K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Prepared for

Port of Port Angeles 338 West First Street Port Angeles, Washington 98362

Prepared by FLOYD | SNIDER 601 Union Street Suite 600 Seattle, Washington 98101

January 2014

ECOLOGY DRAFT

Table of Contents

1.0	Intro	duction			1-1
	1.1	BACK	GROUND A	ND OVERVIEW	1-1
	1.2	SITE II	NVESTIGA	TION OBJECTIVES	1-1
	1.3	REPO	RT ORGAN	IZATION	1-2
2.0	Wor	k Perfor	med		2-1
	2.1	SOIL			2-1
	2.2	GROU	NDWATER		2-1
	2.3	SEDIM	IENT		2-1
	2.4	CULTU	JRAL RESC	OURCES	2-1
3.0	Soil	Investig	ation Met	hods and Results	3-1
	3.1	DIREC	T PUSH SO	DIL BORINGS	3-1
	3.2	HOLLO	OW-STEM A	AUGER SOIL BORINGS	3-1
	3.3	TEST I	PITS		3-2
	3.4	SURFA	ACE SOIL		3-2
	3.5	ANALY	3-3		
		3.5.1	Analytica	I Methods	3-3
		3.5.2	Data Val	idation	3-3
	3.6	PETRO	OPHYSICAI	_ AND UV ASSESSMENT	3-3
	3.7			STIGATION/FEASIBILTY STUDY WORK PLAN	3-3
	3.8	RESUL	_TS		3-4
		3.8.1	Field Scr	eening Observations	3-4
		3.8.2	Pipeline	8 Trench and Pressure Test Results	3-4
		3.8.3	Upland S	oil Analytical Results	3-5
			3.8.3.1	Petroleum Compounds	3-5
			3.8.3.2	Dioxins/Furans	3-6
			3.8.3.3	Other Analytes	3-6
		3.8.4	Petrophy	sical Testing and UV Photography	3-7
4.0	Grou	undwate	r Investig	ation Methods and Results	4-1
	4.1	MONIT	ORING WE	ELL INSTALLATION AND DEVELOPMENT	4-1
		4.1.1	Field Met	thods	4-1

	4.2	MONIT	ORING WELL SAMPLING	4-2
		4.2.1	Field Methods	4-2
	4.3	DIREC	T PUSH GROUNDWATER SCREENING SAMPLING	4-2
		4.3.1	Field Methods	4-2
	4.4	ANALY	TICAL METHODS	4-3
		4.4.1	Analytical Methods	4-3
	4.5	WATEF	R LEVEL ELEVATIONS	4-3
	4.6	RI/FS V	VORK PLAN DEVIATIONS	4-3
	4.7	MONIT	ORING WELL GROUNDWATER ANALYTICAL RESULTS	4-3
	4.8	DIREC	T-PUSH GROUNDWATER SCREENING ANALYTICAL RESULTS	4-4
5.0	Sedir	nent Inv	estigation and Analytical Results	5-1
	5.1	SURFA	CE SEDIMENT SAMPLING	5-1
	5.2	SEDIM	ENT PROFILING IMAGING	5-2
	5.3	ANALY	TICAL METHODS AND DATA VALIDATION	5-2
		5.3.1	Analytical Methods	5-2
		5.3.2	Bioassay Testing	5-3
		5.3.3	Data Validation	5-3
	5.4		DIAL INVESTIGATIN/FEASIBILITY STUDY WORK PLAN	5-3
	5.5	FIELD (OBSERVATIONS	5-3
	5.6	SEDIM	ENT RESULTS	5-3
		5.6.1	Chemistry Data	5-3
		5.6.2	Bioassay Data	5-4
		5.6.3	SPI Imaging	5-4
	5.7		SION OF THE SEDIMENT DATA IN THE WPAHG REMEDIAL FIGATION/FEASIBILITY STUDY	5-4
6.0	Site S	Summar	у	6-1
7.0	Addit	ional Da	ata Collection and Schedule	7-1
	7.1	ADDITI	ONAL DATA COLLECTION	7-1
8.0	Refer	ences		8-1

List of Tables

- Table 2.1 RI Soil Investigation Work Performed
- Table 2.2
 RI Groundwater Investigation Work Performed
- Table 2.3
 RI Sediment Investigation Work Performed
- Table 3.1 Soil Boring Field Observations
- Table 3.2Gasoline-range, Diesel-range, and Oil-range Organics, and BTEX Results for
Soil
- Table 3.3Dioxins/Furans Results for Soil
- Table 3.4Metals, SVOC, and VOC Detections in Soil
- Table 3.5
 Petrophysical Test Physical Properties Data
- Table 4.1Monitoring Well Installation Details
- Table 4.2Water Level Elevation and Tidal Information
- Table 4.3Gasoline-range, Diesel-range, and Oil-range Organics, and BTEX Results for
Groundwater Direct-push Probe Screening and Groundwater Monitoring Well
Sampling
- Table 4.4Metals, SVOC, VOC, Formaldehyde, and PCB Results in Groundwater Direct-
push Probe Screening and Groundwater Monitoring Well Sampling
- Table 5.1 Analytical Results for Sediment

List of Figures

- Figure 1.1 Vicinity Map
- Figure 3.1A RI Sample Locations
- Figure 3.1B RI Sample Locations, Hydraulic Oil Area
- Figure 3.1C RI Sample Locations, Gasoline Area
- Figure 3.1D Peninsula Fuel Company RI Boring Locations
- Figure 3.2 Site-wide Field Observations for Indications of Petroleum in Soil Borings
- Figure 3.3A Site-wide Soil GRO Results—Maximum Concentration at Any Depth
- Figure 3.3B Soil GRO Results in Hydraulic Oil Area—Maximum Concentration at Any Depth
- Figure 3.3C Soil GRO Results in Gasoline Area—Maximum Concentration at Any Depth
- Figure 3.3D Soil GRO Results at Peninsula Fuel Company—Maximum Concentration at Any Depth
- Figure 3.4A Site-wide DRO Results—Maximum Concentration at Any Depth
- Figure 3.4B Soil DRO Results in Hydraulic Oil Area—Maximum Concentration at Any Depth
- Figure 3.4C Soil DRO Results in Gasoline Area—Maximum Concentration at Any Depth
- Figure 3.4D Soil DRO Results at Peninsula Fuel Company—Maximum Concentration at Any Depth

FLOYD | SNIDER

- Figure 3.5A Site-wide Oil-range Organics Results—Maximum Concentration at Any Depth
- Figure 3.5B Soil Oil-range Organics Results in Hydraulic Oil Area—Maximum Concentration at Any Depth
- Figure 3.5C Soil Oil-range Organics Results in Gasoline Area—Maximum Concentration at Any Depth
- Figure 3.5D Soil Oil-range Organics Results at Peninsula Fuel Company—Maximum Concentration at Any Depth
- Figure 3.6A Site-wide Soil Benzene Results—Maximum Concentration at Any Depth
- Figure 3.6B Soil Benzene Results in Hydraulic Oil Area—Maximum Concentration at Any Depth
- Figure 3.6C Soil Benzene Results in Gasoline Area—Maximum Concentration at Any Depth
- Figure 3.6D Soil Benzene Results at Peninsula Fuel Company—Maximum Concentration at Any Depth
- Figure 4.1A October 2013 Groundwater Monitoring GRO Results
- Figure 4.18 Peninsula Fuel Company October 2013 Groundwater GRO Results
- Figure 4.2A October 2013 Groundwater Benzene Results
- Figure 4.28 Peninsula Fuel Company October 2013 Groundwater Benzene Results
- Figure 4.3A October 2013 Groundwater DRO Results
- Figure 4.3B Peninsula Fuel Company October 2013 Groundwater DRO Results
- Figure 5.1 Sediment Characterization Locations

List of Appendices

- Appendix A Data Validation Reports
- Appendix B Monitoring Well Logs
- Appendix C Groundwater Sampling Forms
- Appendix D Laboratory Analytical Data Reports (on CD-ROM)
- Appendix E Sediment Investigation Field Notes, SPI Images, and Bioassay Report
- Appendix F Core Photography and Grain Size Curves (PTS Labs)

List of Abbreviations and Acronyms

Acronym/ Abbreviation	Definition
°C	Degrees Celsius
AO	Agreed Order
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and xylenes
COC	Contaminant of concern
cm	Centimeter
cPAH	Carcinogenic polycyclic aromatic hydrocarbon
CSL	Cleanup Screening Level
CUL	Cleanup level
DRO	Diesel-range organics
Ecology	Washington State Department of Ecology
GRO	Gasoline-range organics
HRA	Historical Research Associates, Inc.
LNAPL	Light non-aqueous phase liquid
µg/L	Micrograms per liter
mg/kg	Milligrams per kilogram
MTA	Marine Trades Area
MTCA	Model Toxics Control Act
NAPL	non-aqueous phase liquid
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PCP	Pentachlorophenol
pg/g	Picograms per gram
PID	Photoionization detector
Port	Port of Port Angeles
psi	Pounds per square inch
PVC	Polyvinyl chloride
QAPP	Quality Assurance Project Plan
RI/FS	Remedial Investigation/Feasibility Study
SAP	Sampling and Analysis Plan
Site	K Ply Site

FLOYD | SNIDER

K Ply Sit	e
-----------	---

Acronym/ Abbreviation	Definition
SMS	Sediment Management Standards
SPI	Sediment profile imaging
SQS	Sediment Quality Standard
SVOC	Semivolatile organic compound
TEQ	Toxicity Equivalency Quotient
TVS	Total volatile solids
USCS	United Soil Classification System
USEPA	U.S. Environmental Protection Agency
UV	Ultraviolet
VOC	Volatile organic compound
WPAHG	Western Port Angeles Harbor Group

1.0 Introduction

This document presents the data collected as part of the Remedial Investigation/Feasibility Study (RI/FS) at the K Ply Site (Site), located at 439 Marine Drive, Port Angeles, Washington 98362 (Figure 1.1). Specifically, this document summarizes data from the soil, groundwater, and sediment investigations conducted in accordance with Agreed Order (AO) No. DE 9546 between the Washington State Department of Ecology (Ecology) and the Port of Port Angeles (Port) for cleanup of the Site.

Per the AO, the purpose of this document is to describe the work conducted during the RI, including a summary of the sampling design, sampling methods, and sampling results. Following submittal of this Data Memorandum (referred to as the Data Memo) to Ecology, a RI/FS document will be prepared that will incorporate the data presented herein in a comprehensive fashion including identifying contaminants of concern (COCs) and cleanup levels (CULs), and developing site-wide remedial alternatives.

1.1 BACKGROUND AND OVERVIEW

Beginning in the 1940s, the K Ply mill (formerly PenPly) produced plywood in a mill facility located on the industrial waterfront of Port Angeles. Environmental contamination under the mill was first documented in the late 1980s with partial cleanup actions undertaken by ITT Rayonier, one of the prior mill owners. The mill was permanently closed in 2011 and has recently been demolished by the Port for redevelopment purposes (except for concrete pads). The recent environmental investigation and reporting of data in this Data Memo is the next step in the cleanup of the Site. A more thorough description of site background, prior operations, general history, previous investigations, and physical setting is provided in the RI/FS Work Plan (Floyd|Snider 2013).

Prior to 2012, the Site was part of the adjacent Marine Trades Area (MTA) Site, but the source and extent of the contamination at the Site was determined to be distinct from the contamination from bulk plants that once operated at the MTA Site. Hence the Site was split off from the MTA Site so its cleanup could proceed independently. One of the primary objectives of this environmental investigation was to address data gaps that were previously identified by the MTA RI/FS process. The Site is intended to include historical activities that occurred at this location and as defined by Model Toxics Control Act (MTCA) Chapter 173-340-200 as the location where contamination has come to lie. The Site boundary has not changed from the limits defined in the AO.

Port Angeles Harbor sediments in the area of the Site are also subject to a separate RI/FS process and cleanup led by multiple potentially liable parties that comprise the Western Port Angeles Harbor Group (WPAHG). The WPAHG will be evaluating sediment data for the entire harbor, including sediment data collected in front of the Site during this investigation.

1.2 SITE INVESTIGATION OBJECTIVES

The objectives of the investigation were defined in the RI/FS Work Plan. The main elements were to characterize upland soil and groundwater quality, define the extent of known areas of gasoline and hydraulic oil non-aqueous phase liquid (NAPL), evaluate sediment quality in the nearshore sediments, and to investigate several areas of potential concern identified in the

RI/FS Work Plan. A description of the areas of potential concern and how they were addressed is provided in Section 2.0.

1.3 **REPORT ORGANIZATION**

This Data Memo is organized as follows:

- Section 2.0—Work Performed: Provides a summary of the work performed as part of the environmental investigation and how the areas of potential concern that were identified in the RI/FS Work Plan were addressed.
- Section 3.0—Soil Investigation Methods and Results: Presents the uplands soil investigation procedures including a description of sampling design, field methods, and work plan deviations. Field activities described include soil sampling, groundwater monitoring well installation, test pits, and light non-aqueous phase liquid (LNAPL) assessment sampling procedures. Presents laboratory analytical methods and a summary of analytical results.
- Section 4.0—Groundwater Investigation Methods and Results: Presents the uplands groundwater investigation procedures including a description of sampling design, field methods, and work plan deviations. Field activities described include groundwater monitoring, well development and sampling, and water level elevation assessment procedures. Presents descriptions of laboratory analytical methods and a summary of groundwater analytical results.
- Section 5.0—Sediment Investigation Methods and Results: Presents the surface sediment sample procedures including a description of field methods and work plan deviations. Presents descriptions of laboratory analytical methods and requirements, and a summary of sediment sampling results including both chemistry and bioassay testing.
- Section 6.0— Site Summary: Presents a brief summary of results and findings.
- Section 7.0— Additional Data Collection and Schedule: Discusses the next steps and schedule for the remaining tasks to be completed as part of the RI/FS process.
- Section 8.0— References: Presents the reference information for materials cited in this document

2.0 Work Performed

The work performed was initially identified in the RI/FS Work Plan, which was developed by reviewing available historical information and existing environmental conditions based on previous investigations. This information was then used to identify areas in which further investigation was needed. RI/FS data collection activities were completed to fill these specific soil, groundwater, and sediment data gaps.

2.1 SOIL

Site-wide data needs and focused areas of concern soil data gaps were addressed with the RI/FS investigation. Work performed included the following:

- Advancement of 119 direct-push probes across the site and on Peninsula Fuel Company property, collection of soil samples for analytical testing, logging of soil cores, and field testing for contamination.
- Completion of 10 test pits in specific areas of concern.
- Collection of six surface samples for dioxin/furan testing.
- Visual examination of buried utilities including pressure testing of Pipeline 8.
- Ultraviolet (UV) photoimaging/petrophysical testing of soil cores.

Additional detail on the work performed to fulfill each soil data need is presented in Table 2.1.

2.2 GROUNDWATER

Groundwater data gaps were addressed through the installation and development of 6 new and four replacement monitoring wells, groundwater sampling from 19 wells including upgradient and downgradient wells, and collection of water level measurements during a low tide from 27 wells. The work performed to address the groundwater data gaps identified in the RI/FS Work Plan is described in Table 2.2.

2.3 SEDIMENT

Sediment data gaps were addressed through the collection of three nearshore sediment samples and completion of sediment profiling imaging. The work performed is described in Table 2.3.

2.4 CULTURAL RESOURCES

Historical Research Associates, Inc. (HRA) was retained to complete archaeological monitoring for the investigation as described in the RI/FS Work Plan (Floyd|Snider 2013).

In accordance with the existing settlement agreement between the City of Port Angeles, Port, and the Lower Elwha Klallam Tribe, an HRA archaeologist monitored all ground disturbing activities including direct-push soil borings, test pits, and monitoring well installation.

The results will be summarized in the *Archaeological Monitoring Report for K Ply Remediation Project*, which will be included as an attachment in the RI/FS.

3.0 Soil Investigation Methods and Results

This section summarizes soil investigation activities completed in September and October 2013.

3.1 DIRECT PUSH SOIL BORINGS

Soil borings were advanced using direct-push probe sampling technology by Holocene Drilling of Puyallup, Washington, between September 9, 2013 and October 16, 2013, in accordance with the procedures described in the RI/FS Work Plan. Borings were advanced from the ground surface to depths typically between 12 and 20 feet below ground surface (bgs) and were continuously logged according to the United Soil Classification System (USCS). Soil sample locations are shown on Figures 3.1A through 3.1D.¹ Concrete cores were cut into predesignated locations on the concrete pad to allow the direct-push probe access to the underlying soil.

All soil samples were field screened for indications of petroleum using a photoionization detector (PID). Visual observations of contamination, such as staining and sheen, and olfactory indications of contamination were also recorded. The presence of sheen was screened by placing a small volume of soil in a stainless steel bowl with water. In the Hydraulic Oil Area, blot tests of all borings and UV light testing of a small subset of borings were used to document potential contamination. Blot tests were performed by placing a dry paper towel on the soil core and recording the color and type of staining that appeared. UV light testing was completed in a dark room by shining a UV light along the length of the soil core to look for contamination.

Following field screening of soil cores, select intervals were targeted for sample analysis. Soil samples were removed from the direct-push probe sampling liner from the sample interval of interest (e.g., 2 to 4 feet bgs) and placed into a decontaminated stainless steel bowl for homogenization. Samples were typically collected in the saturated zone (at the water table where there is tidal influence), the vadose zone (shallow soil), or both. Following homogenization, the soil was placed into laboratory-supplied sample containers, labeled, and immediately placed in a cooler maintained at a temperature of approximately 4 degrees Celsius (°C) using crushed ice. Samples analyzed for gasoline-range organics (GRO)/benzene, toluene, ethylbenzene, and xylenes (BTEX) were collected directly from the soil core according to U.S. Environmental Protection Agency (USEPA) Method 5035. Samples were transported to Freidman & Bruya, Inc. in Seattle, Washington, under standard chain-of-custody procedures.

3.2 HOLLOW-STEM AUGER SOIL BORINGS

Hollow-stem auger borings were drilled by Holocene Drilling of Puyallup, Washington, between September 18 and September 20, 2013, in accordance with the procedures described in the RI/FS Work Plan. Borings were advanced from the ground surface to a typical depth of 19 feet bgs. Soil was collected for logging purposes using an 18-inch split spoon sampler. The split spoon was driven at 2.5-foot intervals using a 150-pound hammer. The split spoon samplers were decontaminated between sample collection intervals. Soil samples were field screened to identify intervals potentially contaminated with volatile constituents using a PID. PID readings

¹ For purposes of displaying and explaining the data, the Site is divided into areas (refer to Figure 3.1A). These areas are shown on the figures in a series where the "A" figure refers to site-wide, the "B" figure refers to the Hydraulic Oil Area, and the "C" figure refers to the Gasoline Area., Outside the Site is shown in the "D" figure, which refers to Peninsula Fuel Company. These areas are also used in the text.

and visual observations of contamination, such as staining and sheen, were documented on the boring logs. The number of hammer blows necessary to drive the split spoon (i.e., the standard penetration test) was also recorded.

Per the RI/FS Work Plan, soil samples were not collected for laboratory analysis unless the field screening indicated that potential contamination was present. In only one instance did this occur and one sample was collected from the PP-23 boring where an elevated PID reading was observed. Soil volume from this interval was first collected directly from the split spoon for GRO/BTEX using USEPA Method 5035A. Soil from the desired depth interval was then scooped directly from the split spoon using a decontaminated stainless steel spoon and homogenized in a stainless steel bowl. Following homogenization, the sample material was placed into laboratory-supplied sample vials and jars, labeled, and immediately placed in a cooler maintained at a temperature of approximately 4 °C using crushed ice. The sample was transported to Freidman & Bruya, Inc. in Seattle, Washington, under standard chain-of-custody procedures.

3.3 TEST PITS

Test pits were dug with an excavator using a 2-foot-wide bucket. A toothed bucket was used for the majority of the test pits; however, a flat bottom bucket was used for KT-2 and KT-20, which were excavated to reveal subsurface piping, to ensure that the piping was not ruptured during excavation.

Test pits were excavated in approximately 6-inch-deep increments and the soil was logged continuously by a field technician according to the USCS. Test pit soils were screened for volatile organic compounds (VOCs) by inserting a PID monitoring probe into the sidewall of the test pit. Signs of contamination such as odors, sheens, or staining were noted on field forms. Test pits were approximately 3 to 4 feet wide by 6 feet long and ranged in depth between 3 and 11 feet. KT-1, which exposed Pipeline 8, was a trench approximately 3 feet deep and 384 feet long.

Test pit soil samples were collected by scraping material from the desired depth of the sidewall of the excavation into a decontaminated stainless steel bowl, using a stainless steel spoon or trowel. Soil for VOC analysis was collected directly from the excavation sidewalls using USEPA Method 5035 procedures. The sample material was placed into laboratory-supplied sample vials and/or jars, labeled, and immediately placed in a cooler maintained at a temperature of approximately 4 °C using crushed ice. Samples were transported to Freidman & Bruya, Inc. in Seattle, Washington, under standard chain-of-custody procedures.

3.4 SURFACE SOIL

The sampling locations for surface soil samples SS-1 through SS-3 were selected based on lack of pavement and lack of recent ground disturbance, and SS-4 through SS-6 were selected based on the footprint where the former mill stack was demolished. This was done in the field in coordination with Ecology. The sample locations were photographed, and samples were collected beneath any duff layer vegetation to a depth of approximately 3 inches using a decontaminated stainless steel spoon. Soils were homogenized in a decontaminated stainless steel spoon. Soils were homogenized in a decontaminated stainless steel and immediately placed in a cooler maintained at a temperature of approximately 4 °C using crushed ice.

Samples were transported to Freidman & Bruya, Inc. in Seattle, Washington, under standard chain-of-custody procedures.

3.5 ANALYTICAL METHODS AND DATA VALIDATION

3.5.1 Analytical Methods

The soil samples collected as described above were analyzed for some or all of the following constituents using the analytical methods summarized below and in accordance with the RI/FS Work Plan (Floyd|Snider 2013):

- Metals (silver, arsenic, chromium, copper, lead, nickel, and zinc) by USEPA Method 6020
- Mercury by USEPA Method 7471
- Diesel-range organics (DRO) and oil-range organics by NWTPH-Dx with silica acid gel cleanup
- Gasoline-range organics (GRO) by NWTPH-Gx
- VOCs by USEPA Methods 8260 and 8021
- Semivolatile organic compounds (SVOCs) by USEPA Method 8270
- Polychlorinated biphenyls (PCBs) by USEPA Method 8082
- Dioxins/Furans (surface soil samples only) by USEPA Method 1613

3.5.2 Data Validation

A Compliance Screening, Tier I data quality review was performed on the soil analytical data. The analytical results are determined to be of acceptable quality for use with minor qualifications as detailed in the data validation reports attached in Appendix A.

3.6 PETROPHYSICAL AND UV ASSESSMENT

In addition to sampling for analytical chemistry, a subset of soil borings with observed or suspected NAPL were selected for petrophysical analysis and UV photography. These samples were collected by driving a parallel core adjacent to an existing direct-push boring to target a specific undisturbed interval for sampling using a 4-foot-long stainless steel liner. The liner was cut to isolate the desired depth interval for analysis, then capped and immediately frozen with dry ice to prevent loss of fluid. Samples were transported to PTS Laboratories in Santa Fe Springs, California, under standard chain-of-custody procedures. Petrophysical assessment results are presented in Section 3.8.4.

3.7 REMEDIAL INVESTIGATION/FEASIBILTY STUDY WORK PLAN DEVIATIONS

Soil borings were generally completed according to the RI/FS Work Plan, with minor adjustments to boring locations where obstructions, such as concrete rubble, were encountered. Boring K-93 in the eastern area of the Site was not installed because it was situated in the center of the log debarker and was not accessible by the drill rig.

All test pit locations were excavated according to the RI/FS Work Plan. Soil samples were not collected from the KT-13 and KT-14 test pits because the subsurface material in these locations was composed of wood fragments and no soil was present.

Surface soil samples were collected according to the RI/FS Work Plan, however the locations for SS-1, SS-2, and SS-3 were moved to areas that did not show evidence of recent surface disturbance. These locations were selected in the field in coordination with Ecology. The resin delineation on surface soils was also not completed because the resin area was covered with plastic sheeting to control surface water infiltration.

3.8 RESULTS

3.8.1 Field Screening Observations

Soil encountered in the soil borings and test pit excavations was generally composed of hydraulic fill deposits consisting of moist to wet well-graded sand with silt and gravel. Typically, groundwater was encountered between 9 and 12 feet bgs. A slight to moderate plastic silt deposit was observed underlying saturated sands in most borings. Field indications of petroleum were observed in many borings. Additional borings were advanced until the field-observed extent of each contaminant area was reasonably well-defined in both the saturated and vadose zone soil. Field observations of contamination, including gasoline odors, peak PID readings, sheen testing results, and blot testing results for individual borings, are included in Table 3.1. Field observations for indications of petroleum contamination in soil borings are shown on Figure 3.2. The following bullets describe the major findings from the field observations:

- In the former mill building area, most borings had indications of petroleum at or near the saturated zone. Elevated PID readings and gasoline odors were encountered at the Site and at Peninsula Fuel Company, beginning at the Peninsula Fuel Company southern property line to the K Ply bulkhead in the north.
- The most elevated PID readings were encountered under the former mill foundation adjacent to Pipeline 8 in both the vadose and saturated zone soil. Rainbow sheens were also were encountered in soil from this area, as well as on the Peninsula Fuel Company property.
- The hydraulic oil extent from blot testing appeared to be limited to the known area of contamination, as defined by existing wells and soil borings (i.e., no new downgradient hydraulic oil contamination was encountered). UV screening of stepout soil borings indicated that the hydraulic oil product layer dissipates into spotty lenses rather than thinning uniformly at the edges of the Hydraulic Oil Area. GRO and hydraulic oil appear to be comingled in the vadose zone in the northern portion of the Hydraulic Oil Area.
- No field indications of contamination were observed in the Debarker Area.

3.8.2 Pipeline 8 Trench and Pressure Test Results

As described above, the section of Pipeline 8 not covered by the alley or concrete pad was exposed for inspection and pressure testing (KT-1 and KT-2). Practically, this included two trenches and a test pit: 1) trench section between the concrete pad and the caustic tank area,

2) a second trench section between the caustic tank area the end near the bulkhead,² and 3) test pit KT-1 located at Peninsula Fuel Company to expose the ends of the two 4-inch pipelines (east and west pipelines). No signs of contamination (visual, olfactory, or PID) were observed along the length of the exposed pipeline and the exposed sections of Pipeline 8 appeared to be in good condition. The ends of each 4-inch pipeline that were historically cut were found to be plugged with a concrete/grout mix.

A pressure test was performed on the four sections of Pipeline 8. This was done by 1) locating the ends of the pipe, 2) drilling a small hole in the pipe and connecting a pressure meter and pump to the pipe, 3) pressurizing the pipe with compressed air to approximately 10 pounds per square inch (psi), and 4) monitoring to test for loss of pressure, which indicates a leak. When the test was started, the ends of the pipe and each exposed weld in the pipe were sprayed with a soapy water solution to check for leaks. The ends of the pipe that were filled with concrete/grout were initially found to leak and were sealed before finishing the pressure test.

After the desired pressure was reached in each line, it was noted that the pressure rapidly declined in three of the four pipe sections, including both segments under the concrete pad, indicating that there is a leak in the east and west pipelines of Pipeline 8 somewhere underneath the concrete pad or alley (labeled "pressure test failure area" on Figure 3.2). Further investigation to identify the exact location of area of pressure test failure could only be conducted following demolition of the concrete pad and trenching in the alley. The pressure test also indicated the west pipeline leaked at a single threaded joint coupling near the Hydraulic Oil Area (labeled "joint leak" on Figure 3.2). A soil sample was collected under this joint for chemical analysis, but contamination was not detected (refer to location Pipeline 8-West on Figure 3.1B). The east pipe of the northern section of Pipeline 8 held pressure during the pressure test and appeared to be intact.

During the drilling of the small hole to conduct the test, water was found in both pipelines. Water was removed as necessary to allow the pressure test to be conducted. A water sample was removed from each pipeline. The water appeared to be highly contaminated. A sample of the east pipeline water was submitted for analytical testing and the benzene concentration was 390 micrograms per liter (μ g/L), and the GRO concentration was 22,000 μ g/L.

3.8.3 Upland Soil Analytical Results

3.8.3.1 Petroleum Compounds

GRO, DRO, oil-range organics, and BTEX analytical results are presented in Table 3.2 and on Figures 3.3A through 3.6D. Analytical results were screened against MTCA Method A Unrestricted Land Use soil CULs.

GRO, DRO, and oil-range organics (i.e., hydraulic oil) were analyzed for in the majority of soil samples collected site-wide. GRO concentrations ranged from non-detect to 14,000 milligrams per kilogram (mg/kg). The elevated GRO concentrations were generally detected in the saturated zone soil (i.e., from approximately 9 to 12 feet bgs) under the concrete pad and downgradient from the concrete pad, extending as far north as the Hydraulic Oil Area.

² The sections of Pipeline 8 in the caustic tank area and near the bulkhead had previously been removed; therefore, trenching was not required.

Elevated GRO concentrations were also detected in vadose zone soil under the concrete pad in the vicinity of Pipeline 8. The peak vadose zone GRO concentration of 7,300 mg/kg was detected from the K-47 boring located within several feet of Pipeline 8. On the Peninsula Fuel Company property, elevated GRO concentrations were detected in the saturated zone samples from the PF-7 and PF-8 borings, with concentrations of 1,600 and 2,000 mg/kg, respectively.

DRO was detected at elevated concentrations in the saturated zone under the concrete pad near Pipeline 8, with a maximum concentration of 24,000 mg/kg in the sample collected in K-48 from 7 to 8 ft bgs. DRO concentrations were generally not detected in soil samples to the north of the concrete pad, after accounting for chromatographic overlap from samples containing significant amounts of weathered gasoline and/or hydraulic oil, as denoted by the laboratory. A DRO concentration of 12,000 mg/kg was also detected on the Peninsula Fuel Company property in the PF-8 boring at a depth of 7 to 8 ft bgs.

Elevated BTEX concentrations were detected in saturated zone soil samples extending from under the concrete pad north to the bulkhead. Benzene detections appear to be generally associated with samples also containing GRO.

Oil-range organics concentrations ranged from non-detect to 32,000 mg/kg across the Site. The highest concentrations were detected in the saturated zone soil in the northern portion of the Site. In the Hydraulic Oil Area the highest oil-range organics concentrations were in Borings K-63, K-64, K-67, and K-73 at 32,000 mg/kg, 23,000 mg/g, 24,000 mg/kg, and 25,000 mg/kg, respectively.

3.8.3.2 Dioxins/Furans

Dioxin/furan analytical results from surface soil samples are presented in Table 3.3. Dioxin was detected in the samples representative of undisturbed surface soil (SS-1 through SS-3) at toxic equivalency quotients (TEQs) concentrations ranging from 0.707 picograms per gram (pg/g) to 8.15 pg/g. Dioxin was also detected in the surface soil samples collected in the footprint where the former mill stack fell (SS-4 through SS-6), at TEQ concentrations ranging from 19.4 pg/g to 222 pg/g.

3.8.3.3 Other Analytes

Sampling results for other analytes in soil are presented in Table 3.4.

The compounds specified in MTCA Table 830-1 for petroleum releases were analyzed in a subset of samples with field evidence of petroleum contamination. Samples were collected in each area with a suspected petroleum release. To meet the MTCA requirement, the following samples were collected:

- A soil sample was collected for SVOCs and PCBs in the area of the former panel oiler.
- K-98 and K-99 in the vicinity of the former dry well were sampled for MTCA metals, SVOCs, and VOCs.
- A subset of samples in the Gasoline Area and Hydraulic Oil Area were sampled for carcinogenic polycyclic aromatic hydrocarbon (cPAHs), lead, and/or VOCs.

Detected analytes are screened against the MTCA Method A Unrestricted Land Use CULs in Table 3.4.

Lead and other metals, including arsenic, barium, and chromium, were detected in most samples analyzed. The concentrations detected were typical of regional background soil concentrations.

Pentachlorophenol (PCP) was detected at a concentration of 230 mg/kg in one shallow soil sample collected from the Panel Oiler Area. PCBs were not detected in any soil samples. Select soil samples were collected for cPAHs in the Gasoline, Diesel, and Hydraulic Oil Areas and the TEQ concentration ranged from non-detect to 0.25 mg/kg with one exception. A soil sample collected from K-89 near the bulkhead had a cPAH TEQ concentration of 17 mg/kg. However, the laboratory noted that based on the total petroleum hydrocarbon diesel-range (TPH-Dx) chromatographs, the sample material was likely creosote and this boring was likely advanced immediately adjacent to a creosoted piling. Adjacent samples were not contaminated with cPAHs. K-89 also had a naphthalene concentration that exceeded the screening levels. As shown in Table 3.4, there were other miscellaneous VOC detections.

3.8.4 Petrophysical Testing and UV Photography

Petrophysical testing involved the determination of grain size, porosity, and soil pore space content (e.g., air, LNAPL, water; refer to Table 3.5). Grain size analysis generally showed that the field logging of soils as primarily sand and silt were generally accurate. The vadose zone samples selected from within the Gasoline Area (PZ-06A and K-27) were both primarily silts, with total moisture content of 45 and 35 percent, respectively. The remaining samples were fine to medium sands with moisture content ranging from approximately 14 to 20 percent.

Pore fluid saturation of hydraulic oil NAPL near EW-02A was greater than 50 percent of pore volume, suggesting significant free product is present in soil in this area. This was consistent with field blot testing, which showed approximately 1.5 feet of NAPL in the saturated zone at this location. Oil-range organics had been detected at concentrations up to 50,000 mg/kg in this area during previous investigations.

In contrast, NAPL saturation in both the vadose zone and saturated zone samples at PZ-06A were 9.8 and 8.7 percent, respectively. Previous investigations detected GRO at up to 4,000 mg/kg in the saturated zone in this area and up to 1.15 feet of LNAPL in PZ-6. The vadose zone sample collected at K-27 had a NAPL pore fluid saturation of 9.1 percent, roughly corresponding to a GRO concentration of 4,500 mg/kg. NAPL pore fluid saturation was a relatively low 5 percent in the saturated zone sample collected at K-15 on the presumed fringe of the Gasoline Area. Pore fluid saturation in the Peninsula Fuel Company PF-7 sample was 3 percent.

Generally, pore fluid saturation of gasoline-range NAPL was greatest in samples composed of fine-grained materials including silts and very fine sands. This is consistent with field observations of gasoline odors and elevated PID readings in tight sands and in or above silt lenses.

4.0 Groundwater Investigation Methods and Results

This section summarizes the results of the groundwater investigation completed in September and October 2013.

4.1 MONITORING WELL INSTALLATION AND DEVELOPMENT

Ten monitoring wells (PP-4R, PP-6R, PP-15R, PP-20, PP-21, PP-22, PP-23, PP-24, PP-25, and PP-26) were installed on the Site on October 18 to 20, 2013.

Three of these wells were replacement wells as PP-15, PP-4, and PP-6 were destroyed during mill demolition. Well PP-15 was located in the high-concentration area of the GRO and benzene plume and was replaced with PP-15R. Wells PP-6 and PP-4 were located east of the edge of the contamination beneath the mill and serve an important role in monitoring the eastern extent of contamination. PP-6 was replaced with PP-6R, and PP-4 replaced with PP-4R. A forth unplanned well, PP-26, was initially intended to be a replacement for PP-4 but was inadvertently installed at the location of PZ-8. PP-26 will now function as a water quality well in lieu of PZ-8.

Monitoring well locations are shown in Figures 3.1A. Monitoring well logs are included in Appendix B. The section below describes field methods used for installation of monitoring wells.

4.1.1 Field Methods

Monitoring well installation was completed by Holocene Drilling. The boreholes for the wells were drilled using standard hollow-stem auger technique. Auger boreholes were advanced using a 4-inch ID auger. Split-spoon soil samples were collected every 2 feet during completion of soil boring activities. Soil samples were only collected based on field observations and indications of the presence of petroleum contamination, as described in Section 3.2.

The monitoring wells were constructed with 10-foot-long screens set from 8 to 18 feet bgs. Well screen assemblies consist of a 10-foot length of 2–inch-diameter 0.020-inch (20-slot), Schedule 40 polyvinyl chloride (PVC) pipe set in a 10/20 Colorado silica sand filter pack. The sand filter pack was installed by pouring sand into the space between the well casing and auger as the auger was withdrawn. A weighted tape was used to monitor filter pack placement and depth during installation. The sand filter pack extends 2 feet above the top of the screened interval. A 3-foot-thick seal of hydrated bentonite chips was installed in the annular space immediately above the sand filter pack. The remainder of the annular space was sealed with bentonite grout to within 1 foot of the ground surface.

Monitoring Wells PP-23, PP-24, and PP-25 were secured with flush-to-ground locking steel protective monuments with expansion seals on the well casing to minimize the potential for surface water entering the monument. Monitoring Wells PP-4R, PP-6R, PP-15R, PP-20, PP-21, and PP-26 were installed with an aboveground protective steel monuments and bollards. PP-22 was installed with an aboveground protective steel monument and Ecology blocks. Well completion details are summarized in Table 4.1.

Well development was completed by continuous pumping at a steady rate using a batteryoperated Whale pump. Well development equipment was decontaminated by pumping clean water through the pump and washing to the satisfaction of the field technical staff. Well development was terminated when turbidity readings stabilized or were below 50 Nephelometric Turbidity Units (NTU). Installed wells were labeled with a permanent marker on the well casing and on the well covers. A professional survey including measuring point elevation and ground surface elevation was completed for all monitoring wells installed.

4.2 MONITORING WELL SAMPLING

On October 14 and 15, 2013, groundwater samples were collected from 19 existing and newly installed monitoring wells. The following section describes the field methods used for sampling.

4.2.1 Field Methods

All wells were purged and sampled using low-flow procedures to achieve the lowest turbidity practicable with a peristaltic pump and disposable polyethylene tubing. Prior to and during sampling, depth to water was measured to the nearest 0.01 foot using a water level indicator. The monitoring well was purged prior to sampling at a maximum rate of 0.5 liters per minute. During purging, field parameters (i.e., temperature, pH, conductivity, salinity, and turbidity) were recorded at 5-minute intervals using a multi-parameter water quality meter. Once the field measurements for water quality parameters were stable (within 10 percent) for three consecutive readings, the groundwater sample was collected. The last set of field parameters measured during purging will represent field parameters in the groundwater sample. All field measurements were recorded on a groundwater sample collection form, included in Appendix C.

After purging the well and labeling the sample bottles, the groundwater sample was collected by directly filling the laboratory-provided bottles from the pump discharge line at the same flow rate that was used for purging. The sample bottles were labeled and immediately placed in a cooler maintained at a temperature of approximately 4°C using crushed ice. Samples were transported on ice to Freidman & Bruya, Inc. in Seattle, Washington, under standard chain-of-custody procedures.

