well	15.3	Subsurface Soil Groundwater	FAR16-2.5 FAR-16-062811-GW	2.5-3	6/23/2011 6/28/2011	X X				X X	X
		FAR18	Catch Basin Grab Sample	NA	Catch Basin Sediment	FAR-10-002811-GW FAR18-0.5	0.5-1	6/23/2011	X	X	X	X	X	X
		FAR19	Catch Basin Grab Sample	NA	Catch Basin Sediment	FAR19-0.5	0.5-1	6/23/2011	X	X	X	X	X	X
10	South Section						ampling							
11	General Perimeter						ampling	(100,10011		77	77	V7.	77	77
12	Leachate Transfer AST Area	FAR17	Geoprobe Boring	8.5	Subsurface Soil	FAR17-2.5 FAR17-8.0	2.5-3 8-8.5	6/23/2011 6/23/2011	X	X	X	X X	X	X
		1711(1/	Geophole Boring	0.5	Groundwater	FAR17-8.0 FAR17-062311-GW	9.5	6/23/2011				X	X	X
						FAR22-2.5	2.5-3	6/24/2011	X	X	X	X	X	X
		FAR22	Geoprobe Boring	12	Subsurface Soil	FAR22-6.0	6-6.5	6/24/2011						X
					C #01/# 1	FAR22-10.0	10-10.5	6/24/2011				X	v	v
NOTES:					Groundwater	FAR22-062411-GW	11.5	6/24/2011				X	X	X

NOTES: AOPC = Area of Potential Concern (see Figure 2) AST = aboveground storage tank

bgs = below ground surface NA = not applicable

> = greater than

APPENDIX A SOIL AND GROUNDWATER SCREENING LEVELS (GEOENGINEERS, INC. 2010)

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT
Portion of Rayonier Mill Property
700 North Ennis Street
Port Angeles, Washington

Farallon PN: 1005-001

TABLE 1 SOIL SCREENING LEVELS PORT ANGELES RAYONIER MILL SITE PORT ANGELES, WASHINGTON

	Soil Concentration Protective of Groundwater as Marine Surface Water (MTCA Fixed Parameter Three-	Pathway (M1 Standard For	Direct Contact CA Method B mula Value for ed Land Use)	Ecological Indicator Soil Concentration for Protection of Terrestrial Plants	Preliminary Screening Level (Before		Preliminary Screening Level (After		Soil Screening Level
Analyte	Phase Partitioning Model) mg/kg	Carcinogen mg/kg	Non-Carcinogen mg/kg	and Animals (MTCA Table 749-3) mg/kg	adjustment for background) mg/kg	Background Concentration (f) mg/kg	adjustment for background) mg/kg	PQL (e) mg/kg	(After adjustment for background and PQL) mg/kg
TPH									
Gasoline-Range Petroleum Hydrocarbons Diesel-Range Petroleum Hydrocarbons	30 (b,c) 2,000 (b)	-	30 (b,c) 2,000 (b)	100 200	30 200	_	30 200	5	30 200
Heavy Oil-Range Petroleum Hydrocarbons	2,000 (b)	-	2,000 (b)	200	200	-	200	10	200
Metals									
Aluminum	NE	-	-	50	50	32,600	32,600	5.0	32,600
Antimony Arsenic	580 0.057	0.67	32 24	5 7	5 0.057	20 (g)	5 20	0.2	5 20
Barium	NE	-	16,000	102	102	-	102	0.3	102
Beryllium Cadmium	4,300 1.2	-	160 80	10 4	1.2	0.6	10	0.1	10 1.2
Chromium III	4,800,000	_	120,000	-	120,000	48 (d)	120,000	2 (d)	120,000
Chromium VI	19	-	240	-	19		19	5.0	19
Chromium (Total) Cobalt	NE NE	-	-	42 20	42 20	48	48 20	0.3	48 20
Copper	1.1	-	3,000	50	1.1	36	36	0.20	36
Lead Manganese	1,600 130 (a)	-	250 (b) 11,000	50 1,100	50 130	17 1,200	50 1,200	1.0 0.10	50 1,200
Mercury	0.026	-	24	0.1	0.026	0.07	0.07	0.020	0.07
Nickel Selenium	11 7.4	-	1,600 400	30 0.3	11 0.3	48	48 0.3	0.50 0.2 (h)	48 0.3
Silver	0.32	-	400	2	0.32	_	0.32	0.2 (II)	0.32
Thallium	0.67	-	5.6	1	0.67	-	0.67	0.20	0.67
Vanadium Zinc	NE 100	-	560 24,000	2 86	2 86	85	2 86	0.20 1.0	2 86
VOCs									
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	3,300 0.022	- 5	72,000	-	3,300 0.022		3,300 0.022	0.001	3,300 0.022
1,1,2-Trichloroethane	0.089	18	320	-	0.089	-	0.089	0.001	0.089
1,1-Dichloroethane 1,1-Dichloroethene	NE 0.023	-	16,000 4,000	-	16,000 0.023		16,000 0.023	0.001	16,000 0.023
1,2-Dichloroethane	0.18	11	1,600	-	0.18	_	0.18	0.001	0.18
1,2-Dichloroethene	NE 0.077	-	720	-	720	-	720	0.001	720
1,2-Dichloropropane 1,3-Dichloropropene (cis-, trans-)	0.077 0.11	15 5.6	2,400	700	0.077		0.077	0.001	0.077 0.11
2-Butanone (MEK)	NE	-	48,000	-	48,000	-	48,000	0.005	48,000
4-Methyl-2-Pentanone (MIBK) Acetone	NE NE	-	6,400 8,000	-	6,400 8,000	-	6,400 8,000	0.005	6,400 8,000
Benzene	0.13	18	320	-	0.13	-	0.13	0.0014	0.13
Bromodichloromethane Bromoform	0.089	16 130	1,600 1,600	-	0.089		0.089	0.001	0.089
Bromonethane	4.5	- 130	1,600	-	4.5		4.5	0.001	4.5
Carbon Disulfide	NE	-	8,000	-	8,000	-	8,000	0.001	8,000
Carbon Tetrachloride Chlorobenzene	0.015 14	7.7	56 1,600	40	0.015 14	-	0.015 14	0.001	0.015 14
Chloroethane	NE	350	32,000	-	350	-	350	0.001	350
Chloroform Chloromethane	1.5 0.62 (a)	160 77	800	-	1.5 0.62	-	1.5 0.62	0.001	1.5 0.62
cis-1,2-Dichloroethene	0.62 (a) NE	-	800	-	800		800	0.001	800
Dibromochloromethane	0.069	12	1,600	-	0.069	-	0.069	0.001	0.069
Ethylbenzene methyl tert-butyl ether (MTBE)	18 NE	560	8,000 69,000	-	18 560		18 560	0.025 0.001	18 560
Methylene Chloride (Dichloromethane)	2.6	130	4,800	-	2.6		2.6	0.002	2.6
Styrene	NE 440	33	16,000	300	33		33	0.001	33
Toluene Total Xylenes	110 9.1	-	6,400 16,000	200	9.1		110 9.1	0.025 0.075	9.1
Tetrachloroethene (PCE)	0.0041	1.9	800	-	0.0041	-	0.0041	0.001	0.0041
trans-1,2-Dichloroethene Trichloroethene (TCE)	54 0.044	11	1,600 24	-	54 0.044		54 0.044	0.001	54 0.044
Vinyl Acetate	NE	-	80,000	-	80,000	-	80,000	0.005	80,000
Vinyl chloride	0.015	0.67	240	-	0.015	-	0.015	0.001	0.015
PAHs Acenaphthene	65	_	4,800	20	20	_	20	0.0050	20
Anthracene	12,000	-	24,000	-	12,000	-	12,000	0.0050	12,000
Dibenzofuran Fluoranthene	NE 89	-	160 3,200	-	160 89	-	160 89	0.0050	160 89
Fluorene	550	-	3,200	30	30	-	30	0.0050	30
2-Methylnaphthalene	NE 140	-	320 1,600	-	320 140	-	320 140	0.0050 0.0050	320 140
Naphthalene Pyrene	3,500	-	1,600 2,400	-	2,400		2,400	0.0050	2,400
Total cPAHs TEC	0.35	0.14	-	12	0.14	-	0.14	0.0038	0.14
SVOCs 1,2,4-Trichlorobenzene	2.6	_	800	20	2.6	_	2.6	0.020	2.6
1,2-Dichlorobenzene	15	_	7,200	-	15	_	15	0.020	15
1,3-Dichlorobenzene	11 (a)		-	-	11	-	11	0.020	11
1,4-Dichlorobenzene 2,6-Dinitrotoluene	0.080 NE	42	80	20	0.080	_	0.080	0.020	0.080
2,4,5-Trichlorophenol	130	_	8,000	4	4	_	4	0.1	4
2,4,6-Trichlorophenol 2,4-Dichlorophenol	0.028 1.3	91	240	10	0.028 1.3		0.028 1.3	0.00625 (i) 0.1	0.028 1.3
2,4-Dimethylphenol	4.5	-	1,600	-	4.5		4.5	0.020	4.5
2,4-Dinitrophenol	14	-	160	20	14	-	14	0.2	14
2,4-Dinitrotoluene 2-Chloronaphthalene	0.020 54 (a)	-	160 6,400	-	0.020 54	-	0.020 54	0.1	0.1 54
	1.1		400	· · · · · · · · · · · · · · · · · · ·	1.1		1.1	0.020	1.1

	Soil Concentration Protective of Groundwater as Marine Surface Water (MTCA Fixed	Human Health Pathway (MT Standard Forr Unrestricte	CA Method B nula Value for	Ecological Indicator Soil Concentration for Protection of	Preliminary Screening Level		Preliminary Screening Level		
	Parameter Three-			Terrestrial Plants	(Before		(After		Soil Screening Level
	Phase Partitioning			and Animals	adjustment for	Background	adjustment for		(After adjustment for
	Model)	Carcinogen	Non-Carcinogen	(MTCA Table 749-3)	background)	Concentration (f)	background)	PQL (e)	background and PQL)
			_	1					
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2-Methylphenol	NE	2.2	4,000	-	4,000	_	4,000	0.020	4,000
3,3'-Dichlorobenzidine	0.00052			-	0.00052	-	0.00052	0.1	0.1
4-Chloroaniline	NE	-	320	-	320	_	320	0.100	320
4-Methylphenol	NE	-	400	-	400	_	400	0.020	400
Benzyl alcohol	NE 0.04		24,000		24,000	-	24,000	0.020	24,000
Bis(2-chloro-1-methylethyl) ether	0.21	14	-	-	0.21	_	0.21	0.020	0.21
bis(2-Chloroethyl)ether	0.0029	0.91	-	-	0.0029	-	0.0029	0.020	0.020
bis(2-Chloroisopropyl) ether	240 (a)	-	3,200	-	240	-	240	0.020	240
bis (2-ethylhexyl) Phthalate	4.9	71	1,600	-	4.9	-	4.9	0.020	4.9
Butylbenzylphthalate	360	-	16,000	-	360	-	360	0.020	360
Carbazole	NE	50		-	50	-	50	0.020	50
Diethylphthalate	160		64,000	100	100	-	100	0.020	100
Dimethylphthalate	330 (a)	-	80,000	200	200	-	200	0.020	200
Di-n-butylphthalate	100	-	8,000	200	100	_	100	0.020	100
Di-n-octylphthalate	NE	-	1,600	-	1,600	-	1,600	0.020	1,600
Hexachlorobutadiene	19	13	16	-	13	_	13	0.020	13
Hexachlorocyclopentadiene	4400		480 80	10	10	-	10	0.1	10
Hexachloroethane	0.13	71 1,100	16,000	-	0.13	_	0.13 3.0	0.020	0.13
Isophorone	3.0	1,100		-	3.0	-		0.020	3.0
Nitrobenzene	2.9	0.14	40	40	2.9 0.0023	-	2.9 0.0023	0.020	2.9
N-Nitroso-di-n-propylamine	0.0023 0.18	200	-	- 20	0.0023		0.0023	0.1	0.1
N-Nitrosodiphenylamine	0.18				0.18	_	0.18		0.18
Pentachlorophenol		8.3	2,400 48,000	3 30		-		0.00625 (i) 0.020	
Phenol	5,000	-	48,000	30	30		30	0.020	30
Dioxins/Furans									
Total Dioxins/Furans TEC	2.5E-08 (a)	1.1E-05	-	2.0E-06	2.5E-08	5.2E-06	5.2E-06	5.7E-07	5.2E-06
Total Bioxilis/ Furalis TEC	2.5E-06 (a)	1.1E-03	-	2.0E-00	2.55-06	5.2E-00	5.2E-00	5.7E-07	5.2E-00
PCBs									
Total PCBs (sum of Aroclors)	0.00040 (a)	0.5	_	0.65	0.00040	-	0.00040	0.004	0.004
Total 1 CDS (Sull) of Alociols)	0.00040 (a)	0.5		0.03	0.00040		0.00040	0.004	0.004
Pesticides									
Aldrin	0.000049	0.059	2.4	0.1	0.000049	_	0.000049	0.0010	0.0010
alpha-BHC	0.000049 0.00029 (a)	0.16	2.4	- 0.1	0.00029		0.00029	0.0010	0.0010
alpha-Chlordane***	0.00023 (a)	2.9	40	1	0.00029		0.00029	0.0010	0.0010
beta-BHC	0.00080	0.56	-	-	0.00080		0.00080	0.0010	0.0010
4.4'-DDD	0.00029	4.2	-	0.75	0.00029	_	0.00030	0.0010	0.0020
4,4'-DDE	0.00029	2.9	-	0.75	0.00028		0.00028	0.0020	0.0020
4,4'-DDT	0.0030	2.9	40	0.75	0.0030		0.0030	0.0020	0.0030
Dieldrin	0.000028	0.063	4	0.07	0.000028	_	0.000028	0.0020	0.0020
Endosulfan I**	0.000028	-	480	-	0.0012	_	0.0012	0.0020	0.0020
Endosulfan II**	0.0012 (a)	_	480	_	0.0012		0.0012	0.0010	0.0012
Endosulfan Sulfate**	0.0017 (a)	_	480	_	0.0017	_	0.0017	0.0020	0.0020
Endrin	0.00051	_	24	0.2	0.00051	_	0.00051	0.0020	0.0020
Endrin Aldehyde*	0.00016 (a)	_	24	0.2	0.00016	,	0.00016	0.0020	0.0020
Endrin Ketone*	0.00046 (a)	-	24	0.2	0.00046	_	0.00046	0.0020	0.0020
gamma-BHC (Lindane)	0.0012	0.77	24	6	0.0012	_	0.0012	0.0010	0.0012
gamma-Chlordane***	0.00080 (a)	2.9	40	1	0.00080	_	0.00080	0.0010	0.0010
Heptachlor	0.000015	0.22	40	0.4	0.000015	_	0.000015	0.0010	0.0010
Heptachlor epoxide	0.000065	0.11	1.0	0.4	0.000065	_	0.000065	0.0010	0.0010
Hexachlorobenzene	0.00047	0.63	64	17	0.00047	_	0.00047	0.0010	0.0010
Methoxychlor	0.048	-	400	_	0.048	_	0.048	0.010	0.048
Toxaphene	0.00038	0.91	-	-	0.00038	_	0.00038	0.10	0.10
	0.00000	0.01			0.00000		0.00000	0.10	0.10

- Screening levels were developed for all constituents analyzed in soil.
- Screening level is based on lowest of soil concentrations protective of groundwater, human health direct contact (MTCA Method B standard formula values for carcinogens and non-carcinogens), and terrestrial plants and animals, adjusted for background and practical quantification limit (PQL).
- Calculated concentrations protective of groundwater as marine surface water assume unsaturated soil, and are calculated based on groundwater screening levels before adjustment for background and PQLs.
- Shading indicates basis for screening level.
 = No screening criteria available.
- = No screening criteria available.

 NE = No surface water criterion exists; therefore, soil concentration protective of groundwater as marine surface water is not calculated.

 MTCA = Washington State Model Toxics Control Act

 PAIs = Polycyclic aromatic hydrocarbons

 PCHs = Carcinogenic polycyclic aromatic hydrocarbons

 PCBs = Polychlorinated biphenyls

 PQL = Practical quantitation limit

 VCCs Modellic perceits generated.

- VOCs = Volatile organic compounds SVOCs = Semivolatile organic compounds TEC = Toxic equivalent concentration
- TPH = Total petroleum hydrocarbons
- (a) Values for Kd and/or K_{oc} and/or Henry's Law Constant are not available from CLARC; these values were taken from EPIWIN or ORNL RAIS.
- (b) MTCA Method A soil cleanup levels are used for gasoline-range, diesel-range, and heavy oil-range petroleum hydrocarbons, and lead.
 (c) Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, screening level is 100 mg/kg.
 (d) Value is for total chromium.

- (e) PQL is lowest available value from Analytical Resources, Inc. (Tukwila, WA) or Frontier Analytical Laboratory (El Dorado Hills, CA).

 (f) Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994). Total dioxins/furans TEC background value provided by Ecology in review comments on the April 1, 2010 Draft Supplemental Upland Data Collection Work Plan.

 (g) Regulatory background (MTCA Method A) value.
- (h) PQL for EPA Method 7740. (i) PQL for EPA Method 8041.
- * Endrin values used for endrin aldehyde and endrin ketone.
- ** Endosulfan values used for endosulfan I, endosulfan II, and endosulfan sulfate.

 *** Chlordane values used for alpha- and gamma-chlordane.

TABLE 2 GROUNDWATER SCREENING LEVELS PORT ANGELES RAYONIER MILL SITE PORT ANGELES, WASHINGTON

				ľ			A Mary Land						
					Concentration Protective of Marine Surrace Water	Protective c	Marine St	Irrace water					
	AWC	AWQC for							MTCA Metl Formula Valu	MTCA Method B Standard Formula Value - Protection of			
	Prote Aquati	Protection of Aquatic Life (a)	Nati	National Toxics Rule (b)	s Rule (b)	National Re	commended Criteria (c)	Water Quality	Human Heal	Human Health (Consumption of Aquatic Life)			
			AWG		AWQC for	Protection	Protection						Groundwater
	Acuto	Chronic		Aquatic Life	Human Life- Life-	or Aquatic Life -	or Aquatic Life - Chronic	Protection of	Carolinogon	Protection of	Preliminary	<u> </u>	(After adjustment
Analyte	ng/L	µg/L	_	µg/L	µg/L	µg/L	ug/L	µg/L	ug/L	µg/L	pg/L	rgr(S)	Hg/L
ТРН													
Gasoline-Range Petroleum Hydrocarbons	1	:	1	1	ı		:	ı	ı	800 (d,e)	800	250	800
Diesel-Range Petroleum Hydrocarbons	1	:	1	1	1	1	:	1	1	500 (d)	200	250	200
Heavy Oil-Range Petroleum Hydrocarbons	1	1	ı	1	ı	1	:	ı	ı	500 (d)	200	400	200
Metals													
Antimony	1	:	:	1	4,300	1	1	640	1	1,000	640	0.2	640
Arsenic	69	36	69	36	0.14	69	36	0.14	0.098	18	0.098	0.2	0.2
Beryllium	:	1	;	ı	ı		,	ı	ı	270	270	0.2	270
Cadmium	42	9.3	42	9.3	1	40	8.8	1	1	20	8.8	0.20	8.8
Chromium III	:	:		,	ı	1	,	1	ı	240,000	240,000	0.50 (f)	240,000
Chromium VI	1,100	20	1,100	20	ı	1,100	20	1	1	490	20	20	20
Copper	4.8	3.1	2.4	2.4	ı	4.8	3.1		1	2,700	2.4	0.50	2.4
Lead	210	8.1	210	8.1	ı	210	8.1	1	1		8.1	1.0	8.1
Manganese	:	:	:	1	ı	1	ı	100	ı	:	100	0.50	100
Mercury	1.8	0.025	2.1	0.025	0.15	1.8	0.94	0.3	ı		0.025	0.020	0.025
Nickel	74	8.2	74	8.2	4,600	74	8.2	4,600	4,600	1,100	8.2	0.50	8:2
Phosphorus	: 6	: }	:	1	ı	1 6	0.10	1 6	ı	: :	0.10	16	16
Selenium	290	7.1	290	7.1	1	290	7.1	4,200	ı	2,700	71	0.5	7.1
Silver	E.S.	:	E.G		1 0	T:0		0.47		26,000	1.9	2.0	T.9
Zino	06	81	06	81	3 1	06	81	26,000		17,000	81	4.0	81
		}					:						
VOCs													
1,1-Dichloroethene	:	:	1	1	3.2	1	ı	7,100	ı	23,000	3.2	0.2	3.2
1,1,1-Trichloroethane	1	:	:	1	1 5		1	1 (1 6	420,000	420,000	0.2	420,000
1.1.2Tricing oetrarie	: :	: :	: 1		11			10	6.5	2,300	4	0.0	4
1.2-Dichloroethane	:	:	:	1	66	1	1	37	29	43,000	37	0.2	37
1,2-Dichloropropane	:	:	:	1	1	1	1	15	23	. :	15	0.2	15
1,3-Dichloropropene (cis-, trans-)	1	:	;	1	1,700	1	1	21	19	41,000	19	0.2	19
Acrolein	:	:	:	ı	780	ı	ı	290	1	:	290	2.0	290
Acrylonitrile	:			-	0.66	1	-	0.25	0.4	86	0.25	1.0	1.0
Benzene	:	:	:	ı	7.1	ı	,	51	23	2,000	23	0.45	23
Bromodichloromethane	:	:	1	1	22	1	1	17	28	14,000	17	0.2	17
Bromoform	;	:	:	1	360	1	1	140	220	14,000	140	0.2	140
Bromomethane	:	:	:	1	4,000		ı	1500	1 0	970	970	0.5	970
Carbon Tetrachloride	:	:	:	ı	4.4			1.6	2.7	97	1.6	0.2	1.6
Chlorobenzene		:	:	ı	21,000	1	1	1,600	1	2,000	1,600	0.2	1,600

Page 1 of 4

					Concentration Protective of Marine Surface Water	Protective	of Marine Su.	rface Water					
								_					
	AW Prote	AWQC for Protection of	2	National Toxice Dub (h)	9 di 0	National R	ecommended	National Recommended Water Quality		MTCA Method B Standard Formula Value - Protection of Human Health (Consumption			
	Adnan	C LIIE (a)	AWO	AWOC for	AWOC for	Protection	ď		ž 5	ladic Lile)			Groundwater
			Protec	—	Protection of		of Aquatic of Aquatic	o noitoctor of			yac uj mil oa 0		Screening Level
Andread	Acute	Chronic		Acute Chronic	Health	Acute	Chronic	Human Health	Carcinogen	Non-Carcinogen	Screening Level	PQL (g)	for PQL)
Chloroform	5 0 1	4	, 0		470	5 1	7 0	470	280	6,900	280	0.2	280
Chloromethane	:	:	1	1	1		1	ı	130		130	0.5	130
Dibromochloromethane	:	:	1	1	34	1	1	13	21	14,000	13	0.2	13
Ethylbenzene	:	:	:	ı	29,000		ı	2,100	1	6,900	2,100	0.42	2,100
Methylene Chloride (Dichloromethane)	:	:	ı	ı	1,600		1	590	096	170,000	590	0.5	590
Total Whomes					000,000		1 1	000,00	1 1	1 000 td	1,000	0.70	1,000
Tetrachloroethene (PCE)	1	:	;	1	6.8	1	ı	3.3	0.39	840	0.39	0.20	0.39
trans-1,2-Dichloroethene	1	:	1	1	1	1	1	10,000		33,000	10,000	0.20	10,000
Trichloroethene (TCE)	1	:	:	1	81	1	1	30	6.7	71	6.7	0.20	6.7
Vinyl chloride	-		:	1	530	1	1	2.4	3.7	0099	2.4	0.20	2.4
PAHs													
Acenaphthene	:	:	:	1	1	1	1	066	1	640	640	1.0	640
Anthracene	:	:	:	ı	110,000	,	ı	40,000	ı	26,000	26,000	1.0	26,000
Fluoranthene	:	:	:	ı	370	,	ı	140	ı	90	06	1.0	06
Fluorene	:	:	:	ı	14,000		ı	5,300	1	3,500	3,500	1.0	3,500
Naphthalene	:	:	:	1	1	1	1	1	1	4,900	4,900	1.0	4,900
Pyrene	:	:	:	ı	11,000		ı	4,000	ı	2,600	2,600	1.0	2,600
Total cPAHs TEC	:	:	:	1	0.031	1	1	0.018	0.030	:	0.018	0.0076	0.018
svocs								i i		0	e i		
1,2,4-Trichlorobenzene		:	:		1 1		ı	70	1	230	70	1.0	70
1,2-Dichlorobenzene	:	:	:	ı	17,000		1	1,300	ı	4,200	1,300	1.0	1,300
1.9-Dichloobenzene	:	:	:		2,600		1	960	1 0	:	960	O: F	960
2-Chloronanhthalana	: :	: :	: :	1 1	7,000		1 1	1,600	9.	1000	4.9	T 0.1	1,000
2-Chlorophenol	1	:	;	1	1	1	ı	1		97	97	1.0	97
2,4-Dichlorophenol	1	:	1	1	790	1	1	290	1	190	190	2.0	190
2,4-Dimethylphenol	1	:	:	1	1	1	1	850	1	550	550	1.0	550
2,4-Dinitrophenol	1	:	:	ı	14,000		ı	5,300	1	3,500	3,500	10.0	3,500
2,4-Dinitrotoluene	1	:	:	ı	9.1	1	1	3.4	1	1,400	3.4	2.0	5.0
2,4,5-Trichlorophenol	:		:	-	1	-	1	3,600	1	;	3,600	5.0	3,600
2,4,6-Trichlorophenol				-	6.5	-	1	2.4	3.9		2.4	0.25 (h)	2.4
3,3'-Dichlorobenzidine	:	:	:	1	0.077	1	1	0.028	0.046	:	0.028	5.0000	5.0
bis(2-Chloroethyl)ether	:	:	:	ı	1.4	1	ı	0.53	0.85	:	0.53	1.0	1.0
Bis(2-chloro-1-methylethyl) ether	;	:	;	1	1	1	ı	ı	37	:	37	1.0	37
bis(2-Chloroisopropyl) ether	:	:	;	1	1	170,000	ı	65,000	ı	42,000	42,000	1.0	42,000
Bis (2-ethylhexyl) Phthalate	:	:	:	ı	5.9	1	ı	2.2	3.6	400	2.2	1.0	2.2
Butylbenzylphthalate	:	:	:	1	1	1		1,900	1	1,300	1,300	1.0	1,300
Diethyiphthalate	:	:	:	1	120,000	1	ı	44,000	1	28,000	28,000	1.0	28,000
Di-n-butylphthalate	;	:	;	1	12,000	ı	1	4,500	1	2,900	2,900	1.0	2,900

Page 2 of 4

					Concentration Protective of Marine Surface Water	Protective o	f Marine Sur	face Water					
				'									
	AWC	AWQC for								MTCA Method B Standard Formula Value - Protection of			
	Prote Aquati	Protection of Aquatic Life (a)	Nati	National Toxics Rule (b)	s Rule (b)	National Re	commended Criteria (c)	National Recommended Water Quality Criteria (c)		Human Health (Consumption of Aquatic Life)			
			AWC	AWQC for	AWQC for	Protection Protection	Protection of Aquatic						Groundwater
	1	9	Aqua	- 1	Human	Life -		Protection of		a contraction of the contraction	Preliminary	3	(After adjustment
Analyte	Acute µg/L	Chronic µg/L	Acute µg/L	Chronic µg/L	nearrn µg/L	Acute µg/L		numan nearth µg/L		non-carcinogen µg/L	screening Level	PQL(g)	nor PQL)
Hexachloroethane			ı		6.8			3.3	5.3	30	3.3	1.0	3.3
Pentachlorophenol	13	7.9	13	7.9	8.2	13	7.9	3.0	4.9	7,100	3.0	0.25 (h)	3.0
Phenol	:	:	:	1	4,600,000	1	1	1,700,000	-	1,100,000	1,100,000	1.0	1,100,000
Dimethylphthalate	:	:	:	,	2,900,000		1	1100000		72,000	72,000	1.0	72,000
Hexachlorobutadiene	-	:	1	1	50	1	1	18	30	190	18	1.0	18
Hexachlorocyclopentadiene	1		1	1	17,000	1	1	1,100	1	3,600	1,100	2.0	1,100
Isophorone	1		;	1	009	1	ı	096	1,600	120,000	009	1.0	009
Nitrobenzene	1		;	1	1,900	1	ı	069	-	450	450	1.0	450
N-Nitroso-di-n-propylamine	1	ı	;	1	ı	ı	ı	0.51	0.82	:	0.51	2.0	5.0
N-Nitrosodiphenylamine	1	:	;	1	16		1	9	9.7	:	9	1.0	9
Dioxins/Furans													
Total Dioxins/Furans TEC	:	:	:	1	1.4E-08	1		5.1E-09	1	:	5.1E-09	5.7E-06	5.7E-06
PCBs													
Total PCBs (sum of Aroclors)	10	0.030	:	0.030	0.00017	1	0.030	0.000064	0.00011	:	0.000064	0.01	0.01
Doceloidos													
concine		0						0 0 0 0	00000		6	000000	000000
Aldrin	0.71	0.0019	1.3		0.00014	T.3		0.000050	0.00008	0.017	0.000050	0.00083	0.00083
alpha-BHC	: 8	: 0	: 00	1 000	0.013	1 00	- 0000	0.0049	0.0079	: 00	0.0049	0.00083	0.0049
alpha-chlordane***	0.090	0.0040	0.090	0.0040	0.00059	0.090	0.0040	0.00081	0.0013	0.092	0.00039	0.00083	0.00083
7.4.500	0.15	0.00T00	:		0.00069	:	1	0.000st	0.00000	:	0.00031	0.0017	0.0017
4,4:DDE	0.13	0.0010	: 07	1 000	0.00059	: 070	1 000	0.00022	0.00036	1 000	0.00022	0.0017	0.0017
t,t-100-	CT :	0.00±0	CT :	0.000±0	0.046	CT.0	0.0010	0.017	0.028	1000	0.0022	0.00083	0.017
delta-BHC	1		1	1	1	1	1	0.041	1	:	0.041	0.00083	0.041
Dieldrin	0.71	0.0019	0.71	0.0019	0.00014	0.71	0.0019	0.000054	0.000087	0.028	0.000054	0.0017	0.0017
Endosulfan I**	0.034	0.0087	0.034	0.0087	1		1	1	1	28	0.0087	0.00083	0.0087
Endosulfan II**	0.034		0.034		-		-	-	-	58	0.0087	0.0017	0.0087
Endosulfan Sulfate**	0.034		0.034		-		-	-	-	58	0.0087	0.0017	0.0087
Endrin	0.037	0.0023	0.037	0.0023	0.8100	0.037	0.0023	0.060	-	0.1959	0.0023	0.0017	0.0023
Endrin Aldehyde*	0.037	0.0023	0.037	0.0023	0.8100	0.037	0.0023	0.060	1	0.1959	0.0023	0.0017	0.0023
Endrin Ketone*	0.037	0.0023	0.037	0.0023	0.8100	0.037	0.0023	0.060	1	0.1959	0.0023	0.0017	0.0023
gamma-BHC (Lindane)	0.16		0.16		0.063	0.16		1.8	0.038	9	0.038	0.00083	0.038
gamma-Chlordane***	0.090		0.090		0.00059	0.090	0.0040	0.00081	0.0013	0.092	0.00059	0.00083	0.00083
Heptachlor	0.053	0.0036	0.053		0.00021	0.053	0.0036	0.000079	0.00013	0.12	0.000079	0.00083	0.00083
Heptachlor epoxide	:	1	0.053	0.0036	0.00011	0.053	0.0036	0.000039	0.000064	0.0030	0.000039	0.00083	0.00083

Page 3 of 4

				ŭ	Concentration Protective of Marine Surface Water	Protective of	f Marine Sur	face Water					
	AWC	AWOC for							MTCA Meti Formula Valu	MTCA Method B Standard Formula Value - Protection of			
	Prote	Protection of				National Rec	commended	Water Quality	Human Heal	National Recommended Water Quality Human Health (Consumption			
	Aquation	Aquatic Life (a)	Nati	National Toxics Rule (b)	Rule (b)		Criteria (c)	_	of Aqu	of Aquatic Life)			
			AWC	AWQC for	AWQC for Protection Protection	Protection	Protection						Groundwater
			Protec	tion of F	Protection of Protection of Aquatic of Aquatic	of Aquatic	of Aquatic						Screening Level
			Aquat	Aquatic Life	Human	- File	Life -	Protection of			Preliminary		(After adjustment
	Acute	Acute Chronic Acute Chronic	Acute	Chronic	Health	Acute	Chronic	Human Health	Carcinogen	Chronic Human Health Carcinogen Non-Carcinogen	Screening Level	PQL (g)	for PQL)
Analyte	µg/L	ug/L ug/L ug/L ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	hg/L	µg/L	ng/L	hg/L
Hexachlorobenzene				-	0.00077	-	-	0.00029	0.00047	0.24	0.00029	0.00083	0.00083
Methoxychlor	:	:	ı	1	1	1	0.03	1	1	8.4	0.03	0.0083	0.03
Toxaphene	0.21	0.00020 0.21 0.00020	0.21	0.000020	0.00075	0.21	0.00020	0.00028	0.00045	1	0.00020	0.083	0.083
Conventionals													
Ammonia	230	35	:		1	1	1	ı	1	:	35	10	35

-Screening levels were developed for all constituents analyzed in groundwater.
- Screening level is based on lowest of Federal and State marine surface water concentrations protective of aquatic life (including MTCA Method 8 standard formula values for carcinogens and non-carcinogens), adjusted for practical quantification limit (PQL).
- Shading indicates basis for screening level.
- The screening criteria available.

ug/L = Micrograms per liter
MTQA = Washington State Model Toxics Control Act
PAHs = Polyocilc aromatic hydrocarbons
CAHS = Carcinogenic polyocilc aromatic hydrocarbons
PCBs = Polyothorinated biphenyls

PQL = Practical quantitation limit VOCs = Volatile organic compounds SVOCs = Semivolatile organic compounds

TEC = Toxic equivalent concentration TPH = Total petroleum hydrocarbons

(a) Ambient water quality criteria (AWQC) for protection of aquatic life from WAC 173 201A-240.

(b) Ambient water quality criteria (AWQC) for protection of human health from 40 CFR Part 131d (National Toxics Rule).

(c) National Recommended Water Quality Criteria (EPA 2008).

(d) MTGA Method A goundwater cleanup levels are used for gasoline-range, cliesel-range, and heavy oil-range petroleum hydrocarbons, and total xylenes and lead.

(e) Value for gasoline-range petroleum hydrocarbons if benzene is present. If benzene is not present, soreening level is 1,000 µg/L.

(f) PQL for total chromium.
 (g) PQL is lowest available value from Analytical Resources, Inc. (Tukwila, WA) or Frontier Analytical Laboratory (El Dorado Hills, CA).
 (h) PQL for EPA Method 8041.

* Endrin values used for endrin aldetyde and endrin ketone.

** Endosulfan values used for endosulfan I, endosulfan II, and endosulfan sulfate.

*** Chlordane values used for alpha- and gamma-chlordane.

Page 4 of 4

APPENDIX B BORING AND WELL CONSTRUCTION LOGS

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT
Portion of Rayonier Mill Property
700 North Ennis Street
Port Angeles, Washington

Farallon PN: 1005-001

Page 1 of 1

City of Port Angeles Client:

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: 6/22/11 @ 7:10 Date/Time Completed: 6/22/11 @ 8:30

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 11.0' Total Boring Depth (ft bgs): 16.0

Total Well Depth (ft bgs): NA

Boring/Well

low Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **JSGS Graphic** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details OPSO** 0.0-0.3' Organic/Grass (100% organic), brown, moist, no odor, no FILL 0.3-3.5' Fill: Silty SAND with gravel (65% sand, 25% gravel, 15% silt), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no FAR1-2.5 NA 0.0 Bentonite 3.5-4.5' SILT (90% silt, 10% sand), fine sand, brown, moist, no odor, MI SP-SM 4.5-6.5' Poorly graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to medium sand, fine gravel, brown, moist, no odor, no sheen. Observed ash-layer between 6.0 to 6.2-feet bgs. NA 0.0 70 FAR1-6.0 6.5-8.0' SILT (100% silt), yellowish-orange, moist, no odor, no sheen. SP-SM 8.0-10.2' Poorly graded SAND with silt (80% sand, 10% silt, 10% gravel), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen. 10 -FAR1-10.0 100 NA 0.0 10.2-10.8' SILT (100% silt), yellowish-orange, moist, no odor, no ML sheen. GW 10.8-12.5' Well-graded GRAVEL with sand (70% gravel, 20% sand, 5% silt), fine to coarse gravel, fine to medium sand, reddish-brown, FAR1-062211-GW X moist to wet, no odor, no sheen. SM 12.5-13.0' Silty SAND with gravel (60% sand, 25% gravel, 15% silt), fine sand, fine to coarse gravel, dark grey, wet, no odor, no sheen. ML 13.0-16.0' SILT with sand (80% silt, 20% sand), fine to medium sand, 100 NA 0.0 yellowish-orange, wet, no odor, no sheen. 15 -FAR1-16.0

Monument Type: NA Casing Diameter (inches): NA Screen Slot Size (inches): 0.010

Screened Interval (ft bgs):

10-15'

Well Construction Information Filter Pack: Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA **Boring Abandonment:** Bentonite Surveyed Location: X: NA Y: NA

Page 1 of 1

City of Port Angeles **Client:**

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/22/11 @ 8:40 Date/Time Started: 6/22/11 @ 9:45 Date/Time Completed:

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling **Drilling Foreman:** Noel Kmopf

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 6.0' Total Boring Depth (ft bgs): 13.0'

Total Well Depth (ft bgs): NA

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well struction etails
0_											
	\	0.0-0.3' Organic/Grass (100% organic), brown, moist, no odor, no The sheen.	OPSOI C / FILL	X							Concrete
_		0.3-3.5' Fill: Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine to medium sand, grey, moist, no odor, no sheen.									
_					100	NA	0.0	FAR2-2.5	х		
-		3.5-3.7' Fill: Poorly-graded SAND with gravel (80% sand, 15% gravel, 5% silt), fine to medium sand, fine to coarse gravel, brown, moist, no codor, no sheen.	SP								Bentonite
5-	$ \rangle / $	3.7-5.0' Poorly-graded SAND (90% sand, 5% silt, 5% gravel), fine sand, fine gravel, brown, moist, no odor, no sheen.	SW-SM								
-		5.0-7.5' Well-graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine to coarse gravel, brown, moist to wet, no odor, no sheen.			100	NA	0.0	FAR2-5.5	X		Water level
_		7.5-7.8' ROCK (100% rock), white, moist, dry, no odor, no sheen.	RK ,								
_	$\setminus /$	7.8-9.0' Well-graded SAND with gravel (65% sand, 30% gravel, 5% silt), fine to coarse sand, fine to coarse gravel, dark brown, wet, no odor, no sheen.	sw					FAR2-062211-GV	ı x		
10 —		9.0-11.0' Well-graded SAND with gravel (65% sand, 30% gravel, 5% silt), fine to coarse sand, fine to coarse gravel, brown, wet, no odor, no sheen.	SW		100	NA	0.0	7.11.2 002211 00			
-		11.0-13.0' Well-graded SAND with gravel (70% sand, 25% gravel, 15% silt), fine to coarse sand, fine to coarse gravel, yellowish-brown, wet, no odor, no sheen.	SW								
-	\wedge				100	NA	0.0	FAR2-13.0			
-											

Monument Type: NA Casing Diameter (inches): NA Screen Slot Size (inches): 0.010

Screened Interval (ft bgs):

7-12'

Well Construction Information Filter Pack: Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA **Boring Abandonment:** Bentonite Surveyed Location: X: NA Y: NA

Page 1 of 1

Details

City of Port Angeles **Client:**

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/22/11 @ 10:00 Date/Time Started: Date/Time Completed: 6/22/11 @ 11:45

Powerprobe 9630 **Equipment:**

Drilling Company: ESN Drilling Noel Kmopf **Drilling Foreman:**

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Sample ID

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 13.0' Total Boring Depth (ft bgs): 18.0'

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic Boring/Well** % Recovery PID (ppm) **Lithologic Description** Construction

0_	1	, 0.0-0.2' Asphalt (100% asphalt), black.	1 00							N I	Concrete
-\ -	\bigvee	0.2-1.0' Fill: Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine to medium sand, grey, indicate, no odor, no sheen.	FILL		100	NA	0.0	FAR3-2.5			
5-		1.0-6.0' Fill: Silty SAND with gravel (60% sand, 20% gravel, 20% silt), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen.				IVA	0.0	FAN3-2.3			Bentonite
		6.0-9.0' SILT (95% silt, 5% sand), fine sand, greenish-brown, moist, no odor, no sheen. Observed charcoal at 8-feet bgs.	ML		100	NA	0.0	FAR3-6.0			
10 -	\bigvee	9.0-10.5' Poorly-graded SAND with gravel (80% sand, 15% gravel, 5% silt), fine to medium sand, fine to coarse gravel, grey, moist, no odor, no sheen. 10.5-15.0' SILT (95% silt, 5% sand), fine sand, greenish-brown, moist to wet, no odor, no sheen. Observed piece of plastic and shell.	SP ML		100	NA	0.0	FAR3-9.0			
-	\bigvee				100	NA	0.0	FAR3-12.5	X		Water Level
15 -	\ \ \	15.0-15.5' Well-graded GRAVEL with sand (65% gravel, 30% sand, 5% silt), fine to coarse gravel, fine to medium sand, grey, wet, no odor, no sheen. 15.5-16.0' Well-graded SAND with silt and gravel (70% sand, 20%	GW / SW-SM		100	NA	0.0	FAR3-062211-GW	X		
-		gravel, 10% silt), fine to coarse sand, fine to coarse gravel, brown, wet, no odor, no sheen. 16.0-17.0' SILT (100% silt), fine sand, brown, wet, no odor, no sheen.	SW-SM		100	INA	0.0	FAR3-18.0			
20 -		17.0-18.0' Well-graded SAND with silt and gravel (70% sand, 20% gravel, 10% silt), fine to coarse sand, fine to coarse gravel, brown, wet, no odor, no sheen.									
	L		1	Ь			1				

Monument Type: NA Casing Diameter (inches): NA 0.010 Screen Slot Size (inches):

12-17

Screened Interval (ft bgs):

Well Construction Information Filter Pack: Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

City of Port Angeles Client:

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: 6/22/11 @ 12:08 Date/Time Completed: 6/22/11 @ 13:35

Powerprobe 9630 **Equipment:**

Drilling Company: ESN Drilling Noel Kmopf **Drilling Foreman:**

Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): NA Total Boring Depth (ft bgs): 16.0' Total Well Depth (ft bgs): NA

Drilling Method: Geoprobe

	55										
Depth (feet bgs.)	Sample Interval	Lithologic Description	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Co	oring/Well nstruction Details
0_											
- - -		0.0-0.3' Organic/Grass (100% organic), brown, moist, no odor, no sheen. 0.3-2.5' Fill: Poorly graded SAND with silt and gravel (70% sand, 20% gravel, 10% silt), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen. 2.5-4.5' SILT with sand (75% silt, 25% sand), fine sand, black, moist, organic odor, no sheen.	FILL ML		90	NA	0.2	FAR4-2.5 FAR4-4.0	x		Concrete
5-		4.5-8.5' Poorly-graded SAND with silt and gravel (70% sand, 20% gravel, 10% silt), fine sand, fine to coarse gravel, brown, moist, no odor, no sheen.	SP-SM		60	NA	0.0				
- 10 - -		8.5-9.5' Silty SAND (65% sand, 35% silt), fine sand, brown, moist, no odor, no sheen. Observed wood chunks. 9.5-12.5' SILT (100% silt), green, moist, no odor, no sheen.	SM ML		50	NA	0.0	FAR4-9.0	x		

SP-SM

ML

ML

ML

ML

60

NA

0.0

Well Construction Information Monument Type: NA Filter Pack: Casing Diameter (inches): NA

12.5-13.0' Poorly-graded SAND with silt and gravel (70% sand, 20% gravel, 10% silt), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen. Observed chunk of breccia cemented with

13.0-14.0' SILT (100% silt), green, moist, no odor, no sheen.

14.0-14.5' SILT (100% silt), black, moist, no odor, no sheen.

14.5-15.0' SILT (100% silt), yellowish-orange, moist, no odor, no

15.0-16.0' SILT with sand (65% silt, 35% sand), fine sand, yellowish-

round, grey, gravel.

grey, moist, no odor, no sheen.

15

Surface Seal: NA 0.010 Screen Slot Size (inches): Annular Seal: NA NA Screened Interval (ft bgs):

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

Client: City of Port Angeles

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

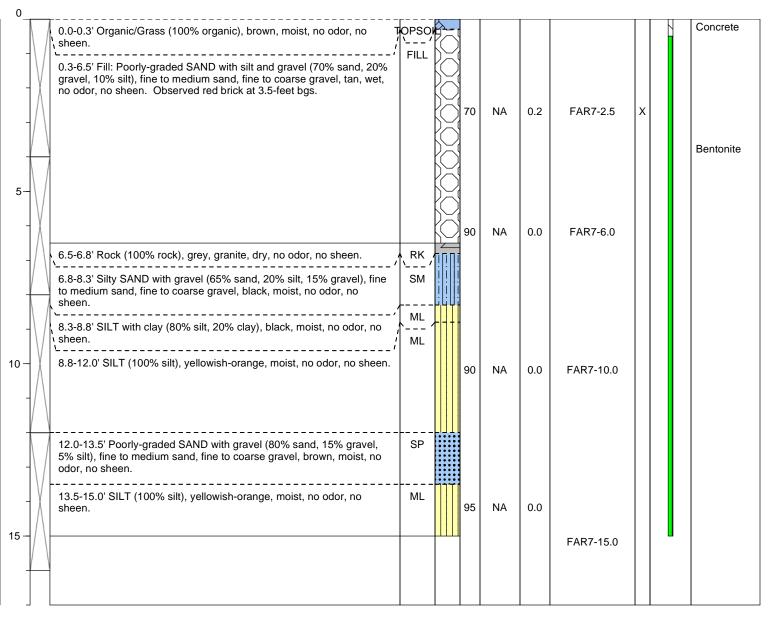
Logged By: Ken Scott

Date/Time Started: 6/21/11 @ 12:10

Date/Time Completed: 6/21/11 @ 13:10

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling
Drilling Foreman: Noel Kmopf


Drilling Method: Geoprobe

Sampler Type: 4' macrocore

Drive Hammer (Ibs.): Auto
Depth of Water ATD (ft bgs): NA
Total Boring Depth (ft bgs): 15.0'

Total Well Depth (ft bgs): NA

Sample Interval
Sample Interval
NSCS
USCS Graphic
Recovery
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed
Sample Analyzed

Monument Type: NA

Casing Diameter (inches): NA

Screen Slot Size (inches): 0.010

Screened Interval (ft bgs): NA

Well Construction Information
Filter Pack: NA
Surface Seal: NA
Annular Seal: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: Bentonite
Surveyed Location: X: NA
Y: NA

Page 1 of 1

Client: City of Port Angeles

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: 6/22/11 @ 13:50

Date/Time Completed: 6/22/11 @ 15:15 **Equipment:** Powerprobe 9630

Drilling Company: ESN Drilling
Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe

Sampler Type: 4' macrocore

Drive Hammer (Ibs.): Auto
Depth of Water ATD (ft bgs): NA
Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Lithologic Description

Lithologic Description

Sample ID

Sample ID

Sample ID

O.0.0-0.2' Concrete (100% concrete), aggregate, grey, dry, no odor.

Concrete

0.2-0.8' Fill: Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine to medium sand, grey, moist, no odor, no sheen. ML. 0.8-1.5' SILT (90% silt, 10% sand), fine sand, black, moist, organic **GW-GM** FAR8-2.5 90 NA 0.0 (natural) odor, no sheen. \bigcirc 1.5-6.0' Well-graded GRAVEL with silt and sand (75% gravel, 15% Bentonite sand, 10% silt), fine to coarse gravel, fine to coarse sand, grey, moist, no odor, no sheen. Observed angled colluvial landslide-like gradation. 5 0.0 FAR8-5.0 Х 90 NA SP 6.0-7.5' Poorly-graded SAND (90% sand, 5% gravel 5% silt), fine to medium sand, fine to coarse gravel, grey, moist, no odor, no sheen. GW-GN 7.5-8.5' Well-graded GRAVEL with silt and sand (70% gravel, 15% sand, 10% silt), fine to coarse gravel, fine to medium sand, grey, moist, no odor, no sheen. Observed angled colluvial landslide-like SW 8.5-10.5' Well-graded SAND with gravel (80% sand, 15% gravel 5% silt), fine to coarse sand, fine to coarse gravel, grey, moist, no odor, no 10 -90 NA sheen. ML 10.5-11.0' SILT (100% silt), black, moist, organic (natural) odor, no 0.0 FAR8-11.0 SW 11.0-13.5' Well-graded SAND with gravel (80% sand, 15% gravel 5% silt), fine to coarse sand, fine to coarse gravel, grey, moist to slight wet, no odor, no sheen. Observed angled colluvial landslide-like gradation (multiple landslide events). Note: boring next to steep slope. NA 0.0 SP 13.5-14.0' Poorly-graded SAND (90% sand, 5% gravel 5% silt), fine to medium sand, fine to coarse gravel, grey, moist, no odor, no sheen. ML 14.0-15.0' SILT with sand (80% silt, 20% sand), fine sand, black, moist, organic (natural) odor, no sheen.

Monument Type: NA Well Construction Information

Casing Diameter (inches): NA
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): NA
Filter Pack: NA
Surface Seal: NA
Annular Seal: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: Bentonite
Surveyed Location: X: NA
Y: NA

Page 1 of 1

City of Port Angeles **Client:**

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/21/11 @ 10:40 Date/Time Started: 6/21/11 @ 11:35 Date/Time Completed:

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): NA Total Boring Depth (ft bgs): 15.0' Total Well Depth (ft bgs): NA

Boring/Well

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0_										
- - 5-		0.0-0.3' Organic/Grass (100% organic), brown, moist, no odor, no sheen. 0.3-1.2' SILT (90% silt, 10% sand), fine sand, tan, dry, no odor, no sheen. 1.2-3.5' Silty SAND (70% sand, 30% silt), fine to medium sand, black, moist, no odor, no sheen. 3.5-3.8' Poorly graded SAND (95% sand, 5% silt), fine to medium sand, pinkish-grey, dry, no odor, no sheen.	OPSON ML SM		100	NA	0.0	FAR9-2.5	x	Bentonite
-	$\backslash \backslash$	6.0-7.0' SILT (95% silt, 5% sand), fine sand, black, moist, no odor, no sheen. 7.0-8.0' SILT (100% silt), greenish-grey, moist, no odor, no sheen.	ML ML ML		100	NA	0.0	FAR9-6.0		
- 10 - -		8.0-9.5' SILT (90% silt, 10% sand), fine sand, black, moist, no odor, no sheen. 9.5-14.0' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.	ML ML	+	100	NA	0.0	FAR9-10.0		
- 15 – -		14.0-14.7' Silty SAND (65% sand, 30% silt, 5% gravel), fine to medium sand, fine gravel, black, moist, no odor, no sheen. 14.7-15.0' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.	SM ML		50	NA	0.0	FAR9-15.0		

Monument Type: NA Casing Diameter (inches): Screen Slot Size (inches):

NA 0.010 Screened Interval (ft bgs): NA

Well Construction Information Filter Pack: Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA **Boring Abandonment:** Bentonite Surveyed Location: X: NA Y: NA

Log of Boring: FAR10

Page 1 of 1

City of Port Angeles **Client:**

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/21/11 @ 9:30 Date/Time Started: Date/Time Completed: 6/21/11 @ 10:20

Powerprobe 9630 **Equipment:**

Drilling Company: ESN Drilling Noel Kmopf **Drilling Foreman:**

Drilling Method: Geoprobe 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): NA Total Boring Depth (ft bgs): 15.0' Total Well Depth (ft bgs): NA

Sampler Type:

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well struction etails
0_											
	\ /	0.0-0.2' Asphalt (100% asphalt), black.	, AC /								Concrete
_	V	0.2-1.4' Fill: Well-graded GRAVEL with sand (70% gravel, 25% sand, 5% silt), fine to coarse gravel, fine to medium sand, grey, moist, no door, no sheen.	FILL ML								
	Λ	1.4-1.7' SILT (100% silt), black, moist, slight odor, no sheen.	SP-SM		95	NA	0.0	FAR10-2.5	$ _{X}$		
-		1.7-4.5' Poorly-graded SAND with silt and gravel (65% sand, 25% gravel, 10% silt), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen.									Bentonite
5-		4.5-5.7' SILT (100% silt), black, moist, no odor, no sheen.	ML								
-		5.7-10.0' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.	ML		100	NA	0.0	FAR10-6.0			
10		10.0-13.0' SILT with sand (70% silt, 10% sand, 5% gravel), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen.	ML		70	NA	0.0	FAR10-10.0			
15 —		13.0-15.0' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.	ML		90	NA	0.0	FAR10-15.0	x		
-											

Monument Type: NA Casing Diameter (inches): NA 0.010 Screen Slot Size (inches):

NA

Screened Interval (ft bgs):

Well Construction Information Filter Pack: Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 3

Client: City of Port Angeles

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

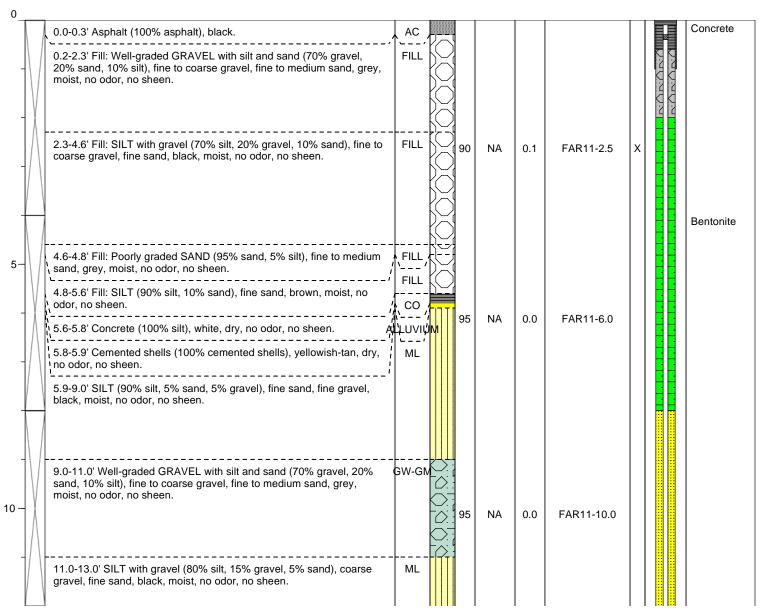
Logged By: Ken Scott

Date/Time Started: 6/23/11 @ 13:05 Date/Time Completed: 6/23/11 @ 14:10

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling
Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe


Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 15.0'

Total Boring Depth (ft bgs): 22.0'

Total Well Depth (ft bgs): 22.0

Sample Interval USGS Graphic USGS Graphic USGS Graphic USGS Graphic USGS Graphic W Recovery Blow Counts 8/8/8	Boring/Well Construction Details
0	

Monument Type: Morris
Casing Diameter (inches): 2"
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 12 to 22' bgs

Well Construction Information
Filter Pack: 10/20 silica sand
Surface Seal: Concrete

Annular Seal: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Boring Abandonment: Bentonite
Surveyed Location: X: NA
Y: NA

Page 2 of 3

City of Port Angeles Client:

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/23/11 @ 13:05 Date/Time Started: Date/Time Completed: 6/23/11 @ 14:10

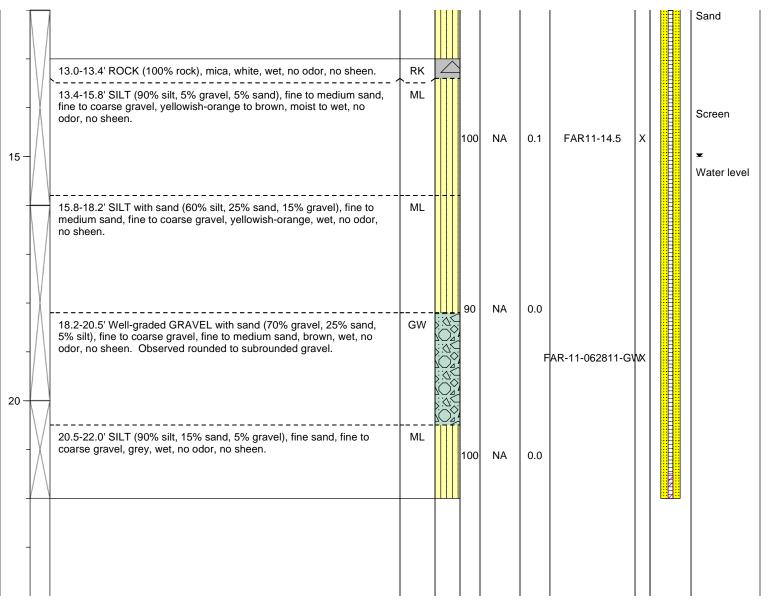
Equipment: Powerprobe 9630

ESN Drilling

Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe

Drilling Company:


4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 15.0' Total Boring Depth (ft bgs): 22.0'

Sampler Type:

Total Well Depth (ft bgs): 22.0

|--|

Monument Type: Morris Casing Diameter (inches): Screen Slot Size (inches): 0.010

Screened Interval (ft bgs):

12 to 22' bgs

Well Construction Information 10/20 silica sand Filter Pack: Surface Seal: Concrete

Annular Seal: Bentonite

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 3 of 3

City of Port Angeles **Client:** Project: Former Rayonier Mill Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/23/11 @ 13:05 Date/Time Started: Date/Time Completed: 6/23/11 @ 14:10

Equipment: Powerprobe 9630 **Drilling Company: ESN** Drilling

Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 15.0' Total Boring Depth (ft bgs): 22.0'

Total Well Depth (ft bgs): 22.0

Depth (feet bgs.)	Sample Interval	Lithologic Description	sosn	USGS Graphic	% Recovery	Blow Counts 8/8/	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
-	1 1		Ī	ı	1	I .	ı i			1	1
25 –											
-											
-											
-											
30 -											
-											
-	1										

Monument Type: Morris 2" Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 12 to 22' bgs

Well Construction Information 10/20 silica sand Filter Pack: Surface Seal: Concrete Annular Seal: Bentonite

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA **Boring Abandonment: Bentonite** Surveyed Location: X: NA Y: NA

Page 1 of 1

City of Port Angeles Client:

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: 6/20/11 @ 13:25 Date/Time Completed: 6/20/11 @ 14:55

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe

4' macrocore Sampler Type:

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 11.0' Total Boring Depth (ft bgs): 16.0'

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** Concrete 0.0-0.2' Organic/Grass (100% organic), brown, moist, no odor, no TOPSO ML 0.2-1.2' SILT (90% silt, 10% sand), fine sand, brown, moist, no odor, ML no sheen. 1.2-2.5' SILT (95% silt, 5% sand), fine sand, greenish-grey, moist, no 100 0.0 FAR12-2.5 NA MLodor, no sheen. 2.5-4.2' SILT (100% silt), yellowish-orange, moist, no odor, no sheen. **Bentonite** 4.2-4.8' SILT with clay (80% silt, 20% clay), dark brown, moist, no ML odor, no sheen. ML 4.8-8.8' SILT (100% silt), yellowish-orange, moist, no odor, no sheen. 100 FAR12-6.0 NA 0.0 8.8-9.0' ROCK (100% rock), white, granite, moist, no odor. RK 9.0-12.0' SILT (100% silt), brown, moist to wet, no odor, no sheen. MI 10 70 NA FAR12-10.0 Water Level

SP

SM

NA

0.0

70

Well Construction Information Monument Type: NA Filter Pack: Casing Diameter (inches): NA

12.0-12.3' Poorly-graded SAND (95% sand, 5% silt), fine to medium

12.3-16.0' Silty SAND with gravel (65% sand, 20% gravel, 15% silt), fine to medium sand, coarse gravel, dark grey, wet, no odor, no

sand, grey, wet, no odor, no sheen.

sheen.

15

Surface Seal: NA 0.010 Screen Slot Size (inches): 12-15' Annular Seal: NA Screened Interval (ft bgs):

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA **Boring Abandonment:** Bentonite Surveyed Location: X: NA Y: NA

FAR12-062011-GWX

Page 1 of 1

City of Port Angeles Client:

Project: Former Rayonier Mill

Location: Port Angeles, WA

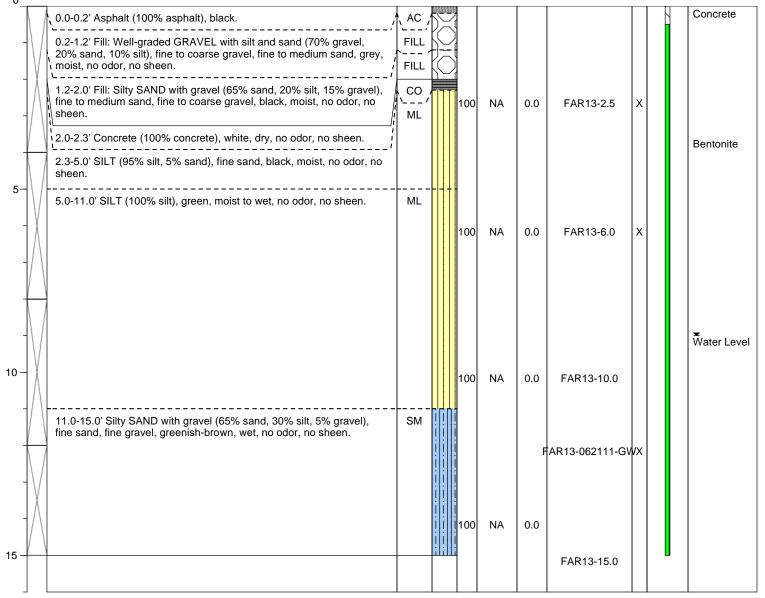
Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: 6/21/11 @ 13:40 Date/Time Completed: 6/21/11 @ 14:55

Equipment: Powerprobe 9630

Drilling Company: ESN Drilling Drilling Foreman: Noel Kmopf


Drilling Method: Geoprobe

4' macrocore Sampler Type:

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 9.0' Total Boring Depth (ft bgs): 15.0'

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USGS Graphic Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details**

Monument Type: NA Casing Diameter (inches): NA 0.010 Screen Slot Size (inches): 9-14'

Screened Interval (ft bgs):

Well Construction Information Filter Pack: Surface Seal: NA Annular Seal: NA

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

City of Port Angeles **Client:**

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

no sheen.

10

odor, no sheen.

6/22/11 @ 15:30 Date/Time Started:

Date/Time Completed: 6/22/11 @ 17:05 Powerprobe 9630 **Equipment:**

Drilling Company: ESN Drilling Noel Kmopf **Drilling Foreman:**

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 2.0' Total Boring Depth (ft bgs): 10.0'

Total Well Depth (ft bgs): NA

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well estruction Details
0_				akkikk		<u> </u>	1 1			И	Concrete
	\ /	0.0-0.2' Asphalt (100% ashalt), black, moist.	AC /							J	Concrete
-	$\frac{1}{2}$	0.2-1.0' Fill: Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine to medium sand, grey, moist, no odor, no sheen.	FILL FILL								
-		1.0-2.8' Fill: Silty SAND with gravel (65% sand, 20% gravel, 15% silt), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen.			100	NA					¥ Water Level
-	$\left \cdot \right $	2.8-3.1' Concrete (100% concrete), white, dry, no odor.	со							ı	
_		3.1-3.4' SILT (100% silt), black, moist, no odor, no sheen. Observed ', 3-inch round, white, cobbles.	ML /	/= + 			0.0	FAR14-3.5	X		▽
5-		3.4-6.5' Sandy SILT (60% silt, 40% sand), fine sand, green, wet, odor, no sheen. Observed the water level rise up from 4-feet to 2-feet like artesian (adjacent to steep slope about 50-feet to east).	IVIL								Initial Water Level Bentonite
-	1 /				80	NA				ı	
-		6.5-8.0' SILT (70% silt, 30% clay), medium plastic, greenish-brown, wet, no odor, no sheen.	ML				0.0	FAR14-7.5			
-	\ /	8.0-8.8' Silty SAND with gravel (60% sand, 25% silt, 15% gravel), fine to medium sand, fine to coarse gravel, brownish-green, wet, no odor,	SM	<mark>- - - -</mark> - - - - - - - - -							

MI

100

NA

0.0

Well Construction Information Monument Type: NA Filter Pack: Casing Diameter (inches): NA

8.8-10.0' SILT (95% silt, 5% sand), fine sand, greenish-brown, wet, no

Attempt to sample groundwater at 2-feet bgs, but boring collapsed due

to shallow gravel. Redrive to 10-feet bgs but, silt in formation clogges the well screen. Redrive to 16-feet bgs and encounter good groundwater zone and screen between 11 to 16 feet bgs.

Surface Seal: NA 0.010 Screen Slot Size (inches): Annular Seal: NA Screened Interval (ft bgs): 11-15'

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA **Boring Abandonment:** Bentonite Surveyed Location: X: NA Y: NA

Page 1 of 1

City of Port Angeles Client:

Project: Former Rayonier Mill

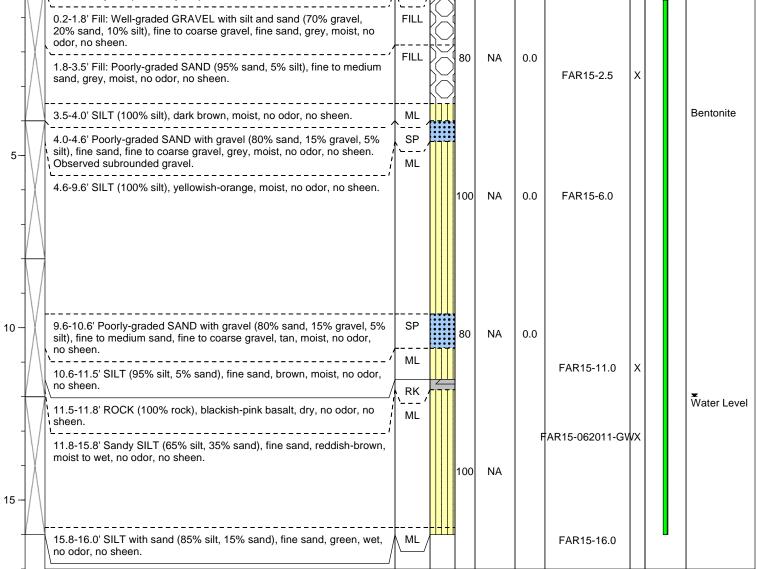
Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

6/20/11 @ 15:10 Date/Time Started: Date/Time Completed: 6/20/11 @ 17:40

Equipment: Powerprobe 9630


Drilling Company: ESN Drilling Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 12.0' Total Boring Depth (ft bgs): 16.0'

Total Well Depth (ft bgs): NA

	33										
Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well truction etails
0											
		, 0.0-0.2' Asphalt (100% asphalt), black.	AC,								Concrete
-	$\left \right $	0.2-1.8' Fill: Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine sand, grey, moist, no odor, no sheen.	FILL								
	1 /	1 8-3 5' Fill: Poorly-graded SAND (95% sand 5% silt) fine to medium	FILL		80	NA	0.0				

Well Construction Information Monument Type: NA Filter Pack: Casing Diameter (inches): NA

Surface Seal: NA 0.010 Screen Slot Size (inches): 12-15' Annular Seal: NA Screened Interval (ft bgs):

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Bentonite **Boring Abandonment:** Surveyed Location: X: NA Y: NA

Page 1 of 1

Client: City of Port Angeles

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: 6/23/11 @ 9:10

Date/Time Completed: 6/23/11 @ 10:30

Equipment: Powerprobe 9630

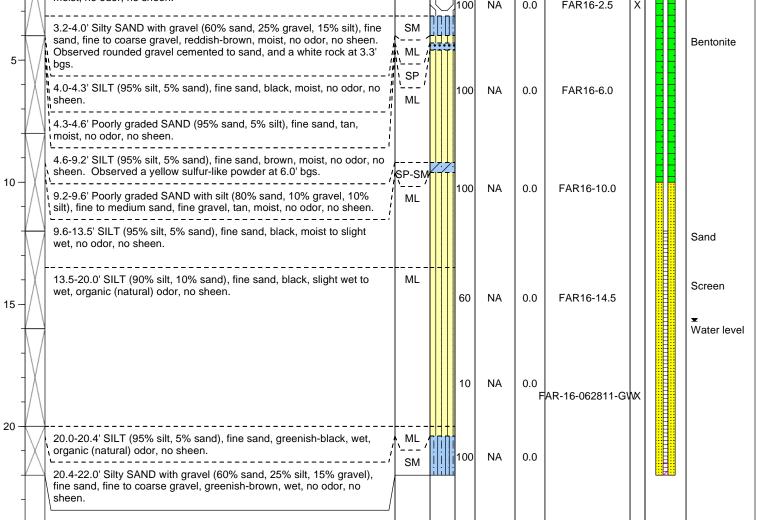
Drilling Company: ESN Drilling
Drilling Foreman: Noel Kmopf

Drilling Method: Geoprobe

Sampler Type: 4' macrocore

NA

NA


NA

Y: NA

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 15.7'
Total Boring Depth (ft bgs): 22.0'

Total Well Depth (ft bgs): 22.0

LO	gge	ed By: Ken Scott									
Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Wel Constructio Details	
0_											
	\ /	0.0-0.3' Asphalt (100% asphalt), black.	AC		1					Concrete	;
-		0.2-3.2' Fill: Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse gravel, fine to medium sand, grey, moist, no odor, no sheen.	FILL		100	NA	0.0	FAR16-2.5	x		
5-	\	3.2-4.0' Silty SAND with gravel (60% sand, 25% gravel, 15% silt), fine sand, fine to coarse gravel, reddish-brown, moist, no odor, no sheen. Observed rounded gravel cemented to sand, and a white rock at 3.3' bgs.	SM 							Bentonite	Э
-	\	4.0-4.3' SILT (95% silt, 5% sand), fine sand, black, moist, no odor, no	SP / ' ML		100	NA	0.0	FAR16-6.0			

Monument Type: Morris

Casing Diameter (inches): 2"

Surface Seal: Concrete

Well Construction Information
Filter Pack: 10/20 silica sand

Top of Casing Elevation (ft):

Surface Seal: Concrete

Paring About Appropria

Screen Slot Size (inches): 0.010 Surface Seal: Concrete Boring Abandonment:

Screened Interval (ft bgs): 12 to 22' bgs Annular Seal: Bentonite Surveyed Location: X: NA

Page 1 of 1

Auto

City of Port Angeles Client:

Project: Former Rayonier Mill Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Interval

Depth (feet bgs.)

Date/Time Started:

6/23/11 @ 7:15

Date/Time Completed: 6/23/11 @ 8:35 Equipment:

Drilling Company:

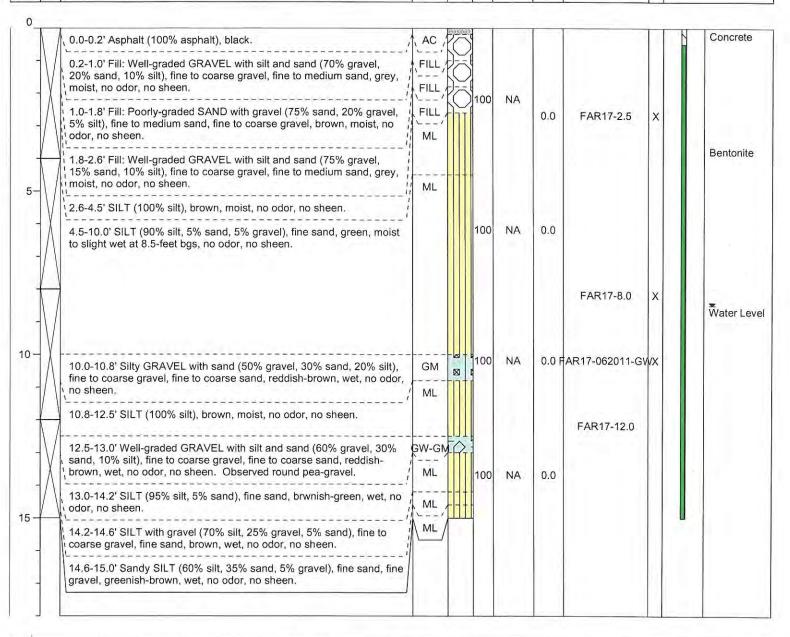
ESN Drilling

Drilling Foreman: Drilling Method:

Powerprobe 9630

Noel Kmopf

Geoprobe


Sampler Type: 4' macrocore

Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 8.5' Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Lithologic Description	SOSO	USGS Graphic	% Recovery	Blow Counts 8/8/	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
------------------------	------	--------------	------------	------------------	-----------	-----------	-----------------	--	--

Monument Type: NA

Casing Diameter (inches): NA Screen Slot Size (inches): 0.010 7-12 Screened Interval (ft bgs):

Well Construction Information

Filter Pack: Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): **Boring Abandonment:**

NA Bentonite

NA

Surveyed Location: X: NA Y: NA

Page 1 of 1

City of Port Angeles Client: Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started: Date/Time Completed:

6/21/11 @ 8:30 6/21/11 @ 9:10

Sampler Type: 4' macrocore

Total Well Depth (ft bgs):

Drive Hammer (lbs.):

Auto

Powerprobe 9630

Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): **ESN Drilling**

NA 15.0

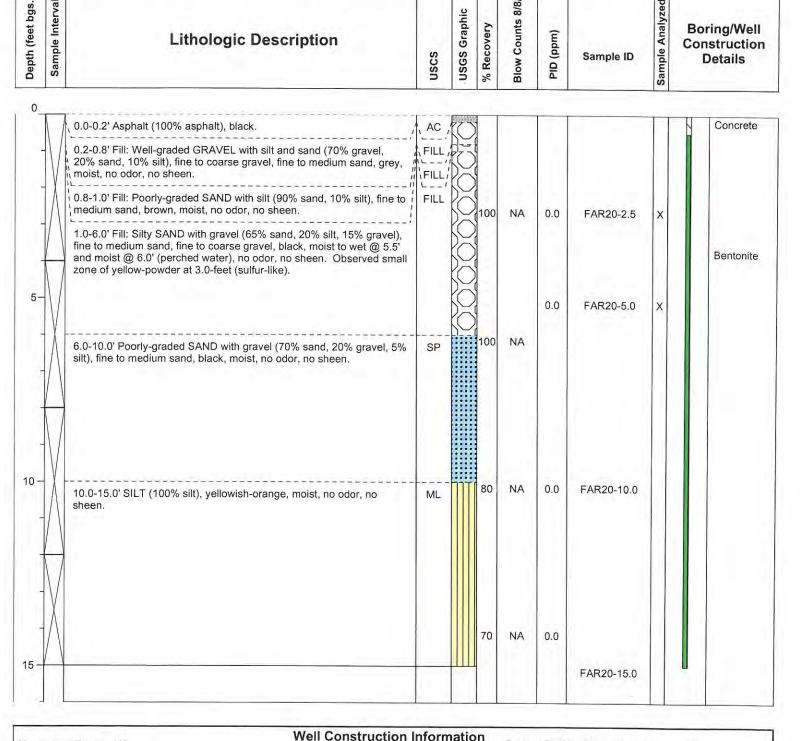
Drilling Company: Drilling Foreman: Drilling Method:

Equipment:

Noel Kmopf

Geoprobe

NA


Depth (feet bgs.) Sample Interval

Lithologic Description

Blow Counts 8/8/8 **USGS Graphic** Recovery

(mdd) Sample ID

Boring/Well Construction **Details**

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): 0.010

NA

Filter Pack:

Surface Seal: NA

Annular Seal: NA

Top of Casing Elevation (ft): **Boring Abandonment:**

Surveyed Location: X: NA Y: NA

Ground Surface Elevation (ft):

NA Bentonite

Page 1 of 1

City of Port Angeles Client: Project: Former Rayonier Mill Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started:

Date/Time Completed:

Equipment: **Drilling Company:**

Drilling Foreman:

Drilling Method:

6/21/11 @ 7:20

6/21/11 @ 8:25

Powerprobe 9630 **ESN Drilling**

Geoprobe

Noel Kmopf

Sampler Type: 4' macrocore

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): NA

Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Depth (feet bgs.)	Sample Interval	Lithologic Description	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
-------------------	-----------------	------------------------	------	--------------	------------	-------------------	-----------	-----------	-----------------	--	--

Monument Type: NA

NA Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): NA

Well Construction Information

Filter Pack: NA Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): **Boring Abandonment:**

Surveyed Location: X: NA

NA Bentonite Y: NA

Page 1 of 1

15.0'

City of Port Angeles Client:

Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started:

Date/Time Completed:

6/24/11 @ 9:15

6/24/11 @ 11:00

Equipment:

Powerprobe 9630

ESN Drilling

Drilling Foreman: Drilling Method:

Drilling Company:

Noel Kmopf

Geoprobe

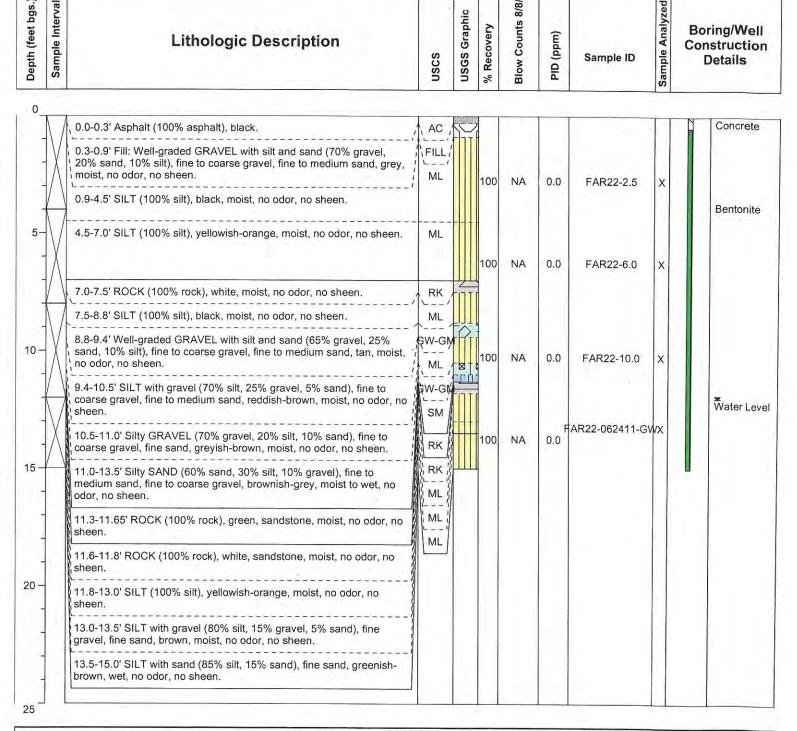
Sampler Type: 4' macrocore

Total Boring Depth (ft bgs):

Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 12.0

Total Well Depth (ft bgs): NA

Depth (feet bgs.)


Lithologic Description

Blow Counts 8/8/8 **USGS** Graphic Recovery

Sample ID

(mdd)

Boring/Well Construction Details

Well Construction Information

Monument Type: NA

Screened Interval (ft bgs):

Casing Diameter (inches): NA Screen Slot Size (inches): 0.010

9-14

Filter Pack:

Surface Seal: NA Annular Seal: NA Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Boring Abandonment:

Bentonite

Surveyed Location: X: NA

Y: NA

NA

Page 1 of 1

City of Port Angeles Client: Project: Former Rayonier Mill

Location: Port Angeles, WA

Farallon PN: 1005-001

Logged By: Ken Scott

Date/Time Started:

6/24/11 @ 7:20 Date/Time Completed: 6/24/11 @ 8:45

Equipment:

Powerprobe 9630

Drilling Company:

ESN Drilling

Drilling Foreman:

Noel Kmopf

Geoprobe **Drilling Method:**

Sampler Type: 4' macrocore

Depth of Water ATD (ft bgs):

Drive Hammer (lbs.): Auto

Total Boring Depth (ft bgs): 15.0'

Total Well Depth (ft bgs): NA

Sample Analyzed

NA

Depth (feet bgs.) Sample Interval

Lithologic Description

Blow Counts 8/8/8 **USGS Graphic** % Recovery

Sample ID

PID (ppm)

Boring/Well Construction **Details**

	0.0-0.3' Asphalt (100% asphalt), black.	AC ,							Concrete
V	0.3-1.9' Fill: Well-graded GRAVEL with silt and sand (60% gravel, 30% sand, 10% silt), fine to coarse gravel, fine to medium sand, greyish-brown, moist, no odor, no sheen.	FILL							
$/\!\setminus$	1.9-3.5' Silty SAND (65% sand, 25% silt, 10% gravel), fine to medium sand, fine to coarse gravel, brown, moist, no odor, no sheen.	SW		90	NA	0.0	FAR23-2.5	x	
	3.5-3.7' Well-graded SAND (95% sand, 5% silt), fine to coarse sand, t grey, moist, no odor, no sheen.	, sw ,	J.						Bentonite
\bigvee	3.7-4.0' SILT (100% silt), grey, moist, no odor, no sheen. Refusal due to large rock at 4.0-feet bgs, move boring 1-foot to north.	GW-GM							
X	4.0-5.5' Well-graded GRAVEL with silt and sand (60% gravel, 30% sand, 10% silt), fine to coarse gravel, fine to medium sand, brown,	ML		70	NA	0.0	FAR23-6.0	x	
$/ \setminus$	sand, 10% slit), line to coarse graver, line to medium sand, brown, moist, no odor, no sheen. Observed colluvial angled gradation landslide deposit.	ML							
\ /	5.5-6.6' Sandy SILT (60% silt, 40% sand), fine sand, brown, moist, no odor, no sheen.								
\bigvee	6.6-9.8' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.								
X	9.8-10.8' Silty SAND (65% sand, 35% silt), fine to medium sand, brown, moist, no odor, no sheen.	SM		80	NA	0.0	FAR23-10.0		
/\	10.8-11.3' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.	ML RK							
\/	11.3-11.65' ROCK (100% rock), green, sandstone, moist, no odor, no sheen.	\	- - +			ļщ			
X	1 11.6-11.8' ROCK (100% rock), white, sandstone, moist, no odor, no sheen.	ML /		90	NA	0.0	FAR23-13.5		
<u> </u>	11.8-13.0' SILT (100% silt), yellowish-orange, moist, no odor, no sheen.	RK	Ш						L
	13.0-13.5' SILT with gravel (80% silt, 15% gravel, 5% sand), fine gravel, fine sand, brown, moist, no odor, no sheen.	ML							
	13.5-14.0' ROCK (100% rock), white, sandstone, moist, no odor, no sheen.								
	14.0-15.0' SILT (100% silt), brown, moist, no odor, no sheen.								

Monument Type: NA

NA Casing Diameter (inches):

Screen Slot Size (inches): creened Interval (ft bgs): NA

0.010 Annular Seal: NA

Well Construction Information Filter Pack:

Surface Seal: NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

NA Bentonite **Boring Abandonment:** Surveyed Location: X; NA

Y: NA

APPENDIX C ANALYTICAL RESULTS

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT
Portion of Rayonier Mill Property
700 North Ennis Street
Port Angeles, Washington

Farallon PN: 1005-001

Table C-1A	Analytical Results for Tested Constituents in Soil, Area of Potential Concern 2
Table C-1B	Analytical Results for Tested Constituents in Groundwater, Area of Potential Concern 2
Table C-2A	Analytical Results for Tested Constituents in Soil, Area of Potential Concern 4
Table C-2B	Analytical Results for Tested Constituents in Groundwater, Area of Potential Concern 4
Table C-3	Analytical Results for Tested Constituents in Soil, Area of Potential Concern 6
Table C-4A	Analytical Results for Tested Constituents in Soil, Area of Potential Concern 8
Table C-4B	Analytical Results for Tested Constituents in Groundwater, Area of Potential Concern 8
Table C-5A	Analytical Results for Tested Constituents in Soil, Area of Potential Concern 9
Table C-5B	Analytical Results for Tested Constituents in Groundwater, Area of Potential Concern 9
Table C-6A	Analytical Results for Tested Constituents in Soil, Area of Potential Concern 12
Table C-6B	Analytical Results for Tested Constituents in Groundwater, Area of Potential Concern 12
Table C-7A	Analytical Results Summary for Detected Constituents in Soil
Table C-7B	Analytical Results Summary for Detected Constituents in Groundwater
Table C-8	Constituents Exceeding Screening Levels in Soil and Groundwater

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	T T 1: 0
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	6 - 6.5	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
				1,1,2-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,1-Dichloroethene	< 0.0011	0.0011	mg/kg
				1,1-Dichloropropene	< 0.0011	0.0011	mg/kg
				1,2,3-Trichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2,3-Trichloropropane	< 0.0011	0.0011	mg/kg
				1,2,4-Trichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2,4-Trimethylbenzene	< 0.0011	0.0011	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0055	0.0055	mg/kg
				1,2-Dibromoethane	< 0.0011	0.0011	mg/kg
				1,2-Dichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,2-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,3,5-Trimethylbenzene	< 0.0011	0.0011	mg/kg
				1,3-Dichlorobenzene	< 0.0011	0.0011	mg/kg
				1,3-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,4-Dichlorobenzene	< 0.0011	0.0011	mg/kg
				2,2-Dichloropropane	< 0.0011	0.0011	mg/kg
				2-Butanone (MEK)	< 0.0055	0.0055	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0055	0.0055	mg/kg
				2-Chlorotoluene	< 0.0011	0.0011	mg/kg
				2-Hexanone	< 0.0055	0.0055	mg/kg
				4-Chlorotoluene	< 0.0011	0.0011	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0055	0.0055	mg/kg
				Acetone	0.04	0.0055	mg/kg
				Benzene	< 0.0011	0.0011	mg/kg
				Bromobenzene	< 0.0011	0.0011	mg/kg
				Bromochloromethane	< 0.0011	0.0011	mg/kg
				Bromodichloromethane	< 0.0011	0.0011	mg/kg
				Bromoform	< 0.0011	0.0011	mg/kg
				Bromomethane	< 0.0011	0.0011	mg/kg
				Carbon Disulfide	< 0.0055	0.0055	mg/kg
				Carbon Tetrachloride	< 0.0011	0.0011	mg/kg
				Chlorobenzene	< 0.0011	0.0011	mg/kg
				Chloroethane	< 0.0055	0.0055	mg/kg
				Chloroform	< 0.0011	0.0011	mg/kg
				Chloromethane	< 0.0055	0.0055	mg/kg
				cis-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				cis-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Dibromochloromethane	< 0.0011	0.0011	mg/kg
				Dibromomethane	< 0.0011	0.0011	mg/kg
				Dichlorodifluoromethane	< 0.0011	0.0011	mg/kg
				Ethylbenzene	< 0.0011	0.0011	mg/kg
				Hexachlorobutadiene	< 0.0055	0.0055	mg/kg
				Iodomethane	< 0.0055	0.0055	mg/kg
				Isopropylbenzene	< 0.0011	0.0011	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Panga (fact		Analytical			Practical Quantitation	Unit of
Location	Range (feet	A 14 - T	Analytical	A 14-	Result	~	
FAR1	bgs) 6 - 6.5	Analyte Type	Method SW8260	Mnalyte m,p-Xylene	<0.0022	Limit 0.0022	Measure
		Volatile Organic Compounds		Methyl T-Butyl Ether (MTBE)			mg/kg
(continued)	(continued)	(continued)	(continued)	Methylene Chloride	<0.0011 <0.0055	0.0011 0.0055	mg/kg mg/kg
		(continued)		Naphthalene	<0.0033	0.0033	mg/kg
				N-Butylbenzene	<0.0011	0.0011	mg/kg
				N-Propylbenzene	<0.0011	0.0011	mg/kg
				o-Xylene	<0.0011	0.0011	mg/kg
				p-Isopropyltoluene	<0.0011	0.0011	mg/kg
				sec-Butylbenzene	<0.0011	0.0011	mg/kg
				Styrene	<0.0011	0.0011	mg/kg
				tert-Butylbenzene	< 0.0011	0.0011	mg/kg
				Tetrachloroethene (PCE)	< 0.0011	0.0011	mg/kg
				Toluene	< 0.0055	0.0055	mg/kg
				Trans-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				Trans-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Trichloroethene (TCE)	< 0.0011	0.0011	mg/kg
				Trichlorofluoromethane	< 0.0011	0.0011	mg/kg
				Vinyl Acetate	< 0.0055	0.0055	mg/kg
				Vinyl Chloride	< 0.0011	0.0011	mg/kg
	10 - 10.5	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.6	0.6	mg/kg
				Chromium	36	0.6	mg/kg
				Lead	6	6	mg/kg
			SW7471A	Mercury	< 0.3	0.3	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.04	0.04	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,2-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,2-Diphenylhydrazine	< 0.04	0.04	mg/kg
				1,3-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,3-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,4-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,4-Dinitrobenzene	< 0.04	0.04	mg/kg
				1-Methylnaphthalene	< 0.008	0.008	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3-Dichloroaniline	< 0.04	0.04	mg/kg
				2,4,5-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4,6-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dimethylphenol	< 0.4	0.4	mg/kg
				2,4-Dinitrophenol	< 0.2	0.2	mg/kg
				2,4-Dinitrotoluene	< 0.04	0.04	mg/kg
				2,6-Dinitrotoluene	< 0.04	0.04	mg/kg
				2-Chloronaphthalene	< 0.04	0.04	mg/kg
				2-Chlorophenol	< 0.04	0.04	mg/kg
				2-Methylnaphthalene	< 0.008	0.008	mg/kg
				2-Methylphenol (o-Cresol)	< 0.04	0.04	mg/kg
				2-Nitroaniline	< 0.04	0.04	mg/kg
				2-Nitrophenol	< 0.04	0.04	mg/kg
				3,3`-Dichlorobenzidine	<0.4	0.4	mg/kg
				3,4-Methylphenol (m,p-Cresol)	< 0.04	0.04	mg/kg
				3-Nitroaniline	< 0.04	0.04	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	10 - 10.5	Semi-Volatile Organic	SW8270	4,6-Dinitro-2-Methylphenol	<0.2	0.2	mg/kg
(continued)	(continued)	Compounds	(continued)	4-Bromophenyl Phenyl Ether	< 0.04	0.04	mg/kg
(commuca)	(commucu)	(continued)	(commuca)	4-Chloro-3-Methylphenol	< 0.04	0.04	mg/kg
		(***********)		4-Chloroaniline	< 0.04	0.04	mg/kg
				4-Chlorophenyl Phenylether	< 0.04	0.04	mg/kg
				4-Nitroaniline	< 0.04	0.04	mg/kg
				4-Nitrophenol	< 0.04	0.04	mg/kg
				Acenaphthene	0.031	0.008	mg/kg
				Acenaphthylene	< 0.008	0.008	mg/kg
				Aniline	< 0.003	0.006	mg/kg
				Anthracene	0.14	0.04	mg/kg
				Benzidine	<0.4	0.4	mg/kg
				Benzo(a)Anthracene	0.17	0.04	mg/kg
				Benzo(a)Pyrene	0.17	0.04	mg/kg
				Benzo(b)Fluoranthene	0.13	0.04	mg/kg
				Benzo(g,h,i)Perylene	0.13	0.04	mg/kg
				Benzo(j,k)Fluoranthene	0.14	0.04	
				Benzyl alcohol	< 0.04	0.04	mg/kg mg/kg
				Bis(2-Chloroethoxy) Methane	<0.04	0.04	
				Bis(2-Chloroethyl) Ether	<0.04	0.04	mg/kg
				3 /			mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.04	0.04	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.04	0.04	mg/kg
				Bis-2-Ethylhexyladipate	< 0.04	0.04	mg/kg
				Butyl Benzyl Phthalate	<0.4	0.4	mg/kg
				Carbazole	< 0.04	0.04	mg/kg
				Chrysene	0.19	0.04	mg/kg
				Dibenzo(a,h)Anthracene	0.041	0.008	mg/kg
				Dibenzofuran	<0.04	0.04	mg/kg
				Diethylphthalate	<0.2	0.2	mg/kg
				Dimethylphthalate	< 0.04	0.04	mg/kg
				Di-N-Butylphthalate	< 0.4	0.4	mg/kg
				Di-N-Octyl Phthalate	< 0.04	0.04	mg/kg
				Fluoranthene	0.51	0.04	mg/kg
				Fluorene	0.028	0.008	mg/kg
				Hexachlorobenzene	< 0.04	0.04	mg/kg
				Hexachlorobutadiene	< 0.04	0.04	mg/kg
				Hexachlorocyclopentadiene	< 0.04	0.04	mg/kg
				Hexachloroethane	< 0.04	0.04	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.12	0.04	mg/kg
				Isophorone	< 0.04	0.04	mg/kg
				Naphthalene	< 0.008	0.008	mg/kg
				Nitrobenzene	< 0.04	0.04	mg/kg
				N-Nitrosodimethylamine	< 0.04	0.04	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.04	0.04	mg/kg
				N-Nitrosodiphenylamine	< 0.04	0.04	mg/kg
				Pentachlorophenol	< 0.2	0.2	mg/kg
				Phenanthrene	0.4	0.04	mg/kg
				Phenol	< 0.04	0.04	mg/kg
				Pyrene	0.42	0.04	mg/kg
				Pyridine	< 0.4	0.4	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	10 - 10.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<30	30	mg/kg
(continued)	(continued)	Hydrocarbons		Heavy Oil-Range Organics	<60	60	mg/kg
		-	NWTPH-GX	Gasoline-Range Organics	<7.7	7.7	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0013	0.0013	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.0013	0.0013	mg/kg
		-		1,1,2,2-Tetrachloroethane	< 0.0013	0.0013	mg/kg
				1,1,2-Trichloroethane	< 0.0013	0.0013	mg/kg
				1,1-Dichloroethane	< 0.0013	0.0013	mg/kg
				1,1-Dichloroethene	< 0.0013	0.0013	mg/kg
				1,1-Dichloropropene	< 0.0013	0.0013	mg/kg
				1,2,3-Trichlorobenzene	< 0.0013	0.0013	mg/kg
				1,2,3-Trichloropropane	< 0.0013	0.0013	mg/kg
				1,2,4-Trichlorobenzene	< 0.0013	0.0013	mg/kg
				1,2,4-Trimethylbenzene	< 0.0013	0.0013	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0066	0.0066	mg/kg
				1,2-Dibromoethane	< 0.0013	0.0013	mg/kg
				1,2-Dichlorobenzene	< 0.0013	0.0013	mg/kg
				1,2-Dichloroethane	< 0.0013	0.0013	mg/kg
				1,2-Dichloropropane	< 0.0013	0.0013	mg/kg
				1,3,5-Trimethylbenzene	< 0.0013	0.0013	mg/kg
				1,3-Dichlorobenzene	< 0.0013	0.0013	mg/kg
				1,3-Dichloropropane	< 0.0013	0.0013	mg/kg
				1,4-Dichlorobenzene	< 0.0013	0.0013	mg/kg
				2,2-Dichloropropane	< 0.0013	0.0013	mg/kg
				2-Butanone (MEK)	< 0.0066	0.0066	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0066	0.0066	mg/kg
				2-Chlorotoluene	< 0.0013	0.0013	mg/kg
				2-Hexanone	< 0.0066	0.0066	mg/kg
				4-Chlorotoluene	< 0.0013	0.0013	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0066	0.0066	mg/kg
				Acetone	0.028	0.0066	mg/kg
				Benzene	< 0.0013	0.0013	mg/kg
				Bromobenzene	< 0.0013	0.0013	mg/kg
				Bromochloromethane	< 0.0013	0.0013	mg/kg
				Bromodichloromethane	< 0.0013	0.0013	mg/kg
				Bromoform	< 0.0013	0.0013	mg/kg
				Bromomethane	< 0.0013	0.0013	mg/kg
				Carbon Disulfide	< 0.0066	0.0066	mg/kg
				Carbon Tetrachloride	< 0.0013	0.0013	mg/kg
				Chlorobenzene	< 0.0013	0.0013	mg/kg
				Chloroethane	< 0.0066	0.0066	mg/kg
				Chloroform	< 0.0013	0.0013	mg/kg
				Chloromethane	< 0.0066	0.0066	mg/kg
				cis-1,2-Dichloroethene	< 0.0013	0.0013	mg/kg
				cis-1,3-Dichloropropene	< 0.0013	0.0013	mg/kg
				Dibromochloromethane	< 0.0013	0.0013	mg/kg
				Dibromomethane	< 0.0013	0.0013	mg/kg
				Dichlorodifluoromethane	< 0.0013	0.0013	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	10 - 10.5	Volatile Organic	SW8260	Ethylbenzene	<0.0013	0.0013	mg/kg
(continued)		Compounds	(continued)	Hexachlorobutadiene	< 0.0066	0.0066	mg/kg
(continued)	(continued)	(continued)	(continued)	Iodomethane	< 0.0066	0.0066	mg/kg
		(continued)		Isopropylbenzene	< 0.0013	0.0013	mg/kg
				m,p-Xylene	<0.0013	0.0013	mg/kg
				Methyl T-Butyl Ether (MTBE)	<0.0027	0.0027	mg/kg
				Methylene Chloride	<0.0013	0.0066	mg/kg
				Naphthalene	<0.0003	0.0003	mg/kg
				N-Butylbenzene	<0.0013	0.0013	mg/kg
				N-Propylbenzene	<0.0013	0.0013	mg/kg
				o-Xylene	<0.0013	0.0013	mg/kg
				p-Isopropyltoluene	<0.0013	0.0013	mg/kg
				sec-Butylbenzene	<0.0013	0.0013	mg/kg
				Styrene	<0.0013	0.0013	mg/kg
				■ =	<0.0013	0.0013	
				tert-Butylbenzene Tetrachloroethene (PCE)	<0.0013	0.0013	mg/kg
				Toluene			mg/kg
				Trans-1,2-Dichloroethene	<0.0066	0.0066	mg/kg
				1	<0.0013 <0.0013	0.0013	mg/kg
				Trans-1,3-Dichloropropene		0.0013 0.0013	mg/kg
				Trichloroethene (TCE)	<0.0013		mg/kg
				Trichlorofluoromethane	< 0.0013	0.0013	mg/kg
				Vinyl Acetate	<0.0066	0.0066	mg/kg
EADO	2.5. 2	V-1-4:1- O	CM/0260	Vinyl Chloride	<0.0013	0.0013	mg/kg
FAR2	2.5 - 3	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	<0.0012	0.0012	mg/kg
		Compounds			<0.0012	0.0012	mg/kg
				1,1,2,2-Tetrachloroethane	<0.0012	0.0012	mg/kg
				1,1,2-Trichloroethane	<0.0012	0.0012	mg/kg
				1,1-Dichloroethane	<0.0012	0.0012	mg/kg
				1,1-Dichloroethene	<0.0012	0.0012	mg/kg
				1,1-Dichloropropene	<0.0012	0.0012	mg/kg
				1,2,3-Trichlorobenzene	<0.0012 <0.0012	0.0012	mg/kg
				1,2,3-Trichloropropane	<0.0012	0.0012	mg/kg
				1,2,4-Trichlorobenzene	<0.0012	0.0012 0.0012	mg/kg
				1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	<0.0012	0.0012	mg/kg
				1,2-Dibromoethane	<0.0062		mg/kg
				1,2-Dichlorobenzene	<0.0012	0.0012	mg/kg
				1,2-Dichloroethane		0.0012	mg/kg
				1,2-Dichloropropane	<0.0012	0.0012	mg/kg
					<0.0012	0.0012	mg/kg
				1,3,5-Trimethylbenzene	<0.0012	0.0012	mg/kg
				1,3-Dichlorobenzene	<0.0012	0.0012	mg/kg
				1,3-Dichloropropane	<0.0012	0.0012	mg/kg
				1,4-Dichlorobenzene	<0.0012	0.0012	mg/kg
				2,2-Dichloropropane	<0.0012	0.0012	mg/kg
				2-Butanone (MEK)	<0.0062	0.0062	mg/kg
				2-Chloroethyl Vinyl Ether	<0.0062	0.0062	mg/kg
				2-Chlorotoluene	<0.0012	0.0012	mg/kg
				2-Hexanone	<0.0062	0.0062	mg/kg
				4-Chlorotoluene	<0.0012	0.0012	mg/kg
L			1	4-Methyl-2-Pentanone (MIBK)	< 0.0062	0.0062	mg/kg

Table C-1A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	2.5 - 3	Volatile Organic	SW8260	Acetone	0.05	0.0062	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzene	< 0.0012	0.0012	mg/kg
		(continued)		Bromobenzene	< 0.0012	0.0012	mg/kg
				Bromochloromethane	< 0.0012	0.0012	mg/kg
				Bromodichloromethane	< 0.0012	0.0012	mg/kg
				Bromoform	< 0.0012	0.0012	mg/kg
				Bromomethane	< 0.0012	0.0012	mg/kg
				Carbon Disulfide	< 0.0062	0.0062	mg/kg
				Carbon Tetrachloride	< 0.0012	0.0012	mg/kg
				Chlorobenzene	< 0.0012	0.0012	mg/kg
				Chloroethane	< 0.0062	0.0062	mg/kg
				Chloroform	< 0.0012	0.0012	mg/kg
				Chloromethane	< 0.0062	0.0062	mg/kg
				cis-1,2-Dichloroethene	< 0.0012	0.0012	mg/kg
				cis-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Dibromochloromethane	< 0.0012	0.0012	mg/kg
				Dibromomethane	< 0.0012	0.0012	mg/kg
				Dichlorodifluoromethane	< 0.0012	0.0012	mg/kg
				Ethylbenzene	< 0.0012	0.0012	mg/kg
				Hexachlorobutadiene	< 0.0062	0.0062	mg/kg
				Iodomethane	< 0.0062	0.0062	mg/kg
				Isopropylbenzene	< 0.0012	0.0012	mg/kg
				m,p-Xylene	< 0.0025	0.0025	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0012	0.0012	mg/kg
				Methylene Chloride	< 0.0062	0.0062	mg/kg
				Naphthalene	< 0.0012	0.0012	mg/kg
				N-Butylbenzene	< 0.0012	0.0012	mg/kg
				N-Propylbenzene	< 0.0012	0.0012	mg/kg
				o-Xylene	< 0.0012	0.0012	mg/kg
				p-Isopropyltoluene	< 0.0012	0.0012	mg/kg
				sec-Butylbenzene	< 0.0012	0.0012	mg/kg
				Styrene	< 0.0012	0.0012	mg/kg
				tert-Butylbenzene	< 0.0012	0.0012	mg/kg
				Tetrachloroethene (PCE)	< 0.0012	0.0012	mg/kg
				Toluene	< 0.0062	0.0062	mg/kg
				Trans-1,2-Dichloroethene	< 0.0012	0.0012	mg/kg
				Trans-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Trichloroethene (TCE)	< 0.0012	0.0012	mg/kg
				Trichlorofluoromethane	< 0.0012	0.0012	mg/kg
				Vinyl Acetate	< 0.0062	0.0062	mg/kg
				Vinyl Chloride	< 0.0012	0.0012	mg/kg
	5.5 - 6	Metals	SW6010B	Arsenic	<11	11	mg/kg
				Cadmium	< 0.53	0.53	mg/kg
				Chromium	28	0.53	mg/kg
				Lead	< 5.3	5.3	mg/kg
			SW7471A	Mercury	< 0.26	0.26	mg/kg

Table C-1A Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	5.5 - 6	Pesticides	SW8081	4,4'-DDD	<11	11	ug/kg
(continued)	(continued)			4,4'-DDE	<11	11	ug/kg
				4,4'-DDT	<11	11	ug/kg
				Aldrin	< 5.3	5.3	ug/kg
				Alpha-Bhc	< 5.3	5.3	ug/kg
				Alpha-Chlordane	<11	11	ug/kg
				Beta-Bhc	<5.3	5.3	ug/kg
				Delta-Bhc	<5.3	5.3	ug/kg
				Dieldrin	<11	11	ug/kg
				Endosulfan I	< 5.3	5.3	ug/kg
				Endosulfan II	<11	11	ug/kg
				Endosulfan Sulfate	<11	11	ug/kg
				Endrin	<11	11	ug/kg
				Endrin Aldehyde	<11	11	ug/kg
				Endrin Ketone	<11	11	ug/kg
				Gamma-Bhc (Lindane)	<5.3	5.3	ug/kg
				Gamma-Chlordane	<11	11	ug/kg
				Heptachlor	<5.3	5.3	ug/kg
				Heptachlor Epoxide	<5.3	5.3	ug/kg
				Methoxychlor	<11	11	ug/kg
				Toxaphene	<53	53	ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1016	< 0.053	0.053	mg/kg
				Aroclor 1221	< 0.053	0.053	mg/kg
				Aroclor 1232	< 0.053	0.053	mg/kg
				Aroclor 1242	< 0.053	0.053	mg/kg
				Aroclor 1248	< 0.053	0.053	mg/kg
				Aroclor 1254	< 0.053	0.053	mg/kg
		~	~~~~~	Aroclor 1260	< 0.053	0.053	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.035	0.035	mg/kg
		Compounds		1,2-Dichlorobenzene	<0.035	0.035	mg/kg
				1,2-Dinitrobenzene	< 0.035	0.035	mg/kg
				1,2-Diphenylhydrazine	< 0.035	0.035	mg/kg
				1,3-Dichlorobenzene	< 0.035	0.035	mg/kg
				1,3-Dinitrobenzene	< 0.035	0.035	mg/kg
				1,4-Dichlorobenzene	< 0.035	0.035	mg/kg
				1,4-Dinitrobenzene	< 0.035	0.035	mg/kg
				1-Methylnaphthalene	< 0.007	0.007	mg/kg
				2,3,4,6-Tetrachlorophenol	<0.035	0.035	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.035	0.035	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	5.5 - 6	Semi-Volatile Organic	SW8270	2,3-Dichloroaniline	< 0.035	0.035	mg/kg
(continued)	(continued)	Compounds	(continued)	2,4,5-Trichlorophenol	< 0.035	0.035	mg/kg
		(continued)		2,4,6-Trichlorophenol	< 0.035	0.035	mg/kg
				2,4-Dichlorophenol	< 0.035	0.035	mg/kg
				2,4-Dimethylphenol	< 0.35	0.35	mg/kg
				2,4-Dinitrophenol	< 0.18	0.18	mg/kg
				2,4-Dinitrotoluene	< 0.035	0.035	mg/kg
				2,6-Dinitrotoluene	< 0.035	0.035	mg/kg
				2-Chloronaphthalene	< 0.035	0.035	mg/kg
				2-Chlorophenol	< 0.035	0.035	mg/kg
				2-Methylnaphthalene	< 0.007	0.007	mg/kg
				2-Methylphenol (o-Cresol)	< 0.035	0.035	mg/kg
				2-Nitroaniline	< 0.035	0.035	mg/kg
				2-Nitrophenol	< 0.035	0.035	mg/kg
				3,3`-Dichlorobenzidine	< 0.35	0.35	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.035	0.035	mg/kg
				3-Nitroaniline	< 0.035	0.035	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.18	0.18	mg/kg
				4-Bromophenyl Phenyl Ether	<0.035	0.035	mg/kg
				4-Chloro-3-Methylphenol	< 0.035	0.035	mg/kg
				4-Chloroaniline	<0.035	0.035	mg/kg
				4-Chlorophenyl Phenylether 4-Nitroaniline	<0.035	0.035 0.035	mg/kg
				4-Nitrophenol	<0.035 <0.035	0.035	mg/kg
				Acenaphthene	<0.033	0.033	mg/kg
				Acenaphthylene	<0.007	0.007	mg/kg mg/kg
				Aniline	<0.007	0.007	mg/kg
				Anthracene	< 0.007	0.007	mg/kg
				Benzidine	< 0.35	0.35	mg/kg
				Benzo(a)Anthracene	< 0.007	0.007	mg/kg
				Benzo(a)Pyrene	< 0.007	0.007	mg/kg
				Benzo(b)Fluoranthene	< 0.007	0.007	mg/kg
				Benzo(g,h,i)Perylene	< 0.007	0.007	mg/kg
				Benzo(j,k)Fluoranthene	< 0.007	0.007	mg/kg
				Benzyl alcohol	< 0.035	0.035	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.035	0.035	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.035	0.035	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.035	0.035	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.035	0.035	mg/kg
				Bis-2-Ethylhexyladipate	< 0.035	0.035	mg/kg
				Butyl Benzyl Phthalate	< 0.35	0.35	mg/kg
				Carbazole	< 0.035	0.035	mg/kg
				Chrysene	< 0.007	0.007	mg/kg
				Dibenzo(a,h)Anthracene	< 0.007	0.007	mg/kg
				Dibenzofuran	< 0.035	0.035	mg/kg
				Diethylphthalate	< 0.18	0.18	mg/kg
				Dimethylphthalate	<0.035	0.035	mg/kg
				Di-N-Butylphthalate	< 0.35	0.35	mg/kg
				Di-N-Octyl Phthalate	<0.035	0.035	mg/kg
				Fluoranthene	<0.007	0.007	mg/kg
				Fluorene	< 0.007	0.007	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	5.5 - 6	Semi-Volatile Organic	SW8270	Hexachlorobenzene	< 0.035	0.035	mg/kg
(continued)	(continued)	Compounds	(continued)	Hexachlorobutadiene	< 0.035	0.035	mg/kg
		(continued)		Hexachlorocyclopentadiene	< 0.035	0.035	mg/kg
				Hexachloroethane	< 0.035	0.035	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.007	0.007	mg/kg
				Isophorone	< 0.035	0.035	mg/kg
				Naphthalene	< 0.007	0.007	mg/kg
				Nitrobenzene	< 0.035	0.035	mg/kg
				N-Nitrosodimethylamine	< 0.035	0.035	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.035	0.035	mg/kg
				N-Nitrosodiphenylamine	< 0.035	0.035	mg/kg
				Pentachlorophenol	< 0.18	0.18	mg/kg
				Phenanthrene	< 0.007	0.007	mg/kg
				Phenol	< 0.035	0.035	mg/kg
				Pyrene	< 0.007	0.007	mg/kg
				Pyridine	< 0.35	0.35	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<26	26	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<53	53	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<6.2	6.2	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.001	0.001	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.001	0.001	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.001	0.001	mg/kg
				1,1,2-Trichloroethane	< 0.001	0.001	mg/kg
				1,1-Dichloroethane	< 0.001	0.001	mg/kg
				1,1-Dichloroethene	< 0.001	0.001	mg/kg
				1,1-Dichloropropene	< 0.001	0.001	mg/kg
				1,2,3-Trichlorobenzene	< 0.001	0.001	mg/kg
				1,2,3-Trichloropropane	< 0.001	0.001	mg/kg
				1,2,4-Trichlorobenzene	< 0.001	0.001	mg/kg
				1,2,4-Trimethylbenzene	< 0.001	0.001	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0052	0.0052	mg/kg
				1,2-Dibromoethane	< 0.001	0.001	mg/kg
				1,2-Dichlorobenzene	< 0.001	0.001	mg/kg
				1,2-Dichloroethane	< 0.001	0.001	mg/kg
				1,2-Dichloropropane	< 0.001	0.001	mg/kg
				1,3,5-Trimethylbenzene	< 0.001	0.001	mg/kg
				1,3-Dichlorobenzene	< 0.001	0.001	mg/kg
				1,3-Dichloropropane	< 0.001	0.001	mg/kg
				1,4-Dichlorobenzene	< 0.001	0.001	mg/kg
				2,2-Dichloropropane	< 0.001	0.001	mg/kg
				2-Butanone (MEK)	< 0.0052	0.0052	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0052	0.0052	mg/kg
				2-Chlorotoluene	< 0.001	0.001	mg/kg
				2-Hexanone	< 0.0052	0.0052	mg/kg
				4-Chlorotoluene	< 0.001	0.001	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0052	0.0052	mg/kg

Analytical Results for Tested Constituents in Soil

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

	Depth					Practical	
	Range (feet		Analytical			Quantitation	Unit of
Location	bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	5.5 - 6	Volatile Organic	SW8260	Acetone	0.039	0.0052	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzene	< 0.001	0.001	mg/kg
		(continued)		Bromobenzene	< 0.001	0.001	mg/kg
				Bromochloromethane	< 0.001	0.001	mg/kg
				Bromodichloromethane	< 0.001	0.001	mg/kg
				Bromoform	< 0.001	0.001	mg/kg
				Bromomethane	< 0.001	0.001	mg/kg
				Carbon Disulfide	< 0.0052	0.0052	mg/kg
				Carbon Tetrachloride	< 0.001	0.001	mg/kg
				Chlorobenzene	< 0.001	0.001	mg/kg
				Chloroethane	< 0.0052	0.0052	mg/kg
				Chloroform	< 0.001	0.001	mg/kg
				Chloromethane	< 0.0052	0.0052	mg/kg
				cis-1,2-Dichloroethene	< 0.001	0.001	mg/kg
				cis-1,3-Dichloropropene	< 0.001	0.001	mg/kg
				Dibromochloromethane	< 0.001	0.001	mg/kg
				Dibromomethane	< 0.001	0.001	mg/kg
				Dichlorodifluoromethane	< 0.001	0.001	mg/kg
				Ethylbenzene	< 0.001	0.001	mg/kg
				Hexachlorobutadiene	< 0.0052	0.0052	mg/kg
				Iodomethane	< 0.0052	0.0052	mg/kg
				Isopropylbenzene	< 0.001	0.001	mg/kg
				m,p-Xylene	< 0.0021	0.0021	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.001	0.001	mg/kg
				Methylene Chloride	< 0.0052	0.0052	mg/kg
				Naphthalene	< 0.001	0.001	mg/kg
				N-Butylbenzene	< 0.001	0.001	mg/kg
				N-Propylbenzene	< 0.001	0.001	mg/kg
				o-Xylene	< 0.001	0.001	mg/kg
				p-Isopropyltoluene	< 0.001	0.001	mg/kg
				sec-Butylbenzene	< 0.001	0.001	mg/kg
				Styrene	< 0.001	0.001	mg/kg
				tert-Butylbenzene	< 0.001	0.001	mg/kg
				Tetrachloroethene (PCE)	< 0.001	0.001	mg/kg
				Toluene	< 0.0052	0.0052	mg/kg
				Trans-1,2-Dichloroethene	< 0.001	0.001	mg/kg
				Trans-1,3-Dichloropropene	< 0.001	0.001	mg/kg
				Trichloroethene (TCE)	< 0.001	0.001	mg/kg
				Trichlorofluoromethane	< 0.001	0.001	mg/kg
				Vinyl Acetate	< 0.0052	0.0052	mg/kg
NOTES:				Vinyl Chloride	< 0.001	0.001	mg/kg

NOTES:

Results in **bold** denote analyte was detected. See Table 7A.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected. $\mu g/kg = micrograms$ per kilogram < denotes analyte not detected at or above the laboratory reporting limit listed.

bgs = below ground surface

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.96	0.96	ug/l
	Compounds		1,2-Dichlorobenzene	< 0.96	0.96	ug/l
			1,2-Dinitrobenzene	< 0.96	0.96	ug/l
			1,2-Diphenylhydrazine	< 0.96	0.96	ug/l
			1,3-Dichlorobenzene	< 0.96	0.96	ug/l
			1,3-Dinitrobenzene	< 0.96	0.96	ug/l
			1,4-Dichlorobenzene	< 0.96	0.96	ug/l
			1,4-Dinitrobenzene	< 0.96	0.96	ug/l
			1-Methylnaphthalene	< 0.096	0.096	ug/l
			2,3,4,6-Tetrachlorophenol	< 0.96	0.96	ug/l
			2,3,5,6-Tetrachlorophenol	< 0.96	0.96	ug/l
			2,3-Dichloroaniline	< 0.96	0.96	ug/l
			2,4,5-Trichlorophenol	< 0.96	0.96	ug/l
			2,4,6-Trichlorophenol	< 0.96	0.96	ug/l
			2,4-Dichlorophenol	< 0.96	0.96	ug/l
			2,4-Dimethylphenol	< 0.96	0.96	ug/l
			2,4-Dinitrophenol	<4.8	4.8	ug/l
			2,4-Dinitrotoluene	< 0.96	0.96	ug/l
			2,6-Dinitrotoluene	< 0.96	0.96	ug/l
			2-Chloronaphthalene	< 0.96	0.96	ug/l
			2-Chlorophenol	< 0.96	0.96	ug/l
			2-Methylnaphthalene	< 0.096	0.096	ug/l
			2-Methylphenol (o-Cresol)	< 0.96	0.96	ug/l
			2-Nitroaniline	< 0.96	0.96	ug/l
			2-Nitrophenol	< 0.96	0.96	ug/l
			3,3'-Dichlorobenzidine	< 0.96	0.96	ug/l
			3,4-Methylphenol(m,p-Cresol)	< 0.96	0.96	ug/l
			3-Nitroaniline	< 0.96	0.96	ug/l
			4,6-Dinitro-2-Methylphenol	<4.8	4.8	ug/l
			4-Bromophenyl Phenyl Ether	< 0.96	0.96	ug/l
			4-Chloro-3-Methylphenol	< 0.96	0.96	ug/l
			4-Chloroaniline	< 0.96	0.96	ug/l
			4-Chlorophenyl Phenylether	< 0.96	0.96	ug/l
			4-Nitroaniline	< 0.96	0.96	ug/l
			4-Nitrophenol	< 0.96	0.96	ug/l
			Acenaphthene	< 0.096	0.096	ug/l
			Acenaphthylene	< 0.096	0.096	ug/l
			Aniline	<4.8	4.8	ug/l
			Anthracene	< 0.096	0.096	ug/l

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	Semi-Volatile Organic	SW8270	Benzidine	<4.8	4.8	ug/l
(continued)	Compounds	(continued)	Benzo(a)Anthracene	< 0.0096	0.0096	ug/l
	(continued)		Benzo(a)Pyrene	< 0.0096	0.0096	ug/l
			Benzo(b)Fluoranthene	< 0.0096	0.0096	ug/l
			Benzo(g,h,i)Perylene	< 0.0096	0.0096	ug/l
			Benzo(j,k)Fluoranthene	< 0.0096	0.0096	ug/l
			Benzyl alcohol	< 0.96	0.96	ug/l
			Bis(2-Chloroethoxy) Methane	< 0.96	0.96	ug/l
			Bis(2-Chloroethyl) Ether	< 0.96	0.96	ug/l
			Bis(2-Chloroisopropyl)ether	< 0.96	0.96	ug/l
			Bis(2-Ethylhexyl) Phthalate	< 0.96	0.96	ug/l
			Bis-2-Ethylhexyladipate	< 0.96	0.96	ug/l
			Butyl Benzyl Phthalate	< 0.96	0.96	ug/l
			Carbazole	< 0.96	0.96	ug/l
			Chrysene	< 0.0096	0.0096	ug/l
			Dibenzo(a,h)Anthracene	< 0.0096	0.0096	ug/l
			Dibenzofuran	< 0.96	0.96	ug/l
			Diethylphthalate	< 0.96	0.96	ug/l
			Dimethylphthalate	< 0.96	0.96	ug/l
			Di-N-Butylphthalate	< 0.96	0.96	ug/l
			Di-N-Octyl Phthalate	< 0.96	0.96	ug/l
			Fluoranthene	< 0.096	0.096	ug/l
			Fluorene	< 0.096	0.096	ug/l
			Hexachlorobenzene	< 0.96	0.96	ug/l
			Hexachlorobutadiene	< 0.96	0.96	ug/l
			Hexachlorocyclopentadiene	< 0.96	0.96	ug/l
			Hexachloroethane	< 0.96	0.96	ug/l
			Indeno(1,2,3-cd)Pyrene	< 0.0096	0.0096	ug/l
			Isophorone	< 0.96	0.96	ug/l
			Naphthalene	< 0.096	0.096	ug/l
			Nitrobenzene	< 0.96	0.96	ug/l
			N-Nitrosodimethylamine	< 0.96	0.96	ug/l
			N-Nitroso-Di-N-Propylamine	< 0.96	0.96	ug/l
			N-Nitrosodiphenylamine	< 0.96	0.96	ug/l
			Pentachlorophenol	<4.8	4.8	ug/l
			Phenanthrene	< 0.096	0.096	ug/l
			Phenol	< 0.96	0.96	ug/l
			Pyrene	< 0.096	0.096	ug/l
			Pyridine	< 0.96	0.96	ug/l

Analytical Results for Tested Constituents in Groundwater Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

Location	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR1	Total Petroleum	_	Diesel-Range Organics	<0.27	0.27	mg/l
(continued)	Hydrocarbons	TW III BA	Heavy Oil-Range Organics	< 0.43	0.43	mg/l
(*************************	<i>j</i>	NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
-	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.2	0.2	ug/l
	Compounds		1,1,1-Trichloroethane	< 0.2	0.2	ug/l
	1		1,1,2,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,2-Trichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethene	< 0.2	0.2	ug/l
			1,1-Dichloropropene	< 0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
			1,3-Dichlorobenzene	< 0.2	0.2	ug/l
			1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	< 0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
			Acetone	<5	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l
			Carbon Disulfide	< 0.2	0.2	ug/l
			Carbon Tetrachloride	< 0.2	0.2	ug/l
			Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR1	Volatile Organic	SW8260	cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
	(continued)		Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l
			tert-Butylbenzene	< 0.2	0.2	ug/l
			Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
			Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l
FAR2	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.95	0.95	ug/l
	Compounds		1,2-Dichlorobenzene	< 0.95	0.95	ug/l
			1,2-Dinitrobenzene	< 0.95	0.95	ug/l
			1,2-Diphenylhydrazine	< 0.95	0.95	ug/l
			1,3-Dichlorobenzene	< 0.95	0.95	ug/l
			1,3-Dinitrobenzene	< 0.95	0.95	ug/l
			1,4-Dichlorobenzene	< 0.95	0.95	ug/l
			1,4-Dinitrobenzene	< 0.95	0.95	ug/l
			1-Methylnaphthalene	< 0.095	0.095	ug/l
			2,3,4,6-Tetrachlorophenol	< 0.95	0.95	ug/l
			2,3,5,6-Tetrachlorophenol	< 0.95	0.95	ug/l
			2,3-Dichloroaniline	< 0.95	0.95	ug/l
			2,4,5-Trichlorophenol	< 0.95	0.95	ug/l
			2,4,6-Trichlorophenol	< 0.95	0.95	ug/l

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	Semi-Volatile Organic	SW8270	2,4-Dichlorophenol	< 0.95	0.95	ug/l
(continued)	Compounds	(continued)	2,4-Dimethylphenol	< 0.95	0.95	ug/l
	(continued)		2,4-Dinitrophenol	<4.8	4.8	ug/l
			2,4-Dinitrotoluene	< 0.95	0.95	ug/l
			2,6-Dinitrotoluene	< 0.95	0.95	ug/l
			2-Chloronaphthalene	< 0.95	0.95	ug/l
			2-Chlorophenol	< 0.95	0.95	ug/l
			2-Methylnaphthalene	< 0.095	0.095	ug/l
			2-Methylphenol (o-Cresol)	< 0.95	0.95	ug/l
			2-Nitroaniline	< 0.95	0.95	ug/l
			2-Nitrophenol	< 0.95	0.95	ug/l
			3,3`-Dichlorobenzidine	< 0.95	0.95	ug/l
			3,4-Methylphenol(m,p-Cresol)	< 0.95	0.95	ug/l
			3-Nitroaniline	< 0.95	0.95	ug/l
			4,6-Dinitro-2-Methylphenol	<4.8	4.8	ug/l
			4-Bromophenyl Phenyl Ether	< 0.95	0.95	ug/l
			4-Chloro-3-Methylphenol	< 0.95	0.95	ug/l
			4-Chloroaniline	< 0.95	0.95	ug/l
			4-Chlorophenyl Phenylether	< 0.95	0.95	ug/l
			4-Nitroaniline	< 0.95	0.95	ug/l
			4-Nitrophenol	< 0.95	0.95	ug/l
			Acenaphthene	< 0.095	0.095	ug/l
			Acenaphthylene	< 0.095	0.095	ug/l
			Aniline	<4.8	4.8	ug/l
			Anthracene	< 0.095	0.095	ug/l
			Benzidine	<4.8	4.8	ug/l
			Benzo(a)Anthracene	0.02	0.0095	ug/l
			Benzo(a)Pyrene	0.018	0.0095	ug/l
			Benzo(b)Fluoranthene	0.022	0.0095	ug/l
			Benzo(g,h,i)Perylene	0.025	0.0095	ug/l
			Benzo(j,k)Fluoranthene	0.016	0.0095	ug/l
			Benzyl alcohol	< 0.95	0.95	ug/l
			Bis(2-Chloroethoxy) Methane	< 0.95	0.95	ug/l
			Bis(2-Chloroethyl) Ether	< 0.95	0.95	ug/l
			Bis(2-Chloroisopropyl)ether	< 0.95	0.95	ug/l
			Bis(2-Ethylhexyl) Phthalate	< 0.95	0.95	ug/l
			Bis-2-Ethylhexyladipate	< 0.95	0.95	ug/l
			Butyl Benzyl Phthalate	2.1	0.95	ug/l
			Carbazole	< 0.95	0.95	ug/l
			Chrysene	0.025	0.0095	ug/l

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

Location Analyte Type						Practical	
Location			Analytical				Unit of
FAR2	Location	Analyte Type	-	Analyte	Result	-	Measure
Continued Compounds (continued) Dibenzofuran Dietylphthalate <0.95 0.95				- i			ug/l
Continued Diethylphthalate Co.95 D.95 Diethylphthalate Diethylphthalate Co.95 D.95 Diethylphthalate Co.95 D.95 Diethylphthalate D.95 D.95 Diethylphthalate D.95 D.		_					ug/l
Dimethylphthalate	(continued)	-	(continued)				ug/l
Di-N-Butylphthalate		(commaca)		* 1			ug/l
Di-N-Octyl Phthalate							ug/l
Fluoranthene							ug/l
Fluorene							ug/l
Hexachlorobutadiene							ug/l
Hexachlorobutadiene							ug/l
Hexachlorocyclopentadiene <0.95 0.95							ug/l
Hexachloroethane							_
Indeno(1,2,3-cd)Pyrene 1.0.02 0.0095 1.0.000 1.0.0000							ug/l
Isophorone							ug/l
Naphthalene							ug/l
Nitrobenzene <0.95 0.95				-			ug/l
N-Nitrosodimethylamine				-			ug/l
N-Nitroso-Di-N-Propylamine <0.95 0.95 up							ug/l
N-Nitrosodiphenylamine				· · · · · · · · · · · · · · · · · · ·			ug/l
Pentachlorophenol							ug/l
Phenanthrene							ug/l
Phenol				1			ug/l
Pyrene							ug/l
Pyridine <0.95 0.95 unit							ug/l
Total Petroleum Hydrocarbons NWTPH-Dx Diesel-Range Organics <0.26 0.26 m Heavy Oil-Range Organics <0.42 0.42 m MWTPH-GX Gasoline-Range Organics <100 100 ug Volatile Organic SW8260 1,1,1,2-Tetrachloroethane <0.2 0.2 ug 1,1,2-Tetrachloroethane <0.2 0.2 ug 1,1,2-Tetrachloroethane <0.2 0.2 ug 1,1,2-Trichloroethane <0.2 0.2 ug 1,1-Dichloroethane <0.2 0.2 ug 1,1-Dichloroethane <0.2 0.2 ug 1,1-Dichloroethane <0.2 0.2 ug 1,1-Dichloroethane <0.2 0.2 ug 1,2,3-Trichlorobenzene <0.2 0.2 ug 1,2,3-Trichloropropane <0.2 0.2 ug 1,2,4-Trichlorobenzene <0.2 0.2 ug 1,2,4-Trimethylbenzene <0.2 0.				•			ug/l
Hydrocarbons				ž			ug/l
NWTPH-GX Gasoline-Range Organics <100 100 use			NWTPH-Dx				mg/l
Volatile Organic SW8260 1,1,1,2-Tetrachloroethane <0.2 0.2 ug 1,1,1-Trichloroethane <0.2 0.2 ug 1,1,2-Tetrachloroethane <0.2 0.2 ug 1,1,2-Trichloroethane <0.2 0.2 ug 1,1-Dichloroethane <0.2 0.2 ug 1,1-Dichloroethane <0.2 0.2 ug 1,1-Dichloroethene <0.2 0.2 ug 1,1-Dichloropropene <0.2 0.2 ug 1,2,3-Trichlorobenzene <0.2 0.2 ug 1,2,3-Trichloropropane <0.2 0.2 ug 1,2,4-Trichlorobenzene <0.2 0.2 ug 1,2,4-Trichlorobenzene <0.2 0.2 ug 1,2,4-Trimethylbenzene <0.2 0.2 ug		Hydrocarbons					mg/l
Compounds			NWTPH-GX			100	ug/l
1,1,2,2-Tetrachloroethane <0.2		_	SW8260			0.2	ug/l
1,1,2-Trichloroethane <0.2		Compounds			< 0.2	0.2	ug/l
1,1-Dichloroethane <0.2					< 0.2	0.2	ug/l
1,1-Dichloroethene <0.2				1,1,2-Trichloroethane		0.2	ug/l
1,1-Dichloropropene <0.2				1,1-Dichloroethane	< 0.2	0.2	ug/l
1,2,3-Trichlorobenzene <0.2				1,1-Dichloroethene	< 0.2	0.2	ug/l
1,2,3-Trichloropropane <0.2				1,1-Dichloropropene	< 0.2	0.2	ug/l
1,2,3-Trichloropropane <0.2				1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
1,2,4-Trichlorobenzene <0.2				1,2,3-Trichloropropane	< 0.2	0.2	ug/l
1,2,4-Trimethylbenzene <0.2 0.2 ug					< 0.2	0.2	ug/l
				1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
[1,2-Dibromo-3-chloropropane	<1	1	ug/l
					< 0.2	0.2	ug/l
l							ug/l
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							ug/l
							ug/l

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington Farallon PN: 1005-001

		Analytical			Practical Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	Volatile Organic	SW8260	1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	1,3-Dichlorobenzene	< 0.2	0.2	ug/l
	(continued)		1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	< 0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
			Acetone	<5	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l
			Carbon Disulfide	< 0.2	0.2	ug/l
			Carbon Tetrachloride	< 0.2	0.2	ug/l
			Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l
			cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
			cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l

Analytical Results for Tested Constituents in Groundwater Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR2	Volatile Organic	SW8260	Naphthalene	<1	1	ug/l
(continued)	Compounds	(continued)	N-Butylbenzene	< 0.2	0.2	ug/l
	(continued)		N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l
			tert-Butylbenzene	< 0.2	0.2	ug/l
			Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
			Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l
PA19	Metals	SW6020	Arsenic (dissolved)	<3	3	ug/l
			Cadmium (dissolved)	<4	4	ug/l
			Chromium (dissolved)	<10	10	ug/l
			Lead (dissolved)	<1	1	ug/l
		SW7470A	Mercury (dissolved)	< 0.5	0.5	ug/l
	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.41	0.41	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.2	0.2	ug/l
	Compounds		1,1,1-Trichloroethane	< 0.2	0.2	ug/l
			1,1,2,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,2-Trichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethene	< 0.2	0.2	ug/l
			1,1-Dichloropropene	< 0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l

Analytical Results for Tested Constituents in Groundwater Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	77. A. A
		Analytical			Quantitation	
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
PA19	Volatile Organic	SW8260	1,3-Dichlorobenzene	<0.2	0.2	ug/l
(continued)	Compounds	(continued)	1,3-Dichloropropane	<0.2	0.2	ug/l
	(continued)		1,4-Dichlorobenzene	<0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
			Acetone	<5	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l
			Carbon Disulfide	< 0.2	0.2	ug/l
			Carbon Tetrachloride	< 0.2	0.2	ug/l
			Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l
			cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
			cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 2

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
PA19	Volatile Organic	SW8260	tert-Butylbenzene	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
	(continued)		Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l

NOTES:

Results in **bold** denote analyte was detected. See Table 7B.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

 $\mu g/l = micrograms \ per \ liter$

mg/l = milligrams per liter

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

		ı	Farallon P	1003-001			
						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR3	12.5 - 13	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.61	0.61	mg/kg
				Chromium	48	0.61	mg/kg
			CYYY5.151.1	Lead	<6.1	6.1	mg/kg
		~	SW7471A	Mercury	< 0.31	0.31	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.041	0.041	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.041	0.041	mg/kg
				1,2-Dinitrobenzene	< 0.041	0.041	mg/kg
				1,2-Diphenylhydrazine	<0.041	0.041	mg/kg
				1,3-Dichlorobenzene	< 0.041	0.041	mg/kg
				1,3-Dinitrobenzene	< 0.041	0.041	mg/kg
				1,4-Dichlorobenzene	< 0.041	0.041	mg/kg
				1,4-Dinitrobenzene	<0.041	0.041	mg/kg
				1-Methylnaphthalene	< 0.0082		mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.041	0.041	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.041	0.041	mg/kg
				2,3-Dichloroaniline	< 0.041	0.041	mg/kg
				2,4,5-Trichlorophenol	< 0.041	0.041	mg/kg
				2,4,6-Trichlorophenol	< 0.041	0.041	mg/kg
				2,4-Dichlorophenol	< 0.041	0.041	mg/kg
				2,4-Dimethylphenol	<0.41	0.41	mg/kg
				2,4-Dinitrophenol	< 0.2	0.2	mg/kg
				2,4-Dinitrotoluene	< 0.041	0.041	mg/kg
				2,6-Dinitrotoluene	< 0.041	0.041	mg/kg
				2-Chloronaphthalene	< 0.041	0.041	mg/kg
				2-Chlorophenol	< 0.041	0.041	mg/kg
				2-Methylnaphthalene	< 0.0082		mg/kg
				2-Methylphenol (o-Cresol)	< 0.041	0.041	mg/kg
				2-Nitroaniline	< 0.041	0.041	mg/kg
				2-Nitrophenol	< 0.041	0.041	mg/kg
				3,3`-Dichlorobenzidine	< 0.41	0.41	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.041	0.041	mg/kg
				3-Nitroaniline	<0.041	0.041	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.2	0.2	mg/kg
				4-Bromophenyl Phenyl Ether	<0.041 <0.041	0.041	mg/kg
				4-Chloro-3-Methylphenol		0.041	mg/kg
				4-Chloroaniline	<0.041 <0.041	0.041	mg/kg
				4-Chlorophenyl Phenylether 4-Nitroaniline	<0.041	0.041 0.041	mg/kg
							mg/kg
				4-Nitrophenol Acenaphthene	<0.041 <0.0082	0.041 0.0082	mg/kg
				Acenaphthylene Acenaphthylene	<0.0082		mg/kg
				Acenaphtnylene Aniline			mg/kg
				Anthracene	<0.041 <0.0082	0.041 0.0082	mg/kg
				Anthracene Benzidine	<0.0082	0.0082	mg/kg
				Benzidine Benzo(a)Anthracene	<0.41		mg/kg
					<0.0082		mg/kg
				Benzo(a)Pyrene			mg/kg
				Benzo(b)Fluoranthene Benzo(g,h,i)Perylene	<0.0082 <0.0082		mg/kg
					<0.0082		mg/kg
				Benzo(j,k)Fluoranthene			mg/kg
		<u> </u>		Benzyl alcohol	< 0.041	0.041	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

				N: 1005-001		Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR3	12.5 - 13	Semi-Volatile Organic	SW8270	Bis(2-Chloroethoxy) Methane	< 0.041	0.041	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroethyl) Ether	< 0.041	0.041	mg/kg
(((continued)	(Bis(2-Chloroisopropyl)ether	< 0.041	0.041	mg/kg
		,		Bis(2-Ethylhexyl) Phthalate	< 0.041	0.041	mg/kg
				Bis-2-Ethylhexyladipate	< 0.041	0.041	mg/kg
				Butyl Benzyl Phthalate	< 0.41	0.41	mg/kg
				Carbazole	< 0.041	0.041	mg/kg
				Chrysene	< 0.0082	0.0082	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0082	0.0082	mg/kg
				Dibenzofuran	< 0.041	0.041	mg/kg
				Diethylphthalate	< 0.2	0.2	mg/kg
				Dimethylphthalate	< 0.041	0.041	mg/kg
				Di-N-Butylphthalate	< 0.41	0.41	mg/kg
				Di-N-Octyl Phthalate	< 0.041	0.041	mg/kg
				Fluoranthene	< 0.0082	0.0082	mg/kg
				Fluorene	< 0.0082	0.0082	mg/kg
				Hexachlorobenzene	< 0.041	0.041	mg/kg
				Hexachlorobutadiene	< 0.041	0.041	mg/kg
				Hexachlorocyclopentadiene	< 0.041	0.041	mg/kg
				Hexachloroethane	< 0.041	0.041	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0082	0.0082	mg/kg
				Isophorone	< 0.041	0.041	mg/kg
				Naphthalene	< 0.0082	0.0082	mg/kg
				Nitrobenzene	< 0.041	0.041	mg/kg
				N-Nitrosodimethylamine	< 0.041	0.041	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.041	0.041	mg/kg
				N-Nitrosodiphenylamine	< 0.041	0.041	mg/kg
				Pentachlorophenol	< 0.2	0.2	mg/kg
				Phenanthrene	< 0.0082	0.0082	mg/kg
				Phenol	< 0.041	0.041	mg/kg
				Pyrene	< 0.0082	0.0082	mg/kg
				Pyridine	< 0.41	0.41	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<31	31	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<61	61	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<7	7	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.07	0.07	mg/kg
				m,p-Xylene	< 0.07	0.07	mg/kg
				o-Xylene	< 0.07	0.07	mg/kg
				Toluene	< 0.07	0.07	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

			Farallon Pl	N: 1005-001	T		
						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR3	12.5 - 13	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
(continued)	(continued)	Compounds		1,1,1-Trichloroethane	< 0.0011	0.0011	mg/kg
		(continued)		1,1,2,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
				1,1,2-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,1-Dichloroethene	< 0.0011	0.0011	mg/kg
				1,1-Dichloropropene	< 0.0011	0.0011	mg/kg
				1,2,3-Trichlorobenzene	< 0.0011		mg/kg
				1,2,3-Trichloropropane	< 0.0011		mg/kg
				1,2,4-Trichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2,4-Trimethylbenzene	< 0.0011	0.0011	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0053		mg/kg
				1,2-Dibromoethane	< 0.0011	0.0011	mg/kg
				1,2-Dichlorobenzene	< 0.0011		mg/kg
				1,2-Dichloroethane	< 0.0011		mg/kg
				1,2-Dichloropropane	< 0.0011		mg/kg
				1,3,5-Trimethylbenzene	< 0.0011	0.0011	mg/kg
				1,3-Dichlorobenzene	< 0.0011		mg/kg
				1,3-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,4-Dichlorobenzene			
					< 0.0011		mg/kg
				2,2-Dichloropropane	< 0.0011		mg/kg
				2-Butanone (MEK)	< 0.0053		mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0053		mg/kg
				2-Chlorotoluene	< 0.0011		mg/kg
				2-Hexanone	< 0.0053		mg/kg
				4-Chlorotoluene	< 0.0011		mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0053		mg/kg
				Acetone	0.063	0.0053	mg/kg
				Benzene	< 0.0011		mg/kg
				Bromobenzene	< 0.0011	0.0011	mg/kg
				Bromochloromethane	< 0.0011	0.0011	mg/kg
				Bromodichloromethane	< 0.0011	0.0011	mg/kg
				Bromoform	< 0.0011	0.0011	mg/kg
				Bromomethane	< 0.0011	0.0011	mg/kg
			1	Carbon Disulfide	0.0083	0.0053	mg/kg
				Carbon Tetrachloride	< 0.0011	0.0011	mg/kg
				Chlorobenzene	< 0.0011	0.0011	mg/kg
				Chloroethane	< 0.0053	0.0053	mg/kg
				Chloroform	< 0.0011	0.0011	mg/kg
			1	Chloromethane	< 0.0053		mg/kg
			1	cis-1,2-Dichloroethene	< 0.0011		mg/kg
				cis-1,3-Dichloropropene	< 0.0011		mg/kg
				Dibromochloromethane	< 0.0011		mg/kg
				Dibromomethane	< 0.0011		mg/kg
				Dichlorodifluoromethane	< 0.0011		mg/kg
				Ethylbenzene	< 0.0011		mg/kg
				Hexachlorobutadiene	< 0.0011		mg/kg
				Iodomethane	< 0.0053		
							mg/kg
				Isopropylbenzene	< 0.0011		mg/kg
			1	m,p-Xylene	< 0.0021	0.0021	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

			Taranon I	N: 1005-001 		D 4: 1	
	D 41 D					Practical	TT *4 6
T 4.	Depth Range	A 1 4 7D	Analytical		D 14	Quantitation	
Location FAR3	(feet bgs) 12.5 - 13	Analyte Type	Method SW8260	Analyte Methyl T-Butyl Ether (MTBE)	Result < 0.0011	Limit	Measure
		Volatile Organic			< 0.0011	0.0011 0.0053	mg/kg
(continued)	(continued)	Compounds (continued)	(continued)	Methylene Chloride Naphthalene	< 0.0033		mg/kg mg/kg
		(continued)		N-Butylbenzene	< 0.0011		
				N-Propylbenzene	< 0.0011		mg/kg mg/kg
				o-Xylene	< 0.0011		mg/kg
				p-Isopropyltoluene	< 0.0011		mg/kg
				sec-Butylbenzene	< 0.0011		mg/kg
				Styrene	< 0.0011		mg/kg
				tert-Butylbenzene	< 0.0011		mg/kg
				Tetrachloroethene (PCE)	< 0.0011		mg/kg
				Toluene (1 CE)	< 0.0053		mg/kg
				Trans-1,2-Dichloroethene	< 0.0011		mg/kg
				Trans-1,3-Dichloropropene	< 0.0011		mg/kg
				Trichloroethene (TCE)	< 0.0011		mg/kg
				Trichlorofluoromethane	< 0.0011		mg/kg
				Vinyl Acetate	< 0.0053	0.0053	mg/kg
				Vinyl Chloride	< 0.0011	0.0011	mg/kg
FAR4	4 - 4.5	Metal	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	0.67	0.59	mg/kg
				Chromium	52	0.59	mg/kg
				Lead	400	5.9	mg/kg
			SW7471A	Mercury	< 0.3	0.3	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12	12	ug/kg
				4,4'-DDE	<12	12	ug/kg
				4,4'-DDT	25	12	ug/kg
				Aldrin	< 5.9	5.9	ug/kg
				Alpha-Bhc	< 5.9	5.9	ug/kg
				Alpha-Chlordane	<12	12	ug/kg
				Beta-Bhc	< 5.9	5.9	ug/kg
				Delta-Bhc	< 5.9	5.9	ug/kg
				Dieldrin	<12	12	ug/kg
				Endosulfan I	< 5.9	5.9	ug/kg
				Endosulfan II	<12	12	ug/kg
				Endosulfan Sulfate	<12	12	ug/kg
				Endrin	<12	12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone	<12	12	ug/kg
				Gamma-Bhc (Lindane)	< 5.9	5.9	ug/kg
				Gamma-Chlordane	<12	12	ug/kg
				Heptachlor	<5.9	5.9	ug/kg
				Heptachlor Epoxide	<5.9	5.9	ug/kg
				Methoxychlor	<12	12	ug/kg
		Polychlorinated	SW8082	Toxaphene Aroclor 1016	<59 <0.059	59 0.059	ug/kg
		Biphenyls	5 W 8U82	Aroclor 1016 Aroclor 1221	<0.059	0.059	mg/kg
		Diphenyis		Aroclor 1221 Aroclor 1232	<0.059	0.059	mg/kg mg/kg
				Aroclor 1232 Aroclor 1242	<0.059	0.059	mg/kg
				Aroclor 1248	<0.059	0.059	mg/kg
				Aroclor 1254	<0.059	0.059	mg/kg
				Aroclor 1260	0.039	0.059	mg/kg
			I.	AT OCIUI 1200	0.23	0.057	mg/Ng

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

			Faralion Pi	N. 1003-001		Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR4	4 - 4.5	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	<0.2	0.2	mg/kg
(continued)	(continued)	Compounds		1,2-Dichlorobenzene	< 0.2	0.2	mg/kg
(**************************************	(************)	C 0.11-P 0 0.11-00		1,2-Dinitrobenzene	< 0.2	0.2	mg/kg
				1,2-Diphenylhydrazine	< 0.2	0.2	mg/kg
				1,3-Dichlorobenzene	< 0.2	0.2	mg/kg
				1,3-Dinitrobenzene	< 0.2	0.2	mg/kg
				1,4-Dichlorobenzene	< 0.2	0.2	mg/kg
				1,4-Dinitrobenzene	< 0.2	0.2	mg/kg
				1-Methylnaphthalene	0.0092	0.0079	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.2	0.2	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.2	0.2	mg/kg
				2,3-Dichloroaniline	< 0.2	0.2	mg/kg
				2,4,5-Trichlorophenol	< 0.2	0.2	mg/kg
				2,4,6-Trichlorophenol	< 0.2	0.2	mg/kg
				2,4-Dichlorophenol	< 0.2	0.2	mg/kg
				2,4-Dimethylphenol	<2	2	mg/kg
				2,4-Dinitrophenol	< 0.99	0.99	mg/kg
				2,4-Dinitrotoluene	< 0.2	0.2	mg/kg
				2,6-Dinitrotoluene	< 0.2	0.2	mg/kg
				2-Chloronaphthalene	< 0.2	0.2	mg/kg
				2-Chlorophenol	< 0.2	0.2	mg/kg
				2-Methylnaphthalene	0.014	0.0079	mg/kg
				2-Methylphenol (o-Cresol)	< 0.2	0.2	mg/kg
				2-Nitroaniline	< 0.2	0.2	mg/kg
				2-Nitrophenol	< 0.2	0.2	mg/kg
				3,3'-Dichlorobenzidine	<2	2	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.2	0.2	mg/kg
				3-Nitroaniline	< 0.2	0.2	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.99	0.99	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.2	0.2	mg/kg
				4-Chloro-3-Methylphenol	< 0.2	0.2	mg/kg
				4-Chloroaniline	< 0.2	0.2	mg/kg
				4-Chlorophenyl Phenylether	< 0.2	0.2	mg/kg
				4-Nitroaniline	< 0.2	0.2	mg/kg
				4-Nitrophenol	< 0.2	0.2	mg/kg
				Acenaphthene	0.011	0.0079	mg/kg
				Acenaphthylene	<0.0079		mg/kg
				Aniline	< 0.2	0.2	mg/kg
				Anthracene Benzidine	0.014	0.0079	mg/kg
				_ *	<2	2	mg/kg
				Benzo(a)Anthracene Benzo(a)Pyrene	0.04	0.0079	mg/kg
				Benzo(a)Fyrene Benzo(b)Fluoranthene	0.041 0.042	0.0079	mg/kg
				Benzo(g,h,i)Perylene	0.042	0.0079 0.0079	mg/kg mg/kg
				Benzo(g,n,1)Perylene Benzo(j,k)Fluoranthene	0.037	0.0079	mg/kg mg/kg
				Benzyl alcohol	<0.2	0.0079	mg/kg mg/kg
				Bis(2-Chloroethoxy) Methane	<0.2	0.2	mg/kg
				Bis(2-Chloroethyl) Ether	<0.2	0.2	mg/kg
				Bis(2-Chloroisopropyl)ether	<0.2	0.2	mg/kg
				Bis(2-Ethylhexyl) Phthalate	<0.2	0.2	mg/kg
				Bis-2-Ethylhexyladipate	<0.2	0.2	mg/kg
				Butyl Benzyl Phthalate	<0.2	2	mg/kg mg/kg
		1	l .	Dutyl Denzyl i iiliaiate	~∠		mg/Kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