4.3 DIRECT PUSH GROUNDWATER SCREENING SAMPLING

Groundwater screening samples were collected from Boring K-90 in a location with historical petroleum storage, from K-98 and K-99 in the vicinity of the former dry well, and from K-200 through K-203 along the 4-inch sewer line running to the southeast of the former mill. Screening samples were also collected from Borings PF-1 through PF-9 on the Peninsula Fuel Company property.

4.3.1 Field Methods

Groundwater grab samples were collected by inserting temporary 1-inch-diameter PVC casing with 5- or 10-foot slotted PVC screens into the direct-push boring rods once soil sampling was completed. The rods were then removed to allow groundwater to flow into the screen. Screen lengths and depths were determined in the field and set to span across the water table. A static depth to water measurement was also collected after installation and the screen depth was readjusted to span the water table when necessary.

Groundwater was purged from the temporary PVC casing using a peristaltic pump with disposable high-density polyethylene (HDPE) and silicone tubing. Groundwater screening

samples were collected by filling laboratory-provided bottles directly from the pump discharge line once the purge water was visually clear. The sample bottles were labeled and immediately placed in a cooler maintained at a temperature of approximately 4°C using crushed ice. Samples were transported on ice to Freidman & Bruya, Inc. in Seattle, Washington, under standard chain-of-custody procedures.

4.4 ANALYTICAL METHODS

4.4.1 Analytical Methods

The groundwater samples were analyzed for some or all of the following constituents by the methods indicated below and in accordance with Tables 7.2 and B.1 of the RI/FS Work Plan (Floyd|Snider 2013):

- DRO by NWTPH-Dx with silica acid gel cleanup
- GRO by NWTPH-Gx
- MTCA metals (arsenic, cadmium, chromium, lead, and mercury) by USEPA Methods 200.8, 245.1/245.5, and 7470A
- BTEX by USEPA Method 8021
- VOCs by USEPA Method 8260
- SVOCs by USEPA Method 8270
- Formaldehyde by USEPA Method 8315A

4.5 WATER LEVEL ELEVATIONS

Water level elevation measurements from representative wells and piezometers were completed on October 14, 2013 during low tide. All measurements were completed within an approximately 1-hour-long period. Water and/or LNAPL levels and elevations are summarized in Table 4.2.

4.6 **RI/FS WORK PLAN DEVIATIONS**

No deviations from the RI/FS Work Plan occurred during the investigation; however, a fourth unplanned well was installed. As described in Section 4.1, PP-26 was intended to be a replacement for PP-4, but was inadvertently installed adjacent to PZ-8. It is located adjacent to PZ-8 and will serve as a water quality well in lieu of PZ-8.

4.7 MONITORING WELL GROUNDWATER ANALYTICAL RESULTS

This section presents the analytical results of the groundwater sampling event completed on October 14 and 15, 2013. Analytical results are summarized in Tables 4.3 and 4.4 and on Figures 4.1A through 4.3B. Analytical results were screened against MTCA Method A groundwater CULs.

FLOYD | SNIDER

GRO was detected and exceeded the screening level at eight monitoring well locations (PP-13, PP-15R, PP-18, PP-23, PP-26, PZ-04, PZ-07, and PZ-12). The highest exceedance of 12,000 µg/L occurred at PP-15R.

Benzene was detected and exceeded the screening level at nine monitoring well locations (PP-13, PP-15R, PP-17, PP-18, PP-26, PZ-01, PZ-07, PZ-04, and PZ-12). The highest exceedance of $3,700 \mu g/L$ occurred at PP-15R.

Ethylbenzene was detected at seven monitoring well locations (PP-07, PP-13, PP-15R, PP-18, PP-23, PP-26, and PZ-07) but did not exceed the screening level (Table 4.3). Toluene was detected at nine monitoring well locations (PP-07, PP-13, PP-17, PP-18, PP-23, PP-26, PZ-01, PZ-07, and PZ-12) but did not exceed the screening level (Table 4.3). Toluene was not detected at levels greater than the reporting limit at any other monitoring well locations.

Total xylene was detected at six monitoring well locations (PP-07, PP-15R, PP-17, PP-18, PP-23, and PZ-01) but was less than the MTCA Method A Unrestricted Land Use screening level and was not detected at levels greater than the reporting limit at any other monitoring well locations (Table 4.3).

DRO was detected and exceeded the Site screening criterion at three monitoring wells (PP-18, PP-23, and PZ-04). The highest exceedance of 1,300 μ g/L occurred at PP-18. Oil-range organics were not detected at any samples.

Lead was only detected in PP-18 but did not exceed the screening levels. Polycyclic aromatic hydrocarbons (PAHs) were detected in PP-17, PP-18, PP-19, PP-22, and PP-23, but all were less than the screening levels. cPAHs were not detected at levels greater than the reporting limit at PP-13, PP-20, PP-21, or PZ-12.

PCBs were not detected at levels greater than the reporting limit in PP-18.

SVOCs were detected in PP-17 and PP-23, but were all less than the MTCA Method A criteria. Naphthalene and 1-methylnaphthalene were detected in PP-18 at levels greater than the MTCA Method A screening level. 3- and 4-Methylphenol were detected in PP-22, but there is not a MTCA Method A screening level value. SVOCs were not detected at levels greater than the reporting limit in PP-13, PP-19, PP-20, PP-21, or PZ-12.

With one exception, the non-BTEX VOCs detected in PP-17, PP-18, PP-22, and PP-23 were all less than the MTCA Method A screening level. Ethylene dichloride (EDC) was detected in PP-15R at levels greater than the MTCA Method A screening level. VOCs were not detected in PP-19, PP-20, or PP-21.

Formaldehyde was not detected at concentrations greater than the reporting limit in PZ-12 and PP-13.

4.8 DIRECT-PUSH GROUNDWATER SCREENING ANALYTICAL RESULTS

All direct-push groundwater screening samples were analyzed for GRO, DRO, oil-range organics, and BTEX. Samples collected from the K-98 and K-99 borings near the former dry well were also analyzed for VOCs. Sample results for GRO, DRO, oil-range organics, and BTEX are presented in Tables 4.3 and 4.4.

Analytical results for groundwater screening samples on the Site were primarily non-detect. One VOC, the solvent methylene chloride, was detected in the sample collected from the K-98 boring at a concentration of 5.4 μ g/L, slightly exceeding the MTCA Method A screening level.

GRO, DRO, and BTEX compounds were detected in samples from seven of nine borings on the Peninsula Fuel Company property. Oil-range organics were not detected in any samples. GRO and DRO concentrations exceeded the MTCA Method A screening level in samples collected from PF-3, PF-6, PF-7, and PF-8. A maximum GRO concentration of 9,500 μ g/L was detected at PF-6, and a maximum DRO concentration of 2,400 μ g/L was detected at PF-8. Benzene detections of 64 and 200 μ g/L also exceeded the screening levels, at PF-7 and PF-8, respectively.

5.0 Sediment Investigation and Analytical Results

This section summarizes the results of the sediment investigation. The sediment investigation included sediment sampling in July 2013 for chemical analysis, sediment bioassay testing, and sediment profile imaging (SPI). Table 5.1 summarizes the sediment chemistry results from the sediment investigation. The sediment sample locations are shown in Figure 5.1. Refer to Appendix D for the full set of analytical results. Field notes that describe the details on the sampling conducted are included as Appendix E.

5.1 SURFACE SEDIMENT SAMPLING

Sediment investigation activities in front of the Site included the collection and analysis of surface sediment (0 to 10 centimeters [cm]) samples to evaluate if sediments in front of the Site were historically impacted from discharges from the Site, and sediment imaging to evaluate the presence of wood waste. The sediment sampling investigation was coordinated to be consistent with the WPAHG sampling event, and the procedures were performed in accordance with the WPAHG RI/FS Work Plan.

Three surface sediment samples were collected (KSS-1, KSS-2, and KSS-3) within the nearshore area of Port Angeles in front of the Site on July 9, 2013. The surface sediment sampling location KSS-1 was located in front of the historical sanitary sewer outfall. Surface sediment sampling location KSS-2 was located directly offshore of the existing outfall (and historical entrance to the log pond). The surface sediment sampling location KSS-3 was the furthest east of the sediment samples and was located offshore of the log storage yard. Positioning and navigation to the surface sediment sampling locations in Port Angeles Harbor was accomplished with a differential global positioning system with an accuracy of within 2 meters. Water depths were measured with the vessel depth finder, corrected for tide, and converted to mudline elevations.

The surface sediment sampling was performed from the BioMarine Enterprises' R/V Kittiwake by Integral Consulting field staff. The surface sediment samples were collected from a depth of 0 to 10 cm using a stainless steel Van Veen grab sampler. Multiple grabs were required at each sampling location to obtain the volume of sediment required for the chemical analyses and the biological testing.

Sample processing for the surface sediment samples collected occurred on the boat. Sediment sample characteristics and observations were made in a field notebook and include notes on texture, color, biological organisms or structures, presence of debris, relative size of wood debris, presence of sheen or contamination, and odor. Sediment descriptions were recorded in a field notebook (refer to Appendix E). Samples for total volatile solids (TVS) were collected directly from the grab sampler and placed in the sample containers. Once sufficient sample volume was collected, the samples were homogenized to a uniform appearance in stainless steel bowls (several bowls were required for each location). Following homogenization, the remaining sample containers for chemical analysis and bioassay testing were filled. All sampling containers were tightly capped, labeled, and immediately placed in a cooler maintained at a temperature of approximately 4 °C using crushed ice. Samples for conventional and chemical analysis were shipped to ALS Environmental in Kelso, Washington and samples for PCB and dioxins/furans analysis were shipped to Axys Analytical Services in Sidney, British Columbia, Canada, under standard chain-of-custody procedures. Samples for bioassay testing were

delivered to Newfields in Port Gamble, Washington, under standard chain-of-custody procedures.

5.2 SEDIMENT PROFILING IMAGING

SPI was completed at the three sediment sample locations to evaluate and delineate the extent of wood debris and to provide information on benthic habitat quality (Floyd|Snider et al. 2013). Images were collected using an Ocean Imaging Systems 3731 camera of the sediment column in profile. Plan view images were also taken to evaluate surface features. Multiple images were obtained at each location and a full analysis of the images was completed by Germano and Associates. Refer to the WPAHG Sampling and Analysis Plan (SAP) for additional details on the qualitative metrics that were determined from the images (Integral et al 2013).

5.3 ANALYTICAL METHODS AND DATA VALIDATION

5.3.1 Analytical Methods

The surface sediment samples collected were analyzed for the methods indicated below, in accordance with the RI/FS Work Plan (Floyd|Snider et al. 2013) and WPAHG RI/FS Work Plan (Integral et al. 2013):

- Grain size by Puget Sound Estuary Program (PSEP)
- Total solids by USEPA Method 160.3 Modified
- TVS by USEPA Method 160.3
- Total organic carbon by Plumb 1981
- Metals (arsenic, cadmium, chromium, copper, lead, silver, and zinc) by USEPA Method SW6020A
- Mercury by USEPA 7471B
- SVOCs by USEPA 8270D
- PAHs and PCP by USEPA 8270 SIM
- Butyltins by Krone 1988
- GRO and oil-range organics by NWTPH-Dx with silica gel and acid cleanup
- PCBs (congeners) by USEPA 1668A
- Dioxin/furans by USEPA 1613B

5.3.2 Bioassay Testing

As discussed in Section 5.6.2 below, biological toxicity tests were conducted following review of the analytical data with Ecology. The toxicity tests were conducted consistent with the procedures in the WPAHG RI/FS SAP (Integral 2013). Bioassay testing included the following:

- 10-day amphipod test with *Eohaustorius estuarius*
- 20-day polychaete test with Neanthes arenaceodentata
- 48-hour benthic larval test with the bivalve *Mytilus galloprovincialis* following the resuspension protocol

5.3.3 Data Validation

The sediment data were validated in accordance with the quality assurance procedures identified in the WPAHG RI/FS Work Plan. The dioxin/furan data and PCB data were validated by EcoChem. All other data were validated by Floyd|Snider. The data validation reports are included in Appendix A.

5.4 REMEDIAL INVESTIGATION/FEASIBILITY STUDY WORK PLAN DEVIATIONS

There was one deviation from the RI/FS Work Plan during the field event. A mooring dolphin was located at the coordinates for the proposed sample station KSS-2. Because of this obstruction, KSS-2 was moved approximately 20 meters from the proposed location to the southeast, directly offshore of the outfall.

5.5 FIELD OBSERVATIONS

The field observations from the sediment investigation were recorded in a field notebook (refer to Appendix E). Of note are the following observations related to odor, benthic health, and wood waste:

- The KSS-1 sediment sample had a sulfide smell and a large piece of kelp on the sample grab. There was no wood debris. A snail was observed on the kelp.
- The KSS-2 sediment sample was composed of approximately 30 percent fine wood waste with a few pieces of bark. It had a normal odor and shell fragments were observed.
- The KSS-3 sediment sample contained several small Dungeness crabs and shrimp. There was no wood debris or odor.

5.6 SEDIMENT RESULTS

5.6.1 Chemistry Data

Of the three sediment samples, there were only three instances where the Sediment Management Standards (SMS) cleanup screening level (CSL) or SMS Sediment Quality Standard (SQS) were exceeded. KSS-1 exceeded the SQS for chrysene and fluoranthene and KSS-2 exceeded the CSL for fluoranthene. In addition to the individual PAH detections, there were low level detections of metals, butyltins, and DRO and oil-range organics. PCBs were

detected at levels greater than the reporting limit for all three samples, but the reported concentrations were one to two orders of magnitude lower than the CSL. The summed dioxin/furan TEQ concentration, using ½ the reporting limit for those analytes that were not detected in the calculation, was 11.9 pg/g for KSS-1, 12.3 pg/g for KSS-2, and 2.2 pg/g for KSS-3. Other SVOCs and PAHs were detected, but not at levels of concern.

5.6.2 Bioassay Data

Sediment samples were submitted to Newfields following sample collection, but the samples were held by the laboratory until the receipt and review of the chemistry data. Because of the fluoranthene and chrysene exceedances discussed above, Ecology requested that the bioassay testing be conducted for the three sediment samples.

The bioassay testing was compared to bioassay testing done on the reference sediment collected as part of the WPAHG investigation. The sediments for KSS-1, KSS-2, and KSS-3 met SQS performance standards for each of the bioassay tests. The bioassay data discussion is presented in a report prepared by Newfields and is included as Appendix E.

5.6.3 SPI Imaging

The sediment profile imaging results for KSS-1, KSS-2, and KSS-3 were included with the evaluation of the WPAHG sediment station imaging in the Sediment Profile Imaging Report prepared by Germano and Associates (Germano and Associates 2013). The report presents the evaluation of the sediment images taken in Port Angeles Harbor with regards to physical, chemical, and biological processes. The report includes a discussion of materials and methods and results for surface boundary roughness, wood debris, and apparent sediment health, among other items. The images indicate that there is between 5 and 20 percent wood debris in KSS-1, less than 5 percent wood debris in KSS-2, and no wood debris in KSS-3.

Generally, the image analysis for the Site sediment stations indicated consistency with the sediments observed in other parts of Port Angeles Harbor. A more thorough presentation and evaluation of the results will be available in the final Sediment Profile Imaging Report, anticipated to be included as an attachment to the WPAHG Data Report. Appendix F shows the plan view and profile images taken at KSS-1, KSS-2, and KSS-3.

5.7 INCLUSION OF THE SEDIMENT DATA IN THE WPAHG REMEDIAL INVESTIGATION/FEASIBILITY STUDY

The chemistry data, bioassay test results, and SPI images indicate that there are no significant sediment concerns that are specific to the Site. The sediment chemistry from KSS-1, KSS-2, and KSS-3 are similar or of better quality to samples previously collected in Port Angeles Harbor. For example, dioxin/furan and PCB concentrations indicate that concentrations are lower than at many locations within Port Angeles Harbor. Because no site-specific sediment concerns were identified, the data were provided to the WPAHG consulting team for inclusion in their RI/FS process. The data for KSS-1, KSS-2, and KSS-3 may be further evaluated by WPAHG or Ecology with any future decisions or remedial actions for this specific sediment area addressed by the WPAHG process.

6.0 Site Summary

This section provides a brief summary of results relative to the nature and extent of contamination.

The preliminary evaluation of the RI data completed for this report indicates that the primary COCs for the Site include, as expected based on existing data, GRO, oil-range organics (hydraulic oil), and benzene. No other new or previously undetected COCs were supported by the data. The data collected provide a much clearer understanding of the extent and magnitude of contamination. The figures developed for this Data Memo confirm that the majority of contamination is primarily focused in the areas that were previously known to have contamination, namely the Gasoline Area under the concrete pad and the Hydraulic Oil Area under the hydraulic presses. In contrast, the Debarker Area was free of contamination.

The field investigation did provide new information on Pipeline 8 as a probable source for the gasoline contamination and the quality of the surface soil with regards to dioxin/furan contamination. The field investigation also removed offshore sediment as a media of concern. Additionally, the data collected helps support discussions between the Port and Ecology on where the boundary of the Site, as defined under MTCA as "where contamination has come to lie," should be drawn.

MTCA Method A CULs were used in the figures and tables for preliminary data evaluation purposes. A comprehensive list of COCs and the development of draft CULs will be presented in the RI/FS.

The data collected still supports the division of the contamination "source areas" that have been discussed in previous documents. The following bullets summarize conclusions that can be drawn for these areas:

Gasoline Area. As shown in the soil and groundwater figures presented in Sections 3.0 and 4.0, GRO, DRO, and benzene contamination appears to have been released under the concrete pad in the vicinity of Pipeline 8 and have spread to the north and northeast. Contamination of GRO and benzene in groundwater appears to have originated in this area and has been transported toward the K Ply bulkhead. affecting soil quality near the water table for a substantial distance downgradient. Trenching along Pipeline 8 and the pressure test conducted on Pipeline 8 indicate that the integrity of the east and west pipelines was compromised in two general areas: (1) at a specific joint in the west pipeline that was exposed by the trenching (labeled "joint leak" on Figure 3.2) and (2) in the section of the west pipeline that was not visually examined (i.e., somewhere under the alley or concrete pad) and the section of the east pipeline that also runs under the alley/concrete pad and was not visually examined (labeled "pressure test failure area" on Figure 3.2). The northern section of the east pipe that was exposed by trenching held pressure. Soil contamination was not observed under the joint leak described above, whereas the east and west sections of Pipeline 8 that cross under the pad are where the most significant gasoline and diesel soil contamination was found in vadose zone soils. Historical information about Pipeline 8 operations is discussed in the RI/FS Work Plan. The weathered nature of the gasoline contamination encountered, as indicated by the laboratory, is consistent with the dates of pipeline operations discussed in the RI/FS Work Plan.

- **Peninsula Fuel Company.** Elevated levels of GRO and DRO were encountered in soil and groundwater at the Peninsula Fuel Company property. However, based on the lower peak concentrations observed, low LNAPL saturation, and much more limited areal extent of contamination, the releases originating within the Peninsula Fuel Company property appear to be generally confined to the Peninsula Fuel Company property, which is not a significant contributor to the gasoline and diesel contamination found downgradient under the former mill.
- **Hydraulic Oil Area.** Data collected in the hydraulic oil area have helped define the edges of the hydraulic oil contamination. The data will be further evaluated in the RI/FS, but the general understanding of the contaminated area is consistent with previous data.
- **Groundwater.** Groundwater upgradient of the Site, with the exception of Peninsula Fuel Company, appears not to be impacted. Groundwater near or immediately downgradient of source areas within the Site shows significantly elevated detections, as expected. However, further downgradient, near the bulkhead, contamination appears to be isolated to PP-18 and, to a much lesser extent, PP-17. Further groundwater monitoring will provide key data for the evaluation of groundwater presented in the RI/FS.
- **Debarker Area.** The data collected on the east side of the site in the general area of the debarker and log storage appear to be free of significant contamination. This area will likely not require further investigation or cleanup prior to redevelopment.
- **Sediment.** The data collected by the three nearshore sediment samples indicate that sediment is not a media of concern for the Site.

7.0 Additional Data Collection and Schedule

7.1 ADDITIONAL DATA COLLECTION

The recent field work conducted as part of the RI included a substantial number of borings to observe soil cores for evidence of petroleum contamination. In addition, the field work involved the collection of soil, groundwater, and sediment samples for laboratory analysis. Between this RI data and historical data collected during prior investigation, sufficient data for the Site exist to proceed with the RI/FS report; however, there are a few field activities that are not yet completed.

The round of groundwater monitoring, as described in the RI/FS Work Plan, will be completed in January 2013. The data collected from this groundwater monitoring event will be incorporated into the RI/FS.

There will also likely be some limited data collection as part of the FS or in the event of an interim action. This includes delineating the surface extent of resin material in the Hydraulic Oil Area (as described in the RI/FS Work Plan). Additional analytical samples could be collected to better determine the extent of contamination during a cleanup phase, but the scope of that sampling is not know at this time.

As specified in the AO, Ecology comments on this report will be incorporated into the RI/FS document. A revised Supplemental Data Collection Technical Memorandum will not be produced.

8.0 References

- Floyd|Snider. 2013. *K Ply Site Remedial Investigation/Feasibility Study Work Plan*. Prepared for Port of Port Angeles. September.
- Floyd|Snider, Exponent, Anchor QEA, and Integral Consulting Inc. 2013. Western Port Angeles Harbor Remedial Investigation/Feasibility Study Work Plan. Prepared for Port of Port Angeles, Georgia-Pacific LLC, Nippon Paper Industries USA Co., Ltd., City of Port Angeles, and Merrill & Ring. 20 May.

Germano and Associates. 2013. Sediment Profile Imaging Report.

- Integral Consulting Inc., Anchor QEA, LLC, Exponent, Floyd|Snider. 2013. Sampling and Analysis Plan, *Western Port Angeles Harbor RI/FS.* Prepared for Western Port Angeles Harbor Group. 13 June.
- U.S Environmental Protection Agency (USEPA). 1994. National Functional Guidelines for Inorganic Data Review. February.
- ——. 1999. National Functional Guidelines for Organic Data Review. October.
- . 2004. National Functional Guidelines for Inorganic Data Review. October
- . 2008. National Functional Guidelines for Superfund Organic Data Review. June.

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Tables

ECOLOGY DRAFT

Table 2.1RI Soil Investigation Work Performed

Investigation Area	Location ID	Purpose ¹	Work Performed	We
Site-wide Soil				
Air Deposition Related	Surface Sample Locations: SS-1, SS-2, and SS-3.	Characterize the potential air deposition contamination associated with stack emissions.	• Three surface soil samples were collected consistent with the procedures described in the RI/FS Work Plan.	• Y
Resin and Other Surface Solid Waste Extent	None	Delineate the horizontal and vertical extent of the dried resin for solid waste disposal purposes. Analytical testing of the material was conducted as part of the IAWP.	These data were not collected because plastic sheeting currently covers the resin area.	• [
Focused Soil Areas of C	Concern			
Gasoline Plume Source	Direct-push Boring Locations: K-00 through K-49, K-77 through K-82, K-86, K-87, K-88, PP-4R, PP-15R, PP-23, PP-26, and PZ-06A. Test Pit Location: KT-21.	Determine the source of the gasoline plume as described in the rows below.	 Pipelines 8 and 5 were located with the aid of utility locating services and test pits. The length of Pipeline 8 from concrete slab north to the bulkhead was uncovered for inspection. Samples were collected from the direct-push borings in areas of the gasoline plume. Additional step out borings were used, as informed by signs of contamination, to delineate apparent source area(s). 	• 5
	Direct-push Boring Locations: K-00 through K-49, K-77 through K-82, K-86, K-87, K-88, PP-4R, PP-15R, PP-23, PP-26, and PZ-06A.	Extent of Gasoline Area: Delineate the approximate extent of LNAPL to estimate volume, assess fate and transport, and inform remedial evaluation.	 Direct-push borings were advanced. PID and sheen tests were conducted. Select samples were submitted for laboratory analysis. Additional step out borings were advanced on October 14–16 to identify the full extent of the gasoline area. Petrophysical testing was conducted in intervals with field evidence of LNAPL contamination. 	• Y
	Trench Location: KT-2 (Pipeline 8). Test Pit Location: KT-1 (Pipeline 8 at terminus at Peninsula Fuel Company).	Pipeline 8: Assess the condition of Pipeline 8 and the potential contribution of contamination from Pipeline 8 found in deteriorated condition.	 Pipeline 8 was identified and exposed from the concrete slab along the length of Pipeline 8 to the terminus near Pier 1. The soil around the exposed sections of pipe was inspected for signs of contamination. Pressure testing was performed to determine the integrity of the pipe and evaluate the potential for historical leaks. 	• }
	Contingency only; to be determined at the time of sampling.	8-inch Sanitary Sewer Line: Determine if the 8-inch sanitary sewer line terminates in the buried manhole and if there are any environmental impacts.	• A manhole was not found and no further excavation work was conducted.	• N te
	Test Pit Location: KT-20. Contingency Direct-push Boring Locations: K-200, K-201, K-202, K-203.	4-inch Sanitary Sewer Line: Because of the gasoline odor detected during the utility survey, characterize the soil at the terminus of the 4-inch historical sanitary sewer line to evaluate if gasoline was historically dumped into the pipe. If the results indicate material was not dumped, evaluate the potential for contamination to have migrated into the pipe.	 Test Pit KT-20 was dug in the area where the 4-inch sanitary sewer terminus was suspected based on the utility survey. A 10-foot by 6-foot by 11-feet test pit was dug. Concrete pipe debris, likely from the 4-inch pipe and a larger 8-inch pipe, was encountered. The terminus of the 4-inch pipe was not found. No signs of contamination were observed and the pipe was not "chased." Four direct-push borings were advanced along the 4-inch line between the manhole and the test pit. 	• N • Y
Panel Oiler	Direct-push Boring Locations: K-29 through K-30. K-37 and K-39 were also analyzed for SVOCs. K-30 was relocated in the field.	Characterize the horizontal and vertical extent of PCP contamination along the concrete slab in the panel oiler area. Evaluate if the PCP contamination extends under the concrete wall. The data will supplement previous sidewall data collected that delineate the north, east, and west extent.	 Three direct-push borings co-located with gasoline area borings near the panel oiler were collected and analyzed for PCP. Two samples were collected at the base of KT-1 near the panel oiler. 	• }
Peninsula Fuel Company	Direct-push Boring Locations: PF-1 through PF-9.	Characterize potential TPH contamination on the Peninsula Fuel Company property and assess source relationship with groundwater contamination on the K Ply Site.	 Nine direct-push borings were advanced on the Peninsula Fuel Company property. Analytical samples were collected and field monitoring was conducted. Co-located borings were collected for petrophysical testing at PF-5 and PF-7. 	• Y

ere the Objectives Fulfilled?
Yes.
Data will be collected, if needed, as part of remedial design.
See below.
Yes.
Yes.
No, it was not determined where the 8-inch sanitary sewer terminates or if there are any related environmental impacts in the alley. No further investigation is planned.
No, the terminus of the 4-inch sanitary sewer was not found. Yes, impacts surrounding the 4-inch line were investigated. No further investigation is planned.
Yes.
Yes.

Table 2.1RI Soil Investigation Work Performed

Investigation Area	Location ID	Purpose ¹	Work Performed	Wer
Hydraulic Oil Area	Direct-push Boring Locations: K-50 through K-76, plus K-83, K-84, K-85, K-89, K-102, K-103, K-104, PP-6R, and PP-20.	Delineate the edges of the hydraulic oil contamination and gasoline contamination near the hydraulic presses. Delineate the extent of LNAPL to estimate volume, assess fate and transport, and inform remedial evaluation.	 Direct-push borings were advanced at the anticipated extent of the hydraulic oil and gasoline contamination. LNAPL field testing methods (i.e., paper towel test, bowl test, UV light) were employed to determine if LNAPL was present. Analytical samples were collected. Step out borings were used as necessary. Borings co-located with EW-02A and K-59 were collected for petrophysical testing. Borings were advanced to determine the extent of commingled downgradient gasoline. 	• Y
Other TPH Use Areas	Test Pit Locations: KT-10 and KT-11. Direct-push Boring Locations: K-90 through K-92.	Characterize the soil for potential contamination in the locations of the former UST/AST locations on-site and in the fuel pile location associated with historical dumping.	 Direct-push borings were advanced in the locations of the historical USTs and ASTs to assess soil conditions. Two test pits were dug in the area of the fuel pile to determine if shallow soil was impacted by historical dumping on the fuel pile. Analytical samples were collected. 	• Y
Dry Well Area	Test Pit Location: KT-12. Direct-push Boring Locations: K-98 and K-99.	Characterize the soil for potential contamination in the location of the apparent dry well identified during demolition.	 A direct-push boring was advanced in the dry well location. A test pit was dug in the dry well for inspection and collection of additional samples. 	• Ye
Surface Soil in the Stack Footprint	Surface Sample Locations: SS-4, SS-5, and SS-6.	Characterize the potential air deposition contamination associated with stack emissions and fly ash that could have been deposited during the stack demolition.	 Three surface soil samples were collected in the stack footprint and were analyzed for dioxins/furans. 	• Ye
Wood Debris Pile Characterization	Test Pit Locations: KT-13 and KT-14.	Visually characterize the material placed in the wood debris pile located southeast of the historical 10-foot lathe building.	• Two test pits were dug to examine the wood pile material.	• Y
Debarker Operations	Direct-push Boring Locations: K-94 through K-97.	Assess impacts to soil from historical operations.	 Four direct-push borings were advanced surrounding the log debarker and four analytical samples were collected. 	• Ye lo Ae de
Log Pond Fill	Direct-push Boring Locations: K-100 and K-101.	Characterize the quality of log pond fill material that was incrementally placed in the log pond between 1940 and 1985.	 Two direct-push borings were advanced in the area of the former log pond to characterize the fill material. Analytical samples were collected. 	• Ye

Note:

1 As defined in the RI/FS Work Plan.

Abbreviations:

AST Aboveground storage tank

BTEX Benzene, toluene, ethylbenzene, and xylenes

- IAWP Interim Action Work Plan
- LNAPL Light non-aqueous phase liquid
- PCP Pentachlorophenol
- PID Photoionization detector
- RCRA Resource Conservation and Recovery Act
- RI/FS Remedial Investigation/Feasibility Study
- SVOC Semivolatile organic compound
- TPH Total petroleum hydrocarbons
- UST Underground storage tank
- UV Ultraviolet

ere the Objectives Fulfilled?
Yes.
Yes, although a sample was not able to be collected in the location of the historical UST due to debarker operations. Adequate soil samples were collected surrounding the debarker to fulfill the objectives.
Yes.

Table 2.2RI Groundwater Investigation Work Performed

Investigation Area	Location ID	Purpose ¹	Work Performed	Were t
General Groundwater	Data Objectives			•
Water Level Data	Existing Monitoring Wells: PP-13, PP-18, PP-19, PZ-13, PZ-12, PP-17, PZ-7, PZ-8, PZ-4, MW-23, MW-8, PZ-1, and PP-9. New/Replacement Monitoring Wells: PP-20, PP-21, PP-22, PP-23, PP-24, PP-25, PP-15R, PP-6R, and PP-4R.	Collect and asses water level elevation for groundwater flow direction and gradient.	 A professional survey of monitoring well locations was conducted. Water level elevation measurements were collected from site wells at a low tide. 	• Yes, yet b
LNAPL Thickness	Existing Monitoring Wells: PZ-6, PP-7, PP-11, PP-12, PP-10, PP-1, PP-14, PP-2, and other wells in which LNAPL is identified.	Monitor current LNAPL thickness.	 LNAPL thickness was measured during the first monitoring event. 	 Yes, yet b
Well Replacement	Replacement Monitoring Wells: PP-15R, PP-6R, and PP-4R.	Replace three wells destroyed during demolition.	• Four new wells were installed, including the three replacement wells and one well that was inadvertently installed.	 Yes.
Focused Groundwate	r Areas of Concern			•
Mill Area Petroleum	Existing/Replacement Monitoring Wells: PP-15R, PP-13, PP-18, PP-19, PZ-13, PZ-12, PP-17, PZ-7, PZ-8, and PZ-4.	Monitor current conditions of GRO, benzene, and hydraulic oil plumes in mill area and Cedar Street.	One round of groundwater monitoring was conducted.	 Yes, yet b
Caustic Vault Area	Existing Monitoring Wells: PP-13 and PZ-12.	Assess the potential for leakage of caustic soda into groundwater and for impacts related to resin spill.	• pH was monitored in Monitoring Wells PP-13 and PZ-12.	Yes.
Downgradient of Former Log Pond/Shoreline Groundwater Quality	Existing Monitoring Wells: PP-19, PP-17, and PP-18. New Monitoring Wells: PP-20, PP-21, and PP-22.	Assess the potential for contamination at the base of the former log pond to have impacted groundwater near the bulkhead. Confirm no VOCs, SVOCs, or PAHs in shoreline monitoring wells.	One round of groundwater monitoring was conducted.	• Yes, yet b
Other TPH Use Areas	Geoprobe Locations: K-90, K-91, K-92, and K-93.	Investigate data gap in groundwater quality in specific areas of historical TPH usage.	• Direct-push probe groundwater samples were collected from four locations.	 Yes.
Dry Well Area	Geoprobe Locations: K-98 and K-99.	Investigate groundwater for potential contamination beneath and downgradient of the location of the apparent dry well identified during demolition.	Direct-push probe groundwater samples were collected from two locations.	• Yes.
Upgradient Groundwa	ater			
Peninsula Fuel Company	Existing Monitoring Wells: PZ-1 and PP-07. New Monitoring Well: PP-23. Geoprobe Locations: PF-1, PF-2, PF-3, PF-4, PF-5, PF-6, PF-7, and PF-8.	Assess the effect of contamination at Peninsula Fuel Company to site groundwater.	 Direct-push probe groundwater samples were collected. One round of groundwater monitoring was conducted for PZ-1, PP-07 and PP-23. 	• Yes, yet b
Former Port Angeles Truck Stop Chevron	Existing Monitoring Well: PP-9.	Assess petroleum constituents in upgradient groundwater in the vicinity of the former service station.	One round of groundwater monitoring was conducted.	• Yes, yet b
Former PenPly Retail Office	New Monitoring Well: PP-24.	Assess petroleum constituents in upgradient groundwater in the vicinity of the former service station.	One round of groundwater monitoring was conducted.	• Yes, yet b
Marine Drive Exxon	New Monitoring Well: PP-25.	Assess petroleum constituents in upgradient groundwater in the vicinity of the former service station.	One round of groundwater monitoring was conducted.	 Yes, yet b

Note:

1 As defined in the RI/FS Work Plan.

Abbreviations:

- GRO Gasoline-range organics
- LNAPL Light non-aqueous phase liquid
- PAH Polycyclic aromatic hydrocarbon
- RI/FS Remedial Investigation/Feasibility Study
- SVOC Semivolatile organic compound
- TPH Total petroleum hydrocarbons
- VOC Volatile organic compound

F:\projects\Port of PA KPLY Mill\Supplemental Data Collection Technical Memo\Tables\Table 2.2 RI Groundwater Sampling Work Performed 010714.docx January 2014 DRAFT

re the Objectives Fulfilled?

Yes, but the second round of groundwater monitoring has not yet been conducted.

/es, but the second round of groundwater monitoring has not ret been conducted.

′es.

/es, but the second round of groundwater monitoring has not ret been conducted.

′es.

Yes, but the second round of groundwater monitoring has not vet been conducted.

es.

′es.

Yes, but the second round of groundwater monitoring has not ret been conducted for PZ-1, PP-07, and PP-23.

Yes, but the second round of groundwater monitoring has not ret been conducted.

Yes, but the second round of groundwater monitoring has not et been conducted.

Yes, but the second round of groundwater monitoring has not ret been conducted.

Table 2.3RI Sediment Investigation Work Performed

Investigation Area	Location ID	Purpose ¹	Work Performed	Wer
Nearshore Surface Sediment Chemistry	KSS-1, KSS-2, and KSS-3.	Assess surface sediment chemistry in the nearshore area based on prior investigation results. Locations based on the locations of current or historical outfalls.	• Three surface sediment grab samples were collected and were submitted for chemical analysis and, following review of analytical results, bioassay testing.	• Y
Nearshore Wood Debris Evaluation	KSS-1, KSS-2, and KSS-3.	Confirm local presence and amount of wood debris identified in the K Ply vicinity in previous investigations.	 Sediment profile images were taken to evaluate the presence of wood debris. 	• Ye

Note:

1 As defined in the RI/FS Work Plan.

Abbreviations:

K Ply K Ply Inc.

RI/FS Remedial Investigation/Feasibility Study

Vere the Objectives Fulfilled?

Yes.

Yes.