			Faranon F	1		Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analysta Tyma	Method	Analyte	Result	Limit	Measure
FAR4	4 - 4.5	Analyte Type Semi-Volatile Organic	SW8270	Carbazole	<0.2	0.2	mg/kg
		_		Chrysene	0.051	0.0079	
(continued)	(continued)	Compounds	(continued)	I =		0.0079	mg/kg
		(continued)		Dibenzo(a,h)Anthracene Dibenzofuran	0.01		mg/kg
					<0.2	0.2	mg/kg
				Diethylphthalate	<0.99	0.99	mg/kg
				Dimethylphthalate	< 0.2	0.2	mg/kg
				Di-N-Butylphthalate	<2	2	mg/kg
				Di-N-Octyl Phthalate	< 0.2	0.2	mg/kg
				Fluoranthene	0.083	0.0079	mg/kg
				Fluorene	0.012	0.0079	mg/kg
				Hexachlorobenzene	< 0.2	0.2	mg/kg
				Hexachlorobutadiene	< 0.2	0.2	mg/kg
				Hexachlorocyclopentadiene	< 0.2	0.2	mg/kg
				Hexachloroethane	< 0.2	0.2	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.025	0.0079	mg/kg
				Isophorone	< 0.2	0.2	mg/kg
				Naphthalene	0.02	0.0079	mg/kg
				Nitrobenzene	< 0.2	0.2	mg/kg
				N-Nitrosodimethylamine	< 0.2	0.2	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.2	0.2	mg/kg
				N-Nitrosodiphenylamine	< 0.2	0.2	mg/kg
				Pentachlorophenol	< 0.99	0.99	mg/kg
				Phenanthrene	0.068	0.0079	mg/kg
				Phenol	< 0.2	0.2	mg/kg
				Pyrene	0.071	0.0079	mg/kg
				Pyridine	<2	2	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	39	30	mg/kg
		Hydrocarbons		Lube Oil	180	60	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 6.1	6.1	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.061	0.061	mg/kg
		*		m,p-Xylene	< 0.061	0.061	mg/kg
				o-Xylene	< 0.061	0.061	mg/kg
				Toluene	< 0.061	0.061	mg/kg
	9 - 9.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<31	31	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<63	63	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

Depth Range Coccord Method Analytical Method Analyte Method Analyte Method Claimt Measure Method Analyte Method Cadmium <0.82 0.8				Faralion P.	1005-001		I	
Location Geet bgs Analyte Type Method Sw6010B Arsenic Cadmium						Practical	A. A	
FARS				-			_	
Cadmium			• • • • • • • • • • • • • • • • • • • •					
Chromium	FAR5	0.5 - 1	Metals	SW6010B				
Pesticides SW8081 4,4-DDD <16 16 ug/kg 4,4-DDE <16 16 ug/kg 4,4-DDT <16 16 ug/kg 4,4-DDT <16 16 ug/kg 4,4-DDT <16 16 ug/kg ug/kg 4,4-DDT <16 16 ug/kg ug/kg Alpha-Bhe <8.2 8.2 ug/kg					Chromium			mg/kg
Pesticides								
4,4-DDE					Mercury	< 0.41	0.41	mg/kg
A4-PDT			Pesticides	SW8081	4,4'-DDD	<16	16	ug/kg
Aldrin						<16	16	ug/kg
Alpha-Bhc					4,4'-DDT	<16	16	ug/kg
Alpha-Chlordane <16 16 ug/kg ug/kg					Aldrin	<8.2	8.2	ug/kg
					Alpha-Bhc	<8.2	8.2	ug/kg
					Alpha-Chlordane	<16	16	ug/kg
Delta-Bhe						11	8.2	ug/kg
Dieldrin					Delta-Bhc	<8.2	8.2	ug/kg
Endosulfan I					Dieldrin	<16	16	
Endosulfan II					Endosulfan I	<8.2	8.2	
Endosulfan Sulfate								
Endrin						<16	16	
Endrin Aldehyde								
Endrin Ketone						<16		
Gamma-Bhc (Lindane)						<16		
Gamma-Chlordane								
Heptachlor								
Heptachlor Epoxide								
Methoxychlor <16								
Toxaphene								
Polychlorinated Biphenyls					 	<82	82	
Biphenyls			Polychlorinated	SW8082				
Aroclor 1232					Aroclor 1221	< 0.082		
Aroclor 1242								
Aroclor 1248					Aroclor 1242	< 0.082		
Aroclor 1254					Aroclor 1248	< 0.082	0.082	
Aroclor 1260					Aroclor 1254	< 0.082	0.082	
Semi-Volatile Organic Compounds 1,2,4-Trichlorobenzene <0.055 0.055 mg/kg 1,2-Dichlorobenzene <0.055 0.055 mg/kg 1,2-Dinitrobenzene <0.055 0.055 mg/kg 1,2-Diphenylhydrazine <0.055 0.055 mg/kg 1,3-Dichlorobenzene <0.055 0.055 mg/kg 1,3-Dinitrobenzene <0.055 0.055 mg/kg 1,4-Dichlorobenzene <0.055 0.055 mg/kg 1,4-Dinitrobenzene <0.055 0.055 mg/kg 2,3,4,6-Tetrachlorophenol <0.055 0.055 mg/kg 2,3-Dichloroaniline <0.055 0.055 mg/kg 2,4,5-Trichlorophenol <0.055 0.055 mg/kg 2,4,6-Trichlorophenol <0.055 0.055 mg/kg					Aroclor 1260	< 0.082	0.082	mg/kg
Compounds			Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.055	0.055	
1,2-Diphenylhydrazine <0.055			Compounds		1,2-Dichlorobenzene	< 0.055	0.055	mg/kg
1,2-Diphenylhydrazine <0.055					1,2-Dinitrobenzene	< 0.055	0.055	
1,3-Dinitrobenzene <0.055						< 0.055	0.055	mg/kg
1,3-Dinitrobenzene <0.055						< 0.055	0.055	mg/kg
1,4-Dichlorobenzene <0.055					1,3-Dinitrobenzene	< 0.055	0.055	
1,4-Dinitrobenzene <0.055					1,4-Dichlorobenzene	< 0.055	0.055	
1-Methylnaphthalene <0.011					1,4-Dinitrobenzene	< 0.055		
2,3,4,6-Tetrachlorophenol <0.055					1-Methylnaphthalene	< 0.011	0.011	
2,3,5,6-Tetrachlorophenol <0.055 0.055 mg/kg					2,3,4,6-Tetrachlorophenol			
2,3-Dichloroaniline <0.055 0.055 mg/kg						< 0.055		
2,4,5-Trichlorophenol								
2,4,6-Trichlorophenol <0.055 0.055 mg/kg					2,4,5-Trichlorophenol	< 0.055		
						< 0.055		

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

			Farallon Pl	1002 001		Dwastinal	
	Donth Dongs		Amalutical			Practical Quantitation	Unit of
Logotion	Depth Range (feet bgs)	Amalesta Truna	Analytical	Amaluta	Dogult	_	
Location FAR5	0.5 - 1	Analyte Type Semi-Volatile Organic	Method SW8270	Analyte 2,4-Dimethylphenol	Result <0.55	Limit 0.55	Measure mg/kg
(continued)	(continued)	Compounds	(continued)	2,4-Dinitrophenol	<0.33	0.33	mg/kg
(continued)	(continued)	(continued)	(continued)	2,4-Dinitrotoluene	<0.27	0.27	mg/kg
		(continued)		2,6-Dinitrotoluene	<0.055	0.055	mg/kg
				2-Chloronaphthalene	<0.055	0.055	mg/kg
				2-Chlorophenol	<0.055	0.055	mg/kg
				2-Methylnaphthalene	< 0.033	0.033	mg/kg
				2-Methylphenol (o-Cresol)	< 0.055	0.055	mg/kg
				2-Nitroaniline	< 0.055	0.055	mg/kg
				2-Nitrophenol	< 0.055	0.055	mg/kg
				3,3`-Dichlorobenzidine	< 0.55	0.55	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.055	0.055	mg/kg
				3-Nitroaniline	< 0.055	0.055	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.27	0.27	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.055	0.055	mg/kg
				4-Chloro-3-Methylphenol	< 0.055	0.055	mg/kg
				4-Chloroaniline	< 0.055	0.055	mg/kg
				4-Chlorophenyl Phenylether	< 0.055	0.055	mg/kg
				4-Nitroaniline	< 0.055	0.055	mg/kg
				4-Nitrophenol	< 0.055	0.055	mg/kg
				Acenaphthene	< 0.011	0.011	mg/kg
				Acenaphthylene	< 0.011	0.011	mg/kg
				Aniline	< 0.055	0.055	mg/kg
				Anthracene	< 0.011	0.011	mg/kg
				Benzidine	< 0.55	0.55	mg/kg
				Benzo(a)Anthracene	< 0.011	0.011	mg/kg
				Benzo(a)Pyrene	0.016	0.011	mg/kg
				Benzo(b)Fluoranthene	0.016	0.011	mg/kg
				Benzo(g,h,i)Perylene	0.017	0.011	mg/kg
				Benzo(j,k)Fluoranthene	0.015	0.011	mg/kg
				Benzyl alcohol	<0.055 <0.055	0.055	mg/kg
				Bis(2-Chloroethoxy) Methane Bis(2-Chloroethyl) Ether	<0.055	0.055 0.055	mg/kg
				Bis(2-Chloroisopropyl)ether	<0.055	0.055	mg/kg mg/kg
				Bis(2-Ethylhexyl) Phthalate	<0.055	0.055	mg/kg
				Bis-2-Ethylhexyladipate	<0.055	0.055	mg/kg
				Butyl Benzyl Phthalate	<0.55	0.55	mg/kg
				Carbazole	< 0.055	0.055	mg/kg
				Chrysene	0.016	0.011	mg/kg
				Dibenzo(a,h)Anthracene	< 0.011	0.011	mg/kg
				Dibenzofuran	< 0.055	0.055	mg/kg
				Diethylphthalate	< 0.27	0.27	mg/kg
				Dimethylphthalate	< 0.055	0.055	mg/kg
				Di-N-Butylphthalate	< 0.55	0.55	mg/kg
				Di-N-Octyl Phthalate	< 0.055	0.055	mg/kg
				Fluoranthene	0.022	0.011	mg/kg
				Fluorene	< 0.011	0.011	mg/kg
				Hexachlorobenzene	< 0.055	0.055	mg/kg
				Hexachlorobutadiene	< 0.055	0.055	mg/kg
				Hexachlorocyclopentadiene	< 0.055	0.055	mg/kg
				Hexachloroethane	< 0.055	0.055	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	-	Measure
FAR5	0.5 - 1	Semi-Volatile Organic	SW8270	Indeno(1,2,3-cd)Pyrene	0.013	0.011	mg/kg
(continued)	(continued)	Compounds	(continued)	Isophorone	< 0.055	0.055	mg/kg
		(continued)		Naphthalene	< 0.011	0.011	mg/kg
				Nitrobenzene	< 0.055	0.055	mg/kg
				N-Nitrosodimethylamine	< 0.055	0.055	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.055	0.055	mg/kg
				N-Nitrosodiphenylamine	< 0.055	0.055	mg/kg
				Pentachlorophenol	< 0.27	0.27	mg/kg
				Phenanthrene	0.011	0.011	mg/kg
				Phenol	< 0.055	0.055	mg/kg
				Pyrene	0.019	0.011	mg/kg
				Pyridine	< 0.55	0.55	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<41	41	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<82	82	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<11	11	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.022	0.022	mg/kg
		Compounds		Ethylbenzene	< 0.11	0.11	mg/kg
				m,p-Xylene	< 0.11	0.11	mg/kg
				o-Xylene	< 0.11	0.11	mg/kg
				Toluene	< 0.11	0.11	mg/kg

NOTES:

Results in **bold** denote analyte was detected. See Table 7A.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

bgs = below ground surface

 $\mu g/kg = micrograms per kilogram$

mg/kg = milligrams per kilogram

Table C-2B

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitatio	Unit of
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR3	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	<1	1	ug/l
	Compounds		1,2-Dichlorobenzene	<1	1	ug/l
			1,2-Dinitrobenzene	<1	1	ug/l
			1,2-Diphenylhydrazine	<1	1	ug/l
			1,3-Dichlorobenzene	<1	1	ug/l
			1,3-Dinitrobenzene	<1	1	ug/l
			1,4-Dichlorobenzene	<1	1	ug/l
			1,4-Dinitrobenzene	<1	1	ug/l
			1-Methylnaphthalene	< 0.1	0.1	ug/l
			2,3,4,6-Tetrachlorophenol	<1	1	ug/l
			2,3,5,6-Tetrachlorophenol	<1	1	ug/l
			2,3-Dichloroaniline	<1	1	ug/l
			2,4,5-Trichlorophenol	<1	1	ug/l
			2,4,6-Trichlorophenol	<1	1	ug/l
			2,4-Dichlorophenol	<1	1	ug/l
			2,4-Dimethylphenol	<1	1	ug/l
			2,4-Dinitrophenol	<5	5	ug/l
			2,4-Dinitrotoluene	<1	1	ug/l
			2,6-Dinitrotoluene	<1	1	ug/l
			2-Chloronaphthalene	<1	1	ug/l
			2-Chlorophenol	<1	1	ug/l
			2-Methylnaphthalene	< 0.1	0.1	ug/l
			2-Methylphenol (o-Cresol)	<1	1	ug/l
			2-Nitroaniline	<1	1	ug/l
			2-Nitrophenol	<1	1	ug/l
			3,3`-Dichlorobenzidine	<1	1	ug/l
			3,4-Methylphenol(m,p-Cresol)	<1	1	ug/l
			3-Nitroaniline	<1	1	ug/l
			4,6-Dinitro-2-Methylphenol	<5	5	ug/l
			4-Bromophenyl Phenyl Ether	<1	1	ug/l
			4-Chloro-3-Methylphenol	<1	1	ug/l
			4-Chloroaniline	<1	1	ug/l
			4-Chlorophenyl Phenylether	<1	1	ug/l
			4-Nitroaniline	<1	1	ug/l
			4-Nitrophenol	<1	1	ug/l
			Acenaphthene	< 0.1	0.1	ug/l
			Acenaphthylene	< 0.1	0.1	ug/l
			Aniline	<5	5	ug/l
			Anthracene	< 0.1	0.1	ug/l

Table C-2B

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Farallon PN: 1005-001

					Practical	
		Analytical			Quantitatio	Unit of
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR3	Semi-Volatile Organic	SW8270	Benzidine	<5	5	ug/l
(continued)	Compounds	(continued)	Benzo(a)Anthracene	< 0.01	0.01	ug/l
	(continued)		Benzo(a)Pyrene	< 0.01	0.01	ug/l
			Benzo(b)Fluoranthene	< 0.01	0.01	ug/l
			Benzo(g,h,i)Perylene	< 0.01	0.01	ug/l
			Benzo(j,k)Fluoranthene	< 0.01	0.01	ug/l
			Benzyl alcohol	<1	1	ug/l
			Bis(2-Chloroethoxy) Methane	<1	1	ug/l
			Bis(2-Chloroethyl) Ether	<1	1	ug/l
			Bis(2-Chloroisopropyl)ether	<1	1	ug/l
			Bis(2-Ethylhexyl) Phthalate	<1	1	ug/l
			Bis-2-Ethylhexyladipate	<1	1	ug/l
			Butyl Benzyl Phthalate	<1	1	ug/l
			Carbazole	<1	1	ug/l
			Chrysene	< 0.01	0.01	ug/l
			Dibenzo(a,h)Anthracene	< 0.01	0.01	ug/l
			Dibenzofuran	<1	1	ug/l
			Diethylphthalate	<1	1	ug/l
			Dimethylphthalate	<1	1	ug/l
			Di-N-Butylphthalate	<1	1	ug/l
			Di-N-Octyl Phthalate	<1	1	ug/l
			Fluoranthene	< 0.1	0.1	ug/l
			Fluorene	< 0.1	0.1	ug/l
			Hexachlorobenzene	<1	1	ug/l
			Hexachlorobutadiene	<1	1	ug/l
			Hexachlorocyclopentadiene	<1	1	ug/l
			Hexachloroethane	<1	1	ug/l
			Indeno(1,2,3-cd)Pyrene	< 0.01	0.01	ug/l
			Isophorone	<1	1	ug/l
			Naphthalene	< 0.1	0.1	ug/l
			Nitrobenzene	<1	1	ug/l
			N-Nitrosodimethylamine	<1	1	ug/l
			N-Nitroso-Di-N-Propylamine	<1	1	ug/l
			N-Nitrosodiphenylamine	<1	1	ug/l
			Pentachlorophenol	<5	5	ug/l
			Phenanthrene	< 0.1	0.1	ug/l
			Phenol	<1	1	ug/l
			Pyrene	< 0.1	0.1	ug/l
			Pyridine	<1	1	ug/l

Table C-2B

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 4

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitatio	Unit of
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR3	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
(continued)	Hydrocarbons		Heavy Oil-Range Organics	< 0.42	0.42	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	EPA8021	Benzene	<1	1	ug/l
	Compounds		Ethylbenzene	<1	1	ug/l
			m,p-Xylene	<1	1	ug/l
			o-Xylene	<1	1	ug/l
			Toluene	<1	1	ug/l

NOTES:

Results in **bold** denote analyte was detected. See Table 7B.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

 $\mu g/l = micrograms per liter$

mg/l = milligrams per liter

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
·	Depth Range		Analytical		D 1	Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR6	0.5 - 1	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.62	0.62	mg/kg
				Chromium	44	0.62	mg/kg
			CXX/2.421.4	Lead	140	6.2	mg/kg
		Pesticides	SW7471A	Mercury	< 0.31	0.31	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12 <12	12 12	ug/kg
				4,4'-DDE 4.4'-DDT	12	12	ug/kg
				'			ug/kg
				Aldrin	<6.2	6.2	ug/kg
				Alpha-Bhc	<6.2 <12	6.2 12	ug/kg
				Alpha-Chlordane Beta-Bhc		6.2	ug/kg
					<6.2		ug/kg
				Delta-Bhc	<6.2	6.2	ug/kg
				Dieldrin	<12	12	ug/kg
				Endosulfan I Endosulfan II	<6.2 <12	6.2 12	ug/kg
						12	ug/kg
				Endosulfan Sulfate Endrin	<12		ug/kg
				**	<12 <12	12 12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone Gamma-Bhc (Lindane)	<6.2	6.2	ug/kg
				Gamma-Chlordane	<12	12	ug/kg
					<6.2		ug/kg
				Heptachlor	<6.2 <6.2	6.2	ug/kg
				Heptachlor Epoxide	<12	6.2 12	ug/kg
				Methoxychlor Toxaphene	<62	62	ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1016	< 0.062	0.062	ug/kg
		rotychiormated Diphenyis	3 W 0002	Aroclor 1221	<0.062	0.062	mg/kg mg/kg
				Aroclor 1221 Aroclor 1232	<0.062	0.062	~ ~
				Aroclor 1232 Aroclor 1242	<0.062	0.062	mg/kg
				Aroclor 1242 Aroclor 1248	<0.062	0.062	mg/kg mg/kg
				Aroclor 1246 Aroclor 1254	<0.062	0.062	mg/kg
				Aroclor 1254 Aroclor 1260	0.002	0.062	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	<0.21	0.002	mg/kg
		Compounds	S W 02/U	1,2-Dichlorobenzene	<0.21	0.21	~ ~
		Compounds		1,2-Dictiorobenzene	<0.21	0.21	mg/kg mg/kg
				1,2-Dinhtrobenzene	<0.21	0.21	mg/kg
				1,3-Dichlorobenzene	<0.21	0.21	mg/kg
				1,3-Dinitrobenzene	<0.21	0.21	mg/kg
				1.4-Dichlorobenzene	<0.21	0.21	mg/kg
				1,4-Dinitrobenzene	<0.21	0.21	mg/kg
				1-Methylnaphthalene	0.021	0.0082	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.22	0.0082	mg/kg
				2,3,5,6-Tetrachlorophenol	<0.21	0.21	mg/kg
		<u>. </u>		2,2,5,0-1 cu acmorophenoi	<u>~0.∠1</u>	0.∠1	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR6	0.5 - 1	Semi-Volatile Organic	SW8270	2,3-Dichloroaniline	< 0.21	0.21	mg/kg
(continued)	(continued)	Compounds	(continued)	2,4,5-Trichlorophenol	< 0.21	0.21	mg/kg
		(continued)		2,4,6-Trichlorophenol	< 0.21	0.21	mg/kg
				2,4-Dichlorophenol	< 0.21	0.21	mg/kg
				2,4-Dimethylphenol	<2.1	2.1	mg/kg
				2,4-Dinitrophenol	<1	1	mg/kg
				2,4-Dinitrotoluene	< 0.21	0.21	mg/kg
				2,6-Dinitrotoluene	< 0.21	0.21	mg/kg
				2-Chloronaphthalene	< 0.21	0.21	mg/kg
				2-Chlorophenol	< 0.21	0.21	mg/kg
				2-Methylnaphthalene	0.028	0.0082	mg/kg
				2-Methylphenol (o-Cresol)	< 0.21	0.21	mg/kg
				2-Nitroaniline	< 0.21	0.21	mg/kg
				2-Nitrophenol	< 0.21	0.21	mg/kg
				3,3'-Dichlorobenzidine	< 2.1	2.1	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.21	0.21	mg/kg
				3-Nitroaniline	< 0.21	0.21	mg/kg
				4,6-Dinitro-2-Methylphenol	<1	1	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.21	0.21	mg/kg
				4-Chloro-3-Methylphenol	< 0.21	0.21	mg/kg
				4-Chloroaniline	< 0.21	0.21	mg/kg
				4-Chlorophenyl Phenylether	< 0.21	0.21	mg/kg
				4-Nitroaniline	< 0.21	0.21	mg/kg
				4-Nitrophenol	< 0.21	0.21	mg/kg
				Acenaphthene	0.17	0.0082	mg/kg
				Acenaphthylene	0.048	0.0082	mg/kg
				Aniline	< 0.21	0.21	mg/kg
				Anthracene	0.4	0.21	mg/kg
				Benzidine	<2.1	2.1	mg/kg
				Benzo(a)Anthracene	0.95	0.21	mg/kg
				Benzo(a)Pyrene	1.2	0.21	mg/kg
				Benzo(b)Fluoranthene	1.1	0.21	mg/kg
				Benzo(g,h,i)Perylene	0.78	0.21	mg/kg
				Benzo(j,k)Fluoranthene	1.2	0.21	mg/kg
				Benzyl alcohol	< 0.21	0.21	mg/kg
				Bis(2-Chloroethoxy) Methane	<0.21	0.21	mg/kg
				Bis(2-Chloroethyl) Ether	<0.21	0.21	
				Bis(2-Chloroisopropyl)ether	<0.21	0.21	mg/kg
				Bis(2-Ethylhexyl) Phthalate			mg/kg
					<0.21	0.21	mg/kg
				Bis-2-Ethylhexyladipate	<0.21	0.21	mg/kg
				Butyl Benzyl Phthalate	<2.1	2.1	mg/kg
				Carbazole	0.44	0.21	mg/kg
				Chrysene	1.3	0.21	mg/kg
				Dibenzo(a,h)Anthracene	0.26	0.21	mg/kg
				Dibenzofuran	< 0.21	0.21	mg/kg
				Diethylphthalate	<1	1	mg/kg
				Dimethylphthalate	< 0.21	0.21	mg/kg
				Di-N-Butylphthalate	<2.1	2.1	mg/kg
				Di-N-Octyl Phthalate	< 0.21	0.21	mg/kg
				Fluoranthene	3	0.21	mg/kg
				Fluorene	0.17	0.0082	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range	4 1 6 70	Analytical		D 1	Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR6	0.5 - 1	Semi-Volatile Organic	SW8270	Hexachlorobenzene	<0.21	0.21	mg/kg
(continued)	(continued)	Compounds	(continued)	Hexachlorobutadiene	<0.21	0.21	mg/kg
		(continued)		Hexachlorocyclopentadiene	<0.21	0.21	mg/kg
				Hexachloroethane	<0.21	0.21	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.79 <0.21	0.21 0.21	mg/kg
				Isophorone	0.052	0.21	mg/kg
				Naphthalene Nitrobenzene	<0.21		mg/kg
					<0.21	0.21	mg/kg
				N-Nitrosodimethylamine	<0.21	0.21 0.21	mg/kg
				N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine	<0.21	0.21	mg/kg
							mg/kg
				Pentachlorophenol Phenanthrene	<1 2.5	1 0.21	mg/kg
				Phenol	<0.21	0.21	mg/kg
				Pyrene	2.6	0.21 0.21	mg/kg
				Pyridine Pyridine	<2.0 <2.1	2.1	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<42	42	mg/kg
		Hydrocarbons	NWIFII-DX	Lube Oil	370	62	mg/kg mg/kg
		Trydrocarbons	NWTPH-GX	Gasoline-Range Organics	<7.3	7.3	mg/kg
		Volatile Organic	EPA8021	Benzene	<0.02	0.02	mg/kg
		Compounds	EFA6021	Ethylbenzene	< 0.02	0.02	mg/kg
		Compounds		m,p-Xylene	<0.073	0.073	mg/kg
				o-Xylene	<0.073	0.073	mg/kg
				Toluene	<0.073	0.073	mg/kg
FAR7	2.5 - 3	Metals	SW6010B	Arsenic	<10	10	mg/kg
1711(7	2.3 3	11104415	SWOOTOB	Cadmium	< 0.52	0.52	mg/kg
				Chromium	28	0.52	mg/kg
				Lead	27	5.2	mg/kg
			SW7471A	Mercury	< 0.26	0.26	mg/kg
		Pesticides	SW8081	4,4'-DDD	<10	10	ug/kg
				4,4'-DDE	<10	10	ug/kg
				4,4'-DDT	<10	10	ug/kg
				Aldrin	<5.2	5.2	ug/kg
				Alpha-Bhc	<5.2	5.2	ug/kg
				Alpha-Chlordane	<10	10	ug/kg
				Beta-Bhc	<5.2	5.2	ug/kg
				Delta-Bhc	<5.2	5.2	ug/kg
				Dieldrin	<10	10	ug/kg
				Endosulfan I	< 5.2	5.2	ug/kg
				Endosulfan II	<10	10	ug/kg
				Endosulfan Sulfate	<10	10	ug/kg
				Endrin	<10	10	ug/kg
				Endrin Aldehyde	<10	10	ug/kg
				Endrin Ketone	<10	10	ug/kg
				Gamma-Bhc (Lindane)	< 5.2	5.2	ug/kg
				Gamma-Chlordane	<10	10	ug/kg
				Heptachlor	<5.2	5.2	ug/kg
				Heptachlor Epoxide	<5.2	5.2	ug/kg
				Methoxychlor	<10	10	ug/kg
				Toxaphene	<52	52	ug/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR7	2.5 - 3	Polychlorinated Biphenyls	SW8082	Aroclor 1016	< 0.052	0.052	mg/kg
(continued)	(continued)	, , ,		Aroclor 1221	< 0.052	0.052	mg/kg
,	,			Aroclor 1232	< 0.052	0.052	mg/kg
				Aroclor 1242	< 0.052	0.052	mg/kg
				Aroclor 1248	< 0.052	0.052	mg/kg
				Aroclor 1254	< 0.052	0.052	mg/kg
				Aroclor 1260	0.26	0.052	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<26	26	mg/kg
		Hydrocarbons		Lube Oil	120	52	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<7.7	7.7	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.077	0.077	mg/kg
				m,p-Xylene	< 0.077	0.077	mg/kg
				o-Xylene	< 0.077	0.077	mg/kg
				Toluene	< 0.077	0.077	mg/kg
			SW8260	1,1,1,2-Tetrachloroethane	< 0.0016	0.0016	mg/kg
				1,1,1-Trichloroethane	< 0.0016	0.0016	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0016	0.0016	mg/kg
				1,1,2-Trichloroethane	< 0.0016	0.0016	mg/kg
				1,1-Dichloroethane	< 0.0016	0.0016	mg/kg
				1,1-Dichloroethene	< 0.0016	0.0016	mg/kg
				1,1-Dichloropropene	< 0.0016	0.0016	mg/kg
				1,2,3-Trichlorobenzene	< 0.0016	0.0016	mg/kg
				1,2,3-Trichloropropane	< 0.0016	0.0016	mg/kg
				1,2,4-Trichlorobenzene	< 0.0016	0.0016	mg/kg
				1,2,4-Trimethylbenzene	< 0.0016	0.0016	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0082	0.0082	mg/kg
				1,2-Dibromoethane	< 0.0016	0.0016	mg/kg
				1,2-Dichlorobenzene	< 0.0016	0.0016	mg/kg
				1,2-Dichloroethane	< 0.0016	0.0016	mg/kg
				1,2-Dichloropropane	< 0.0016	0.0016	mg/kg
				1,3,5-Trimethylbenzene	< 0.0016	0.0016	mg/kg
				1,3-Dichlorobenzene	< 0.0016	0.0016	mg/kg
				1,3-Dichloropropane	< 0.0016	0.0016	mg/kg
				1,4-Dichlorobenzene	< 0.0016	0.0016	mg/kg
				2,2-Dichloropropane	< 0.0016	0.0016	mg/kg
				2-Butanone (MEK)	< 0.0082	0.0082	mg/kg
				2-Chloroethyl Vinyl Ether	<0.0082	0.0082	mg/kg
				2-Chlorotoluene	< 0.0016	0.0016	mg/kg
				2-Hexanone	< 0.0082	0.0082	mg/kg
				4-Chlorotoluene	<0.0016	0.0016	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0082	0.0082	mg/kg
				Acetone	0.07	0.0082	mg/kg
				Benzene	0.0026	0.0016	mg/kg
				Bromobenzene	<0.0016	0.0016	mg/kg
				Bromochloromethane	< 0.0016	0.0016	mg/kg
				Bromodichloromethane	< 0.0016	0.0016	mg/kg
				Bromoform	< 0.0016	0.0016	mg/kg
				Bromomethane	< 0.0016	0.0016	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

	Double Double		A 14 ¹ 1			Practical	II
Location	Depth Range	Amalusta Tuma	Analytical Mother	Amolinto	Dogula	Quantitatio	Unit of
Location FAR7	(feet bgs) 2.5 - 3	Analyte Type Volatile Organic	Method SW8260	Analyte Carbon Disulfide	Result <0.0082	n Limit 0.0082	Measure
		Compounds		Carbon Tetrachloride	< 0.0082		mg/kg
(continued)	(continued)	1	(continued)				mg/kg
		(continued)		Chlorobenzene	< 0.0016		mg/kg
				Chloroethane	< 0.0082	0.0082	mg/kg
				Chlorosouthous	<0.0016		mg/kg
				Chloromethane	< 0.0082		mg/kg
				cis-1,2-Dichloroethene	< 0.0016		mg/kg
				cis-1,3-Dichloropropene	< 0.0016		mg/kg
				Dibromochloromethane	< 0.0016		mg/kg
				Dibromomethane	< 0.0016		mg/kg
				Dichlorodifluoromethane	< 0.0016		mg/kg
				Ethylbenzene	< 0.0016		mg/kg
				Hexachlorobutadiene	< 0.0082	0.0082	mg/kg
				Iodomethane	< 0.0082		mg/kg
				Isopropylbenzene	< 0.0016		mg/kg
				m,p-Xylene	< 0.0033		mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0016		mg/kg
				Methylene Chloride	< 0.0082		mg/kg
				Naphthalene	< 0.0016		mg/kg
				N-Butylbenzene	< 0.0016		mg/kg
				N-Propylbenzene	< 0.0016		mg/kg
				o-Xylene	< 0.0016	0.0016	mg/kg
				p-Isopropyltoluene	< 0.0016	0.0016	mg/kg
				sec-Butylbenzene	< 0.0016	0.0016	mg/kg
				Styrene	< 0.0016	0.0016	mg/kg
				tert-Butylbenzene	< 0.0016	0.0016	mg/kg
				Tetrachloroethene (PCE)	< 0.0016	0.0016	mg/kg
				Toluene	< 0.0082	0.0082	mg/kg
				Trans-1,2-Dichloroethene	< 0.0016	0.0016	mg/kg
				Trans-1,3-Dichloropropene	< 0.0016	0.0016	mg/kg
				Trichloroethene (TCE)	< 0.0016	0.0016	mg/kg
				Trichlorofluoromethane	< 0.0016	0.0016	mg/kg
				Vinyl Acetate	< 0.0082	0.0082	mg/kg
				Vinyl Chloride	< 0.0016	0.0016	mg/kg
	6 - 6.5	Polychlorinated Biphenyls	SW8082	Aroclor 1016	< 0.053	0.053	mg/kg
				Aroclor 1221	< 0.053	0.053	mg/kg
				Aroclor 1232	< 0.053	0.053	mg/kg
				Aroclor 1242	< 0.053	0.053	mg/kg
				Aroclor 1248	< 0.053	0.053	mg/kg
				Aroclor 1254	< 0.053	0.053	mg/kg
				Aroclor 1260	< 0.053	0.053	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	31	27	mg/kg
		Hydrocarbons		Heavy Oil Range Organics	150	53	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR8	5 - 5.5	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.58	0.58	mg/kg
				Chromium	35	0.58	mg/kg
				Lead	40	5.8	mg/kg
			SW7471A	Mercury	< 0.29	0.29	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	51	29	mg/kg
		Hydrocarbons		Lube Oil	290	58	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<8.8>	8.8	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.088	0.088	mg/kg
				m,p-Xylene	< 0.088	0.088	mg/kg
				o-Xylene	< 0.088	0.088	mg/kg
				Toluene	< 0.088	0.088	mg/kg
	11 - 11.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<27	27	mg/kg
		Hydrocarbons		Lube Oil	59	54	mg/kg
FAR9	2.5 - 3	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.58	0.58	mg/kg
				Chromium	52	0.58	mg/kg
				Lead	460	5.8	mg/kg
			SW7471A	Mercury	< 0.29	0.29	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.039	0.039	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.039	0.039	mg/kg
				1,2-Dinitrobenzene	< 0.039	0.039	mg/kg
				1,2-Diphenylhydrazine	< 0.039	0.039	mg/kg
				1,3-Dichlorobenzene	< 0.039	0.039	mg/kg
				1,3-Dinitrobenzene	< 0.039	0.039	mg/kg
				1,4-Dichlorobenzene	< 0.039	0.039	mg/kg
				1,4-Dinitrobenzene	< 0.039	0.039	mg/kg
				1-Methylnaphthalene	< 0.0077	0.0077	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.039	0.039	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.039	0.039	mg/kg
				2,3-Dichloroaniline	< 0.039	0.039	mg/kg
				2,4,5-Trichlorophenol	< 0.039	0.039	mg/kg
				2,4,6-Trichlorophenol	< 0.039	0.039	mg/kg
				2,4-Dichlorophenol	< 0.039	0.039	mg/kg
				2,4-Dimethylphenol	< 0.39	0.39	mg/kg
				2,4-Dinitrophenol	< 0.19	0.19	mg/kg
				2,4-Dinitrotoluene	< 0.039	0.039	mg/kg
				2,6-Dinitrotoluene	< 0.039	0.039	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR9	2.5 - 3	Semi-Volatile Organic	SW8270	2-Chloronaphthalene	< 0.039	0.039	mg/kg
(continued)	(continued)	Compounds	(continued)	2-Chlorophenol	< 0.039	0.039	mg/kg
		(continued)		2-Methylnaphthalene	< 0.0077		mg/kg
				2-Methylphenol (o-Cresol)	< 0.039	0.039	mg/kg
				2-Nitroaniline	< 0.039	0.039	mg/kg
				2-Nitrophenol	< 0.039	0.039	mg/kg
				3,3'-Dichlorobenzidine	< 0.39	0.39	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.039	0.039	mg/kg
				3-Nitroaniline	< 0.039	0.039	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.19	0.19	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.039	0.039	mg/kg
				4-Chloro-3-Methylphenol	< 0.039	0.039	mg/kg
				4-Chloroaniline	< 0.039	0.039	mg/kg
				4-Chlorophenyl Phenylether	< 0.039	0.039	mg/kg
				4-Nitroaniline	< 0.039	0.039	mg/kg
				4-Nitrophenol	< 0.039	0.039	mg/kg
				Acenaphthene	0.0081	0.0077	mg/kg
				Acenaphthylene	< 0.0077	0.0077	mg/kg
				Aniline	< 0.039	0.039	mg/kg
				Anthracene	0.021	0.0077	mg/kg
				Benzidine	< 0.39	0.39	mg/kg
				Benzo(a)Anthracene	0.069	0.039	mg/kg
				Benzo(a)Pyrene	0.071	0.039	mg/kg
				Benzo(b)Fluoranthene	0.063	0.039	mg/kg
				Benzo(g,h,i)Perylene	0.049	0.039	mg/kg
				Benzo(j,k)Fluoranthene	0.06	0.039	mg/kg
				Benzyl alcohol	< 0.039	0.039	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.039	0.039	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.039	0.039	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.039	0.039	mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.06	0.039	mg/kg
				Bis-2-Ethylhexyladipate	< 0.039	0.039	mg/kg
				Butyl Benzyl Phthalate	< 0.39	0.39	mg/kg
				Carbazole	< 0.039	0.039	mg/kg
				Chrysene	0.083	0.039	mg/kg
				Dibenzo(a,h)Anthracene	0.015	0.0077	mg/kg
				Dibenzofuran	< 0.039	0.039	mg/kg
				Diethylphthalate	< 0.19	0.19	mg/kg
				Dimethylphthalate	< 0.039		mg/kg
				Di-N-Butylphthalate	< 0.39	0.39	mg/kg
				Di-N-Octyl Phthalate	< 0.039	0.039	mg/kg
				Fluoranthene	0.19	0.039	mg/kg
				Fluorene	0.01	0.0077	mg/kg
				Hexachlorobenzene	< 0.039	0.039	mg/kg
				Hexachlorobutadiene	<0.039	0.039	mg/kg
				Hexachlorocyclopentadiene	<0.039	0.039	mg/kg
				Hexachloroethane	<0.039	0.039	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.039	0.039	mg/kg
				Isophorone	< 0.039	0.039	mg/kg mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR9	2.5 - 3	Semi-Volatile Organic	SW8270	Naphthalene	0.0079	0.0077	mg/kg
(continued)	(continued)	Compounds	(continued)	Nitrobenzene	< 0.039	0.039	mg/kg
,	,	(continued)	,	N-Nitrosodimethylamine	< 0.039	0.039	mg/kg
		, , ,		N-Nitroso-Di-N-Propylamine	< 0.039	0.039	mg/kg
				N-Nitrosodiphenylamine	< 0.039	0.039	mg/kg
				Pentachlorophenol	< 0.19	0.19	mg/kg
				Phenanthrene	0.093	0.039	mg/kg
				Phenol	< 0.039	0.039	mg/kg
				Pyrene	0.12	0.039	mg/kg
				Pyridine	< 0.39	0.39	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<49	49	mg/kg
		Hydrocarbons		Lube Oil	260	58	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 6.3	6.3	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.063	0.063	mg/kg
				m,p-Xylene	< 0.063	0.063	mg/kg
				o-Xylene	< 0.063	0.063	mg/kg
				Toluene	< 0.063	0.063	mg/kg
	6 - 6.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<45	45	mg/kg
		Hydrocarbons		Lube Oil	220	68	mg/kg
FAR20	2.5 - 3	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.6	0.6	mg/kg
				Chromium	64	0.6	mg/kg
				Lead	160	6	mg/kg
			SW7471A	Mercury	< 0.3	0.3	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12	12	ug/kg
				4,4'-DDE	<12	12	ug/kg
				4,4'-DDT	16	12	ug/kg
				Aldrin	<6	6	ug/kg
				Alpha-Bhc	<6	6	ug/kg
				Alpha-Chlordane	<12	12	ug/kg
				Beta-Bhc	<6	6	ug/kg
				Delta-Bhc	<6	6	ug/kg
				Dieldrin	<12	12	ug/kg
				Endosulfan I	<6	6	ug/kg
				Endosulfan II	<12	12	ug/kg
				Endosulfan Sulfate	<12	12	ug/kg
				Endrin	<12	12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone	<12	12	ug/kg
				Gamma-Bhc (Lindane) Gamma-Chlordane	<6 <12	6	ug/kg
					<12	12	ug/kg
				Heptachlor	<6	6	ug/kg
				Heptachlor Epoxide	<6 <12	6	ug/kg
				Methoxychlor	<12	12	ug/kg
		Polychlorinated Biphenyls	SW8082	Toxaphene Aroclor 1016	<60 <0.06	60	ug/kg
		r orychiormated Bipnenyis	5 W 8U82		<0.06	0.06	mg/kg
				Aroclor 1221		0.06	mg/kg
				Aroclor 1232	<0.06 <0.06	0.06	mg/kg
				Aroclor 1242 Aroclor 1248	<0.06	0.06	mg/kg
				Aroclor 1248 Aroclor 1254	<0.06	0.06 0.06	mg/kg mg/kg
				Aroclor 1254 Aroclor 1260	0.06 0.19		
				A1000 1200	0.13	0.06	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR20	2.5 - 3	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.04	0.04	mg/kg
(continued)	(continued)	Compounds		1,2-Dichlorobenzene	< 0.04	0.04	mg/kg
,	,	•		1,2-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,2-Diphenylhydrazine	< 0.04	0.04	mg/kg
				1,3-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,3-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,4-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,4-Dinitrobenzene	< 0.04	0.04	mg/kg
				1-Methylnaphthalene	0.008	0.0079	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3-Dichloroaniline	< 0.04	0.04	mg/kg
				2,4,5-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4,6-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dimethylphenol	< 0.4	0.4	mg/kg
				2,4-Dinitrophenol	< 0.2	0.2	mg/kg
				2,4-Dinitrotoluene	< 0.04	0.04	mg/kg
				2,6-Dinitrotoluene	< 0.04	0.04	mg/kg
				2-Chloronaphthalene	< 0.04	0.04	mg/kg
				2-Chlorophenol	< 0.04	0.04	mg/kg
				2-Methylnaphthalene	0.016	0.0079	mg/kg
				2-Methylphenol (o-Cresol)	< 0.04	0.04	mg/kg
				2-Nitroaniline	< 0.04	0.04	mg/kg
				2-Nitrophenol	< 0.04	0.04	mg/kg
				3,3'-Dichlorobenzidine	< 0.4	0.4	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.04	0.04	mg/kg
				3-Nitroaniline	< 0.04	0.04	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.2	0.2	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.04	0.04	mg/kg
				4-Chloro-3-Methylphenol	< 0.04	0.04	mg/kg
				4-Chloroaniline	< 0.04	0.04	mg/kg
				4-Chlorophenyl Phenylether	< 0.04	0.04	mg/kg
				4-Nitroaniline	< 0.04	0.04	mg/kg
				4-Nitrophenol	< 0.04	0.04	mg/kg
				Acenaphthene	0.016	0.0079	mg/kg
				Acenaphthylene	0.0092	0.0079	mg/kg
				Aniline	< 0.04	0.04	mg/kg
				Anthracene	0.024	0.0079	mg/kg
				Benzidine	< 0.4	0.4	mg/kg
				Benzo(a)Anthracene	0.064	0.04	mg/kg
				Benzo(a)Pyrene	0.067	0.04	mg/kg
				Benzo(b)Fluoranthene	0.065	0.04	mg/kg
				Benzo(g,h,i)Perylene	0.051	0.04	mg/kg
				Benzo(j,k)Fluoranthene	0.056	0.04	mg/kg
				Benzyl alcohol	< 0.04	0.04	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR20	2.5 - 3	Semi-Volatile Organic	SW8270	Bis(2-Chloroethoxy) Methane	< 0.04	0.04	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroethyl) Ether	< 0.04	0.04	mg/kg
		(continued)		Bis(2-Chloroisopropyl)ether	< 0.04	0.04	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.04	0.04	mg/kg
				Bis-2-Ethylhexyladipate	< 0.04	0.04	mg/kg
				Butyl Benzyl Phthalate	< 0.4	0.4	mg/kg
				Carbazole	< 0.04	0.04	mg/kg
				Chrysene	0.081	0.04	mg/kg
				Dibenzo(a,h)Anthracene	0.016	0.0079	mg/kg
				Dibenzofuran	< 0.04	0.04	mg/kg
				Diethylphthalate	< 0.2	0.2	mg/kg
				Dimethylphthalate	< 0.04	0.04	mg/kg
				Di-N-Butylphthalate	< 0.4	0.4	mg/kg
				Di-N-Octyl Phthalate	< 0.04	0.04	mg/kg
				Fluoranthene	0.16	0.04	mg/kg
				Fluorene	0.026	0.0079	mg/kg
				Hexachlorobenzene	< 0.04	0.04	mg/kg
				Hexachlorobutadiene	< 0.04	0.04	mg/kg
				Hexachlorocyclopentadiene	< 0.04	0.04	mg/kg
				Hexachloroethane	< 0.04	0.04	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.045	0.04	mg/kg
				Isophorone	< 0.04	0.04	mg/kg
				Naphthalene	0.044	0.04	mg/kg
				Nitrobenzene	< 0.04	0.04	mg/kg
				N-Nitrosodimethylamine	< 0.04	0.04	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.04	0.04	mg/kg
				N-Nitrosodiphenylamine	< 0.04	0.04	mg/kg
				Pentachlorophenol	< 0.2	0.2	mg/kg
				Phenanthrene	0.13	0.04	mg/kg
			NWTPH-Dx	Phenol	< 0.04	0.04	mg/kg
		Total Petroleum Hydrocarbons		Pyrene	0.13	0.04	mg/kg
				Pyridine	< 0.4	0.4	mg/kg
				Diesel-Range Organics	<39	39	mg/kg
				Lube Oil	260	60	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 6.7	6.7	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.067	0.067	mg/kg
				m,p-Xylene	< 0.067	0.067	mg/kg
				o-Xylene	< 0.067	0.067	mg/kg
				Toluene	< 0.067	0.067	mg/kg
			SW8260	1,1,1,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
				1,1,1-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.067	0.067	mg/kg
				1,1,2-Trichloroethane	< 0.0011		mg/kg
				1,1-Dichloroethane	< 0.0011		mg/kg
				1,1-Dichloroethene	< 0.0011		mg/kg
				1,1-Dichloropropene	< 0.0011		mg/kg
				1,2,3-Trichlorobenzene	< 0.067	0.067	mg/kg
				1,2,3-Trichloropropane	< 0.067	0.067	mg/kg
				1,2,4-Trichlorobenzene	< 0.067	0.067	mg/kg
				1,2,4-Trimethylbenzene	< 0.067	0.067	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR20	2.5 - 3	Volatile Organic	SW8260	1,2-Dibromo-3-chloropropane	< 0.33	0.33	mg/kg
(continued)	(continued)	Compounds	(continued)	1,2-Dibromoethane	< 0.0011	0.0011	mg/kg
		(continued)		1,2-Dichlorobenzene	< 0.067	0.067	mg/kg
				1,2-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,2-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,3,5-Trimethylbenzene	< 0.067	0.067	mg/kg
				1,3-Dichlorobenzene	< 0.067	0.067	mg/kg
				1,3-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,4-Dichlorobenzene	< 0.067	0.067	mg/kg
				2,2-Dichloropropane	< 0.0011	0.0011	mg/kg
				2-Butanone (MEK)	0.0084	0.0055	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0055	0.0055	mg/kg
				2-Chlorotoluene	< 0.067	0.067	mg/kg
				2-Hexanone	< 0.0055	0.0055	mg/kg
				4-Chlorotoluene	< 0.067	0.067	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0055	0.0055	mg/kg
				Acetone	0.068	0.0055	mg/kg
				Benzene	0.0033	0.0011	mg/kg
				Bromobenzene	< 0.067	0.067	mg/kg
				Bromochloromethane	< 0.0011	0.0011	mg/kg
				Bromodichloromethane	< 0.0011	0.0011	mg/kg
				Bromoform	< 0.0011	0.0011	mg/kg
				Bromomethane	< 0.0011	0.0011	mg/kg
				Carbon Disulfide	< 0.0055	0.0055	mg/kg
				Carbon Tetrachloride	< 0.0011	0.0011	mg/kg
				Chlorobenzene	< 0.0011	0.0011	mg/kg
				Chloroethane	< 0.0055	0.0055	mg/kg
				Chloroform	< 0.0011	0.0011	mg/kg
				Chloromethane	< 0.0055	0.0055	mg/kg
				cis-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				cis-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Dibromochloromethane	< 0.0011	0.0011	mg/kg
				Dibromomethane	< 0.0011	0.0011	mg/kg
				Dichlorodifluoromethane	< 0.0011	0.0011	mg/kg
				Ethylbenzene	< 0.0011	0.0011	mg/kg
				Hexachlorobutadiene	< 0.33	0.33	mg/kg
				Iodomethane	< 0.0055	0.0055	mg/kg
				Isopropylbenzene	< 0.0011	0.0011	mg/kg
				m,p-Xylene	< 0.0022	0.0022	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0011	0.0011	mg/kg
			1	Methylene Chloride	< 0.0055	0.0055	mg/kg
			1	Naphthalene	< 0.067	0.067	mg/kg
			1	N-Butylbenzene	< 0.067	0.067	mg/kg
			1	N-Propylbenzene	< 0.067	0.067	mg/kg
			1	o-Xylene	< 0.0011	0.0011	mg/kg
			1	p-Isopropyltoluene	< 0.067	0.067	mg/kg
			1	sec-Butylbenzene	< 0.067	0.067	mg/kg
			1	Styrene	< 0.007	0.007	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Ouantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR20	2.5 - 3	Volatile Organic	SW8260	tert-Butylbenzene	< 0.067	0.067	mg/kg
(continued)	(continued)	Compounds	(continued)	Tetrachloroethene (PCE)	< 0.0011	0.0011	mg/kg
(** * ****)	((continued)	(Toluene	< 0.0055	0.0055	mg/kg
		, , ,		Trans-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				Trans-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Trichloroethene (TCE)	< 0.0011	0.0011	mg/kg
				Trichlorofluoromethane	< 0.0011	0.0011	mg/kg
				Vinyl Acetate	< 0.0055	0.0055	mg/kg
				Vinyl Chloride	< 0.0011	0.0011	mg/kg
	5 - 5.5	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.042	0.042	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.042	0.042	mg/kg
				1,2-Dinitrobenzene	< 0.042	0.042	mg/kg
				1,2-Diphenylhydrazine	<0.042	0.042	mg/kg
				1,3-Dichlorobenzene 1,3-Dinitrobenzene	<0.042 <0.042	0.042 0.042	mg/kg
				1,4-Dichlorobenzene	<0.042	0.042	mg/kg mg/kg
				1,4-Dinitrobenzene	<0.042	0.042	mg/kg
				1-Methylnaphthalene	<0.042	0.042	mg/kg
				2,3,4,6-Tetrachlorophenol	<0.042	0.042	mg/kg mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.042	0.042	mg/kg
				2,3-Dichloroaniline	< 0.042	0.042	mg/kg
				2,4,5-Trichlorophenol	< 0.042	0.042	mg/kg
				2,4,6-Trichlorophenol	< 0.042	0.042	mg/kg
				2,4-Dichlorophenol	< 0.042	0.042	mg/kg
				2,4-Dimethylphenol	< 0.42	0.42	mg/kg
				2,4-Dinitrophenol	< 0.21	0.21	mg/kg
				2,4-Dinitrotoluene	< 0.042	0.042	mg/kg
				2,6-Dinitrotoluene	< 0.042	0.042	mg/kg
				2-Chloronaphthalene	< 0.042	0.042	mg/kg
				2-Chlorophenol	< 0.042	0.042	mg/kg
				2-Methylnaphthalene	< 0.0083	0.0083	mg/kg
				2-Methylphenol (o-Cresol) 2-Nitroaniline	<0.042 <0.042	0.042	mg/kg
				2-Nitrophenol	<0.042	0.042 0.042	mg/kg mg/kg
				3.3'-Dichlorobenzidine	<0.42	0.042	mg/kg
				3,4-Methylphenol(m,p-Cresol)	<0.42	0.42	mg/kg mg/kg
				3-Nitroaniline	<0.042	0.042	mg/kg
				4,6-Dinitro-2-Methylphenol	<0.21	0.042	mg/kg
				4-Bromophenyl Phenyl Ether	<0.042	0.042	mg/kg
				4-Chloro-3-Methylphenol	< 0.042	0.042	mg/kg
				4-Chloroaniline	< 0.042	0.042	mg/kg
				4-Chlorophenyl Phenylether	< 0.042	0.042	mg/kg
				4-Nitroaniline	< 0.042	0.042	mg/kg
				4-Nitrophenol	< 0.042	0.042	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR20	5 - 5.5	Semi-Volatile Organic	SW8270	Acenaphthene	< 0.0083	0.0083	mg/kg
(continued)	(continued)	Compounds	(continued)	Acenaphthylene	< 0.0083	0.0083	mg/kg
		(continued)		Aniline	< 0.042	0.042	mg/kg
				Anthracene	0.013	0.0083	mg/kg
				Benzidine	< 0.42	0.42	mg/kg
				Benzo(a)Anthracene	0.032	0.0083	mg/kg
				Benzo(a)Pyrene	0.035	0.0083	mg/kg
				Benzo(b)Fluoranthene	0.033	0.0083	mg/kg
				Benzo(g,h,i)Perylene	0.034	0.0083	mg/kg
				Benzo(j,k)Fluoranthene	0.024	0.0083	mg/kg
				Benzyl alcohol	< 0.042	0.042	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.042	0.042	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.042	0.042	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.042	0.042	mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.057	0.042	mg/kg
				Bis-2-Ethylhexyladipate	< 0.042	0.042	mg/kg
				Butyl Benzyl Phthalate	< 0.42	0.42	mg/kg
				Carbazole	< 0.042	0.042	mg/kg
				Chrysene	0.05	0.042	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0083	0.0083	mg/kg
				Dibenzofuran	< 0.042	0.042	mg/kg
				Diethylphthalate	< 0.21	0.21	mg/kg
				Dimethylphthalate	< 0.042	0.042	mg/kg
				Di-N-Butylphthalate	< 0.42	0.42	mg/kg
				Di-N-Octyl Phthalate	< 0.042	0.042	mg/kg
				Fluoranthene	0.084	0.042	mg/kg
				Fluorene	< 0.0083	0.0083	mg/kg
				Hexachlorobenzene	< 0.042	0.042	mg/kg
				Hexachlorobutadiene	< 0.042	0.042	mg/kg
				Hexachlorocyclopentadiene	< 0.042	0.042	mg/kg
				Hexachloroethane	< 0.042	0.042	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.023	0.0083	mg/kg
				Isophorone	< 0.042	0.042	mg/kg
				Naphthalene	< 0.0083	0.0083	mg/kg
				Nitrobenzene	< 0.042	0.042	mg/kg
				N-Nitrosodimethylamine	< 0.042	0.042	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.042	0.042	mg/kg
				N-Nitrosodiphenylamine	< 0.042	0.042	mg/kg
				Pentachlorophenol	< 0.21	0.21	mg/kg
				Phenanthrene	0.047	0.042	mg/kg
				Phenol	< 0.042	0.042	mg/kg
				Pyrene	0.076	0.042	mg/kg
		m . 1 n . 1		Pyridine	< 0.42	0.42	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<52	52	mg/kg
		Hydrocarbons	<u> </u>	Lube Oil	310	63	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR21	2.5 - 3	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.59	0.59	mg/kg
				Chromium	37	0.59	mg/kg
				Lead	180	5.9	mg/kg
			SW7471A	Mercury	< 0.3	0.3	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12	12	ug/kg
				4,4'-DDE	12	12	ug/kg
				4,4'-DDT	33	12	ug/kg
				Aldrin	< 5.9	5.9	ug/kg
				Alpha-Bhc	< 5.9	5.9	ug/kg
				Alpha-Chlordane	<12	12	ug/kg
				Beta-Bhc	< 5.9	5.9	ug/kg
				Delta-Bhc	< 5.9	5.9	ug/kg
				Dieldrin	14	12	ug/kg
				Endosulfan I	< 5.9	5.9	ug/kg
				Endosulfan II	<12	12	ug/kg
				Endosulfan Sulfate	<12	12	ug/kg
				Endrin	<12	12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone	<12	12	ug/kg
				Gamma-Bhc (Lindane)	< 5.9	5.9	ug/kg
				Gamma-Chlordane	<12	12	ug/kg
				Heptachlor	< 5.9	5.9	ug/kg
				Heptachlor Epoxide	< 5.9	5.9	ug/kg
				Methoxychlor	<12	12	ug/kg
		Polychlorinated Biphenyls	SW8082	Toxaphene Aroclor 1016	<59 <0.059	59 0.059	ug/kg
		rolychlormated biphenyis	3 W 6062	Aroclor 1221	<0.059	0.059	mg/kg
				Aroclor 1221 Aroclor 1232	<0.059	0.059	mg/kg mg/kg
				Aroclor 1232 Aroclor 1242	<0.059	0.059	mg/kg
				Aroclor 1242 Aroclor 1248	<0.059	0.059	mg/kg
				Aroclor 1254	< 0.059	0.059	mg/kg mg/kg
				Aroclor 1260	0.18	0.059	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.04	0.04	mg/kg
		Compounds	5110270	1,2-Dichlorobenzene	< 0.04	0.04	mg/kg
		1		1,2-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,2-Diphenylhydrazine	< 0.04	0.04	mg/kg
				1,3-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,3-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,4-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,4-Dinitrobenzene	< 0.04	0.04	mg/kg
				1-Methylnaphthalene	0.012	0.0079	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3-Dichloroaniline	< 0.04	0.04	mg/kg
				2,4,5-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4,6-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dimethylphenol	< 0.4	0.4	mg/kg
				2,4-Dinitrophenol	< 0.2	0.2	mg/kg
				2,4-Dinitrotoluene	< 0.04	0.04	mg/kg
				2,6-Dinitrotoluene	< 0.04	0.04	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

Location (feet bgs)							Practical	
FAR21		Depth Range		Analytical			Quantitatio	Unit of
Continued Compounds Continued 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol (O-Cresol) 2-0.04 0.04 m 2-Mitrophenol 2-Mitrophenol 2-Methylphenol (O-Cresol) 2-0.04 0.04 m 2-Mitrophenol 2-0.04 0.04 m 2-Mitrophenol 3.3*Dichlorobenzidine 2-0.04 0.04 m 3.4*Methylphenol(m,p-Cresol) 2-0.04 0.04 m 3.4*Methylphenol(m,p-Cresol) 2-0.04 0.04 m 3.4*Methylphenol 2-0.04 0.04 m 4-Ehorophenyl Phenyl Ether 4-Chloro-3-Methylphenol 2-0.2 0.2 m 4-Chlorophenyl Phenyl Ether 4-Nitrophenol 4-Nitro	Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
(continued) 2-Methylphenol (o-Cresol) 0.0079 m	FAR21	2.5 - 3	Semi-Volatile Organic	SW8270	2-Chloronaphthalene	< 0.04	0.04	mg/kg
2-Methylphenol (o-Cresol)	(continued)	(continued)	Compounds	(continued)	2-Chlorophenol	< 0.04	0.04	mg/kg
2-Nitrophinol			(continued)		2-Methylnaphthalene	0.02	0.0079	mg/kg
2-Nitrophenol 3,3'-Diehlorobenzidine 40,4 0,4 m 3,4'-Methylphenol(mp-Cresol) 4,04 0,04 m 3,4'-Methylphenol(mp-Cresol) 4,0-Dintro-2-Methylphenol 4,0-Dintro-2-Methylphenol 4,0-Dintro-3-Methylphenol 4,					2-Methylphenol (o-Cresol)	< 0.04	0.04	mg/kg
3,3*-Dichlorobenzidine					2-Nitroaniline	< 0.04	0.04	mg/kg
3,4-Methylphenol(m,p-Cresol)					2-Nitrophenol	< 0.04	0.04	mg/kg
3-Nitroaniline					3,3'-Dichlorobenzidine	< 0.4	0.4	mg/kg
3-Nitroaniline					3,4-Methylphenol(m,p-Cresol)	< 0.04	0.04	mg/kg
4.6-Dinitro-2-Methylphenol					3-Nitroaniline	< 0.04	0.04	mg/kg
4-Bromophenyl Phenyl Ether					4,6-Dinitro-2-Methylphenol	< 0.2	0.2	mg/kg
4-Chloro-3-Methylphenol						< 0.04		mg/kg
A-Chloroaniline						< 0.04		mg/kg
4-Chlorophenyl Phenylether						< 0.04		mg/kg
4-Nitrophenol						< 0.04		mg/kg
4-Nitrophenol <0.04 0.04 maximum Accamphthene 0.013 0.0079 maximum Accamphthylene 0.013 0.0079 maximum Anthracene 0.027 0.0079 maximum Anthracene 0.027 0.0079 maximum Anthracene 0.027 0.0079 maximum Anthracene 0.041 0.0079 maximum Anthracene 0.041 0.0079 maximum Benzo(a)Anthracene 0.041 0.0079 maximum Benzo(a)Anthracene 0.045 0.044 maximum Anthracene 0.05 0.044 maximum Anthracene 0.05 0.044 maximum Anthracene 0.05 0.044 maximum Anthracene 0.040 0.044					1 2	< 0.04		mg/kg
Acenaphthene						< 0.04		mg/kg
Acenaphthylene					-	0.018		mg/kg
Aniline					_			mg/kg
Anthracene Benzidine								mg/kg
Benzidine					-			mg/kg
Benzo(a)Anthracene Benzo(a)Pyrene 0.049 0.0079 m Benzo(b)Fluoranthene 0.05 0.04 m Benzo(g,h,i)Perylene 0.046 0.04 m Benzo(g,h,i)Perylene 0.032 0.0079 m Benzo(g,h,i)Perylene 0.032 0.0079 m Benzyl alcohol <0.04 0.04 m Bis(2-Chloroethoxy) Methane <0.04 0.04 m Bis(2-Chloroethyl) Ether <0.04 0.04 m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m Bis-2-Ethylhexyladipate <0.04 0.04 m Butyl Benzyl Phthalate <0.04 0.04 m Carbazole <0.04 0.04 m Chrysene 0.047 0.04 m Dibenzo(a,h)Anthracene 0.013 0.0079 m Dibenzofuran <0.04 0.04 m Diethylphthalate <0.04 0.04 m Di-N-Butylphthalate <0.04 0.04 m Di-N-Butylphthalate <0.04 0.04 m Di-N-Octyl Phthalate <0.04 0.04 m Fluorene 0.01 0.04 m Fluorene 0.02 0.0079 m Hexachlorobenzene <0.04 0.04 m Hexachlorobutadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m								mg/kg
Benzo(a)Pyrene 0.049 0.0079 m					Benzo(a)Anthracene			mg/kg
Benzo(b)Fluoranthene 0.05 0.04 m Benzo(g,h,i)Perylene 0.046 0.044 m Benzo(j,h,i)Fluoranthene 0.032 0.0079 Benzyl alcohol 0.04 0.04 m Bis(2-Chloroethoxy) Methane 0.04 0.04 m Bis(2-Chloroethyl) Ether 0.04 0.04 m Bis(2-Chloroethyl) Ether 0.04 0.04 m Bis(2-Ethylhexyl) Phthalate 0.04 0.04 m Bis(2-Ethylhexyl) Phthalate 0.04 0.04 m Bis(2-Ethylhexyl) Phthalate 0.04 0.04 m Bis(2-Ethylhexyladipate 0.04 0.04 m Dibenzole 0.04 0.04 m Dibenzole 0.04 0.04 m Dibenzofuran 0.05 0.0679 m Dibenzofuran 0.06 0.04 0.04 m Di-N-Butylphthalate 0.1 0.04 m Di-N-Butylphthalate 0.1 0.04 m Fluoranthene 0.1 0.04 m Fluorene 0.02 0.0079 m Hexachlorobenzene 0.04 0.04 m Hexachlorobenzene 0.04 0.04 m Hexachlorocyclopentadiene 0.04 0.04 m Hexachlorocyclopentadiene 0.04 0.04 m								mg/kg
Benzo(g,h,i)Perylene 0.046 0.04 m Benzo(j,k)Fluoranthene 0.032 0.0079 m m Benzyl alcohol <0.004 0.04 m Bis(2-Chlorethoxy) Methane <0.04 0.04 m Bis(2-Chlorethyl) Ether <0.04 0.04 m m Bis(2-Chlorethyl) Ether <0.04 0.04 m m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m m m m m m m m m					` ' '			mg/kg
Benzo(j,k)Fluoranthene 0.032 0.0079 m								mg/kg
Benzyl alcohol \$\circ{0.04}{0.04} \$\circ{0.04}{0.04} \$\text{mm}\$ Bis(2-Chloroethoxy) Methane \$\circ{0.04}{0.04} \$\circ{0.04}{0.04} \$\text{mm}\$ m Bis(2-Chloroethyl) Ether \$\circ{0.04}{0.04} \$\circ{0.04}{0.04} m Bis(2-Chloroisopropyl)ether \$\circ{0.04}{0.04} \$\circ{0.04}{0.04} m Bis(2-Ethylhexyl) Phthalate \$\circ{0.04}{0.04} 0.04 m Bis(2-Ethylhexyladipate \$\circ{0.04}{0.04} 0.04 m Butyl Benzyl Phthalate \$\circ{0.04}{0.04} 0.04 m Chrysene \$\circ{0.04}{0.04} 0.04 m Dibenzo(a,h)Anthracene \$\circ{0.013}{0.0079} m Dibenzofuran \$\circ{0.04}{0.04} 0.04 m Diethylphthalate \$\circ{0.2}{0.2} 0.2 m Dibenzofuran \$\circ{0.04}{0.04} 0.04 m Di-N-Butylphthalate \$\circ{0.04}{0.04} 0.04 m Di-N-Octyl Phthalate \$\circ{0.04}{0.04} 0.04								mg/kg
Bis(2-Chloroethoxy) Methane <0.04 0.04 m Bis(2-Chloroethyl) Ether <0.04 0.04 m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m Bis-2-Ethylhexyladipate <0.04 0.04 m Butyl Benzyl Phthalate <0.04 0.04 m Carbazole <0.04 0.04 m Chrysene 0.047 0.04 m Dibenzo(a,h)Anthracene 0.013 0.0079 m Dibenzofuran <0.04 0.04 m Diethylphthalate <0.2 0.2 m Diethylphthalate <0.04 0.04 m Di-N-Octyl Phthalate <0.04 0.04 m Di-N-Octyl Phthalate <0.04 0.04 m Fluoranthene 0.1 0.04 m Fluorene 0.02 0.0079 m Hexachlorobenzene <0.04 0.04 m Hexachlorobenzene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m								mg/kg
Bis(2-Chloroethyl) Ether						< 0.04		mg/kg
Bis(2-Chloroisopropyl)ether <0.04 0.04 m Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m Bis-2-Ethylhexyladipate <0.04 0.04 m Butyl Benzyl Phthalate <0.4 0.4 m Carbazole <0.04 0.04 m Chrysene 0.047 0.04 m Dibenzo(a,h)Anthracene 0.013 0.0079 m Dibenzofuran <0.04 0.04 m Dietylphthalate <0.2 0.2 m Dietylphthalate <0.04 0.04 m Di-N-Butylphthalate <0.04 0.04 m Di-N-Butylphthalate <0.04 0.04 m Di-N-Octyl Phthalate <0.04 0.04 m Fluoranthene 0.1 0.04 m Fluorene 0.02 0.0079 m Hexachlorobenzene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m					* * * * * * * * * * * * * * * * * * * *			mg/kg
Bis(2-Ethylhexyl) Phthalate <0.04 0.04 m Bis-2-Ethylhexyladipate <0.04 0.04 m Butyl Benzyl Phthalate <0.4 0.4 m Carbazole <0.04 0.04 m Chrysene 0.047 0.04 m Dibenzo(a,h)Anthracene 0.013 0.0079 m Dibenzofuran <0.04 0.04 m Diethylphthalate <0.2 0.2 m Dimethylphthalate <0.04 0.04 m Di-N-Butylphthalate <0.04 0.04 m Di-N-Octyl Phthalate <0.04 0.04 m Di-N-Octyl Phthalate <0.04 0.04 m Fluoranthene 0.1 0.04 m Fluorene 0.02 0.0079 m Hexachlorobenzene <0.04 0.04 m Hexachlorobenzene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m								mg/kg
Bis-2-Ethylhexyladipate								mg/kg
Butyl Benzyl Phthalate <0.4 0.4 m Carbazole <0.004 0.04 m m								mg/kg
Carbazole								mg/kg
Chrysene 0.047 0.04 m Dibenzo(a,h)Anthracene 0.013 0.0079 m Dibenzofuran <0.04 0.04 m Diethylphthalate <0.2 0.2 m Diethylphthalate <0.04 0.04 Diethylphthalate <0.04					-			mg/kg
Dibenzo(a,h)Anthracene								mg/kg
Dibenzofuran <0.04 0.04 m								mg/kg
Diethylphthalate					* * *			mg/kg
Dimethylphthalate								mg/kg
Di-N-Butylphthalate								mg/kg
Di-N-Octyl Phthalate					* 1			mg/kg
Fluoranthene 0.1 0.04 m Fluorene 0.02 0.0079 m m Hexachlorobenzene <0.04 0.04 m Hexachlorobutadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachloroethane <0.04 0.04 m Hexachloroethane <0.04 0.04 m M Hexachloroethane <0.04 0.04 0.04 m M Hexachloroethane <0.04 0.								mg/kg
Fluorene 0.02 0.0079 m Hexachlorobenzene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachlorocethane <0.04 0.04 m					_			mg/kg
Hexachlorobenzene								mg/kg
Hexachlorobutadiene <0.04 0.04 m Hexachlorocyclopentadiene <0.04 0.04 m Hexachloroethane <0.04 0.04 m								mg/kg
Hexachlorocyclopentadiene <0.04 0.04 m Hexachloroethane <0.04 0.04 m								mg/kg
Hexachloroethane <0.04 0.04 m								
					J 1			mg/kg mg/kg
					Indeno(1,2,3-cd)Pyrene	0.04	0.04 0.0079	
					-			mg/kg mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitatio	
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR21	2.5 - 3	Semi-Volatile Organic	SW8270	Naphthalene	0.037	0.0079	mg/kg
(continued)	(continued)	Compounds	(continued)	Nitrobenzene	< 0.04	0.04	mg/kg
		(continued)		N-Nitrosodimethylamine	< 0.04	0.04	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.04	0.04	mg/kg
				N-Nitrosodiphenylamine	< 0.04	0.04	mg/kg
				Pentachlorophenol	< 0.2	0.2	mg/kg
				Phenanthrene	0.077	0.04	mg/kg
				Phenol	< 0.04	0.04	mg/kg
				Pyrene	0.082	0.04	mg/kg
				Pyridine	< 0.4	0.4	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<51	51	mg/kg
		Hydrocarbons		Lube Oil	240	60	mg/kg
		****	NWTPH-GX	Gasoline-Range Organics	<7.1	7.1	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.071	0.071	mg/kg
				m,p-Xylene	< 0.071	0.071	mg/kg
				o-Xylene	< 0.071	0.071	mg/kg
			GYYYO CO	Toluene	< 0.071	0.071	mg/kg
			SW8260	1,1,1,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
				1,1,1-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.071	0.071	mg/kg
				1,1,2-Trichloroethane	< 0.0011		mg/kg
				1,1-Dichloroethane	< 0.0011		mg/kg
				1,1-Dichloroethene	< 0.0011		mg/kg
				1,1-Dichloropropene	< 0.0011	0.0011	mg/kg
				1,2,3-Trichlorobenzene	< 0.071	0.071	mg/kg
				1,2,3-Trichloropropane	< 0.071	0.071	mg/kg
				1,2,4-Trichlorobenzene	< 0.071	0.071	mg/kg
				1,2,4-Trimethylbenzene	< 0.071	0.071	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.35	0.35	mg/kg
				1,2-Dibromoethane	< 0.0011	0.0011	mg/kg
				1,2-Dichlorobenzene	<0.071	0.071	mg/kg
				1,2-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,2-Dichloropropane	<0.0011 <0.071		mg/kg
				1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	<0.071	0.071 0.071	mg/kg
				1,3-Dichloropropane		0.071	mg/kg
				1,4-Dichlorobenzene	<0.0011 <0.071	0.0011	mg/kg
				2,2-Dichloropropane	< 0.0011		mg/kg
				2-Butanone (MEK)	< 0.0011		mg/kg
				2-Butanone (MEK) 2-Chloroethyl Vinyl Ether	< 0.0057		mg/kg mg/kg
				2-Chlorotoluene	< 0.0037	0.0037	mg/kg mg/kg
				2-Chlorotoidene 2-Hexanone	< 0.0057		mg/kg mg/kg
				4-Chlorotoluene	< 0.0037		
					<0.0071	0.071 0.0057	mg/kg
		l	<u> </u>	4-Methyl-2-Pentanone (MIBK)	<0.005/	0.0057	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitatio	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR21	2.5 - 3	Volatile Organic	SW8260	Acetone	0.042	0.0057	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzene	0.01	0.0011	mg/kg
(**************************************	(**************************************	(continued)	(** * ****)	Bromobenzene	< 0.071	0.071	mg/kg
		,		Bromochloromethane	< 0.0011	0.0011	mg/kg
				Bromodichloromethane	< 0.0011		mg/kg
				Bromoform	< 0.0011	0.0011	mg/kg
				Bromomethane	< 0.0011	0.0011	mg/kg
				Carbon Disulfide	< 0.0057	0.0057	mg/kg
				Carbon Tetrachloride	< 0.0011	0.0011	mg/kg
				Chlorobenzene	< 0.0011	0.0011	mg/kg
				Chloroethane	< 0.0057	0.0057	mg/kg
				Chloroform	< 0.0011	0.0011	mg/kg
				Chloromethane	< 0.0057	0.0057	mg/kg
				cis-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				cis-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Dibromochloromethane	< 0.0011	0.0011	mg/kg
				Dibromomethane	< 0.0011	0.0011	mg/kg
				Dichlorodifluoromethane	< 0.0011	0.0011	mg/kg
				Ethylbenzene	< 0.0011	0.0011	mg/kg
				Hexachlorobutadiene	< 0.35	0.35	mg/kg
				Iodomethane	< 0.0057	0.0057	mg/kg
				Isopropylbenzene	< 0.0011	0.0011	mg/kg
				m,p-Xylene	< 0.0023	0.0023	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0011	0.0011	mg/kg
				Methylene Chloride	< 0.0057	0.0057	mg/kg
				Naphthalene	< 0.071	0.071	mg/kg
				N-Butylbenzene	< 0.071	0.071	mg/kg
				N-Propylbenzene	< 0.071	0.071	mg/kg
				o-Xylene	< 0.0011		mg/kg
				p-Isopropyltoluene	< 0.071	0.071	mg/kg
				sec-Butylbenzene	< 0.071	0.071	mg/kg
				Styrene	< 0.0011		mg/kg
				tert-Butylbenzene	< 0.071	0.071	mg/kg
				Tetrachloroethene (PCE)	< 0.0011	0.0011	mg/kg
				Toluene	< 0.0057		mg/kg
				Trans-1,2-Dichloroethene	< 0.0011		mg/kg
				Trans-1,3-Dichloropropene	< 0.0011		mg/kg
				Trichloroethene (TCE)	< 0.0011		mg/kg
				Trichlorofluoromethane	< 0.0011		mg/kg
				Vinyl Acetate	< 0.0057		mg/kg
				Vinyl Chloride	< 0.0011	0.0011	mg/kg

Analytical Results for Tested Constituents in Soil

Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment

Location Depth Range	
Location (feet bgs) Analyte Type Method Analyte Result n Limit	
FAR21	Measure
Compounds 1,2-Dichlorobenzene	mg/kg
1,2-Dinitrobenzene	mg/kg
1,2-Diphenylhydrazine	mg/kg
1,3-Dichlorobenzene	mg/kg
1,3-Dinitrobenzene	mg/kg
1,4-Dichlorobenzene	mg/kg
1,4-Dinitrobenzene	mg/kg
1-Methylnaphthalene	mg/kg
2,3,5,6-Tetrachlorophenol <0,041 0,041 2,3-Dichloroaniline <0,041 0,041 0,041 2,4,5-Trichlorophenol <0,041 0,041 0,441 2,4,5-Trichlorophenol <0,041 0,041 2,4-Dichlorophenol <0,041 0,041 2,4-Dimethylphenol <0,041 0,441 0,441 2,4-Dimethylphenol <0,041 0,041 2,4-Dimitrophenol <0,041 0,041 2,4-Dimitrotoluene <0,041 0,041 2,4-Dimitrophenol <0,041 0,041 2,4-Dimitrophenol <0,041 0,041 3,3-Dichlorobenzidine <0,041 0,041 3,3-Dichlorobenzidine <0,041 0,041 3,3-Dichlorobenzidine <0,041 0,041 4,6-Dimitro-2-Methylphenol <0,041 0,041 4,6-Dimitro-2-Methylphenol <0,041 0,041 4,6-Dimitro-3-Methylphenol <0,041 0,041 4,6-Dimitro-3-Methylphenol <0,041 0,041 4,0-Dimitrophenol <0,041 0,041 4,0-Dimitrophen	mg/kg
2,3-Dichloroaniline	mg/kg
2,4,5-Trichlorophenol	mg/kg
2,4,6-Trichlorophenol	mg/kg
2,4-Dichlorophenol <0.041 0.041 2,4-Dimethylphenol <0.41 0.41 2,4-Dimethylphenol <0.21 0.21 2,4-Dimitrotoluene <0.041 0.041 2,4-Dimitrotoluene <0.041 0.041 2,6-Dimitrotoluene <0.041 0.041 2,6-Dimitrotoluene <0.041 0.041 2,6-Dimitrotoluene <0.041 0.041 2,6-Dimitrotoluene <0.0083 0.0083 0.0083 2,6-Dimitrotoluene <0.0083 0.0083 2,6-Dimitrotoluene <0.041 0.041 0.041 2,7-Dimitrotoluene <0.041 0.041 0.041 2,7-Dimitrotoluene <0.041 0.041 0.041 2,7-Dimitrotoluene <0.041 0.041	mg/kg
2,4-Dimethylphenol <0.41 0.41 2,4-Dimitrophenol <0.21 0.21 0.21 0.24 0.041	mg/kg
2,4-Dinitrophenol <0.21 0.21 2,4-Dinitrotoluene <0.041 0.041 2,6-Dinitrotoluene <0.041 0.041 0.041 2-Chloronaphthalene <0.041 0.041 0.041 2-Chlorophenol <0.041 0.041 0.041 2-Methylnaphthalene <0.0083 0.0083 2-Methylphenol (o-Cresol) <0.041 0.041 2-Nitroaniline <0.041 0.041 2-Nitroaniline <0.041 0.041 0.041 2-Nitroaniline <0.041 0.041 0.041 3,3'-Dichlorobenzidine <0.041 0.041 3,4-Methylphenol (m.p-Cresol) <0.041 0.041 3-Nitroaniline <0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 0.041 4-Nitrophenol <0.041 0.0	mg/kg
2,4-Dinitrotoluene	mg/kg
2,6-Dinitrotoluene	mg/kg
2-Chloronaphthalene <0.041 0.041 2-Chlorophenol <0.041 0.041 0.041 2-Methylnaphthalene <0.0083 0.0083 2-Methylphenol (o-Cresol) <0.041 0.041 2-Nitroaniline <0.041 0.041 2-Nitrophenol <0.041 0.041 0.041 3,3'-Dichlorobenzidine <0.041 0.041 3,4-Methylphenol(m,p-Cresol) <0.041 0.041 3-Nitroaniline <0.041 0.041 3-Nitroaniline <0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.0083 0.0083 Aniline <0.0083 0.0083 Aniline <0.0083 0.0083 Aniline <0.0083 0.0083 Aniline <0.0083 0	mg/kg
2-Chlorophenol <0.041 0.041 2-Methylnaphthalene <0.0083 0.0083 0.0083 2-Methylnaphthalene <0.0041 0.041 0.041 2-Nitroaniline <0.041 0.041 0.041 3,3*-Dichlorobenzidine <0.041 0.041 0.041 3,3*-Dichlorobenzidine <0.041 0.041 0.041 3,4*-Methylphenol(m,p-Cresol) <0.041 0.041 0.041 3-Nitroaniline <0.041 0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitroaniline <0.0083 0.0083 Acenaphthene <0.0083 0.0083 Acenaphthylene <0.0041 0.04	mg/kg
2-Methylnaphthalene <0.0083 0.0083 2-Methylphenol (o-Cresol) <0.041 0.041 0.041 2-Nitroaniline <0.041 0.041 3,3°-Dichlorobenzidine <0.041 0.041 3,4°-Methylphenol(m,p-Cresol) <0.041 0.041 3,4°-Methylphenol(m,p-Cresol) <0.041 0.041 3,4°-Methylphenol(m,p-Cresol) <0.041 0.041 4,6°-Dinitro-2-Methylphenol <0.021 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloroa-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.0083 0.0083 4-Nitrophenol <0.0084 0.041 0.04	mg/kg
2-Methylphenol (o-Cresol) <0.041 0.041 2-Nitroaniline <0.041 0.041 0.041 2-Nitrophenol <0.041 0.041 0.041 3,3'-Dichlorobenzidine <0.41 0.41 0.41 3,4-Methylphenol(m,p-Cresol) <0.041 0.041 0.041 3-Nitroaniline <0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 0.041 4-Nitrophenol <0.041 0.041 0.041 4-Nitrophenol <0.0083 0.0083	mg/kg
2-Nitroaniline <0.041 0.041 2-Nitrophenol <0.041 0.041 3,3'-Dichlorobenzidine <0.41 0.41 3,4-Methylphenol(m,p-Cresol) <0.041 0.041 0.041 3-Nitroaniline <0.041 0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 0.041 4-Nitrophenol <0.041 0.	mg/kg
2-Nitrophenol <0.041 0.041 3,3`-Dichlorobenzidine <0.41 0.41 3,4-Methylphenol(m,p-Cresol) <0.041 0.041 3-Nitroaniline <0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 0.041 4-Nitrophenol <0.0083 0.0083 4-Chlorophenyl Phenylether <0.0083 0.0083 4-Chlorophenylether <0.041 0.041 4-Chlorophenylether <0.041 0.041 4-Chlorophenol <0.041 0.041 4-Chlorophenol <0.0083 0.0083 4-Chlorophenol <0.0083 0.0083 4-Chlorophenol <0.041 0.041 4-Chlorophenol <0.041 0.041 4-Chlorophenol <0.041 0.041 4-Chlorophenol <0.041 0.041 4-Chlorophenol <0.0083 0.0083 4-Chlorophenol <0.0083 4-Chlorophenol <0.0083 4-Chlorophenol <0.0083 4-Chloroph	mg/kg
3,3°-Dichlorobenzidine <0.41 0.41 3,4-Methylphenol(m,p-Cresol) <0.041 0.041 0.041 3-Nitroaniline <0.041 0.041 4,6-Dinitro-2-Methylphenol <0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Chlorophenylether <0.0083 0.00	mg/kg
3,4-Methylphenol(m,p-Cresol)	mg/kg
3-Nitroaniline	mg/kg
4,6-Dinitro-2-Methylphenol <0.21 0.21 0.21 4-Bromophenyl Phenyl Ether <0.041 0.041 4-Chloro-3-Methylphenol <0.041 0.041 4-Chloroaniline <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Chlorophenyl Phenylether <0.041 0.041 4-Nitroaniline <0.041 0.041 4-Nitrophenol <0.041 0.041 4-Nitrophenol <0.0083 0.0083 4-Chlorophenyl Phenylether <0.0083 0.0083 4-Nitrophenol <0.0084 4-Nitrophenol <0.0084 4-Nitrophenol <0.0084	mg/kg
4-Bromophenyl Phenyl Ether 4-Chloro-3-Methylphenol 4-Chloroaniline 4-Chlorophenyl Phenylether 4-Chlorophenyl Phenylether 4-Chlorophenyl Phenylether 4-Nitroaniline 4-Nitrophenol 4-Nitro	mg/kg
4-Chloro-3-Methylphenol	mg/kg
4-Chloroaniline	mg/kg
4-Chlorophenyl Phenylether	mg/kg
4-Nitroaniline	mg/kg
4-Nitrophenol	mg/kg
Acenaphthene <0.0083	mg/kg
Acenaphthylene	mg/kg
Aniline	mg/kg
Anthracene	mg/kg
Benzidine <0.41 0.41	mg/kg
Benzo(a)Anthracene	mg/kg
Benzo(a)Pyrene	mg/kg mg/kg
Benzo(b)Fluoranthene 0.025 0.0083	
	mg/kg mg/kg
Benzo(g,h,i)Perylene	mg/kg
Benzo(j,k)Fluoranthene 0.017 0.0083	mg/kg
Benzyl alcohol <0.041 0.041	mg/kg
Bis(2-Chloroethoxy) Methane <0.041 0.041 0.041	mg/kg
Bis(2-Chloroethyl) Ether <0.041 0.041 0.041	mg/kg
Bis(2-Chloroisopropyl)ether <0.041 0.041 0.041	mg/kg
Bis(2-Ethylhexyl) Phthalate <0.041 0.041 0.041	mg/kg
Bis-2-Ethylhexyladipate <0.041 0.041 0.041	mg/kg
Butyl Benzyl Phthalate <0.41 0.41 0.41	mg/kg

Analytical Results for Tested Constituents in Soil

Area of Potential Concern 6

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington Farallon PN: 1005-001

						Practical	
	Depth Range		Analytical			Quantitatio	
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR21	6 - 6.5	Semi-Volatile Organic	SW8270	Carbazole	< 0.041	0.041	mg/kg
(continued)	(continued)	Compounds	(continued)	Chrysene	0.035	0.0083	mg/kg
		(continued)		Dibenzo(a,h)Anthracene	< 0.0083	0.0083	mg/kg
				Dibenzofuran	< 0.041	0.041	mg/kg
				Diethylphthalate	< 0.21	0.21	mg/kg
				Dimethylphthalate	< 0.041	0.041	mg/kg
				Di-N-Butylphthalate	< 0.41	0.41	mg/kg
				Di-N-Octyl Phthalate	< 0.041	0.041	mg/kg
				Fluoranthene	0.044	0.041	mg/kg
				Fluorene	< 0.0083	0.0083	mg/kg
				Hexachlorobenzene	< 0.041	0.041	mg/kg
				Hexachlorobutadiene	< 0.041	0.041	mg/kg
				Hexachlorocyclopentadiene	< 0.041	0.041	mg/kg
				Hexachloroethane	< 0.041	0.041	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.012	0.0083	mg/kg
				Isophorone	< 0.041	0.041	mg/kg
				Naphthalene	< 0.0083	0.0083	mg/kg
				Nitrobenzene	< 0.041	0.041	mg/kg
				N-Nitrosodimethylamine	< 0.041	0.041	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.041	0.041	mg/kg
				N-Nitrosodiphenylamine	< 0.041	0.041	mg/kg
				Pentachlorophenol	< 0.21	0.21	mg/kg
				Phenanthrene	0.022	0.0083	mg/kg
				Phenol	< 0.041	0.041	mg/kg
				Pyrene	0.041	0.041	mg/kg
				Pyridine	< 0.41	0.41	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<37	37	mg/kg
		Hydrocarbons		Lube Oil	340	62	mg/kg

NOTES:

Results in **bold** denote analyte was detected. See Table 7A.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

bgs = below ground surface

 $\mu g/kg = micrograms per kilogram$

mg/kg = milligrams per kilogram

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR10	2.5 - 3	Metals	SW6010B	Arsenic	<12	12	mg/kg
TAKIO	2.3 - 3	Wictars	5 W 00 10 B	Cadmium	< 0.6	0.6	mg/kg
				Chromium	45	0.6	mg/kg
				Lead	260	6	mg/kg mg/kg
			SW7471A	Mercury	<0.3	0.3	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12	12	ug/kg
			5170001	4,4'-DDE	<12	12	ug/kg
				4,4'-DDT	<12	12	ug/kg
				Aldrin	<6	6	ug/kg
				Alpha-Bhc	<6	6	ug/kg
				Alpha-Chlordane	<12	12	ug/kg
				Beta-Bhc	<6	6	ug/kg
				Delta-Bhc	<6	6	ug/kg
				Dieldrin	<12	12	ug/kg
				Endosulfan I	<6	6	ug/kg
				Endosulfan II	<12	12	ug/kg
				Endosulfan Sulfate	<12	12	ug/kg
				Endrin	<12	12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone	<12	12	ug/kg
				Gamma-Bhc (Lindane)	<6	6	ug/kg
				Gamma-Chlordane	<12	12	ug/kg
				Heptachlor	<6	6	ug/kg
				Heptachlor Epoxide	<6	6	ug/kg
				Methoxychlor	<12	12	ug/kg
				Toxaphene	<60	60	ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.06	0.06	mg/kg
		Biphenyls		Aroclor 1221	< 0.06	0.06	mg/kg
				Aroclor 1232	< 0.06	0.06	mg/kg
				Aroclor 1242	< 0.06	0.06	mg/kg
				Aroclor 1248	< 0.06	0.06	mg/kg
				Aroclor 1254	< 0.06	0.06	mg/kg
				Aroclor 1260	0.16	0.06	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.04	0.04	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,2-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,2-Diphenylhydrazine	< 0.04	0.04	mg/kg
				1,3-Dichlorobenzene	<0.04	0.04	mg/kg
				1,3-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,4-Dichlorobenzene	<0.04	0.04	mg/kg
				1,4-Dinitrobenzene	< 0.04	0.04	mg/kg
				1-Methylnaphthalene	< 0.0079	0.0079	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3,5,6-Tetrachlorophenol	<0.04	0.04	mg/kg
				2,3-Dichloroaniline	<0.04	0.04	mg/kg
				2,4,5-Trichlorophenol	<0.04	0.04	mg/kg
				2,4,6-Trichlorophenol	< 0.04	0.04	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Donth		raranon r	1		Practical	
	Depth		Analytical			Quantitation	Unit of
Location	Range	Analysta Tyma	Analytical Method	Analyte	Result	Limit	Measure
FAR10	(feet bgs) 2.5 - 3	Analyte Type Semi-Volatile Organic	SW8270	2,4-Dichlorophenol	<0.04	0.04	
		Compounds		2,4-Dimethylphenol	<0.04	0.04	mg/kg
(continued)	(continued)	(continued)	(continued)	2,4-Dinitrophenol	<0.4	0.4	mg/kg
		(continued)		2,4-Dinitrophenol	<0.2	0.2	mg/kg
				2,6-Dinitrotoluene	<0.04	0.04	mg/kg
				2-Chloronaphthalene	< 0.04	0.04	mg/kg mg/kg
				-	<0.04	0.04	mg/kg
				2-Chlorophenol			
				2-Methylnaphthalene 2-Methylphenol (o-Cresol)	<0.0079 <0.04	0.0079 0.04	mg/kg
							mg/kg
				2-Nitroaniline	<0.04	0.04	mg/kg
				2-Nitrophenol	<0.04	0.04	mg/kg
				3,3`-Dichlorobenzidine	<0.4	0.4	mg/kg
				3,4-Methylphenol(m,p-Cresol)	<0.04	0.04	mg/kg
				3-Nitroaniline	<0.04	0.04	mg/kg
				4,6-Dinitro-2-Methylphenol	<0.2	0.2	mg/kg
				4-Bromophenyl Phenyl Ether	<0.04	0.04	mg/kg
				4-Chloro-3-Methylphenol	< 0.04	0.04	mg/kg
				4-Chloroaniline	< 0.04	0.04	mg/kg
				4-Chlorophenyl Phenylether	< 0.04	0.04	mg/kg
				4-Nitroaniline	< 0.04	0.04	mg/kg
				4-Nitrophenol	< 0.04	0.04	mg/kg
				Acenaphthene	< 0.0079	0.0079	mg/kg
				Acenaphthylene	< 0.0079	0.0079	mg/kg
				Aniline	< 0.04	0.04	mg/kg
				Anthracene	0.011	0.0079	mg/kg
				Benzidine	< 0.4	0.4	mg/kg
				Benzo(a)Anthracene	0.029	0.0079	mg/kg
				Benzo(a)Pyrene	0.031	0.0079	mg/kg
				Benzo(b)Fluoranthene	0.028	0.0079	mg/kg
				Benzo(g,h,i)Perylene	0.025	0.0079	mg/kg
				Benzo(j,k)Fluoranthene	0.022	0.0079	mg/kg
				Benzyl alcohol	< 0.04	0.04	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.04	0.04	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.04	0.04	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.04	0.04	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.04	0.04	mg/kg
				Bis-2-Ethylhexyladipate	< 0.04	0.04	mg/kg
				Butyl Benzyl Phthalate	< 0.4	0.4	mg/kg
				Carbazole	< 0.04	0.04	mg/kg
				Chrysene	0.045	0.04	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0079	0.0079	mg/kg
				Dibenzofuran	< 0.04	0.04	mg/kg
				Diethylphthalate	< 0.2	0.2	mg/kg
				Dimethylphthalate	< 0.04	0.04	mg/kg
				Di-N-Butylphthalate	< 0.4	0.4	mg/kg
				Di-N-Octyl Phthalate	< 0.04	0.04	mg/kg
				Fluoranthene	0.054	0.04	mg/kg
				Fluorene	< 0.0079	0.0079	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR10	2.5 - 3	Semi-Volatile Organic	SW8270	Hexachlorobenzene	< 0.04	0.04	mg/kg
(continued)	(continued)	Compounds	(continued)	Hexachlorobutadiene	< 0.04	0.04	mg/kg
		(continued)		Hexachlorocyclopentadiene	< 0.04	0.04	mg/kg
				Hexachloroethane	< 0.04	0.04	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.017	0.0079	mg/kg
				Isophorone	< 0.04	0.04	mg/kg
				Naphthalene	< 0.0079	0.0079	mg/kg
				Nitrobenzene	< 0.04	0.04	mg/kg
				N-Nitrosodimethylamine	< 0.04	0.04	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.04	0.04	mg/kg
				N-Nitrosodiphenylamine	< 0.04	0.04	mg/kg
				Pentachlorophenol	< 0.2	0.2	mg/kg
				Phenanthrene	0.049	0.04	mg/kg
				Phenol	< 0.04	0.04	mg/kg
				Pyrene	0.063	0.04	mg/kg
				Pyridine	< 0.4	0.4	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<57	57	mg/kg
		Hydrocarbons		Lube Oil	370	60	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 6.9	6.9	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.069	0.069	mg/kg
				m,p-Xylene	< 0.069	0.069	mg/kg
				o-Xylene	< 0.069	0.069	mg/kg
				Toluene	< 0.069	0.069	mg/kg
			SW8260	1,1,1,2-Tetrachloroethane	< 0.0012	0.0012	mg/kg
				1,1,1-Trichloroethane	< 0.0012	0.0012	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.069	0.069	mg/kg
				1,1,2-Trichloroethane	< 0.0012	0.0012	mg/kg
				1,1-Dichloroethane	< 0.0012	0.0012	mg/kg
				1,1-Dichloroethene	< 0.0012	0.0012	mg/kg
				1,1-Dichloropropene	< 0.0012	0.0012	mg/kg
				1,2,3-Trichlorobenzene	< 0.069	0.069	mg/kg
				1,2,3-Trichloropropane	< 0.069	0.069	mg/kg
				1,2,4-Trichlorobenzene	< 0.069	0.069	mg/kg
				1,2,4-Trimethylbenzene	< 0.069	0.069	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.34	0.34	mg/kg
				1,2-Dibromoethane	< 0.0012	0.0012	mg/kg
				1,2-Dichlorobenzene	< 0.069	0.069	mg/kg
				1,2-Dichloroethane	< 0.0012	0.0012	mg/kg
				1,2-Dichloropropane	< 0.0012	0.0012	mg/kg
				1,3,5-Trimethylbenzene	< 0.069	0.069	mg/kg
				1,3-Dichlorobenzene	< 0.069	0.069	mg/kg
				1,3-Dichloropropane	< 0.0012	0.0012	mg/kg
				1,4-Dichlorobenzene	< 0.069	0.069	mg/kg
				2,2-Dichloropropane	< 0.0012		mg/kg
				2-Butanone (MEK)	0.011	0.0059	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR10	2.5 - 3	Volatile Organic	SW8260	2-Chloroethyl Vinyl Ether	< 0.0059	0.0059	mg/kg
(continued)	(continued)	Compounds	(continued)	2-Chlorotoluene	< 0.069	0.069	mg/kg
		(continued)		2-Hexanone	< 0.0059	0.0059	mg/kg
				4-Chlorotoluene	< 0.069	0.069	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0059	0.0059	mg/kg
				Acetone	0.12	0.0059	mg/kg
				Benzene	0.24	0.0012	mg/kg
				Bromobenzene	< 0.069	0.069	mg/kg
				Bromochloromethane	< 0.0012	0.0012	mg/kg
				Bromodichloromethane	< 0.0012	0.0012	mg/kg
				Bromoform	< 0.0012	0.0012	mg/kg
				Bromomethane	< 0.0012	0.0012	mg/kg
				Carbon Disulfide	0.0064	0.0059	mg/kg
				Carbon Tetrachloride	< 0.0012	0.0012	mg/kg
				Chlorobenzene	< 0.0012	0.0012	mg/kg
				Chloroethane	< 0.0059	0.0059	mg/kg
				Chloroform	< 0.0012	0.0012	mg/kg
				Chloromethane	< 0.0059	0.0059	mg/kg
				cis-1,2-Dichloroethene	< 0.0012	0.0012	mg/kg
				cis-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Dibromochloromethane	< 0.0012	0.0012	mg/kg
				Dibromomethane	< 0.0012	0.0012	mg/kg
				Dichlorodifluoromethane	< 0.0012	0.0012	mg/kg
				Ethylbenzene	< 0.0012	0.0012	mg/kg
				Hexachlorobutadiene	< 0.34	0.34	mg/kg
				Iodomethane	< 0.0059	0.0059	mg/kg
				Isopropylbenzene	< 0.0012	0.0012	mg/kg
				m,p-Xylene	0.0038	0.0024	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0012	0.0012	mg/kg
				Methylene Chloride	< 0.0059	0.0059	mg/kg
				Naphthalene	< 0.069	0.069	mg/kg
				N-Butylbenzene	< 0.069	0.069	mg/kg
				N-Propylbenzene	< 0.069	0.069	mg/kg
				o-Xylene	0.0016	0.0012	mg/kg
				p-Isopropyltoluene	< 0.069	0.069	mg/kg
				sec-Butylbenzene	< 0.069	0.069	mg/kg
				Styrene	< 0.0012		mg/kg
				tert-Butylbenzene	< 0.069	0.069	mg/kg
				Tetrachloroethene (PCE)	< 0.0012	0.0012	mg/kg
				Toluene	0.026	0.0059	mg/kg
				Trans-1,2-Dichloroethene	< 0.0012	0.0012	mg/kg
				Trans-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Trichloroethene (TCE)	< 0.0012	0.0012	mg/kg
				Trichlorofluoromethane	< 0.0012	0.0012	mg/kg
				Vinyl Acetate	< 0.0059	0.0059	mg/kg
				Vinyl Chloride	< 0.0012	0.0012	mg/kg
	6 - 6.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<33	33	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<65	65	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

Depth Range Location (feet bgs) Analyte Type	Analytical			Practical	
Location (feet bgs) Analyte Type FAR10 15 - 15.5 Polychlorinated					
FAR10 15 - 15.5 Polychlorinated			_	Quantitation	Unit of
1 1	Method	Analyte	Result	Limit	Measure
(continued) Rinhenvls	SW8082	Aroclor 1016	< 0.067	0.067	mg/kg
(continued)		Aroclor 1221	< 0.067	0.067	mg/kg
		Aroclor 1232	< 0.067	0.067	mg/kg
		Aroclor 1242	< 0.067	0.067	mg/kg
		Aroclor 1248	< 0.067	0.067	mg/kg
		Aroclor 1254	< 0.067	0.067	mg/kg
		Aroclor 1260	< 0.067	0.067	mg/kg
Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.045	0.045	mg/kg
Compounds		1,2-Dichlorobenzene	< 0.045	0.045	mg/kg
		1,2-Dinitrobenzene	< 0.045	0.045	mg/kg
		1,2-Diphenylhydrazine	< 0.045	0.045	mg/kg
		1,3-Dichlorobenzene	< 0.045	0.045	mg/kg
		1,3-Dinitrobenzene	< 0.045	0.045	mg/kg
		1,4-Dichlorobenzene	< 0.045	0.045	mg/kg
		1,4-Dinitrobenzene	< 0.045	0.045	mg/kg
		1-Methylnaphthalene	< 0.009	0.009	mg/kg
		2,3,4,6-Tetrachlorophenol	< 0.045	0.045	mg/kg
		2,3,5,6-Tetrachlorophenol	< 0.045	0.045	mg/kg
		2,3-Dichloroaniline	< 0.045	0.045	mg/kg
		2,4,5-Trichlorophenol	< 0.045	0.045	mg/kg
		2,4,6-Trichlorophenol	< 0.045	0.045	mg/kg
		2,4-Dichlorophenol	< 0.045	0.045	mg/kg
		2,4-Dimethylphenol	< 0.45	0.45	mg/kg
		2,4-Dinitrophenol	< 0.22	0.22	mg/kg
		2,4-Dinitrotoluene	< 0.045	0.045	mg/kg
		2,6-Dinitrotoluene	< 0.045	0.045	mg/kg
		2-Chloronaphthalene	< 0.045	0.045	mg/kg
		2-Chlorophenol	< 0.045	0.045	mg/kg
		2-Methylnaphthalene	< 0.009	0.009	mg/kg
		2-Methylphenol (o-Cresol)	< 0.045	0.045	mg/kg
		2-Nitroaniline	< 0.045	0.045	mg/kg
		2-Nitrophenol	< 0.045	0.045	mg/kg
		3,3`-Dichlorobenzidine	< 0.45	0.45	mg/kg
		3,4-Methylphenol(m,p-Cresol)	< 0.045	0.045	mg/kg
		3-Nitroaniline	< 0.045	0.045	mg/kg
		4,6-Dinitro-2-Methylphenol	< 0.22	0.22	mg/kg
		4-Bromophenyl Phenyl Ether	< 0.045	0.045	mg/kg
		4-Chloro-3-Methylphenol	< 0.045	0.045	mg/kg
		4-Chloroaniline	< 0.045	0.045	mg/kg
		4-Chlorophenyl Phenylether	< 0.045	0.045	mg/kg
		4-Nitroaniline	< 0.045	0.045	mg/kg
		4-Nitrophenol	< 0.045	0.045	mg/kg
		Acenaphthene	< 0.009	0.009	mg/kg
		Acenaphthylene	< 0.009	0.009	mg/kg
		Aniline	< 0.045	0.045	mg/kg
		Anthracene	< 0.009	0.009	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	D 41		raranon i	1		D 41 1	
	Depth		A 1 . 42 1			Practical	TT 14 6
T4!	Range	A l4 - T	Analytical	A14-	D14	Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR10	15 - 15.5	Semi-Volatile Organic	SW8270	Benzidine	< 0.45	0.45	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzo(a)Anthracene	< 0.009	0.009	mg/kg
		(continued)		Benzo(a)Pyrene	< 0.009	0.009	mg/kg
				Benzo(b)Fluoranthene	< 0.009	0.009	mg/kg
				Benzo(g,h,i)Perylene	< 0.009	0.009	mg/kg
				Benzo(j,k)Fluoranthene	< 0.009	0.009	mg/kg
				Benzyl alcohol	< 0.045	0.045	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.045	0.045	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.045	0.045	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.045	0.045	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.045	0.045	mg/kg
				Bis-2-Ethylhexyladipate	< 0.045	0.045	mg/kg
				Butyl Benzyl Phthalate	< 0.45	0.45	mg/kg
				Carbazole	< 0.045	0.045	mg/kg
				Chrysene	< 0.009	0.009	mg/kg
				Dibenzo(a,h)Anthracene	< 0.009	0.009	mg/kg
				Dibenzofuran	< 0.045	0.045	mg/kg
				Diethylphthalate	< 0.22	0.22	mg/kg
				Dimethylphthalate	< 0.045	0.045	mg/kg
				Di-N-Butylphthalate	< 0.45	0.45	mg/kg
				Di-N-Octyl Phthalate	< 0.045	0.045	mg/kg
				Fluoranthene	< 0.009	0.009	mg/kg
				Fluorene	< 0.009	0.009	mg/kg
				Hexachlorobenzene	< 0.045	0.045	mg/kg
				Hexachlorobutadiene	< 0.045	0.045	mg/kg
				Hexachlorocyclopentadiene	< 0.045	0.045	mg/kg
				Hexachloroethane	< 0.045	0.045	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.009	0.009	mg/kg
				Isophorone	< 0.045	0.045	mg/kg
				Naphthalene	< 0.009	0.009	mg/kg
				Nitrobenzene	< 0.045	0.045	mg/kg
				N-Nitrosodimethylamine	< 0.045	0.045	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.045	0.045	mg/kg
				N-Nitrosodiphenylamine	< 0.045	0.045	mg/kg
				Pentachlorophenol	< 0.22	0.22	mg/kg
				Phenanthrene	< 0.009	0.009	mg/kg
				Phenol	< 0.045	0.045	mg/kg
				Pyrene	< 0.009	0.009	mg/kg
				Pyridine	< 0.45	0.45	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0015	0.0015	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.0015		mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0015	0.0015	mg/kg
				1,1,2-Trichloroethane	< 0.0015	0.0015	mg/kg
				1,1-Dichloroethane	< 0.0015	0.0015	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Donth		raranon r			Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR10	15 - 15.5	Volatile Organic	SW8260	1,1-Dichloroethene	<0.0015	0.0015	mg/kg
(continued)	(continued)	Compounds	(continued)	1,1-Dichloropropene	< 0.0015	0.0015	mg/kg
(continued)	(continued)	(continued)	(continucu)	1,2,3-Trichlorobenzene	< 0.0015	0.0015	mg/kg
		(continued)		1,2,3-Trichloropropane	< 0.0015	0.0015	mg/kg
				1,2,4-Trichlorobenzene	< 0.0015	0.0015	mg/kg
				1,2,4-Trimethylbenzene	< 0.0015	0.0015	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0073	0.0073	mg/kg
				1,2-Dibromoethane	< 0.0015	0.0015	mg/kg
				1,2-Dichlorobenzene	< 0.0015	0.0015	mg/kg
				1,2-Dichloroethane	< 0.0015	0.0015	mg/kg
				1,2-Dichloropropane	< 0.0015	0.0015	mg/kg
				1,3,5-Trimethylbenzene	< 0.0015	0.0015	mg/kg
				1,3-Dichlorobenzene	< 0.0015	0.0015	mg/kg
				1,3-Dichloropropane	< 0.0015	0.0015	mg/kg
				1,4-Dichlorobenzene	< 0.0015	0.0015	mg/kg
				2,2-Dichloropropane	< 0.0015	0.0015	mg/kg
				2-Butanone (MEK)	< 0.0073	0.0073	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0073	0.0073	mg/kg
				2-Chlorotoluene	< 0.0015	0.0015	mg/kg
				2-Hexanone	< 0.0073	0.0073	mg/kg
				4-Chlorotoluene	< 0.0015	0.0015	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0073	0.0073	mg/kg
				Acetone	0.028	0.0073	mg/kg
				Benzene	< 0.0015	0.0015	mg/kg
				Bromobenzene	< 0.0015	0.0015	mg/kg
				Bromochloromethane	< 0.0015	0.0015	mg/kg
				Bromodichloromethane	< 0.0015	0.0015	mg/kg
				Bromoform	< 0.0015	0.0015	mg/kg
				Bromomethane	< 0.0015	0.0015	mg/kg
				Carbon Disulfide	< 0.0073	0.0073	mg/kg
				Carbon Tetrachloride	< 0.0015	0.0015	mg/kg
				Chlorobenzene	< 0.0015	0.0015	mg/kg
				Chloroethane	< 0.0073	0.0073	mg/kg
				Chloroform	< 0.0015	0.0015	mg/kg
				Chloromethane	< 0.0073	0.0073	mg/kg
				cis-1,2-Dichloroethene	< 0.0015		mg/kg
				cis-1,3-Dichloropropene	< 0.0015	0.0015	mg/kg
				Dibromochloromethane	< 0.0015	0.0015	mg/kg
				Dibromomethane	< 0.0015	0.0015	mg/kg
				Dichlorodifluoromethane	< 0.0015	0.0015	mg/kg
				Ethylbenzene	< 0.0015	0.0015	mg/kg
				Hexachlorobutadiene	<0.0073	0.0073	mg/kg
				Iodomethane	< 0.0073	0.0073	mg/kg
				Isopropylbenzene	<0.0015	0.0015	mg/kg
				m,p-Xylene	<0.0029	0.0029 0.0015	mg/kg
				Methyl T-Butyl Ether (MTBE)	<0.0015		mg/kg
				Methylene Chloride	< 0.0073	0.0073	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	D4h		r aranon P	10 10 00 001		D4:1	
	Depth Range		Amalestical			Practical Quantitation	Unit of
Location		Analyte Type	Analytical Method	Analyte	Result	Limit	Measure
FAR10	(feet bgs)	Volatile Organic	SW8260	Naphthalene	<0.0015	0.0015	
		Compounds		N-Butylbenzene	< 0.0015		mg/kg
(continued)	(continued)	(continued)	(continued)	N-Propylbenzene	< 0.0015	0.0013	mg/kg
		(continued)		1 2	< 0.0015	0.0013	mg/kg
				o-Xylene			mg/kg
				p-Isopropyltoluene	<0.0015	0.0015	mg/kg
				sec-Butylbenzene	<0.0015	0.0015	mg/kg
				Styrene	<0.0015	0.0015	mg/kg
				tert-Butylbenzene	<0.0015	0.0015	mg/kg
				Tetrachloroethene (PCE)	< 0.0015	0.0015	mg/kg
				Toluene	<0.0073	0.0073	mg/kg
				Trans-1,2-Dichloroethene	< 0.0015	0.0015	mg/kg
				Trans-1,3-Dichloropropene	< 0.0015	0.0015	mg/kg
				Trichloroethene (TCE)	< 0.0015	0.0015	mg/kg
				Trichlorofluoromethane	< 0.0015	0.0015	mg/kg
				Vinyl Acetate	< 0.0073	0.0073	mg/kg
EARII	2.5.2	26 / 1	GWIGOLOD	Vinyl Chloride	< 0.0015	0.0015	mg/kg
FAR11	2.5 - 3	Metals	SW6010B	Arsenic	<11	11	mg/kg
				Cadmium	< 0.55	0.55	mg/kg
				Chromium	35	0.55	mg/kg
			GWG 451 A	Lead	150	5.5	mg/kg
		D	SW7471A	Mercury	< 0.27	0.27	mg/kg
		Pesticides	SW8081	4,4'-DDD	<11	11	ug/kg
				4,4'-DDE	<11	11	ug/kg
				4,4'-DDT	<11	11	ug/kg
				Aldrin	<5.5	5.5	ug/kg
				Alpha-Bhc	<5.5	5.5	ug/kg
				Alpha-Chlordane	<11	11	ug/kg
				Beta-Bhc	<5.5	5.5	ug/kg
				Delta-Bhc	<5.5	5.5	ug/kg
				Dieldrin	<11	11	ug/kg
				Endosulfan I	<5.5	5.5	ug/kg
				Endosulfan II	<11	11	ug/kg
				Endosulfan Sulfate	<11	11	ug/kg
				Endrin	<11	11	ug/kg
				Endrin Aldehyde	22	11	ug/kg
				Endrin Ketone	<11	11	ug/kg
				Gamma-Bhc (Lindane)	<5.5	5.5	ug/kg
				Gamma-Chlordane	<11	11	ug/kg
				Heptachlor	<5.5	5.5	ug/kg
				Heptachlor Epoxide	<5.5	5.5	ug/kg
				Methoxychlor	<11	11	ug/kg
				Toxaphene	<55	55	ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.055	0.055	mg/kg
		Biphenyls		Aroclor 1221	< 0.055	0.055	mg/kg
				Aroclor 1232	< 0.055	0.055	mg/kg
				Aroclor 1242	< 0.055	0.055	mg/kg
				Aroclor 1248	< 0.055	0.055	mg/kg
				Aroclor 1254	< 0.055	0.055	mg/kg
				Aroclor 1260	0.09	0.055	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	2.5 - 3	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.18	0.18	mg/kg
(continued)	(continued)	Compounds		1,2-Dichlorobenzene	< 0.18	0.18	mg/kg
				1,2-Dinitrobenzene	< 0.18	0.18	mg/kg
				1,2-Diphenylhydrazine	< 0.18	0.18	mg/kg
				1,3-Dichlorobenzene	< 0.18	0.18	mg/kg
				1,3-Dinitrobenzene	< 0.18	0.18	mg/kg
				1,4-Dichlorobenzene	< 0.18	0.18	mg/kg
				1,4-Dinitrobenzene	< 0.18	0.18	mg/kg
				1-Methylnaphthalene	< 0.0073	0.0073	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.18	0.18	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.18	0.18	mg/kg
				2,3-Dichloroaniline	< 0.18	0.18	mg/kg
				2,4,5-Trichlorophenol	< 0.18	0.18	mg/kg
				2,4,6-Trichlorophenol	< 0.18	0.18	mg/kg
				2,4-Dichlorophenol	< 0.18	0.18	mg/kg
				2,4-Dimethylphenol	<1.8	1.8	mg/kg
				2,4-Dinitrophenol	< 0.91	0.91	mg/kg
				2,4-Dinitrotoluene	< 0.18	0.18	mg/kg
				2,6-Dinitrotoluene	< 0.18	0.18	mg/kg
				2-Chloronaphthalene	< 0.18	0.18	mg/kg
				2-Chlorophenol	< 0.18	0.18	mg/kg
				2-Methylnaphthalene	< 0.0073	0.0073	mg/kg
				2-Methylphenol (o-Cresol)	< 0.18	0.18	mg/kg
				2-Nitroaniline	< 0.18	0.18	mg/kg
				2-Nitrophenol	< 0.18	0.18	mg/kg
				3,3`-Dichlorobenzidine	<1.8	1.8	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.18	0.18	mg/kg
				3-Nitroaniline	< 0.18	0.18	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.91	0.91	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.18	0.18	mg/kg
				4-Chloro-3-Methylphenol	< 0.18	0.18	mg/kg
				4-Chloroaniline	< 0.18	0.18	mg/kg
				4-Chlorophenyl Phenylether	< 0.18	0.18	mg/kg
				4-Nitroaniline	< 0.18	0.18	mg/kg
				4-Nitrophenol	< 0.18	0.18	mg/kg
				Acenaphthene	< 0.0073	0.0073	mg/kg
				Acenaphthylene	< 0.0073		mg/kg
				Aniline	< 0.18	0.18	mg/kg
				Anthracene	< 0.0073	0.0073	mg/kg
				Benzidine	<1.8	1.8	mg/kg
				Benzo(a)Anthracene	0.011	0.0073	mg/kg
				Benzo(a)Pyrene	0.011	0.0073	mg/kg
				Benzo(b)Fluoranthene	0.011	0.0073	mg/kg
				Benzo(g,h,i)Perylene	0.014	0.0073	mg/kg
				Benzo(j,k)Fluoranthene	0.0092	0.0073	mg/kg
				Benzyl alcohol	< 0.18	0.18	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	2.5 - 3	Semi-Volatile Organic	SW8270	Bis(2-Chloroethoxy) Methane	< 0.18	0.18	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroethyl) Ether	< 0.18	0.18	mg/kg
	,	(continued)	,	Bis(2-Chloroisopropyl)ether	< 0.18	0.18	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.18	0.18	mg/kg
				Bis-2-Ethylhexyladipate	< 0.18	0.18	mg/kg
				Butyl Benzyl Phthalate	<1.8	1.8	mg/kg
				Carbazole	< 0.18	0.18	mg/kg
				Chrysene	0.023	0.0073	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0073	0.0073	mg/kg
				Dibenzofuran	< 0.18	0.18	mg/kg
				Diethylphthalate	< 0.91	0.91	mg/kg
				Dimethylphthalate	< 0.18	0.18	mg/kg
				Di-N-Butylphthalate	<1.8	1.8	mg/kg
				Di-N-Octyl Phthalate	< 0.18	0.18	mg/kg
				Fluoranthene	0.024	0.0073	mg/kg
				Fluorene	< 0.0073	0.0073	mg/kg
				Hexachlorobenzene	< 0.18	0.18	mg/kg
				Hexachlorobutadiene	< 0.18	0.18	mg/kg
				Hexachlorocyclopentadiene	< 0.18	0.18	mg/kg
				Hexachloroethane	< 0.18	0.18	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0073	0.0073	mg/kg
				Isophorone	< 0.18	0.18	mg/kg
				Naphthalene	0.0094	0.0073	mg/kg
				Nitrobenzene	< 0.18	0.18	mg/kg
				N-Nitrosodimethylamine	< 0.18	0.18	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.18	0.18	mg/kg
				N-Nitrosodiphenylamine	< 0.18	0.18	mg/kg
				Pentachlorophenol	< 0.91	0.91	mg/kg
				Phenanthrene	0.018	0.0073	mg/kg
				Phenol	< 0.18	0.18	mg/kg
				Pyrene	0.027	0.0073	mg/kg
				Pyridine	<1.8	1.8	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	130	27	mg/kg
		Hydrocarbons		Lube Oil	110	55	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 5.8	5.8	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	2.5 - 3	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0012	0.0012	mg/kg
(continued)	(continued)	Compounds		1,1,1-Trichloroethane	< 0.0012	0.0012	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0012	0.0012	mg/kg
				1,1,2-Trichloroethane	< 0.0012	0.0012	mg/kg
				1,1-Dichloroethane	< 0.0012	0.0012	mg/kg
				1,1-Dichloroethene	< 0.0012	0.0012	mg/kg
				1,1-Dichloropropene	< 0.0012	0.0012	mg/kg
				1,2,3-Trichlorobenzene	< 0.0012	0.0012	mg/kg
				1,2,3-Trichloropropane	< 0.0012	0.0012	mg/kg
				1,2,4-Trichlorobenzene	< 0.0012	0.0012	mg/kg
				1,2,4-Trimethylbenzene	< 0.0012	0.0012	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0061	0.0061	mg/kg
				1,2-Dibromoethane	< 0.0012	0.0012	mg/kg
				1,2-Dichlorobenzene	< 0.0012	0.0012	mg/kg
				1,2-Dichloroethane	< 0.0012	0.0012	mg/kg
				1,2-Dichloropropane	< 0.0012	0.0012	mg/kg
				1,3,5-Trimethylbenzene	< 0.0012	0.0012	mg/kg
				1,3-Dichlorobenzene	< 0.0012	0.0012	mg/kg
				1,3-Dichloropropane	< 0.0012		mg/kg
				1,4-Dichlorobenzene	< 0.0012		mg/kg
				2,2-Dichloropropane	< 0.0012	0.0012	mg/kg
				2-Butanone (MEK)	0.0077	0.0061	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0061	0.0061	mg/kg
				2-Chlorotoluene	< 0.0012	0.0012	mg/kg
				2-Hexanone	< 0.0061	0.0061	mg/kg
				4-Chlorotoluene	< 0.0012	0.0012	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0061	0.0061	mg/kg
				Acetone	0.073	0.0061	mg/kg
				Benzene	< 0.0012	0.0012	mg/kg
				Bromobenzene	< 0.0012	0.0012	mg/kg
				Bromochloromethane	< 0.0012	0.0012	mg/kg
				Bromodichloromethane	<0.0012	0.0012	mg/kg
				Bromoform	<0.0012	0.0012	mg/kg
				Bromomethane	<0.0012	0.0012	mg/kg
				Carbon Disulfide	<0.0061 <0.0012	0.0061 0.0012	mg/kg
				Carbon Tetrachloride			mg/kg
				Chlorobenzene Chloroethane	<0.0012 <0.0061	0.0012 0.0061	mg/kg
				Chloroform	< 0.0001	0.0061	mg/kg mg/kg
				Chloromethane	< 0.0012	0.0012	
				cis-1,2-Dichloroethene	< 0.0061	0.0061	mg/kg
				cis-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Dibromochloromethane	< 0.0012	0.0012	mg/kg mg/kg
				Dibromomethane	< 0.0012	0.0012	mg/kg
				Dichlorodifluoromethane	< 0.0012	0.0012	
				Ethylbenzene Ethylbenzene	< 0.0012	0.0012	mg/kg
				Hexachlorobutadiene	<0.0012		mg/kg
				riexacinorobutadiene	<u>\0.0001</u>	0.0061	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	D 41			N: 1005-001		D 4 1	
	Depth		A l4' l			Practical	TI!4 - £
Location	Range	A l4 - T	Analytical	A14-	D14	Quantitation Limit	Unit of Measure
FAR11	(feet bgs) 2.5 - 3	Analyte Type Volatile Organic	Method SW8260	Analyte	Result	0.0061	
		Compounds		Iodomethane	< 0.0061		mg/kg
(continued)	(continued)	•	(continued)	Isopropylbenzene	< 0.0012	0.0012	mg/kg
		(continued)		m,p-Xylene	< 0.0024	0.0024	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0012	0.0012	mg/kg
				Methylene Chloride	< 0.0061	0.0061	mg/kg
				Naphthalene	< 0.0012	0.0012	mg/kg
				N-Butylbenzene	< 0.0012	0.0012	mg/kg
				N-Propylbenzene	< 0.0012	0.0012	mg/kg
				o-Xylene	< 0.0012	0.0012	mg/kg
				p-Isopropyltoluene	< 0.0012	0.0012	mg/kg
				sec-Butylbenzene	< 0.0012	0.0012	mg/kg
				Styrene	< 0.0012	0.0012	mg/kg
				tert-Butylbenzene	< 0.0012	0.0012	mg/kg
				Tetrachloroethene (PCE)	< 0.0012	0.0012	mg/kg
				Toluene	< 0.0061	0.0061	mg/kg
				Trans-1,2-Dichloroethene	< 0.0012	0.0012	mg/kg
				Trans-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Trichloroethene (TCE)	< 0.0012	0.0012	mg/kg
				Trichlorofluoromethane	< 0.0012	0.0012	mg/kg
				Vinyl Acetate	< 0.0061	0.0061	mg/kg
				Vinyl Chloride	< 0.0012	0.0012	mg/kg
	14.5 - 15	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<28	28	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	< 56	56	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.00083	0.00083	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.00083	0.00083	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.00083	0.00083	mg/kg
				1,1,2-Trichloroethane	< 0.00083	0.00083	mg/kg
				1,1-Dichloroethane	< 0.00083	0.00083	mg/kg
				1,1-Dichloroethene	< 0.00083	0.00083	mg/kg
				1,1-Dichloropropene	< 0.00083	0.00083	mg/kg
				1,2,3-Trichlorobenzene	< 0.00083	0.00083	mg/kg
				1,2,3-Trichloropropane	< 0.00083	0.00083	mg/kg
				1,2,4-Trichlorobenzene	< 0.00083	0.00083	mg/kg
				1,2,4-Trimethylbenzene	< 0.00083	0.00083	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0042	0.0042	mg/kg
				1,2-Dibromoethane	< 0.00083		mg/kg
				1,2-Dichlorobenzene	< 0.00083	0.00083	mg/kg
				1,2-Dichloroethane	< 0.00083	0.00083	mg/kg
				1,2-Dichloropropane	< 0.00083	0.00083	mg/kg
				1,3,5-Trimethylbenzene	< 0.00083	0.00083	mg/kg
]			1,3-Dichlorobenzene	< 0.00083	0.00083	mg/kg
				1,3-Dichloropropane	< 0.00083	0.00083	mg/kg
				1,4-Dichlorobenzene	< 0.00083	0.00083	mg/kg
				2,2-Dichloropropane	< 0.00083	0.00083	mg/kg
				2-Butanone (MEK)	< 0.0042	0.0042	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0042	0.0042	mg/kg
				2-Chlorotoluene	< 0.00083	0.00083	mg/kg
				2-Hexanone	< 0.0042	0.0042	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth		raranon 11	I		Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	14.5 - 15	Volatile Organic	SW8260	4-Chlorotoluene	<0.00083	0.00083	mg/kg
		Compounds					
(continued)	(continued)	_	(continued)	4-Methyl-2-Pentanone (MIBK)	<0.0042	0.0042	mg/kg
		(continued)		Acetone	<0.0042	0.0042	mg/kg
				Benzene	< 0.00083	0.00083	mg/kg
				Bromobenzene	< 0.00083	0.00083	mg/kg
				Bromochloromethane	< 0.00083	0.00083	mg/kg
				Bromodichloromethane	< 0.00083	0.00083	mg/kg
				Bromoform	< 0.00083	0.00083	mg/kg
				Bromomethane	< 0.00083	0.00083	mg/kg
				Carbon Disulfide	< 0.0042	0.0042	mg/kg
				Carbon Tetrachloride	< 0.00083	0.00083	mg/kg
				Chlorobenzene	< 0.00083	0.00083	mg/kg
				Chloroethane	< 0.0042	0.0042	mg/kg
				Chloroform	< 0.00083	0.00083	mg/kg
				Chloromethane	< 0.0042	0.0042	mg/kg
				cis-1,2-Dichloroethene	< 0.00083	0.00083	mg/kg
				cis-1,3-Dichloropropene	< 0.00083	0.00083	mg/kg
				Dibromochloromethane	< 0.00083	0.00083	mg/kg
				Dibromomethane	< 0.00083	0.00083	mg/kg
				Dichlorodifluoromethane	< 0.00083	0.00083	mg/kg
				Ethylbenzene	< 0.00083	0.00083	mg/kg
				Hexachlorobutadiene	< 0.0042	0.0042	mg/kg
				Iodomethane	< 0.0042	0.0042	mg/kg
				Isopropylbenzene	< 0.00083	0.00083	mg/kg
				m,p-Xylene	< 0.0017	0.0017	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.00083	0.00083	mg/kg
				Methylene Chloride	< 0.0042	0.0042	mg/kg
				Naphthalene	< 0.00083	0.00083	mg/kg
				N-Butylbenzene	< 0.00083	0.00083	mg/kg
				N-Propylbenzene	< 0.00083	0.00083	mg/kg
				o-Xylene	< 0.00083	0.00083	mg/kg
				p-Isopropyltoluene	< 0.00083	0.00083	mg/kg
				sec-Butylbenzene	< 0.00083	0.00083	mg/kg
				Styrene	< 0.00083	0.00083	mg/kg
				tert-Butylbenzene	< 0.00083	0.00083	mg/kg
				Tetrachloroethene (PCE)	<0.00083		mg/kg
				Toluene	< 0.00083	0.00083	mg/kg
				Trans-1,2-Dichloroethene	< 0.0042	0.0042	mg/kg
				Trans-1,3-Dichloropropene	< 0.00083	0.00083	
							mg/kg
				Trichloroethene (TCE)	<0.00083	0.00083	mg/kg
				Trichlorofluoromethane	< 0.00083	0.00083	mg/kg
				Vinyl Acetate	< 0.0042	0.0042	mg/kg
				Vinyl Chloride	< 0.00083	0.00083	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR12	2.5 - 3	Metals	SW6010B	Arsenic	<13	13	mg/kg
				Cadmium	< 0.63	0.63	mg/kg
				Chromium	51	0.63	mg/kg
				Lead	< 6.3	6.3	mg/kg
			SW7471A	Mercury	< 0.32	0.32	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<32	32	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<63	63	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<7.4	7.4	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.074	0.074	mg/kg
				m,p-Xylene	< 0.074	0.074	mg/kg
				o-Xylene	< 0.074	0.074	mg/kg
				Toluene	< 0.074	0.074	mg/kg
FAR23	2.5 - 3	Metals	SW6010B	Arsenic	<11	11	mg/kg
				Cadmium	< 0.53	0.53	mg/kg
				Chromium	16	0.53	mg/kg
				Lead	< 5.3	5.3	mg/kg
			SW7471A	Mercury	< 0.26	0.26	mg/kg
		Pesticides	SW8081	4,4'-DDD	<11	11	ug/kg
				4,4'-DDE	<11	11	ug/kg
				4,4'-DDT	<11	11	ug/kg
				Aldrin	< 5.3	5.3	ug/kg
				Alpha-Bhc	< 5.3	5.3	ug/kg
				Alpha-Chlordane	<11	11	ug/kg
				Beta-Bhc	< 5.3	5.3	ug/kg
				Delta-Bhc	< 5.3	5.3	ug/kg
				Dieldrin	<11	11	ug/kg
				Endosulfan I	< 5.3	5.3	ug/kg
				Endosulfan II	<11	11	ug/kg
				Endosulfan Sulfate	<11	11	ug/kg
				Endrin	<11	11	ug/kg
				Endrin Aldehyde	<11	11	ug/kg
				Endrin Ketone	<11	11	ug/kg
				Gamma-Bhc (Lindane)	<5.3	5.3	ug/kg
				Gamma-Chlordane	<11	11	ug/kg
				Heptachlor	<5.3	5.3	ug/kg
				Heptachlor Epoxide	<5.3	5.3	ug/kg
				Methoxychlor	<11	11	ug/kg
	<u> </u>	D 1 11 1 1 1	GWY2222	Toxaphene	<53	53	ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.053	0.053	mg/kg
		Biphenyls		Aroclor 1221	< 0.053	0.053	mg/kg
				Aroclor 1232	< 0.053	0.053	mg/kg
				Aroclor 1242	< 0.053	0.053	mg/kg
				Aroclor 1248	< 0.053	0.053	mg/kg
				Aroclor 1254	<0.053	0.053	mg/kg
				Aroclor 1260	< 0.053	0.053	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	D 41		raranon ri			D 4' 1	
	Depth		A - 1 42 - 1			Practical	TT '4 6
T4:	Range	A l4 . T	Analytical	A 14-	D14	Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR23	2.5 - 3	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.035	0.035	mg/kg
(continued)	(continued)	Compounds		1,2-Dichlorobenzene	< 0.035	0.035	mg/kg
				1,2-Dinitrobenzene	< 0.035	0.035	mg/kg
				1,2-Diphenylhydrazine	< 0.035	0.035	mg/kg
				1,3-Dichlorobenzene	< 0.035	0.035	mg/kg
				1,3-Dinitrobenzene	< 0.035	0.035	mg/kg
				1,4-Dichlorobenzene	< 0.035	0.035	mg/kg
				1,4-Dinitrobenzene	< 0.035	0.035	mg/kg
				1-Methylnaphthalene	< 0.007	0.007	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.035	0.035	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.035	0.035	mg/kg
				2,3-Dichloroaniline	< 0.035	0.035	mg/kg
				2,4,5-Trichlorophenol	< 0.035	0.035	mg/kg
				2,4,6-Trichlorophenol	< 0.035	0.035	mg/kg
				2,4-Dichlorophenol	< 0.035	0.035	mg/kg
				2,4-Dimethylphenol	< 0.35	0.35	mg/kg
				2,4-Dinitrophenol	< 0.18	0.18	mg/kg
				2,4-Dinitrotoluene	< 0.035	0.035	mg/kg
				2,6-Dinitrotoluene	< 0.035	0.035	mg/kg
				2-Chloronaphthalene	< 0.035	0.035	mg/kg
				2-Chlorophenol	< 0.035	0.035	mg/kg
				2-Methylnaphthalene	< 0.007	0.007	mg/kg
				2-Methylphenol (o-Cresol)	< 0.035	0.035	mg/kg
				2-Nitroaniline	< 0.035	0.035	mg/kg
				2-Nitrophenol	< 0.035	0.035	mg/kg
				3,3`-Dichlorobenzidine	< 0.35	0.35	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.035	0.035	mg/kg
				3-Nitroaniline	< 0.035	0.035	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.18	0.18	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.035	0.035	mg/kg
				4-Chloro-3-Methylphenol	< 0.035	0.035	mg/kg
				4-Chloroaniline	< 0.035	0.035	mg/kg
				4-Chlorophenyl Phenylether	< 0.035	0.035	mg/kg
				4-Nitroaniline	< 0.035	0.035	mg/kg
				4-Nitrophenol	< 0.035	0.035	mg/kg
				Acenaphthene	< 0.007	0.007	mg/kg
				Acenaphthylene	< 0.007	0.007	mg/kg
				Aniline	< 0.035	0.035	mg/kg
				Anthracene	< 0.007	0.007	mg/kg
				Benzidine	< 0.35	0.35	mg/kg
				Benzo(a)Anthracene	< 0.007	0.007	mg/kg
				Benzo(a)Pyrene	< 0.007	0.007	mg/kg
				Benzo(b)Fluoranthene	< 0.007	0.007	mg/kg
				Benzo(g,h,i)Perylene	< 0.007	0.007	mg/kg
				Benzo(j,k)Fluoranthene	< 0.007	0.007	mg/kg
				Benzyl alcohol	< 0.035	0.035	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR23	2.5 - 3	Semi-Volatile Organic	SW8270	Bis(2-Chloroethoxy) Methane	< 0.035	0.035	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroethyl) Ether	< 0.035	0.035	mg/kg
		(continued)		Bis(2-Chloroisopropyl)ether	< 0.035	0.035	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.035	0.035	mg/kg
				Bis-2-Ethylhexyladipate	< 0.035	0.035	mg/kg
				Butyl Benzyl Phthalate	< 0.35	0.35	mg/kg
				Carbazole	< 0.035	0.035	mg/kg
				Chrysene	< 0.007	0.007	mg/kg
				Dibenzo(a,h)Anthracene	< 0.007	0.007	mg/kg
				Dibenzofuran	< 0.035	0.035	mg/kg
				Diethylphthalate	< 0.18	0.18	mg/kg
				Dimethylphthalate	< 0.035	0.035	mg/kg
				Di-N-Butylphthalate	< 0.35	0.35	mg/kg
				Di-N-Octyl Phthalate	< 0.035	0.035	mg/kg
				Fluoranthene	< 0.007	0.007	mg/kg
				Fluorene	< 0.007	0.007	mg/kg
				Hexachlorobenzene	< 0.035	0.035	mg/kg
				Hexachlorobutadiene	< 0.035	0.035	mg/kg
				Hexachlorocyclopentadiene	< 0.035	0.035	mg/kg
				Hexachloroethane	< 0.035	0.035	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.007	0.007	mg/kg
				Isophorone	< 0.035	0.035	mg/kg
				Naphthalene	< 0.007	0.007	mg/kg
				Nitrobenzene	< 0.035	0.035	mg/kg
				N-Nitrosodimethylamine	< 0.035	0.035	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.035	0.035	mg/kg
				N-Nitrosodiphenylamine	< 0.035	0.035	mg/kg
				Pentachlorophenol	< 0.18	0.18	mg/kg
				Phenanthrene	< 0.007	0.007	mg/kg
				Phenol	< 0.035	0.035	mg/kg
				Pyrene	< 0.007	0.007	mg/kg
				Pyridine	< 0.35	0.35	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<26	26	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<53	53	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<4.7	4.7	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.001	0.001	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.001	0.001	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.001	0.001	mg/kg
				1,1,2-Trichloroethane	< 0.001	0.001	mg/kg
				1,1-Dichloroethane	< 0.001	0.001	mg/kg
				1,1-Dichloroethene	< 0.001	0.001	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	D 41		raranon ri			D 41 1	
	Depth		A 1 42 1			Practical	TT '4 6
T4:	Range	A l4 - T	Analytical	A 14	D14	Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method SW8260	Analyte	Result	Limit	Measure
FAR23	2.5 - 3	Volatile Organic		1,1-Dichloropropene	< 0.001	0.001	mg/kg
(continued)	(continued)	Compounds	(continued)	1,2,3-Trichlorobenzene	< 0.001	0.001	mg/kg
		(continued)		1,2,3-Trichloropropane	< 0.001	0.001	mg/kg
				1,2,4-Trichlorobenzene	< 0.001	0.001	mg/kg
				1,2,4-Trimethylbenzene	< 0.001	0.001	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0051	0.0051	mg/kg
				1,2-Dibromoethane	< 0.001	0.001	mg/kg
				1,2-Dichlorobenzene	< 0.001	0.001	mg/kg
				1,2-Dichloroethane	< 0.001	0.001	mg/kg
				1,2-Dichloropropane	< 0.001	0.001	mg/kg
				1,3,5-Trimethylbenzene	< 0.001	0.001	mg/kg
				1,3-Dichlorobenzene	< 0.001	0.001	mg/kg
				1,3-Dichloropropane	< 0.001	0.001	mg/kg
				1,4-Dichlorobenzene	< 0.001	0.001	mg/kg
				2,2-Dichloropropane	< 0.001	0.001	mg/kg
				2-Butanone (MEK)	< 0.0051	0.0051	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0051	0.0051	mg/kg
				2-Chlorotoluene	< 0.001	0.001	mg/kg
				2-Hexanone	< 0.0051	0.0051	mg/kg
				4-Chlorotoluene	< 0.001	0.001	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0051	0.0051	mg/kg
				Acetone	0.011	0.0051	mg/kg
				Benzene	< 0.001	0.001	mg/kg
				Bromobenzene	< 0.001	0.001	mg/kg
				Bromochloromethane	< 0.001	0.001	mg/kg
				Bromodichloromethane	< 0.001	0.001	mg/kg
				Bromoform	< 0.001	0.001	mg/kg
				Bromomethane	< 0.001	0.001	mg/kg
				Carbon Disulfide	< 0.0051	0.0051	mg/kg
				Carbon Tetrachloride	< 0.001	0.001	mg/kg
				Chlorobenzene	< 0.001	0.001	mg/kg
				Chloroethane	< 0.0051	0.0051	mg/kg
				Chloroform	< 0.001	0.001	mg/kg
				Chloromethane	< 0.0051	0.0051	mg/kg
				cis-1,2-Dichloroethene	< 0.001	0.001	mg/kg
				cis-1,3-Dichloropropene	< 0.001	0.001	mg/kg
				Dibromochloromethane	< 0.001	0.001	mg/kg
				Dibromomethane	< 0.001	0.001	mg/kg
				Dichlorodifluoromethane	< 0.001	0.001	mg/kg
				Ethylbenzene	< 0.001	0.001	mg/kg
				Hexachlorobutadiene	< 0.0051	0.0051	mg/kg
				Iodomethane	< 0.0051	0.0051	mg/kg
				Isopropylbenzene	< 0.001	0.001	mg/kg
				m,p-Xylene	< 0.0021	0.0021	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.001	0.001	mg/kg
				Methylene Chloride	< 0.0051	0.0051	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR23	2.5 - 3	Volatile Organic	SW8260	Naphthalene	<0.001	0.001	mg/kg
(continued)	(continued)	Compounds	(continued)	N-Butylbenzene	< 0.001	0.001	mg/kg mg/kg
(continued)	(continued)	(continued)	(continued)	N-Propylbenzene	< 0.001	0.001	mg/kg
		(continued)		o-Xylene	< 0.001	0.001	mg/kg
				p-Isopropyltoluene	< 0.001	0.001	mg/kg
				sec-Butylbenzene	< 0.001	0.001	mg/kg
				Styrene	< 0.001	0.001	mg/kg
				tert-Butylbenzene	< 0.001	0.001	mg/kg
				Tetrachloroethene (PCE)	< 0.001	0.001	mg/kg
				Toluene	< 0.0051	0.0051	mg/kg
				Trans-1,2-Dichloroethene	< 0.001	0.001	mg/kg
				Trans-1,3-Dichloropropene	< 0.001	0.001	mg/kg
				Trichloroethene (TCE)	< 0.001	0.001	mg/kg
				Trichlorofluoromethane	< 0.001	0.001	mg/kg
				Vinyl Acetate	< 0.0051	0.0051	mg/kg
				Vinyl Chloride	< 0.001	0.001	mg/kg
	6 - 6.5	Volatile Organic	SW8260	1,1,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0011	0.0011	mg/kg
				1,1,2-Trichloroethane	< 0.0011	0.0011	mg/kg
				1,1-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,1-Dichloroethene	< 0.0011	0.0011	mg/kg
				1,1-Dichloropropene	< 0.0011	0.0011	mg/kg
				1,2,3-Trichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2,3-Trichloropropane	< 0.0011	0.0011	mg/kg
				1,2,4-Trichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2,4-Trimethylbenzene	< 0.0011	0.0011	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0057	0.0057	mg/kg
				1,2-Dibromoethane	< 0.0011	0.0011	mg/kg
				1,2-Dichlorobenzene	< 0.0011	0.0011	mg/kg
				1,2-Dichloroethane	< 0.0011	0.0011	mg/kg
				1,2-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,3,5-Trimethylbenzene	< 0.0011	0.0011	mg/kg
				1,3-Dichlorobenzene	< 0.0011	0.0011	mg/kg
				1,3-Dichloropropane	< 0.0011	0.0011	mg/kg
				1,4-Dichlorobenzene	< 0.0011	0.0011	mg/kg
				2,2-Dichloropropane	< 0.0011	0.0011	mg/kg
				2-Butanone (MEK)	< 0.0057	0.0057	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0057	0.0057	mg/kg
				2-Chlorotoluene	< 0.0011	0.0011	mg/kg
				2-Hexanone	< 0.0057	0.0057	mg/kg
				4-Chlorotoluene	< 0.0011	0.0011	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0057	0.0057	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessnent

Port Angeles, Washington Farallon PN: 1005-001

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR23	6 - 6.5	Volatile Organic	SW8260	Acetone	0.041	0.0057	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzene	< 0.0011	0.0011	mg/kg
(commuta)	(commucu)	(continued)	(commuca)	Bromobenzene	< 0.0011	0.0011	mg/kg
				Bromochloromethane	< 0.0011	0.0011	mg/kg
				Bromodichloromethane	< 0.0011	0.0011	mg/kg
				Bromoform	< 0.0011	0.0011	mg/kg
				Bromomethane	< 0.0011	0.0011	mg/kg
				Carbon Disulfide	< 0.0057	0.0057	mg/kg
				Carbon Tetrachloride	< 0.0011	0.0011	mg/kg
				Chlorobenzene	< 0.0011	0.0011	mg/kg
				Chloroethane	< 0.0057	0.0057	mg/kg
				Chloroform	< 0.0011	0.0011	mg/kg
				Chloromethane	< 0.0057	0.0057	mg/kg
				cis-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				cis-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Dibromochloromethane	< 0.0011	0.0011	mg/kg
				Dibromomethane	< 0.0011	0.0011	mg/kg
				Dichlorodifluoromethane	< 0.0011	0.0011	mg/kg
				Ethylbenzene	< 0.0011	0.0011	mg/kg
				Hexachlorobutadiene	< 0.0057	0.0057	mg/kg
				Iodomethane	< 0.0057	0.0057	mg/kg
				Isopropylbenzene	< 0.0011	0.0011	mg/kg
				m,p-Xylene	< 0.0023	0.0023	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0011	0.0011	mg/kg
				Methylene Chloride	< 0.0057	0.0057	mg/kg
				Naphthalene	< 0.0011	0.0011	mg/kg
				N-Butylbenzene	< 0.0011	0.0011	mg/kg
				N-Propylbenzene	< 0.0011	0.0011	mg/kg
				o-Xylene	< 0.0011	0.0011	mg/kg
				p-Isopropyltoluene	< 0.0011	0.0011	mg/kg
				sec-Butylbenzene	< 0.0011	0.0011	mg/kg
				Styrene	< 0.0011	0.0011	mg/kg
				tert-Butylbenzene	< 0.0011	0.0011	mg/kg
				Tetrachloroethene (PCE)	< 0.0011	0.0011	mg/kg
				Toluene	< 0.0057	0.0057	mg/kg
				Trans-1,2-Dichloroethene	< 0.0011	0.0011	mg/kg
				Trans-1,3-Dichloropropene	< 0.0011	0.0011	mg/kg
				Trichloroethene (TCE)	< 0.0011	0.0011	mg/kg
				Trichlorofluoromethane	< 0.0011	0.0011	mg/kg
				Vinyl Acetate	< 0.0057	0.0057	mg/kg
				Vinyl Chloride	< 0.0011	0.0011	mg/kg

NOTES:

Results in **bold** denote analyte was detected. See Table 7A.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

 $bgs = below \ ground \ surface$ $\mu g/kg = micrograms \ per \ kilogram$ $mg/kg = milligrams \ per \ kilogram$

${\bf Analytical\ Results\ for\ Tested\ Constituents\ in\ Groundwater}$

Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	Metals	SW6020	Arsenic (dissolved)	<3	3	ug/l
			Cadmium (dissolved)	<4	4	ug/l
			Chromium (dissolved)	<10	10	ug/l
			Lead (dissolved)	<1	1	ug/l
		SW7470A	Mercury (dissolved)	< 0.5	0.5	ug/l
	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.96	0.96	ug/l
	Compounds		1,2-Dichlorobenzene	< 0.96	0.96	ug/l
			1,2-Dinitrobenzene	< 0.96	0.96	ug/l
			1,2-Diphenylhydrazine	< 0.96	0.96	ug/l
			1,3-Dichlorobenzene	< 0.96	0.96	ug/l
			1,3-Dinitrobenzene	< 0.96	0.96	ug/l
			1,4-Dichlorobenzene	< 0.96	0.96	ug/l
			1,4-Dinitrobenzene	< 0.96	0.96	ug/l
			1-Methylnaphthalene	< 0.096	0.096	ug/l
			2,3,4,6-Tetrachlorophenol	< 0.96	0.96	ug/l
			2,3,5,6-Tetrachlorophenol	< 0.96	0.96	ug/l
			2,3-Dichloroaniline	< 0.96	0.96	ug/l
			2,4,5-Trichlorophenol	< 0.96	0.96	ug/l
			2,4,6-Trichlorophenol	< 0.96	0.96	ug/l
			2,4-Dichlorophenol	< 0.96	0.96	ug/l
			2,4-Dimethylphenol	< 0.96	0.96	ug/l
			2,4-Dinitrophenol	<4.8	4.8	ug/l
			2,4-Dinitrotoluene	< 0.96	0.96	ug/l
			2,6-Dinitrotoluene	< 0.96	0.96	ug/l
			2-Chloronaphthalene	< 0.96	0.96	ug/l
			2-Chlorophenol	< 0.96	0.96	ug/l
			2-Methylnaphthalene	< 0.096	0.096	ug/l
			2-Methylphenol (o-Cresol)	< 0.96	0.96	ug/l
			2-Nitroaniline	< 0.96	0.96	ug/l
			2-Nitrophenol	< 0.96	0.96	ug/l
			3,3`-Dichlorobenzidine	< 0.96	0.96	ug/l
			3,4-Methylphenol(m,p-Cresol)	< 0.96	0.96	ug/l
			3-Nitroaniline	< 0.96	0.96	ug/l
			4,6-Dinitro-2-Methylphenol	<4.8	4.8	ug/l
			4-Bromophenyl Phenyl Ether	< 0.96	0.96	ug/l
			4-Chloro-3-Methylphenol	< 0.96	0.96	ug/l
			4-Chloroaniline	< 0.96	0.96	ug/l
			4-Chlorophenyl Phenylether	< 0.96	0.96	ug/l
			4-Nitroaniline	< 0.96	0.96	ug/l
			4-Nitrophenol	< 0.96	0.96	ug/l
			Acenaphthene	< 0.096	0.096	ug/l
			Acenaphthylene	< 0.096	0.096	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	Semi-Volatile Organic	SW8270	Aniline	<4.8	4.8	ug/l
(continued)	Compounds	(continued)	Anthracene	< 0.096	0.096	ug/l
	(continued)		Benzidine	<4.8	4.8	ug/l
			Benzo(a)Anthracene	< 0.0096	0.0096	ug/l
			Benzo(a)Pyrene	< 0.0096	0.0096	ug/l
			Benzo(b)Fluoranthene	< 0.0096	0.0096	ug/l
			Benzo(g,h,i)Perylene	< 0.0096	0.0096	ug/l
			Benzo(j,k)Fluoranthene	< 0.0096	0.0096	ug/l
			Benzyl alcohol	< 0.96	0.96	ug/l
			Bis(2-Chloroethoxy) Methane	< 0.96	0.96	ug/l
			Bis(2-Chloroethyl) Ether	< 0.96	0.96	ug/l
			Bis(2-Chloroisopropyl)ether	< 0.96	0.96	ug/l
			Bis(2-Ethylhexyl) Phthalate	< 0.96	0.96	ug/l
			Bis-2-Ethylhexyladipate	< 0.96	0.96	ug/l
			Butyl Benzyl Phthalate	< 0.96	0.96	ug/l
			Carbazole	< 0.96	0.96	ug/l
			Chrysene	< 0.0096	0.0096	ug/l
			Dibenzo(a,h)Anthracene	< 0.0096	0.0096	ug/l
			Dibenzofuran	< 0.96	0.96	ug/l
			Diethylphthalate	< 0.96	0.96	ug/l
			Dimethylphthalate	< 0.96	0.96	ug/l
			Di-N-Butylphthalate	< 0.96	0.96	ug/l
			Di-N-Octyl Phthalate	< 0.96	0.96	ug/l
			Fluoranthene	< 0.096	0.096	ug/l
			Fluorene	< 0.096	0.096	ug/l
			Hexachlorobenzene	< 0.96	0.96	ug/l
			Hexachlorobutadiene	< 0.96	0.96	ug/l
			Hexachlorocyclopentadiene	< 0.96	0.96	ug/l
			Hexachloroethane	< 0.96	0.96	ug/l
			Indeno(1,2,3-cd)Pyrene	< 0.0096	0.0096	ug/l
			Isophorone	< 0.96	0.96	ug/l
			Naphthalene	< 0.096		ug/l
			Nitrobenzene	< 0.96	0.96	ug/l
			N-Nitrosodimethylamine	< 0.96	0.96	ug/l
			N-Nitroso-Di-N-Propylamine	< 0.96	0.96	ug/l
			N-Nitrosodiphenylamine	< 0.96	0.96	ug/l
			Pentachlorophenol	<4.8	4.8	ug/l
			Phenanthrene	< 0.096	0.096	ug/l
			Phenol	< 0.96	0.96	ug/l
			Pyrene	< 0.096	0.096	ug/l
	m · t · ·		Pyridine	<0.96	0.96	ug/l
	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.42	0.42	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l

${\bf Analytical\ Results\ for\ Tested\ Constituents\ in\ Groundwater}$

Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR11	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.2	0.2	ug/l
(continued)	Compounds		1,1,1-Trichloroethane	< 0.2	0.2	ug/l
			1,1,2,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,2-Trichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethene	< 0.2	0.2	ug/l
			1,1-Dichloropropene	< 0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
			1,3-Dichlorobenzene	< 0.2	0.2	ug/l
			1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	< 0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
			Acetone	13	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l
			Carbon Disulfide	< 0.2	0.2	ug/l
			Carbon Tetrachloride	< 0.2	0.2	ug/l
			Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	0.53	0.2	ug/l
			Chloromethane	<1	1	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessment

Location	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR11	Volatile Organic	SW8260	cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
	(continued)		Dibromochloromethane	< 0.2	0.2	ug/l
	, , , ,		Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	0.26	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l
			tert-Butylbenzene	< 0.2	0.2	ug/l
			Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
			Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l
FAR12	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.27	0.27	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.42	0.42	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	EPA8021	Benzene	<1	1	ug/l
	Compounds		Ethylbenzene	<1	1	ug/l
			m,p-Xylene	<1	1	ug/l
			o-Xylene	<1	1	ug/l
			Toluene	<1	1	ug/l

${\bf Analytical\ Results\ for\ Tested\ Constituents\ in\ Groundwater}$

Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
PZ12	Metals	SW6020	Arsenic (dissolved)	<3	3	ug/l
			Cadmium (dissolved)	<4	4	ug/l
			Chromium (dissolved)	<10	10	ug/l
			Lead (dissolved)	<1	1	ug/l
		SW7470A	Mercury (dissolved)	< 0.5	0.5	ug/l
	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.41	0.41	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.2	0.2	ug/l
	Compounds		1,1,1-Trichloroethane	< 0.2	0.2	ug/l
			1,1,2,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,2-Trichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethene	< 0.2	0.2	ug/l
			1,1-Dichloropropene	< 0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
			1,3-Dichlorobenzene	< 0.2	0.2	ug/l
			1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	< 0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 8

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
PZ12	Volatile Organic	SW8260	4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
(continued)	Compounds	(continued)	Acetone	<5	5	ug/l
	(continued)		Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l
			Carbon Disulfide	< 0.2	0.2	ug/l
			Carbon Tetrachloride	< 0.2	0.2	ug/l
			Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l
			cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
			cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l
			tert-Butylbenzene	< 0.2	0.2	ug/l
			Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
			Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l

NOTES:

Results in **bold** denote analyte was detected. See Table 7B.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

 \leq denotes analyte not detected at or above the laboratory reporting limit listed.