Table 3.1Soil Boring Field Observations

Gasoline Area

ring Location	Field Observation	K-00*	K-01*	K-02*	K-03*	K-04*	K-06*	K-07*	K-08*	K-09*
-	Peak PID ppm	7.7 @ 2 ft	60 @ 1.5 ft	29 @ 4 ft	3.9 @ 4 ft	0.1 (all)	16 @ 4 ft	26.5 @ 4 ft	0.1 (all)	0.3 @ 2.5 ft
0–4 ft bgs	Odor	negative	negative	negative	negative	negative	negative	negative	negative	negative
0–4 It bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	NA	NA
	Peak PID ppm	287 @ 8 ft	340 @ 5.5 ft	52 @ 6 ft	12.2 @ 8 ft	0.1 (all)	6.4 @ 5 ft	690 @ 7 ft	0.1 (all)	0.1 (all)
4–8 ft bgs	Odor	strong gasoline	strong gasoline	negative	negative	negative	negative	strong gasoline	negative	negative
4–6 ft bys	Sheen	negative	slight rainbow	negative	negative	negative	negative	heavy rainbow	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	NA	NA
	Peak PID ppm	673 @ 9.5 ft	333 @ 9.5 ft	694 @ 9.5 ft	117 @ 11 ft	0.1 (all)	794 @ 11 ft	297 @ 9.5 ft	1.7 @ 9 ft	0.1 (all)
9 12 ft bac	Odor	strong gasoline	strong gasoline	strong gasoline	negative	negative	strong gasoline	strong gasoline	negative	negative
8–12 ft bgs	Sheen	stringy rainbow	heavy rainbow	stringy white	negative	negative	heavy rainbow	heavy rainbow	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	3.0 @ 12 ft	NA	NA	3.6 @ 12 ft	NA	NA	NA	NA	NA
12–16 ft bgs	Odor	negative	NA	NA	negative	NA	NA	NA	NA	NA
12-10 It bys	Sheen	negative	NA	NA	negative	NA	NA	NA	NA	NA
	Blot Test	negative	NA	NA	negative	NA	NA	NA	NA	NA
Depth to G	iroundwater	11 ft	NA	NA	11 ft	NA	NA	10.5 ft	NA	NA
ring Location										
ring Location										
•	Field Observation	K-10	K-11	K-12	K-13	K-14	K-15	K-16*	K-17*	K-18*
	Peak PID ppm	4.8 @ 2 ft	106 @ 2.5 ft	148 @ 1 ft	1.7 @ 1.5 ft	0.9 @ 3.5 ft	0.6 @ 2.5 ft	18.3 @ 2.5 ft	8.8 @ 2 ft	17 @ 1.5 ft
0–4 ft bgs	Peak PID ppm Odor	4.8 @ 2 ft negative	106 @ 2.5 ft negative	148 @ 1 ft negative	1.7 @ 1.5 ft negative	0.9 @ 3.5 ft negative	0.6 @ 2.5 ft negative	18.3 @ 2.5 ft negative	8.8 @ 2 ft negative	17 @ 1.5 ft negative
	Peak PID ppm Odor Sheen	4.8 @ 2 ft negative negative	106 @ 2.5 ft negative negative	148 @ 1 ft negative negative	1.7 @ 1.5 ft negative negative	0.9 @ 3.5 ft negative negative	0.6 @ 2.5 ft negative negative	18.3 @ 2.5 ft negative negative	8.8 @ 2 ft negative negative	17 @ 1.5 ft negative negative
	Peak PID ppm Odor Sheen Blot Test	4.8 @ 2 ft negative negative negative	106 @ 2.5 ft negative negative negative	148 @ 1 ft negative negative negative	1.7 @ 1.5 ft negative negative negative	0.9 @ 3.5 ft negative negative negative	0.6 @ 2.5 ft negative negative NA	18.3 @ 2.5 ft negative negative NA	8.8 @ 2 ft negative negative NA	17 @ 1.5 ft negative negative NA
	Peak PID ppm Odor Sheen Blot Test Peak PID ppm	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft	106 @ 2.5 ft negative negative negative 705 @ 6.5 ft	148 @ 1 ft negative negative negative 594 @ 7 ft	1.7 @ 1.5 ft negative negative 3.8 @ 8 ft	0.9 @ 3.5 ft negative negative negative 3.6 @ 8 ft	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft	8.8 @ 2 ft negative negative NA 11.2 @ 4.5 ft	17 @ 1.5 ft negative negative NA 210 @ 7 ft
	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline	106 @ 2.5 ft negative negative negative 705 @ 6.5 ft strong gasoline	148 @ 1 ft negative negative negative 594 @ 7 ft strong gasoline	1.7 @ 1.5 ft negative negative 3.8 @ 8 ft negative	0.9 @ 3.5 ft negative negative negative 3.6 @ 8 ft negative	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft negative	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative	8.8 @ 2 ft negative negative NA 11.2 @ 4.5 ft negative	17 @ 1.5 ft negative negative NA 210 @ 7 ft NA
0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative	106 @ 2.5 ft negative negative negative 705 @ 6.5 ft strong gasoline negative	148 @ 1 ft negative negative negative 594 @ 7 ft strong gasoline negative	1.7 @ 1.5 ft negative negative 3.8 @ 8 ft negative negative	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft negative negative	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative	8.8 @ 2 ft negative negative NA 11.2 @ 4.5 ft negative negative	17 @ 1.5 ft negative negative NA 210 @ 7 ft NA negative
0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative negative	106 @ 2.5 ft negative negative negative 705 @ 6.5 ft strong gasoline negative negative	148 @ 1 ft negative negative 594 @ 7 ft strong gasoline negative	1.7 @ 1.5 ft negative negative 3.8 @ 8 ft negative negative negative negative negative negative	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative negative	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft negative negative negative	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative	17 @ 1.5 ft negative negative NA 210 @ 7 ft NA negative negative
0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm	4.8 @ 2 ft negative negative 1050 @ 6.5 ft strong gasoline negative negative 42 @ 9 ft	106 @ 2.5 ftnegativenegativenegative705 @ 6.5 ftstrong gasolinenegativenegative100 negative100 neg	148 @ 1 ftnegativenegative594 @ 7 ftstrong gasolinenegative61 @ 9.5 ft	1.7 @ 1.5 ftnegativenegativenegative3.8 @ 8 ftnegativenegativenegativenegative369 @ 10.5 ft	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft	0.6 @ 2.5 ft negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 415 @ 11 ft	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative negative 256 @ 10.5 ft
0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative negative 42 @ 9 ft slight gasoline	106 @ 2.5 ftnegativenegativenegative705 @ 6.5 ftstrong gasolinenegativenegative77 @ 12 ftnegative	148 @ 1 ft negative negative 594 @ 7 ft strong gasoline negative 61 @ 9.5 ft slight gasoline	1.7 @ 1.5 ft negative negative 3.8 @ 8 ft negative negative negative 369 @ 10.5 ft moderate gasoline	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline	0.6 @ 2.5 ft negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 415 @ 11 ft strong gasoline	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative negative 256 @ 10.5 ft strong gasoline
0–4 ft bgs 4–8 ft bgs	Peak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenSheenBlot TestPeak PID ppmOdorSheenSheen	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative 1020 @ 9 ft slight gasoline negative	106 @ 2.5 ftnegativenegativenegative705 @ 6.5 ftstrong gasolinenegativenegative77 @ 12 ftnegativenegativenegative	148 @ 1 ft negative negative negative 594 @ 7 ft strong gasoline negative 0.1 @ 9.5 ft slight gasoline negative	1.7 @ 1.5 ftnegativenegativenegative3.8 @ 8 ftnegativenegativenegative369 @ 10.5 ftmoderate gasolinenegative	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline negative	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline negative	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 11 ft strong gasoline stringy rainbow	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline stringy rainbow	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative negative 256 @ 10.5 ft strong gasoline NA
0–4 ft bgs 4–8 ft bgs	Peak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestBlot Test	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative 42 @ 9 ft slight gasoline negative negative negative	106 @ 2.5 ft negative negative negative 705 @ 6.5 ft strong gasoline negative	148 @ 1 ftnegativenegativenegative594 @ 7 ftstrong gasolinenegative61 @ 9.5 ftslight gasolinenegativenegative	1.7 @ 1.5 ftnegativenegativenegative3.8 @ 8 ftnegativenegativenegative369 @ 10.5 ftmoderate gasolinenegativenegative	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline negative negative	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline negative negative	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 11 ft strong gasoline stringy rainbow negative	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline stringy rainbow negative	17 @ 1.5 ft negative negative NA 210 @ 7 ft NA negative 256 @ 10.5 ft strong gasoline NA negative
0–4 ft bgs 4–8 ft bgs	Peak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppm	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative 42 @ 9 ft slight gasoline negative negative NA	106 @ 2.5 ft negative negative negative 705 @ 6.5 ft strong gasoline negative negative 77 @ 12 ft negative negative negative negative NA	148 @ 1 ft negative negative negative 594 @ 7 ft strong gasoline negative 61 @ 9.5 ft slight gasoline negative NA	1.7 @ 1.5 ft negative negative 3.8 @ 8 ft negative NA	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline negative negative NA	0.6 @ 2.5 ft negative negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline negative negative NA	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 11 ft strong gasoline stringy rainbow negative 2.3 @ 12.5 ft	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline stringy rainbow negative 11.2 @ 13 ft	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative 256 @ 10.5 ft strong gasoline NA negative NA
0–4 ft bgs 4–8 ft bgs 8–12 ft bgs	Peak PID ppmOdorSheenBlot TestPeak PID ppmOdor	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative negative 1020 @ 9 ft slight gasoline negative negative NA NA	106 @ 2.5 ftnegativenegativenegative705 @ 6.5 ftstrong gasolinenegativenegative77 @ 12 ftnegativenegativenegativeNANA	148 @ 1 ft negative negative 594 @ 7 ft strong gasoline negative 61 @ 9.5 ft slight gasoline negative NA NA	1.7 @ 1.5 ft negative negative negative 3.8 @ 8 ft negative negative negative 369 @ 10.5 ft moderate gasoline negative NA NA	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline negative negative NA NA	0.6 @ 2.5 ft negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline negative negative NA NA	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 11 ft strong gasoline stringy rainbow negative 2.3 @ 12.5 ft negative	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline stringy rainbow negative 11.2 @ 13 ft negative	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative negative 256 @ 10.5 ft strong gasoline NA negative NA NA
0–4 ft bgs 4–8 ft bgs	Peak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenSheenSheen	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative negative 1050 @ 9 ft slight gasoline negative negative NA NA NA NA NA	106 @ 2.5 ftnegativenegativenegative705 @ 6.5 ftstrong gasolinenegativenegative77 @ 12 ftnegativenegativenegativeNANANANANA	148 @ 1 ft negative negative 594 @ 7 ft strong gasoline negative 01 @ 9.5 ft slight gasoline negative NA NA NA NA NA	1.7 @ 1.5 ft negative negative negative 3.8 @ 8 ft negative negative negative 369 @ 10.5 ft moderate gasoline negative NA NA NA NA NA NA	0.9 @ 3.5 ft negative negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline negative negative NA NA NA	0.6 @ 2.5 ft negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline negative negative NA NA NA	18.3 @ 2.5 ftnegativenegativeNA46 @ 5 ftnegativenegativenegative415 @ 11 ftstrong gasolinestringy rainbownegative2.3 @ 12.5 ftnegativenegativenegative	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline stringy rainbow negative 11.2 @ 13 ft negative negative	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative 256 @ 10.5 ft strong gasoline NA negative NA NA NA
0–4 ft bgs 4–8 ft bgs 8–12 ft bgs 12–16 ft bgs	Peak PID ppmOdorSheenBlot TestPeak PID ppmOdor	4.8 @ 2 ft negative negative negative 1050 @ 6.5 ft strong gasoline negative negative 1020 @ 9 ft slight gasoline negative negative NA NA	106 @ 2.5 ftnegativenegativenegative705 @ 6.5 ftstrong gasolinenegativenegative77 @ 12 ftnegativenegativenegativeNANA	148 @ 1 ft negative negative 594 @ 7 ft strong gasoline negative 61 @ 9.5 ft slight gasoline negative NA NA	1.7 @ 1.5 ft negative negative negative 3.8 @ 8 ft negative negative negative 369 @ 10.5 ft moderate gasoline negative NA NA	0.9 @ 3.5 ft negative negative 3.6 @ 8 ft negative negative negative 332 @ 10 ft strong gasoline negative negative NA NA	0.6 @ 2.5 ft negative NA 2.7 @ 7.5 ft negative negative negative 76 @ 10 ft moderate gasoline negative negative NA NA	18.3 @ 2.5 ft negative negative NA 46 @ 5 ft negative negative negative 11 ft strong gasoline stringy rainbow negative 2.3 @ 12.5 ft negative	8.8 @ 2 ft negative NA 11.2 @ 4.5 ft negative negative negative 764 @ 12 ft strong gasoline stringy rainbow negative 11.2 @ 13 ft negative	17 @ 1.5 ft negative NA 210 @ 7 ft NA negative negative 256 @ 10.5 ft strong gasoline NA negative NA NA

Table 3.1Soil Boring Field Observations

oring Location	Field Observation	K-19	K-20	K-21	K-23*	K-24*	K-25*	K-26*	K-27*	K-28*
	Peak PID ppm	2.7 @ 2.5 ft	4.3 @ 4 ft	159 @ 4 ft	18.8 @ 1.5 ft	5.8 @ 2.5 ft	8.3 @ 2 ft	10.4 @ 4 ft	109 @ 2.5 ft	223 @ 4 ft
	Odor	negative	negative	strong gasoline	negative	negative	negative	negative	moderate gasoline	strong gasoline
0–4 ft bgs	Sheen	negative	negative	negative	negative	negative	slight	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	292 @ 6 ft	410 @ 6.5 ft	942 @ 6.5 ft	758 @ 5 ft	256 @ 6.5 ft	108 @ 7 ft	350 @ 5 ft	1,148 @ 5 ft	758 @ 4.5 ft
	Odor	strong gasoline	strong gasoline	strong gasoline	strong gasoline	strong gasoline	strong gasoline	moderate gasoline	strong gasoline	strong gasoline
4–8 ft bgs	Sheen	negative	negative	negative	heavy rainbow	heavy rainbow	heavy rainbow	heavy rainbow	rainbow?	rainbow?
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	555 @ 8.5 ft	13 @ 8.5 ft	156 @ 9 ft	179 @ 9.5 ft	332 @ 9.5 ft	395 @ 9.5 ft	53 @ 10 ft	265 @ 9.5 ft	395 @ 9 ft
0.40 % have	Odor	strong gasoline	moderate gasoline	strong gasoline	strong gasoline	strong gasoline	strong gasoline	moderate gasoline	moderate gasoline	strong gasoline
8–12 ft bgs	Sheen	negative	negative	negative	NA	heavy rainbow	heavy rainbow	heavy rainbow	heavy rainbow	heavy rainbow
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	NA	NA	NA	NA	NA	1.6 @ 12.5 ft	NA	NA	NA
12 16 ft has	Odor	NA	NA	NA	NA	NA	negative	NA	NA	NA
12–16 ft bgs	Sheen	NA	NA	NA	NA	NA	negative	NA	NA	NA
	Blot Test	NA	NA	NA	NA	NA	negative	NA	NA	NA
Depth to G	roundwater	9.2 ft	8.9 ft	9.3 ft	NA	NA	11 ft	NA	NA	NA
200										
•	Field Observation	K-29	K-30	K-31	K-32	K-33	K-34	K-35	K-36	K-37
•	Field Observation	K-29 0.2 (all)	K-30 228 @ 4 ft	K-31 368 @ 4 ft	K-32 179 @ 4 ft	K-33 8.5 @ 2 ft	K-34 15 @ 2 ft	K-35 6.9 @ 2 ft	K-36 1.6 @ 3 ft	K-37 0.1 (all)
ring Location	Peak PID ppm	0.2 (all)	228 @ 4 ft	368 @ 4 ft	179 @ 4 ft	8.5 @ 2 ft	15 @ 2 ft	6.9 @ 2 ft	1.6 @ 3 ft	0.1 (all)
•		0.2 (all) negative	228 @ 4 ft negative	368 @ 4 ft negative	179 @ 4 ft negative	8.5 @ 2 ft negative	15 @ 2 ft negative	6.9 @ 2 ft negative	1.6 @ 3 ft negative	0.1 (all) negative
ring Location	Peak PID ppm Odor	0.2 (all) negative negative	228 @ 4 ft negative negative	368 @ 4 ft negative negative	179 @ 4 ft negative negative	8.5 @ 2 ft negative negative	15 @ 2 ft negative negative	6.9 @ 2 ft negative negative	1.6 @ 3 ft negative negative	0.1 (all) negative negative
ring Location	Peak PID ppm Odor Sheen Blot Test	0.2 (all) negative	228 @ 4 ft negative	368 @ 4 ft negative	179 @ 4 ft negative negative negative	8.5 @ 2 ft negative	15 @ 2 ft negative	6.9 @ 2 ft negative negative negative	1.6 @ 3 ft negative negative negative	0.1 (all) negative
ring Location 0–4 ft bgs	Peak PID ppm Odor Sheen	0.2 (all) negative negative negative	228 @ 4 ft negative negative negative 135 @ 7 ft	368 @ 4 ft negative negative negative	179 @ 4 ft negative negative	8.5 @ 2 ft negative negative negative	15 @ 2 ft negative negative negative	6.9 @ 2 ft negative negative	1.6 @ 3 ft negative negative	0.1 (all) negative negative negative
ring Location	Peak PID ppm Odor Sheen Blot Test Peak PID ppm	0.2 (all) negative negative negative 5.7 @ 8 ft	228 @ 4 ft negative negative negative	368 @ 4 ft negative negative negative 346 @ 7 ft	179 @ 4 ft negative negative negative 347 @ 7 ft	8.5 @ 2 ft negative negative negative 342 @ 6 ft	15 @ 2 ft negative negative negative 344 @ 7 ft	6.9 @ 2 ft negative negative negative 203 @ 6.5 ft	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft	0.1 (all) negative negative negative 0.2 (all)
ring Location 0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor	0.2 (all) negative negative negative 5.7 @ 8 ft negative	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline	368 @ 4 ft negative negative negative 346 @ 7 ft strong gasoline	179 @ 4 ft negative negative negative 347 @ 7 ft strong gasoline	8.5 @ 2 ft negative negative negative 342 @ 6 ft strong gasoline	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft negative	0.1 (all) negative negative negative 0.2 (all) negative
ring Location 0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen	0.2 (all) negative negative negative 5.7 @ 8 ft negative negative	228 @ 4 ft negative negative negative 135 @ 7 ft strong gasoline negative	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow	179 @ 4 ft negative negative negative 347 @ 7 ft strong gasoline negative	8.5 @ 2 ft negative negative negative 342 @ 6 ft strong gasoline negative	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline negative	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft negative negative negative	0.1 (all) negative negative negative 0.2 (all) negative negative
ring Location 0–4 ft bgs 4–8 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test	0.2 (all) negative negative negative 5.7 @ 8 ft negative negative negative	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative negative	368 @ 4 ft negative negative negative 346 @ 7 ft strong gasoline slight rainbow negative	179 @ 4 ft negative negative negative 347 @ 7 ft strong gasoline negative negative	8.5 @ 2 ft negative negative negative 342 @ 6 ft strong gasoline negative negative	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline negative negative	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative negative	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft negative negative negative negative	0.1 (all) negative negative 0.2 (all) negative negative negative
ring Location 0–4 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm	0.2 (all) negative negative 5.7 @ 8 ft negative negative negative 3.5 @12 ft	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative negative 11.2 @ 11 ft	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow negative 27 @ 11 ft	179 @ 4 ft negative negative 347 @ 7 ft strong gasoline negative negative 43 @ 12 ft	8.5 @ 2 ft negative negative 342 @ 6 ft strong gasoline negative negative 13 @ 10 ft	15 @ 2 ft negative negative 344 @ 7 ft moderate gasoline negative negative 310 @ 9 ft	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative negative 376 @ 9 ft	1.6 @ 3 ftnegativenegativenegative16.6 @ 8 ftnegativenegativenegative16.4 @ 10.5 ft	0.1 (all) negative negative 0.2 (all) negative negative negative 0.6 @ 9 ft
ring Location 0–4 ft bgs 4–8 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor	0.2 (all) negative negative 5.7 @ 8 ft negative negative negative 3.5 @ 12 ft slight HC (non-gasoline)	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative negative 11.2 @ 11 ft negative	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow negative 27 @ 11 ft strong gasoline	179 @ 4 ft negative negative 347 @ 7 ft strong gasoline negative negative 43 @ 12 ft moderate gasoline	8.5 @ 2 ft negative negative 342 @ 6 ft strong gasoline negative negative 13 @ 10 ft moderate gasoline	15 @ 2 ft negative negative 344 @ 7 ft moderate gasoline negative negative 310 @ 9 ft moderate gasoline	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative negative 376 @ 9 ft strong gasoline	1.6 @ 3 ftnegativenegativenegative16.6 @ 8 ftnegativenegativenegativenegative16.4 @ 10.5 ftslight gasoline	0.1 (all) negative negative 0.2 (all) negative negative negative 0.6 @ 9 ft very slight
ring Location 0–4 ft bgs 4–8 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen	0.2 (all) negative negative 5.7 @ 8 ft negative negative negative 3.5 @12 ft slight HC (non-gasoline) negative	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative negative 11.2 @ 11 ft negative negative	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow negative 27 @ 11 ft strong gasoline negative	179 @ 4 ft negative negative 347 @ 7 ft strong gasoline negative 43 @ 12 ft moderate gasoline negative	8.5 @ 2 ft negative negative 342 @ 6 ft strong gasoline negative 13 @ 10 ft moderate gasoline negative	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline negative 310 @ 9 ft moderate gasoline negative	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative negative 376 @ 9 ft strong gasoline negative	1.6 @ 3 ftnegativenegativenegative16.6 @ 8 ftnegativenegativenegativenegative16.4 @ 10.5 ftslight gasolinenegative	0.1 (all) negative negative 0.2 (all) negative negative negative 0.6 @ 9 ft very slight negative
ring Location 0–4 ft bgs 4–8 ft bgs 8–12 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test	0.2 (all) negative negative 5.7 @ 8 ft negative negative negative 3.5 @12 ft slight HC (non-gasoline) negative negative negative	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative 11.2 @ 11 ft negative negative negative negative negative	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow negative 27 @ 11 ft strong gasoline negative negative negative	179 @ 4 ft negative negative 347 @ 7 ft strong gasoline negative 43 @ 12 ft moderate gasoline negative negative negative	8.5 @ 2 ft negative negative 342 @ 6 ft strong gasoline negative 13 @ 10 ft moderate gasoline negative negative	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline negative 310 @ 9 ft moderate gasoline negative negative negative	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative negative 376 @ 9 ft strong gasoline negative negative	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft negative negative negative 16.4 @ 10.5 ft slight gasoline negative	0.1 (all) negative negative 0.2 (all) negative negative negative 0.6 @ 9 ft very slight negative negative
oring Location 0–4 ft bgs 4–8 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm	0.2 (all) negative negative 5.7 @ 8 ft negative negative negative 3.5 @12 ft slight HC (non-gasoline) negative negative NA	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative 11.2 @ 11 ft negative negative negative negative NA	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow negative 27 @ 11 ft strong gasoline negative negative NA	179 @ 4 ft negative negative negative 347 @ 7 ft strong gasoline negative 43 @ 12 ft moderate gasoline negative negative NA	8.5 @ 2 ft negative negative negative 342 @ 6 ft strong gasoline negative 13 @ 10 ft moderate gasoline negative negative NA	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline negative 310 @ 9 ft moderate gasoline negative negative NA	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative negative 376 @ 9 ft strong gasoline negative negative NA	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft negative NA	0.1 (all) negative negative 0.2 (all) negative negative negative 0.6 @ 9 ft very slight negative negative NA
0-4 ft bgs 4-8 ft bgs 8-12 ft bgs	Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor	0.2 (all) negative negative 5.7 @ 8 ft negative negative 3.5 @12 ft slight HC (non-gasoline) negative negative NA NA	228 @ 4 ft negative negative 135 @ 7 ft strong gasoline negative 11.2 @ 11 ft negative negative negative negative NA NA	368 @ 4 ft negative negative 346 @ 7 ft strong gasoline slight rainbow negative 27 @ 11 ft strong gasoline negative negative NA NA	179 @ 4 ft negative negative 347 @ 7 ft strong gasoline negative 43 @ 12 ft moderate gasoline negative negative NA NA	8.5 @ 2 ft negative negative 342 @ 6 ft strong gasoline negative 13 @ 10 ft moderate gasoline negative negative NA NA	15 @ 2 ft negative negative negative 344 @ 7 ft moderate gasoline negative 310 @ 9 ft moderate gasoline negative negative NA NA	6.9 @ 2 ft negative negative 203 @ 6.5 ft negative negative 376 @ 9 ft strong gasoline negative negative NA NA	1.6 @ 3 ft negative negative negative 16.6 @ 8 ft negative negative negative 16.4 @ 10.5 ft slight gasoline negative NA NA	0.1 (all) negative negative 0.2 (all) negative negative negative 0.6 @ 9 ft very slight negative negative NA NA

Table 3.1Soil Boring Field Observations

ring Location	Field Observation	K-38	K-39	K-40*	K-41*	K-42*	K-43*	K-44*	K-45*	K-46*
	Peak PID ppm	0.4 @ 3.5 ft	0.3 (all)	1.1 @ 1.5 ft	NA	6.9 @ 2.5 ft	3.6 @ 2.5 ft	1.5 @ 1 ft	0.9 @ 3 ft	312 @ 3.5 ft
0–4 ft bgs	Odor	negative	penta	negative	gasoline	negative	negative	negative	PCP?	strong gasoline
0–4 ft bys	Sheen	negative	negative	negative	negative	negative	slight strings	negative	negative	heavy rainbow
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	0.3 (all)	205 @ 7 ft	6.2 @ 6.5 ft	>100 (all)	525 @ 7 ft	289 @ 5 ft	0.1 (all)	0 (all)	298 @ 5 ft
4–8 ft bgs	Odor	negative	negative	negative	strong gasoline	strong gasoline	strong gasoline	negative	negative	strong gasoline
4-0 It bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	684 @ 10 ft	24 @ 10 ft	506 @ 10 ft	>100 (all)	400 @ 9.5 ft	25.5 @ 9.5 ft	3.2 @ 9.5 ft	12.5 @ 9.5 ft	426 @ 9.5 ft
8–12 ft bgs	Odor	strong gasoline	penta?	gasoline?	gasoline	strong gasoline	gasoline?	negative	negative	gasoline?
0-12 It bys	Sheen	negative	negative	negative	rainbow	heavy rainbow	heavy rainbow	negative	negative	slight
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	NA	NA	155 @ 14 ft	NA	NA	NA	NA	NA	NA
12–16 ft bgs	Odor	NA	NA	gasoline?	NA	NA	NA	NA	NA	NA
12-10 It bys	Sheen	NA	NA	negative	NA	NA	NA	NA	NA	NA
	Blot Test	NA	NA	negative	NA	NA	NA	NA	NA	NA
			8.5 ft	11 ft	NA	NA	NA	11 ft	NA	NA
•	roundwater	9.5 ft								
•										
Depth to G	Field Observation	K-47*	K-48*	K-49*	K-77	K-78	K-79	K-80	K-81	K-82
•	Field Observation Peak PID ppm	K-47 * 628 @ 3 ft	K-48 * 17.2 @ 2 ft	K-49 * 10.2 @ 2.5 ft	K-77 0.0 (all)	K-78 0.0 (all)	K-79 0.0 (all)	K-80 0.7 @ 4 ft	K-81 0.2 @ 3.5 ft	K-82 0.4 @ 3.5 ft
•	Field Observation Peak PID ppm Odor	K-47* 628 @ 3 ft strong gasoline	K-48* 17.2 @ 2 ft negative	K-49 * 10.2 @ 2.5 ft negative	K-77 0.0 (all) negative	K-78 0.0 (all) negative	K-79 0.0 (all) negative	K-80 0.7 @ 4 ft negative	K-81 0.2 @ 3.5 ft negative	K-82 0.4 @ 3.5 ft negative
ring Location	Field Observation Peak PID ppm Odor Sheen	K-47* 628 @ 3 ft strong gasoline heavy rainbow	K-48* 17.2 @ 2 ft negative negative	K-49 * 10.2 @ 2.5 ft negative negative	K-77 0.0 (all) negative negative	K-78 0.0 (all) negative negative	K-79 0.0 (all) negative negative	K-80 0.7 @ 4 ft negative negative	K-81 0.2 @ 3.5 ft negative negative	K-82 0.4 @ 3.5 ft negative negative
ring Location	Field Observation Peak PID ppm Odor Sheen Blot Test	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative	K-48* 17.2 @ 2 ft negative negative negative	K-49* 10.2 @ 2.5 ft negative negative negative	K-77 0.0 (all) negative negative negative	K-78 0.0 (all) negative negative negative	K-79 0.0 (all) negative negative negative	K-80 0.7 @ 4 ft negative negative negative	K-81 0.2 @ 3.5 ft negative negative negative	K-82 0.4 @ 3.5 ft negative negative negative
ring Location 0–4 ft bgs	Field Observation Peak PID ppm Odor Sheen Blot Test Peak PID ppm	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft	K-48* 17.2 @ 2 ft negative negative negative 729 @ 5 ft	K-49* 10.2 @ 2.5 ft negative negative negative 327 @ 5 ft	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft	K-78 0.0 (all) negative negative negative 0.2 @ 8 ft	K-79 0.0 (all) negative negative negative 870 @ 6.5 ft	K-80 0.7 @ 4 ft negative negative negative 612 @ 7 ft	K-81 0.2 @ 3.5 ft negative negative negative 57 @ 7 ft	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft
ring Location	Field Observation Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline	K-48* 17.2 @ 2 ft negative negative negative 729 @ 5 ft strong gasoline	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline	K-77 0.0 (all) negative negative 1.8 @ 8 ft negative	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative	K-79 0.0 (all) negative negative negative 870 @ 6.5 ft strong gasoline	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative
ring Location 0–4 ft bgs	Field Observation Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow	K-48* 17.2 @ 2 ft negative negative negative 729 @ 5 ft strong gasoline rainbow	K-49* 10.2 @ 2.5 ft negative negative negative 327 @ 5 ft strong gasoline heavy rainbow	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft negative negative	K-78 0.0 (all) negative negative negative 0.2 @ 8 ft negative negative	K-79 0.0 (all) negative negative negative 870 @ 6.5 ft strong gasoline n o	K-80 0.7 @ 4 ft negative negative negative 612 @ 7 ft strong gasoline slight stringy	K-81 0.2 @ 3.5 ft negative negative negative 57 @ 7 ft negative negative	K-82 0.4 @ 3.5 ft negative negative negative 0.8 @ 7 ft negative negative
ring Location 0–4 ft bgs	Field Observation Peak PID ppm Odor Sheen Blot Test Peak PID ppm Odor Sheen Blot Test	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative	K-48* 17.2 @ 2 ft negative negative negative 729 @ 5 ft strong gasoline rainbow negative	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft negative negative negative negative	K-78 0.0 (all) negative negative negative 0.2 @ 8 ft negative negative negative	K-79 0.0 (all) negative negative negative 870 @ 6.5 ft strong gasoline n o negative	K-80 0.7 @ 4 ft negative negative negative 612 @ 7 ft strong gasoline slight stringy negative	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative negative
ring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft	K-48* 17.2 @ 2 ft negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft negative negative negative 8.9 @ 10 ft	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative negative 14.5 @ 10 ft	K-79 0.0 (all) negative negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative negative 6.4 @ 10.5 ft
ring Location 0–4 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdor	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft strong gasoline	K-48* 17.2 @ 2 ft negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft strong gasoline	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft strong gasoline	K-77 0.0 (all) negative negative 1.8 @ 8 ft negative negative negative 8.9 @ 10 ft very slight HC	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative negative 14.5 @ 10 ft very slight HC	K-79 0.0 (all) negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft negative	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft strong gasoline	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft strong gasoline	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative negative 6.4 @ 10.5 f negative
ring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenSheen	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft strong gasoline heavy rainbow	K-48* 17.2 @ 2 ft negative negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft strong gasoline heavy rainbow	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft strong gasoline heavy rainbow	K-77 0.0 (all) negative negative 1.8 @ 8 ft negative negative negative 8.9 @ 10 ft very slight HC negative	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative negative 14.5 @ 10 ft very slight HC negative	K-79 0.0 (all) negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft negative negative	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft strong gasoline slight stringy	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft strong gasoline stringy rainbow	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative negative 6.4 @ 10.5 ft negative negative
ing Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestBlot Test	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft strong gasoline heavy rainbow negative	K-48* 17.2 @ 2 ft negative negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft strong gasoline heavy rainbow negative	K-49* 10.2 @ 2.5 ft negative negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft strong gasoline heavy rainbow negative	K-77 0.0 (all) negative negative 1.8 @ 8 ft negative negative negative 8.9 @ 10 ft very slight HC negative negative negative	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative negative 14.5 @ 10 ft very slight HC negative negative negative	K-79 0.0 (all) negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft negative negative negative	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft strong gasoline slight stringy negative	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft strong gasoline stringy rainbow negative	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative 6.4 @ 10.5 f negative negative negative negative
ring Location 0–4 ft bgs 4–8 ft bgs 8–12 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft strong gasoline heavy rainbow negative NA	K-48* 17.2 @ 2 ft negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft strong gasoline heavy rainbow negative NA	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft strong gasoline heavy rainbow negative NA	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft negative negative negative 8.9 @ 10 ft very slight HC negative negative NA	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative 14.5 @ 10 ft very slight HC negative negative NA	K-79 0.0 (all) negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft negative negative negative NA	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft strong gasoline slight stringy negative 4.6 @ 12 ft	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft strong gasoline stringy rainbow negative NA	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative 6.4 @ 10.5 f negative negative negative negative NA
ring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorOdor	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft strong gasoline heavy rainbow negative NA NA	K-48* 17.2 @ 2 ft negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft strong gasoline heavy rainbow negative NA NA	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft strong gasoline heavy rainbow negative NA NA	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft negative negative 8.9 @ 10 ft very slight HC negative negative NA NA	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative 14.5 @ 10 ft very slight HC negative negative NA NA	K-79 0.0 (all) negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft negative negative negative NA NA	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft strong gasoline slight stringy negative 4.6 @ 12 ft negative	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft strong gasoline stringy rainbow negative NA NA	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative 6.4 @ 10.5 ft negative negative negative negative negative NA NA
ring Location 0–4 ft bgs 4–8 ft bgs 8–12 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-47* 628 @ 3 ft strong gasoline heavy rainbow negative 543 @ 5 ft strong gasoline heavy rainbow negative 611 @ 10 ft strong gasoline heavy rainbow negative NA	K-48* 17.2 @ 2 ft negative negative 729 @ 5 ft strong gasoline rainbow negative 839 @ 9.5 ft strong gasoline heavy rainbow negative NA	K-49* 10.2 @ 2.5 ft negative negative 327 @ 5 ft strong gasoline heavy rainbow negative 569 @ 10 ft strong gasoline heavy rainbow negative NA	K-77 0.0 (all) negative negative negative 1.8 @ 8 ft negative negative negative 8.9 @ 10 ft very slight HC negative negative NA	K-78 0.0 (all) negative negative 0.2 @ 8 ft negative negative 14.5 @ 10 ft very slight HC negative negative NA	K-79 0.0 (all) negative negative 870 @ 6.5 ft strong gasoline n o negative 22.3 @ 11 ft negative negative negative NA	K-80 0.7 @ 4 ft negative negative 612 @ 7 ft strong gasoline slight stringy negative 610 @ 9 ft strong gasoline slight stringy negative 4.6 @ 12 ft	K-81 0.2 @ 3.5 ft negative negative 57 @ 7 ft negative negative negative 510 @ 9 ft strong gasoline stringy rainbow negative NA	K-82 0.4 @ 3.5 ft negative negative 0.8 @ 7 ft negative negative 6.4 @ 10.5 ft negative negative negative negative negative NA

Table 3.1Soil Boring Field Observations

Boring Location	Field Observation	K-86	K-87	K-88	PP-4R	PP-15R	PP-23	PP-26	PZ-06A
	Peak PID ppm	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)	11.6 @ 3 ft	0.2 @ 4 ft	0.0 (all)	782 @ 4 ft
0.4 ft bac	Odor	negative	negative	negative	negative	negative	negative	negative	negative
0–4 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	0.0 (all)	2.4 @ 7 ft	0.0 (all)	223 @ 5 ft	negative	0.4 @ 5.5 ft	733 @ 8 ft
4–8 ft bgs	Odor	negative	negative	negative	negative	strong petroleum	negative	slight petroleum	strong gasoline
4-6 it bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	017.3 @ 10 ft	0.8 @ 10 ft	0.9 @ 10.5 ft	37 @ 8.5 ft	16 @ 10 ft	176 @ 8.5 ft	395 @ 11 ft
9 12 ft bac	Odor	negative	negative	negative	negative	slight petroleum	petroleum	strong petroleum	moderate
8–12 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	negative	slight
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	NA	NA	NA	1.8 @ 13 ft	1.1 @ 13.5 ft	0.2 @ 15 ft	0.4 @ 13 ft	NA
12 16 ft bas	Odor	NA	NA	NA	negative	negative	negative	negative	NA
12–16 ft bgs	Sheen	NA	NA	NA	negative	negative	negative	negative	NA
	Blot Test	NA	NA	NA	negative	negative	negative	negative	NA
Depth to G	roundwater	NA	11 ft	9.9 ft	11 ft	10.5 ft	11 ft	10.5 ft	9.3 ft

Hydraulic Oil Area and Downgradient

oring Location	Field Observation	EW-02A	K-50	K-51	K-52	K-53	K-54	K-55	K-56	K-57
	Peak PID ppm	NA	173 @ 4 ft	NA	NA	5 @ 3 ft	NA	NA	NA	NA
0–4 ft bgs	Odor	negative	strong HC	negative	negative	negative	negative	negative	negative	negative
0-4 It bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	NA
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	NA	260 @ 5.5 ft	NA	NA	NA	<10 (all)	NA	230 @ 7 ft	NA
4–8 ft bgs	Odor	negative	Strong gasoline	negative	negative	negative	negative	negative	gasoline?	negative
4–6 It bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	NA	9.5 @ 11 ft	1.8 @ 12 ft	11 @ 10 ft	770 @ 11 ft	602 @ 10.5 ft	582 @ 11 ft	800 @ 10 ft	1.3 @ 11.5 ft
9 12 ft bac	Odor	HC?	negative	negative	negative	gasoline?	gasoline?	strong petroleum	gasoline?	very slight petroleum
8–12 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	saturated 11–12 ft	negative	negative	negative	negative	very slight amber	saturated 10–12 ft	negative	very slight smudge
	Peak PID ppm	NA	0.3 @ 14 ft	NA	NA	<20 (all)	40 @ 12 ft	22.5 @ 12.5 ft	NA	NA
12–16 ft bgs	Odor	negative	negative	negative	negative	negative	NA	strong petroleum	NA	negative
12-10 It bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	saturated 12-13.25 ft	negative	negative
Depth to G	iroundwater	11.5 ft	12.5 ft	12.3 ft	12 ft	11.75 ft	10.5 ft	13.25 ft	11.5 ft	NA

Table 3.1Soil Boring Field Observations

oring Location	Field Observation	K-59	K-60	K-61	K-62	K-63	K-64	K-65	K-66	K-67
	Peak PID ppm	NA	NA	NA	NA	NA	0.8 @ 1.5 ft	0.2 @ 3 ft	177 @ 4 ft	0.0 (all)
0.466 have	Odor	negative	negative	negative	negative	negative	negative	negative	gasoline	negative
0–4 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	NA	NA	NA	NA	NA	0.7 @ 8 ft	24.6 @ 8 ft	193 @ 7 ft	0.6 @ 7.5 ft
4–8 ft bgs	Odor	negative	negative	negative	negative	negative	negative	negative	gasoline to 5.5 ft	negative
4-6 ft bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	2.9 @ 11.5 ft	2.1 @ 12 ft	NA	NA	NA	176 @ 11 ft	766 @ 11 ft	116 @ 12 ft	20.2 @ 11.5 ft
8–12 ft bgs	Odor	negative	petroleum	negative	negative	petroleum	moderate HC	strong gasoline	negative	HC odor
o-12 it bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	very slight	~30% saturated	~50%	~50%	100% @ 11.5 ft	negative	negative	negative	saturated
	Peak PID ppm	NA	NA	NA	NA	NA	2.7 @ 14 ft	87 @ 15 ft	453 @ 15 ft	NA
12–16 ft bgs	Odor	negative	negative	negative	negative	negative	negative	moderate gasoline	strong gasoline	NA
12-16 it bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	NA
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	NA
			10.04	40.4	1004	12 ft	12 ft	12 ft	12 ft	11.5 ft
Depth to G	roundwater	9 ft	12.8 ft	12 ft	12.2 ft	12 11	12 1	12 11	12 1	11.5 1
	·		•							
•	Field Observation	K-68	K-69	K-70	K-71	K-72	K-73	K-74	K-75	K-76
	Field Observation Peak PID ppm	K-68 0.0 (all)	K-69 0.1 @ 4 ft	K-70 1.7 @ 1.5 ft	K-71 0.2 (all)	K-72 0.1 @ 4 ft	K-73 0.0 (all)	K-74 0.0 (all)	K-75 0.0 (all)	K-76 0.0 (all)
•	Field Observation Peak PID ppm Odor	K-68 0.0 (all) negative	K-69 0.1 @ 4 ft negative	K-70 1.7 @ 1.5 ft negative	K-71 0.2 (all) negative	K-72 0.1 @ 4 ft negative	K-73 0.0 (all) negative	K-74 0.0 (all) negative	K-75 0.0 (all) negative	K-76 0.0 (all) negative
ring Location	Field Observation Peak PID ppm Odor Sheen	K-68 0.0 (all) negative negative	K-69 0.1 @ 4 ft negative negative	K-70 1.7 @ 1.5 ft negative negative	K-71 0.2 (all) negative negative	K-72 0.1 @ 4 ft negative negative	K-73 0.0 (all) negative negative	K-74 0.0 (all) negative negative	K-75 0.0 (all) negative negative	K-76 0.0 (all) negative negative
ring Location	Field Observation Peak PID ppm Odor Sheen Blot Test	K-68 0.0 (all) negative negative negative	K-69 0.1 @ 4 ft negative negative negative	K-70 1.7 @ 1.5 ft negative negative negative	K-71 0.2 (all) negative negative negative	K-72 0.1 @ 4 ft negative negative negative	K-73 0.0 (all) negative negative negative	K-74 0.0 (all) negative negative negative	K-75 0.0 (all) negative negative negative	K-76 0.0 (all) negative negative negative
ring Location	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-68 0.0 (all) negative negative negative 8.7 @ 7 ft	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft	K-70 1.7 @ 1.5 ft negative negative negative 4.4 @ 7.5 ft	K-71 0.2 (all) negative negative negative 0.2 (all)	K-72 0.1 @ 4 ft negative negative negative 0.2 @ 8 ft	K-73 0.0 (all) negative negative negative 0.1 (all)	K-74 0.0 (all) negative negative negative 0.0 (all)	K-75 0.0 (all) negative negative negative 0.1 (all)	K-76 0.0 (all) negative negative negative 0.0 (all)
ring Location	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdor	K-68 0.0 (all) negative negative 8.7 @ 7 ft negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative	K-71 0.2 (all) negative negative negative 0.2 (all) negative	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative	K-73 0.0 (all) negative negative 0.1 (all) negative	K-74 0.0 (all) negative negative negative 0.0 (all) negative	K-75 0.0 (all) negative negative negative 0.1 (all) negative	K-76 0.0 (all) negative negative 0.0 (all) negative
oring Location 0–4 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheen	K-68 0.0 (all) negative negative negative 8.7 @ 7 ft negative negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative	K-70 1.7 @ 1.5 ft negative negative negative 4.4 @ 7.5 ft negative negative negative	K-71 0.2 (all) negative negative negative 0.2 (all) negative negative	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative	K-73 0.0 (all) negative negative negative 0.1 (all) negative negative	K-74 0.0 (all) negative negative negative 0.0 (all) negative negative	K-75 0.0 (all) negative negative negative 0.1 (all) negative negative	K-76 0.0 (all) negative negative negative 0.0 (all) negative negative
oring Location 0–4 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot Test	K-68 0.0 (all) negative negative negative 8.7 @ 7 ft negative negative negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative negative negative negative	K-70 1.7 @ 1.5 ft negative negative negative 4.4 @ 7.5 ft negative negative negative negative	K-71 0.2 (all) negative negative negative 0.2 (all) negative negative negative	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative negative negative	K-73 0.0 (all) negative negative negative 0.1 (all) negative negative negative	K-74 0.0 (all) negative negative negative 0.0 (all) negative negative negative	K-75 0.0 (all) negative negative negative 0.1 (all) negative negative negative	K-76 0.0 (all) negative negative negative 0.0 (all) negative negative negative
oring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-68 0.0 (all) negative negative 8.7 @ 7 ft negative negative negative 17.2 @ 10.5 ft	K-690.1 @ 4 ftnegativenegative3.8 @ 7.5 ftnegativenegativenegative215 @ 11.5 ft	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative negative negative 486 @ 12 ft	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all)	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative negative 1.4 @ 9.5 ft	K-73 0.0 (all) negative negative 0.1 (all) negative negative negative 6.8 @ 11 ft	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft	K-76 0.0 (all) negative negative 0.0 (all) negative negative negative 6.5 @ 10 ft
ring Location 0–4 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorOdor	K-68 0.0 (all) negative negative 8.7 @ 7 ft negative negative negative 17.2 @ 10.5 ft negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative negative 1.5 ft gasoline	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative negative negative 486 @ 12 ft gasoline	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all) negative	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative negative 1.4 @ 9.5 ft HC (non-gasoline)	K-73 0.0 (all) negative negative 0.1 (all) negative negative negative 6.8 @ 11 ft HC (non-gasoline)	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft HC (non-gasoline)	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft very slight HC	K-76 0.0 (all) negative negative 0.0 (all) negative negative negative 6.5 @ 10 ft very slight HC
oring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheen	K-68 0.0 (all) negative negative 8.7 @ 7 ft negative negative negative 17.2 @ 10.5 ft negative negative negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative negative 1.5 ft gasoline negative	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative negative negative negative 486 @ 12 ft gasoline negative	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all) negative 0.2 (all) negative negative	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative negative 1.4 @ 9.5 ft HC (non-gasoline) negative	K-73 0.0 (all) negative negative 0.1 (all) negative negative negative 6.8 @ 11 ft HC (non-gasoline) negative	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft HC (non-gasoline) negative	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft very slight HC negative	K-76 0.0 (all) negative negative 0.0 (all) negative negative negative 6.5 @ 10 ft very slight HC negative
ring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestBlot Test	K-68 0.0 (all) negative negative negative 8.7 @ 7 ft negative negative negative 17.2 @ 10.5 ft negative negative negative negative negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative negative 1.5 ft gasoline negative negative	K-70 1.7 @ 1.5 ft negative negative negative 4.4 @ 7.5 ft negative negative negative 486 @ 12 ft gasoline negative negative negative	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all) negative 0.2 (all) negative negative negative negative	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative negative 1.4 @ 9.5 ft HC (non-gasoline) negative negative	K-73 0.0 (all) negative negative 0.1 (all) negative negative negative 6.8 @ 11 ft HC (non-gasoline) negative negative negative	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft HC (non-gasoline) negative negative	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft very slight HC negative negative negative	K-76 0.0 (all) negative negative 0.0 (all) negative negative negative 6.5 @ 10 ft very slight HC negative negative
ring Location 0–4 ft bgs 4–8 ft bgs 8–12 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-68 0.0 (all) negative negative 8.7 @ 7 ft negative negative 17.2 @ 10.5 ft negative negative negative 0.7 @ 16 ft	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative 215 @ 11.5 ft gasoline negative NA	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative negative negative 486 @ 12 ft gasoline negative negative 5.5 @ 12.5ft	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all) negative 0.2 (all) negative negative negative NA	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative 1.4 @ 9.5 ft HC (non-gasoline) negative NA	K-73 0.0 (all) negative negative 0.1 (all) negative negative negative 6.8 @ 11 ft HC (non-gasoline) negative negative NA	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft HC (non-gasoline) negative negative NA	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft very slight HC negative negative NA	K-76 0.0 (all) negative negative 0.0 (all) negative negative negative 6.5 @ 10 ft very slight HC negative negative negative NA
oring Location 0–4 ft bgs 4–8 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppmOdorSheenBlot TestOdorOdor	K-68 0.0 (all) negative negative negative 8.7 @ 7 ft negative negative 17.2 @ 10.5 ft negative negative negative 0.7 @ 16 ft negative	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative 215 @ 11.5 ft gasoline negative NA	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative negative negative 486 @ 12 ft gasoline negative negative 12 ft gasoline negative negative negative	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all) negative 0.2 (all) negative negative NA NA	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative negative 1.4 @ 9.5 ft HC (non-gasoline) negative NA NA	K-73 0.0 (all) negative negative 0.1 (all) negative negative 6.8 @ 11 ft HC (non-gasoline) negative NA NA NA	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft HC (non-gasoline) negative negative NA NA	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft very slight HC negative negative NA NA	K-76 0.0 (all) negative negative 0.0 (all) negative negative 6.5 @ 10 ft very slight HC negative negative NA NA
0-4 ft bgs 4-8 ft bgs 8-12 ft bgs	Field ObservationPeak PID ppmOdorSheenBlot TestPeak PID ppm	K-68 0.0 (all) negative negative 8.7 @ 7 ft negative negative 17.2 @ 10.5 ft negative negative negative 0.7 @ 16 ft	K-69 0.1 @ 4 ft negative negative 3.8 @ 7.5 ft negative negative 215 @ 11.5 ft gasoline negative NA	K-70 1.7 @ 1.5 ft negative negative 4.4 @ 7.5 ft negative negative negative 486 @ 12 ft gasoline negative negative 5.5 @ 12.5ft	K-71 0.2 (all) negative negative 0.2 (all) negative negative negative 0.2 (all) negative 0.2 (all) negative negative negative NA	K-72 0.1 @ 4 ft negative negative 0.2 @ 8 ft negative negative 1.4 @ 9.5 ft HC (non-gasoline) negative NA	K-73 0.0 (all) negative negative 0.1 (all) negative negative negative 6.8 @ 11 ft HC (non-gasoline) negative negative NA	K-74 0.0 (all) negative negative 0.0 (all) negative negative negative 5.0 @ 12 ft HC (non-gasoline) negative negative NA	K-75 0.0 (all) negative negative 0.1 (all) negative negative negative 0.5 @ 12 ft very slight HC negative negative NA	K-76 0.0 (all) negative negative 0.0 (all) negative negative negative 6.5 @ 10 ft very slight HC negative negative NA

Table 3.1Soil Boring Field Observations

Boring Location	Field Observation	K-83	K-84	K-85	K-89	K-102	K-103	K-104	PP-6R	PP-20
	Peak PID ppm	0.0 (all)	0.1 (all)	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)
0–4 ft bgs	Odor	negative	negative	negative	negative	negative	negative	negative	negative	negative
0-4 It bys	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	608 @ 7 ft	10.2 @ 7.5 ft	0.4 @ 6.5 ft	0.0 (all)	0.0 (all)	0.0 (all)	2.5 @ 6.5 ft	0.0 (all)	0.0 (all)
4–8 ft bgs	Odor	gasoline	negative	negative	negative	negative	negative	strong HC	negative	negative
4-0 it bys	Sheen	stringy rainbow	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	462 @ 9 ft	398 @ 11.5 ft	3.0 @ 10 ft	1.9 @ 10.5 ft	0.0 (all)	0.0 (all)	6.8 @ 10.5 ft	0.1 (all)	0.0 (all)
9 12 ft bac	Odor	gasoline	gasoline	negative	creosote	negative	negative	negative	negative	negative
8–12 ft bgs	Sheen	stringy rainbow	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	oily brown	negative	negative	negative	negative	negative
	Peak PID ppm	3.8 @ 14 ft	NA	NA	18 @ 14 ft	0.0 (all)	715 @ 13.5 ft	NA	0.0 (all)	0.0 (all)
12 16 ft bac	Odor	negative	NA	NA	creosote	negative	strong gasoline	NA	negative	negative
12–16 ft bgs	Sheen	negative	NA	NA	negative	negative	rainbow	NA	negative	negative
	Blot Test	negative	NA	NA	oily brown	negative	negative	NA	negative	negative
Depth to G	roundwater	13 ft	NA	NA	13 ft	NA	13 ft	NA	11.5 ft	15.5 ft

Upgradient Areas East

oring Location	Field Observation	K-91	K-92	K-98	K-99	K-200	K-201	K-202	K-203	KT-10
	Peak PID ppm	0.0 (all)	0.3 @ 2 ft	0.1 (all)	NA	2.2 @ 1 ft	0.3 (all)	0.1 (all)	0.1 (all)	3.5 @ 3 ft
0.4 ft bac	Odor	negative	negative	negative	NA	negative	negative	negative	negative	negative
0–4 ft bgs	Sheen	negative	negative	negative	NA	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	NA	negative	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	156 @ 8 ft	0.1 (all)	2.1 @ 7 ft	0.4 (all)	0.3 (all)	0.1 (all)	0.1 (all)	7.2 @ 5 ft
1.9 ft has	Odor	negative	slight gasoline	negative	negative	negative	negative	negative	negative	negative
4–8 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	9 @ 8.5 ft	0.1 (all)	0.1 (all)	0.3 (all)	0.3 (all)	0.1 (all)	0.1 (all)	NA
9 12 ft bac	Odor	negative	negative	negative	negative	negative	negative	negative	negative	NA
8–12 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	negative	negative	NA
	Blot Test	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Peak PID ppm	0.0 (all)	0.1 @ 13 ft	0.1 (all)	0.0 (all)	NA	0.3 (all)	0.1 (all)	0.0 (all)	NA
40.40 the have	Odor	negative	negative	negative	negative	NA	negative	negative	negative	NA
12–16 ft bgs	Sheen	negative	negative	negative	negative	NA	negative	negative	negative	NA
	Blot Test	negative	negative	negative	negative	NA	negative	negative	negative	NA
Depth to G	roundwater	10 ft	10.4 ft	10.7 ft	11.5 ft	10 ft	12 ft	11 ft	12 ft	NA

Table 3.1Soil Boring Field Observations

Boring Location	Field Observation	KT-11	KT-12	KT-20
	Peak PID ppm	0.0 (all)	0.0 (all)	0.0 (all)
0.4 ft bac	Odor	negative	negative	negative
0–4 ft bgs	Sheen	negative	negative	negative
	Blot Test	negative	negative	negative
	Peak PID ppm	0.0 (all)	5.0 (all)	0.0 (all)
4.9 ft bac	Odor	negative	negative	negative
4–8 ft bgs	Sheen	negative	negative	negative
	Blot Test	negative	negative	negative
	Peak PID ppm	NA	0.0 (all)	0.0 (all)
8–12 ft bgs	Odor	NA	negative	negative
0-12 It bys	Sheen	NA	negative	negative
	Blot Test	NA	negative	negative
	Peak PID ppm	NA	NA	NA
12 16 ft bac	Odor	NA	NA	NA
12–16 ft bgs	Sheen	NA	NA	NA
	Blot Test	NA	NA	NA
Depth to G	roundwater	NA	NA	NA

Debarker and Log Pond

Boring Location	Field Observation	K-90	K-94	K-95	K-96	K-97	K-100	K-101	KT-13	KT-14
	Peak PID ppm	0.1 (all)	0.3 (all)	0.1 (all)	0.1 (all)	0.1 (all)	0.4 (all)	0.1 (all)	0.0 (all)	0.0 (all)
0–4 ft bgs	Odor	negative								
0-4 It bys	Sheen	negative								
	Blot Test	negative								
	Peak PID ppm	0.1 (all)	0.2 (all)	0.1 (all)	0.1 (all)	0.1 (all)	0.4 (all)	0.1 (all)	0.0 (all)	0.0 (all)
1.9 ft has	Odor	negative								
4–8 ft bgs	Sheen	negative								
	Blot Test	negative								
	Peak PID ppm	0.1 (all)	0.2 (all)	0.1 (all)	0.1 (all)	0.1 (all)	0.4 (all)	0.1 (all)	NA	NA
9.42 <i>f</i> t has	Odor	negative	NA	NA						
8–12 ft bgs	Sheen	negative	NA	NA						
	Blot Test	negative	NA	NA						
	Peak PID ppm	0.1 (all)	0.2 (all)	0.1 (all)	0.1 (all)	0.1 (all)	0.4 (all)	0.1 (all)	NA	NA
12 16 ft bas	Odor	negative	NA	NA						
12–16 ft bgs	Sheen	negative	NA	NA						
	Blot Test	negative	NA	NA						
Depth to G	roundwater	12 ft	NA	10 ft	NA	NA	14.5 ft	15 ft	NA	NA

Table 3.1Soil Boring Field Observations

Boring Location	Field Observation	PP-21	PP-22	PP-24	PP-25
	Peak PID ppm	0.0 (all)	0.0 (all)	0.0 (all)	0.1 (all)
0–4 ft bgs	Odor	negative	negative	negative	negative
0–4 It bys	Sheen	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)
4–8 ft bgs	Odor	negative	negative	negative	negative
4-0 It bys	Sheen	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)
8–12 ft bgs	Odor	negative	negative	negative	negative
0-12 It bys	Sheen	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative
	Peak PID ppm	0.0 (all)	0.0 (all)	0.0 (all)	0.0 (all)
12 16 ft bas	Odor	negative	negative	negative	negative
12–16 ft bgs	Sheen	negative	negative	negative	negative
	Blot Test	negative	negative	negative	negative
Depth to G	roundwater	13.5 ft	11.5 ft	9 ft	15 ft

Peninsula Fuel Company

oring Location	Field Observation	PF-1	PF-2	PF-3	PF-4	PF-5	PF-6	PF-7	PF-8	PF-9
	Peak PID ppm	0.3 @ 4 ft	1.9 @ 2.5 ft	0.0 (all)	2.7 @ 3.5 ft	0.2 (all)	3.6 @ 3 ft	147 @ 4 ft	1.0 @ 4 ft	0.1 @ 2 ft
0.4 ft bac	Odor	negative	negative	negative	negative	negative	negative	stringy rainbow	stringy opaque	negative
0–4 ft bgs	Sheen	negative	negative	negative	negative	negative	negative	gasoline	negative	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	8 @ 7 ft	60 @ 7 ft	35 @ 7 ft	8.2 @ 7.5 ft	0.3 (all)	185 @ 7.5 ft	146 @ 7.5 ft	291 @ 7.5 ft	0 (all)
1.0 ft has	Odor	slight HC	HC	gasoline	negative	negative	gasoline	gasoline	gasoline	negative
4–8 ft bgs	Sheen	negative	negative	negative	negative	stringy opaque	heavy rainbow	stringy rainbow	heavy rainbow	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
	Peak PID ppm	1.2 @ 9.5 ft	1.2 (all)	0.8 @ 10.5 ft	0.3 @ 9.5 ft	0.4 (all)	NA	4.8 @ 9.5 ft	92 @ 10.5 ft	0 (all)
0.40.44 have	Odor	slight HC	negative	negative	negative	negative	negative	negative	gasoline	negative
8–12 ft bgs	Sheen	stringy rainbow	negative	negative	negative	negative	negative	negative	heavy rainbow	negative
	Blot Test	negative	negative	negative	negative	negative	negative	negative	negative	negative
Depth to G	roundwater	5.3 ft	4 ft	5.3 ft	7 ft	4.2 ft	4 ft	5.5 ft	7.2 ft	6.1 ft

Note:

* Borings advanced on the raised concrete foundation were field screened beginning at a depth corresponding to the adjacent ground surface, approximately 5 feet below the foundation grade.

Abbreviations:

bgs Below ground surface

ft Feet

HC Hydrocarbon

NA Not applicable or not measured

PCP Pentachlorophenol

PID Photoionization detector

ppm Parts per million

Table 3.2 Gasoline-range, Diesel-range, and Oil-range Organics, and BTEX Results for Soil

		Analyte Units	Gasoline-range Organics mg/kg	Diesel-range Organics mg/kg	Oil-range Organics mg/kg	Benzene mg/kg	Toluene mg/kg	Ethylbenzene mg/kg	Xylenes ¹ mg/kg
ľ		A Unrestricted	30 ²						
Location	Sample Date	Land Use CUL Sample Depth (ft bgs)	30	2,000	2000	0.030	7.0	6.0	9.0
Gasoline/Diese								1	
K-00*	10/16/2013	14–15	9,300	23,000 JM	690 JM	120	52	170	690
K-01* K-02*	10/16/2013	10–11 14–15	2,200 2,400	13,000 JM	250 U 250 U	5 11	<u>10</u> 11	15 49	92 5.9
K-02 K-03*	10/16/2013	14–15	2,400 29	14,000 50 U	250 U	0.8	0.14	49	0.06 U
K-04*	10/16/2013	15.5–16	2 U	000	200 0	0.02 U	0.02 U	0.02 U	0.06 U
K-06*	10/16/2013	15.5–16	4,200	2,600	250 U	2 U	22	78	6 U
K-07*	10/16/2013	11-12	3,400	7,000	4,600	51	180	45	300
K-08* K-09*	9/23/2013 9/23/2013	11–12 15–16	2 U 2 U	25 U 25 U	120 U 120 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.06 U 0.06 U
K-11	9/10/2013	1.5-2.5	2 U	20 0	120 0	0.02 U	0.02 U	0.02 U	0.06 U
K-12	9/11/2013	1–2	2 U			0.02 U	0.02 U	0.02 U	0.098
K-13 K-13	9/11/2013 9/11/2013	3–4 10–11	2 U 1,200			0.02 U 0.76	0.02 U 5.9	0.02 U 8.4	0.06 U 11
K-13	9/11/2013	9.5–10.5	1,600			0.34	<u> </u>	14	8
K-15	9/11/2013	9.5–10.5	1,900			0.58	12	15	10
K-16*	9/23/2013	15.5-16.5	560	710 JM	120 U	0.58	3.7	2.4	5.8
K-17* K-18*	9/23/2013 9/20/2013	16.8–17.8 14–15.5	510 2,000	180 JM 690 JM	120 U 120 U	1.6 6.6	4.5 12	7.2	4.4 34
K-19	9/11/2013	8.5–10	2,000		120 0	13	21	35	160
K-20	9/11/2013	3–4	44			0.034	0.16	0.46	0.72
K-21	9/11/2013	3.8-5.2	8,600	1 700 114	100 11	2.5	29	48	290
K-23* K-24*	9/20/2013 9/20/2013	10–10.5 14–15	3,500 3,100	1,700 JM 6,200	120 U 120 U	4.1 4.6	<u>17</u> 15	36 55	<u>190</u> 19
K-25*	9/23/2013	7–8	4.6	38 JM	120 U	0.21	0.02 U	0.048	0.11
K-26*	9/18/2013	9.8-10.3	2,500	6,300	120 U	1.3	7	34	24
K-27* K-28*	9/18/2013 9/18/2013	9.5–11.5 9.5–11.5	4,500 6,600	3,400 JM 1,100 JM	120 U 120 U	10 7.3	<u>100</u> 28	50 90	290 230
K-29	9/12/2013	8.5–9.5	3	25 U	120 U	0.097	0.051	0.058	0.06 U
K-33	9/11/2013	3–4	2 U			0.02 U	0.02 U	0.02 U	0.06 U
K-34	9/11/2013	3-4	2 U			0.02 U	0.02 U	0.02 U	0.06 U
K-35 K-35	9/11/2013 9/11/2013	3–4 9–10	2 U 500			0.02 U 0.56	0.02 U 3.5	0.02 U 5	0.06 U 26
K-36	9/11/2013	3-4	2 U			0.02 U	0.02 U	0.02 U	0.06 U
K-36	9/11/2013	9–10	2.6			0.02 U	0.024	0.077	0.06 U
K-36 K-39	9/11/2013 9/12/2013	10–11 9–10	880 10	48 JM	120 U	0.2 U 0.59	4.9 0.069	7.1 0.038	<u>4.8</u> 0.12
K-39 K-40*	9/12/2013	<u>9–10</u> 7–8	6.3	40 JIVI	120 0	0.02 U	0.089 0.02 U	0.033	0.12
K-40*	9/12/2013	10.5–12	14,000			46	350	140	800
K-42*	9/20/2013	11.5–12	2,800	13,000 JM	1,100 JM	33	130	42	260
K-43* K-44*	9/23/2013 9/23/2013	10–11 15–16	3,200 2 U	9,500 25 U	8,700 120 U	5 0.02 U	23 0.02 U	41 0.02 U	150 0.06 U
K-45*	9/18/2013	9–11	2 U	25 U	120 U	0.02 U	0.02 0	0.02 U	0.06 U
K-46*	9/19/2013	7–8	1,300	11,000 J	120 UJ	3.4	4.4	14	36
K-46*	9/19/2013	10–11	7,000	17,000 J	120 UJ	15	23	51	200
K-47* K-48*	9/23/2013 9/23/2013	7–8 10–11	7,300 6,000	2,100 JM 24,000	120 U 230 JM	5.1 41	<u>58</u> 36	79 65	<u>490</u> 320
K-49*	9/23/2013	10-11	3,300	6,300	120 U	21	14	40	62
K-77	10/14/2013	10.5–11.5	2 U	20 U	100 U	0.15	0.02 U	0.02 U	0.06 U
K-78 K-79	10/14/2013 10/14/2013	11–12 6–7	2 U 3,300	20 U 670 JM	100 U 100 U	0.091 5.6	0.02 U 19	0.11 19	0.06 U 85
K-80	10/14/2013	6.5–7.5	3,300	1,500 JM	100 U	2.5	41	31	210
K-81	10/15/2013	7.5–9.5	3,000	580 JM	100 U	0.4 U	14	16	75
K-82	10/15/2013	7-8	2 U	20 U	100 U	0.02 U	0.02 U	0.02 U	0.06 U
K-86 K-87	10/15/2013 10/15/2013	7–8 9.5–10.5	2 U 2 U	20 U 20 U	100 U 100 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.06 U 0.06 U
K-88	10/15/2013	9.5–10.5 9–9.5	3.2	20 U	100 U	0.02 U	0.02 0	0.02 U	0.06 U
KT-21	9/12/2013	0.5–1.5	2 U	-		0.02 U	0.02 U	0.02 U	0.06 U
Pipeline 8-West PP-23	9/12/2013 9/18/2013	4–4.2 10–11.5	2 U 190	25 U	120 U 180 JM	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U	0.06 U
PP-23 PZ-06A	9/18/2013	10–11.5 3–4	1,300	4,500 140 JM	180 JM 120 U	0.02 U 0.2 U	0.02 U 0.2 U	0.15 1.9	0.57 14
Hydraulic Oil A	rea and Down								
K-50	9/10/2013	3.5-6	860	5,200 JM	5,400	0.4 U	12	1.9	5.5
K-52 K-55	9/9/2013 9/9/2013	10.5–11 10.5–11	2 U 89	25 U 1500 JM	120 U 120 U	0.02 U 0.02 U	0.02 U 0.14	0.02 U 0.42	0.06 U 1.3
K-55 K-56	9/9/2013	10.5–11	4,600	990 JM	120 U	4.4	<u> </u>	<u> </u>	<u> </u>
K-57	9/9/2013	11–11.5	.,	25 U	120 U				
K-59	9/9/2013	11-11.5		25 U	120 U				
K-61 K-63	9/9/2013 9/10/2013	11–12 11–12	9.9	25 U 3,300 JM	120 U 32,000	0.16	0.095	0.027	0.17
к-63 К-64	9/10/2013	10.5–11.5	9.9 740	3,300 JM 3,500 JM	23,000	0.16	0.095	1.4	4.9
K-65	9/10/2013	9.5–11.5	3,500	3,300 JM	16,000	1 U	26	46	20
K-66	9/10/2013	11.5–15.5	7.1	220 JM	310	0.02 U	0.032	0.02 U	0.067
K-66 K-67	9/10/2013	3.5–5.5 11–12	160 2 U	4,200 JM 2,000 JM	6,800 24,000	0.02 U 0.02 U	2.1 0.02 U	0.35 0.02 U	0.98 0.06 U
K-68	10/14/2012		2 U	20 U	100 U	0.02 U	0.02 U	0.02 U	0.06 U
K-69	10/14/2013	11–12	49	30 JM	180	0.1 U	0.28	0.14	0.38
K-70	10/14/2013		1,000	940 JM	3,100	0.23	4.1	3.8	12
K-71 K-72	10/14/2013 10/14/2013		2 U 2 U	20 U 200 JM	100 U 1300	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.06 U 0.06 U
K-72 K-73	10/14/2013		3.4	2,500 JM	25,000	0.02 0	0.02 0	0.02 U	0.08 0
K-74	10/14/2013	11–12	2 U	20 U	100 U	0.02 U	0.02 U	0.02 U	0.06 U
K-75	10/14/2013		2 U	20 U	100 U	0.094	0.025	0.02 U	0.06 U
K-76	10/14/2013		2 U 150	20 U 170 JM	100 U	0.029	0.02 U	0.02 U	0.06 U
K-83 K-84	10/15/2013 10/15/2013		150 1,500	170 JM 130 JM	100 U 100 U	0.075 0.4 U	0.39 7.7	1.2 0.4 U	5.9 6.4
K-85	10/15/2013	7–8	2 U	20 U	100 U	0.02 U	0.02 U	0.4 0 0.02 U	0.06 U
K-89	10/16/2013	14–15	880	8,100 JM	1,200 JM	0.24	0.95	2.3	3.8
K-103	10/16/2013	13–14	5,600	2,300 JM	2,400	2 U	31	87	15

Table 3.2 Gasoline-range, Diesel-range, and Oil-range Organics, and BTEX Results for Soil

		Analyte Units	Gasoline-range Organics mg/kg	Diesel-range Organics mg/kg	Oil-range Organics mg/kg	Benzene mg/kg	Toluene mg/kg	Ethylbenzene mg/kg	Xylenes ¹ mg/kg
	MTCA Method	A Unrestricted		<u> </u>				<u> </u>	<u> </u>
		Land Use CUL	30 ²	2,000	2000	0.030	7.0	6.0	9.0
			00	2,000	2000	0.000	1.0	0.0	0.0
Location	Sample Date	Sample Depth (ft bgs)							
Upgradient /	Areas East								
K-91	9/20/2013	10–12	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-92	9/20/2013	7.5–8	1,500	79 JM	120 U	0.02 U	9.1	10	23
K-98	9/10/2013	10.5–11.5	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-99	9/10/2013	10.5–11.5	2 U	35 JM	240	0.02 U	0.02 U	0.02 U	0.06 U
K-200	9/19/2013	8–10	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-201	9/19/2013	10–11	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-202	9/19/2013	10–11	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-203	9/19/2013	11–12	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
KT-10	9/10/2013	2–3	4	25 U	120 U	0.02 U	0.02 U	0.41	0.17
KT-11	9/11/2013	1–1.5	2 U	200 JM	2,600	0.02 U	0.02 U	0.02 U	0.06 U
KT-12	9/10/2013	3–3.5		25 U	120 U				
KT-12	9/10/2013	8.5–9		34 JM	120 U				
KT-20	9/10/2013	10.5–11	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
Debarker an	d Log Pond								
K-90	9/12/2013	14–15	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-94	9/12/2013	10–11	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-95	9/12/2013	5.5–7	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-96	9/12/2013	10.5–11.5	2 U	55 JM	320	0.02 U	0.02 U	0.02 U	0.06 U
K-97	9/12/2013	5.5–7	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-100	9/12/2013	11–15.5	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U
K-101	9/12/2013	13.5–15	2 U	250 JM	2,800	0.02 U	0.02 U	0.02 U	0.06 U
	uel Company								
PF-1	9/13/2012	7–8	7.9	160	120 U	0.02 U	0.051	0.024	0.067
PF-2	9/13/2013	7–8	140	1,000	120 U	0.02 U	0.4	0.5	1
PF-3	9/18/2013	7–8	27	300	120 U	0.02 U	0.02 U	0.091	0.21
PF-4	9/18/2013	6–8	2 U	38	120 U	0.02 U	0.02 U	0.02 U	0.06 U
PF-5	9/13/2013	7–8	8.7	350	120 U	0.02 U	0.02 U	0.02 U	0.06 U
PF-6	9/13/2013	6.7–8	630	910	120 U	0.2 U	3.7	3.6	4
PF-7	9/13/2013	7–8	260	1,200	180 JM	0.05	0.69	2.1	3.1
PF-7	9/13/2013	3.5–6.5	1,600	3,400	430 JM	0.2 U	5.6	7	13
PF-8	9/13/2013	3–4	2 U	39	120 U	0.02 U	0.02 U	0.02 U	0.06 U
PF-8	9/13/2013	7–8	2,200	12,000	180 JM	2.4	11	4.2	13
PF-9	9/18/2013	7–8	2 U	25 U	120 U	0.02 U	0.02 U	0.02 U	0.06 U

Notes:

BOLD Indicates a concentration that exceeds the MTCA CUL.

* Indicates a boring that was advanced through the concrete slab, which sits approximately 5 feet above grade.

1 The reported xylenes concentration is the sum of o-xylene, p-xylene, and m-xylene.

2 The MTCA Method A Unrestricted CUL for gasoline-range organics in soil is 30 mg/kg if benzene is detected.

Blank cells indicate the sample was not analyzed for that analyte.

Abbreviations:

bgs Below ground surface

BTEX Benzene, toluene, ethylbenzene, and xylenes

CUL Cleanup level

ft Feet

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

Qualifiers:

JM Concentration is estimated due to poor match to standard, acceptable for use with qualification.

U Analyte is not detected at the associated reporting limit.

UJ Analyte is not detected at the associated reporting limit, which is an estimat

Table 3.3	
Dioxins/Furans Results for Soi	I

L	ocation		SS-1	SS-2	SS-3	SS-4	SS-5	SS-6
Sa	mple ID		SS-1	SS-2	SS-3	SS-4-0-0.25	SS-5-0-0.25	SS-6-0-0.25
Sam	ole Date		9/11/2013	9/11/2013	9/11/2013	9/20/2013	9/20/2013	9/20/2013
Analyte	Units	TEF						
2,3,7,8-TCDD	pg/g	1	0.334 U	0.941 J	0.284 U	1.43	3.78	23.7
1,2,3,7,8-PeCDD	pg/g	1	0.461 J	2.49 J	0.422 U	3.75 J	14.6	87.7
1,2,3,4,7,8-HxCDD	pg/g	0.1	0.449 U	1.96 J	0.327 U	3.65 J	15.6	64.3
1,2,3,6,7,8-HxCDD	pg/g	0.1	1.44 J	4.04 J	0.611 J	15.9	30.3	131
1,2,3,7,8,9-HxCDD	pg/g	0.1	0.978 J	3.32 J	0.627 J	7.74	21.4	87.5
1,2,3,4,6,7,8-HpCDD	pg/g	0.01	49	63.1	6.28	280	210	549
OCDD	pg/g	0.0003	384	464	30.1	2330	665	660
2,3,7,8-TCDF	pg/g	0.1	0.62 U	3.98	0.379 J	7.84	26.9	114
1,2,3,7,8-PeCDF	pg/g	0.03	0.25 U	2.8 J	0.327 U	5.36	35.1	97.1
2,3,4,7,8-PeCDF	pg/g	0.3	0.791 J	5.52	0.292 U	7.74	33.7	107
1,2,3,4,7,8-HxCDF	pg/g	0.1	0.328 U	1.81 J	0.199 U	14.7	43	84.9
1,2,3,6,7,8-HxCDF	pg/g	0.1	0.465 J	2.43 J	0.201 U	8.14	41.6	87.5
2,3,4,6,7,8-HxCDF	pg/g	0.1	0.527 J	3.14 J	0.206 U	8.15	33.5	89
1,2,3,7,8,9-HxCDF	pg/g	0.1	0.285 U	0.504 U	0.285 U	3.54 J	10.5	18.9
1,2,3,4,6,7,8-HpCDF	pg/g	0.01	5.22	9.71	0.802 J	110	93.2	152
1,2,3,4,7,8,9-HpCDF	pg/g	0.01	0.352 U	1.07 J	0.409 U	8.05	10.5	20.6
OCDF	pg/g	0.0003	20.9	22.8	1.77 J	337	85.3	52.1
Summed Dioxin/								
Furan TEQ ^{1,2}	pg/g		1.7	8.12	0.242	19.4	55.2	222
Summed Dioxin/Furan TEQ with One-half of the								
Detection Limit ^{1,3}	pg/g		1.96	8.15	0.707	19.4	55.2	222

Notes:

1 World Health Organization 2005 Toxic Equivalency Factors used for calculation of dioxin/furan TEQ (Van den Berg et al. 2006).

2 Calculated using detected dioxin/furan concentrations.

3 Calculated using detected dioxin/furan concentrations plus one-half the detection limit for dioxins/furans that were not detected.

Abbreviations:

HpCDD Heptachlorodibenzo-p-dioxin

HpCDF Heptachlorodibenzofuran

HxCDD Hexachlorodibenzo-p-dioxin

- HxCDF Hexachlorodibenzofuran
- MTCA Model Toxics Control Act
- OCDD Octachlorodibenzo-p-dioxin
- OCDF Octachlorodibenzofuran

PeCDD Pentachlorodibenzo-p-dioxin

- PeCDF Pentachlorodibenzofuran
 - pg/g Picograms per gram
- TCDD Tetrachlorodibenzo-p-dioxin
- TCDF Tetrachlorodibenzofuran
- TEQ Total equivalancy quotient

Qualifiers:

- J Analyte was detected, concentration should be considered an estimate.
- U Analyte was not detected, concentration given is the reporting limit.