 μ g/l = micrograms per liter mg/l = milligrams per liter

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR13	2.5 - 3	Metals	SW6010B	Arsenic	<11	11	mg/kg
				Cadmium	< 0.55	0.55	mg/kg
				Chromium	32	0.55	mg/kg
				Lead	8.2	5.5	mg/kg
			SW7471A	Mercury	< 0.27	0.27	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.036	0.036	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.036	0.036	mg/kg
				1,2-Dinitrobenzene	< 0.036	0.036	mg/kg
				1,2-Diphenylhydrazine	< 0.036	0.036	mg/kg
				1,3-Dichlorobenzene	< 0.036	0.036	mg/kg
				1,3-Dinitrobenzene	< 0.036	0.036	mg/kg
				1,4-Dichlorobenzene	< 0.036	0.036	mg/kg
				1,4-Dinitrobenzene	< 0.036	0.036	mg/kg
				1-Methylnaphthalene	< 0.0073	0.0073	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.036	0.036	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.036	0.036	mg/kg
				2,3-Dichloroaniline	< 0.036	0.036	mg/kg
				2,4,5-Trichlorophenol	< 0.036	0.036	mg/kg
				2,4,6-Trichlorophenol	< 0.036	0.036	mg/kg
				2,4-Dichlorophenol	< 0.036	0.036	mg/kg
				2,4-Dimethylphenol	< 0.36	0.36	mg/kg
				2,4-Dinitrophenol	< 0.18	0.18	mg/kg
				2,4-Dinitrotoluene	< 0.036	0.036	mg/kg
				2,6-Dinitrotoluene	< 0.036	0.036	mg/kg
				2-Chloronaphthalene	< 0.036	0.036	mg/kg
				2-Chlorophenol	< 0.036	0.036	mg/kg
				2-Methylnaphthalene	< 0.0073	0.0073	mg/kg
				2-Methylphenol (o-Cresol)	< 0.036	0.036	mg/kg
				2-Nitroaniline	<0.036	0.036	mg/kg
				2-Nitrophenol	<0.036	0.036	mg/kg
				3,3'-Dichlorobenzidine	<0.36	0.36	mg/kg
				3,4-Methylphenol(m,p-Cresol) 3-Nitroaniline	<0.036 <0.036	0.036 0.036	mg/kg
				4,6-Dinitro-2-Methylphenol	<0.036	0.036	mg/kg
				4-Bromophenyl Phenyl Ether	<0.18	0.18	mg/kg
				4-Chloro-3-Methylphenol	< 0.036	0.036	mg/kg mg/kg
				4-Chloroaniline	<0.036	0.036	mg/kg
				4-Chlorophenyl Phenylether	< 0.036	0.036	mg/kg
				4-Nitroaniline	< 0.036	0.036	mg/kg
				4-Nitrophenol	<0.036	0.036	mg/kg
				Acenaphthene	< 0.0073	0.0073	mg/kg
				Acenaphthylene	< 0.0073	0.0073	mg/kg
				Aniline	< 0.036	0.036	mg/kg
				Anthracene	< 0.0073	0.0073	mg/kg
				Benzidine	< 0.36	0.36	mg/kg
				Benzo(a)Anthracene	< 0.0073	0.0073	mg/kg
				Benzo(a)Pyrene	< 0.0073	0.0073	mg/kg
				Benzo(B)Fluoranthene	< 0.0073	0.0073	mg/kg
				Benzo(g,h,i)Perylene	< 0.0073	0.0073	mg/kg
				Benzo(j,k)Fluoranthene	< 0.0073	0.0073	mg/kg
				Benzyl alcohol	< 0.036	0.036	mg/kg

Table C-5A Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR13	2.5 - 3	Semi-Volatile Organic	SW8270	Bis(2-Chloroethoxy) Methane	< 0.036	0.036	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroethyl) Ether	< 0.036	0.036	mg/kg
		(continued)		Bis(2-Chloroisopropyl)ether	< 0.036	0.036	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.036	0.036	mg/kg
				Bis-2-Ethylhexyladipate	< 0.036	0.036	mg/kg
				Butyl Benzyl Phthalate	< 0.36	0.36	mg/kg
				Carbazole	< 0.036	0.036	mg/kg
				Chrysene	< 0.0073	0.0073	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0073	0.0073	mg/kg
				Dibenzofuran	< 0.036	0.036	mg/kg
				Diethylphthalate	< 0.18	0.18	mg/kg
				Dimethylphthalate	< 0.036	0.036	mg/kg
				Di-N-Butylphthalate	< 0.36	0.36	mg/kg
				Di-N-Octyl Phthalate	< 0.036	0.036	mg/kg
				Fluoranthene	0.0087	0.0073	mg/kg
				Fluorene	< 0.0073	0.0073	mg/kg
				Hexachlorobenzene	< 0.036	0.036	mg/kg
				Hexachlorobutadiene	< 0.036	0.036	mg/kg
				Hexachlorocyclopentadiene	< 0.036	0.036	mg/kg
				Hexachloroethane	< 0.036	0.036	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0073	0.0073	mg/kg
				Isophorone	< 0.036	0.036	mg/kg
				Naphthalene	< 0.0073	0.0073	mg/kg
				Nitrobenzene	< 0.036	0.036	mg/kg
				N-Nitrosodimethylamine	< 0.036	0.036	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.036	0.036	mg/kg
				N-Nitrosodiphenylamine	< 0.036	0.036	mg/kg
				Pentachlorophenol	< 0.18	0.18	mg/kg
				Phenanthrene	< 0.0073	0.0073	mg/kg
				Phenol	< 0.036	0.036	mg/kg
				Pyrene	0.0082	0.0073	mg/kg
				Pyridine	< 0.36	0.36	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<27	27	mg/kg
		Hydrocarbons		Lube Oil	55	55	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<6	6	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.06	0.06	mg/kg
				m,p-Xylene	< 0.06	0.06	mg/kg
				o-Xylene	< 0.06	0.06	mg/kg
				Toluene	< 0.06	0.06	mg/kg
	6 - 6.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<34	34	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<68	68	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR14	3.5 - 4	Metals	SW6010B	Arsenic	<11	11	mg/kg
				Cadmium	< 0.53	0.53	mg/kg
				Chromium	25	0.53	mg/kg
				Lead	< 5.3	5.3	mg/kg
			SW7471A	Mercury	< 0.27	0.27	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<27	27	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<53	53	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 6.5	6.5	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.065	0.065	mg/kg
				m,p-Xylene	< 0.065	0.065	mg/kg
				o-Xylene	< 0.065	0.065	mg/kg
				Toluene	< 0.065	0.065	mg/kg
FAR15	2.5 - 3	Metals	SW6010B	Arsenic	<12	12	mg/kg
				Cadmium	< 0.58	0.58	mg/kg
				Chromium	37	0.58	mg/kg
				Lead	8.6	5.8	mg/kg
			SW7471A	Mercury	< 0.29	0.29	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12	12	ug/kg
				4,4'-DDE	<12	12	ug/kg
				4,4'-DDT	<12	12	ug/kg
				Aldrin	< 5.8	5.8	ug/kg
				Alpha-Bhc	< 5.8	5.8	ug/kg
				Alpha-Chlordane	<12	12	ug/kg
				Beta-Bhc	< 5.8	5.8	ug/kg
				Delta-Bhc	< 5.8	5.8	ug/kg
				Dieldrin	<12	12	ug/kg
				Endosulfan I	< 5.8	5.8	ug/kg
				Endosulfan II	<12	12	ug/kg
				Endosulfan Sulfate	<12	12	ug/kg
				Endrin	<12	12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone	<12	12	ug/kg
				Gamma-Bhc (Lindane)	< 5.8	5.8	ug/kg
				Gamma-Chlordane	<12	12	ug/kg
				Heptachlor	< 5.8	5.8	ug/kg
				Heptachlor Epoxide	< 5.8	5.8	ug/kg
				Methoxychlor	<12	12	ug/kg
				Toxaphene	<58	58	ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.058	0.058	mg/kg
		Biphenyls		Aroclor 1221	< 0.058	0.058	mg/kg
				Aroclor 1232	< 0.058	0.058	mg/kg
				Aroclor 1242	< 0.058	0.058	mg/kg
				Aroclor 1248	< 0.058	0.058	mg/kg
				Aroclor 1254	< 0.058	0.058	mg/kg
				Aroclor 1260	< 0.058	0.058	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR15	2.5 - 3	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	<0.039	0.039	mg/kg
(continued)	(continued)	Compounds	5110270	1,2-Dichlorobenzene	< 0.039	0.039	mg/kg
(continued)	(continued)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1,2-Dinitrobenzene	< 0.039	0.039	mg/kg
				1,2-Diphenylhydrazine	< 0.039	0.039	mg/kg
				1,3-Dichlorobenzene	< 0.039	0.039	mg/kg
				1,3-Dinitrobenzene	< 0.039	0.039	mg/kg
				1,4-Dichlorobenzene	< 0.039	0.039	mg/kg
				1,4-Dinitrobenzene	< 0.039	0.039	mg/kg
				1-Methylnaphthalene	< 0.0078	0.0078	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.039	0.039	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.039	0.039	mg/kg
				2,3-Dichloroaniline	< 0.039	0.039	mg/kg
				2,4,5-Trichlorophenol	< 0.039	0.039	mg/kg
				2,4,6-Trichlorophenol	< 0.039	0.039	mg/kg
				2,4-Dichlorophenol	< 0.039	0.039	mg/kg
				2,4-Dimethylphenol	< 0.39	0.39	mg/kg
				2,4-Dinitrophenol	< 0.19	0.19	mg/kg
				2,4-Dinitrotoluene	< 0.039	0.039	mg/kg
				2,6-Dinitrotoluene	< 0.039	0.039	mg/kg
				2-Chloronaphthalene	< 0.039	0.039	mg/kg
				2-Chlorophenol	< 0.039	0.039	mg/kg
				2-Methylnaphthalene	< 0.0078	0.0078	mg/kg
				2-Methylphenol (o-Cresol)	< 0.039	0.039	mg/kg
				2-Nitroaniline	< 0.039	0.039	mg/kg
				2-Nitrophenol	< 0.039	0.039	mg/kg
				3,3`-Dichlorobenzidine	< 0.39	0.39	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.039	0.039	mg/kg
				3-Nitroaniline	< 0.039	0.039	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.19	0.19	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.039	0.039	mg/kg
				4-Chloro-3-Methylphenol	< 0.039	0.039	mg/kg
				4-Chloroaniline	< 0.039	0.039	mg/kg
				4-Chlorophenyl Phenylether	< 0.039	0.039	mg/kg
				4-Nitroaniline	< 0.039	0.039	mg/kg
				4-Nitrophenol	< 0.039	0.039	mg/kg
				Acenaphthene	0.013	0.0078	mg/kg
				Acenaphthylene	0.014	0.0078	mg/kg
				Aniline	< 0.039	0.039	mg/kg
				Anthracene	0.067	0.039	mg/kg
				Benzidine	< 0.39	0.39	mg/kg
				Benzo(a)Anthracene	0.14	0.039	mg/kg
				Benzo(a)Pyrene	0.18	0.039	mg/kg
				Benzo(B)Fluoranthene	0.17	0.039	mg/kg
				Benzo(g,h,i)Perylene	0.14	0.039	mg/kg
				Benzo(j,k)Fluoranthene	0.17	0.039	mg/kg
				Benzyl alcohol	< 0.039	0.039	mg/kg
,				Bis(2-Chloroethoxy) Methane	< 0.039	0.039	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.039	0.039	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.039	0.039	mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.11	0.039	mg/kg
				Bis-2-Ethylhexyladipate	< 0.039	0.039	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR15	2.5 - 3	Semi-Volatile Organic	SW8270	Butyl Benzyl Phthalate	<0.39	0.39	mg/kg
(continued)	(continued)	Compounds	(continued)	Carbazole	<0.039	0.039	mg/kg
(continued)	(continued)	(continued)	(continued)	Chrysene	0.22	0.039	mg/kg
		(continued)		Dibenzo(a,h)Anthracene	0.044	0.039	mg/kg
				Dibenzofuran	< 0.039	0.039	mg/kg
				Diethylphthalate	< 0.19	0.19	mg/kg
				Dimethylphthalate	< 0.039	0.039	mg/kg
				Di-N-Butylphthalate	< 0.39	0.39	mg/kg
				Di-N-Octyl Phthalate	< 0.039	0.039	mg/kg
				Fluoranthene	0.45	0.039	mg/kg
				Fluorene	0.014	0.0078	mg/kg
				Hexachlorobenzene	< 0.039	0.039	mg/kg
				Hexachlorobutadiene	< 0.039	0.039	mg/kg
				Hexachlorocyclopentadiene	< 0.039	0.039	mg/kg
				Hexachloroethane	< 0.039	0.039	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.13	0.039	mg/kg
				Isophorone	< 0.039	0.039	mg/kg
				Naphthalene	< 0.0078	0.0078	mg/kg
				Nitrobenzene	< 0.039	0.039	mg/kg
				N-Nitrosodimethylamine	< 0.039	0.039	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.039	0.039	mg/kg
				N-Nitrosodiphenylamine	< 0.039	0.039	mg/kg
				Pentachlorophenol	< 0.19	0.19	mg/kg
				Phenanthrene	0.21	0.039	mg/kg
				Phenol	< 0.039	0.039	mg/kg
				Pyrene	0.35	0.039	mg/kg
				Pyridine	< 0.39	0.39	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<29	29	mg/kg
		Hydrocarbons	NAME OF THE OWN	Heavy Oil-Range Organics	<58	58	mg/kg
		77.1.11.0	NWTPH-GX	Gasoline-Range Organics	<12	12	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	<0.0012	0.0012	mg/kg
		Compounds		1,1,1-Trichloroethane	<0.0012	0.0012	mg/kg
				1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	<0.0012 <0.0012	0.0012 0.0012	mg/kg
				1,1-Dichloroethane			mg/kg
				1,1-Dichloroethane 1.1-Dichloroethene	<0.0012 <0.0012	0.0012 0.0012	mg/kg mg/kg
				1,1-Dichloropropene	< 0.0012	0.0012	mg/kg
				1,2,3-Trichlorobenzene	< 0.0012	0.0012	
				1,2,3-Trichloropropane	< 0.0012	0.0012	mg/kg mg/kg
				1,2,4-Trichlorobenzene	< 0.0012	0.0012	mg/kg mg/kg
				1,2,4-Trientorobenzene	< 0.0012	0.0012	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0012	0.0012	mg/kg
				1,2-Dibromoethane	< 0.0012	0.0012	mg/kg
				1,2-Dichlorobenzene	< 0.0012	0.0012	mg/kg
				1,2-Dichloroethane	< 0.0012	0.0012	mg/kg
				1,2-Dichloropropane	< 0.0012	0.0012	mg/kg
				1,3,5-Trimethylbenzene	< 0.0012	0.0012	mg/kg
				1,3-Dichlorobenzene	< 0.0012	0.0012	mg/kg
				1,3-Dichloropropane	< 0.0012	0.0012	mg/kg
				1,4-Dichlorobenzene	< 0.0012	0.0012	mg/kg
				2,2-Dichloropropane	< 0.0012	0.0012	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						D	
	Donth Dones		Amalutical			Practical	Unit of
Location	Depth Range	A nalvita Trina	Analytical Method	Analyte	Result	Quantitation Limit	Measure
FAR15	(feet bgs) 2.5 - 3	Analyte Type Volatile Organic	SW8260	2-Butanone (MEK)	<0.0058	0.0058	
(continued)	(continued)	Compounds	(continued)	2-Chloroethyl Vinyl Ether	<0.0058	0.0058	mg/kg
(continued)	(continued)	(continued)	(continued)	2-Chlorotoluene	<0.0038	0.0038	mg/kg
		(continued)		2-Hexanone	<0.0012	0.0012	mg/kg mg/kg
				4-Chlorotoluene	< 0.0038	0.0038	mg/kg
				4-Methyl-2-Pentanone (MIBK)	<0.0012	0.0012	mg/kg
				Acetone	0.0038	0.0058 0.0058	mg/kg
				Benzene	< 0.0012	0.0038	mg/kg
				Bromobenzene	< 0.0012	0.0012	
				Bromochloromethane		0.0012	mg/kg
				Bromodichloromethane	<0.0012 <0.0012	0.0012	mg/kg
				Bromoform	<0.0012	0.0012	mg/kg
				Bromomethane	<0.0012	0.0012	mg/kg
				Carbon Disulfide	<0.0012	0.0012	mg/kg
				Carbon Tetrachloride	<0.0038		mg/kg
				Chlorobenzene	<0.0012	0.0012 0.0012	mg/kg
				Chloroethane	<0.0012	0.0012	mg/kg mg/kg
				Chloroform	<0.0038	0.0038	
				Chloromethane	<0.0012	0.0012	mg/kg mg/kg
				cis-1,2-Dichloroethene	< 0.0038	0.0038	
				cis-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg mg/kg
				Dibromochloromethane	< 0.0012	0.0012	mg/kg
				Dibromomethane	< 0.0012	0.0012	mg/kg
				Dichlorodifluoromethane	<0.0012	0.0012	mg/kg
				Ethylbenzene	<0.0012	0.0012	mg/kg
				Hexachlorobutadiene	<0.0012	0.0012	mg/kg
				Iodomethane	<0.0058	0.0058	mg/kg
				Isopropylbenzene	< 0.0038	0.0038	mg/kg
				m,p-Xylene	< 0.0012	0.0012	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0023	0.0023	mg/kg
				Methylene Chloride	< 0.0012	0.0012	mg/kg
				Naphthalene	< 0.0038	0.0038	mg/kg
				N-Butylbenzene	<0.0012	0.0012	mg/kg
				N-Propylbenzene	<0.0012	0.0012	mg/kg
				o-Xylene	< 0.0012	0.0012	mg/kg
				p-Isopropyltoluene	< 0.0012	0.0012	mg/kg
				sec-Butylbenzene	< 0.0012	0.0012	mg/kg
				g.	< 0.0012	0.0012	mg/kg
				Styrene tert-Butylbenzene	< 0.0012		mg/kg
				Tetrachloroethene (PCE)	< 0.0012	0.0012	mg/kg
				Toluene	< 0.0012	0.0012	mg/kg
				Trans-1,2-Dichloroethene	< 0.0038	0.0038	mg/kg
				Trans-1,3-Dichloropropene	< 0.0012	0.0012	mg/kg
				Trichloroethene (TCE)	< 0.0012	0.0012	mg/kg
				Trichlorofluoromethane	< 0.0012	0.0012	mg/kg
				Vinyl Acetate	< 0.0012		mg/kg
				Vinyl Chloride			
				Vinyl Chloride	< 0.0012	0.0012	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR15	11 - 11.5	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	<0.036	0.036	mg/kg
(continued)	11 - 11.5	Compounds	5 W 6270	1,2-Dichlorobenzene	< 0.036	0.036	mg/kg
(continued)		Compounds		1,2-Dinitrobenzene	< 0.036	0.036	mg/kg
				1,2-Diphenylhydrazine	< 0.036	0.036	mg/kg
				1,3-Dichlorobenzene	< 0.036	0.036	mg/kg
				1,3-Dinitrobenzene	< 0.036	0.036	mg/kg
				1,4-Dichlorobenzene	< 0.036	0.036	mg/kg
				1,4-Dinitrobenzene	< 0.036	0.036	mg/kg
				1-Methylnaphthalene	< 0.0072	0.0072	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.036	0.036	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.036	0.036	mg/kg
				2,3-Dichloroaniline	< 0.036	0.036	mg/kg
				2,4,5-Trichlorophenol	< 0.036	0.036	mg/kg
				2,4,6-Trichlorophenol	< 0.036	0.036	mg/kg
				2,4-Dichlorophenol	< 0.036	0.036	mg/kg
				2,4-Dimethylphenol	< 0.36	0.36	mg/kg
				2,4-Dinitrophenol	< 0.18	0.18	mg/kg
				2,4-Dinitrotoluene	< 0.036	0.036	mg/kg
				2,6-Dinitrotoluene	< 0.036	0.036	mg/kg
				2-Chloronaphthalene	< 0.036	0.036	mg/kg
				2-Chlorophenol	< 0.036	0.036	mg/kg
				2-Methylnaphthalene	< 0.0072	0.0072	mg/kg
				2-Methylphenol (o-Cresol)	< 0.036	0.036	mg/kg
				2-Nitroaniline	< 0.036	0.036	mg/kg
				2-Nitrophenol	< 0.036	0.036	mg/kg
				3,3`-Dichlorobenzidine	< 0.36	0.36	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.036	0.036	mg/kg
				3-Nitroaniline	< 0.036	0.036	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.18	0.18	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.036	0.036	mg/kg
				4-Chloro-3-Methylphenol	< 0.036	0.036	mg/kg
				4-Chloroaniline	< 0.036	0.036	mg/kg
				4-Chlorophenyl Phenylether	< 0.036	0.036	mg/kg
				4-Nitroaniline	< 0.036	0.036	mg/kg
				4-Nitrophenol	< 0.036	0.036	mg/kg
				Acenaphthene	< 0.0072	0.0072	mg/kg
				Acenaphthylene	0.015	0.0072	mg/kg
				Aniline	< 0.036	0.036	mg/kg
				Anthracene	0.034	0.0072	mg/kg
				Benzidine	< 0.36	0.36	mg/kg
				Benzo(a)Anthracene	0.075	0.036	mg/kg
				Benzo(a)Pyrene	0.11	0.036	mg/kg
				Benzo(B)Fluoranthene	0.16	0.036	mg/kg
				Benzo(g,h,i)Perylene	0.067	0.036	mg/kg
				Benzo(j,k)Fluoranthene	0.1	0.036	mg/kg
				Benzyl alcohol	< 0.036	0.036	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.036	0.036	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.036	0.036	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.036	0.036	mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.059	0.036	mg/kg
				Bis-2-Ethylhexyladipate	< 0.036	0.036	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR15	11 - 11.5	Semi-Volatile Organic	SW8270	Butyl Benzyl Phthalate	< 0.36	0.36	mg/kg
(continued)	(continued)	Compounds	(continued)	Carbazole	< 0.036	0.036	mg/kg
		(continued)		Chrysene	0.22	0.036	mg/kg
				Dibenzo(a,h)Anthracene	0.024	0.0072	mg/kg
				Dibenzofuran	< 0.036	0.036	mg/kg
				Diethylphthalate	< 0.18	0.18	mg/kg
				Dimethylphthalate	< 0.036	0.036	mg/kg
				Di-N-Butylphthalate	< 0.36	0.36	mg/kg
				Di-N-Octyl Phthalate	< 0.036	0.036	mg/kg
				Fluoranthene	0.2	0.036	mg/kg
				Fluorene	0.0072	0.0072	mg/kg
				Hexachlorobenzene	< 0.036	0.036	mg/kg
				Hexachlorobutadiene	< 0.036	0.036	mg/kg
				Hexachlorocyclopentadiene	< 0.036	0.036	mg/kg
				Hexachloroethane	< 0.036	0.036	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.064	0.036	mg/kg
				Isophorone	< 0.036	0.036	mg/kg
				Naphthalene	< 0.0072	0.0072	mg/kg
				Nitrobenzene	< 0.036	0.036	mg/kg
				N-Nitrosodimethylamine	< 0.036	0.036	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.036	0.036	mg/kg
				N-Nitrosodiphenylamine	< 0.036	0.036	mg/kg
				Pentachlorophenol	0.47	0.18	mg/kg
				Phenanthrene	0.074	0.036	mg/kg
				Phenol	< 0.036	0.036	mg/kg
				Pyrene	0.19	0.036	mg/kg
				Pyridine	< 0.36	0.36	mg/kg
FAR16	2.5 - 3	Metals	SW6010B	Arsenic	<11	11	mg/kg
				Cadmium	< 0.54	0.54	mg/kg
				Chromium	41	0.54	mg/kg
		_		Lead	7.6	5.4	mg/kg
			SW7471A	Mercury	< 0.27	0.27	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<27	27	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<54	54	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 5.7	5.7	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.057	0.057	mg/kg
				m,p-Xylene	< 0.057	0.057	mg/kg
				o-Xylene	< 0.057	0.057	mg/kg
				Toluene	< 0.057	0.057	mg/kg

Table C-5A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR18	0.5 - 1	Metals	SW6010B	Arsenic	<13	13	mg/kg
				Cadmium	< 0.67	0.67	mg/kg
				Chromium	55	0.67	mg/kg
				Lead	13	6.7	mg/kg
			SW7471A	Mercury	< 0.34	0.34	mg/kg
		Pesticides	SW8081	4,4'-DDD	<13	13	ug/kg
				4,4'-DDE	<13	13	ug/kg
				4,4'-DDT	<13	13	ug/kg
				Aldrin	< 6.7	6.7	ug/kg
				Alpha-Bhc	< 6.7	6.7	ug/kg
				Alpha-Chlordane	<13	13	ug/kg
				Beta-Bhc	< 6.7	6.7	ug/kg
				Delta-Bhc	< 6.7	6.7	ug/kg
				Dieldrin	<13	13	ug/kg
				Endosulfan I	< 6.7	6.7	ug/kg
				Endosulfan II	<13	13	ug/kg
				Endosulfan Sulfate	<13	13	ug/kg
				Endrin	<13	13	ug/kg
				Endrin Aldehyde	<13	13	ug/kg
				Endrin Ketone	<13	13	ug/kg
				Gamma-Bhc (Lindane)	< 6.7	6.7	ug/kg
				Gamma-Chlordane	<13	13	ug/kg
				Heptachlor	< 6.7	6.7	ug/kg
				Heptachlor Epoxide	< 6.7	6.7	ug/kg
				Methoxychlor	<13	13	ug/kg
				Toxaphene	<67	67	ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.067	0.067	mg/kg
		Biphenyls		Aroclor 1221	< 0.067	0.067	mg/kg
				Aroclor 1232	< 0.067	0.067	mg/kg
				Aroclor 1242	< 0.067	0.067	mg/kg
				Aroclor 1248	< 0.067	0.067	mg/kg
				Aroclor 1254	< 0.067	0.067	mg/kg
				Aroclor 1260	0.12	0.067	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	<1.1	1.1	mg/kg
		Compounds		1,2-Dichlorobenzene	<1.1	1.1	mg/kg
				1,2-Dinitrobenzene	<1.1	1.1	mg/kg
				1,2-Diphenylhydrazine	<1.1	1.1	mg/kg
				1,3-Dichlorobenzene	<1.1	1.1	mg/kg
				1,3-Dinitrobenzene	<1.1	1.1	mg/kg
				1,4-Dichlorobenzene	<1.1	1.1	mg/kg
				1,4-Dinitrobenzene	<1.1	1.1	mg/kg
				1-Methylnaphthalene	< 0.045	0.045	mg/kg
				2,3,4,6-Tetrachlorophenol	<1.1	1.1	mg/kg
				2,3,5,6-Tetrachlorophenol	<1.1	1.1	mg/kg
				2,3-Dichloroaniline	<1.1	1.1	mg/kg
				2,4,5-Trichlorophenol	<1.1	1.1	mg/kg
	<u> </u>			2,4,6-Trichlorophenol	<1.1	1.1	mg/kg

Table C-5A Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR18	0.5 - 1	Semi-Volatile Organic	SW8270	2,4-Dichlorophenol	<1.1	1.1	mg/kg
(continued)	(continued)	Compounds	(continued)	2,4-Dimethylphenol	<11	11	mg/kg
	,	(continued)	,	2,4-Dinitrophenol	< 5.6	5.6	mg/kg
		, , ,		2,4-Dinitrotoluene	<1.1	1.1	mg/kg
				2,6-Dinitrotoluene	<1.1	1.1	mg/kg
				2-Chloronaphthalene	<1.1	1.1	mg/kg
				2-Chlorophenol	<1.1	1.1	mg/kg
				2-Methylnaphthalene	0.055	0.045	mg/kg
				2-Methylphenol (o-Cresol)	<1.1	1.1	mg/kg
				2-Nitroaniline	<1.1	1.1	mg/kg
				2-Nitrophenol	<1.1	1.1	mg/kg
				3,3'-Dichlorobenzidine	<11	11	mg/kg
				3,4-Methylphenol(m,p-Cresol)	<1.1	1.1	mg/kg
				3-Nitroaniline	<1.1	1.1	mg/kg
				4,6-Dinitro-2-Methylphenol	< 5.6	5.6	mg/kg
				4-Bromophenyl Phenyl Ether	<1.1	1.1	mg/kg
				4-Chloro-3-Methylphenol	<1.1	1.1	mg/kg
				4-Chloroaniline	<1.1	1.1	mg/kg
				4-Chlorophenyl Phenylether	<1.1	1.1	mg/kg
				4-Nitroaniline	<1.1	1.1	mg/kg
				4-Nitrophenol	<1.1	1.1	mg/kg
				Acenaphthene	0.17	0.045	mg/kg
				Acenaphthylene	0.14	0.045	mg/kg
				Aniline	<1.1	1.1	mg/kg
				Anthracene	0.58	0.045	mg/kg
				Benzidine	<11	11	mg/kg
				Benzo(a)Anthracene	5.8	1.1	mg/kg
				Benzo(a)Pyrene	7.1	1.1	mg/kg
				Benzo(B)Fluoranthene	7.5	1.1	mg/kg
				Benzo(g,h,i)Perylene	4.6	1.1	mg/kg
				Benzo(j,k)Fluoranthene	7.2	1.1	mg/kg
				Benzyl alcohol	<1.1	1.1	mg/kg
				Bis(2-Chloroethoxy) Methane	<1.1	1.1	mg/kg
				Bis(2-Chloroethyl) Ether	<1.1	1.1	mg/kg
				Bis(2-Chloroisopropyl)ether	<1.1	1.1	mg/kg
				Bis(2-Ethylhexyl) Phthalate	<1.1	1.1	mg/kg
				Bis-2-Ethylhexyladipate	<1.1	1.1	mg/kg

Table C-5A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR18	0.5 - 1	Semi-Volatile Organic	SW8270	Butyl Benzyl Phthalate	<11	11	mg/kg
(continued)	(continued)	Compounds	(continued)	Carbazole	<1.1	1.1	mg/kg
(((continued)	(Chrysene	7.4	1.1	mg/kg
		,		Dibenzo(a,h)Anthracene	1.9	1.1	mg/kg
				Dibenzofuran	<1.1	1.1	mg/kg
				Diethylphthalate	< 5.6	5.6	mg/kg
				Dimethylphthalate	<1.1	1.1	mg/kg
				Di-N-Butylphthalate	<11	11	mg/kg
				Di-N-Octyl Phthalate	<1.1	1.1	mg/kg
				Fluoranthene	7.3	1.1	mg/kg
				Fluorene	0.32	0.045	mg/kg
				Hexachlorobenzene	<1.1	1.1	mg/kg
				Hexachlorobutadiene	<1.1	1.1	mg/kg
				Hexachlorocyclopentadiene	<1.1	1.1	mg/kg
				Hexachloroethane	<1.1	1.1	mg/kg
				Indeno(1,2,3-cd)Pyrene	5.4	1.1	mg/kg
				Isophorone	<1.1	1.1	mg/kg
				Naphthalene	0.091	0.045	mg/kg
				Nitrobenzene	<1.1	1.1	mg/kg
				N-Nitrosodimethylamine	<1.1	1.1	mg/kg
				N-Nitroso-Di-N-Propylamine	<1.1	1.1	mg/kg
				N-Nitrosodiphenylamine	<1.1	1.1	mg/kg
				Pentachlorophenol	< 5.6	5.6	mg/kg
				Phenanthrene	2	1.1	mg/kg
				Phenol	<1.1	1.1	mg/kg
				Pyrene	6.8	1.1	mg/kg
				Pyridine	<11	11	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	230	170	mg/kg
		Hydrocarbons		Lube Oil	2700	340	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 9.2	9.2	mg/kg
		Volatile Organic	EPA8021	Benzene	< 0.02	0.02	mg/kg
		Compounds		Ethylbenzene	< 0.092	0.092	mg/kg
				m,p-Xylene	< 0.092	0.092	mg/kg
				o-Xylene	< 0.092	0.092	mg/kg
				Toluene	0.17	0.092	mg/kg

Table C-5A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR19	0.5 - 1	Metals	SW6010B	Arsenic	<12	12	mg/kg
			2	Cadmium	< 0.59	0.59	mg/kg
				Chromium	55	0.59	mg/kg
				Lead	10	5.9	mg/kg
			SW7471A	Mercury	< 0.29	0.29	mg/kg
		Pesticides	SW8081	4,4'-DDD	<12	12	ug/kg
				4,4'-DDE	<12	12	ug/kg
				4,4'-DDT	<12	12	ug/kg
				Aldrin	< 5.9	5.9	ug/kg
				Alpha-Bhc	< 5.9	5.9	ug/kg
				Alpha-Chlordane	<12	12	ug/kg
				Beta-Bhc	< 5.9	5.9	ug/kg
				Delta-Bhc	< 5.9	5.9	ug/kg
				Dieldrin	<12	12	ug/kg
				Endosulfan I	< 5.9	5.9	ug/kg
				Endosulfan II	<12	12	ug/kg
				Endosulfan Sulfate	<12	12	ug/kg
				Endrin	<12	12	ug/kg
				Endrin Aldehyde	<12	12	ug/kg
				Endrin Ketone	<12	12	ug/kg
				Gamma-Bhc (Lindane)	< 5.9	5.9	ug/kg
				Gamma-Chlordane	<12	12	ug/kg
				Heptachlor	< 5.9	5.9	ug/kg
				Heptachlor Epoxide	< 5.9	5.9	ug/kg
				Methoxychlor	<12	12	ug/kg
				Toxaphene	< 59	59	ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.059	0.059	mg/kg
		Biphenyls		Aroclor 1221	< 0.059	0.059	mg/kg
				Aroclor 1232	< 0.059	0.059	mg/kg
				Aroclor 1242	< 0.059	0.059	mg/kg
				Aroclor 1248	< 0.059	0.059	mg/kg
				Aroclor 1254	< 0.059	0.059	mg/kg
				Aroclor 1260	< 0.059	0.059	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.98	0.98	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.98	0.98	mg/kg
				1,2-Dinitrobenzene	< 0.98	0.98	mg/kg
				1,2-Diphenylhydrazine	< 0.98	0.98	mg/kg
				1,3-Dichlorobenzene	< 0.98	0.98	mg/kg
				1,3-Dinitrobenzene	< 0.98	0.98	mg/kg
				1,4-Dichlorobenzene	< 0.98	0.98	mg/kg
				1,4-Dinitrobenzene	< 0.98	0.98	mg/kg
				1-Methylnaphthalene	< 0.039	0.039	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.98	0.98	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.98	0.98	mg/kg
				2,3-Dichloroaniline	< 0.98	0.98	mg/kg
				2,4,5-Trichlorophenol	< 0.98	0.98	mg/kg
				2,4,6-Trichlorophenol	< 0.98	0.98	mg/kg

Table C-5A Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR19	0.5 - 1	Semi-Volatile Organic	SW8270	2,4-Dichlorophenol	< 0.98	0.98	mg/kg
(continued)	(continued)	Compounds	(continued)	2,4-Dimethylphenol	<9.8	9.8	mg/kg
		(continued)		2,4-Dinitrophenol	<4.9	4.9	mg/kg
				2,4-Dinitrotoluene	< 0.98	0.98	mg/kg
				2,6-Dinitrotoluene	< 0.98	0.98	mg/kg
				2-Chloronaphthalene	< 0.98	0.98	mg/kg
				2-Chlorophenol	< 0.98	0.98	mg/kg
				2-Methylnaphthalene	< 0.039	0.039	mg/kg
				2-Methylphenol (o-Cresol)	< 0.98	0.98	mg/kg
				2-Nitroaniline	< 0.98	0.98	mg/kg
				2-Nitrophenol	< 0.98	0.98	mg/kg
				3,3'-Dichlorobenzidine	< 9.8	9.8	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.98	0.98	mg/kg
				3-Nitroaniline	< 0.98	0.98	mg/kg
				4,6-Dinitro-2-Methylphenol	<4.9	4.9	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.98	0.98	mg/kg
				4-Chloro-3-Methylphenol	< 0.98	0.98	mg/kg
				4-Chloroaniline	< 0.98	0.98	mg/kg
				4-Chlorophenyl Phenylether	< 0.98	0.98	mg/kg
				4-Nitroaniline	< 0.98	0.98	mg/kg
				4-Nitrophenol	< 0.98	0.98	mg/kg
				Acenaphthene	< 0.039	0.039	mg/kg
				Acenaphthylene	< 0.039	0.039	mg/kg
				Aniline	< 0.98	0.98	mg/kg
				Anthracene	0.061	0.039	mg/kg
				Benzidine	< 9.8	9.8	mg/kg
				Benzo(a)Anthracene	0.53	0.039	mg/kg
				Benzo(a)Pyrene	0.81	0.039	mg/kg
				Benzo(B)Fluoranthene	0.84	0.039	mg/kg
				Benzo(g,h,i)Perylene	0.57	0.039	mg/kg
				Benzo(j,k)Fluoranthene	0.63	0.039	mg/kg
				Benzyl alcohol	< 0.98	0.98	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.98	0.98	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

						Practical	
	Depth Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR19	0.5 - 1	Semi-Volatile Organic	SW8270	Bis(2-Chloroethyl) Ether	< 0.98	0.98	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroisopropyl)ether	< 0.98	0.98	mg/kg
		(continued)		Bis(2-Ethylhexyl) Phthalate	< 0.98	0.98	mg/kg
				Bis-2-Ethylhexyladipate	<0.98	0.98	mg/kg
				Butyl Benzyl Phthalate	<9.8	9.8	mg/kg
				Carbazole	< 0.98	0.98	mg/kg
				Chrysene	0.66	0.039	mg/kg
				Dibenzo(a,h)Anthracene	0.2	0.039	mg/kg
				Dibenzofuran	< 0.98	0.98	mg/kg
				Diethylphthalate	<4.9	4.9	mg/kg
				Dimethylphthalate	< 0.98	0.98	mg/kg
				Di-N-Butylphthalate	<9.8	9.8	mg/kg
				Di-N-Octyl Phthalate	< 0.98	0.98	mg/kg
				Fluoranthene	0.6	0.039	mg/kg
				Fluorene	< 0.039	0.039	mg/kg
				Hexachlorobenzene	< 0.98	0.98	mg/kg
				Hexachlorobutadiene	< 0.98	0.98	mg/kg
				Hexachlorocyclopentadiene	< 0.98	0.98	mg/kg
				Hexachloroethane	< 0.98	0.98	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.53	0.039	mg/kg
				Isophorone	< 0.98	0.98	mg/kg
				Naphthalene	< 0.039	0.039	mg/kg
				Nitrobenzene	< 0.98	0.98	mg/kg
				N-Nitrosodimethylamine	< 0.98	0.98	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.98	0.98	mg/kg
				N-Nitrosodiphenylamine	< 0.98	0.98	mg/kg
				Pentachlorophenol	<4.9	4.9	mg/kg
				Phenanthrene	0.26	0.039	mg/kg
				Phenol	< 0.98	0.98	mg/kg
				Pyrene	0.5	0.039	mg/kg
				Pyridine	< 9.8	9.8	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<150	150	mg/kg
		Hydrocarbons		Lube Oil	1600	300	mg/kg
			NWTPH-GX	Gasoline-Range Organics	<10	10	mg/kg
		Volatile Organic	EPA8021	Benzene	0.44	0.021	mg/kg
		Compounds		Ethylbenzene	0.11	0.1	mg/kg
				m,p-Xylene	0.36	0.1	mg/kg
				o-Xylene	< 0.1	0.1	mg/kg
				Toluene	< 0.1	0.1	mg/kg

NOTES:

Results in **bold** denote analyte was detected. See Table 7A.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

bgs = below ground surface

 μ g/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

$\label{eq:c-5B} \textbf{Analytical Results for Tested Constituents in Groundwater}$

Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Location	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitatio n Limit	Unit of Measure
FAR13	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.27	0.27	mg/l
111110	Hydrocarbons	111111111111111111111111111111111111111	Heavy Oil-Range Organics	< 0.42	0.42	mg/l
	<i>j.</i>	NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	EPA8021	Benzene	<1	1	ug/l
	Compounds		Ethylbenzene	<1	1	ug/l
	•		m,p-Xylene	<1	1	ug/l
			o-Xylene	<1	1	ug/l
			Toluene	<1	1	ug/l
FAR14	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.42	0.42	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	EPA8021	Benzene	<1	1	ug/l
	Compounds		Ethylbenzene	<1	1	ug/l
			m,p-Xylene	<1	1	ug/l
			o-Xylene	<1	1	ug/l
			Toluene	<1	1	ug/l
FAR15	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.98	0.98	ug/l
	Compounds		1,2-Dichlorobenzene	< 0.98	0.98	ug/l
			1,2-Dinitrobenzene	< 0.98	0.98	ug/l
			1,2-Diphenylhydrazine	< 0.98	0.98	ug/l
			1,3-Dichlorobenzene	< 0.98	0.98	ug/l
			1,3-Dinitrobenzene	< 0.98	0.98	ug/l
			1,4-Dichlorobenzene	< 0.98	0.98	ug/l
			1,4-Dinitrobenzene	< 0.98	0.98	ug/l
			1-Methylnaphthalene	< 0.098	0.098	ug/l
			2,3,4,6-Tetrachlorophenol	< 0.98	0.98	ug/l
			2,3,5,6-Tetrachlorophenol	< 0.98	0.98	ug/l
			2,3-Dichloroaniline	< 0.98	0.98	ug/l
			2,4,5-Trichlorophenol	< 0.98	0.98	ug/l
			2,4,6-Trichlorophenol	< 0.98	0.98	ug/l
			2,4-Dichlorophenol	< 0.98	0.98	ug/l
			2,4-Dimethylphenol	< 0.98	0.98	ug/l
			2,4-Dinitrophenol	<4.9	4.9	ug/l
			2,4-Dinitrotoluene	< 0.98	0.98	ug/l
			2,6-Dinitrotoluene	< 0.98	0.98	ug/l
			2-Chloronaphthalene	< 0.98	0.98	ug/l
			2-Chlorophenol	< 0.98	0.98	ug/l
			2-Methylnaphthalene	< 0.098	0.098	ug/l
			2-Methylphenol (o-Cresol)	< 0.98	0.98	ug/l
			2-Nitroaniline	< 0.98	0.98	ug/l
			2-Nitrophenol	< 0.98	0.98	ug/l

Table C-5B Analytical Results for Tested Constituents in Groundwater Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

					Practical	
		Analytical			Quantitatio	Unit of
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR15	Semi-Volatile Organic	SW8270	3,3`-Dichlorobenzidine	< 0.98	0.98	ug/l
(continued)	Compounds	(continued)	3,4-Methylphenol(m,p-Cresol)	< 0.98	0.98	ug/l
	(continued)	, , , , ,	3-Nitroaniline	< 0.98	0.98	ug/l
			4,6-Dinitro-2-Methylphenol	<4.9	4.9	ug/l
			4-Bromophenyl Phenyl Ether	< 0.98	0.98	ug/l
			4-Chloro-3-Methylphenol	< 0.98	0.98	ug/l
			4-Chloroaniline	< 0.98	0.98	ug/l
			4-Chlorophenyl Phenylether	< 0.98	0.98	ug/l
			4-Nitroaniline	< 0.98	0.98	ug/l
			4-Nitrophenol	< 0.98	0.98	ug/l
			Acenaphthene	< 0.098	0.098	ug/l
			Acenaphthylene	< 0.098	0.098	ug/l
			Aniline	<4.9	4.9	ug/l
			Anthracene	< 0.098	0.098	ug/l
			Benzidine	<4.9	4.9	ug/l
			Benzo(a)Anthracene	0.01	0.0098	ug/l
			Benzo(a)Pyrene	0.012	0.0098	ug/l
			Benzo(b)Fluoranthene	0.031	0.0098	ug/l
			Benzo(g,h,i)Perylene	0.014	0.0098	ug/l
			Benzo(j,k)Fluoranthene	0.016	0.0098	ug/l
			Benzyl alcohol	< 0.98	0.98	ug/l
			Bis(2-Chloroethoxy) Methane	< 0.98	0.98	ug/l
			Bis(2-Chloroethyl) Ether	< 0.98	0.98	ug/l
			Bis(2-Chloroisopropyl)ether	< 0.98	0.98	ug/l
			Bis(2-Ethylhexyl) Phthalate	< 0.98	0.98	ug/l
			Bis-2-Ethylhexyladipate	< 0.98	0.98	ug/l
			Butyl Benzyl Phthalate	< 0.98	0.98	ug/l
			Carbazole	< 0.98	0.98	ug/l
			Chrysene	0.044	0.0098	ug/l
			Dibenzo(a,h)Anthracene	< 0.0098		ug/l
			Dibenzofuran	< 0.98	0.98	ug/l
			Diethylphthalate	< 0.98	0.98	ug/l
			Dimethylphthalate	< 0.98	0.98	ug/l
			Di-N-Butylphthalate	< 0.98	0.98	ug/l
			Di-N-Octyl Phthalate	< 0.98	0.98	ug/l
			Fluoranthene	< 0.098	0.098	ug/l
			Fluorene	< 0.098	0.098	ug/l
			Hexachlorobenzene	< 0.98	0.98	ug/l
			Hexachlorobutadiene	< 0.98	0.98	ug/l
			Hexachlorocyclopentadiene	< 0.98	0.98	ug/l
			Hexachloroethane	< 0.98	0.98	ug/l

Table C-5B Analytical Results for Tested Constituents in Groundwater Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

					Practical	
		Analytical			Quantitatio	Unit of
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR15	Semi-Volatile Organic	SW8270	Indeno(1,2,3-cd)Pyrene	0.011	0.0098	ug/l
(continued)	Compounds	(continued)	Isophorone	< 0.98	0.98	ug/l
	(continued)		Naphthalene	< 0.098	0.098	ug/l
			Nitrobenzene	< 0.98	0.98	ug/l
			N-Nitrosodimethylamine	< 0.98	0.98	ug/l
			N-Nitroso-Di-N-Propylamine	< 0.98	0.98	ug/l
			N-Nitrosodiphenylamine	< 0.98	0.98	ug/l
			Pentachlorophenol	<4.9	4.9	ug/l
			Phenanthrene	< 0.098	0.098	ug/l
			Phenol	< 0.98	0.98	ug/l
			Pyrene	< 0.098	0.098	ug/l
			Pyridine	< 0.98	0.98	ug/l
	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.42	0.42	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	EPA8021	Benzene	<1	1	ug/l
	Compounds		Ethylbenzene	<1	1	ug/l
			m,p-Xylene	<1	1	ug/l
			o-Xylene	<1	1	ug/l
			Toluene	<1	1	ug/l
		SW8260	1,1,1,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,1-Trichloroethane	< 0.2	0.2	ug/l
			1,1,2,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,2-Trichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethene	< 0.2	0.2	ug/l
			1,1-Dichloropropene	< 0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
			1,3-Dichlorobenzene	< 0.2	0.2	ug/l
			1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	<0.2	0.2	ug/l

Table C-5B Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitatio	Unit of
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR15	Volatile Organic	SW8260	2,2-Dichloropropane	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	2-Butanone (MEK)	<5	5	ug/l
	(continued)		2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
			Acetone	<5	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l
			Carbon Disulfide	< 0.2	0.2	ug/l
			Carbon Tetrachloride	< 0.2	0.2	ug/l
			Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l
			cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
			cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l

Table C-5B

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 9

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitatio	
Location	Analyte Type	Method	Analyte	Result	n Limit	Measure
FAR15	Volatile Organic	SW8260	tert-Butylbenzene	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
	(continued)		Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l
FAR16	Metals	SW6020	Arsenic (dissolved)	5.9	3	ug/l
			Cadmium (dissolved)	<4	4	ug/l
			Chromium (dissolved)	<10	10	ug/l
			Lead (dissolved)	<1	1	ug/l
		SW7470A	Mercury (dissolved)	< 0.5	0.5	ug/l
	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
	Hydrocarbons		Heavy Oil-Range Organics	< 0.41	0.41	mg/l
		NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	EPA8021	Benzene	<1	1	ug/l
	Compounds		Ethylbenzene	<1	1	ug/l
			m,p-Xylene	<1	1	ug/l
			o-Xylene	<1	1	ug/l
			Toluene	<1	1	ug/l

NOTES:

Results in **bold** denote analyte was detected. See Table 7B.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

 μ g/l = micrograms per liter

mg/l = milligrams per liter

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	2.5 - 3	Metals	SW6010B	Arsenic	<13	13	mg/kg
				Cadmium	< 0.63	0.63	mg/kg
				Chromium	56	0.63	mg/kg
			CW7471 A	Lead	<6.3	6.3	mg/kg
		Pesticides	SW7471A SW8081	Mercury 4,4'-DDD	<0.32	0.32	mg/kg
		Pesticides	5 W 8 U 8 I	4,4'-DDE	<13	13	ug/kg
				4,4'-DDE 4,4'-DDT	<13	13	ug/kg
				Aldrin	<6.3	6.3	ug/kg
				Alpha-Bhc	<6.3	6.3	ug/kg ug/kg
				Alpha-Chlordane	<13	13	ug/kg ug/kg
				Beta-Bhc	<6.3	6.3	ug/kg ug/kg
				Delta-Bhc	<6.3	6.3	ug/kg ug/kg
				Dieldrin	<13	13	ug/kg ug/kg
				Endosulfan I	<6.3	6.3	ug/kg ug/kg
				Endosulfan II	<13	13	ug/kg ug/kg
				Endosulfan Sulfate	<13	13	ug/kg ug/kg
				Endosultaii Sultate Endrin	<13	13	ug/kg ug/kg
				Endrin Aldehyde	<13	13	ug/kg ug/kg
				Endrin Aidenyde Endrin Ketone	<13	13	ug/kg ug/kg
				Gamma-Bhc (Lindane)	<6.3	6.3	ug/kg ug/kg
				Gamma-Chlordane	<13	13	ug/kg ug/kg
				Heptachlor	<6.3	6.3	ug/kg ug/kg
				Heptachlor Epoxide	<6.3	6.3	ug/kg ug/kg
				Methoxychlor	<13	13	ug/kg ug/kg
				Toxaphene	<63	63	ug/kg ug/kg
		Polychlorinated	SW8082	Aroclor 1016	< 0.063	0.063	mg/kg
		Biphenyls	5110002	Aroclor 1221	< 0.063	0.063	mg/kg
		r · y ·		Aroclor 1232	< 0.063	0.063	mg/kg
				Aroclor 1242	< 0.063	0.063	mg/kg
				Aroclor 1248	< 0.063	0.063	mg/kg
				Aroclor 1254	< 0.063	0.063	mg/kg
				Aroclor 1260	< 0.063	0.063	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.042	0.042	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.042	0.042	mg/kg
		•		1,2-Dinitrobenzene	< 0.042	0.042	mg/kg
				1,2-Diphenylhydrazine	< 0.042	0.042	mg/kg
				1,3-Dichlorobenzene	< 0.042	0.042	mg/kg
				1,3-Dinitrobenzene	< 0.042	0.042	mg/kg
				1,4-Dichlorobenzene	< 0.042	0.042	mg/kg
				1,4-Dinitrobenzene	< 0.042	0.042	mg/kg
				1-Methylnaphthalene	< 0.0084	0.0084	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.042	0.042	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.042	0.042	mg/kg
				2,3-Dichloroaniline	< 0.042	0.042	mg/kg
				2,4,5-Trichlorophenol	< 0.042	0.042	mg/kg
				2,4,6-Trichlorophenol	< 0.042	0.042	mg/kg
				2,4-Dichlorophenol	< 0.042	0.042	mg/kg
				2,4-Dimethylphenol	< 0.42	0.42	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	2.5 - 3	Semi-Volatile Organic	SW8270	2,4-Dinitrophenol	< 0.21	0.21	mg/kg
(continued)	(continued)	Compounds	(continued)	2,4-Dinitrotoluene	< 0.042	0.042	mg/kg
		(continued)		2,6-Dinitrotoluene	< 0.042	0.042	mg/kg
				2-Chloronaphthalene	< 0.042	0.042	mg/kg
				2-Chlorophenol	< 0.042	0.042	mg/kg
				2-Methylnaphthalene	< 0.0084	0.0084	mg/kg
				2-Methylphenol (o-Cresol)	< 0.042	0.042	mg/kg
				2-Nitroaniline	< 0.042	0.042	mg/kg
				2-Nitrophenol	< 0.042	0.042	mg/kg
				3,3`-Dichlorobenzidine	< 0.42	0.42	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.042	0.042	mg/kg
				3-Nitroaniline	< 0.042	0.042	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.21	0.21	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.042	0.042	mg/kg
				4-Chloro-3-Methylphenol	< 0.042	0.042	mg/kg
				4-Chloroaniline	< 0.042	0.042	mg/kg
				4-Chlorophenyl Phenylether	< 0.042	0.042	mg/kg
				4-Nitroaniline	< 0.042	0.042	mg/kg
				4-Nitrophenol	< 0.042	0.042	mg/kg
				Acenaphthene	< 0.0084	0.0084	mg/kg
				Acenaphthylene	< 0.0084	0.0084	mg/kg
				Aniline	< 0.042	0.042	mg/kg
				Anthracene	< 0.0084	0.0084	mg/kg
				Benzidine	< 0.42	0.42	mg/kg
				Benzo(a)Anthracene	< 0.0084	0.0084	mg/kg
				Benzo(a)Pyrene	< 0.0084	0.0084	mg/kg
				Benzo(b)Fluoranthene	< 0.0084	0.0084	mg/kg
				Benzo(g,h,i)Perylene	< 0.0084	0.0084	mg/kg
				Benzo(j,k)Fluoranthene	< 0.0084	0.0084	mg/kg
				Benzyl alcohol	< 0.042	0.042	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.042	0.042	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.042	0.042	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.042	0.042	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.042	0.042	mg/kg
				Bis-2-Ethylhexyladipate	< 0.042	0.042	mg/kg
				Butyl Benzyl Phthalate	< 0.42	0.42	mg/kg
				Carbazole	< 0.042	0.042	mg/kg
				Chrysene	< 0.0084	0.0084	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0084	0.0084	mg/kg
				Dibenzofuran	< 0.042	0.042	mg/kg
				Diethylphthalate	< 0.21	0.21	mg/kg
				Dimethylphthalate	< 0.042	0.042	mg/kg
				Di-N-Butylphthalate	< 0.42	0.42	mg/kg
				Di-N-Octyl Phthalate	< 0.042	0.042	mg/kg
				Fluoranthene	< 0.0084	0.0084	mg/kg
				Fluorene	< 0.0084	0.0084	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	2.5 - 3	Semi-Volatile Organic	SW8270	Hexachlorobenzene	< 0.042	0.042	mg/kg
(continued)	(continued)	Compounds	(continued)	Hexachlorobutadiene	< 0.042	0.042	mg/kg
, i	, i	(continued)	,	Hexachlorocyclopentadiene	< 0.042	0.042	mg/kg
				Hexachloroethane	< 0.042	0.042	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0084	0.0084	mg/kg
				Isophorone	< 0.042	0.042	mg/kg
				Naphthalene	< 0.0084	0.0084	mg/kg
				Nitrobenzene	< 0.042	0.042	mg/kg
				N-Nitrosodimethylamine	< 0.042	0.042	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.042	0.042	mg/kg
				N-Nitrosodiphenylamine	< 0.042	0.042	mg/kg
				Pentachlorophenol	< 0.21	0.21	mg/kg
				Phenanthrene	< 0.0084	0.0084	mg/kg
				Phenol	< 0.042	0.042	mg/kg
				Pyrene	< 0.0084	0.0084	mg/kg
				Pyridine	< 0.42	0.42	mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	<32	32	mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	<63	63	mg/kg
			NWTPH-GX	Gasoline-Range Organics	< 6.9	6.9	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0013	0.0013	mg/kg
		Compounds		1,1,1-Trichloroethane	< 0.0013	0.0013	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0013	0.0013	mg/kg
				1,1,2-Trichloroethane	< 0.0013	0.0013	mg/kg
				1,1-Dichloroethane	< 0.0013	0.0013	mg/kg
				1,1-Dichloroethene	< 0.0013	0.0013	mg/kg
				1,1-Dichloropropene	< 0.0013	0.0013	mg/kg
				1,2,3-Trichlorobenzene	< 0.0013	0.0013	mg/kg
				1,2,3-Trichloropropane	< 0.0013	0.0013	mg/kg
				1,2,4-Trichlorobenzene	< 0.0013	0.0013	mg/kg
				1,2,4-Trimethylbenzene	< 0.0013	0.0013	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0064	0.0064	mg/kg
				1,2-Dibromoethane	< 0.0013	0.0013	mg/kg
				1,2-Dichlorobenzene	< 0.0013	0.0013	mg/kg
				1,2-Dichloroethane	< 0.0013	0.0013	mg/kg
				1,2-Dichloropropane	< 0.0013	0.0013	mg/kg
				1,3,5-Trimethylbenzene	< 0.0013	0.0013	mg/kg
				1,3-Dichlorobenzene	< 0.0013	0.0013	mg/kg
				1,3-Dichloropropane	< 0.0013	0.0013	mg/kg
				1,4-Dichlorobenzene	< 0.0013	0.0013	mg/kg
				2,2-Dichloropropane	< 0.0013	0.0013	mg/kg
				2-Butanone (MEK)	0.0082	0.0064	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0064	0.0064	mg/kg
				2-Chlorotoluene	< 0.0013	0.0013	mg/kg
				2-Hexanone	< 0.0064	0.0064	mg/kg
				4-Chlorotoluene	< 0.0013	0.0013	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0064	0.0064	mg/kg

Table C-6A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington Farallon PN: 1005-001

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	2.5 - 3	Volatile Organic	SW8260	Acetone	0.061	0.0064	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzene	< 0.0013	0.0013	mg/kg
	, i	(continued)		Bromobenzene	< 0.0013	0.0013	mg/kg
				Bromochloromethane	< 0.0013	0.0013	mg/kg
				Bromodichloromethane	< 0.0013	0.0013	mg/kg
				Bromoform	< 0.0013	0.0013	mg/kg
				Bromomethane	< 0.0013	0.0013	mg/kg
				Carbon Disulfide	< 0.0064	0.0064	mg/kg
				Carbon Tetrachloride	< 0.0013	0.0013	mg/kg
				Chlorobenzene	< 0.0013	0.0013	mg/kg
				Chloroethane	< 0.0064	0.0064	mg/kg
				Chloroform	< 0.0013	0.0013	mg/kg
				Chloromethane	< 0.0064	0.0064	mg/kg
				cis-1,2-Dichloroethene	< 0.0013	0.0013	mg/kg
				cis-1,3-Dichloropropene	< 0.0013	0.0013	mg/kg
				Dibromochloromethane	< 0.0013	0.0013	mg/kg
				Dibromomethane	< 0.0013	0.0013	mg/kg
				Dichlorodifluoromethane	< 0.0013	0.0013	mg/kg
				Ethylbenzene	< 0.0013	0.0013	mg/kg
				Hexachlorobutadiene	< 0.0064	0.0064	mg/kg
				Iodomethane	< 0.0064	0.0064	mg/kg
				Isopropylbenzene	< 0.0013	0.0013	mg/kg
				m,p-Xylene	< 0.0026	0.0026	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0013	0.0013	mg/kg
				Methylene Chloride	< 0.0064	0.0064	mg/kg
				Naphthalene	< 0.0013	0.0013	mg/kg
				N-Butylbenzene	< 0.0013	0.0013	mg/kg
				N-Propylbenzene	< 0.0013	0.0013	mg/kg
				o-Xylene	< 0.0013	0.0013	mg/kg
				p-Isopropyltoluene	< 0.0013	0.0013	mg/kg
				sec-Butylbenzene	< 0.0013	0.0013	mg/kg
				Styrene	< 0.0013	0.0013	mg/kg
				tert-Butylbenzene	< 0.0013	0.0013	mg/kg
				Tetrachloroethene (PCE)	< 0.0013	0.0013	mg/kg
				Toluene	< 0.0064	0.0064	mg/kg
				Trans-1,2-Dichloroethene	< 0.0013	0.0013	mg/kg
				Trans-1,3-Dichloropropene	< 0.0013	0.0013	mg/kg
				Trichloroethene (TCE)	< 0.0013	0.0013	mg/kg
			1	Trichlorofluoromethane	< 0.0013	0.0013	mg/kg
			1	Vinyl Acetate	< 0.0064	0.0064	mg/kg
				Vinyl Chloride	< 0.0013	0.0013	mg/kg

Table C-6A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth		A 14 ¹ 1			Practical	TI
T 42	Range	A I 4 . T	Analytical Mothed	A 14 -	D14	Quantitation	Unit of
Location FAR17	(feet bgs) 8 - 8.5	Analyte Type Semi-Volatile Organic	Method SW8270	Analyte 1,2,4-Trichlorobenzene	Result <0.046	Limit 0.046	Measure
	8 - 8.5	Compounds	SW8270	1,2,4-1 richlorobenzene 1.2-Dichlorobenzene	<0.046	0.046	mg/kg
(continued)		Compounds		,			mg/kg
				1,2-Dinitrobenzene	<0.046	0.046	mg/kg
				1,2-Diphenylhydrazine	<0.046	0.046	mg/kg
				1,3-Dichlorobenzene	<0.046 <0.046	0.046 0.046	mg/kg
				1,3-Dinitrobenzene			mg/kg
				1,4-Dichlorobenzene	<0.046	0.046	mg/kg
				1,4-Dinitrobenzene	<0.046	0.046	mg/kg
				1-Methylnaphthalene	<0.0092	0.0092	mg/kg
				2,3,4,6-Tetrachlorophenol	<0.046	0.046	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.046	0.046	mg/kg
				2,3-Dichloroaniline	< 0.046	0.046	mg/kg
				2,4,5-Trichlorophenol	<0.046	0.046	mg/kg
				2,4,6-Trichlorophenol	<0.046	0.046	mg/kg
				2,4-Dichlorophenol	<0.046	0.046	mg/kg
				2,4-Dimethylphenol	<0.46	0.46	mg/kg
				2,4-Dinitrophenol	<0.23	0.23	mg/kg
				2,4-Dinitrotoluene	< 0.046	0.046	mg/kg
				2,6-Dinitrotoluene	< 0.046	0.046	mg/kg
				2-Chloronaphthalene	< 0.046	0.046	mg/kg
				2-Chlorophenol	<0.046	0.046	mg/kg
				2-Methylnaphthalene	<0.0092	0.0092	mg/kg
				2-Methylphenol (o-Cresol)	<0.046	0.046	mg/kg
				2-Nitroaniline	< 0.046	0.046	mg/kg
				2-Nitrophenol	< 0.046	0.046	mg/kg
				3,3`-Dichlorobenzidine	< 0.46	0.46	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.046	0.046	mg/kg
				3-Nitroaniline	< 0.046	0.046	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.23	0.23	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.046	0.046	mg/kg
				4-Chloro-3-Methylphenol	< 0.046	0.046	mg/kg
				4-Chloroaniline	< 0.046	0.046	mg/kg
				4-Chlorophenyl Phenylether	< 0.046	0.046	mg/kg
				4-Nitroaniline	< 0.046	0.046	mg/kg
				4-Nitrophenol	<0.046	0.046	mg/kg
				Acenaphthene	< 0.0092	0.0092	mg/kg
				Acenaphthylene	< 0.0092	0.0092	mg/kg
				Aniline	< 0.046	0.046	mg/kg
				Anthracene	< 0.0092	0.0092	mg/kg
				Benzidine	< 0.46	0.46	mg/kg
				Benzo(a)Anthracene	< 0.0092	0.0092	mg/kg
				Benzo(a)Pyrene	< 0.0092	0.0092	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR17	8 - 8.5	Semi-Volatile Organic	SW8270	Benzo(b)Fluoranthene	<0.0092	0.0092	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzo(g,h,i)Perylene	< 0.0092	0.0092	mg/kg
(continued)	(continued)	(continued)	(continued)	Benzo(j,k)Fluoranthene	< 0.0092	0.0092	mg/kg
		(**************************************		Benzyl alcohol	< 0.046	0.046	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.046	0.046	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.046	0.046	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.046	0.046	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.046	0.046	mg/kg
				Bis-2-Ethylhexyladipate	< 0.046	0.046	mg/kg
				Butyl Benzyl Phthalate	< 0.46	0.46	mg/kg
				Carbazole	< 0.046	0.046	mg/kg
				Chrysene	0.012	0.0092	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0092	0.0092	mg/kg
				Dibenzofuran	< 0.046	0.046	mg/kg
				Diethylphthalate	< 0.23	0.23	mg/kg
				Dimethylphthalate	< 0.046	0.046	mg/kg
				Di-N-Butylphthalate	< 0.46	0.46	mg/kg
				Di-N-Octyl Phthalate	< 0.046	0.046	mg/kg
				Fluoranthene	< 0.0092	0.0092	mg/kg
				Fluorene	< 0.0092	0.0092	mg/kg
				Hexachlorobenzene	< 0.046	0.046	mg/kg
				Hexachlorobutadiene	< 0.046	0.046	mg/kg
				Hexachlorocyclopentadiene	< 0.046	0.046	mg/kg
				Hexachloroethane	< 0.046	0.046	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0092	0.0092	mg/kg
				Isophorone	< 0.046	0.046	mg/kg
				Naphthalene	< 0.0092	0.0092	mg/kg
				Nitrobenzene	< 0.046	0.046	mg/kg
				N-Nitrosodimethylamine	< 0.046	0.046	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.046	0.046	mg/kg
				N-Nitrosodiphenylamine	< 0.046	0.046	mg/kg
				Pentachlorophenol	< 0.23	0.23	mg/kg
				Phenanthrene	< 0.0092	0.0092	mg/kg
				Phenol	< 0.046	0.046	mg/kg
				Pyrene	< 0.0092	0.0092	mg/kg
				Pyridine	< 0.46	0.46	mg/kg

Table C-6A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	8 - 8.5	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.0014	0.0014	mg/kg
(continued)	(continued)	Compounds		1,1,1-Trichloroethane	< 0.0014	0.0014	mg/kg
				1,1,2,2-Tetrachloroethane	< 0.0014	0.0014	mg/kg
				1,1,2-Trichloroethane	< 0.0014	0.0014	mg/kg
				1,1-Dichloroethane	< 0.0014	0.0014	mg/kg
			1,1-Dichloroethene	< 0.0014	0.0014	mg/kg	
			1,1-Dichloropropene	< 0.0014	0.0014	mg/kg	
				1,2,3-Trichlorobenzene	< 0.0014	0.0014	mg/kg
				1,2,3-Trichloropropane	< 0.0014	0.0014	mg/kg
				1,2,4-Trichlorobenzene	< 0.0014	0.0014	mg/kg
				1,2,4-Trimethylbenzene	< 0.0014	0.0014	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.007	0.007	mg/kg
				1,2-Dibromoethane	< 0.0014	0.0014	mg/kg
				1,2-Dichlorobenzene	< 0.0014	0.0014	mg/kg
				1,2-Dichloroethane	< 0.0014	0.0014	mg/kg
				1,2-Dichloropropane	< 0.0014	0.0014	mg/kg
				1,3,5-Trimethylbenzene	< 0.0014	0.0014	mg/kg
				1,3-Dichlorobenzene	< 0.0014	0.0014	mg/kg
				1,3-Dichloropropane	< 0.0014	0.0014	mg/kg
				1,4-Dichlorobenzene	< 0.0014	0.0014	mg/kg
				2,2-Dichloropropane	< 0.0014	0.0014	mg/kg
				2-Butanone (MEK)	0.022	0.007	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.007	0.007	mg/kg
				2-Chlorotoluene	< 0.0014	0.0014	mg/kg
				2-Hexanone	< 0.007	0.007	mg/kg
				4-Chlorotoluene	< 0.0014	0.0014	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.007	0.007	mg/kg
				Acetone	0.15	0.007	mg/kg
				Benzene	< 0.0014	0.0014	mg/kg
				Bromobenzene	< 0.0014	0.0014	mg/kg
				Bromochloromethane	< 0.0014	0.0014	mg/kg
				Bromodichloromethane	< 0.0014	0.0014	mg/kg
				Bromoform	< 0.0014	0.0014	mg/kg
				Bromomethane	< 0.0014	0.0014	mg/kg
				Carbon Disulfide	< 0.007	0.007	mg/kg
				Carbon Tetrachloride	< 0.0014	0.0014	mg/kg
				Chlorobenzene	< 0.0014	0.0014	mg/kg
				Chloroethane	< 0.007	0.007	mg/kg
				Chloroform	< 0.0014	0.0014	mg/kg
				Chloromethane	< 0.007	0.007	mg/kg
				cis-1,2-Dichloroethene	< 0.0014	0.0014	mg/kg
				cis-1,3-Dichloropropene	< 0.0014	0.0014	mg/kg
				Dibromochloromethane	< 0.0014	0.0014	mg/kg
				Dibromomethane	< 0.0014	0.0014	mg/kg
				Dichlorodifluoromethane	< 0.0014	0.0014	mg/kg
				Ethylbenzene	< 0.0014	0.0014	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	8 - 8.5	Volatile Organic	SW8260	Hexachlorobutadiene	< 0.007	0.007	mg/kg
(continued)	(continued)	Compounds	(continued)	Iodomethane	< 0.007	0.007	mg/kg
		(continued)		Isopropylbenzene	< 0.0014	0.0014	mg/kg
				m,p-Xylene	< 0.0028	0.0028	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0014	0.0014	mg/kg
				Methylene Chloride	< 0.007	0.007	mg/kg
				Naphthalene	< 0.0014	0.0014	mg/kg
				N-Butylbenzene	< 0.0014	0.0014	mg/kg
				N-Propylbenzene	< 0.0014	0.0014	mg/kg
				o-Xylene	< 0.0014	0.0014	mg/kg
				p-Isopropyltoluene	< 0.0014	0.0014	mg/kg
				sec-Butylbenzene	< 0.0014	0.0014	mg/kg
				Styrene	< 0.0014	0.0014	mg/kg
				tert-Butylbenzene	< 0.0014	0.0014	mg/kg
				Tetrachloroethene (PCE)	< 0.0014	0.0014	mg/kg
				Toluene	< 0.007	0.007	mg/kg
				Trans-1,2-Dichloroethene	< 0.0014	0.0014	mg/kg
				Trans-1,3-Dichloropropene	< 0.0014	0.0014	mg/kg
				Trichloroethene (TCE)	< 0.0014	0.0014	mg/kg
				Trichlorofluoromethane	< 0.0014	0.0014	mg/kg
				Vinyl Acetate	< 0.007	0.007	mg/kg
				Vinyl Chloride	< 0.0014	0.0014	mg/kg
FAR22	2.5 - 3	Metals	SW6010B	Arsenic	<13	13	mg/kg
				Cadmium	< 0.63	0.63	mg/kg
				Chromium	60	0.63	mg/kg
				Lead	<6.3	6.3	mg/kg
			SW7471A	Mercury	< 0.31	0.31	mg/kg
		Pesticides	SW8081	4,4'-DDD	<13	13	ug/kg
				4,4'-DDE	<13	13	ug/kg
				4,4'-DDT	<13	13	ug/kg
				Aldrin	<6.3	6.3	ug/kg
				Alpha-Bhc	<6.3	6.3	ug/kg
				Alpha-Chlordane	<13	13	ug/kg
				Beta-Bhc	<6.3	6.3	ug/kg
				Delta-Bhc	<6.3	6.3	ug/kg
				Dieldrin	<13	13	ug/kg
				Endosulfan I	<6.3	6.3	ug/kg
				Endosulfan II	<13	13	ug/kg
				Endosulfan Sulfate	<13	13	ug/kg
				Endrin	<13	13	ug/kg
				Endrin Aldehyde Endrin Ketone	<13	13	ug/kg
				Gamma-Bhc (Lindane)	<13 <6.3	13	ug/kg
				Gamma-Bnc (Lingane) Gamma-Chlordane	<0.3	6.3	ug/kg
				Heptachlor		13 6.3	ug/kg
				Heptachlor Epoxide	<6.3 <6.3	6.3	ug/kg ug/kg
				Methoxychlor	<0.3	13	ug/kg ug/kg
				Toxaphene			
			<u> </u>	тохариене	<63	63	ug/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR22	2.5 - 3	Polychlorinated	SW8082	Aroclor 1016	< 0.063	0.063	mg/kg
(continued)	(continued)	Biphenyls		Aroclor 1221	< 0.063	0.063	mg/kg
				Aroclor 1232	< 0.063	0.063	mg/kg
				Aroclor 1242	< 0.063	0.063	mg/kg
				Aroclor 1248	< 0.063	0.063	mg/kg
				Aroclor 1254	< 0.063	0.063	mg/kg
				Aroclor 1260	< 0.063	0.063	mg/kg
		Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.042	0.042	mg/kg
		Compounds		1,2-Dichlorobenzene	< 0.042	0.042	mg/kg
				1,2-Dinitrobenzene	< 0.042	0.042	mg/kg
				1,2-Diphenylhydrazine	< 0.042	0.042	mg/kg
				1,3-Dichlorobenzene	< 0.042	0.042	mg/kg
				1,3-Dinitrobenzene	< 0.042	0.042	mg/kg
				1,4-Dichlorobenzene	< 0.042	0.042	mg/kg
				1,4-Dinitrobenzene	< 0.042	0.042	mg/kg
				1-Methylnaphthalene	< 0.0084	0.0084	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.042	0.042	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.042	0.042	mg/kg
				2,3-Dichloroaniline	< 0.042	0.042	mg/kg
				2,4,5-Trichlorophenol	< 0.042	0.042	mg/kg
				2,4,6-Trichlorophenol	< 0.042	0.042	mg/kg
				2,4-Dichlorophenol	< 0.042	0.042	mg/kg
				2,4-Dimethylphenol	< 0.42	0.42	mg/kg
				2,4-Dinitrophenol	< 0.21	0.21	mg/kg
				2,4-Dinitrotoluene	< 0.042	0.042	mg/kg
				2,6-Dinitrotoluene	< 0.042	0.042	mg/kg
				2-Chloronaphthalene	< 0.042	0.042	mg/kg
				2-Chlorophenol	< 0.042	0.042	mg/kg
				2-Methylnaphthalene	< 0.0084	0.0084	mg/kg
				2-Methylphenol (o-Cresol)	< 0.042	0.042	mg/kg
				2-Nitroaniline	< 0.042	0.042	mg/kg
				2-Nitrophenol	< 0.042	0.042	mg/kg
				3,3`-Dichlorobenzidine	< 0.42	0.42	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.042	0.042	mg/kg
				3-Nitroaniline	< 0.042	0.042	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	2.5 - 3	Semi-Volatile Organic	SW8270	4,6-Dinitro-2-Methylphenol	< 0.21	0.21	mg/kg
(continued)	(continued)	Compounds	(continued)	4-Bromophenyl Phenyl Ether	< 0.042	0.042	mg/kg
		(continued)		4-Chloro-3-Methylphenol	< 0.042	0.042	mg/kg
				4-Chloroaniline	< 0.042	0.042	mg/kg
				4-Chlorophenyl Phenylether	< 0.042	0.042	mg/kg
				4-Nitroaniline	< 0.042	0.042	mg/kg
			4-Nitrophenol	< 0.042	0.042	mg/kg	
				Acenaphthene	< 0.0084	0.0084	mg/kg
				Acenaphthylene	< 0.0084	0.0084	mg/kg
				Aniline	< 0.042	0.042	mg/kg
				Anthracene	< 0.0084	0.0084	mg/kg
				Benzidine	< 0.42	0.42	mg/kg
				Benzo(a)Anthracene	< 0.0084	0.0084	mg/kg
				Benzo(a)Pyrene	< 0.0084	0.0084	mg/kg
				Benzo(b)Fluoranthene	< 0.0084	0.0084	mg/kg
				Benzo(g,h,i)Perylene	< 0.0084	0.0084	mg/kg
				Benzo(j,k)Fluoranthene	< 0.0084	0.0084	mg/kg
				Benzyl alcohol	< 0.042	0.042	mg/kg
				Bis(2-Chloroethoxy) Methane	< 0.042	0.042	mg/kg
				Bis(2-Chloroethyl) Ether	< 0.042	0.042	mg/kg
				Bis(2-Chloroisopropyl)ether	< 0.042	0.042	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.042	0.042	mg/kg
				Bis-2-Ethylhexyladipate	< 0.042	0.042	mg/kg
				Butyl Benzyl Phthalate	< 0.42	0.42	mg/kg
				Carbazole	< 0.042	0.042	mg/kg
				Chrysene	< 0.0084	0.0084	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0084	0.0084	mg/kg
				Dibenzofuran	< 0.042	0.042	mg/kg
				Diethylphthalate	< 0.21	0.21	mg/kg
				Dimethylphthalate	< 0.042	0.042	mg/kg
				Di-N-Butylphthalate	< 0.42	0.42	mg/kg
				Di-N-Octyl Phthalate	< 0.042	0.042	mg/kg
				Fluoranthene	< 0.0084	0.0084	mg/kg
				Fluorene	< 0.0084	0.0084	mg/kg
				Hexachlorobenzene	< 0.042	0.042	mg/kg
				Hexachlorobutadiene	< 0.042	0.042	mg/kg
				Hexachlorocyclopentadiene	< 0.042	0.042	mg/kg
				Hexachloroethane	< 0.042	0.042	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0084	0.0084	mg/kg
				Isophorone	< 0.042	0.042	mg/kg
				Naphthalene	< 0.0084	0.0084	mg/kg
				Nitrobenzene	< 0.042	0.042	mg/kg
				N-Nitrosodimethylamine	< 0.042	0.042	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.042	0.042	mg/kg
				N-Nitrosodiphenylamine	< 0.042	0.042	mg/kg
				Pentachlorophenol	< 0.21	0.21	mg/kg
				Phenanthrene	< 0.0084	0.0084	mg/kg
				Phenol	< 0.042	0.042	mg/kg
				Pyrene	< 0.0084	0.0084	mg/kg
				Pyridine	< 0.42	0.42	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	TI 6
Tanation	Range	Amaluta Tuna	Analytical Mathad	Amaluta	Doguelt	Quantitation	Unit of
Location	(feet bgs)	Analyte Type Total Petroleum	Method	Analyte	Result	Limit	Measure
FAR22 (continued)	2.5 - 3	Hydrocarbons	NWTPH-Dx	Diesel-Range Organics Heavy Oil-Range Organics	<31	31	mg/kg
(continued)	(continued)	Trydrocarbons	NWTPH-GX	Gasoline-Range Organics	<63 <7.5	63 7.5	mg/kg
		Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	<0.0018	0.0018	mg/kg mg/kg
		Compounds	5 W 6200	1,1,1-Trichloroethane	<0.0018	0.0018	mg/kg
		Compounds		1,1,2,2-Tetrachloroethane	<0.0018	0.0018	mg/kg
				1,1,2-Trichloroethane	<0.0018	0.0018	mg/kg
				1,1-Dichloroethane	<0.0018	0.0018	mg/kg
				1,1-Dichloroethene	<0.0018	0.0018	mg/kg
				1,1-Dichloropropene	<0.0018	0.0018	mg/kg
				1,2,3-Trichlorobenzene	<0.0018	0.0018	mg/kg
				1,2,3-Trichloropropane	<0.0018	0.0018	mg/kg
				1,2,4-Trichlorobenzene	< 0.0018	0.0018	mg/kg
				1,2,4-Trimethylbenzene	< 0.0018	0.0018	mg/kg
				1,2-Dibromo-3-chloropropane	< 0.0018	0.0089	mg/kg
				1,2-Dibromoethane	< 0.0018	0.0018	mg/kg
				1,2-Dichlorobenzene	< 0.0018	0.0018	mg/kg
				1,2-Dichloroethane	< 0.0018	0.0018	mg/kg
				1,2-Dichloropropane	< 0.0018	0.0018	mg/kg
				1,3,5-Trimethylbenzene	< 0.0018	0.0018	mg/kg
				1,3-Dichlorobenzene	< 0.0018	0.0018	mg/kg
				1,3-Dichloropropane	< 0.0018	0.0018	mg/kg
				1,4-Dichlorobenzene	< 0.0018	0.0018	mg/kg
				2,2-Dichloropropane	< 0.0018	0.0018	mg/kg
				2-Butanone (MEK)	0.017	0.0089	mg/kg
				2-Chloroethyl Vinyl Ether	< 0.0089	0.0089	mg/kg
				2-Chlorotoluene	< 0.0018	0.0018	mg/kg
				2-Hexanone	< 0.0089	0.0089	mg/kg
				4-Chlorotoluene	< 0.0018	0.0018	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0089	0.0089	mg/kg
				Acetone	0.096	0.0089	mg/kg
				Benzene	< 0.0018	0.0018	mg/kg
				Bromobenzene	< 0.0018	0.0018	mg/kg
				Bromochloromethane	< 0.0018	0.0018	mg/kg
				Bromodichloromethane	< 0.0018	0.0018	mg/kg
				Bromoform	< 0.0018	0.0018	mg/kg
				Bromomethane	< 0.0018	0.0018	mg/kg
				Carbon Disulfide	< 0.0089	0.0089	mg/kg
				Carbon Tetrachloride	< 0.0018	0.0018	mg/kg
				Chlorobenzene	< 0.0018	0.0018	mg/kg
				Chloroethane	< 0.0089	0.0089	mg/kg
				Chloroform	< 0.0018	0.0018	mg/kg
				Chloromethane	< 0.0089	0.0089	mg/kg
				cis-1,2-Dichloroethene	< 0.0018	0.0018	mg/kg
				cis-1,3-Dichloropropene	< 0.0018	0.0018	mg/kg
				Dibromochloromethane	< 0.0018	0.0018	mg/kg
				Dibromomethane	< 0.0018	0.0018	mg/kg
				Dichlorodifluoromethane	< 0.0018	0.0018	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	2.5 - 3	Volatile Organic	SW8260	Ethylbenzene	< 0.0018	0.0018	mg/kg
(continued)	(continued)	Compounds	(continued)	Hexachlorobutadiene	< 0.0089	0.0089	mg/kg
, i	, i	(continued)		Iodomethane	< 0.0089	0.0089	mg/kg
				Isopropylbenzene	< 0.0018	0.0018	mg/kg
				m,p-Xylene	< 0.0035	0.0035	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0018	0.0018	mg/kg
				Methylene Chloride	< 0.0089	0.0089	mg/kg
				Naphthalene	< 0.0018	0.0018	mg/kg
				N-Butylbenzene	< 0.0018	0.0018	mg/kg
				N-Propylbenzene	< 0.0018	0.0018	mg/kg
				o-Xylene	< 0.0018	0.0018	mg/kg
				p-Isopropyltoluene	< 0.0018	0.0018	mg/kg
				sec-Butylbenzene	< 0.0018	0.0018	mg/kg
				Styrene	< 0.0018	0.0018	mg/kg
				tert-Butylbenzene	< 0.0018	0.0018	mg/kg
				Tetrachloroethene (PCE)	< 0.0018	0.0018	mg/kg
				Toluene	< 0.0089	0.0010	mg/kg
				Trans-1,2-Dichloroethene	< 0.0018	0.0018	mg/kg
				Trans-1,3-Dichloropropene	< 0.0018	0.0018	mg/kg
				Trichloroethene (TCE)	< 0.0018	0.0018	mg/kg
				Trichlorofluoromethane	<0.0018	0.0018	mg/kg
				Vinyl Acetate	<0.0018	0.0018	mg/kg
				Vinyl Chloride	<0.0089	0.0039	mg/kg
	6 - 6.5	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	<0.0013	0.0013	mg/kg
	0 - 0.5	Compounds	3 W 8200	1,1,1-Trichloroethane	<0.0013	0.0013	mg/kg
		Compounds		1,1,2,2-Tetrachloroethane	<0.0013	0.0013	mg/kg
				1,1,2-Trichloroethane	<0.0013	0.0013	mg/kg
				1,1-Dichloroethane	<0.0013	0.0013	mg/kg
				1,1-Dichloroethene	<0.0013	0.0013	mg/kg
				1,1-Dichloropropene	<0.0013	0.0013	mg/kg
				1,2,3-Trichlorobenzene	<0.0013	0.0013	mg/kg
				1,2,3-Trichloropropane	<0.0013	0.0013	
				1,2,4-Trichlorobenzene	<0.0013	0.0013	mg/kg mg/kg
				1,2,4-Trimethylbenzene	<0.0013	0.0013	mg/kg
				1,2-Dibromo-3-chloropropane	<0.0013	0.0013	mg/kg
				1,2-Dibromoethane	<0.0063	0.0063	mg/kg mg/kg
				1,2-Dichlorobenzene	<0.0013	0.0013	mg/kg
						0.0013	
				1,2-Dichloroethane 1,2-Dichloropropane	<0.0013 <0.0013	0.0013	mg/kg
				1,3,5-Trimethylbenzene	<0.0013		mg/kg
				1,3-Dichlorobenzene		0.0013 0.0013	mg/kg
					<0.0013		mg/kg
				1,3-Dichloropropane	<0.0013	0.0013	mg/kg
				1,4-Dichlorobenzene	<0.0013 <0.0013	0.0013	mg/kg
				2,2-Dichloropropane		0.0013	mg/kg
				2-Butanone (MEK)	<0.0065	0.0065	mg/kg
				2-Chloroethyl Vinyl Ether	<0.0065	0.0065	mg/kg
				2-Chlorotoluene	< 0.0013	0.0013	mg/kg
,				2-Hexanone	< 0.0065	0.0065	mg/kg
				4-Chlorotoluene	<0.0013	0.0013	mg/kg
				4-Methyl-2-Pentanone (MIBK)	< 0.0065	0.0065	mg/kg

Table C-6A Analytical Results for Tested Constituents in Soil

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	6 - 6.5	Volatile Organic	SW8260	Acetone	0.041	0.0065	mg/kg
(continued)	(continued)	Compounds	(continued)	Benzene	< 0.0013	0.0013	mg/kg
		(continued)		Bromobenzene	< 0.0013	0.0013	mg/kg
				Bromochloromethane	< 0.0013	0.0013	mg/kg
				Bromodichloromethane	< 0.0013	0.0013	mg/kg
				Bromoform	< 0.0013	0.0013	mg/kg
				Bromomethane	< 0.0013	0.0013	mg/kg
				Carbon Disulfide	< 0.0065	0.0065	mg/kg
				Carbon Tetrachloride	< 0.0013	0.0013	mg/kg
				Chlorobenzene	< 0.0013	0.0013	mg/kg
				Chloroethane	< 0.0065	0.0065	mg/kg
				Chloroform	< 0.0013	0.0013	mg/kg
				Chloromethane	< 0.0065	0.0065	mg/kg
				cis-1,2-Dichloroethene	< 0.0013	0.0013	mg/kg
				cis-1,3-Dichloropropene	< 0.0013	0.0013	mg/kg
				Dibromochloromethane	< 0.0013	0.0013	mg/kg
				Dibromomethane	< 0.0013	0.0013	mg/kg
				Dichlorodifluoromethane	< 0.0013	0.0013	mg/kg
				Ethylbenzene	< 0.0013	0.0013	mg/kg
				Hexachlorobutadiene	< 0.0065	0.0065	mg/kg
				Iodomethane	< 0.0065	0.0065	mg/kg
				Isopropylbenzene	< 0.0013	0.0013	mg/kg
				m,p-Xylene	< 0.0026	0.0026	mg/kg
				Methyl T-Butyl Ether (MTBE)	< 0.0013	0.0013	mg/kg
				Methylene Chloride	< 0.0065	0.0065	mg/kg
				Naphthalene	< 0.0013	0.0013	mg/kg
				N-Butylbenzene	< 0.0013	0.0013	mg/kg
				N-Propylbenzene	< 0.0013	0.0013	mg/kg
				o-Xylene	< 0.0013	0.0013	mg/kg
				p-Isopropyltoluene	< 0.0013	0.0013	mg/kg
				sec-Butylbenzene	< 0.0013	0.0013	mg/kg
				Styrene	< 0.0013	0.0013	mg/kg
				tert-Butylbenzene	< 0.0013	0.0013	mg/kg
				Tetrachloroethene (PCE)	< 0.0013	0.0013	mg/kg
				Toluene	< 0.0065	0.0065	mg/kg
				Trans-1,2-Dichloroethene	< 0.0013	0.0013	mg/kg
				Trans-1,3-Dichloropropene	< 0.0013	0.0013	mg/kg
				Trichloroethene (TCE)	< 0.0013	0.0013	mg/kg
				Trichlorofluoromethane	< 0.0013	0.0013	mg/kg
				Vinyl Acetate	< 0.0065	0.0065	mg/kg
			l	Vinyl Chloride	< 0.0013	0.0013	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	10 - 10.5	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.04	0.04	mg/kg
(continued)		Compounds		1,2-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,2-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,2-Diphenylhydrazine	< 0.04	0.04	mg/kg
				1,3-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,3-Dinitrobenzene	< 0.04	0.04	mg/kg
				1,4-Dichlorobenzene	< 0.04	0.04	mg/kg
				1,4-Dinitrobenzene	< 0.04	0.04	mg/kg
				1-Methylnaphthalene	< 0.0079	0.0079	mg/kg
				2,3,4,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3,5,6-Tetrachlorophenol	< 0.04	0.04	mg/kg
				2,3-Dichloroaniline	< 0.04	0.04	mg/kg
				2,4,5-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4,6-Trichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dichlorophenol	< 0.04	0.04	mg/kg
				2,4-Dimethylphenol	< 0.4	0.4	mg/kg
				2,4-Dinitrophenol	< 0.2	0.2	mg/kg
				2,4-Dinitrotoluene	< 0.04	0.04	mg/kg
				2,6-Dinitrotoluene	< 0.04	0.04	mg/kg
				2-Chloronaphthalene	< 0.04	0.04	mg/kg
				2-Chlorophenol	< 0.04	0.04	mg/kg
				2-Methylnaphthalene	< 0.0079	0.0079	mg/kg
				2-Methylphenol (o-Cresol)	< 0.04	0.04	mg/kg
				2-Nitroaniline	< 0.04	0.04	mg/kg
				2-Nitrophenol	< 0.04	0.04	mg/kg
				3,3'-Dichlorobenzidine	< 0.4	0.4	mg/kg
				3,4-Methylphenol(m,p-Cresol)	< 0.04	0.04	mg/kg
				3-Nitroaniline	< 0.04	0.04	mg/kg
				4,6-Dinitro-2-Methylphenol	< 0.2	0.2	mg/kg
				4-Bromophenyl Phenyl Ether	< 0.04	0.04	mg/kg
				4-Chloro-3-Methylphenol	< 0.04	0.04	mg/kg
				4-Chloroaniline	< 0.04	0.04	mg/kg
				4-Chlorophenyl Phenylether	< 0.04	0.04	mg/kg
				4-Nitroaniline	< 0.04	0.04	mg/kg
				4-Nitrophenol	< 0.04	0.04	mg/kg
				Acenaphthene	< 0.0079	0.0079	mg/kg
				Acenaphthylene	< 0.0079	0.0079	mg/kg
				Aniline	< 0.04	0.04	mg/kg
				Anthracene	< 0.0079	0.0079	mg/kg
				Benzidine	< 0.4	0.4	mg/kg
				Benzo(a)Anthracene	< 0.0079	0.0079	mg/kg
				Benzo(a)Pyrene	< 0.0079	0.0079	mg/kg
				Benzo(b)Fluoranthene	< 0.0079	0.0079	mg/kg
				Benzo(g,h,i)Perylene	< 0.0079	0.0079	mg/kg
				Benzo(j,k)Fluoranthene	< 0.0079	0.0079	mg/kg
				Benzyl alcohol	< 0.04	0.04	mg/kg

Analytical Results for Tested Constituents in Soil Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	10 - 10.5	Semi-Volatile Organic	SW8270	Bis(2-Chloroethoxy) Methane	< 0.04	0.04	mg/kg
(continued)	(continued)	Compounds	(continued)	Bis(2-Chloroethyl) Ether	< 0.04	0.04	mg/kg
		(continued)		Bis(2-Chloroisopropyl)ether	< 0.04	0.04	mg/kg
				Bis(2-Ethylhexyl) Phthalate	< 0.04	0.04	mg/kg
				Bis-2-Ethylhexyladipate	< 0.04	0.04	mg/kg
				Butyl Benzyl Phthalate	< 0.4	0.4	mg/kg
				Carbazole	< 0.04	0.04	mg/kg
				Chrysene	0.0083	0.0079	mg/kg
				Dibenzo(a,h)Anthracene	< 0.0079	0.0079	mg/kg
				Dibenzofuran	< 0.04	0.04	mg/kg
				Diethylphthalate	< 0.2	0.2	mg/kg
				Dimethylphthalate	< 0.04	0.04	mg/kg
				Di-N-Butylphthalate	< 0.4	0.4	mg/kg
				Di-N-Octyl Phthalate	< 0.04	0.04	mg/kg
				Fluoranthene	< 0.0079	0.0079	mg/kg
				Fluorene	< 0.0079	0.0079	mg/kg
				Hexachlorobenzene	< 0.04	0.04	mg/kg
				Hexachlorobutadiene	< 0.04	0.04	mg/kg
				Hexachlorocyclopentadiene	< 0.04	0.04	mg/kg
				Hexachloroethane	< 0.04	0.04	mg/kg
				Indeno(1,2,3-cd)Pyrene	< 0.0079	0.0079	mg/kg
				Isophorone	< 0.04	0.04	mg/kg
				Naphthalene	< 0.0079	0.0079	mg/kg
				Nitrobenzene	< 0.04	0.04	mg/kg
				N-Nitrosodimethylamine	< 0.04	0.04	mg/kg
				N-Nitroso-Di-N-Propylamine	< 0.04	0.04	mg/kg
				N-Nitrosodiphenylamine	< 0.04	0.04	mg/kg
				Pentachlorophenol	< 0.2	0.2	mg/kg
				Phenanthrene	< 0.0079	0.0079	mg/kg
				Phenol	< 0.04	0.04	mg/kg
				Pyrene	< 0.0079	0.0079	mg/kg
				Pyridine	< 0.4	0.4	mg/kg

NOTES:

Results in **bold** denote analyte was detected. See Table 7A.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

bgs = below ground surface

 $\mu g/kg = micrograms per kilogram$

mg/kg = milligrams per kilogram

Table C-6B

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.95	0.95	ug/l
	Compounds		1,2-Dichlorobenzene	< 0.95	0.95	ug/l
			1,2-Dinitrobenzene	< 0.95	0.95	ug/l
			1,2-Diphenylhydrazine	< 0.95	0.95	ug/l
			1,3-Dichlorobenzene	< 0.95	0.95	ug/l
			1,3-Dinitrobenzene	< 0.95	0.95	ug/l
			1,4-Dichlorobenzene	< 0.95	0.95	ug/l
			1,4-Dinitrobenzene	< 0.95	0.95	ug/l
			1-Methylnaphthalene	< 0.095	0.095	ug/l
			2,3,4,6-Tetrachlorophenol	< 0.95	0.95	ug/l
			2,3,5,6-Tetrachlorophenol	< 0.95	0.95	ug/l
			2,3-Dichloroaniline	< 0.95	0.95	ug/l
			2,4,5-Trichlorophenol	< 0.95	0.95	ug/l
			2,4,6-Trichlorophenol	< 0.95	0.95	ug/l
			2,4-Dichlorophenol	< 0.95	0.95	ug/l
			2,4-Dimethylphenol	< 0.95	0.95	ug/l
			2,4-Dinitrophenol	<4.7	4.7	ug/l
			2,4-Dinitrotoluene	< 0.95	0.95	ug/l
			2,6-Dinitrotoluene	< 0.95	0.95	ug/l
			2-Chloronaphthalene	< 0.95	0.95	ug/l
			2-Chlorophenol	< 0.95	0.95	ug/l
			2-Methylnaphthalene	< 0.095	0.095	ug/l
			2-Methylphenol (o-Cresol)	< 0.95	0.95	ug/l
			2-Nitroaniline	< 0.95	0.95	ug/l
			2-Nitrophenol	< 0.95	0.95	ug/l
			3,3`-Dichlorobenzidine	< 0.95	0.95	ug/l
			3,4-Methylphenol(m,p-Cresol)	< 0.95	0.95	ug/l
			3-Nitroaniline	< 0.95	0.95	ug/l
			4,6-Dinitro-2-Methylphenol	<4.7	4.7	ug/l
			4-Bromophenyl Phenyl Ether	< 0.95	0.95	ug/l
			4-Chloro-3-Methylphenol	< 0.95	0.95	ug/l
			4-Chloroaniline	< 0.95	0.95	ug/l
			4-Chlorophenyl Phenylether	< 0.95	0.95	ug/l
			4-Nitroaniline	< 0.95	0.95	ug/l
			4-Nitrophenol	< 0.95	0.95	ug/l
			Acenaphthene	< 0.095	0.095	ug/l
			Acenaphthylene	< 0.095	0.095	ug/l
			Aniline	<4.7	4.7	ug/l
			Anthracene	< 0.095	0.095	ug/l

Table C-6B

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	Semi-Volatile Organic	SW8270	Benzidine	<4.7	4.7	ug/l
(continued)	Compounds	(continued)	Benzo(a)Anthracene	< 0.0095	0.0095	ug/l
	(continued)		Benzo(a)Pyrene	< 0.0095	0.0095	ug/l
			Benzo(b)Fluoranthene	< 0.0095	0.0095	ug/l
			Benzo(g,h,i)Perylene	< 0.0095	0.0095	ug/l
			Benzo(j,k)Fluoranthene	< 0.0095	0.0095	ug/l
			Benzyl alcohol	< 0.95	0.95	ug/l
			Bis(2-Chloroethoxy) Methane	< 0.95	0.95	ug/l
			Bis(2-Chloroethyl) Ether	< 0.95	0.95	ug/l
			Bis(2-Chloroisopropyl)ether	< 0.95	0.95	ug/l
			Bis(2-Ethylhexyl) Phthalate	< 0.95	0.95	ug/l
			Bis-2-Ethylhexyladipate	< 0.95	0.95	ug/l
			Butyl Benzyl Phthalate	1.1	0.95	ug/l
			Carbazole	< 0.95	0.95	ug/l
			Chrysene	< 0.0095	0.0095	ug/l
			Dibenzo(a,h)Anthracene	< 0.0095	0.0095	ug/l
			Dibenzofuran	< 0.95	0.95	ug/l
			Diethylphthalate	< 0.95	0.95	ug/l
			Dimethylphthalate	< 0.95	0.95	ug/l
			Di-N-Butylphthalate	< 0.95	0.95	ug/l
			Di-N-Octyl Phthalate	< 0.95	0.95	ug/l
			Fluoranthene	< 0.095	0.095	ug/l
			Fluorene	< 0.095	0.095	ug/l
			Hexachlorobenzene	< 0.95	0.95	ug/l
			Hexachlorobutadiene	< 0.95	0.95	ug/l
			Hexachlorocyclopentadiene	< 0.95	0.95	ug/l
			Hexachloroethane	< 0.95	0.95	ug/l
			Indeno(1,2,3-cd)Pyrene	< 0.0095	0.0095	ug/l
			Isophorone	< 0.95	0.95	ug/l
			Naphthalene	< 0.095	0.095	ug/l
			Nitrobenzene	< 0.95	0.95	ug/l
			N-Nitrosodimethylamine	< 0.95	0.95	ug/l
			N-Nitroso-Di-N-Propylamine	< 0.95	0.95	ug/l
			N-Nitrosodiphenylamine	< 0.95	0.95	ug/l
			Pentachlorophenol	<4.7	4.7	ug/l
			Phenanthrene	< 0.095	0.095	ug/l
			Phenol	< 0.95	0.95	ug/l
			Pyrene	< 0.095	0.095	ug/l
			Pyridine	< 0.95	0.95	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

		Analytical			Practical Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	< 0.26	0.26	mg/l
(continued)	Hydrocarbons	AMAZEDII CIV	Heavy Oil-Range Organics	<0.41	0.41	mg/l
	W 1 (1 O)	NWTPH-GX	Gasoline-Range Organics	<100	100	ug/l
	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	<0.2	0.2	ug/l
	Compounds		1,1,1-Trichloroethane	<0.2	0.2	ug/l
			1,1,2,2-Tetrachloroethane	<0.2	0.2	ug/l
			1,1,2-Trichloroethane	<0.2	0.2	ug/l
			1,1-Dichloroethane	<0.2	0.2	ug/l
			1,1-Dichloroethene	<0.2	0.2	ug/l
			1,1-Dichloropropene	<0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
			1,3-Dichlorobenzene	< 0.2	0.2	ug/l
			1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	< 0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2 5	ug/l
			Acetone	<5	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

		Analytical			Practical Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR17	Volatile Organic	SW8260	Carbon Disulfide	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	Carbon Tetrachloride	< 0.2	0.2	ug/l
	(continued)		Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l
			cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
			cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l
			tert-Butylbenzene	< 0.2	0.2	ug/l
			Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
			Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	Semi-Volatile Organic	SW8270	1,2,4-Trichlorobenzene	< 0.95	0.95	ug/l
	Compounds		1,2-Dichlorobenzene	< 0.95	0.95	ug/l
	•		1,2-Dinitrobenzene	< 0.95	0.95	ug/l
			1,2-Diphenylhydrazine	< 0.95	0.95	ug/l
			1,3-Dichlorobenzene	< 0.95	0.95	ug/l
			1,3-Dinitrobenzene	< 0.95	0.95	ug/l
			1,4-Dichlorobenzene	< 0.95	0.95	ug/l
			1,4-Dinitrobenzene	< 0.95	0.95	ug/l
			1-Methylnaphthalene	< 0.095	0.095	ug/l
			2,3,4,6-Tetrachlorophenol	< 0.95	0.95	ug/l
			2,3,5,6-Tetrachlorophenol	< 0.95	0.95	ug/l
			2,3-Dichloroaniline	< 0.95	0.95	ug/l
			2,4,5-Trichlorophenol	< 0.95	0.95	ug/l
			2,4,6-Trichlorophenol	< 0.95	0.95	ug/l
			2,4-Dichlorophenol	< 0.95	0.95	ug/l
			2,4-Dimethylphenol	< 0.95	0.95	ug/l
			2,4-Dinitrophenol	<4.7	4.7	ug/l
			2,4-Dinitrotoluene	< 0.95	0.95	ug/l
			2,6-Dinitrotoluene	< 0.95	0.95	ug/l
			2-Chloronaphthalene	<0.95	0.95	ug/l
			2-Chlorophenol	< 0.95	0.95	ug/l
			2-Methylnaphthalene	<0.095	0.095	ug/l
			2-Methylphenol (o-Cresol)	<0.95	0.95	ug/l
			2-Nitroaniline	< 0.95	0.95	ug/l
			2-Nitrophenol	<0.95	0.95	ug/l
			3,3'-Dichlorobenzidine	<0.95	0.95	ug/l
			3,4-Methylphenol(m,p-Cresol)	< 0.95	0.95	ug/l
			3-Nitroaniline	< 0.95	0.95	ug/l
			4,6-Dinitro-2-Methylphenol	<4.7	4.7	ug/l
			4-Bromophenyl Phenyl Ether	<0.95	0.95	ug/l
			4-Chloro-3-Methylphenol	< 0.95	0.95	ug/l
			4-Chloroaniline	< 0.95	0.95	ug/l
			4-Chlorophenyl Phenylether	< 0.95	0.95	ug/l
			4-Nitroaniline	<0.95	0.95	ug/l
			4-Nitrophenol	<0.95	0.95	ug/l
			Acenaphthene	<0.095	0.095	ug/l
			Acenaphthylene	<0.095	0.095	ug/l
			Aniline	<4.7	4.7	ug/l
			Anthracene	<0.095	0.095	ug/l
			Benzidine	<4.7	4.7	ug/l
			Benzo(a)Anthracene	<0.0095		ug/l
			Benzo(a)Pyrene	< 0.0095		ug/l
			* * *			
			Benzo(b)Fluoranthene	< 0.0095	0.0095	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

Farallon PN: 1005-001

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Practical Analytical Quantitation Unit of Location **Analyte Type** Method Result Limit Measure Analyte FAR22 Semi-Volatile Organic SW8270 Benzo(g,h,i)Perylene < 0.0095 0.0095 ug/l (continued) Compounds (continued) Benzo(j,k)Fluoranthene < 0.0095 0.0095 ug/l (continued) Benzyl alcohol < 0.95 0.95 ug/l Bis(2-Chloroethoxy) Methane < 0.95 0.95 ug/l Bis(2-Chloroethyl) Ether < 0.95 0.95 ug/l Bis(2-Chloroisopropyl)ether < 0.95 0.95 ug/l Bis(2-Ethylhexyl) Phthalate < 0.95 0.95 ug/l Bis-2-Ethylhexyladipate < 0.95 0.95 ug/l **Butyl Benzyl Phthalate** 0.95 2.4 ug/l Carbazole < 0.95 0.95 ug/l Chrysene < 0.0095 0.0095 ug/l Dibenzo(a,h)Anthracene < 0.0095 0.0095 ug/l Dibenzofuran < 0.95 0.95 ug/l Diethylphthalate < 0.95 0.95 ug/l < 0.95 ug/l Dimethylphthalate 0.95 Di-N-Butylphthalate < 0.95 0.95 ug/l Di-N-Octyl Phthalate < 0.95 0.95 ug/l Fluoranthene < 0.095 0.095 ug/l Fluorene < 0.095 0.095 ug/l Hexachlorobenzene < 0.95 0.95 ug/l Hexachlorobutadiene < 0.95 0.95 ug/l Hexachlorocyclopentadiene < 0.95 0.95 ug/l < 0.95 Hexachloroethane 0.95 ug/l Indeno(1,2,3-cd)Pyrene < 0.0095 0.0095 ug/l Isophorone < 0.95 0.95 ug/l Naphthalene < 0.095 0.095 ug/l Nitrobenzene < 0.95 0.95 ug/l N-Nitrosodimethylamine < 0.95 0.95 ug/l N-Nitroso-Di-N-Propylamine < 0.95 0.95 ug/l N-Nitrosodiphenylamine < 0.95 0.95 ug/l Pentachlorophenol < 4.7 4.7 ug/l Phenanthrene < 0.095 0.095 ug/l Phenol < 0.95 0.95 ug/l Pyrene < 0.095 0.095 ug/l Pyridine < 0.95 0.95 ug/1 Total Petroleum NWTPH-Dx Diesel-Range Organics < 0.27 0.27 mg/l Hydrocarbons Heavy Oil-Range Organics < 0.43 0.43 mg/l **NWTPH-GX** Gasoline-Range Organics <100 100 ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment

		Analytical			Practical Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	Volatile Organic	SW8260	1,1,1,2-Tetrachloroethane	< 0.2	0.2	ug/l
(continued)	Compounds		1,1,1-Trichloroethane	< 0.2	0.2	ug/l
			1,1,2,2-Tetrachloroethane	< 0.2	0.2	ug/l
			1,1,2-Trichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethane	< 0.2	0.2	ug/l
			1,1-Dichloroethene	< 0.2	0.2	ug/l
			1,1-Dichloropropene	< 0.2	0.2	ug/l
			1,2,3-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,3-Trichloropropane	< 0.2	0.2	ug/l
			1,2,4-Trichlorobenzene	< 0.2	0.2	ug/l
			1,2,4-Trimethylbenzene	< 0.2	0.2	ug/l
			1,2-Dibromo-3-chloropropane	<1	1	ug/l
			1,2-Dibromoethane	< 0.2	0.2	ug/l
			1,2-Dichlorobenzene	< 0.2	0.2	ug/l
			1,2-Dichloroethane	< 0.2	0.2	ug/l
			1,2-Dichloropropane	< 0.2	0.2	ug/l
			1,3,5-Trimethylbenzene	< 0.2	0.2	ug/l
			1,3-Dichlorobenzene	< 0.2	0.2	ug/l
			1,3-Dichloropropane	< 0.2	0.2	ug/l
			1,4-Dichlorobenzene	< 0.2	0.2	ug/l
			2,2-Dichloropropane	< 0.2	0.2	ug/l
			2-Butanone (MEK)	<5	5	ug/l
			2-Chloroethyl Vinyl Ether	<1	1	ug/l
			2-Chlorotoluene	< 0.2	0.2	ug/l
			2-Hexanone	<2	2	ug/l
			4-Chlorotoluene	< 0.2	0.2	ug/l
			4-Methyl-2-Pentanone (MIBK)	<2	2	ug/l
			Acetone	<5	5	ug/l
			Benzene	< 0.2	0.2	ug/l
			Bromobenzene	< 0.2	0.2	ug/l
			Bromochloromethane	< 0.2	0.2	ug/l
			Bromodichloromethane	< 0.2	0.2	ug/l
			Bromoform	<1	1	ug/l
			Bromomethane	< 0.2	0.2	ug/l

Analytical Results for Tested Constituents in Groundwater

Area of Potential Concern 12

City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington Farallon PN: 1005-001

		Analytical			Practical Quantitation	Unit of
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR22	Volatile Organic	SW8260	Carbon Disulfide	< 0.2	0.2	ug/l
(continued)	Compounds	(continued)	Carbon Tetrachloride	< 0.2	0.2	ug/l
	(continued)		Chlorobenzene	< 0.2	0.2	ug/l
			Chloroethane	<1	1	ug/l
			Chloroform	< 0.2	0.2	ug/l
			Chloromethane	<1	1	ug/l
			cis-1,2-Dichloroethene	< 0.2	0.2	ug/l
			cis-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Dibromochloromethane	< 0.2	0.2	ug/l
			Dibromomethane	< 0.2	0.2	ug/l
			Dichlorodifluoromethane	< 0.2	0.2	ug/l
			Ethylbenzene	< 0.2	0.2	ug/l
			Hexachlorobutadiene	< 0.2	0.2	ug/l
			Iodomethane	<1	1	ug/l
			Isopropylbenzene	< 0.2	0.2	ug/l
			m,p-Xylene	< 0.4	0.4	ug/l
			Methyl T-Butyl Ether (MTBE)	< 0.2	0.2	ug/l
			Methylene Chloride	<1	1	ug/l
			Naphthalene	<1	1	ug/l
			N-Butylbenzene	< 0.2	0.2	ug/l
			N-Propylbenzene	< 0.2	0.2	ug/l
			o-Xylene	< 0.2	0.2	ug/l
			p-Isopropyltoluene	< 0.2	0.2	ug/l
			sec-Butylbenzene	< 0.2	0.2	ug/l
			Styrene	< 0.2	0.2	ug/l
			tert-Butylbenzene	< 0.2	0.2	ug/l
			Tetrachloroethene (PCE)	< 0.2	0.2	ug/l
			Toluene	<1	1	ug/l
			Trans-1,2-Dichloroethene	< 0.2	0.2	ug/l
			Trans-1,3-Dichloropropene	< 0.2	0.2	ug/l
			Trichloroethene (TCE)	< 0.2	0.2	ug/l
			Trichlorofluoromethane	< 0.2	0.2	ug/l
			Vinyl Acetate	<2	2	ug/l
			Vinyl Chloride	< 0.2	0.2	ug/l

NOTES:

Results in **bold** denote analyte was detected. See Table 7B.

If the result is less than (<) the laboratory reporting limit, the analyte was not detected.

< denotes analyte not detected at or above the laboratory reporting limit listed.

 μ g/l = micrograms per liter mg/l = milligrams per liter

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range	A 14 T	Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte tential Concern 2	Result	Limit	Measure
FAR1	6 - 6.5	Volatile Organic	SW8260	Acetone	0.04	0.0055	ma/ka
TAKI	0 - 0.5	Compounds	5 W 6200	Accione	0.04	0.0033	mg/kg
	10 - 10.5	Metals	SW6010B	Chromium	36	0.6	mg/kg
			2	Lead	6		mg/kg
		Semi-Volatile Organic	SW8270	Acenaphthene	0.031		mg/kg
		Compounds		Anthracene	0.14		mg/kg
		•		Benzo(a)Anthracene	0.17		mg/kg
				Benzo(a)Pyrene	0.18		mg/kg
				Benzo(b)Fluoranthene	0.13	0.04	mg/kg
				Benzo(g,h,i)Perylene	0.14	0.04	mg/kg
				Benzo(j,k)Fluoranthene	0.16	0.04	mg/kg
				Chrysene	0.19		mg/kg
				Dibenzo(a,h)Anthracene	0.041	0.008	mg/kg
				Fluoranthene	0.51		mg/kg
				Fluorene	0.028		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.12		mg/kg
				Phenanthrene	0.4		mg/kg
				Pyrene	0.42		mg/kg
				Calculated cPAHs (TEC)	0.244		mg/kg
		Volatile Organic Compounds	SW8260	Acetone	0.028	0.0066	mg/kg
FAR2	2.5 - 3	Volatile Organic Compounds	SW8260	Acetone	0.05	0.0062	mg/kg
	5.5 - 6	Metals	SW6010B	Chromium	28	0.53	mg/kg
		Volatile Organic	SW8260	Acetone	0.039	0.0052	
		Compounds					
			Area of Pot	tential Concern 4			
FAR3	12.5 - 13	Metals	SW6010B	Chromium	48		mg/kg
		Volatile Organic	SW8260	Acetone	0.063	0.0053	mg/kg
		Compounds		Carbon Disulfide	0.0083	0.0053	mg/kg
FAR4	4 - 4.5	Metals	SW6010B	Cadmium	0.67	0.59	mg/kg
				Chromium	52	0.59	mg/kg
				Lead	400	5.9	mg/kg
		Pesticides	SW8081	4,4'-DDT	25	12	ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.23	0.059	mg/kg
				Calculated Total Aroclors	0.41		mg/kg
		Semi-Volatile Organic	SW8270	1-Methylnaphthalene	0.0092	0.0079	
		Compounds		2-Methylnaphthalene	0.014	0.0079	
				Acenaphthene	0.011	0.0079	
				Anthracene	0.014	0.0079	
				Benzo(a)Anthracene	0.04	0.0079	
				Benzo(a)Pyrene	0.041	0.0079	
				Benzo(b)Fluoranthene	0.042	0.0079	
				Benzo(g,h,i)Perylene	0.037	0.0079	
				Benzo(j,k)Fluoranthene	0.029	0.0079	
				Chrysene	0.051	0.0079	mg/kg

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR4	4 - 4.5	Semi-Volatile Organic	SW8270	Dibenzo(a,h)Anthracene	0.01	0.0079	
(continued)	(continued)	Compounds	(continued)	Fluoranthene	0.083	0.0079	
		(continued)		Fluorene	0.012	0.0079	
				Indeno(1,2,3-cd)Pyrene	0.025	0.0079	
				Naphthalene	0.02	0.0079	
				Phenanthrene	0.068	0.0079	
				Pyrene	0.071	0.0079	~ ~
				Calculated cPAHs (TEC)	0.056		mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	39		mg/kg
EAD 5	0.5.1	Hydrocarbons	CHICOLOR	Lube Oil	180		mg/kg
FAR5	0.5 - 1	Metals	SW6010B	Chromium	27		mg/kg
		D 4: 1	GW0001	Lead	9.9		mg/kg
		Pesticides	SW8081 SW8270	Beta-Bhc Benzo(a)Pyrene	0.016		ug/kg mg/kg
		Semi-Volatile Organic	SW8270	Benzo(a)Pyrene Benzo(b)Fluoranthene	0.016 0.016		mg/kg mg/kg
		Compounds		Benzo(g,h,i)Perylene	0.016		mg/kg
				Benzo(j,k)Fluoranthene	0.017		mg/kg
				Chrysene	0.013		mg/kg
				Fluoranthene	0.010		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.022		mg/kg
				Phenanthrene	0.013		mg/kg
				Pyrene	0.011		mg/kg
				Calculated cPAHs (TEC)	0.019		
			A man of Dat	ential Concern 6	0.0217		mg/kg
FAR6	0.5 - 1	Metals	SW6010B	Chromium	44	0.62	mg/kg
17110	0.5 - 1	ivicuis	БW0010В	Lead	140		mg/kg
		Pesticides	SW8081	4,4'-DDT	12		ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.21		mg/kg
		Tory emoranave a Expiremy is	5.1.0002	Calculated Total Aroclors	0.40		mg/kg
		Semi-Volatile Organic	SW8270	1-Methylnaphthalene	0.022	0.0082	
		Compounds	5110270	2-Methylnaphthalene	0.028	0.0082	
		Compounds		Acenaphthene	0.028	0.0082	
				Acenaphthylene	0.17	0.0082	~ ~
				Anthracene	0.048		mg/kg
				Benzo(a)Anthracene	0.95		mg/kg
				Benzo(a)Pyrene	1.2		mg/kg
				Benzo(b)Fluoranthene	1.1		mg/kg
				Benzo(g,h,i)Perylene	0.78		mg/kg
				Benzo(j,k)Fluoranthene	1.2		mg/kg
				Carbazole	0.44		mg/kg
				Chrysene	1.3		mg/kg
				Dibenzo(a,h)Anthracene	0.26		mg/kg
				Fluoranthene	3.20		mg/kg
				Fluorene	0.17	0.0082	
				Indeno(1,2,3-cd)Pyrene	0.79		mg/kg
				Naphthalene	0.052	0.0082	
				Phenanthrene	2.5		mg/kg
				Pyrene	2.6		mg/kg
		Ī					
				Calculated cPAHs (TEC)	1.64		mg/kg
		Total Petroleum	NWTPH-Dx	Calculated cPAHs (TEC) Lube Oil	1.64 370		mg/kg mg/kg

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Farallon PN: 1005-001

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR7	2.5 - 3	Metals	SW6010B	Chromium	28	0.52	mg/kg
				Lead	27	5.2	mg/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.26	0.052	mg/kg
				Calculated Total Aroclors	0.42		mg/kg
		Total Petroleum	NWTPH-Dx	Lube Oil	120		mg/kg
		Hydrocarbons					
		Volatile Organic	SW8260	Acetone	0.07	0.0082	mg/kg
		Compounds		Benzene	0.0026	0.0016	mg/kg
	6 - 6.5	Total Petroleum	NWTPH-Dx	Diesel-Range Organics	31		mg/kg
		Hydrocarbons		Heavy Oil-Range Organics	150		mg/kg
FAR8	5 - 5.5	Metals	SW6010B	Chromium	35		mg/kg
				Lead	40		mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	51		mg/kg
		Hydrocarbons		Lube Oil	290		mg/kg
	11 - 11.5	Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	59	54	mg/kg
FAR9	2.5 - 3	Metals	SW6010B	Chromium	52	0.58	mg/kg
				Lead	460	5.8	mg/kg
		Semi-Volatile Organic	SW8270	Acenaphthene	0.0081	0.0077	mg/kg
		Compounds		Anthracene	0.021	0.0077	mg/kg
				Benzo(a)Anthracene	0.069	0.039	mg/kg
				Benzo(a)Pyrene	0.071	0.039	mg/kg
				Benzo(b)Fluoranthene	0.063	0.039	mg/kg
				Benzo(g,h,i)Perylene	0.049		mg/kg
				Benzo(j,k)Fluoranthene	0.06		mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.06		mg/kg
				Chrysene	0.083		mg/kg
				Dibenzo(a,h)Anthracene	0.015	0.0077	
				Fluoranthene	0.19		mg/kg
				Fluorene	0.01	0.0077	
				Indeno(1,2,3-cd)Pyrene	0.041		mg/kg
				Naphthalene	0.0079	0.0077	
				Phenanthrene	0.093		mg/kg
				Pyrene	0.12		mg/kg
		Tr. (1D)	A HIMBIA D	Calculated cPAHs (TEC)	0.0966		mg/kg
		Total Petroleum	NWTPH-Dx	Lube Oil	260	58	mg/kg
	6 (5	Hydrocarbons Total Potralogue	NIWTDII D	I	220	70	/I-
	6 - 6.5	Total Petroleum	NWTPH-Dx	Lube OII	220	68	mg/kg
		Hydrocarbons					

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR20	2.5 - 3	Metals	SW6010B	Chromium	64	0.6	mg/kg
				Lead	160		mg/kg
		Pesticides	SW8081	4,4'-DDT	16		ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.19	0.06	mg/kg
				Calculated Total Aroclors	0.37		mg/kg
		Semi-Volatile Organic	SW8270	1-Methylnaphthalene	0.008	0.0079	mg/kg
		Compounds		2-Methylnaphthalene	0.016	0.0079	mg/kg
				Acenaphthene	0.016	0.0079	mg/kg
				Acenaphthylene	0.0092	0.0079	mg/kg
				Anthracene	0.024	0.0079	mg/kg
				Benzo(a)Anthracene	0.064	0.04	mg/kg
				Benzo(a)Pyrene	0.067	0.04	mg/kg
				Benzo(b)Fluoranthene	0.065		mg/kg
				Benzo(g,h,i)Perylene	0.051	0.04	mg/kg
				Benzo(j,k)Fluoranthene	0.056	0.04	mg/kg
				Chrysene	0.081		mg/kg
				Dibenzo(a,h)Anthracene	0.016		
				Fluoranthene	0.16		mg/kg
				Fluorene	0.026		
				Indeno(1,2,3-cd)Pyrene	0.045		mg/kg
				Naphthalene	0.044		mg/kg
				Phenanthrene	0.13		mg/kg
				Pyrene	0.13		mg/kg
				Calculated cPAHs (TEC)	0.0924		mg/kg
		Total Petroleum Hydrocarbons	NWTPH-Dx		260		mg/kg
		Volatile Organic	SW8260	2-Butanone (MEK)	0.0084	0.0055	
		Compounds		Acetone	0.068	0.0055	mg/kg
				Benzene	0.0033		
	5 - 5.5	Semi-Volatile Organic	SW8270	Anthracene	0.013	0.0083	mg/kg
		Compounds		Benzo(a)Anthracene	0.032		
				Benzo(a)Pyrene	0.035		
				Benzo(b)Fluoranthene	0.033		
				Benzo(g,h,i)Perylene	0.034	0.0083	
				Benzo(j,k)Fluoranthene	0.024	0.0083	~ ~
				Bis(2-Ethylhexyl) Phthalate	0.057		mg/kg
				Chrysene	0.05		mg/kg
				Fluoranthene	0.084		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.023		
				Phenanthrene	0.047		mg/kg
				Pyrene	0.076		mg/kg
		To all Date of	> H1 //DD ** **	Calculated cPAHs (TEC)	0.0471		mg/kg
		Total Petroleum	NWTPH-Dx	Lube Oil	310	63	mg/kg
		Hydrocarbons					

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR21	2.5 - 3	Metals	SW6010B	Chromium	37	0.59	mg/kg
				Lead	180	5.9	mg/kg
		Pesticides	SW8081	4,4'-DDE	12	12	ug/kg
				4,4'-DDT	33	12	ug/kg
				Dieldrin	14		ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.18	0.059	mg/kg
				Calculated Total Aroclors	0.36		mg/kg
		Semi-Volatile Organic	SW8270	1-Methylnaphthalene	0.012	0.0079	mg/kg
		Compounds		2-Methylnaphthalene	0.02	0.0079	mg/kg
				Acenaphthene	0.018		mg/kg
				Acenaphthylene	0.013	0.0079	mg/kg
				Anthracene	0.027	0.0079	mg/kg
				Benzo(a)Anthracene	0.041	0.0079	
				Benzo(a)Pyrene	0.049	0.0079	
				Benzo(b)Fluoranthene	0.05	0.04	mg/kg
				Benzo(g,h,i)Perylene	0.046	0.04	mg/kg
				Benzo(j,k)Fluoranthene	0.032	0.0079	mg/kg
				Chrysene	0.047	0.04	mg/kg
				Dibenzo(a,h)Anthracene	0.013	0.0079	mg/kg
				Fluoranthene	0.1	0.04	mg/kg
				Fluorene	0.02	0.0079	mg/kg
				Indeno(1,2,3-cd)Pyrene	0.034	0.0079	mg/kg
				Naphthalene	0.037	0.0079	mg/kg
				Phenanthrene	0.077	0.04	mg/kg
				Pyrene	0.082	0.04	mg/kg
				Calculated cPAHs (TEC)	0.0665		mg/kg
		Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	240		mg/kg
		Volatile Organic	SW8260	Acetone	0.042	0.0057	mg/kg
		Compounds		Benzene	0.01		mg/kg
	6 - 6.5	Semi-Volatile Organic	SW8270	Benzo(a)Anthracene	0.018	0.0083	mg/kg
		Compounds		Benzo(a)Pyrene	0.017	0.0083	mg/kg
				Benzo(b)Fluoranthene	0.025	0.0083	mg/kg
				Benzo(g,h,i)Perylene	0.022	0.0083	mg/kg
				Benzo(j,k)Fluoranthene	0.017	0.0083	mg/kg
				Chrysene	0.035		
				Fluoranthene	0.044		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.012	0.0083	mg/kg
				Phenanthrene	0.022	0.0083	mg/kg
				Pyrene	0.041	0.041	mg/kg
				Calculated cPAHs (TEC)	0.025		mg/kg
		Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	340		mg/kg

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

	Depth					Practical	
	Range		Analytical			Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte tential Concern 8	Result	Limit	Measure
FAR10	2.5 - 3	Metals	SW6010B	Chromium	45	0.6	mg/kg
TAICIO	2.3 - 3	ivictais	SWOOTOB	Lead	260		mg/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.16		mg/kg
		Toryemormated Dipitenyis	5 11 0002	Calculated Total Aroclors	0.34		mg/kg
		Semi-Volatile Organic	SW8270	Anthracene	0.011	0.0079	
		Compounds	5110270	Benzo(a)Anthracene	0.029	0.0079	
				Benzo(a)Pyrene	0.029	0.0079	~ ~
				Benzo(b)Fluoranthene	0.028	0.0079	
				Benzo(g,h,i)Perylene	0.025	0.0079	
				Benzo(j,k)Fluoranthene	0.022	0.0079	
				Chrysene	0.045		mg/kg
				Fluoranthene	0.054		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.017	0.0079	mg/kg
				Phenanthrene	0.049	0.04	mg/kg
				Pyrene	0.063		mg/kg
				Calculated cPAHs (TEC)	0.0414		mg/kg
		Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	370	60	mg/kg
		Volatile Organic	SW8260	2-Butanone (MEK)	0.011	0.0059	mg/kg
		Compounds		Acetone	0.12	0.0059	mg/kg
				Benzene	0.24	0.0012	
				Carbon Disulfide	0.0064	0.0059	
				m,p-Xylene	0.0038	0.0024	
				o-Xylene	0.0016	0.0012	
	15 - 15.5	W-1-+:1- O:-	SW8260	Toluene	0.026		mg/kg
	15 - 15.5	Volatile Organic Compounds	SW8200	Acetone	0.028	0.0073	mg/kg
FAR11	2.5 - 3	Metals	SW6010B	Chromium	35	0.55	mg/kg
				Lead	150		mg/kg
		Pesticides	SW8081	Endrin Aldehyde	22		ug/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.09	0.055	mg/kg
				Calculated Total Aroclors	0.26		mg/kg
		Semi-Volatile Organic	SW8270	Benzo(a)Anthracene	0.011	0.0073	
		Compounds		Benzo(a)Pyrene	0.011		
				Benzo(b)Fluoranthene	0.011	0.0073	mg/kg
				Benzo(g,h,i)Perylene	0.014		
				Benzo(j,k)Fluoranthene	0.0092	0.0073	
				Chrysene	0.023	0.0073	
				Fluoranthene	0.024	0.0073	
				Naphthalene	0.0094	0.0073	
				Phenanthrene Pyrene	0.018 0.027	0.0073 0.0073	
				Calculated cPAHs (TEC)	0.027		mg/kg mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	130		mg/kg
		Hydrocarbons	14 44 11 11-DX	Lube Oil	110		mg/kg
			SW8260				
			5110200	` '			
		Volatile Organic Compounds	SW8260	2-Butanone (MEK) Acetone	0.0077 0.073	0.0061 0.0061	

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR12	2.5 - 3	Metals	SW6010B	Chromium	51		mg/kg
FAR23	2.5 - 3	Metals	SW6010B	Chromium	16		mg/kg
		Volatile Organic Compounds	SW8260	Acetone	0.011	0.0051	
	6 - 6.5	Volatile Organic	SW8260	Acetone	0.041	0.0057	ma/ka
	0 - 0.3	Compounds	3 W 8200	Accione	0.041	0.0037	mg/kg
		Compounds	Area of Pot	tential Concern 9			
FAR13	2.5 - 3	Metals	SW6010B	Chromium	32	0.55	mg/kg
				Lead	8.2		mg/kg
		Semi-Volatile Organic	SW8270	Fluoranthene	0.0087	0.0073	
		Č		Pyrene	0.0082	0.0073	
	•	Total Petroleum	NWTPH-Dx	ž	55		mg/kg
		Hydrocarbons	11,11,111,111				
FAR14	3.5 - 4	Metals	SW6010B	Chromium	25	0.53	mg/kg
FAR15	2.5 - 3	Metals	SW6010B	Chromium	37		mg/kg
				Lead	8.6		mg/kg
		Semi-Volatile Organic	SW8270	Acenaphthene	0.013	0.0078	mg/kg
		Compounds		Acenaphthylene	0.014	0.0078	mg/kg
				Anthracene	0.067	0.039	mg/kg
				Benzo(a)Anthracene	0.14	0.039	mg/kg
				Benzo(a)Pyrene	0.18	0.039	mg/kg
				Benzo(b)Fluoranthene	0.17	0.039	mg/kg
				Benzo(g,h,i)Perylene	0.14	0.039	mg/kg
				Benzo(j,k)Fluoranthene	0.17	0.039	mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.11		mg/kg
				Chrysene	0.22		mg/kg
				Dibenzo(a,h)Anthracene	0.044		mg/kg
				Fluoranthene	0.45		mg/kg
				Fluorene	0.014		
				Indeno(1,2,3-cd)Pyrene	0.13		mg/kg
				Phenanthrene	0.21		mg/kg
				Pyrene	0.35		mg/kg
		W 1 (1 O	CM/02/0	Calculated cPAHs (TEC)	0.248		mg/kg
		Volatile Organic Compounds	SW8260	Acetone	0.033	0.0058	
	11 - 11.5	Semi-Volatile Organic	SW8270	Acenaphthylene	0.015		
		Compounds		Anthracene	0.034		
				Benzo(a)Anthracene	0.075		mg/kg
				Benzo(a)Pyrene	0.11		mg/kg
				Benzo(b)Fluoranthene	0.16		mg/kg
				Benzo(g,h,i)Perylene	0.067		mg/kg
				Benzo(j,k)Fluoranthene	0.1		mg/kg
				Bis(2-Ethylhexyl) Phthalate	0.059		mg/kg
				Chrysene	0.22		mg/kg
				Dibenzo(a,h)Anthracene	0.024		
				Fluoranthene	0.2		mg/kg
				Fluorene	0.0072		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.064	0.036	mg/kg

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

	Depth Range		Analytical			Practical Quantitation	Unit of
Location	(feet bgs)	Analyte Type	Method	Analyte	Result	Limit	Measure
FAR15	11 - 11.5	Semi-Volatile Organic	SW8270	Pentachlorophenol	0.47		mg/kg
(continued)	(continued)	Compounds	(continued)	Phenanthrene	0.074		mg/kg
	,	(continued)		Pyrene	0.19	0.036	mg/kg
		, , , , , , , , , , , , , , , , , , ,		Calculated cPAHs (TEC)	0.155		mg/kg
FAR16	2.5 - 3	Metals	SW6010B	Chromium	41	0.54	mg/kg
				Lead	7.6	5.4	mg/kg
FAR18	0.5 - 1	Metals	SW6010B	Chromium	55	0.67	mg/kg
				Lead	13		mg/kg
		Polychlorinated Biphenyls	SW8082	Aroclor 1260	0.12	0.067	mg/kg
				Calculated Total Aroclors	0.32		mg/kg
		Semi-Volatile Organic	SW8270	2-Methylnaphthalene	0.055	0.045	mg/kg
		Compounds		Acenaphthene	0.17	0.045	mg/kg
				Acenaphthylene	0.14	0.045	mg/kg
				Anthracene	0.58	0.045	mg/kg
				Benzo(a)Anthracene	5.8	1.1	mg/kg
				Benzo(a)Pyrene	7.1	1.1	mg/kg
				Benzo(b)Fluoranthene	7.5	1.1	mg/kg
				Benzo(g,h,i)Perylene	4.6		mg/kg
				Benzo(j,k)Fluoranthene	7.2		mg/kg
				Chrysene	7.4		mg/kg
				Dibenzo(a,h)Anthracene	1.9		mg/kg
				Fluoranthene	7.3		mg/kg
				Fluorene	0.32		mg/kg
				Indeno(1,2,3-cd)Pyrene	5.4		mg/kg
				Naphthalene	0.091		mg/kg
				Phenanthrene	2		mg/kg
				Pyrene	6.8	1.1	mg/kg
				Calculated cPAHs (TEC)	9.95		mg/kg
		Total Petroleum	NWTPH-Dx	Diesel-Range Organics	230		mg/kg
		Hydrocarbons		Lube Oil	2,700		mg/kg
		Volatile Organic Compounds	EPA8021	Toluene	0.17	0.092	mg/kg

Analytical Results Summary for Detected Constituents in Soil City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

Location	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitation Limit	Unit of Measure
FAR19	0.5 - 1	Metals	SW6010B	Chromium	55		mg/kg
				Lead	10		mg/kg
		Semi-Volatile Organic	SW8270	Anthracene	0.061		mg/kg
		Compounds		Benzo(a)Anthracene	0.53		mg/kg
				Benzo(a)Pyrene	0.81		mg/kg
				Benzo(b)Fluoranthene	0.84		mg/kg
				Benzo(g,h,i)Perylene	0.57		mg/kg
				Benzo(j,k)Fluoranthene	0.63	0.039	mg/kg
				Chrysene	0.66		mg/kg
				Dibenzo(a,h)Anthracene	0.2		mg/kg
				Fluoranthene	0.6		mg/kg
				Indeno(1,2,3-cd)Pyrene	0.53	0.039	mg/kg
				Phenanthrene	0.26		mg/kg
				Pyrene	0.5	0.039	mg/kg
				Calculated cPAHs (TEC)	1.09		mg/kg
		Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	1,600	300	mg/kg
		Volatile Organic	EPA8021	Benzene	0.44	0.021	mg/kg
		Compounds		Ethylbenzene	0.11	0.1	mg/kg
				m,p-Xylene	0.36	0.1	mg/kg
			Area of Poto	ential Concern 12			
FAR17	2.5 - 3	Metals	SW6010B	Chromium	56	0.63	mg/kg
		Volatile Organic	SW8260	2-Butanone (MEK)	0.0082	0.0064	mg/kg
		Compounds		Acetone	0.061	0.0064	mg/kg
	8 - 8.5	Semi-Volatile Organic	SW8270	Chrysene	0.012	0.0092	mg/kg
		Compounds		Calculated cPAHs (TEC)	0.0072		mg/kg
		Volatile Organic	SW8260	2-Butanone (MEK)	0.022		mg/kg
		Compounds		Acetone	0.15		mg/kg
FAR22	2.5 - 3	Metals	SW6010B	Chromium	60	0.63	mg/kg
		Volatile Organic	SW8260	2-Butanone (MEK)	0.017	0.0089	
		Compounds		Acetone	0.096	0.0089	mg/kg
	6 - 6.5	Volatile Organic Compounds	SW8260	Acetone	0.041	0.0065	
	10 - 10.5	Semi-Volatile Organic	SW8270	Chrysene	0.0083	0.0079	mg/kg
		Compounds		Calculated cPAHs (TEC)	0.00638		mg/kg

NOTES:

Results in **bold** denote analyte detected above screening level.

 $\mu g/kg = micrograms per kilogram$ mg/kg = milligrams per kilogram

Table C-7B

Analytical Results Summary for Detected Constituents in Groundwater City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

					Practical	
		Analytical			Quantitation	
Location	Analyte Type	Method	Analyte	Result	Limit	Measure
			of Potential Concern 2			
FAR2	Semi-Volatile Organic	SW8270	Benzo(a)Anthracene	0.02		
	Compounds		Benzo(a)Pyrene	0.018		
			Benzo(b)Fluoranthene	0.022		
			Benzo(g,h,i)Perylene	0.025		
			Benzo(j,k)Fluoranthene	0.016	0.0095	ug/l
			Butyl Benzyl Phthalate	2.1	0.95	ug/l
			Chrysene	0.025	0.0095	ug/l
			Dibenzo(a,h)Anthracene	0.01	0.0095	ug/l
			Indeno(1,2,3-cd)Pyrene	0.02	0.0095	ug/l
			Calculated cPAHs (TEC)	0.0271		ug/l
		Area (of Potential Concern 8			
FAR11	Volatile Organic	SW8260	Acetone	13	5	ug/l
	Compounds		Chloroform	0.53	0.2	ug/l
			p-Isopropyltoluene	0.26	0.2	ug/l
		Area	of Potential Concern 9			
FAR15	Semi-Volatile Organic	SW8270	Benzo(a)Anthracene	0.01	0.0098	ug/l
	Compounds		Benzo(a)Pyrene	0.012	0.0098	ug/l
	_		Benzo(b)Fluoranthene	0.031	0.0098	ug/l
			Benzo(g,h,i)Perylene	0.014	0.0098	ug/l
			Benzo(j,k)Fluoranthene	0.016	0.0098	ug/l
			Chrysene	0.044	0.0098	ug/l
			Indeno(1,2,3-cd)Pyrene	0.011	0.0098	ug/l
			Calculated cPAHs (TEC)	0.0197		ug/l
FAR16	Metals	SW6020	Arsenic (dissolved)	5.9		ug/l
		Area o	f Potential Concern 12			
FAR17	Semi-Volatile Organic Compounds	SW8270	Butyl Benzyl Phthalate	1.1	0.95	ug/l
FAR22	Semi-Volatile Organic Compounds	SW8270	Butyl Benzyl Phthalate	2.4	0.95	ug/l

NOTES:

Results in **bold** denote analyte detected above screening level.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

 $\mu g/l = micrograms \ per \ liter$

TEC = toxic equivalent concentration

Constituents Exceeding Screening Levels in Soil and Groundwater City of Port Angeles Sale Parcel Baseline Assessment

Locatio	on	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitatio n Limit	Unit of Measure	Screening Level	Exceedance Factor ¹	Screening Level Basis ²
								SOIL			
AOPC-2	FAR1	10-10.5	Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	0.244	-	mg/kg	0.14	1.7	Carcinogen, human health direct contact pathway (MTCA Method B standard formula value for unrestricted land use)
AOPC-4	FAR3	12.5 - 13	Metals	SW6010B	Chromium	48	0.61	mg/kg	48	1.0	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
	FAR4	4 - 4.5	Metals	SW6010B	Chromium	52	0.59	mg/kg	48	1.1	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
					Lead	400	5.9	mg/kg	50	8.0	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Pesticides	SW8081	4,4'-DDT	25	12	ug/kg	3	8.3	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.41	-	mg/kg	0.004	100	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
	FAR5	0.5 - 1	Pesticides	SW8081	Beta-Bhc	11	8.2	ug/kg	1	11.0	Screening level based on PQL from Analytical Resources Inc. or Frontier Analytical Laboratory
AOPC-6	OPC-6 FAR6 0.5 -		Metals	SW6010B	Lead	140	6.2	mg/kg	50	2.8	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Pesticides	SW8081	4,4'-DDT	12	12	ug/kg	3	4.0	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.40	-	mg/kg	0.004	99	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
			Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	1.64	-	mg/kg	0.14	12	Carcinogen, human health direct contact pathway (MTCA Method B standard formula value for unrestricted land use)
			Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	370	62	mg/kg	200	1.9	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
	FAR7	2.5 - 3	Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.42	-	mg/kg	0.004	100	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
	FAR8	5 - 5.5	Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	290	58	mg/kg	200	1.5	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
	FAR9	2.5 - 3	Metals	SW6010B	Chromium	52	0.58	mg/kg	48	1.1	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
					Lead	460	5.8	mg/kg	50	9.2	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	260	58	mg/kg	200	1.3	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
		6 - 6.5	Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	220	68	mg/kg	200	1.1	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)

Constituents Exceeding Screening Levels in Soil and Groundwater City of Port Angeles Sale Parcel Baseline Assessment Port Angeles, Washington

Farallon PN: 1005-001

Locatio	n	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitatio n Limit	Unit of Measure	Screening Level	Exceedance Factor ¹	Screening Level Basis ²
AOPC-6 (continued)	FAR20	2.5 - 3	Metals	SW6010B	Chromium	64	0.6	mg/kg	48	1.3	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
					Lead	160	6	mg/kg	50	3.2	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Pesticides	SW8081	4,4'-DDT	16	12	ug/kg	3	5.3	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.37	-	mg/kg	0.004	93	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
			Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	260	60	mg/kg	200	1.3	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
		5 - 5.5	Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	310	63	mg/kg	200	1.6	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
	FAR21	2.5 - 3	Metals	SW6010B	Lead	180	5.9	mg/kg	50	3.6	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Pesticides	SW8081	4,4'-DDE	12	12	ug/kg	2	6.0	Screening level based on PQL from Analytical Resources Inc. or Frontier Analytical Laboratory
					4,4'-DDT	33	12	ug/kg	3	11.0	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
					Dieldrin	14	12	ug/kg	2	7.0	Screening level based on PQL from Analytical Resources Inc. or Frontier Analytical Laboratory
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.36	-	mg/kg	0.004	90	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
			Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	240	60	mg/kg	200	1.2	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
		6 - 6.5	Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	340	62	mg/kg	200	1.7	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
AOPC-8	FAR10	2.5 - 3	Metals	SW6010B	Lead	260	6	mg/kg	50	5.2	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.34	-	mg/kg	0.004	85	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
			Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	370	60	mg/kg	200	1.9	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Volatile Organic Compounds	EPA8021	Benzene	0.24	0.0012	mg/kg	0.13	1.9	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
	FAR11	2.5 - 3	Metals	SW6010B	Lead	150	5.5	mg/kg	50	3.0	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Pesticides	SW8081	Endrin Aldehyde	22	11	ug/kg	2	11.0	Screening level based on PQL from Analytical Resources Inc. or Frontier Analytical Laboratory
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.26	-	mg/kg	0.004	65	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
	FAR12	2.5 - 3	Metals	SW6010B	Chromium	51	0.63	mg/kg	48	1.1	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)

Constituents Exceeding Screening Levels in Soil and Groundwater City of Port Angeles Sale Parcel Baseline Assessment

Locatio	n	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitatio n Limit	Unit of Measure	Screening Level	Exceedance Factor ¹	Screening Level Basis ²
AOPC-9	FAR15	2.5 - 3	Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	0.248	-	mg/kg	0.14	1.8	Carcinogen, human health direct contact pathway (MTCA Method B standard formula value for unrestricted land use)
		11 - 11.5	Semi-Volatile Organic Compounds	SW8270	Pentachlorophenol	0.47	0.18	mg/kg	0.048	9.8	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
				SW8270	Calculated cPAHs (TEC)	0.155	-	mg/kg	0.14	1.1	Carcinogen, human health direct contact pathway (MTCA Method B standard formula value for unrestricted land use)
	FAR18	0.5 - 1	Metals	SW6010B	Chromium	55	0.67	mg/kg	48	1.1	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
			Polychlorinated Biphenyls	SW8082	Calculated Total Aroclors	0.32	-	mg/kg	0.004	80	Screening level based on PQL from Analytical Resources, Inc. or Frontier Analytical Laboratory.
			Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	9.95	-	mg/kg	0.14	71.1	Carcinogen, human health direct contact pathway (MTCA Method B standard formula value for unrestricted land use)
			Total Petroleum Hydrocarbons	NWTPH-Dx	Diesel Range Organics (DRO)	230	170	mg/kg	200	1.2	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
					Lube Oil	2700	340	mg/kg	200	13.5	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
	FAR19	0.5 - 1	Metals	SW6010B	Chromium	55	0.59	mg/kg	48	1.1	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
			Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	1.09	-	mg/kg	0.14	7.8	Carcinogen, human health direct contact pathway (MTCA Method B standard formula value for unrestricted land use)
			Total Petroleum Hydrocarbons	NWTPH-Dx	Lube Oil	1600	340	mg/kg	200	8.0	Ecological indicator soil concentration for protection of terrestrial plants and animals (MTCA Table 749-3)
			Volatile Organic Compounds	EPA8021	Benzene	0.44	0.021	mg/kg	0.13	3.4	Soil concentration protective of groundwater as marine surface water (MTCA fixed parameter three-phase partitioning model)
AOPC-12	FAR17	2.5 - 3	Metals	SW6010B	Chromium	56	0.63	mg/kg	48	1.2	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)
	FAR22	2.5 - 3	Metals	SW6010B	Chromium	60	0.63	mg/kg	48	1.3	Metals background values (Puget Sound Region 90th percentile values) are from Natural Background Soil Metals Concentrations in Washington State (Ecology Publication #94-115, 1994)

Constituents Exceeding Screening Levels in Soil and Groundwater City of Port Angeles Sale Parcel Baseline Assessment

Port Angeles, Washington Farallon PN: 1005-001

Locatio	n	Depth Range (feet bgs)	Analyte Type	Analytical Method	Analyte	Result	Practical Quantitatio n Limit	Unit of Measure	Screening Level	Exceedance Factor ¹	Screening Level Basis ²
GROUNDWATER											
AOPC-2	FAR2	-	Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	0.0271	-	ug/l	0.018	1.5	National Recommended Water Quality Criteria (EPA 2006)- Protection of Human Health
AOPC-9	FAR15	-	Semi-Volatile Organic Compounds	SW8270	Calculated cPAHs (TEC)	0.0197	-	ug/l	0.018	1.1	National Recommended Water Quality Criteria (EPA 2006)- Protection of Human Health
	FAR16	-	Metals	SW6020	Arsenic (Dissolved)	5.9	3	ug/l	0.2	29.5	Additional screening level based on PQL from OnSite Environmental Inc.