Table 3.4Metals, SVOC, and VOC Detections in Soil1

		Location	AOPC3-10	AOPC3-11	K-11	K-29	K-33	K-34	K-37	K-39	K-39	K-40	K-46
		Sample ID	AOPC3-10	AOPC3-11	K-11-1.5-2.5	K-29-8.5-9.5	K-33-3-4	K-34-3-4	K-37-8.5-9.5	K-39-0-4	K-39-9-10	K-40-10.5-12	K-46-10-11
		Sample Date	09/11/2013	09/11/2013	09/10/2013	09/12/2013	09/11/2013	09/11/2013	09/12/2013	09/12/2013	09/12/2013	09/12/2013	09/19/2013
	S	ample Depth (ft bgs)	2.5	2.5	1.5–2.5	8.5–9.5	3–4	3–4	8.5–9.5	0–4	9–10	10.5–12	10–11
		MTCA Method A											
		Unrestricted Land											
Analytes	Units	Use CUL											
Metals		•					•					•	
Arsenic	mg/kg	20											
Barium	mg/kg												
Chromium	mg/kg	2,000											
Lead	mg/kg	250			11.6							19	12.8
Semivolatile Organic Compounds (SVOCs	5)						•	•	-		•	•	
bis(2-ethylhexyl)phthalate	 mg/kg		60	0.096 U		0.096 U			0.096 U	0.096 U	0.096 U		
Carbazole	mg/kg		0.3 U	0.006 U		0.006 U			0.006 U	0.006 U	0.006 U		
Diethylphthalate	mg/kg		0.3 U	0.0091		0.0081			0.0072	0.006 U	0.0061		
Pentachlorophenol	mg/kg		230	0.06 U		0.06 U			0.06 U	0.06 U	0.06 U		
Carcinogenic Polycyclic Aromatic Hydroc	arbons (cl	PAHs)		•			•						
Benzo(a)anthracene	mg/kg	T Í	0.3 U	0.036		0.006 U			0.006 U	0.006 U	0.006 U		0.1 U
Benzo(a)pyrene	mg/kg		0.3 U	0.033		0.006 U			0.006 U	0.006 U	0.006 U		0.1 U
Benzo(b)fluoranthene	mg/kg		0.41	0.044		0.006 U			0.006 U	0.006 U	0.006 U		0.1 U
Benzo(k)fluoranthene	mg/kg		0.3 U	0.017		0.006 U			0.006 U	0.006 U	0.006 U		0.1 U
Chrysene	mg/kg		0.3 U	0.044		0.006 U			0.006 U	0.006 U	0.006 U		0.11
Dibenzo(a,h)anthracene	mg/kg		0.3 U	0.0063		0.006 U			0.006 U	0.006 U	0.006 U		0.1 U
Indeno(1,2,3-cd)pyrene	mg/kg		0.3 U	0.023		0.006 U			0.006 U	0.006 U	0.006 U		0.1 U
Summed cPAH TEQ with One-half of the													
Reporting Limit ^{2,3}	mg/kg	2	0.25	0.046		0.0045 U			0.0045 U	0.0045 U	0.0045 U		0.076
Polycyclic Aromatic Hydrocarbons (PAHs)			0.20	0.0.0									0.010
Naphthalene	/ mg/kg	5	0.3 U	0.006 U	0.05 U	0.006 U	0.05 U	0.05 U	0.015	0.006 U	0.18		38
Acenaphthylene	mg/kg	Ŭ	0.3 U	0.006 U	0.00 0	0.006 U	0.00 0	0.00 0	0.006 U	0.006 U	0.006 U		
Acenaphthene	mg/kg		0.3 U	0.006 U		0.006 U			0.006 U	0.006 U	0.006 U		
Fluorene	mg/kg		0.3 U	0.006 U		0.006 U			0.006 U	0.006 U	0.006 U		
Phenanthrene	mg/kg		0.3 U	0.033		0.0073			0.006 U	0.006 U	0.0061		
Anthracene	mg/kg		0.3 U	0.0079		0.006 U			0.006 U	0.006 U	0.006 U		
2-Methylnaphthalene	mg/kg		0.3 U	0.006 U		0.006 U			0.006 U	0.006 U	0.096		
Fluoranthene	mg/kg		0.3 U	0.06		0.0093			0.006 U	0.006 U	0.006 U		
Pyrene	mg/kg	 	1.2	0.059		0.0089			0.0067	0.006 U	0.006 U		1
Benzo(g,h,i)perylene	mg/kg	 	0.3 U	0.022		0.006 U			0.006 U	0.006 U	0.006 U		1
/olatile Organic Compounds (VOCs) ⁴		L L	0.0 0	0.022	L	0.000 0	1	1	0.000 0	0.000 0	0.000 0		<u>i</u>
1,2,4-Trimethylbenzene	ma/ka	г		T	0.05 U	[0.056	0.05 U	r			1	r
2,6-bis(1,1-dimethylethyl)-4-Methylphenol	mg/kg	╂─────╂		1	0.05 0		1.1	0.03 0	<u> </u>	ļ			1
2-Methylpentane	mg/kg	╂─────╂					1.1						ł
iso-Pentane	mg/kg	┨────┤		1									ł
n-Hexane		┨────┤		1								70	12
	mg/kg	┼───┤							<u> </u>			10	12
n-Pentane	mg/kg												L

Notes:

Bold Indicates a concentration that exceeds the MTCA Method A Unrestricted Land Use CUL.

Blank cells indicate the sample was not analyzed for that analyte.

1 Sample results are included in this table if there was at least a single detection of a metal, SVOC, or VOC. Only those analytes detected are included.

2 Calculation of cPAH TEQ concentrations was performed using the California Environmental Protection Agency 2005 Toxic Equivalency Factors as presented in Table 708-2 of WAC 173-340-900 (WSDOE 2007).

3 Calculated using detected cPAH concentrations plus one-half the reporting limit for cPAHs that were not detected.

4 BTEX results are included in Table 3.2.

Abbreviations:

BETX Benzene, toluene, ethylbenzene, and xylenes

CUL Cleanup level

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

TEQ Total equivalancy quotient

Qualifiers:

U Analyte is not detected at the associated reporting limit.

UJ Analyte is not detected at the associated reporting limit, which is an estimate.

F:\projects\Port of PA KPLY Mill\Supplemental Data Collection Technical Memo\Tables
January 2014 DRAFT

Table 3.4Metals, SVOC, and VOC Detections in Soil1

		Location	K-50	K-59	K-63	K-64	K-66	K-89	K	-91	K-92	K-98	K-99
		Sample ID	K-50-3.5-6	K-59-11-11.5	K-63-11-12	K-64-10.5-11.5	K-66-3.5-5.5	K-89-14-15	K-91-10-12	K-91-10-12-D	K-92-7.5-8	K-98-10.5-11.5	K-99-10.5-11.5
		Sample Date	09/10/2013	09/09/2013	09/10/2013	09/10/2013	09/10/2013	10/16/2013	09/20/2013	09/20/2013	09/20/2013	09/10/2013	09/10/2013
	S	ample Depth (ft bgs)	3.5–6	11–11.5	11–12	10.5-11.5	3.5–5.5	14–15	10–12	10–12	7.5–8	10.5–11.5	10.5-11.5
		MTCA Method A											
		Unrestricted Land											
Analytes	Units	Use CUL											
Metals		•		•									•
Arsenic	mg/kg	20										3.04	2.75
Barium	mg/kg											11.2	13.1
Chromium	mg/kg	2,000										15.2	12.4
Lead	mg/kg	250	58.4			3.68	11.1		1 U	1 U	3.05	3.78	2.84
Semivolatile Organic Compounds (SVOCs	5)												
bis(2-ethylhexyl)phthalate	mg/kg							48 UJ				0.48 U	4.8 U
Carbazole	mg/kg							30 UJ				0.03 U	0.3 U
Diethylphthalate	mg/kg							3 U				0.03 U	0.3 U
Pentachlorophenol	mg/kg							30 UJ				0.3 U	3 U
Carcinogenic Polycyclic Aromatic Hydroc	arbons (cl	PAHs)											
Benzo(a)anthracene	mg/kg			0.01 U	0.1 U	0.56		33				0.01 U	0.1 U
Benzo(a)pyrene	mg/kg			0.01 U	0.1 U	0.1 U		11				0.01 U	0.1 U
Benzo(b)fluoranthene	mg/kg			0.01 U	0.1 U	0.1 U		18				0.01 U	0.1 U
Benzo(k)fluoranthene	mg/kg			0.01 U	0.1 U	0.1 U		5.5				0.01 U	0.1 U
Chrysene	mg/kg			0.01 U	0.18	0.29		29				0.01 U	0.1 U
Dibenzo(a,h)anthracene	mg/kg			0.01 U	0.1 U	0.1 U		1 U				0.01 U	0.1 U
Indeno(1,2,3-cd)pyrene	mg/kg			0.01 U	0.1 U	0.1 U		4.1				0.01 U	0.1 U
Summed cPAH TEQ with One-half of the													
Reporting Limit ^{2,3}	mg/kg	2		0.0076 U	0.077	0.13		17				0.0076 U	0.076 U
Polycyclic Aromatic Hydrocarbons (PAHs)					•				•			
Naphthalene	, mg/kg	5		0.01 U	0.05 U	0.1 U		690				0.03 U	0.05 U
Acenaphthylene	mg/kg			0.01 U	0.1 U	0.1 U		4.4				0.03 U	0.3 U
Acenaphthene	mg/kg			0.01 U	0.28	0.1 U		240				0.03 U	0.3 U
Fluorene	mg/kg			0.01 U	0.1 U	0.1 U		210				0.03 U	0.3 U
Phenanthrene	mg/kg			0.01 U	0.1 U	0.23		530				0.03 U	0.3 U
Anthracene	mg/kg			0.01 U	0.1 U	0.1 U		65				0.03 U	0.3 U
2-Methylnaphthalene	mg/kg							280				0.03 U	0.3 U
Fluoranthene	mg/kg			0.01 U	0.1 U	0.1 U		180				0.03 U	0.3 U
Pyrene	mg/kg			0.01 U	0.1 U	0.16		130				0.03 U	0.3 U
Benzo(g,h,i)perylene	mg/kg			0.01 U	0.1 U	0.1 U		2.8				0.03 U	0.3 U
Volatile Organic Compounds (VOCs) ⁴	<u> </u>												
1,2,4-Trimethylbenzene	mg/kg				0.05 U							0.05 U	0.05 U
2,6-bis(1,1-dimethylethyl)-4-Methylphenol	mg/kg											-	
2-Methylpentane	mg/kg				0.55								
iso-Pentane	mg/kg				1.4								
n-Hexane	mg/kg		0.31										
n-Pentane	mg/kg		-		0.32					1	1		

Notes:

Bold Indicates a concentration that exceeds the MTCA Method A Unrestricted Land Use CUL.

Blank cells indicate the sample was not analyzed for that analyte.

1 Sample results are included in this table if there was at least a single detection of a metal, SVOC, or VOC. Only those analytes detected are included.

2 Calculation of cPAH TEQ concentrations was performed using the California Environmental Protection Agency 2005 Toxic Equivalency Factors as presented in Table 708-2 of WAC 173-340-900 (WSDOE 2007).

3 Calculated using detected cPAH concentrations plus one-half the reporting limit for cPAHs that were not detected.

4 BTEX results are included in Table 3.2.

Abbreviations:

BETX Benzene, toluene, ethylbenzene, and xylenes

CUL Cleanup level

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

TEQ Total equivalancy quotient

Qualifiers:

U Analyte is not detected at the associated reporting limit.

UJ Analyte is not detected at the associated reporting limit, which is an estimate.

F:\projects\Port of PA KPLY Mill\Supplemental Data Collection Technical Memo\Tables
January 2014 DRAFT

Table 3.4Metals, SVOC, and VOC Detections in Soil1

		Location		K-101	KT-10	KT-11		-12	PF-1	PF-6	PP-23	PZ-06A
		Sample ID	K-100-11-15.5	K-101-13.5-15	KT-10-2-3	KT-11-1-1.5	KT-12-3-3.5	KT-12-8.5-9	PF-1-7-8	PF-6-6.7-8	PP-23-10-11.5	PZ-06A-3-4
		Sample Date	09/12/2013	09/12/2013	09/10/2013	09/11/2013	09/10/2013	09/10/2013	09/13/2012	09/13/2013	09/18/2013	09/10/2013
	Sa	ample Depth (ft bgs)	11–15.5	13.5–15	2–3	1–1.5	3–3.5	8.5–9	7–8	6.7–8	10–11.5	3–4
		MTCA Method A										
		Unrestricted Land										
Analytes	Units	Use CUL										
Metals								-		-		
Arsenic	mg/kg	20	2.12	1.75			2.57	1.95				
Barium	mg/kg		60.9	28.4			15.8	7.33				
Chromium	mg/kg	2,000	18.6	17.3			13.9	9.59				
Lead	mg/kg	250	4.82	5.65	6.84	10.8	3.73	1 U	2.22	11.3	6.83	6.95
Semivolatile Organic Compounds (SVOCs												
bis(2-ethylhexyl)phthalate	mg/kg						120 U	0.48 U	0.096 U	4.8 U		
Carbazole	mg/kg						7.5 U	0.03 U	0.0081	0.3 U		
Diethylphthalate	mg/kg						7.5 U	0.03 U	0.006 U	0.3 U		
Pentachlorophenol	mg/kg						75 U	0.3 U	0.06 U	3 U		
Carcinogenic Polycyclic Aromatic Hydroc	arbons (cF	PAHs)										
Benzo(a)anthracene	mg/kg		0.01 U	0.1 U			2.5 U	0.01 U	0.006 U	0.3 U	0.011	
Benzo(a)pyrene	mg/kg		0.01 U	0.1 U			2.5 U	0.01 U	0.006 U	0.3 U	0.01 U	
Benzo(b)fluoranthene	mg/kg		0.01 U	0.1 U			2.5 U	0.01 U	0.006 U	0.3 U	0.01 U	
Benzo(k)fluoranthene	mg/kg		0.01 U	0.1 U			2.5 U	0.01 U	0.006 U	0.3 U	0.01 U	
Chrysene	mg/kg		0.01 U	0.19			2.5 U	0.01 U	0.006 U	0.3 U	0.027	
Dibenzo(a,h)anthracene	mg/kg		0.01 U	0.1 U			2.5 U	0.01 U	0.006 U	0.3 U	0.01 U	
Indeno(1,2,3-cd)pyrene	mg/kg		0.01 U	0.1 U			2.5 U	0.01 U	0.006 U	0.3 U	0.01 U	
Summed cPAH TEQ with One-half of the												
Reporting Limit ^{2,3}	mg/kg	2	0.0076 U	0.077			1.9 U	0.0076 U	0.0045 U	0.23 U	0.0084	
Polycyclic Aromatic Hydrocarbons (PAHs								1		1	1	
Naphthalene	, mg/kg	5	-				7.5 U	0.03 U	0.0073	0.61	0.066	
Acenaphthylene	mg/kg						7.5 U	0.03 U	0.0099	0.3 U		
Acenaphthene	mg/kg						7.5 U	0.03 U	0.022	0.3 U		
Fluorene	mg/kg						7.5 U	0.03 U	0.053	0.3 U		
Phenanthrene	mg/kg						7.5 U	0.043	0.095	0.3 U		
Anthracene	mg/kg						7.5 U	0.03 U	0.006 U	0.3 U		
2-Methylnaphthalene	mg/kg						7.5 U	0.03 U	0.33	4.8		
Fluoranthene	mg/kg						7.5 U	0.03 U	0.006 U	0.3 U		
Pyrene	mg/kg						7.5 U	0.03 U	0.006 U	0.3 U		
Benzo(g,h,i)perylene	mg/kg						7.5 U	0.03 U	0.006 U	0.3 U		
Volatile Organic Compounds (VOCs) ⁴	3.3											
1,2,4-Trimethylbenzene	mg/kg											
2,6-bis(1,1-dimethylethyl)-4-Methylphenol	mg/kg		L			1	1	1	<u> </u>	1	1	4.6
2-Methylpentane	mg/kg					1	1					-1.0
iso-Pentane	mg/kg											
n-Hexane	mg/kg								0.25 U	0.25 U	0.25 U	0.25 U
n-Pentane	mg/kg					<u> </u>	<u> </u>		0.20 0	0.20 0	0.20 0	0.20 0

Notes:

Bold Indicates a concentration that exceeds the MTCA Method A Unrestricted Land Use CUL.

Blank cells indicate the sample was not analyzed for that analyte.

1 Sample results are included in this table if there was at least a single detection of a metal, SVOC, or VOC. Only those analytes detected are included.

2 Calculation of cPAH TEQ concentrations was performed using the California Environmental Protection Agency 2005 Toxic Equivalency Factors as presented in Table 708-2 of WAC 173-340-900 (WSDOE 2007).

3 Calculated using detected cPAH concentrations plus one-half the reporting limit for cPAHs that were not detected.

4 BTEX results are included in Table 3.2.

Abbreviations:

BETX Benzene, toluene, ethylbenzene, and xylenes

CUL Cleanup level

mg/kg Milligrams per kilogram

MTCA Model Toxics Control Act

TEQ Total equivalancy quotient

Qualifiers:

U Analyte is not detected at the associated reporting limit.

UJ Analyte is not detected at the associated reporting limit, which is an estimate.

F:\projects\Port of PA KPLY Mill\Supplemental Data Collection Technical Memo\Tables
January 2014 DRAFT

Table 3.5Petrophysical Test Physical Properties Data

		METHOD	API RP 40 / ASTM D2216	API R	P 40	API	RP 40	API	RP 40
			Moisture	Den	sity	Porosi	ty, %Vb²	Pore	e Fluid
	Depth	Sample	Content	Dry Bulk	Grain		Air	Saturatio	ons, % F
Location	(ft.)	Orientation ¹	(% weight)	g/cc	g/cc	Total	Filled	Water	NA
PF-7-6.5-10	6.6	V	19.0	1.67	2.73	39.0	7.5	77.5	3
K-15-9.5-11	10.7	V	20.3	1.60	2.72	41.3	8.8	73.7	5
EW-2-A-10.5-12	11.6	V	14.4	1.71	2.73	37.4	10.0	22.4	50
PZ-06-A-3.5-5.5	4.6	V	45.3	1.19	2.68	55.5	1.0	88.4	9
PZ-06-A-8-9.5	9.4	V	13.7	1.94	2.72	28.7	1.7	85.3	8
K-27-9.5-11.5*	9.9	V	35.2	1.17	2.69	56.4	14.4	65.4	9

Notes:

* Indicates a boring that was advanced through the concrete slab, which sits approximately 5 feet above grade.

1 Sample Orientation: H = horizontal; V = vertical; R = remold.

2 Total Porosity = all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids.

3 Fluid density used to calculate pore fluid saturations: Water = 0.9996 g/cc, NAPL = 0.8600 g/cc.

Abbreviations:

ft Feet

g/cc Grams per cubic centimeter

NAPL Non-aqueous phase liquid

Pv Pore volume

Vb Bulk volume

K Ply Site

Pv ³
APL
3.3
5.0
0.7
9.8
8.7
9.1

 Table 4.1

 Monitoring Well Installation Details

Monitoring Well	Date Installed	Total Depth Drilled (ft bgs)	Total Well Length (ft bgs)	Screened Interval (ft bgs)	Casing Size (inches)	Approximate Ground Surface Elevation (ft NAVD 88)	Top of Casing Elevation (ft NAVD 88)	Northing (ft NAD 83/98)	Easting (ft NAD 83/98)	Completion Type
PP-4R	9/19/2013	19	18	8–18	2	17.85	15.74	420,417	1,003,289	Stick up/above ground
PP-6R	9/19/2013	19	18	8–18	2	18.01	15.91	420,512	1,003,411	Stick up/above ground
PP-15R	9/19/2013	19	18	8–18	2	17.72	14.81	420,492	1,003,105	Stick up/above ground
PP-20	9/20/2013	19	18	8–18	2	20.00	17.62	420,710	1,003,533	Stick up/above ground
PP-21	9/20/2013	19	18	8–18	2	17.62	15.41	420,618	1,003,760	Stick up/above ground
PP-22	9/19/2013	19	18	8–18	2	17.53	15.34	420,437	1,004,150	Stick up/above ground
PP-23	9/18/2013	19	18	8–18	2	16.58	NA	420,275	1,003,009	Flush mount
PP-24	9/19/2013	19	18	8–18	2	17.84	NA	419,957	1,003,543	Flush mount
PP-25	9/19/2013	19	18	8–18	2	19.86	19.18	419,921	1,003,890	Flush mount
PP-26	9/18/2013	19	18	8–18	2	17.96	15.46	420,450	1,003,236	Stick up/above ground

Abbreviations:

bgs Below ground surface

ft Feet

NA Not available

NAD 83/98 North American Datum of 1983/1998

NAVD 88 North American Vertical Datum of 1988

Table 4.2Water Level Elevation and Tidal Information

Monitoring Point	Elevation of TOC (ft NAVD 88)	Date	Time of Sampling (24-hour)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Water Table Elevation (ft NAVD 88)	Approximate Tidal Elevation at Time of Sampling ¹ (ft MLLW)	Approximate Height of Water Table above/below Tidal Level at Time of Sampling (ft)
PZ-1	16.52	10/14/2013	18:22	10.65			5.87	3.03	2.8
PZ-2	17.45								
PZ-3	17.23								
PZ-4	20.88	10/14/2013	18:33	14.88			6.00	3.02	3.0
PZ-5	20.84								
PZ-6 ²	20.91	11/5/2012		14.9	14.55	0.35	6.07		
FZ-0	20.91	11/6/2012	15:30	15.00	14.55	0.45	5.91	4.88	1.0
	15.45	2/5/2012	13:00	9.91	8.76	1.15	5.54	3.63	1.9
	15.45	10/14/2013	18:18	9.94	9.42	0.52	5.51	3.03	2.5
PZ-7	20.6	10/14/2013	18:29	10.15			10.45	3.02	7.4
PZ-8	20.75								
PZ-0 PZ-9	14.98								
PZ-9 PZ-10	14.90								
PZ-10 PZ-11	16								
PZ-12	15.69	11/5/2012		10.93	0.00		4.76		
F Z-12	15.69	11/6/2012	11:50	10.93	0.00		5.57	5.66	-0.1
	15.69	2/5/2013	11:25	10.12	0.00		5.59	5.84	-0.3
	15.69	10/14/2013	18:13	10.10			5.32	3.04	2.3
PZ-13	14.77	11/5/2012		10.37	0.00		4.17		
12-10	14.77	11/6/2012	9:50	9.85	0.00		4.92	6.08	-1.2
	14.77	2/5/2013	11:20	10.30	0.00		4.47	5.96	-1.5
	14.77	10/15/2013	11:52	10.30			4.28	6.03	-1.8
PP-1	14.75								
PP-2	15.78	10/14/2013	18:22	12.49	10.2	2.29	3.29	3.02	0.3
PP-3	16.22	10/14/2013	18:26	11.08	10.2	0.33	5.14	3.02	2.1
PP-4	15.55								
PP-4R	17.85	10/14/2013	18:38	12.02			5.83	3.02	2.8
PP-6	16.4								
PP-6R	18.01	10/14/2013	18:41	12.32			5.69	3.02	2.7
PP-7	16.36	10/14/2013	18:13	10.62			5.74	3.04	2.7
PP-9	17.09								
	17.09	10/14/2013	18:32	10.65			6.44	3.02	3.4
PP-10	15.34								
PP-11	15.21	10/14/2013	18:33	11.26	10.22	1.04	3.95	3.02	0.9
PP-12	15.21	10/14/2013	18:31	11.09	10.02	1.07	4.12	3.02	1.1
PP-13	16.64	11/5/2012		11.06	0.00		5.58		
	16.64	11/6/2012	11:00	7.40	0.00		9.24	5.88	3.4
	16.64	2/5/2013	14:35	11.50	0.00		5.14	1.2	3.9
	16.64	10/14/2013	18:17	11.50	1		5.14	3.03	2.1
PP-14	14.47								
PP-15	14.93	11/5/2012		8.62	0.00		6.31		
	14.93	11/6/2012	13:45	8.25	0.00		6.68	5.06	1.6
	14.93	2/5/2013	14:10	8.20	0.00		6.73	1.81	4.9
PP-15R	17.72	10/14/2013	18:20	12.01			5.71	3.03	2.7

Table 4.2Water Level Elevation and Tidal Information

Monitoring Point	Elevation of TOC (ft NAVD 88)	Date	Time of Sampling (24-hour)	Depth to Water (ft)	Depth to Product (ft)	Product Thickness (ft)	Water Table Elevation (ft NAVD 88)	Approximate Tidal Elevation at Time of Sampling ¹ (ft MLLW)	Approximate Height of Water Table above/below Tidal Level at Time of Sampling (ft)
PP-16	20.89		'				(
PP-17	16.32	11/5/2012		12.5	0.00		3.82		
	16.32	11/6/2012	9:33	11.25	0.00		5.07	6.23	-1.2
	16.32	2/5/2013	10:20	11.15	0.00		5.17	6.9	-1.7
	16.32	10/14/2013	18:35	11.69			4.63	3.02	1.6
PP-18	16.83	11/5/2012		13	0.00		3.83		
	16.83	11/6/2012	9:25	11.34	0.00		5.49	6.22	-0.7
	16.83	2/5/2013	10:35	14.50	0.00		2.33	6.67	-4.3
	16.83	10/14/2013	18:30	11.91			4.92	3.02	1.9
PP-19	15.64	11/5/2012		12.5	0.00		3.14		
	15.64	11/6/2012	10:30	10.61	0.00		5.03	6.16	-1.1
	15.64	2/5/2013	9:40	10.25	0.00		5.39	7.22	-1.8
	15.64	10/14/2013	18:40	11.53			4.11	3.02	1.1
PP-20	20.11	10/14/2013	18:22	15.81			4.3	3.02	1.3
PP-21	17.62	10/14/2013	18:18	13.42			4.2	3.03	1.2
PP-22	17.53	10/14/2013	18:13	12.71			4.82	3.04	1.8
PP-23	16.58	10/14/2013	18:30	10.31			6.27	3.02	3.3
PP-24	17.84	10/14/2013	18:17	11.65			6.19	3.03	3.2
PP-25	19.86	10/14/2013	18:13	13.51			6.35	3.04	3.3
PP-26	17.96	10/14/2013	18:23	12.02			5.94	3.02	2.9
MW-3	16.11								
MW-4	15.63								
MW-6	16.33								
MW-8	17.89	10/14/2013	18:53	12.08			5.81	3.04	2.8
MW-9	15.56								
MW-10	15.1								
MW-12	14.29								
MW-13	13.53								
MW-14	16.16								
MW-23	16.62	10/14/2013	18:46	10.85			5.77	3.04	2.7
MW-24	15.39								
MW-25	15.58								
EW-1	14.24								
EW-2	16.69								

Notes:

Earlier Interim Action Quarterly Monitoring results are included.

-- Not measured during Quarter 1 Baseline Monitoring Event; however, water levels may be measured at subsequent monitoring events.

1 Information is sourced from the National Oceanic and Atmospheric Administration (NOAA 2012). The NAVD 88 datum is 0.42 ft above MLLW at Station 9444090 NOAA/NOS/CO-OPS.

2 The water table elevation has been corrected due to the presence of product assuming a specific gravity of 0.85 for the product.

Abbreviations:

ft Feet

MLLW Mean Lower Low Water NAVD 88 North American Vertical Datum of 1988

TOC Top of casing

Table 4.3

Gasoline-range, Diesel-range, and Oil-range Organics, and BTEX Results for Groundwater - Direct-push Probe Screening and Groundwater Monitoring Well Sampling

		Gasoline-	Diesel-	Motor Oil-				
		range	range	range				Total
	Analyte	Organics	Organics	Organics	Benzene	Ethylbenzene	Toluene	Xylenes ¹
	Units	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MTCA Metho	od A Unrestricted							
	Land Use CUL	800	500	500	5	700	1,000	1,000
Sample ID	Sample Date							
	be Groundwater							
K-200-7-12	9/20/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
K-201-10-15	9/20/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
K-202-10-15	9/20/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
K-203-10-15	9/20/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
K-90-11-16	9/12/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
K-98-5-15	9/10/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
K-99-6.5-16.5	9/10/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
PF-1-4-9	9/13/2013	510	130	250 U	1 U	2.3	2.2	3.8
PF-2-4-9	9/13/2013	610	60	250 U	1 U	1.8	2.5	4.3
PF-3-4-9	9/18/2013	2,200	2,300	250 U	3.2	5.2	6.6	7.3
PF-5-4-9	9/13/2013	290	50 U	250 U	1 U	1 U	1.7	3 U
PF-6-3.5-8.5	9/13/2013	9,500	1,200	250 U	4.5	53	79	49
PF-7-4-9	9/13/2013	6,900	2,100	250 U	64	66	38	140
PF-8-5-10	9/13/2013	2,300	2,400	250 U	200	9.4	8.1	3 U
PF-9-4-9	9/18/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
Monitoring Well	s					•		
PP-07	10/14/2013	600	350 JM	250 U	1.6	1	5.5	5
PP-13	10/14/2013	1,200	50 U	250 U	420	1.7	14	20
PP-15R	10/14/2013	12,000	110 JM	250 U	3,700	130	100 U	300 U
PP-17	10/15/2013	720	50 U	250 U	170	1 U	7.8	8.1
PP-18	10/15/2013	7,500	1,200 JM	250 U	240	430	8.1	9.1
PP-18-D	10/15/2013	7,300	1,300 JM	250 U	250	390	8.1	9.2
PP-19	10/15/2013	100 U	50 U	250 U	0.35 U	1 U	1 U	3 U
PP-20	10/15/2013	100 U	50 U	250 U	0.35 U	1 U	1 U	3 U
PP-21	10/15/2013	100 U	50 U	250 U	0.35 U	1 U	1 U	3 U
PP-22	10/15/2013	140	80 JM	250 U	0.35 U	1 U	1 U	3 U
PP-23	10/14/2013	2,200	810 JM	250 U	3.3	6.3	11	8.8
PP-24	10/14/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
PP-25	10/15/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
PP-26	10/14/2013	7,000	250 JM	280 U	1,600	480	71	120 U
P-9	10/14/2013	100 U	50 U	250 U	1 U	1 U	1 U	3 U
PZ-01	10/14/2013	500	50 U	250 U	8.3	1 U	6.6	4.3
PZ-01-D	10/14/2013	520	50 U	250 U	8.5	1 U	6.7	4.4
PZ-04	10/14/2013	9,300	770 JM	250 U	2,300	40 U	40 U	120 U
PZ-07	10/14/2013	2,100	340 JM	250 U	25	110	17	30 U
PZ-12	10/14/2013	910	50 U	250 U	370	1 U	4.5	3 U
PZ-13	10/15/2013	100 U	50 U	250 U	1 U	10	1 U	3 U

Notes:

BOLD Exceeds MTCA Method A Unrestricted Land Use CUL.

1 The reported xylenes concentration is the sum of o-xylene, p-xylene, and m-xylene.

Abbreviations:

BTEX Benzene, toluene, ethylbenzene, and xylenes

CUL Cleanup level

-D Duplicate sample

μg/L Micrograms per liter MTCA Model Toxics Control Act

Qualifiers:

JM Concentration is estimated due to poor match to standard, acceptable for use with qualification.

U Analyte was not detected, value given is reporting limit.

Table 4.4 Metals, SVOC, VOC, Formaldehyde, and PCB Results in Groundwater Direct-push Probe Screening and Groundwater Monitoring Well Sampling

		Sample ID	K-98-5-15	K-99-6.5-16.5	PP-13	PP-15R	PP-17	PP-18	PP-18-D	PP-19	PP-20	PP-21	PP-22	PP-23	PZ-12
		Sample Date		09/10/2013	10/14/2013	10/14/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	10/14/2013	10/14/2013
		MTCA Method A Unrestricted		00/10/2010	10/11/2010		10/10/2010	10/10/2010	10/10/2010	10/10/2010	10/10/2010				
Analyte	Units	Land Use CUL													<u> </u>
Metals															
Lead	µg/L	15				1 U		2.44						1 U	
Semivolatile Organic Compounds (SVC		400			0.05.11	40	0.05.11			0.05.11	0.05.11	0.05.11		0.05.11	0.05.11
Naphthalene	µg/L	160	1 U	1 U	0.05 U	13	0.05 U	260	230	0.05 U	0.05 U	0.05 U	20	0.05 U	0.05 U
2-Methylnaphthalene	µg/L				<u>1 U</u>		0.2 U	160	160	0.2 U	0.2 U	0.2 U	2.4	4.5	1 U
2,4-Dimethylphenol	µg/L				10 U		2 U	2 U	2 U	2 U	2 U	2 U	8.1	10 U	10 U
3- & 4-Methylphenol	µg/L				20 U		4 U	4 U	4 U	4 U	4 U	4 U	100	20 U	20 U
2,4-Dinitrotoluene	µg/L				<u>1 U</u>		0.2 U	0.2 U	0.2 U 10 U	0.2 U 10 U	0.2 U 10 U	0.2 U 10 U	0.2 U 230	50 U	1 U 50 U
Benzoic acid	µg/L				50 U 1 U		10 U 0.2 U	10 U 0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.52		50 U 1 U
Carbazole	µg/L				1 U 1 U					0.2 U 0.2 U	0.2 U 0.2 U	0.2 U 0.2 U		1 U 1 U	1 U 1 U
Diethylphthalate Phenol	μg/L μg/L				1 U 10 U		0.61 2 U	0.2 U 2 U	0.2 U 2 U	0.2 U 2 U	0.2 U 2 U	0.2 U 2 U	0.2 U 72	1 U 10 U	1 U 10 U
Carcinogenic Polycyclic Aromatic Hydr		cDAHc)			10.0		20	20	2 0	20	20	20	12	10.0	100
Benzo(a)anthracene	ug/L	CPARS)			0.05 U	[0.05 U	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Benzo(a)pyrene	µg/L	0.1			0.03 U 0.01 U		0.03 U 0.01 U	0.03 U 0.01 U	0.3 U	0.03 U 0.01 U	0.03 U 0.01 U	0.03 U	0.03 U	0.03 U	0.03 U
Benzo(b)fluoranthene	μg/L μg/L	0.1			0.01 U		0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(k)fluoranthene	μg/L μg/L				0.01 U		0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chrysene	μg/L μg/L				0.01 U		0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Dibenzo(a,h)anthracene	μg/L μg/L				0.01 U		0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene	µg/L				0.01 U		0.01 U	0.01 U	0.1 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Summed cPAH TEQ with One-half of	µg/∟				0.01 0		0.01 0	0.01 0	0.1 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0
	4				0 0000 11		0.0000.11	0.0000.11	0.000.11		0.0000.11	0.0000.11	0.0000.11	0.0000.11	0.0000.11
the Reporting Limit ^{1,2}	µg/L	0.1			0.0096 U		0.0096 U	0.0096 U	0.096 U	0.0096 U	0.0096 U	0.0096 U	0.0096 U	0.0096 U	0.0096 U
Polycyclic Aromatic Hydrocarbons (PA	,				4.11	r	0.05.11	0.00	0.4.1	0.000	0.05.11	0.05.11	4.0		
Acenaphthene	µg/L				<u>1 U</u>		0.05 U	0.39	0.4 J	0.068	0.05 U	0.05 U	4.2	2.2	1 U
Anthracene	µg/L				<u>1 U</u>		0.073	0.05 U	0.5 U	0.05 U	0.05 U	0.05 U	0.18	1 U	1 U
Fluorene	µg/L				<u>1 U</u>		0.05 U	0.57	0.58	0.05 U	0.05 U	0.05 U	1.2	4.2 3.2	1 U
Phenanthrene	µg/L				<u>1 U</u> 1 U		0.05 U 0.05 U	0.53 0.05 U	0.51 0.5 U	0.05 U 0.052	0.05 U	0.05 U 0.05 U	0.05 U		1 U 1 U
Pyrene	µg/L				10		0.05 0	0.05 0	0.5 0	0.052	0.05 U	0.05 0	0.05 U	1 U	10
Volatile Organic Compounds (VOCs) 1,2-Dichloroethane (EDC)	µg/L	5	1 U	1 U		87	4	1 U	1 U	1 U	1 U	1 U	1 U	1	1
1,2-Dibromoethane (EDB)	μg/L μg/L	5	<u>1 U</u>	1 U		0/	4 1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Methyl tertiary-butyl ether (MTBE)	μg/L μg/L		1 U	1 U			1 U	1 U	<u>1 U</u>	1 U	1 U	1 U	1 U		ł
1,3,5-Trimethylbenzene	μg/L μg/L		<u>1 U</u>	1 U			1 U	2	2	1 U	1 U	1 U	1 U		ł
Acetone	μg/L μg/L		10 U	10 U			10 U	2 10 U	2 10 U	10 U	10 U	10 U	45		ł
n-Hexane	μg/L μg/L		10.0	10.0		1 U	10.0	10.0	10.0	10.0	10.0	10.0	40	1.5	1
iso-Propylbenzene	μg/L μg/L		1 U	1 U		10	3.4	67	69	1 U	1 U	1 U	1 U	1.0	ł
Methylene chloride	μg/L μg/L	5	5.4 J	5 U			3.4 5 U	5 U	<u>09</u> 5_U	5 U	5 U	5 U	5 U		<u> </u>
n-Propylbenzene	µg/L	5	<u> </u>	1 U			8.1	250	230	1 U	<u> </u>	1 U	1 U		<u> </u>
Cymene	µg/L µg/L		1 U	1 U			1 U	230 1 U	230 1 U	1 U	1 U	1 U	14		<u> </u>
sec-Butylbenzene	ua/L		<u>1 U</u>	1 U			1 U	10	10	1 U	1 U	1 U	1 U		<u> </u>
Aldehydes	P9/⊏		10	10				10		10			10		1
Formaldehyde	µg/L				100 U										100 U
Polychlorinated Biphenyls (PCBs)	P9/L			ļ	100 0	ļ	<u> </u>			ļ	<u> </u>	ļ	ļ	ļ	100 0
PCBs (Total, Aroclors)	µg/L	0.1						0.1 U							
Notes:	r ~9′⊏	0.1		1		I	l	0.1 0		l	l	1	1	1	L

Notes:

1 Calculation of cPAH TEQ concentrations was performed using the California Environmental Protection Agency 2005 Toxic Equivancy Factors as presented in Table 708-2 of WAC 173-340-900 (WSDOE 2007). 2 Calculated using detected cPAH concentrations plus one-half the reporting limit for cPAHs that were not detected.

BOLD Exceeds MTCA Method A Unrestricted Land Use CUL.

Blank cells indicate the sample was not analyzed for that analyte.

J Analyte was detected, result concentration is an estimate.

U Analyte was not detected, value given is reporting limit.

Abbreviations:

CUL Cleanup level

µg/kg Micrograms per kilogram

MTCA Model Toxics Control Act

TEQ Total equivalancy quotient

		Sodiment Samples Posults				Sediment Management Standards (SMS)					
		Sediment Samples Results				(5	SMS)				
	Location	KSS-1	KSS-2	KSS-3							
	Sample ID	SD0001K	SD0002K	SD0003K							
	Sample Date	07/09/2013	07/09/2013	07/09/2013							
	Sample Depth	0–10 cm	0–10 cm	0–10 cm	SMS	SMS	SMS	SMS			
Analyte	Units				SQS	CSL	LAET	2LAET			
Grain Size											
Gravel	%	0.59	3.45	0.15	NA	NA	NA	NA			
GS <0.98 μm	%	7.36	5.86	3.95	NA	NA	NA	NA			
GS 0.98–1.95 µm	%	3.75	2.66	1.83	NA	NA	NA	NA			
GS 1.95–3.9 µm	%	3.79	2.75	1.86	NA	NA	NA	NA			
GS 1000–2000 µm	%	1.61	3.86	0.78	NA	NA	NA	NA			
GS 125–250 µm	%	6.67	10.97	23.32	NA	NA	NA	NA			
GS 15.6–31.3 µm	%	18.4	8.69	4.9	NA	NA	NA	NA			
GS 250–500 µm	%	2.2	5.51	3.7	NA	NA	NA	NA			
GS 3.9–7.8 μm	%	5.5	3.65	2.36	NA	NA	NA	NA			
GS 31.3–62.5 µm	%	17.47	9.47	11.68	NA	NA	NA	NA			
GS 500–1000 µm	%	1.42	4.24	1.19	NA	NA	NA	NA			
GS 62.5–125 µm	%	19.51	22.71	35.97	NA	NA	NA	NA			
GS 7.8–15.6 μm	%	9.11	4.75	3.04	NA	NA	NA	NA			
Conventionals		T						1			
Ammonia (total as nitrogen)	mg/kg	20.2	8.9	12.1	NA	NA	NA	NA			
Moisture	%	51.9	53.1	38.4	NA	NA	NA	NA			
Sulfide	mg/kg	650	940	1290	NA	NA	NA	NA			
Total Organic Carbon	%	4.39	7.64	1.98	NA	NA	NA	NA			
Total Solids	%	45.8	46.8	59.1	NA	NA	NA	NA			
Total Volatile Solids	%	11.3	16.6	6.73	NA	NA	NA	NA			
Vetals											
Arsenic	mg/kg	9.1	8.47	4.8	57	93	57	93			
Cadmium	mg/kg	1.41	0.801	0.332	5.1	93 6.7	5.1	6.7			
Chromium		32.5	27.4	28.2	260	270	260	270			
	mg/kg										
Copper	mg/kg	39.7	35.5	31.7	390	390	390	390			
Lead	mg/kg	12.9	9.43	7.54	450	530	450	530			
Mercury	mg/kg	0.102	0.071	0.041	0.41	0.59	0.41	0.59			
Silver	mg/kg	0.169	0.095	0.07	6.1	6.1	6.1	6.1			
Zinc	mg/kg	88 J	65.7 J	57.9 J	410	960	410	960			
Butyltins											
Di-n-butyltin Cation	µg/kg	6.5	5 J	0.59 JQ	NA	NA	NA	NA			
n-Butyltin Cation	µg/kg	2.9	2.5 J	0.52 JQ	NA	NA	NA	NA			
Tetra-n-butyltin	µg/kg	2.2 U	2.1 UJ	1.7 U	NA	NA	NA	NA			
Tri-n-butyltin Cation	µg/kg	24	13 J	1.3 JQ	NA	NA	NA	NA			
Petroleum Hydrocarbons											
Diesel-range Organics	mg/kg	47 JQ	94 JM	16 JQ	NA	NA	NA	NA			
Residual-range Organics	mg/kg	210 JQ	330 JM	120 JQ	NA	NA	NA	NA			
Dioxin/Furans	mgmg	21000		120 0 Q			10.0	10.1			
1,2,3,4,6,7,8-HpCDD	pg/g	417	253	40.2	NA	NA	NA	NA			
1,2,3,4,6,7,8-HpCDF	pg/g	28.3	23.9	7.08	NA	NA	NA	NA			
1,2,3,4,7,8,9-HpCDF	pg/g	1.77 J	1.78 J	0.343 J	NA	NA	NA	NA			
•		2.27 J	2.2 J	0.475 J	NA	NA	NA	NA			
1,2,3,4,7,8-HxCDD	pg/g	2.27 J 2.58 J	2.2 J 2.88 J		NA	NA	NA	NA			
1,2,3,4,7,8-HxCDF	pg/g			0.587 J							
1,2,3,6,7,8-HxCDD	pg/g	11.1	8.21	1.85 J	NA	NA	NA	NA			
								NA			
1,2,3,6,7,8-HxCDF	pg/g	1.89 J	2.18 J	0.402 J	NA	NA	NA				
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD	pg/g pg/g	1.89 J 9.53	7.58	1.3 J	NA	NA	NA	NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	pg/g pg/g pg/g	1.89 J 9.53 0.223 J	7.58 0.234 J	1.3 J 0.094 U	NA NA	NA NA	NA NA	NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD	pg/g pg/g pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J	7.58 0.234 J 2.85 J	1.3 J 0.094 U 0.54 J	NA NA NA	NA NA NA	NA NA NA	NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	pg/g pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J	7.58 0.234 J 2.85 J 3.13 J	1.3 J 0.094 U 0.54 J 0.393 U	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD	pg/g pg/g pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J	7.58 0.234 J 2.85 J	1.3 J 0.094 U 0.54 J	NA NA NA	NA NA NA	NA NA NA	NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	pg/g pg/g pg/g pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J	7.58 0.234 J 2.85 J 3.13 J	1.3 J 0.094 U 0.54 J 0.393 U	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF	pg/g pg/g pg/g pg/g pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J	7.58 0.234 J 2.85 J 3.13 J 2.16 J	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	pg/g pg/g pg/g pg/g pg/g pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD Total HxCDF	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HxCDF Total HxCDF Total OCDD	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HxCDF Total OCDD Total OCDF	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD Total OCDD Total OCDF Total PCDD	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDF Total HpCDF Total HxCDD Total OCDD Total OCDF Total PCDD Total PCDD	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDF Total HxCDD Total HxCDF Total OCDD Total OCDF Total PCDD Total PCDD	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD Total OCDD Total OCDF Total PCDD Total PCDD Total TCDD Total TCDF	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD Total HpCDD Total HpCDD Total HpCDF Total HxCDF Total OCDD Total OCDF Total OCDF Total PCDD Total PCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2}	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD Total HpCDD Total HpCDD Total HpCDF Total HxCDF Total OCDD Total OCDD Total OCDF Total OCDF Total PCDD Total PCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2}	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD Total HxCDD Total OCDD Total OCDD Total OCDF Total OCDF Total PCDD Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2}	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDD Total HpCDF Total HxCDF Total HxCDF Total OCDD Total OCDF Total OCDF Total PCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit	pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDD Total HpCDF Total HxCDF Total OCDD Total OCDF Total OCDF Total OCDF Total PCDD Total TCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls (F	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HpCDF Total HxCDD Total OCDD Total OCDD Total OCDF Total OCDF Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls (F	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 2.2 J	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HpCDF Total HxCDD Total OCDD Total OCDD Total OCDF Total PCDD Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls (F Dichlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 2.22 J	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HpCDF Total HxCDD Total OCDD Total OCDF Total OCDF Total PCDD Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls Heptachlorobiphenyls Hexachlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360 4610	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950 4980	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HpCDF Total HxCDD Total OCDD Total OCDD Total OCDF Total PCDF Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls (F Dichlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240 26.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD Total HxCDD Total OCDD Total OCDF Total OCDF Total PCDD Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls Heptachlorobiphenyls Hexachlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360 4610	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950 4980	1.3 J 0.094 U 0.54 J 0.393 U 0.341 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD Total HpCDD Total HpCDF Total HxCDF Total HxCDF Total OCDD Total OCDF Total OCDF Total PCDD Total TCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls Heptachlorobiphenyls Hexachlorobiphenyls Nonachlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360 4610 102	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950 4980 357	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240 26.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD Total HpCDD Total HpCDF Total HxCDF Total HxCDF Total OCDD Total OCDF Total OCDF Total PCDD Total PCDF Total TCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls Heptachlorobiphenyls Hexachlorobiphenyls Nonachlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360 4610 102 123 722	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950 4980 357 135 947	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240 26.5 35.7 216	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Total HpCDD Total HpCDF Total HxCDD Total HxCDD Total OCDD Total OCDF Total OCDF Total PCDD Total PCDF Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ ^{1,}	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360 4610 102 123 722 4500	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950 4980 357 135 947 4070	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240 26.5 35.7 216 1080	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDD Total HpCDD Total HpCDF Total HxCDF Total HxCDF Total OCDD Total OCDF Total OCDF Total PCDD Total PCDF Total TCDD Total TCDD Total TCDF Summed Dioxin/Furan TEQ ^{1,2} Summed Dioxin/Furan TEQ wi One-half of the Detection Limit Polychlorinated Biphenyls Heptachlorobiphenyls Hexachlorobiphenyls Nonachlorobiphenyls	pg/g pg/g	1.89 J 9.53 0.223 J 1.86 J 1.58 J 1.75 J 2.42 J 0.67 J 2.36 2650 108 225 53 3020 67.2 48.3 43.9 50.4 59.5 11.9 J 11.9 J 333 2360 4610 102 123 722	7.58 0.234 J 2.85 J 3.13 J 2.16 J 5.12 1.15 6.16 1440 105 164 46.4 2110 153 68.4 74.6 72.3 153 12.3 J 12.3 J 467 2950 4980 357 135 947	1.3 J 0.094 U 0.54 J 0.393 U 0.343 J 0.591 J 0.341 J 0.598 J 146 27.7 23.8 12.2 340 32.4 11 10.6 15.2 18.7 2.21 J 85.4 669 1240 26.5 35.7 216	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N			

	Dediment Density					Sediment Management Standards					
	Leastion	Sediment Samples Results				(SMS)					
	Location	KSS-1	KSS-2	KSS-3							
	Sample ID	SD0001K	SD0002K	SD0003K							
	ample Date	07/09/2013	07/09/2013	07/09/2013	SMS	SMS	SMS	SMS			
	nple Depth	0–10 cm	0–10 cm	0–10 cm							
Analyte Polychlorinated Biphenyls (PCB					SQS	CSL	LAET	2LAE			
PCB-002	pg/g	36.2	164	14.2 J	NA	NA	NA	NA			
PCB-002		39.7	133	7.35	NA	NA	NA	NA			
PCB-003	pg/g	28	60.5	6.75 J	NA	NA	NA	NA			
PCB-004 PCB-005	pg/g	3.33 J	7.29 J	0.944 U	NA	NA	NA	NA			
PCB-005	pg/g	28.9	35.3	4.26 J	NA	NA	NA	NA			
PCB-000 PCB-007	pg/g	8.26 J	9.83 J	0.884 J	NA	NA	NA	NA			
	pg/g										
PCB-008	pg/g	99.8	134	20.1	NA	NA	NA	NA			
PCB-009	pg/g	9.85 J	12.1	1.11 J	NA	NA	NA	NA			
PCB-010	pg/g	1.84 J	2.91 J	0.8 U	NA	NA	NA	NA			
PCB-011	pg/g	52.5	63	31.7	NA	NA	NA	NA			
PCB-012/013	pg/g	30.1	61.2	4.63 J	NA	NA	NA	NA			
PCB-014	pg/g	2.21 U	6.06 J	0.854 U	NA	NA	NA	NA			
PCB-015	pg/g	70.3	74.7	16	NA	NA	NA	NA			
PCB-016	pg/g	51.7	143	10.5	NA	NA	NA	NA			
PCB-017	pg/g	68.7	174	13	NA	NA	NA	NA			
PCB-018/030	pg/g	134	325	29.7	NA	NA	NA	NA			
PCB-019	pg/g	10.9 J	41.7	2.82	NA	NA	NA	NA			
PCB-020/028	pg/g	288	546	67.2	NA	NA	NA	NA			
PCB-021/033	pg/g	131	283	28.5	NA	NA	NA	NA			
PCB-022	pg/g	87.6	180	21	NA	NA	NA	NA			
PCB-023	pg/g	0.501 U	4.72 U	0.101 U	NA	NA	NA	NA			
PCB-024	pg/g	2.08 J	7.35 J	0.309 J	NA	NA	NA	NA			
PCB-025	pg/g	25	36.3	4.63	NA	NA	NA	NA			
PCB-026/029	pg/g	56.1	92.3	10.1	NA	NA	NA	NA			
PCB-027	pg/g pg/g	11.5 J	30.9	2.15	NA	NA	NA	NA			
PCB-031	pg/g pg/g	231	407	48.9	NA	NA	NA	NA			
PCB-032	pg/g	46.8	115	9.09	NA	NA	NA	NA			
PCB-032											
	pg/g	1.68 J	4.66 U	0.262 J	NA	NA	NA	NA			
PCB-035	pg/g	13.2 J	18.4	2.96	NA	NA	NA	NA			
PCB-036	pg/g	2.46 U	4.71 U	0.794 J	NA	NA	NA	NA			
PCB-037	pg/g	78.7	121	19.4	NA	NA	NA	NA			
PCB-038	pg/g	1 U	4.81 U	0.554 J	NA	NA	NA	NA			
PCB-039	pg/g	2.92 J	4.72 U	0.683 J	NA	NA	NA	NA			
PCB-040/041/071	pg/g	126	199	25.2	NA	NA	NA	NA			
PCB-042	pg/g	69.7	95.3	12.4	NA	NA	NA	NA			
PCB-043	pg/g	14.2 J	26.5	1.98	NA	NA	NA	NA			
PCB-044/047/065	pg/g	301	354	56.5	NA	NA	NA	NA			
PCB-045/051	pg/g	38.9	72.1	6.92	NA	NA	NA	NA			
PCB-046	pg/g	14.1 J	25.9	2.46	NA	NA	NA	NA			
PCB-048	pg/g	55	87.9	9.7	NA	NA	NA	NA			
PCB-049/069	pg/g	222	245	37	NA	NA	NA	NA			
PCB-050/053	pg/g	34.9	55	6.05	NA	NA	NA	NA			
PCB-052	pg/g	444	509	83.5	NA	NA	NA	NA			
PCB-054	pg/g	0.681 J	0.991 J	0.128 J	NA	NA	NA	NA			
PCB-055	pg/g	11.6 J	29.8	1.54 J	NA	NA	NA	NA			
PCB-056	pg/g	133	157	29.3	NA	NA	NA	NA			
PCB-057		1.45 J	2.52 J	0.374 J	NA	NA	NA	NA			
PCB-057 PCB-058	pg/g	1.45 J 1.26 U	1.72 U	0.374 J 0.194 U	NA	NA	NA	NA			
	pg/g										
PCB-059/062/075	pg/g	26.6	39.3	4.65	NA	NA	NA	NA			
PCB-060	pg/g	77.3	110	17.9	NA	NA	NA	NA			
PCB-061/070/074/076	pg/g	623	701	140	NA	NA	NA	NA			
PCB-063	pg/g	12.5 J	14.1	2.58	NA	NA	NA	NA			
PCB-064	pg/g	121	160	21.3	NA	NA	NA	NA			
PCB-066	pg/g	303	328	66.5	NA	NA	NA	NA			
PCB-067	pg/g	9.56 J	13	2.03	NA	NA	NA	NA			
PCB-068	pg/g	2.25 J	2.01 J	0.637 J	NA	NA	NA	NA			
PCB-072	pg/g	4.32 J	3.1 J	0.716 J	NA	NA	NA	NA			
PCB-073	pg/g	0.186 U	0.338 U	0.0463 U	NA	NA	NA	NA			
PCB-077	pg/g	34.8	38.6	8.67	NA	NA	NA	NA			
PCB-078	pg/g	1.37 U	1.77 U	0.205 U	NA	NA	NA	NA			
PCB-079	pg/g	8.19 J	8.04 J	1.87	NA	NA	NA	NA			
PCB-080	pg/g	1.19 U	1.55 U	0.179 U	NA	NA	NA	NA			
PCB-081	pg/g	1.64 U	2.2 U	0.392 U	NA	NA	NA	NA			
PCB-082	pg/g	76.7	81.9	20.3	NA	NA	NA	NA			
PCB-083/099	pg/g	414	347	92.8	NA	NA	NA	NA			
PCB-084	pg/g	152	144	36	NA	NA	NA	NA			
PCB-085/116/117	pg/g pg/g	112	102	28.4	NA	NA	NA	NA			
PCB-086/087/097/108/119/125	pg/g pg/g	439	408	105	NA	NA	NA	NA			
PCB-088/091		77.1	72.7	105	NA	NA	NA	NA			
PCB-088/091 PCB-089	pg/g	5.51 J	6.97 J	1.31 J	NA NA	NA NA	NA NA	NA NA			
	pg/g										
PCB-090/101/113	pg/g	746	662	175	NA	NA	NA	NA			
PCB-092	pg/g	130	115	29.3	NA	NA	NA	NA			
PCB-093/095/098/100/102	pg/g	542	501	123	NA	NA	NA	NA			
PCB-094	pg/g	2.79 J	2.27 J	0.479 J	NA	NA	NA	NA			
PCB-096	pg/g	3.6 J	3.52 J	0.627 J	NA	NA	NA	NA			
PCB-103	pg/g	7.52 J	4.91 J	1.26 J	NA	NA	NA	NA			
PCB-104	pg/g	0.139 U	0.295 U	0.0463 U	NA	NA	NA	NA			

		Sediment Samples Results				Sediment Management Standards (SMS)					
	Location				1						
	Sample ID	SD0001K	SD0002K	SD0003K							
	Sample Date	07/09/2013	07/09/2013	07/09/2013							
	Sample Depth	0–10 cm	0–10 cm	0–10 cm	SMS	SMS	SMS	SMS			
nalyte	Units	0 10 0111	0 10 0111	0 10 0111	SQS	CSL	LAET	2LAE			
olychlorinated Biphenyls					040	UUL					
PCB-106		0.832 U	1.05 U	0.951 U	NA	NA	NA	NA			
PCB-107/124	pg/g	25.8	24.7	6.67	NA	NA	NA	NA			
	pg/g										
PCB-109	pg/g	46.4	40	13	NA	NA	NA	NA			
PCB-110/115	pg/g	756	676	191	NA	NA	NA	NA			
PCB-111	pg/g	1.06 U	0.551 U	0.147 U	NA	NA	NA	NA			
PCB-112	pg/g	1.03 U	0.405 U	0.143 U	NA	NA	NA	NA			
PCB-114	pg/g	10.5 J	12	3.1	NA	NA	NA	NA			
PCB-118	pg/g	668	607	167	NA	NA	NA	NA			
PCB-120		1.72 J	0.772 J	0.533 J	NA	NA	NA	NA			
	pg/g										
PCB-121	pg/g	1.04 U	0.447 J	0.142 U	NA	NA	NA	NA			
PCB-122	pg/g	7.48 J	7.01 J	2.15	NA	NA	NA	NA			
PCB-123	pg/g	11.3 J	10.5	2.89	NA	NA	NA	NA			
PCB-126	pg/g	2.09 J	1.89 J	1.08 U	NA	NA	NA	NA			
PCB-127	pg/g	0.967 U	1.21 U	1.04 U	NA	NA	NA	NA			
PCB-128/166	pg/g	158	211	41.7	NA	NA	NA	NA			
PCB-129/138/160/163		1020	1100	298	NA	NA	NA	NA			
	pg/g										
PCB-130	pg/g	61.5	66.8	16.1	NA	NA	NA	NA			
PCB-131	pg/g	12 J	14.6	2.97	NA	NA	NA	NA			
PCB-132	pg/g	316	344	84.1	NA	NA	NA	NA			
PCB-133	pg/g	14.9 J	14.9	3.5	NA	NA	NA	NA			
PCB-134/143	pg/g	53.1	56.1	11.7	NA	NA	NA	NA			
PCB-135/151/154	pg/g	344	337	82	NA	NA	NA	NA			
PCB-136	pg/g	110	111	25.6	NA	NA	NA	NA			
PCB-137	pg/g	40.5	51.5	10.7	NA	NA	NA	NA			
PCB-139/140	pg/g	15.4 J	17	3.65	NA	NA	NA	NA			
PCB-141	pg/g	185	245	51.5	NA	NA	NA	NA			
PCB-142	pg/g	1.35 U	2.13 U	1.66 U	NA	NA	NA	NA			
PCB-144	pg/g	50	52.9	12.4	NA	NA	NA	NA			
PCB-145											
	pg/g	0.576 J	0.091 U	0.097 U	NA	NA	NA	NA			
PCB-146	pg/g	150	168	39.4	NA	NA	NA	NA			
PCB-147/149	pg/g	818	794	207	NA	NA	NA	NA			
PCB-148	pg/g	1.27 J	1.08 J	0.238 J	NA	NA	NA	NA			
PCB-150	pg/g	1.33 J	1.37 J	0.318 J	NA	NA	NA	NA			
PCB-152	pg/g	0.678 J	0.89 U	0.151 U	NA	NA	NA	NA			
PCB-153/168		923	1010	252	NA	NA	NA	NA			
	pg/g										
PCB-155	pg/g	0.194 J	0.246 J	0.07 J	NA	NA	NA	NA			
PCB-156/157	pg/g	104	134	31.4	NA	NA	NA	NA			
PCB-158	pg/g	105	117	28.7	NA	NA	NA	NA			
PCB-159	pg/g	14.6 J	15.5	3.96	NA	NA	NA	NA			
PCB-161	pg/g	0.986 U	1.54 U	1.22 U	NA	NA	NA	NA			
PCB-162	pg/g	3.68 J	2.95 J	1.31 U	NA	NA	NA	NA			
PCB-164	pg/g	67.2	74.8	19.9	NA	NA	NA	NA			
PCB-165	pg/g	1.11 U	1.77 U	1.36 U	NA	NA	NA	NA			
PCB-167	pg/g	37.3	44.1	11.1	NA	NA	NA	NA			
PCB-169	pg/g	1.34 U	1.97 U	1.48 U	NA	NA	NA	NA			
PCB-170	pg/g	282	309	83.5	NA	NA	NA	NA			
PCB-171/173	pg/g	91.5	107	24.9	NA	NA	NA	NA			
PCB-17173		49.7	63.1	14.7	NA	NA	NA	NA			
	pg/g										
PCB-174	pg/g	267	332	76.9	NA	NA	NA	NA			
PCB-175	pg/g	12.9 J	17.6	4.03	NA	NA	NA	NA			
PCB-176	pg/g	38.4	48.2	10.1	NA	NA	NA	NA			
PCB-177	pg/g	171	188	47.7	NA	NA	NA	NA			
PCB-178	pg/g	60.3	70.8	17.2	NA	NA	NA	NA			
PCB-179	pg/g	121	148	31.6	NA	NA	NA	NA			
PCB-180/193	pg/g	603	763	182	NA	NA	NA	NA			
PCB-181	pg/g	1.87 J	3.4 J	0.705 J	NA	NA	NA	NA			
PCB-182	pg/g	2.55 J	0.163 U	0.575 J	NA	NA	NA	NA			
PCB-183/185	pg/g	212	269	58	NA	NA	NA	NA			
PCB-184	pg/g	0.423 U	0.545 U	0.088 J	NA	NA	NA	NA			
PCB-186	pg/g	0.223 U	0.132 U	0.0463 U	NA	NA	NA	NA			
PCB-187	pg/g	370	530	94.5	NA	NA	NA	NA			
PCB-188		0.723 U	0.42 J	0.188 J	NA	NA	NA	NA			
	pg/g										
PCB-189	pg/g	10.2 J	12.4	3.1	NA	NA	NA	NA			
PCB-190	pg/g	55.9	68.1	15.8	NA	NA	NA	NA			
PCB-191	pg/g	14.1 J	19	3.71	NA	NA	NA	NA			
PCB-192	pg/g	0.273 J	0.164 U	0.0479 U	NA	NA	NA	NA			
PCB-194	pg/g	166	199	49	NA	NA	NA	NA			
		62.3		20.4							
PCB-195	pg/g		83.3		NA	NA	NA	NA			
PCB-196	pg/g	89.4	120	25	NA	NA	NA	NA			
PCB-197/200	pg/g	27.2	41.8	10.9 J	NA	NA	NA	NA			
PCB-198/199	pg/g	189	252	53.8	NA	NA	NA	NA			
PCB-201	pg/g	24.1	34.4	8.23 J	NA	NA	NA	NA			
PCB-201		36.5	49.9	11.7	NA	NA	NA	NA			
	pg/g										
PCB-203	pg/g	120	155	34.5	NA	NA	NA	NA			
PCB-204	pg/g	0.154 U	0.227 U	0.0463 U	NA	NA	NA	NA			
PCB-205	pg/g	7.21 J	12	2.19	NA	NA	NA	NA			
PCB-206	pg/g	86.2 J	93.4 J	23.4	NA	NA	NA	NA			
PCB-207	pg/g	9.89 J	14.7 J	3.39	NA	NA	NA	NA			

		Sediment Samples Results			Sediment Management Standards (SMS)				
	Location	KSS-1	KSS-2	KSS-3		(5	SMIS)		
	Sample ID	SD0001K	SD0002K	SD0003K	-				
9	ample Date	07/09/2013	07/09/2013	07/09/2013	1				
	mple Depth	0–10 cm	0–10 cm	0–10 cm	SMS	SMS	SMS	SMS	
Analyte	Units	0 10 011	0 10 011	0 10 011	SQS	CSL	LAET	2LAET	
Polychlorinated Biphenyls (PCB					040	UUL			
PCB-208	pg/g	26.7	26.6	8.95	NA	NA	NA	NA	
PCB-209	pg/g	57.7	28	17.6	NA	NA	NA	NA	
PCBs (Total, All Forms)	pg/g	16,700	19,700	4,180	NA	NA	130,000		
PCBs (Total, All Forms)	mg/kg-OC	4	4	0.211	12	65	NA	NA	
Semivolatile Organic Compound				•					
1,2,4-Trichlorobenzene	µg/kg	11 U	11 U	8.5 U	NA	NA	31	5	
1,2,4-Trichlorobenzene	mg/kg-OC	4	4	0.43	0.81	1.8	NA	NA	
1,2-Dichlorobenzene	µg/kg	11 U	11 U	8.5 U	NA	NA	35	50	
1,2-Dichlorobenzene	mg/kg-OC	4	4	0.43	2.3	2.3	NA	NA	
1,3-Dichlorobenzene	µg/kg	11 U	11 U	8.5 U	NA	NA	170	NA	
1,4-Dichlorobenzene	µg/kg	11 U	11 U	8.5 U	NA	NA	110	110	
1,4-Dichlorobenzene	mg/kg-OC	4	4	0.43	3.1	9.0	NA	NA	
2,4,5-Trichlorophenol	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
2,4,6-Trichlorophenol	μg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
2,4-Dichlorophenol	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
2,4-Dimethylphenol	μg/kg	55 U	15 JQ	43 U	29	29	29	29	
2,4-Dinitrophenol	μg/kg	220 U	220 U	200 U	NA	NA	NA	NA	
2,4-Dinitrotoluene	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
2,6-Dinitrotoluene	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
2-Chloronaphthalene	μg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
2-Chlorophenol	μg/kg	11 U	5 JQ	8.5 U	NA	NA	NA	NA	
2-Methylphenol	μg/kg	11 U	61	8.5 U	63	63	63	63	
2-Nitroaniline	µg/kg	22 U	22 U	17 U	NA	NA	NA	NA	
2-Nitrophenol	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
3,3'-Dichlorobenzidine	µg/kg	110 U	110 U	85 U	NA	NA	NA	NA	
3-Nitroaniline	µg/kg	22 U	22 U	17 U	NA	NA	NA	NA	
4,6-Dinitro-o-cresol	µg/kg	110 U	110 U	85 U	NA	NA	NA	NA	
4-Bromophenyl phenyl ether	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
4-Chloro-3-methylphenol	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
4-Chloroaniline	µg/kg	11 U	11 U	10 U	NA	NA	NA	NA	
4-Chlorophenyl phenyl ether	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
4-Methylphenol	µg/kg	30	120	5.1 JQ	670	670	670	670	
4-Nitroaniline	µg/kg	22 U	22 U	17 U	NA	NA	NA	NA	
4-Nitrophenol	µg/kg	110 U	110 U	85 U	NA	NA	NA	NA	
Benzoic acid	µg/kg	220 U	150 JQ	200 U	650	650	650	650	
Benzyl alcohol	µg/kg	22 U	22 U	17 U	57	73	57	73	
bis(2-chloroethoxy)methane	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
bis(2-chloroethyl)ether	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
bis(2-chloroisopropyl)ether	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
bis(2-ethylhexyl)phthalate	µg/kg	37 JQ	44 JQ	17 JQ	NA	NA	1,300	3,100	
bis(2-ethylhexyl)phthalate	mg/kg-OC	4	-4	0.86 JQ	47	78	NA	NA	
Butyl benzyl phthalate	µg/kg	11 U	11 U	8.5 U	NA	NA	63	900	
Butyl benzyl phthalate	mg/kg-OC	4	4	0.43 U	4.9	64	NA	NA	
Diethylphthalate	µg/kg	11 U	11 U	8.5 U	NA	NA	200	1,200	
Diethylphthalate	mg/kg-OC	4	4	0.43 U	61	110	NA	NA	
Dimethyl phthalate	µg/kg	11 U	19	19	NA	NA	71	160	
Dimethyl phthalate	mg/kg-OC	4	4	0.96	53	53	NA	NA	
Di-n-butyl phthalate	µg/kg	22 U	7.2 JQ	17 U	NA	NA	1,400	5,100	
Di-n-butyl phthalate	mg/kg-OC	4	4	0.86 U	220	17,000	NA	NA	
Di-n-octyl phthalate	µg/kg	11 U	11 U	8.5 U	NA	NA	6,200	6,200	
Di-n-octyl phthalate	mg/kg-OC	4	4	0.43 U	58	4,500	NA	NA	
Hexachlorobenzene	µg/kg	11 U	11 U	8.5 U	NA	NA	22	70	
Hexachlorobenzene	mg/kg-OC	4	4	0.43 U	0.38	2.3	NA	NA	
Hexachlorobutadiene	µg/kg	11 U	11 U	8.5 U	NA	NA	11	120	
Hexachlorobutadiene	mg/kg-OC	4	4	0.43 U	3.9	6.2	NA	NA	
Hexachlorocyclopentadiene	µg/kg	55 U	54 U	50 U	NA	NA	NA	NA	
Hexachloroethane	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
Isophorone	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
Nitrobenzene	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
N-Nitroso-di-n-propylamine	µg/kg	11 U	11 U	8.5 U	NA	NA	NA	NA	
N-Nitrosodiphenylamine	µg/kg	11 U	11 U	8.5 U	NA	NA	28	40	
N-Nitrosodiphenylamine	mg/kg-OC	4	4	0.43	11	11	NA	NA	
Pentachlorophenol	µg/kg	110 U	110 U	85 U	360	690	360	690	
Phenol	µg/kg	28 JQ	340	12 JQ	420	1,200	420	1,200	
Polycyclic Aromatic Hydrocarbo	· · · · · · · · · · · · · · · · · · ·					1	1 -	I	
2-Methylnaphthalene	µg/kg	26	68	4.8	NA	NA	670	670	
2-Methylnaphthalene	mg/kg-OC	4	4	0.24	38	64	NA	NA	
Acenaphthene	µg/kg	38	75	8.3	NA	NA	500	500	
Acenaphthene	mg/kg-OC	4	4	0.42	15	57	NA	NA	
Acenaphthylene	µg/kg	59	430	6.8	NA	NA	1,300	1,300	
Acenaphthylene	mg/kg-OC	4	4	0.34	66	66	NA	NA	
Anthracene	µg/kg	190	300	51	NA	NA	960	960	
Anthracene	mg/kg-OC	4	4	2.6	220	1,200	NA	NA	
Benzo(a)anthracene	µg/kg	500	440	110	NA	NA	1,300	1,600	
Benzo(a)anthracene	mg/kg-OC	4	4	5.6	110	270	NA	NA	
Benzo(a)pyrene	µg/kg	390	400	97	NA	NA	1,600	1,600	

Table 5.1Analytical Results for Sediment

		Sediment Samples Results			Sediment Management Standards (SMS)				
	Location	KSS-1	KSS-2	KSS-3		(•	, e ,		
	Sample ID	SD0001K	SD0002K	SD0003K					
	Sample Date	07/09/2013	07/09/2013	07/09/2013					
	Sample Depth	0–10 cm	0–10 cm	0–10 cm	SMS	SMS	SMS	SMS	
Analyte	Units				SQS	CSL	LAET	2LAET	
Polycyclic Aromatic Hydroc	carbons (PAHs) (c				-				
Benzo(a)pyrene	mg/kg-OC	4	4	4.9	99	210	NA	NA	
Benzo(b)fluoranthene	µg/kg	820	740	140	NA	NA	NA	NA	
Benzo(b)fluoranthene	mg/kg-OC	4	4	7.1	NA	NA	NA	NA	
Benzo(k)fluoranthene	µg/kg	310	270	53	NA	NA	NA	NA	
Benzo(k)fluoranthene	mg/kg-OC	4	4	2.7	NA	NA	NA	NA	
Total Benzofluoranthenes	µg/kg	1,130	1,010	190	NA	NA	3,200	3,600	
Total Benzofluoranthenes	mg/kg-OC	4	4	9.6	230	450	NA	NA	
Benzo(g,h,i)perylene	µg/kg	210	210	56	NA	NA	670	720	
Benzo(g,h,i)perylene	mg/kg-OC	4	4	2.83	31	78	NA	NA	
Chrysene	µg/kg	1,400	930	160	NA	NA	1,400	2,800	
Chrysene	mg/kg-OC	4	4	8.1	110	460	NA	NA	
Dibenzo(a,h)anthracene	µg/kg	49	47	11	NA	NA	230	230	
Dibenzo(a,h)anthracene	mg/kg-OC	4	4	0.56	12	33	NA	NA	
Dibenzofuran	µg/kg	50	180	5.1	NA	NA	540	540	
Dibenzofuran	mg/kg-OC	4	4	0.26	15	58	NA	NA	
Fluoranthene	µg/kg	1,900	2,600	310	NA	NA	1,700	2,500	
Fluoranthene	mg/kg-OC	4	4	16	160	1,200	NA	NA	
Fluorene	µg/kg	72	140	14	NA	NA	540	540	
Fluorene	mg/kg-OC	4	4	0.71	23	79	NA	NA	
Indeno(1,2,3-cd)pyrene	µg/kg	260	240	59	NA	NA	600	690	
Indeno(1,2,3-cd)pyrene	mg/kg-OC	4	4	3.0	34	88	NA	NA	
Naphthalene	µg/kg	100	1,100	10	NA	NA	2,100	2,100	
Naphthalene	mg/kg-OC	4	4	0.51	99	170	NA	NA	
Phenanthrene	µg/kg	540	1,200	150	NA	NA	1,500	1,500	
Phenanthrene	mg/kg-OC	4	4	7.6	100	480	NA	NA	
Pyrene	µg/kg	1,600	2,100	300	NA	NA	2,600	3,300	
Pyrene	mg/kg-OC	4	4	15	1,000	1,400	NA	NA	
Total LPAH	µg/kg	1,000	3,200	240	NA	NA	5,200	5,200	
Total LPAH	mg/kg-OC	4	4	12	370	780	NA	NA	
Total HPAH	µg/kg	7,400	8,000	1,300	NA	NA	12,000	17,000	
Total HPAH	mg/kg-OC	4	4	66	960	53,000	NA	NA	

Notes:

BOLD The detected concentration exceeds the SMS SQS or LAET.

bold highlight The detected concentration exceeds the SMS SQS and CSL or LAET and 2LAET.

World Health Organization 2005 Toxic Equivalency Factors used for calculation of dioxin/furan TEQ (Van den Berg et al. 2006).
 Calculated using detected dioxin/furan concentrations.

3 Calculated using detected dioxin/furan concentrations plus one-half the detection limit for dioxins/furans that were not detected.

4 Total organic carbon was outside of the recommended range for OC-normalization (0.5-4%) in this sample.

Abbreviations:

- 2LAET Second lowest apparent effects threshold
 - cm Centimeter
 - CSL Cleanup Screening Level
 - GS Grain size
- HpCDD Heptachlorodibenzo-p-dioxin
- HpCDF Heptachlorodibenzofuran
- HxCDD Hexachlorodibenzo-p-dioxin
- HxCDF Hexachlorodibenzofuran
 - LAET Lowest apparent effects threshold
 - MDL Method detection limit
 - $\mu g/kg$ Micrograms per kilogram
 - µm Micrometer
- mg/kg Milligrams per kilogram
- mg/kg-OC Milligrams per kilogram organic carbon
 - NA Not available
 - OCDD Octachlorodibenzo-p-dioxin

OCDF Octachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran pg/g Picograms per gram RL Reporting limit SQS Sediment Quality Standard TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran TEQ Total equivalancy quotient

Qualifiers:

J Concentration is estimated.

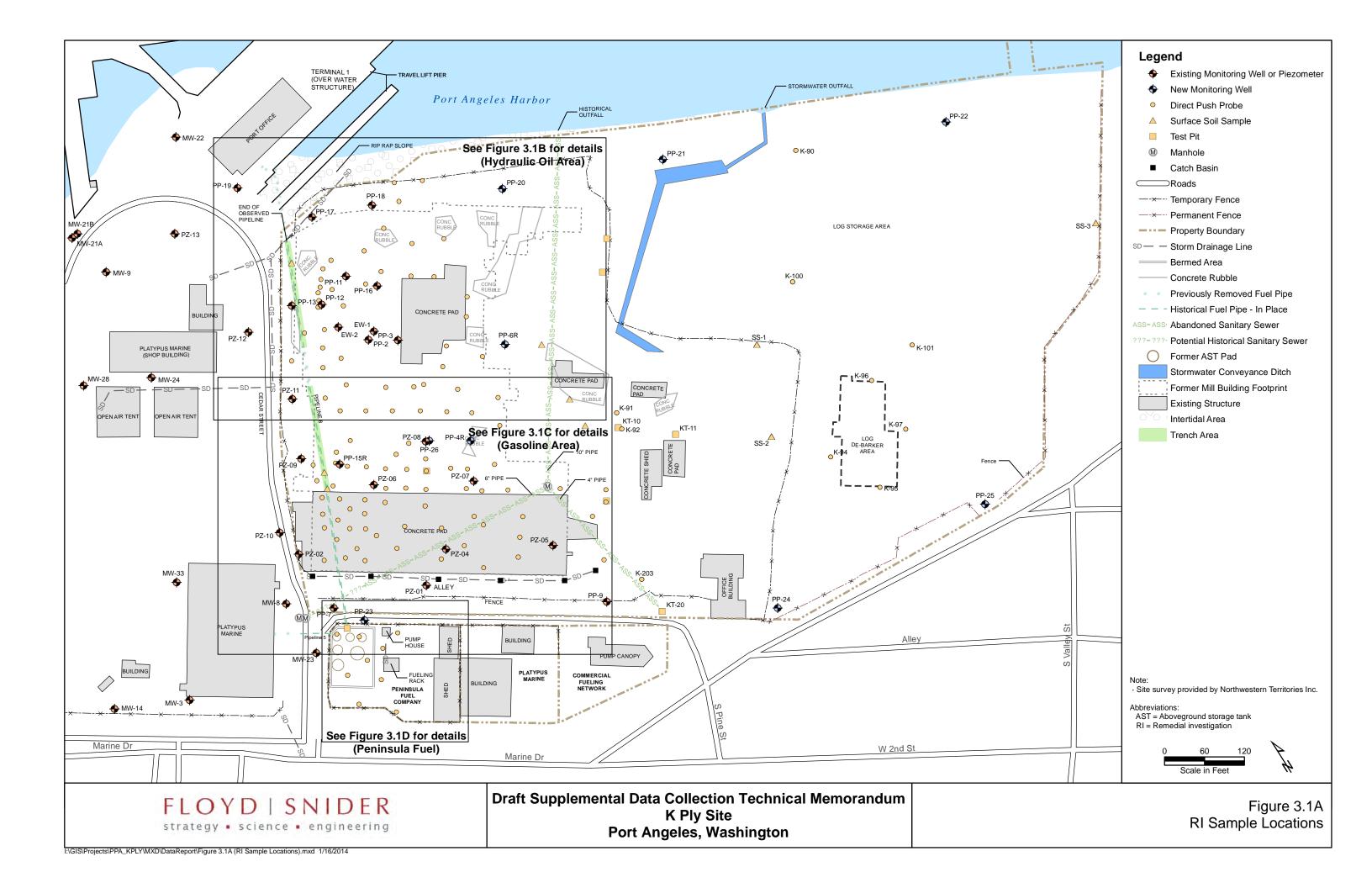
JM Concentration is estimated due to poor match to standard.