NOTES:

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

ug/kg = micrograms per kilogram

ug/l = micrograms per liter

mg/kg = milligrams per kilogram

MTCA = Washington State Model Toxics Control Act Cleanup Regulation

PQL = practical quantitation limit

TEC = toxic equivalent concentration

¹Exceedance factor = Result divided by Screening Level

²Soil and groundwater screening levels are for comparison purposes only and are those identified in Tables 1 and 2 of the Rayonier Supplemental Upland Data Collection Work Plan (GeoEngineers, July 20, 2010)

APPENDIX D LABORATORY ANALYTICAL REPORTS

BASELINE SUBSURFACE ENVIRONMENTAL ASSESSMENT
Portion of Rayonier Mill Property
700 North Ennis Street
Port Angeles, Washington

Farallon PN: 1005-001

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 14, 2011

Tad Cline Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1005-001

Laboratory Reference No. 1106-187

Dear Tad:

Enclosed are the analytical results and associated quality control data for samples submitted on June 22, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1005-001

Case Narrative

Samples were collected on June 20 and 21, 2011 and received by the laboratory on June 22, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Volatiles (soil) EPA 8260B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

The value reported for Benzene for sample FAR10-2.5 exceeds the quantitation range and is therefore an estimate. The sample was analyzed at the lowest possible dilution provided for by Method 5035A with non-detect results for Benzene. The sample VOAs may be inhomogeneous.

Semivolatiles (water) EPA 8270D/SIM Analysis

The method blank had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Organochlorine Pesticides by EPA 8081A Analysis

Please note that the P-flagged pesticide hits for samples FAR21-2.5, FAR20-2.5, and FAR6-0.5 are caused by PCB interferences.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR12-2.5					
Laboratory ID:	06-187-01					
Benzene	ND	0.020	EPA 8021	6-24-11	6-24-11	
Toluene	ND	0.074	EPA 8021	6-24-11	6-24-11	
Ethyl Benzene	ND	0.074	EPA 8021	6-24-11	6-24-11	
m,p-Xylene	ND	0.074	EPA 8021	6-24-11	6-24-11	
o-Xylene	ND	0.074	EPA 8021	6-24-11	6-24-11	
Gasoline	ND	7.4	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	68-124				
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
Gasoline	ND	7.1	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	68-124				
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
Gasoline	ND	6.7	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	68-124				

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
FAR10-2.5					
06-187-18					
ND	6.9	NWTPH-Gx	6-24-11	6-24-11	
Percent Recovery	Control Limits				
81	68-124				
FAR9-2.5					
06-187-22					
ND	0.020	EPA 8021	6-24-11	6-24-11	
ND	0.063	EPA 8021	6-24-11	6-24-11	
ND	0.063	EPA 8021	6-24-11	6-24-11	
ND	0.063	EPA 8021	6-24-11	6-24-11	
ND	0.063	EPA 8021	6-24-11	6-24-11	
ND	6.3	NWTPH-Gx	6-24-11	6-24-11	
Percent Recovery	Control Limits				
88	68-124				
FAR7-2.5					
06-187-26					
ND	7.7	NWTPH-Gx	6-24-11	6-24-11	
Percent Recovery	Control Limits				
88	68-124				
	FAR10-2.5 06-187-18 ND Percent Recovery 81 FAR9-2.5 06-187-22 ND ND ND ND ND ND ND Percent Recovery 88 FAR7-2.5 06-187-26 ND Percent Recovery	FAR10-2.5 06-187-18 ND 6.9 Percent Recovery 81 Control Limits 68-124 FAR9-2.5 06-187-22 ND 0.020 ND 0.063 ND 0.063 ND 0.063 ND 6.3 Percent Recovery 88 Control Limits 68-124 FAR7-2.5 06-187-26 ND 7.7 Percent Recovery 7 Control Limits 60-124	FAR10-2.5 06-187-18 ND 6.9 NWTPH-Gx Percent Recovery 81 Control Limits 68-124 Control Limits 68-124 FAR9-2.5 Control Limits 70 Control Limits 70 ND 0.063 EPA 8021 EPA 8021 ND 0.063 EPA 8021 EPA 8021 ND 0.063 EPA 8021 ND NWTPH-Gx Percent Recovery 88 Control Limits 68-124 Control Limits 68-124 NWTPH-Gx Percent Recovery Percent Recovery 70 Control Limits 7.7 NWTPH-Gx	Result PQL Method Prepared FAR10-2.5 06-187-18 6.9 NWTPH-Gx 6-24-11 ND 6.9 NWTPH-Gx 6-24-11 Percent Recovery 81 68-124 68-124 FAR9-2.5 06-187-22 6-24-11 ND 0.063 EPA 8021 6-24-11 ND 6.3 NWTPH-Gx 6-24-11 Percent Recovery 88 68-124 68-124 FAR7-2.5 06-187-26 ND 7.7 NWTPH-Gx 6-24-11 Percent Recovery Control Limits 6-24-11 6-24-11	Result PQL Method Prepared Analyzed FAR10-2.5 06-187-18 06-187-18 6.9 NWTPH-Gx 6-24-11 6-24-11 Percent Recovery 81 Control Limits 68-124 FAR9-2.5 06-187-22 06-187-22 0.063 EPA 8021 6-24-11 6-24-11 6-24-11 6-24-11 ND 0.063 EPA 8021 6-24-11 6-24-11 6-24-11 6-24-11 ND 0.063 EPA 8021 6-24-11

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

3 3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR13-2.5					
Laboratory ID:	06-187-30					
Benzene	ND	0.020	EPA 8021	6-24-11	6-24-11	
Toluene	ND	0.060	EPA 8021	6-24-11	6-24-11	
Ethyl Benzene	ND	0.060	EPA 8021	6-24-11	6-24-11	
m,p-Xylene	ND	0.060	EPA 8021	6-24-11	6-24-11	
o-Xylene	ND	0.060	EPA 8021	6-24-11	6-24-11	
Gasoline	ND	6.0	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	68-124				
Client ID:	FAR5-0.5					
Laboratory ID:	06-187-35					
Benzene	ND	0.022	EPA 8021	6-24-11	6-24-11	
Toluene	ND	0.11	EPA 8021	6-24-11	6-24-11	
Ethyl Benzene	ND	0.11	EPA 8021	6-24-11	6-24-11	
m,p-Xylene	ND	0.11	EPA 8021	6-24-11	6-24-11	
o-Xylene	ND	0.11	EPA 8021	6-24-11	6-24-11	
Gasoline	ND	11	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				
Client ID:	FAR6-0.5					
Laboratory ID:	06-187-36					
Benzene	ND	0.020	EPA 8021	6-24-11	6-24-11	
Toluene	ND	0.073	EPA 8021	6-24-11	6-24-11	
Ethyl Benzene	ND	0.073	EPA 8021	6-24-11	6-24-11	
m,p-Xylene	ND	0.073	EPA 8021	6-24-11	6-24-11	
o-Xylene	ND	0.073	EPA 8021	6-24-11	6-24-11	
Gasoline	ND	7.3	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	68-124				

Project: 1005-001

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0624S1					
Benzene	ND	0.020	EPA 8021	6-24-11	6-24-11	
Toluene	ND	0.050	EPA 8021	6-24-11	6-24-11	
Ethyl Benzene	ND	0.050	EPA 8021	6-24-11	6-24-11	
m,p-Xylene	ND	0.050	EPA 8021	6-24-11	6-24-11	
o-Xylene	ND	0.050	EPA 8021	6-24-11	6-24-11	
Gasoline	ND	5.0	NWTPH-Gx	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits Fluorobenzene 81 68-124

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-18	37-26								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						88 90	68-124			

SPIKE BLANKS

Laboratory ID:	SB06	S24S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzene	0.837	0.837	1.00	1.00	84	84	77-114	0	9	
Toluene	0.872	0.876	1.00	1.00	87	88	80-115	0	9	
Ethyl Benzene	0.878	0.881	1.00	1.00	88	88	80-118	0	9	
m,p-Xylene	0.886	0.891	1.00	1.00	89	89	82-118	1	9	
o-Xylene	0.876	0.876	1.00	1.00	88	88	82-116	0	9	
Surrogate:										
Fluorobenzene					82	80	68-124			

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR12-062011-GW					
Laboratory ID:	06-187-04					
Benzene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Toluene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-23-11	6-23-11	
m,p-Xylene	ND	1.0	EPA 8021	6-23-11	6-23-11	
o-Xylene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Gasoline	ND	100	NWTPH-Gx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	73-121				
Client ID:	FAR15-062011-GW					
Laboratory ID:	06-187-09					
Gasoline	ND	100	NWTPH-Gx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				
Client ID:	FAR13-062111-GW					
Laboratory ID:	06-187-34					
Benzene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Toluene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-23-11	6-23-11	
m,p-Xylene	ND	1.0	EPA 8021	6-23-11	6-23-11	
o-Xylene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Gasoline	ND	100	NWTPH-Gx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	73-121				

Project: 1005-001

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0623W1					
Benzene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Toluene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-23-11	6-23-11	
m,p-Xylene	ND	1.0	EPA 8021	6-23-11	6-23-11	
o-Xylene	ND	1.0	EPA 8021	6-23-11	6-23-11	
Gasoline	ND	100	NWTPH-Gx	6-23-11	6-23-11	
Currogoto:	Paraant Pagayary	Control Limita	·	·		·

Surrogate: Percent Recovery Control Limits Fluorobenzene 78 73-121

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-18	37-04								
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						<i>87 88</i>	73-121			

MATRIX SPIKES

Laboratory ID:	06-1	87-04								
	MS	MSD	MS	MSD		MS	MSD			
Benzene	45.8	46.0	50.0	50.0	ND	92	92	82-120	0	8
Toluene	46.8	47.9	50.0	50.0	ND	94	96	84-119	2	8
Ethyl Benzene	46.1	47.9	50.0	50.0	ND	92	96	84-122	4	9
m,p-Xylene	45.9	47.6	50.0	50.0	ND	92	95	85-121	4	9
o-Xylene	45.7	47.1	50.0	50.0	ND	91	94	84-121	3	9
Surrogate:										

Fluorobenzene 98 87 73-121

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR12-2.5					
Laboratory ID:	06-187-01					
Diesel Range Organics	ND	32	NWTPH-Dx	6-23-11	6-24-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
Diesel Range Organics	ND	51	NWTPH-Dx	6-23-11	6-24-11	U1
Lube Oil	240	60	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
Diesel Range Organics	ND	39	NWTPH-Dx	6-23-11	6-24-11	U1
Lube Oil	260	60	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	FAR10-2.5					
Laboratory ID:	06-187-18					
Diesel Range Organics	ND	57	NWTPH-Dx	6-23-11	6-24-11	U1
Lube Oil	370	60	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	FAR9-2.5					
Laboratory ID:	06-187-22					
Diesel Range Organics	ND	49	NWTPH-Dx	6-23-11	6-24-11	U1
Lube Oil	260	58	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
· -						
Client ID:	FAR7-2.5					
Laboratory ID:	06-187-26					
Diesel Range Organics	ND	26	NWTPH-Dx	6-23-11	6-24-11	
Lube Oil	120	52	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	133	50-150				
• •						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR13-2.5					
Laboratory ID:	06-187-30					
Diesel Range Organics	ND	27	NWTPH-Dx	6-23-11	6-24-11	
Lube Oil	55	55	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				
Client ID:	FAR5-0.5					
Laboratory ID:	06-187-35					
Diesel Range Organics	ND	41	NWTPH-Dx	6-23-11	6-24-11	
Lube Oil Range Organics	ND	82	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	51	50-150				
Client ID:	FAR6-0.5					
Laboratory ID:	06-187-36					
Diesel Range Organics	ND	42	NWTPH-Dx	6-23-11	6-24-11	U1
Lube Oil	370	62	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

Project: 1005-001

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK					7 y_c	99
Laboratory ID:	MB0623S2					
Diesel Range Organics	ND	25	NWTPH-Dx	6-23-11	6-24-11	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-23-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				

			Percent	Recovery		RPD	
Analyte	Res	sult	Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	06-18	37-30					
	ORIG	DUP					
Diesel Range Organics	ND	ND			NA	NA	
Lube Oil	50.1	ND			NA	NA	
Surrogate:							
a. Ta wala a wast			444 400	E0 4E0			

o-Terphenyl 106 50-150

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR12-062011-GW					
Laboratory ID:	06-187-04					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-23-11	6-23-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	FAR15-062011-GW					
Laboratory ID:	06-187-09					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-23-11	6-23-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				
Client ID:	FAR13-062111-GW					
Laboratory ID:	06-187-34					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-23-11	6-23-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

Project: 1005-001

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0623W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-23-11	6-23-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	06-18	37-09						
<u>. </u>	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			109	108	50-150			

Project: 1005-001

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Soil Units: mg/kg

Analyte	Result	PQL	Method	Date	Date	
				Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05					
Dichlorodifluoromethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Chloromethane	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Vinyl Chloride	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Bromomethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Chloroethane	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Trichlorofluoromethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Acetone	0.033	0.0058	EPA 8260	6-24-11	6-24-11	
Iodomethane	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Carbon Disulfide	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Methylene Chloride	ND	0.0058	EPA 8260	6-24-11	6-24-11	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Vinyl Acetate	ND	0.0058	EPA 8260	6-24-11	6-24-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
2-Butanone	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Bromochloromethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Chloroform	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Benzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Trichloroethene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Dibromomethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Bromodichloromethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
2-Chloroethyl Vinyl Ether	ND	0.0058	EPA 8260	6-24-11	6-24-11	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Methyl Isobutyl Ketone	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Toluene	ND	0.0058	EPA 8260	6-24-11	6-24-11	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260	6-24-11	6-24-11	

Project: 1005-001

VOLATILES by EPA 8260B

Page 2 of 2

Client ID: FAR15-25 Laboratory ID: 06-187-05 Laboratory ID: 06-24-11 06-24-11 Laboratory I					Date	Date	
Laboratory ID:			PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Tetrachloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Hexanone ND 0.0012 EPA 8260 6-24-11 6-24-11 Dibromochloromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Lthylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 <	Client ID:	FAR15-2.5					
Tetrachloroethene	Laboratory ID:	06-187-05					
1,3-Dichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Hexanone ND 0.0058 EPA 8260 6-24-11 6-24-11 Dibromochloromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromoethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 mp-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 Brythene ND 0.0012 EPA 8260 6-24-11 6-24-11	1,1,2-Trichloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
2-Hexanone ND 0.0058 EPA 8260 6-24-11 6-24-11 Dibromochloromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromoethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,3-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,3-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,1-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,1-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,1-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0012 EPA 8260 6-24	Tetrachloroethene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Dibromochloromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromoethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Linding ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Cylgne ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene	1,3-Dichloropropane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2-Dibromoethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 L1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 m, 2, Yelene ND 0.0023 EPA 8260 6-24-11 6-24-11 o-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11	2-Hexanone	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Chlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 m,p-Xylene ND 0.0023 EPA 8260 6-24-11 6-24-11 o-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Tichloropropane ND 0.0012 EPA 8260 6-24-11 6-24	Dibromochloromethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,1,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 m,p-Xylene ND 0.0023 EPA 8260 6-24-11 6-24-11 o-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Triichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Tribhloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11	1,2-Dibromoethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Ethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 m,p-Xylene ND 0.0023 EPA 8260 6-24-11 6-24-11 o-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Propylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11	Chlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
m,p-Xylene ND 0.0023 EPA 8260 6-24-11 6-24-11 c-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-1	1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
o-Xylene ND 0.0012 EPA 8260 6-24-11 6-24-11 Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11	Ethylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Styrene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 J.2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,2-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Propylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11	m,p-Xylene	ND	0.0023	EPA 8260	6-24-11	6-24-11	
Bromoform ND 0.0012 EPA 8260 6-24-11 6-24-11 Isopropylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Propylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 <td>o-Xylene</td> <td>ND</td> <td>0.0012</td> <td>EPA 8260</td> <td>6-24-11</td> <td>6-24-11</td> <td></td>	o-Xylene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Isopropylbenzene	Styrene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Bromobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Trichlorobenzene ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Trichlorobenzene ND	Bromoform	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,1,2,2-Tetrachloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Propylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.	Isopropylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Propylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 tert-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8	Bromobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
n-Propylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA	1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
2-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 tert-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 sec-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8	1,2,3-Trichloropropane	ND	0.0012	EPA 8260	6-24-11	6-24-11	
4-Chlorotoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 tert-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 sec-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0058 <t< td=""><td>n-Propylbenzene</td><td>ND</td><td>0.0012</td><td>EPA 8260</td><td>6-24-11</td><td>6-24-11</td><td></td></t<>	n-Propylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,3,5-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 tert-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 sec-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 p-Isopropyltoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibloromo-3-chloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 ND 0.0058 EPA 8260 6	2-Chlorotoluene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
tert-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 sec-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 p-Isopropyltoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0058 EPA 8260 6-24-11 6-24-11 ND 0.0058 EPA 8260 6-24-11 6-24-11 ND 0.0012 EPA 8260 6-24-11 6-24-11 <	4-Chlorotoluene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2,4-Trimethylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 sec-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 p-Isopropyltoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260	1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
sec-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 p-Isopropyltoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2,3-Trichlorobenzene ND 0.0012 EPA 8260	tert-Butylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,3-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 p-Isopropyltoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 2urrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 6	1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
p-Isopropyltoluene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 65-129	sec-Butylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,4-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	1,3-Dichlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2-Dichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	p-Isopropyltoluene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
n-Butylbenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	1,4-Dichlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2-Dibromo-3-chloropropane ND 0.0058 EPA 8260 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	1,2-Dichlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2,4-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	n-Butylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Hexachlorobutadiene ND 0.0058 EPA 8260 6-24-11 6-24-11 Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	1,2-Dibromo-3-chloropropane	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Naphthalene ND 0.0012 EPA 8260 6-24-11 6-24-11 1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichlorobenzene ND 0.0012 EPA 8260 6-24-11 6-24-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	Hexachlorobutadiene	ND	0.0058	EPA 8260	6-24-11	6-24-11	
Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	Naphthalene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129	1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11	
Dibromofluoromethane 75 63-127 Toluene-d8 77 65-129		Percent Recovery					
Toluene-d8 77 65-129	•	-					
	Toluene-d8						
	4-Bromofluorobenzene						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
Dichlorodifluoromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chloromethane	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Vinyl Chloride	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromomethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chloroethane	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Acetone	0.042	0.0057	EPA 8260	6-24-11	6-24-11	
Iodomethane	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Carbon Disulfide	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Methylene Chloride	ND	0.0057	EPA 8260	6-24-11	6-24-11	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Vinyl Acetate	ND	0.0057	EPA 8260	6-24-11	6-24-11	
2,2-Dichloropropane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
2-Butanone	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Bromochloromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chloroform	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1-Dichloropropene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Benzene	0.010	0.0011	EPA 8260	6-24-11	6-24-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Trichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,2-Dichloropropane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Dibromomethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromodichloromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
2-Chloroethyl Vinyl Ether	ND	0.0057	EPA 8260	6-24-11	6-24-11	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Methyl Isobutyl Ketone	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Toluene	ND	0.0057	EPA 8260	6-24-11	6-24-11	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260	6-24-11	6-24-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Tetrachloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
2-Hexanone	ND	0.0057	EPA 8260	6-24-11	6-24-11	
Dibromochloromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chlorobenzene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Ethylbenzene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
m,p-Xylene	ND	0.0023	EPA 8260	6-24-11	6-24-11	
o-Xylene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Styrene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromoform	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Isopropylbenzene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromobenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,1,2,2-Tetrachloroethane	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,2,3-Trichloropropane	ND	0.071	EPA 8260	6-24-11	6-27-11	
n-Propylbenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
2-Chlorotoluene	ND	0.071	EPA 8260	6-24-11	6-27-11	
4-Chlorotoluene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,3,5-Trimethylbenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
tert-Butylbenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,2,4-Trimethylbenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
sec-Butylbenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,3-Dichlorobenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
p-Isopropyltoluene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,4-Dichlorobenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,2-Dichlorobenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
n-Butylbenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,2-Dibromo-3-chloropropane	ND	0.35	EPA 8260	6-24-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
Hexachlorobutadiene	ND	0.35	EPA 8260	6-24-11	6-27-11	
Naphthalene	ND	0.071	EPA 8260	6-24-11	6-27-11	
1,2,3-Trichlorobenzene	ND	0.071	EPA 8260	6-24-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	81	63-127				
Toluene-d8	78	65-129				
4 Dramaficanahannan	00	FF 101				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

62

Project: 1005-001

VOLATILES by EPA 8260B Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
Dichlorodifluoromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chloromethane	ND	0.0055	EPA 8260	6-24-11	6-24-11	
Vinyl Chloride	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromomethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chloroethane	ND	0.0055	EPA 8260	6-24-11	6-24-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Acetone	0.068	0.0055	EPA 8260	6-24-11	6-24-11	
Iodomethane	ND	0.0055	EPA 8260	6-24-11	6-24-11	
Carbon Disulfide	ND	0.0055	EPA 8260	6-24-11	6-24-11	
Methylene Chloride	ND	0.0055	EPA 8260	6-24-11	6-24-11	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Vinyl Acetate	ND	0.0055	EPA 8260	6-24-11	6-24-11	
2,2-Dichloropropane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
2-Butanone	0.0084	0.0055	EPA 8260	6-24-11	6-24-11	
Bromochloromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chloroform	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1-Dichloropropene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Benzene	0.0033	0.0011	EPA 8260	6-24-11	6-24-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Trichloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,2-Dichloropropane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Dibromomethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromodichloromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
2-Chloroethyl Vinyl Ether	ND	0.0055	EPA 8260	6-24-11	6-24-11	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Methyl Isobutyl Ketone	ND	0.0055	EPA 8260	6-24-11	6-24-11	
Toluene	ND	0.0055	EPA 8260	6-24-11	6-24-11	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260	6-24-11	6-24-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Tetrachloroethene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
2-Hexanone	ND	0.0055	EPA 8260	6-24-11	6-24-11	
Dibromochloromethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Chlorobenzene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Ethylbenzene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
m,p-Xylene	ND	0.0022	EPA 8260	6-24-11	6-24-11	
o-Xylene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Styrene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromoform	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Isopropylbenzene	ND	0.0011	EPA 8260	6-24-11	6-24-11	
Bromobenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,1,2,2-Tetrachloroethane	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichloropropane	ND	0.067	EPA 8260	6-24-11	6-24-11	
n-Propylbenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
2-Chlorotoluene	ND	0.067	EPA 8260	6-24-11	6-24-11	
4-Chlorotoluene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,3,5-Trimethylbenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
tert-Butylbenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,2,4-Trimethylbenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
sec-Butylbenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,3-Dichlorobenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
p-Isopropyltoluene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,4-Dichlorobenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,2-Dichlorobenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
n-Butylbenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,2-Dibromo-3-chloropropane	e ND	0.33	EPA 8260	6-24-11	6-24-11	
1,2,4-Trichlorobenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
Hexachlorobutadiene	ND	0.33	EPA 8260	6-24-11	6-24-11	
Naphthalene	ND	0.067	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichlorobenzene	ND	0.067	EPA 8260	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	86	63-127				
Toluene-d8	79	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

62

Project: 1005-001

VOLATILES by EPA 8260B Page 1 of 2

Analyte Result PQL Method Prepared Analyzed Flat Client ID: FAR10-2.5 Laboratory ID: 06-187-18 Dichlorodifluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloromethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Vinyl Chloride ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11 Iodomethane ND 0.0059 EPA 8260 6-24-11 6-24-11	
Laboratory ID: 06-187-18 Dichlorodifluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloromethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Vinyl Chloride ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	gs
Dichlorodifluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloromethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Vinyl Chloride ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
Chloromethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Vinyl Chloride ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
Vinyl Chloride ND 0.0012 EPA 8260 6-24-11 6-24-11 Bromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
Bromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11 Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
Chloroethane ND 0.0059 EPA 8260 6-24-11 6-24-11 Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
Trichlorofluoromethane ND 0.0012 EPA 8260 6-24-11 6-24-11 1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
1,1-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11 Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
Acetone 0.12 0.0059 EPA 8260 6-24-11 6-24-11	
lodomethane ND 0.0059 FPA 8260 6-24-11 6-24-11	
1000110tilatio 14D 0.0000 E17(0200 02111 02111	
Carbon Disulfide 0.0064 0.0059 EPA 8260 6-24-11 6-24-11	
Methylene Chloride ND 0.0059 EPA 8260 6-24-11 6-24-11	
(trans) 1,2-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11	
Methyl t-Butyl Ether ND 0.0012 EPA 8260 6-24-11 6-24-11	
1,1-Dichloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11	
Vinyl Acetate ND 0.0059 EPA 8260 6-24-11 6-24-11	
2,2-Dichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11	
(cis) 1,2-Dichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11	
2-Butanone 0.011 0.0059 EPA 8260 6-24-11 6-24-11	
Bromochloromethane ND 0.0012 EPA 8260 6-24-11 6-24-11	
Chloroform ND 0.0012 EPA 8260 6-24-11 6-24-11	
1,1,1-Trichloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11	
Carbon Tetrachloride ND 0.0012 EPA 8260 6-24-11 6-24-11	
1,1-Dichloropropene ND 0.0012 EPA 8260 6-24-11 6-24-11	
Benzene 0.24 0.0012 EPA 8260 6-24-11 6-24-11 E	Ξ
1,2-Dichloroethane ND 0.0012 EPA 8260 6-24-11 6-24-11	
Trichloroethene ND 0.0012 EPA 8260 6-24-11 6-24-11	
1,2-Dichloropropane ND 0.0012 EPA 8260 6-24-11 6-24-11	
Dibromomethane ND 0.0012 EPA 8260 6-24-11 6-24-11	
Bromodichloromethane ND 0.0012 EPA 8260 6-24-11 6-24-11	
2-Chloroethyl Vinyl Ether ND 0.0059 EPA 8260 6-24-11 6-24-11	
(cis) 1,3-Dichloropropene ND 0.0012 EPA 8260 6-24-11 6-24-11	
Methyl Isobutyl Ketone ND 0.0059 EPA 8260 6-24-11 6-24-11	
Toluene 0.026 0.0059 EPA 8260 6-24-11 6-24-11	
(trans) 1,3-Dichloropropene ND 0.0012 EPA 8260 6-24-11 6-24-11	

Project: 1005-001

VOLATILES by EPA 8260B

Page 2 of 2

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	FAR10-2.5						
Laboratory ID:	06-187-18						
1,1,2-Trichloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11		
Tetrachloroethene	ND	0.0012	EPA 8260	6-24-11	6-24-11		
1,3-Dichloropropane	ND	0.0012	EPA 8260	6-24-11	6-24-11		
2-Hexanone	ND	0.0059	EPA 8260	6-24-11	6-24-11		
Dibromochloromethane	ND	0.0012	EPA 8260	6-24-11	6-24-11		
1,2-Dibromoethane	ND	0.0012	EPA 8260	6-24-11	6-24-11		
Chlorobenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11		
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	6-24-11	6-24-11		
Ethylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11		
m,p-Xylene	0.0038	0.0024	EPA 8260	6-24-11	6-24-11		
o-Xylene	0.0016	0.0012	EPA 8260	6-24-11	6-24-11		
Styrene	ND	0.0012	EPA 8260	6-24-11	6-24-11		
Bromoform	ND	0.0012	EPA 8260	6-24-11	6-24-11		
Isopropylbenzene	ND	0.0012	EPA 8260	6-24-11	6-24-11		
Bromobenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,1,2,2-Tetrachloroethane	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,2,3-Trichloropropane	ND	0.069	EPA 8260	6-24-11	6-27-11		
n-Propylbenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
2-Chlorotoluene	ND	0.069	EPA 8260	6-24-11	6-27-11		
4-Chlorotoluene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,3,5-Trimethylbenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
tert-Butylbenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,2,4-Trimethylbenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
sec-Butylbenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,3-Dichlorobenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
p-Isopropyltoluene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,4-Dichlorobenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,2-Dichlorobenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
n-Butylbenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,2-Dibromo-3-chloropropane	ND	0.34	EPA 8260	6-24-11	6-27-11		
1,2,4-Trichlorobenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
Hexachlorobutadiene	ND	0.34	EPA 8260	6-24-11	6-27-11		
Naphthalene	ND	0.069	EPA 8260	6-24-11	6-27-11		
1,2,3-Trichlorobenzene	ND	0.069	EPA 8260	6-24-11	6-27-11		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	84	63-127					
Toluene-d8	78	65-129					

78 4-Bromofluorobenzene 64 55-121

Project: 1005-001

VOLATILES by EPA 8260B Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR7-2.5					
Laboratory ID:	06-187-26					
Dichlorodifluoromethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Chloromethane	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Vinyl Chloride	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Bromomethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Chloroethane	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Trichlorofluoromethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Acetone	0.070	0.0082	EPA 8260	6-24-11	6-24-11	
Iodomethane	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Carbon Disulfide	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Methylene Chloride	ND	0.0082	EPA 8260	6-24-11	6-24-11	
(trans) 1,2-Dichloroethene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Methyl t-Butyl Ether	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Vinyl Acetate	ND	0.0082	EPA 8260	6-24-11	6-24-11	
2,2-Dichloropropane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
(cis) 1,2-Dichloroethene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
2-Butanone	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Bromochloromethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Chloroform	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,1,1-Trichloroethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Carbon Tetrachloride	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,1-Dichloropropene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Benzene	0.0026	0.0016	EPA 8260	6-24-11	6-24-11	
1,2-Dichloroethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Trichloroethene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2-Dichloropropane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Dibromomethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Bromodichloromethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
2-Chloroethyl Vinyl Ether	ND	0.0082	EPA 8260	6-24-11	6-24-11	
(cis) 1,3-Dichloropropene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Methyl Isobutyl Ketone	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Toluene	ND	0.0082	EPA 8260	6-24-11	6-24-11	
(trans) 1,3-Dichloropropene	ND	0.0016	EPA 8260	6-24-11	6-24-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR7-2.5					
Laboratory ID:	06-187-26					
1,1,2-Trichloroethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Tetrachloroethene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,3-Dichloropropane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
2-Hexanone	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Dibromochloromethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2-Dibromoethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Chlorobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,1,1,2-Tetrachloroethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Ethylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
m,p-Xylene	ND	0.0033	EPA 8260	6-24-11	6-24-11	
o-Xylene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Styrene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Bromoform	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Isopropylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Bromobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,1,2,2-Tetrachloroethane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichloropropane	ND	0.0016	EPA 8260	6-24-11	6-24-11	
n-Propylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
2-Chlorotoluene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
4-Chlorotoluene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,3,5-Trimethylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
tert-Butylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2,4-Trimethylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
sec-Butylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,3-Dichlorobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
p-Isopropyltoluene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,4-Dichlorobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2-Dichlorobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
n-Butylbenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2-Dibromo-3-chloropropane	ND	0.0082	EPA 8260	6-24-11	6-24-11	
1,2,4-Trichlorobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Hexachlorobutadiene	ND	0.0082	EPA 8260	6-24-11	6-24-11	
Naphthalene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichlorobenzene	ND	0.0016	EPA 8260	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	71	63-127				
Toluene-d8	73	65-129				
4 Drawally and barrens	74	EE 101				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

71

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0624S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Chloromethane	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Vinyl Chloride	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Bromomethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Chloroethane	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Acetone	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Iodomethane	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Carbon Disulfide	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Methylene Chloride	ND	0.0050	EPA 8260	6-24-11	6-24-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Vinyl Acetate	ND	0.0050	EPA 8260	6-24-11	6-24-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
2-Butanone	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Bromochloromethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Chloroform	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Benzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Trichloroethene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Dibromomethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Bromodichloromethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	6-24-11	6-24-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Toluene	ND	0.0050	EPA 8260	6-24-11	6-24-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-24-11	6-24-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0624S1	0.0040	EDA 0000	0.04.44	0.04.44	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Tetrachloroethene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
2-Hexanone	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Dibromochloromethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Chlorobenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Ethylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
m,p-Xylene	ND	0.0020	EPA 8260	6-24-11	6-24-11	
o-Xylene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Styrene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Bromoform	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Isopropylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Bromobenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	6-24-11	6-24-11	
n-Propylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
	ND ND	0.0010		6-24-11	6-24-11	
1,2-Dichlorobenzene			EPA 8260			
n-Butylbenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2-Dibromo-3-chloropropane		0.0050	EPA 8260	6-24-11	6-24-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	6-24-11	6-24-11	
Naphthalene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	71	63-127				
Toluene-d8	78	65-129				
4-Bromofluorobenzene	80	55-121				

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	S24S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0558	0.0552	0.0500	0.0500	112	110	70-130	1	19	
Benzene	0.0457	0.0454	0.0500	0.0500	91	91	70-125	1	15	
Trichloroethene	0.0485	0.0479	0.0500	0.0500	97	96	70-122	1	14	
Toluene	0.0475	0.0469	0.0500	0.0500	95	94	73-120	1	16	
Chlorobenzene	0.0506	0.0498	0.0500	0.0500	101	100	74-109	2	12	
Surrogate:										
Dibromofluoromethan	е				70	70	63-127			
Toluene-d8					73	76	65-129			
4-Bromofluorobenzen	е				78	79	55-121			

Project: 1005-001

VOLATILES by EPA 8260B Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-062011-GW					
Laboratory ID:	06-187-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chloromethane	ND	1.0	EPA 8260	6-23-11	6-23-11	
Vinyl Chloride	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromomethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chloroethane	ND	1.0	EPA 8260	6-23-11	6-23-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Acetone	ND	5.0	EPA 8260	6-23-11	6-23-11	
Iodomethane	ND	1.0	EPA 8260	6-23-11	6-23-11	
Carbon Disulfide	ND	0.20	EPA 8260	6-23-11	6-23-11	
Methylene Chloride	ND	1.0	EPA 8260	6-23-11	6-23-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Vinyl Acetate	ND	2.0	EPA 8260	6-23-11	6-23-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Butanone	ND	5.0	EPA 8260	6-23-11	6-23-11	
Bromochloromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chloroform	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Benzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Trichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Dibromomethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromodichloromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	6-23-11	6-23-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	6-23-11	6-23-11	
Toluene	ND	1.0	EPA 8260	6-23-11	6-23-11	
(trans) 1,3-Dichloropropend	e ND	0.20	EPA 8260	6-23-11	6-23-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-062011-GW					
Laboratory ID:	06-187-09					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Tetrachloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Hexanone	ND	2.0	EPA 8260	6-23-11	6-23-11	
Dibromochloromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Ethylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
n,p-Xylene	ND	0.40	EPA 8260	6-23-11	6-23-11	
o-Xylene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Styrene	ND	0.20	EPA 8260	6-23-11	6-23-11	
- Bromoform	ND	1.0	EPA 8260	6-23-11	6-23-11	
sopropylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
,2,3-Trichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
-Propylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Chlorotoluene	ND	0.20	EPA 8260	6-23-11	6-23-11	
l-Chlorotoluene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,3,5-Trimethylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
ert-Butylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,2,4-Trimethylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
ec-Butylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,3-Dichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
o-Isopropyltoluene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,4-Dichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,2-Dichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
n-Butylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
,2-Dibromo-3-chloropropane		1.0	EPA 8260	6-23-11	6-23-11	
,2,4-Trichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
lexachlorobutadiene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Naphthalene	ND	1.0	EPA 8260	6-23-11	6-23-11	
,2,3-Trichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	83	68-110				
Toluene-d8	84	73-110				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-110

77

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0623W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chloromethane	ND	1.0	EPA 8260	6-23-11	6-23-11	
Vinyl Chloride	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromomethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chloroethane	ND	1.0	EPA 8260	6-23-11	6-23-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Acetone	ND	5.0	EPA 8260	6-23-11	6-23-11	
Iodomethane	ND	1.0	EPA 8260	6-23-11	6-23-11	
Carbon Disulfide	ND	0.20	EPA 8260	6-23-11	6-23-11	
Methylene Chloride	ND	1.0	EPA 8260	6-23-11	6-23-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Vinyl Acetate	ND	2.0	EPA 8260	6-23-11	6-23-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Butanone	ND	5.0	EPA 8260	6-23-11	6-23-11	
Bromochloromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chloroform	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Benzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Trichloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Dibromomethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromodichloromethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	6-23-11	6-23-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	6-23-11	6-23-11	
Toluene	ND	1.0	EPA 8260	6-23-11	6-23-11	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260	6-23-11	6-23-11	

Project: 1005-001

Toluene-d8

4-Bromofluorobenzene

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0623W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Tetrachloroethene	ND	0.20	EPA 8260	6-23-11	6-23-11	
	ND ND	0.20	EPA 8260	6-23-11	6-23-11	
1,3-Dichloropropane	ND ND	2.0				
2-Hexanone Dibromochloromethane	ND ND	0.20	EPA 8260	6-23-11 6-23-11	6-23-11 6-23-11	
			EPA 8260			
1,2-Dibromoethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Chlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
Ethylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
m,p-Xylene	ND	0.40	EPA 8260	6-23-11	6-23-11	
o-Xylene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Styrene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromoform	ND	1.0	EPA 8260	6-23-11	6-23-11	
Isopropylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Bromobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	6-23-11	6-23-11	
n-Propylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
2-Chlorotoluene	ND	0.20	EPA 8260	6-23-11	6-23-11	
4-Chlorotoluene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
tert-Butylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
sec-Butylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
n-Butylbenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	6-23-11	6-23-11	
1.2.4-Trichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	6-23-11	6-23-11	
Naphthalene	ND	1.0	EPA 8260	6-23-11	6-23-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	6-23-11	6-23-11	
	Percent Recovery	Control Limits	LI A 0200	0-20-11	0-20-11	
Surrogate. Dibromofluoromethane	91	68-110				
	31	00-110				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

73-110

65-110

87

81

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	23W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	8.85	8.46	10.0	10.0	89	85	70-130	5	11	
Benzene	9.58	9.35	10.0	10.0	96	94	75-123	2	8	
Trichloroethene	9.82	9.58	10.0	10.0	98	96	80-113	2	9	
Toluene	10.0	9.93	10.0	10.0	100	99	80-113	1	8	
Chlorobenzene	10.2	10.1	10.0	10.0	102	101	80-111	1	8	
Surrogate:										
Dibromofluoromethane					89	93	68-110			
Toluene-d8					88	89	73-110			
4-Bromofluorobenzene					82	85	65-110			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Analists	Decel	DOL	Marth and	Date	Date	5 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05	0.000	EDA 0070	0.07.44	0.07.44	
n-Nitrosodimethylamine	ND	0.039	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.39	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
Aniline	ND	0.039	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.039	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.039	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	0.039	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.039	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.039	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.039	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.039	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.39	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Naphthalene	ND	0.0078	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.039	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.039	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND	0.0078	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.039	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	0.014	0.0078	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.039	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05					
2,4-Dinitrophenol	ND	0.19	EPA 8270	6-27-11	6-27-11	
Acenaphthene	0.013	0.0078	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.039	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.19	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylether		0.039	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.039	EPA 8270	6-27-11	6-27-11	
Fluorene	0.014	0.0078	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	0.19	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.039	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.039	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	· ND	0.039	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.039	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	0.19	EPA 8270	6-27-11	6-27-11	
Phenanthrene	0.21	0.039	EPA 8270	6-27-11	6-27-11	
Anthracene	0.067	0.039	EPA 8270	6-27-11	6-27-11	
Carbazole	ND	0.039	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.39	EPA 8270	6-27-11	6-27-11	
Fluoranthene	0.45	0.039	EPA 8270	6-27-11	6-27-11	
Benzidine	ND	0.39	EPA 8270	6-27-11	6-27-11	
Pyrene	0.35	0.039	EPA 8270	6-27-11	6-27-11	
Butylbenzylphthalate	ND	0.39	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.039	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.39	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	0.14	0.039	EPA 8270	6-27-11	6-27-11	
Chrysene	0.22	0.039	EPA 8270	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	0.11	0.039	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.039	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	0.17	0.039	EPA 8270	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	0.17	0.039	EPA 8270	6-27-11	6-27-11	
Benzo[a]pyrene	0.18	0.039	EPA 8270	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	0.13	0.039	EPA 8270	6-27-11	6-27-11	
Dibenz[a,h]anthracene	0.044	0.039	EPA 8270	6-27-11	6-27-11	
Benzo[g,h,i]perylene	0.14	0.039	EPA 8270	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits	LFA 0210	U-ZI-11	U-Z/-11	
2-Fluorophenol	53	30 - 97				
Phenol-d6	61	30 - 97 40 - 104				
Nitrobenzene-d5	55	35 - 102				
2-Fluorobiphenyl	76	35 - 102 44 - 97				
2,4,6-Tribromophenol	76 86	44 - 97 41 - 110				
	77					
Terphenyl-d14	11	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

onits. Ing/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
n-Nitrosodimethylamine	ND	0.040	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.40	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
Aniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.040	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.040	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.40	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Naphthalene	0.037	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.040	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	0.020	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	0.012	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	0.013	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
2,4-Dinitrophenol	ND	0.20	EPA 8270	6-27-11	6-27-11	
Acenaphthene	0.018	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.20	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylether		0.040	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
Fluorene	0.020	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	· ND	0.040	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	0.20	EPA 8270	6-27-11	6-27-11	
Phenanthrene	0.077	0.040	EPA 8270	6-27-11	6-27-11	
Anthracene	0.027	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.040	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.40	EPA 8270	6-27-11	6-27-11	
Fluoranthene	0.10	0.040	EPA 8270	6-27-11	6-27-11	
Benzidine	ND	0.40	EPA 8270	6-27-11	6-27-11	
Pyrene	0.082	0.040	EPA 8270	6-27-11	6-27-11	
Butylbenzylphthalate	ND	0.40	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.040	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.40	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	0.041	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	0.047	0.040	EPA 8270	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.040	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.040	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	0.050	0.040	EPA 8270	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	0.032	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	0.049	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	0.034	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	0.013	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	0.046	0.040	EPA 8270	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits	L1 / (02 / 0	0 21-11	0 21-11	
2-Fluorophenol	49	30 - 97				
Phenol-d6	53	40 - 104				
Nitrobenzene-d5	52	35 - 102				
2-Fluorobiphenyl	77	44 - 97				
2,4,6-Tribromophenol	90	41 - 110				
Terphenyl-d14	82	53 - 107				
respirentificati s	OZ.	55 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Onits. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
n-Nitrosodimethylamine	ND	0.040	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.40	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
Aniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.040	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.040	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.40	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Naphthalene	0.044	0.040	EPA 8270	6-27-11	6-27-11	
4-Chloroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.040	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	0.016	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	0.0080	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.040	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	0.0092	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Cilent ID:	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND	Client ID:						
2.4-Dinitrophenol ND	Laboratory ID:	06-187-14					
Acenaphthene	•	ND	0.20	EPA 8270	6-27-11	6-27-11	
A-Nitrophenol ND		0.016	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
2.4-Dinitrotoluene ND 0.040 EPA 8270 6-27-11 6-27-11 Dibenzofuran ND 0.040 EPA 8270 6-27-11 6-27-11 2.3.5.6-Tetrachlorophenol ND 0.040 EPA 8270 6-27-11 6-27-11 2.3.4.6-Tetrachlorophenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-2.3.4.6-Tetrachlorophenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-2.3.4.6-Tetrachlorophenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-2.3.4.6-Dinitro-2-methylphenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-2.3.4.6-Dinitro-2-methylphenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-3.4.5-Dinitro-2-methylphenol ND 0.026 0.0079 EPA 8270 6-27-11 6-27-11 6-27-11 4-3.5-Dinitro-2-methylphenol ND 0.040 EPA 8270 6-27-11 6-27-11 1-2.2-Diphenylhydrazine ND 0.040	•	ND	0.040		6-27-11	6-27-11	
Dibenzofuran ND	2,4-Dinitrotoluene	ND	0.040	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol ND 0.040 EPA 8270 6-27-11 6-27-11 Diethylphthalate ND 0.20 EPA 8270 6-27-11 6-27-11 4-Chlorophenyl-phenylether ND 0.040 EPA 8270 6-27-11 6-27-11 4-Nitroaniline ND 0.040 EPA 8270 6-27-11 6-27-11 Hurrophenylether ND 0.040 EPA 8270 6-27-11 6-27-11 4,6-Dinitro-2-methylphenol ND 0.040 EPA 8270 6-27-11 6-27-11 1,2-Diphenylydrazine ND 0.040 EPA 8270 6-27-11 6-27-11 4-Bromophenyl-phenylether ND 0.040 EPA 8270 6-27-11 6-27-11 4-Bromophenyl-phenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-Bromophenyl-phenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-Bromophenyl-phenol ND 0.040 EPA 8270 6-27-11 6-27-11 4-Bromophenol ND 0.040 EPA 82	Dibenzofuran	ND	0.040	EPA 8270	6-27-11		
2,3,4,6-Tetrachlorophenol ND 0.040 EPA 8270 6-27-11 6-27-11	2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270	6-27-11	6-27-11	
Diethylphthalate		ND	0.040	EPA 8270	6-27-11	6-27-11	
4-Nitroanilline	Diethylphthalate	ND	0.20	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline ND 0.040 EPA 8270 6-27-11 6-27-11 4-6-Dinitro-2-methylphenol ND 0.20 EPA 8270/SIM 6-27-11 6-27-11 1-Nitrosodiphenylamine ND 0.040 EPA 8270 6-27-11 6-27-11 1-1,2-Diphenylhydrazine ND 0.040 EPA 8270 6-27-11 6-27-11 1-1,2-Diphenylhydrazine ND 0.040 EPA 8270 6-27-11 6-27-11 1-1,2-Diphenyl-phenylether ND 0.040 EPA 8270 6-27-11 6-27-11 1-1,2-Diphenyl-phenylether ND 0.040 EPA 8270 6-27-11 6-27-11 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	4-Chlorophenyl-phenylether	ND	0.040	EPA 8270	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 6-27-11 6-27-11 n-Nitrosodiphenylamine ND 0.040 EPA 8270 6-27-11 6-27-11 1,2-Diphenylhydrazine ND 0.040 EPA 8270 6-27-11 6-27-11 4-Bromophenyl-phenylether ND 0.040 EPA 8270 6-27-11 6-27-11 Hexachlorobenzene ND 0.040 EPA 8270 6-27-11 6-27-11 Pentachlorophenol ND 0.020 EPA 8270 6-27-11 6-27-11 Pentachlorophenol ND 0.020 EPA 8270 6-27-11 6-27-11 Phenanthrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Anthracene 0.024 0.0079 EPA 8270 6-27-11 6-27-11 Carbazole ND 0.040 EPA 8270 6-27-11 6-27-11 Din-butylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzidine ND 0.40 EPA 8270 6-27-11	4-Nitroaniline		0.040	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine n. ND n. 0.040 n. EPA 8270 n. 6-27-11 n. 2-Diphenylhydrazine n. ND n. 0.040 n. EPA 8270 n. 6-27-11	Fluorene	0.026	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
1,2-Diphenylhydrazine	4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether ND 0.040 EPA 8270 6-27-11 6-27-11 Hexachlorobenzene ND 0.040 EPA 8270 6-27-11 6-27-11 Pentachlorophenol ND 0.20 EPA 8270 6-27-11 6-27-11 Phenanthrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Anthracene 0.024 0.0079 EPA 8270 6-27-11 6-27-11 Carbazole ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-butylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 Fluoranthene 0.16 0.040 EPA 8270 6-27-11 6-27-11 Benzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Pyrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 <td>n-Nitrosodiphenylamine</td> <td>ND</td> <td>0.040</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	n-Nitrosodiphenylamine	ND	0.040	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene ND	1,2-Diphenylhydrazine	ND	0.040	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol ND	4-Bromophenyl-phenylether	ND	0.040	EPA 8270	6-27-11	6-27-11	
Phenanthrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Anthracene 0.024 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Carbazole ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-butylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 Fluoranthene 0.16 0.040 EPA 8270 6-27-11 6-27-11 Benzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Pyrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11	Hexachlorobenzene	ND	0.040	EPA 8270	6-27-11	6-27-11	
Anthracene	Pentachlorophenol	ND	0.20	EPA 8270	6-27-11	6-27-11	
Carbazole ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-butylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 Fluoranthene 0.16 0.040 EPA 8270 6-27-11 6-27-11 Benzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Pyrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 butylbenzylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 benzo(ajanthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 <	Phenanthrene	0.13	0.040	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 Fluoranthene 0.16 0.040 EPA 8270 6-27-11 6-27-11 Benzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Pyrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 bis-2-Ethylhexyladipate ND 0.040 EPA 8270 6-27-11 6-27-11 3,3'-Dichlorobenzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 Dis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 </td <td>Anthracene</td> <td>0.024</td> <td>0.0079</td> <td>EPA 8270/SIM</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Anthracene	0.024	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Fluoranthene	Carbazole	ND	0.040	EPA 8270	6-27-11	6-27-11	
Benzidine	Di-n-butylphthalate	ND	0.40	EPA 8270	6-27-11	6-27-11	
Pyrene 0.13 0.040 EPA 8270 6-27-11 6-27-11 Butylbenzylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 bis-2-Ethylhexyladipate ND 0.040 EPA 8270 6-27-11 6-27-11 3,3'-Dichlorobenzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 Dis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270/SIM </td <td>Fluoranthene</td> <td>0.16</td> <td>0.040</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Fluoranthene	0.16	0.040	EPA 8270	6-27-11	6-27-11	
Butylbenzylphthalate ND 0.40 EPA 8270 6-27-11 6-27-11 bis-2-Ethylhexyladipate ND 0.040 EPA 8270 6-27-11 6-27-11 3,3'-Dichlorobenzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 berz(b)fis(x)filuoranthene 0.065	Benzidine	ND	0.40	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate ND 0.040 EPA 8270 6-27-11 6-27-11 3,3'-Dichlorobenzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Surrogate: Percent Recovery Control	Pyrene	0.13	0.040	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine ND 0.40 EPA 8270 6-27-11 6-27-11 Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270/SIM 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6	Butylbenzylphthalate	ND	0.40	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene 0.064 0.040 EPA 8270 6-27-11 6-27-11 Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorobhenol 37 30 - 97 Phenol-d6 41	bis-2-Ethylhexyladipate	ND	0.040	EPA 8270	6-27-11	6-27-11	
Chrysene 0.081 0.040 EPA 8270 6-27-11 6-27-11 bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluo	3,3'-Dichlorobenzidine		0.40	EPA 8270	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo(j,k)fluoranthene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Benzo[a]anthracene	0.064	0.040	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate ND 0.040 EPA 8270 6-27-11 6-27-11 Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo(j,k)fluoranthene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Chrysene	0.081	0.040	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene 0.065 0.040 EPA 8270 6-27-11 6-27-11 Benzo(j,k)fluoranthene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	bis(2-Ethylhexyl)phthalate	ND	0.040	EPA 8270	6-27-11	6-27-11	
Benzo(j,k)fluoranthene 0.056 0.040 EPA 8270 6-27-11 6-27-11 Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Di-n-octylphthalate	ND	0.040	EPA 8270	6-27-11	6-27-11	
Benzo[a]pyrene 0.067 0.040 EPA 8270 6-27-11 6-27-11 Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Benzo[b]fluoranthene	0.065	0.040	EPA 8270	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene 0.045 0.040 EPA 8270 6-27-11 6-27-11 Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Benzo(j,k)fluoranthene	0.056	0.040	EPA 8270	6-27-11	6-27-11	
Dibenz[a,h]anthracene 0.016 0.0079 EPA 8270/SIM 6-27-11 6-27-11 Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Benzo[a]pyrene	0.067	0.040	EPA 8270	6-27-11	6-27-11	
Benzo[g,h,i]perylene 0.051 0.040 EPA 8270 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Indeno[1,2,3-cd]pyrene						
Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Dibenz[a,h]anthracene		0.0079	EPA 8270/SIM	6-27-11	6-27-11	
2-Fluorophenol 37 30 - 97 Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	Benzo[g,h,i]perylene		0.040	EPA 8270	6-27-11	6-27-11	
Phenol-d6 41 40 - 104 Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	•						
Nitrobenzene-d5 38 35 - 102 2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110	2-Fluorophenol						
2-Fluorobiphenyl 63 44 - 97 2,4,6-Tribromophenol 72 41 - 110							
2,4,6-Tribromophenol 72 41 - 110							
Terphenyl-d14 74 53 - 107							
	Terphenyl-d14	74	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Onits. Hig/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR10-2.5					
Laboratory ID:	06-187-18					
n-Nitrosodimethylamine	ND	0.040	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	0.40	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.040	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.040	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.040	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.040	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	0.40	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
Naphthalene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.040	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.040	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.040	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.040	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

A 1 4 .	D K	201		Date	Date	- 1
Analyte Client ID:	Result	PQL	Method	Prepared	Analyzed	Flags
	FAR10-2.5					
Laboratory ID:	06-187-18	0.00	EDA 0070	0.07.44	0.00.44	
2,4-Dinitrophenol	ND ND	0.20	EPA 8270	6-27-11	6-29-11	
Acenaphthene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND ND	0.040	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND ND	0.040	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND ND	0.040	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND ND	0.040	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	0.20	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether		0.040	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.040	EPA 8270	6-27-11	6-29-11	
Fluorene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether		0.040	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.040	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
Phenanthrene	0.049	0.040	EPA 8270	6-27-11	6-29-11	
Anthracene	0.011	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.040	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	0.40	EPA 8270	6-27-11	6-29-11	
Fluoranthene	0.054	0.040	EPA 8270	6-27-11	6-29-11	
Benzidine	ND	0.40	EPA 8270	6-27-11	6-29-11	
Pyrene	0.063	0.040	EPA 8270	6-27-11	6-29-11	
Butylbenzylphthalate	ND	0.40	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.040	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	0.40	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	0.029	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	0.045	0.040	EPA 8270	6-27-11	6-29-11	
bis(2-Ethylhexyl)phthalate	ND	0.040	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.040	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	0.028	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	0.022	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	0.031	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	0.017	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	0.025	0.0079	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	48	30 - 97				
Phenol-d6	55	40 - 104				
Nitrobenzene-d5	55	35 - 102				
2-Fluorobiphenyl	00					
	76	44 - 97				
2,4,6-Tribromophenol		44 - 97 41 - 110				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Offits. Hig/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR5-0.5					
Laboratory ID:	06-187-35					
n-Nitrosodimethylamine	ND	0.055	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.55	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
Aniline	ND	0.055	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.055	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.055	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	0.055	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.055	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.055	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.055	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.055	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.55	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Naphthalene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.055	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.055	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.055	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	ND	0.033	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.011	EPA 8270/31W	6-27-11	6-27-11	
3-INITOANIIINE	ND	0.055	EPA 82/0	0-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR5-0.5			•		
Laboratory ID:	06-187-35					
2,4-Dinitrophenol	ND	0.27	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.055	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.27	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylether	ND	0.055	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.055	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	0.27	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.055	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.055	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	ND	0.055	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.055	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	0.27	EPA 8270	6-27-11	6-27-11	
Phenanthrene	0.011	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.055	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.55	EPA 8270	6-27-11	6-27-11	
Fluoranthene	0.022	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	0.55	EPA 8270	6-27-11	6-27-11	
Pyrene	0.019	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	ND	0.55	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.055	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.55	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	0.016	0.011	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.055	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.055	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	0.016	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	0.015	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	0.016	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	0.013	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	ND	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	0.017	0.011	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	41	30 - 97				
Phenol-d6	47	40 - 104				
Nitrobenzene-d5	41	35 - 102				
2-Fluorobiphenyl	70	44 - 97				
2,4,6-Tribromophenol	87	41 - 110				
Terphenyl-d14	<i>7</i> 9	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR6-0.5	I QL	Wethou	Trepared	Analyzeu	i iags
Laboratory ID:	06-187-36					
n-Nitrosodimethylamine	ND	0.21	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	2.1	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.21	EPA 8270	6-27-11	6-29-11	
	ND ND	0.21	EPA 8270 EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND ND					
2-Chlorophenol	ND ND	0.21	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND ND	0.21	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene		0.21	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.21	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.21	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.21	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.21	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.21	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.21	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.21	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	2.1	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
Naphthalene	0.052	0.0082	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.21	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.21	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	0.028	0.0082	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	0.022	0.0082	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.21	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.21	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.21	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.21	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	0.048	0.0082	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.21	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR6-0.5				•	
Laboratory ID:	06-187-36					
2,4-Dinitrophenol	ND	1.0	EPA 8270	6-27-11	6-29-11	
Acenaphthene	0.17	0.0082	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	0.21	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	1.0	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether	ND	0.21	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.21	EPA 8270	6-27-11	6-29-11	
Fluorene	0.17	0.0082	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	1.0	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.21	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.21	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether	ND	0.21	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.21	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	1.0	EPA 8270	6-27-11	6-29-11	
Phenanthrene	2.5	0.21	EPA 8270	6-27-11	6-29-11	
Anthracene	0.40	0.21	EPA 8270	6-27-11	6-29-11	
Carbazole	0.44	0.21	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	2.1	EPA 8270	6-27-11	6-29-11	
Fluoranthene	3.0	0.21	EPA 8270	6-27-11	6-29-11	
Benzidine	ND	2.1	EPA 8270	6-27-11	6-29-11	
Pyrene	2.6	0.21	EPA 8270	6-27-11	6-29-11	
Butylbenzylphthalate	ND	2.1	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.21	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	2.1	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	0.95	0.21	EPA 8270	6-27-11	6-29-11	
Chrysene	1.3	0.21	EPA 8270	6-27-11	6-29-11	
bis(2-Ethylhexyl)phthalate	ND	0.21	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.21	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	1.1	0.21	EPA 8270	6-27-11	6-29-11	
Benzo(j,k)fluoranthene	1.2	0.21	EPA 8270	6-27-11	6-29-11	
Benzo[a]pyrene	1.2	0.21	EPA 8270	6-27-11	6-29-11	
Indeno[1,2,3-cd]pyrene	0.79	0.21	EPA 8270	6-27-11	6-29-11	
Dibenz[a,h]anthracene	0.26	0.21	EPA 8270	6-27-11	6-29-11	
Benzo[g,h,i]perylene	0.78	0.21	EPA 8270	6-27-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	55	30 - 97				
Phenol-d6	55	40 - 104				
Nitrobenzene-d5	53	35 - 102				
2-Fluorobiphenyl	84	44 - 97				
2,4,6-Tribromophenol	72	41 - 110				
Terphenyl-d14	80	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0627S1					
n-Nitrosodimethylamine	ND ND	0.033	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.33	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
Aniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	· · · · · · · · · · · · · · · · · · ·		EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.033	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.33	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Naphthalene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.033	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	140000004			-	-	
Laboratory ID:	MB0627S1	0.47	EDA 0070	0.07.44	0.07.44	
2,4-Dinitrophenol	ND	0.17	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.17	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylether		0.033	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	0.17	EPA 8270	6-27-11	6-27-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.033	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.33	EPA 8270	6-27-11	6-27-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	0.33	EPA 8270	6-27-11	6-27-11	
Pyrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	ND	0.33	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.33	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.033	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.033	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits	LI / (021 0/ 011VI	0 21-11	0 21-11	
2-Fluorophenol	51	30 - 97				
Phenol-d6	52	40 - 104				
Nitrobenzene-d5	52 52	35 - 1 <i>0</i> 2				
2-Fluorobiphenyl	64	44 - 97				
2,4,6-Tribromophenol	71	41 - 110				
Terphenyl-d14	7	53 - 107				
r Grprierryr-u r 4	7.5	JJ = 101				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											_
Laboratory ID:	06-18	37-05									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	0.764	0.825	1.33	1.33	ND	57	62	41 - 106	8	29	
2-Chlorophenol	0.962	1.06	1.33	1.33	ND	72	80	43 - 104	10	36	
1,4-Dichlorobenzene	0.383	0.443	0.667	0.667	ND	57	66	25 - 94	15	40	
n-Nitroso-di-n-propylamine	0.366	0.388	0.667	0.667	ND	55	58	40 - 100	6	34	
1,2,4-Trichlorobenzene	0.432	0.476	0.667	0.667	ND	65	71	39 - 86	10	34	
4-Chloro-3-methylphenol	1.00	1.02	1.33	1.33	ND	75	77	60 - 102	2	25	
Acenaphthene	0.532	0.567	0.667	0.667	ND	80	85	54 - 94	6	23	
4-Nitrophenol	1.16	1.17	1.33	1.33	ND	87	88	30 - 133	1	25	
2,4-Dinitrotoluene	0.605	0.624	0.667	0.667	ND	91	94	46 - 107	3	26	
Pentachlorophenol	1.30	1.33	1.33	1.33	ND	98	100	54 - 111	2	29	
Pyrene	0.741	0.800	0.667	0.667	0.296	67	76	54 - 108	8	21	
Surrogate:											
2-Fluorophenol						47	51	30 - 97			
Phenol-d6						51	55	40 - 104			
Nitrobenzene-d5						49	51	35 - 102			
2-Fluorobiphenyl						72	73	44 - 97			
2,4,6-Tribromophenol						85	89	41 - 110			
Terphenyl-d14						78	80	53 - 107			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Water Units: ug/L

Analyze Result PQL Method Prepared Analyzed Flags					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
P-Nitrosodimethylamine	Client ID:	FAR15-062011-GW					
Pyridine	Laboratory ID:	06-187-09					
Phenol ND 0.98 EPA 8270 6-24-11 6-24-11 Aniline ND 4.9 EPA 8270 6-24-11 6-24-11 bis(2-Chloropthyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Benzyl alcohol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylphenol (o-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 NB 0.98 EPA 8270 6-24-11 6-24-11 <	n-Nitrosodimethylamine	ND	0.98	EPA 8270	6-24-11	6-24-11	
Aniline ND 4.9 EPA 8270 6-24-11 6-24-11 bis(2-Chloroethyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 1.3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1.3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1.3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1.3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1.2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1.2-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1.2-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1.2-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1.2-Dichlorophenol ND 0.98 EPA 8270 6-24-11	Pyridine	ND	0.98	EPA 8270	6-24-11	6-24-11	
bis(2-Chloroethyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Benzyl alcohol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylphenol (o-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 4,3-Methylphenol (mp-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 4,3-Methylphenol (mp-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 4,3-Methylphenol (mp-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 1,1-Cresol ND 0.98 EPA 8270 <td>Phenol</td> <td>ND</td> <td>0.98</td> <td>EPA 8270</td> <td>6-24-11</td> <td>6-24-11</td> <td></td>	Phenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
2-Chlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Benzyl alcohol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylphenol (o-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 bis(2-Chloroisopropyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 NB 0.98 EPA 8270 6-24-11 6-24-11 6-24-11 NB 0.98 EPA 8270 6-24-11 6-24-11 NB 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 NB 0.98 EPA 8270 6-24-11 6-24-11 Sophorone ND 0.98	Aniline	ND	4.9	EPA 8270	6-24-11	6-24-11	
1,3-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Benzyl alcohol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylphenol (or-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dichlorospropyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Hylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Hylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Hylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 1,5-Hylphenol (more) ND 0.98 EPA 8270 6-24-11 6-24-11 1,5-Hylphenol (more) ND 0.98 EPA 8270 6-24-11 6-24-11 1,5-Hylphenol (more) ND 0.98 <t< td=""><td>bis(2-Chloroethyl)ether</td><td>ND</td><td>0.98</td><td>EPA 8270</td><td>6-24-11</td><td>6-24-11</td><td></td></t<>	bis(2-Chloroethyl)ether	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,4-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Benzyl alcohol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylphenol (o-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 bis(2-Chloroisopropyl)either ND 0.98 EPA 8270 6-24-11 6-24-11 N-Wethylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 N-Witroso-di-n-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 Nitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichloroethoxy)methane ND 0.98 EPA 8270	2-Chlorophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
Benzyl alcohol	1,3-Dichlorobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,2-Dichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylphenol (o-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 is(2-Chloroisopropyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 n-Nitroso-di-n-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 Nitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-	1,4-Dichlorobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
2-Methylphenol (o-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 bis(2-Chloroisopropyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 N-Nitroso-di-n-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 Nb 0.98 EPA 8270 6-24-11 6-24-11 Nb 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitrophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 <	Benzyl alcohol	ND	0.98	EPA 8270	6-24-11	6-24-11	
bis(2-Chloroisopropyl)ether ND 0.98 EPA 8270 6-24-11 6-24-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 n-Nitroso-din-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 ND 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitrophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophonol ND 0.98 EPA 8270 6-24-11 6-24-11 15,2-Trichlorobenzare ND 0.98 EPA 8270 6-24-11 6-24-11 ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 <	1,2-Dichlorobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
(3+4)-Methylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 n-Nitroso-di-n-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 Nitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitrophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 <	2-Methylphenol (o-Cresol)	ND	0.98	EPA 8270	6-24-11	6-24-11	
(3+4)-Methylphenol (m,p-Cresol) ND 0.98 EPA 8270 6-24-11 6-24-11 n-Nitroso-di-n-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 Nb 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitrophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 5(2-Chloroethoxy)methane ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 <t< td=""><td>bis(2-Chloroisopropyl)ether</td><td>ND</td><td>0.98</td><td>EPA 8270</td><td>6-24-11</td><td>6-24-11</td><td></td></t<>	bis(2-Chloroisopropyl)ether	ND	0.98	EPA 8270	6-24-11	6-24-11	
n-Nitroso-di-n-propylamine ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloroethane ND 0.98 EPA 8270 6-24-11 6-24-11 Nitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Isophorone ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitrophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 bis(2-Chloroethoxy)methane ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 <		ND ND	0.98	EPA 8270	6-24-11	6-24-11	
Hexachloroethane			0.98	EPA 8270	6-24-11	6-24-11	
Isophorone		ND	0.98	EPA 8270	6-24-11	6-24-11	
2-Nitrophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 bis(2-Chloroethoxy)methane ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Naphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 4-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Mexachlorocyclopentadiene ND 0.98 EPA 8270 <td>Nitrobenzene</td> <td>ND</td> <td>0.98</td> <td>EPA 8270</td> <td>6-24-11</td> <td>6-24-11</td> <td></td>	Nitrobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,4-Dimethylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 bis(2-Chloroethoxy)methane ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Naphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorosylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 <td< td=""><td>Isophorone</td><td>ND</td><td>0.98</td><td>EPA 8270</td><td>6-24-11</td><td>6-24-11</td><td></td></td<>	Isophorone	ND	0.98	EPA 8270	6-24-11	6-24-11	
bis(2-Chloroethoxy)methane ND 0.98 EPA 8270 6-24-11 6-24-11 2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachloros-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11	2-Nitrophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,4-Dichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Naphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270	2,4-Dimethylphenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,2,4-Trichlorobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Naphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 <td>bis(2-Chloroethoxy)methane</td> <td>ND</td> <td>0.98</td> <td>EPA 8270</td> <td>6-24-11</td> <td>6-24-11</td> <td></td>	bis(2-Chloroethoxy)methane	ND	0.98	EPA 8270	6-24-11	6-24-11	
Naphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 <td>2,4-Dichlorophenol</td> <td>ND</td> <td>0.98</td> <td>EPA 8270</td> <td>6-24-11</td> <td>6-24-11</td> <td></td>	2,4-Dichlorophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
4-Chloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,3-Dichloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270	1,2,4-Trichlorobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
Hexachlorobutadiene ND 0.98 EPA 8270 6-24-11 6-24-11 4-Chloro-3-methylphenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270/SIM 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 1-Methylnaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270	Naphthalene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
4-Chloro-3-methylphenolND0.98EPA 82706-24-116-24-112-MethylnaphthaleneND0.098EPA 8270/SIM6-24-116-24-111-MethylnaphthaleneND0.098EPA 8270/SIM6-24-116-24-11HexachlorocyclopentadieneND0.98EPA 82706-24-116-24-112,4,6-TrichlorophenolND0.98EPA 82706-24-116-24-112,3-DichloroanilineND0.98EPA 82706-24-116-24-112,4,5-TrichlorophenolND0.98EPA 82706-24-116-24-112-ChloronaphthaleneND0.98EPA 82706-24-116-24-112-NitroanilineND0.98EPA 82706-24-116-24-111,4-DinitrobenzeneND0.98EPA 82706-24-116-24-11DimethylphthalateND0.98EPA 82706-24-116-24-111,3-DinitrobenzeneND0.98EPA 82706-24-116-24-112,6-DinitrotolueneND0.98EPA 82706-24-116-24-11	4-Chloroaniline	ND	0.98	EPA 8270	6-24-11	6-24-11	
2-MethylnaphthaleneND0.098EPA 8270/SIM6-24-116-24-111-MethylnaphthaleneND0.098EPA 8270/SIM6-24-116-24-11HexachlorocyclopentadieneND0.98EPA 82706-24-116-24-112,4,6-TrichlorophenolND0.98EPA 82706-24-116-24-112,3-DichloroanilineND0.98EPA 82706-24-116-24-112,4,5-TrichlorophenolND0.98EPA 82706-24-116-24-112-ChloronaphthaleneND0.98EPA 82706-24-116-24-112-NitroanilineND0.98EPA 82706-24-116-24-111,4-DinitrobenzeneND0.98EPA 82706-24-116-24-11DimethylphthalateND0.98EPA 82706-24-116-24-111,3-DinitrobenzeneND0.98EPA 82706-24-116-24-112,6-DinitrotolueneND0.98EPA 82706-24-116-24-11	Hexachlorobutadiene	ND	0.98	EPA 8270	6-24-11	6-24-11	
1-Methylnaphthalene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11 Hexachlorocyclopentadiene ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,3-Dichloroanilline ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	4-Chloro-3-methylphenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
Hexachlorocyclopentadiene ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,3-Dichloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	2-Methylnaphthalene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
2,4,6-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2,3-Dichloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	1-Methylnaphthalene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
2,3-Dichloroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	Hexachlorocyclopentadiene	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,4,5-Trichlorophenol ND 0.98 EPA 8270 6-24-11 6-24-11 2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	2,4,6-Trichlorophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
2-Chloronaphthalene ND 0.98 EPA 8270 6-24-11 6-24-11 2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	2,3-Dichloroaniline	ND	0.98	EPA 8270	6-24-11	6-24-11	
2-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11 1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	2,4,5-Trichlorophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,4-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	2-Chloronaphthalene	ND	0.98	EPA 8270	6-24-11	6-24-11	
Dimethylphthalate ND 0.98 EPA 8270 6-24-11 6-24-11 1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	2-Nitroaniline	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,3-Dinitrobenzene ND 0.98 EPA 8270 6-24-11 6-24-11 2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	1,4-Dinitrobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,6-Dinitrotoluene ND 0.98 EPA 8270 6-24-11 6-24-11	Dimethylphthalate	ND	0.98	EPA 8270	6-24-11	6-24-11	
, and the state of	1,3-Dinitrobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
1.2-Dinitrobenzene ND 0.98 FPA 8270 6-24-11 6-24-11	2,6-Dinitrotoluene	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,2 2111110001120110	1,2-Dinitrobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
Acenaphthylene ND 0.098 EPA 8270/SIM 6-24-11 6-24-11	Acenaphthylene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
3-Nitroaniline ND 0.98 EPA 8270 6-24-11 6-24-11	3-Nitroaniline	ND	0.98	EPA 8270	6-24-11	6-24-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR15-062011-GW	I QL	Wietiloa	rrepared	Analyzeu	i iags
Laboratory ID:	06-187-09					
2,4-Dinitrophenol	ND	4.9	EPA 8270	6-24-11	6-24-11	
Acenaphthene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
4-Nitrophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,4-Dinitrotoluene	ND	0.98	EPA 8270	6-24-11	6-24-11	
Dibenzofuran	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,3,5,6-Tetrachlorophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
2,3,4,6-Tetrachlorophenol	ND	0.98	EPA 8270	6-24-11	6-24-11	
Diethylphthalate	ND	0.98	EPA 8270	6-24-11	6-24-11	
4-Chlorophenyl-phenylethe		0.98	EPA 8270	6-24-11	6-24-11	
4-Nitroaniline	ND	0.98	EPA 8270	6-24-11	6-24-11	
Fluorene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
4,6-Dinitro-2-methylphenol	ND	4.9	EPA 8270	6-24-11	6-24-11	
n-Nitrosodiphenylamine	ND	0.98	EPA 8270	6-24-11	6-24-11	
1,2-Diphenylhydrazine	ND	0.98	EPA 8270	6-24-11	6-24-11	
4-Bromophenyl-phenylethe		0.98	EPA 8270	6-24-11	6-24-11	
Hexachlorobenzene	ND	0.98	EPA 8270	6-24-11	6-24-11	
Pentachlorophenol	ND	4.9	EPA 8270	6-24-11	6-24-11	
Phenanthrene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
Anthracene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
Carbazole	ND	0.98	EPA 8270	6-24-11	6-24-11	
Di-n-butylphthalate	ND	0.98	EPA 8270	6-24-11	6-24-11	
Fluoranthene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
Benzidine	ND	4.9	EPA 8270	6-24-11	6-24-11	
Pyrene	ND	0.098	EPA 8270/SIM	6-24-11	6-24-11	
Butylbenzylphthalate	ND	0.98	EPA 8270	6-24-11	6-24-11	
bis-2-Ethylhexyladipate	ND	0.98	EPA 8270	6-24-11	6-24-11	
3,3'-Dichlorobenzidine	ND	0.98	EPA 8270	6-24-11	6-24-11	
Benzo[a]anthracene	0.010	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Chrysene	0.044	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
bis(2-Ethylhexyl)phthalate	ND	0.98	EPA 8270	6-24-11	6-24-11	
Di-n-octylphthalate	ND	0.98	EPA 8270	6-24-11	6-24-11	
Benzo[b]fluoranthene	0.031	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Benzo(j,k)fluoranthene	0.016	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Benzo[a]pyrene	0.012	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Indeno[1,2,3-cd]pyrene	0.011	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Dibenz[a,h]anthracene	ND	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Benzo[g,h,i]perylene	0.014	0.0098	EPA 8270/SIM	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	31	18 - 86				
Phenol-d6	30	10 - 88				
Nitrobenzene-d5	48	37 - 112				
2-Fluorobiphenyl	63	42 - 108				
2,4,6-Tribromophenol	81	39 - 118				
Terphenyl-d14	85	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0624W1					
n-Nitrosodimethylamine	ND	0.50	EPA 8270	6-24-11	6-24-11	
Pyridine	ND	0.50	EPA 8270	6-24-11	6-24-11	
Phenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
Aniline	ND	2.5	EPA 8270	6-24-11	6-24-11	
bis(2-Chloroethyl)ether	ND	0.50	EPA 8270	6-24-11	6-24-11	
2-Chlorophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,3-Dichlorobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,4-Dichlorobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Benzyl alcohol	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,2-Dichlorobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
2-Methylphenol (o-Cresol)	ND	0.50	EPA 8270	6-24-11	6-24-11	
bis(2-Chloroisopropyl)ether	ND	0.50	EPA 8270	6-24-11	6-24-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.50	EPA 8270	6-24-11	6-24-11	
n-Nitroso-di-n-propylamine	ND	0.50	EPA 8270	6-24-11	6-24-11	
Hexachloroethane	ND	0.50	EPA 8270	6-24-11	6-24-11	
Nitrobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Isophorone	ND	0.50	EPA 8270	6-24-11	6-24-11	
2-Nitrophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,4-Dimethylphenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
bis(2-Chloroethoxy)methane	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,4-Dichlorophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,2,4-Trichlorobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Naphthalene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
4-Chloroaniline	ND	0.50	EPA 8270	6-24-11	6-24-11	
Hexachlorobutadiene	ND	0.50	EPA 8270	6-24-11	6-24-11	
4-Chloro-3-methylphenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
2-Methylnaphthalene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
1-Methylnaphthalene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
Hexachlorocyclopentadiene	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,4,6-Trichlorophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,3-Dichloroaniline	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,4,5-Trichlorophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
2-Chloronaphthalene	ND	0.50	EPA 8270	6-24-11	6-24-11	
2-Nitroaniline	ND ND	0.50	EPA 8270	6-24-11	6-24-11	
1,4-Dinitrobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Dimethylphthalate	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,3-Dinitrobenzene	ND ND	0.50	EPA 8270	6-24-11	6-24-11	
2,6-Dinitrotoluene	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,2-Dinitrobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Acenaphthylene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
3-Nitroaniline	ND ND	0.050	EPA 8270/31W	6-24-11	6-24-11	
3-MILLOGITHILLE	ND	0.50	EFA 02/U	0-24-11	0-24-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	MERCONAL			-	-	
Laboratory ID:	MB0624W1	0.5	EDA 0070	0.04.44	0.04.44	
2,4-Dinitrophenol	ND	2.5	EPA 8270	6-24-11	6-24-11	
Acenaphthene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
4-Nitrophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,4-Dinitrotoluene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Dibenzofuran	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,3,5,6-Tetrachlorophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
2,3,4,6-Tetrachlorophenol	ND	0.50	EPA 8270	6-24-11	6-24-11	
Diethylphthalate	ND	0.50	EPA 8270	6-24-11	6-24-11	
4-Chlorophenyl-phenylether		0.50	EPA 8270	6-24-11	6-24-11	
4-Nitroaniline	ND	0.50	EPA 8270	6-24-11	6-24-11	
Fluorene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
4,6-Dinitro-2-methylphenol	ND	2.5	EPA 8270	6-24-11	6-24-11	
n-Nitrosodiphenylamine	ND	0.50	EPA 8270	6-24-11	6-24-11	
1,2-Diphenylhydrazine	ND	0.50	EPA 8270	6-24-11	6-24-11	
4-Bromophenyl-phenylether	ND	0.50	EPA 8270	6-24-11	6-24-11	
Hexachlorobenzene	ND	0.50	EPA 8270	6-24-11	6-24-11	
Pentachlorophenol	ND	2.5	EPA 8270	6-24-11	6-24-11	
Phenanthrene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
Anthracene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
Carbazole	ND	0.50	EPA 8270	6-24-11	6-24-11	
Di-n-butylphthalate	ND	0.50	EPA 8270	6-24-11	6-24-11	
Fluoranthene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
Benzidine	ND	2.5	EPA 8270	6-24-11	6-24-11	
Pyrene	ND	0.050	EPA 8270/SIM	6-24-11	6-24-11	
Butylbenzylphthalate	ND	0.50	EPA 8270	6-24-11	6-24-11	
bis-2-Ethylhexyladipate	ND	0.50	EPA 8270	6-24-11	6-24-11	
3,3'-Dichlorobenzidine	ND	0.50	EPA 8270	6-24-11	6-24-11	
Benzo[a]anthracene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Chrysene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
bis(2-Ethylhexyl)phthalate	ND	0.50	EPA 8270	6-24-11	6-24-11	
Di-n-octylphthalate	ND	0.50	EPA 8270	6-24-11	6-24-11	
Benzo[b]fluoranthene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Benzo(j,k)fluoranthene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Benzo[a]pyrene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Indeno[1,2,3-cd]pyrene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Dibenz[a,h]anthracene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Benzo[g,h,i]perylene	ND	0.0050	EPA 8270/SIM	6-24-11	6-24-11	
Surrogate:	Percent Recovery	Control Limits	LI A UZI U/SIIVI	U-2 4- 11	U-2 4- 11	
2-Fluorophenol	19	18 - 86				
Phenol-d6	19 14	10 - 88				
Nitrobenzene-d5	27	37 - 112			Q	
2-Fluorobiphenyl	42	42 - 108			Q	
2,4,6-Tribromophenol	50	39 - 118				
Terphenyl-d14	53	39 - 118 49 - 122				
i ei pi lei iyi-u i 4	55	43 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	24W1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	14.3	14.5	40.0	40.0	36	36	26 - 60	1	29	
2-Chlorophenol	27.5	27.9	40.0	40.0	69	70	46 - 104	1	34	
1,4-Dichlorobenzene	12.1	12.3	20.0	20.0	61	62	48 - 92	2	29	
n-Nitroso-di-n-propylamine	13.3	12.5	20.0	20.0	67	63	45 - 102	6	25	
1,2,4-Trichlorobenzene	12.0	12.3	20.0	20.0	60	62	47 - 91	2	25	
4-Chloro-3-methylphenol	31.7	36.0	40.0	40.0	79	90	61 - 104	13	18	
Acenaphthene	15.1	16.4	20.0	20.0	76	82	59 - 95	8	15	
4-Nitrophenol	21.6	21.7	40.0	40.0	54	54	21 - 75	0	33	
2,4-Dinitrotoluene	18.3	20.1	20.0	20.0	92	101	66 - 105	9	20	
Pentachlorophenol	34.1	38.0	40.0	40.0	85	95	48 - 119	11	31	
Pyrene	18.5	20.0	20.0	20.0	93	100	62 - 111	8	19	
Surrogate:										
2-Fluorophenol					40	39	18 - 86			
Phenol-d6					31	32	10 - 88			
Nitrobenzene-d5					52	54	37 - 112			
2-Fluorobiphenyl					70	71	42 - 108			
2,4,6-Tribromophenol					77	83	39 - 118			
Terphenyl-d14					86	91	49 - 122			

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

omis. mg/ttg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05					
Aroclor 1016	ND	0.058	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.058	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.058	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.058	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.058	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.058	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.058	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	91	42-123				
Client ID:	FAR21-2.5					
Laboratory ID:	06-187-10					
Aroclor 1016	ND	0.059	EPA 8082	6-29-11	6-29-11	_
Aroclor 1221	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	0.18	0.059	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	80	42-123				
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
Aroclor 1016	ND	0.060	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1221	ND	0.060	EPA 8082	6-29-11	6-30-11	X
Aroclor 1232	ND	0.060	EPA 8082	6-29-11	6-30-11	X
Aroclor 1242	ND	0.060	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1248	ND	0.060	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1254	ND	0.060	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1260	0.19	0.060	EPA 8082	6-29-11	6-30-11	Χ
Surrogate:	Percent Recovery	Control Limits				

DCB 87 42-123

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR10-2.5					
Laboratory ID:	06-187-18					
Aroclor 1016	ND	0.060	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.060	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.060	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.060	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.060	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.060	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	0.16	0.060	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	92	42-123				
Client ID:	FAR7-2.5					
Laboratory ID:	06-187-26					
Aroclor 1016	ND	0.052	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.052	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.052	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.052	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.052	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.052	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	0.26	0.052	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	97	42-123				
Client ID:	FAR5-0.5					
Laboratory ID:	06-187-35					
Aroclor 1016	ND	0.082	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.082	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.082	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.082	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.082	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.082	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.082	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	61	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR6-0.5					
Laboratory ID:	06-187-36					
Aroclor 1016	ND	0.062	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.062	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.062	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.062	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.062	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.062	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	0.21	0.062	EPA 8082	6-29-11	6-29-11	
_						

Surrogate: Percent Recovery Control Limits DCB 93 42-123

Project: 1005-001

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0629S1					
Aroclor 1016	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.050	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits			-	
DCB	92	42-123				
Laboratory ID:	MB0629S1					
Aroclor 1016	ND	0.050	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1221	ND	0.050	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1232	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Aroclor 1242	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Aroclor 1248	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Aroclor 1254	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Aroclor 1260	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Surrogate:	Percent Recovery	Control Limits				
DCB	100	42-123				

Surrogate:	Percent Recovery	Control Limits
DCB	100	42-123

Analyte	Re	sult	Spike	Level	Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	629S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.425	0.417	0.500	0.500	N/A	85	83	59-120	2	15	
Surrogate:											
DCB						96	97	42-123			

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05					
alpha-BHC	ND	5.8	EPA 8081	6-28-11	6-28-11	
gamma-BHC	ND	5.8	EPA 8081	6-28-11	6-28-11	
beta-BHC	ND	5.8	EPA 8081	6-28-11	6-28-11	
delta-BHC	ND	5.8	EPA 8081	6-28-11	6-28-11	
Heptachlor	ND	5.8	EPA 8081	6-28-11	6-28-11	
Aldrin	ND	5.8	EPA 8081	6-28-11	6-28-11	
Heptachlor Epoxide	ND	5.8	EPA 8081	6-28-11	6-28-11	
gamma-Chlordane	ND	12	EPA 8081	6-28-11	6-28-11	
alpha-Chlordane	ND	12	EPA 8081	6-28-11	6-28-11	
4,4'-DDE	ND	12	EPA 8081	6-28-11	6-28-11	
Endosulfan I	ND	5.8	EPA 8081	6-28-11	6-28-11	
Dieldrin	ND	12	EPA 8081	6-28-11	6-28-11	
Endrin	ND	12	EPA 8081	6-28-11	6-28-11	
4,4'-DDD	ND	12	EPA 8081	6-28-11	6-28-11	
Endosulfan II	ND	12	EPA 8081	6-28-11	6-28-11	
4,4'-DDT	ND	12	EPA 8081	6-28-11	6-28-11	
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	6-28-11	
Methoxychlor	ND	12	EPA 8081	6-28-11	6-28-11	
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	6-28-11	
Endrin Ketone	ND	12	EPA 8081	6-28-11	6-28-11	
Toxaphene	ND	58	EPA 8081	6-28-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				

TCMX 77 30-111
DCB 84 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR21-2.5	. 42	Motriou	Tropurou	Analyzou	riago
Laboratory ID:	06-187-10					
alpha-BHC	ND	5.9	EPA 8081	6-28-11	6-30-11	Х
gamma-BHC	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
beta-BHC	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
delta-BHC	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
Aldrin	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor Epoxide	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
gamma-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	Χ
alpha-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDE	12	12	EPA 8081	6-28-11	6-30-11	X
Endosulfan I	ND	5.9	EPA 8081	6-28-11	6-30-11	Χ
Dieldrin	14	12	EPA 8081	6-28-11	6-30-11	X, P
Endrin	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDD	ND	12	EPA 8081	6-28-11	6-30-11	X
Endosulfan II	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDT	33	12	EPA 8081	6-28-11	6-30-11	X
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	6-30-11	X
Methoxychlor	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin Ketone	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Toxaphene	ND	59	EPA 8081	6-28-11	6-30-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 75 30-111
DCB 80 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR20-2.5					
Laboratory ID:	06-187-14					
alpha-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
gamma-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
beta-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
delta-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Aldrin	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor Epoxide	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
gamma-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	X
alpha-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	X
4,4'-DDE	ND	12	EPA 8081	6-28-11	6-30-11	X
Endosulfan I	ND	6.0	EPA 8081	6-28-11	6-30-11	X
Dieldrin	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDD	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan II	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDT	16	12	EPA 8081	6-28-11	6-30-11	X, P
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Methoxychlor	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin Ketone	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Toxaphene	ND	60	EPA 8081	6-28-11	6-30-11	Χ
Currogotor	Doroont Doooyon	Controllimita				

Surrogate: Percent Recovery Control Limits
TCMX 78 30-111
DCB 85 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR10-2.5					
Laboratory ID:	06-187-18					
alpha-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Х
gamma-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
beta-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
delta-BHC	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Aldrin	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor Epoxide	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
gamma-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	Χ
alpha-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDE	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan I	ND	6.0	EPA 8081	6-28-11	6-30-11	Χ
Dieldrin	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDD	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan II	ND	12	EPA 8081	6-28-11	6-30-11	Χ
4,4'-DDT	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Methoxychlor	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin Ketone	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Toxaphene	ND	60	EPA 8081	6-28-11	6-30-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 72 30-111
DCB 79 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR7-2.5					
Laboratory ID:	06-187-26					
alpha-BHC	ND	5.2	EPA 8081	6-28-11	6-30-11	Х
gamma-BHC	ND	5.2	EPA 8081	6-28-11	6-30-11	X
beta-BHC	ND	5.2	EPA 8081	6-28-11	6-30-11	Χ
delta-BHC	ND	5.2	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor	ND	5.2	EPA 8081	6-28-11	6-30-11	Χ
Aldrin	ND	5.2	EPA 8081	6-28-11	6-30-11	X
Heptachlor Epoxide	ND	5.2	EPA 8081	6-28-11	6-30-11	X
gamma-Chlordane	ND	10	EPA 8081	6-28-11	6-30-11	X
alpha-Chlordane	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDE	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan I	ND	5.2	EPA 8081	6-28-11	6-30-11	X
Dieldrin	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDD	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan II	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDT	ND	10	EPA 8081	6-28-11	6-30-11	Χ
Endrin Aldehyde	ND	10	EPA 8081	6-28-11	6-30-11	Χ
Methoxychlor	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan Sulfate	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin Ketone	ND	10	EPA 8081	6-28-11	6-30-11	X
Toxaphene	ND	52	EPA 8081	6-28-11	6-30-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 70 30-111
DCB 77 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR5-0.5					
Laboratory ID:	06-187-35					
alpha-BHC	ND	8.2	EPA 8081	6-28-11	6-30-11	Χ
gamma-BHC	ND	8.2	EPA 8081	6-28-11	6-30-11	X
oeta-BHC	11	8.2	EPA 8081	6-28-11	6-30-11	X, P
delta-BHC	ND	8.2	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor	ND	8.2	EPA 8081	6-28-11	6-30-11	Χ
Aldrin	ND	8.2	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor Epoxide	ND	8.2	EPA 8081	6-28-11	6-30-11	Χ
gamma-Chlordane	ND	16	EPA 8081	6-28-11	6-30-11	Χ
alpha-Chlordane	ND	16	EPA 8081	6-28-11	6-30-11	Χ
1,4'-DDE	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan I	ND	8.2	EPA 8081	6-28-11	6-30-11	Χ
Dieldrin	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Endrin	ND	16	EPA 8081	6-28-11	6-30-11	Χ
1,4'-DDD	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan II	ND	16	EPA 8081	6-28-11	6-30-11	Χ
1,4'-DDT	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Endrin Aldehyde	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Methoxychlor	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Endosulfan Sulfate	ND	16	EPA 8081	6-28-11	6-30-11	Χ
Endrin Ketone	ND	16	EPA 8081	6-28-11	6-30-11	X
Toxaphene	ND	82	EPA 8081	6-28-11	6-30-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 69 30-111
DCB 61 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR6-0.5					
Laboratory ID:	06-187-36					
alpha-BHC	ND	6.2	EPA 8081	6-28-11	6-30-11	Χ
gamma-BHC	ND	6.2	EPA 8081	6-28-11	6-30-11	X
beta-BHC	ND	6.2	EPA 8081	6-28-11	6-30-11	X
delta-BHC	ND	6.2	EPA 8081	6-28-11	6-30-11	X
Heptachlor	ND	6.2	EPA 8081	6-28-11	6-30-11	X
Aldrin	ND	6.2	EPA 8081	6-28-11	6-30-11	Χ
Heptachlor Epoxide	ND	6.2	EPA 8081	6-28-11	6-30-11	Χ
gamma-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	X
alpha-Chlordane	ND	12	EPA 8081	6-28-11	6-30-11	X
4,4'-DDE	ND	12	EPA 8081	6-28-11	6-30-11	X
Endosulfan I	ND	6.2	EPA 8081	6-28-11	6-30-11	X
Dieldrin	ND	12	EPA 8081	6-28-11	6-30-11	X
Endrin	ND	12	EPA 8081	6-28-11	6-30-11	X
4,4'-DDD	ND	12	EPA 8081	6-28-11	6-30-11	X
Endosulfan II	ND	12	EPA 8081	6-28-11	6-30-11	X
4,4'-DDT	12	12	EPA 8081	6-28-11	6-30-11	X, P
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Methoxychlor	ND	12	EPA 8081	6-28-11	6-30-11	X
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Endrin Ketone	ND	12	EPA 8081	6-28-11	6-30-11	Χ
Toxaphene	ND	62	EPA 8081	6-28-11	6-30-11	Χ
Currogotor	Damaant Daaayam	Controllingita				

Surrogate: Percent Recovery Control Limits
TCMX 65 30-111
DCB 74 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A METHOD BLANK QUALITY CONTROL

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0628S1					
alpha-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	Χ
gamma-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	X
beta-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	X
delta-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Heptachlor	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Aldrin	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Heptachlor Epoxide	ND	5.0	EPA 8081	6-28-11	6-30-11	Χ
gamma-Chlordane	ND	10	EPA 8081	6-28-11	6-30-11	X
alpha-Chlordane	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDE	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan I	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Dieldrin	ND	10	EPA 8081	6-28-11	6-30-11	Χ
Endrin	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDD	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan II	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDT	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin Aldehyde	ND	10	EPA 8081	6-28-11	6-30-11	Χ
Methoxychlor	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan Sulfate	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin Ketone	ND	10	EPA 8081	6-28-11	6-30-11	X
Toxaphene	ND	50	EPA 8081	6-28-11	6-30-11	Χ
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
TCMX 79 30-111
DCB 84 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A MS/MSD QUALITY CONTROL

Matrix: Soil

Units: ug/Kg (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-1	67-04									
	MS	MSD	MS	MSD		MS	MSD				
gamma-BHC	36.6	36.3	50.0	50.0	ND	73	73	32-96	1	10	
Heptachlor	39.8	40.3	50.0	50.0	ND	80	81	29-101	1	13	
Aldrin	41.2	41.4	50.0	50.0	ND	82	83	27-99	0	10	
Dieldrin	96.3	91.5	125	125	ND	77	73	33-92	5	10	
Endrin	97.4	92.1	125	125	ND	78	74	29-101	6	11	
4,4'-DDT	89.8	83.8	125	125	ND	72	67	21-114	7	15	
Surrogate:											
TCMX						72	74	30-111			
DCB						70	63	33-119			

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix:

Soil

Units:

mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-187-05 FAR15-2.5					
Arsenic	ND	12	6010B	6-24-11	6-27-11	
Cadmium	ND	0.58	6010B	6-24-11	6-27-11	
Chromium	37	0.58	6010B	6-24-11	6-27-11	
Lead	8.6	5.8	6010B	6-24-11	6-27-11	
Mercury	ND	0.29	7471A	6-28-11	6-28-11	
Lab ID:	06-187-10 FAR21-2.5					
Arsenic	ND	12	6010B	6-24-11	6-27-11	
Cadmium	ND	0.59	6010B	6-24-11	6-27-11	
Chromium	37	0.59	6010B	6-24-11	6-27-11	
Lead	180	5.9	6010B	6-24-11	6-27-11	
Mercury	ND	0.30	7471A	6-28-11	6-28-11	
Lab ID:	06-187-14 FAR20-2.5					
Arsenic	ND	12	6010B	6-24-11	6-27-11	
Cadmium	ND	0.60	6010B	6-24-11	6-27-11	
Chromium	64	0.60	6010B	6-24-11	6-27-11	
Lead	160	6.0	6010B	6-24-11	6-27-11	
Mercury	ND	0.30	7471A	6-28-11	6-28-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

Offits.	під/ку (ррпі)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-187-18					
Client ID:	FAR10-2.5					
Arsenic	ND	12	6010B	6-24-11	6-27-11	
Cadmium	ND	0.60	6010B	6-24-11	6-27-11	
Chromium	45	0.60	6010B	6-24-11	6-27-11	
Lead	260	6.0	6010B	6-24-11	6-27-11	
Mercury	ND	0.30	7471A	6-28-11	6-28-11	
Lab ID:	00.407.00					
Lab ID:	06-187-22 FARO 3 F					
Client ID:	FAR9-2.5					
Arsenic	ND	12	6010B	6-24-11	6-27-11	
Cadmium	ND	0.58	6010B	6-24-11	6-27-11	
Chromium	52	0.58	6010B	6-24-11	6-27-11	
Lead	460	5.8	6010B	6-24-11	6-27-11	
Mercury	ND	0.29	7471A	6-28-11	6-28-11	
Lab ID:	06-187-26					
Client ID:	FAR7-2.5					
Arsenic	ND	10	6010B	6-24-11	6-27-11	
Cadmium	ND	0.52	6010B	6-24-11	6-27-11	
Chromium	28	0.52	6010B	6-24-11	6-27-11	
Lead	27	5.2	6010B	6-24-11	6-27-11	
Mercury	ND	0.26	7471A	6-28-11	6-28-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

тід/кд (ррті)					
			Date	Date	
Result	PQL	EPA Method	Prepared	Analyzed	Flags
06-187-30					
FAR13-2.5					
ND	11	6010B	6-24-11	6-27-11	
ND	0.55	6010B	6-24-11	6-27-11	
32	0.55	6010B	6-24-11	6-27-11	
8.2	5.5	6010B	6-24-11	6-27-11	
ND	0.27	7471A	6-28-11	6-28-11	
06-187-35					
FAR5-0.5					
ND	16	6010B	6-24-11	6-27-11	
ND	0.82	6010B	6-24-11	6-27-11	
27	0.82	6010B	6-24-11	6-27-11	
9.9	8.2	6010B	6-24-11	6-27-11	
ND	0.41	7471A	6-28-11	6-28-11	
06-187-36					
FAR6-0.5					
ND	12	6010B	6-24-11	6-27-11	
ND	0.62	6010B	6-24-11	6-27-11	
44	0.62	6010B	6-24-11	6-27-11	
140	6.2	6010B	6-24-11	6-27-11	
ND	0.31	7471A	6-28-11	6-28-11	
	Result 06-187-30 FAR13-2.5 ND ND 32 8.2 ND 06-187-35 FAR5-0.5 ND ND 27 9.9 ND 06-187-36 FAR6-0.5 ND ND 44 140	Result PQL 06-187-30 FAR13-2.5 ND 11 ND 0.55 32 0.55 8.2 5.5 ND 0.27 06-187-35 FAR5-0.5 ND 16 ND 0.82 27 0.82 9.9 8.2 ND 0.41 06-187-36 FAR6-0.5 ND 12 ND 0.62 44 0.62 140 6.2	Result PQL EPA Method 06-187-30 FAR13-2.5 ND 11 6010B ND 0.55 6010B 32 0.55 6010B 8.2 5.5 6010B ND 0.27 7471A O6-187-35 FAR5-0.5 ND 16 6010B ND 0.82 6010B 9.9 8.2 6010B ND 0.41 7471A O6-187-36 FAR6-0.5 ND 12 6010B ND 0.62 6010B ND 0.62 6010B A4 0.62 6010B 140 6.2 6010B	Result PQL EPA Method Prepared 06-187-30 FAR13-2.5 PRA13-2.5 FAR13-2.5 6010B 6-24-11 ND 11 6010B 6-24-11 6-24-11 ND 0.55 6010B 6-24-11 6-24-11 8.2 5.5 6010B 6-24-11 ND 0.27 7471A 6-28-11 O6-187-35 FAR5-0.5 ND 16 6010B 6-24-11 ND 0.82 6010B 6-24-11 9.9 8.2 6010B 6-24-11 ND 0.41 7471A 6-28-11 O6-187-36 FAR6-0.5 ND 12 6010B 6-24-11 ND 0.62 6010B 6-24-11 ND 0.62 6010B 6-24-11 44 0.62 6010B 6-24-11 44 0.62 6010B 6-24-11 44 0.62 6010B 6-24-11 44 0.62 6	Result PQL EPA Method Prepared Analyzed 06-187-30 FAR13-2.5 8 4 Analyzed ND 11 6010B 6-24-11 6-27-11 ND 0.55 6010B 6-24-11 6-27-11 32 0.55 6010B 6-24-11 6-27-11 8.2 5.5 6010B 6-24-11 6-27-11 ND 0.27 7471A 6-28-11 6-28-11 06-187-35 FAR5-0.5 ND 16 6010B 6-24-11 6-27-11 ND 0.82 6010B 6-24-11 6-27-11 9.9 8.2 6010B 6-24-11 6-27-11 ND 0.41 7471A 6-28-11 6-28-11 06-187-36 FAR6-0.5 ND 12 6010B 6-24-11 6-27-11 ND 0.62 6010B 6-24-11 6-27-11 ND 0.62 6010B 6-24-11 6-27-11 44 0.6

Project: 1005-001

TOTAL METALS EPA 6010B METHOD BLANK QUALITY CONTROL

Date Extracted: 6-24-11
Date Analyzed: 6-27-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0624S3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0

Project: 1005-001

TOTAL MERCURY EPA 7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 6-28-11

Date Analyzed: 6-28-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0628S1

Analyte Method Result PQL

Mercury 7471A **ND** 0.25

Project: 1005-001

TOTAL METALS EPA 6010B DUPLICATE QUALITY CONTROL

Date Extracted: 6-24-11 Date Analyzed: 6-27-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-163-03

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	26.7	29.3	9	0.50	
Lead	16.4	23.4	35	5.0	С

Project: 1005-001

TOTAL MERCURY EPA 7471A DUPLICATE QUALITY CONTROL

Date Extracted: 6-28-11
Date Analyzed: 6-28-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-187-26

Sample Duplicate
Analyte Result Result RPD PQL Flags

Mercury ND ND NA 0.25

Project: 1005-001

TOTAL METALS EPA 6010B MS/MSD QUALITY CONTROL

Date Extracted: 6-24-11 Date Analyzed: 6-27-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-163-03

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	91.0	91	90.7	91	0	
Cadmium	50	45.1	90	45.4	91	1	
Chromium	100	114	88	116	89	1	
Lead	250	233	87	235	88	1	

Project: 1005-001

TOTAL MERCURY EPA 7471A MS/MSD QUALITY CONTROL

Date Extracted: 6-28-11
Date Analyzed: 6-28-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-187-26

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.485	97	0.509	102	5	

Project: 1005-001

NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05					
Gasoline	ND	12	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	119	68-124				

Project: 1005-001

NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0701S2					
Gasoline	ND	5.0	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-26	62-04								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						110 111	68-12 4			

Project: 1005-001

NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-2.5					
Laboratory ID:	06-187-05					
Diesel Range Organics	ND	29	NWTPH-Dx	6-30-11	6-30-11	
Lube Oil Range Organics	ND	58	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	FAR21-6.0					
Laboratory ID:	06-187-11					
Diesel Range Organics	ND	37	NWTPH-Dx	6-30-11	6-30-11	U1
Lube Oil	340	62	NWTPH-Dx	6-30-11	6-30-11	01
Surrogate:	Percent Recovery	Control Limits	IVV II II DX	0 00 11	0 00 11	
o-Terphenyl	110	50-150				
,						
Client ID:	FAR20-5.0					
Laboratory ID:	06-187-15					
Diesel Range Organics	ND	52	NWTPH-Dx	6-30-11	6-30-11	U1
Lube Oil	310	63	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	FAR10-6.0					
Laboratory ID:	06-187-19					
Diesel Range Organics	ND	33	NWTPH-Dx	6-30-11	6-30-11	
Lube Oil Range Organics	ND	65	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
, ,						
Client ID:	FAR9-6.0					
Laboratory ID:	06-187-23					
Diesel Range Organics	ND	45	NWTPH-Dx	6-30-11	6-30-11	U1
Lube Oil	220	68	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	FAR7-6.0					
Laboratory ID:	06-187-27					
Diesel Range Organics	31	27	NWTPH-Dx	6-30-11	6-30-11	
Lube Oil Range Organics	150	53	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits	INVVIIII DX	0 00 11	0 00 11	
o-Terphenyl	115	50-150				
Client ID:	FAR13-6.0					
Laboratory ID:	06-187-31					
Diesel Range Organics	ND	34	NWTPH-Dx	6-30-11	6-30-11	
Lube Oil Range Organics	ND	68	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				

Project: 1005-001

NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0630S1					
Diesel Range Organics	ND	25	NWTPH-Dx	6-30-11	6-30-11	_
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				

			Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Red	covery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	06-18	37-27						
	ORIG	DUP						
Diesel Range Organics	29.2	ND				NA	NA	
Lube Oil Range Organics	142	108				27	NA	
Surrogate:								
o-Terphenyl			115	116	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR9-2.5					
Laboratory ID:	06-187-22					
n-Nitrosodimethylamine	ND	0.039	EPA 8270	6-30-11	6-30-11	
Pyridine	ND	0.39	EPA 8270	6-30-11	6-30-11	
Phenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
Aniline	ND	0.039	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroethyl)ether	ND	0.039	EPA 8270	6-30-11	6-30-11	
2-Chlorophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,3-Dichlorobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,4-Dichlorobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Benzyl alcohol	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,2-Dichlorobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
2-Methylphenol (o-Cresol)	ND	0.039	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroisopropyl)ether	ND	0.039	EPA 8270	6-30-11	6-30-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.039	EPA 8270	6-30-11	6-30-11	
n-Nitroso-di-n-propylamine	ND	0.039	EPA 8270	6-30-11	6-30-11	
Hexachloroethane	ND	0.039	EPA 8270	6-30-11	6-30-11	
Nitrobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Isophorone	ND	0.039	EPA 8270	6-30-11	6-30-11	
2-Nitrophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,4-Dimethylphenol	ND	0.39	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroethoxy)methane	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,4-Dichlorophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,2,4-Trichlorobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Naphthalene	0.0079	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
4-Chloroaniline	ND	0.039	EPA 8270	6-30-11	6-30-11	
Hexachlorobutadiene	ND	0.039	EPA 8270	6-30-11	6-30-11	
4-Chloro-3-methylphenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
2-Methylnaphthalene	ND	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
1-Methylnaphthalene	ND	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
Hexachlorocyclopentadiene	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,4,6-Trichlorophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,3-Dichloroaniline	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,4,5-Trichlorophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
2-Chloronaphthalene	ND	0.039	EPA 8270	6-30-11	6-30-11	
2-Nitroaniline	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,4-Dinitrobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Dimethylphthalate	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,3-Dinitrobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,6-Dinitrotoluene	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,2-Dinitrobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Acenaphthylene	ND	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
3-Nitroaniline	ND	0.039	EPA 8270	6-30-11	6-30-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR9-2.5			•	•	
Laboratory ID:	06-187-22					
2,4-Dinitrophenol	ND	0.19	EPA 8270	6-30-11	6-30-11	
Acenaphthene	0.0081	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
4-Nitrophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,4-Dinitrotoluene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Dibenzofuran	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,3,5,6-Tetrachlorophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
2,3,4,6-Tetrachlorophenol	ND	0.039	EPA 8270	6-30-11	6-30-11	
Diethylphthalate	ND	0.19	EPA 8270	6-30-11	6-30-11	
4-Chlorophenyl-phenylether	· ND	0.039	EPA 8270	6-30-11	6-30-11	
4-Nitroaniline	ND	0.039	EPA 8270	6-30-11	6-30-11	
Fluorene	0.010	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
4,6-Dinitro-2-methylphenol	ND	0.19	EPA 8270	6-30-11	6-30-11	
n-Nitrosodiphenylamine	ND	0.039	EPA 8270	6-30-11	6-30-11	
1,2-Diphenylhydrazine	ND	0.039	EPA 8270	6-30-11	6-30-11	
4-Bromophenyl-phenylether	· ND	0.039	EPA 8270	6-30-11	6-30-11	
Hexachlorobenzene	ND	0.039	EPA 8270	6-30-11	6-30-11	
Pentachlorophenol	ND	0.19	EPA 8270	6-30-11	6-30-11	
Phenanthrene	0.093	0.039	EPA 8270	6-30-11	6-30-11	
Anthracene	0.021	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
Carbazole	ND	0.039	EPA 8270	6-30-11	6-30-11	
Di-n-butylphthalate	ND	0.39	EPA 8270	6-30-11	6-30-11	
Fluoranthene	0.19	0.039	EPA 8270	6-30-11	6-30-11	
Benzidine	ND	0.39	EPA 8270	6-30-11	6-30-11	
Pyrene	0.12	0.039	EPA 8270	6-30-11	6-30-11	
Butylbenzylphthalate	ND	0.39	EPA 8270	6-30-11	6-30-11	
bis-2-Ethylhexyladipate	ND	0.039	EPA 8270	6-30-11	6-30-11	
3,3'-Dichlorobenzidine	ND	0.39	EPA 8270	6-30-11	6-30-11	
Benzo[a]anthracene	0.069	0.039	EPA 8270	6-30-11	6-30-11	
Chrysene	0.083	0.039	EPA 8270	6-30-11	6-30-11	
bis(2-Ethylhexyl)phthalate	0.060	0.039	EPA 8270	6-30-11	6-30-11	
Di-n-octylphthalate	ND	0.039	EPA 8270	6-30-11	6-30-11	
Benzo[b]fluoranthene	0.063	0.039	EPA 8270	6-30-11	6-30-11	
Benzo(j,k)fluoranthene	0.060	0.039	EPA 8270	6-30-11	6-30-11	
Benzo[a]pyrene	0.071	0.039	EPA 8270	6-30-11	6-30-11	
Indeno[1,2,3-cd]pyrene	0.041	0.039	EPA 8270	6-30-11	6-30-11	
Dibenz[a,h]anthracene	0.015	0.0077	EPA 8270/SIM	6-30-11	6-30-11	
Benzo[g,h,i]perylene	0.049	0.039	EPA 8270	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	44	30 - 97				
Phenol-d6	50	40 - 104				
Nitrobenzene-d5	45	35 - 102				
2-Fluorobiphenyl	66	44 - 97				
2,4,6-Tribromophenol	63	41 - 110				
Terphenyl-d14	67	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

onits. Ing/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR13-2.5					
Laboratory ID:	06-187-30					
n-Nitrosodimethylamine	ND	0.036	EPA 8270	6-30-11	6-30-11	
Pyridine	ND	0.36	EPA 8270	6-30-11	6-30-11	
Phenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
Aniline	ND	0.036	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroethyl)ether	ND	0.036	EPA 8270	6-30-11	6-30-11	
2-Chlorophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,3-Dichlorobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,4-Dichlorobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Benzyl alcohol	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,2-Dichlorobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
2-Methylphenol (o-Cresol)	ND	0.036	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroisopropyl)ether	ND	0.036	EPA 8270	6-30-11	6-30-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.036	EPA 8270	6-30-11	6-30-11	
n-Nitroso-di-n-propylamine	ND	0.036	EPA 8270	6-30-11	6-30-11	
Hexachloroethane	ND	0.036	EPA 8270	6-30-11	6-30-11	
Nitrobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Isophorone	ND	0.036	EPA 8270	6-30-11	6-30-11	
2-Nitrophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,4-Dimethylphenol	ND	0.36	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroethoxy)methane	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,4-Dichlorophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,2,4-Trichlorobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Naphthalene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
4-Chloroaniline	ND	0.036	EPA 8270	6-30-11	6-30-11	
Hexachlorobutadiene	ND	0.036	EPA 8270	6-30-11	6-30-11	
4-Chloro-3-methylphenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
2-Methylnaphthalene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
1-Methylnaphthalene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Hexachlorocyclopentadiene	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,4,6-Trichlorophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,3-Dichloroaniline	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,4,5-Trichlorophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
2-Chloronaphthalene	ND	0.036	EPA 8270	6-30-11	6-30-11	
2-Nitroaniline	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,4-Dinitrobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Dimethylphthalate	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,3-Dinitrobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,6-Dinitrotoluene	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,2-Dinitrobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Acenaphthylene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
3-Nitroaniline	ND	0.036	EPA 8270	6-30-11	6-30-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR13-2.5			•	•	
Laboratory ID:	06-187-30					
2,4-Dinitrophenol	ND	0.18	EPA 8270	6-30-11	6-30-11	
Acenaphthene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
4-Nitrophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,4-Dinitrotoluene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Dibenzofuran	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,3,5,6-Tetrachlorophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
2,3,4,6-Tetrachlorophenol	ND	0.036	EPA 8270	6-30-11	6-30-11	
Diethylphthalate	ND	0.18	EPA 8270	6-30-11	6-30-11	
4-Chlorophenyl-phenylether	ND	0.036	EPA 8270	6-30-11	6-30-11	
4-Nitroaniline	ND	0.036	EPA 8270	6-30-11	6-30-11	
Fluorene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
4,6-Dinitro-2-methylphenol	ND	0.18	EPA 8270	6-30-11	6-30-11	
n-Nitrosodiphenylamine	ND	0.036	EPA 8270	6-30-11	6-30-11	
1,2-Diphenylhydrazine	ND	0.036	EPA 8270	6-30-11	6-30-11	
4-Bromophenyl-phenylether	ND	0.036	EPA 8270	6-30-11	6-30-11	
Hexachlorobenzene	ND	0.036	EPA 8270	6-30-11	6-30-11	
Pentachlorophenol	ND	0.18	EPA 8270	6-30-11	6-30-11	
Phenanthrene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Anthracene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Carbazole	ND	0.036	EPA 8270	6-30-11	6-30-11	
Di-n-butylphthalate	ND	0.36	EPA 8270	6-30-11	6-30-11	
Fluoranthene	0.0087	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Benzidine	ND	0.36	EPA 8270	6-30-11	6-30-11	
Pyrene	0.0082	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Butylbenzylphthalate	ND	0.36	EPA 8270	6-30-11	6-30-11	
bis-2-Ethylhexyladipate	ND	0.036	EPA 8270	6-30-11	6-30-11	
3,3'-Dichlorobenzidine	ND	0.36	EPA 8270	6-30-11	6-30-11	
Benzo[a]anthracene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Chrysene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
bis(2-Ethylhexyl)phthalate	ND	0.036	EPA 8270	6-30-11	6-30-11	
Di-n-octylphthalate	ND	0.036	EPA 8270	6-30-11	6-30-11	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Benzo[a]pyrene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Indeno[1,2,3-cd]pyrene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Benzo[g,h,i]perylene	ND	0.0073	EPA 8270/SIM	6-30-11	6-30-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	39	30 - 97				
Phenol-d6	44	40 - 104				
Nitrobenzene-d5	40	35 - 102				
2-Fluorobiphenyl	67	44 - 97				
2,4,6-Tribromophenol	68	41 - 110				
Terphenyl-d14	74	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0630S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270	6-30-11	6-30-11	
Pyridine	ND	0.33	EPA 8270	6-30-11	6-30-11	
Phenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
Aniline	ND	0.033	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	6-30-11	6-30-11	
2-Chlorophenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
Benzyl alcohol	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	6-30-11	6-30-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	6-30-11	6-30-11	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	6-30-11	6-30-11	
Hexachloroethane	ND	0.033	EPA 8270	6-30-11	6-30-11	
Nitrobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
Isophorone	ND	0.033	EPA 8270	6-30-11	6-30-11	
2-Nitrophenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
2,4-Dimethylphenol	ND	0.33	EPA 8270	6-30-11	6-30-11	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	6-30-11	6-30-11	
2,4-Dichlorophenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
Naphthalene	ND	0.0067	EPA 8270/SIM	6-30-11	6-30-11	
4-Chloroaniline	ND	0.033	EPA 8270	6-30-11	6-30-11	
Hexachlorobutadiene	ND	0.033	EPA 8270	6-30-11	6-30-11	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	6-30-11	6-30-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	6-30-11	6-30-11	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	6-30-11	6-30-11	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
2,3-Dichloroaniline	ND	0.033	EPA 8270	6-30-11	6-30-11	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	6-30-11	6-30-11	
2-Chloronaphthalene	ND	0.033	EPA 8270	6-30-11	6-30-11	
2-Nitroaniline	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
Dimethylphthalate	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	6-30-11	6-30-11	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	6-30-11	6-30-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	6-30-11	6-30-11	
3-Nitroaniline	ND	0.033	EPA 8270	6-30-11	6-30-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
2.4-Dinitrophenol ND	Laboratory ID:	MB0630S1					
Acenaphthene ND	•		0.17	EDA 8270	6-30-11	6-30-11	
A-Nitrophenol ND							
2,4-Dinitrotoluene ND 0.033 EPA 8270 6-30-11 6-30-11 Dibenzofuran ND 0.033 EPA 8270 6-30-11 6-30-11 2,3,6-Fetrachlorophenol ND 0.033 EPA 8270 6-30-11 6-30-11 10ethylphthalate ND 0.17 EPA 8270 6-30-11 6-30-11 4-Chlorophenyl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 4-Chlorophenyl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 4-Nitroaniline ND 0.033 EPA 8270 6-30-11 6-30-11 4-Nitroaniline ND 0.033 EPA 8270 6-30-11 6-30-11 4-Nitroaniline ND 0.033 EPA 8270 6-30-11 6-30-11 4-Broonphenylphenol ND 0.033 EPA 8270 6-30-11 6-30-11 4-Bromophenyl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 4-Bromophenyl-phenylether ND 0.033 EPA 8270							
Dibenzofuran ND							
2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270 6-30-11 6-30-11							
2,3,4,6-Tetrachlorophenol ND 0.033 EPA 8270 6-30-11 6-30-11 6-30-11 Diethylphthalate ND 0.17 EPA 8270 6-30-11 6-30-11 4-Chlorophenyl-phenyletheryl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 4-Nitroanilline ND 0.033 EPA 8270 6-30-11 6-30-11 4-Nitroanilline ND 0.0067 EPA 8270 6-30-11 6-30-11 4-G-Dinitro-2-methylphenol ND 0.17 EPA 8270 6-30-11 6-30-11 4-G-Dinitro-2-methylphenol ND 0.17 EPA 8270 6-30-11 6-30-11 1-N-Nitrosodiphenylamine ND 0.033 EPA 8270 6-30-11 6-30-11 1-P-Diphenylphydrazine ND 0.033 EPA 8270 6-30-11 6-30-11 1-P-Diphenylphylphydrazine ND 0.033 EPA 8270 6-30-11 6-30-11 1-P-Branchiprophenol ND 0.17 EPA 8270 6-30-11 6-30-11 1-Peatachlorophenol ND 0.17 EPA 8270 6-30-11 6-30-11 1-Peatachlorophenol ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 1-Phenanthrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 1-Phatylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 1-Phatylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 1-Phuranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 1-Phuranthrene ND 0.0							
Diethylphthalate							
4-Chlorophenyl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 4-Nitroaniline ND 0.033 EPA 8270 6-30-11 6-30-11 6-30-11 4-Nitroaniline ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 6-30-11 4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270 6-30-11 6-30-11 10-Nitrosodiphenylamine ND 0.033 EPA 8270 6-30-11 6-30-11 10-Nitrosodiphenylydrazine ND 0.033 EPA 8270 6-30-11 6-30-11 10-10-10-10-10-10-10-10-10-10-10-10-10-1	· · · · · · · · · · · · · · · · · · ·						
## A-Nitroaniline							
Fluorene							
4,6-Dinitro-2-methylphenol ND 0.17 EPA 8270 6-30-11 6-30-11 n-Nitrosodiphenylamine ND 0.033 EPA 8270 6-30-11 6-30-11 1,2-Diphenylhydrazine ND 0.033 EPA 8270 6-30-11 6-30-11 4-Bromophenyl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 Hexachlorobenzene ND 0.033 EPA 8270 6-30-11 6-30-11 Pentachlorophenol ND 0.007 EPA 8270 6-30-11 6-30-11 Pentachlorophenol ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Anthracene ND 0.033 EPA 8270 6-30-11 6-30-11 Pin-butylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzidine ND 0.033 EPA 8270/SIM							
N-Nitrosodiphenylamine							
1,2-Diphenylhydrazine							
4-Bromophenyl-phenylether ND 0.033 EPA 8270 6-30-11 6-30-11 Pentachloropenzene ND 0.033 EPA 8270 6-30-11 6-30-11 Pentachlorophenol ND 0.17 EPA 8270 6-30-11 6-30-11 Pentachlorophenol ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthrene ND 0.033 EPA 8270 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND 0.033 EPA 8270 6-30-11 6-30-11 Phenanthene ND 0.033 EPA 8270 6-30-11 6-30-11 Phenanthene ND 0.033 EPA 8270 6-30-11 6-30-11 Phenanthene ND 0.033 EPA 8270 6-30-11 6-30-11 Phenanthene ND 0.033 EPA 8270 6-30-11 6-30-11 Phenanthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Phenanthene ND							
Hexachlorobenzene ND							
Pentachlorophenol ND							
Phenanthrene							
Anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Carbazole ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-butylphthalate ND 0.33 EPA 8270 6-30-11 6-30-11 Eluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolgine ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Butylbenzylphthalate ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Butylbenzylphthalate ND 0.33 EPA 8270 6-30-11 6-30-11 Butylbenzylphthalate ND 0.33 EPA 8270 6-30-11 6-30-11 bis-2-Ethylhexyladipate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzolajanthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolajanthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Bis(2-Ethylhexyl)phthalate ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 6-30-11 6-30-11 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzolajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenzlajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenzlajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenzlajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenzlajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzolajlyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenzlajlyjerylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: **Percent Recovery** **Control Limits** 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 **Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97							
Carbazole ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-butylphthalate ND 0.33 EPA 8270 6-30-11 6-30-11 Fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzidine ND 0.033 EPA 8270/SIM 6-30-11 6-30-11 Pyrene ND 0.033 EPA 8270 6-30-11 6-30-11 Butylbenzylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 bis-2-Ethylhexyladipate ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 berzol[a]alphtracene ND 0.0067 EPA 8270/SIM							
Di-n-butylphthalate ND 0.33 EPA 8270 6-30-11 6-30-11 Fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzidine ND 0.33 EPA 8270 6-30-11 6-30-11 Pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Butylbenzylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 bis-2-Ethylhexyladipate ND 0.033 EPA 8270 6-30-11 6-30-11 bis-2-Ethylhexyladipate ND 0.033 EPA 8270 6-30-11 6-30-11 bis-2-Ethylhexyladipate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Chrysene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270/SIM 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270/SIM							
Fluoranthene							
Benzidine							
ND							
Butylbenzylphthalate							
bis-2-Ethylhexyladipate ND 0.033 EPA 8270 6-30-11 6-30-11 3,3'-Dichlorobenzidine ND 0.33 EPA 8270 6-30-11 6-30-11 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Chrysene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Percent Recovery Control Limits Surrogate: Sur	· · · · · · · · · · · · · · · · · · ·						
3,3'-Dichlorobenzidine ND 0.33 EPA 8270 6-30-11 6-30-11 Benzo[a]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Chrysene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[jk]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery							
Benzo[a]anthracene							
Chrysene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 bis(2-Ethylhexyl)phthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphen							
bis(2-Ethylhexyl)phthalate	Benzo[a]anthracene						
Di-n-octylphthalate ND 0.033 EPA 8270 6-30-11 6-30-11 Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97	Chrysene						
Benzo[b]fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo(j,k)fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97							
Benzo(j,k)fluoranthene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97	• •						
Benzo[a]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97			0.0067	EPA 8270/SIM	6-30-11	6-30-11	
Indeno[1,2,3-cd]pyrene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97	Benzo(j,k)fluoranthene		0.0067	EPA 8270/SIM		6-30-11	
Dibenz[a,h]anthracene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97	Benzo[a]pyrene						
Benzo[g,h,i]perylene ND 0.0067 EPA 8270/SIM 6-30-11 6-30-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97							
Surrogate: Percent Recovery Control Limits 2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97							
2-Fluorophenol 59 30 - 97 Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97	Benzo[g,h,i]perylene			EPA 8270/SIM	6-30-11	6-30-11	
Phenol-d6 57 40 - 104 Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97							
Nitrobenzene-d5 60 35 - 102 2-Fluorobiphenyl 74 44 - 97							
2-Fluorobiphenyl 74 44 - 97							
, ,	Nitrobenzene-d5						
2.4.6-Tribromophenol 69 41 - 110							
	2,4,6-Tribromophenol	69	41 - 110				
Terphenyl-d14 75 53 - 107	Terphenyl-d14	75	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-24	45-10									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	0.681	0.734	1.33	1.33	ND	51	55	41 - 106	7	29	
2-Chlorophenol	0.865	0.948	1.33	1.33	ND	65	71	43 - 104	9	36	
1,4-Dichlorobenzene	0.378	0.431	0.667	0.667	ND	57	65	25 - 94	13	40	
n-Nitroso-di-n-propylamine	0.327	0.352	0.667	0.667	ND	49	53	40 - 100	7	34	
1,2,4-Trichlorobenzene	0.372	0.406	0.667	0.667	ND	56	61	39 - 86	9	34	
4-Chloro-3-methylphenol	0.848	0.857	1.33	1.33	ND	64	64	60 - 102	1	25	
Acenaphthene	0.446	0.439	0.667	0.667	ND	67	66	54 - 94	2	23	
4-Nitrophenol	0.965	0.901	1.33	1.33	ND	73	68	30 - 133	7	25	
2,4-Dinitrotoluene	0.497	0.460	0.667	0.667	ND	75	69	46 - 107	8	26	
Pentachlorophenol	1.02	0.962	1.33	1.33	ND	77	72	54 - 111	6	29	
Pyrene	0.508	0.492	0.667	0.667	ND	76	74	54 - 108	3	21	
Surrogate:											
2-Fluorophenol						53	58	30 - 97			
Phenol-d6						52	55	40 - 104			
Nitrobenzene-d5						51	57	35 - 102			
2-Fluorobiphenyl						72	70	44 - 97			
2,4,6-Tribromophenol						71	68	41 - 110			
Terphenyl-d14						76	73	53 - 107			

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-187-01					
Client ID:	FAR12-2.5					
Arsenic	ND	13	6010B	6-30-11	6-30-11	
Cadmium	ND	0.63	6010B	6-30-11	6-30-11	
Chromium	51	0.63	6010B	6-30-11	6-30-11	
Lead	ND	6.3	6010B	6-30-11	6-30-11	
Mercury	ND	0.32	7471A	6-30-11	6-30-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 6-30-11
Date Analyzed: 6-30-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0630S1&MB0630S3

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

Project: 1005-001

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 6-30-11
Date Analyzed: 6-30-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-239-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	20.2	18.6	8	0.50	
Lead	9.50	6.89	32	5.0	С
Mercury	ND	ND	NA	0.25	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 6-30-11
Date Analyzed: 6-30-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-239-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	83.0	83	82.2	82	1	
Cadmium	50.0	48.2	96	47.6	95	1	
Chromium	100	112	91	112	92	0	
Lead	250	237	91	238	92	1	
Mercury	0.500	0.480	96	0.476	95	1	

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR10-15.0					
Laboratory ID:	06-187-21					
Dichlorodifluoromethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Acetone	0.028	0.0073	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0073	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0073	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0073	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0073	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B

page 2 of 2

Amalista	Decid	DC!	Madb - d	Date	Date	- 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR10-15.0					
Laboratory ID:	06-187-21					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0029	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	ND	0.0073	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0073	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260	7-1-11	7-1-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	77	63-127				
Toluene-d8	77	65-129				

Toluene-d8 77 65-129 4-Bromofluorobenzene 79 55-121

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

Offits. Hig/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Acetone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0050	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	MD070404					
Laboratory ID:	MB0701S1	0.0010	EDA 9260	7-1-11	7-1-11	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260			
Tetrachloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0020	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	79	63-127				
Toluene-d8	81	65-129				
4-Bromofluorobenzene	84	55-121				
T DI UNIONIUNI ONG NEGITE	07	JU-12 I				

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	'01S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0542	0.0546	0.0500	0.0500	108	109	70-130	1	19	
Benzene	0.0482	0.0490	0.0500	0.0500	96	98	70-125	2	15	
Trichloroethene	0.0500	0.0495	0.0500	0.0500	100	99	70-122	1	14	
Toluene	0.0482	0.0478	0.0500	0.0500	96	96	73-120	1	16	
Chlorobenzene	0.0505	0.0481	0.0500	0.0500	101	96	74-109	5	12	
Surrogate:										
Dibromofluoromethan	ne				72	74	63-127			
Toluene-d8					<i>7</i> 5	<i>7</i> 5	65-129			
4-Bromofluorobenzen	ne				76	79	55-121			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analysis	Decel	PO!	Marth and	Date	Date	FI
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR15-11.0					
Laboratory ID:	06-187-07	0.000	EDA 0070	7 4 44	7044	
n-Nitrosodimethylamine	ND	0.036	EPA 8270	7-1-11	7-3-11	
Pyridine	ND	0.36	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.036	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.036	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.036	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.036	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.036	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.036	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.036	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.036	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
sophorone	ND	0.036	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.36	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0072	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.036	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.036	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0072	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0072	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.036	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.036	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.036	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrobenzene	ND ND	0.036	EPA 8270	7-1-11	7-3-11 7-3-11	
1,2-Dinitrobenzene	ND ND	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Acenaphthylene	0.015	0.036	EPA 8270/SIM	7-1-11 7-1-11	7-3-11 7-2-11	
3-Nitroaniline	ND	0.0072	EPA 8270/31W	7-1-11 7-1-11	7-2-11 7-3-11	
o-minoamiline	ND	0.036	EPA 02/0	7-1-11	7-3-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR15-11.0				7uy_0	90
Laboratory ID:	06-187-07					
2,4-Dinitrophenol	ND	0.18	EPA 8270	7-1-11	7-3-11	
Acenaphthene	ND	0.0072	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,4-Dinitrotoluene	ND	0.036	EPA 8270	7-1-11	7-3-11	
Dibenzofuran	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,3,5,6-Tetrachlorophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
2,3,4,6-Tetrachlorophenol	ND	0.036	EPA 8270	7-1-11	7-3-11	
Diethylphthalate	ND	0.18	EPA 8270	7-1-11	7-3-11	
4-Chlorophenyl-phenylether		0.036	EPA 8270	7-1-11	7-3-11	
4-Nitroaniline	ND	0.036	EPA 8270	7-1-11	7-3-11	
Fluorene	0.0072	0.0072	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.18	EPA 8270	7-1-11	7-3-11	
n-Nitrosodiphenylamine	ND	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
1,2-Diphenylhydrazine	ND	0.036	EPA 8270	7-1-11	7-3-11	
4-Bromophenyl-phenylether		0.036	EPA 8270	7-1-11	7-3-11	
Hexachlorobenzene	ND	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Pentachlorophenol	0.47	0.18	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Phenanthrene	0.074	0.036	EPA 8270	7-1-11	7-3-11 7-3-11	
Anthracene	0.034	0.0072	EPA 8270/SIM	7-1-11 7-1-11	7-3-11 7-2-11	
Carbazole	ND	0.036	EPA 8270	7-1-11 7-1-11	7-3-11	
Di-n-butylphthalate	ND	0.36	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Fluoranthene	0.20	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Benzidine	ND	0.36	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Pyrene	0.19	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Butylbenzylphthalate	ND	0.36	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
bis-2-Ethylhexyladipate	ND	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
3,3'-Dichlorobenzidine	ND	0.36	EPA 8270	7-1-11	7-3-11 7-3-11	
Benzo[a]anthracene	0.075	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Chrysene	0.22	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
bis(2-Ethylhexyl)phthalate	0.059	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Di-n-octylphthalate	ND	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Benzo[b]fluoranthene	0.16	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Benzo(j,k)fluoranthene	0.10	0.036	EPA 8270	7-1-11 7-1-11	7-3-11 7-3-11	
Benzo[a]pyrene	0.10	0.036	EPA 8270	7-1-11	7-3-11 7-3-11	
Indeno[1,2,3-cd]pyrene	0.064	0.036	EPA 8270	7-1-11	7-3-11 7-3-11	
Dibenz[a,h]anthracene	0.024	0.0072	EPA 8270/SIM	7-1-11	7-3-11 7-2-11	
Benzo[g,h,i]perylene	0.067	0.036	EPA 8270	7-1-11	7-2-11 7-3-11	
Surrogate:	Percent Recovery	Control Limits	L1 / (02 / 0	1 1-11	7 0-11	
2-Fluorophenol	67	30 - 97				
Phenol-d6	<i>7</i> 6	40 - 104				
Nitrobenzene-d5	77 77	35 - 1 <i>0</i> 2				
2-Fluorobiphenyl	81	44 - 97				
2,4,6-Tribromophenol	93	41 - 110				
Terphenyl-d14	86	53 - 107				
	20	00 101				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. mg/kg	D	DO 1		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR21-6.0					
Laboratory ID:	06-187-11	0.044	EDA 0070	7 4 44	7 0 44	
n-Nitrosodimethylamine	ND	0.041	EPA 8270	7-1-11	7-3-11	
Pyridine	ND	0.41	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.041	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.041	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.041	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.041	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.041	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Isophorone	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.41	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.041	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrotoluene	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2-Dinitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR21-6.0	·				
Laboratory ID:	06-187-11					
2,4-Dinitrophenol	ND	0.21	EPA 8270	7-1-11	7-3-11	
Acenaphthene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4-Dinitrotoluene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Dibenzofuran	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,3,5,6-Tetrachlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,3,4,6-Tetrachlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
Diethylphthalate	ND	0.21	EPA 8270	7-1-11	7-3-11	
4-Chlorophenyl-phenylether		0.041	EPA 8270	7-1-11	7-3-11	
4-Nitroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
Fluorene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.21	EPA 8270	7-1-11	7-3-11	
n-Nitrosodiphenylamine	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2-Diphenylhydrazine	ND	0.041	EPA 8270	7-1-11	7-3-11	
4-Bromophenyl-phenylether		0.041	EPA 8270	7-1-11	7-3-11	
Hexachlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Pentachlorophenol	ND	0.21	EPA 8270	7-1-11	7-3-11	
Phenanthrene	0.022	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Anthracene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Carbazole	ND	0.041	EPA 8270	7-1-11	7-3-11	
Di-n-butylphthalate	ND	0.41	EPA 8270	7-1-11	7-3-11	
Fluoranthene	0.044	0.041	EPA 8270	7-1-11	7-3-11	
Benzidine	ND	0.41	EPA 8270	7-1-11	7-3-11	
Pyrene	0.041	0.041	EPA 8270	7-1-11	7-3-11	
Butylbenzylphthalate	ND	0.41	EPA 8270	7-1-11	7-3-11	
ois-2-Ethylhexyladipate	ND	0.041	EPA 8270	7-1-11	7-3-11	
3,3'-Dichlorobenzidine	ND	0.41	EPA 8270	7-1-11	7-3-11	
Benzo[a]anthracene	0.018	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Chrysene	0.035	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
ois(2-Ethylhexyl)phthalate	ND	0.041	EPA 8270	7-1-11	7-3-11	
Di-n-octylphthalate	ND	0.041	EPA 8270	7-1-11	7-3-11	
Benzo[b]fluoranthene	0.025	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Benzo(j,k)fluoranthene	0.017	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[a]pyrene	0.017	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
ndeno[1,2,3-cd]pyrene	0.012	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	0.022	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	66	30 - 97				
Phenol-d6	76	40 - 104				
Nitrobenzene-d5	73	35 - 102				
2-Fluorobiphenyl	77	44 - 97				
2,4,6-Tribromophenol	99	41 - 110				
Terphenyl-d14	90	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR20-5.0					
Laboratory ID:	06-187-15					
n-Nitrosodimethylamine	ND	0.042	EPA 8270	7-1-11	7-3-11	_
Pyridine	ND	0.42	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.042	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.042	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.042	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.042	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.042	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.042	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.042	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Isophorone	ND	0.042	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.42	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.042	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.042	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.042	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrotoluene	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,2-Dinitrobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Acenaphthylene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.042	EPA 8270	7-1-11	7-3-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR20-5.0					
Laboratory ID:	06-187-15					
2,4-Dinitrophenol	ND	0.21	EPA 8270	7-1-11	7-3-11	
Acenaphthene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,4-Dinitrotoluene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Dibenzofuran	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,3,5,6-Tetrachlorophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
2,3,4,6-Tetrachlorophenol	ND	0.042	EPA 8270	7-1-11	7-3-11	
Diethylphthalate	ND	0.21	EPA 8270	7-1-11	7-3-11	
4-Chlorophenyl-phenylether		0.042	EPA 8270	7-1-11	7-3-11	
4-Nitroaniline	ND	0.042	EPA 8270	7-1-11	7-3-11	
Fluorene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.21	EPA 8270	7-1-11	7-3-11	
n-Nitrosodiphenylamine	ND	0.042	EPA 8270	7-1-11	7-3-11	
1,2-Diphenylhydrazine	ND	0.042	EPA 8270	7-1-11	7-3-11	
4-Bromophenyl-phenylether		0.042	EPA 8270	7-1-11	7-3-11	
Hexachlorobenzene	ND	0.042	EPA 8270	7-1-11	7-3-11	
Pentachlorophenol	ND	0.21	EPA 8270	7-1-11	7-3-11	
Phenanthrene	0.047	0.042	EPA 8270	7-1-11	7-3-11	
Anthracene	0.013	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Carbazole	ND	0.042	EPA 8270	7-1-11	7-3-11	
Di-n-butylphthalate	ND	0.42	EPA 8270	7-1-11	7-3-11	
Fluoranthene	0.084	0.042	EPA 8270	7-1-11	7-3-11	
Benzidine	ND	0.42	EPA 8270	7-1-11	7-3-11	
Pyrene	0.076	0.042	EPA 8270	7-1-11	7-3-11	
Sutylbenzylphthalate	ND	0.42	EPA 8270	7-1-11	7-3-11	
ois-2-Ethylhexyladipate	ND	0.042	EPA 8270	7-1-11	7-3-11	
3,3'-Dichlorobenzidine	ND	0.42	EPA 8270	7-1-11	7-3-11	
Benzo[a]anthracene	0.032	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Chrysene	0.050	0.042	EPA 8270	7-1-11	7-3-11	
ois(2-Ethylhexyl)phthalate	0.057	0.042	EPA 8270	7-1-11	7-3-11	
Di-n-octylphthalate	ND	0.042	EPA 8270	7-1-11	7-3-11	
Benzo[b]fluoranthene	0.033	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Benzo(j,k)fluoranthene	0.024	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[a]pyrene	0.035	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
ndeno[1,2,3-cd]pyrene	0.023	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Dibenz[a,h]anthracene	ND	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	0.034	0.0083	EPA 8270/SIM	7-1-11	7-2-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	53	30 - 97				
Phenol-d6	64	40 - 104				
Nitrobenzene-d5	57	35 - 102				
2-Fluorobiphenyl	66	44 - 97				
2,4,6-Tribromophenol	87	41 - 110				
Terphenyl-d14	87	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analysis	Decult	BOL	Mathad	Date	Date	Flore
Analyte Client ID:	Result FAR10-15.0	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	06-187-21	0.045	EDA 0070	7 4 44	7 0 44	
n-Nitrosodimethylamine	ND	0.045	EPA 8270	7-1-11	7-2-11	
Pyridine	ND	0.45	EPA 8270	7-1-11	7-2-11	
Phenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
Aniline	ND	0.045	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroethyl)ether	ND	0.045	EPA 8270	7-1-11	7-2-11	
2-Chlorophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,3-Dichlorobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,4-Dichlorobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
Benzyl alcohol	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,2-Dichlorobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
2-Methylphenol (o-Cresol)	ND	0.045	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroisopropyl)ether	ND	0.045	EPA 8270	7-1-11	7-2-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.045	EPA 8270	7-1-11	7-2-11	
n-Nitroso-di-n-propylamine	ND	0.045	EPA 8270	7-1-11	7-2-11	
Hexachloroethane	ND	0.045	EPA 8270	7-1-11	7-2-11	
Nitrobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
Isophorone	ND	0.045	EPA 8270	7-1-11	7-2-11	
2-Nitrophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,4-Dimethylphenol	ND	0.45	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroethoxy)methane	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,4-Dichlorophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,2,4-Trichlorobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
Naphthalene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.045	EPA 8270	7-1-11	7-2-11	
Hexachlorobutadiene	ND	0.045	EPA 8270	7-1-11	7-2-11	
4-Chloro-3-methylphenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
2-Methylnaphthalene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,4,6-Trichlorophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,3-Dichloroaniline	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,4,5-Trichlorophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
2-Chloronaphthalene	ND	0.045	EPA 8270	7-1-11	7-2-11	
2-Nitroaniline	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,4-Dinitrobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
Dimethylphthalate	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,3-Dinitrobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,6-Dinitrotoluene	ND	0.045	EPA 8270	7-1-11 7-1-11	7-2-11	
1,2-Dinitrobenzene	ND ND	0.045	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Acenaphthylene	ND ND	0.043	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
3-Nitroaniline	ND ND	0.0090	EPA 8270/31WI	7-1-11 7-1-11	7-2-11 7-2-11	
3-MillOallillile	שאו	0.045	EFA 02/U	7-1-11	1-2-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR10-15.0	·				
Laboratory ID:	06-187-21					
2,4-Dinitrophenol	ND	0.22	EPA 8270	7-1-11	7-2-11	
Acenaphthene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,4-Dinitrotoluene	ND	0.045	EPA 8270	7-1-11	7-2-11	
Dibenzofuran	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,3,5,6-Tetrachlorophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
2,3,4,6-Tetrachlorophenol	ND	0.045	EPA 8270	7-1-11	7-2-11	
Diethylphthalate	ND	0.22	EPA 8270	7-1-11	7-2-11	
4-Chlorophenyl-phenylether	ND	0.045	EPA 8270	7-1-11	7-2-11	
4-Nitroaniline	ND	0.045	EPA 8270	7-1-11	7-2-11	
Fluorene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.22	EPA 8270	7-1-11	7-2-11	
n-Nitrosodiphenylamine	ND	0.045	EPA 8270	7-1-11	7-2-11	
1,2-Diphenylhydrazine	ND	0.045	EPA 8270	7-1-11	7-2-11	
4-Bromophenyl-phenylether	ND	0.045	EPA 8270	7-1-11	7-2-11	
Hexachlorobenzene	ND	0.045	EPA 8270	7-1-11	7-2-11	
Pentachlorophenol	ND	0.22	EPA 8270	7-1-11	7-2-11	
Phenanthrene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Anthracene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Carbazole	ND	0.045	EPA 8270	7-1-11	7-2-11	
Di-n-butylphthalate	ND	0.45	EPA 8270	7-1-11	7-2-11	
Fluoranthene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Benzidine	ND	0.45	EPA 8270	7-1-11	7-2-11	
Pyrene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
- Butylbenzylphthalate	ND	0.45	EPA 8270	7-1-11	7-2-11	
ois-2-Ethylhexyladipate	ND	0.045	EPA 8270	7-1-11	7-2-11	
3,3'-Dichlorobenzidine	ND	0.45	EPA 8270	7-1-11	7-2-11	
Benzo[a]anthracene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Chrysene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
ois(2-Ethylhexyl)phthalate	ND	0.045	EPA 8270	7-1-11	7-2-11	
Di-n-octylphthalate	ND	0.045	EPA 8270	7-1-11	7-2-11	
Benzo[b]fluoranthene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Benzo(j,k)fluoranthene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[a]pyrene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
ndeno[1,2,3-cd]pyrene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Dibenz[a,h]anthracene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	ND	0.0090	EPA 8270/SIM	7-1-11	7-2-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	68	30 - 97				
Phenol-d6	72	40 - 104				
Nitrobenzene-d5	77	35 - 102				
2-Fluorobiphenyl	77	44 - 97				
2,4,6-Tribromophenol	89	41 - 110				
Terphenyl-d14	85	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270	7-1-11	7-2-11	
Pyridine	ND	0.33	EPA 8270	7-1-11	7-2-11	
Phenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
Aniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Chlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Benzyl alcohol	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	7-1-11	7-2-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	7-1-11	7-2-11	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	7-1-11	7-2-11	
Hexachloroethane	ND	0.033	EPA 8270	7-1-11	7-2-11	
Nitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Isophorone	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Nitrophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4-Dimethylphenol	ND	0.33	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4-Dichlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Naphthalene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
Hexachlorobutadiene	ND	0.033	EPA 8270	7-1-11	7-2-11	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,3-Dichloroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Chloronaphthalene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Nitroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Dimethylphthalate	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0701S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270	7-1-11	7-2-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4-Dinitrotoluene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Dibenzofuran	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
Diethylphthalate	ND	0.17	EPA 8270	7-1-11	7-2-11	
4-Chlorophenyl-phenylether		0.033	EPA 8270	7-1-11	7-2-11	
4-Nitroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
Fluorene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.0007	EPA 8270	7-1-11	7-2-11 7-2-11	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	7-1-11	7-2-11	
4-Bromophenyl-phenylether		0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Hexachlorobenzene	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Pentachlorophenol	ND	0.17	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Anthracene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11	
Carbazole	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Di-n-butylphthalate	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Benzidine	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Pyrene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Butylbenzylphthalate	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
3,3'-Dichlorobenzidine	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Chrysene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
bis(2-Ethylhexyl)phthalate	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Di-n-octylphthalate	ND	0.033	EPA 8270	7-1-11	7-2-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Indeno[1,2,3-cd]pyrene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Surrogate:	Percent Recovery	Control Limits	LI A OZI O/OIIVI	7-1-11	1-2-11	
2-Fluorophenol	72	30 - 97				
Phenol-d6	72 79	40 - 104				
Nitrobenzene-d5	82	35 - 1 <i>0</i> 2				
2-Fluorobiphenyl	84	44 - 97				
2,4,6-Tribromophenol	91	41 - 110				
Terphenyl-d14	97	53 - 107				
	· ·	00 101				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Percent		Recovery		RPD		
Analyte	Result Spike Level Result Recover		overy	Limits	RPD	Limit	Flags					
MATRIX SPIKES											_	
Laboratory ID:	06-18	37-07										
	MS	MSD	MS	MSD		MS	MSD					
Phenol	1.05	1.03	1.33	1.33	ND	79	77	41 - 106	2	29		
2-Chlorophenol	1.05	1.02	1.33	1.33	ND	79	77	43 - 104	3	36		
1,4-Dichlorobenzene	0.441	0.426	0.667	0.667	ND	66	64	25 - 94	3	40		
n-Nitroso-di-n-propylamine	0.478	0.476	0.667	0.667	ND	72	71	40 - 100	0	34		
1,2,4-Trichlorobenzene	0.514	0.509	0.667	0.667	ND	77	76	39 - 86	1	34		
4-Chloro-3-methylphenol	1.14	1.13	1.33	1.33	ND	86	85	60 - 102	1	25		
Acenaphthene	0.527	0.510	0.667	0.667	ND	79	76	54 - 94	3	23		
4-Nitrophenol	1.09	1.08	1.33	1.33	ND	82	81	30 - 133	1	25		
2,4-Dinitrotoluene	0.400	0.343	0.667	0.667	ND	60	51	46 - 107	15	26		
Pentachlorophenol	1.51	1.47	1.33	1.33	0.433	81	78	54 - 111	3	29		
Pyrene	0.738	0.696	0.667	0.667	0.172	85	79	54 - 108	6	21		
Surrogate:												
2-Fluorophenol						70	68	30 - 97				
Phenol-d6						77	77	40 - 104				
Nitrobenzene-d5						77	76	35 - 102				
2-Fluorobiphenyl						81	79	44 - 97				
2,4,6-Tribromophenol						100	99	41 - 110				
Terphenyl-d14						92	92	53 - 107				

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR10-15.0					
Laboratory ID:	06-187-21					
Aroclor 1016	ND	0.067	EPA 8082	7-9-11	7-12-11	
Aroclor 1221	ND	0.067	EPA 8082	7-9-11	7-12-11	
Aroclor 1232	ND	0.067	EPA 8082	7-9-11	7-12-11	
Aroclor 1242	ND	0.067	EPA 8082	7-9-11	7-12-11	
Aroclor 1248	ND	0.067	EPA 8082	7-9-11	7-12-11	
Aroclor 1254	ND	0.067	EPA 8082	7-9-11	7-12-11	
Aroclor 1260	ND	0.067	EPA 8082	7-9-11	7-12-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	46	42-123				
Client ID:	FAR7-6.0					
Laboratory ID:	06-187-27					
Aroclor 1016	ND	0.053	EPA 8082	7-9-11	7-12-11	
Aroclor 1221	ND	0.053	EPA 8082	7-9-11	7-12-11	
Aroclor 1232	ND	0.053	EPA 8082	7-9-11	7-12-11	
Aroclor 1242	ND	0.053	EPA 8082	7-9-11	7-12-11	
Aroclor 1248	ND	0.053	EPA 8082	7-9-11	7-12-11	
Aroclor 1254	ND	0.053	EPA 8082	7-9-11	7-12-11	
Aroclor 1260	ND	0.053	EPA 8082	7-9-11	7-12-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	59	42-123				

Project: 1005-001

PCBs by EPA 8082 QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0709S1					
Aroclor 1016	ND	0.050	EPA 8082	7-9-11	7-11-11	
Aroclor 1221	ND	0.050	EPA 8082	7-9-11	7-11-11	
Aroclor 1232	ND	0.050	EPA 8082	7-9-11	7-11-11	
Aroclor 1242	ND	0.050	EPA 8082	7-9-11	7-11-11	
Aroclor 1248	ND	0.050	EPA 8082	7-9-11	7-11-11	
Aroclor 1254	ND	0.050	EPA 8082	7-9-11	7-11-11	
Aroclor 1260	ND	0.050	EPA 8082	7-9-11	7-11-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
DCB 61 42-123

Analyte	Re	sult	Spike	Spike Level		Percent Recovery		Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	07-0	44-01									
•	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.294	0.260	0.500	0.500	ND	59	52	44-125	12	15	
Surrogate:											
DCB						63	54	42-123			

Project: 1005-001

% MOISTURE

Date Analyzed: 6-23,27-30&7-1-11

Client ID	Lab ID	% Moisture
FAR12-2.5	06-187-01	21
FAR15-2.5	06-187-05	14
FAR15-11.0	06-187-07	8
FAR21-2.5	06-187-10	16
FAR21-6.0	06-187-11	19
FAR20-2.5	06-187-14	16
FAR20-5.0	06-187-15	20
FAR10-2.5	06-187-18	16
FAR10-6.0	06-187-19	23
FAR10-15.0	06-187-21	26
FAR9-2.5	06-187-22	14
FAR9-6.0	06-187-23	27
FAR7-2.5	06-187-26	5
FAR7-6.0	06-187-27	6
FAR13-2.5	06-187-30	9
FAR13-6.0	06-187-31	27
FAR5-0.5	06-187-35	39
FAR6-0.5	06-187-36	19

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page
_
of (
#

Reviewed/Date	Received	Relinquished	Received +	Relinquished	Received	Relinquished Research	Signature	10 FAR21-2.5	9 FAMS-06201-GW	8 FARS-16-0	7 FARIS-11.0	6 FARIS 6.0	5 FAR 15-2.5	4 /7ARIZ-062011-GW	3 FARIZ-10.0	2 FAR12- 6-0	FAR12-2, 5	Lab ID Sample Identification	Sampled by: Ken Red	TAD CLINS	Former RAYUNIST MILLS Project Manager:	Project Number: (00 5 - 00)	Company: FARALLON	Environmental inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
Reviewed/Date Data Package: Level III Level IV Electronic Data Deliverables (EDDs)			OF YOR		Feder	FARTICA	Company	1 S OAC 11/15/9	1 W 5091	1555 5 4	1 S 545!	1535 S H	1520 S 4	1425 W	145 CS L	1400 S H	6/2011 1345 5 H	Date Time Sampled Sampled Matrix	(other)	tontai	Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	Turnaround Request (in working days)
		2)	Whali 1350 other	Ruse	43/11/165 ASAP	6/21/11 1645 SCANA	Date Time Comments	X X X X		4	4		⊗ ⊗ × ×		+		× ×	NWTP NWTP NWTP Volatile Haloge Semiv (with le PAHs	H-HCIII H-Gx/E H-Gx PH-Dx es 8260 enated olatiles bw-leve 8270D/ 8082	DDB Wolatil 82700 1 PAH:	es 8260E D/SIM s) ow-level)			Laboratory Number:
Chromatograms with final report	Added TIN DR (STA)	and class & Gra)	ers standard ford	TAH ON 3-OAY TENN	(Thursday 6/22)1	+ sould Tad cline cos	Comments/Special Instructions	X					 				8	Organi Chlorin Total F , m T TCLP	nated A RCBA / CA Metals	MTC/	Pesticides 8 Pesticides Pesticides Perbicides 8270D/8 8151A	9e)	06-187	

Chain of C

	ø		П	ø
	•			ľ
	ŵ			
	e	J	9	
	2	_	5	
	Ę		7	r
	¢		3)
	9		9)
B	ī	4	d	Г
•	-			ı

Environmental Inc.	Turnaround Request (in working days)	Laboratory Number:	06-187	
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	(Check One)		Requested Analysis	
FARALLON Project Number:	Same Day 1 Day	В	25	
[005-00]	2 Day 3 Day	8260E	51/	
Project Name: FORMER RAYONER MILLS	Standard (7 working days)	iles by to 270D	1A	
TAO CLINE		BTEX 8260B Volat s by 8	y 808° by 815 Metal 5 6 6 s	
Sampled by:	(other)	es by 8	Metals	isture
ab ID Sample Identification	Date Time # of Sampled Sampled Sampled Matrix Cont.	NWTP NWTF Volatile Haloge Semiv	Pestic Herbic Total F MCL TCLP HEM I	% Mo
FARZI-		⊗		R
12 FAR21-10:0	805 5 4			
13 FAR2 (-15.0	- 815 S 4			
14 FAR20-2.5	840 5 4	X	X	X
15 FAR20-5,0	850 5 4			(8)
14 FAR20-10:0	900 5 4			
17 FARDO-15,0	91054			1
18 FAR10-2,5	945 5 4	X		X
19 FARIO-6.0	955 5 4	8		8
20 FAR10-10,0	V 1005 5 4			
Signature	Company	Date Time	Comments/Special Instructions:	1 8
Relinquished by Ren Shark	FARALLON	STO 11/12/9	SEC PAJC# 188	
Received by	Fichex	6/2/11 1/45	@Added 6/30/11-25(STA)	
Relinquished by			added 7), in Ds (STA)	
Received by	ON YOUR	clock 1350	TCS 1	
Relinquished by				
Received by				
Reviewed by/Date	Reviewed by/Date		Chromatograms with final report \Box	

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Chain of Custody

Page 3 of 4

Environmental Inc.	Turnaround Request (in working days)	Laboratory Number:	06-187	
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	(Check One)		Requested Analysis	
FARALLON	☐ Same Day ☐ 1 Day		20	
100S-001		3260B	11/60	
Project Name: Famer RAUNIER MILLS	Standard (7 working days)		А	
TAO CLINE	(ii ii alialysis o wolniig days)	BTEX	y 8081 y 815 Metak (ALS)	
Sampled by:	(other)	PH-Dx es by enated rolatile	ides beides eides beide beide beide beide beide beide beide beide beide beide beide be	isture
Lab ID Sample Identification	Date Time # of Sampled Matrix Cont.	NWTF NWTF Volatil Halog Semiv	Tetal I	% Mc
21 FARIO-15:0	6/21/11 /als 5 4			
22 FAR9-2,5	1050 5 4		×	X
23 FAR9-6:0	1100 S 4	8		8
24 FAR9-10.0	1118 5 4			
25 FAR9-15,0	1130 5 4			4
24 FAR7-25	12250 5 14	×	>	X
27 FAR7-6.0	1230 5 4	8		8
28 FARD-1010	1240 5 4			
29 FARZ-15,0	1250 S H			
30 FAR13-2.5	V 1350 5 4	× ×		X
Signature	Company	Date Time	Comments/Special Instructions:	
Relinquished by	FARALLON	SH9/ 111/109	see page #1.	
Received by	755 Feder	042111/645	Ophdad Spin. Dr(STA)	
Relinquished by			added 7/1/2 - DR(STA)	
Received by	OS to the	Cotrola 1350		
Relinquished by				
Received by				
Reviewed by/Date	Reviewed by/Date		Chromatograms with final report	

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Chain of Custody

Onsite	Ollaill of onorony	Congression	Page T of T
Environmental Inc.	Turnaround Request (in working days)	Laboratory Number:	06-187
Phone: (425) 883-3881 • Fax: (425) 885-4603	(Chapt Opp)		Reguested Analysis
ompany:	(Cileck Oile)		ricquestra maryone
TAPALLON	Same Day 1 Day		2
oject Number:		DВ	200.0
1005-001	2 Day 3 Day	326	161
oject Name:			log
Terner Rayoniet MILLS	Standard (/ working days)	les l	A IA (8)

Received by Associated by Asso	Special 2501 1/12	Right FARALLOW 6/21/11 1645 SEC PAGE#1	Signature Company Date Time Comments/Special Instruction		REFARE-OIS VISHSS 4 XXXXX	35 FARS-0,5 1530 5 4 XX X	34 EARI3-062111-6W 1445 W 11 XX	33 FAD 13-15:0 1425 5 4	32 PARI3-10:0) 1415 S 4	31 FAR13-6:0 6/21/11 1405 5 4 (X)	Semive PAHs PCBs Pestice Herbice Total Language TCLP	PH-Gx PH-Dx ees by enate by 82 by 80 cides b	CID //BTE 8260 d Vol 982 oy 80 oy 81	DB atiles by 8270D / SIM	2 Day 3 Day 82600	FARALLON Same Day 1 Day	hone: (425) 883-3861 • Fax: (425) 885-4603 (Check One)	(in working days) Laboratory Number:
	Opporto Sec. 11, 28 (STA)	e page#1	Comments/Special Instructions:		X						Pestice Herbice Total I	BCBA Meta	Met Met Met Met Met Met Met Met Met Met	151A	B (6.00	۵	Requested Analysis	06-187

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 8, 2011

Tad Cline Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1005-001

Laboratory Reference No. 1106-212

Dear Tad:

Enclosed are the analytical results and associated quality control data for samples submitted on June 24, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1005-001

Case Narrative

Samples were collected on June 22, 23, and 24, 2011 and received by the laboratory on June 24, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX and Volatiles EPA 8260B (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Semivolatiles (water) EPA 8270D/SIM Analysis

The method blank MB0627W1 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

The samples FAR1-062211-GW and FAR3-062211-GW were extracted 1 day out of holding time.