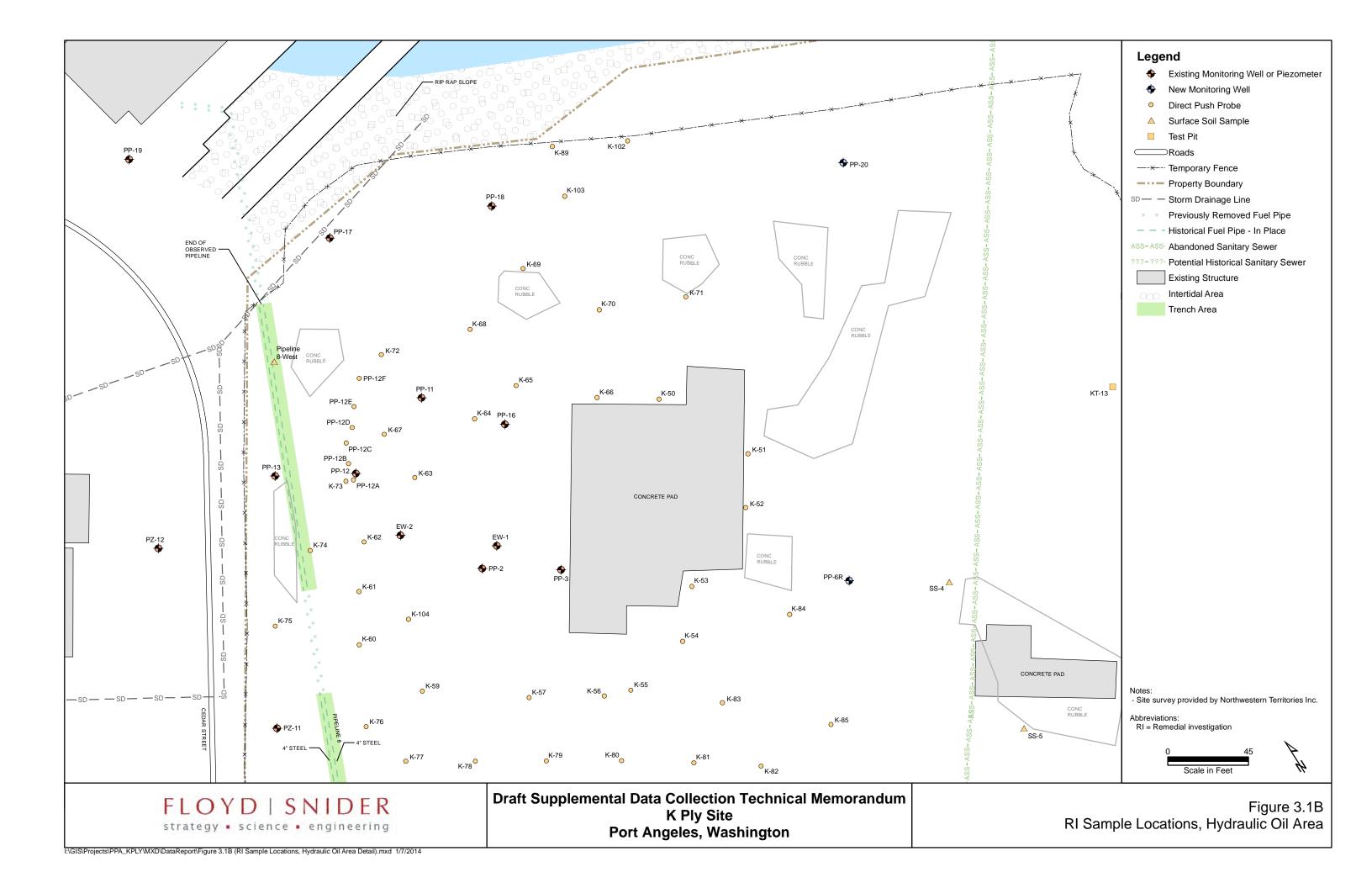
JQ Concentration is an estimated value reported below the associated quantitation limit but greater than the MDL.

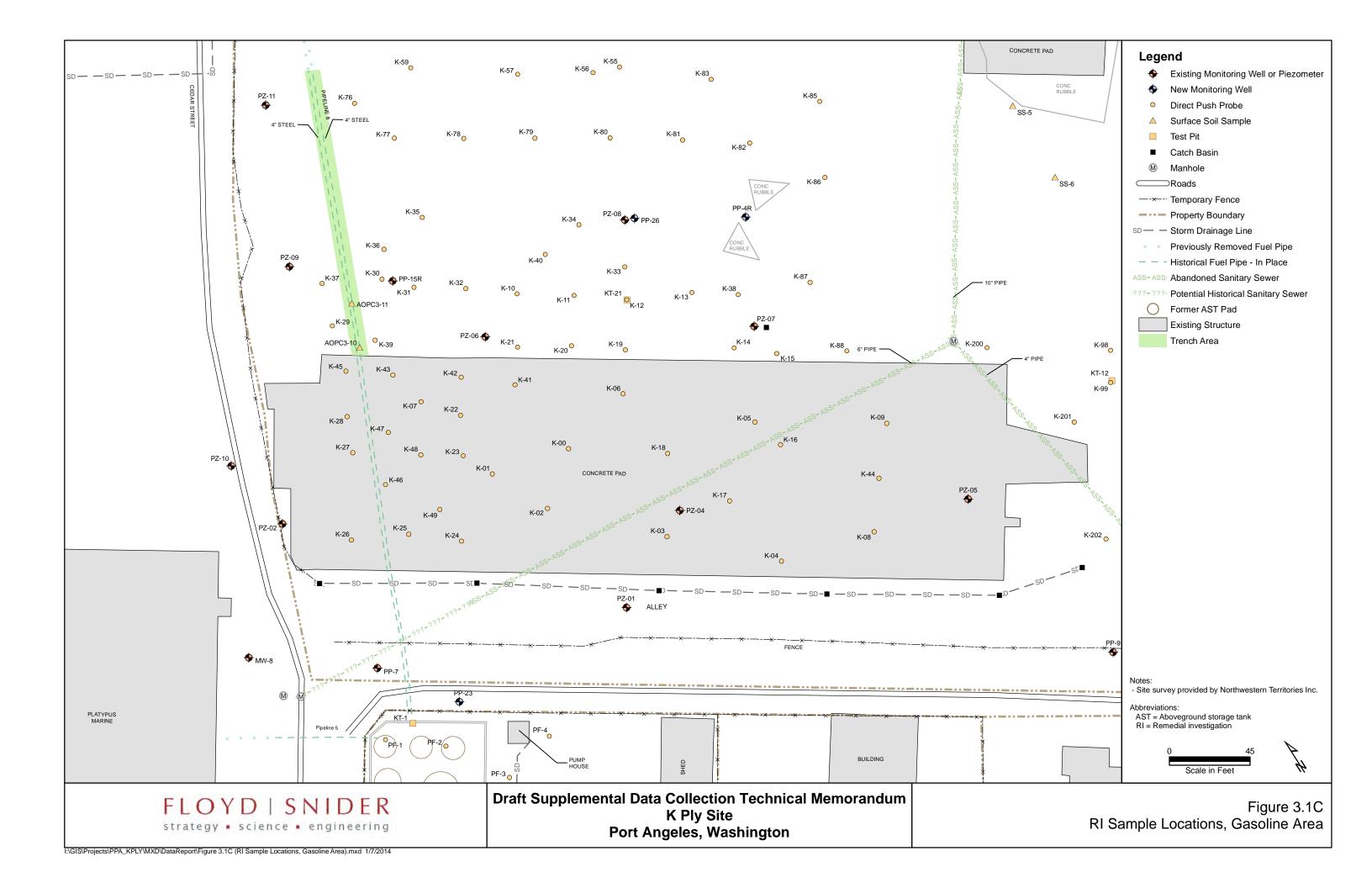
U Analyte is not detected at the associated reporting limit.

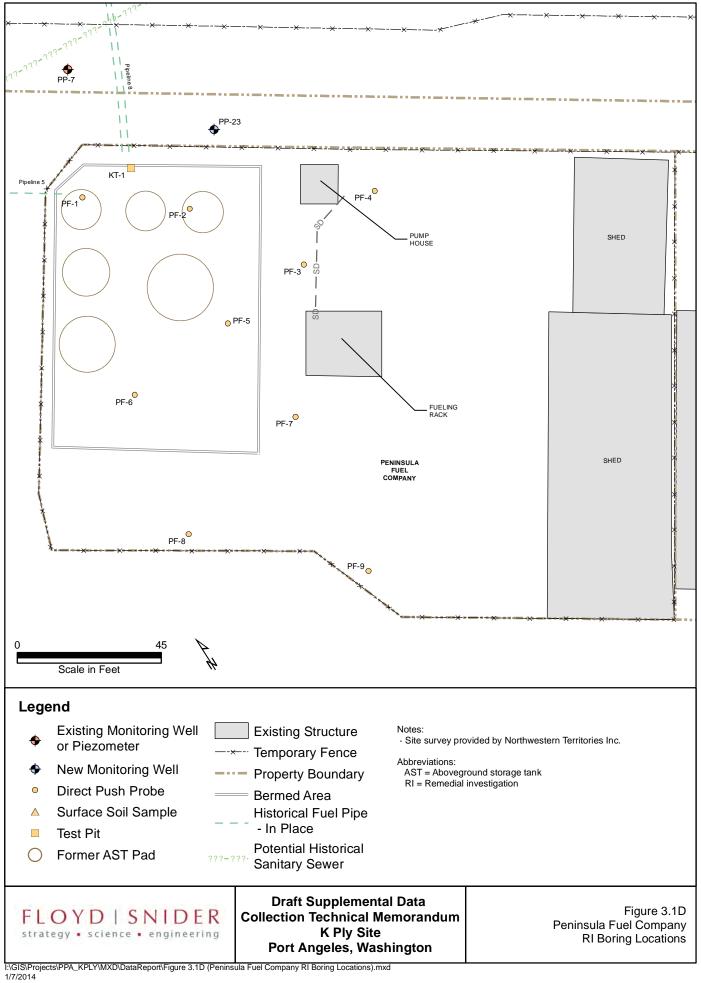
UJ Analyte is not detected at the associated reporting limit, which is an estimate.