Semivolatiles (soil) EPA 8270D/SIM Analysis

Sample FAR11-2.5 had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-10.0					
Laboratory ID:	06-212-03					
Gasoline	ND	7.7	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	68-124				
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
Gasoline	ND	6.2	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	68-124				
Client ID:	FAR3-12.5					
Laboratory ID:	06-212-13					
Benzene	ND	0.020	EPA 8021	6-27-11	6-27-11	
Toluene	ND	0.070	EPA 8021	6-27-11	6-27-11	
Ethyl Benzene	ND	0.070	EPA 8021	6-27-11	6-27-11	
m,p-Xylene	ND	0.070	EPA 8021	6-27-11	6-27-11	
o-Xylene	ND	0.070	EPA 8021	6-27-11	6-27-11	
Gasoline	ND	7.0	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	68-124				
Client ID:	FAR4-4.0					
Laboratory ID:	06-212-17					
Benzene	ND	0.020	EPA 8021	6-27-11	6-27-11	
Toluene	ND	0.061	EPA 8021	6-27-11	6-27-11	
Ethyl Benzene	ND	0.061	EPA 8021	6-27-11	6-27-11	
m,p-Xylene	ND	0.061	EPA 8021	6-27-11	6-27-11	
o-Xylene	ND	0.061	EPA 8021	6-27-11	6-27-11	
Gasoline	ND	6.1	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	68-124				

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

Result PQL Method Prepared Analyzed Flags					Date	Date							
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags						
Benzene	Client ID:	FAR8-5.0											
Toluene	Laboratory ID:	06-212-20											
Ethyl Benzene ND	Benzene	ND	0.020	EPA 8021	6-27-11	6-27-11							
m,p-Xylene	Toluene	ND	0.088	EPA 8021	6-27-11	6-27-11							
O-Xylene ND 0.088 EPA 8021 6-27-11 6-27-11 Gasoline ND 8.8 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Percent Recovery Bit Surrogate: Control Limits Fill 6-27-11 6-27-11 Fluorobenzene 85 68-124 6-27-11 6-27-11 6-27-11 Client ID: FAR14-3.5 Laboratory ID: 0.020 EPA 8021 6-27-11 6-27-11 Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 6-27-11 Toluene ND 0.065 EPA 8021 6-27-11	Ethyl Benzene	ND	0.088	EPA 8021	6-27-11	6-27-11							
Gasoline ND 8.8 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery 85 Control Limits 68-124 Client ID: FAR14-3.5 Laboratory ID: 06-212-22 Benzene ND 0.020 EPA 8021 6-27-11 6-27-11 Toluene ND 0.065 EPA 8021 6-27-11 6-27-11 Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 Mp-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 Gasoline ND 0.65 EPA 8021 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 84 68-124 Client ID: FAR18-0.5 Laboratory ID: 6-27-11 6-27-11 6-27-11 Client ID: FAR18-0.5 L	m,p-Xylene	ND	0.088	EPA 8021	6-27-11	6-27-11							
Surrogate: Percent Recovery Recovery	o-Xylene	ND	0.088	EPA 8021	6-27-11	6-27-11							
Client ID:	Gasoline	ND	8.8	NWTPH-Gx	6-27-11	6-27-11							
Client ID: FAR14-3.5 Laboratory ID: 06-212-22 Benzene ND 0.020 EPA 8021 6-27-11 6-27-11 Toluene ND 0.065 EPA 8021 6-27-11 6-27-11 Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 m,p-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 84 68-124 Client ID: FAR17-2.5 Laboratory ID: 06-212-25 Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits										
Laboratory ID:	Fluorobenzene	85	68-124										
Benzene	Client ID:	FAR14-3.5											
Toluene ND 0.065 EPA 8021 6-27-11 6-27-11 Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 m.p-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 Gasoline ND 0.05 EPA 8021 6-27-11 6-27-11 Gasoline B4 68-124 Client ID: FAR17-2.5	Laboratory ID:	06-212-22											
Ethyl Benzene ND 0.065 EPA 8021 6-27-11 6-27-11 m,p-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 Gasoline ND 6.5 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 84 68-124 Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Tolluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m.p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-1	Benzene	ND	0.020	EPA 8021	6-27-11	6-27-11							
m.p-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 Gasoline ND 6.5 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits FAR17-2.5 Control Limits Laboratory ID: 06-212-25 Control Limits 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits 6-27-11 6-27-11 Fluorobenzene 94 68-124 6-27-11 6-27-11 Client ID: FAR18-0.5 FAR28-0.5 FAR28-0.5 FAR28-0.5	Toluene	ND	0.065	EPA 8021	6-27-11	6-27-11							
o-Xylene ND 0.065 EPA 8021 6-27-11 6-27-11 Gasoline ND 6.5 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery 84 Control Limits Fluorobenzene 84 68-124 Client ID: FAR17-2.5 FAR17-2.5 FAR18-0.5 Laboratory ID: Percent Recovery 94 Control Limits 68-124 Client ID: FAR18-0.5 FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Ethyl Benzene	ND	0.065	EPA 8021	6-27-11	6-27-11							
Gasoline ND 6.5 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery 684 Control Limits Fluorobenzene 84 68-124 Colient ID: FAR17-2.5 Laboratory ID: 06-212-25 Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery 68-124 Control Limits FAR18-0.5 Laboratory ID: D6-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 <td <="" colspan="6" td=""><td>m,p-Xylene</td><td>ND</td><td>0.065</td><td>EPA 8021</td><td>6-27-11</td><td>6-27-11</td><td></td></td>	<td>m,p-Xylene</td> <td>ND</td> <td>0.065</td> <td>EPA 8021</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>						m,p-Xylene	ND	0.065	EPA 8021	6-27-11	6-27-11	
Surrogate: Percent Recovery Control Limits Fluorobenzene 84 68-124 Client ID: FAR17-2.5 FAR17-2.5 Laboratory ID: 06-212-25 6.9 Gasoline ND 6.9 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	o-Xylene	ND	0.065	EPA 8021	6-27-11	6-27-11							
Client ID: FAR17-2.5 Laboratory ID: 06-212-25 Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Percent Recovery 68-124 Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 Laboratory ID: 06-212-29 EPA 8021 6-27-11 6-28-11 Toluene ND 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Gasoline	ND	6.5	NWTPH-Gx	6-27-11	6-27-11							
Client ID: FAR17-2.5 Laboratory ID: 06-212-25 Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits										
Laboratory ID: 06-212-25 Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Fluorobenzene	84	68-124										
Gasoline ND 6.9 NWTPH-Gx 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Client ID:	FAR17-2.5											
Surrogate: Percent Recovery Control Limits Fluorobenzene 94 68-124 Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Laboratory ID:	06-212-25											
Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Gasoline	ND	6.9	NWTPH-Gx	6-27-11	6-27-11							
Client ID: FAR18-0.5 Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits										
Laboratory ID: 06-212-29 Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Fluorobenzene	-	68-124										
Benzene ND 0.020 EPA 8021 6-27-11 6-28-11 Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Client ID:	FAR18-0.5											
Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Laboratory ID:	06-212-29											
Toluene 0.17 0.092 EPA 8021 6-27-11 6-28-11 Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits		ND	0.020	EPA 8021	6-27-11	6-28-11							
Ethyl Benzene ND 0.092 EPA 8021 6-27-11 6-28-11 m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Toluene	0.17			6-27-11	6-28-11							
m,p-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits	Ethyl Benzene												
o-Xylene ND 0.092 EPA 8021 6-27-11 6-28-11 Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits													
Gasoline ND 9.2 NWTPH-Gx 6-27-11 6-28-11 Surrogate: Percent Recovery Control Limits													
Surrogate: Percent Recovery Control Limits	=	ND											
, ,	Surrogate:	Percent Recovery											
	•												

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Soil

Units: mg/kg (ppm)

onite. Triging (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR19-0.5					
Laboratory ID:	06-212-30					
Benzene	0.44	0.021	EPA 8021	6-27-11	6-28-11	
Toluene	ND	0.10	EPA 8021	6-27-11	6-28-11	
Ethyl Benzene	0.11	0.10	EPA 8021	6-27-11	6-28-11	
m,p-Xylene	0.36	0.10	EPA 8021	6-27-11	6-28-11	
o-Xylene	ND	0.10	EPA 8021	6-27-11	6-28-11	
Gasoline	ND	10	NWTPH-Gx	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	68-124				
Client ID:	FAR16-2.5					
Laboratory ID:	06-212-31					
Benzene	ND	0.020	EPA 8021	6-27-11	6-28-11	
Toluene	ND	0.057	EPA 8021	6-27-11	6-28-11	
Ethyl Benzene	ND	0.057	EPA 8021	6-27-11	6-29-11	
m,p-Xylene	ND	0.057	EPA 8021	6-27-11	6-29-11	
o-Xylene	ND	0.057	EPA 8021	6-27-11	6-28-11	
Gasoline	ND	5.7	NWTPH-Gx	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	68-124				
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35					
Gasoline	ND	5.8	NWTPH-Gx	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	68-124				
Client ID:	FAR23-2.5					
Laboratory ID:	06-212-39					
Gasoline	ND	4.7	NWTPH-Gx	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits		-		
Fluorobenzene	82	68-124				
Client ID:	FAR22-2.5					
Laboratory ID:	06-212-43					
Gasoline	ND	7.5	NWTPH-Gx	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits		<u> </u>		
Fluorobenzene	85					

Project: 1005-001

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0627S2					
ND	0.020	EPA 8021	6-27-11	6-27-11	
ND	0.050	EPA 8021	6-27-11	6-27-11	
ND	0.050	EPA 8021	6-27-11	6-27-11	
ND	0.050	EPA 8021	6-27-11	6-27-11	
ND	0.050	EPA 8021	6-27-11	6-27-11	
ND	5.0	NWTPH-Gx	6-27-11	6-27-11	
Percent Recovery	Control Limits				
82	68-124				
MB0627S3					
ND	5.0	NWTPH-Gx	6-27-11	6-27-11	
Percent Recovery	Control Limits				
81	68-124				
	MB0627S2 ND ND ND ND ND ND ND Percent Recovery 82 MB0627S3 ND Percent Recovery	MB0627S2 ND 0.020 ND 0.050 ND 0.050 ND 0.050 ND 5.0 Percent Recovery Control Limits 82 68-124 MD 5.0 Percent Recovery Control Limits	MB0627S2	Result PQL Method Prepared MB0627S2 ND 0.020 EPA 8021 6-27-11 ND 0.050 EPA 8021 6-27-11 ND 5.0 NWTPH-Gx 6-27-11 Percent Recovery 68-124 MB0627S3 ND 5.0 NWTPH-Gx 6-27-11 Percent Recovery Control Limits Percent Recovery Control Limits	Result PQL Method Prepared Analyzed MB0627S2 MB0627S2 Analyzed ND 0.020 EPA 8021 6-27-11 6-27-11 ND 0.050 EPA 8021 6-27-11 6-27-11 ND 0.050 EPA 8021 6-27-11 6-27-11 ND 0.050 EPA 8021 6-27-11 6-27-11 ND 5.0 NWTPH-Gx 6-27-11 6-27-11 Percent Recovery 82 68-124 6-27-11 6-27-11 6-27-11 Percent Recovery Control Limits 6-27-11 6-27-11 6-27-11

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-2	12-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	1A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	۱A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	۱A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	۱A	NA	NA	30	
Surrogate:											
Fluorobenzene						82	83	68-124			
Laboratory ID:	06-2	12-39									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		Ν	1A	NA	NA	30	
Surrogate:		·									
Fluorobenzene						82	82	68-124			
SPIKE BLANKS											
Laboratory ID:	SB06	27S2									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.841	0.820	1.00	1.00		84	82	77-114	3	9	
Toluene	0.894	0.877	1.00	1.00		89	88	80-115	2	9	
Ethyl Benzene	0.912	0.900	1.00	1.00		91	90	80-118	1	9	
m,p-Xylene	0.923	0.931	1.00	1.00		92	93	82-118	1	9	
o-Xylene	0.909	0.910	1.00	1.00		91	91	82-116	0	9	
Surrogate:								·			
Fluorobenzene						81	78	68-124			

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-062211-GW					
Laboratory ID:	06-212-05					
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	73-121				
Client ID:	FAR2-062211-GW					
Laboratory ID:	06-212-09					
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	73-121				
Client ID:	FAR3-062211-GW					
Laboratory ID:	06-212-15					
Benzene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Toluene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-27-11	6-27-11	
m,p-Xylene	ND	1.0	EPA 8021	6-27-11	6-27-11	
o-Xylene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	73-121				
Client ID:	FAR14-062211-GW					
Laboratory ID:	06-212-24					
Benzene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Toluene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-27-11	6-27-11	
m,p-Xylene	ND	1.0	EPA 8021	6-27-11	6-27-11	
o-Xylene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	73-121				
Client ID:	FAR17-062311-GW					
Laboratory ID:	06-212-28					
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	73-121				

Project: 1005-001

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-062411-GW					
Laboratory ID:	06-212-46					
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	73-121				

Project: 1005-001

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

	-	201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0627W1					
Benzene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Toluene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-27-11	6-27-11	
m,p-Xylene	ND	1.0	EPA 8021	6-27-11	6-27-11	
o-Xylene	ND	1.0	EPA 8021	6-27-11	6-27-11	
Gasoline	ND	100	NWTPH-Gx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	73-121				
Laboratory ID:	MB0628W1					
Benzene	ND	1.0	EPA 8021	6-28-11	6-28-11	
Toluene	ND	1.0	EPA 8021	6-28-11	6-28-11	
Ethyl Benzene	ND	1.0	EPA 8021	6-28-11	6-28-11	
m,p-Xylene	ND	1.0	EPA 8021	6-28-11	6-28-11	
o-Xylene	ND	1.0	EPA 8021	6-28-11	6-28-11	
Gasoline	ND	100	NWTPH-Gx	6-28-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
Eluorobenzene	72	72-121				

Fluorobenzene 78 73-121

Analyte	Res	sult	Spike	Level	Source Result	Percent Recovery	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE										
Laboratory ID:	06-166-01									
	ORIG	DUP								
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
Gasoline	2510	2360	NA	NA		NA	NA	6	30	
Surrogate:										
Fluorobenzene						80 79	73-121			

MATRIX SPIKES

Laboratory ID:	06-2	09-01									
-	MS	MSD	MS	MSD		MS	MSD				
Benzene	44.4	42.4	50.0	50.0	ND	89	85	82-120	5	8	
Toluene	45.5	44.3	50.0	50.0	ND	91	89	84-119	3	8	
Ethyl Benzene	44.9	45.6	50.0	50.0	ND	90	91	84-122	2	9	
m,p-Xylene	44.9	45.3	50.0	50.0	ND	90	91	85-121	1	9	
o-Xylene	44.9	45.3	50.0	50.0	ND	90	91	84-121	1	9	
Surrogate:											
Fluorobenzene						85	79	73-121			

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR1-10.0			•	•	
Laboratory ID:	06-212-03					
Diesel Range Organics	ND	30	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	60	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	118	50-150				
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
Diesel Range Organics	ND	26	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	53	NWTPH-Dx	6-27-11	6-27-11	
Surrogate: o-Terphenyl	Percent Recovery 127	Control Limits 50-150				
Client ID:	FAR3-12.5					
Laboratory ID:	06-212-13 ND	04	NIMTOU D.	6-27-11	0.07.44	
Diesel Range Organics Lube Oil Range Organics	ND ND	31 61	NWTPH-Dx NWTPH-Dx	6-27-11	6-27-11 6-27-11	
Surrogate:	Percent Recovery	Control Limits	INVV I FII-DX	0-27-11	0-27-11	
o-Terphenyl	115	50-150				
Client ID:	FAR4-4.0					
Laboratory ID:	06-212-17					
Diesel Range Organics	39	30	NWTPH-Dx	6-27-11	6-27-11	N
Lube Oil	180	60	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	FAR8-5.0					
Laboratory ID:	06-212-20					
Diesel Range Organics	51	29	NWTPH-Dx	6-27-11	6-27-11	N
Lube Oil	290	58	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	FAR14-3.5					
Laboratory ID:	06-212-22					
Diesel Range Organics	ND	27	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	53	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	136	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
Diesel Range Organics	ND	32	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits			•	
o-Terphenyl	117	50-150				
Client ID:	FAR18-0.5					
Laboratory ID:	06-212-29					
Diesel Range Organics	230	170	NWTPH-Dx	6-27-11	6-27-11	N
Lube Oil	2700	340	NWTPH-Dx	6-27-11	6-27-11	
Surrogate: o-Terphenyl	Percent Recovery 121	Control Limits 50-150				
o respinent		00 700				
Client ID:	FAR19-0.5					
Laboratory ID:	06-212-30					
Diesel Range Organics	ND	150	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil	1600	300	NWTPH-Dx	6-27-11	6-27-11	
Surrogate: o-Terphenyl	Percent Recovery 126	Control Limits 50-150				
Client ID:	FAR16-2.5					
Laboratory ID:	06-212-31					
Diesel Range Organics	ND	27	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	54	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits	TTTT TTT	0 2	02	
o-Terphenyl	126	50-150				
011						
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35	07	NIM/TOUR	0.07.11	0.07.11	
Diesel Range Organics	130 110	27 55	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Surrogate:	Percent Recovery	55 Control Limits	NWTPH-Dx	6-27-11	6-27-11	
o-Terphenyl	119	50-150				
		00 700				
Client ID:	FAR23-2.5					
Laboratory ID:	06-212-39					
Diesel Range Organics	ND	26	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	53	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	132	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR22-2.5				7 y_ 0	1 14.90
Laboratory ID:	06-212-43					
Diesel Range Organics	ND	31	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				

Project: 1005-001

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						_
Laboratory ID:	MB0627S1					
Diesel Range Organics	ND	25	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	124	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	06-2	12-13						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			115	126	50-150			
Laboratory ID:	06-2	12-20						
	ORIG	DUP						
Diesel Range Organics	43.9	37.9				15	NA	
Lube Oil	251	184				31	NA	
Surrogate:	·	·						
o-Terphenyl			117	121	50-150			

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-062211-GW					
Laboratory ID:	06-212-05					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	FAR2-062211-GW					
Laboratory ID:	06-212-09					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
A.I I.						
Client ID:	FAR3-062211-GW					
Laboratory ID:	06-212-15					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	FAR14-062211-GW					
	06-212-24					
Laboratory ID:	ND	0.26	NWTPH-Dx	6-27-11	6-27-11	
Diesel Range Organics	ND ND	0.26				
Lube Oil Range Organics		Control Limits	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery 91	50-150				
o-Terphenyl	91	30-130				
Client ID:	FAR17-062311-GW					
Laboratory ID:	06-212-28					
Diesel Range Organics	ND	0.26	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits		<u> </u>	<u> </u>	
o-Terphenyl	87	50-150				
- : •·/•···········	J.	22 .00				
Client ID:	FAR22-062411-GW					
Laboratory ID:	06-212-46					
Diesel Range Organics	ND	0.27	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
- F - 7	-					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0627W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	6-27-11	6-27-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				

			Perd	cent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	06-21	12-28						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			87	99	50-150			

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-10.0					
Laboratory ID:	06-212-03					
Dichlorodifluoromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chloromethane	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Vinyl Chloride	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromomethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chloroethane	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Trichlorofluoromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Acetone	0.028	0.0066	EPA 8260	6-27-11	6-27-11	
lodomethane	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Carbon Disulfide	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Methylene Chloride	ND	0.0066	EPA 8260	6-27-11	6-27-11	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Vinyl Acetate	ND	0.0066	EPA 8260	6-27-11	6-27-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Butanone	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Bromochloromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chloroform	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Benzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Trichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Dibromomethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromodichloromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Chloroethyl Vinyl Ether	ND	0.0066	EPA 8260	6-27-11	6-27-11	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Methyl Isobutyl Ketone	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Toluene	ND	0.0066	EPA 8260	6-27-11	6-27-11	
(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260	6-27-11	6-27-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-10.0					
Laboratory ID:	06-212-03	_				
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Tetrachloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Hexanone	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Ethylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
m,p-Xylene	ND	0.0027	EPA 8260	6-27-11	6-27-11	
o-Xylene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Styrene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromoform	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Isopropylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
n-Propylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
ert-Butylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
sec-Butylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
o-Isopropyltoluene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane	ND ND	0.0066	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.0066	EPA 8260	6-27-11	6-27-11	
Naphthalene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	82	63-127				
Toluene-d8	84	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

84

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloromethane	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Vinyl Chloride	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromomethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloroethane	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Acetone	0.039	0.0052	EPA 8260	6-27-11	6-27-11	
Iodomethane	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Carbon Disulfide	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Methylene Chloride	ND	0.0052	EPA 8260	6-27-11	6-27-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Vinyl Acetate	ND	0.0052	EPA 8260	6-27-11	6-27-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Butanone	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Bromochloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloroform	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Benzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Trichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Dibromomethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromodichloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Chloroethyl Vinyl Ether	ND	0.0052	EPA 8260	6-27-11	6-27-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Methyl Isobutyl Ketone	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Toluene	ND	0.0052	EPA 8260	6-27-11	6-27-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Tetrachloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Hexanone	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Ethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
m,p-Xylene	ND	0.0021	EPA 8260	6-27-11	6-27-11	
o-Xylene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Styrene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromoform	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Isopropylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
n-Propylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane	. ND	0.0052	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.0052	EPA 8260	6-27-11	6-27-11	
Naphthalene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	73	63-127				
Toluene-d8	76	65-129				
4-Bromofluorobenzene	77	55-121				

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
Dichlorodifluoromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chloromethane	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Vinyl Chloride	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromomethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chloroethane	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Trichlorofluoromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Acetone	0.061	0.0064	EPA 8260	6-27-11	6-27-11	
Iodomethane	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Carbon Disulfide	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Methylene Chloride	ND	0.0064	EPA 8260	6-27-11	6-27-11	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Methyl t-Butyl Ether	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Vinyl Acetate	ND	0.0064	EPA 8260	6-27-11	6-27-11	
2,2-Dichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Butanone	0.0082	0.0064	EPA 8260	6-27-11	6-27-11	
Bromochloromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chloroform	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Carbon Tetrachloride	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1-Dichloropropene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Benzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Trichloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Dibromomethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromodichloromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Chloroethyl Vinyl Ether	ND	0.0064	EPA 8260	6-27-11	6-27-11	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Methyl Isobutyl Ketone	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Toluene	ND	0.0064	EPA 8260	6-27-11	6-27-11	
(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260	6-27-11	6-27-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Tetrachloroethene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Hexanone	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Chlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Ethylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
m,p-Xylene	ND	0.0026	EPA 8260	6-27-11	6-27-11	
o-Xylene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Styrene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromoform	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Isopropylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Bromobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	6-27-11	6-27-11	
n-Propylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
ert-Butylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
sec-Butylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
p-Isopropyltoluene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane	ND	0.0064	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
-lexachlorobutadiene	ND	0.0064	EPA 8260	6-27-11	6-27-11	
Naphthalene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	77	63-127				
Toluene-d8	77	65-129				
		· 				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

77

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35					
Dichlorodifluoromethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Chloromethane	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Vinyl Chloride	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Bromomethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Chloroethane	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Trichlorofluoromethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Acetone	0.073	0.0061	EPA 8260	6-27-11	6-27-11	
lodomethane	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Carbon Disulfide	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Methylene Chloride	ND	0.0061	EPA 8260	6-27-11	6-27-11	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Vinyl Acetate	ND	0.0061	EPA 8260	6-27-11	6-27-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
2-Butanone	0.0077	0.0061	EPA 8260	6-27-11	6-27-11	
Bromochloromethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Chloroform	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Benzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Trichloroethene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Dibromomethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Bromodichloromethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
2-Chloroethyl Vinyl Ether	ND	0.0061	EPA 8260	6-27-11	6-27-11	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Methyl Isobutyl Ketone	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Toluene	ND	0.0061	EPA 8260	6-27-11	6-27-11	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260	6-27-11	6-27-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Tetrachloroethene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,3-Dichloropropane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
2-Hexanone	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Chlorobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Ethylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
m,p-Xylene	ND	0.0024	EPA 8260	6-27-11	6-27-11	
o-Xylene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Styrene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Bromoform	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Isopropylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Bromobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260	6-27-11	6-27-11	
n-Propylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
tert-Butylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
sec-Butylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
p-Isopropyltoluene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane	ND	0.0061	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.0061	EPA 8260	6-27-11	6-27-11	
Naphthalene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	75	63-127				
Toluene-d8	76	65-129				
4-Bromofluorobenzene	71	55-121				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR23-2.5					
Laboratory ID:	06-212-39					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloromethane	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Vinyl Chloride	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromomethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloroethane	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Acetone	0.011	0.0051	EPA 8260	6-27-11	6-27-11	
Iodomethane	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Carbon Disulfide	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Methylene Chloride	ND	0.0051	EPA 8260	6-27-11	6-27-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Vinyl Acetate	ND	0.0051	EPA 8260	6-27-11	6-27-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Butanone	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Bromochloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloroform	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Benzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Trichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Dibromomethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromodichloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Chloroethyl Vinyl Ether	ND	0.0051	EPA 8260	6-27-11	6-27-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Methyl Isobutyl Ketone	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Toluene	ND	0.0051	EPA 8260	6-27-11	6-27-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

Client ID: FAR23-2.5 Caboratory ID: 06-212-39					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane	Client ID:	FAR23-2.5					
Tetrachloroethene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 6-27-11 Dibromochloromethane ND 0.0051 EPA 8260 6-27-11 6-27-11 6-27-11 Dibromochloromethane ND 0.0010 EPA 8260 6-27-11 6-27-11 6-27-11 1,2-Dibromoethane ND 0.0010 EPA 8260 6-27-11 6-27-11 6-27-11 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 6-27-11 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 6-27-11 Ethylbenzene ND 0.0010 EPA 8260 6-27-11 6-2	Laboratory ID:	06-212-39					
1,3-Dichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 2-Hexanone ND 0.0051 EPA 8260 6-27-11 6-27-11 2-Hexanone ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2-Dibromochloromethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromochloromethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Ethylben	1,1,2-Trichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Hexanone	Tetrachloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane ND	1,3-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane ND 0.0010 EPA 8260 6-27-11 6-27-11 Chlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Lit,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 m,p-Xylene ND 0.0021 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0010 EPA 8260 6-27-11 6-27-11 bStyrene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0010 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 In-2,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 <td>2-Hexanone</td> <td>ND</td> <td>0.0051</td> <td>EPA 8260</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	2-Hexanone	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Chlorobenzene	Dibromochloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane	1,2-Dibromoethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Ethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 m,p-Xylene ND 0.0021 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0010 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,2-Tritoloropane ND 0.0010 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11	Chlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
m.pXylene ND 0.0021 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0010 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0010 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tricalloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>0.0010</td> <td>EPA 8260</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
o-Xylene ND 0.0010 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0010 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,2-Trichlorobluene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 <td< td=""><td>Ethylbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260</td><td>6-27-11</td><td>6-27-11</td><td></td></td<>	Ethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Styrene ND 0.0010 EPA 8260 6-27-11	m,p-Xylene	ND	0.0021	EPA 8260	6-27-11	6-27-11	
Bromoform ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0010 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2-3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Tric	o-Xylene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Sepropy S	Styrene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-2-4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-Dichlorobenzene ND 0.0010	Bromoform	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010	Isopropylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-A-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-	Bromobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
ND 0.0010 EPA 8260 6-27-11 6-27-11	1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 tert-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11	1,2,3-Trichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11	n-Propylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 tert-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0010 EPA 8260 6-27-11 6-27-11 ND 0.0010 EPA 8260<	2-Chlorotoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
tert-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0010 EPA 8260	4-Chlorotoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent R	1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Sec-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11	tert-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
P-Isopropyltoluene	sec-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,3-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	p-Isopropyltoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,4-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane ND 0.0051 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,2-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	n-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Hexachlorobutadiene ND 0.0051 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,2-Dibromo-3-chloropropane	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Naphthalene ND 0.0010 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene ND 0.0010 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	Hexachlorobutadiene	ND	0.0051	EPA 8260	6-27-11	6-27-11	
Surrogate: Percent Recovery Control Limits Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	Naphthalene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Dibromofluoromethane 75 63-127 Toluene-d8 79 65-129	1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Toluene-d8 79 65-129	Surrogate:	Percent Recovery	Control Limits				
	Dibromofluoromethane	75	63-127				
4-Bromofluorobenzene 82 55-121	Toluene-d8	79	65-129				
	4-Bromofluorobenzene	82	55-121				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Soil Units: mg/kg

Analyte Result PQL Method Prepared Analyzed Flag Client ID: FAR22-2.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 27-11 </th
Laboratory ID: 06-212-43 Dichlorodifluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloromethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Vinyl Chloride ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromomethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloroethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND
Dichlorodifluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloromethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Vinyl Chloride ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromomethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloroethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11
Chloromethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Vinyl Chloride ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromomethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloroethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Vinyl Chloride ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromomethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloroethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Bromomethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chloroethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Chloroethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Trichlorofluoromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
1,1-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Acetone 0.096 0.0089 EPA 8260 6-27-11 6-27-11 Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Iodomethane ND 0.0089 EPA 8260 6-27-11 6-27-11 Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Carbon Disulfide ND 0.0089 EPA 8260 6-27-11 6-27-11 Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Methylene Chloride ND 0.0089 EPA 8260 6-27-11 6-27-11 (trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
(trans) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
Methyl t-Butyl Ether ND 0.0018 EPA 8260 6-27-11 6-27-11
•
1,1-Dichloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11
Vinyl Acetate ND 0.0089 EPA 8260 6-27-11 6-27-11
2,2-Dichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11
(cis) 1,2-Dichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11
2-Butanone 0.017 0.0089 EPA 8260 6-27-11 6-27-11
Bromochloromethane ND 0.0018 EPA 8260 6-27-11 6-27-11
Chloroform ND 0.0018 EPA 8260 6-27-11 6-27-11
1,1,1-Trichloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11
Carbon Tetrachloride ND 0.0018 EPA 8260 6-27-11 6-27-11
1,1-Dichloropropene ND 0.0018 EPA 8260 6-27-11 6-27-11
Benzene ND 0.0018 EPA 8260 6-27-11 6-27-11
1,2-Dichloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11
Trichloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11
1,2-Dichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11
Dibromomethane ND 0.0018 EPA 8260 6-27-11 6-27-11
Bromodichloromethane ND 0.0018 EPA 8260 6-27-11 6-27-11
2-Chloroethyl Vinyl Ether ND 0.0089 EPA 8260 6-27-11 6-27-11
(cis) 1,3-Dichloropropene ND 0.0018 EPA 8260 6-27-11 6-27-11
Methyl Isobutyl Ketone ND 0.0089 EPA 8260 6-27-11 6-27-11
Toluene ND 0.0089 EPA 8260 6-27-11 6-27-11
(trans) 1,3-Dichloropropene ND 0.0018 EPA 8260 6-27-11 6-27-11

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

Analyte					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
1,1,2-Trichloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Tetrachloroethene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Hexanone ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1-1,2-Dibromoethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Thylene ND 0.0018 EPA 8260 6-27-11 6-27-11 D-Vylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 <th>Client ID:</th> <th>FAR22-2.5</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Client ID:	FAR22-2.5					
Tetrachloroethene	Laboratory ID:	06-212-43					
1,3-Dichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Hexanone ND 0.0089 EPA 8260 6-27-11 6-27-11 Dibromochloromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromoethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Litylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 mp-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Brythene ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 </td <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>0.0018</td> <td>EPA 8260</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	1,1,2-Trichloroethane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
2-Hexanone ND 0.0089 EPA 8260 6-27-11 6-27-11 Dibromochloromethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromoethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,1,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 mp-Xylene ND 0.0035 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11	Tetrachloroethene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane ND	1,3-Dichloropropane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Chlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Lity-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 mp-Xylene ND 0.0035 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 <	2-Hexanone	ND	0.0089	EPA 8260	6-27-11	6-27-11	
Chlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 m,p-Xylene ND 0.0035 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,3-Tirdhoropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Tirdhoropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 <td>Dibromochloromethane</td> <td>ND</td> <td>0.0018</td> <td>EPA 8260</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Dibromochloromethane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 Ethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 m,p-Xylene ND 0.0035 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11	1,2-Dibromoethane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Ethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 m,p-ylene ND 0.0035 EPA 8260 6-27-11 6-27-11 o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11	Chlorobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
m,p-Xylene ND 0.0035 EPA 8260 6-27-11 6-27-11 c-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11	1,1,1,2-Tetrachloroethane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
o-Xylene ND 0.0018 EPA 8260 6-27-11 6-27-11 Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11	Ethylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Styrene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 G-27-11 G-27-	m,p-Xylene	ND	0.0035	EPA 8260	6-27-11	6-27-11	
Bromoform ND 0.0018 EPA 8260 6-27-11 6-27-11 Isopropylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27		ND	0.0018	EPA 8260	6-27-11	6-27-11	
Isopropylbenzene	Styrene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Bromobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Frimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 <	Bromoform	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0	Isopropylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Propylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 tert-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 <td>Bromobenzene</td> <td>ND</td> <td>0.0018</td> <td>EPA 8260</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Bromobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
n-Propylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0018	1,1,2,2-Tetrachloroethane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 tert-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8	1,2,3-Trichloropropane	ND	0.0018	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 tert-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 <t< td=""><td>n-Propylbenzene</td><td>ND</td><td>0.0018</td><td>EPA 8260</td><td>6-27-11</td><td>6-27-11</td><td></td></t<>	n-Propylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 tert-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Diblorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0018	2-Chlorotoluene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
tert-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Diblromo-3-chloropropane ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018	4-Chlorotoluene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0018 EPA 8260 6-27-11 6-27-11 ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 </td <td>1,3,5-Trimethylbenzene</td> <td>ND</td> <td>0.0018</td> <td>EPA 8260</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	1,3,5-Trimethylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
sec-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 2urogate: Percent Recovery Control Limits	tert-Butylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 p-Isopropyltoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018	1,2,4-Trimethylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
p-Isopropyltoluene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	sec-Butylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	1,3-Dichlorobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	p-Isopropyltoluene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	1,4-Dichlorobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane ND 0.0089 EPA 8260 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	1,2-Dichlorobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	n-Butylbenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Hexachlorobutadiene ND 0.0089 EPA 8260 6-27-11 6-27-11 Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	1,2-Dibromo-3-chloropropane	ND	0.0089	EPA 8260	6-27-11	6-27-11	
Naphthalene ND 0.0018 EPA 8260 6-27-11 6-27-11 1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	1,2,4-Trichlorobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene ND 0.0018 EPA 8260 6-27-11 6-27-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	Hexachlorobutadiene	ND	0.0089	EPA 8260	6-27-11	6-27-11	
Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	Naphthalene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Surrogate: Percent Recovery Control Limits Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129	1,2,3-Trichlorobenzene	ND	0.0018	EPA 8260	6-27-11	6-27-11	
Dibromofluoromethane 74 63-127 Toluene-d8 73 65-129		Percent Recovery					
Toluene-d8 73 65-129	_	=					
	Toluene-d8	73					
	4-Bromofluorobenzene						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0627S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloromethane	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Vinyl Chloride	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromomethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloroethane	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Acetone	ND	0.0050	EPA 8260	6-27-11	6-27-11	
lodomethane	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Carbon Disulfide	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Methylene Chloride	ND	0.0050	EPA 8260	6-27-11	6-27-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Vinyl Acetate	ND	0.0050	EPA 8260	6-27-11	6-27-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Butanone	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Bromochloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chloroform	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Benzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Trichloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Dibromomethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromodichloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	6-27-11	6-27-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Toluene	ND	0.0050	EPA 8260	6-27-11	6-27-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	6-27-11	6-27-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
	MD000704					
Laboratory ID:	MB0627S1	0.0040	EDA 0000	0.07.44	0.07.44	
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Tetrachloroethene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Hexanone	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Dibromochloromethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Chlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Ethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
m,p-Xylene	ND	0.0020	EPA 8260	6-27-11	6-27-11	
o-Xylene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Styrene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromoform	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Isopropylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Bromobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	6-27-11	6-27-11	
n-Propylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
n-Butylbenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	6-27-11	6-27-11	
Naphthalene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	6-27-11	6-27-11	
	Percent Recovery	Control Limits	2 0200	0 =	<u> </u>	
Dibromofluoromethane	71	63-127				
Toluene-d8	77	65-129				
4-Bromofluorobenzene	78	55-121				
4-DIOMONUODENZENE	10	JJ-12 I				

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	327S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0572	0.0553	0.0500	0.0500	114	111	70-130	3	19	
Benzene	0.0460	0.0454	0.0500	0.0500	92	91	70-125	1	15	
Trichloroethene	0.0499	0.0487	0.0500	0.0500	100	97	70-122	2	14	
Toluene	0.0488	0.0476	0.0500	0.0500	98	95	73-120	2	16	
Chlorobenzene	0.0494	0.0483	0.0500	0.0500	99	97	74-109	2	12	
Surrogate:										
Dibromofluoromethan	ne				67	70	63-127			
Toluene-d8					<i>7</i> 5	74	65-129			
4-Bromofluorobenzen	e				79	76	55-121			

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

Client ID:					Date	Date	
Laboratory ID: 06-212-05 Dichlorodiffluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodiffluoromethane	Client ID:	FAR1-062211-GW					
Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride	Laboratory ID:	06-212-05					
Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Tricklorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Chroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Ebury Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dickloroerthane ND <td>Dichlorodifluoromethane</td> <td>ND</td> <td>0.20</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane ND 0.20	Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 <t< td=""><td>Vinyl Chloride</td><td>ND</td><td>0.20</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></t<>	Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methyl EButyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 It,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 It,1-Sizal Salama ND 0.20 EPA 8260 7-1-11 7-1-11	Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Minylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11	Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11	Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
ND	1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 4 (sis) 1,2-Dichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 5 (a) 1,1-Tichloroptopane ND 0.20 EPA 8260 7-1-11 <td>Acetone</td> <td>ND</td> <td>5.0</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	lodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 <td< td=""><td>Carbon Disulfide</td><td>ND</td><td>0.20</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></td<>	Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-1-Tichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-D	(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichlo	Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11	1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroptopene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11	Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 <	2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11	(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 <td>2-Butanone</td> <td>ND</td> <td>5.0</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11	Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,0-Location (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11	Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
	(trans) 1,3-Dichloropropend	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

Toluene-d8

4-Bromofluorobenzene

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-062211-GW					
Laboratory ID:	06-212-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	85	68-110				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

73-110

65-110

90

82

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-062211-GW					
Laboratory ID:	06-212-09					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropend	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

Analista	Dooult	DOL	Mathad	Date	Date	Flores
Analyte Client ID:	Result FAR2-062211-GW	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	06-212-09	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2-Trichloroethane	ND ND	0.20				
Tetrachloroethene		0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits	L1 /1 0200	7 1 11		
Dilement of the second of the second	1 ercent Necovery	CONTO LITTIG				

Surrogate: Percent Recovery Control Limit Dibromofluoromethane 89 68-110
Toluene-d8 90 73-110
4-Bromofluorobenzene 82 65-110

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-062311-GW					
Laboratory ID:	06-212-28					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropend	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-062311-GW					
Laboratory ID:	06-212-28					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
sopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
I-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
ert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
o-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
,2-Dibromo-3-chloropropane		1.0	EPA 8260	7-1-11	7-1-11	
,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	89	68-110				
Toluene-d8	91	73-110				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-110

80

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-062411-GW					
Laboratory ID:	06-212-46					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropen	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-062411-GW					
Laboratory ID:	06-212-46					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	68-110				
Toluene-d8	91	73-110				
4 Duamaeth and bannan -	0.1	CE 440				

4-Bromofluorobenzene 81 65-110

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701W2					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
•				•		
Laboratory ID:	MB0701W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:						

Dibromofluoromethane 87 68-110
Toluene-d8 92 73-110
4-Bromofluorobenzene 82 65-110

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	01W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.9	11.4	10.0	10.0	109	114	70-130	4	11	
Benzene	9.77	10.1	10.0	10.0	98	101	75-123	3	8	
Trichloroethene	10.2	10.0	10.0	10.0	102	100	80-113	2	9	
Toluene	10.1	10.3	10.0	10.0	101	103	80-113	2	8	
Chlorobenzene	10.1	10.2	10.0	10.0	101	102	80-111	1	8	
Surrogate:										
Dibromofluoromethane					82	88	68-110			
Toluene-d8					90	91	73-110			
4-Bromofluorobenzene					82	82	65-110			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
n-Nitrosodimethylamine	ND	0.035	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	0.35	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.035	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.035	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.035	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.035	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.035	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	0.35	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Naphthalene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.035	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR2-5.5			•		
Laboratory ID:	06-212-07					
2,4-Dinitrophenol	ND	0.18	EPA 8270	6-27-11	6-29-11	
Acenaphthene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	0.18	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether	ND	0.035	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
Fluorene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND	0.18	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.035	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether	ND	0.035	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	0.18	EPA 8270	6-27-11	6-29-11	
Phenanthrene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Anthracene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND	0.035	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	0.35	EPA 8270	6-27-11	6-29-11	
Fluoranthene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Benzidine	ND	0.35	EPA 8270	6-27-11	6-29-11	
Pyrene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Butylbenzylphthalate	ND	0.35	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.035	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	0.35	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Chrysene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
bis(2-Ethylhexyl)phthalate	ND	0.035	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.035	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Benzo(j,k)fluoranthene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[a]pyrene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Indeno[1,2,3-cd]pyrene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Dibenz[a,h]anthracene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[g,h,i]perylene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	44	30 - 97				
Phenol-d6	47	40 - 104				
Nitrobenzene-d5	47	35 - 102				
2-Fluorobiphenyl	58	44 - 97				
2,4,6-Tribromophenol	67	41 - 110				
Terphenyl-d14	71	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Offits. Hig/Ng				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR4-4.0					
Laboratory ID:	06-212-17					
n-Nitrosodimethylamine	ND	0.20	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	2.0	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.20	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.20	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.20	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.20	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.20	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.20	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.20	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.20	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	2.0	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Naphthalene	0.020	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	0.20	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.20	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	0.014	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	0.0092	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.20	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.20	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

		201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR4-4.0					
Laboratory ID:	06-212-17					
2,4-Dinitrophenol	ND	0.99	EPA 8270	6-27-11	6-29-11	
Acenaphthene	0.011	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.20	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	0.99	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether		0.20	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.20	EPA 8270	6-27-11	6-29-11	
Fluorene	0.012	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND	0.99	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.20	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.20	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether	· ND	0.20	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.20	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	0.99	EPA 8270	6-27-11	6-29-11	
Phenanthrene	0.068	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Anthracene	0.014	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND	0.20	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	2.0	EPA 8270	6-27-11	6-29-11	
Fluoranthene	0.083	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Benzidine	ND	2.0	EPA 8270	6-27-11	6-29-11	
Pyrene	0.071	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Butylbenzylphthalate	ND	2.0	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.20	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	2.0	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	0.040	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Chrysene	0.051	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
bis(2-Ethylhexyl)phthalate	ND	0.20	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.20	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	0.042	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Benzo(j,k)fluoranthene	0.029	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[a]pyrene	0.041	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Indeno[1,2,3-cd]pyrene	0.025	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Dibenz[a,h]anthracene	0.010	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[g,h,i]perylene	0.037	0.0079	EPA 8270/SIM	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits		0 21 11	0 20 11	
2-Fluorophenol	48	30 - 97				
Phenol-d6	47	40 - 104				
Nitrobenzene-d5	47	35 - 1 <i>0</i> 2				
2-Fluorobiphenyl	78	44 - 97				
2,4,6-Tribromophenol	73	41 - 110				
Terphenyl-d14	79	53 - 107				
. C. prioriyi G 1 =	, ,	00 101				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
n-Nitrosodimethylamine	ND	0.042	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	0.42	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.042	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.042	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.042	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.042	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.042	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	0.42	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Naphthalene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.042	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
2,4-Dinitrophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
Acenaphthene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	0.21	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether	ND	0.042	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
Fluorene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.042	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether	ND	0.042	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	0.21	EPA 8270	6-27-11	6-29-11	
Phenanthrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Anthracene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND	0.042	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	0.42	EPA 8270	6-27-11	6-29-11	
Fluoranthene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzidine	ND	0.42	EPA 8270	6-27-11	6-29-11	
Pyrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Butylbenzylphthalate	ND	0.42	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.042	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	0.42	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Chrysene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
bis(2-Ethylhexyl)phthalate	ND	0.042	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.042	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzo(j,k)fluoranthene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[a]pyrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Indeno[1,2,3-cd]pyrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[g,h,i]perylene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	43	30 - 97				
Phenol-d6	50	40 - 104				
Nitrobenzene-d5	47	35 - 102				
2-Fluorobiphenyl	65	44 - 97				
2,4,6-Tribromophenol	65	41 - 110				
Terphenyl-d14	68	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR18-0.5					
Laboratory ID:	06-212-29					
n-Nitrosodimethylamine	ND	1.1	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	11	EPA 8270	6-27-11	6-29-11	
Phenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
Aniline	ND	1.1	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	1.1	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	1.1	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	1.1	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	1.1	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	1.1	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	1.1	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	1.1	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	11	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Naphthalene	0.091	0.045	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	1.1	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	1.1	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	0.055	0.045	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	ND	0.045	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	1.1	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	0.14	0.045	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	1.1	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

		201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR18-0.5					
Laboratory ID:	06-212-29		EDA 0070	0.07.44	0.00.44	
2,4-Dinitrophenol	ND	5.6	EPA 8270	6-27-11	6-29-11	
Acenaphthene	0.17	0.045	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	1.1	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	5.6	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether		1.1	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	1.1	EPA 8270	6-27-11	6-29-11	
Fluorene	0.32	0.045	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND	5.6	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	1.1	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	1.1	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether	· ND	1.1	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	1.1	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	5.6	EPA 8270	6-27-11	6-29-11	
Phenanthrene	2.0	1.1	EPA 8270	6-27-11	6-29-11	
Anthracene	0.58	0.045	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND	1.1	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	11	EPA 8270	6-27-11	6-29-11	
Fluoranthene	7.3	1.1	EPA 8270	6-27-11	6-29-11	
Benzidine	ND	11	EPA 8270	6-27-11	6-29-11	
Pyrene	6.8	1.1	EPA 8270	6-27-11	6-29-11	
Butylbenzylphthalate	ND	11	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	1.1	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	11	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	5.8	1.1	EPA 8270	6-27-11	6-29-11	
Chrysene	7.4	1.1	EPA 8270	6-27-11	6-29-11	
bis(2-Ethylhexyl)phthalate	ND	1.1	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	1.1	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	7.5	1.1	EPA 8270	6-27-11	6-29-11	
Benzo(j,k)fluoranthene	7.2	1.1	EPA 8270	6-27-11	6-29-11	
Benzo[a]pyrene	7.1	1.1	EPA 8270	6-27-11	6-29-11	
Indeno[1,2,3-cd]pyrene	5.4	1.1	EPA 8270	6-27-11	6-29-11	
Dibenz[a,h]anthracene	1.9	1.1	EPA 8270	6-27-11	6-29-11	
Benzo[g,h,i]perylene	4.6	1.1	EPA 8270	6-27-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits	LI A 0210	U-Z1-11	U-ZJ-11	
2-Fluorophenol	65	30 - 97				
Phenol-d6	59	30 - 97 40 - 104				
Nitrobenzene-d5	62	35 - 1 <i>0</i> 2				
2-Fluorobiphenyl	89	33 - 102 44 - 97				
2,4,6-Tribromophenol	69 72	44 - 97 41 - 110				
	72 85					
Terphenyl-d14	6 5	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Offits. http://dx				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR19-0.5					
Laboratory ID:	06-212-30					
n-Nitrosodimethylamine	ND	0.98	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	9.8	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.98	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.98	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.98	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.98	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.98	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.98	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.98	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.98	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	9.8	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Naphthalene	ND	0.039	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	0.98	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.98	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	ND	0.039	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	ND	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.98	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.039	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.98	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR19-0.5			•	•	
Laboratory ID:	06-212-30					
2,4-Dinitrophenol	ND	4.9	EPA 8270	6-27-11	6-29-11	
Acenaphthene	ND	0.039	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.98	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	4.9	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether		0.98	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.98	EPA 8270	6-27-11	6-29-11	
Fluorene	ND	0.039	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND	4.9	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.98	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.98	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether		0.98	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.98	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	4.9	EPA 8270	6-27-11	6-29-11	
Phenanthrene	0.26	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Anthracene	0.061	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND	0.98	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	9.8	EPA 8270	6-27-11	6-29-11	
Fluoranthene	0.60	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Benzidine	ND	9.8	EPA 8270	6-27-11	6-29-11	
Pyrene	0.50	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Butylbenzylphthalate	ND	9.8	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.98	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	9.8	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	0.53	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Chrysene	0.66	0.039	EPA 8270/SIM	6-27-11	6-28-11	
bis(2-Ethylhexyl)phthalate	ND	0.98	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.98	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	0.84	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Benzo(j,k)fluoranthene	0.63	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[a]pyrene	0.81	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Indeno[1,2,3-cd]pyrene	0.53	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Dibenz[a,h]anthracene	0.20	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[g,h,i]perylene	0.57	0.039	EPA 8270/SIM	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	50	30 - 97				
Phenol-d6	49	40 - 104				
Nitrobenzene-d5	48	35 - 102				
2-Fluorobiphenyl	68	44 - 97				
2,4,6-Tribromophenol	63	41 - 110				
Terphenyl-d14	74	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR11-2.5	1 42	Metriou	rrepared	Analyzea	i iago
Laboratory ID:	06-212-35					
n-Nitrosodimethylamine	ND	0.18	EPA 8270	6-27-11	6-29-11	
Pyridine	ND ND	1.8	EPA 8270	6-27-11	6-29-11	
Phenol	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.18	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.18	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.18	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.18	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.18	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.18	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
	ND	0.18	EPA 8270	6-27-11	6-29-11	
Isophorone 2-Nitrophenol	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND ND	1.8	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.18	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
Naphthalene	0.0094	0.10	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	0.0094 ND		EPA 8270/31WI			
Hexachlorobutadiene	ND	0.18 0.18	EPA 8270 EPA 8270	6-27-11 6-27-11	6-29-11 6-29-11	
	ND ND					
4-Chloro-3-methylphenol	ND ND	0.18 0.0073	EPA 8270	6-27-11 6-27-11	6-29-11	
2-Methylnaphthalene	ND ND		EPA 8270/SIM	-	6-28-11	
1-Methylnaphthalene		0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND ND	0.18	EPA 8270	6-27-11	6-29-11 6-29-11	
2,3-Dichloroaniline	ND ND	0.18	EPA 8270	6-27-11		
2,4,5-Trichlorophenol		0.18	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.18	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND ND	0.18	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.18	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Accident	D K	201		Date	Date	- 1
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35	0.04	EDA 0070	0.07.44	0.00.44	
2,4-Dinitrophenol	ND	0.91	EPA 8270	6-27-11	6-29-11	
Acenaphthene	ND	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND	0.18	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND	0.18	EPA 8270	6-27-11	6-29-11	
Dibenzofuran	ND	0.18	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND	0.18	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND	0.18	EPA 8270	6-27-11	6-29-11	
Diethylphthalate	ND	0.91	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether		0.18	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline	ND	0.18	EPA 8270	6-27-11	6-29-11	
Fluorene	ND	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND	0.91	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine	ND	0.18	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND	0.18	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether	· ND	0.18	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND	0.18	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND	0.91	EPA 8270	6-27-11	6-29-11	
Phenanthrene	0.018	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Anthracene	ND	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND	0.18	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND	1.8	EPA 8270	6-27-11	6-29-11	
Fluoranthene	0.024	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Benzidine	ND	1.8	EPA 8270	6-27-11	6-29-11	
Pyrene	0.027	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Butylbenzylphthalate	ND	1.8	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.18	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	1.8	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	0.011	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Chrysene	0.023	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
bis(2-Ethylhexyl)phthalate	ND	0.18	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.18	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	0.011	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Benzo(j,k)fluoranthene	0.0092	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[a]pyrene	0.011	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Indeno[1,2,3-cd]pyrene	ND	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[g,h,i]perylene	0.014	0.0073	EPA 8270/SIM	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits		0-21-11	0-20-11	
2-Fluorophenol	58	30 - 97				
Phenol-d6	56 54	30 - 97 40 - 104				
Nitrobenzene-d5	47	35 - 102				
2-Fluorobiphenyl	100	35 - 102 44 - 97				Q
2,4,6-Tribromophenol	65	44 - 97 41 - 110				Q
Z,4,6-Tribromophenoi Terphenyl-d14	82					
i erpiletiyi-u 14	02	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Units: mg/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR23-2.5					
Laboratory ID:	06-212-39					
n-Nitrosodimethylamine	ND	0.035	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	0.35	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.035	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.035	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.035	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.035	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.035	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	0.35	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Naphthalene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.035	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.035	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.035	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0070	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.035	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte Result PQL Method Prepared Analyzed Client ID: FAR23-2.5 FAR23-2.1 FAR29-11 FAR2	- 1
Laboratory ID: 06-212-39 2,4-Dinitrophenol ND 0.18 EPA 8270 6-27-11 6-29-11 Acenaphthene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11 4-Nitrophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,4-Dinitrotoluene ND 0.035 EPA 8270 6-27-11 6-29-11 Dibenzofuran ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,5,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,4,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	Flags
2,4-DinitrophenolND0.18EPA 82706-27-116-29-11AcenaphtheneND0.0070EPA 8270/SIM6-27-116-28-114-NitrophenolND0.035EPA 82706-27-116-29-112,4-DinitrotolueneND0.035EPA 82706-27-116-29-11DibenzofuranND0.035EPA 82706-27-116-29-112,3,5,6-TetrachlorophenolND0.035EPA 82706-27-116-29-112,3,4,6-TetrachlorophenolND0.035EPA 82706-27-116-29-11DiethylphthalateND0.18EPA 82706-27-116-29-114-Chlorophenyl-phenyletherND0.035EPA 82706-27-116-29-11	
Acenaphthene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11 4-Nitrophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,4-Dinitrotoluene ND 0.035 EPA 8270 6-27-11 6-29-11 Dibenzofuran ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,5,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,4,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
4-Nitrophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,4-Dinitrotoluene ND 0.035 EPA 8270 6-27-11 6-29-11 Dibenzofuran ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,5,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,4,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
2,4-DinitrotolueneND0.035EPA 82706-27-116-29-11DibenzofuranND0.035EPA 82706-27-116-29-112,3,5,6-TetrachlorophenolND0.035EPA 82706-27-116-29-112,3,4,6-TetrachlorophenolND0.035EPA 82706-27-116-29-11DiethylphthalateND0.18EPA 82706-27-116-29-114-Chlorophenyl-phenyletherND0.035EPA 82706-27-116-29-11	
Dibenzofuran ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,5,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,4,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
2,3,5,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 2,3,4,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
2,3,4,6-Tetrachlorophenol ND 0.035 EPA 8270 6-27-11 6-29-11 Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
Diethylphthalate ND 0.18 EPA 8270 6-27-11 6-29-11 4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
4-Chlorophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
4-Nitroaniline ND 0.035 EPA 8270 6-27-11 6-29-11	
FI 0.0070 FDA.0070/0IM 0.07.44 0.00.44	
Fluorene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
4,6-Dinitro-2-methylphenol ND 0.18 EPA 8270 6-27-11 6-29-11	
n-Nitrosodiphenylamine ND 0.035 EPA 8270 6-27-11 6-29-11	
1,2-Diphenylhydrazine ND 0.035 EPA 8270 6-27-11 6-29-11	
4-Bromophenyl-phenylether ND 0.035 EPA 8270 6-27-11 6-29-11	
Hexachlorobenzene ND 0.035 EPA 8270 6-27-11 6-29-11	
Pentachlorophenol ND 0.18 EPA 8270 6-27-11 6-29-11	
Phenanthrene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Anthracene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Carbazole ND 0.035 EPA 8270 6-27-11 6-29-11	
Di-n-butylphthalate ND 0.35 EPA 8270 6-27-11 6-29-11	
Fluoranthene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Benzidine ND 0.35 EPA 8270 6-27-11 6-29-11	
Pyrene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Butylbenzylphthalate ND 0.35 EPA 8270 6-27-11 6-29-11	
bis-2-Ethylhexyladipate ND 0.035 EPA 8270 6-27-11 6-29-11	
3,3'-Dichlorobenzidine ND 0.35 EPA 8270 6-27-11 6-29-11	
Benzo[a]anthracene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Chrysene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
bis(2-Ethylhexyl)phthalate ND 0.035 EPA 8270 6-27-11 6-29-11	
Di-n-octylphthalate ND 0.035 EPA 8270 6-27-11 6-29-11	
Benzo[b]fluoranthene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Benzo(j,k)fluoranthene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Benzo[a]pyrene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Indeno[1,2,3-cd]pyrene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Dibenz[a,h]anthracene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Benzo[g,h,i]perylene ND 0.0070 EPA 8270/SIM 6-27-11 6-28-11	
Surrogate: Percent Recovery Control Limits	
2-Fluorophenol 51 30 - 97	
Phenol-d6 53 40 - 104	
Nitrobenzene-d5 53 35 - 102	
2-Fluorobiphenyl 68 44 - 97	
2,4,6-Tribromophenol 66 41 - 110	
Terphenyl-d14 69 53 - 107	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. mg/kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-2.5					
Laboratory ID:	06-212-43					
n-Nitrosodimethylamine	ND	0.042	EPA 8270	6-27-11	6-29-11	
Pyridine	ND	0.42	EPA 8270	6-27-11	6-29-11	
Phenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
Aniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethyl)ether	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Chlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,3-Dichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,4-Dichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Benzyl alcohol	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2-Dichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Methylphenol (o-Cresol)	ND	0.042	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroisopropyl)ether	ND	0.042	EPA 8270	6-27-11	6-29-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.042	EPA 8270	6-27-11	6-29-11	
n-Nitroso-di-n-propylamine	ND	0.042	EPA 8270	6-27-11	6-29-11	
Hexachloroethane	ND	0.042	EPA 8270	6-27-11	6-29-11	
Nitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Isophorone	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Nitrophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4-Dimethylphenol	ND	0.42	EPA 8270	6-27-11	6-29-11	
bis(2-Chloroethoxy)methane	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4-Dichlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2,4-Trichlorobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Naphthalene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
4-Chloroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
Hexachlorobutadiene	ND	0.042	EPA 8270	6-27-11	6-29-11	
4-Chloro-3-methylphenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Methylnaphthalene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
1-Methylnaphthalene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Hexachlorocyclopentadiene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4,6-Trichlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,3-Dichloroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4,5-Trichlorophenol	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Chloronaphthalene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2-Nitroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,4-Dinitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Dimethylphthalate	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,3-Dinitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
2,6-Dinitrotoluene	ND	0.042	EPA 8270	6-27-11	6-29-11	
1,2-Dinitrobenzene	ND	0.042	EPA 8270	6-27-11	6-29-11	
Acenaphthylene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
3-Nitroaniline	ND	0.042	EPA 8270	6-27-11	6-29-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Ameliate	Daniel	BOL	Madhad	Date	Date	FI
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-2.5					
Laboratory ID:	06-212-43	0.21	EDA 0070	6 27 44	6-29-11	
2,4-Dinitrophenol	ND ND		EPA 8270	6-27-11		
Acenaphthene		0.0084	EPA 8270/SIM	6-27-11	6-28-11	
4-Nitrophenol	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
2,4-Dinitrotoluene	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
Dibenzofuran		0.042	EPA 8270	6-27-11	6-29-11	
2,3,5,6-Tetrachlorophenol	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
2,3,4,6-Tetrachlorophenol	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
Diethylphthalate		0.21	EPA 8270	6-27-11	6-29-11	
4-Chlorophenyl-phenylether	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
4-Nitroaniline		0.042	EPA 8270	6-27-11	6-29-11	
Fluorene	ND ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
4,6-Dinitro-2-methylphenol	ND ND	0.21	EPA 8270	6-27-11	6-29-11	
n-Nitrosodiphenylamine		0.042	EPA 8270	6-27-11	6-29-11	
1,2-Diphenylhydrazine	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
4-Bromophenyl-phenylether		0.042	EPA 8270	6-27-11	6-29-11	
Hexachlorobenzene	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
Pentachlorophenol	ND ND	0.21	EPA 8270	6-27-11	6-29-11	
Phenanthrene	ND ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Anthracene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Carbazole	ND ND	0.042	EPA 8270	6-27-11	6-29-11	
Di-n-butylphthalate	ND ND	0.42	EPA 8270	6-27-11	6-29-11	
Fluoranthene	ND ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzidine	ND	0.42	EPA 8270	6-27-11	6-29-11	
Pyrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Butylbenzylphthalate	ND	0.42	EPA 8270	6-27-11	6-29-11	
bis-2-Ethylhexyladipate	ND	0.042	EPA 8270	6-27-11	6-29-11	
3,3'-Dichlorobenzidine	ND	0.42	EPA 8270	6-27-11	6-29-11	
Benzo[a]anthracene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Chrysene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
bis(2-Ethylhexyl)phthalate	ND	0.042	EPA 8270	6-27-11	6-29-11	
Di-n-octylphthalate	ND	0.042	EPA 8270	6-27-11	6-29-11	
Benzo[b]fluoranthene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzo(j,k)fluoranthene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[a]pyrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Indeno[1,2,3-cd]pyrene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Dibenz[a,h]anthracene	ND	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Benzo[g,h,i]perylene	ND Decree (Decree	0.0084	EPA 8270/SIM	6-27-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	46 50	30 - 97				
Phenol-d6	50 46	40 - 104				
Nitrobenzene-d5	46	35 - 102				
2-Fluorobiphenyl	62 50	44 - 97				
2,4,6-Tribromophenol	59	41 - 110 52 - 107				
Terphenyl-d14	61	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0627S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.33	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
Aniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.033	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.33	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Naphthalene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.033	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	Managara			-	-	
Laboratory ID:	MB0627S1	0.47	EDA 0070	0.07.44	0.07.44	
2,4-Dinitrophenol	ND	0.17	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.17	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylether		0.033	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.033	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	0.17	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	ND	0.033	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.033	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	0.17	EPA 8270	6-27-11	6-27-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.033	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.33	EPA 8270	6-27-11	6-27-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	0.33	EPA 8270	6-27-11	6-27-11	
Pyrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	ND	0.33	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.33	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.033	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.033	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	6-27-11	6-27-11	
	ND ND	0.0067		6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	ND ND	0.0067	EPA 8270/SIM EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	ND ND	0.0067	EPA 8270/SIM	6-27-11		
Benzo[g,h,i]perylene Surrogate:	Percent Recovery	Control Limits	EFA 02/U/SIIVI	0-21-11	6-27-11	
2-Fluorophenol	51	30 - 97				
Phenol-d6	52	30 - 97 40 - 104				
Nitrobenzene-d5						
	52 64	35 - 102				
2-Fluorobiphenyl	64 71	44 - 97				
2,4,6-Tribromophenol	71 75	41 - 110 53 - 107				
Terphenyl-d14	75	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-1	87-05									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	0.764	0.825	1.33	1.33	ND	57	62	41 - 106	8	29	
2-Chlorophenol	0.962	1.06	1.33	1.33	ND	72	80	43 - 104	10	36	
1,4-Dichlorobenzene	0.383	0.443	0.667	0.667	ND	57	66	25 - 94	15	40	
n-Nitroso-di-n-propylamine	0.366	0.388	0.667	0.667	ND	55	58	40 - 100	6	34	
1,2,4-Trichlorobenzene	0.432	0.476	0.667	0.667	ND	65	71	39 - 86	10	34	
4-Chloro-3-methylphenol	1.00	1.02	1.33	1.33	ND	75	77	60 - 102	2	25	
Acenaphthene	0.532	0.567	0.667	0.667	ND	80	85	54 - 94	6	23	
4-Nitrophenol	1.16	1.17	1.33	1.33	ND	87	88	30 - 133	1	25	
2,4-Dinitrotoluene	0.605	0.624	0.667	0.667	ND	91	94	46 - 107	3	26	
Pentachlorophenol	1.30	1.33	1.33	1.33	ND	98	100	54 - 111	2	29	
Pyrene	0.741	0.800	0.667	0.667	0.296	67	76	54 - 108	8	21	
Surrogate:											
2-Fluorophenol						47	51	30 - 97			
Phenol-d6						51	55	40 - 104			
Nitrobenzene-d5						49	51	35 - 102			
2-Fluorobiphenyl						72	73	44 - 97			
2,4,6-Tribromophenol						85	89	41 - 110			
Terphenyl-d14						78	80	53 - 107			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Water Units: ug/L

Analysis	Poor It	PQL	Mothod	Date	Date	Elece
Analyte Client ID:	Result FAR2-062211-GW	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	06-212-09	0.05	EDA 0070	0.07.44	0.07.44	
n-Nitrosodimethylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Phenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
Aniline	ND	4.8	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	0.95	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol		0.95	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	0.95	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	· ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Naphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR2-062211-GW			•	•	
Laboratory ID:	06-212-09					
2,4-Dinitrophenol	ND	4.8	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylethe	· ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	4.8	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	· ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	4.8	EPA 8270	6-27-11	6-27-11	
Phenanthrene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.95	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Fluoranthene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	4.8	EPA 8270	6-27-11	6-27-11	
Pyrene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	2.1	0.95	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.95	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	0.020	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	0.025	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	0.022	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	0.016	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	0.018	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	0.020	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	0.010	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	0.025	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	28	18 - 86				
Phenol-d6	22	10 - 88				
Nitrobenzene-d5	42	37 - 112				
2-Fluorobiphenyl	55	<i>42 - 108</i>				
2,4,6-Tribromophenol	67	39 - 118				
Terphenyl-d14	67	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Water Units: ug/L

Analyte Result PQL Method Prepared Analyzed Flags					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
P-Nitrosodimethylamine ND	Client ID:	FAR17-062311-GW					
Pyridine	Laboratory ID:	06-212-28					
Phenol	n-Nitrosodimethylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Aniline ND A, T EPA 8270 A, C-27-11 Bis(2-Chloroethyl)ether ND 0.95 EPA 8270 B-27-11 Bis(2-Chlorophenol ND 0.95 EPA 8270 B-27-11 B-27-	Pyridine	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylphenol (rp-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 4-4)-Methylphenol (mp-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 4-4)-Methylphenol (mp-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 4-4)-Methylphenol (mp-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 NB 0.95 EPA 8270 6-27-11 6-27-11 NB 0.95 EPA 8270 6-27-11 6-27-11	Phenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,5-Dichlorophenol ND 0.95 EPA 8270 6-27-11	Aniline	ND	4.7	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylphenol (or-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorospropyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 1 sophorone ND 0.95 EPA 8270 6-27-11	bis(2-Chloroethyl)ether	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylphenol (o-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-4-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-1-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-1-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-1-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichloroshopenol<	2-Chlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	1,3-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	1,4-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroisopropyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorophenol ND 0.95 EPA 8270	Benzyl alcohol	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 (3-44)-Methylphenol (m.p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 NItrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzen ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270	1,2-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-A-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 1-2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1-2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1-2,4-Trichlorophenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270/SIM	2-Methylphenol (o-Cresol)	ND	0.95	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11	bis(2-Chloroisopropyl)ether	ND	0.95	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11	(3+4)-Methylphenol (m,p-Cresol)	ND ND	0.95	EPA 8270	6-27-11	6-27-11	
Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1,2-A-Chloroaniline ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroa-3-methylphenol ND 0.95 EPA 8270/SIM			0.95	EPA 8270	6-27-11	6-27-11	
Isophorone	Hexachloroethane	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Methylnaphthalene ND 0.95 EPA 827	Nitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Methylnaphthalene ND 0.95 EPA 8270/SIM </td <td>Isophorone</td> <td>ND</td> <td>0.95</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Isophorone	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Machylphenol ND 0.95 EPA 8270 6-27-11	2-Nitrophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270	2,4-Dimethylphenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 (6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2-4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-5-Trichlorophenol ND 0.95 EPA 8270	bis(2-Chloroethoxy)methane	ND	0.95	EPA 8270	6-27-11	6-27-11	
Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270	2,4-Dichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2-4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 827	1,2,4-Trichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 <td>Naphthalene</td> <td>ND</td> <td>0.095</td> <td>EPA 8270/SIM</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Naphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 Hexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270	4-Chloroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-MethylnaphthaleneND0.095EPA 8270/SIM6-27-116-27-111-MethylnaphthaleneND0.095EPA 8270/SIM6-27-116-27-11HexachlorocyclopentadieneND0.95EPA 82706-27-116-27-112,4,6-TrichlorophenolND0.95EPA 82706-27-116-27-112,3-DichloroanilineND0.95EPA 82706-27-116-27-112,4,5-TrichlorophenolND0.95EPA 82706-27-116-27-112-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.95EPA 8270/SIM6-27-116-27-11	Hexachlorobutadiene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 Hexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270/SIM	4-Chloro-3-methylphenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
HexachlorocyclopentadieneND0.95EPA 82706-27-116-27-112,4,6-TrichlorophenolND0.95EPA 82706-27-116-27-112,3-DichloroanilineND0.95EPA 82706-27-116-27-112,4,5-TrichlorophenolND0.95EPA 82706-27-116-27-112-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-11DimethylphthalateND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.095EPA 8270/SIM6-27-116-27-11	2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	Hexachlorocyclopentadiene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2,4,6-Trichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-11DimethylphthalateND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.095EPA 8270/SIM6-27-116-27-11	2,3-Dichloroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-11DimethylphthalateND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.095EPA 8270/SIM6-27-116-27-11	2,4,5-Trichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2-Chloronaphthalene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	1,4-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	Dimethylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11		ND	0.95	EPA 8270	6-27-11	6-27-11	
Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2,6-Dinitrotoluene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	1,2-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
3-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11		ND					
	3-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR17-062311-GW			•	•	
Laboratory ID:	06-212-28					
2,4-Dinitrophenol	ND	4.7	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylethe	er ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	4.7	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylethe	er ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	4.7	EPA 8270	6-27-11	6-27-11	
Phenanthrene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.95	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Fluoranthene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	4.7	EPA 8270	6-27-11	6-27-11	
Pyrene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	1.1	0.95	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.95	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	31	18 - 86				
Phenol-d6	24	10 - 88				
Nitrobenzene-d5	47	37 - 112				
2-Fluorobiphenyl	63	42 - 108				
2,4,6-Tribromophenol	78	39 - 118				
Terphenyl-d14	74	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Water Units: ug/L

Analyte Result PQL Method Prepared Analyzed Flags					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
P-Nitrosodimethylamine ND	Client ID:	FAR22-062411-GW					
Pytididine ND 0.95 EPA 8270 6-27-11 6-27-11 Phenol ND 0.95 EPA 8270 6-27-11 6-27-11 Aniline ND 4.7 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 Hex	Laboratory ID:	06-212-46					
Phenol ND 4.7 EPA 8270 6-27-11 6-27-11 Aniline ND 4.7 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylphenol ("Cresol") ND 0.95 EPA 8270 6-27-11 6-27-11 3-4-Methylphenol ("Droplyalmine") ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270 6-27-11 6-27-11 <	n-Nitrosodimethylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Aniline ND A, T EPA 8270 A, C-27-11 Bis(2-Chloroethyl)ether ND 0.95 EPA 8270 B-27-11 Bis(2-Chlorophenol ND 0.95 EPA 8270 B-27-11 B-27-	Pyridine	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	Phenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Hythylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Hythylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Hythylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Brichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,5 EpA 8270 6-27-11 6-27-11 6-27-11 </td <td>Aniline</td> <td>ND</td> <td>4.7</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Aniline	ND	4.7	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene ND	bis(2-Chloroethyl)ether	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Benzyl alcohol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylphenol (o-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-4-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-1-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,5-1-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 1,5-1-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol (m	2-Chlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	1,3-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	1,4-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroisopropyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 3-44)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorophenol ND 0.95 EPA 8270	Benzyl alcohol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroisopropyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 (3-44)-Methylphenol (mpCresol) ND 0.95 EPA 8270 6-27-11 6-27-11 (3-44)-Methylphenol (mpCresol) ND 0.95 EPA 8270 6-27-11 6-27-11 (3-44)-Methylphenol (mpCresol) ND 0.95 EPA 8270 6-27-11 6-27-11 (3-47)-Methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 (3-4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 (3-4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 (3-4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 (3-4-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 (3-4-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 (3-4-Trichlorophenol ND	1,2-Dichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether ND 0.95 EPA 8270 6-27-11 6-27-11 (3-44)-Methylphenol (m.p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 n-Nitroso-din-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Ilitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270	2-Methylphenol (o-Cresol)	ND	0.95	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol) ND 0.95 EPA 8270 6-27-11 6-27-11 n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 jair ND 0.95 EPA 8270/SIM 6-27-11 6-27-11		ND	0.95	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachloroethane ND 0.95 EPA 8270 6-27-11 6-27-11 Nitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Isophorone ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-) ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachloroethane			0.95	EPA 8270	6-27-11	6-27-11	
Isophorone		ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Mylnaphthalene ND 0.95 EPA 8270/SIM </td <td>Nitrobenzene</td> <td>ND</td> <td>0.95</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Nitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dimethylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chloro-shylphalene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 </td <td>Isophorone</td> <td>ND</td> <td>0.95</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Isophorone	ND	0.95	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 4-Chlorophenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 </td <td>· ·</td> <td>ND</td> <td>0.95</td> <td>EPA 8270</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	· ·	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270 (6-27-11) 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 (6-27-11) 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 (6-27-11) 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 (6-27-11) 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270 (6-27-11) 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270 (6-27-11) 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 (6-27-11) 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 (6-27-11) 6-27-11 1-Mexachlorophenol ND 0.95 EPA 8270 (6-27-11) 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 (6-27-11) 6-27-11 2,4,5-Trichlorophenol ND 0.95 <t< td=""><td>2,4-Dimethylphenol</td><td>ND</td><td>0.95</td><td>EPA 8270</td><td>6-27-11</td><td>6-27-11</td><td></td></t<>	2,4-Dimethylphenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2-4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-5-Trichlorophenol ND 0.95	bis(2-Chloroethoxy)methane	ND	0.95	EPA 8270	6-27-11	6-27-11	
Naphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4-5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270	2,4-Dichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Chloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2-4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 <	1,2,4-Trichlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Hexachlorobutadiene ND 0.95 EPA 8270 6-27-11 6-27-11 4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Mexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 <td>Naphthalene</td> <td>ND</td> <td>0.095</td> <td>EPA 8270/SIM</td> <td>6-27-11</td> <td>6-27-11</td> <td></td>	Naphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4-Chloro-3-methylphenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 Hexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270	4-Chloroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-MethylnaphthaleneND0.095EPA 8270/SIM6-27-116-27-111-MethylnaphthaleneND0.095EPA 8270/SIM6-27-116-27-11HexachlorocyclopentadieneND0.95EPA 82706-27-116-27-112,4,6-TrichlorophenolND0.95EPA 82706-27-116-27-112,3-DichloroanilineND0.95EPA 82706-27-116-27-112,4,5-TrichlorophenolND0.95EPA 82706-27-116-27-112-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.95EPA 8270/SIM6-27-116-27-11	Hexachlorobutadiene	ND	0.95	EPA 8270	6-27-11	6-27-11	
1-Methylnaphthalene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11 Hexachlorocyclopentadiene ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,6-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2,3-Dichloroanilline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 <t< td=""><td>4-Chloro-3-methylphenol</td><td>ND</td><td>0.95</td><td>EPA 8270</td><td>6-27-11</td><td>6-27-11</td><td></td></t<>	4-Chloro-3-methylphenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
HexachlorocyclopentadieneND0.95EPA 82706-27-116-27-112,4,6-TrichlorophenolND0.95EPA 82706-27-116-27-112,3-DichloroanilineND0.95EPA 82706-27-116-27-112,4,5-TrichlorophenolND0.95EPA 82706-27-116-27-112-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-11DimethylphthalateND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.095EPA 82706-27-116-27-11	2-Methylnaphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
2,4,6-TrichlorophenolND0.95EPA 82706-27-116-27-112,3-DichloroanilineND0.95EPA 82706-27-116-27-112,4,5-TrichlorophenolND0.95EPA 82706-27-116-27-112-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-11DimethylphthalateND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.095EPA 82706-27-116-27-11	1-Methylnaphthalene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
2,3-Dichloroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	Hexachlorocyclopentadiene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol ND 0.95 EPA 8270 6-27-11 6-27-11 2-Chloronaphthalene ND 0.95 EPA 8270 6-27-11 6-27-11 2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2,4,6-Trichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-ChloronaphthaleneND0.95EPA 82706-27-116-27-112-NitroanilineND0.95EPA 82706-27-116-27-111,4-DinitrobenzeneND0.95EPA 82706-27-116-27-11DimethylphthalateND0.95EPA 82706-27-116-27-111,3-DinitrobenzeneND0.95EPA 82706-27-116-27-112,6-DinitrotolueneND0.95EPA 82706-27-116-27-111,2-DinitrobenzeneND0.95EPA 82706-27-116-27-11AcenaphthyleneND0.095EPA 8270/SIM6-27-116-27-11	2,3-Dichloroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11 1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2,4,5-Trichlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2-Chloronaphthalene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate ND 0.95 EPA 8270 6-27-11 6-27-11 1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	1,4-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene ND 0.95 EPA 8270 6-27-11 6-27-11 1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	Dimethylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene ND 0.95 EPA 8270 6-27-11 6-27-11 Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	1,3-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Acenaphthylene ND 0.095 EPA 8270/SIM 6-27-11 6-27-11	2,6-Dinitrotoluene	ND	0.95	EPA 8270	6-27-11	6-27-11	
	1,2-Dinitrobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
3-Nitroaniline ND 0.95 EPA 8270 6-27-11 6-27-11	Acenaphthylene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
	3-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR22-062411-GW	I QL	Wietriou	Перагеи	Analyzeu	i iags
Laboratory ID:	06-212-46					
2,4-Dinitrophenol	ND	4.7	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	0.95	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylethe		0.95	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	0.95	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	4.7	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	0.95	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	0.95	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylethe		0.95	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	0.95	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	4.7	EPA 8270	6-27-11	6-27-11	
Phenanthrene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	0.95	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Fluoranthene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	4.7	EPA 8270	6-27-11	6-27-11	
Pyrene	ND	0.095	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	2.4	0.95	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	0.95	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	0.95	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	36	18 - 86				
Phenol-d6	28	10 - 88				
Nitrobenzene-d5	51	37 - 112				
2-Fluorobiphenyl	65	<i>42 - 108</i>				
2,4,6-Tribromophenol	83	39 - 118				
Terphenyl-d14	84	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0627W1					
n-Nitrosodimethylamine	ND	1.0	EPA 8270	6-27-11	6-27-11	
Pyridine	ND	1.0	EPA 8270	6-27-11	6-27-11	
Phenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
Aniline	ND	5.0	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethyl)ether	ND	1.0	EPA 8270	6-27-11	6-27-11	
2-Chlorophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,3-Dichlorobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,4-Dichlorobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
Benzyl alcohol	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,2-Dichlorobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
2-Methylphenol (o-Cresol)	ND	1.0	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroisopropyl)ether	ND	1.0	EPA 8270	6-27-11	6-27-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	1.0	EPA 8270	6-27-11	6-27-11	
n-Nitroso-di-n-propylamine	ND	1.0	EPA 8270	6-27-11	6-27-11	
Hexachloroethane	ND	1.0	EPA 8270	6-27-11	6-27-11	
Nitrobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
Isophorone	ND	1.0	EPA 8270	6-27-11	6-27-11	
2-Nitrophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,4-Dimethylphenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
bis(2-Chloroethoxy)methane	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,4-Dichlorophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
, ,	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
Naphthalene 4-Chloroaniline	ND	1.0	EPA 8270/SIWI	6-27-11	6-27-11	
	ND ND	1.0		-	-	
Hexachlorobutadiene	ND ND	1.0	EPA 8270	6-27-11	6-27-11	
4-Chloro-3-methylphenol			EPA 8270	6-27-11	6-27-11	
2-Methylnaphthalene	ND ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
1-Methylnaphthalene	ND ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
Hexachlorocyclopentadiene	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,4,6-Trichlorophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,3-Dichloroaniline	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,4,5-Trichlorophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
2-Chloronaphthalene	ND	1.0	EPA 8270	6-27-11	6-27-11	
2-Nitroaniline	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,4-Dinitrobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
Dimethylphthalate	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,3-Dinitrobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,6-Dinitrotoluene	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,2-Dinitrobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
3-Nitroaniline	ND	1.0	EPA 8270	6-27-11	6-27-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
	MERCOSTALL			-	-	
Laboratory ID:	MB0627W1	5 0	EDA 0070	0.07.11	0.07.44	
2,4-Dinitrophenol	ND	5.0	EPA 8270	6-27-11	6-27-11	
Acenaphthene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
4-Nitrophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,4-Dinitrotoluene	ND	1.0	EPA 8270	6-27-11	6-27-11	
Dibenzofuran	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,3,5,6-Tetrachlorophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
2,3,4,6-Tetrachlorophenol	ND	1.0	EPA 8270	6-27-11	6-27-11	
Diethylphthalate	ND	1.0	EPA 8270	6-27-11	6-27-11	
4-Chlorophenyl-phenylether		1.0	EPA 8270	6-27-11	6-27-11	
4-Nitroaniline	ND	1.0	EPA 8270	6-27-11	6-27-11	
Fluorene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
4,6-Dinitro-2-methylphenol	ND	5.0	EPA 8270	6-27-11	6-27-11	
n-Nitrosodiphenylamine	ND	1.0	EPA 8270	6-27-11	6-27-11	
1,2-Diphenylhydrazine	ND	1.0	EPA 8270	6-27-11	6-27-11	
4-Bromophenyl-phenylether	ND	1.0	EPA 8270	6-27-11	6-27-11	
Hexachlorobenzene	ND	1.0	EPA 8270	6-27-11	6-27-11	
Pentachlorophenol	ND	5.0	EPA 8270	6-27-11	6-27-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
Anthracene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
Carbazole	ND	1.0	EPA 8270	6-27-11	6-27-11	
Di-n-butylphthalate	ND	1.0	EPA 8270	6-27-11	6-27-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
Benzidine	ND	5.0	EPA 8270	6-27-11	6-27-11	
Pyrene	ND	0.10	EPA 8270/SIM	6-27-11	6-27-11	
Butylbenzylphthalate	ND	1.0	EPA 8270	6-27-11	6-27-11	
bis-2-Ethylhexyladipate	ND	1.0	EPA 8270	6-27-11	6-27-11	
3,3'-Dichlorobenzidine	ND	1.0	EPA 8270	6-27-11	6-27-11	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	6-27-11	6-27-11	
Chrysene	ND	0.010	EPA 8270/SIM	6-27-11	6-27-11	
bis(2-Ethylhexyl)phthalate	ND	1.0	EPA 8270	6-27-11	6-27-11	
Di-n-octylphthalate	ND	1.0	EPA 8270	6-27-11	6-27-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	6-27-11	6-27-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	6-27-11	6-27-11	
	ND	0.010	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[a]pyrene	ND ND		EPA 8270/SIM	6-27-11	6-27-11	
Indeno[1,2,3-cd]pyrene	ND ND	0.010				
Dibenz[a,h]anthracene		0.010	EPA 8270/SIM	6-27-11	6-27-11	
Benzo[g,h,i]perylene	ND Paraent Passyony	0.010	EPA 8270/SIM	6-27-11	6-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	18 12	18 - 86				
Phenol-d6	12	10 - 88				^
Nitrobenzene-d5	33	37 - 112				Q
2-Fluorobiphenyl	42	42 - 108				
2,4,6-Tribromophenol	51	39 - 118				
Terphenyl-d14	91	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	27W1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	11.5	12.4	40.0	40.0	29	31	26 - 60	8	29	
2-Chlorophenol	23.2	25.2	40.0	40.0	58	63	46 - 104	8	34	
1,4-Dichlorobenzene	9.95	10.7	20.0	20.0	50	54	48 - 92	7	29	
n-Nitroso-di-n-propylamine	9.82	10.8	20.0	20.0	49	54	45 - 102	10	25	
1,2,4-Trichlorobenzene	10.1	10.8	20.0	20.0	51	54	47 - 91	7	25	
4-Chloro-3-methylphenol	28.2	31.3	40.0	40.0	71	78	61 - 104	10	18	
Acenaphthene	14.5	15.2	20.0	20.0	73	76	59 - 95	5	15	
4-Nitrophenol	21.6	23.8	40.0	40.0	54	60	21 - 75	10	33	
2,4-Dinitrotoluene	17.9	19.1	20.0	20.0	90	96	66 - 105	6	20	
Pentachlorophenol	35.0	37.0	40.0	40.0	88	93	48 - 119	6	31	
Pyrene	17.8	21.0	20.0	20.0	89	105	62 - 111	16	19	
Surrogate:										
2-Fluorophenol					31	32	18 - 86			
Phenol-d6					25	27	10 - 88			
Nitrobenzene-d5					44	49	37 - 112			
2-Fluorobiphenyl					62	64	42 - 108			
2,4,6-Tribromophenol					77	85	39 - 118			
Terphenyl-d14					84	94	49 - 122			

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

		-		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
Aroclor 1016	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.053	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	89	42-123				
Client ID:	FAR4-4.0					
Laboratory ID:	06-212-17					
Aroclor 1016	ND	0.059	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1221	ND	0.059	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1232	ND	0.059	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1242	ND	0.059	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1248	ND	0.059	EPA 8082	6-29-11	6-30-11	X
Aroclor 1254	ND	0.059	EPA 8082	6-29-11	6-30-11	X
Aroclor 1260	0.23	0.059	EPA 8082	6-29-11	6-30-11	Х
Surrogate:	Percent Recovery	Control Limits				
DCB	102	42-123				
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
Aroclor 1016	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.063	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	77	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

		-		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR18-0.5					
Laboratory ID:	06-212-29					
Aroclor 1016	ND	0.067	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1221	ND	0.067	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1232	ND	0.067	EPA 8082	6-29-11	6-30-11	X
Aroclor 1242	ND	0.067	EPA 8082	6-29-11	6-30-11	X
Aroclor 1248	ND	0.067	EPA 8082	6-29-11	6-30-11	X
Aroclor 1254	ND	0.067	EPA 8082	6-29-11	6-30-11	X
Aroclor 1260	0.12	0.067	EPA 8082	6-29-11	6-30-11	Χ
Surrogate:	Percent Recovery	Control Limits				
DCB	109	42-123				
Client ID:	FAR19-0.5					
Laboratory ID:	06-212-30					
Aroclor 1016	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.059	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.059	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	94	42-123				
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35					
Aroclor 1016	ND	0.055	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.055	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.055	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.055	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.055	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.055	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	0.090	0.055	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	99	42-123				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

PCBs by EPA 8082

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR23-2.5					
Laboratory ID:	06-212-39					
Aroclor 1016	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.053	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.053	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	95	42-123				
Client ID:	FAR22-2.5					
Laboratory ID:	06-212-43					
Aroclor 1016	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.063	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.063	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	75	42-123				

Project: 1005-001

PCBs by EPA 8082 **QUALITY CONTROL**

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0629S1					
Aroclor 1016	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1221	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1232	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1242	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1248	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1254	ND	0.050	EPA 8082	6-29-11	6-29-11	
Aroclor 1260	ND	0.050	EPA 8082	6-29-11	6-29-11	
Surrogate:	Percent Recovery	Control Limits				
DCB	92	<i>4</i> 2-123				
Laboratory ID:	MB0629S1					
Aroclor 1016	ND	0.050	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1221	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Aroclor 1232	ND	0.050	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1242	ND	0.050	EPA 8082	6-29-11	6-30-11	Х
Aroclor 1248	ND	0.050	EPA 8082	6-29-11	6-30-11	X
Aroclor 1254	ND	0.050	EPA 8082	6-29-11	6-30-11	Χ
Aroclor 1260	ND	0.050	EPA 8082	6-29-11	6-30-11	Χ
Surrogate:	Percent Recovery	Control Limits				
DCB	100	42-123				

Surrogate:	Percent Recovery	Control Limits
DCB	100	42-123

Analyte	Re	sult	Spike	Level	Source Result		rcent covery	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB06	S29S1									
	SB	SBD	SB	SBD		SB	SBD				_
Aroclor 1260	0.425	0.417	0.500	0.500	N/A	85	83	59-120	2	15	_
Surrogate:											
DCB						96	97	42-123			

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-5.5					
Laboratory ID:	06-212-07					
alpha-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
gamma-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
beta-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
delta-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
Heptachlor	ND	5.3	EPA 8081	6-28-11	6-28-11	
Aldrin	ND	5.3	EPA 8081	6-28-11	6-28-11	
Heptachlor Epoxide	ND	5.3	EPA 8081	6-28-11	6-28-11	
gamma-Chlordane	ND	11	EPA 8081	6-28-11	6-28-11	
alpha-Chlordane	ND	11	EPA 8081	6-28-11	6-28-11	
4,4'-DDE	ND	11	EPA 8081	6-28-11	6-28-11	
Endosulfan I	ND	5.3	EPA 8081	6-28-11	6-28-11	
Dieldrin	ND	11	EPA 8081	6-28-11	6-28-11	
Endrin	ND	11	EPA 8081	6-28-11	6-28-11	
4,4'-DDD	ND	11	EPA 8081	6-28-11	6-28-11	
Endosulfan II	ND	11	EPA 8081	6-28-11	6-28-11	
4,4'-DDT	ND	11	EPA 8081	6-28-11	6-28-11	
Endrin Aldehyde	ND	11	EPA 8081	6-28-11	6-28-11	
Methoxychlor	ND	11	EPA 8081	6-28-11	6-28-11	
Endosulfan Sulfate	ND	11	EPA 8081	6-28-11	6-28-11	
Endrin Ketone	ND	11	EPA 8081	6-28-11	6-28-11	
Toxaphene	ND	53	EPA 8081	6-28-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Lim
TCMX 74 30-111
DCB 78 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR4-4.0					
Laboratory ID:	06-212-17					
alpha-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
gamma-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
beta-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
delta-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
Heptachlor	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
Aldrin	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
Heptachlor Epoxide	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
gamma-Chlordane	ND	12	EPA 8081	6-28-11	7-5-11	Χ
alpha-Chlordane	ND	12	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDE	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan I	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
Dieldrin	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Endrin	ND	12	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDD	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan II	ND	12	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDT	25	12	EPA 8081	6-28-11	7-5-11	Χ
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Methoxychlor	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Endrin Ketone	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Toxaphene	ND	59	EPA 8081	6-28-11	7-5-11	X

Surrogate: Percent Recovery Control Limits
TCMX 75 30-111
DCB 84 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-2.5					
Laboratory ID:	06-212-25					
alpha-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
gamma-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
beta-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
delta-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
Heptachlor	ND	6.3	EPA 8081	6-28-11	6-28-11	
Aldrin	ND	6.3	EPA 8081	6-28-11	6-28-11	
Heptachlor Epoxide	ND	6.3	EPA 8081	6-28-11	6-28-11	
gamma-Chlordane	ND	13	EPA 8081	6-28-11	6-28-11	
alpha-Chlordane	ND	13	EPA 8081	6-28-11	6-28-11	
4,4'-DDE	ND	13	EPA 8081	6-28-11	6-28-11	
Endosulfan I	ND	6.3	EPA 8081	6-28-11	6-28-11	
Dieldrin	ND	13	EPA 8081	6-28-11	6-28-11	
Endrin	ND	13	EPA 8081	6-28-11	6-28-11	
4,4'-DDD	ND	13	EPA 8081	6-28-11	6-28-11	
Endosulfan II	ND	13	EPA 8081	6-28-11	6-28-11	
4,4'-DDT	ND	13	EPA 8081	6-28-11	6-28-11	
Endrin Aldehyde	ND	13	EPA 8081	6-28-11	6-28-11	
Methoxychlor	ND	13	EPA 8081	6-28-11	6-28-11	
Endosulfan Sulfate	ND	13	EPA 8081	6-28-11	6-28-11	
Endrin Ketone	ND	13	EPA 8081	6-28-11	6-28-11	
Toxaphene	ND	63	EPA 8081	6-28-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
TCMX 72 30-111
DCB 72 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

erine. agring (pps)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR18-0.5					
Laboratory ID:	06-212-29					
alpha-BHC	ND	6.7	EPA 8081	6-28-11	7-5-11	Χ
gamma-BHC	ND	6.7	EPA 8081	6-28-11	7-5-11	Χ
beta-BHC	ND	6.7	EPA 8081	6-28-11	7-5-11	X
delta-BHC	ND	6.7	EPA 8081	6-28-11	7-5-11	X
Heptachlor	ND	6.7	EPA 8081	6-28-11	7-5-11	X
Aldrin	ND	6.7	EPA 8081	6-28-11	7-5-11	Χ
Heptachlor Epoxide	ND	6.7	EPA 8081	6-28-11	7-5-11	Χ
gamma-Chlordane	ND	13	EPA 8081	6-28-11	7-5-11	Χ
alpha-Chlordane	ND	13	EPA 8081	6-28-11	7-5-11	X
4,4'-DDE	ND	13	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan I	ND	6.7	EPA 8081	6-28-11	7-5-11	Χ
Dieldrin	ND	13	EPA 8081	6-28-11	7-5-11	Χ
Endrin	ND	13	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDD	ND	13	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan II	ND	13	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDT	ND	13	EPA 8081	6-28-11	7-5-11	Χ
Endrin Aldehyde	ND	13	EPA 8081	6-28-11	7-5-11	Χ
Methoxychlor	ND	13	EPA 8081	6-28-11	7-5-11	X
Endosulfan Sulfate	ND	13	EPA 8081	6-28-11	7-5-11	X
Endrin Ketone	ND	13	EPA 8081	6-28-11	7-5-11	Χ
Toxaphene	ND	67	EPA 8081	6-28-11	7-5-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 67 30-111
DCB 89 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR19-0.5					
Laboratory ID:	06-212-30					
alpha-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Х
gamma-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
oeta-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
delta-BHC	ND	5.9	EPA 8081	6-28-11	7-5-11	Χ
Heptachlor	ND	5.9	EPA 8081	6-28-11	7-5-11	X
Aldrin	ND	5.9	EPA 8081	6-28-11	7-5-11	X
Heptachlor Epoxide	ND	5.9	EPA 8081	6-28-11	7-5-11	X
gamma-Chlordane	ND	12	EPA 8081	6-28-11	7-5-11	Χ
alpha-Chlordane	ND	12	EPA 8081	6-28-11	7-5-11	X
1,4'-DDE	ND	12	EPA 8081	6-28-11	7-5-11	X
Endosulfan I	ND	5.9	EPA 8081	6-28-11	7-5-11	X
Dieldrin	ND	12	EPA 8081	6-28-11	7-5-11	X
Endrin	ND	12	EPA 8081	6-28-11	7-5-11	X
4,4'-DDD	ND	12	EPA 8081	6-28-11	7-5-11	X
Endosulfan II	ND	12	EPA 8081	6-28-11	7-5-11	X
4,4'-DDT	ND	12	EPA 8081	6-28-11	7-5-11	X
Endrin Aldehyde	ND	12	EPA 8081	6-28-11	7-5-11	X
Methoxychlor	ND	12	EPA 8081	6-28-11	7-5-11	X
Endosulfan Sulfate	ND	12	EPA 8081	6-28-11	7-5-11	X
Endrin Ketone	ND	12	EPA 8081	6-28-11	7-5-11	Χ
Toxaphene	ND	59	EPA 8081	6-28-11	7-5-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 60 30-111
DCB 70 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR11-2.5					
Laboratory ID:	06-212-35					
alpha-BHC	ND	5.5	EPA 8081	6-28-11	7-5-11	Х
gamma-BHC	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
beta-BHC	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
delta-BHC	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
Heptachlor	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
Aldrin	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
Heptachlor Epoxide	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
gamma-Chlordane	ND	11	EPA 8081	6-28-11	7-5-11	Χ
alpha-Chlordane	ND	11	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDE	ND	11	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan I	ND	5.5	EPA 8081	6-28-11	7-5-11	Χ
Dieldrin	ND	11	EPA 8081	6-28-11	7-5-11	Χ
Endrin	ND	11	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDD	ND	11	EPA 8081	6-28-11	7-5-11	X
Endosulfan II	ND	11	EPA 8081	6-28-11	7-5-11	Χ
4,4'-DDT	ND	11	EPA 8081	6-28-11	7-5-11	Χ
Endrin Aldehyde	22	11	EPA 8081	6-28-11	7-5-11	Χ
Methoxychlor	ND	11	EPA 8081	6-28-11	7-5-11	Χ
Endosulfan Sulfate	ND	11	EPA 8081	6-28-11	7-5-11	Χ
Endrin Ketone	ND	11	EPA 8081	6-28-11	7-5-11	Χ
Toxaphene	ND	55	EPA 8081	6-28-11	7-5-11	Χ

Surrogate: Percent Recovery Control Limits
TCMX 72 30-111
DCB 82 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR23-2.5					
Laboratory ID:	06-212-39					
alpha-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
gamma-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
beta-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
delta-BHC	ND	5.3	EPA 8081	6-28-11	6-28-11	
Heptachlor	ND	5.3	EPA 8081	6-28-11	6-28-11	
Aldrin	ND	5.3	EPA 8081	6-28-11	6-28-11	
Heptachlor Epoxide	ND	5.3	EPA 8081	6-28-11	6-28-11	
gamma-Chlordane	ND	11	EPA 8081	6-28-11	6-28-11	
alpha-Chlordane	ND	11	EPA 8081	6-28-11	6-28-11	
4,4'-DDE	ND	11	EPA 8081	6-28-11	6-28-11	
Endosulfan I	ND	5.3	EPA 8081	6-28-11	6-28-11	
Dieldrin	ND	11	EPA 8081	6-28-11	6-28-11	
Endrin	ND	11	EPA 8081	6-28-11	6-28-11	
4,4'-DDD	ND	11	EPA 8081	6-28-11	6-28-11	
Endosulfan II	ND	11	EPA 8081	6-28-11	6-28-11	
4,4'-DDT	ND	11	EPA 8081	6-28-11	6-28-11	
Endrin Aldehyde	ND	11	EPA 8081	6-28-11	6-28-11	
Methoxychlor	ND	11	EPA 8081	6-28-11	6-28-11	
Endosulfan Sulfate	ND	11	EPA 8081	6-28-11	6-28-11	
Endrin Ketone	ND	11	EPA 8081	6-28-11	6-28-11	
Toxaphene	ND	53	EPA 8081	6-28-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits				

TCMX 55 30-111 DCB 60 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A

Matrix: Soil

Units: ug/Kg (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-2.5					
Laboratory ID:	06-212-43					
alpha-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
gamma-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
beta-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
delta-BHC	ND	6.3	EPA 8081	6-28-11	6-28-11	
Heptachlor	ND	6.3	EPA 8081	6-28-11	6-28-11	
Aldrin	ND	6.3	EPA 8081	6-28-11	6-28-11	
Heptachlor Epoxide	ND	6.3	EPA 8081	6-28-11	6-28-11	
gamma-Chlordane	ND	13	EPA 8081	6-28-11	6-28-11	
alpha-Chlordane	ND	13	EPA 8081	6-28-11	6-28-11	
4,4'-DDE	ND	13	EPA 8081	6-28-11	6-28-11	
Endosulfan I	ND	6.3	EPA 8081	6-28-11	6-28-11	
Dieldrin	ND	13	EPA 8081	6-28-11	6-28-11	
Endrin	ND	13	EPA 8081	6-28-11	6-28-11	
4,4'-DDD	ND	13	EPA 8081	6-28-11	6-28-11	
Endosulfan II	ND	13	EPA 8081	6-28-11	6-28-11	
4,4'-DDT	ND	13	EPA 8081	6-28-11	6-28-11	
Endrin Aldehyde	ND	13	EPA 8081	6-28-11	6-28-11	
Methoxychlor	ND	13	EPA 8081	6-28-11	6-28-11	
Endosulfan Sulfate	ND	13	EPA 8081	6-28-11	6-28-11	
Endrin Ketone	ND	13	EPA 8081	6-28-11	6-28-11	
Toxaphene	ND	63	EPA 8081	6-28-11	6-28-11	
Surrogate:	Percent Recovery	Control Limits		·	·	·

Surrogate: Percent Recovery Control Limits
TCMX 74 30-111
DCB 79 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A METHOD BLANK QUALITY CONTROL

Matrix: Soil

Units: ug/Kg (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
alpha-BHC	ND	5.0	EPA 8081	6-28-11	6-28-11	
gamma-BHC	ND	5.0	EPA 8081	6-28-11	6-28-11	
beta-BHC	ND	5.0	EPA 8081	6-28-11	6-28-11	
delta-BHC	ND	5.0	EPA 8081	6-28-11	6-28-11	
Heptachlor	ND	5.0	EPA 8081	6-28-11	6-28-11	
Aldrin	ND	5.0	EPA 8081	6-28-11	6-28-11	
Heptachlor Epoxide	ND	5.0	EPA 8081	6-28-11	6-28-11	
gamma-Chlordane	ND	10	EPA 8081	6-28-11	6-28-11	
alpha-Chlordane	ND	10	EPA 8081	6-28-11	6-28-11	
4,4'-DDE	ND	10	EPA 8081	6-28-11	6-28-11	
Endosulfan I	ND	5.0	EPA 8081	6-28-11	6-28-11	
Dieldrin	ND	10	EPA 8081	6-28-11	6-28-11	
Endrin	ND	10	EPA 8081	6-28-11	6-28-11	
4,4'-DDD	ND	10	EPA 8081	6-28-11	6-28-11	
Endosulfan II	ND	10	EPA 8081	6-28-11	6-28-11	
4,4'-DDT	ND	10	EPA 8081	6-28-11	6-28-11	
Endrin Aldehyde	ND	10	EPA 8081	6-28-11	6-28-11	
Methoxychlor	ND	10	EPA 8081	6-28-11	6-28-11	
Endosulfan Sulfate	ND	10	EPA 8081	6-28-11	6-28-11	
Endrin Ketone	ND	10	EPA 8081	6-28-11	6-28-11	
Toxaphene	ND	50	EPA 8081	6-28-11	6-28-11	
	5 . 5	0				

Surrogate: Percent Recovery Control Limits TCMX 84 30-111 DCB 87 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A METHOD BLANK QUALITY CONTROL

Matrix: Soil

Units: ug/Kg (ppb)

Analyte		PQL	Method	Date	Date Analyzed	Flags
	Result			Prepared		
Laboratory ID:	MB0628S1					
alpha-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	Х
gamma-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	X
beta-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	X
delta-BHC	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Heptachlor	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Aldrin	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Heptachlor Epoxide	ND	5.0	EPA 8081	6-28-11	6-30-11	X
gamma-Chlordane	ND	10	EPA 8081	6-28-11	6-30-11	X
alpha-Chlordane	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDE	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan I	ND	5.0	EPA 8081	6-28-11	6-30-11	X
Dieldrin	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDD	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan II	ND	10	EPA 8081	6-28-11	6-30-11	X
4,4'-DDT	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin Aldehyde	ND	10	EPA 8081	6-28-11	6-30-11	X
Methoxychlor	ND	10	EPA 8081	6-28-11	6-30-11	X
Endosulfan Sulfate	ND	10	EPA 8081	6-28-11	6-30-11	X
Endrin Ketone	ND	10	EPA 8081	6-28-11	6-30-11	X
Toxaphene	ND	50	EPA 8081	6-28-11	6-30-11	X

Surrogate: Percent Recovery Control Limits TCMX 79 30-111 DCB 84 33-119

Project: 1005-001

ORGANOCHLORINE PESTICIDES by EPA 8081A MS/MSD QUALITY CONTROL

Matrix: Soil

Units: ug/Kg (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	06-1	67-04									
	MS	MSD	MS	MSD		MS	MSD				
gamma-BHC	36.6	36.3	50.0	50.0	ND	73	73	32-96	1	10	
Heptachlor	39.8	40.3	50.0	50.0	ND	80	81	29-101	1	13	
Aldrin	41.2	41.4	50.0	50.0	ND	82	83	27-99	0	10	
Dieldrin	96.3	91.5	125	125	ND	77	73	33-92	5	10	
Endrin	97.4	92.1	125	125	ND	78	74	29-101	6	11	
4,4'-DDT	89.8	83.8	125	125	ND	72	67	21-114	7	15	
Surrogate:											
TCMX						72	74	30-111			
DCB						70	63	33-119			

Project: 1005-001

TOTAL METALS EPA 6010B7471A

Matrix:

Soil

Units:

mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-212-03 FAR1-10.0					
Arsenic	ND	12	6010B	7-5-11	7-5-11	
Cadmium	ND	0.60	6010B	7-5-11	7-5-11	
Chromium	36	0.60	6010B	7-5-11	7-5-11	
Lead	6.0	6.0	6010B	7-5-11	7-5-11	
Mercury	ND	0.30	7471A	7-5-11	7-5-11	
Lab ID: Client ID:	06-212-07 FAR2-5.5					
Arsenic	ND	11	6010B	7-5-11	7-5-11	
Cadmium	ND	0.53	6010B	7-5-11	7-5-11	
Chromium	28	0.53	6010B	7-5-11	7-5-11	
Lead	ND	5.3	6010B	7-5-11	7-5-11	
Mercury	ND	0.26	7471A	7-5-11	7-5-11	
Lab ID: Client ID:	06-212-13 FAR3-12.5					
Arsenic	ND	12	6010B	7-5-11	7-5-11	
Cadmium	ND	0.61	6010B	7-5-11	7-5-11	
Chromium	48	0.61	6010B	7-5-11	7-5-11	
Lead	ND	6.1	6010B	7-5-11	7-5-11	
Mercury	ND	0.31	7471A	7-5-11	7-5-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Units.	тід/кд (ррпі)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-212-17					
Client ID:	FAR4-4.0					
Arsenic	ND	12	6010B	7-5-11	7-5-11	
Cadmium	0.67	0.59	6010B	7-5-11	7-5-11	
Chromium	52	0.59	6010B	7-5-11	7-5-11	
Lead	400	5.9	6010B	7-5-11	7-5-11	
Mercury	ND	0.3	7471A	7-5-11	7-5-11	
Lab ID:	06-212-20					
Client ID:	FAR8-5.0					
Arsenic	ND	12	6010B	7-5-11	7-5-11	
Cadmium	ND	0.58	6010B	7-5-11	7-5-11	
Chromium	35	0.58	6010B	7-5-11	7-5-11	
Lead	40	5.8	6010B	7-5-11	7-5-11	
Mercury	ND	0.29	7471A	7-5-11	7-5-11	
wercary	ND	0.23	17110	7-3-11	7-5-11	
Lab ID:	06-212-22					
Client ID:	FAR14-3.5					
Arsenic	ND	11	6010B	7-5-11	7-5-11	
Cadmium	ND	0.53	6010B	7-5-11	7-5-11	
Chromium	25	0.53	6010B	7-5-11	7-5-11	
Lead	ND	5.3	6010B	7-5-11	7-5-11	
Mercury	ND	0.27	7471A	7-5-11	7-5-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Onits.	тід/кд (ррпі)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-212-25					
Client ID:	FAR17-2.5					
Arsenic	ND	13	6010B	7-5-11	7-5-11	
Cadmium	ND	0.63	6010B	7-5-11	7-5-11	
Chromium	56	0.63	6010B	7-5-11	7-5-11	
Lead	ND	6.3	6010B	7-5-11	7-5-11	
Mercury	ND	0.32	7471A	7-5-11	7-5-11	
Lab ID:	06-212-29					
Client ID:	FAR18-0.5					
Arsenic	ND	13	6010B	7-5-11	7-5-11	
Cadmium	ND	0.67	6010B	7-5-11	7-5-11	
Chromium	55	0.67	6010B	7-5-11	7-5-11	
Lead	13	6.7	6010B	7-5-11	7-5-11	
Mercury	ND	0.34	7471A	7-5-11	7-5-11	
Lab ID:	06-212-30					
Client ID:	FAR19-0.5					
Arsenic	ND	12	6010B	7-5-11	7-5-11	
Cadmium	ND	0.59	6010B	7-5-11	7-5-11	
Chromium	55	0.59	6010B	7-5-11	7-5-11	
Lead	10	5.9	6010B	7-5-11	7-5-11	
Mercury	ND	0.29	7471A	7-5-11	7-5-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

Offics.	під/ку (ррпі)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-212-31					
Client ID:	FAR16-2.5					
Arsenic	ND	11	6010B	7-5-11	7-5-11	
Cadmium	ND	0.54	6010B	7-5-11	7-5-11	
Chromium	41	0.54	6010B	7-5-11	7-5-11	
Lead	7.6	5.4	6010B	7-5-11	7-5-11	
Mercury	ND	0.27	7471A	7-5-11	7-5-11	
Lab ID:	06 242 25					
Client ID:	06-212-35 FAR11-2.5					
	ND	4.4	CO4.0D	7.5.44	7.5.44	
Arsenic		11	6010B	7-5-11	7-5-11	
Cadmium	ND	0.55	6010B	7-5-11	7-5-11	
Chromium	35	0.55	6010B	7-5-11	7-5-11	
Lead	150	5.5	6010B	7-5-11	7-5-11	
Mercury	ND	0.27	7471A	7-5-11	7-5-11	
Lab ID:	06-212-39					
Client ID:	FAR23-2.5					
Arsenic	ND	11	6010B	7-5-11	7-5-11	
Cadmium	ND	0.53	6010B	7-5-11	7-5-11	
Chromium	16	0.53	6010B	7-5-11	7-5-11	
Lead	ND	5.3	6010B	7-5-11 7-5-11		
Mercury	ND	0.26	7471A	7-5-11	7-5-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	06-212-43 FAR22-2.5					
CHERT ID.	I ANZZ-Z.3					
Arsenic	ND	13	6010B	7-5-11	7-5-11	
Cadmium	ND	0.63	6010B	7-5-11	7-5-11	
Chromium	60	0.63	6010B	7-5-11	7-5-11	
Lead	ND	6.3	6010B	7-5-11	7-5-11	
Mercury	ND	0.31	7471A	7-5-11	7-5-11	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted: 7-5-11
Date Analyzed: 7-5-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: MB0705S1&MB0705S2

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

Project: 1005-001

TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted: 7-5-11
Date Analyzed: 7-5-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-212-07

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	26.3	28.3	7	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	

Project: 1005-001

TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted: 7-5-11
Date Analyzed: 7-5-11

Matrix: Soil

Units: mg/kg (ppm)

Lab ID: 06-212-07

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	95.3	95	96.0	96	1	
Cadmium	50	47.6	95	47.7	95	0	
Chromium	100	121	94	131	104	8	
Lead	250	238	95	236	95	1	
Mercury	0.50	0.507	101	0.511	102	1	

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR4-9.0					
Laboratory ID:	06-212-18					
Diesel Range Organics	ND	31	NWTPH-Dx	7-6-11	7-6-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	7-6-11	7-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	FAR8-11.0					
Laboratory ID:	06-212-21					
Diesel Range Organics	ND	27	NWTPH-Dx	7-6-11	7-6-11	_
Lube Oil	59	54	NWTPH-Dx	7-6-11	7-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	FAR11-14.5					
Laboratory ID:	06-212-38					
Diesel Range Organics	ND	28	NWTPH-Dx	7-6-11	7-6-11	
Lube Oil Range Organics	ND	56	NWTPH-Dx	7-6-11	7-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

Project: 1005-001

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0706S2					
Diesel Range Organics	ND	25	NWTPH-Dx	7-6-11	7-6-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-6-11	7-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	06-26	62-02						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			103	116	50-150			

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-6.0					
Laboratory ID:	06-212-02					
Dichlorodifluoromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Acetone	0.040	0.0055	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0055	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0055	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0055	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0055	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B

page 2 of 2

	D	201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-6.0					
Laboratory ID:	06-212-02	0.0044		7.4.44	7.4.44	
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0022	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
ert-Butylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
o-Isopropyltoluene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
,4-Dichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
,2-Dichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
,2-Dibromo-3-chloropropane	ND	0.0055	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0055	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	89	63-127				
Taluana de	96	65 120				

Toluene-d8 86 65-129 4-Bromofluorobenzene 87 55-121

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-2.5					
Laboratory ID:	06-212-06					
Dichlorodifluoromethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Acetone	0.050	0.0062	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0062	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0062	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0062	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0062	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B

page 2 of 2

A	5 #	201	88 .411	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR2-2.5					
Laboratory ID:	06-212-06	0.0040	EDA 0000	7.4.44	7.4.44	
1,1,2-Trichloroethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0025	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane		0.0062	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0062	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	77	63-127				
Toluene-d8	 75	65-129				
. 5.00110 00		121				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

77

4-Bromofluorobenzene

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-8.0					
Laboratory ID:	06-212-26					
Dichlorodifluoromethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Acetone	0.15	0.0070	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0070	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0070	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
2-Butanone	0.022	0.0070	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0070	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0070	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.0014	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-8.0					
Laboratory ID:	06-212-26					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0028	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	. ND	0.0070	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0070	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	83	63-127				
Toluene-d8	78	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

72

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR11-14.5					
Laboratory ID:	06-212-38					
Dichlorodifluoromethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Acetone	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0042	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0042	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0042	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0042	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.00083	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR11-14.5					
Laboratory ID:	06-212-38					
1,1,2-Trichloroethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0017	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.00083	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	ND	0.0042	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0042	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.00083	EPA 8260	7-1-11	7-1-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	82	63-127				
Toluene-d8	80	65-129				
4-Bromofluorobenzene	83	55-121				
. D. Olliona Ol ODOLIZONO	00	00 12 1				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Client ID:					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodifluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloromethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Icohomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11	Client ID:	FAR23-6.0					
Chloromethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11	Laboratory ID:	06-212-40					
Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11	Dichlorodifluoromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11	Chloromethane	ND	0.0057	EPA 8260	7-1-11	7-1-11	
Chloroethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Michyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0057 EPA 8260 7-1-11 <	Vinyl Chloride	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7	Bromomethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Michyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Miryl Acetate ND 0.0011 EPA 8260 7-1-11 7-1-11 Q-2-Dichloroethane ND 0.0011 EPA 8260 7-1-11	Chloroethane	ND	0.0057	EPA 8260	7-1-11	7-1-11	
Acetone 0.041 0.0057 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Mind Acetate ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Acetate ND 0.0011 EPA 8260 7-1-11 7-1-11<	Trichlorofluoromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Iodomethane ND 0.0057 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11	1,1-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide ND 0.0057 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-	Acetone	0.041	0.0057	EPA 8260	7-1-11	7-1-11	
Methylene Chloride ND 0.0057 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Tolloroethane ND 0.0011 EPA 8260 7-1-11	Iodomethane	ND	0.0057	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11	Carbon Disulfide	ND	0.0057	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 <t< td=""><td>Methylene Chloride</td><td>ND</td><td>0.0057</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></t<>	Methylene Chloride	ND	0.0057	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11	(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate ND 0.0057 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11	Methyl t-Butyl Ether	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-	1,1-Dichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11<	Vinyl Acetate	ND	0.0057	EPA 8260	7-1-11	7-1-11	
2-Butanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	2,2-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	2-Butanone	ND	0.0057	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	Bromochloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	Chloroform	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	1,1,1-Trichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	Carbon Tetrachloride	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	1,1-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	Benzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	1,2-Dichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	Trichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11	1,2-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
	Dibromomethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2 Chloroothyl Vinyl Ethor ND 0.0057 EDA 9360 7.1.11 7.1.11	Bromodichloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Villyl Ether ND 0.0037 EFA 8200 7-1-11 7-1-11	2-Chloroethyl Vinyl Ether	ND	0.0057	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11	(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone ND 0.0057 EPA 8260 7-1-11 7-1-11	Methyl Isobutyl Ketone	ND	0.0057	EPA 8260	7-1-11	7-1-11	
Toluene ND 0.0057 EPA 8260 7-1-11 7-1-11	Toluene	ND	0.0057	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11	(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

Toluene-d8

4-Bromofluorobenzene

VOLATILES by EPA 8260B page 2 of 2

Date Date Analyte Result **PQL** Method **Prepared** Analyzed Flags Client ID: FAR23-6.0 Laboratory ID: 06-212-40 7-1-11 1,1,2-Trichloroethane 0.0011 EPA 8260 7-1-11 ND Tetrachloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,3-Dichloropropane ND 0.0011 **EPA 8260** 7-1-11 7-1-11 2-Hexanone ND 0.0057 EPA 8260 7-1-11 7-1-11 Dibromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1.2-Dibromoethane ND 7-1-11 7-1-11 0.0011 EPA 8260 ND 0.0011 7-1-11 7-1-11 Chlorobenzene EPA 8260 1,1,1,2-Tetrachloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Ethylbenzene ND 0.0011 EPA 8260 7-1-11 7-1-11 m,p-Xylene ND 0.0023 EPA 8260 7-1-11 7-1-11 ND 7-1-11 7-1-11 o-Xylene 0.0011 EPA 8260 Styrene ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromoform ND 0.0011 EPA 8260 7-1-11 7-1-11 Isopropylbenzene ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromobenzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,2,2-Tetrachloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2,3-Trichloropropane ND 0.0011 7-1-11 7-1-11 EPA 8260 ND 7-1-11 7-1-11 n-Propylbenzene 0.0011 EPA 8260 ND 0.0011 7-1-11 7-1-11 2-Chlorotoluene EPA 8260 4-Chlorotoluene ND 0.0011 EPA 8260 7-1-11 7-1-11 1.3.5-Trimethylbenzene ND 0.0011 7-1-11 7-1-11 EPA 8260 tert-Butylbenzene ND 0.0011 **EPA 8260** 7-1-11 7-1-11 1,2,4-Trimethylbenzene ND 0.0011 7-1-11 7-1-11 **EPA 8260** ND sec-Butylbenzene 0.0011 EPA 8260 7-1-11 7-1-11 ND 0.0011 EPA 8260 7-1-11 7-1-11 1,3-Dichlorobenzene p-Isopropyltoluene ND 0.0011 EPA 8260 7-1-11 7-1-11 ND 0.0011 **EPA 8260** 7-1-11 7-1-11 1,4-Dichlorobenzene 1,2-Dichlorobenzene ND 0.0011 EPA 8260 7-1-11 7-1-11 ND 7-1-11 n-Butylbenzene 0.0011 EPA 8260 7-1-11 EPA 8260 1,2-Dibromo-3-chloropropane ND 0.0057 7-1-11 7-1-11 1,2,4-Trichlorobenzene ND 0.0011 EPA 8260 7-1-11 7-1-11 Hexachlorobutadiene ND 0.0057 EPA 8260 7-1-11 7-1-11 Naphthalene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2,3-Trichlorobenzene ND 0.0011 EPA 8260 7-1-11 7-1-11 Surrogate: Percent Recovery Control Limits Dibromofluoromethane 80 63-127

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-129

55-121

80

78

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Analyte Result PQL Method Prepared Analyzed Flags Client ID: 6FAR22-6.0 Security Security </th <th></th> <th></th> <th></th> <th></th> <th>Date</th> <th>Date</th> <th></th>					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodifiluromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloromethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11	Client ID:	FAR22-6.0					
Chloromethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Icodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11	Laboratory ID:	06-212-44					
Vinyl Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Icarbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11 <td>Dichlorodifluoromethane</td> <td>ND</td> <td>0.0013</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Dichlorodifluoromethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Bromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Idomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11	Chloromethane	ND	0.0065	EPA 8260	7-1-11	7-1-11	
Chloroethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Icodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0065 EPA 8260 7-1-11 7-1-11 Methyl t-Buryl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 Mithyl t-Buryl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0013 EPA 8260 7-1-11 7-1-11	Vinyl Chloride	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11	Bromomethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Viryl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.0065 EPA 8260 7-1-11 7	Chloroethane	ND	0.0065	EPA 8260	7-1-11	7-1-11	
Acetone 0.041 0.0065 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 Viryl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloropthane ND 0.0013 EPA 8260 7-1-11 7-1	Trichlorofluoromethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Iodomethane ND 0.0065 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.0065 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0013 EPA 8260 7-1-11 7-1-11 3-Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11<	1,1-Dichloroethene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide ND 0.0065 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.0013 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopane ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloroptopethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260	Acetone	0.041	0.0065	EPA 8260	7-1-11	7-1-11	
Methylene Chloride ND 0.0065 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0013 EPA 8260 7-1-11 7-1-11 Brownelloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 <td< td=""><td>Iodomethane</td><td>ND</td><td>0.0065</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></td<>	Iodomethane	ND	0.0065	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11	Carbon Disulfide	ND	0.0065	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 </td <td>Methylene Chloride</td> <td>ND</td> <td>0.0065</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Methylene Chloride	ND	0.0065	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 <t< td=""><td>(trans) 1,2-Dichloroethene</td><td>ND</td><td>0.0013</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></t<>	(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate ND 0.0065 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0013 EPA 8260 7-1-11	Methyl t-Butyl Ether	ND	0.0013	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0013 EPA 8260 7-1-11	1,1-Dichloroethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0013 EPA 8260 7-1-11	Vinyl Acetate	ND	0.0065	EPA 8260	7-1-11	7-1-11	
2-Butanone ND 0.0065 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11<	2,2-Dichloropropane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Bromochloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11	(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Chloroform ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	2-Butanone	ND	0.0065	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Bromochloromethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride ND 0.0013 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Chloroform	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	1,1,1-Trichloroethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Benzene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Carbon Tetrachloride	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	1,1-Dichloropropene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Trichloroethene ND 0.0013 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Benzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane ND 0.0013 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	1,2-Dichloroethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Dibromomethane ND 0.0013 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Trichloroethene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane ND 0.0013 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	1,2-Dichloropropane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether ND 0.0065 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Dibromomethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	Bromodichloromethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
	2-Chloroethyl Vinyl Ether	ND	0.0065	EPA 8260	7-1-11	7-1-11	
	(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone ND 0.0065 EPA 8260 7-1-11 7-1-11	Methyl Isobutyl Ketone	ND	0.0065	EPA 8260	7-1-11	7-1-11	
Toluene ND 0.0065 EPA 8260 7-1-11 7-1-11	Toluene	ND	0.0065	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene ND 0.0013 EPA 8260 7-1-11 7-1-11	(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-6.0					
Laboratory ID:	06-212-44					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0065	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0026	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	ND	0.0065	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0065	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260	7-1-11	7-1-11	
	Percent Recovery	Control Limits				
Dibromofluoromethane	79	63-127				
Toluene-d8	77	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

76

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Acetone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
lodomethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0050	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Toluene	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MD070464					
Laboratory ID: 1,1,2-Trichloroethane	MB0701S1 ND	0.0010	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0010	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
2-Hexanone	ND	0.0010	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
Dibromochloromethane	ND	0.0030	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
•					7-1-11 7-1-11	
Chlorobenzene	ND	0.0010	EPA 8260	7-1-11		
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0020	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
	Percent Recovery	Control Limits	,,,,,,,,			
Dibromofluoromethane	79	63-127				
Toluene-d8	81	65-129				
4-Bromofluorobenzene	84	55-121				
4-DIUIIUIIUUIUUUUUU	04	JJ-12 I				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	701S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0542	0.0546	0.0500	0.0500	108	109	70-130	1	19	
Benzene	0.0482	0.0490	0.0500	0.0500	96	98	70-125	2	15	
Trichloroethene	0.0500	0.0495	0.0500	0.0500	100	99	70-122	1	14	
Toluene	0.0482	0.0478	0.0500	0.0500	96	96	73-120	1	16	
Chlorobenzene	0.0505	0.0481	0.0500	0.0500	101	96	74-109	5	12	
Surrogate:										
Dibromofluoromethan	e				72	74	63-127			
Toluene-d8					<i>7</i> 5	75	65-129			
4-Bromofluorobenzen	е				76	79	55-121			

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Client ID: FAR3-12.5 Laboratory ID: 06-212-13 Dichlorodifluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloromethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Ichloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Ichloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Rethyl t-Burly Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Ithl					Date	Date	
Laboratory ID: 06-212-13 Dichlorodiffluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloromethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Trichloroffuoromethane ND 0.0053 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Icaton Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodiffluoromethane	Client ID:	FAR3-12.5					
Chloromethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Idodomethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.0011 EPA 8260 7-1-11 7-1-11 <t< td=""><td>Laboratory ID:</td><td>06-212-13</td><td></td><td></td><td></td><td></td><td></td></t<>	Laboratory ID:	06-212-13					
Vinyl Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Trichloroftuoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Acetone ND 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Eburyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 V	Dichlorodifluoromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromomethane ND 0.0011 EPA 8260 7-1-11	Chloromethane	ND	0.0053	EPA 8260	7-1-11	7-1-11	
Chloroethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Trichloroffluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyle Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 <td>Vinyl Chloride</td> <td>ND</td> <td>0.0011</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Vinyl Chloride	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Tricklorofluoromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dickloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 Methyl EButyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Minyl Acetate ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Cisis 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11	Bromomethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0063 EPA 8260 7-1-11 7-1-11 Carbon Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0011 EPA 8260 7-1-11 7-1-11 Q-2-Dichloroptopane ND 0.0011 EPA 8260 7-1-11 <td< td=""><td>Chloroethane</td><td>ND</td><td>0.0053</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></td<>	Chloroethane	ND	0.0053	EPA 8260	7-1-11	7-1-11	
Acetone 0.063 0.0053 EPA 8260 7-1-11 7-1-11 Iodomethane ND 0.0053 EPA 8260 7-1-11 7-1-11 Carbon Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyle Ether ND 0.0011 EPA 8260 7-1-11 7-1-11	Trichlorofluoromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
ND	1,1-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide 0.0083 0.0053 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 Q-2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Bendoethene ND 0.0011 EPA 8260 <	Acetone	0.063	0.0053	EPA 8260	7-1-11	7-1-11	
Methylene Chloride ND 0.0053 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0053 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11	Iodomethane	ND	0.0053	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0053 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11	Carbon Disulfide	0.0083	0.0053	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0053 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0053 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-1-Tichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11	Methylene Chloride	ND	0.0053	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.0053 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0053 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11	(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate ND 0.0053 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0053 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 <	Methyl t-Butyl Ether	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0053 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260	1,1-Dichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.0053 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11	Vinyl Acetate	ND	0.0053	EPA 8260	7-1-11	7-1-11	
2-Butanone ND 0.0053 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 L,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-1	2,2-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromochloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11	(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chloroform ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0053 EPA 8260 7-1-11	2-Butanone	ND	0.0053	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0053 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 <td>Bromochloromethane</td> <td>ND</td> <td>0.0011</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Bromochloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride ND 0.0011 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0053 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1	Chloroform	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0053 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	1,1,1-Trichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Benzene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 1,3-Dichloropropene ND 0.0053 EPA 8260 7-1-11 7-1-11 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	Carbon Tetrachloride	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	1,1-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Trichloroethene ND 0.0011 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	Benzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane ND 0.0011 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	1,2-Dichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Dibromomethane ND 0.0011 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	Trichloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane ND 0.0011 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	1,2-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether ND 0.0053 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	Dibromomethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	Bromodichloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone ND 0.0053 EPA 8260 7-1-11 7-1-11 Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	2-Chloroethyl Vinyl Ether	ND	0.0053	EPA 8260	7-1-11	7-1-11	
Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Toluene ND 0.0053 EPA 8260 7-1-11 7-1-11	Methyl Isobutyl Ketone	ND	0.0053	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene ND 0.0011 EPA 8260 7-1-11 7-1-11	Toluene	ND	0.0053	EPA 8260	7-1-11	7-1-11	
	(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR3-12.5					
Laboratory ID:	06-212-13					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0053	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0021	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	e ND	0.0053	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0053	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	79	63-127				
Toluene-d8	78	65-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

55-121

80

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Acetone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	0.0050	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone		0.0050	EPA 8260	7-1-11	7-1-11	
	ND	0.0030			1 1 1 1	
Toluene	ND ND	0.0050	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.0020	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.0050	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260	7-1-11	7-1-11	
_	Percent Recovery	Control Limits				
Dibromofluoromethane	79	63-127				
Toluene-d8	81	65-129				
4-Bromofluorobenzene	84	55-121				

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	'01S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0542	0.0546	0.0500	0.0500	108	109	70-130	1	19	
Benzene	0.0482	0.0490	0.0500	0.0500	96	98	70-125	2	15	
Trichloroethene	0.0500	0.0495	0.0500	0.0500	100	99	70-122	1	14	
Toluene	0.0482	0.0478	0.0500	0.0500	96	96	73-120	1	16	
Chlorobenzene	0.0505	0.0481	0.0500	0.0500	101	96	74-109	5	12	
Surrogate:										
Dibromofluoromethane	e				72	74	63-127			
Toluene-d8					<i>7</i> 5	<i>7</i> 5	65-129			
4-Bromofluorobenzene)				76	79	55-121			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Onits. Hig/Kg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR1-10.0					
Laboratory ID:	06-212-03	0.040	EDA 0070	7.4.44	7.0.44	
n-Nitrosodimethylamine	ND	0.040	EPA 8270	7-1-11	7-3-11	
Pyridine	ND	0.40	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.040	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.040	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Isophorone	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.40	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0080	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.040	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0080	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0080	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrotoluene	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2-Dinitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Acenaphthylene	ND	0.0080	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Amalista	Dooult	DOL	Mathad	Date	Date	- Flores
Analyte Client ID:	Result FAR1-10.0	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	06-212-03 ND	0.20	EPA 8270	7-1-11	7-3-11	
2,4-Dinitrophenol	0.031			7-1-11 7-1-11		
Acenaphthene		0.0080	EPA 8270/SIM		7-2-11	
4-Nitrophenol	ND ND	0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
2,4-Dinitrotoluene	ND ND	0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
Dibenzofuran		0.040	EPA 8270	7-1-11	7-3-11	
2,3,5,6-Tetrachlorophenol	ND ND	0.040	EPA 8270	7-1-11	7-3-11	
2,3,4,6-Tetrachlorophenol	ND ND	0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
Diethylphthalate		0.20	EPA 8270	7-1-11	7-3-11	
4-Chlorophenyl-phenylether	ND ND	0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
4-Nitroaniline		0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
Fluorene	0.028 ND	0.0080	EPA 8270/SIM	7-1-11 7 1 11	7-2-11	
4,6-Dinitro-2-methylphenol	ND ND	0.20	EPA 8270	7-1-11 7 1 11	7-3-11	
n-Nitrosodiphenylamine		0.040	EPA 8270	7-1-11	7-3-11	
1,2-Diphenylhydrazine	ND ND	0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
4-Bromophenyl-phenylether		0.040	EPA 8270	7-1-11 7 1 11	7-3-11	
Hexachlorobenzene	ND ND	0.040	EPA 8270	7-1-11	7-3-11	
Pentachlorophenol	ND 0.40	0.20	EPA 8270	7-1-11	7-3-11	
Phenanthrene	0.40	0.040	EPA 8270	7-1-11	7-3-11	
Anthracene	0.14 ND	0.040	EPA 8270	7-1-11	7-3-11	
Carbazole	ND ND	0.040	EPA 8270	7-1-11	7-3-11	
Di-n-butylphthalate	ND 0.54	0.40	EPA 8270	7-1-11	7-3-11	
Fluoranthene	0.51	0.040	EPA 8270	7-1-11	7-3-11	
Benzidine	ND	0.40	EPA 8270	7-1-11	7-3-11	
Pyrene	0.42	0.040	EPA 8270	7-1-11	7-3-11	
Butylbenzylphthalate	ND	0.40	EPA 8270	7-1-11	7-3-11	
bis-2-Ethylhexyladipate	ND	0.040	EPA 8270	7-1-11	7-3-11	
3,3'-Dichlorobenzidine	ND	0.40	EPA 8270	7-1-11	7-3-11	
Benzo[a]anthracene	0.17	0.040	EPA 8270	7-1-11	7-3-11	
Chrysene	0.19	0.040	EPA 8270	7-1-11	7-3-11	
bis(2-Ethylhexyl)phthalate	ND	0.040	EPA 8270	7-1-11	7-3-11	
Di-n-octylphthalate	ND	0.040	EPA 8270	7-1-11	7-3-11	
Benzo[b]fluoranthene	0.13	0.040	EPA 8270	7-1-11	7-3-11	
Benzo(j,k)fluoranthene	0.16	0.040	EPA 8270	7-1-11	7-3-11	
Benzo[a]pyrene	0.18	0.040	EPA 8270	7-1-11	7-3-11	
Indeno[1,2,3-cd]pyrene	0.12	0.040	EPA 8270	7-1-11	7-3-11	
Dibenz[a,h]anthracene	0.041	0.0080	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	0.14	0.040	EPA 8270	7-1-11	7-3-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	70	30 - 97				
Phenol-d6	80	40 - 104				
Nitrobenzene-d5	78 70	35 - 102				
2-Fluorobiphenyl	76	44 - 97				
2,4,6-Tribromophenol	91 95	41 - 110 52 - 107				
Terphenyl-d14	85	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Onits. hig/kg	5	201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR3-12.5					
Laboratory ID:	06-212-13	0.044	EDA 0070	7.4.44	7044	
n-Nitrosodimethylamine	ND	0.041	EPA 8270	7-1-11	7-3-11	
Pyridine	ND	0.41	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.041	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.041	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.041	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.041	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.041	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Isophorone	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.41	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0082	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.041	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0082	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrotoluene	ND	0.041	EPA 8270	7-1-11	7-3-11	
1,2-Dinitrobenzene	ND	0.041	EPA 8270	7-1-11	7-3-11	
Acenaphthylene	ND	0.0082	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.041	EPA 8270	7-1-11	7-3-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte Result PQL Method Prepared Analyzed Flags Client ID: FAR3-12.5 Laboratory ID: 06-212-13 Service of the control of
Laboratory ID: 06-212-13 2,4-Dinitrophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Acenaphthene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 4-Nitrophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 2,3-5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylpheno
2,4-Dinitrophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Acenaphthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4-Nitrophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 Dibenzofuran ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,6,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,6,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.041 EPA 8270/SIM 7-1-11
Acenaphthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4-Nitrophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 Dibenzofuran ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.042 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenylamine ND 0.041 EPA 8270 7-1-11
4-Nitrophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 Dibenzofuran ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 Diethylphthalate ND 0.20 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitrosodiphenylamine ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenol ND 0.041 EPA 8270 <
2,4-Dinitrotoluene ND 0.041 EPA 8270 7-1-11 7-3-11 Dibenzofuran ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 Uethylphthalate ND 0.20 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.041 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11
Dibenzofuran ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 Diethylphthalate ND 0.20 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.041 EPA 8270 7-1-11 7-3-11 4,6-Dinitro-2-methylphenol ND 0.041 EPA 8270
2,3,5,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 Diethylphthalate ND 0.20 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 (7-1-11) 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.041 EPA 8270 7-1-11 7-3-11 He-A 6-Prophylphylphylphylphylphylphylphylphylphyl
2,3,4,6-Tetrachlorophenol ND 0.041 EPA 8270 7-1-11 7-3-11 Diethylphthalate ND 0.20 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 1,2-Diphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-1
Diethylphthalate ND 0.20 EPA 8270 7-1-11 7-3-11 4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 n-Nitrosodiphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270/SIM 7-1-11 7-2-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-
4-Chlorophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 n-Nitrosodiphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.041 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.41 EPA 8270 7-1-11
4-Nitroaniline ND 0.041 EPA 8270 7-1-11 7-3-11 Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 n-Nitrosodiphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.041 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.41 EPA 8270/SIM 7-1-11 7-3-11
Fluorene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 n-Nitrosodiphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Benzidine ND 0.41 EPA 8270/SIM 7-1-11 7-3-
4,6-Dinitro-2-methylphenol ND 0.20 EPA 8270 7-1-11 7-3-11 n-Nitrosodiphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270/SIM 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Fluoranthene ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Benzidine ND 0.0082 EPA 8270/SIM 7-1-11
n-Nitrosodiphenylamine ND 0.041 EPA 8270 7-1-11 7-3-11 1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Benzidine ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Butylbenzylphthalate ND 0.41 EPA 8270/SIM 7-1-11 7-
1,2-Diphenylhydrazine ND 0.041 EPA 8270 7-1-11 7-3-11 4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
4-Bromophenyl-phenylether ND 0.041 EPA 8270 7-1-11 7-3-11 Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270/SIM 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-3-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Hexachlorobenzene ND 0.041 EPA 8270 7-1-11 7-3-11 Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Pentachlorophenol ND 0.20 EPA 8270 7-1-11 7-3-11 Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Phenanthrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Carbazole ND 0.041 EPA 8270 7-1-11 7-3-11 Di-n-butylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Di-n-butylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11 Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Benzidine ND 0.41 EPA 8270 7-1-11 7-3-11 Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11 Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
Butylbenzylphthalate ND 0.41 EPA 8270 7-1-11 7-3-11
, ,,
UB-7 HIVINGAVIQUIDATE IND U.U41 EFA 0//U /-1-11 /-0-11
3,3'-Dichlorobenzidine ND 0.41 EPA 8270 7-1-11 7-3-11
Benzo[a]anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Chrysene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
bis(2-Ethylhexyl)phthalate ND 0.041 EPA 8270 7-1-11 7-3-11
Di-n-octylphthalate ND 0.041 EPA 8270 7-1-11 7-3-11
Benzo[b]fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Benzo(j,k)fluoranthene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Benzo[a]pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Indeno[1,2,3-cd]pyrene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Dibenz[a,h]anthracene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Benzo[g,h,i]perylene ND 0.0082 EPA 8270/SIM 7-1-11 7-2-11
Surrogate: Percent Recovery Control Limits
2-Fluorophenol 63 30 - 97
Phenol-d6 73 40 - 104
Nitrobenzene-d5 71 35 - 102
2-Fluorobiphenyl 74 44 - 97
2,4,6-Tribromophenol 88 41 - 110
Terphenyl-d14 84 53 - 107

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Acaba	D K	201	88 .41 . 1	Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR17-8.0					
Laboratory ID:	06-212-26	2 2 4 2	ED4 0070		7011	
n-Nitrosodimethylamine	ND	0.046	EPA 8270	7-1-11	7-3-11	
Pyridine	ND	0.46	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.046	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.046	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.046	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.046	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.046	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.046	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.046	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Isophorone	ND	0.046	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.46	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.046	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.046	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.046	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrotoluene	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,2-Dinitrobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Acenaphthylene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.046	EPA 8270	7-1-11	7-2-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyta	Popult	PQL	Method	Date Proposed	Date	Elege
Analyte Client ID:	Result FAR17-8.0	FQL	Metriou	Prepared	Analyzed	Flags
Laboratory ID:	06-212-26					
2,4-Dinitrophenol	ND	0.23	EPA 8270	7-1-11	7-3-11	
Acenaphthene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,4-Dinitrotoluene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Dibenzofuran	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,3,5,6-Tetrachlorophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
2,3,4,6-Tetrachlorophenol	ND	0.046	EPA 8270	7-1-11	7-3-11	
Diethylphthalate	ND	0.23	EPA 8270	7-1-11	7-3-11	
4-Chlorophenyl-phenylether		0.046	EPA 8270	7-1-11	7-3-11	
4-Nitroaniline	ND	0.046	EPA 8270	7-1-11	7-3-11	
Fluorene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.23	EPA 8270	7-1-11	7-3-11	
n-Nitrosodiphenylamine	ND	0.046	EPA 8270	7-1-11	7-3-11	
1,2-Diphenylhydrazine	ND	0.046	EPA 8270	7-1-11	7-3-11	
4-Bromophenyl-phenylether		0.046	EPA 8270	7-1-11	7-3-11	
Hexachlorobenzene	ND	0.046	EPA 8270	7-1-11	7-3-11	
Pentachlorophenol	ND	0.23	EPA 8270	7-1-11	7-3-11	
Phenanthrene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Anthracene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Carbazole	ND	0.046	EPA 8270	7-1-11	7-3-11	
Di-n-butylphthalate	ND	0.46	EPA 8270	7-1-11	7-3-11	
Fluoranthene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Benzidine	ND	0.46	EPA 8270	7-1-11	7-3-11	
Pyrene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Butylbenzylphthalate	ND	0.46	EPA 8270	7-1-11	7-3-11	
bis-2-Ethylhexyladipate	ND	0.046	EPA 8270	7-1-11	7-3-11	
3,3'-Dichlorobenzidine	ND	0.46	EPA 8270	7-1-11	7-3-11	
Benzo[a]anthracene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Chrysene	0.012	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
bis(2-Ethylhexyl)phthalate	ND	0.046	EPA 8270	7-1-11	7-3-11	
Di-n-octylphthalate	ND	0.046	EPA 8270	7-1-11	7-3-11	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[a]pyrene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Indeno[1,2,3-cd]pyrene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	ND	0.0092	EPA 8270/SIM	7-1-11	7-2-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	80	30 - 97				
Phenol-d6	93	40 - 104				
Nitrobenzene-d5	86	35 - 102				
2-Fluorobiphenyl	79	44 - 97				
2,4,6-Tribromophenol	89	41 - 110				
Terphenyl-d14	91	53 - 107				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Soil Units: mg/Kg

Onits. hig/kg	5	201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR22-10.0					
Laboratory ID:	06-212-45	0.040	EDA 0070	7.4.44	7044	
n-Nitrosodimethylamine	ND	0.040	EPA 8270	7-1-11	7-3-11	
Pyridine	ND	0.40	EPA 8270	7-1-11	7-3-11	
Phenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
Aniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethyl)ether	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Chlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,3-Dichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,4-Dichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Benzyl alcohol	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2-Dichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Methylphenol (o-Cresol)	ND	0.040	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroisopropyl)ether	ND	0.040	EPA 8270	7-1-11	7-3-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.040	EPA 8270	7-1-11	7-3-11	
n-Nitroso-di-n-propylamine	ND	0.040	EPA 8270	7-1-11	7-3-11	
Hexachloroethane	ND	0.040	EPA 8270	7-1-11	7-3-11	
Nitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Isophorone	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Nitrophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4-Dimethylphenol	ND	0.40	EPA 8270	7-1-11	7-3-11	
bis(2-Chloroethoxy)methane	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4-Dichlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2,4-Trichlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Naphthalene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
Hexachlorobutadiene	ND	0.040	EPA 8270	7-1-11	7-3-11	
4-Chloro-3-methylphenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4,6-Trichlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,3-Dichloroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4,5-Trichlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Chloronaphthalene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2-Nitroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,4-Dinitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Dimethylphthalate	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,3-Dinitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,6-Dinitrotoluene	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2-Dinitrobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Acenaphthylene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyto	Result	PQL	Method	Date Prepared	Date Analyzed	Flage
Analyte Client ID:	FAR22-10.0	FQL	Metriou	Frepareu	Allalyzeu	Flags
Laboratory ID:	06-212-45					
2,4-Dinitrophenol	ND	0.20	EPA 8270	7-1-11	7-3-11	
Acenaphthene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,4-Dinitrotoluene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Dibenzofuran	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,3,5,6-Tetrachlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
2,3,4,6-Tetrachlorophenol	ND	0.040	EPA 8270	7-1-11	7-3-11	
Diethylphthalate	ND	0.20	EPA 8270	7-1-11	7-3-11	
4-Chlorophenyl-phenylether		0.040	EPA 8270	7-1-11	7-3-11	
4-Nitroaniline	ND	0.040	EPA 8270	7-1-11	7-3-11	
Fluorene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.20	EPA 8270	7-1-11	7-3-11	
n-Nitrosodiphenylamine	ND	0.040	EPA 8270	7-1-11	7-3-11	
1,2-Diphenylhydrazine	ND	0.040	EPA 8270	7-1-11	7-3-11	
4-Bromophenyl-phenylether		0.040	EPA 8270	7-1-11	7-3-11	
Hexachlorobenzene	ND	0.040	EPA 8270	7-1-11	7-3-11	
Pentachlorophenol	ND	0.20	EPA 8270	7-1-11	7-3-11	
Phenanthrene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Anthracene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Carbazole	ND	0.040	EPA 8270	7-1-11	7-3-11	
Di-n-butylphthalate	ND	0.40	EPA 8270	7-1-11	7-3-11	
Fluoranthene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Benzidine	ND	0.40	EPA 8270	7-1-11	7-3-11	
Pyrene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Butylbenzylphthalate	ND	0.40	EPA 8270	7-1-11	7-3-11	
bis-2-Ethylhexyladipate	ND	0.040	EPA 8270	7-1-11	7-3-11	
3,3'-Dichlorobenzidine	ND	0.40	EPA 8270	7-1-11	7-3-11	
Benzo[a]anthracene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Chrysene	0.0083	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
bis(2-Ethylhexyl)phthalate	ND	0.040	EPA 8270	7-1-11	7-3-11	
Di-n-octylphthalate	ND	0.040	EPA 8270	7-1-11	7-3-11	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Benzo(j,k)fluoranthene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Indeno[1,2,3-cd]pyrene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	ND	0.0079	EPA 8270/SIM	7-1-11	7-2-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	78	30 - 97				
Phenol-d6	87	40 - 104				
Nitrobenzene-d5	79	35 - 102				
2-Fluorobiphenyl	<i>7</i> 5	44 - 97				
2,4,6-Tribromophenol	98	41 - 110				
Terphenyl-d14	91	53 - 107				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701S1					
n-Nitrosodimethylamine	ND	0.033	EPA 8270	7-1-11	7-2-11	
Pyridine	ND	0.33	EPA 8270	7-1-11	7-2-11	
Phenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
Aniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroethyl)ether	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Chlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,3-Dichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,4-Dichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Benzyl alcohol	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,2-Dichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Methylphenol (o-Cresol)	ND	0.033	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroisopropyl)ether	ND	0.033	EPA 8270	7-1-11	7-2-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.033	EPA 8270	7-1-11	7-2-11	
n-Nitroso-di-n-propylamine	ND	0.033	EPA 8270	7-1-11	7-2-11	
Hexachloroethane	ND	0.033	EPA 8270	7-1-11	7-2-11	
Nitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Isophorone	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Nitrophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4-Dimethylphenol	ND	0.33	EPA 8270	7-1-11	7-2-11	
bis(2-Chloroethoxy)methane	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4-Dichlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,2,4-Trichlorobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Naphthalene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
Hexachlorobutadiene	ND	0.033	EPA 8270	7-1-11	7-2-11	
4-Chloro-3-methylphenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4,6-Trichlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,3-Dichloroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4,5-Trichlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Chloronaphthalene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2-Nitroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,4-Dinitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Dimethylphthalate	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,3-Dinitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,6-Dinitrotoluene	ND	0.033	EPA 8270	7-1-11	7-2-11	
1,2-Dinitrobenzene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0701S1					
2,4-Dinitrophenol	ND	0.17	EPA 8270	7-1-11	7-2-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,4-Dinitrotoluene	ND	0.033	EPA 8270	7-1-11	7-2-11	
Dibenzofuran	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,3,5,6-Tetrachlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
2,3,4,6-Tetrachlorophenol	ND	0.033	EPA 8270	7-1-11	7-2-11	
Diethylphthalate	ND	0.17	EPA 8270	7-1-11	7-2-11	
4-Chlorophenyl-phenylether		0.033	EPA 8270	7-1-11	7-2-11	
4-Nitroaniline	ND	0.033	EPA 8270	7-1-11	7-2-11	
Fluorene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	0.0007	EPA 8270	7-1-11	7-2-11 7-2-11	
n-Nitrosodiphenylamine	ND	0.033	EPA 8270	7-1-11	7-2-11 7-2-11	
1,2-Diphenylhydrazine	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11	
4-Bromophenyl-phenylether		0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Hexachlorobenzene	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Pentachlorophenol	ND	0.17	EPA 8270	7-1-11	7-2-11 7-2-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Anthracene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11	
Carbazole	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Di-n-butylphthalate	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Benzidine	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Pyrene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Butylbenzylphthalate	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
bis-2-Ethylhexyladipate	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
3,3'-Dichlorobenzidine	ND	0.33	EPA 8270	7-1-11 7-1-11	7-2-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Chrysene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
bis(2-Ethylhexyl)phthalate	ND	0.033	EPA 8270	7-1-11 7-1-11	7-2-11 7-2-11	
Di-n-octylphthalate	ND	0.033	EPA 8270	7-1-11	7-2-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	7-1-11	7-2-11 7-2-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Indeno[1,2,3-cd]pyrene	ND ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Dibenz[a,h]anthracene	ND ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Benzo[g,h,i]perylene	ND ND	0.0067	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Surrogate:	Percent Recovery	Control Limits	LI A 0270/3IIVI	7-1-11	7-2-11	
2-Fluorophenol	72	30 - 97				
Phenol-d6	72 79	40 - 104				
Nitrobenzene-d5	79 82	35 - 102				
2-Fluorobiphenyl	84	44 - 97				
2,4,6-Tribromophenol	91	41 - 110				
Terphenyl-d14	97	53 - 107				
rorphonyr-u r -r	31	00 - 101				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											_
Laboratory ID:	06-18	37-07									
	MS	MSD	MS	MSD		MS	MSD				
Phenol	1.05	1.03	1.33	1.33	ND	79	77	41 - 106	2	29	
2-Chlorophenol	1.05	1.02	1.33	1.33	ND	79	77	43 - 104	3	36	
1,4-Dichlorobenzene	0.441	0.426	0.667	0.667	ND	66	64	25 - 94	3	40	
n-Nitroso-di-n-propylamine	0.478	0.476	0.667	0.667	ND	72	71	40 - 100	0	34	
1,2,4-Trichlorobenzene	0.514	0.509	0.667	0.667	ND	77	76	39 - 86	1	34	
4-Chloro-3-methylphenol	1.14	1.13	1.33	1.33	ND	86	85	60 - 102	1	25	
Acenaphthene	0.527	0.510	0.667	0.667	ND	79	76	54 - 94	3	23	
4-Nitrophenol	1.09	1.08	1.33	1.33	ND	82	81	30 - 133	1	25	
2,4-Dinitrotoluene	0.400	0.343	0.667	0.667	ND	60	51	46 - 107	15	26	
Pentachlorophenol	1.51	1.47	1.33	1.33	0.433	81	78	54 - 111	3	29	
Pyrene	0.738	0.696	0.667	0.667	0.172	85	79	54 - 108	6	21	
Surrogate:											
2-Fluorophenol						70	68	30 - 97			
Phenol-d6						77	77	40 - 104			
Nitrobenzene-d5						77	76	35 - 102			
2-Fluorobiphenyl						81	79	44 - 97			
2,4,6-Tribromophenol						100	99	41 - 110			
Terphenyl-d14						92	92	53 - 107			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR1-062211-GW			-	-	
Laboratory ID:	06-212-05					
n-Nitrosodimethylamine	ND	0.96	EPA 8270	7-1-11	7-7-11	
Pyridine	ND	0.96	EPA 8270	7-1-11	7-7-11	
Phenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
Aniline	ND	4.8	EPA 8270	7-1-11	7-7-11	
bis(2-Chloroethyl)ether	ND	0.96	EPA 8270	7-1-11	7-7-11	
2-Chlorophenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,3-Dichlorobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,4-Dichlorobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
Benzyl alcohol	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,2-Dichlorobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
2-Methylphenol (o-Cresol)	ND	0.96	EPA 8270	7-1-11	7-7-11	
bis(2-Chloroisopropyl)ether	ND	0.96	EPA 8270	7-1-11	7-7-11	
(3+4)-Methylphenol (m,p-Cresol)) ND	0.96	EPA 8270	7-1-11	7-7-11	
n-Nitroso-di-n-propylamine	ND	0.96	EPA 8270	7-1-11	7-7-11	
Hexachloroethane	ND	0.96	EPA 8270	7-1-11	7-7-11	
Nitrobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
Isophorone	ND	0.96	EPA 8270	7-1-11	7-7-11	
2-Nitrophenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
2,4-Dimethylphenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
bis(2-Chloroethoxy)methane	ND	0.96	EPA 8270	7-1-11	7-7-11	
2,4-Dichlorophenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,2,4-Trichlorobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
Naphthalene	ND	0.096	EPA 8270/SIM	7-1-11	7-6-11	
4-Chloroaniline	ND	0.96	EPA 8270	7-1-11	7-7-11	
Hexachlorobutadiene	ND	0.96	EPA 8270	7-1-11	7-7-11	
4-Chloro-3-methylphenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
2-Methylnaphthalene	ND	0.096	EPA 8270/SIM	7-1-11	7-6-11	
1-Methylnaphthalene	ND	0.096	EPA 8270/SIM	7-1-11	7-6-11	
Hexachlorocyclopentadiene	ND	0.96	EPA 8270	7-1-11	7-7-11	
2,4,6-Trichlorophenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
2,3-Dichloroaniline	ND	0.96	EPA 8270	7-1-11	7-7-11	
2,4,5-Trichlorophenol	ND	0.96	EPA 8270	7-1-11	7-7-11	
2-Chloronaphthalene	ND	0.96	EPA 8270	7-1-11	7-7-11	
2-Nitroaniline	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,4-Dinitrobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
Dimethylphthalate	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,3-Dinitrobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
2,6-Dinitrotoluene	ND	0.96	EPA 8270	7-1-11	7-7-11	
1,2-Dinitrobenzene	ND	0.96	EPA 8270	7-1-11	7-7-11	
Acenaphthylene	ND	0.096	EPA 8270/SIM	7-1-11	7-6-11	
3-Nitroaniline	ND	0.96	EPA 8270	7-1-11	7-7-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Client ID: FAR1-062211-GW Fall	Analyta	Dogult.	POL	Mathad	Date	Date	Flores
Laboratory ID:			PQL	Wethou	Prepared	Analyzeu	riags
2,4-Dinitrophenol ND 4.8 EPA 8270 7-1-11 7-7-11 A-cenaphthene ND 0.096 EPA 8270 7-1-11 7-6-11 4-Nitrophenol ND 0.96 EPA 8270 7-1-11 7-7-11 2,4-Dinitrotoluene ND 0.96 EPA 8270 7-1-11 7-7-11 2,3,5,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 2,3,4,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 Dietrylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 4-Chlorophenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 4-Nitrosalinie ND 0.96 EPA 8270 7-1-11 7-7-11 Fluorene ND 0.96 EPA 8270 7-1-11 7-7-11 Horosphenylphinydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenyllphydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Acenaphthene ND 0.96			10	EDA 9270	7 1 11	7 7 11	
A-Nitrophenol ND 0.96 EPA 8270 7-1-11 7-7-11							
2.4-Dinitrotoluene ND 0.96 EPA 8270 7-1-11 7-7-11 Dibenzofuran ND 0.96 EPA 8270 7-1-11 7-7-11 2,3.5,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 1,3.4,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 1,0.1,1.1,1.1,1.1,1.1,1.1,1.1,1.1,1.1,1.							
Dibenzofuran ND							
2,3,5,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 2,3,4,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 Diethylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 4-Nitroaniline ND 0.96 EPA 8270 7-1-11 7-7-11 Fluorene ND 0.96 EPA 8270 7-1-11 7-7-11 Fluorene ND 0.96 EPA 8270 7-1-11 7-7-11 Fluorene ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenyl-phylogher ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenyl-phylogher ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenyl-phylogher ND 0.96 EPA 8270 7-1-11 7-7-11							
2,3,4,6-Tetrachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 Diethylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 4-Chlorophenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 4-Nitroaniline ND 0.96 EPA 8270 7-1-11 7-7-11 Fluorene ND 0.096 EPA 8270/SIM 7-1-11 7-7-11 4,6-Dinitro-2-methylphenol ND 4.8 EPA 8270 7-1-11 7-7-11 1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 4-Bromophenyl-phenylether ND 0.96 EPA 8270							
Diethylphthalate	-						
4-Chirophenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 4-Nitroanilline ND 0.96 EPA 8270 7-1-11 7-7-11 Fluorene ND 0.096 EPA 8270 7-1-11 7-6-11 4,6-Dinitro-2-methylphenol ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 4-Bromophenyl-phenylether ND 0.96 EPA 8270/SIM	-						
A-Nitroaniline							
Fluorene							
4,6-Dinitro-2-methylphenol ND 4.8 EPA 8270 7-1-11 7-7-11 n-Nitrosodiphenylamine ND 0.96 EPA 8270 7-1-11 7-7-11 1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 4-Bromophenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 Hexachlorobenzene ND 0.96 EPA 8270 7-1-11 7-7-11 Pentachlorophenol ND 0.96 EPA 8270 7-1-11 7-7-11 Pentachlorophenol ND 0.96 EPA 8270'SIM 7-1-11 7-7-11 Phenanthrene ND 0.096 EPA 8270'SIM 7-1-11 7-6-11 Anthracene ND 0.096 EPA 8270'SIM 7-1-11 7-6-11 Carbazole ND 0.96 EPA 8270'T-11 7-7-11 Pin-butylphthalate ND 0.96 EPA 8270'SIM 7-1-11 7-6-11 Benzidine ND 0.96 EPA 8270'SIM 7-1-11 7-7-11							
N-Nitrosodiphenylamine							
1,2-Diphenylhydrazine ND 0.96 EPA 8270 7-1-11 7-7-11 4-Bromophenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 Hexachlorobenzene ND 0.96 EPA 8270 7-1-11 7-7-11 Pentachlorophenol ND 0.96 EPA 8270/SIM 7-1-11 7-7-11 Phenanthrene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Anthracene ND 0.96 EPA 8270 7-1-11 7-6-11 Carbazole ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-butylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Fluoranthene ND 0.96 EPA 8270/SIM 7-1-11 7-7-11 Benzidine ND 0.96 EPA 8270/SIM 7-1-11 7-7-11 Pyrene ND 0.96 EPA 8270 7-1-11 7-7-11 Butylbenzylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11							
A-Bromophenyl-phenylether ND 0.96 EPA 8270 7-1-11 7-7-11 Hexachlorobenzene ND 0.96 EPA 8270 7-1-11 7-7-11 7-7-11 Phenanthrophenol ND 4.8 EPA 8270 7-1-11 7-7-11 7-6-11 7-7-11 Phenanthrene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 7-6-11 7-6-11 7-6-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7-11 7-6-11 7-7							
Hexachlorobenzene							
Pentachlorophenol ND							
Phenanthrene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11							
Anthracene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Carbazole ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-butylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Fluoranthene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Benzidine ND 4.8 EPA 8270/SIM 7-1-11 7-7-11 Pyrene ND 0.096 EPA 8270/SIM 7-1-11 7-7-11 Butylbenzylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 bis-2-Ethylhexyladipate ND 0.96 EPA 8270 7-1-11 7-7-11 bis-2-Ethylhexyladipate ND 0.96 EPA 8270 7-1-11 7-7-11 benzo[a]anthracene ND 0.096 EPA 8270 7-1-11 7-7-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 bis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-7-11	•						
Carbazole ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-butylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Fluoranthene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Benzidine ND 4.8 EPA 8270/SIM 7-1-11 7-7-11 Pyrene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Butylbenzylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 bis-2-Ethylhexyladipate ND 0.96 EPA 8270 7-1-11 7-7-11 3,3'-Dichlorobenzidine ND 0.96 EPA 8270/SIM 7-1-11 7-7-11 Benzo[a]anthracene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.96 EPA 8270/SIM 7-1-11 7-6-11 Di-n-octylphthalate ND 0.96 EPA 8270/SIM 7-1-11 7-7-11							
Di-n-butylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Fluoranthene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Benzidine ND 4.8 EPA 8270 7-1-11 7-7-11 Pyrene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Butylbenzylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 bis-2-Ethylhexyladipate ND 0.96 EPA 8270 7-1-11 7-7-11 3,3'-Dichlorobenzidine ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[ajanthracene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Diis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270/SIM 7-1-11 7-6-11							
Fluoranthene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11							
Benzidine							
Pyrene							
Butylbenzylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 bis-2-Ethylhexyladipate ND 0.96 EPA 8270 7-1-11 7-7-11 3,3'-Dichlorobenzidine ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[a]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-6-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.96 EPA 8270/SIM 7-1-11 7-6-11 Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/S							
bis-2-Ethylhexyladipate ND 0.96 EPA 8270 7-1-11 7-7-11 3,3'-Dichlorobenzidine ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[a]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 bis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270/SIM 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM<	=						
3,3'-Dichlorobenzidine ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[a]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 bis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 10 - 8							
Benzo[a]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 bis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorophiphenyl 62							
Chrysene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 bis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62							
bis(2-Ethylhexyl)phthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo(j,k)fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 24 - 108 2,4,6-Tribromophenol 72 39 - 118				EPA 8270/SIM			
Di-n-octylphthalate ND 0.96 EPA 8270 7-1-11 7-7-11 Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo(j,k)fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	=			EPA 8270/SIM	7-1-11		
Benzo[b]fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo(j,k)fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118		ND		EPA 8270			
Benzo(j,k)fluoranthene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118		ND	0.96	EPA 8270	7-1-11	7-7-11	
Benzo[a]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118			0.0096	EPA 8270/SIM		7-6-11	
Indeno[1,2,3-cd]pyrene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270/SIM	7-1-11		
Dibenz[a,h]anthracene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	Benzo[a]pyrene	ND	0.0096	EPA 8270/SIM		7-6-11	
Benzo[g,h,i]perylene ND 0.0096 EPA 8270/SIM 7-1-11 7-6-11 Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	Indeno[1,2,3-cd]pyrene		0.0096	EPA 8270/SIM	7-1-11		
Surrogate: Percent Recovery Control Limits 2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	Dibenz[a,h]anthracene	ND	0.0096	EPA 8270/SIM	7-1-11	7-6-11	
2-Fluorophenol 37 18 - 86 Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	Benzo[g,h,i]perylene	ND	0.0096	EPA 8270/SIM	7-1-11	7-6-11	
Phenol-d6 29 10 - 88 Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	Surrogate:	Percent Recovery	Control Limits				
Nitrobenzene-d5 53 37 - 112 2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118	•						
2-Fluorobiphenyl 62 42 - 108 2,4,6-Tribromophenol 72 39 - 118							
2,4,6-Tribromophenol 72 39 - 118		53					
, ,	, ,		42 - 108				
Terphenyl-d14 78 49 - 122		72					
	Terphenyl-d14	78	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR3-062211-GW					
Laboratory ID:	06-212-15					
n-Nitrosodimethylamine	ND	1.0	EPA 8270	7-1-11	7-8-11	
Pyridine	ND	1.0	EPA 8270	7-1-11	7-8-11	
Phenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
Aniline	ND	5.0	EPA 8270	7-1-11	7-8-11	
bis(2-Chloroethyl)ether	ND	1.0	EPA 8270	7-1-11	7-8-11	
2-Chlorophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,3-Dichlorobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,4-Dichlorobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
Benzyl alcohol	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,2-Dichlorobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
2-Methylphenol (o-Cresol)	ND	1.0	EPA 8270	7-1-11	7-8-11	
bis(2-Chloroisopropyl)ether	ND	1.0	EPA 8270	7-1-11	7-8-11	
(3+4)-Methylphenol (m,p-Cresol) ND	1.0	EPA 8270	7-1-11	7-8-11	
n-Nitroso-di-n-propylamine	ND	1.0	EPA 8270	7-1-11	7-8-11	
Hexachloroethane	ND	1.0	EPA 8270	7-1-11	7-8-11	
Nitrobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
Isophorone	ND	1.0	EPA 8270	7-1-11	7-8-11	
2-Nitrophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,4-Dimethylphenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
bis(2-Chloroethoxy)methane	. ND	1.0	EPA 8270	7-1-11	7-8-11	
2,4-Dichlorophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
Naphthalene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11	
4-Chloroaniline	ND	1.0	EPA 8270	7-1-11	7-8-11	
Hexachlorobutadiene	ND	1.0	EPA 8270	7-1-11	7-8-11	
4-Chloro-3-methylphenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11	
Hexachlorocyclopentadiene	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,4,6-Trichlorophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,3-Dichloroaniline	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,4,5-Trichlorophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
2-Chloronaphthalene	ND	1.0	EPA 8270	7-1-11	7-8-11	
2-Nitroaniline	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,4-Dinitrobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
Dimethylphthalate	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,3-Dinitrobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,6-Dinitrotoluene	ND	1.0	EPA 8270	7-1-11	7-8-11	
1,2-Dinitrobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11	
3-Nitroaniline	ND	1.0	EPA 8270	7-1-11	7-8-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FAR3-062211-GW	FQL	Wethou	Fiepaieu	Allalyzeu	ı ıays
Laboratory ID:	06-212-15					
2,4-Dinitrophenol	ND	5.0	EPA 8270	7-1-11	7-8-11	
Acenaphthene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11	
4-Nitrophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,4-Dinitrotoluene	ND	1.0	EPA 8270	7-1-11	7-8-11	
Dibenzofuran	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,3,5,6-Tetrachlorophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
2,3,4,6-Tetrachlorophenol	ND	1.0	EPA 8270	7-1-11	7-8-11	
Diethylphthalate	ND	1.0	EPA 8270	7-1-11	7-8-11	
4-Chlorophenyl-phenylether		1.0	EPA 8270	7-1-11	7-8-11	
4-Nitroaniline	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
Fluorene	ND	0.10	EPA 8270/SIM	7-1-11 7-1-11	7-6-11	
4,6-Dinitro-2-methylphenol	ND	5.0	EPA 8270	7-1-11 7-1-11	7-8-11	
n-Nitrosodiphenylamine	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11	
1,2-Diphenylhydrazine	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
4-Bromophenyl-phenylether		1.0	EPA 8270	7-1-11 7-1-11	7-8-11	
Hexachlorobenzene	ND	1.0	EPA 8270	7-1-11	7-8-11 7-8-11	
Pentachlorophenol	ND	5.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	7-1-11 7-1-11	7-6-11	
Anthracene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11 7-6-11	
Carbazole	ND	1.0	EPA 8270	7-1-11	7-8-11	
Di-n-butylphthalate	ND	1.0	EPA 8270	7-1-11	7-8-11 7-8-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	7-1-11 7-1-11	7-6-11 7-6-11	
Benzidine	ND	5.0	EPA 8270	7-1-11	7-8-11	
Pyrene	ND	0.10	EPA 8270/SIM	7-1-11	7-6-11 7-6-11	
Butylbenzylphthalate	ND	1.0	EPA 8270	7-1-11	7-8-11	
bis-2-Ethylhexyladipate	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
3,3'-Dichlorobenzidine	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
Benzo[a]anthracene	ND ND	0.010	EPA 8270/SIM	7-1-11 7-1-11	7-6-11 7-6-11	
Chrysene	ND ND	0.010	EPA 8270/SIM	7-1-11 7-1-11	7-6-11 7-6-11	
bis(2-Ethylhexyl)phthalate	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
Di-n-octylphthalate	ND	1.0	EPA 8270	7-1-11 7-1-11	7-8-11 7-8-11	
Benzo[b]fluoranthene	ND ND	0.010		7-1-11 7-1-11		
	ND ND		EPA 8270/SIM		7-6-11 7-6-11	
Benzo(j,k)fluoranthene	ND ND	0.010 0.010	EPA 8270/SIM EPA 8270/SIM	7-1-11 7-1-11	7-6-11 7-6-11	
Benzo[a]pyrene					-	
Indeno[1,2,3-cd]pyrene	ND ND	0.010	EPA 8270/SIM EPA 8270/SIM	7-1-11 7-1-11	7-6-11 7-6-11	
Dibenz[a,h]anthracene	ND ND	0.010			_	
Benzo[g,h,i]perylene		0.010	EPA 8270/SIM	7-1-11	7-6-11	
Surrogate:	Percent Recovery	Control Limits 18 - 86				
2-Fluorophenol Phenol-d6	<i>41</i> 33	18 - 86 10 - 88				
Nitrobenzene-d5	59	37 - 112				
2-Fluorobiphenyl	69	37 - 112 42 - 108				
2,4,6-Tribromophenol	69 78	42 - 108 39 - 118				
Terphenyl-d14	76 82	39 - 116 49 - 122				
i erprieriyi-a i 4	02	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Amalada	Danell	DOL	Madhad	Date	Date	El
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701W1					
n-Nitrosodimethylamine	ND	0.50	EPA 8270	7-1-11	7-1-11	
Pyridine	ND	0.50	EPA 8270	7-1-11	7-1-11	
Phenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
Aniline	ND	2.5	EPA 8270	7-1-11	7-1-11	
bis(2-Chloroethyl)ether	ND	0.50	EPA 8270	7-1-11	7-1-11	
2-Chlorophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
Benzyl alcohol	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
2-Methylphenol (o-Cresol)	ND	0.50	EPA 8270	7-1-11	7-1-11	
bis(2-Chloroisopropyl)ether	ND	0.50	EPA 8270	7-1-11	7-1-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	0.50	EPA 8270	7-1-11	7-1-11	
n-Nitroso-di-n-propylamine	ND	0.50	EPA 8270	7-1-11	7-1-11	
Hexachloroethane	ND	0.50	EPA 8270	7-1-11	7-1-11	
Nitrobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
Isophorone	ND	0.50	EPA 8270	7-1-11	7-1-11	
2-Nitrophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,4-Dimethylphenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
bis(2-Chloroethoxy)methane	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,4-Dichlorophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
Naphthalene	ND	0.050	EPA 8270/SIM	7-1-11	7-2-11	
4-Chloroaniline	ND	0.50	EPA 8270	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.50	EPA 8270	7-1-11	7-1-11	
4-Chloro-3-methylphenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
2-Methylnaphthalene	ND	0.050	EPA 8270/SIM	7-1-11	7-2-11	
1-Methylnaphthalene	ND	0.050	EPA 8270/SIM	7-1-11	7-2-11	
Hexachlorocyclopentadiene	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,4,6-Trichlorophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,3-Dichloroaniline	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,4,5-Trichlorophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
2-Chloronaphthalene	ND	0.50	EPA 8270	7-1-11	7-1-11	
2-Nitroaniline	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,4-Dinitrobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
Dimethylphthalate	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,3-Dinitrobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,6-Dinitrotoluene	ND	0.50	EPA 8270	7-1-11	7-1-11	
1,2-Dinitrobenzene	ND	0.50	EPA 8270	7-1-11	7-1-11	
Acenaphthylene	ND	0.050	EPA 8270/SIM	7-1-11	7-2-11	
3-Nitroaniline	ND	0.50	EPA 8270	7-1-11	7-1-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0701W1					
2,4-Dinitrophenol	ND	2.5	EPA 8270	7-1-11	7-1-11	
Acenaphthene	ND	0.050	EPA 8270/SIM	7-1-11	7-2-11	
4-Nitrophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,4-Dinitrotoluene	ND	0.50	EPA 8270	7-1-11	7-1-11	
Dibenzofuran	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,3,5,6-Tetrachlorophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
2,3,4,6-Tetrachlorophenol	ND	0.50	EPA 8270	7-1-11	7-1-11	
Diethylphthalate	ND	0.50	EPA 8270	7-1-11	7-1-11	
4-Chlorophenyl-phenylether		0.50	EPA 8270	7-1-11	7-1-11	
4-Nitroaniline	ND	0.50	EPA 8270	7-1-11	7-1-11	
Fluorene	ND	0.050	EPA 8270/SIM	7-1-11	7-2-11	
4,6-Dinitro-2-methylphenol	ND	2.5	EPA 8270	7-1-11	7-1-11	
n-Nitrosodiphenylamine	ND	0.50	EPA 8270	7-1-11	7-1-11 7-1-11	
1,2-Diphenylhydrazine	ND	0.50	EPA 8270	7-1-11 7-1-11	7-1-11	
4-Bromophenyl-phenylether		0.50	EPA 8270	7-1-11 7-1-11	7-1-11 7-1-11	
Hexachlorobenzene	ND	0.50	EPA 8270	7-1-11 7-1-11	7-1-11 7-1-11	
Pentachlorophenol	ND	2.5	EPA 8270	7-1-11 7-1-11	7-1-11 7-1-11	
Phenanthrene	ND	0.050	EPA 8270/SIM	7-1-11 7-1-11	7-1-11	
Anthracene	ND	0.050	EPA 8270/SIM	7-1-11 7-1-11	7-2-11 7-2-11	
Carbazole	ND	0.50	EPA 8270	7-1-11	7-2-11 7-1-11	
Di-n-butylphthalate	ND	0.50	EPA 8270	7-1-11	7-1-11 7-1-11	
Fluoranthene	ND	0.050	EPA 8270/SIM	7-1-11 7-1-11	7-1-11 7-2-11	
Benzidine	ND	2.5	EPA 8270	7-1-11 7-1-11	7-2-11 7-1-11	
Pyrene	ND	0.050	EPA 8270/SIM	7-1-11 7-1-11	7-1-11 7-2-11	
=	ND	0.50		7-1-11 7-1-11	7-2-11 7-1-11	
Butylbenzylphthalate	ND ND	0.50	EPA 8270	7-1-11 7-1-11	7-1-11 7-1-11	
bis-2-Ethylhexyladipate	ND ND	0.50	EPA 8270	7-1-11 7-1-11	7-1-11 7-1-11	
3,3'-Dichlorobenzidine	ND ND		EPA 8270	7-1-11 7-1-11	7-1-11 7-2-11	
Benzo[a]anthracene	ND ND	0.0050	EPA 8270/SIM			
Chrysene	ND ND	0.0050	EPA 8270/SIM	7-1-11 7-1-11	7-2-11	
bis(2-Ethylhexyl)phthalate		0.50	EPA 8270		7-1-11	
Di-n-octylphthalate	ND ND	0.50	EPA 8270	7-1-11 7 1 11	7-1-11	
Benzo[b]fluoranthene	ND ND	0.0050	EPA 8270/SIM	7-1-11	7-2-11	
Benzo(j,k)fluoranthene	ND ND	0.0050	EPA 8270/SIM	7-1-11 7 1 11	7-2-11	
Benzo[a]pyrene	ND ND	0.0050	EPA 8270/SIM	7-1-11	7-2-11	
Indeno[1,2,3-cd]pyrene	ND ND	0.0050	EPA 8270/SIM	7-1-11 7 1 11	7-2-11	
Dibenz[a,h]anthracene	ND ND	0.0050	EPA 8270/SIM	7-1-11	7-2-11	
Benzo[g,h,i]perylene	ND	0.0050	EPA 8270/SIM	7-1-11	7-2-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	34 35	18 - 86				
Phenol-d6	25 46	10 - 88				
Nitrobenzene-d5	46 57	37 - 112 42 - 109				
2-Fluorobiphenyl	57 61	42 - 108 30 - 118				
2,4,6-Tribromophenol	61 69	39 - 118 40 - 133				
Terphenyl-d14	68	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	01W1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	10.4	11.4	40.0	40.0	26	29	26 - 60	9	29	
2-Chlorophenol	23.2	24.9	40.0	40.0	58	62	46 - 104	7	34	
1,4-Dichlorobenzene	10.6	11.2	20.0	20.0	53	56	48 - 92	6	29	
n-Nitroso-di-n-propylamine	6.25	7.26	20.0	20.0	31	36	30 - 102	15	25	
1,2,4-Trichlorobenzene	9.95	10.4	20.0	20.0	50	52	47 - 91	4	25	
4-Chloro-3-methylphenol	21.4	22.8	40.0	40.0	54	57	53 - 104	6	18	
Acenaphthene	11.5	12.1	20.0	20.0	58	61	57 - 95	5	15	
4-Nitrophenol	15.6	17.2	40.0	40.0	39	43	21 - 75	10	33	
2,4-Dinitrotoluene	12.5	14.1	20.0	20.0	63	71	60 - 105	12	20	
Pentachlorophenol	24.2	27.0	40.0	40.0	61	68	48 - 119	11	31	
Pyrene	13.6	14.8	20.0	20.0	68	74	62 - 111	8	19	
Surrogate:										
2-Fluorophenol					35	38	18 - 86			
Phenol-d6					26	28	10 - 88			
Nitrobenzene-d5					47	51	37 - 112			
2-Fluorobiphenyl					61	63	42 - 108			
2,4,6-Tribromophenol					58	61	39 - 118			
Terphenyl-d14					68	74	45 - 122			

Project: 1005-001

% MOISTURE

Date Analyzed: 6-27&7-1-11

Client ID	Lab ID	% Moisture
FAR1-6.0	06-212-02	13
FAR1-10.0	06-212-03	17
FAR2-2.5	06-212-06	4
FAR2-5.5	06-212-07	5
FAR3-12.5	06-212-13	18
FAR4-4.0	06-212-17	16
FAR4-9.0	06-212-18	20
FAR8-5.0	06-212-20	14
FAR8-11.0	06-212-21	7
FAR14-3.5	06-212-22	6
FAR17-2.5	06-212-25	21
FAR17-8.0	06-212-26	27
FAR18-0.5	06-212-29	26
FAR19-0.5	06-212-30	15
FAR16-2.5	06-212-31	7
FAR11-2.5	06-212-35	9
FAR11-14.5	06-212-38	10
FAR23-2.5	06-212-39	5
FAR23-6.0	06-212-40	12
FAR22-2.5	06-212-43	20
FAR22-6.0	06-212-44	21
FAR22-10.0	06-212-45	16

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

of

14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)	Laboratory Number:	06-212
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:			Requested Analysis
FARALLON	(Check One)		
Project Number:	Same Day 1 Day	260B	3/600
Former RAUWIET MILLS	☐ 2 Day 🔀 3 Day	70C	A
SMITS	X Standard (7 working days)	BTEX	8081A 8151A Metals
Sampled by:	(other)	s by 8 nated latiles	GRAN GRAN Hetals
		VTPI VTPI latile lloge	sticic rbici tal R LP M EM by
Lab ID Sample Identification	Sampled Sampled Matrix Cont.	N\ Vo Ha	Per He He VF
1 FAR1-25	6/22/1/735 5 4	_	
2 FAIRI-6:0	740 5 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
3 FARI-1000	750 5 4		× ×
H FAR1-16-0	800 5 4	Car	
5 FAR1-062211-6W	815 W 9		
6 FAP2-25	900 5 4	8	
7 FAR2-5.5	915 5 4	XXX	×
8 FARZ-13.0	920 5 4		
9 FARZ-062211-6W	930 W 91	XXX	703
10 FAR3-2.5	V 1015 5 4		
Signature	Company	Date Time	Comments/Special instructions:
Relinquished by Le Sant	FARALLON	6/24111 1555	
Received by	2 Chief	CA74/11 1555	DX STANDARD OF BENTINARY
Relinquished by	(O Mpas
Received by			& Aded 6/30/11. Dx (STA)
Relinquished by			Added th In. TS (STA)
Received by			
Reviewed by/Date	Reviewed by/Date	/e	Chromatograms with final report

25/

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Reviewed/Date	Relinquished	Received	Relinquished	Received	Relinquished Len Spett	Signature	EARCE-5.0	TAP8-25	174P-4-9,0	TAB4-4:0	カルナーナング	FAR3-06221-6W	FAR3-18.0	FAR3-12.5	FAR3-9.0	FAR3-60	Sample Identification	Sampled by:	TAO CLINS	Former RAYUNIET MILLS	1005-00	FARALLON	Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date				DE YEER	FRARHON	Company	1435 5 4	14554	1308 5 4	1250 5 4	1235 5 4	1125 W 9	1100 S 4	1050 5 4	1040 5 4	42211 1025 S 4	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 🔏 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
				Chapter 1555	6/2411 1555	Date Time	X		<u>&</u>	X		×		×			Semivo	H-Gx/E H-Gx H-Dx es 8260 enated '	DB Volatile	s 8260B				Laboratory Number:
Chromatograms with final report			Added 7/1/m. DB(STA)	Spalated Sign This (S)	See page#1	Comments/Special Instructions	X			X							(with lo PAHs 8 PCBs 8 Organo Organo Chlorin	w-leve 8270D/3 3082 sochlorir sphosphated A CERA/((Metals	PAHS) SIM (Ion the Pestine Pestine Pestine Pestine Pestine Pestine Pertine Per	w-level) cides 80 esticides 8 bicides 8 Metals (6	8270D/S 3151A			06-21 2

Data Package: Level III

Level IV

Electronic Data Deliverables (EDDs)

Page 3 of 5

24 FARIH-062211-GW V 1655 W 9 X X 25 FAR 17-2.5 6/2311 725 S 4 X X 26 FAR 17-8.0 745 S 4 X X 27 FAR 17-062311-GW 810 W 9 X X 28 FAR 17-062311-GW 920 S 1 X X 29 FAR 19-0.5 920 S 1 X X 30 FAR 19-0.5 Company Date Time Relinquished Lange Repart Of The Capture 155 Received Relinquished Repart Of The Capture 155 Received Repart Of The Capture 155 Rec	Chromatograms with final report
FARIT-8:0 .V 1655 W 9 X X FARIT-8:0 .V 1655 W 9 X X FARIT-8:0 .V 1655 W 9 X X FARIT-6:0 .V 1655 W 9 X X X X X X X X X X X X X X X X X X	55
FARIT-062211-GW W 1655 W 9 X X FARIT-8:0	See page
FARIT-062211-GW W 1655 W 9 X X FARIT-12:0	Comments/Special Instructions
FARIT-062211-GW W 1655 W 9 X X FARIT-12:0 623111 725 5 4 X X FARIT-062311-GW 810 W X X X FARIT-062311-GW 920 5 1 X X	X
FAR 17-062211-GW W 1655 W 9 X X FAR 17-12-0 810 W W X X X FAR 17-12-0 755 5 4 X X X FAR 17-062311-GW 810 W W X X	X
FARIT-8:0 1755 W 9 X X	X
FAR 17-2,5 603111 725 5 4 XX	
FAR 17-2.5 W3/11 725 5 4 X X	0
FARIH-062211-GW . V 1655 W	X
FAR14-3.5	
FAR8-11.0 613211 7455 5 FAR14-3.5 1540 5	Semive (with lo
TARS-11-0 FARS-11-0	ow-leve
TARIN-3.5 TARIN-3.5 Cother) Date Time Sampled Sampled Matrix WITPH-GX NWTPH-DX Volatiles 826	8270 el PAH
D CLINE Date Time Sample Identification Sampled Sampled Matrix NWTPH-HCID NWTPH-GX NWTPH-DX Volatiles 8260B	D/SIM
Manager: TAD CLINE Manager: TAD CLINE Manager: TAD CLINE Manager: TAD CLINE Manager: TAD CLINE Manager: TAD CLINE Manager: To the part of Containers NWTPH-HCID NWTPH-HC	
Name: OOS - OO	
Number: COS - COO Same Day 1 Da	
Phone: (325) 883-3381 • www.onsite-env.com Check One	umber:

Data Package: Level III <a>III Level IV Electronic Data Deliverables (EDDs)

Page 4 of 5

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turnaround Request (in working days)	Laboratory Number: 06-212	
Company: FARALLOD	(Check One) Same Day		
Project Number:	X	81A 8270D/s	
Former RAYOMEN MILL	Standard (7 Days) (TPH analysis 5 Days)	s 8260B (SIM w-level) cides 80 esticides bicides (
Project Manager: AO CLINE		BB/olatile 8270D/PAHs) PAHs) For the Pesti	
Sampled by:	(other)	H-HCIE H-Gx/B H-Gx H-Dx es 8260 nated V platiles s3270D/3 3082 pchlorir pphosph nated A	sture
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	Semivo (with lo PAHs & PCBs & Organo Organo Chlorir	% Moi
31 FAR16-25	6/23/11/ 950 5	X	~
32 FAP16-6.0	1000 5	4	
33 FARIG-1010	1010 5	4	
34 FAPULG-14.5	1020 5	4	
35 FARII- 2.5	S 5181	+ × × × × × × × × × × × × × × × × × × ×	×
36 FARII-6:0	1330 5	4	
37 EARI - 1000	S 5461	4	
1	1400 5	4	
FA-R23-	6/24/11 735 5	# X XX X XX X	~
FAP23-		4	(X)
	Company	Date Time Comments/Special Instructions	
Relinquished Len Sha	FARALLON	6/24/11 1555 Run 3-day torn and Gx/BTEX	7
Received S	OS Note	Dr. Stander tod	
Relinquished		remaining samples & mail	FI
Received		tad CINA ANAMACAT PASC	0
Relinquished		4540 100 1 08 STA	4
Received		2018	-
Reviewed/Date	Reviewed/Date	Chromatograms with final report	

Data Package: Level III 🗌 Level IV 🗍 Electronic Data Deliverables (EDDs) 🗍

Page 5 of 5

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished # \$ \$ \$ \$ \$ \$ \$	Signature			the FAP22-062411-60	45 EARD22-1010	44 FAR 22-6:0	43 FAR 22-2.5	42 FAR23-13:5	41 FAR23-10,0	Lab ID Sample Identification	Sampled by	TAD CLINE	Former RAYUNEY MILL	Project Number:	FARALLON	Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					ON YEER	FARALLO	Company		•	loic X	S 546	u	925 5	81S S	6 256 11Hich	Date Time Sampled Sampled Matrix	(other)		(TPH analysis 5 Days)	2 Days 🔏 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
					edzielie 155	J 42411 1555	Date Time)	\(\sigma = \psi \)		⊗	+ X	4	4	NWTP NWTP NWTP Volatile Haloge	H-HCII H-Gx/E H-Gx H-Dx	BTEX DB Volatile	es 8260B	3			Laboratory Number:
Chromatograms with final report				Palad 7/1)	8 Adval 6 3 121, 28	See page#1	Comments/Special Instructions						×			(with lot PAHs & PCBs of Organo Chlorin Total F	ow-leve 3270D/ 8082 ochlorin ophospl nated A CRA/ Metals	I PAHS SIM (Id		081A 8270D/ 8151A (circle o			ň
			(125 BC	1. DB(STA))						8) ×			% Moi	sture						6-212

Data Package: Level III <a>III Level IV <a>III Electronic Data Deliverables (EDDs)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 6, 2011

Tad Cline Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1005-001

Laboratory Reference No. 1106-251

Dear Tad:

Enclosed are the analytical results and associated quality control data for samples submitted on June 29, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 1005-001

Case Narrative

Samples were collected on June 28, 2011 and received by the laboratory on June 29, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 1005-001

NWTPH-Gx/BTEX

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PA-19-062811-GW					
Laboratory ID:	06-251-01					
Gasoline	ND	100	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				
Client ID:	FAR-16-062811-GW					
Laboratory ID:	06-251-02					
Benzene	ND	1.0	EPA 8021	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8021	7-1-11	7-1-11	
Ethyl Benzene	ND	1.0	EPA 8021	7-1-11	7-1-11	
m,p-Xylene	ND	1.0	EPA 8021	7-1-11	7-1-11	
o-Xylene	ND	1.0	EPA 8021	7-1-11	7-1-11	
Gasoline	ND	100	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	PZ-12-062811-GW					
Laboratory ID:	06-251-03					
Gasoline	ND	100	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				

Project: 1005-001

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0701W1					
Benzene	ND	1.0	EPA 8021	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8021	7-1-11	7-1-11	
Ethyl Benzene	ND	1.0	EPA 8021	7-1-11	7-1-11	
m,p-Xylene	ND	1.0	EPA 8021	7-1-11	7-1-11	
o-Xylene	ND	1.0	EPA 8021	7-1-11	7-1-11	
Gasoline	ND	100	NWTPH-Gx	7-1-11	7-1-11	
Surrogato:	Parcent Pacayory	Control Limite				

Surrogate: Percent Recovery Control Limits Fluorobenzene 94 73-121

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-25	51-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NΑ	NA	NA	30	
Surrogate:		·									
Fluorobenzene						90	102	73-121			
MATRIX SPIKES											
Laboratory ID:	06-25	51-01									
•	MS	MSD	MS	MSD		MS	MSD				
Benzene	50.3	51.2	50.0	50.0	ND	101	102	82-120	2	8	
Toluene	52.3	54.2	50.0	50.0	ND	105	108	84-119	4	8	
Ethyl Benzene	49.5	53.3	50.0	50.0	ND	99	107	84-122	7	9	
m,p-Xylene	49.0	53.0	50.0	50.0	ND	98	106	85-121	8	9	
o-Xylene	49.3	52.7	50.0	50.0	ND	99	105	84-121	7	9	
Surrogate:											
Fluorobenzene						110	106	73-121			

Project: 1005-001

NWTPH-Gx

Matrix: Water
Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR-11-062811-GW					
Laboratory ID:	06-251-04					
Gasoline	ND	100	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				

Project: 1005-001

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0701W1					
Gasoline	ND	100	NWTPH-Gx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	73-121				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	06-25	51-01								
	ORIG	DUP	·		·				·	
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						90 102	73-121			

Project: 1005-001

NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

3 ,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PA-19-062811-GW					
Laboratory ID:	06-251-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	7-1-11	7-1-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	FAR-16-062811-GW					
Laboratory ID:	06-251-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	7-1-11	7-1-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits			•	
o-Terphenyl	96	50-150				
Client ID:	PZ-12-062811-GW					
Laboratory ID:	06-251-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	7-1-11	7-1-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	FAR-11-062811-GW					
Laboratory ID:	06-251-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	7-1-11	7-1-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

Project: 1005-001

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0701W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	7-1-11	7-1-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				

			Per		Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	06-25	51-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			100	94	50-150			

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PA-19-062811-GW					
Laboratory ID:	06-251-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropen	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

		201		Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PA-19-062811-GW					
Laboratory ID:	06-251-01	0.00	EDA 0000	7 4 44	7.4.44	
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
sopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
ert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
o-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	, ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits	217.0200	7 1 11	, , , , ,	
Dibromofluoromethane	88	68-110				
Toluene-d8	90	73-110				
i Oluelle-do	90	73-110				

80

4-Bromofluorobenzene

65-110

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

Client ID: PZ-12-062811-GW Laboratory ID: 06-251-03 06-251-03 Dichlorodifluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Inchlorosthane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11					Date	Date	
Dichlorodifluoromethane ND 0.20 EPA 8260 7-1-11	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodifluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Idodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND	Client ID:	PZ-12-062811-GW					
Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichlorotethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Idodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Idodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Idodomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride	Laboratory ID:	06-251-03					
Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl EBuryl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 In-Dichloroethane ND	Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND	Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 <td< td=""><td>Vinyl Chloride</td><td>ND</td><td>0.20</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></td<>	Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11	Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11	Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Jepichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Jepichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11	Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Indode	1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Chlorofrem ND 0.20 EPA 8260 7-1-11 7-1-11	Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	lodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11	Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 3,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 4,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 4,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 5,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 3-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 4-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 5-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane	(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11	Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11	1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroptopene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11	Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,3-Dichloropropene ND 1.0 EPA 8260 7-1-11 7-1-11	2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11	(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 <td>2-Butanone</td> <td>ND</td> <td>5.0</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 1.0 EPA 8260 <t< td=""><td>Bromochloromethane</td><td>ND</td><td>0.20</td><td>EPA 8260</td><td>7-1-11</td><td>7-1-11</td><td></td></t<>	Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 1.0 EPA 8260 7-1-11 7	Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11		ND	1.0	EPA 8260	7-1-11	7-1-11	
	(trans) 1,3-Dichloropropen	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

4-Bromofluorobenzene

VOLATILES by EPA 8260B page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	PZ-12-062811-GW					
Laboratory ID:	06-251-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits	21710200	, , , , ,	, , , , ,	
Dibromofluoromethane	85	68-110				
Toluene-d8	90	73-110				
i Gluerie-uu	<i>3</i> 0	13-110				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

65-110

82

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701W2					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
lodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropene				7-1-11		

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0701W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	. ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				

Surrogate: Percent Recovery Control Limits
Dibromofluoromethane 87 68-110
Toluene-d8 92 73-110
4-Bromofluorobenzene 82 65-110

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	01W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.9	11.4	10.0	10.0	109	114	70-130	4	11	
Benzene	9.77	10.1	10.0	10.0	98	101	75-123	3	8	
Trichloroethene	10.2	10.0	10.0	10.0	102	100	80-113	2	9	
Toluene	10.1	10.3	10.0	10.0	101	103	80-113	2	8	
Chlorobenzene	10.1	10.2	10.0	10.0	101	102	80-111	1	8	
Surrogate:										
Dibromofluoromethane					82	88	68-110			
Toluene-d8					90	91	73-110			
4-Bromofluorobenzene					82	82	65-110			

Project: 1005-001

VOLATILES by EPA 8260B page 1 of 2

- · · · · · · · · · · · · · · · · · · ·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FAR-11-062811-GW					
Laboratory ID:	06-251-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloromethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Vinyl Chloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Trichlorofluoromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Acetone	13	5.0	EPA 8260	7-1-11	7-1-11	
Iodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform	0.53	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Toluene	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,3-Dichloropropend	e ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B page 2 of 2

Analyta	Postult	DO!	Mothod	Date	Date Analyzod	Elaga
Analyte Client ID:	Result FAR-11-062811-GW	PQL	Method	Prepared	Analyzed	Flags
	06-251-04					
Laboratory ID: 1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND ND	0.20	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
	ND ND	0.20	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
1,3-Dichloropropane 2-Hexanone	ND ND	2.0	EPA 8260			
				7-1-11	7-1-11	
Dibromochloromethane	ND ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	0.26	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane		1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	, ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11 7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND ND	0.20	EPA 8260	7-1-11 7-1-11	7-1-11 7-1-11	
	Percent Recovery		EFA 0200	7-1-11	7-1-11	
Surrogate:	•	Control Limits				
Dibromofluoromethane	85	68-110 73-110				
Toluene-d8	89	73-110				
4-Bromofluorobenzene	79	65-110				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

Laboratory ID: MB0701W2 Dichlorodifluoromethane ND					Date	Date	
Dichlorodifluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 I,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroe	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Dichlorodifluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 I,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroe							
Chloromethane ND 1.0 EPA 8260 7-1-11 7-1-11 Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Idodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroe	•						
Vinyl Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethene ND 5.0 EPA 8260 7-1-11 7-1-11 Acetone ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methyle Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,-Di	Dichlorodifluoromethane						
Bromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Lodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl EButyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1		ND	1.0	EPA 8260	7-1-11	7-1-11	
Chloroethane ND 1.0 EPA 8260 7-1-11 7-1-11 Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methyle Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyle Ether ND 0.20 EPA 8260 7-1-11 7-1-11 I,-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 I,-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 I,-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 EBusine </td <td>Vinyl Chloride</td> <td>ND</td> <td>0.20</td> <td></td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Vinyl Chloride	ND	0.20		7-1-11	7-1-11	
Trichlorofluoromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Icodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methyl Eburg Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Buryl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Buryl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Michyl t-Buryl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11	Bromomethane	ND			7-1-11	7-1-11	
1,1-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Mill Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 Q-2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	Chloroethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
Acetone ND 5.0 EPA 8260 7-1-11 7-1-11 Iodomethane ND 1.0 EPA 8260 7-1-11 7-1-11 Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 Methyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Bronchloroethane <td>Trichlorofluoromethane</td> <td>ND</td> <td></td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Trichlorofluoromethane	ND		EPA 8260	7-1-11	7-1-11	
Iodomethane	1,1-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Disulfide ND 0.20 EPA 8260 7-1-11 7-1-11 Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-1-Tichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	Acetone	ND	5.0	EPA 8260	7-1-11	7-1-11	
Methylene Chloride ND 1.0 EPA 8260 7-1-11 7-1-11 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 1-Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-1-Tichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	lodomethane	ND	1.0	EPA 8260	7-1-11	7-1-11	
(trans) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 0.20 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 <	Carbon Disulfide	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl t-Butyl Ether ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	Methylene Chloride	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,1-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Trichloroptopane ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11	(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Vinyl Acetate ND 2.0 EPA 8260 7-1-11 7-1-11 2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 Label Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11	Methyl t-Butyl Ether	ND	0.20	EPA 8260	7-1-11	7-1-11	
2,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 (cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11	1,1-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 <td>Vinyl Acetate</td> <td>ND</td> <td>2.0</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	Vinyl Acetate	ND	2.0	EPA 8260	7-1-11	7-1-11	
2-Butanone ND 5.0 EPA 8260 7-1-11 7-1-11 Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 1.0 EPA 8260 7-1-11 7-1-11	2,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromochloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11	(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chloroform ND 0.20 EPA 8260 7-1-11 7-1-11 1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 </td <td>2-Butanone</td> <td>ND</td> <td>5.0</td> <td>EPA 8260</td> <td>7-1-11</td> <td>7-1-11</td> <td></td>	2-Butanone	ND	5.0	EPA 8260	7-1-11	7-1-11	
1,1,1-Trichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11	Bromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Carbon Tetrachloride ND 0.20 EPA 8260 7-1-11 7-1-11 1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Chloroform	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,1,1-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Benzene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Carbon Tetrachloride	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloroethane ND 0.20 EPA 8260 7-1-11 7-1-11 Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,1-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Trichloroethene ND 0.20 EPA 8260 7-1-11 7-1-11 1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Benzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichloropropane ND 0.20 EPA 8260 7-1-11 7-1-11 Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,2-Dichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Dibromomethane ND 0.20 EPA 8260 7-1-11 7-1-11 Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Trichloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromodichloromethane ND 0.20 EPA 8260 7-1-11 7-1-11 2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	1,2-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260 7-1-11 7-1-11 (cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Dibromomethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260 7-1-11 7-1-11 Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	Bromodichloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11	2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260	7-1-11	7-1-11	
Methyl Isobutyl Ketone ND 2.0 EPA 8260 7-1-11 7-1-11 Toluene ND 1.0 EPA 8260 7-1-11 7-1-11		ND	0.20	EPA 8260	7-1-11	7-1-11	
Toluene ND 1.0 EPA 8260 7-1-11 7-1-11		ND	2.0	EPA 8260	7-1-11	7-1-11	
		ND	1.0		7-1-11	7-1-11	
The state of the s	(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260	7-1-11	7-1-11	

Project: 1005-001

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
•				•		
Laboratory ID:	MB0701W2					
1,1,2-Trichloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Tetrachloroethene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Hexanone	ND	2.0	EPA 8260	7-1-11	7-1-11	
Dibromochloromethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromoethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Chlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
Ethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
m,p-Xylene	ND	0.40	EPA 8260	7-1-11	7-1-11	
o-Xylene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Styrene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromoform	ND	1.0	EPA 8260	7-1-11	7-1-11	
Isopropylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Bromobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichloropropane	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Propylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
2-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
4-Chlorotoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
tert-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
sec-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,3-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
p-Isopropyltoluene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,4-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
n-Butylbenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Hexachlorobutadiene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Naphthalene	ND	1.0	EPA 8260	7-1-11	7-1-11	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260	7-1-11	7-1-11	
Surrogate:						

Dibromofluoromethane 87 68-110
Toluene-d8 92 73-110
4-Bromofluorobenzene 82 65-110

Project: 1005-001

VOLATILES by EPA 8260B SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB07	01W2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.9	11.4	10.0	10.0	109	114	70-130	4	11	
Benzene	9.77	10.1	10.0	10.0	98	101	75-123	3	8	
Trichloroethene	10.2	10.0	10.0	10.0	102	100	80-113	2	9	
Toluene	10.1	10.3	10.0	10.0	101	103	80-113	2	8	
Chlorobenzene	10.1	10.2	10.0	10.0	101	102	80-111	1	8	
Surrogate:										
Dibromofluoromethane					82	88	68-110			
Toluene-d8					90	91	73-110			
4-Bromofluorobenzene					82	82	65-110			

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 1 of 2

Matrix: Water Units: ug/L

Client ID: FAR-11-062811-GW Laboratory ID: 06-251-04 ND 0.96 EPA 8270 6-30-11 7-1-11 Phenol Phenol ND 0.96 EPA 8270 6-30-11 7-1-11 Phenol Phe					Date	Date	
Laboratory ID:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Politrosodimethylamine	Client ID:	FAR-11-062811-GW					
Pyridine	Laboratory ID:	06-251-04					
Phenol	n-Nitrosodimethylamine	ND	0.96	EPA 8270	6-30-11	7-1-11	
Aniline ND Aniline ND Aniline ND A.8 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline Aniline ND D.96 EPA 8270 Aniline Aniline Aniline ND D.96 EPA 8270 Aniline Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline ND D.96 EPA 8270 Aniline Aniline Aniline ND D.96 EPA 8270 Aniline Aniline Aniline Aniline ND D.96 EPA 8270 Aniline	Pyridine	ND	0.96	EPA 8270	6-30-11	7-1-11	
bis(2-Chloroethyl)ether	Phenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Chlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Benzyl alcohol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,1-1-1 ND 0.96 EPA 8270 6-30-11 7-1-11 1,1-1-1 ND 0.96 EPA 8270 6-30-11 7-1-11	Aniline	ND	4.8	EPA 8270	6-30-11	7-1-11	
1,3-Dichlorobenzene ND	bis(2-Chloroethyl)ether	ND	0.96	EPA 8270	6-30-11	7-1-11	
1.4-Dichlorobenzene		ND	0.96		6-30-11	7-1-11	
Benzyl alcohol	1,3-Dichlorobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
1,2-Dichlorobenzene	1,4-Dichlorobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Methylphenol (o-Cresol) ND 0.96 EPA 8270 6-30-11 7-1-11 bis(2-Chloroisopropyl)ether ND 0.96 EPA 8270 6-30-11 7-1-11 (3+4)-Methylphenol (m,p-Cresol) ND 0.96 EPA 8270 6-30-11 7-1-11 N-Nitroso-di-n-propylamine ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachloroethane ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachloroethane ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 2-Hirophonol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11<	Benzyl alcohol	ND	0.96	EPA 8270	6-30-11	7-1-11	
bis(2-Chloroisopropyl)ether ND 0.96 EPA 8270 6-30-11 7-1-11 (3:44)-Methylphenol (m.p-Cresol) ND 0.96 EPA 8270 6-30-11 7-1-11 n-Nitroso-din-propylamine ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachloroethane ND 0.96 EPA 8270 6-30-11 7-1-11 Nitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitrophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dimethylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-1	1,2-Dichlorobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
(3+4)-Methylphenol (m.p-Cresol) ND 0.96 EPA 8270 6-30-11 7-1-11 n-Nitroso-di-n-propylamine ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachloroethane ND 0.96 EPA 8270 6-30-11 7-1-11 Nitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitrophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-4-Dimethylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-4-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-4-Trichlorophenol ND 0.96 EPA 8270 6-30-11	2-Methylphenol (o-Cresol)	ND	0.96	EPA 8270	6-30-11	7-1-11	
(3+4)-Methylphenol (m.p-Cresol) ND 0.96 EPA 8270 6-30-11 7-1-11 n-Nitroso-di-n-propylamine ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachloroethane ND 0.96 EPA 8270 6-30-11 7-1-11 Hitrosphenol ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitrophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-4-Dimethylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 bis(2-Chloroethoxy)methane ND 0.96 EPA 8270 6-30-11 7-1-11 2-4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-4-Tirchlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 4-Chloroaniline ND 0.96 EPA 8270 6-30-11	bis(2-Chloroisopropyl)ether	ND	0.96	EPA 8270	6-30-11	7-1-11	
Hexachloroethane ND 0.96 EPA 8270 6-30-11 7-1-11 Nitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 Isophorone ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitrophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dimethylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Tichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Naphthalene ND 0.96 EPA 8270 6-30-11) ND	0.96	EPA 8270	6-30-11	7-1-11	
Hexachloroethane	n-Nitroso-di-n-propylamine	ND	0.96	EPA 8270	6-30-11	7-1-11	
Isophorone		ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Nitrophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dimethylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 bis(2-Chloroethoxy)methane ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Naphthalene ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloroaniline ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-shylphalene ND 0.96 EPA 8270(sim 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270	Nitrobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Nitrophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dimethylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 bis(2-Chloroethoxy)methane ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Naphthalene ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloroaniline ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270(sim 6-30-11 7-1-11 4-Chloro-shylphalene ND 0.96 EPA 8270(sim 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270	Isophorone	ND	0.96	EPA 8270	6-30-11	7-1-11	
bis(2-Chloroethoxy)methane ND 0.96 EPA 8270 6-30-11 7-1-11 2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Nphthalene ND 0.96 EPA 8270/SIM 6-30-11 7-1-11 4-Chloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270/SIM 6-30-11 7-1-11 4-Methylnaphthalene ND 0.96 EPA 8270		ND	0.96	EPA 8270	6-30-11	7-1-11	
2,4-Dichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Naphthalene ND 0.096 EPA 8270 (6-30-11) 7-1-11 4-Chloroaniline ND 0.96 EPA 8270 (6-30-11) 7-1-11 Hexachlorobutadiene ND 0.96 EPA 8270 (6-30-11) 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270 (6-30-11) 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270 (6-30-11) 7-1-11 2-Methylnaphthalene ND 0.96 EPA 8270 (6-30-11) 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 (6-30-11) 7-1-11 Hexachlorocyclopentadiene ND 0.96 EPA 8270 (6-30-11) 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 (6-30-11) 7-1-11 2-4,6-Trichlorophenol ND 0.96 EPA 8270 (6-30-11) 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270	2,4-Dimethylphenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
1,2,4-Trichlorobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Naphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 4-Chloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachlorobutadiene ND 0.96 EPA 8270 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 4-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-4,5-Trichlorophenol ND 0.96 EPA 8270	bis(2-Chloroethoxy)methane	ND	0.96	EPA 8270	6-30-11	7-1-11	
Naphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 4-Chloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachlorobutadiene ND 0.96 EPA 8270 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chlorophthalene ND 0.96 EPA 8270 6-	2,4-Dichlorophenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
4-Chloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 Hexachlorobutadiene ND 0.96 EPA 8270 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Mexachlorocyclopentadiene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Mexachlorocyclopentadiene ND 0.96 EPA 8270 6-30-11 7-1-11 2-4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chlorophthalene ND 0.96 EPA 8270	1,2,4-Trichlorobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
Hexachlorobutadiene ND 0.96 EPA 8270 6-30-11 7-1-11 4-Chloro-3-methylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Methylnaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 1-Mexachlorocyclopentadiene ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,3-Dichloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 <td>Naphthalene</td> <td>ND</td> <td>0.096</td> <td>EPA 8270/SIM</td> <td>6-30-11</td> <td>7-1-11</td> <td></td>	Naphthalene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
4-Chloro-3-methylphenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 Hexachlorocyclopentadiene ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,3-Dichloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 <td< td=""><td>4-Chloroaniline</td><td>ND</td><td>0.96</td><td>EPA 8270</td><td>6-30-11</td><td>7-1-11</td><td></td></td<>	4-Chloroaniline	ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 Hexachlorocyclopentadiene ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,3-Dichloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270/SIM	Hexachlorobutadiene	ND	0.96	EPA 8270	6-30-11	7-1-11	
1-Methylnaphthalene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11 Hexachlorocyclopentadiene ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,3-Dichloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroanilline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11<	4-Chloro-3-methylphenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
HexachlorocyclopentadieneND0.96EPA 82706-30-117-1-112,4,6-TrichlorophenolND0.96EPA 82706-30-117-1-112,3-DichloroanilineND0.96EPA 82706-30-117-1-112,4,5-TrichlorophenolND0.96EPA 82706-30-117-1-112-ChloronaphthaleneND0.96EPA 82706-30-117-1-112-NitroanilineND0.96EPA 82706-30-117-1-111,4-DinitrobenzeneND0.96EPA 82706-30-117-1-11DimethylphthalateND0.96EPA 82706-30-117-1-111,3-DinitrobenzeneND0.96EPA 82706-30-117-1-112,6-DinitrotolueneND0.96EPA 82706-30-117-1-111,2-DinitrobenzeneND0.96EPA 82706-30-117-1-11AcenaphthyleneND0.96EPA 8270/SIM6-30-117-1-11	2-Methylnaphthalene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,3-Dichloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	1-Methylnaphthalene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
2,4,6-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2,3-Dichloroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	Hexachlorocyclopentadiene	ND	0.96	EPA 8270	6-30-11	7-1-11	
2,4,5-Trichlorophenol ND 0.96 EPA 8270 6-30-11 7-1-11 2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11		ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Chloronaphthalene ND 0.96 EPA 8270 6-30-11 7-1-11 2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	2,3-Dichloroaniline	ND	0.96	EPA 8270	6-30-11	7-1-11	
2-Nitroaniline ND 0.96 EPA 8270 6-30-11 7-1-11 1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	2,4,5-Trichlorophenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
1,4-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	2-Chloronaphthalene	ND	0.96	EPA 8270	6-30-11	7-1-11	
Dimethylphthalate ND 0.96 EPA 8270 6-30-11 7-1-11 1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	2-Nitroaniline	ND	0.96	EPA 8270	6-30-11	7-1-11	
1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	1,4-Dinitrobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
1,3-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	Dimethylphthalate	ND	0.96	EPA 8270		7-1-11	
2,6-Dinitrotoluene ND 0.96 EPA 8270 6-30-11 7-1-11 1,2-Dinitrobenzene ND 0.96 EPA 8270 6-30-11 7-1-11 Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11		ND			6-30-11	7-1-11	
Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11		ND	0.96	EPA 8270	6-30-11	7-1-11	
Acenaphthylene ND 0.096 EPA 8270/SIM 6-30-11 7-1-11	1,2-Dinitrobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
		ND				7-1-11	
	3-Nitroaniline	ND	0.96	EPA 8270	6-30-11	7-1-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM

page 2 of 2

Analyto	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Analyte Client ID:	FAR-11-062811-GW	FQL	Wethou	Frepareu	Allalyzeu	riays
Laboratory ID:	06-251-04					
2,4-Dinitrophenol	ND	4.8	EPA 8270	6-30-11	7-1-11	
Acenaphthene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
4-Nitrophenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
2,4-Dinitrotoluene	ND	0.96	EPA 8270	6-30-11	7-1-11	
Dibenzofuran	ND	0.96	EPA 8270	6-30-11	7-1-11	
2,3,5,6-Tetrachlorophenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
2,3,4,6-Tetrachlorophenol	ND	0.96	EPA 8270	6-30-11	7-1-11	
Diethylphthalate	ND	0.96	EPA 8270	6-30-11	7-1-11	
4-Chlorophenyl-phenylethe		0.96	EPA 8270	6-30-11	7-1-11	
4-Nitroaniline	ND	0.96	EPA 8270	6-30-11	7-1-11	
Fluorene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
4,6-Dinitro-2-methylphenol	ND	4.8	EPA 8270	6-30-11	7-1-11	
n-Nitrosodiphenylamine	ND	0.96	EPA 8270	6-30-11	7-1-11	
1,2-Diphenylhydrazine	ND	0.96	EPA 8270	6-30-11	7-1-11	
4-Bromophenyl-phenylethe		0.96	EPA 8270	6-30-11	7-1-11	
Hexachlorobenzene	ND	0.96	EPA 8270	6-30-11	7-1-11	
Pentachlorophenol	ND	4.8	EPA 8270	6-30-11	7-1-11	
Phenanthrene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
Anthracene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
Carbazole	ND	0.96	EPA 8270	6-30-11	7-1-11	
Di-n-butylphthalate	ND	0.96	EPA 8270	6-30-11	7-1-11	
Fluoranthene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
Benzidine	ND	4.8	EPA 8270	6-30-11	7-1-11	
Pyrene	ND	0.096	EPA 8270/SIM	6-30-11	7-1-11	
Butylbenzylphthalate	ND	0.96	EPA 8270	6-30-11	7-1-11	
bis-2-Ethylhexyladipate	ND	0.96	EPA 8270	6-30-11	7-1-11	
3,3'-Dichlorobenzidine	ND	0.96	EPA 8270	6-30-11	7-1-11	
Benzo[a]anthracene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Chrysene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
bis(2-Ethylhexyl)phthalate	ND	0.96	EPA 8270	6-30-11	7-1-11	
Di-n-octylphthalate	ND	0.96	EPA 8270	6-30-11	7-1-11	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Benzo[a]pyrene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Indeno[1,2,3-cd]pyrene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270/SIM	6-30-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	33	18 - 86				
Phenol-d6	26	10 - 88				
Nitrobenzene-d5	49	37 - 112				
2-Fluorobiphenyl	68	42 - 108				
2,4,6-Tribromophenol	70	39 - 118				
Terphenyl-d14	<i>7</i> 5	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0630W1					
n-Nitrosodimethylamine	ND	1.0	EPA 8270	6-30-11	7-1-11	
Pyridine	ND	1.0	EPA 8270	6-30-11	7-1-11	
Phenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
Aniline	ND	5.0	EPA 8270	6-30-11	7-1-11	
bis(2-Chloroethyl)ether	ND	1.0	EPA 8270	6-30-11	7-1-11	
2-Chlorophenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,3-Dichlorobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,4-Dichlorobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
Benzyl alcohol	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,2-Dichlorobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
2-Methylphenol (o-Cresol)	ND	1.0	EPA 8270	6-30-11	7-1-11	
bis(2-Chloroisopropyl)ether	ND	1.0	EPA 8270	6-30-11	7-1-11	
(3+4)-Methylphenol (m,p-Cresol)	ND	1.0	EPA 8270	6-30-11	7-1-11	
n-Nitroso-di-n-propylamine	ND	1.0	EPA 8270	6-30-11	7-1-11	
Hexachloroethane	ND	1.0	EPA 8270	6-30-11	7-1-11	
Nitrobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
Isophorone	ND	1.0	EPA 8270	6-30-11	7-1-11	
2-Nitrophenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
2,4-Dimethylphenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
bis(2-Chloroethoxy)methane	ND	1.0	EPA 8270	6-30-11	7-1-11	
2,4-Dichlorophenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,2,4-Trichlorobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
Naphthalene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
4-Chloroaniline	ND	1.0	EPA 8270	6-30-11	7-1-11	
Hexachlorobutadiene	ND	1.0	EPA 8270	6-30-11	7-1-11	
4-Chloro-3-methylphenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
Hexachlorocyclopentadiene	ND	1.0	EPA 8270	6-30-11	7-1-11	
2,4,6-Trichlorophenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
2,3-Dichloroaniline	ND	1.0	EPA 8270	6-30-11	7-1-11	
2,4,5-Trichlorophenol	ND	1.0	EPA 8270	6-30-11	7-1-11	
2-Chloronaphthalene	ND	1.0	EPA 8270	6-30-11	7-1-11	
2-Nitroaniline	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,4-Dinitrobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
Dimethylphthalate	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,3-Dinitrobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
2,6-Dinitrotoluene	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,2-Dinitrobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
3-Nitroaniline	ND	1.0	EPA 8270	6-30-11	7-1-11	

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

page 2 of 2

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:	MB0630W1					
Laboratory ID: 2,4-Dinitrophenol	ND	5.0	EPA 8270	6-30-11	7-1-11	
· ·	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11 7-1-11	
Acenaphthene 4-Nitrophenol	ND	1.0	EPA 8270	6-30-11	7-1-11 7-1-11	
2,4-Dinitrotoluene	ND	1.0	EPA 8270	6-30-11	7-1-11 7-1-11	
Dibenzofuran	ND	1.0	EPA 8270	6-30-11	7-1-11 7-1-11	
	ND	1.0	EPA 8270	6-30-11	7-1-11 7-1-11	
2,3,5,6-Tetrachlorophenol 2,3,4,6-Tetrachlorophenol	ND ND	1.0		6-30-11	7-1-11 7-1-11	
•	ND ND		EPA 8270 EPA 8270			
Diethylphthalate		1.0		6-30-11	7-1-11	
4-Chlorophenyl-phenylether		1.0	EPA 8270	6-30-11	7-1-11	
4-Nitroaniline	ND ND	1.0	EPA 8270	6-30-11	7-1-11	
Fluorene	ND ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
4,6-Dinitro-2-methylphenol	ND	5.0	EPA 8270	6-30-11	7-1-11	
n-Nitrosodiphenylamine	ND	1.0	EPA 8270	6-30-11	7-1-11	
1,2-Diphenylhydrazine	ND	1.0	EPA 8270	6-30-11	7-1-11	
4-Bromophenyl-phenylether		1.0	EPA 8270	6-30-11	7-1-11	
Hexachlorobenzene	ND	1.0	EPA 8270	6-30-11	7-1-11	
Pentachlorophenol	ND	5.0	EPA 8270	6-30-11	7-1-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
Anthracene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
Carbazole	ND	1.0	EPA 8270	6-30-11	7-1-11	
Di-n-butylphthalate	ND	1.0	EPA 8270	6-30-11	7-1-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
Benzidine	ND	5.0	EPA 8270	6-30-11	7-1-11	
Pyrene	ND	0.10	EPA 8270/SIM	6-30-11	7-1-11	
Butylbenzylphthalate	ND	1.0	EPA 8270	6-30-11	7-1-11	
bis-2-Ethylhexyladipate	ND	1.0	EPA 8270	6-30-11	7-1-11	
3,3'-Dichlorobenzidine	ND	1.0	EPA 8270	6-30-11	7-1-11	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Chrysene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
bis(2-Ethylhexyl)phthalate	ND	1.0	EPA 8270	6-30-11	7-1-11	
Di-n-octylphthalate	ND	1.0	EPA 8270	6-30-11	7-1-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Indeno[1,2,3-cd]pyrene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270/SIM	6-30-11	7-1-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorophenol	33	18 - 86				
Phenol-d6	24	10 - 88				
Nitrobenzene-d5	<i>4</i> 5	37 - 112				
2-Fluorobiphenyl	61	42 - 108				
2,4,6-Tribromophenol	62	39 - 118				
Terphenyl-d14	69	49 - 122				

Project: 1005-001

SEMIVOLATILES by EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB06	30W1								
	SB	SBD	SB	SBD	SB	SBD				
Phenol	10.6	10.2	40.0	40.0	27	26	26 - 60	4	29	
2-Chlorophenol	24.4	26.2	40.0	40.0	61	66	46 - 104	7	34	
1,4-Dichlorobenzene	11.1	12.2	20.0	20.0	56	61	48 - 92	9	29	
n-Nitroso-di-n-propylamine	9.38	10.2	20.0	20.0	47	51	30 - 102	8	25	
1,2,4-Trichlorobenzene	10.2	11.5	20.0	20.0	51	58	47 - 91	12	25	
4-Chloro-3-methylphenol	25.0	24.8	40.0	40.0	63	62	53 - 104	1	18	
Acenaphthene	13.2	13.6	20.0	20.0	66	68	57 - 95	3	15	
4-Nitrophenol	18.7	16.2	40.0	40.0	47	41	21 - 75	14	33	
2,4-Dinitrotoluene	15.5	15.5	20.0	20.0	78	78	60 - 105	0	20	
Pentachlorophenol	29.4	29.0	40.0	40.0	74	73	48 - 119	1	31	
Pyrene	15.5	16.6	20.0	20.0	78	83	62 - 111	7	19	
Surrogate:										
2-Fluorophenol					37	36	18 - 86			
Phenol-d6					26	25	10 - 88			
Nitrobenzene-d5					50	54	37 - 112			
2-Fluorobiphenyl					67	70	42 - 108			
2,4,6-Tribromophenol					71	71	39 - 118			
Terphenyl-d14					78	84	49 - 122			

Project: 1005-001

DISSOLVED METALS EPA 6020/7470A

Matrix:

Water

Units:

ug/L (ppb)

Offits.	ug/L (ppb)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-251-01 PA-19-062811-GW					
Arsenic	ND	3.0	6020		7-1-11	
Cadmium	ND	4.0	6020		7-1-11	
Chromium	ND	10.0	6020		7-1-11	
Lead	ND	1.0	6020		7-1-11	
Mercury	ND	0.50	7470A		7-1-11	
Lab ID: Client ID:	06-251-02 FAR-16-062811-GW					
Arsenic	5.9	3.0	6020		7-1-11	
Cadmium	ND	4.0	6020		7-1-11	
Chromium	ND	10.0	6020		7-1-11	
Lead	ND	1.0	6020		7-1-11	
Mercury	ND	0.50	7470A		7-1-11	
Lab ID:	06-251-03 PZ-12-062811-GW					
Arsenic	ND	3.0	6020		7-1-11	
Cadmium	ND	4.0	6020		7-1-11	
Chromium	ND	10.0	6020		7-1-11	
Lead	ND	1.0	6020		7-1-11	
Mercury	ND	0.50	7470A		7-1-11	

Project: 1005-001

DISSOLVED METALS EPA 6020/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	06-251-04					
Client ID:	FAR-11-062811-GW					
Arsenic	ND	3.0	6020		7-1-11	
Cadmium	ND	4.0	6020		7-1-11	
Chromium	ND	10.0	6020		7-1-11	
Lead	ND	1.0	6020		7-1-11	
Mercury	ND	0.50	7470A		7-1-11	

Project: 1005-001

DISSOLVED METALS EPA 6020 METHOD BLANK QUALITY CONTROL

Date Analyzed: 7-1-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0701D2

Analyte	Method	Result	PQL
Arsenic	6020	ND	3.0
Cadmium	6020	ND	4.0
Chromium	6020	ND	10
Lead	6020	ND	1.0

Project: 1005-001

DISSOLVED METALS EPA 7470A METHOD BLANK QUALITY CONTROL

Date Analyzed: 7-1-11

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0624F1

Analyte Method Result PQL

Mercury 7470A **ND** 0.50

Project: 1005-001

DISSOLVED METALS EPA 6020 DUPLICATE QUALITY CONTROL

Date Analyzed: 7-1-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-251-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	

Project: 1005-001

DISSOLVED METALS EPA 7470A DUPLICATE QUALITY CONTROL

Date Analyzed: 7-1-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-206-09

Sample Duplicate

Analyte Result Repl PQL Flags

Mercury ND ND NA 0.50

Project: 1005-001

DISSOLVED METALS EPA 6020 MS/MSD QUALITY CONTROL

Date Analyzed: 7-1-11

Matrix: Water Units: ug/L (ppb)

Lab ID: 06-251-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	200	210	105	213	106	1	
Cadmium	200	202	101	202	101	0	
Chromium	200	198	99	196	98	1	
Lead	200	201	100	201	100	0	

Project: 1005-001

DISSOLVED METALS EPA 7470A MS/MSD QUALITY CONTROL

Date Analyzed: 7-1-11

Matrix: Water Units: ug/L (ppb)

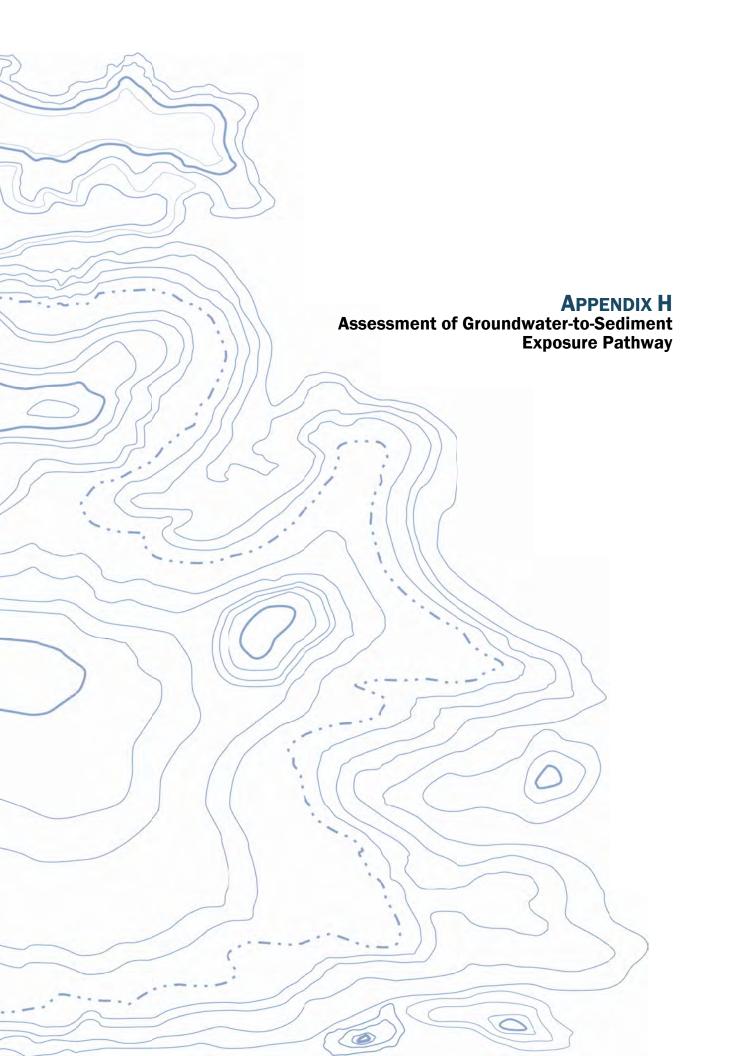
Lab ID: 06-206-09

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	12.5	11.3	91	11.2	90	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -


- ND Not Detected at PQL
- PQL Practical Quantitation Limit
- RPD Relative Percent Difference

Chain of Custody

Page _____ of ____

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished 12	Signature			5 Triphlanks	FAR-11-062811-6W	3 PZ-12-062811-6W	FAR-16-062811-GW	PA-19-061811-GW	Lab ID Sample Identification	Sampled by: Ken Substitute Sampled by: Sa	mer R	1005-00 [Project Name:	Company: FARALLON Project Number:		Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052
Reviewed/Date					The SUN ST	FARALLON	Company			EN	1 M OH1)	1350 W 10	1305 W 10	6/28/11 1215 N	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)	2 Days 🔏 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)
-					6/29/11 113	111849	Date Time				× ×	X	\ \ \	č ×	NWTF NWTF NWTF Volatii	PH-HCID PH-Gx/BTE	×	DB			Laboratory Numb
Chromatograms with final report	700	1 Annies	start two or other	OZ PA-19, PZ-12,4 FAR	S RUJ 3-DAY TONIS FOR T	ES All modal samples field-filtered	Comments/Special Instructions				>	X			(with I PAHs PCBs Organ Chlori Total I TCLP	rolatiles 82 ow-level P. 8270D/SIN 8082 nochlorine ophosphor inated Acic ROBA+ M Metals (oil and gro	AHs) // (low-level Pesticides us Pesticide Herbicide CA Metal	8081A es 8270l s 8151/ s (circle	D/SIM		umber: 06-251

Appendix H: Assessment of Groundwater-to-Sediment Exposure Pathway

An empirical evaluation was conducted to assess the potential for marine sediments offshore of the Rayonier Mill property to become impaired by the discharge of groundwater containing mill-related contaminants from the Upland Study Area to Port Angeles Harbor. The potential groundwater-to-sediment exposure pathway was evaluated by comparing available groundwater analytical data for constituents detected in offshore marine surface sediments at concentrations exceeding Washington State sediment quality standards (SQS; WAC 173-204-320) to preliminary groundwater screening levels developed by the Washington State Department of Ecology (Ecology) for the protection of marine sediments. Ecology's preliminary groundwater screening levels protective of marine sediments are contained in the spreadsheet file "Draft LDW ARARS CULs v12r5.xls" developed by Ron Timm of Ecology in 2011. The constituents detected in offshore marine surface sediments at concentrations exceeding SQS are identified in the Interim Action Report Volume II: Marine Data Summary Report (Marine Data Summary Report; Windward Environmental, in preparation). Figure H-1, prepared from marine sediment sampling information to be published in the Marine Data Summary Report, shows the constituents and surface sediment locations exceeding SQS in the area offshore of the mill property.

For each of the defined functional use areas bordering Port Angeles Harbor (Northwest Shoreline Area, West Former Mill Area, North Shoreline Area, Estuary Area, and East Shoreline Area; see Section 6.4 of the Upland Data Summary report for a discussion of functional use areas), available groundwater analytical data from the recent (2010-2011) and historical sampling of shoreline monitoring wells were screened against Ecology's preliminary groundwater screening levels for the constituents that exceed SQS in marine surface sediments offshore of the area. Groundwater in the shoreline monitoring wells is assumed to be representative of the Upland Study Area groundwater that may mix with seawater in the nearshore environment before discharging to Port Angeles Harbor. Accordingly, if the review of the available groundwater analytical data indicated that a particular constituent exceeding SQS in marine sediments was detected in one or more upgradient shoreline monitoring wells at concentrations above the preliminary screening level protective of sediments, this was taken as possible evidence of a complete groundwater-to-sediment pathway. Potentially complete groundwater-to-sediment pathways identified using this approach were then further assessed to evaluate the relative strength of the evidence for a complete pathway. For example, the number/frequency, spatial distribution/proximity, and magnitude of exceedances in groundwater and sediment were reviewed to assess the likelihood that the exceedances detected in sediment are in fact a direct result of the migration and discharge of contaminated groundwater through the sediment.

Table H-1 presents the Ecology preliminary groundwater screening levels protective of marine sediments for those constituents detected above SQS in marine surface sediments offshore of the mill property. Two sets of preliminary screening levels are shown in Table H-1: screening levels protective of sediments at the level of the SQS chemical criteria (Ecology's most conservative/stringent sediment criteria), and screening levels protective of sediments at the level of Washington State cleanup screening levels (CSL) chemical criteria (WAC 173-204-520). Because the CSL criteria are generally less stringent than the SQS criteria, the preliminary groundwater screening levels protective at the level of the CSL criteria are generally less stringent than the screening levels protective at the level of the SQS criteria. Table H-2 presents a summary of the groundwater screening analysis performed to evaluate the groundwater-to-sediment pathway. The results of the evaluation for each functional use area are presented below. In addition to Tables H-1 and H-2, this appendix includes copies of relevant marine sediment analytical data

tables from previously published reports; these data tables contain analytical results for samples and constituents exceeding SQS criteria in surface sediments offshore of the mill property.

Northwest Shoreline Area

As shown in Figure H-1, the following constituents have been detected in marine surface sediments offshore of the Northwest Shoreline Area at concentrations exceeding SQS: 2-methylphenol, 2,4-dimethylphenol, 4-methylphenol, acenaphthene, bis(2-ethylhexyl)phthalate (BEHP), dibenzofuran, fluoranthene, mercury, phenol, and total polychlorinated biphenyls (PCBs).

BEHP was detected in a groundwater sample obtained from shoreline monitoring well MW-61 in February 2011 at a concentration (1.4 micrograms per liter [ug/L]) that exceeds Ecology's preliminary groundwater screening level protective of sediments (see Table H-2 and Appendix E). Well MW-61 is upgradient of marine remedial investigation (RI) sediment sample LP-03, which is the only sediment sample in the entire offshore area adjacent to the mill property that exceeded the SQS for BEHP (Figures H-1 and H-2). BEHP is a common laboratory contaminant; there are no known mill-related sources of BEHP. Analytical results presented in the Marine RI Report (Malcolm Pirnie, 2007b) indicate that BEHP was detected in one or more laboratory method blanks associated with all of the sediment samples collected during the 2002 Marine RI, including the samples collected offshore of the Northwest Shoreline Area. This indicates that all of the reported BEHP detections in the Marine RI sediment samples are suspect. Furthermore, the concentration of BEHP detected in the February 2011 groundwater sample from well MW-61 (1.4 ug/L) was only slightly greater than the analytical MRL of 1 ug/L, and BEHP was detected in a method blank associated with many of the groundwater samples collected during the February 2011 monitoring event (although not the sample from MW-61; see data validation reports in Appendix F).

The detections of BEHP in laboratory method blanks associated with the Marine RI sediment samples and many of the February 2011 groundwater samples, and the fact that there are no known mill-related sources of BEHP, suggest that the reported BEHP detections in sediment and groundwater are likely the result of laboratory contamination. None of the other constituents detected above SQS in sediments was detected in recent (2010-2011) groundwater samples or historical groundwater samples (where recent data do not exist) at concentrations exceeding Ecology's preliminary screening levels protective of sediment. Consequently, the groundwater-to-sediment pathway does not appear to be a significant pathway of concern in the Northwest Shoreline Area.

West Former Mill Area

The following constituents have been detected in marine surface sediments offshore of the West Former Mill Area at concentrations exceeding SQS: 4-methylphenol, benzo(g,h,i)perylene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, phenol, total high molecular weight PAHs (HPAHs), and total PCBs (Figure H-1).

Indeno(1,2,3-cd)pyrene was detected in a groundwater sample obtained from shoreline monitoring well MW-54 in August 2010 at a concentration (0.024 ug/L) that exceeds Ecology's preliminary groundwater screening level protective of sediments. In addition, benzo(g,h,i)perylene was detected in two groundwater samples, obtained from well MW-55 in June 2003 and well PZ-3 in August 2001, at concentrations (0.017 and 0.82 ug/L, respectively) that exceed Ecology's preliminary groundwater screening level protective of sediments (see Table H-2 and Appendix E). Wells MW-54, MW-55, and PZ-3 are upgradient of marine sediment sample SD36, which is the only sediment sample in the entire

offshore area adjacent to the mill property that exceeded the SQS for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene (Figures H-1 and H-2). Sample SD36 was collected from sediments just off the north end of the mill dock. Numerous sediment samples have been collected between sample SD36 and shoreline wells MW-54, MW-55, and PZ-3, and none of these other sediment samples exceeded the SQS for indeno(1,2,3-cd)pyrene or benzo(g,h,i)perylene. Furthermore, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene were not detected in the majority of the groundwater samples obtained from wells MW-54, MW-55, and PZ-3. These findings suggest that the indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene detected in sediment sample SD36 are not directly related to the isolated detections of these constituents in nearshore groundwater in the West Former Mill Area.

None of the other constituents detected above SQS in sediments was detected in recent (2010-2011) groundwater samples or historical groundwater samples (where recent data do not exist) at concentrations exceeding Ecology's preliminary screening levels protective of sediment. Consequently, the groundwater-to-sediment pathway does not appear to be a significant pathway of concern in the West Former Mill Area.

North Shoreline Area

The following constituents have been detected in marine surface sediments offshore of the North Shoreline Area at concentrations exceeding SQS: 4-methylphenol, acenaphthene, benzo(g,h,i)perylene, chrysene, dibenzofuran, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, phenanthrene, phenol, pyrene, total HPAHs, total low molecular weight PAHs (LPAHs), and total PCBs (Figure H-1).

Acenaphthene was detected in five groundwater samples obtained from shoreline monitoring well MW-51 between 1998 and 2003 at concentrations that slightly exceed Ecology's preliminary groundwater screening level protective of sediments (see Table H-2 and Appendix E). Well MW-51 is the nearest monitoring well to marine sediment sample SD82, which is one of only two sediment samples in the entire offshore area adjacent to the mill property that exceeded the SQS for acenaphthene (Figures H-1 and H-2). In addition, phenol was detected in a groundwater sample obtained from shoreline monitoring well MW-56 in August 2001 at a concentration (80 ug/L) that slightly exceeds Ecology's preliminary groundwater screening level protective of sediments (see Table H-2 and Appendix E). Well MW-56 is upgradient of marine sediment sample MD04A, which is one of only two sediment samples in the entire offshore area adjacent to the mill property that exceeded the SQS for phenol (Figures H-1 and H-2). Sample MD04A was collected from sediments off the northwest corner of the mill dock. Numerous sediment samples have been collected between sample MD04A and shoreline well MW-56, and none of these other sediment samples exceeded the SQS for phenol. Three other groundwater samples obtained from well MW-56 between 2001 and 2003 had concentrations of phenol that were below Ecology's preliminary groundwater screening level protective of sediments. These findings suggest that the phenol detected in sediment sample MD04A is not directly related to the detections of phenol in nearshore groundwater in the North Shoreline Area.

None of the other constituents detected above SQS in sediments was detected in recent (2010-2011) groundwater samples or historical groundwater samples (where recent data do not exist) at concentrations exceeding Ecology's preliminary screening levels protective of sediment. The groundwater-to-sediment pathway appears to be a potential pathway of concern for acenaphthene in the North Shoreline Area. The groundwater-to-sediment pathway does not appear to be a significant pathway of concern for other constituents in the North Shoreline Area.

Estuary Area

The only constituent that has been detected in marine surface sediments offshore of the Estuary Area at a concentration exceeding SQS is total PCBs (Figure H-1). PCBs were not detected in shoreline monitoring well MW-62 in the Estuary Area at concentrations exceeding Ecology's preliminary groundwater screening level protective of sediment (see Table H-2 and Appendix E). Consequently, the groundwater-to-sediment pathway does not appear to be a significant pathway of concern in the Estuary Area.

East Shoreline Area

No constituents have been detected in marine surface sediments offshore of the East Shoreline Area at concentrations exceeding SQS (Figure H-1). Consequently, the groundwater-to-sediment pathway does not appear to be a significant pathway of concern in the East Shoreline Area.

Table H-1

Preliminary Groundwater Screening Levels Protective of Marine Sediments

Port Angeles Rayonier Mill Study Area, Upland Data Summary Report Port Angeles, Washington

		_	creening Levels Protective of ments
Constituents Exceeding SQS in Offshore Surface Sediments	Units	SL Protective of SQS	SL Protective of CSL
2-Methylphenol	ug/L	7.1	7.1
2,4-Dimethylphenol	ug/L	2.0	2.0
4-Methylphenol	ug/L	77	77
Acenaphthene	ug/L	2.6	9.3
ВЕНР	ug/L	0.28	0.47
Benzo(g,h,i)perylene	ug/L	0.012	0.029
Chrysene	ug/L	0.47	1.9
Dibenzofuran	ug/L	1.3	5.1
Fluoranthene	ug/L	2.3	17
Fluorene	ug/L	2.0	7.0
Indeno(1,2,3-cd)pyrene	ug/L	0.013	0.033
Mercury	mg/L	5.2E-06	7.4E-06
Phenanthrene	ug/L	4.8	23
Phenol	ug/L	78	220
Pyrene	ug/L	14	20
Total HPAHs	ug/L	NE	NE
Total LPAHs	ug/L	NE	NE
Total PCBs	ug/L	0.27	1.5

Notes:

NE = Not established

BEHP = bis(2-Ethylhexyl)phthalate

HPAHs = High molecular weight polycyclic aromatic hydrocarbons

LPAHs = Low molecular weight polycyclic aromatic hydrocarbons

PCBs = Polychlorinated biphenyls

SQS = Sediment Quality Standards

CSL = Cleanup Screening Levels

SL = Screening level

mg/L = Milligrams per liter

ug/L = Micrograms per liter

Source for preliminary screening levels: spreadsheet file "Draft LDW ARARs CULs v12r5.xls" developed by Ron Timm,

Washington State Department of Ecology, 2011.

Table H-2

Summary of Groundwater Screening Analysis for Groundwater-to-Sediment Exposure Pathway Evaluation

Port Angeles Rayonier Mill Study Area, Upland Data Summary Report Port Angeles, Washington

				Wells Samr	oled for Constituent in 2	2010-2011	Wells Sample	ed for Constituent Only	Prior to 2010
Functional Use Area	Monitoring Wells in Shoreline Area (Installation Date)	Constituents Exceeding SQS in Offshore Marine Surface Sediments	Does Constituent Exceed CSL?	Wells Sampled (No. of Samples Analyzed)	Wells with Exceedances of SL Protective of SQS in 2010-2011 (No. of Exceedances)	Wells with Exceedances of SL Protective of CSL in 2010-2011 (No. of Exceedances)	Well Sampled (No. of Samples	Wells with Exceedances of SL Protective of SQS Prior to 2010 (No. of Exceedances)	Wells with Exceedances of SL Protective of CSL Prior to 2010
Northwest Shoreline	MW-28 (6/1991) MW-52 (2/1998)	2-Methylphenol	Yes	None	NA	NA	MW-52 (5); MW-53 (4); PZ-2 (2)	None	None
	MW-53 (2/2001) MW-61 (10/2010)	2,4-Dimethylphenol	Yes	None	NA	NA	MW-52 (5); MW-53 (4); PZ-2 (2)	None (Note 1)	None (Note 1)
	MW-67 (3/2011) PZ-2 (8/1993)	4-Methylphenol	Yes	None	NA	NA	MW-52 (3); MW-53 (2); PZ-2 (2)	None	None
		Acenaphthene	No	None	NA	NA	MW-52 (5); MW-53 (4); PZ-2 (3)	None	None
		ВЕНР	No	MW-28 (3); MW-52 (3); MW-53 (2); MW-61 (2); MW-67 (1); PZ-2 (3)	MW-61 (1) (Note 2)	MW-61 (1) (Note 2)	None	NA	NA
		Dibenzofuran	No	None	NA	NA	MW-52 (4); MW-53 (3); PZ-2 (2)	None	None
		Fluoranthene	Yes	None	NA	NA	MW-52 (5); MW-53 (4); PZ-2 (3)	None	None
		Mercury	No	MW-28 (4); MW-52 (3); MW-53 (2); MW-61 (2); MW-67 (2); PZ-2 (2)	None (Note 3)	None (Note 3)	None	NA	NA
		Phenol	No	None	NA	NA	MW-52 (5); MW-53 (4); PZ-2 (2)	None	None
		Total PCBs	No	MW-28 (4); MW-52 (1); MW-53 (2); MW-61 (2); MW-67 (1); PZ-2 (4)	None	None	None	NA	NA
West Former Mill	MW-54 (2/2001) MW-55 (2/2001)	4-Methylphenol	Yes	None	NA	NA	MW-54 (2); MW-55 (2); PZ-3 (3)	None	None
	PZ-3 (8/1993)	Benzo(g,h,i)perylene	No	None	NA	NA	MW-54 (4); MW-55 (4); PZ-3 (6)	MW-55 (1); PZ-3 (1) (Note 4)	PZ-3 (1) (Note 4)
		Chrysene	No	MW-54 (4); MW-55 (2); PZ-3 (3)	None	None	None	NA	NA
		Fluoranthene	Yes	None	NA	NA	MW-54 (4); MW-55 (4); PZ-3 (7)	None	None
		Indeno(1,2,3-cd)pyrene	No	MW-54 (4); MW-55 (2); PZ-3 (3)	MW-54 (1)	None	None	NA	NA
		Phenol	No	None	NA	NA	MW-54 (4); MW-55 (4); PZ-3 (6)	None	None
		Total HPAHs	No	None	NA	NA	None	NA	NA
		Total PCBs	No	MW-54 (2); MW-55 (2); PZ-3 (2)	None	None	None	NA	NA

				Wells Sam	oled for Constituent in 2	2010-2011	Wells Sample	d for Constituent Only I	Prior to 2010
Functional Use Area	Monitoring Wells in Shoreline Area (Installation Date)	Constituents Exceeding SCS in Offshore Marine Surface Sediments	Does Constituent Exceed CSL?	Wells Sampled (No. of Samples Analyzed)	Wells with Exceedances of SL Protective of SQS in 2010-2011 (No. of Exceedances)	Wells with Exceedances of SL Protective of CSL in 2010-2011 (No. of Exceedances)	Well Sampled (No. of Samples Analyzed)	Wells with Exceedances of SL Protective of SQS Prior to 2010 (No. of Exceedances)	Wells with Exceedances of SL Protective of CSL Prior to 2010 (No. of Exceedances)
North Shoreline	MW-51 (2/1998)	4-Methylphenol	Yes	None	NA	NA	MW-51 (3); MW-56 (2)	None	None
	MW-56 (2/2001)	Acenaphthene	Yes	None	NA	NA	MW-51 (5); MW-56 (4)	MW-51 (5)	None
		Benzo(g,h,i)perylene	No	None	NA	NA	MW-51 (5); MW-56 (4)	None (Note 5)	None (Note 5)
		Chrysene	No	MW-51 (4); MW-56 (2)	None	None	None	NA	NA
		Dibenzofuran	Yes	None	NA	NA	MW-51 (4); MW-56 (3)	None	None
		Fluoranthene	Yes	None	NA	NA	MW-51 (5); MW-56 (4)	None	None
		Fluorene	Yes	None	NA	NA	MW-51 (5); MW-56 (4)	None	None
		Indeno(1,2,3-cd)pyrene	No	MW-51 (4); MW-56 (2)	None	None	None	NA	NA
		Phenanthrene	Yes	None	NA	NA	MW-51 (5); MW-56 (4)	None	None
		Phenol	No	None	NA	NA	MW-51 (5); MW-56 (4)	MW-56 (1)	None
		Pyrene	Yes	MW-51 (3); MW-56 (2)	None	None	None	NA	NA
		Total HPAHs	Yes	None	NA	NA	None	NA	NA
		Total LPAHs	Yes	None	NA	NA	None	NA	NA
		Total PCBs	No	MW-51 (2); MW-56 (3)	None	None	None	NA	NA
Estuary	MW-62 (10/2010)	Total PCBs	No	MW-62 (2)	None	None	None	NA	NA
East Shoreline	MW-59 (11/2002) PZ-9 (8/1993) PA-24 (8/2009)	None	NA	NA	NA	NA	NA	NA	NA

Notes:

NA = Not applicable

BEHP = bis(2-Ethylhexyl)phthalate

HPAHs = High molecular weight polycyclic aromatic hydrocarbons

LPAHs = Low molecular weight polycyclic aromatic hydrocarbons

PCBs = Polychlorinated biphenyls

SQS = Sediment Quality Standards

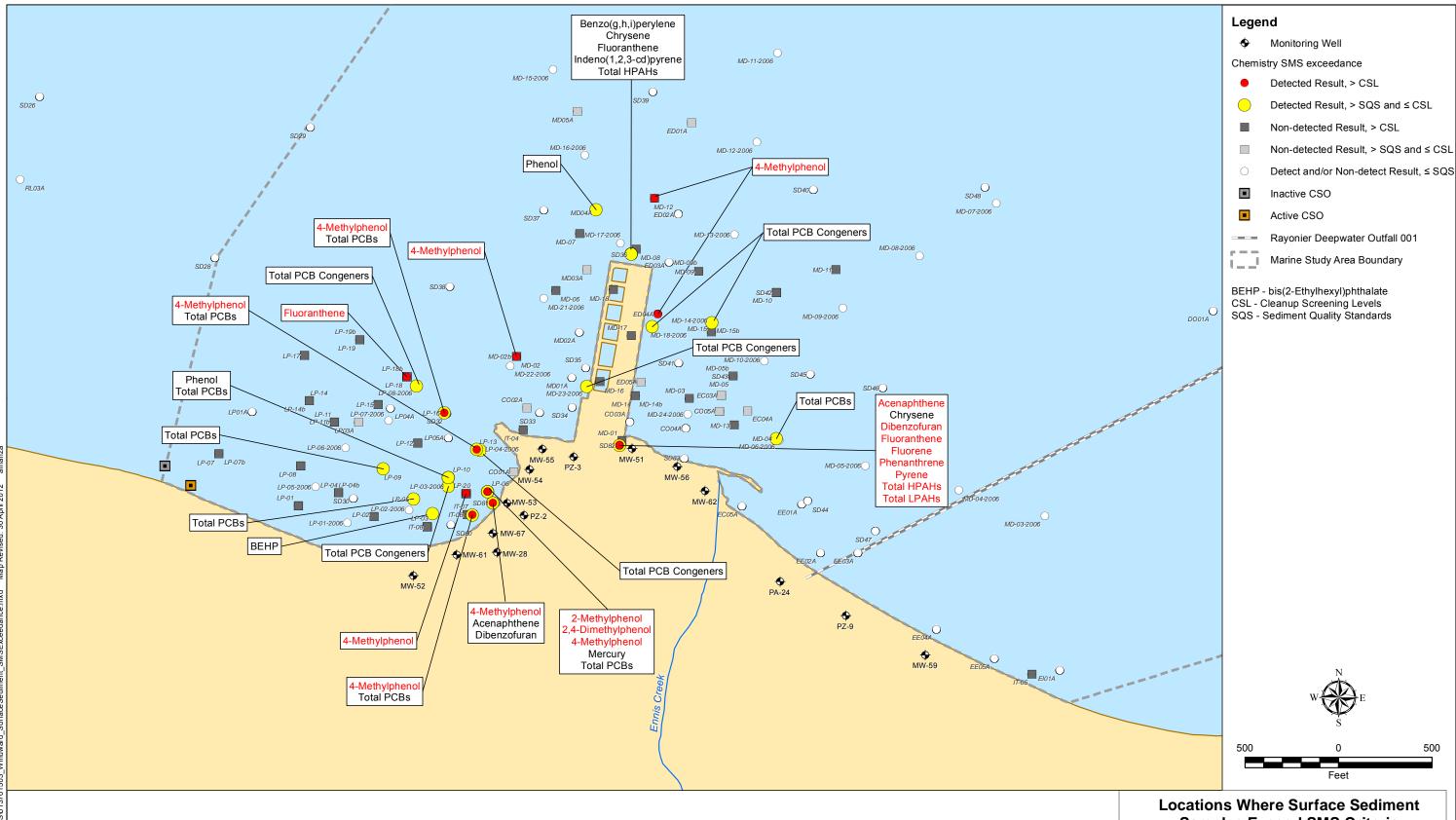
CSL = Cleanup Screening Levels

SL = Screening level

Note 1: The laboratory MRL for most samples was 3 ug/L or 3.3 ug/L: most MRLs exceeded the SLs protective of both SQS and CSL.

Note 2: The laboratory MRL for all samples was 1 ug/L; MRLs exceeded the SLs protective of both SQS and CSL.

Note 3: The laboratory MRL for all samples was 2E-05 mg/L; MRLs exceeded the SLs protective of both SQS and CSL. For samples with both total (unfiltered) and dissolved (filtered) metals results,


only the dissolved results were used in the evaluation.

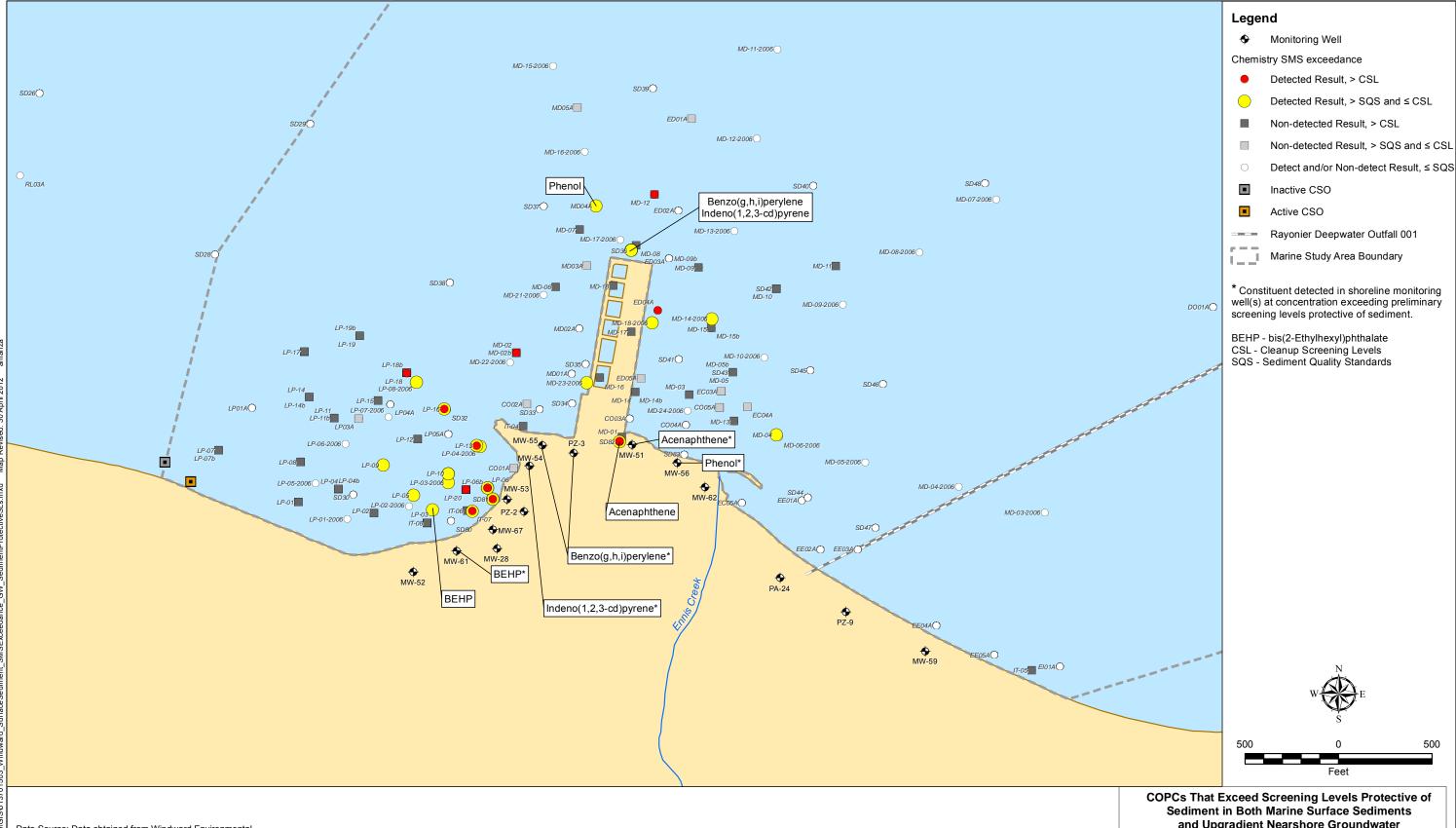
Note 4: The laboratory MRL for all samples ranged from 0.1 ug/L to 1 ug/L; MRLs exceeded the SLs protective of both SQS and CSL.

Note 5: The laboratory MRL for all samples ranged from 0.02 ug/L to 1 ug/L; most MRLs exceeded the SLs protective of both SQS and CSL.

Grey-shaded cells highlight constituents with at least one exceedance of Ecology's preliminary groundwater SLs protective of marine sediments (see Table H-1) and the shoreline monitoring wells in which the exceedances were detected.

Data Source: Data obtained from Windward Environmental Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

1. The locations of all features shown are approximate.


2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Samples Exceed SMS Criteria

Upland Data Summary Report Port Angeles Rayonier Mill Study Area Port Angeles, Washington

Figure H-1

Data Source: Data obtained from Windward Environmental Projection: NAD 1983 StatePlane Washington North FIPS 4601 Feet

1. The locations of all features shown are approximate.

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

and Upgradient Nearshore Groundwater

Upland Data Summary Report Port Angeles Rayonier Mill Study Area Port Angeles, Washington

Figure H-2

Marine Sediments Sample Analytical Results Summary Rayonier Pulp Mill ESI Port Angeles, Washington

								Po	ort Angeles,	Washingto	n													
Sample Location	I	Backgroun	d																					
E&E Sample Number	SD84	SD85	SD86	SD01	SD02	SD03	SD04	SD05	SD06	SD07	SD09	SD10	SD11	SD12	SD13	SD14	SD15	SD16	SD17	SD18	SD19	SD20	SD21	SD22
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ022	MJQ023	MJQ024	MJQ025	MJQ026	MJQ027	MJQ028	MJQ030	MJQ031	MJQ015	MJQ014	MJQ013	MJQ017	MJQ016	MJQ012	MJQ032	MJQ033	MJQ039	MJQ034	MJQ088	MJQ087
EPA Sample Number	97504802	97504803	97504804	97494615	97494616	97494617	97494618	97494619	97494620	97494621	97494623	97494624	97494605	97494604	97494603	97494607	97494606	97494602	97494627	97494628	97504807	97494629	97504809	97504808
Grain Size/Type	A	В	C	A	A	A	A	A	A	A	A	A	A	A	В	A	A	В	A	A	В	A	A	A
Metals (in mg/kg)																								
Aluminum	22400	12600	12600	15800	17600	17800	18100	20200	17100	10400	17300	12700	15200	15400	16500	15500	13400	10700	19900	14700	14800	14800	16700	13300
Antimony	1.3 UJL	0.80 UJL	0.83 UJL	2.2 UJL	2.1 U	2.3 UJL	9.9 JQ	2.2 UJL	2.0 UJL	1.2 UJL	1.8 UJL	1.1 UJL	1.1 U	1.4 U	1.6 U	1.2 U	1.0 U	1.0 U	1.3 U	1.1 U	1.2 UJL	1.2 U	0.98 UJL	0.98 UJL
Arsenic	7	2.6 JQ (2.7 *)	3.1	13.1	9.5	11.5	<u>65.9</u>	13.7	11.2	6.2	7.7	6.1	7.3	8.3	<u>6.6</u>	8	5.7	<u>4.7</u>	7.6	6.3	<u>6.6</u>	8.5	5.1	5.4
Barium	45.6 JQ	23 JQ	20.7 JQ	39.7 JQ	44.5 JQ	44.1 JQ	51.1 JQ	49.9 JQ	39.9 JQ	21.8 JQ	39.8 JQ	25.2 JQ	36.1 JQ	34.9 JQ	39.3 JQ	33.1 JQ	26.4 JQ	27.6 JQ	41.1 JQ	32.3 JQ	31.7 JQ	32.7 JQ	33.8 JQ	27.1 JQ
Beryllium	0.46 JQ	0.27 U	0.28 U	0.73 U	0.70 U	0.77 U	1.5 JQ	0.74 U	0.68 U	0.40 U	0.60 U	0.36 U	0.37 U	0.45 U	0.54 U	0.39 U	0.33 U	0.33 U	0.45 U	0.38 U	0.40 U	0.40 U	0.33 JQ	0.33 U
Cadmium	2.1 JQ (2.1 *)	1.0 JQ (1.3 *)	1.1 JQ (1.4 *)	<u>5.8</u>	<u>3.7</u>	<u>3.9</u>	<u>5.3</u>	<u>5</u>	3.9	<u>2.1</u>	2.6 JQ	1.6 JQ	1.9	<u>2.7</u>	1.8 JQ	<u>2.1</u>	1.6 JQ	1.5 JQ	2.1 JQ	1.6 JQ	1.5 JQ	1.8 JQ	1.5 JQ	1.3 JQ
Calcium	53100	8740	4600	5580	8950	7890	45600	6730	5510	4750	5610	4850	4140	4010	5260	4550	3870	3340	6060 JK	7470 JK	4990	6220 JK	5520	4660
Chromium	47.5	29.2	29.2	33.6	34.4	37.1	40.4	44.4	37.1	23.8	35.3	26.5	29.9 JH	29.9 JH	32.1 JH	33.1 JH	26.7 JH	21 JH	41.1	32.2	31.6	32.1	33.2	28.6
Cobalt	11.5 JQ	6.7 JQ (13.3 *)	7.1 JQ	6.7 JQ	6.9 JQ	7.2 JQ	16 JQ	8.5 JQ	6.9 JQ	4.4 JQ	6.9 JQ	6.5 JQ	6.5 JQ	6.7 JQ	7.8 JQ	7.6 JQ	6.4 JQ	4.8 JQ	8.8 JQ	6.8 JQ	7.5 JQ	7.3 JQ	7.6 JQ	6.8 JQ
Copper	36	10.2	16.1	56.4	38.8	42.6	419	62.2	50.5	26.1	39.2	27.4	27.7	34.3	24.1	33.9	24.5	20.2	40.8	30.2	29.1	31.7	23.2	22.6
Iron	33300	18900	20200	26000	27600	31000	29200	31800	27300	15400	28700	21400	24500	24900	27900	26600	23900	17900	29900	22000	23900	23300	27100	21800
Lead	7.6	1.3	3.8	<u>35.1</u>	20.4	20.4	<u>27.1</u>	<u>39</u>	30.3	15.4	17.8	13.1	13.3 JK	17.3 JK	10.8 JK (7.5 AC)	15.8 JK	8.1 JK	7.7 JK (5.3 AC)	17.3	17.2	<u>16.9</u>	21.7	12.4	12.2
Magnesium	13300	7690	8490	11400	11100	12100	17900	13300	11100	6360	10500	7820	8380	8600	9990	9000	7650	6430	10800 JK	8290 JK	9000	8690 JK	9150	8160
Manganese	284	262	198	202	218	232	238	254	215	149	212	183	204 JH	197 JH	240 JH	209 JH	204 JH	144 JH	236	179	203	182	242	199
Mercury	0.11 U	0.09 JQ (0.27 *)	0.13	<u>1.4</u>	0.27 JQ	0.26 JQ	0.16 U	<u>0.64</u>	<u>0.51</u>	0.18 JQ	0.15 U	0.09 U	<u>0.43</u>	0.8	0.22 JQ	0.31	0.19	0.19	0.11 U	0.14 JQ	0.2	0.16 JQ	<u>0.17</u>	<u>0.16</u>
Nickel	42.2	35.5	31.1	26.8 JQ	26.5 JQ	28.6 JQ	30.3	32.9	27.5	19.4	26.8	24	23.7	23.9	26.4	28.2	22.2	17.2	32.6	25.5	27.4	26.8	27	27.2
Potassium	3730 JK	936 JQ	1520	3700	3630	3710 JQ	3720	4330	3410	1560 JQ	3620	2040	2400	2700	2770	2440	1870	2030	3030	2300	2400	2300	2290	1950
Selenium	1.3 U	0.80 U	0.83 U	2.4 JQ	2.1 U	3.4 JQ	<u>3.6</u>	2.9 JQ	2.0 U	1.2 U	2.2 JQ	1.1 U	1.1 U	1.4 U	1.6 U	1.2 U	1.0 U	1.0 U	2.1 U	1.2 U	1.5 JQ	2.2 U	1 JQ	0.98 U
Silver	0.43 JQ	0.27 U	0.28 U	0.73 U	0.70 U	0.77 U	1.2 JQ	0.74 U	0.68 U	0.40 U	0.60 U	0.36 U	0.37 U	0.48 JQ	0.54 U	0.39 U	0.33 U	0.33 U	0.45 U	0.38 U	0.40 U	0.40 U	0.33 U	0.33 U
Sodium	17900	4520	6950 JK	32500	28000	31100	25100	33700	26300	10500	23200	12600	10600	13500	17100	11200	7890	11800	14800 JK	12000	11800 JK	11700 JK	8390 JK	8370 JK
Thallium	1.3 U	0.80 U	0.83 U	2.2 U	2.1 U	2.3 U	3.4 JQ	2.2 U	2.0 U	1.2 U	2.0 JQ	1.1 U	1.6 JQ	2.1 JQ	1.6 U	1.8 JQ	1.4 JQ	1.4 JQ	1.3 U	1.1 U	1.2 U	1.2 U	0.98 U	0.98 U
Vanadium	67.9	50.6	38.7	56.1	58.4	64.5	63.6	67.3	57.7	37.3	58.1	46.5	48.6 JK	49.9 JK	53.7 JK	56 JK	43.2 JK	36.4 JK	69.4	53.2	51.7	54.9	53.8	47.1
Zinc	88.7	32.4	43.7	<u>669</u>	<u>279</u>	225	137	<u>329</u>	231	104	142	63.6	97 JK	194 JK	87 JK	92.8 JK	70.9 JK	68.6 JK	87.7 JK	71.5 JK	74.9	76.8 JK	73.8	64
Volatile Organic Compo	unds (in µg									_						_				_	_			
2-Butanone	15.1 UJL		9.1 UJL	19.3 UJL	17.6 UJL	20.0 UJL	19.2 UJL	18.5 UJL	19.1 UJL	9.6 UJL	19.5 UJL	8.7 UJL	11.9 UJL	12.7 UJL	15.0 UJL	10.0 UJL	9.5 UJL	10.5 UJL	13.0 UJL	11.7 UJL	11.2 UJL	12.1 UJL	11.9 UJL	9.4 UJL
2-Propanone	15.1 UJL	9.0 UJL	9.1 UJL	19.3 UJL	23.0 UJL	20.0 UJL	19.2 UJL	<u>109 JL</u>	19.1 UJL	9.6 UJL	41.8 UJL	8.7 UJL	11.9 UJL	12.7 UJL	<u>107 JL</u>	10.0 UJL	<u>23.4 JL</u>	10.5 UJL	<u>17.4 JL</u>	11.7 UJL	11.2 UJL	12.1 UJL	11.9 UJL	9.4 UJL
Carbon disulfide	15.1 UJL	9.0 UJL	9.1 UJL	19.3 UJL	17.6 UJL	20.0 UJL	19.2 UJL	18.5 UJL	19.1 UJL	9.6 UJL	19.5 UJL	8.7 UJL	11.9 UJL	12.7 UJL	15.0 UJL	10.0 UJL	9.5 UJL	10.5 UJL	13.0 UJL	11.7 UJL	11.2 UJL	12.1 UJL	11.9 UJL	9.4 UJL
Methane, dichloro	15.1 UJL	9.0 UJL	9.1 UJL	19.3 UJL	17.6 UJL	20.0 UJL	19.2 UJL	18.5 UJL	19.1 UJL	9.6 UJL	19.5 UJL	8.7 UJL	11.9 UJL	12.7 UJL	15.0 UJL	10.0 UJL	9.5 UJL	10.5 UJL	13.0 UJL	11.7 UJL	11.2 UJL	12.1 UJL	11.9 UJL	9.4 UJL
Toluene	15.1 UJL	9.0 UJL	9.1 UJL	19.3 UJL	17.6 UJL	20.0 UJL	19.2 UJL	18.5 UJL	19.1 UJL	9.6 UJL	19.5 UJL	8.7 UJL	11.9 UJL	12.7 UJL	15.0 UJL	10.0 UJL	9.5 UJL	10.5 UJL	13.0 UJL	11.7 UJL	11.2 UJL	12.1 UJĹ	11.9 UJL	9.4 UJL

Marine Sediments Sample Analytical Results Summary Rayonier Pulp Mill ESI Port Angeles, Washington

Sample Location	1	Backgroun	d						nt Angeles.	, wasningto	11													
E&E Sample Number	SD84	SD85	SD86	SD01	SD02	SD03	SD04	SD05	SD06	SD07	SD09	SD10	SD11	SD12	SD13	SD14	SD15	SD16	SD17	SD18	SD19	SD20	SD21	SD22
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ022	MJQ023	MJQ024	MJQ025	MJQ026	MJQ027	MJQ028	MJQ030	MJQ031	MJQ015	MJQ014	MJQ013	MJQ017	MJQ016	MJQ012	MJQ032	MJQ033		MJQ034	MJQ088	MJQ087
EPA Sample Number	97504802	97504803	97504804	97494615	97494616	97494617	97494618	97494619	97494620	97494621	97494623	97494624	97494605	97494604	97494603	97494607	97494606	97494602	97494627	97494628	97504807	97494629	97504809	
Grain Size/Type	A	В	C	A	A	A	A	A	A	A	A	A	A	A	В	A	A	В	A	A	В	A	A	A
Semi-Volatile Organic C	ompounds	(in µg/kg)																						
2,4,6-Trichlorophenol	214 U	132 U	160 U	593 U	532 U	566 U	489 U	572 U	524 U	312 U	507 U	232 U	265 U	322 U	325 U	290 U	216 U	238 U	262 U	233 U	212 U	260 U	171 U	170 U
4-Methylphenol	107 U	66.0 U	80.0 U	285 JQ	266 U	283 U	244 U	<u>340</u>	<u>379</u>	<u>226</u>	254 U	116 U	132 U	161 U	162 U	145 U	108 U	119 U	131 U	<u>194</u>	106 U	<u>280</u>	85.6 U	79.3 JQ
9H-Carbazole	21.4 U	13.2 U	16.0 U	59.3 U	53.2 U	56.6 U	48.9 U	57.2 U	52.4 U	31.2 U	190 JQ	23.2 U	132 U	32.2 U	32.5 U	29.0 U	21.6 U	23.8 U	131 U	<u>121</u>	21.2 U	130 U	17.1 U	17.0 U
9H-Fluorene	21.4 U	13.2 U	16.0 U	<u>99.8</u>	<u>69.9</u>	52.8 JQ	48.9 U	<u>64.7</u>	56.4	<u>66.9</u>	254 U	<u>33.3</u>	125 JQ	<u>55.4</u>	32.5 U	<u>77.1</u>	<u>24.2</u>	<u>28.8</u>	131 U	<u>171</u>	<u>56.5</u>	129 JQ	<u>25.8</u>	<u>49.8</u>
Acenaphthene	21.4 U	13.2 U	16.0 U	<u>61.3</u>	53.2 U	56.6 U	48.9 U	57.2 U	52.4 U	<u>42.8</u>	254 U	<u>23.3</u>	129 JQ	<u>46.7</u>	32.5 U	<u>77.3</u>	20.1 JQ	23.6 JQ	131 U	<u>128</u>	<u>48.2</u>	116 JQ	18.8	<u>38.2</u>
Acenaphthylene	21.4 U	13.2 U	16.0 U	59.3 U	53.2 U	56.6 U	48.9 U	57.2 U	52.4 U	31.2 U	254 U	22.8 JQ	177	109	32.5 U	120	55.7	79.4	131 U	119	62.8	130 U	43.8	49.9
Anthracene	21.4 U	13.2 U	16.0 U	<u>192</u>	<u>268</u>	<u>79.9</u>	48.9 U	<u>114</u>	<u>99.7</u>	<u>127</u>	<u>865</u>	<u>63.2</u>	<u>186</u>	<u>87.9</u>	28.2 JQ	<u>164</u>	<u>44.2</u>	<u>47.7</u>	<u>166</u>	<u>447</u>	<u>127</u>	<u>247</u>	<u>50.0</u>	<u>104</u>
Benzo(a)anthracene	21.4 U	13.2 U	16.0 U	<u>302</u>	<u>573</u>	<u>169</u>	<u>54.2</u>	<u>149</u>	<u>191</u>	<u>194</u>	<u>804</u>	<u>104</u>	<u>278</u>	<u>78.6</u>	<u>41.7</u>	<u>166</u>	<u>48.1</u>	<u>40.9</u>	131 U	<u>508</u>	<u>140</u>	<u>297</u>	<u>55.4</u>	<u>101</u>
Benzo(a)pyrene	21.4 U	13.2 U	16.0 U	<u>188</u>	<u>246</u>	<u>101</u>	48.9 U	<u>106</u>	<u>179</u>	<u>129</u>	<u>416</u>	<u>58.2</u>	<u>161</u>	<u>63.4</u>	<u>33.6</u>	<u>111</u>	<u>40.4</u>	<u>34.7</u>	<u>133</u>	<u>371</u>	<u>75.7</u>	<u>203</u>	<u>39.4</u>	<u>53.4</u>
Benzo(ghi)perylene	21.4 U	13.2 U	16.0 U	<u>105</u>	<u>101</u>	<u>59.7</u>	48.9 U	<u>84.7</u>	<u>131</u>	<u>67.7</u>	254 U	<u>35.8</u>	132 U	<u>65.3</u>	32.5 U	<u>73.4</u>	<u>41.0</u>	<u>36.5</u>	131 U	<u>203</u>	<u>57.1</u>	130 U	<u>38.6</u>	<u>42.0</u>
Benzo(b)fluoranthene	21.4 U	13.2 U	16.0 U	<u>323</u>	<u>390</u>	<u>172</u>	<u>69.0</u>	<u>207</u>	<u>255</u>	<u>241</u>	<u>781</u>	<u>121</u>	<u>264</u>	<u>107</u>	<u>54.6</u>	<u>197</u>	<u>66.1</u>	<u>44.6</u>	<u>233</u>	<u>709</u>	<u>167</u>	<u>381</u>	<u>70.0</u>	<u>111</u>
Benzo(k)fluoranthene	21.4 U	13.2 U	16.0 U	<u>148</u>	<u>169</u>	<u>74.7</u>	48.9 U	<u>92.1</u>	<u>75.4</u>	<u>99.9</u>	<u>358</u>	<u>42.9</u>	107 JQ	<u>38.3</u>	32.5 U	<u>75.6</u>	<u>28.8</u>	23.5 JQ	99.0 JQ	<u>280</u>	<u>48.7</u>	<u>138</u>	<u>30.2</u>	<u>38.9</u>
Benzoic acid	214 U	132 U	160 U	593 U	532 U	566 U	489 U	572 U	524 U	312 U	507 U	232 U	265 U	322 U	325 U	290 U	216 U	238 U	262 U	233 U	212 U	260 U	171 U	170 U
Chrysene	21.4 U	13.2 U	16.0 U	<u>415</u>	<u>761</u>	<u>241</u>	<u>85.4</u>	<u>312</u>	<u>341</u>	<u>329</u>	<u>1220</u>	<u>157</u>	<u>431</u>	<u>112</u>	<u>75.6</u>	<u>236</u>	<u>80.2</u>	<u>61.0</u>	<u>267</u>	<u>869</u>	<u>219</u>	<u>503</u>	<u>109</u>	<u>125</u>
Dibenzo(a,h)anthracene	21.4 U	13.2 U	16.0 U	59.3 U	53.2 U	56.6 U	48.9 U	57.2 U	52.4 U	31.2 U	254 U	23.2 U	132 U	32.2 U	32.5 U	29.0 U	21.6 U	23.8 U	131 U	116 U	21.2 U	130 U	17.1 U	17.0 U
Dibenzofuran	21.4 U	13.2 U	16.0 U	<u>97.9</u>	53.2 U	56.6 U	48.9 U	<u>76.8</u>	61.5	<u>59.7</u>	254 U	34.1	<u>171</u>	<u>89.5</u>	32.5 U	<u>100</u>	42.3	<u>45.5</u>	131 U	<u>178</u>	<u>76.9</u>	<u>138</u>	<u>40.8</u>	<u>65.7</u>
Fluoranthene	21.5	13.2 U	21.1	<u>768</u>	703	<u>557</u>	<u>203</u>	<u>634</u>	403	<u>498</u>	<u>875</u>	<u>269</u>	<u>1100</u>	<u>370</u>	<u>188</u>	<u>487</u>	<u>202</u>	<u>226</u>	<u>559</u>	<u>1260</u>	<u>548</u>	<u>1140</u>	<u>291</u>	<u>453</u>
Indeno(1,2,3-cd)pyrene	21.4 U	13.2 U	16.0 U	76.8	89.1	56.6 U	48.9 U	70.7	61.8	58.5	254 U	31.6	132 U	46.7	32.5 U	63.5	27.5	23.8 U	131 U	174	39.6	130 U	26.5	29.5
Naphthalene	21.4 U	13.2 U	16.0 U	<u>315</u>	<u>78.4</u>	<u>128</u>	43.7 JQ	<u>367</u>	301	<u>158</u>	254 U	<u>135</u>	903	<u>726</u>	50.3	<u>490</u>	<u>254</u>	340	<u>245</u>	<u>518</u>	<u>409</u>	<u>374</u>	248	<u>312</u>
Naphthalene, 1-methyl-	21.4 U	13.2 U	16.0 U	57.5 JQ	53.2 U	56.6 U	48.9 U	57.2 U	52.4 U	31.2 U	254 U	23.2 U	79.3 JQ	60.2	32.5 U	43.1	28.8	34.9	131 U	116 U	30.2	130 U	24.1	25.9
Naphthalene, 2-methyl-	21.4 U	13.2 U	16.0 U	<u>109</u>	<u>58.2</u>	<u>83.5</u>	43.8 JQ	<u>77.1</u>	<u>76.2</u>	<u>39.6</u>	254 U	22.6 JQ	128 JQ	<u>99.4</u>	44.8	<u>69.2</u>	43.3	<u>52.9</u>	131 U	<u>119</u>	<u>51.9</u>	130 U	<u>37.1</u>	<u>48.7</u>
Phenanthrene	24.7	13.2 U	15.1 JQ	<u>413</u>	<u>321</u>	<u>339</u>	<u>113</u>	<u>386</u>	<u>253</u>	<u>240</u>	<u>510</u>	<u>155</u>	<u>680</u>	<u>405</u>	<u>104</u>	<u>424</u>	<u>174</u>	<u>233</u>	<u>363</u>	<u>751</u>	<u>368</u>	<u>591</u>	<u>225</u>	<u>315</u>
DI 1	107.11	(() II	(16 *)	207.11	266 11	202.11	244 11	206.11	262.11	15 C I I	05411	11611	120 11	161 11	160 11	1 4 5 T T	100 11	110 11	121 11	11611	106 11	120 11	05.611	79.7.10
Phenol	107 U	66.0 U	80.0 U	297 U	266 U	283 U	244 U	286 U	262 U	156 U	254 U	116 U	132 U	161 U	162 U	145 U	108 U	119 U	131 U	116 U	106 U	130 U	85.6 U	78.7 JQ
Pyrene	21.5 107 U	13.2 U 66.0 U	19.2 80.0 U	967 819	<u>828</u> 325	544 242 JO	200 244 U	747 1380	596 1760	755 717	1790 202 JO	341 108 JO	958 303	<u>438</u> 247	179 162 U	726 129 JO	228 106 JO	288 124	756 218	1860 373	<u>657</u> 258	1380 666	319 117	<u>476</u> 253
Retene		00.0 0	80.0 0	019	325	242 JQ	244 U	1360	1700	/1/	202 JQ	100 JQ	303	247	102 U	129 JQ	100 JQ	124	210	3/3	250	000		255
Pesticide/PCBs (in ug/kg	7	1 (11	2011	7 4 11	6.7 U	711	(1 II	7211	(5 II	2011	(2 II	2011	2211	4011	4111	7.2	2711	3.0 U	2011	0.4	2.1	0.0	2.1.11	24
P,P'-DDD	2.7 U 27 U	1.6 U	2.0 U 20 U	7.4 U 74 U	6.7 U 67 U	7.1 U	6.1 U	7.2 U	6.5 U 65 U	3.9 U 39 U	6.3 U 63 U	2.9 U	3.3 U 33 U	4.0 U 40 U	4.1 U 41 U	7.3 36 U	2.7 U	3.0 U	3.9 U 33 U	8.4 29 U	3.1 27 U	9.9 32 U	2.1 U	2.4
PCB 1242	27 U	16 U	20 U	74 U	67 U	71 U 71 U	61 U 61 U	96 JK 140	99	64 JK	63 U	29 U	33 U	40 U	41 U	36 U	27 U 27 U	30 U	33 U	29 U	27 U		21 U	21 U
PCB 1254	27 U	16 U	20 U	74 U	67 U	71 U	61 U	72 U	170	39 U	63 U	29 U 29 U	33 U	40 U	41 U	69	27 U	30 U	33 U 39	29 U	27 U	32 U 32 U	21 U 21 U	21 U
PCB 1260	21 U	16 U	20 U	/4 U	0 / U	/1 U	01 U	12 U	1/0	39 U	03 U	29 U	33 U	40 U	41 U	<u>09</u>	21 U	30 U	<u>39</u>	29 U	27 U	32 U	21 U	21 U

Marine Sediments Sample Analytical Results Summary Rayonier Pulp Mill ESI Port Angeles, Washington

								- 10	it migeres,	, washingto	,11													
Sample Location]	Backgroun	ıd																					
E&E Sample Number	SD84	SD85	SD86	SD01	SD02	SD03	SD04	SD05	SD06	SD07	SD09	SD10	SD11	SD12	SD13	SD14	SD15	SD16	SD17	SD18	SD19	SD20	SD21	SD22
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ022	MJQ023	MJQ024	MJQ025	MJQ026	MJQ027	MJQ028	MJQ030	MJQ031	MJQ015	MJQ014	MJQ013	MJQ017	MJQ016	MJQ012	MJQ032	MJQ033	MJQ039	MJQ034	MJQ088	MJQ087
EPA Sample Number	97504802	97504803	97504804	97494615	97494616	97494617	97494618	97494619	97494620	97494621	97494623	97494624	97494605	97494604	97494603	97494607	97494606	97494602	97494627	97494628	97504807	97494629	97504809	97504808
Grain Size/Type	A	В	C	A	A	A	A	A	A	A	A	A	A	A	В	A	A	В	A	A	В	A	A	A
Dioxins/Furans (in ng/kg	g)																							
TCDFs (total)	1.1	0.51	0.47 U	N/A	<u>10</u>	<u>12</u>	N/A	N/A	N/A	<u>18</u>	N/A	N/A	N/A	N/A	N/A	<u>46</u>	<u>34</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,3,7,8-TCDF	0.82 U	0.34 U	0.47 U	N/A	2.3	1.2	N/A	N/A	N/A	2.7	N/A	N/A	N/A	N/A	N/A	4	3.3	N/A						
PeCDFs (total)	0.60 U	0.25 U	0.48 U	N/A	3.5 U	6.5	N/A	N/A	N/A	14	N/A	N/A	N/A	N/A	N/A	18	9.5	N/A						
HxCDFs (total)	0.80 U	0.44 U	0.53 U	N/A	<u>28</u>	18	N/A	N/A	N/A	36	N/A	N/A	N/A	N/A	N/A	22	<u>5</u>	N/A						
HpCDFs (total)	2.3 U	0.17 U	1.0 U	N/A	130	62	N/A	N/A	N/A	150	N/A	N/A	N/A	N/A	N/A	<u>55</u>	24	N/A						
1,2,3,4,6,7,8-HpCDF	1.3 U	0.13 U	0.67 U	N/A	34	<u>17</u>	N/A	N/A	N/A	38	N/A	N/A	N/A	N/A	N/A	12	5.8	N/A						
OCDF	3.6 U	0.31 U	1.2 U	N/A	<u>110</u>	<u>45</u>	N/A	N/A	N/A	<u>97</u>	N/A	N/A	N/A	N/A	N/A	<u>38</u>	<u>13</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TCDDs (total)	0.83 U	0.24 U	0.59 U	N/A	<u>22</u>	<u>28</u>	N/A	N/A	N/A	<u>21</u>	N/A	N/A	N/A	N/A	N/A	<u>95</u>	<u>80</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,3,7,8-TCDD	0.28 U	0.24 U	0.59 U	N/A	0.62 U	0.29 U	N/A	N/A	N/A	0.68 U	N/A	N/A	N/A	N/A	N/A	<u>1.4</u>	0.87 JQ	N/A						
PeCDDs (total)	2.4 U	1.3 U	2.2 U	N/A	<u>5.7</u>	3.8	N/A	N/A	N/A	<u>5.8</u>	N/A	N/A	N/A	N/A	N/A	<u>33</u>	<u>54</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2,3,7,8-PeCDD	0.50 U	0.56 U	0.53 U	N/A	1.8 U	0.83 U	N/A	N/A	N/A	1.2 U	N/A	N/A	N/A	N/A	N/A	1.5 U	1.9 U	N/A						
HxCDDs (total)	4.3 U	1.4 U	1.8 U	N/A	<u>45</u>	<u>54</u>	N/A	N/A	N/A	<u>60</u>	N/A	N/A	N/A	N/A	N/A	<u>94</u>	<u>16</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2,3,4,7,8-HxCDD	0.77 U	1.4 U	0.70 U	N/A	1.1 U	1.1 U	N/A	N/A	N/A	1.1 U	N/A	N/A	N/A	N/A	N/A	2.0 U	1.7 U	N/A						
1,2,3,6,7,8-HxCDD	1.3 U	1.4 U	0.60 U	N/A	7.3 JQ	6.8	N/A	N/A	N/A	10	N/A	N/A	N/A	N/A	N/A	8	3.3 JQ	N/A						
1,2,3,7,8,9-HxCDD	0.68 U	1.4 U	0.62 U	N/A	2.4 U	3.0 JQ	N/A	N/A	N/A	4.2 JQ	N/A	N/A	N/A	N/A	N/A	5.2 JH	3.2 JQ	N/A						
HpCDDs (total)	16	0.34 U	3.1 U	N/A	300 JH	<u>170</u>	N/A	N/A	N/A	340	N/A	N/A	N/A	N/A	N/A	<u>170</u>	39	N/A						
1,2,3,4,6,7,8-HpCDD	7.8 JQ (14.4 *)	0.34 U	3.1 U	N/A	130 JH	<u>78</u>	N/A	N/A	N/A	<u>140</u>	N/A	N/A	N/A	N/A	N/A	<u>64</u>	27 UJH	N/A						
OCDD	40 U	2.6 U	19 U	N/A	<u>1100</u>	<u>620</u>	N/A	N/A	N/A	<u>1100</u>	N/A	N/A	N/A	N/A	N/A	<u>450</u>	<u>150</u>	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TEO	0.12	0	0.02	N/A	3.83	2.73	N/A	N/A	N/A	4.67	N/A	N/A	N/A	N/A	N/A	4.35	2.35	N/A						

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI PORT ANGELES, WASHINGTON

	_								OKI ANG	ELES, WA	SIIINGTO	11								
Sample Location		Backgroun	d																	
E&E Sample Number	SD84	SD85	SD86	SD23	SD24	SD25	SD26	SD28	SD29	SD30	SD32	SD33	SD34	SD35	SD36	SD37	SD38	SD39	SD40	SD41
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ035	MJQ036	MJQ037	MJQ038	MJQ042	MJQ043	MJQ075	MJQ074	MJQ049	MJQ050	MJQ051	MJQ073	MJQ045	MJQ044	MJQ052	MJQ053	MJQ072
EPA Sample Number	97504802	97504803	97504804	97494630	97494631	97494632	97494633	97494637	97494638	97494153	97494151	97494645	97494646	97494647	97494150	97494640	97494639	97494648	97494649	97494669
Grain Size/Type	A	В	C	A	В	В	A	A	A	В	C	В	A	A	В	В	В	A	В	A
Metals (in mg/kg)																				
Aluminum	22400	12600	12600	10800	7790	5950	10700	8810	10900	8540	18100	10100	17400	13600	8790	8000	6980	14400	14500	13400
Antimony	1.3 UJL	0.80 UJL	0.83 UJL	0.96 U	0.86 U	0.74 U	0.85 U	0.85 U	0.90 U	0.94 UJL	2.4 UJL	0.89 UJL	1.3 UJL	0.93 UJL	0.77 UJL	0.81 U	0.74 U	0.99 UJL	1.2 JQ	0.83 UJL
Arsenic	7	2.6 JQ	3.1	5	<u>4</u>	<u>3.1</u>	3.5	5.1	3.8	<u>6.5</u>	<u>20.2</u>	4.5 U	6.3 U	4.9 U	<u>4.2</u>	<u>5.5</u>	<u>4.3</u>	5.0 U	4.8 U	4.2
		(2.7 *)																		
Barium	45.6 JQ	23 JQ	20.7 JQ	25.6 JQ	17.7 JQ	15.1 JQ	23.6 JQ	19.8 JQ	22.6 JQ	14.8 JQ	41 JQ	16.5 JQ	29.4 JQ	26.5 JQ	21.4 JQ	17.6 JQ	22 JQ	32 JQ	32.2 JQ	22.6 JQ
Beryllium	0.46 JQ	0.27 U	0.28 U	0.32 U	0.29 U	0.25 U	0.28 U	0.28 U	0.30 U	0.31 U	0.81 U	0.30 U	0.42 U	0.31 U	0.26 U	0.27 U	0.25 U	0.33 U	0.34 U	0.28 U
Cadmium	2.1 JQ	1.0 JQ	1.1 JQ	1.3 JQ	1.1 JQ	0.67 JQ	0.99 JQ	1.0 JQ	1.0 JQ	1.3 JQ	<u>4.2</u>	1.1 JQ	1.6 JQ	1.1 JQ	1.2 JQ	1.0 JQ	0.77 JQ	1.2 JQ	1.2 JQ	1.4
	(2.1 *)	(1.3 *)	(1.4 *)																	
Calcium	53100	8740	4600	4600 JK	4100 JK	4290 JK	4330 JK	5760 JK	4630 JK	7010	12300	24200	11500	11100	7080	4520 JK	4310 JK	7230	6450	5400
Chromium	47.5	29.2	29.2	22	15.5	15.1	21.3	16.4	22.8	19	47.1	20.9	33.6	21.5	18	16.6	13.1	29.6	26.9	28
Cobalt	11.5 JQ	6.7 JQ	7.1 JQ	4.8 JQ	3.8 JQ	2.8 JQ	5.0 JQ	4.5 JQ	5.2 JQ	5.1 JQ	9.9 JQ	5.7 JQ	8.5 JQ	5.9 JQ	5.3 JQ	4.9 JQ	4.3 JQ	6.4 JQ	6.7 JQ	7.5 JQ
-		(13.3 *)			12.0												10.1			
Copper	36	10.2	16.1	14.5	12.9	4.7 JQ	15.5	10.4	15.5	15.3	64.8	14.6	22.1	16	15.5	13.7	13.1	14.8	14.4	25.1
Iron	33300	18900	20200	15700	13700	10100	16400	13500	16100	14500	31900	15800	23100	17000	14500	12800	10900	20000	21000	20000
Lead	7.6	1.3	3.8	9.1	<u>6.1</u>	3.4	7.9	4.5	7.7	<u>12.7</u>	<u>53.8</u>	<u>4.5</u>	6.2	5.8	<u>5.9</u>	<u>7.1</u>	3.8	5.9	<u>5.8</u>	7.3
Magnesium	13300	7690	8490	6040 JK	4340 JK	3440 JK	6060 JK	5510 JK	6360 JK	6830	15500	6510	9720	7080	5700	5640 JK	4660 JK	7600	8270	8000
Manganese	284	262	198	152	119	112	162	154	154	181	263	156	263	207	158	156	128	220	223	195
Mercury	0.11 U	0.09 JQ	0.13	0.09 JQ	0.06 U	0.13	0.06 U	0.07 U	0.11 JQ	0.10 JQ	0.29 JQ	0.010 JQ	0.13 JQ	0.08 JQ	0.07 U	0.07 U	0.06 U	0.2	0.15 JQ	0.22
		(0.27 *)																		
Nickel	42.2	35.5	31.1	19.1	15.3	12.7	19.4	18.7	19.8	24.4	42	21.2	31.6	21.6	21.9	21.1	16.4	24.3	25.9	28.8
Potassium	3730 JK	936 JQ	1520	1530 JQ	959 JQ	679 JQ	1390 JQ	1100 JQ	1490 JQ	1130 JQ	3850 JQ	1520 JK	2220 JK	1640 JK	1070 JQ	914 JQ	832 JQ	1950 JK	1930 JK	1530
Selenium	1.3 U	0.80 U	0.83 U	1.2 U	0.86 U	0.81 U	1.1 U	0.85 U	1.6 U	0.94 U	2.4 U	0.89 U	1.3 U	0.93 U	0.77 U	0.81 U	0.74 U	0.99 U	1.0 U	0.83 U
Silver	0.43 JQ	0.27 U	0.28 U	0.32 U	0.29 U	0.25 U	0.28 U	0.28 U	0.30 U	0.31 U	0.81 U	0.30 U	0.42 U	0.31 U	0.26 U	0.27 U	0.25 U	0.33 U	0.34 U	0.28 U
Sodium	17900	4520	6950 JK	7190 JK	5080 JK	4020 JK	6620 JK	5220 JK	7490 JK	8810	33500	8190	11000	7630	5310	5160	4360 JK	9360	9470	6650
Thallium	1.3 U	0.80 U	0.83 U	1.1 JQ	0.86 U	0.74 U	0.85 U	0.85 U	0.90 U	0.94 U	2.4 U	0.99 JQ	1.4 JQ	0.93 U	0.77 U	0.81 U	0.77 JQ	0.99 U	1.3 JQ	0.83 U
Vanadium	67.9	50.6	38.7	37.6	30.5	32.3	37.7	33.1	38.4	36.9	83.5	39.7	62.3	45.2	33.2	30	25.6	54.3	52.3	50.3
Zinc	88.7	32.4	43.7	46.7 JK	35.4 JK	20.7 JK	40.9 JK	34.3 JK	39.2 JK	42.7	<u>148</u>	37.2	54.2	39.1	56.8	31.3 JK	24.4 JK	45.4	48.4	43.8
Volatile Organic Compo	ounds (in µg	/kg)																		
2-Butanone	15.1 UJL	9.0 UJL	9.1 UJL	7.6 UJL	7.6 UJL	6.5 UJL	7.9 UJL	8.0 UJL	8.0 UJL	9.7 UJL	33.6 UJL	8.3 UJL	<u>21.1 JL</u>	7.8 UJL	8.8 UJL	6.2 UJL	5.7 UJL	6.8 UJL	6.6 UJL	9.6 UJL
2-Propanone	15.1 UJL	9.0 UJL	9.1 UJL	7.6 UJL	7.6 UJL	6.5 UJL	7.9 UJL	8.0 UJL	8.0 UJL	9.7 UJL	33.6 UJL	8.3 UJL	11.4 UJL	7.8 UJL	8.8 UJL	6.2 UJL	5.7 UJL	6.8 UJL	6.6 UJL	9.6 UJL
Carbon disulfide	15.1 UJL	9.0 UJL	9.1 UJL	7.6 UJL	7.6 UJL	6.5 UJL	7.9 UJL	8.0 UJL	8.0 UJL	9.7 UJL	33.6 UJL	8.3 UJL	38.4 JL	7.8 UJL	8.8 UJL	6.2 UJL	5.7 UJL	6.8 UJL	6.6 UJL	9.6 UJL
Methane, dichloro	15.1 UJL	9.0 UJL	9.1 UJL	7.6 UJL	12.2 JL	6.5 UJL	7.9 UJL	8.0 UJL	8.0 UJL	9.7 UJL	33.6 UJL	8.3 UJL	11.4 UJL	7.8 UJL	8.8 UJL	6.2 UJL	5.7 UJL	6.8 UJL	6.6 UJL	9.6 UJL
Toluene	15.1 UJL	9.0 UJL	9.1 UJL	7.6 UJL	7.6 UJL	6.5 UJL	7.9 UJL	8.0 UJL	8.0 UJL	9.7 UJL	33.6 UJL	8.3 UJL	18.0 JL	7.8 UJL	8.8 UJL	6.2 UJL	5.7 UJL	6.8 UJL	6.6 UJL	9.6 UJL

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

CLP Sample Number MJQ082 MJQ083 MJQ084 MJQ035 MJQ036 MJQ036 MJQ037 MJQ042 MJQ043 MJQ075 MJQ075 MJQ075 MJQ074 MJQ075 MJQ075 MJQ073 MJQ075	PORT ANGELES, WASHINGTON Somple Location Postground													
CLP Sample Number MJQ082 MJQ083 MJQ084 MJQ035 MJQ036 MJQ036 MJQ037 MJQ043 MJQ042 MJQ043 MJQ075 MJQ075 MJQ074 MJQ050 MJQ051 MJQ073 MJQ045 MJQ046 MJQ052 MJQ053 MJQ084 MJQ052 MJQ053 MJQ084 MJQ052 MJQ084 MJQ052 MJQ084 MJQ052 MJQ084 MJQ052 MJQ084 MJQ085 MJQ086 MJQ085 MJQ084														
FPA Sample Number 97504802 97504803 97504804 97494630 97494631 97494631 97494632 97494633 97494633 97494633 97494633 97494638 97494638 97494634 97494646 97494646 97494646 97494646 97494646 97494639 97494648 97494649	SD41													
Grain Size/Type	JQ072													
Semi-Volatile Organic Compounds (in µg/kg) Z4,6-Trichlorophenol Z14 U 132 U 160 U 178 U 167 U 170 U 175 U 170 U 175 U 186 U N/A 166 U 179 U 152 U 172 U 184 U 152 U 152 U 167 U 24.	494669													
2.4.6-Trichlorophenol 214 U 132 U 160 U 178 U 178 U 178 U 170 U 175 U 192 U 186 U N/A 166 U 179 U 152 U 172 U 184 U 152 U 152 U 167 U 24-Methylphenol 107 U 66.0 U 80.0 U 89.1 U 211 83.4 U 85.0 U 99.9 105 230 N/A 95.4 316 394 379 384 91.3 75.8 U 83.4 U 9H-Carbazole 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 16.7 U 40.1 33.3 37.1 147 N/A 33.4 135 148 164 95.6 34.4 15.5 24.3 Acenaphthylene 21.4 U 13.2 U 16.0 U 28.9 25.3 16.7 U 37.1 28.1 31.9 125 N/A 16.6 U 109 137 105 76.1 22.5 15.2 U 25.8 Acenaphthylene 21.4 U 13.2 U 16.0 U 41.4 17.8 U 16.7 U 65.5 50.0 53.2 133 N/A 57.1 150 193 728 112 81.4 25.3 31.2 Eenzo(a)nythrace 21.4 U 13.2 U 16.0 U 91.6 47.7 16.7 U 65.5 50.0 53.2 133 N/A 57.1 150 193 728 112 81.4 25.3 31.2 Eenzo(a)nythrace 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Eenzo(ghi)perylene 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Eenzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Eenzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Eenzo(ghi)perylene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Eenzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Eenzo(c)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 15.4 Q 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 17.9 U 15.2 U 17.2 U 18.4 U 15.2 U 15.0 U 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 27.2 16.7 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 17.9 U 15.2 U 17.2 U 18.4 U 15.2 U 15.2 U 16.7 U 27.2 Dibenzo(a,h)anthracen 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 15.4 Q 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 86.0 U 99.7 34.5 19.7 30.4 U 10.0 U 17.8 U 15.2 U 16.7 U 17.5 U 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 86.0 U 99.7 34.5 19.7 3	A													
H-Methylphenol 107 U 66.0 U 80.0 U 89.1 U 211 83.4 U 85.0 U 99.9 105 230 N/A 95.4 316 394 379 384 91.3 75.8 U 83.4 U 9H-Carbazole 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 16.7 U 85.0 U 17.5 U 96.0 U 31.2 N/A 16.6 U 89.7 U 75.8 U 162 92.2 U 15.2 U 16.7 U 16.7 U 18.2 U 16.0 U 23.9 25.3 16.7 U 37.1 28.1 31.9 125 N/A 16.6 U 109 137 105 76.1 22.5 15.2 U 25.8 Acenaphthylene 21.4 U 13.2 U 16.0 U 24.4 17.8 U 16.7 U 67 17.5 U 24.8 18.6 U N/A 16.6 U 89.7 U 75.8 U 169 22.3 15.2 U 14.3 IQ 22.9 Anthracene 21.4 U 13.2 U 16.0 U 41.4 17.8 U 16.7 U 67 17.5 U 24.8 18.6 U N/A 16.6 U 89.7 U 75.8 U 169 22.3 15.2 U 14.3 IQ 22.9 Anthracene 21.4 U 13.2 U 16.0 U 44.4 25.5 16.7 U 55 49.0 45.5 12.6 U N/A 22.6 170 22.3 1390 64.0 48.4 27.2 26.8 Benzo(a)anthracene 21.4 U 13.2 U 16.0 U 24.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 33.9 23.7 21.5 26.4 N/A 32.3 89.7 U 75.8 U 506 19.8 22.8 16.2 16.7 U Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.0 27.0 14.2 JQ 16.7 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 75.8 U 15.2 U 15.2 U 15.2 U 16.7 U 27.0 1														
PH-Carbazole 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 16.7 U 85.0 U 17.5 U 96.0 U 31.2 N/A 16.6 U 89.7 U 75.8 U 16.2 92.2 U 15.2 U 15.2 U 16.7 U 18.5 U 19.5	201 U													
PH-Fluorene 21.4 U 13.2 U 16.0 U 28.9 25.3 16.7 U 28.1 31.9 125 N/A 16.6 U 109 137 105 76.1 22.5 15.2 U 25.8	<u>502</u>													
Acenaphthene 21.4 U 13.2 U 16.0 U 28.9 25.3 16.7 U 37.1 28.1 31.9 125 N/A 16.6 U 109 137 105 76.1 22.5 15.2 U 25.8 Acenaphthylene 21.4 U 13.2 U 16.0 U 41.4 17.8 U 16.7 U 67 17.5 U 24.8 18.6 U N/A 16.6 U 89.7 U 75.8 U 169 22.3 15.2 U 14.3 JQ 22.9 Anthracene 21.4 U 13.2 U 16.0 U 91.6 47.7 16.7 U 65.5 50.0 53.2 133 N/A 57.1 150 193 728 112 81.4 25.3 31.2 Benzo(a)apyrene 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Benzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 33.9 23.7 21.5 26.4 N/A 32.3 89.7 U 75.8 U 506 19.8 22.8 16.2 16.7 U Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(a) 13.2 U 16.0 U 17.8 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 754 27.9 27.0 14.2 JQ 16.7 U Benzoic acid 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 19.2 U 186 U N/A 166 U 17.9 U 15.2 U 17.2 U 184 U 15.2 U 15.2 U 15.2 U 16.7 U 20.1 Benzo(a)apyrene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 86.0 U 99.7 34.5 19.7 30.4 U 16.0 U 19.8 U 15.2 U 15.2 U 16.7 U 20.1 U 15.2 U 16.7 U 20.1 U 15.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 142 18.4 U 15.2 U 15.2 U 16.7 U 20.1 U 15.0 U 15.5 U 15.0 U 15	8.0 JQ													
Acenaphthylene 21.4 U 13.2 U 16.0 U 41.4 17.8 U 16.7 U 67 17.5 U 24.8 18.6 U N/A 16.6 U 89.7 U 75.8 U 169 22.3 15.2 U 14.3 JQ 22.9 Anthracene 21.4 U 13.2 U 16.0 U 91.6 47.7 16.7 U 65.5 50.0 53.2 133 N/A 57.1 150 193 728 112 81.4 25.3 31.2 Benzo(a)anthracene 21.4 U 13.2 U 16.0 U 44.4 52.5 16.7 U 55 49.0 45.5 126 N/A 92.6 170 223 1390 64.0 48.4 27.2 26.8 Benzo(a)pyrene 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(a)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.8 U 17.8 U 18.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 18.4 U 13.2 U 16.0 U 17.8 U 17.8 U 18.4 U	86.6													
Anthracene 21.4 U 13.2 U 16.0 U 91.6 47.7 16.7 U 65.5 50.0 53.2 133 N/A 57.1 150 193 728 112 81.4 25.3 31.2 Benzo(a)anthracene 21.4 U 13.2 U 16.0 U 44.4 52.5 16.7 U 55 49.0 45.5 126 N/A 92.6 170 223 1390 64.0 48.4 27.2 26.8 Benzo(a)pyrene 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Benzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 33.9 23.7 21.5 26.4 N/A 32.3 89.7 U 75.8 U 506 19.8 22.8 16.2 16.7 U Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(c)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 754 27.9 27.0 14.2 JQ 16.7 U Benzo(a) 13.2 U 16.0 U 17.8 U	<u>60.3</u>													
Benzo(a)anthracene 21.4 U 13.2 U 16.0 U 44.4 52.5 16.7 U 55 49.0 45.5 126 N/A 92.6 170 223 1390 64.0 48.4 27.2 26.8 Benzo(a)pyrene 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Benzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 33.9 23.7 21.5 26.4 N/A 32.3 89.7 U 75.8 U 506 19.8 22.8 16.2 16.7 U Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(k)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 75.4 27.9 27.0 14.2 JQ 16.7 U Benzo(acid 21.4 U 13.2 U 16.0 U 178 U 178 U 178 U 178 U 175 U 192 U 186 U N/A 166 U 179 U 152 U 172 U 184 U 152 U 152 U 167 U 20.0 Chrysene 21.4 U 13.2 U 16.0 U 17.8 U 17.	30.8													
Benzo(a)pyrene 21.4 U 13.2 U 16.0 U 28.1 39.5 16.7 U 38.7 28.2 29.2 50.9 N/A 49.1 94.6 112 1140 32.3 29.9 20.2 17.5 Benzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 33.9 23.7 21.5 26.4 N/A 32.3 89.7 U 75.8 U 506 19.8 22.8 16.2 16.7 U Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(k)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 754 27.9 27.0 14.2 JQ 16.7 U Benzoi acid 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 17.9 U 15.2 U 17.2 U 18.4 U 15.2 U 15.2 U 15.2 U 16.7 U 20.2 Chrysene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 14.2 I8.4 U 15.2 U 15.2 U 15.2 U 16.7 U 20.2 Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	<u>137</u>													
Benzo(ghi)perylene 21.4 U 13.2 U 16.0 U 22.3 21.4 16.7 U 33.9 23.7 21.5 26.4 N/A 32.3 89.7 U 75.8 U 506 19.8 22.8 16.2 16.7 U Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(k)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 754 27.9 27.0 14.2 JQ 16.7 U Benzoic acid 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 17.9 U 15.2 U 17.2 U 18.4 U 15.2 U 15.2 U 16.7 U 2.0 Chrysene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 16.7 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 14.2 I 18.4 U 15.2 U 15.2 U 15.2 U 16.7 U 2.0 Dibenzo(a,h)anthracene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 14.2 I 18.4 U 15.2 U 15.2 U 15.2 U 16.7 U 2.0 Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	<u>118</u>													
Benzo(b)fluoranthene 21.4 U 13.2 U 16.0 U 49.0 80.4 16.7 U 67.9 55.6 46.2 110 N/A 72.6 143 205 1880 54.5 53.7 29.4 29.9 Benzo(k)fluoranthene 21.4 U 13.2 U 16.0 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 754 27.9 27.0 14.2 JQ 16.7 U Benzoic acid 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.5 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 17.9 U 17.5 U 17.2 U 18.4 U 17.2 U 18.4 U 17.2 U 18.4 U 18.2 U 18.2 U 18.4 U 18	<u>57.2</u>													
Benzoic acid 214 U 13.2 U 16.0 U 17.8 U 27.2 16.7 U 26.2 23.6 22.5 49.1 N/A 33.7 89.7 77.3 754 27.9 27.0 14.2 JQ 16.7 U Benzoic acid 214 U 132 U 160 U 178 U 178 U 178 U 178 U 178 U 175 U 192 U 186 U N/A 166 U 179 U 152 U 172 U 184 U 152 U 152 U 167 U 2 Chrysene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 179 U 152 U 172 U 184 U 152 U 152 U 167 U 2 Dibenzo(a,h)anthracene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 14.2 U 18.4 U 15.2 U 15.2 U 15.2 U 16.7 U 2 Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	<u>42.5</u>													
Benzoic acid 214 U 132 U 160 U 178 U 178 U 154 JQ 170 U 175 U 192 U 186 U N/A 166 U 179 U 152 U 172 U 184 U 152 U 152 U 167 U 2 Chrysene 21.4 U 13.2 U 16.0 U 115 100 16.7 U 91.2 89.1 71.2 192 N/A 128 226 328 2210 95.8 101 43.2 40.9 Dibenzo(a,h)anthracene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.8 U 17.8 U 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 142 18.4 U 15.2 U 15.2 U 15.2 U 16.7 U 2 Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	<u>107</u>													
Chrysene 21.4 U 13.2 U 16.0 U 115 100 16.7 U 91.2 89.1 71.2 192 N/A 128 226 328 2210 95.8 101 43.2 40.9 Dibenzo(a,h)anthracene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 142 18.4 U 15.2 U 15.2 U 16.7 U 2 Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	<u>30.4</u>													
Dibenzo(a,h)anthracene 21.4 U 13.2 U 16.0 U 17.8 U 17.8 U 16.7 U 17.0 U 17.5 U 19.2 U 18.6 U N/A 16.6 U 89.7 U 75.8 U 142 18.4 U 15.2 U 15.2 U 16.7 U 2 Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	201 U													
Dibenzofuran 21.4 U 13.2 U 16.0 U 39.3 33.2 16.7 U 56.7 38.1 41.0 119 N/A 27.3 104 75.8 U 86.0 U 99.7 34.5 19.7 30.4	<u>170</u>													
	0.1 U													
Fluoranthene 21.5 13.2 U 21.1 416 188 28.0 328 265 269 703 N/A 237 560 794 3270 422 198 167 194	72.4													
	<u>490</u>													
	27.8													
Naphthalene 21.4 U 13.2 U 16.0 U 397 133 16.7 U 376 191 268 276 N/A 103 317 459 226 513 154 154 251	<u>391</u>													
	120													
	<u>238</u>													
Phenanthrene 24.7 13.2 U 15.1 JQ 296 133 15.2 JQ 270 167 226 335 N/A 172 506 539 673 399 159 155 184	<u>464</u>													
(16 *)														
	101 U													
	<u>600</u>													
Retene 107 U 66.0 U 80.0 U 163 302 83.4 U 207 486 349 394 N/A 401 653 1020 360 2660 304 121 131	809													
Pesticide/PCBs (in ug/kg)														
	2.5 U													
	25 U													
	25 U													
PCB 1260 27 U 16 U 20 U <u>27</u> 22 U 21 U 21 U 22 U 26 23 U N/A 21 U 22 U 20 <u>80</u> <u>32</u> 19 U 19 U 21 U	<u>35</u>													

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

PORT ANGELES, WASHINGTON

Sample Location Background																				
E&E Sample Number	SD84	SD85	SD86	SD23	SD24	SD25	SD26	SD28	SD29	SD30	SD32	SD33	SD34	SD35	SD36	SD37	SD38	SD39	SD40	SD41
CLP Sample Number	MJO082	MJO083	MJO084	MJO035	MJO036	MJO037	MJO038	MJO042	MJO043	MJO075	MJO074	MJO049	MJO050	MJO051	MJO073	MJO045	MJO044	MJO052	MJO053	MJQ072
EPA Sample Number	97504802			97494630		97494632		97494637	97494638		- (-	97494645	97494646		97494150		97494639		97494649	97494669
Grain Size/Type	A	B	C	Δ	B	B	A	A	Δ	B	C	B	A	A	B	B	B	Δ	B	A
Dioxins/Furans (in ng/kg)														A						
		0.51	0.45.11	27/4	27/4	NT/A	27/4	20	27/4	1 22		37/4		44	10 777	NT/4	NT/A	37/4	27/4	7.1
TCDFs (total)	1.1	0.51	0.47 U	N/A	N/A	N/A	N/A	<u>29</u>	N/A	<u>32</u>	<u>54</u>	N/A	<u>9.7</u>	<u>41</u>	19 JH (1.9 AC)	N/A	N/A	N/A	N/A	<u>51</u>
2,3,7,8-TCDF	0.82 U	0.34 U	0.47 U	N/A	N/A	N/A	N/A	2.3	N/A	3	3.6	N/A	1.2	2.3	1.4	N/A	N/A	N/A	N/A	4
PeCDFs (total)	0.60 U	0.25 U	0.48 U	N/A	N/A	N/A	N/A	7.4	N/A	7.5	8.7	N/A	1.9 U	9.5	3	N/A	N/A	N/A	N/A	6.8
HxCDFs (total)	0.80 U	0.44 U	0.53 U	N/A	N/A	N/A	N/A	5.3	N/A	3.5 U	7	N/A	1.9 U	8.8	6.5	N/A	N/A	N/A	N/A	3.7 U
HpCDFs (total)	2.3 U	0.17 U	1.0 U	N/A	N/A	N/A	N/A	18	N/A	<u>20</u>	<u>54</u>	N/A	<u>9.7</u>	81	<u>25</u>	N/A	N/A	N/A	N/A	<u>12</u>
1,2,3,4,6,7,8-HpCDF	1.3 U	0.13 U	0.67 U	N/A	N/A	N/A	N/A	4.6 JQ	N/A	6.1 JQ	<u>13</u>	N/A	3.2 JQ	12	<u>5.5</u>	N/A	N/A	N/A	N/A	5.2 JQ
OCDF	3.6 U	0.31 U	1.2 U	N/A	N/A	N/A	N/A	<u>22</u>	N/A	<u>21</u>	<u>120</u>	N/A	9.6 JQ	<u>210</u>	<u>29</u>	N/A	N/A	N/A	N/A	9.5 U
TCDDs (total)	0.83 U	0.24 U	0.59 U	N/A	N/A	N/A	N/A	<u>93</u>	N/A	<u>81</u>	<u>230</u>	N/A	<u>25</u>	<u>110</u>	<u>47</u>	N/A	N/A	N/A	N/A	<u>160</u>
2,3,7,8-TCDD	0.28 U	0.24 U	0.59 U	N/A	N/A	N/A	N/A	0.41 U	N/A	0.48 U	<u>1.2</u>	N/A	0.33 U	0.71 JQ	0.39 U	N/A	N/A	N/A	N/A	0.63 U
PeCDDs (total)	2.4 U	1.3 U	2.2 U	N/A	N/A	N/A	N/A	<u>67</u>	N/A	<u>43</u>	<u>190</u>	N/A	16 JH	64 JQ	<u>15</u>	N/A	N/A	N/A	N/A	<u>86</u>
1,2,3,7,8-PeCDD	0.50 U	0.56 U	0.53 U	N/A	N/A	N/A	N/A	1.3 U	N/A	1.6 U	3.3 U	N/A	0.72 U	0.96 U	1.3 U	N/A	N/A	N/A	N/A	1.9 U
HxCDDs (total)	4.3 U	1.4 U	1.8 U	N/A	N/A	N/A	N/A	45 U	N/A	<u>59</u>	<u>270</u>	N/A	<u>37</u>	78 JH (7.8 AC)	<u>61</u>	N/A	N/A	N/A	N/A	<u>110</u>
1,2,3,4,7,8-HxCDD	0.77 U	1.4 U	0.70 U	N/A	N/A	N/A	N/A	0.91 U	N/A	1.6 U	4.7 U	N/A	0.80 U	1.2 U	2.3 U	N/A	N/A	N/A	N/A	2.0 U
1,2,3,6,7,8-HxCDD	1.3 U	1.4 U	0.60 U	N/A	N/A	N/A	N/A	2.6 JO	N/A	4.0 U	11	N/A	2.0 U	3.0 JO	3.1 JO	N/A	N/A	N/A	N/A	3.3 U
1,2,3,7,8,9-HxCDD	0.68 U	1.4 U	0.62 U	N/A	N/A	N/A	N/A	2.8 JQ	N/A	3.1 U	10	N/A	1.6 U	2.5 JQ	2.6 JQ	N/A	N/A	N/A	N/A	3.3 U
											_									
HpCDDs (total)	16	0.34 U	3.1 U	N/A	N/A	N/A	N/A	72 JH	N/A	<u>100</u>	<u>290</u>	N/A	96 JH	340 JH	330 JH	N/A	N/A	N/A	N/A	<u>75</u>
1,2,3,4,6,7,8-HpCDD	7.8 JQ (14.4 *)	0.34 U	3.1 U	N/A	N/A	N/A	N/A	28 JH	N/A	<u>46</u>	110	N/A	25 JH	100 JH	69 JH	N/A	N/A	N/A	N/A	<u>27</u>
OCDD	40 U	2.6 U	19 U	N/A	N/A	N/A	N/A	<u>300</u>	N/A	<u>340</u>	<u>1100</u>	N/A	<u>210</u>	<u>1500</u>	<u>770</u>	N/A	N/A	N/A	N/A	<u>170</u>
TEQ	0.12	0	0.02	N/A	N/A	N/A	N/A	1.41	N/A	1.18	6.06	N/A	0.63	4.31	2.26	N/A	N/A	N/A	N/A	0.9

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

	PORT ANGELES, WASHINGTON																	
Sample Location		Backgroun	ıd															
E&E Sample Number	SD84	SD85	SD86	SD42	SD43	SD44	SD45	SD46	SD47	SD48	SD50	SD54	SD55	SD56	SD57	SD58	SD59	SD60
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ054	MJQ056	MJQ057	MJQ055	MJQ071	MJQ058	MJQ059	MJQ060	MJQ065	MJQ067	MJQ079	MJQ080	MJQ078	MJQ048	MJQ066
EPA Sample Number	97504802	97504803	97504804	97494650	97494652	97494653	97494651	97494668	97494654	97494655	97494656	97494662	97494664	97494158	97494159	97494157	97494644	97494663
Grain Size/Type	A	В	C	A	A	В	A	A	В	A	В	A	В	A	A	В	A	C
Metals (in mg/kg)																		
Aluminum	22400	12600	12600	24100	17100	19100	20900	14700	11000	5720	10200	13400	14000	23500	17300	17200	19200	14700
Antimony	1.3 UJL	0.80 UJL	0.83 UJL	1.2 UJL	0.88 UJL	0.85 UJL	1.1 UJL	0.92 UJL	0.86 UJL	0.85 UJL	<u>0.90 JL</u>	0.75 UJL	0.78 UJL	1.0 UJL	0.86 UJL	0.90 UJL	0.96 UJL	0.79 UJL
Arsenic	7	2.6 JQ (2.7 *)	3.1	9.7	4.9 U	3.1 U	5.7 U	5.1	3.1 U	1.4 JQ	<u>3.1</u>	3.1	<u>3.7</u>	5.5	4.6	<u>6.4</u>	4.2 U	3.3
Barium	45.6 JQ	23 JQ	20.7 JQ	45.5 JQ	24.9 JQ	34.6 JQ	41.1 JQ	26.9 JQ	19.5 JQ	10.1 JQ	17.5 JQ	16.9 JQ	21.8 JQ	46.8 JQ	34.7 JQ	29.4 JQ	40.1 JQ	20.7 JQ
Beryllium	0.46 JQ	0.27 U	0.28 U	0.42 JQ	0.29 U	0.28 U	0.36 U	0.31 U	0.29 U	0.28 U	0.29 U	0.25 U	0.26 U	0.40 JQ	0.30 JQ	0.31 JQ	0.32 U	0.26 U
Cadmium	2.1 JQ	1.0 JQ	1.1 JQ	<u>2.4</u>	1.5	1.4	1.7 JQ	1.6	1.1 JQ	0.54 JQ	1.0 JQ	1.5 UJH	1.5 UJH	2.1 JH	1.7 JH	<u>1.8 JH</u>	2.0 JH	1.6 UJH
	(2.1 *)	(1.3 *)	(1.4 *)													(1.3 AC)		
Calcium	53100	8740	4600	8310	5350	8120	7290	4960	4450	2530	3900	5310	6320	8240	6500	6050	6250	4980
Chromium	47.5	29.2	29.2	54.1	35.3	39.9	43.3	32.8	24.6	11.2	19.2	24.3	25.1	39.4	29.3	30.2	33.5	25.7
Cobalt	11.5 JQ	6.7 JQ (13.3 *)	7.1 JQ	11.4 JQ	9.6 JQ	10 JQ	9.8 JQ	8.0 JQ	6.6 JQ	3.6 JQ	5.5 JQ	7.3 JQ	7.0 JQ	9.9 JQ	7.7 JQ	8.4 JQ	9.1 JQ	7.1 JQ
Copper	36	10.2	16.1	41.8	30	28.4	26.8	25	19.2	5.6 JQ	9.9	10.5	12.3	18.5	19.3	24	17.2	12.7
Iron	33300	18900	20200	34200	23600	26500	27200	22600	18000	9580	18600	25800	26100	39500	29400	31900	35300	27700
Lead	7.6	1.3	3.8	19.1	<u>27.7</u>	<u>6.7</u>	7.8	8.7	<u>6.8</u>	2.5	3.5	4.1	<u>5.1</u>	6.4	4.9	<u>5.2</u>	5.9	4.6
Magnesium	13300	7690	8490	13500	10500	10700	11100	8700	7280	4530	6570	8010	8110	12500	9440	10100	11100	8470
Manganese	284	262	198	293	211	265	251	193	176	106	208	276	265	397	301	339	351	278
Mercury	0.11 U	0.09 JQ (0.27 *)	0.13	0.17 JQ	<u>0.16</u>	0.07 U	0.16 JQ	0.07 U	0.11 JQ	0.2	0.11 JQ	0.05 U	0.06 U	<u>0.16</u>	0.08 JQ	0.08 JQ	0.08 U	0.06 U
Nickel	42.2	35.5	31.1	44.9	36.5	37.5	37.4	30.8	27.4	13.5	19.1	22.5	22.8	33	23.9	26.5	29.4	23
Potassium	3730 JK	936 JQ	1520	3420 JK	1900 JK	2130 JK	2910 JK	1890	1380 JQ	910 JQ	1280 JQ	1080 JQ	1280 JQ	2670 JK	1910 JK	1740 JK	1990 JK	1320
Selenium	1.3 U	0.80 U	0.83 U	1.2 U	0.88 U	0.85 U	1.1 U	0.92 U	0.86 U	0.85 U	0.88 U	0.75 U	0.78 U	1.0 UJL	0.86 UJL	0.90 U	0.96 UJL	0.79 U
Silver	0.43 JQ	0.27 U	0.28 U	0.41 U	0.29 U	0.28 U	0.36 U	0.31 U	0.29 U	0.28 U	0.29 U	0.25 U	0.26 U	0.34 U	0.29 U	0.30 U	0.32 U	0.26 U
Sodium	17900	4520	6950 JK	16000	9440	7820	13400	8250	7540	7840 JK	7340 JK	3720	4660	8970	6620	7240	8300	4860
Thallium	1.3 U	0.80 U	0.83 U	1.2 U	0.88 U	1.2 JQ	1.2 JQ	0.92 U	0.86 U	0.85 U	0.88 U	1.5 JQ	1.3 JQ	1.6 JQ	1.0 JQ	1 JQ	1.3 JQ	1.7 JQ
Vanadium	67.9	50.6	38.7	87.5	59.4	74.3	73.5	53.6	44.3	20.6	31.7	41.3	40	70.3	51.3	51.4	57.1	42.2
Zinc	88.7	32.4	43.7	92.9	52.7	63.6	65.5	55.1	41.9	23.8	42.3	51.8	54.8	81.3	64.8	67.7	77.1	56.1
Volatile Organic Compounds (in μg/kg)																		
2-Butanone	15.1 UJL	9.0 UJL	9.1 UJL	9.4 UJL	8.4 UJL	6.8 UJL	7.1 UJL	10.2 UJL	6.9 UJL	6.4 UJL	6.6 UJL	8.3 UJL	8.6 UJL	8.4 UJL	7.0 UJL	8.7 UJL	9.9 UJL	7.3 UJL
2-Propanone	15.1 UJL	9.0 UJL	9.1 UJL	9.4 UJL	8.4 UJL	6.8 UJL	7.1 UJL	10.2 UJL	6.9 UJL	6.4 UJL	6.6 UJL	8.3 UJL	8.6 UJL	8.4 UJL	7.0 UJL	8.7 UJL	9.9 UJL	7.3 UJL
Carbon disulfide	15.1 UJL	9.0 UJL	9.1 UJL	9.4 UJL	8.4 UJL	6.8 UJL	7.1 UJL	10.2 UJL	6.9 UJL	6.4 UJL	6.6 UJL	8.3 UJL	8.6 UJL	8.4 UJL	7.0 UJL	8.7 UJL	9.9 UJL	7.3 UJL
Methane, dichloro	15.1 UJL	9.0 UJL	9.1 UJL	9.4 UJL	8.4 UJL	6.8 UJL	7.1 UJL	10.2 UJL	6.9 UJL	6.4 UJL	6.6 UJL	8.3 UJL	8.6 UJL	8.4 UJL	7.0 UJL	8.7 UJL	9.9 UJL	7.3 UJL
Toluene	15.1 UJL	9.0 UJL	9.1 UJL	9.4 UJL	8.4 UJL	6.8 UJL	7.1 UJL	10.2 UJL	6.9 UJL	6.4 UJL	6.6 UJL	8.3 UJL	8.6 UJL	8.4 UJL	7.0 UJL	8.7 UJL	9.9 UJL	7.3 UJL

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

Sample Location	1	Backgroun	d					OKI ANGI	ZDEO, WAK	JIII (GTO)	1							
E&E Sample Number	SD84	SD85	SD86	SD42	SD43	SD44	SD45	SD46	SD47	SD48	SD50	SD54	SD55	SD56	SD57	SD58	SD59	SD60
CLP Sample Number	MJO082	MJQ083		MJQ054	MJO056	MJO057	MJQ055	MJQ071	MJQ058	MJQ059	MJQ060	MJQ065	MJQ067	MJQ079	MJQ080	MJQ078	MJQ048	MJO066
EPA Sample Number	97504802	97504803			97494652	97494653	97494651		97494654	97494655	97494656	97494662		97494158		_	97494644	97494663
Grain Size/Type	A	B	C	A	A	В	A	A	В	A	B	A	В	A	A	В	A	C
Semi-Volatile Organic C	ompounds	(in µg/kg)																
2,4,6-Trichlorophenol	214 U	132 U	160 U	199 U	199 U	159 U	193 U	181 U	147 U	153 U	153 U	161 U	165 U	160 U	160 U	154 U	69.3 JQ	161 U
4-Methylphenol	107 U	66.0 U	80.0 U	1010	1250	177	228	294	85.1	66.6 JQ	76.3 U	80.5 U	206	345	176	146	754	321
9H-Carbazole	21.4 U	13.2 U	16.0 U	99.7 U	19.9 U	15.9 U	19.3 U	18.1 U	14.7 U	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
9H-Fluorene	21.4 U	13.2 U	16.0 U	160	110	16.0	39.0	49.3	14.7 U	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Acenaphthene	21.4 U	13.2 U	16.0 U	131	64.1	15.9 U	26.6	34.1	14.7 U	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Acenaphthylene	21.4 U	13.2 U	16.0 U	101	36.2	15.9 U	18.3 JQ	26.1	14.7 U	14.6 JQ	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Anthracene	21.4 U	13.2 U	16.0 U	<u>217</u>	<u>134</u>	22.3	<u>68.8</u>	<u>67.1</u>	19.5	16.4	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Benzo(a)anthracene	21.4 U	13.2 U	16.0 U	<u> 267</u>	<u>119</u>	32.6	<u>97.0</u>	<u>65.4</u>	23.8	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Benzo(a)pyrene	21.4 U	13.2 U	16.0 U	<u>135</u>	<u>53.0</u>	<u>24.1</u>	<u>52.4</u>	<u>41.8</u>	15.4	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Benzo(ghi)perylene	21.4 U	13.2 U	16.0 U	99.7 U	<u>38.7</u>	<u>18.1</u>	<u>37.5</u>	<u>32.1</u>	13.6 JQ	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Benzo(b)fluoranthene	21.4 U	13.2 U	16.0 U	<u>263</u>	<u>102</u>	<u>38.4</u>	<u>113</u>	<u>102</u>	<u>31.5</u>	16.8	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Benzo(k)fluoranthene	21.4 U	13.2 U	16.0 U	96.8 JQ	<u>31.6</u>	<u>17.1</u>	<u>37.2</u>	<u>34.8</u>	14.7 U	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Benzoic acid	214 U	132 U	160 U	199 U	199 U	159 U	193 U	181 U	147 U	153 U	153 U	161 U	165 U	160 U	160 U	154 U	162 U	161 U
Chrysene	21.4 U	13.2 U	16.0 U	<u>315</u>	<u>138</u>	<u>53.5</u>	<u>158</u>	<u>118</u>	<u>32.7</u>	20.8 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Dibenzo(a,h)anthracene	21.4 U	13.2 U	16.0 U	99.7 U	19.9 U	15.9 U	19.3 U	18.1 U	14.7 U	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Dibenzofuran	21.4 U	13.2 U	16.0 U	<u>171</u>	<u>87.7</u>	<u>17.0</u>	<u>44.8</u>	<u>54.7</u>	13.9 JQ	15.7	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Fluoranthene	21.5	13.2 U	21.1	<u>966</u>	<u>593</u>	<u>107</u>	<u>337</u>	<u>426</u>	<u>99.3</u>	<u>96.4</u>	15.2 JQ	16.1 U	<u>20.4</u>	18.6	26.7	<u>22.1</u>	25.2	22.8
Indeno(1,2,3-cd)pyrene	21.4 U	13.2 U	16.0 U	99.7 U	24.2	15.9 U	28.5	21.7	14.7 U	15.3 U	15.3 U	16.1 U	16.5 U	16.0 U	16.0 U	15.4 U	16.2 U	16.1 U
Naphthalene	21.4 U	13.2 U	16.0 U	<u>1000</u>	<u>616</u>	<u>73.1</u>	<u>233</u>	<u>329</u>	<u>68.3</u>	<u>140</u>	15.3 U	16.1 U	<u>17.7</u>	<u>19.4</u>	<u>21.3</u>	<u>19.1</u>	<u>35.8</u>	<u>22.0</u>
Naphthalene, 1-methyl-	21.4 U	13.2 U	16.0 U	99.7 U	36.2	15.9 U	19.3 U	25.5	14.7 U	15.3 U	15.3 U	16.1 U	14.7 JQ	14.4 JQ	16.0 U	15.4	26.7	16.2
Naphthalene, 2-methyl-	21.4 U	13.2 U	16.0 U	<u>144</u>	<u>69.2</u>	16.6	<u>29.0</u>	<u>44.5</u>	14.7 U	18.4	15.3 U	16.1 U	<u>27.8</u>	<u>27.0</u>	<u>24.1</u>	<u>30.1</u>	<u>49.0</u>	<u>31.2</u>
Phenanthrene	24.7	13.2 U	15.1 JQ	<u>730</u>	<u>625</u>	<u>74.7</u>	<u>238</u>	<u>293</u>	<u>75.6</u>	<u>98.6</u>	<u>18.0</u>	16.1 U	<u>27.7</u>	28.1	39.2	<u>30.2</u>	42.3	33.3
DI I	107.11	66 O II	(16 *)	00.7.11	00711	70 (11	06611	00.0.70	70 7 11	76711	76211	00.5.11	02 6 11	00.2.11	70.011	76011	04.0	120
Phenol	107 U	66.0 U	80.0 U	99.7 U	99.7 U	79.6 U	96.6 U	88.9 JQ	73.7 U	76.7 U	76.3 U	80.5 U	82.6 U	80.2 U	79.8 U	76.9 U	94.0	<u>130</u>
Pyrene	21.5 107 U	13.2 U	19.2 80.0 U	<u>1150</u> 600	689 808	131 79.7	<u>419</u> 324	<u>444</u> 223	119 73.7 U	104 65.3 JQ	17.4 76.3 U	16.1 U 80.5 U	22.2 82.6 U	21.1	25.7 79.8 U	24.8 U 76.9 U	27.2 81.2 U	26.3 80.5 U
Retene Pesticide/PCBs (in ug/kg		66.0 U	80.0 0	000	808	19.1	324	443	73.7 U	บว.ว.บQ	/0.3 U	80.5 U	82.0 U	80.2 U	79.8 U	/0.9 U	81.2 U	80.3 U
P,P'-DDD	2.7 U	1.6 U	2.0 U	2.5 U	2.5 U	2.0 U	2.4 U	2.3 U	1.8 U	1.9 U	1.9 U	2.0 U	2.1 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U
PCB 1242	2.7 U	1.6 U	2.0 U	2.5 U	2.5 U	2.0 U	2.4 U	2.3 U	1.8 U	1.9 U	1.9 U	2.0 U	2.1 U	2.0 U	2.0 U	1.9 U	2.0 U	2.0 U
PCB 1242 PCB 1254	27 U	16 U	20 U	25 U	25 U	20 U	24 U	23 U	18 U	19 U	19 U	20 U	21 U	20 U	20 U	19 U	20 U	20 U
PCB 1254 PCB 1260	27 U	16 U	20 U	99	110	20 0	37 JK	66	20	28 U	19 U	20 U	21 U	20 U	20 U	19 U	20 U	20 U
I CD 1200	210	10.0	20 0	<u> </u>	110	44	3/ JIX	<u>00</u>	40	20 U	19 U	20 U	21 0	20 0	20 U	19 U	20 0	20 0

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

							Г	UKI ANGI	LLES, WAS	IIINGTOR	<u> </u>							
Sample Location	I	Backgroun	d															
E&E Sample Number	SD84	SD85	SD86	SD42	SD43	SD44	SD45	SD46	SD47	SD48	SD50	SD54	SD55	SD56	SD57	SD58	SD59	SD60
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ054	MJQ056	MJQ057	MJQ055	MJQ071	MJQ058	MJQ059	MJQ060	MJQ065	MJQ067	MJQ079	MJQ080	MJQ078	MJQ048	MJQ066
EPA Sample Number	97504802	97504803	97504804	97494650	97494652	97494653	97494651	97494668	97494654	97494655	97494656	97494662	97494664	97494158	97494159	97494157	97494644	97494663
Grain Size/Type	A	В	C	A	A	В	A	A	В	A	В	A	В	A	A	В	A	C
Dioxins/Furans (in ng/kg	<u>;)</u>																	
TCDFs (total)	1.1	0.51	0.47 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.4	N/A	N/A	N/A	N/A
2,3,7,8-TCDF	0.82 U	0.34 U	0.47 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.87 U	N/A	N/A	N/A	N/A
PeCDFs (total)	0.60 U	0.25 U	0.48 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.1 U	N/A	N/A	N/A	N/A
HxCDFs (total)	0.80 U	0.44 U	0.53 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.0 U	N/A	N/A	N/A	N/A
HpCDFs (total)	2.3 U	0.17 U	1.0 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.2 U	N/A	N/A	N/A	N/A
1,2,3,4,6,7,8-HpCDF	1.3 U	0.13 U	0.67 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.2 U	N/A	N/A	N/A	N/A
OCDF	3.6 U	0.31 U	1.2 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.4 U	N/A	N/A	N/A	N/A
TCDDs (total)	0.83 U	0.24 U	0.59 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<u>3.9</u>	N/A	N/A	N/A	N/A
2,3,7,8-TCDD	0.28 U	0.24 U	0.59 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.67 U	N/A	N/A	N/A	N/A
PeCDDs (total)	2.4 U	1.3 U	2.2 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.1 U	N/A	N/A	N/A	N/A
1,2,3,7,8-PeCDD	0.50 U	0.56 U	0.53 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.1 U	N/A	N/A	N/A	N/A
HxCDDs (total)	4.3 U	1.4 U	1.8 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<u>6.9</u>	N/A	N/A	N/A	N/A
1,2,3,4,7,8-HxCDD	0.77 U	1.4 U	0.70 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.62 U	N/A	N/A	N/A	N/A
1,2,3,6,7,8-HxCDD	1.3 U	1.4 U	0.60 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.0 U	N/A	N/A	N/A	N/A
1,2,3,7,8,9-HxCDD	0.68 U	1.4 U	0.62 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.4 U	N/A	N/A	N/A	N/A
HpCDDs (total)	16	0.34 U	3.1 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	N/A	N/A	N/A	N/A
1,2,3,4,6,7,8-HpCDD	7.8 JQ (14.4 *)	0.34 U	3.1 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9.6 JQ	N/A	N/A	N/A	N/A
OCDD	40 U	2.6 U	19 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	54 U	N/A	N/A	N/A	N/A
TEQ	0.12	0	0.02	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

Commis I sostion								FUKI	ANGELES	, WASHIIN	GION								
Sample Location		Backgroun																	
E&E Sample Number	SD84	SD85	SD86	SD61	SD62	SD63	SD64	SD65	SD66	SD67	SD68	SD69	SD70	SD71	SD72	SD80	SD81	SD82	SD83
CLP Sample Number	,	MJQ083	,	MJQ047	MJQ089	MJQ063	MJQ062	MJQ061	MJQ068	MJQ070	MJQ010	,	MJQ011	MJQ085	MJQ086	MJQ018	MJQ019	MJQ020	MJQ021
	97504802		97504804						97494665	97494667									97494614
Grain Size/Type	A	В	C	В	A	A	A	В	A	A	A	A	A	C	C	В	В	В	В
Metals (in mg/kg)																			
Aluminum	22400	12600	12600	15900	13500	10200	12400	13800	15100	15700	11900	12800	12900	N/A	21500	7330	7950	15600	18600
Antimony		0.80 UJL	0.83 UJL	0.89 UJL	<u>1.9 JL</u>	0.93 UJL	0.93 UJL	0.85 UJL	0.79 UJL	0.78 UJL	0.84 U	0.99 UJL	0.88 U	N/A	1.4 UJL	0.91 U	1.1 U	0.73 U	0.64 U
Arsenic	7	2.6 JQ	3.1	<u>3.9</u>	9.3	1.6 JQ	3.8	<u>3</u>	3.7	3	2.6 JQ	4.3	4.9	N/A	8.8	1.7 JQ	2.5 JQ	0.73 U	2.4
		(2.7 *)																	
Barium	45.6 JQ	23 JQ	20.7 JQ	24.8 JQ	19.5 JQ	15.6 JQ	19.3 JQ	20.3 JQ	23.5 JQ	25.1 JQ	19.8 JQ	30.2 JQ	20.5 JQ	N/A	52.7 JQ	15.7 JQ	18.7 JQ	6.9 JQ	24.4 JQ
Beryllium	0.46 JQ	0.27 U	0.28 U	0.30 U	0.27 U	0.31 U	0.31 U	0.28 U	0.26 U	0.26 U	0.28 U	0.33 U	0.29 U	N/A	0.50 JQ	0.26 U	0.37 U	0.39 JQ	0.25 JQ
Cadmium	2.1 JQ	1.0 JQ	1.1 JQ	1.6 JH	1.5 JH	1.0 JQ	1.2 JQ	1.4 JQ	1.6 UJH	1.6 UJH	1.2 JQ	1.3 JQ	1.5	N/A	<u>2.6</u>	0.97 JQ	1.2 JQ	<u>1.9 JH</u>	1.7 JH
	(2.1 *)	(1.3 *)	(1.4 *)															(1.3 AC)	
Calcium	53100	8740	4600	5230	10200	4040	5040	4480	4510	6140	3540	4500	3510	N/A	6870	4250	6720	17300	5250
Chromium	47.5	29.2	29.2	27.2	26.6	18.2	22.2	23.5	26.3	27.8	20.9 JH	26.8	24.8 JH	N/A	40	16.4 JH	21.3 JH	31.5 JH	41.1 JH
Cobalt	11.5 JQ	6.7 JQ	7.1 JQ	7.8 JQ	9.3 JQ	5.1 JQ	6.3 JQ	6.7 JQ	7.4 JQ	7.3 JQ	5.9 JQ	7.2 JQ	7.2 JQ	N/A	9.6 JQ	4.7 JQ	4.7 JQ	9.9 JQ	<u>13.8</u>
		(13.3 *)																	
Copper	36	10.2	16.1	13.2	15.7	8.2	11.5	12.7	12.8	12.5	11.1	20.9	14.7	N/A	33.1	11.6	28.9	<u>35.3</u>	<u>33.9</u>
Iron	33300	18900	20200	30000	28200	19700	24100	25700	28200	27500	22500	22500	24500	N/A	34100	13500	13700	34700	32700
Lead	7.6	1.3	3.8	<u>4.6</u>	7.3	3.3	4.4	<u>4.8</u>	4.7	5.3	4.2 JK	10.3	5.4 JK	N/A	<u>13.6</u>	<u>20.3 JK</u>	22.9 JK	2.2 JK	3.5 JK
																(14 AC)	(15.9 AC)		
Magnesium	13300	7690	8490	9660	8550	6900	7850	8210	8680	8820	6990	8070	7710	N/A	11800	5080	6230	11000	12700
Manganese	284	262	198	308	298	214	258	265	291	278	223 JH	204	227 JH	N/A	280	167 JH	177 JH	339 JH	420 JH
Mercury	0.11 U	0.09 JQ (0.27 *)	0.13	0.09 JQ	0.09 JQ	0.08 JQ	0.08 JQ	0.07 JQ	0.06 U	0.06 U	0.11 JQ	0.08 U	<u>0.15</u>	N/A	0.25	0.09 JQ	0.12 JQ	0.06 JQ	0.07 JQ
Nickel	42.2	35.5	31.1	24.9	25.9	16.8	19.8	21.1	23.4	24.3	18.9	24.4	22.4	N/A	32.4	20.3	21.2	43.9	45.3
Potassium	3730 JK	936 JQ	1520	1560 JK	1760	1210 JQ	1400 JQ	1460	1390	1510	1180 JQ	1790	1500	N/A	3620	714 JQ	1320 JQ	1500	1320
Selenium	1.3 U	0.80 U	0.83 U	0.89 UJL	0.80 UJK	0.93 U	0.93 U	0.85 U	0.79 U	0.93 JQ	0.84 U	0.99 U	0.88 U	N/A	1.4 U	0.78 U	1.1 U	0.73 U	0.64 U
Silver	0.43 JQ	0.27 U	0.28 U	0.30 U	0.27 U	0.31 U	0.31 U	0.28 U	0.26 U	0.26 U	0.28 U	0.33 U	0.29 U	N/A	0.47 U	0.26 U	0.37 U	0.24 U	0.21 U
Sodium	17900	4520	6950 JK	7580	4260 JK	9040 JK	7910 JK	6660 JK	5300	5530	5440	8180 JK	6330	N/A	16500 JK	4350	11000	4350	3820
Thallium	1.3 U	0.80 U	0.83 U	1.6 JQ	0.80 U	0.93 U	0.93 U	0.85 U	0.98 JQ	1.2 JQ	1.4 JQ	0.99 U	1.4 JQ	N/A	1.4 U	0.94 JQ	1.1 U	1.4 JQ	1.6 JQ
Vanadium	67.9	50.6	38.7	46	49	29.9	35.5	39.5	42.8	45.7	34.9 JK	42.5	39.2 JK	N/A	71.4	37.3 JK	34.5 JK	51.4 JK	77.9 JK
Zinc	88.7	32.4	43.7	62.1	62.7	42.2	50.5	56.3	57.5	57.6	63.9 JK	57.7	59.6 JK	N/A	109	55.8 JK	69.7 JK	65.6 JK	54 JK
Volatile Organic Compo	unds (in μg	/kg)																	
2-Butanone	15.1 UJL	9.0 UJL	9.1 UJL	8.9 UJL	6.9 UJL	R	7.7 UJL	6.6 UJL	9.7 UJL	7.6 UJL	9.1 UJL	13.0 UJL	9.1 UJL	10.5 UJL	16.7 UJL	7.6 UJL	8.2 UJL	7.2 UJL	6.5 UJL
2-Propanone	15.1 UJL	9.0 UJL	9.1 UJL	8.9 UJL	6.9 UJL	R	7.7 UJL	6.6 UJL	9.7 UJL	7.6 UJL	9.1 UJL	13.0 UJL	9.1 UJL	10.5 UJL	16.7 UJL	41.2 JL	8.2 UJL	7.2 UJL	6.5 UJL
Carbon disulfide	15.1 UJL	9.0 UJL	9.1 UJL	8.9 UJL	6.9 UJL	R	7.7 UJL	6.6 UJL	9.7 UJL	7.6 UJL	9.1 UJL	13.0 UJL	9.1 UJL	10.5 UJL	16.7 UJL	7.6 UJL	8.2 UJL	7.2 UJL	6.5 UJL
Methane, dichloro	15.1 UJL	9.0 UJL	9.1 UJL	8.9 UJL	6.9 UJL	R	7.7 UJL	6.6 UJL	9.7 UJL	7.6 UJL	9.1 UJL	13.0 UJL	9.1 UJL	10.5 UJL	16.7 UJL	7.6 UJL	8.2 UJL	7.2 UJL	6.5 UJL
Toluene	15.1 UJL	9.0 UJL	9.1 UJL	8.9 UJL	6.9 UJL	R	7.7 UJL	6.6 UJL	9.7 UJL	7.6 UJL	9.1 UJL	13.0 UJL	9.1 UJL	10.5 UJL	16.7 UJL	7.6 UJL	8.2 UJL	7.2 UJL	6.5 UJL

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

Sample Location		Backgrour	nd					TORI	HITGELL	, WASHIN	GIOIT								
E&E Sample Number	SD84	SD85	SD86	SD61	SD62	SD63	SD64	SD65	SD66	SD67	SD68	SD69	SD70	SD71	SD72	SD80	SD81	SD82	SD83
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ047	MJQ089	MJQ063	MJQ062	MJQ061	MJQ068	MJQ070	MJQ010	MJQ091	MJQ011	MJQ085	MJQ086	MJQ018	MJQ019	MJQ020	MJQ021
EPA Sample Number	97504802	97504803	97504804	97494643	97504811	97494659	97494658	97494657	97494665		97494600	97504813	97494601	,	97504806	97494611	97494612	97494613	97494614
Grain Size/Type	A	В	С	В	A	A	A	В	A	A	A	A	A	C	C	В	В	В	В
Semi-Volatile Organic C	ompounds	(in µg/kg)																	
2,4,6-Trichlorophenol	214 U	132 U	160 U	175 U	142 U	174 U	162 U	170 U	172 U	152 U	210 U	172 U	208 U	N/A	266 U	190 U	214 U	154 U	180 U
4-Methylphenol	107 U	66.0 U	80.0 U	87.5 U	70.8 U	86.8 U	81.1 U	85.2 U	<u>114</u>	76.0 U	105 U	104	104 U	N/A	133 U	<u>158</u>	<u>688</u>	77.0 U	90.0 U
9H-Carbazole	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	17.2 U	20.8 U	N/A	26.6 U	32.2	<u>185</u>	<u>628</u>	18.0 U
9H-Fluorene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	<u>52.5</u>	20.8 U	N/A	26.4 JQ	<u>104</u>	<u>255</u>	<u>1180</u>	18.0 U
Acenaphthene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	<u>43.4</u>	20.8 U	N/A	26.6 U	<u>73.7</u>	<u>273</u>	<u>755</u>	18.0 U
Acenaphthylene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	143	22.8	N/A	26.6 U	19.0 U	107 U	157	18.0 U
Anthracene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	14.4 JQ	21.0 U	<u>103</u>	27.0 JQ	N/A	24.5 JQ	<u>166</u>	<u>194</u>	<u>642</u>	18.0 U
Benzo(a)anthracene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	<u>57.3</u>	20.3 JQ	N/A	<u>28.8</u>	<u>59.3</u>	<u>219</u>	<u>829</u>	18.0 U
Benzo(a)pyrene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	<u>26.5</u>	<u>38.5</u>	20.8 U	N/A	26.6 U	<u>36.1</u>	<u>117</u>	<u>299</u>	18.0 U
Benzo(ghi)perylene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	<u>35.4</u>	20.8 U	N/A	26.6 U	17.9 JQ	107 U	<u>127</u>	18.0 U
Benzo(b)fluoranthene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	14.2 JQ	<u>39.3</u>	<u>56.2</u>	<u>24.6</u>	N/A	<u>36.4</u>	<u>61.0</u>	<u>216</u>	<u>986</u>	18.0 U
Benzo(k)fluoranthene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	<u>28.2</u>	20.8 U	N/A	26.6 U	<u>27.5</u>	87.1 JQ	<u>471</u>	18.0 U
Benzoic acid	214 U	132 U	160 U	175 U	142 U	174 U	162 U	170 U	172 U	152 U	210 U	172 U	208 U	N/A	266 U	190 U	354	154 U	180 U
Chrysene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	85.9 U	19.6	<u>30.1</u>	<u>96.8</u>	<u>31.1</u>	N/A	<u>47.1</u>	<u>111</u>	<u>341</u>	<u>2050</u>	18.0 U
Dibenzo(a,h)anthracene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	17.2 U	20.8 U	N/A	26.6 U	19.0 U	107 U	58.0 JQ	18.0 U
Dibenzofuran	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	<u>97.1</u>	20.8 U	N/A	26.6 U	<u>86.8</u>	<u>201</u>	<u>667</u>	18.0 U
Fluoranthene	21.5	13.2 U	21.1	16.8 JQ	14.2 U	17.4 U	27.7	<u>39.1</u>	19.8	<u>76.5</u>	36.1	<u>569</u>	<u>106</u>	N/A	<u>148</u>	<u>464</u>	<u>1170</u>	<u>15000</u>	25
Indeno(1,2,3-cd)pyrene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	19.2	20.8 U	N/A	26.6 U	18.3 JQ	107 U	151	18.0 U
Naphthalene	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	<u>24.2</u>	<u>34.5</u>	<u>21.6</u>	<u>81.2</u>	<u>31.8</u>	<u>1240</u>	146 U	N/A	<u>57.0</u>	<u>133</u>	<u>375</u>	61.5 JQ	18.0 U
Naphthalene, 1-methyl-	21.4 U	13.2 U	16.0 U	17.5 U	14.2 U	17.4 U	16.2 U	17.0 U	17.2 U	15.2 U	21.0 U	48.6	20.8 U	N/A	29.6	21.5	88.9 JQ	94.8	18.0 U
Naphthalene, 2-methyl-	21.4 U	13.2 U	16.0 U	17.5 U	13.1 JQ	17.4 U	16.5	<u>18.0</u>	<u>23.8</u>	19.0	21.0 U	<u>89.1</u>	26.5	N/A	<u>48.7</u>	<u>41.3</u>	<u>149</u>	<u>136</u>	18.0 U
Phenanthrene	24.7	13.2 U	15.1 JQ	<u>19.9</u>	14.2 U	15.5 JQ	35.5	<u>40.3</u>	25.6	64.9	39.3	<u>642</u>	<u>112</u>	N/A	<u>135</u>	<u>227</u>	<u>708</u>	<u>11800</u>	<u>22.6</u>
			(16 *)																
Phenol	107 U	66.0 U	80.0 U	87.5 U	70.8 U	86.8 U	81.1 U	85.2 U	85.9 U	76.0 U	105 U	116	104 U	N/A	133 U	95.0 U	182	77.0 U	90.0 U
Pyrene	21.5	13.2 U	19.2	17.4 JQ	14.2 U	17.4 U	25.1	<u>40.3</u>	23.6	62.2	37.6	<u>637</u>	<u>129</u>	N/A	<u>150</u>	<u>351</u>	<u>988</u>	<u>8390</u>	21.6
Retene	107 U	66.0 U	80.0 U	87.5 U	70.8 U	86.8 U	81.1 U	85.2 U	85.9 U	73.2 JQ	105 U	393	104 U	N/A	191	148	650	77.0 U	90.0 U
Pesticide/PCBs (in ug/kg																			
P,P'-DDD	2.7 U	1.6 U	2.0 U	2.2 U	1.8 U	2.2 U	2.0 U	2.1 U	2.1 U	1.9 U	2.6 U	2.2 U	2.6 U	3.3 U	N/A	2.4 U	2.7 U	1.9 U	2.2 U
PCB 1242	27 U	16 U	20 U	22 U	18 U	22 U	20 U	21 U	21 U	19 U	26 U	22 U	26 U	33 U	N/A	24 U	27 U	19 U	22 U
PCB 1254	27 U	16 U	20 U	22 U	18 U	22 U	20 U	21 U	21 U	19 U	26 U	22 U	26 U	33 U	N/A	24 U	88	19 U	22 U
PCB 1260	27 U	16 U	20 U	22 U	18 U	22 U	20 U	21 U	21 U	19 U	26 U	<u>32</u>	26 U	33 U	N/A	24 U	<u>34</u>	19 U	22 U

MARINE SEDIMENTS SAMPLE ANALYTICAL RESULTS SUMMARY RAYONIER PULP MILL ESI

			,	_				PORT	ANGELES	<u>, WASHIN</u>	GION								
Sample Location]	Backgroun	ıd																
E&E Sample Number	SD84	SD85	SD86	SD61	SD62	SD63	SD64	SD65	SD66	SD67	SD68	SD69	SD70	SD71	SD72	SD80	SD81	SD82	SD83
CLP Sample Number	MJQ082	MJQ083	MJQ084	MJQ047	MJQ089	MJQ063	MJQ062	MJQ061	MJQ068	MJQ070	MJQ010	MJQ091	MJQ011	MJQ085	MJQ086	MJQ018	MJQ019	MJQ020	MJQ021
EPA Sample Number	97504802	97504803	97504804	97494643	97504811	97494659	97494658	97494657	97494665	97494667	97494600	97504813	97494601	97504805	97504806	97494611	97494612	97494613	97494614
Grain Size/Type	A	В	C	В	A	A	A	В	A	A	A	A	A	C	C	В	В	В	В
Dioxins/Furans (in ng/kg	g)																		
TCDFs (total)	1.1	0.51	0.47 U	N/A	0.82	N/A	N/A	N/A	N/A	N/A	0.79	<u>68</u>	N/A	<u>6.6</u>	N/A	N/A	<u>24</u>	0.21 U	0.42 U
2,3,7,8-TCDF	0.82 U	0.34 U	0.47 U	N/A	0.67 JQ	N/A	N/A	N/A	N/A	N/A	0.79 JQ	<u>4.4</u>	N/A	0.86 JQ	N/A	N/A	<u>2.5</u>	0.21 U	0.42 U
PeCDFs (total)	0.60 U	0.25 U	0.48 U	N/A	0.50 U	N/A	N/A	N/A	N/A	N/A	<u>2.5</u>	7.2	N/A	1.0 U	N/A	N/A	<u>11</u>	2.6	1.6 U
HxCDFs (total)	0.80 U	0.44 U	0.53 U	N/A	0.60 U	N/A	N/A	N/A	N/A	N/A	1.6 U	<u>9.6</u>	N/A	1.1 U	N/A	N/A	<u>3.7</u>	<u>2.9</u>	0.82 U
HpCDFs (total)	2.3 U	0.17 U	1.0 U	N/A	1.1 U	N/A	N/A	N/A	N/A	N/A	<u>6.7</u>	<u>20</u>	N/A	<u>6.9</u>	N/A	N/A	<u>13</u>	<u>4.2</u>	1.1 U
1,2,3,4,6,7,8-HpCDF	1.3 U	0.13 U	0.67 U	N/A	0.79 U	N/A	N/A	N/A	N/A	N/A	2.6 JQ	<u>5.1</u>	N/A	2.1 U	N/A	N/A	<u>5.2</u>	2.0 U	0.80 U
OCDF	3.6 U	0.31 U	1.2 U	N/A	1.4 U	N/A	N/A	N/A	N/A	N/A	4.2 U	<u>13</u>	N/A	<u>19</u>	N/A	N/A	<u>12</u>	3.0 U	1.4 U
TCDDs (total)	0.83 U	0.24 U	0.59 U	N/A	<u>2.3</u>	N/A	N/A	N/A	N/A	N/A	<u>5.3</u>	<u>150</u>	N/A	<u>21</u>	N/A	N/A	<u>130</u>	0.19 U	0.75 U
2,3,7,8-TCDD	0.28 U	0.24 U	0.59 U	N/A	0.16 U	N/A	N/A	N/A	N/A	N/A	0.15 U	0.83 JQ	N/A	0.28 U	N/A	N/A	0.89 JQ	0.17 U	0.75 U
PeCDDs (total)	2.4 U	1.3 U	2.2 U	N/A	2.6 U	N/A	N/A	N/A	N/A	N/A	1.3 U	<u>120</u>	N/A	4.0 JH	N/A	N/A	<u>58</u>	0.3.0 U	2.1 U
1,2,3,7,8-PeCDD	0.50 U	0.56 U	0.53 U	N/A	0.49 U	N/A	N/A	N/A	N/A	N/A	0.37 U	2.1 U	N/A	0.57 U	N/A	N/A	3.0 JQ	0.16 U	2.1 U
HxCDDs (total)	4.3 U	1.4 U	1.8 U	N/A	<u>6.3</u>	N/A	N/A	N/A	N/A	N/A	<u>9.4</u>	<u>150</u>	N/A	<u>14</u>	N/A	N/A	<u>150</u>	2.3 U	1.5 U
1,2,3,4,7,8-HxCDD	0.77 U	1.4 U	0.70 U	N/A	1.3 U	N/A	N/A	N/A	N/A	N/A	0.55 U	2.1 U	N/A	1.8 U	N/A	N/A	<u>5</u>	0.21 U	1.5 U
1,2,3,6,7,8-HxCDD	1.3 U	1.4 U	0.60 U	N/A	1.3 U	N/A	N/A	N/A	N/A	N/A	1.6 U	<u>5.8</u>	N/A	1.7 U	N/A	N/A	<u>8.4</u>	1.1 U	1.4 U
1,2,3,7,8,9-HxCDD	0.68 U	1.4 U	0.62 U	N/A	1.3 U	N/A	N/A	N/A	N/A	N/A	1.2 U	4.7 JQ	N/A	1.7 U	N/A	N/A	9.3 JH (0.93 AC)	0.36 U	1.4 U
HpCDDs (total)	16	0.34 U	3.1 U	N/A	8.6	N/A	N/A	N/A	N/A	N/A	23	90 JH	N/A	51 JH (5.1 AC)	N/A	N/A	<u>110</u>	<u>55</u>	<u>3</u>
1,2,3,4,6,7,8-HpCDD	7.8 JQ (14.4 *)	0.34 U	3.1 U	N/A	4.0 JQ	N/A	N/A	N/A	N/A	N/A	12	38 JH	N/A	21 JH	N/A	N/A	<u>48</u>	<u>20</u>	2.0 U
OCDD	40 U	2.6 U	19 U	N/A	20	N/A	N/A	N/A	N/A	N/A	<u>82</u>	<u>140</u>	N/A	<u>310</u>	N/A	N/A	<u>280</u>	<u>220</u>	<u>25</u>
TEQ	0.12	0	0.02	N/A	0.13	N/A	N/A	N/A	N/A	N/A	0.3	2.91	N/A	0.63	N/A	N/A	5.74	0.42	0.02

NOTE: Bold type indicates concentrations above sample quantitation limit.

Underlined type indicates result is elevated as defined in Section 5.

Key:

- J The analyte was positively identified. The associated numerical value is an estimate
- JQ The result is estimated because the value is less than the Contract Required Dectection Limit.
- K Unknown bias.
- L Low bias.
- \boldsymbol{U} The analyte was not detected at or above the reported result.
- UJ The analyte was not detected at or above the reported estimated result. The associated numerical value is an estimate of the quantitation limit of the analyte in this sample.
- \ast Value is equal to the CRDL/CRQL as appropriate

Table 6-4. Comparison of Sediment Concentrations to SMS Organic Carbon Normalized Numeric Standards (ppm oc).

Source: Remedial Investigation For The Marine Environment Near The Former Rayonier Mill Site, Port Angeles, Washington (Public Review Draft). Prepared by Malcolm Pirnie for Rayonier. February 2007.

				1	1			T	1		T	1	1	1		T	1	T	
SQS Criteria¹	1 TOC (%)	% 2-Methylnaphthalene	91 Acenaphthene	S Acenaphthylene	Anthracene 022	Eluorene	6 Naphthalene	000 Phenanthrene	200 Total LPAH	0 Benzo(a)anthracene	& Benzo(a)pyrene	E Benzo(g,h,i)perylene	01C Chrysene	다 Dibenzo(a,h)anthracene	Fluoranthene	K Indeno(1,2,3-cd)pyrene	1,000 Pyrene	052 Total Benzofluoranthenes	96 Total HPAH
CSL Criteria ²		64	57	66	1,200	79	170	480	780	270	210	78	460	33	1,200	88	1,400	450	5,300
Harbor Sample		01	31	00	1,200	7,9	170	400	700	270	210	70	100	33	1,200	00	1,400	430	3,300
HS-01-SS	0.96	0.51 T	2.292	0.469 T	5.104 T	3.333	0.875 T	26.042	38.115	15.625	15.625	12.5	19.792	3.021	38.542	13.542	39.583	29.375	187.6041
HS-02-SS	2.82	0.887	1.206	0.469 1	3.901	1.809	3.546	8.865	20.284	6.738	5.674	4.255	8.865	1.099	15.248	4.255	18.794	12.4113	77.3404
HS-03-SS	3.19	1.442	1.536	2.163	4.389	2.163	8.777	10.972	30.000	5.643	4.702	3.448	7.837	0.752	18.182	3.448	20.376	10.3134	74.7021
HS-04-SS	3.24	1.235	1.296	1.944	5.247	2.068	6.79	9.877	27.222	5.864	4.321	3.086	7.716	0.71	14.506	3.025	18.827	9.5987	67.6543
HS-05-SS	0.54	0.648 T	0.704 T	0.63 T	2.037 T	1.074 T	3.704	5.741	13.889	3.704	3.148	2.407 T	4.259	0.611 T	9.444	2.407 T	10.741	6.3518	43.074
HS-06-SS	1.22	0.902 T	1.148	0.82 T	2.705	1.475	4.262	6.803	17.213	3.852	3.033	2.295	4.918	0.5 T	13.115	2.295	13.115	6.4754	49.5983
HS-07-SS	1.51	1.126 g	1.06 g	2.318 g	2.715 g	1.391 g	9.934 g	9.272 g	26.689	2.914 g	2.583 g	2.45 g	3.51 g	0.344 tg	12.583 g	1.921 g	13.245 g	5.0331	44.5827
HS-08-SS	1.80	1.111	0.944	1.778	2.444	1.389	6.111	8.333	21.000	3.111	2.889	2.444	4.167	0.417 T	10	2.056	12.222	5.5	42.8055
Intertidal Sample																			
IT-04-SS	0.24	1.458 T	1.625 T	0.271 T	1.458 T	1.25 T	1.333 T	10.833	16.771	2 T	1.375 T	1.458 T	4.167	0.283 tb	16.667	1 T	13.75	4.625	45.325
IT-05-SS	0.46	0.163 T	0.115 T	0.157 T	0.37 T	0.239 T	0.478 T	1.261	2.620	0.609 T	0.522 T	0.543 T	0.804 T	0.135 tb	2.174	0.478 T	2.13	1.2173	8.613
IT-06-SS	13.70	0.175	0.248	0.046 T	0.314	0.285	0.693	1.314	2.900	0.431	0.307	0.19	0.708	0.037 T	2.993	0.19	2.117	0.8248	7.7963
IT-07-SS	24.60	0.264 TD	0.407 TD	0.171 TD	0.569 TD	0.488 TD	1.22 D	1.22 D	4.073	1.057 D	0.569 TD	0.317 TD	1.545 D	0.175 U	4.065 D	0.325 TD	3.415 D	1.7479	13.0406
IT-08-SS	19.50	0.231 TD	0.385 TD	0.133 TD	0.615 TD	0.426 TD	0.872 TD	1.641 D	4.072	0.615 TD	0.441 TD	0.21 U	1.179 D	0.2 U	3.282 D	0.185 TD	2.718 D	1.0769	9.4974
Log Pond Sample																			
LP-01-SS	0.58	0.328 T	0.31 T	0.31 U	0.897 T	0.466 T	0.948 T	2.241 T	4.862	1.397 T	1.466 T	1.603 T	2.069 T	0.5 U	4.31	0.966 T	3.966	2.7931	18.5689
LP-02-SS	6.84	0.57	0.775	0.336	1.096	0.877	2.339	2.924	8.348	1.608	1.418	0.848	2.924	0.048 U	4.532	0.863	4.532	2.8508	19.576
LP-03-SS	4.02	0.672	0.597	0.249 T	1.045	0.846	2.164	2.338	7.239	1.468	0.995	0.672	4.229	0.184 T	4.229	0.647	3.483	2.4875	18.393
LP-04-SS	1.17	0.624 T	0.718 T	0.239 T	1.026 T	0.94 T	2.906	2.479	8.308	1.197	0.855 T	0.624 T	1.453	0.239 U	4.444	0.667 T	4.103	2.1709	15.5128
LP-05-SS	11.3	0.434 TD	0.664 TD	0.168 TD	0.735 D	0.699 TD	1.239 D	3.186 D	6.690	1.062 D	0.743 D	0.416 TD	1.416 D	0.177 TD	5.398 D	0.345 TD	4.956 D	1.6902	16.2035
LP-06-SS	18.5	1.459 TD	1.568 D	0.649 TD	1.405 TD	2.054 D	5.946 D	5.946 D	17.568	1.459 TD	0.865 TD	0.649 TD	1.946 D	0.335 U	5.405 D	0.449 TD	4.973 D	1.4594	17.2054
LP-07-SS	0.42	0.357 U	0.24 U	0.429 U	0.81 T	0.5 U	1.071 tb	2.619 T	4.500	1.857 T	1.714 T	1.5 T	2.619 T	0.643 U	5.238	1.548 T	5	4.0952	23.5714
LP-08-SS	1.29	0.295 T	0.349 T	0.233 T	0.853 T	0.558 T	1.318	2.093	5.403	1.705	1.085	0.752 T	2.481	0.209 U	5.116	0.775 T	4.806	2.8682	19.5891
LP-09-SS	20.6	0.252 TD	0.534 TD	0.345 TD	0.485 TD	0.631 D	0.825 D	5.825 D	8.646	0.777 D	0.451 TD	0.243 TD	1.456 D	0.126 U	6.796 D	0.301 TD	4.612 D	1.4077	16.0436
LP-09B-CS-0.2-2.5																			
LP-10-SS	9.96	0.532 TD	0.663 TD	0.392 TD	1.104 TD	0.823 TD	1.606 TD	3.313 D	7.902	1.707 TD	1.104 TD	0.723 TD	3.313 D	0.402 U	6.426 D	0.914 TD	5.422 D	3.4136	23.022
LP-11-SS	1.01	0.446 T	0.545 T	0.446 T	2.178	1.089 T	2.079 b	3.762	10.099	4.356	3.069	1.584	6.04	0.455 T	8.02	1.782	7.921	6.7326	39.9603
LP-12-SS	21.2	0.259	0.288	0.137	0.472	0.439	0.896	1.085	3.316	0.755	0.415	0.269	1.274	0.028 U	1.887	0.274	2.311	1.0141	8.1981
LP 12A-CS-0.3-1.5		0.239	0.266	0.137	0.472	0.439			3.310	0.755	0.413	0.209	1.274	0.028 C		0.274	2.511	1.0141	0.1901
LP-13-SS	14.4	1.111 TD	1.25 TD	0.438 TD	1.875 D	1.597 D	3.194 D	4.306 D	12.660	2.014	1.181 TD	0.764 TD	3.194 D	0.278 U	6.944 D	0.764 TD	6.181 D	3.2638	24.3055
LP-13A-CS-0.3-1.5			1.25 1D	0.438 ID	1.073 D	1.397 D	5.194 D	4.500 D	12.000	2.014		0.704 ID	3.194 D	0.278 C	0.944 D	0.704 1D	0.101 D	3.2038	24.3033
LP-13D-CS-0-0.9																			
LP-13D-CS-0.9-2.0																			
LP-14-SS	8.1	0.395	0.741	0.198	1.728	0.938	1.728	5.556	10.889	3.086	2.593	1.605	3.086	0.407	8.395	1.728	6.543	4.3703	31.8148
LP-15-SS	10.9	0.393	0.741	0.198	0.651	0.45	1.009	2.752	5.450	1.009	0.468	0.239	2.202	0.407 0.058 T	5.046	0.266	5.138	1.5779	16.0027
LP-16-SS	16.5		0.383 0.667 TD	0.202 0.194 TD	0.651 1.152 D	0.45 0.667 TD	1.009 1.818 D	2.752 2.061 D	6.558	1.515 D	0.468 0.667 TD	0.239 0.333 TD	2.202 2.485 D	0.058 T 0.164 U	6.667 D	0.266 0.376 TD	6.061 D	2.1818	20.2848
		0.4 TD																	
LP-17-SS	1.17	0.231 TD	0.282 T	0.231 T	0.667 T	0.41 T	1.111	1.966	4.667	1.197	0.94 T	0.684 T	1.538	0.222 U	3.162	0.684 T	3.162	2.0085	13.376
LP-18-SS	23.3	0.335 TD	0.773 TD	0.326 TD	1.116 D	0.687 TD	1.373 D	5.579 D	9.854	1.674 D	0.73 TD	0.369 TD	2.747 D	0.215 U	13.305 D	0.416 TD	9.442 D	2.3605	31.0429
LP-18A-CS-0-1.3																			
LP-18A-CS-1.3-1.5																			
LP-19-SS	1.9	0.395 T	0.326 T	0.579 T	1.263	0.468 T	3.211	4.684	10.532	2.947	1.211	0.579 T	4.895	0.153 T	23.158	0.684 T	15.263	3.5789	52.4684
LP-20-SS	13.5	0.622 U	0.519 U	0.726 U	1.111 TD	0.889 U	1.111 TD	2.222 TD	4.444	1.556 TD	1.407 TD	1.185 U	2.815 TD	1.185 U	4.074 TD	1.111 TD	3.778 TD	3.1851	17.9259
LP-20A-CS-0.3-1.85																			
LP-20A-CS-1.85-3.0																			

5186-002-203

Rayonier Marine Remedial Investigation - Public Review Draft

Table 6-4. Comparison of Sediment Concentrations to SMS Organic Carbon Normalized Numeric Standards (ppm oc).

SQS Criteria¹ CSL Criteria²	1 1 TOC (%)	\$ 82-Methylnaphthalene	O P Acenaphthene	9 9 Acenaphthylene	220 200 1,200	23 29 79	6 Naphthalene	001 Phenanthrene	280 Total LPAH	011 Benzo(a) anthracene	6 Benzo(a)pyrene	8 [Benzo(g,h,i)perylene	10 Chrysene	28 71 Dibenzo(a,h)anthracene	160 1100 1200	88 14 Indeno(1,2,3-cd) pyrene	1,000 1,400	05 Total Benzofluoranthenes	960 5.300
Mill Dock Sample		04	37	00	1,200	79	170	400	780	270	210	76	400	33	1,200	00	1,400	430	3,300
MD-01-SS	0.29	1.379 T	2.862 T	0.586 U	1.621 T	1.31 T	3.241 T	3.793 T	12.828	1.724 T	0.655 U	0.966 U	1.828 T	0.897 U	13.103	0.793 U	10	1.1379	27.7931
MD-02-SS	15	0.733 TD	0.867 TD	0.42 TD	1.933 D	1.133 TD	3.067 D	3.933 D	11.353	3 D	2.067 D	1 TD	4.467 D	0.327 U	7.333 D	1.133 TD	6.4 D	4.6	30
MD-03-SS	2.16	0.509 T	0.648 T	0.509 T	1.574	0.926	1.62	4.398	9.676	2.13	1.713	1.157	2.963	0.361 T	6.481	1.157	6.944	3.5648	26.4722
MD-04-SS	1.08	0.556 T	0.481 T	0.769 T	1.852	0.713 T	1.296 T	3.796	8.907	1.852	2.778	1.574	2.963	0.472 T	5.093	1.852	4.537	6.2962	27.4166
MD-05-SS	2.21	0.86	0.95	0.814	2.172	1.493	5.43	7.24	18.100	2.624	2.036	1.312	4.027	0.281 T	8.145	1.312	9.05	4.1628	32.9502
MD-06-SS	1.12	1.518	1.339	1.339	4.821	2.054	8.036	12.5	30.089	5.982	5.179	3.036	8.571	0.813 T	17.857	3.125	17.857	11.1607	73.5803
MD-07-SS	1.59	0.881 T	0.755 T	0.755 T	2.39	1.069	3.145	6.289	14.403	3.333	2.704	1.824	5.786	0.478 T	13.208	1.824	11.95	6.9811	48.088
MD-08-SS	2.38	1.471	1.513	3.908	19.328	2.941	3.95	11.765	43.403	34.454 D	24.37	10.084	54.622 D	3.782	67.227 D	12.185	71.429 D	57.9831	336.1344
MD-09-SS	1.82	0.879	0.934	0.934	3.242	1.319	3.242	6.044	15.714	3.626	2.857	1.868	6.593	0.549 T	9.89	1.868	10.989	6.8131	45.0549
MD-10-SS	3.87	0.853 TD	0.724 TD	1.008 TD	2.558 D	1.163 TD	3.876 D	6.202 D	15.530	3.359 D	2.842 D	1.525 TD	5.426 D	0.491 U	8.527 D	1.628 TD	8.786 D	6.2532	38.3462
MD-11-SS	1.5	1.333	0.8 T	1.2	2.2	1.2	10	8	23.400	2.2	1.867	1.4	2.733	0.273 T	8.667	1.267	10	3.7333	32.14
MD-12-SS	1.94	1.186	0.979	1.134	3.041	1.392	4.742	11.34	22.629	3.454	2.732	1.649	8.763	0.438 T	14.433	1.649	14.948	7.4226	55.4896
MD-13-SS	0.31	0.484 T	0.355 U	0.516 U	0.516 U	0.613 U	0.613 T	1.355 T	1.968	0.903 T	0.581 U	0.806 U	1.29 T	0.774 U	5.161	0.677 U	2.29 T	1.258	10.9032
MD-14-SS	0.48	1.438 T	2.042 T	1.188 T	5.417	3.125	3.958	11.042	26.771	8.542	5.417	2.708	13.958	0.875 T	17.708	3.125	22.917	13.125	88.375
MD-15-SS	2.31	0.866	0.736 T	0.649 T	2.294	1.082	3.81	5.195	13.766	3.03	2.208	1.515	4.762	0.398 T	10.39	1.472	10.823	5.6277	40.2251
MD-16-SS	4.19	2.291	2.625	0.979	3.819	4.296	5.728	13.365	30.811	6.921	5.251	3.103	9.547	0.859	21.002	3.341	20.764	12.4105	83.198
MD-17-SS	2.45	3.469	4.898	4	25.306	7.755	6.122	28.571	76.653	27.755	18.776	8.571	44.898 D	3.306	44.898 D	10.612	44.898 D	47.7551	251.4693
MD-18-SS	1.69	3.55	3.846	4.201	13.018	4.911	8.284	94.675 D	128.935	23.669	20.71	9.467	46.154	3.609	130.178 D	11.243	130.178 D	53.2544	428.4615
Outfall Sample																			
OF-01-SS	0.64	1.563 T	0.234 U	0.328 U	0.453 T	0.547 T	1.203 T	2.188 T	4.391	1.047 T	0.688 T	0.531 U	2.188 T	0.516 U	1.875 T	0.516 T	2.031 T	1.2343	9.5781
OF-02-SS	0.72	1.667 T	0.389 T	0.278 U	0.653 T	0.708 T	1.222 T	3.75	6.722	1.389 T	1.528 T	1.319 T	1.667 T	0.444 U	3.472	1.222 T	3.333	2.5138	16.4444
OF-03-SS	0.63	2.857	0.222 U	0.302 U	0.302 U	0.667 T	1.444 T	2.222	4.333	0.444 T	0.397 T	0.508 U	0.651 T	0.476 U	0.905 T	0.413 U	1.127 T	0.619	4.1428
OF-04-SS	0.64	1.875 T	0.219 U	0.313 U	0.313 U	0.563 T	1.391 T	2.031 T	3.984	0.391 T	0.531 T	0.5 U	0.625 T	0.469 U	0.875 T	0.406 U	1.188 T	0.625	4.2343
OF-05-SS	0.47	1.426 T	0.298 U	0.404 U	0.404 U	0.532 T	1.043 T	1.787 T	3.362	0.404 U	0.511 T	0.638 U	0.596 T	0.617 U	0.894 T	0.532 U	1.043 T	0.7021 U	3.0425
OF-06-SS																			
OF-07-SS																			
OF-08-SS																			
Sequim Bay Sample SB-01-SS	0.53	0.302 T	0.264 U	0.358 U	0.358 U	0.434 U	0.321 U	0.528 T	0.528	0.358 U	0.396 U	0.566 U	0.377 T	0.547 U	0.623 T	0.472 U	0.547 T	0.6226 U	1.5471
SB-02-SS	1.54	0.266 T	0.13 U	0.182 U	0.182 U	0.221 U	0.214 tb	0.519 T	0.734	0.234 T	0.253 T	0.299 U	0.325 T	0.286 U	0.571 T	0.247 U	0.552 T	0.435	2.3701
SB-03-SS	2.82	0.266 tg	0.156 Ug	0.216 Ug	0.216 Ug	0.262 Ug	0.202 Ug	0.567 tg	0.567	0.323 tg	0.312 tg	0.355 Ug	0.532 tg	0.337 Ug	0.745 tg	0.291 Ug	0.638 tg	0.4609	3.0106
Notes:	-1					, U		Ü					Ü						

6-103

Notes:
 SQS = sediment quality standard

² CSL = cleanup screening level

 $\underline{\text{Value}} > \underline{\text{SQS}} = \underline{\text{Brown}}$

Value > CSL = RedData Qualifiers:

B and b = Analyte detected in sample and in associated method blank

D = The reported result is from a

g = Estimate is greater than value shown

T and t = Detected below quantification limit shown

U = Compound not detected at or above the MRL/MDL

5186-002-203

Rayonier

Table 6-4. Comparison of Sediment Concentrations to SMS Organic Carbon Normalized Numeric Standards (ppm oc).

		1,2,4-Trichlorobenzene	ne	ne	əı	Hexachlorobutadiene	N-Nitrosodiphenylamine		Bis(2-ethylhexyl) Phthalate	Butyl Benzyl Phthalate		24	ate	ite
		þen	1,2-Dichlorobenzene	1,4-Dichlorobenzene	Hexachlorobenzene	adi	eny		(T)	hth	ate	Dimethyl Phthalate	Di-n-butyl Phthalate	Di-n-octyl Phthalate
		orol	ope	ope	pen	put	ųф	a	lexy	/1 P	hal	hth	3ht	ht.
	Total	Shlo	lorc	lorc	oro	oro	ipo	Dibenzofuran	ylh	nzy	Diethyl Phthalate	1 P	yl.	yl F
	Ĭ,	Ë	ich	ich	chl	chl	tros	nzo	eth	Be	[Jy]	ţţ	pnt	oct
	PCBs,	.4,	G.	3	exac	exa	Ä	per	s(2·	ıtyl	eth	me	Ė	Ė
505 6 %														
SQS Criteria ¹	12	0.8	2.3	3.1	0.38	3.9	11	15	47	4.9	61	53	220	58
CSL Criteria ²	65	1.8	2.3	9	2.3	6.2	11	58	78	64	110	53	1,700	4,500
Harbor Sample HS-01-SS	1.25 U	0.24 U	0.208 U	0.292 U	0.323 U	0.219 U	0.344 U	1.771	12.5 tb	0.24 U	0.542 U	0.281 U	0.406 U	0.188 U
HS-02-SS	0.461 T	0.24 U 0.089 U	0.208 U	1.064	0.323 U 0.124 U	0.219 U 0.082 U	0.344 U 0.128 U	1.771	12.5 tb	0.24 U 0.089 U	0.342 U 0.202 U	0.281 U 0.106 U	0.406 U 0.266 T	0.188 U 0.071 U
HS-03-SS	0.401 T 0.878 T	0.094 U	0.078 U	0.784	0.124 U	0.082 U	0.128 U	2.257	2.821 tb	0.089 U	0.202 U	0.100 U	0.266 T	0.071 U
HS-04-SS	0.802 T	0.094 U	0.08 U	0.764 0.34 T	0.132 U 0.127 U	0.086 U	0.138 U	2.037	1.883 tb	0.094 U	0.213 U	0.113 U	0.163 U 0.157 U	0.073 U
HS-05-SS	1.833 U	0.37 U	0.315 U	0.463 U	0.127 U	0.333 U	0.537 U	0.907 T	2.037 tb	0.093 U	0.833 U	0.444 U	0.63 U	0.296 U
HS-06-SS	0.811 U	0.164 U	0.139 U	0.205 U	0.23 U	0.156 U	0.238 U	1.475	3.279 tb	0.37 U 0.164 U	0.377 U	0.197 U	0.03 U	0.131 U
HS-07-SS	1.457 T	0.104 U 0.139 Ug	0.139 Ug	0.203 C 0.185 tg	0.23 U 0.192 Ug	0.136 Ug	0.199 Ug	1.473 1.589 g	1.987 tgb	0.104 U 0.139 Ug	0.377 U	0.166 Ug	0.279 C 0.45 tgb	0.131 Ug
HS-08-SS	0.722 T	0.133 U	0.119 Ug	0.165 tg 0.167 U	0.192 Ug 0.183 U	0.120 Ug 0.122 U	0.199 Ug 0.361 T	1.556	2.889 tb	0.133 U	0.316 Ug	0.166 Ug 0.161 U	0.43 tgb 0.228 U	0.113 Ug 0.106 U
Intertidal Sample	0.722 1	0.155 C	0.117 C	0.107 C	0.105 C	0.122 0	0.501 1	1.550	2.007 10	0.195 C	0.500 €	0.101 C	0.220 C	0.100 C
IT-04-SS	3.417 U	0.708 U	0.625 U	0.875 U	1 U	0.667 U	1.042 U	1.875 T	5.417 tb	0.708 U	1.625 U	0.833 U	1.208 U	0.583 U
IT-05-SS	1.717 U	0.348 U	0.304 U	0.457 U	0.5 U	0.326 U	0.522 U	0.304 U	3.261 tb	0.348 U	0.826 U	0.435 U	0.609 U	0.283 U
IT-06-SS	0.949	0.015 U	0.012 U	0.018 U	0.02 U	0.014 U	0.021 U	0.299	0.504 tb	0.015 U	0.034 U	0.018 U	0.025 U	0.012 U
IT-07-SS	0.935	0.118 U	0.106 U	0.15 U	0.167 U	0.114 U	0.175 U	0.398 TD	0.447 Dtb	0.118 U	0.276 U	0.142 U	0.207 U	0.098 U
IT-08-SS	0.564 T	0.138 U	0.118 U	0.174 U	0.195 U	0.128 U	0.2 U	0.328 TD	0.426 Dtb	0.138 U	0.318 U	0.164 U	0.236 U	0.113 U
Log Pond Sample		0.100	0.000	0.2. 2 0	0.270	0.120	0.2.0	0.020 12	0.020 2 10	0.120	0.000	0.000	0.200	0.120
LP-01-SS	1.707 U	0.345 U	0.293 U	0.431 U	0.466 U	0.31 U	0.5 U	0.483 T	5.172 tb	0.345 U	0.776 U	0.397 U	0.586 U	0.276 U
LP-02-SS	0.497 T	0.034 U	0.029 U	0.05 T	0.047 U	0.031 U	0.048 U	0.775	0.57 tb	0.034 U	0.077 U	0.039 U	0.058 T	0.026 U
LP-03-SS	1.443 T	0.06 U	0.052 U	0.075 U	0.085 U	0.057 U	0.087 U	0.647	67.164 TD	0.06 U	0.139 U	0.072 U	0.102 U	0.047 U
LP-04-SS	0.846 U	0.162 U	0.145 U	0.205 U	0.231 U	0.154 U	0.239 U	0.94 T	1.111 tb	0.162 U	0.376 U	0.197 U	0.282 U	0.128 U
LP-05-SS	5.664	0.106 U	0.097 U	0.142 U	0.15 U	0.106 U	0.159 U	0.646 TD	0.54 Dtb	0.106 U	0.248 U	0.133 U	0.186 U	0.085 U
LP-06-SS	1.73	0.227 U	0.2 U	0.292 U	0.319 U	0.216 U	0.335 U	1.568 D	1.081 Dtb	0.227 U	0.53 U	0.276 U	0.395 U	0.184 U
LP-07-SS	2.357 U	0.452 U	0.381 U	0.571 U	0.619 U	0.429 U	0.643 U	0.381 U	33.333 tb	0.452 U	1.024 U	0.548 U	0.762 U	0.357 U
LP-08-SS	0.767 U	0.14 U	0.124 U	0.178 U	0.202 U	0.132 U	0.209 U	0.496 T	3.411 tb	0.14 U	0.326 U	0.171 U	0.24 U	0.116 U
LP-09-SS	0.874 T	0.087 U	0.078 U	0.112 U	0.121 U	0.083 U	0.126 U	0.447 TD	0.379 Dtb	0.087 U	0.199 U	0.102 U	0.15 U	0.068 U
LP-09B-CS-0.2-2.5	0.49 J													
LP-10-SS	3.614 T	0.281 U	0.241 U	0.351 U	0.392 U	0.261 U	0.402 U	0.633 TD	1.104 Dtb	0.281 U	0.643 U	0.331 U	0.482 U	0.221 U
LP-11-SS	0.98 U	0.188 U	0.158 U	0.238 U	0.257 U	0.178 U	0.267 U	0.921 T	1.683 tb	0.188 U	0.426 U	0.228 U	0.317 U	0.149 U
LP-12-SS	0.321 T	0.019 U	0.017 U	0.024 U	0.026 U	0.017 U	0.028 U	0.358	0.519 tb	0.019 U	0.044 U	0.052 T	0.033 U	0.015 U
LP_12A-CS-0.3-1.5	0.24 J													
LP-13-SS	1.111 T	0.188 U	0.167 U	0.236 U	0.264 U	0.174 U	0.278 U	1.319 D	1.042 Dtb	0.188 U	0.438 U	0.229 U	0.326 U	0.153 U
LP-13A-CS-0.3-1.5	1.06 J									-				
LP-13D-CS-0-0.9	11 J													
LP-13D-CS-0.9-2.0	6.59 J													
LP-14-SS	0.247 T	0.028 U	0.025 U	0.036 U	0.04 U	0.026 U	0.041 U	0.642	1.148 tb	0.028 U	0.064 U	0.033 U	0.333	0.022 U
LP-15-SS	0.688 T	0.022 U	0.028 T	0.028 U	0.03 U	0.02 U	0.032 U	0.376	0.422 Jb	0.022 U	0.05 U	0.193	0.038 U	0.017 U
LP-16-SS	1.152 T	0.109 U	0.097 U	0.139 U	0.152 U	0.103 U	0.164 U	0.6 TD	0.558 Dtb	0.109 U	0.255 U	0.133 U	0.188 U	0.091 U
LP-17-SS	9.402 T	0.154 U	0.137 U	0.197 U	0.214 U	0.145 U	0.222 U	0.359 T	11.111 tb	0.154 U	0.35 U	0.179 U	0.299 tb	0.12 U
LP-18-SS	0.352 T	0.146 U	0.129 U	0.185 U	0.202 U	0.137 U	0.215 U	0.558 TD	0.339 Dtb	0.146 U	0.339 U	0.176 U	0.687 TD	0.116 U
LP-18A-CS-0-1.3	0.82													
LP-18A-CS-1.3-1.5	4.2 U													
LP-19-SS	0.521 U	0.1 U	0.089 U	0.126 U	0.142 U	0.095 U	0.147 U	0.526 T	0.684 tb	0.1 U	0.237 U	0.121 U	0.505 T	0.084 U
LP-20-SS	0.593 T	0.815 U	0.674 U	1.037 U	1.111 U	0.726 U	1.185 U	0.674 U	1.63 Dtb	0.815 U	1.852 U	0.963 U	1.407 U	0.622 U
LP-20A-CS-0.3-1.85	1.51													
LP-20A-CS-1.85-3.0	5.7 J													

5186-002-203

Rayonier

Table 6-4. Comparison of Sediment Concentrations to SMS Organic Carbon Normalized Numeric Standards (ppm oc).

	PCBs, Total	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,4-Dichlorobenzene	Hexachlorobenzene	Hexachlorobutadiene	N-Nitrosodiphenylamine	Dibenzofuran	Bis(2-ethylhexyl) Phthalate	Butyl Benzyl Phthalate	Diethyl Phthalate	Dimethyl Phthalate	Di-n-butyl Phthalate	Di-n-octyl Phthalate
SQS Criteria¹	12	0.8	2.3	3.1	0.38	3.9	11	15	47	4.9	61	53	220	58
CSL Criteria ²	65	1.8	2.3	9	2.3	6.2	11	58	78	64	110	53	1,700	4,500
Mill Dock Sample														
MD-01-SS														
MD-02-SS														
MD-03-SS	3.102 T													
MD-04-SS	17.593													
MD-05-SS	4.299 T													
MD-06-SS														
MD-07-SS														
MD-08-SS														
MD-09-SS	1.648 T													
MD-10-SS	3.876 T													
MD-11-SS	2.667 T													
MD-12-SS														
MD-13-SS	3.194 U													
MD-14-SS	2.063 U													
MD-15-SS	3.16 T													
MD-16-SS	2.029 T													
MD-17-SS	11.837													
MD-18-SS	7.692													
Outfall Sample														
OF-01-SS	1.344 U													
OF-02-SS	1.528 U													
OF-03-SS	1.746 U													
OF-04-SS	1.719 U													
OF-05-SS	2.106 U													
OF-06-SS	2.475 U													
OF-07-SS	1.737 U													
OF-08-SS	1.311 U													
Sequim Bay Sample														
SB-01-SS	1.868 U	0.377 U	0.321 U	0.472 U	0.528 U	0.358 U	0.547 U	0.321 U	8.868 tb	0.377 U	0.868 U	0.453 U	0.642 U	0.302 U
SB-02-SS	0.974 U	0.195 U	0.169 U	0.247 U	0.273 U	0.182 U	0.286 U	0.169 U	0.714 tb	0.195 U	0.448 U	0.234 U	0.331 U	0.156 U
SB-03-SS	1.135 U	0.23 Ug	0.202 Ug	0.291 Ug	0.323 Ug	0.216 Ug	0.337 Ug	0.202 Ug	5.674 tgb	0.23 Ug	0.567 Ug	0.277 Ug	0.426 Ug	0.184 Ug

Notes:
' SQS = sediment quality standard

² CSL = cleanup screening level

 $\underline{\text{Value}} > \underline{\text{SQS}} = \underline{\text{Brown}}$

Value > CSL = Red Data Qualifiers:

B and b = Analyte detected in sample and in associated method blank

D = The reported result is from a

g = Estimate is greater than value shown

T and t = Detected below quantification limit shown

U = Compound not detected at or above the MRL/MDL

5186-002-203 6-105

Table C–9. Concentrations of Phenol and Phthalate Compounds in Surface Sediments

Station	n/ TOC	4-Methylp	henol	Pheno	ıl	2,4-Dimethy	ylphenol	2-Methyl	ohenol	Pentachlor	ophenol	Bis(2-Et	thylhexyl) phthalat	te	Butyl	benzyl phthalate	•
Station	% TOC	Result (μg/kg dw)	Qualifier	Result (μg/kg dw)	Qualifier	Result (μg/kg dw)	Qualifier	Result (μg/kg dw)	Qualifier	Result (μg/kg dw)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier
BL01A	5.03	13		14		15		14		47		140	2.78		11	0.22	
BL02A	2.72	12		13		14		14		46		69	2.54		11	0.40	
BL03A	2.51	13	□Т	95		15		14		47		35	1.39		11	0.44	
BL04A	0.64	12		22		14		14		46		13	2.03	□	11	1.72	
BL06A	1.89 1.46	13		47		15		14		47 47		28	1.48		11	0.58	
BL08A		80		40		15 14		14 14		47		23 14	1.58 2.38	□	11	0.75 1.87	
CO01A CO02A	0.588 2	13 120		13 72		15		14		47		26	1.30	Ш	11 21	1.05	Ц
CO02A	0.314	120	П	13		14	П	14		46		11	3.50	П	11	3.50	П
CO04A	0.182	12		13		14		14		46	П	11	6.04	П	11	6.04	
CO05A	0.885	13		14		15		14		47	П	11	1.24		11	1.24	
DO01A	0.423	13	□	24		15	П	14		47	П	11	2.60	П	11	2.60	П
DO02A	0.681	46		36		14		14		47		20	2.94		11	1.62	
DO03A	0.542	13		21		14		14		47		11	2.03		11	2.03	
DO04A	0.438	26		76		15		14		47		11	2.51		11	2.51	
DO05A	0.495	95		110		15		14		47		11	2.22		11	2.22	
EC01A	0.469	12		13		14		14		46		18	3.84	П	11	2.35	
EC02A	0.239	13		13		15		14		47		11	4.60		11	4.60	
EC03A	1.06	72		13		15		14		47		70	6.60		11	1.04	
EC04A	1.35	12		13		14		14		46		11	0.81		11	0.81	
EC05A	0.216	13		14		15		14		47		130	60.19		11	5.09	
ED01A ED02A	1.59 2.22	37		42		15		14		47 47	Ш	11 45	0.69	Ш	11	0.69	
ED02A ED03A	4.23	110 400		22 14		15 15		14 14		47		45	2.03 1.11		11 11	0.50 0.26	
ED03A ED04A	5.13	41000		230		15		14		47		270	5.26	I.	11	0.26	
ED05A	1.32	33		19	П	14		14		46	П	11	0.83		11	0.83	
EE01A	0.232	13	П	14		15	H H	14		47	П	11	4.74	П	11	4.74	
EE02A	0.311	12		13		14	П	14		46	П	11	3.54	П	11	3.54	П
EE03A	0.176	12		13		14		14		46		11	6.25		11	6.25	
EE04A	0.197	12		13		14		14		46		11	5.58		11	5.58	
EE05A	0.222	12		43		14		14		46		11	4.95		11	4.95	
EI01A	0.198	13		13		14		14		47		11	5.56		11	5.56	
EI02A	0.182	13		14		15		14		47		11	6.04		11	6.04	
EI03A	0.459	12		13		14		14		46		11	2.40		11	2.40	
EI04A	0.172	13		13		14		14		47		11	6.40		11	6.40	
EI06A EI07A	0.162 0.628	13 32		14 56		15 15		14 14		47 47		11 11	6.79 1.75		11 11	6.79 1.75	
FT01A	2.44	15	П	14		15		14		47		130	5.33	Ш	11	0.45	
FT02A	2.61	29		14	T	15	П	14		47	П	200	7.66		38	1.46	
FT04A	1.12	22		13		14		14	П	47	П	380	33.93	 	11	0.98	П
FT05A	1.85	13		130	_	15		14		47		73	3.95		11	0.59	
FT06A	1.47	13		190		14		14		47		25	1.70		11	0.75	
FT10A	1.38	32		110		14		14		46		19	1.38		11	0.80	
FT11A	2.4	12		23		14		14		46		11	0.46		11	0.46	
FT13A	0.879	13		20	П	15		14		47		11	1.25		11	1.25	
IE03A	6.48	13		68		15		14		47		24	0.37		11	0.17	
IE04A	4.81	13		14		15		14		47		11	0.23		11	0.23	
IE05A	5.93	13		24		15		14		47		24	0.40	-	11	0.19	
IE06A	33.2	13		23		15		14		47		23	0.07		52	0.16	
IE07A	15.4 3.33	18 23	□T	210	⊢π	15 15		14 14		47 48		11	0.07 0.66		11	0.07	
IE09A IE13A	8.29	38		16 66	□	15 15		14		48 47		22 11	0.66		11 11	0.33	
IE13A IE14A	2.79	13		14		15		14		47		11	0.13		11	0.39	
IE14A	2.48	13		62		15		14		47		11	0.39		11	0.39	
IL IDA		10		<u> </u>							+	11	0.22	П			+
	4.9	31		14		15		14		47		11	U.ZZ		11	0.22	
IE16A IH01A		31 77	□T	14 54		15 58		14 55		47 190		43	0.25		11 44	0.22 0.26	
IE16A	4.9		□Τ				-		_								

Table C-9. Concentrations of Phenol and Phthalate Compounds in Surface Sediments

	% тос	4-Methylp	henol	Pheno	ol	2,4-Dimethy	/lphenol	2-Methylp	ohenol	Pentachloro	ophenol	Bis(2-Et	hylhexyl) phthalat	te	Butyl	benzyl phthalate	ŧ
Station	78 TOC	Result (µg/kg dw)	Qualifier	Result (µg/kg dw)	Qualifier	Result (µg/kg dw)	Qualifier	Result (µg/kg dw)	Qualifier	Result (µg/kg dw)	Qualifier	Result (μg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier
IH04A	2.91	28		71		15		14		47		11	0.38		11	0.38	
IH05A	1.8	26		88		14		14		46		21	1.17		11	0.61	
IH06A	2.09	30		86		14		14		47		37	1.77		12	0.57	
KP01A	4.21	33		44		15		14		47		48	1.14		11	0.26	
KP02A	5.31	20	П	20		15		14		47		45	0.85		11	0.21	
KP03A	1.8	13		14		15		14		47		33	1.83		11	0.61	
KP04A	1.65	32		130		15		14		47		29	1.76		11	0.67	
KP05A	1.09	13		36		15		14		47		48	4.40		11	1.01	
KP07A	1.65	18	□T	15	п	14		14		47		11	0.67	П	11	0.67	
KP08A	2.37	28		57		15		14		47		27	1.14		11	0.46	
LA01A	11.7	23		31		15		14		47		11	0.09		11	0.09	
LA02A	10.3	150		41		15		14		47		39	0.38		11 0.11		
LA03A	9.17	25		28		15		14		47		41	0.45		73	0.80	1
LP01A	3.6	26		70		14		14		46		20	0.56		11	0.31	
LP03A	1.55	12		15	п	14		14		46		14	0.90	□Т	11	0.71	
LP04A	3.79	68		13		14		14		47		25	0.66		27	0.71	N□
LP05A	3.6	280		100		15		14		47		75	2.08		11	0.31	
MA01A	1.13	12		14	п	14		14		46		560	49.56		11	0.97	
MA02A	4.02	76		81		87	ΠL	84		280		65	1.62		66	1.64	
MA03A	2.38	67		610		15		14		47		41	1.72		11	0.46	
MA04A	8.49	50		740		15		14		47		44	0.52		670	7.89	1
MA05A	2.46	16	п	22		15		14		47		20	0.81		11	0.45	
MD01A	2.36	52		13		14		14		46		25	1.06		11	0.47	
MD02A	3.62	93		14		15		14		47		52	1.44		22	0.61	N□
MD03A	1.24	71		14		15		14		47		28	2.26		11	0.89	
MD04A	2.16	220		760		15		14		47		20	0.93		11	0.51	
MD05A	1.45	13		17	п	15		14		48		11	0.76		11	0.76	
OH01A-R	0.431	13		27		15		14		47		11	2.55		11	2.55	
OH02A	0.679	20		18	п	15		14		47		11	1.62		11	1.62	
OH03A	0.728	13		19	п	15		14		47		11	1.51		11	1.51	
RF01A	0.213	32		34		37		36		120		28	13.15		28	13.15	
RF02A	0.403	49		120		14		14		46		11	2.73		11	2.73	
RF03A	1.42	13		21		15		14		47		11	0.77		11	0.77	
RL01A	0.414	12		13		15 14		14		46		17	4.11	□	11	2.66	
SQS	i	670		420		29		63		360)		47			4.9	
CSL	<u> </u>	670		1200		29	63		690			78			64		
LAET	<u>_</u>	670		420		29		63		360			1300			63	

Exceeds SQS/LAET criteria
Exceeds CSL/2LAET criteria

KE□:

Bold = Analyte was detected.

dw = dry weight

□g/□g = micrograms per □ilogram

□T = The associated estimated positi e result is less than the

□K = The associated estimated positi e result has a li ely un nown bias.

☐ = The associated estimated positi e result has a li ely high bias.

 $\label{eq:continuous} \square \, \square = \, \text{The associated estimated sample } \, \square \text{uantitation limit has a li} \, \square \text{ely low bias.}$

 $\label{eq:local_local} \Box \Box L = \ \ \text{The associated estimated sample } \ \Box \text{uantitation limit has a li} \ \Box \text{ely high bias}.$

□ = Analyte was not detected at or abo □e the reported result.

N□= The associated estimated positi $ext{ iny e}$ result is tentati $ext{ iny e}$ ly identified.

Table C-9. Concentrations of Phenol and Phthalate Compounds in Surface Sediments

2	a, 	Die	thyl phthalate		Di-	N-butyl phthalate		Din	nethyl phthalate		Di-ı	n-Octyl phthalate	
Station	% TOC	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier
BL01A	5.03	16	0.32		12	0.24		7.7	0.15		8.3	0.17	
BL02A	2.72	16	0.59		12	0.44		7.6	0.28		8.1	0.30	
BL03A	2.51	16	0.64		12	0.48		7.6	0.30		8.2	0.33	
BL04A	0.64	16	2.50		12	1.88		7.5	1.17		8.1	1.27	
BL06A	1.89	16	0.85		12	0.63		7.6	0.40		8.2	0.43	
BL08A	1.46	16	1.10		12	0.82		7.6	0.52		8.2	0.56	
CO01A	0.588	16	2.72		12	2.04		7.6	1.29		8.2	1.39	
CO02A	2	16	0.80		24	1.20		7.6	0.38		8.2	0.41	
CO03A	0.314	16	5.10		12	3.82		7.5	2.39		8.1	2.58	
CO04A	0.182	16	8.79		12	6.59		7.6	4.18		8.1	4.45	
CO05A	0.885	16	1.81		12	1.36		7.7	0.87		8.2	0.93	
DO01A	0.423	16	3.78 2.35		12 12	2.84 1.76		7.6 7.6	1.80		8.2	1.94	
DO02A DO03A	0.681 0.542	16 16	2.35		12	2.21		7.6	1.12 1.40		8.2 8.2	1.20 1.51	
								7.6	1.40			1.89	
DO04A DO05A	0.438 0.495	16 16	3.65 3.23		12 12	2.74 2.42		7.7	1.76		8.3 8.3	1.68	
EC01A	0.495	16	3.41		12	2.42		7.6	1.62		8.1	1.73	
EC01A EC02A	0.469	16	6.69		12	5.02		7.6	3.18		8.2	3.43	
EC02A	1.06	16	1.51	П	12	1.13		26	2.45		8.2	0.77	
EC04A	1.35	16	1.19		12	0.89		7.5	0.56		8.1	0.60	
EC05A	0.216	16	7.41		12	5.56		7.7	3.56		8.3	3.84	
ED01A	1.59	16	1.01	П	12	0.75		7.7	0.48		8.3	0.52	
ED02A	2.22	16	0.72		12	0.54		7.7	0.35		8.3	0.37	
ED03A	4.23	16	0.38		12	0.28		7.7	0.18		8.3	0.20	
ED04A	5.13	16	0.31	П	12	0.23		7.7	0.15		88	1.72	ī
ED05A	1.32	16	1.21		12	0.91		7.5	0.57		8.1	0.61	
EE01A	0.232	16	6.90		12	5.17		7.7	3.32		8.2	3.53	
EE02A	0.311	16	5.14		12	3.86		7.5	2.41		8.1	2.60	
EE03A	0.176	16	9.09		12	6.82		7.5	4.26		8.1	4.60	
EE04A	0.197	16	8.12		12	6.09		7.5	3.81		8.1	4.11	
EE05A	0.222	16	7.21		12	5.41		7.6	3.42		8.1	3.65	
EI01A	0.198	16	8.08		12	6.06		7.6	3.84		8.2	4.14	
EI02A	0.182	16	8.79		12	6.59		7.6	4.18		8.2	4.51	
EI03A	0.459	16	3.49		12	2.61		7.5	1.63		8.1	1.76	
EI04A	0.172	16	9.30		12	6.98		7.6	4.42		8.2	4.77	
EI06A	0.162	16	9.88		12	7.41		7.7	4.75		8.3	5.12	
EI07A	0.628	16	2.55		12	1.91		7.6	1.21		8.2	1.31	
FT01A	2.44	16	0.66		17	0.70	□T	7.7	0.32		8.2	0.34	
FT02A	2.61	16	0.61		12	0.46		7.7	0.30		28	1.07	
FT04A	1.12	16	1.43		15	1.34	П	7.6	0.68		8.2	0.73	
FT05A	1.85	16	0.86		12	0.65		7.7	0.42		8.2	0.44	
FT06A	1.47	16	1.09		12	0.82		7.6	0.52		8.2	0.56	
FT10A	1.38	16	1.16		12	0.87		7.5	0.54		8.1	0.59	
FT11A FT13A	2.4 0.879	16 16	0.67 1.82		12 12	0.50 1.37		7.5 7.7	0.31 0.88		8 8.3	0.33 0.94	
IE03A	6.48	16	0.25		12	0.19		7.7	0.88		8.3	0.94	
IE03A	4.81	16	0.25	П	12	0.19		7.6	0.12		8.2	0.13	
IE04A	5.93	20	0.34	Ш	12	0.25		7.7	0.16		8.3	0.17	
IE05A	33.2	16	0.05		12	0.20		7.7	0.13		8.3	0.03	
IE07A	15.4	16	0.10		12	0.04		7.6	0.02		8.2	0.05	
IE09A	3.33	16	0.48		12	0.36		7.8	0.03		8.3	0.05	
IE13A	8.29	16	0.19		12	0.14		7.7	0.09		8.3	0.10	
IE14A	2.79	16	0.57		12	0.43		7.7	0.28		8.2	0.29	
IE15A	2.48	28	1.13		12	0.48		7.6	0.31		8.2	0.33	
IE16A	4.9	16	0.33		12	0.24		7.7	0.16		8.3	0.17	
IH01A	17.2	93	0.54	_	48	0.28		30	0.17		33	0.19	
IH02A	25	16	0.06		12	0.05		7.7	0.03		8.2	0.03	
IH03A	11.7	16	0.14		12	0.10		7.6	0.06		8.2	0.07	

Table C-9. Concentrations of Phenol and Phthalate Compounds in Surface Sediments

Station	% тос	Die	thyl phthalate		Di-l	N-butyl phthalate		Dim	ethyl phthalate		Di-n-Octyl phthalate		
		Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier	Result (µg/kg dw)	Result (mg/kg TOC)	Qualifier
IH04A	2.91	31	1.07		12	0.41		7.7	0.26		8.3	0.29	
IH05A	1.8	19	1.06	□Т	12	0.67		7.4	0.41		8	0.44	
IH06A	2.09	21	1.00		16	0.77	□T	7.6	0.36		8.1	0.39	
KP01A	4.21	19	0.45	□T	12	0.29		7.7	0.18		8.2	0.19	
KP02A	5.31	16	0.30		12	0.23		7.7	0.15		8.3	0.16	
KP03A	1.8	16	0.89		12	0.67		7.7	0.43		8.2	0.46	
KP04A	1.65	16	0.97		12	0.73		7.7	0.47		8.2	0.50	
KP05A	1.09	20	1.83		12	1.10		7.7	0.71		8.2	0.75	
KP07A	1.65	16	0.97		12	0.73		7.6	0.46		8.2	0.50	
KP08A	2.37	16	0.68		12	0.51		7.6	0.32		8.2	0.35	
LA01A	11.7	16	0.14		12	0.10		7.7	0.07		8.3	0.07	
LA02A	10.3	16	0.16		12	0.12		7.7	0.07		8.3	0.08	
LA03A	9.17	19	0.21	п	12	0.13		7.7	0.08		8.3	0.09	
LP01A	3.6	20	0.56		13	0.36	п	7.6	0.21		9.7	0.27	□Т
LP03A	1.55	16	1.03		12	0.77		7.5	0.48		8.1	0.52	
LP04A	3.79	16	0.42		40	1.06	N□	7.6	0.20		8.2	0.22	
LP05A	3.6	16	0.44		12	0.33		7.7	0.21		8.3	0.23	
MA01A	1.13	16	1.42		12	1.06		7.4	0.65		8	0.71	
MA02A	4.02	97	2.41		73	1.82		46	1.14		49	1.22	
MA03A	2.38	20	0.84		12	0.50		7.6	0.32		8.2	0.34	
MA04A	8.49	16	0.19		12	0.14		7.7	0.09		8.3	0.10	
MA05A	2.46	16	0.65		12			7.6	0.31		8.2	0.33	
MD01A	2.36	16	0.68		12	0.51		7.6	0.32		8.1	0.34	
MD02A	3.62	16	0.44		24	0.66		7.7	0.21		8.2	0.23	
MD03A	1.24	16	1.29		27	2.18	N□	7.7	0.62		8.3	0.67	
MD04A	2.16	16	0.74		21	0.97	N□	7.7	0.36		8.3	0.38	
MD05A	1.45	16	1.10		12	0.83		7.7	0.53		8.3	0.57	
OH01A-R	0.431	16	3.71		12	2.78		7.7	1.79		8.2	1.90	
OH02A	0.679	16	2.36		12	1.77		7.6	1.12		8.2	1.21	
ОН03А	0.728	16	2.20		12	1.65		7.7	1.06		8.3	1.14	
RF01A	0.213	41	19.25		31	14.55		19	8.92		21	9.86	
RF02A	0.403	16	3.97		12	2.98		7.5	1.86		8.1	2.01	
RF03A	1.42	16	1.13		12	0.85		7.7	0.54		8.3	0.58	
RL01A	0.414	16	3.86		12	2.90		7.6	1.84		8.1	1.96	
SQS	<u> </u>	61			220			53			58		
CSI		110			1700				53		4500		
LAE		200			1400				71		6200		

Table 5. Surface Sediment Metals that Exceed SMS Criteria and Associated Bioassay Results

			Arsenic	Cadmium	Mercury	Zinc	Bioassay Result				
Region	Location	Study	SQS = 57 CSL = 93	SQS = 5.1 CSL = 6.7	SQS = 0.41 CSL = 0.59	SQS = 410 CSL = 960	Larval Development	Amphipod Mortality	Polychaete Growth		
	1.004.0				g/Kg)			l .			
	LA01A	E & E 2012	-	5.90	0.45	-	na	na	na		
	LA02A	E & E 2012	-	-	0.59	-	Fail	Pass	Pass		
	LA03A	E & E 2012	-	-	0.59	-	na	na	na		
Lagoon	LA01A-01	Exponent 2008	-	6.4	0.57	-	na	na	na		
	LA02A-01	Exponent 2008	-	7.6	0.59	-	na	na	na		
	LA03A-01	Exponent 2008	ı	5.7	0.59	_	na	na	na		
	NPI-L1-01	Exponent 2008	-	6.0	0.61	411	na	na	na		
	IH01A	E & E 2012	-	7.4	3.50	1600	Pass	Pass	Pass		
	IH02A	E & E 2012	69.0	-	1.30	460	Fail	Pass	Pass		
	IE09A	E & E 2012	-	-	1.20	860	Fail	Pass	Pass		
	IE13A	E & E 2012	-	-	1.90	610	na	na	na		
	IE16A	E & E 2012	-	-	1.30	-	na	na	na		
	NPI-PA1-01	Exponent 2008	-	-	0.54	-	na	na	na		
Inner Harbor	NPI-PA2-01	Exponent 2008	-	-	0.43	-	na	na	na		
Tidiboi	NPI-PA3-01	Exponent 2008	-	8.1	1.49	1660	na	na	na		
	NPI-PA4-01	Exponent 2008	-	6.9	2.65	1330	na	na	na		
	NPI-PA6-01	Exponent 2008	-	-	1.26	-	na	na	na		
	NPI-PA8-01	Exponent 2008	-	-	0.67	-	na	na	na		
	NPI-PA9-01	Exponent 2008	-	-	1.10	-	na	na	na		
	NPI-PA10-01	Exponent 2008	-	-	0.66	-	na	na	na		
Rayonier	R05LP-06	Malcolm Pirnie 2007a	-	-	0.43	-	Pass	Pass	Pass		

Key:

Exceeds SQS criteria

Exceeds CSL criteria

- = concentration below SMS criteria

Key:

Passed SMS criteria

Failed SQS criteria

Failed CSL criteria

na = not analyzed

Table 6. Surface Sediment Organic COPCs that Exceed SMS or LAET Criteria and Associated Bioassay Results

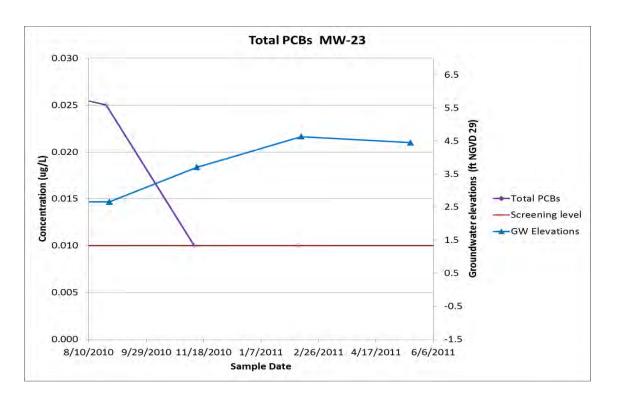
	Location	Study	тос	SMS Exceedances								LAET Exceedances			Bioassay Results		
Region				Bis(2- ethylhexyl) phthalate	PCBs, Sum of Aroclors	PCBs, Sum of Congeners	2,4- Dimethyl phenol	2-Methyl phenol	4-Methyl phenol	Phenol	PCBs, Sum of Congeners	Butyl benzyl phthalate	Fluoranthene	_ Larval Development	Amphipod Mortality	Polychaete Growth	
				SQS = 47 CSL = 78	SQS = 12 CSL = 65	SQS = 12 CSL = 65	SQS = 29 CSL = 29	SQS = 63 CSL = 63	SQS = 670 CSL = 670	SQS = 420 CSL = 1200	LAET = 130 2LAET = 1000	LAET = 63 2LAET = 900	LAET = 1700 2LAET = 2500				
			wt%	mg/Kg OC			μg/Kg				μg/Kg						
Lagoon	LA03A	E & E 2012	9.2	-	-	-	_	-	-	-	-	73	-	na	na	na	
Inner	MA01A	E & E 2012	1.1	49.6	-	-	-	-	-	-	-	-	_	Fail	Pass	Pass	
	MA03A	E & E 2012	4.0	-	-	-	-	-	-	610	-	-	-	na	na	na	
	MA04A	E & E 2012	8.5	-	-	-	-	-	-	740	-	670	-	na	na	na	
	WP-01-SS	Malcolm Pirnie 2007b	4.7	-	-	-	-	-	-	-	372	-	-	na	na	na	
Harbor	WP-02-SS	Malcolm Pirnie 2007b	10.0	-	-	-	-	-	-	-	219	-	-	na	na	na	
	WP-03-SS	Malcolm Pirnie 2007b	3.7	-	-	-	-	-	ı	ı	173	_	ı	na	na	na	
	WP-04-SS	Malcolm Pirnie 2007b	5.6	-	-	-	-	-	ı	ı	148	_	ı	na	na	na	
	WP-11-SS	Malcolm Pirnie 2007b	6.8	-	-	-	-	-	-	-	2930	-	-	na	na	na	
	R05IT-07	Malcolm Pirnie 2007a	24.6	-	-	-	-	-	1700	ı	-	_	ı	na	na	na	
	R05LP-03	Malcolm Pirnie 2007a	4.0	67.2	-	-	-	-	-	-	-	_	-	Pass	Pass	Pass	
	R05LP-06	Malcolm Pirnie 2007a	18.5	-	-	-	54	200	1300	-	-	_	-	Pass	Pass	Pass	
	R05LP-10	Malcolm Pirnie 2007a	10.0	-	-	-	-	-	-	480	-	_	_	Fail	Fail	Fail	
	R05LP-13	Malcolm Pirnie 2007a	14.4	-	-	-	-	-	820	-	-	-	-	Fail	Fail	Pass	
	R05LP-16	Malcolm Pirnie 2007a	16.5	-	-	-	-	-	840	-	-	-	-	Fail	Pass	Pass	
	R05LP-18	Malcolm Pirnie 2007a	23.3	-	_	-	-	_	-	_	-	_	3100	Fail	Pass	Fail	
	R05LP-20	Malcolm Pirnie 2007a	13.5	-	-	-	-	-	11000	-	-	-	-	Pass	Pass	Pass	
	R05MD-02	Malcolm Pirnie 2007a	15.0	-	-	-	-	-	690	-	-	_	-	Pass	Pass	Pass	
Rayonier	R05MD-04	Malcolm Pirnie 2007a	1.1	-	17.6	-	-	-	-	-	-	_	-	Pass	Pass	Pass	
	R05MD-12	Malcolm Pirnie 2007a	1.9	-	-	-	-	-	1400	-	-	_	_	Pass	Pass	Pass	
	MD-14-SS	Malcolm Pirnie 2007b	1.3	-	-	16.9	-	-	-	-	-	-	-	na	na	na	
	MD-18-SS	Malcolm Pirnie 2007b	4.1	-	-	-	-	-	-	-	352	_	-	na	na	na	
	MD-23-SS	Malcolm Pirnie 2007b	0.8	-	-	19.7	-	-	-	-	-	_	-	na	na	na	
	LP-03-SS	Malcolm Pirnie 2007b	11.9	-	-	-	-	-	-	-	152	_	-	na	na	na	
	LP-04-SS	Malcolm Pirnie 2007b	8.3	-	-	-	-	-	-	-	155	-	-	na	na	na	
	LP-08-SS	Malcolm Pirnie 2007b	21.2	-	-	-	-	_	-	-	200	-	_	na	na	na	
	ED04A	E & E 2012	5.1	-	-	-	-	-	41000	-	_	-	_	Fail	Fail	Pass	
	MD04A	E & E 2012	2.2	-	-	-	-	-	-	760	-	-	_	na	na	na	

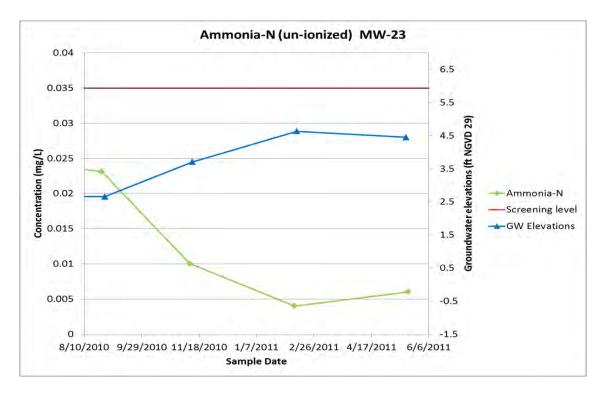
Key:

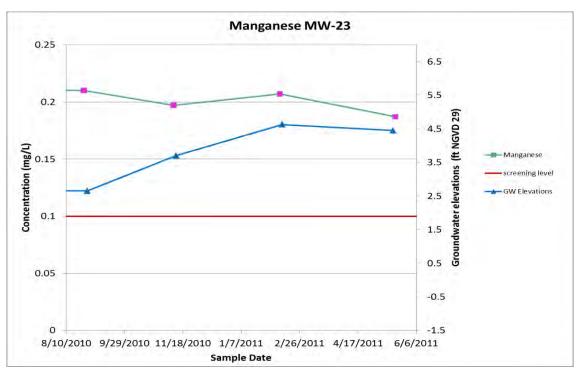
> 3.5% TOC

Exceeds SQS/LAET criteria

Exceeds CSL/2LAET criteria


-= concentration below SMS criteria


Key:

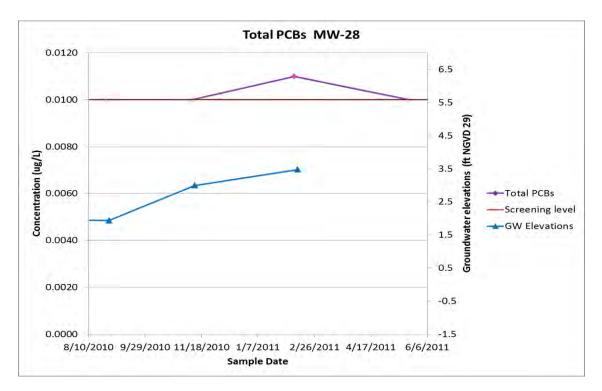

Passed SMS criteria
Failed SQS criteria
Failed CSL criteria

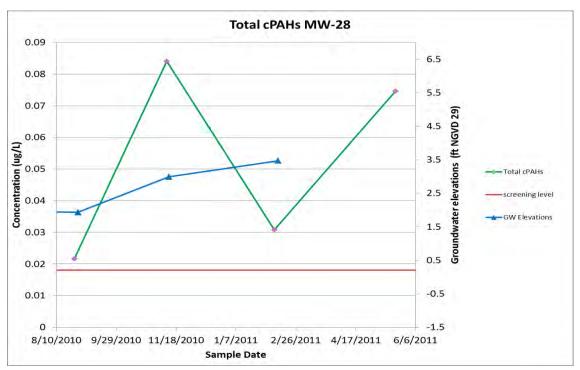
na = not analyzed

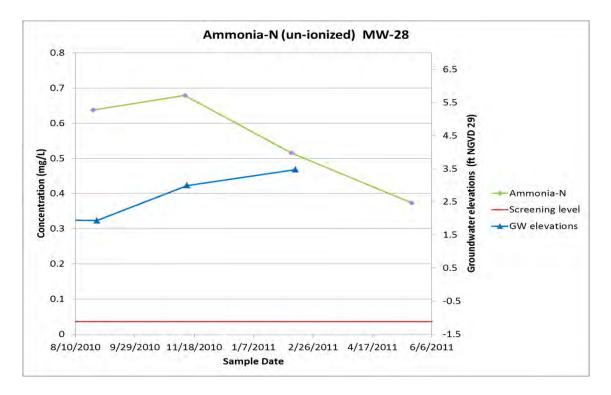
Open symbol indicates non-detected result

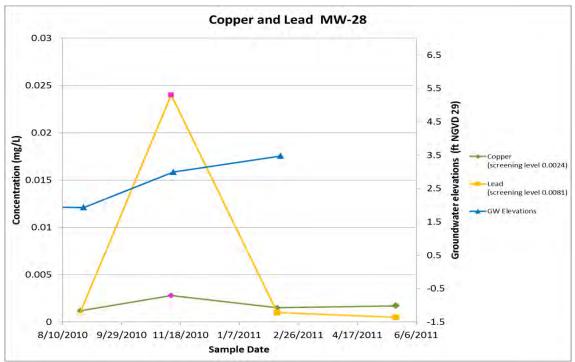
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

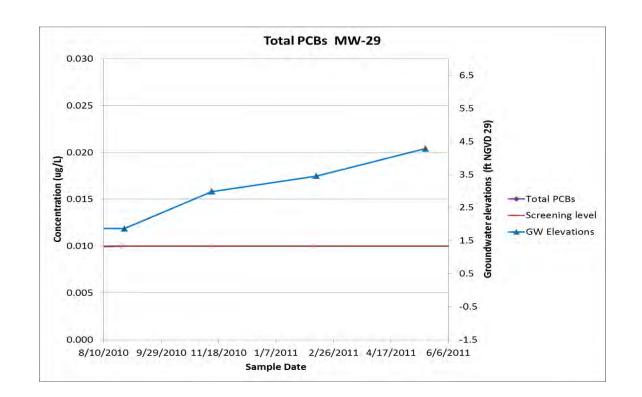

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 23)

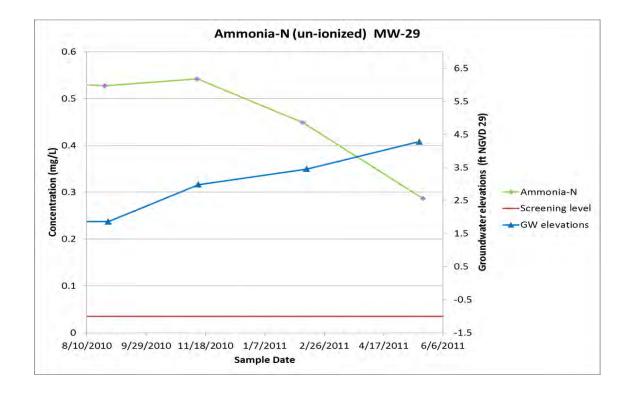

Port Angeles Rayonier Mill Port Angeles, Washington

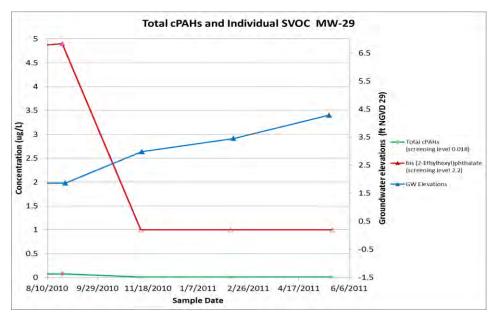
Open symbol indicates non-detected result

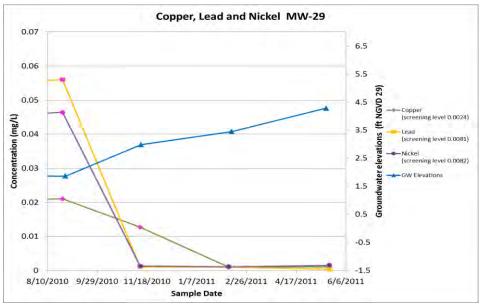
Filled symbol indicates detected result

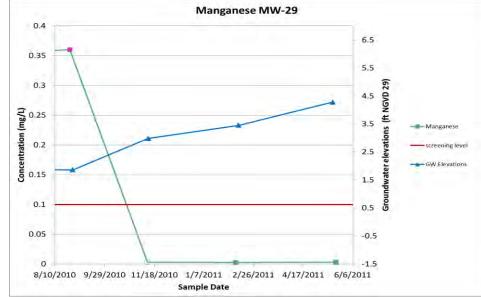
Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events whe re only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 28)


Port Angeles Rayonier Mill Port Angeles, Washington

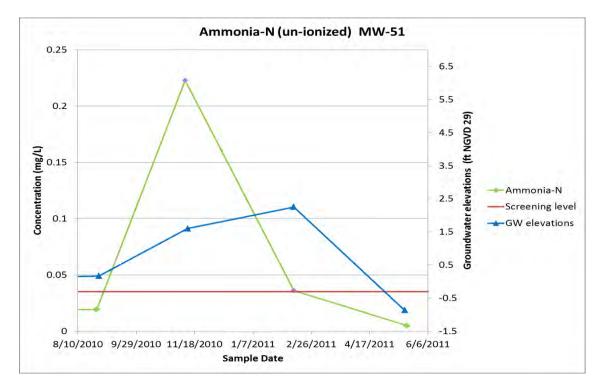


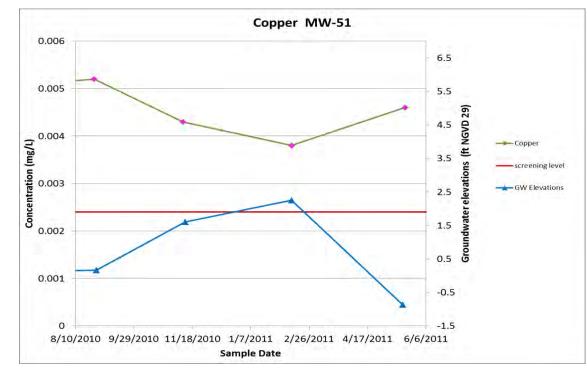
Legend

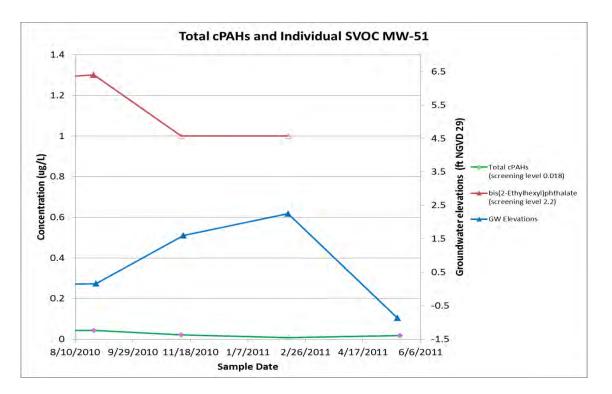
Open symbol indicates non-detected result

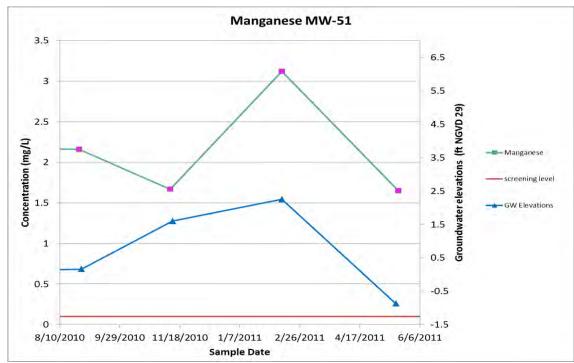
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events whe re only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

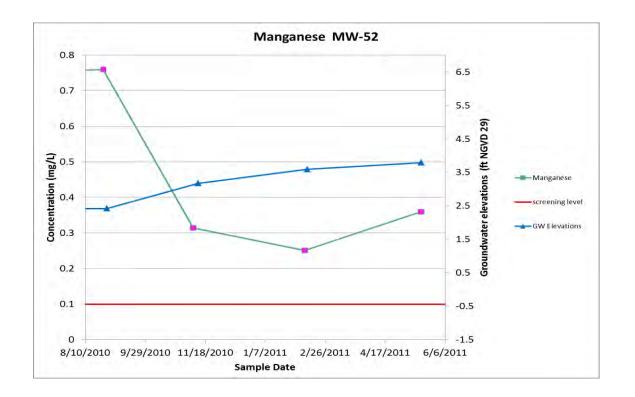

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 29)


Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:

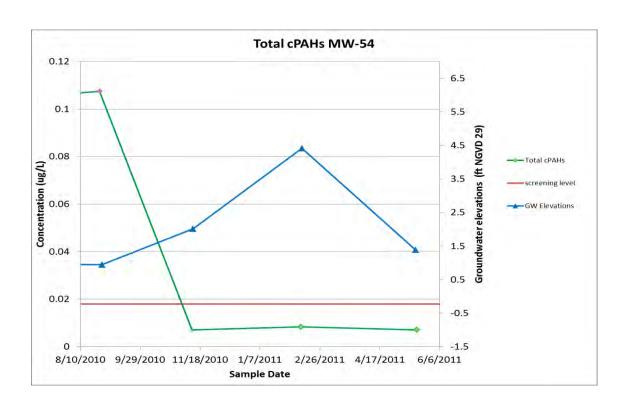
- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events whe re only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

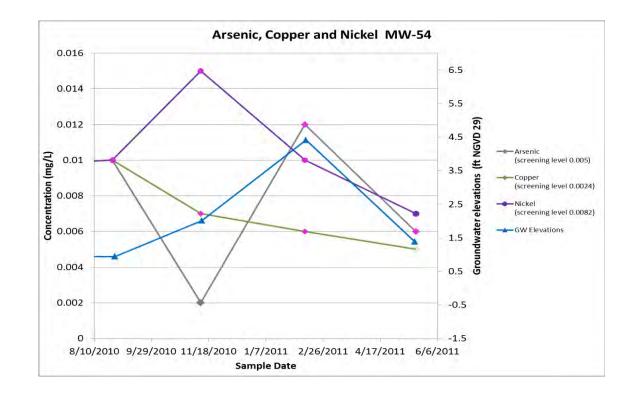
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 51)

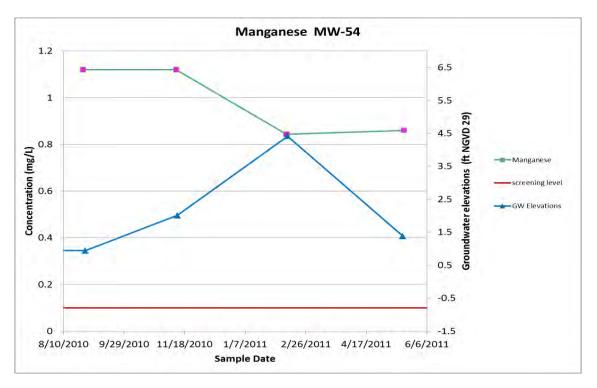
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

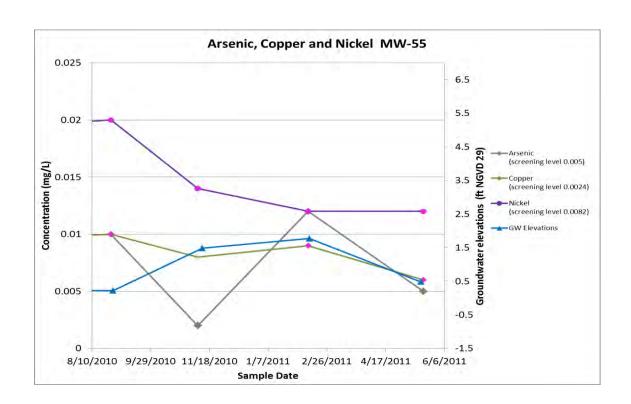

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 52)

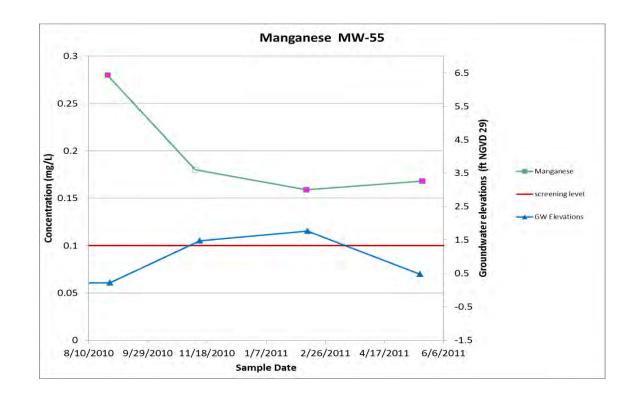
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

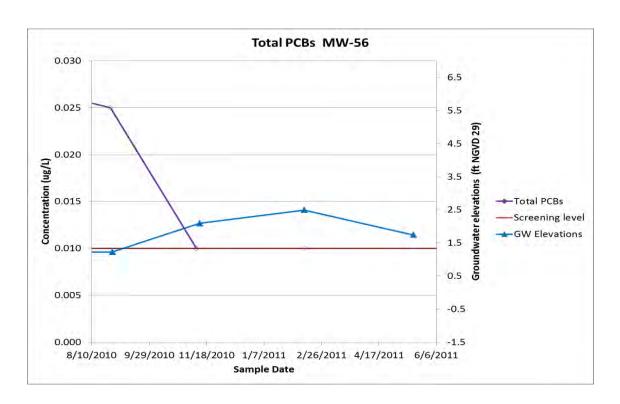
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 54)

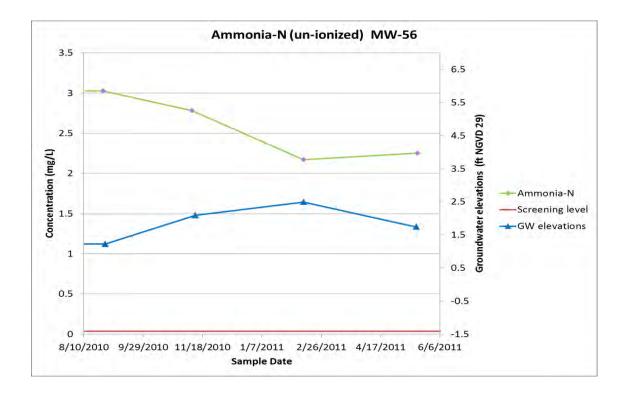
Port Angeles Rayonier Mill Port Angeles, Washington

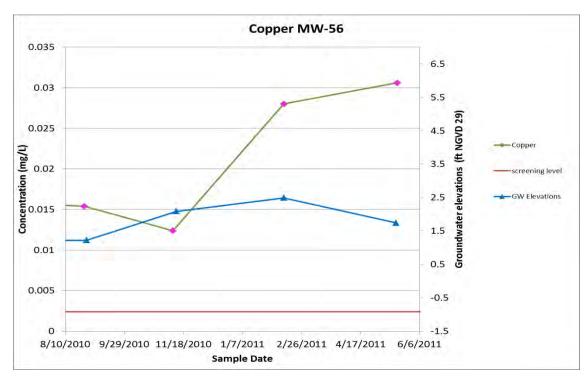
Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

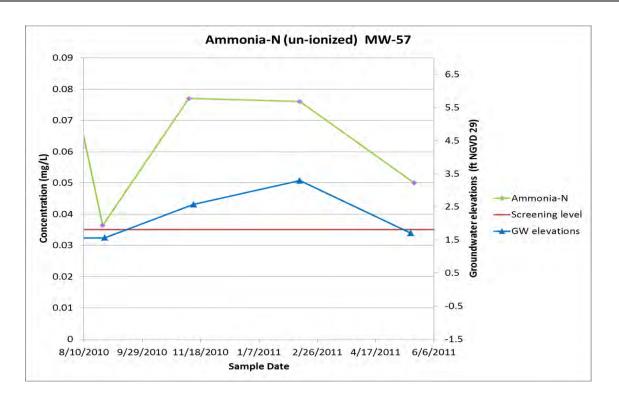

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 55)

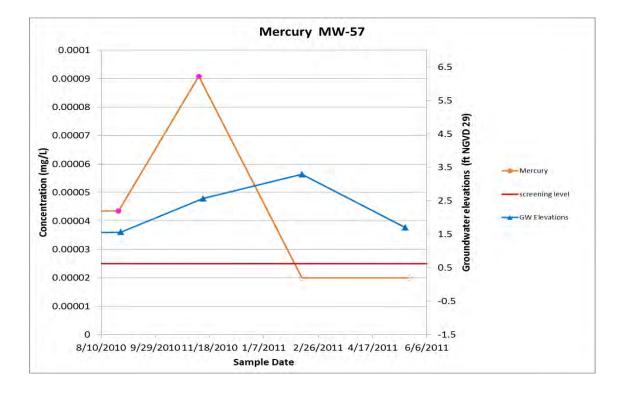
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

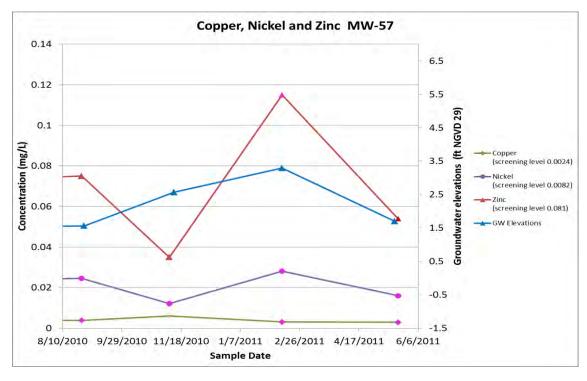
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

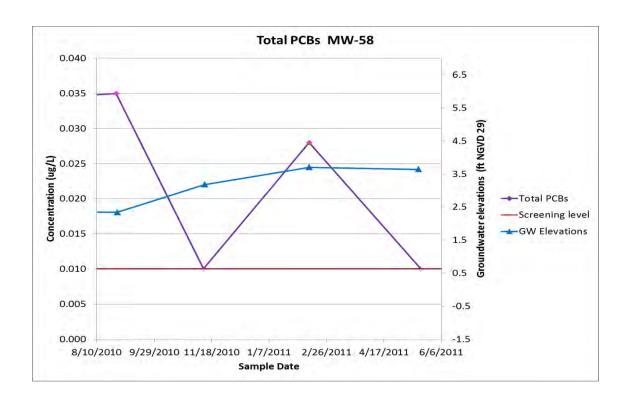
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 56)

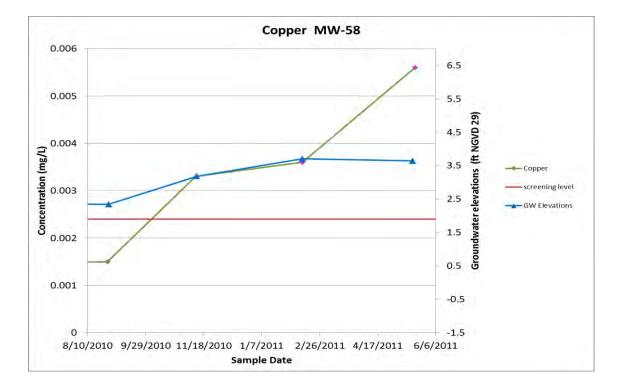

Port Angeles Rayonier Mill Port Angeles, Washington

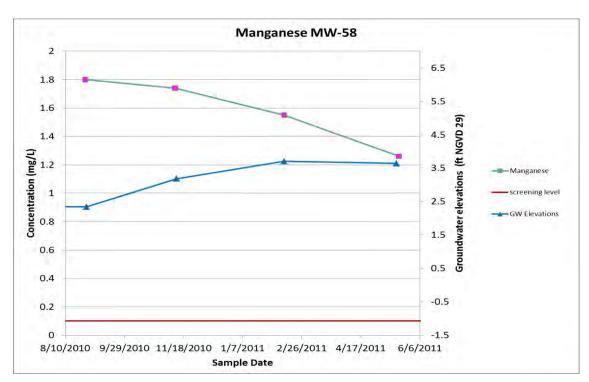
Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events whe re only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 57)

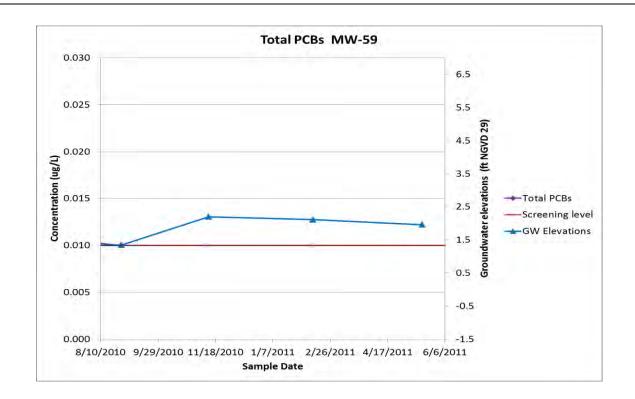
Port Angeles Rayonier Mill Port Angeles, Washington

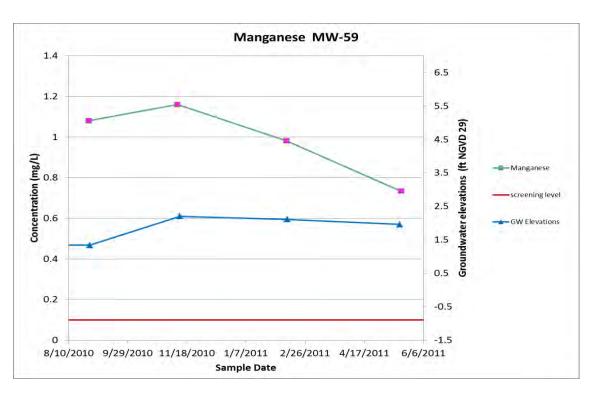
Legend

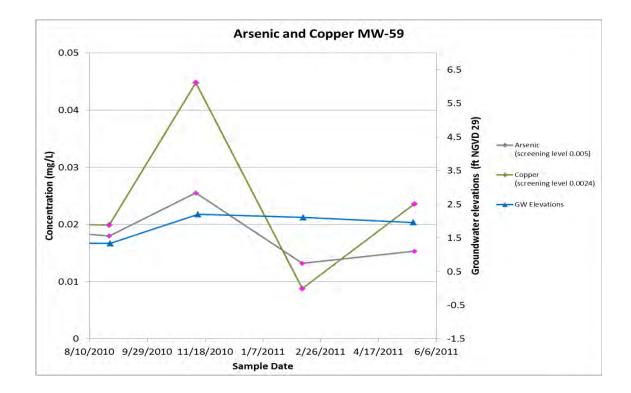
Open symbol indicates non-detected result

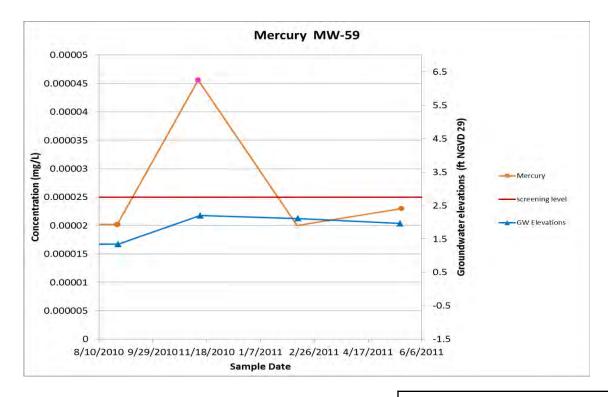
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

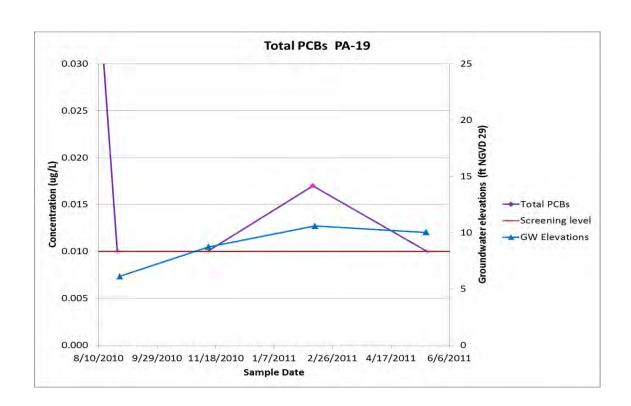

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 58)

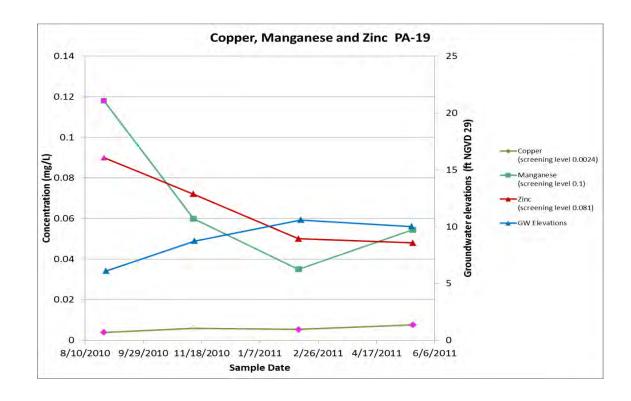

Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

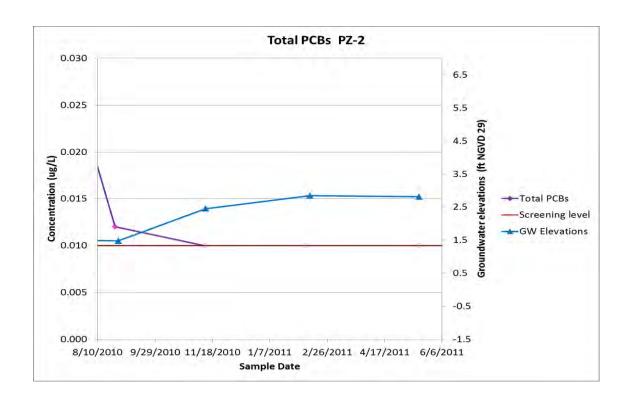
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (MW 59)

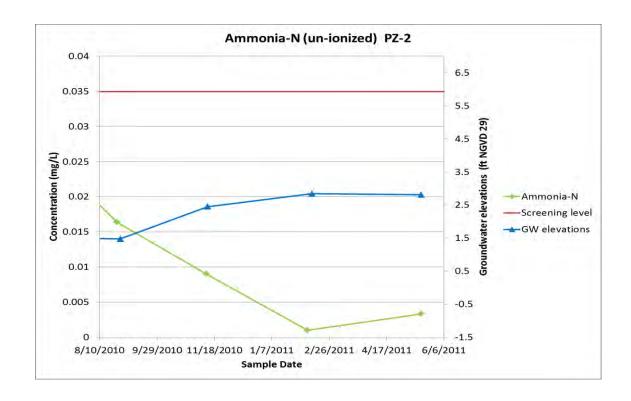
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

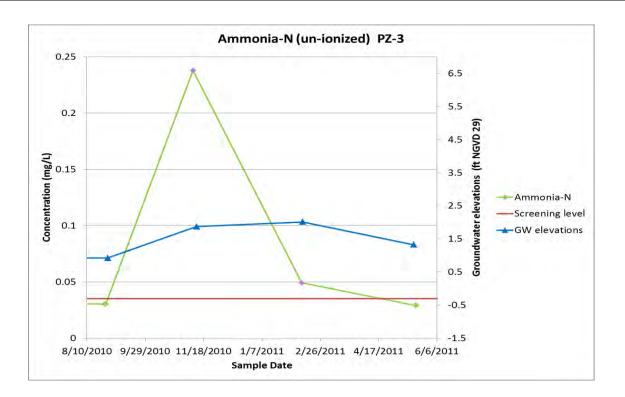
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PA 19)

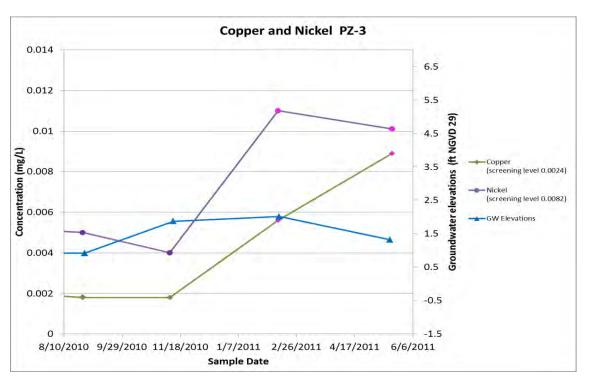
Port Angeles Rayonier Mill Port Angeles, Washington

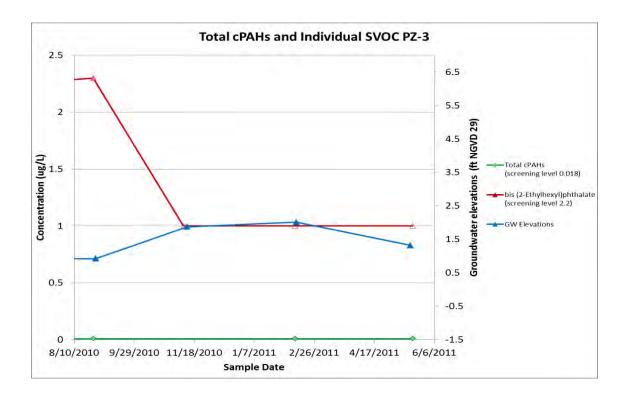
Open symbol indicates non-detected result

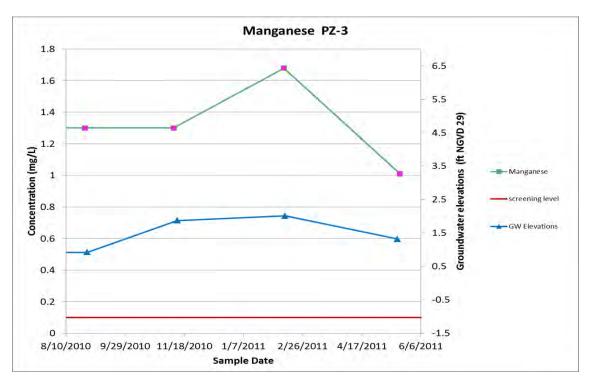
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

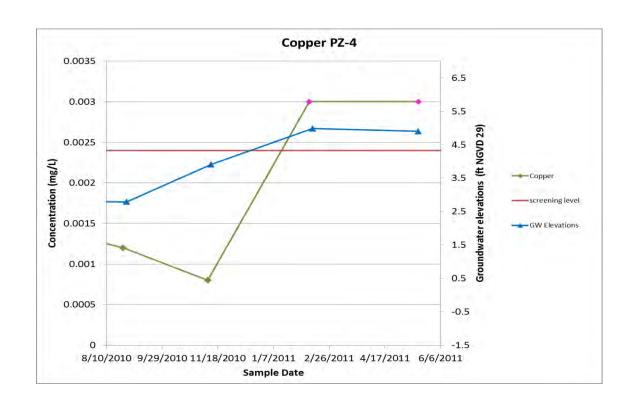

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 2)


Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events whe re only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

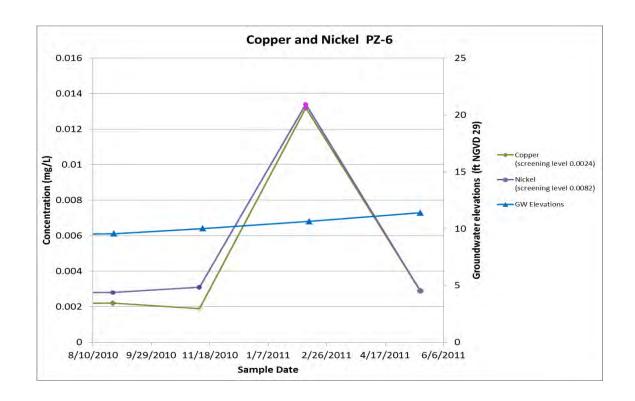
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 3)

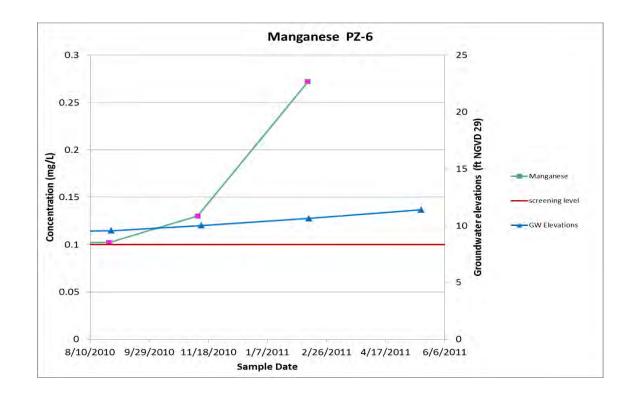
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

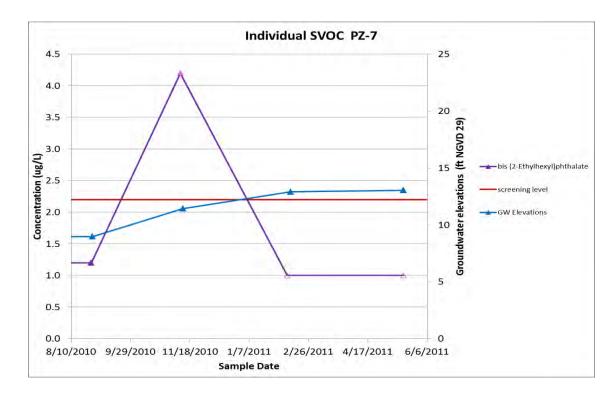
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 4)

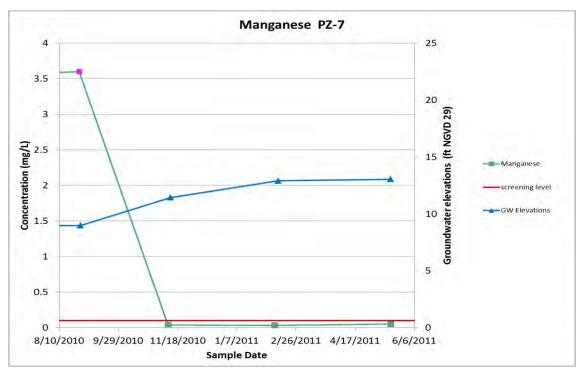
Port Angeles Rayonier Mill Port Angeles, Washington

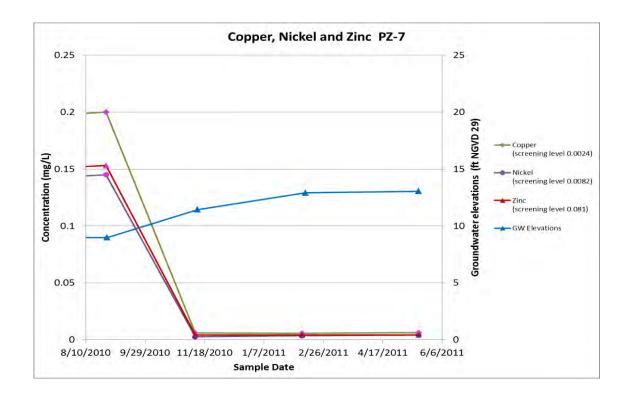
Open symbol indicates non-detected result

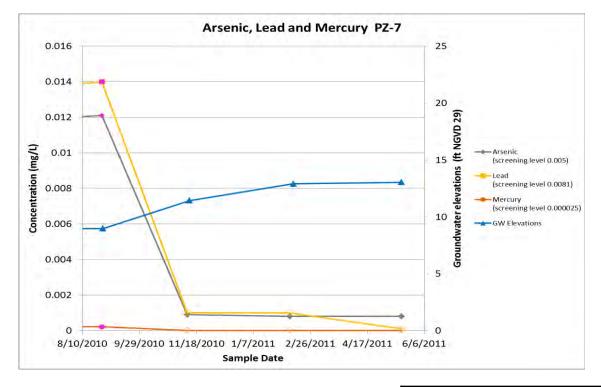
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

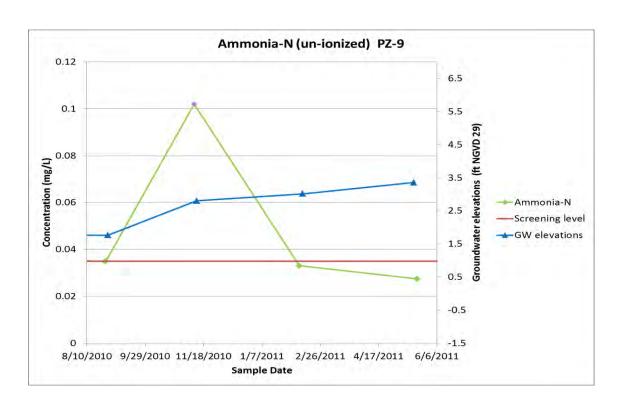

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 6)

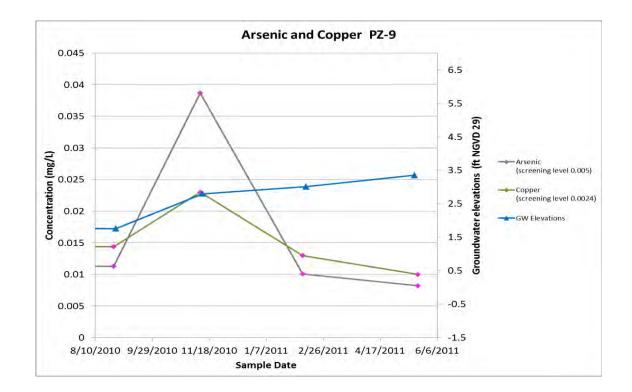

Port Angeles Rayonier Mill Port Angeles, Washington

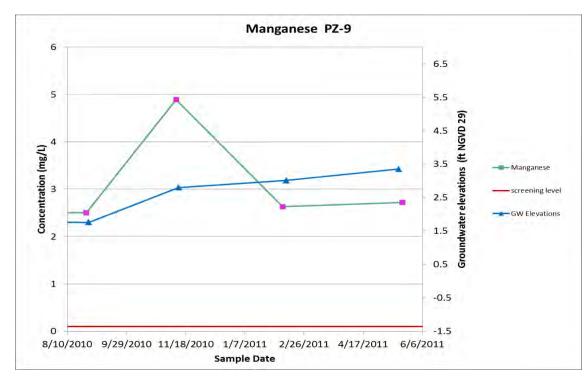
Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events whe re only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

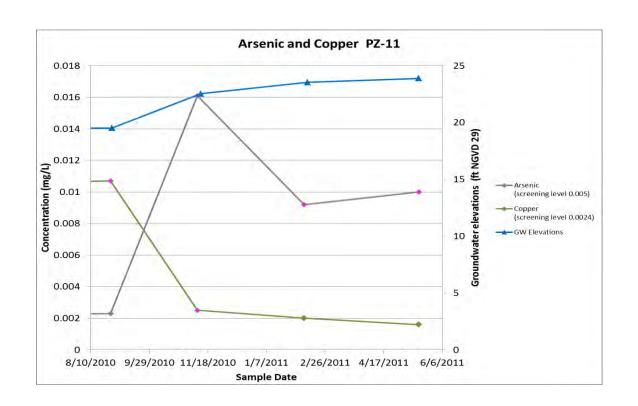

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 7)

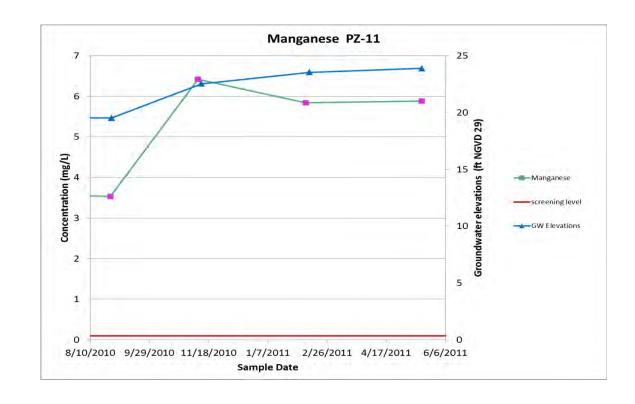
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

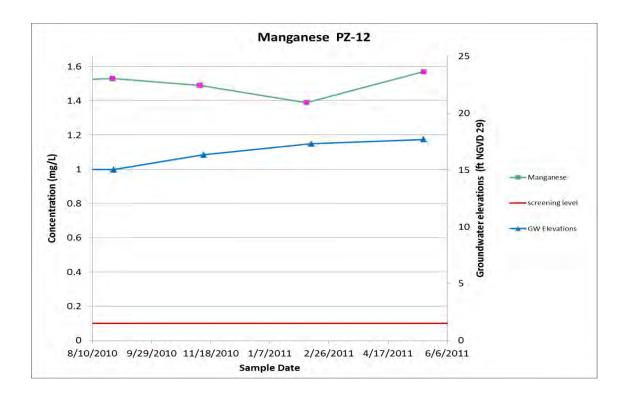
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 9)

Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:

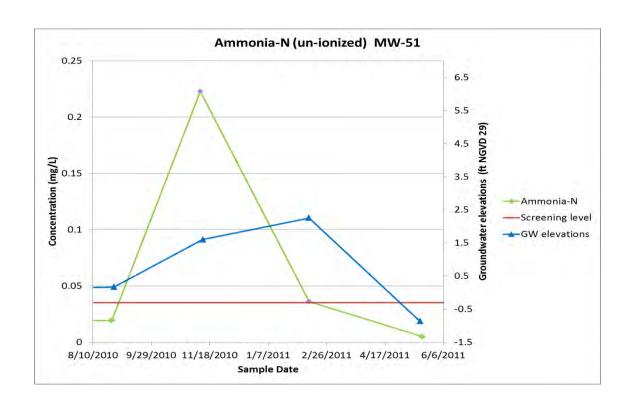
- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

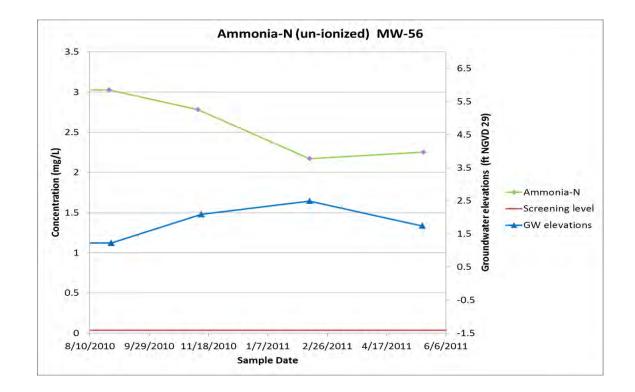
Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 11)

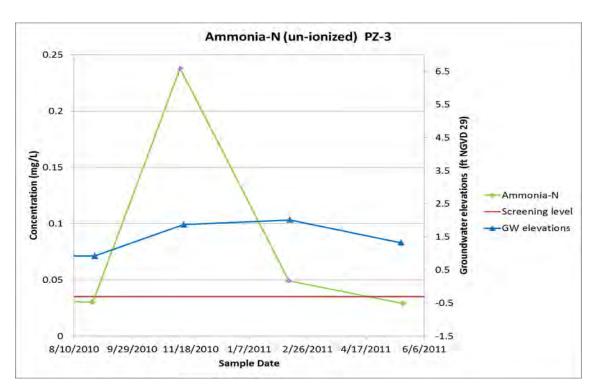
Port Angeles Rayonier Mill Port Angeles, Washington

Open symbol indicates non-detected result Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:

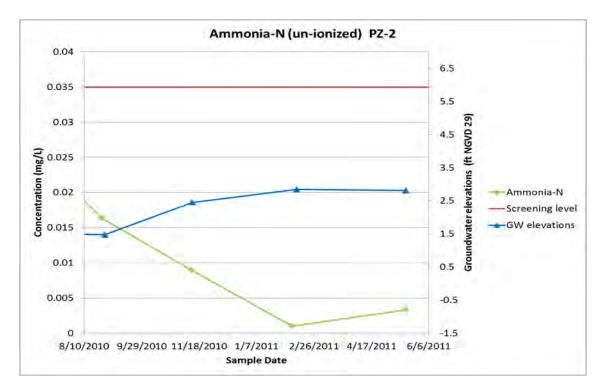

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \, \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

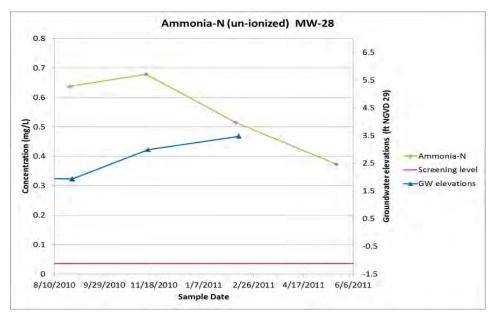

Contaminants of Concern and Hydrograph, Aug 2010 to May 2011 (PZ 12)

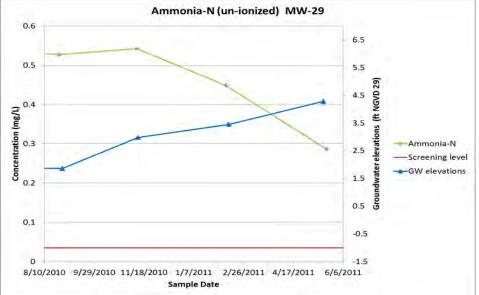
Port Angeles Rayonier Mill Port Angeles, Washington

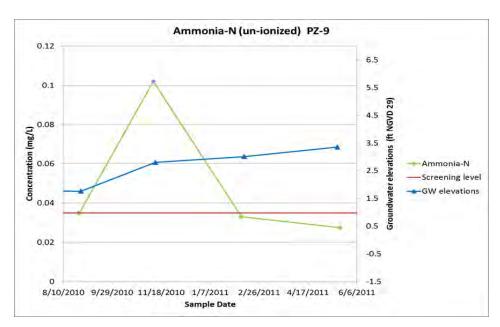
Upen symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening leve


Notes:

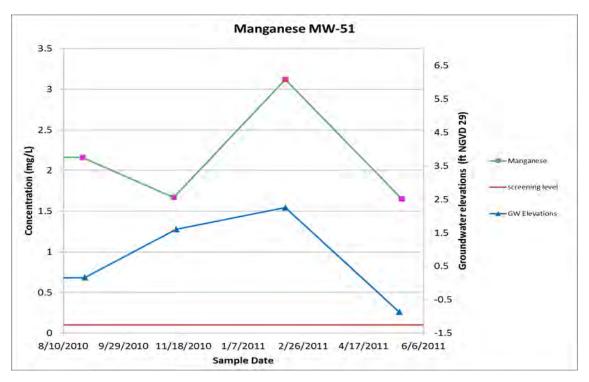

This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

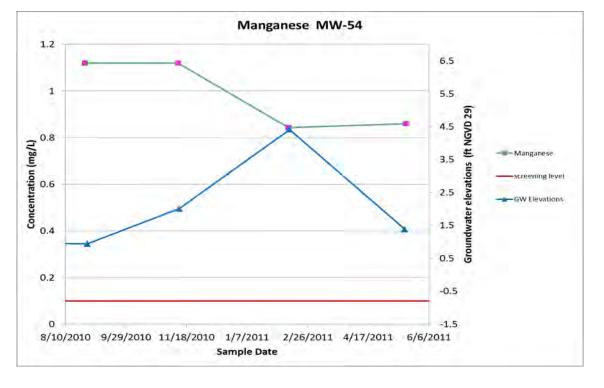

Ammonia-N and Hydrograph – Tidally Influenced Wells, Aug 2010 to May 2011

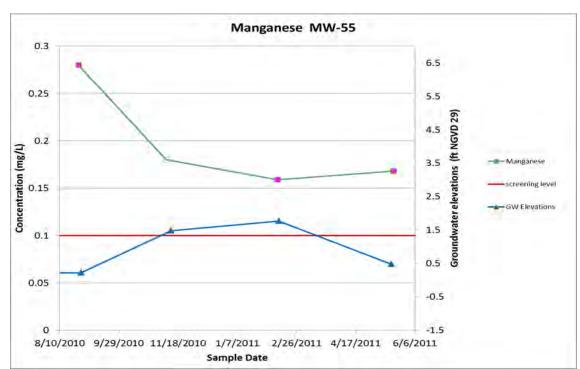

Port Angeles Rayonier Mill Port Angeles, Washington

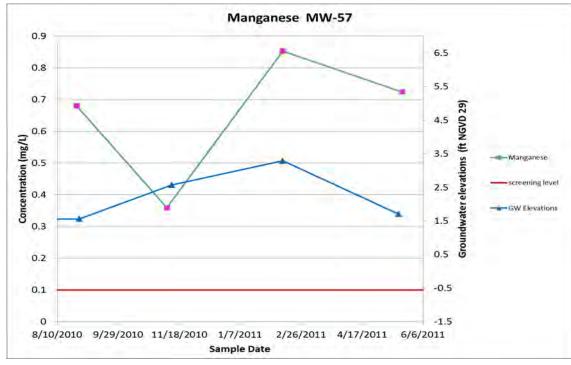


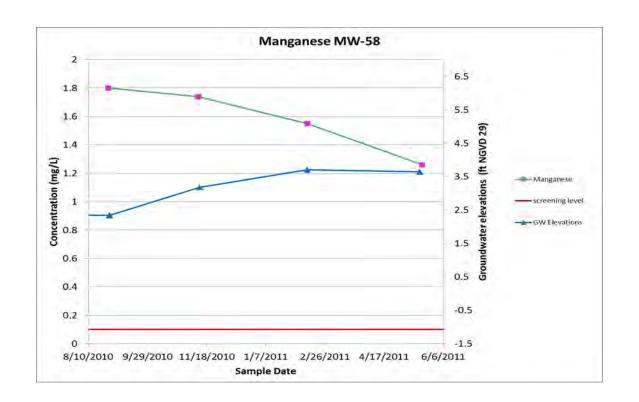
Open symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening leve

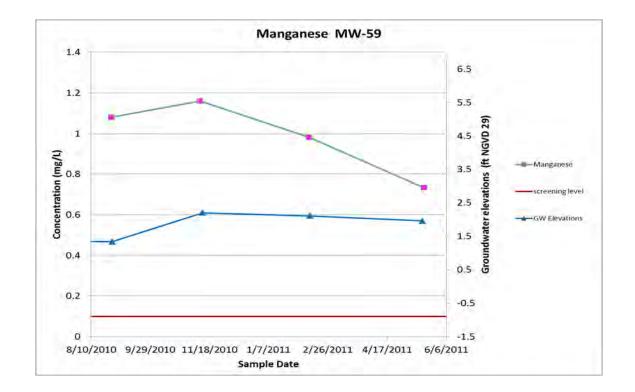

Notes:

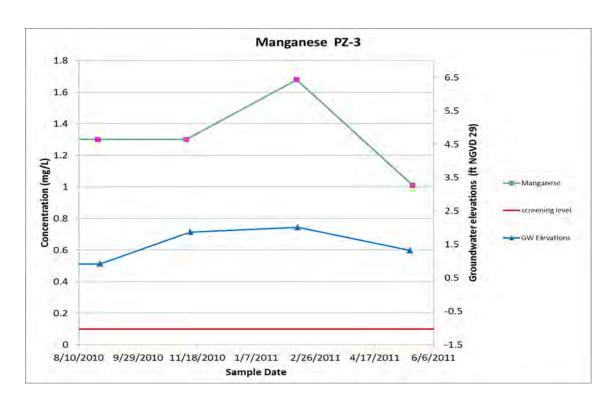

This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Ammonia-N and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

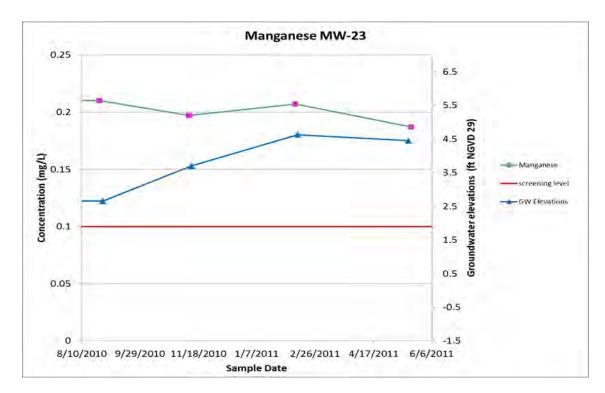

Port Angeles Rayonier Mill Port Angeles, Washington

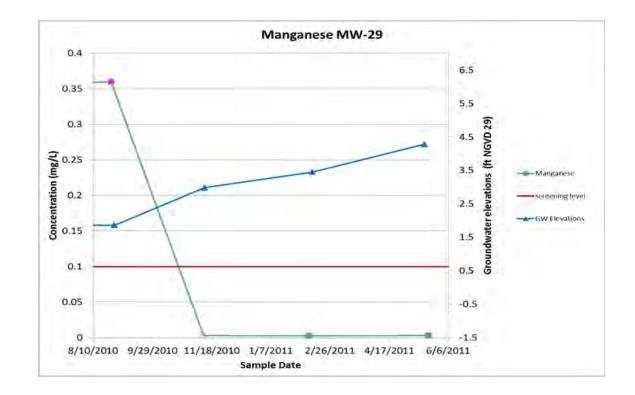

Open symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening le

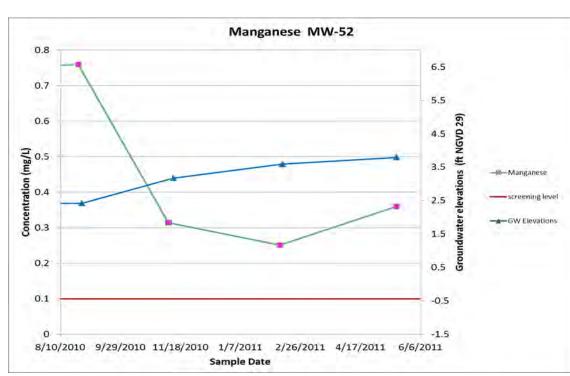

Mores


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Manganese and Hydrograph – Tidally Influenced Wells, Aug 2010 to May 2011

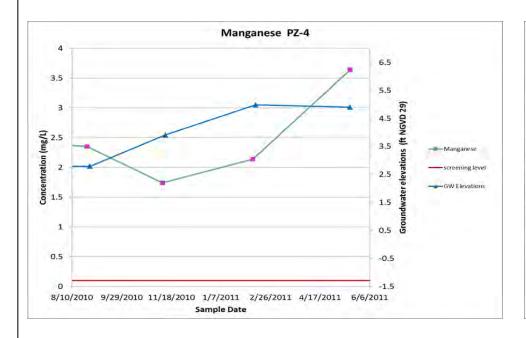

Filled symbol indicates detected result

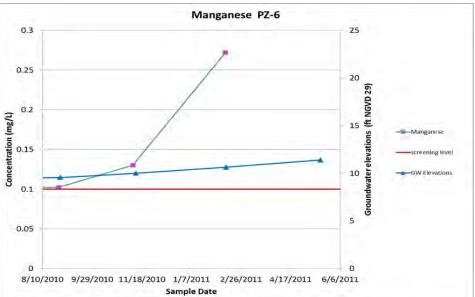

Pink symbol indicates detected result above screening leve

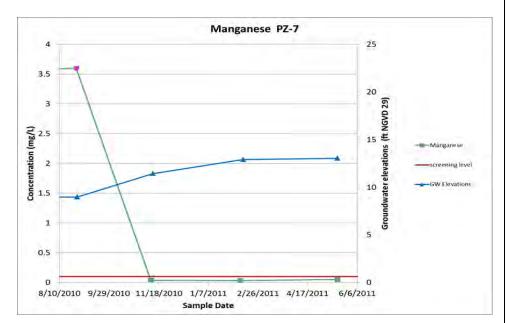

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of

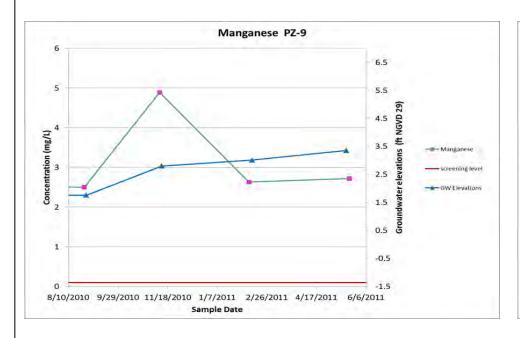
Manganese and Hydrograph -Tidally Influenced Wells, Aug 2010 to May 2011

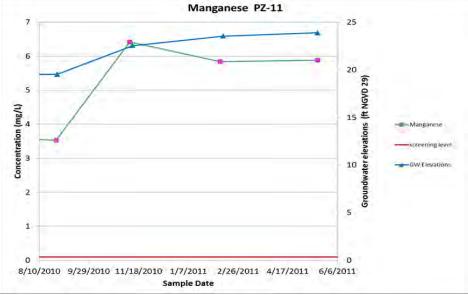
Open symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening lev

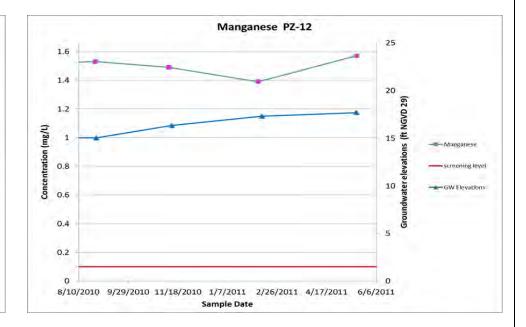

Notes


1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.

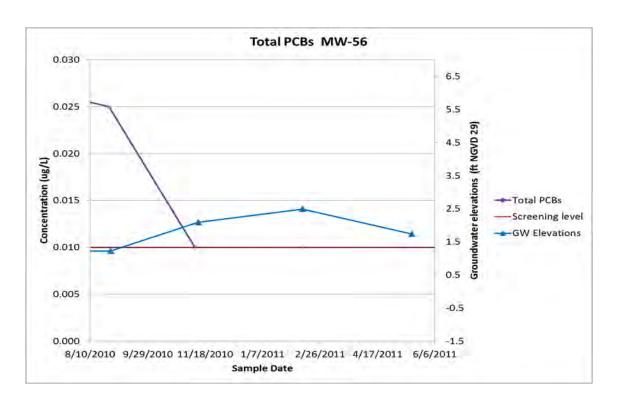

2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of

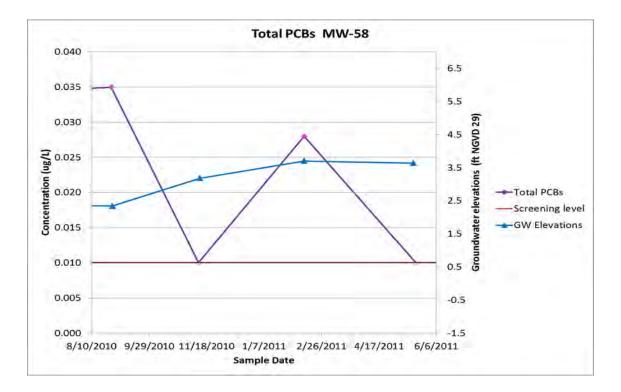

Manganese and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

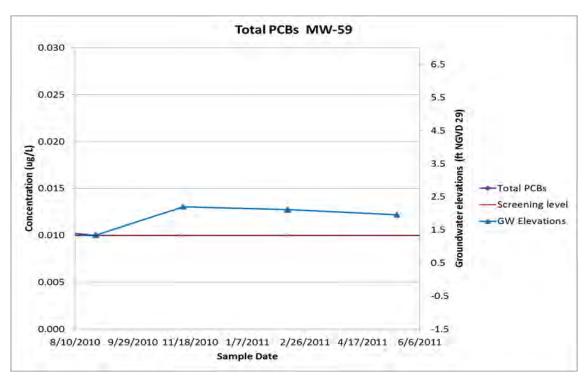




Open symbol indicates non-detected result Filled symbol indicates detected result


Pink symbol indicates detected result above screening level

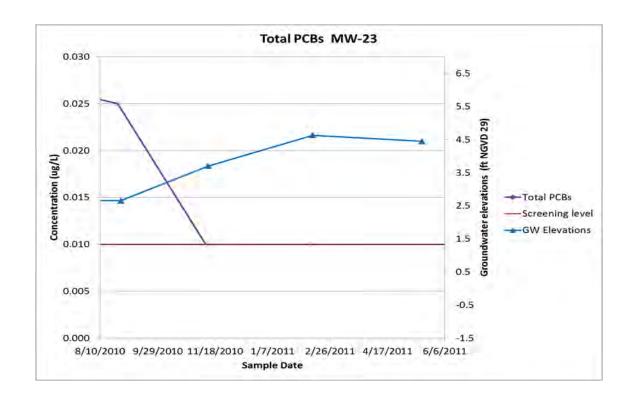

Notes

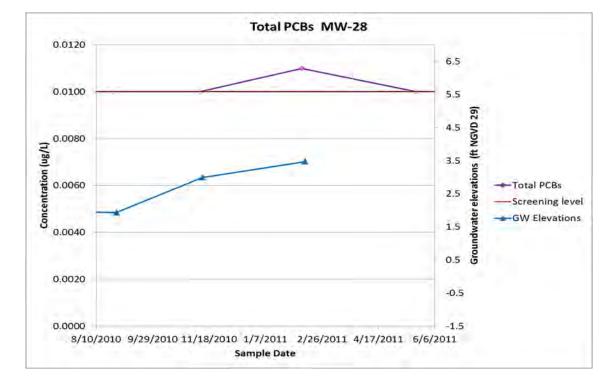

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

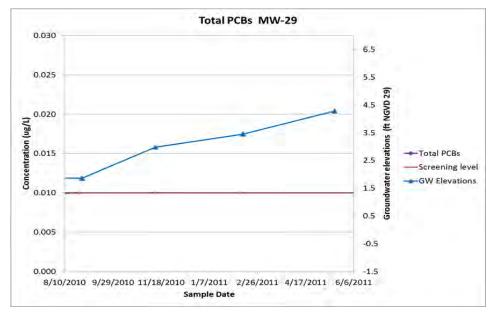
Manganese and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

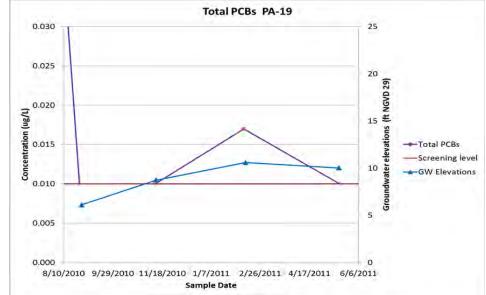
Open symbol indicates non-detected result

Filled symbol indicates detected result


Pink symbol indicates detected result above screening level


Notes:

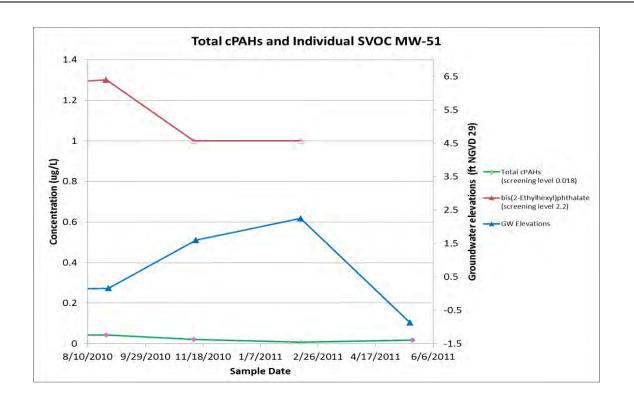

This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

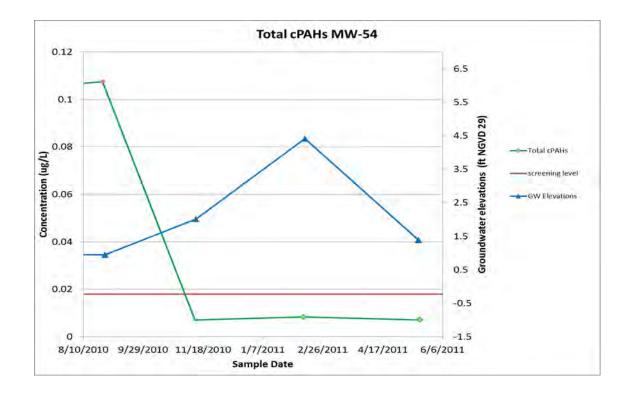

Total PCBs and Hydrograph – Tidally Influenced Wells, Aug 2010 to May 2011

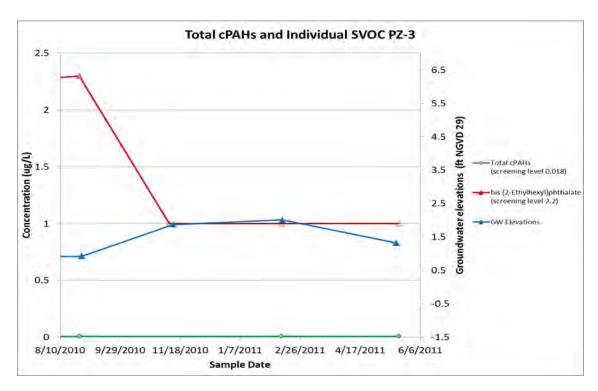
Open symbol indicates non-detected result

Filled symbol indicates detected result

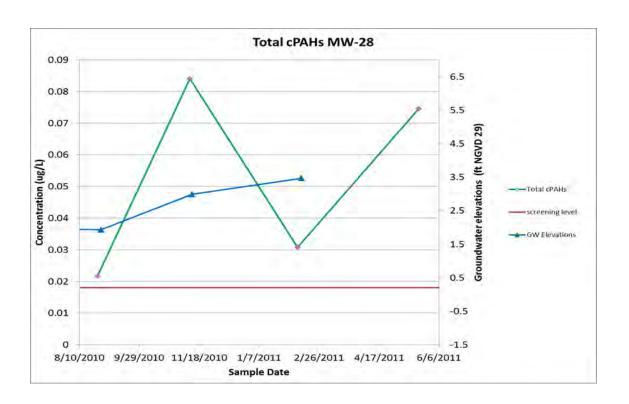
Pink symbol indicates detected result above screening level

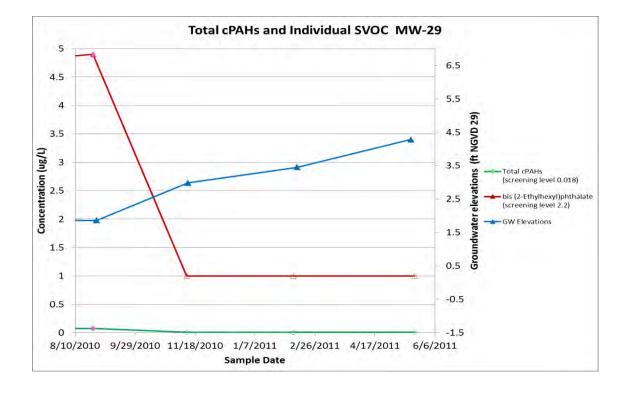

Notes:

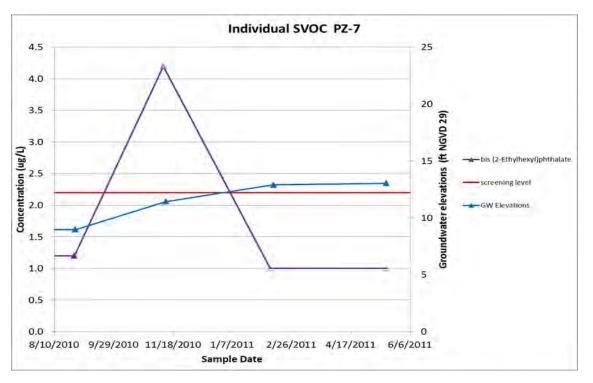

This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Total PCBs and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

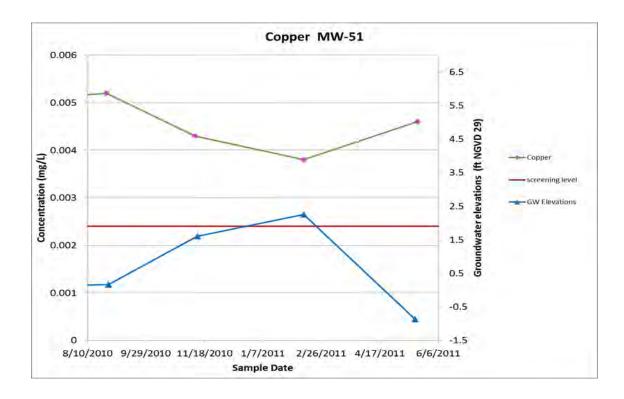
Port Angeles Rayonier Mill Port Angeles, Washington

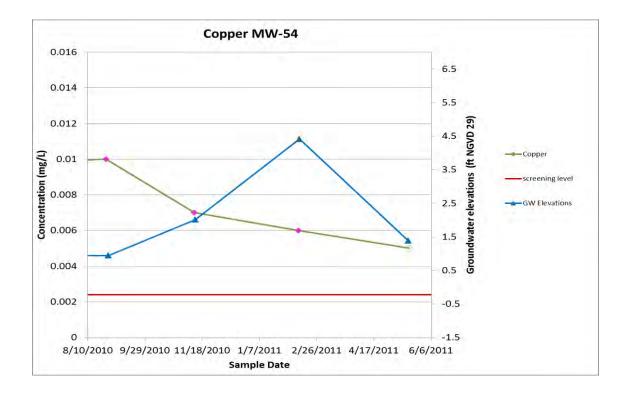


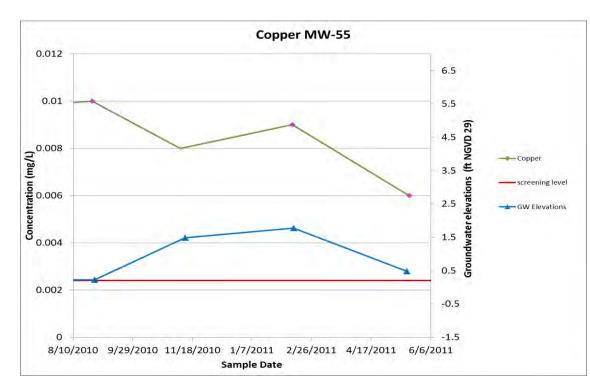

Filled symbol indicates detected result Pink symbol indicates detected result above screening leve

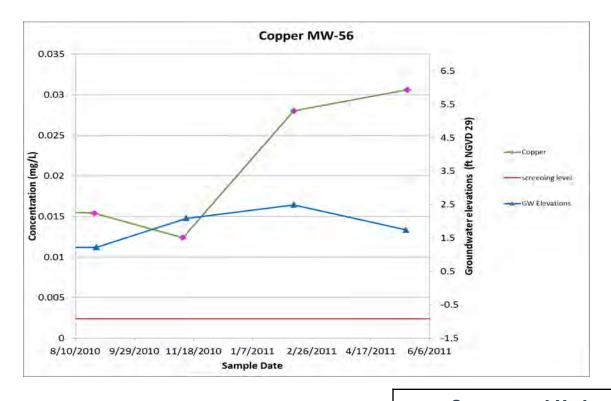

- 1. Only individual SVOCs with at least one screening level exceedance are shown in this figure.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of

Total cPAHs and Individual SVOCs and Hydrograph -**Non-Tidally Influenced Wells,** Aug 2010 to May 2011


Open symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening leve


Notes

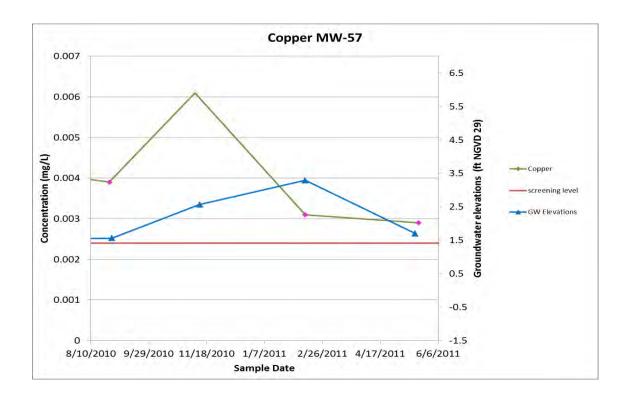

- 1. Only individual SVOCs with at least one screening level exceedance are shown in this figure.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. Geo Engineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by Geo Engineers, Inc. and will serve as the official record of this communication.

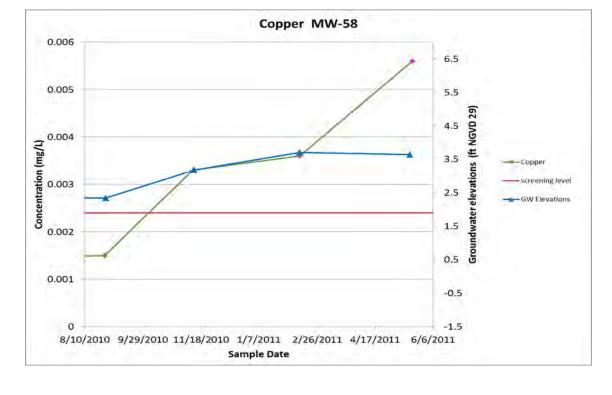

Total cPAHs and Individual SVOCs and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

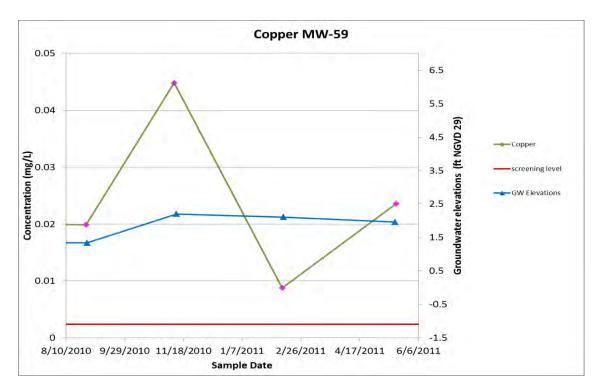
Open symbol indicates non-detected result

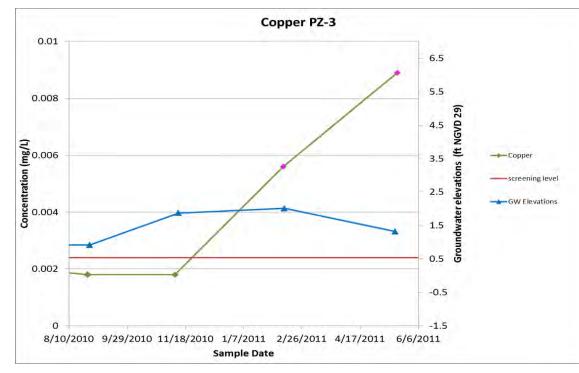
Filled symbol indicates detected result

Pink symbol indicates detected result above screening

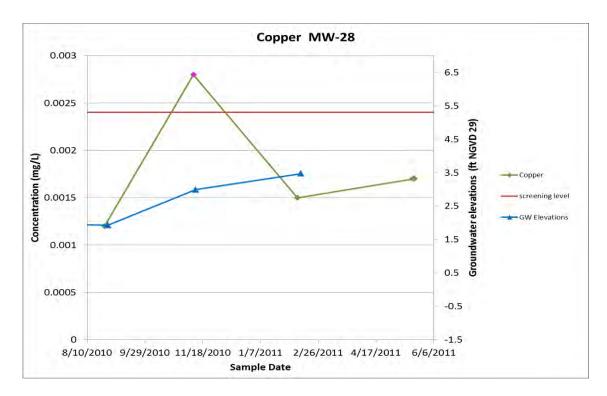

Pink symbol indicates detected result above screening level

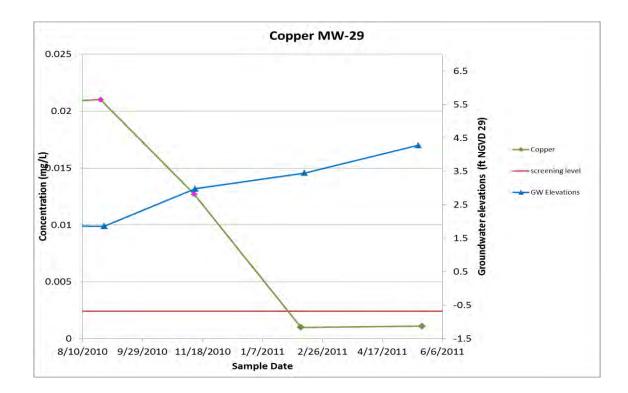

Notes:

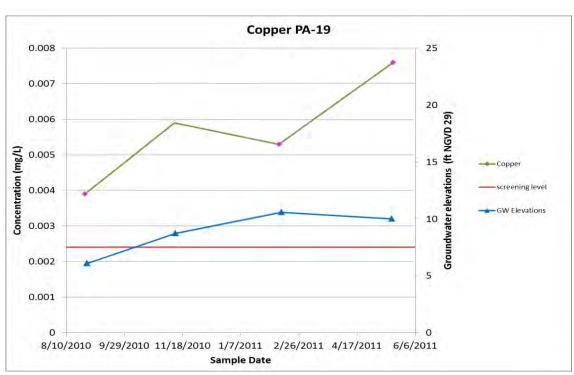

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of

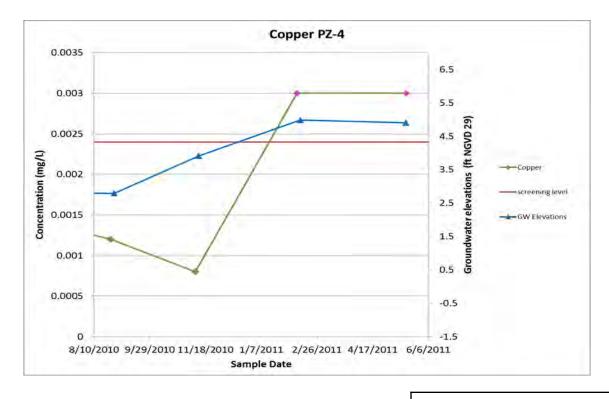

Copper and Hydrograph – Tidally Influenced Wells, Aug 2010 to May 2011

Open symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening le


Pink symbol indicates detected result above screening level


Notes:

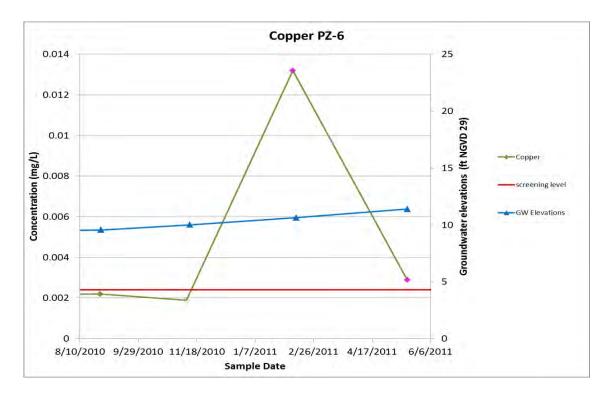

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of

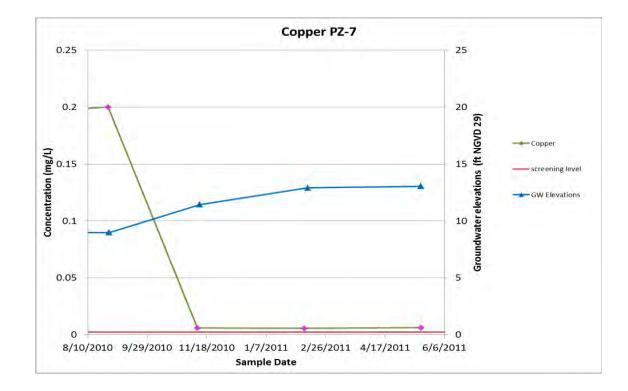

Copper and Hydrograph – Tidally Influenced Wells, Aug 2010 to May 2011

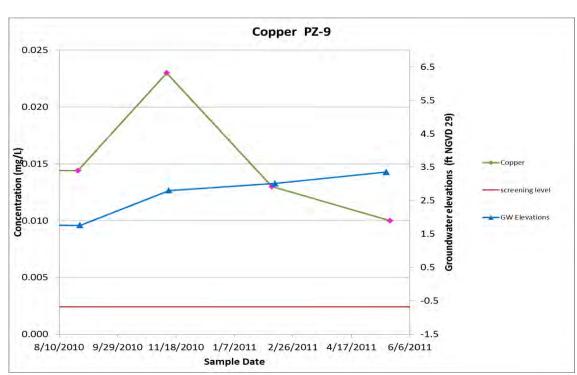
Open symbol indicates non-detected result

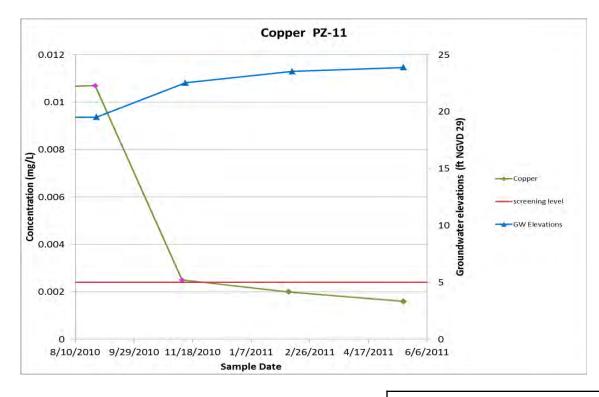
Filled symbol indicates detected result

Pink symbol indicates detected result above screening lea

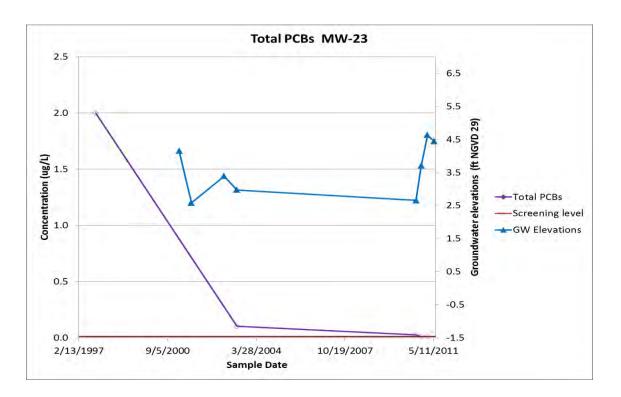

Pink symbol indicates detected result above screening level

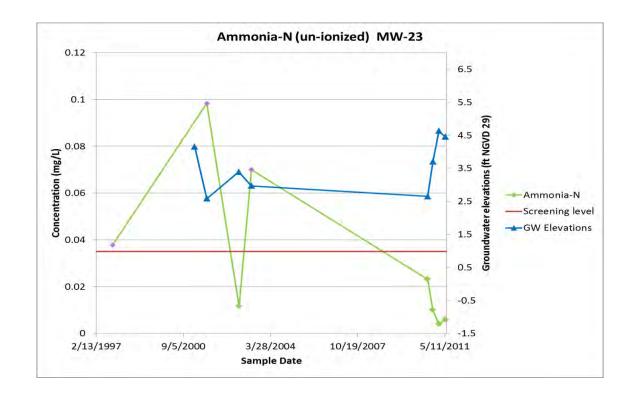

Notes:

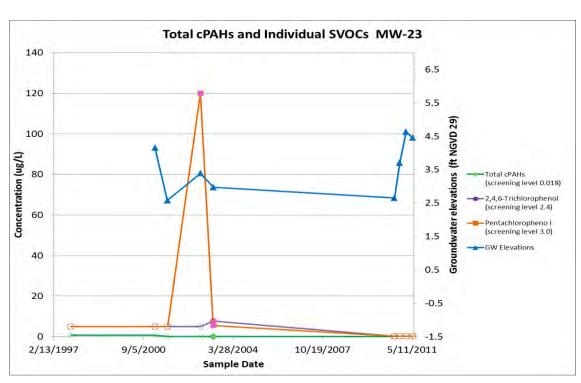

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

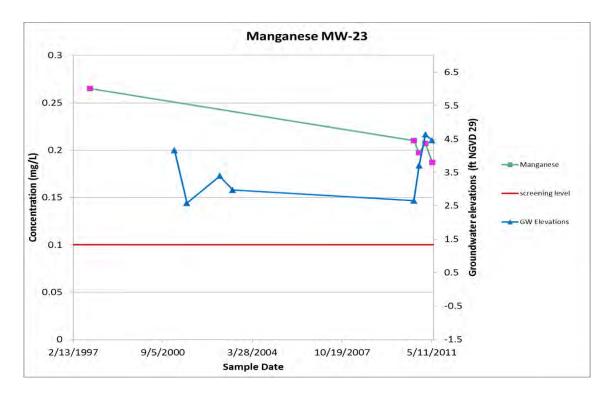

Copper and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

Open symbol indicates non-detected result
Filled symbol indicates detected result
Pink symbol indicates detected result above screening le


Pink symbol indicates detected result above screening level


Notes:

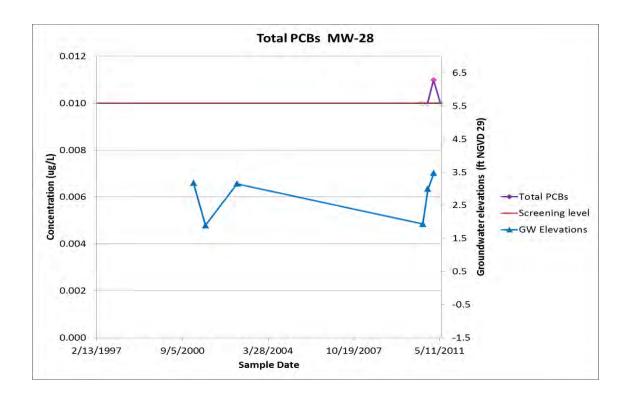

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of

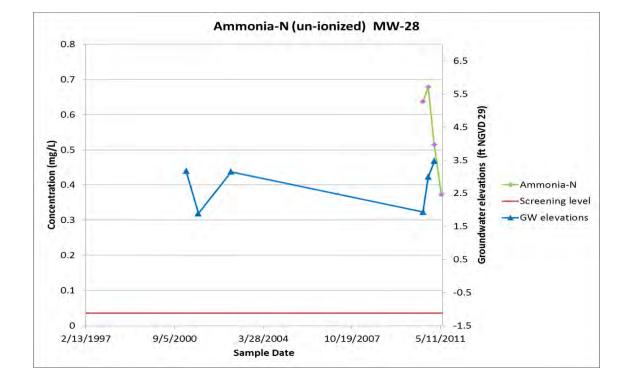

Copper and Hydrograph – Non-Tidally Influenced Wells, Aug 2010 to May 2011

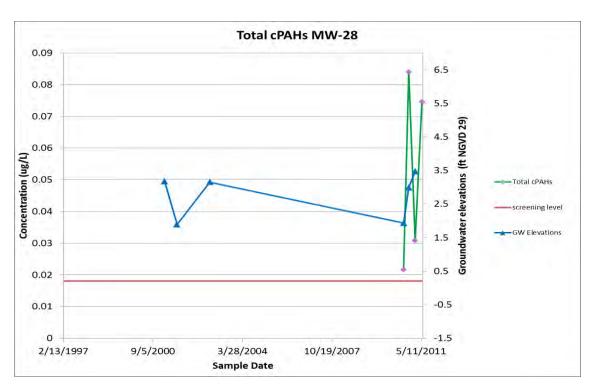
Open symbol indicates non-detected result

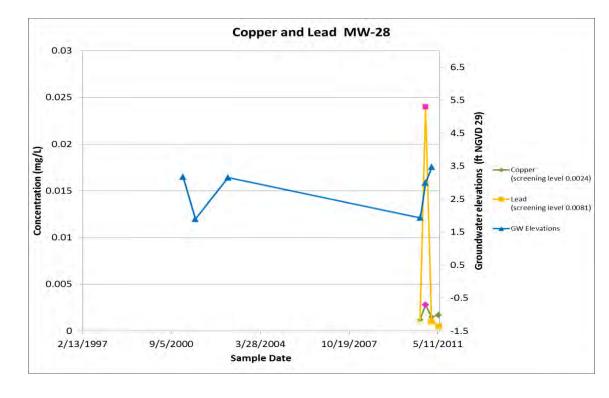
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

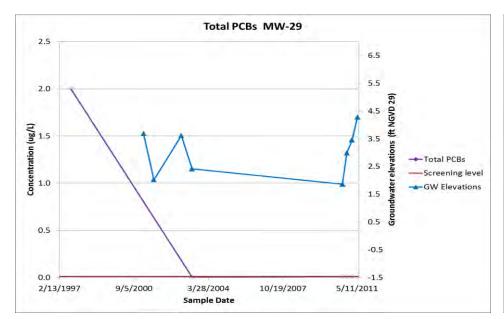

Contaminants of Concern and Hydrograph (MW 23)

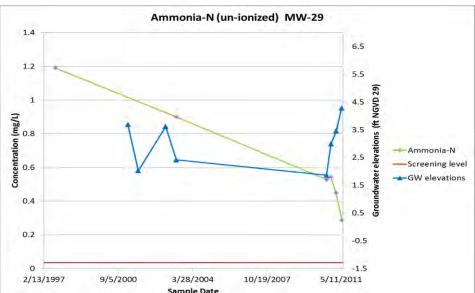

Port Angeles Rayonier Mill Port Angeles, Washington

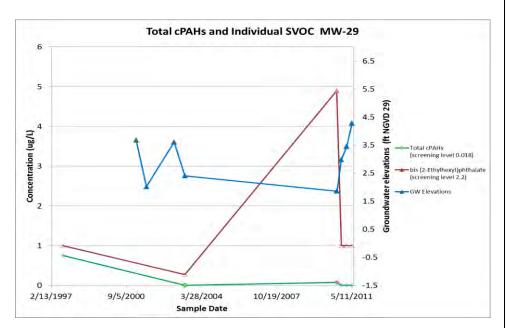
Open symbol indicates non-detected result

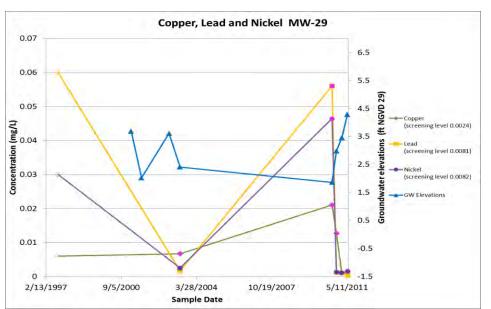
Filled symbol indicates detected result

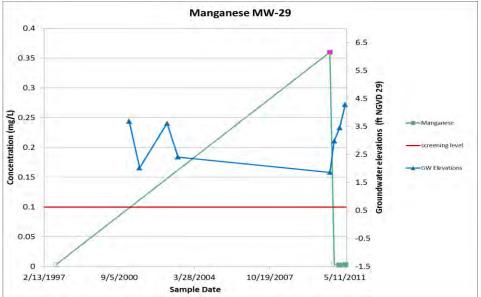
Pink symbol indicates detected result above screening level

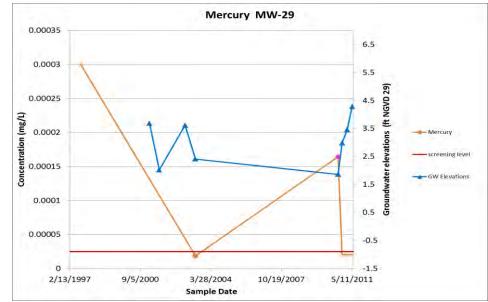

Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 28)


Port Angeles Rayonier Mill Port Angeles, Washington

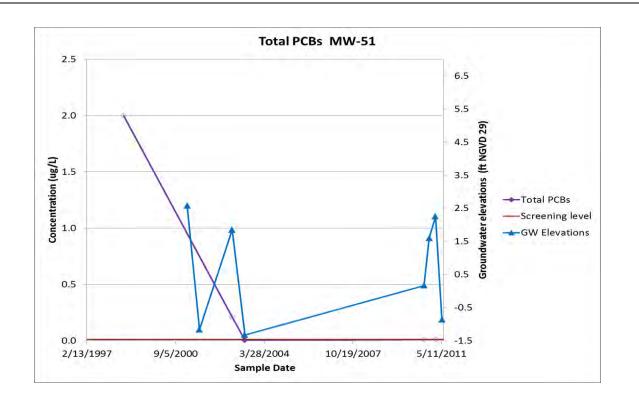


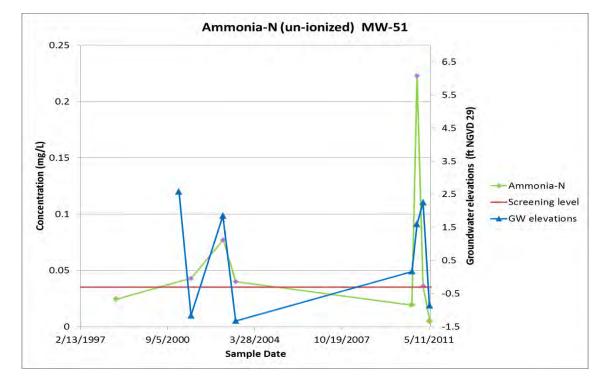


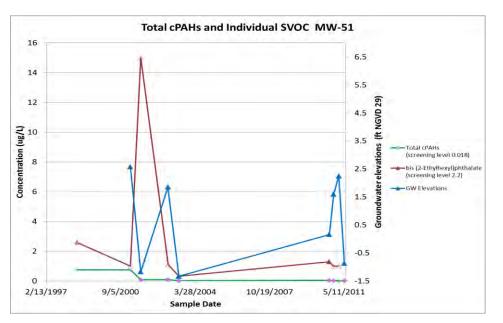
Open symbol indicates non-detected result

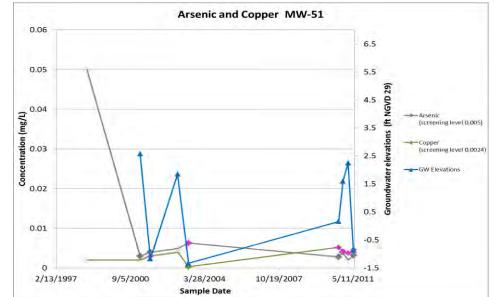
Filled symbol indicates detected result

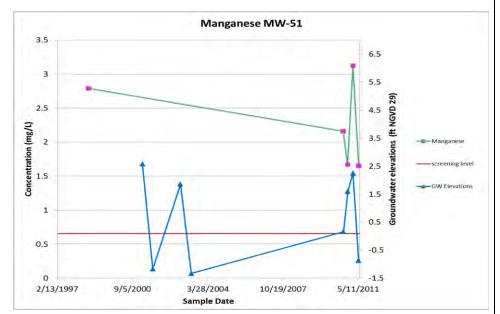
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 29)

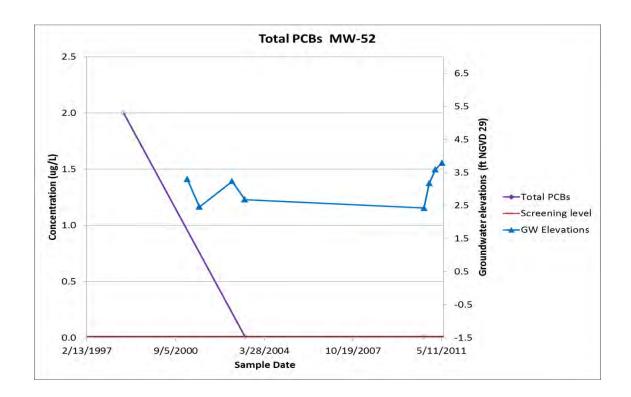

Port Angeles Rayonier Mill Port Angeles, Washington

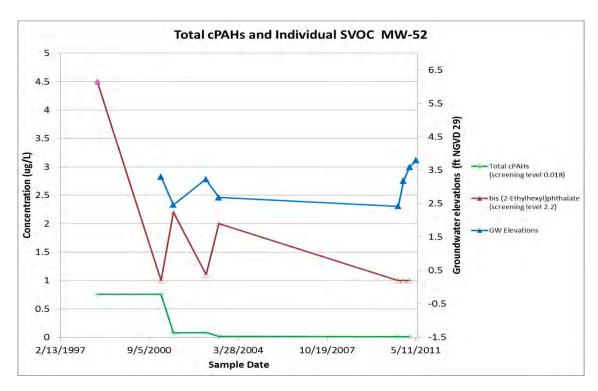


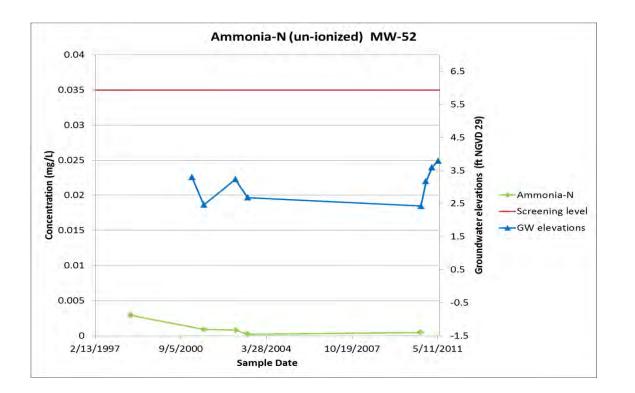
Open symbol indicates non-detected result

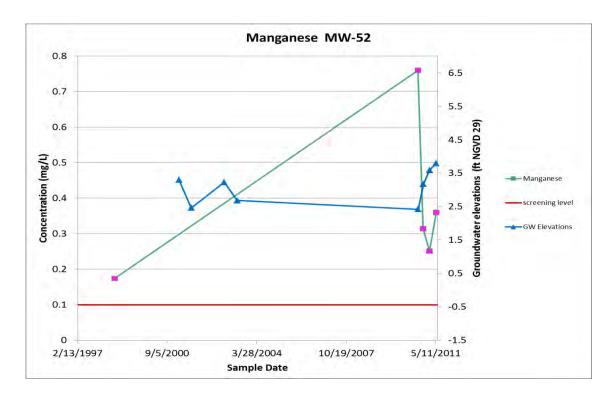
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

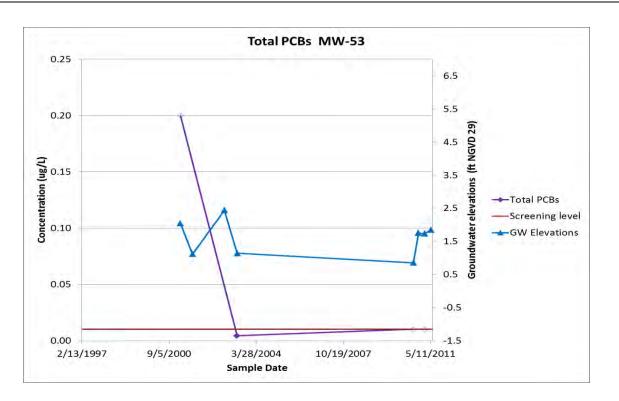

Contaminants of Concern and Hydrograph (MW 51)


Port Angeles Rayonier Mill Port Angeles, Washington

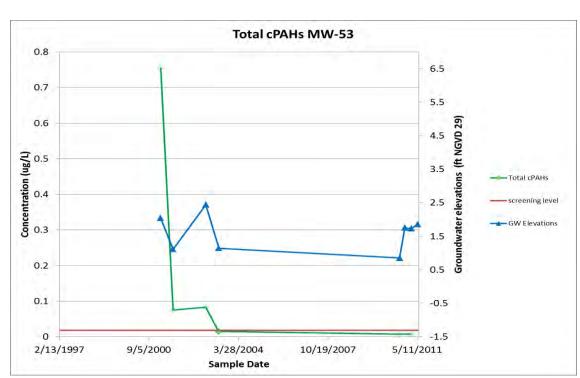
Open symbol indicates non-detected result

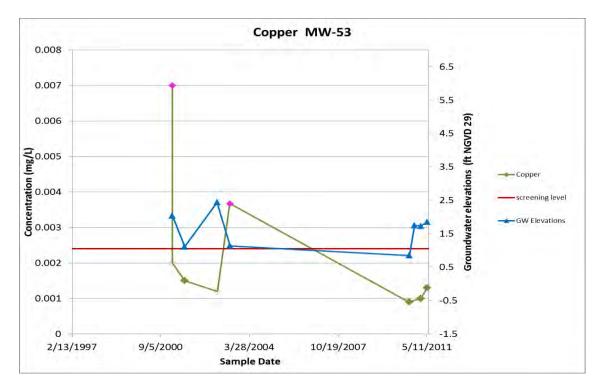
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes:

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

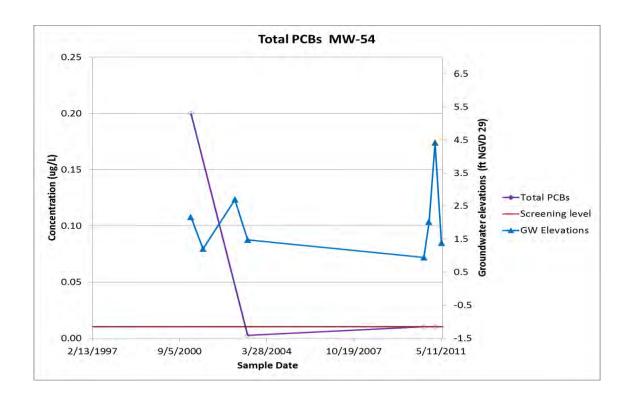

Contaminants of Concern and Hydrograph (MW 52)

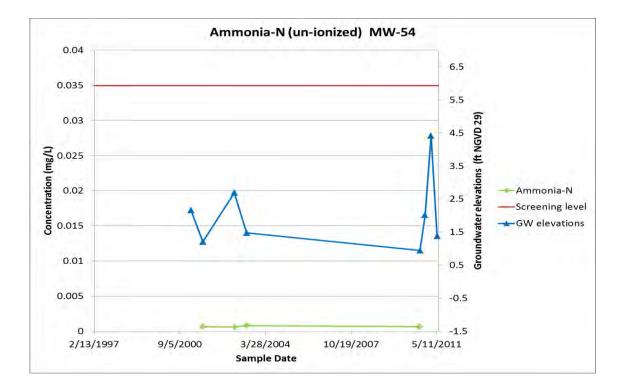

Port Angeles Rayonier Mill Port Angeles, Washington

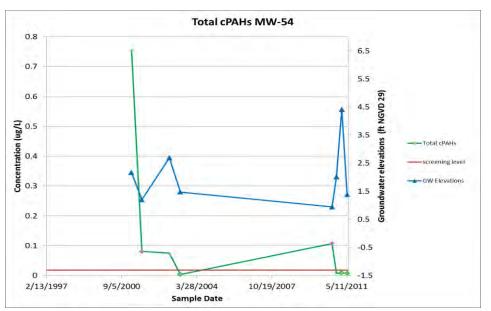
Open symbol indicates non-detected result

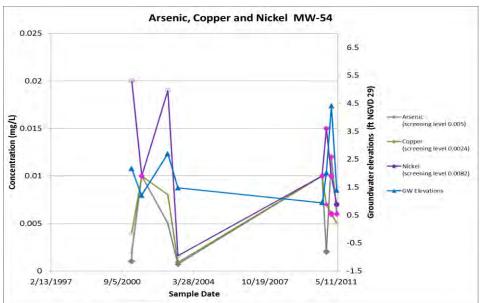
Filled symbol indicates detected result

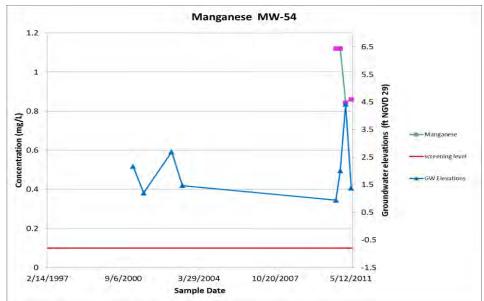
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 53)

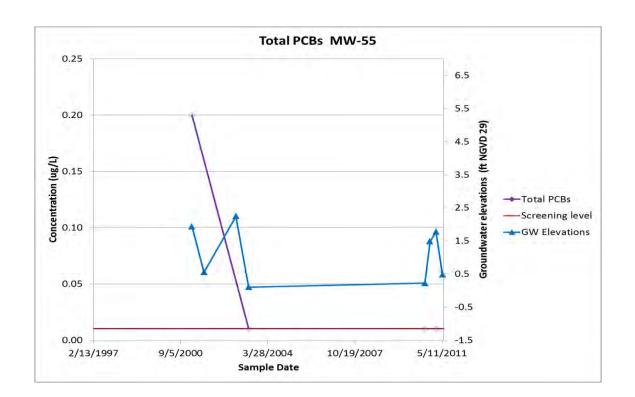

Port Angeles Rayonier Mill Port Angeles, Washington

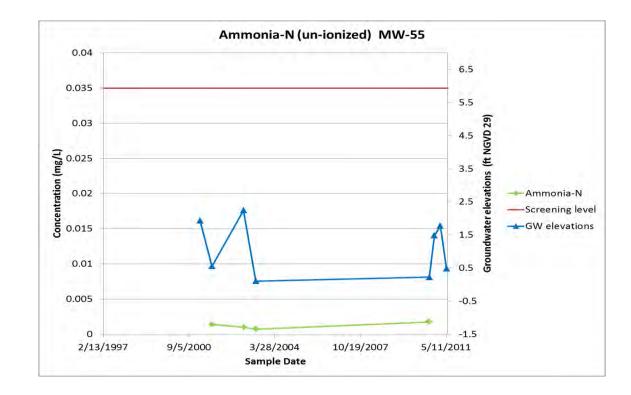


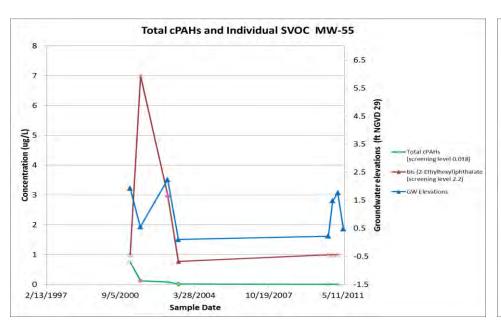
Open symbol indicates non-detected result

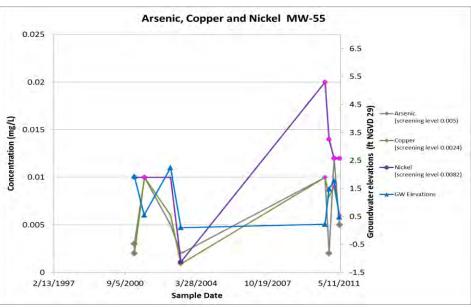
Filled symbol indicates detected result

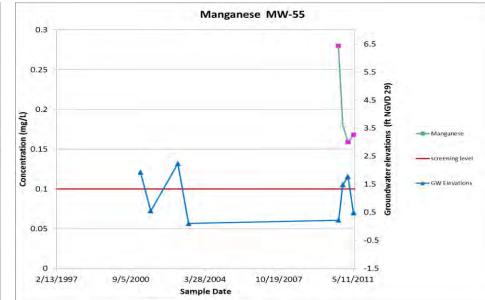
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 54)

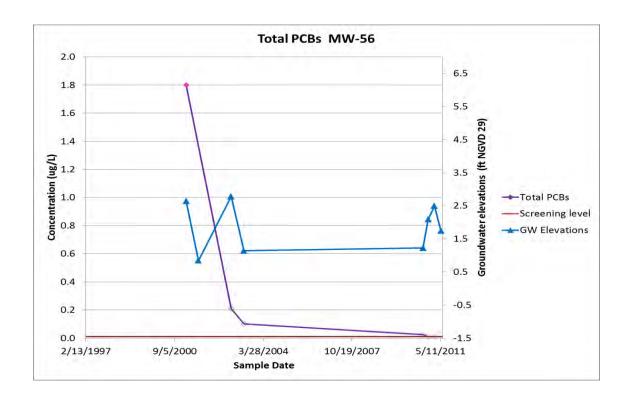

Port Angeles Rayonier Mill Port Angeles, Washington

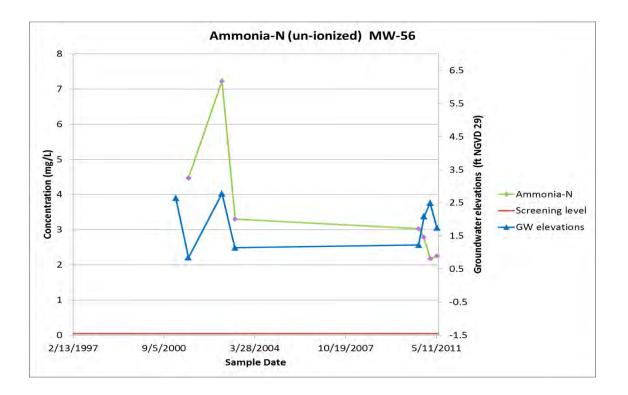


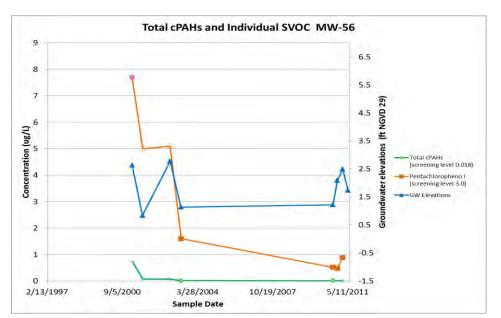
Open symbol indicates non-detected result

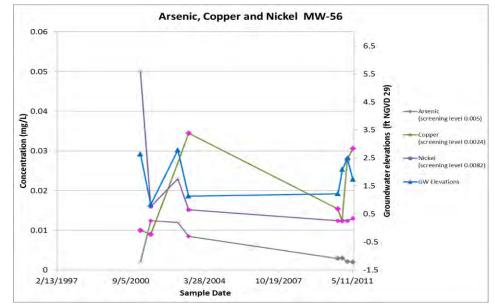
Filled symbol indicates detected result

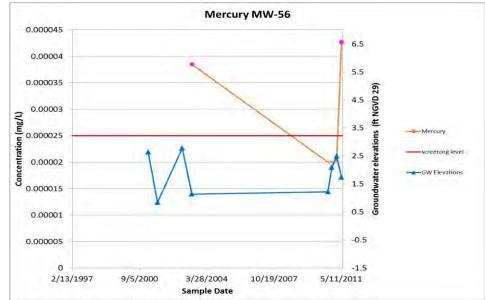
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 55)

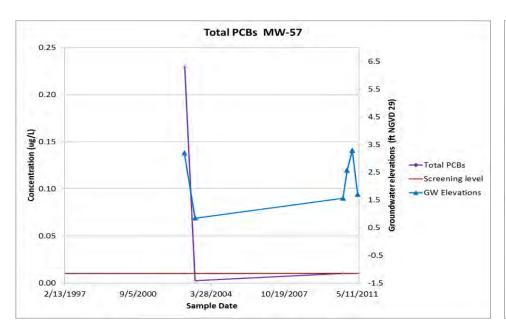

Port Angeles Rayonier Mill Port Angeles, Washington

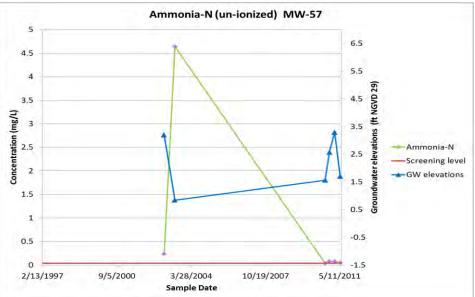


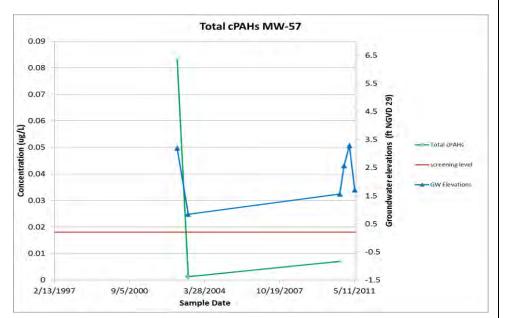
Open symbol indicates non-detected result

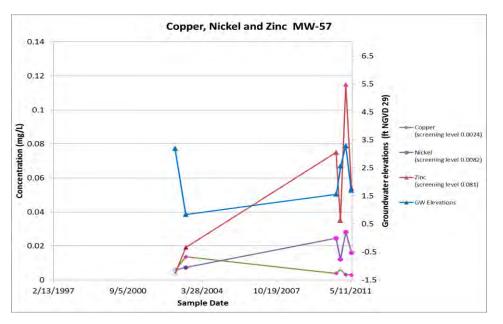
Filled symbol indicates detected result

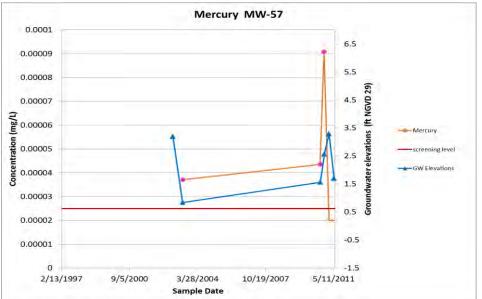
Pink symbol indicates detected result above screening level

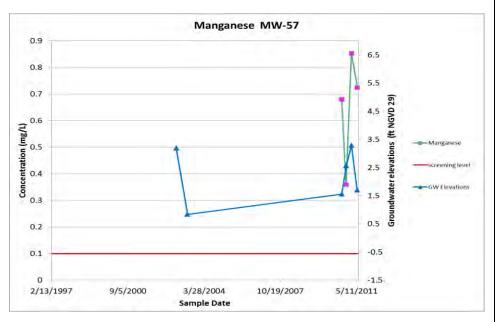

Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 56)


Port Angeles Rayonier Mill Port Angeles, Washington

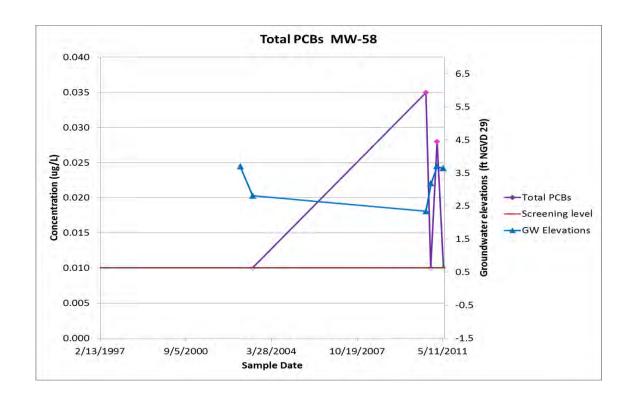


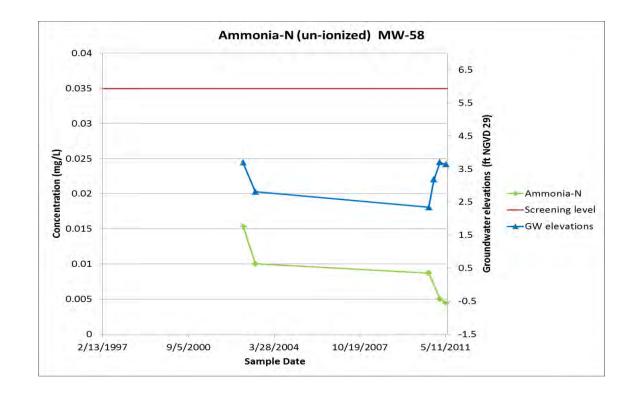


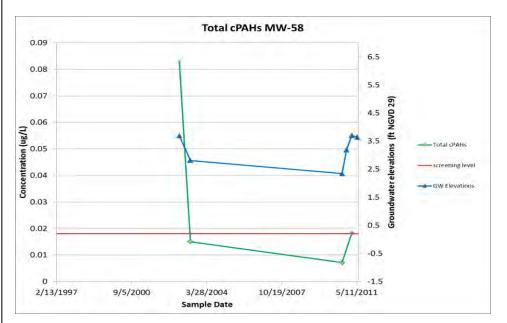
Open symbol indicates non-detected result

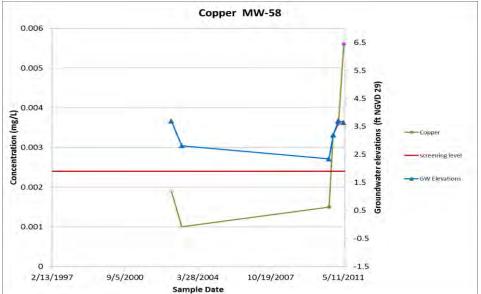
Filled symbol indicates detected result

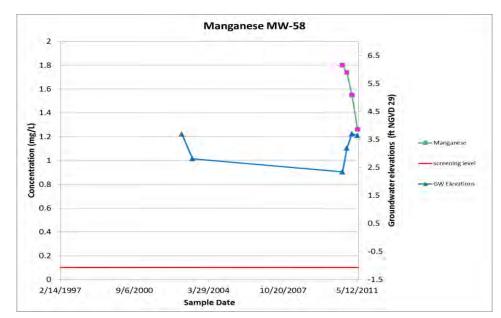
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 57)

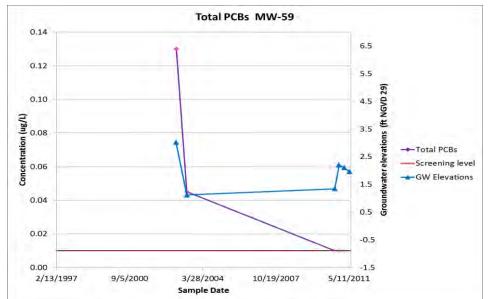

Port Angeles Rayonier Mill Port Angeles, Washington

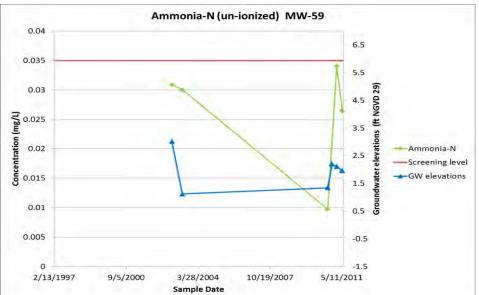


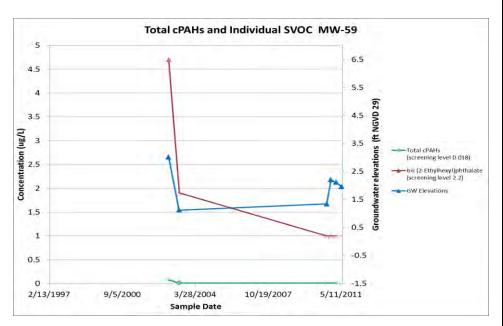
Open symbol indicates non-detected result

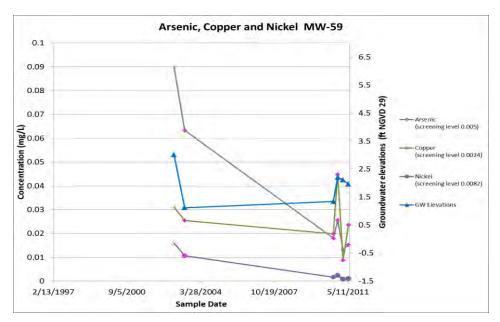
Filled symbol indicates detected result

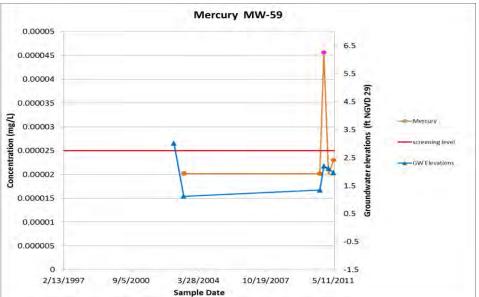
Pink symbol indicates detected result above screening level

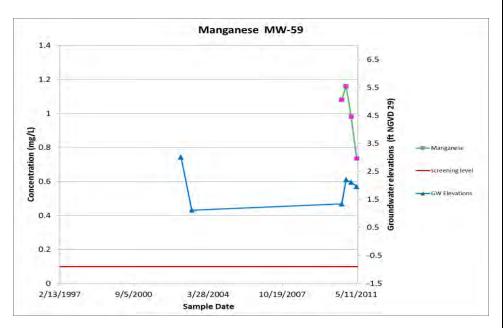

Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (MW 58)


Port Angeles Rayonier Mill Port Angeles, Washington

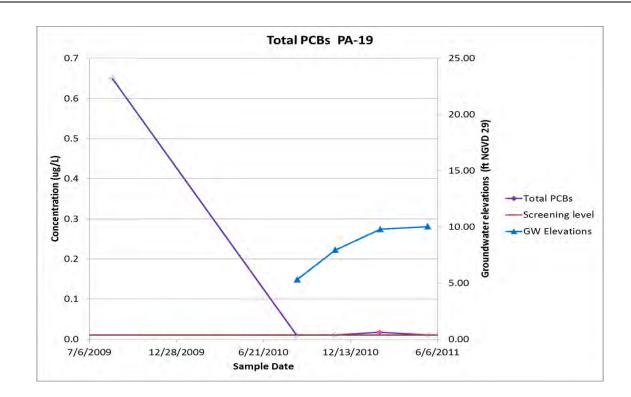


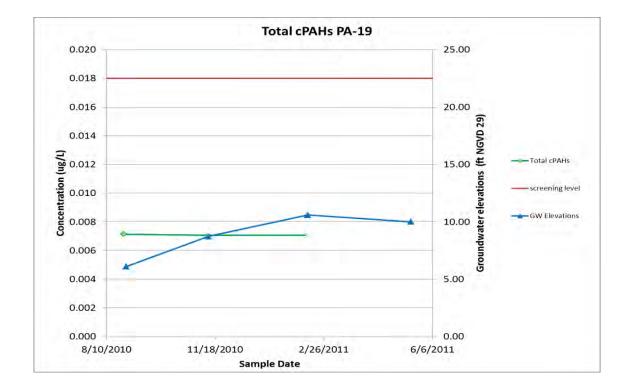


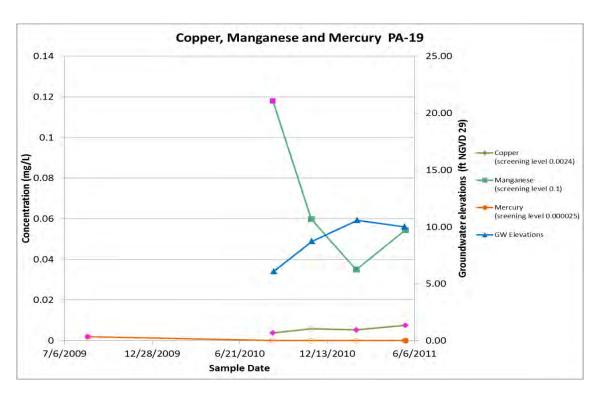
Open symbol indicates non-detected result

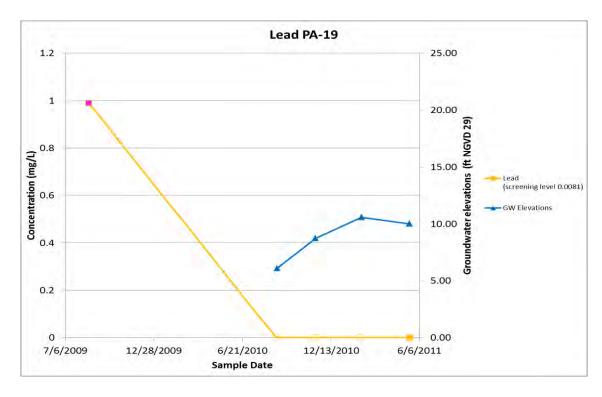
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

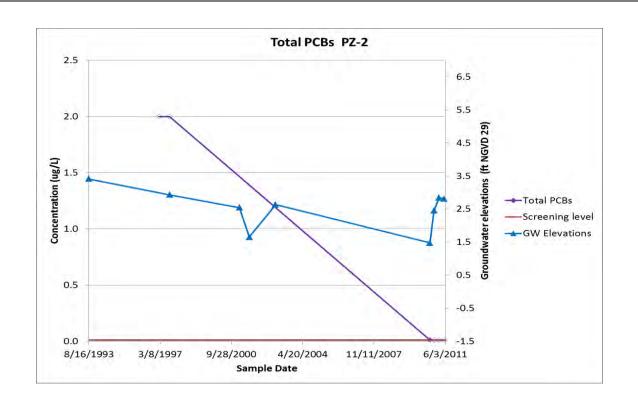

Contaminants of Concern and Hydrograph (MW 59)


Port Angeles Rayonier Mill Port Angeles, Washington

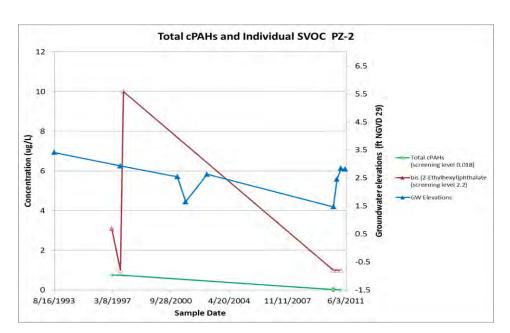
Open symbol indicates non-detected result

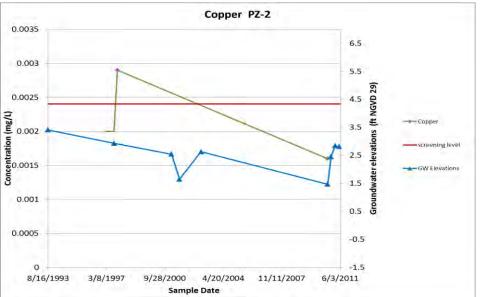
Filled symbol indicates detected result

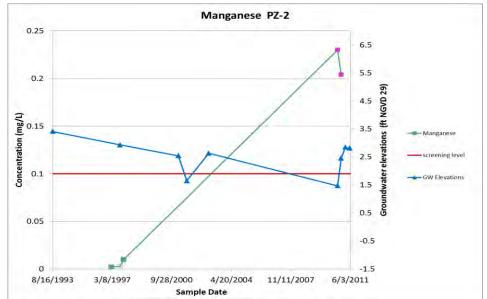
Pink symbol indicates detected result above screening level


Votes:


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. Ammonia-N not shown in this figure because well was only sampled twice for this constituent.
- 4. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PA 19)

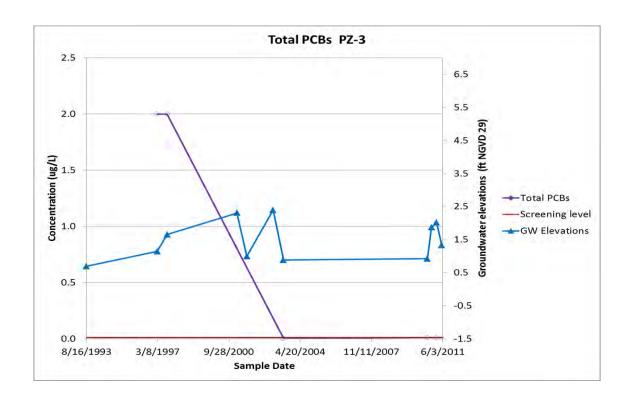

Port Angeles Rayonier Mill Port Angeles, Washington

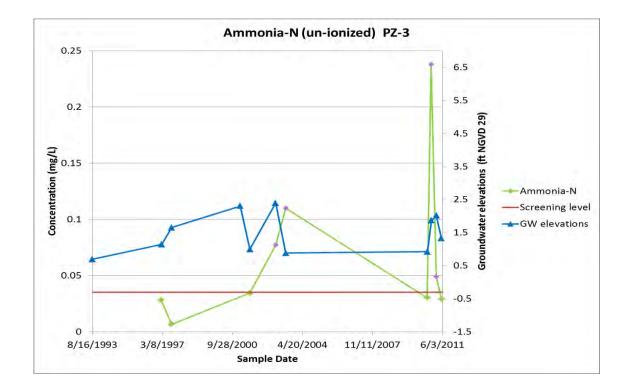


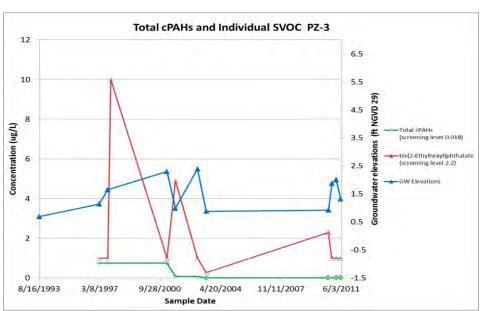
Open symbol indicates non-detected result

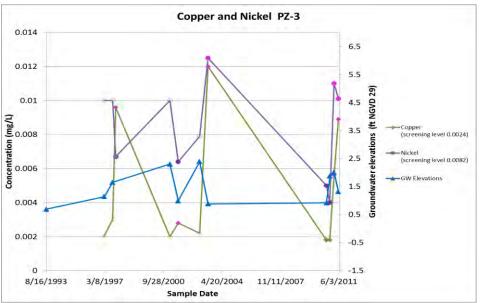
Filled symbol indicates detected result

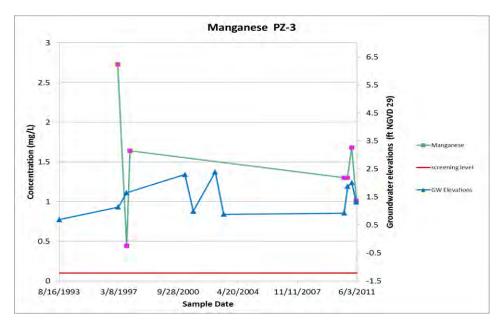
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 2)

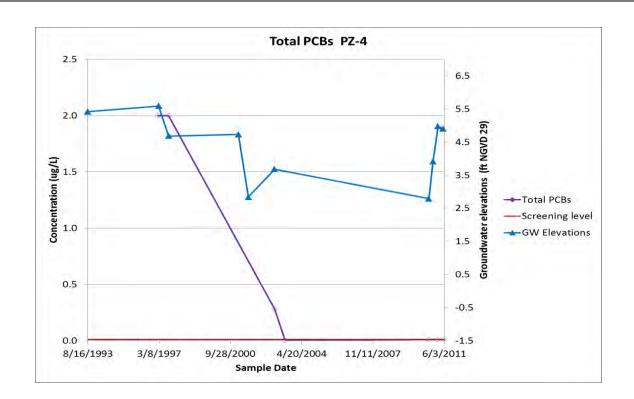

Port Angeles Rayonier Mill Port Angeles, Washington

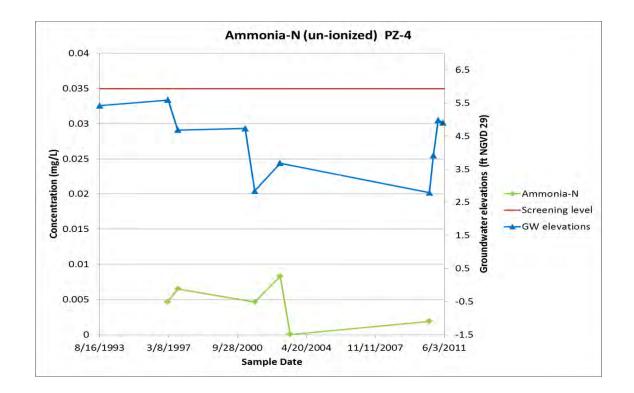


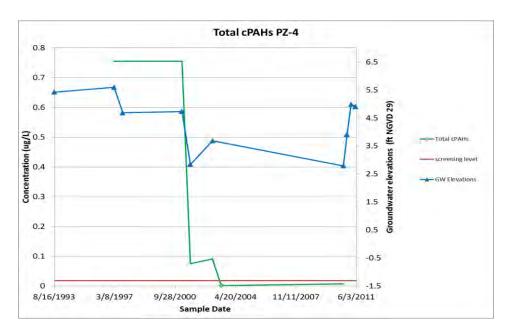
Open symbol indicates non-detected result

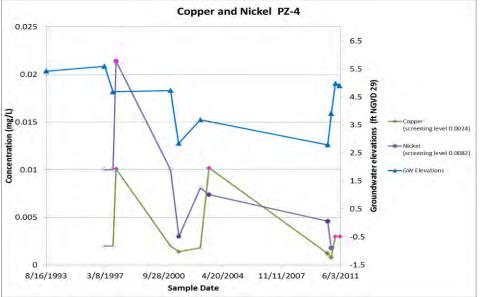
Filled symbol indicates detected result

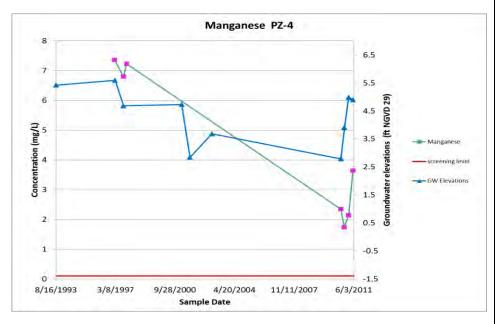
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 3)

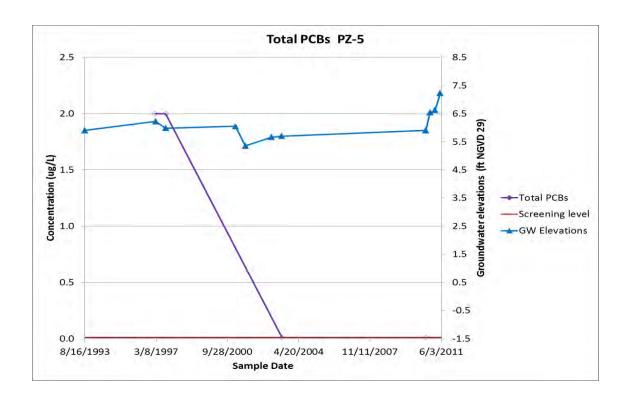

Port Angeles Rayonier Mill Port Angeles, Washington

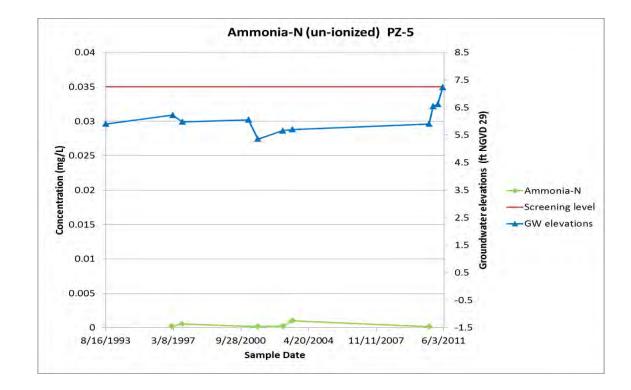


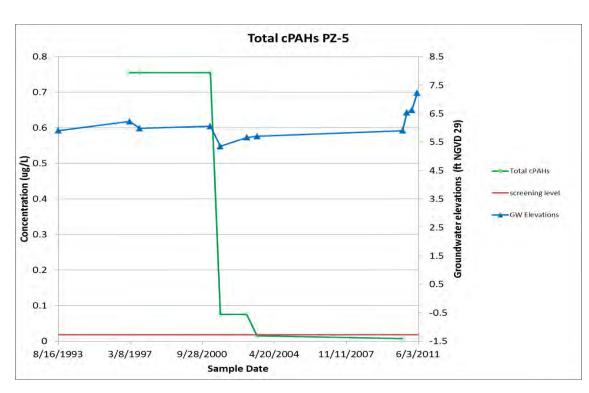
Open symbol indicates non-detected result

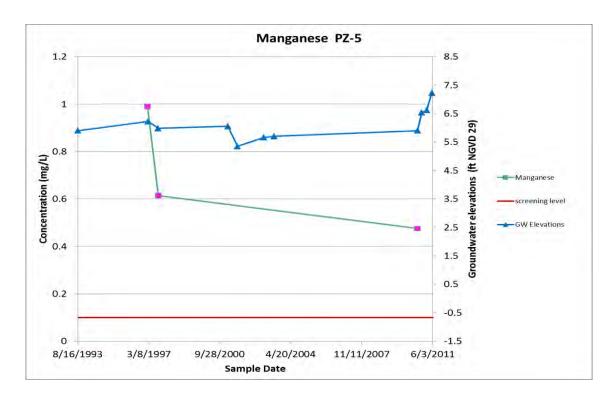
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

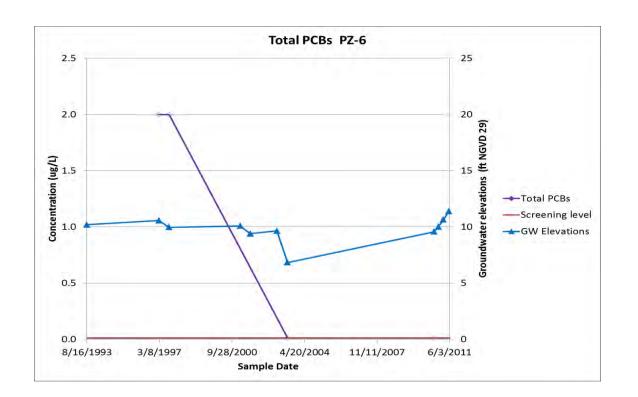

Contaminants of Concern and Hydrograph (PZ 4)

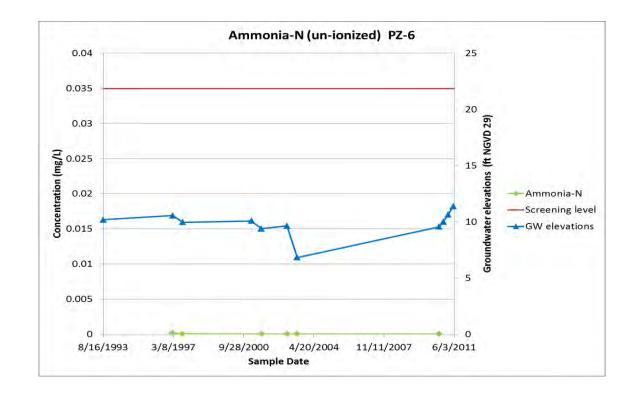

Port Angeles Rayonier Mill Port Angeles, Washington

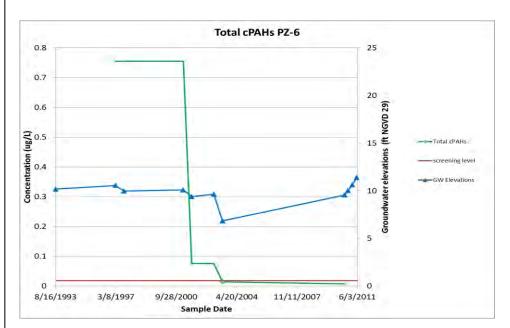
Open symbol indicates non-detected result

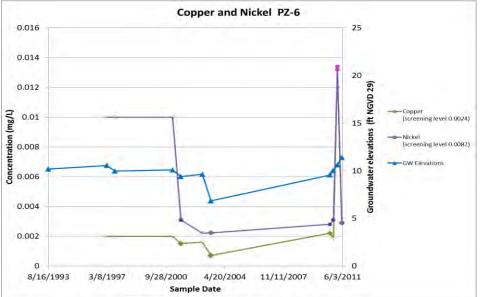
Filled symbol indicates detected result

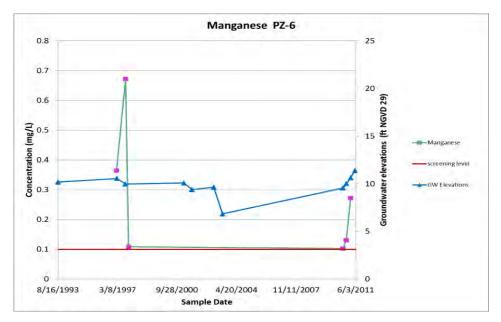
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 5)

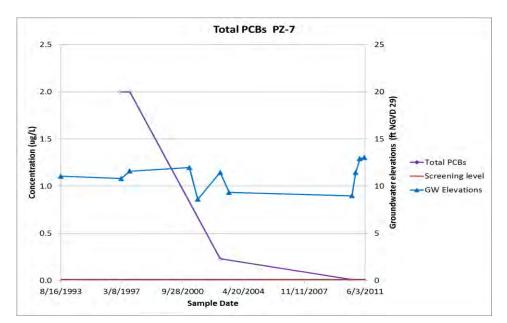

Port Angeles Rayonier Mill Port Angeles, Washington

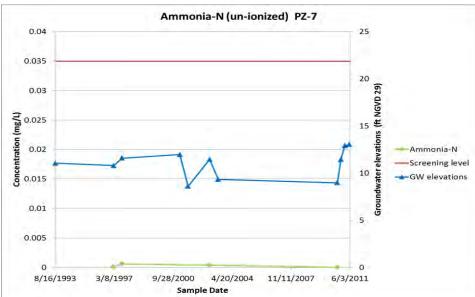


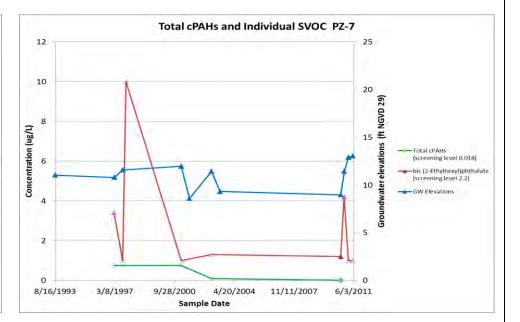
Open symbol indicates non-detected result

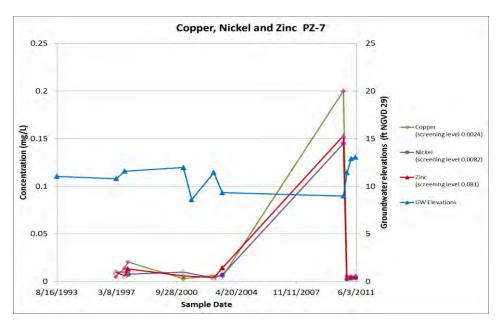
Filled symbol indicates detected result

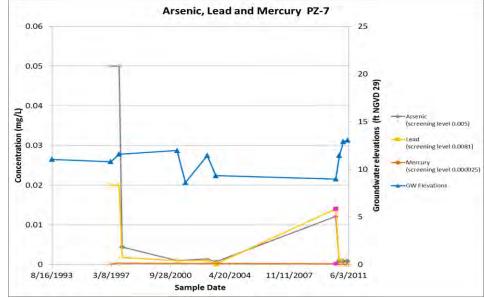
Pink symbol indicates detected result above screening level

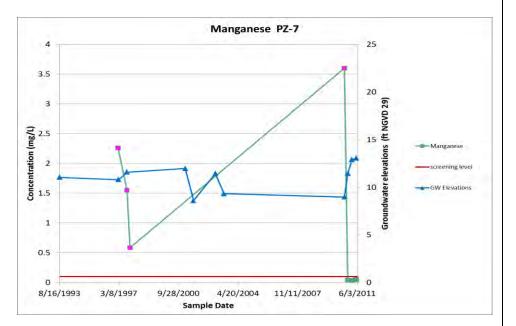

Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 6)


Port Angeles Rayonier Mill Port Angeles, Washington

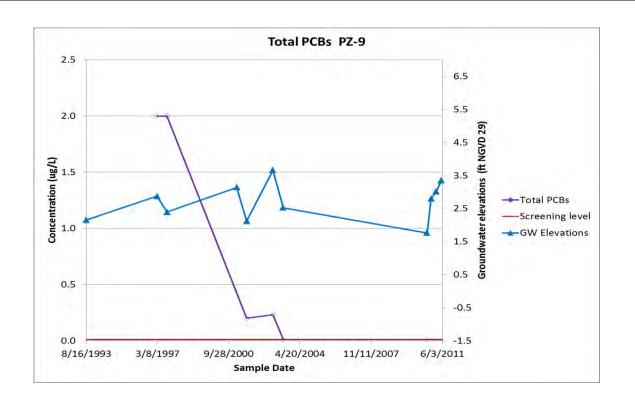


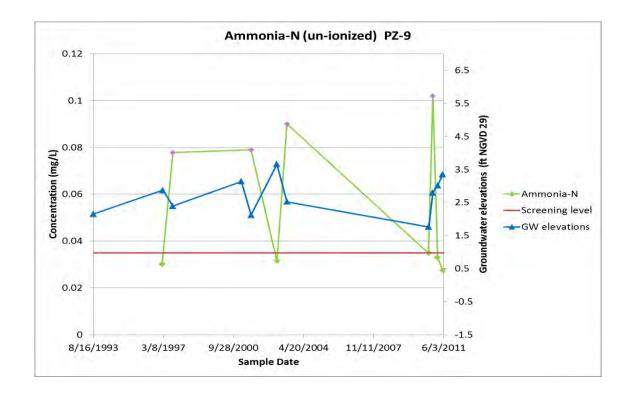


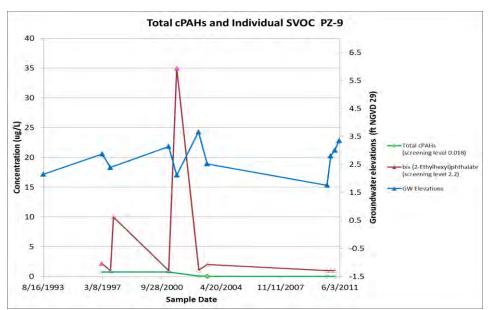
Open symbol indicates non-detected result

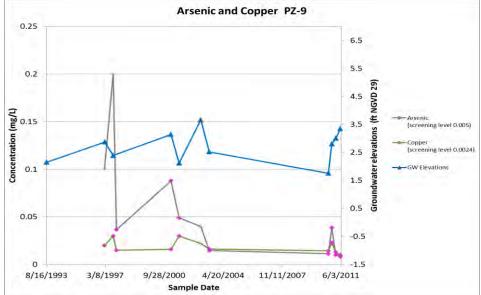
Filled symbol indicates detected result

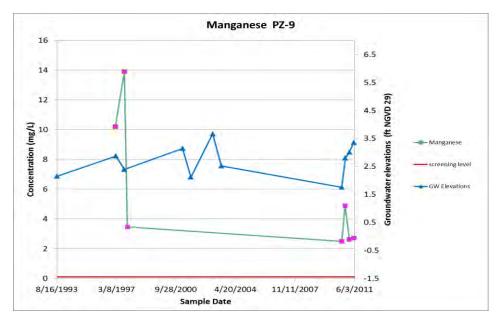
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 7)

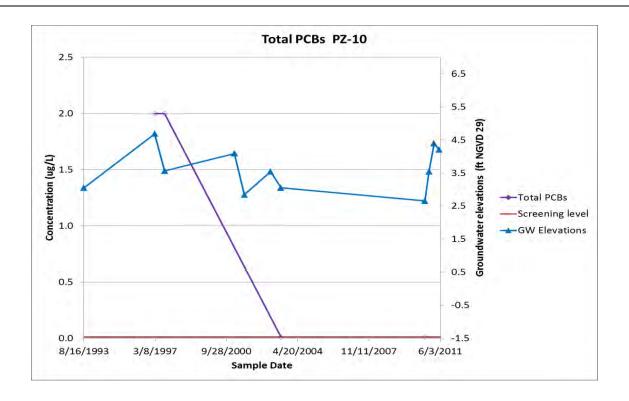

Port Angeles Rayonier Mill Port Angeles, Washington

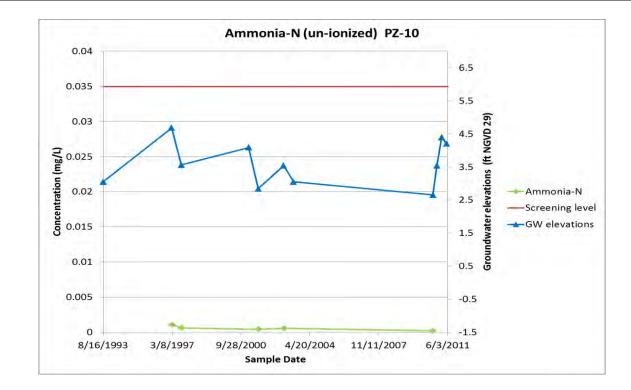


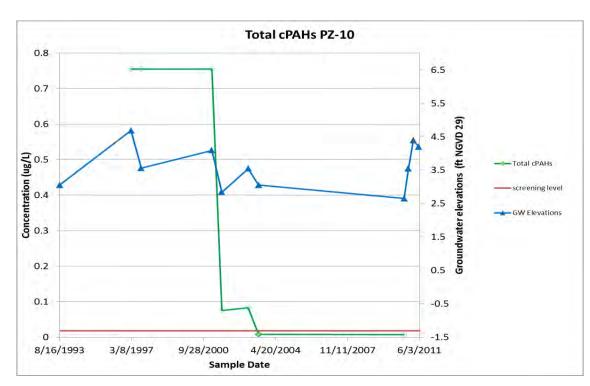
Open symbol indicates non-detected result

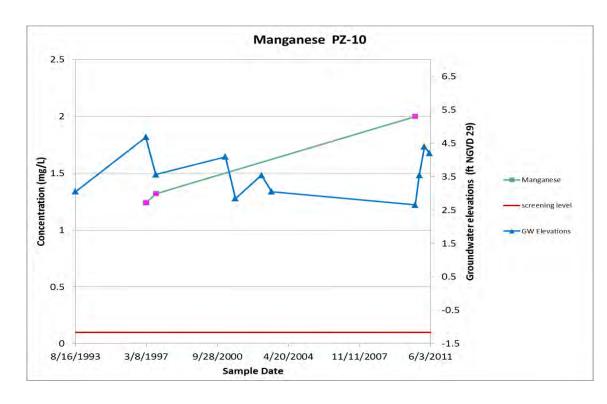
Filled symbol indicates detected result

Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

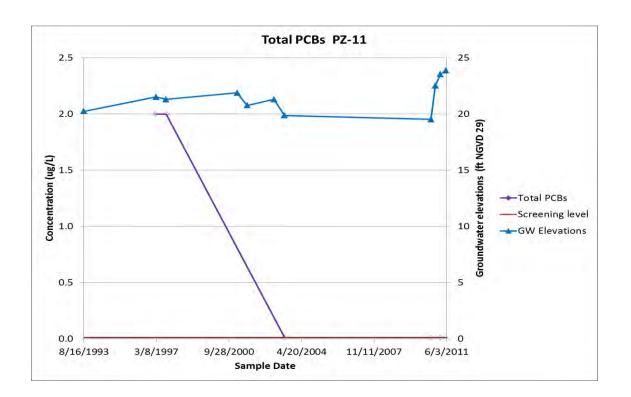

Contaminants of Concern and Hydrograph (PZ 9)

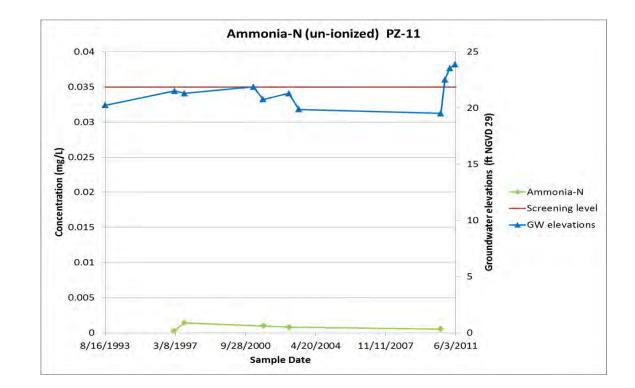

Port Angeles Rayonier Mill Port Angeles, Washington

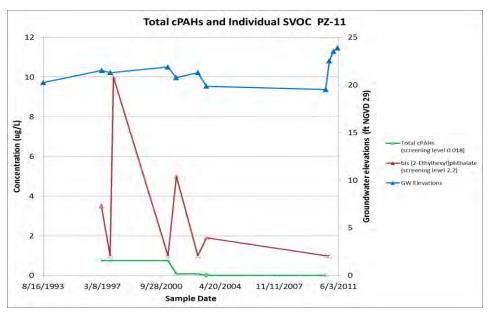
Open symbol indicates non-detected result

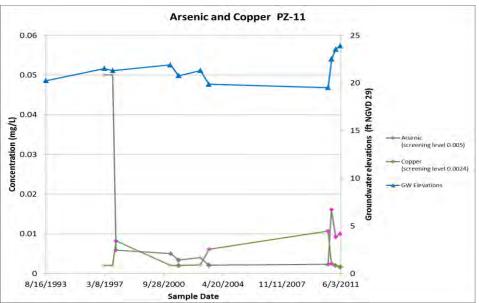
Filled symbol indicates detected result

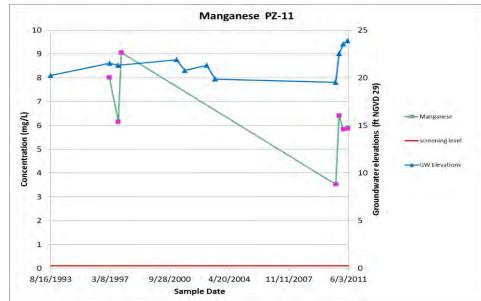
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 10)

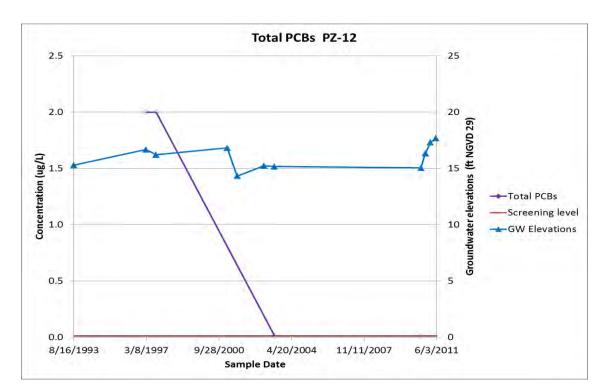

Port Angeles Rayonier Mill Port Angeles, Washington

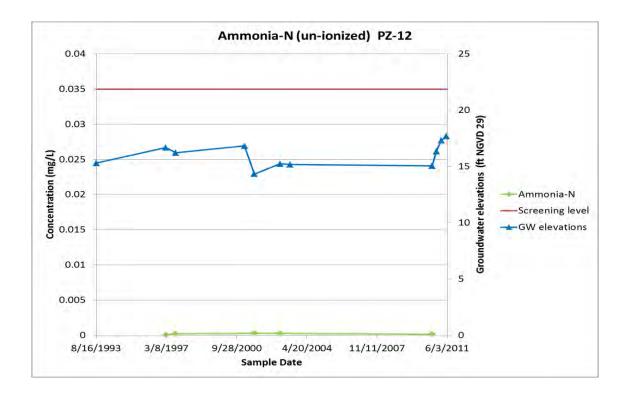


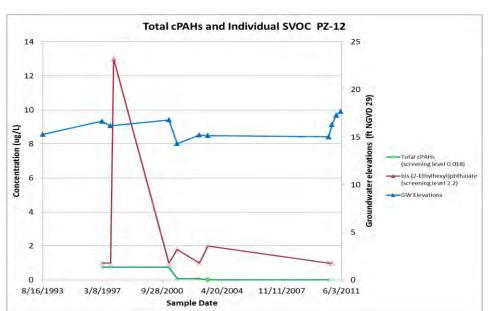
Open symbol indicates non-detected result

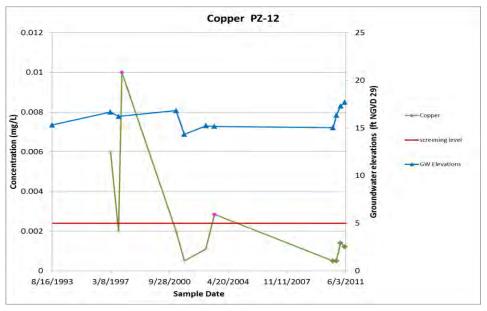
Filled symbol indicates detected result

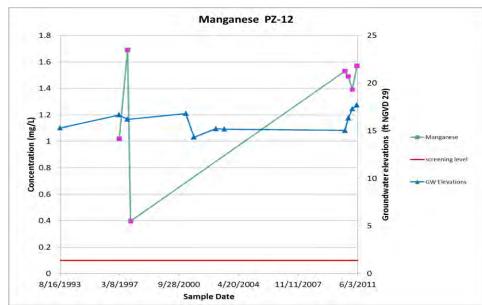
Pink symbol indicates detected result above screening level


Notes


- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- 2. Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.


Contaminants of Concern and Hydrograph (PZ 11)


Port Angeles Rayonier Mill Port Angeles, Washington



Open symbol indicates non-detected result

Filled symbol indicates detected result

Pink symbol indicates detected result above screening level

Notes:

- 1. For metals trend plots, plotted data generally represent dissolved metals results (filtered samples); for sampling events where only total metals (unfiltered samples) were analyzed, the totals data are plotted.
- $2. \ \ \text{Only metals and individual SVOCs with at least one screening level exceedance are shown in this figure.}$
- 3. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Contaminants of Concern and Hydrograph (PZ 12)

Port Angeles Rayonier Mill Port Angeles, Washington