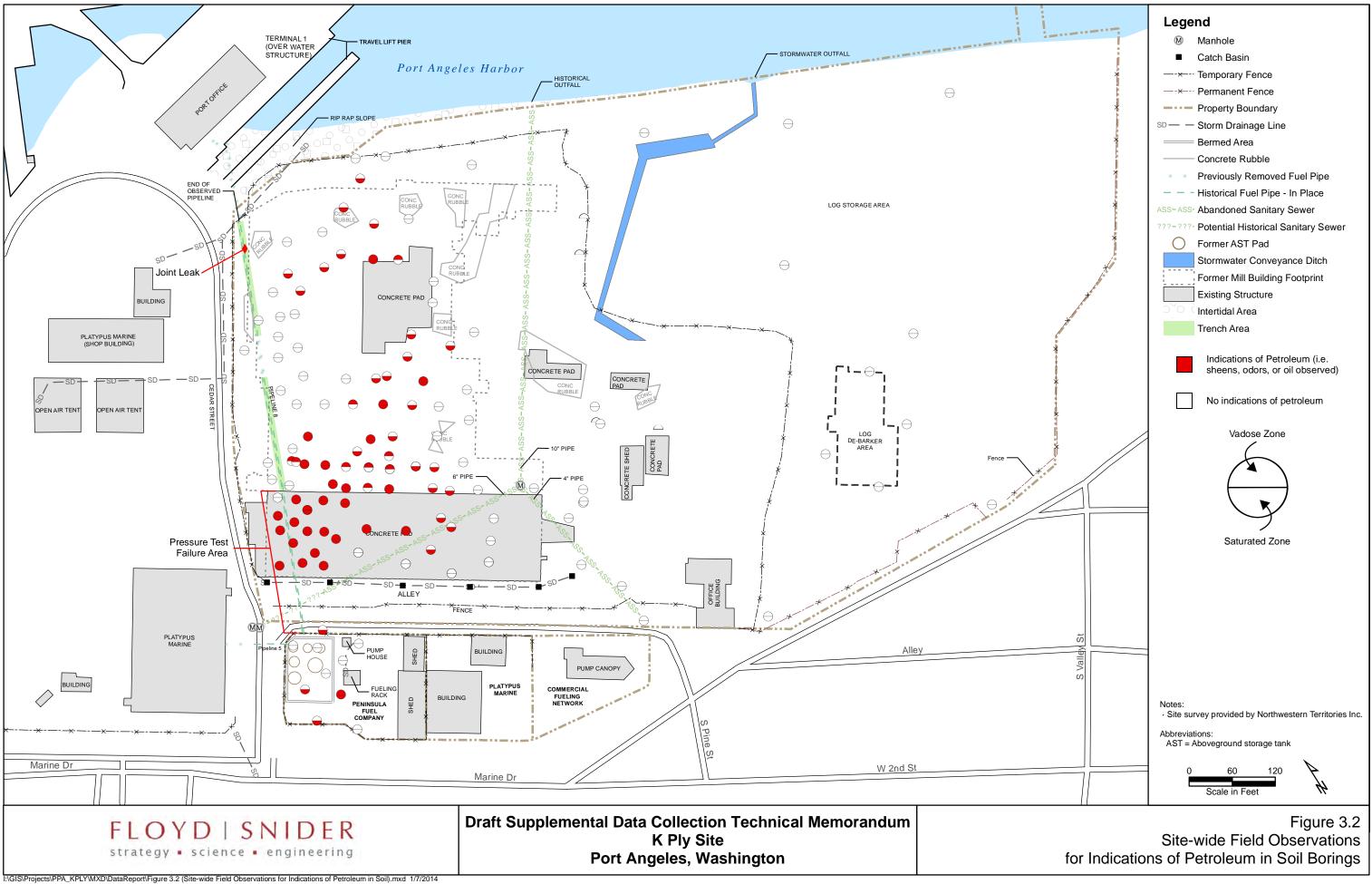
K Ply Site

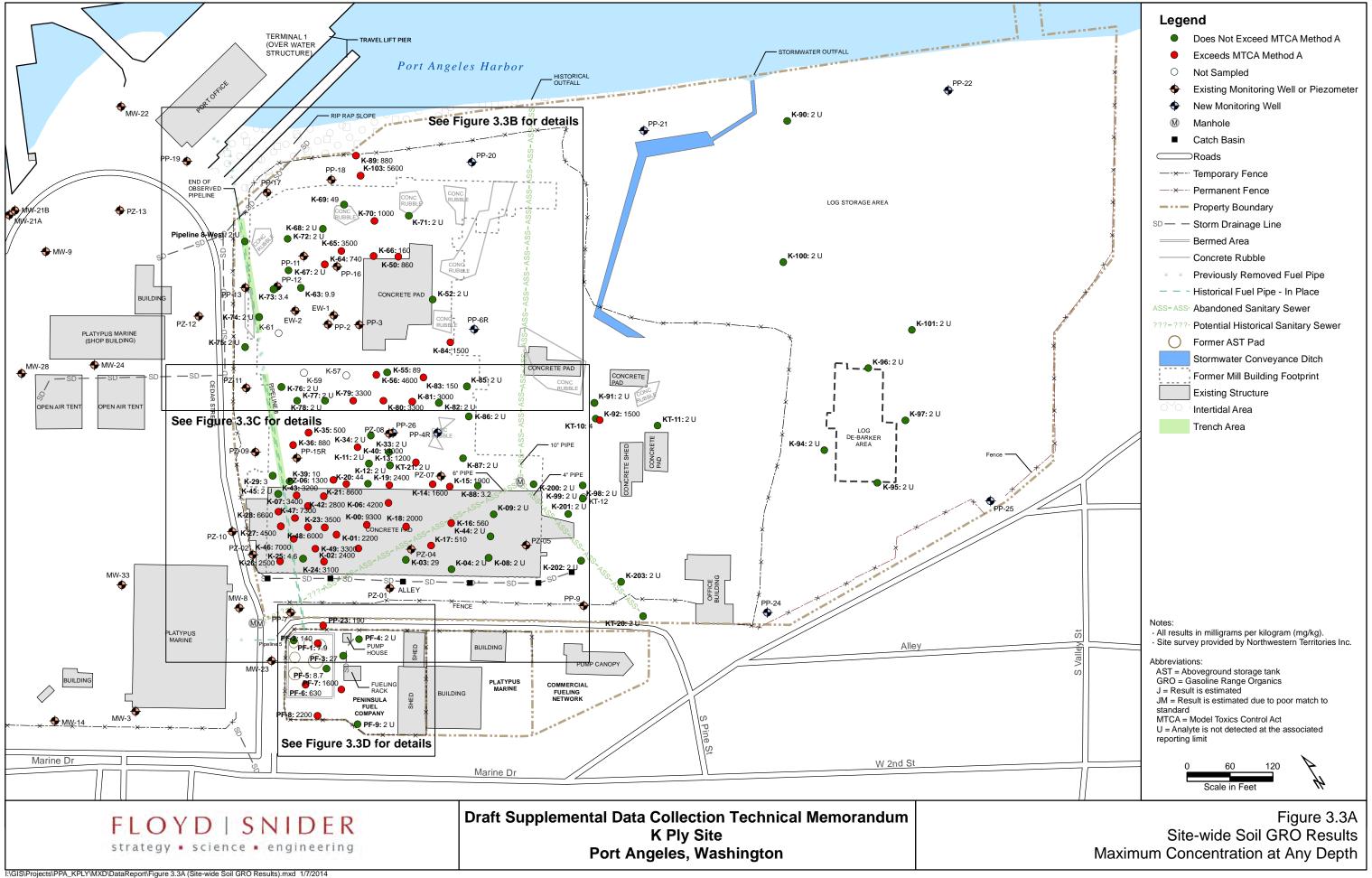

Draft Supplemental Data Collection Technical Memorandum

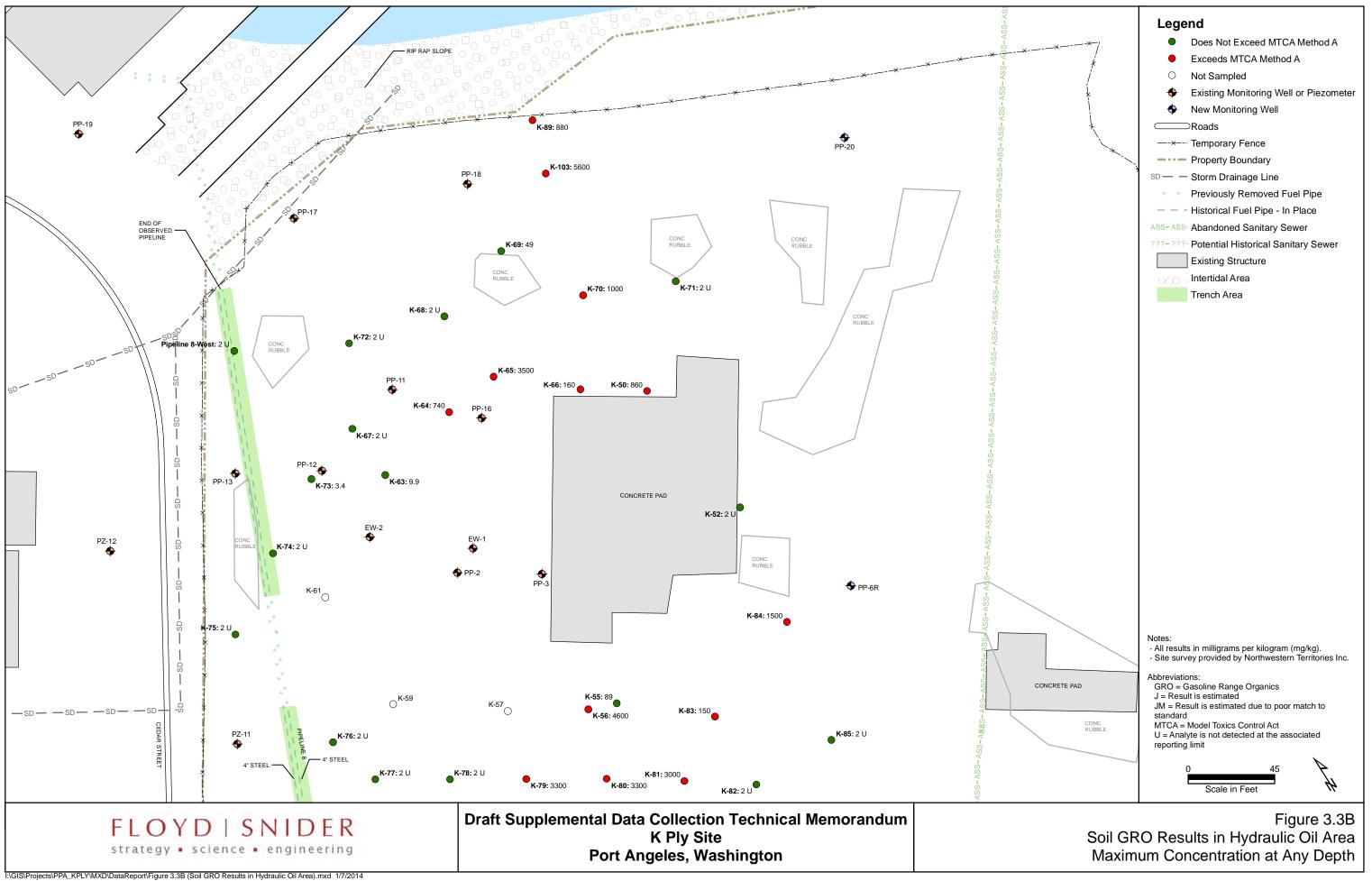

Figures


ECOLOGY DRAFT

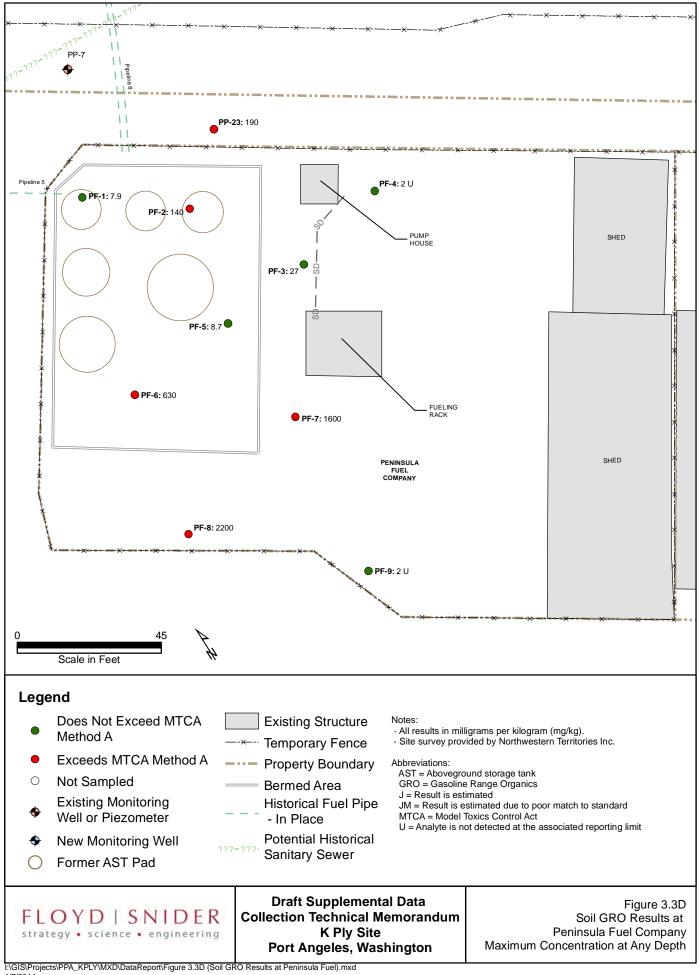


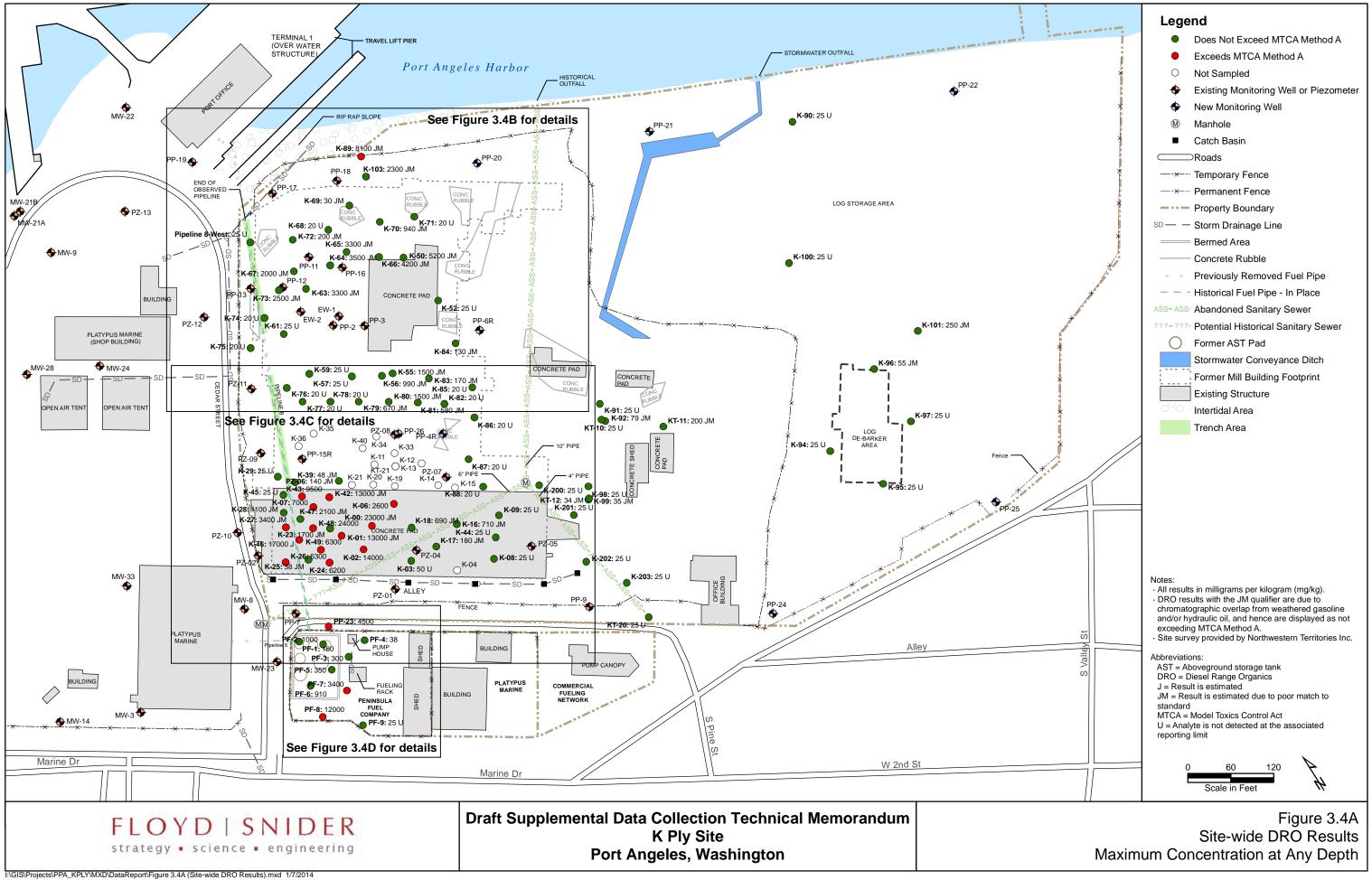

G:Project\Clients\Floyd Snider\PPA-OMW\2014\technical Memorandum\Figure 1.1

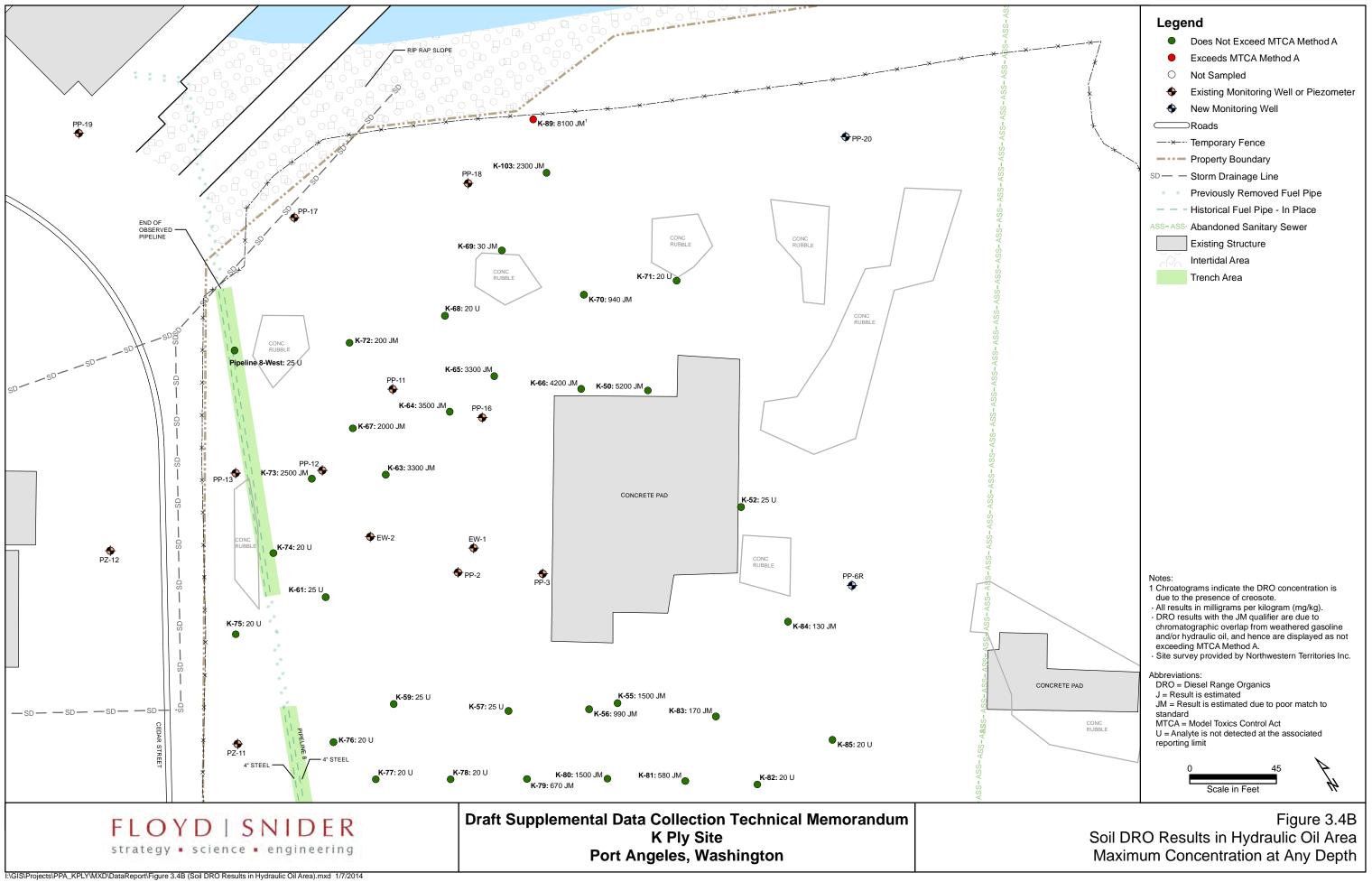


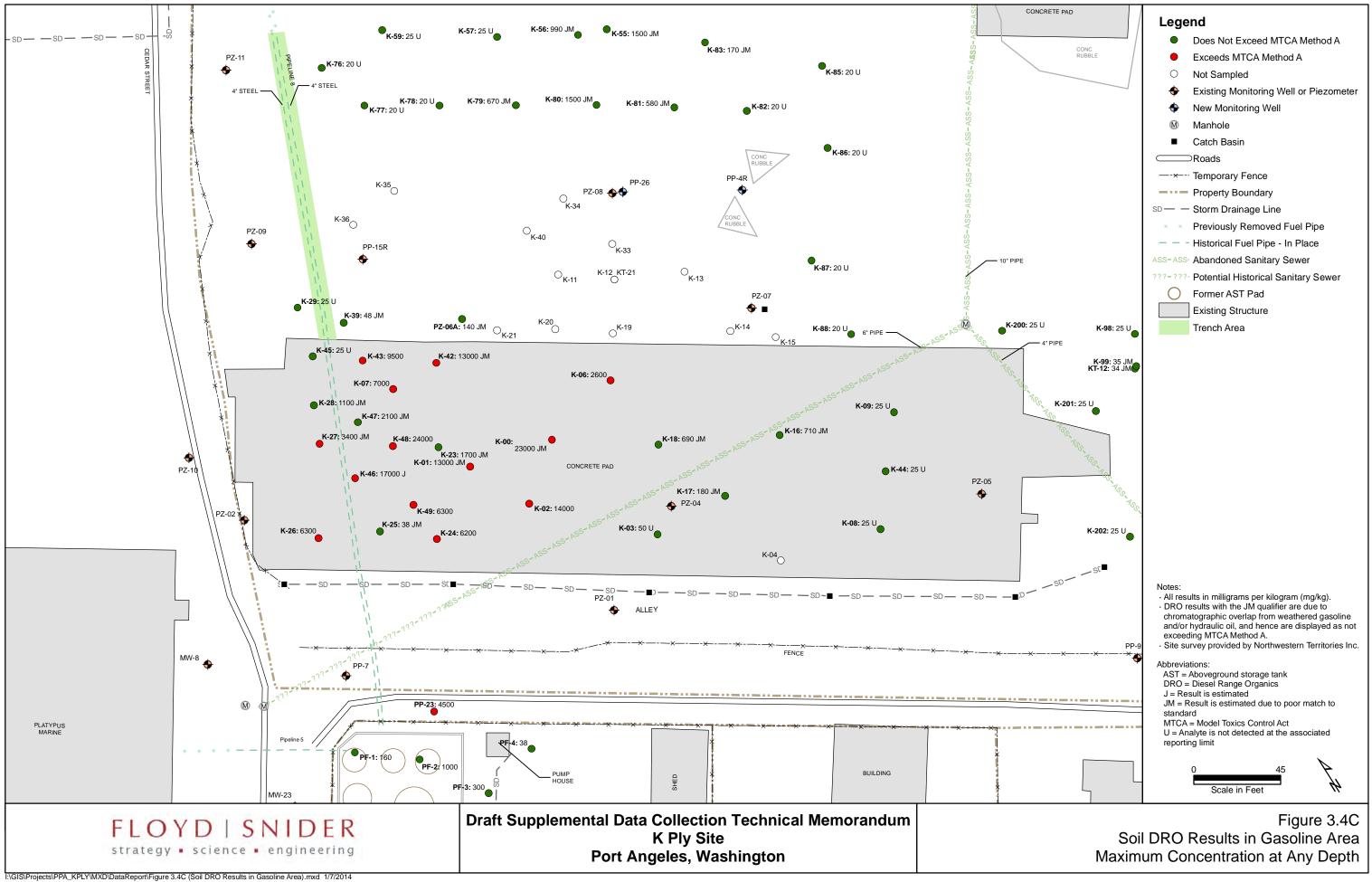


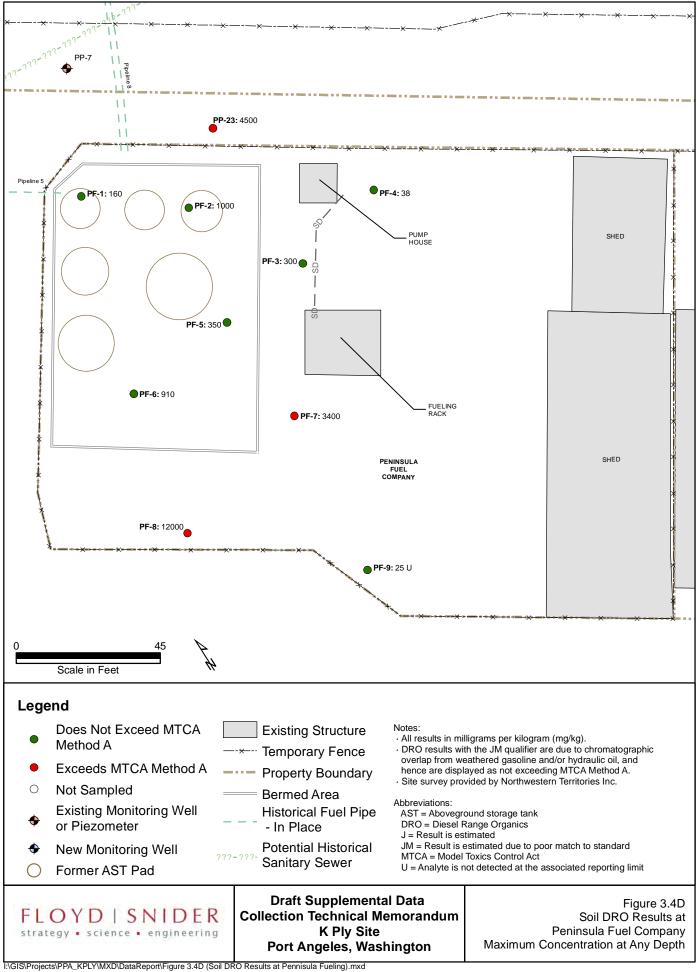


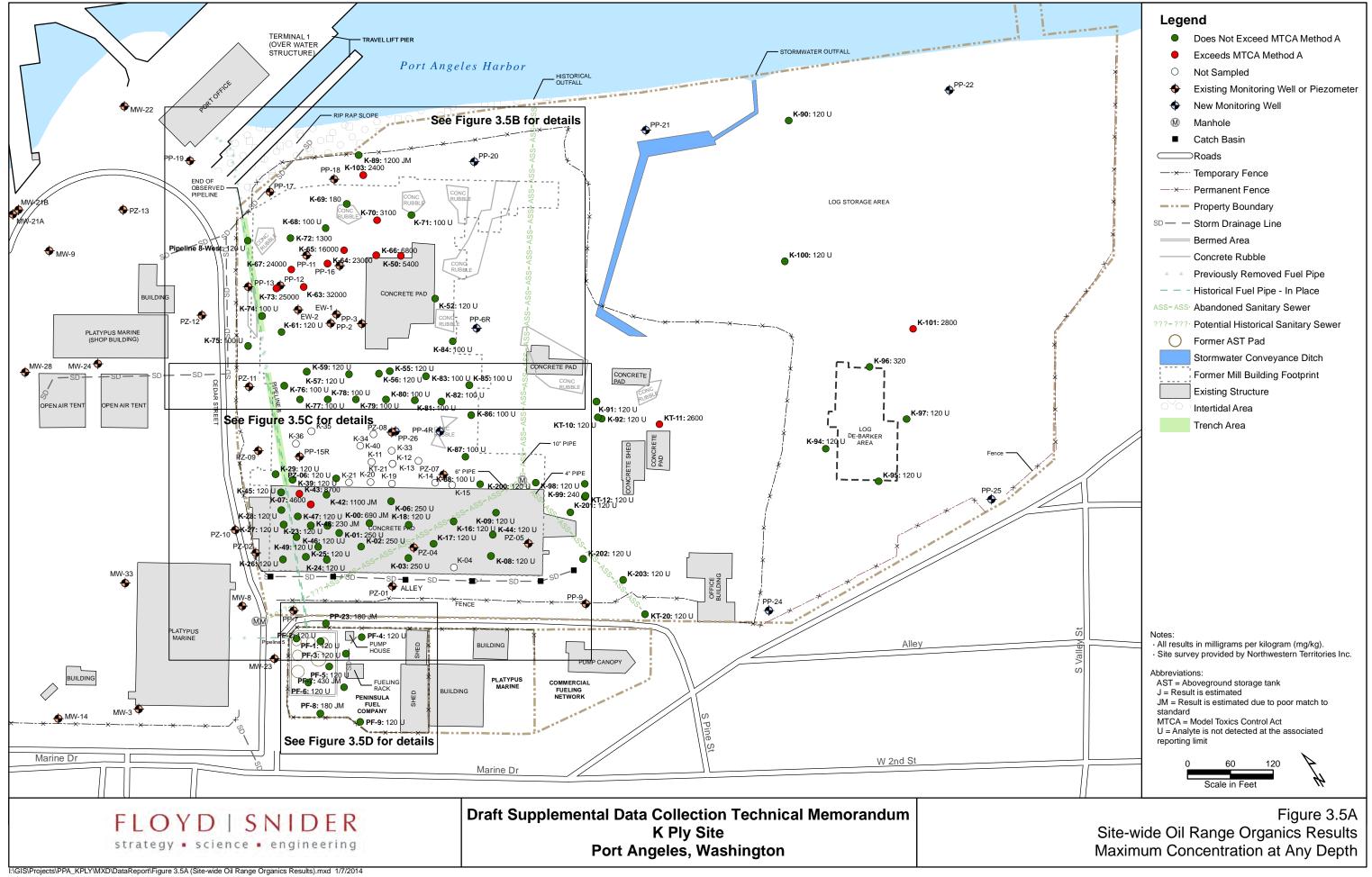


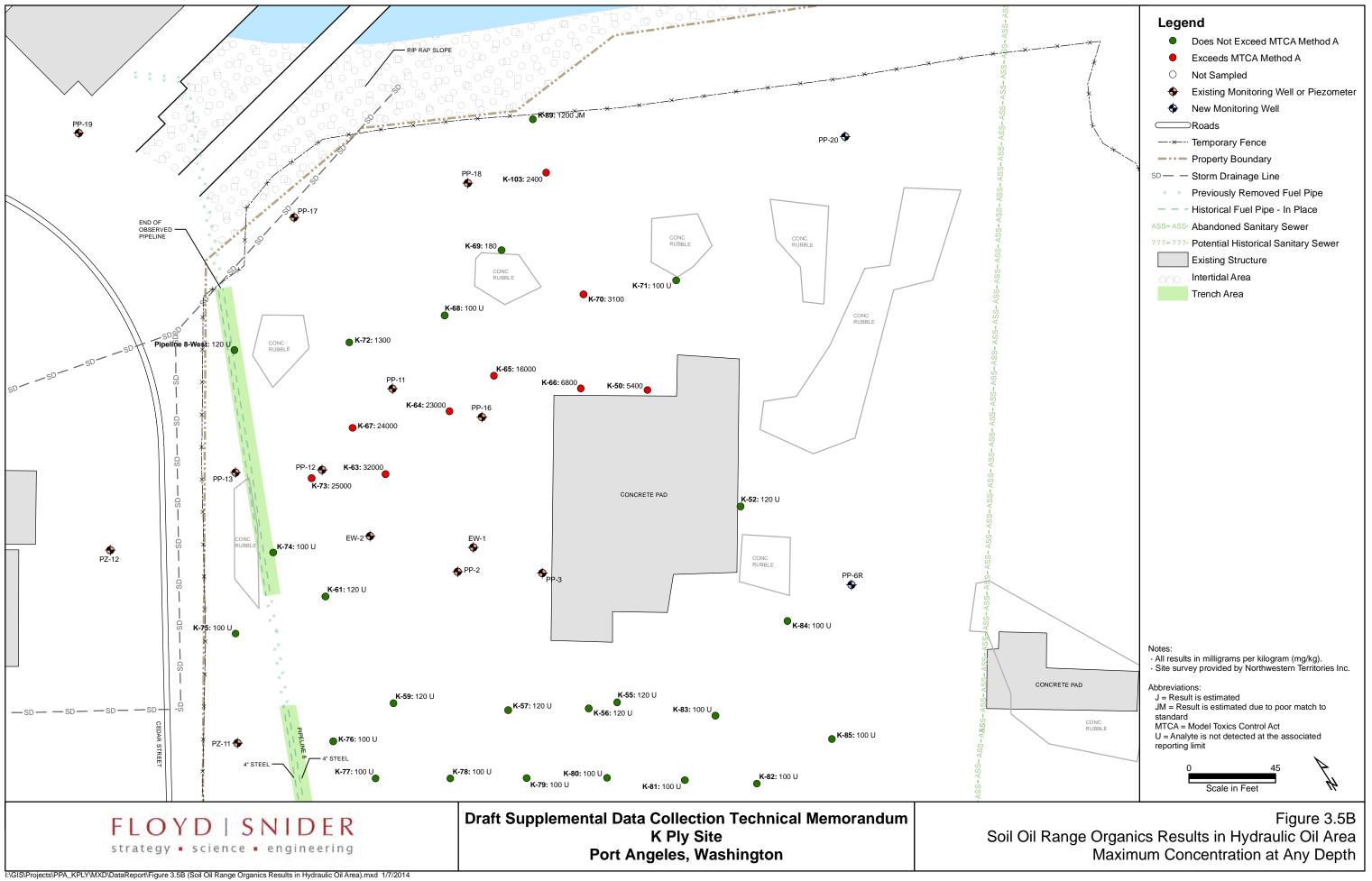


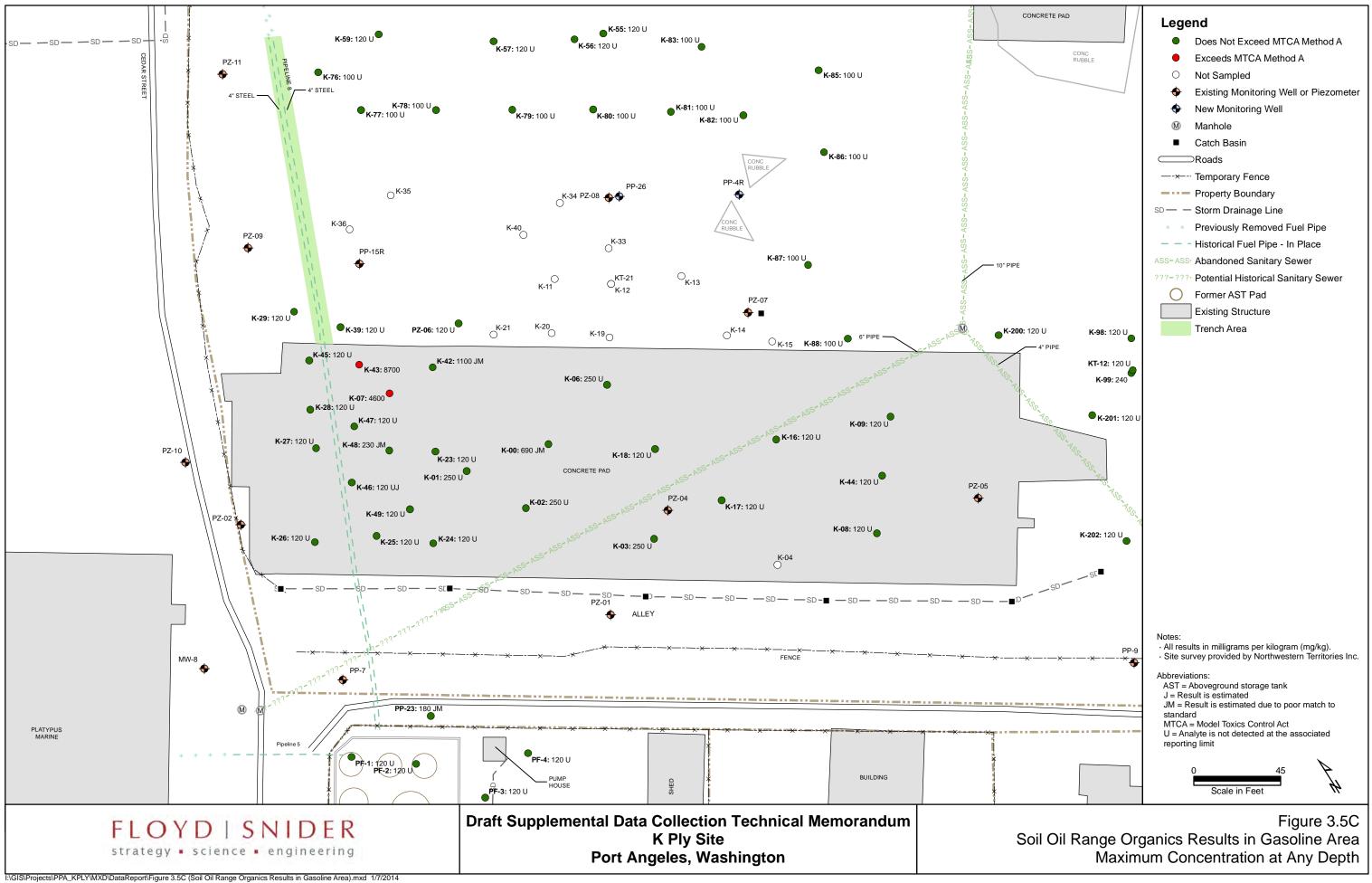


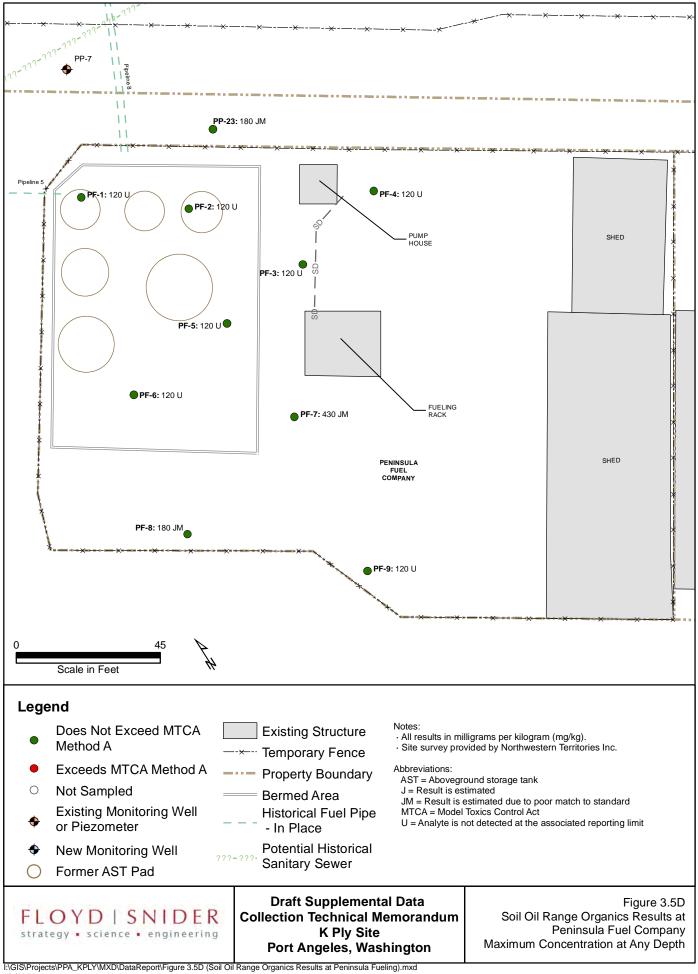


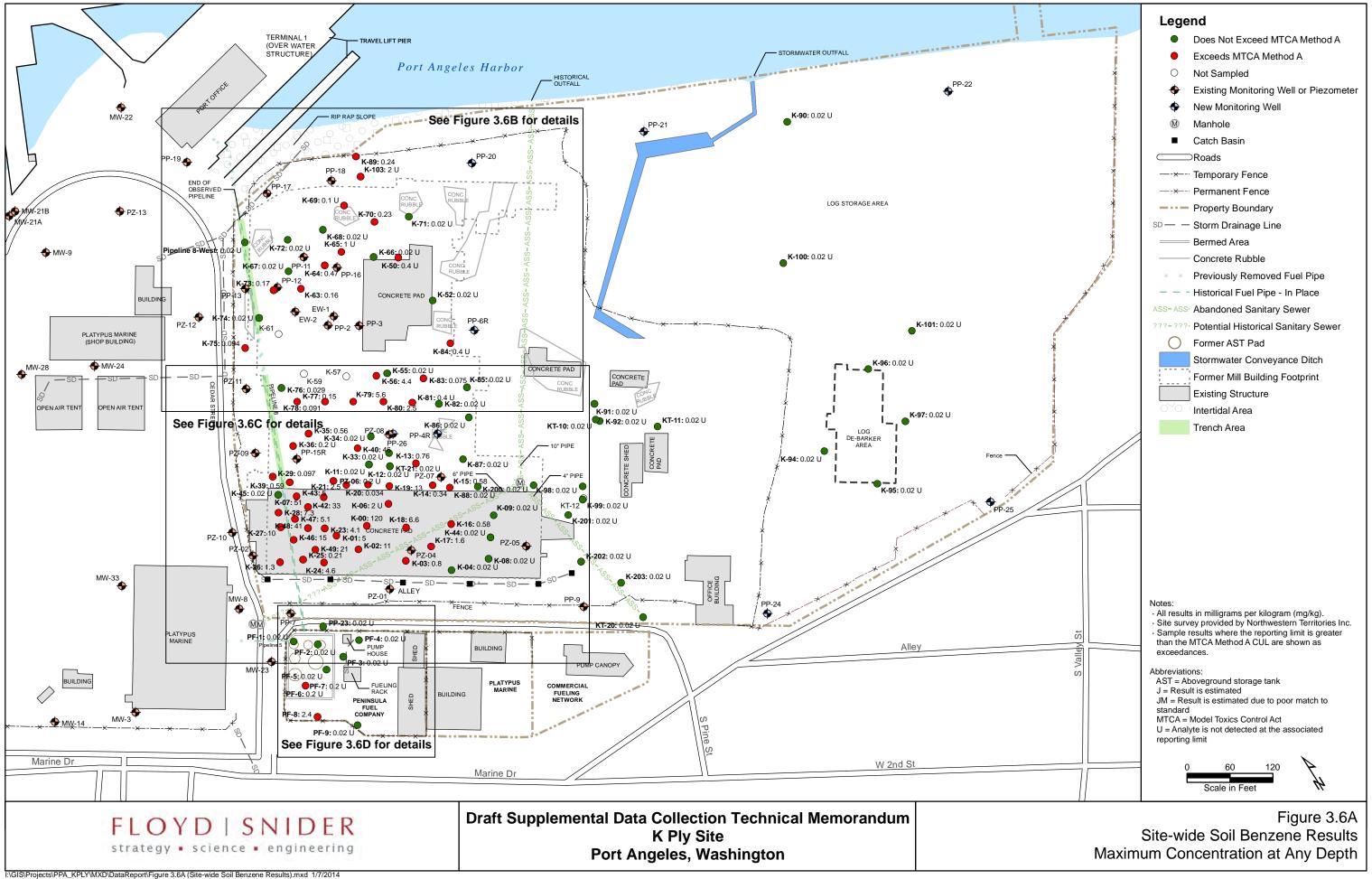


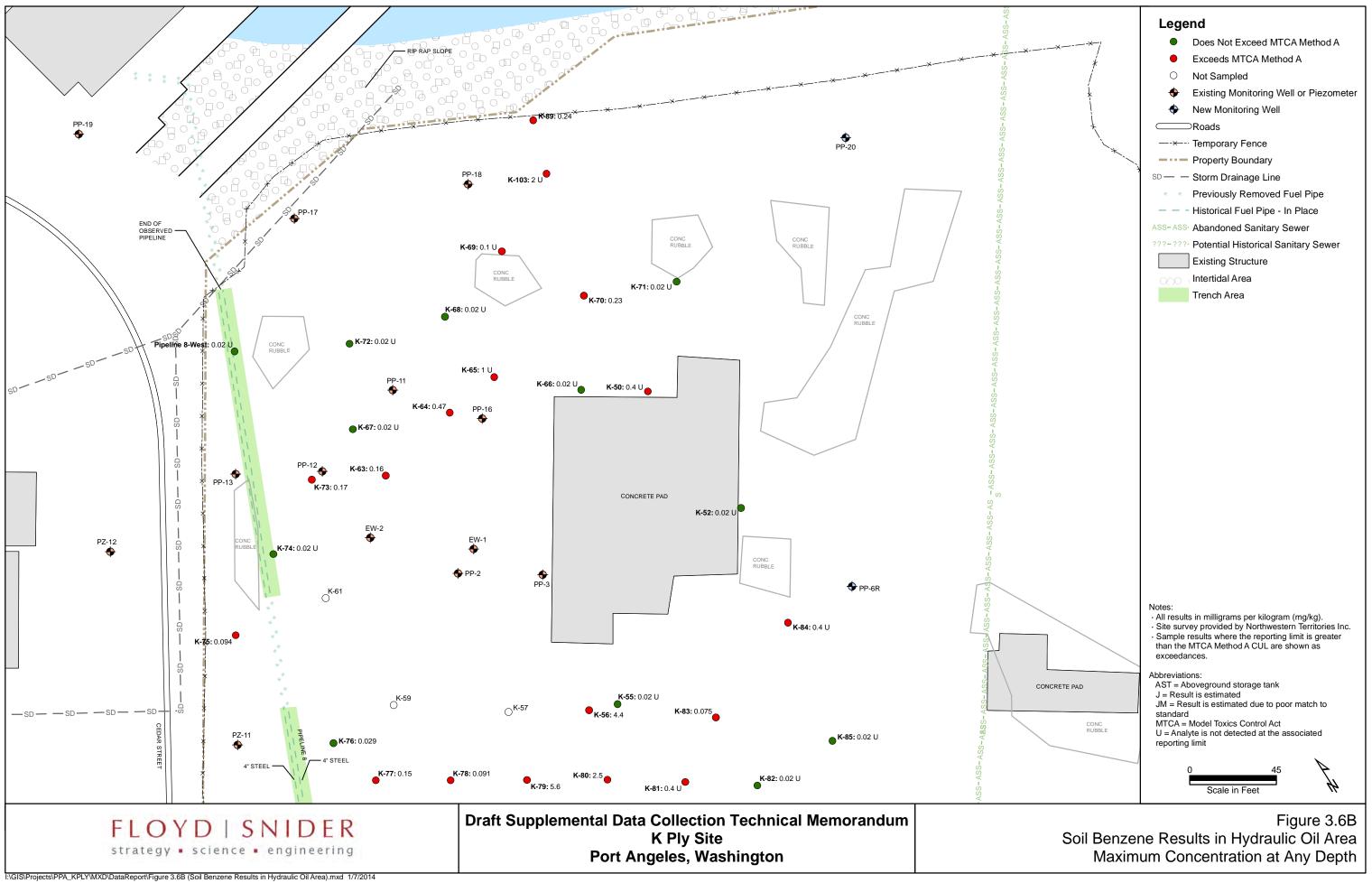


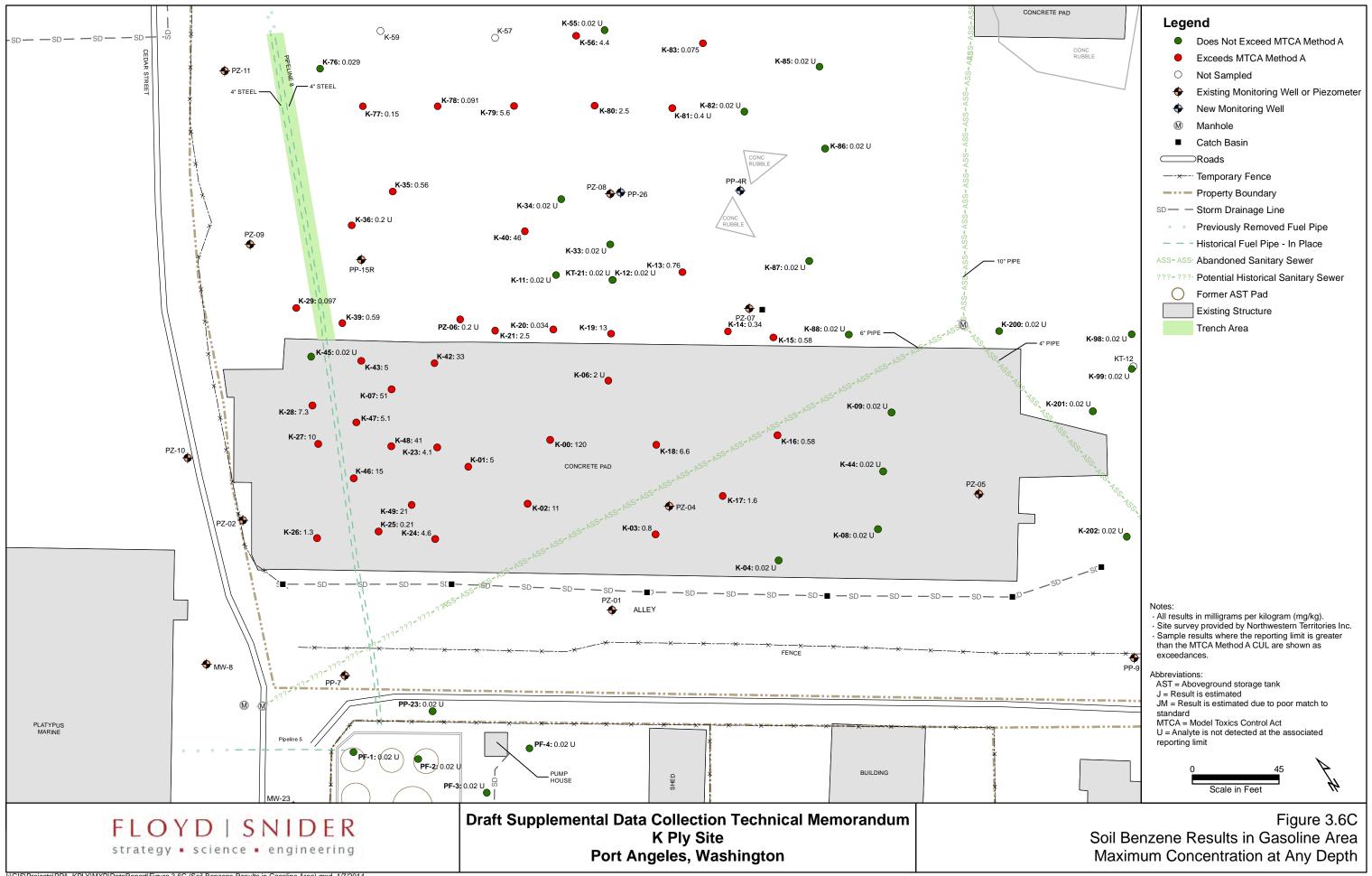


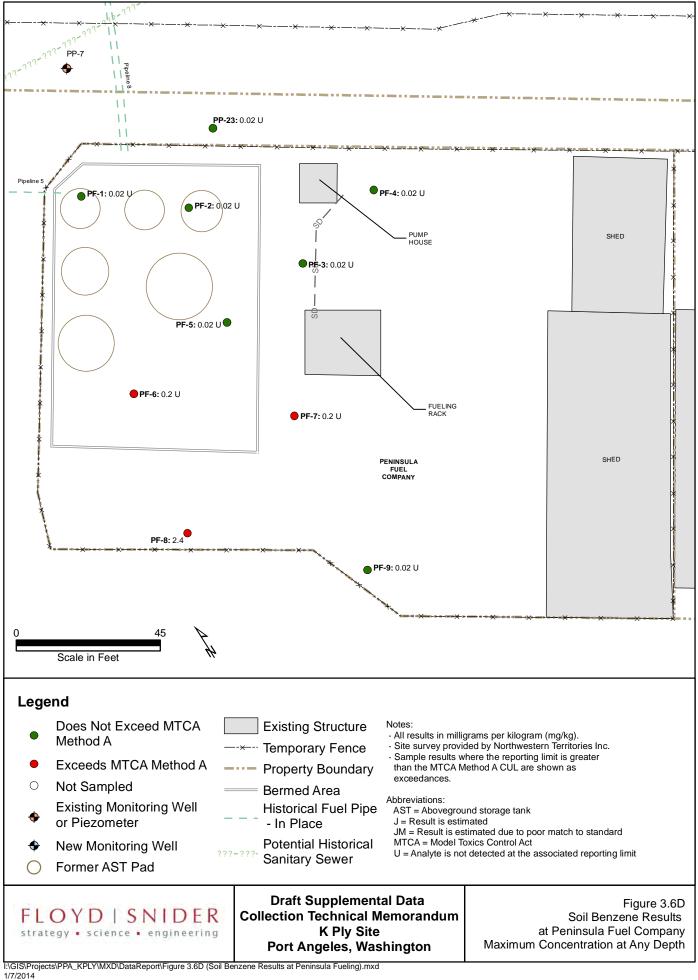


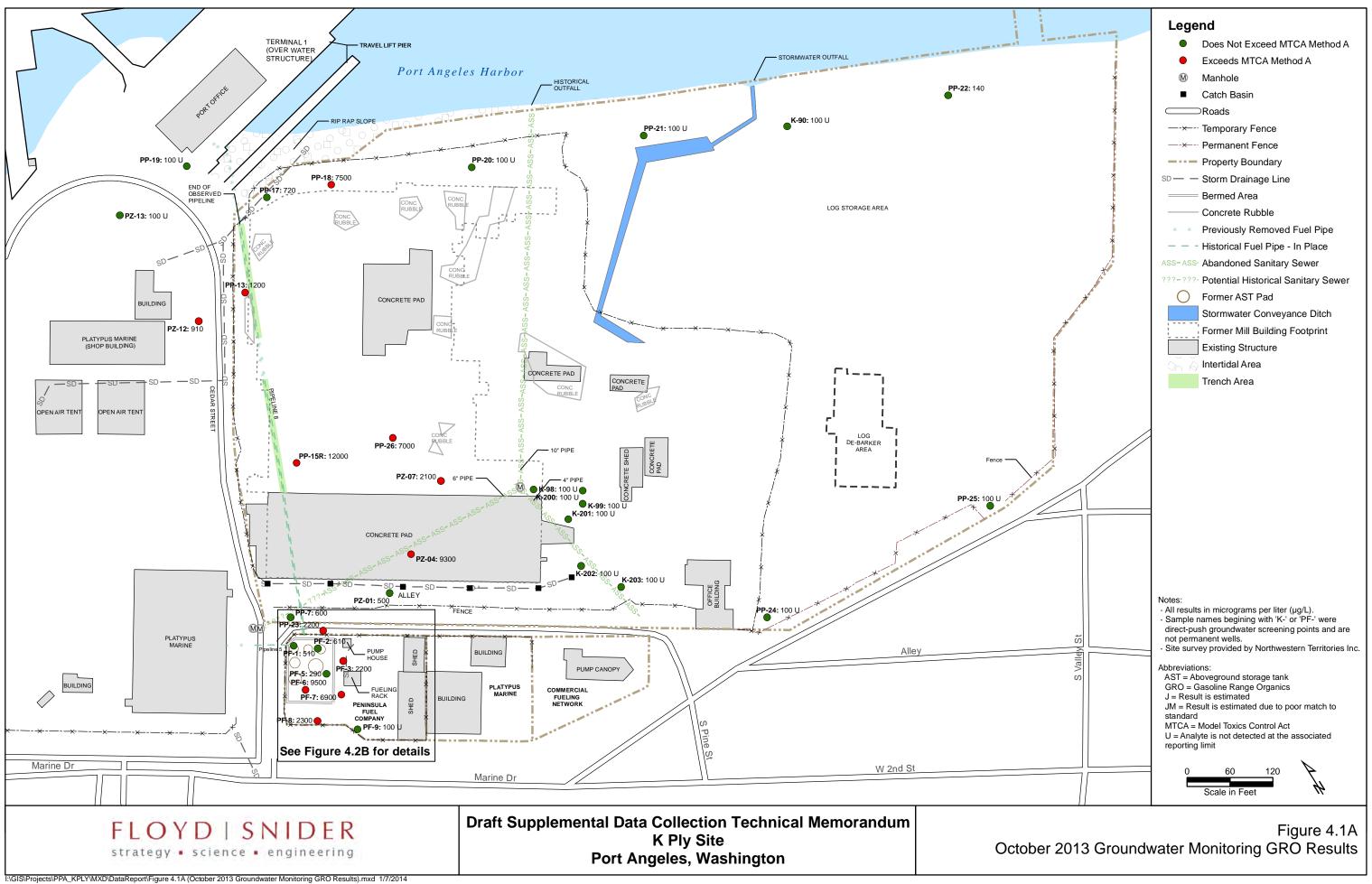


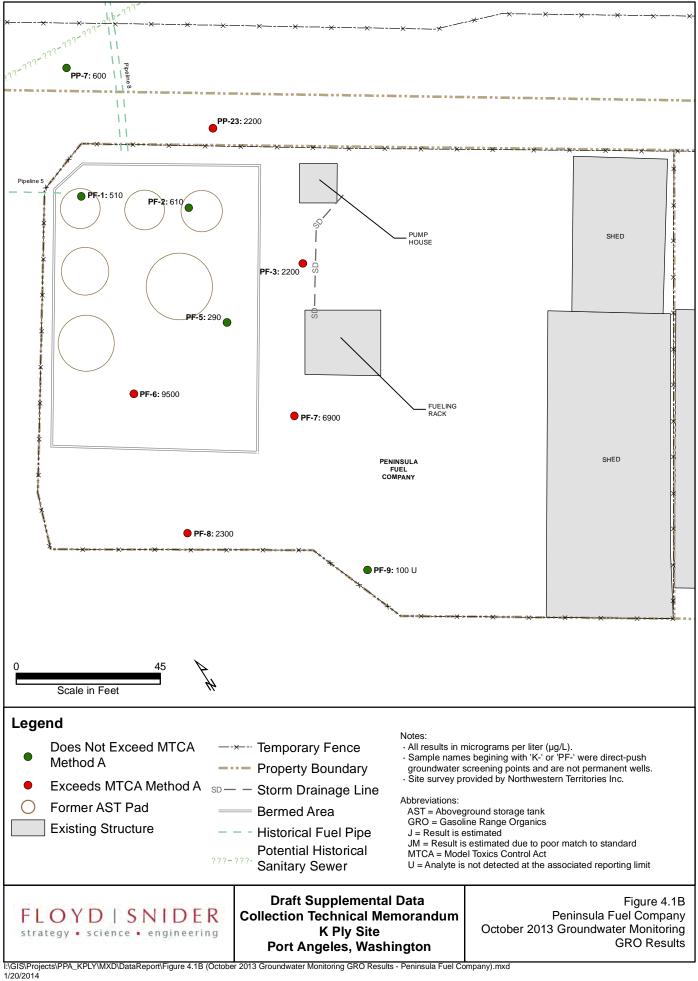


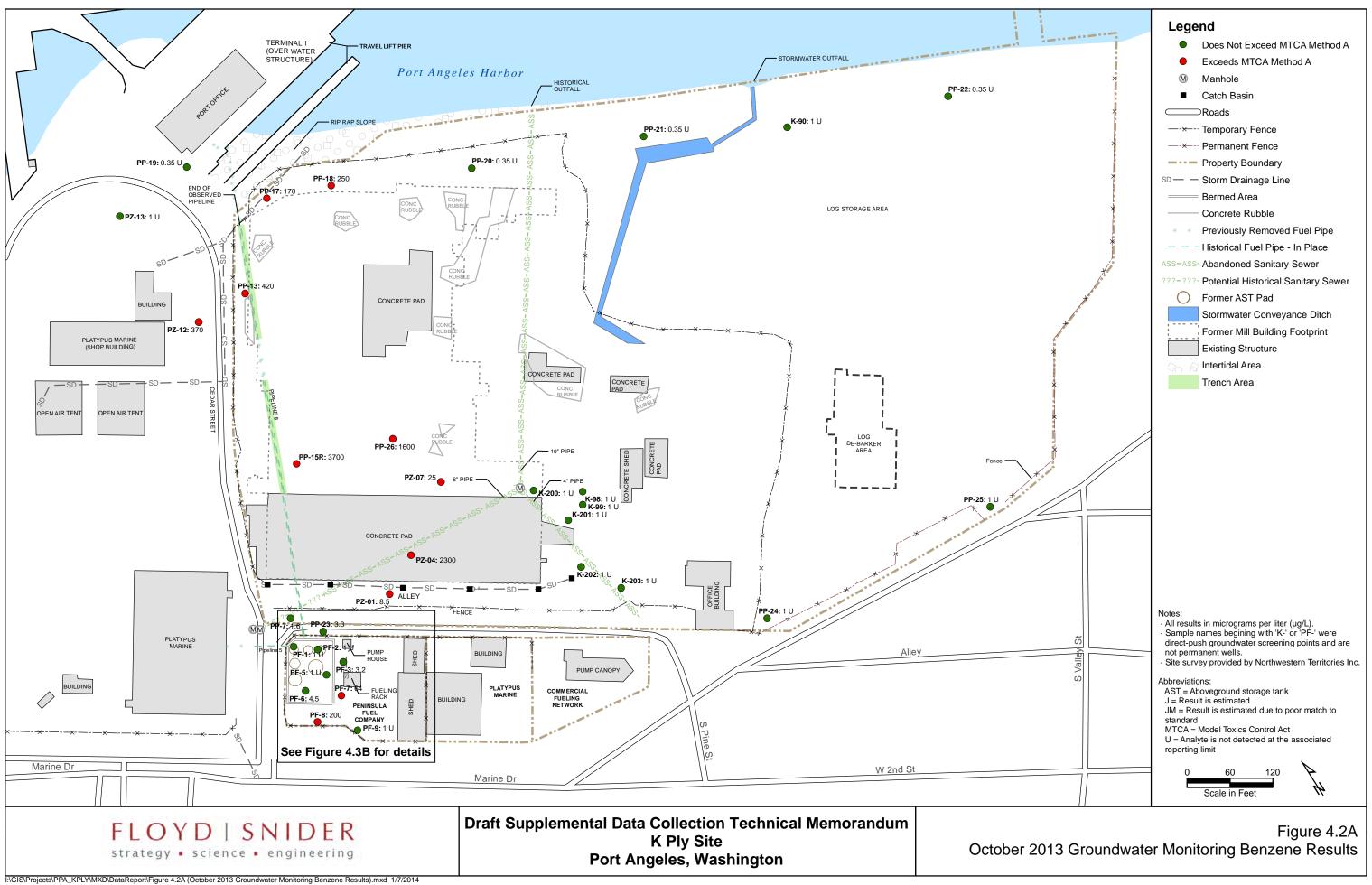


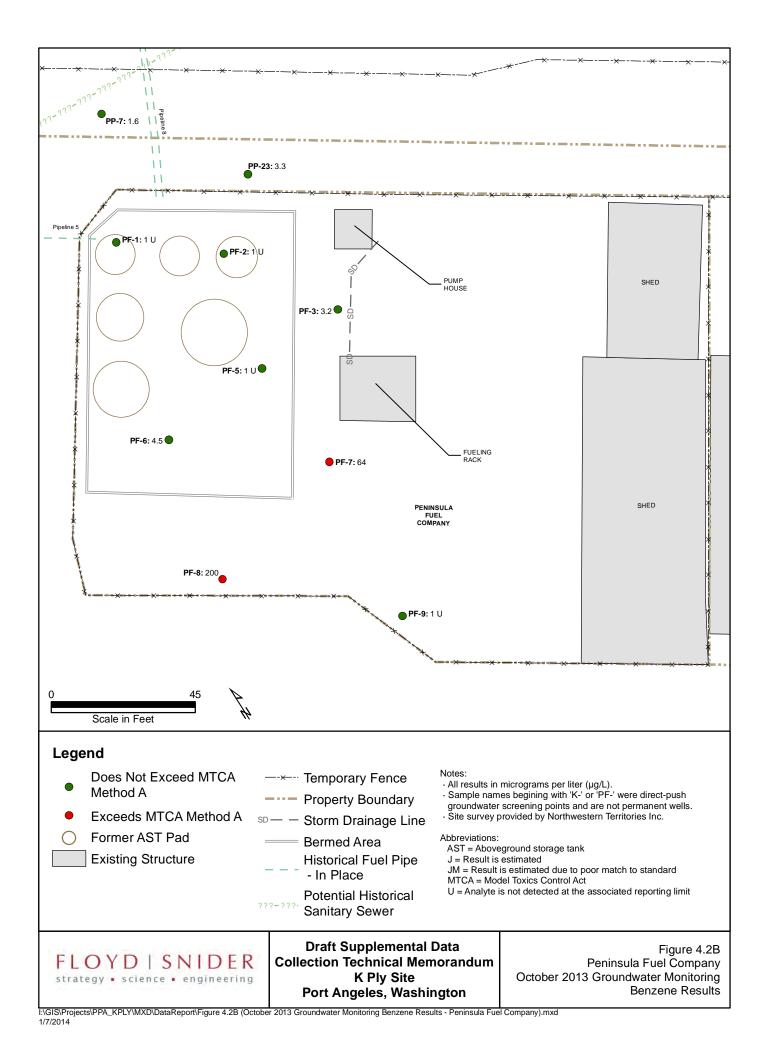


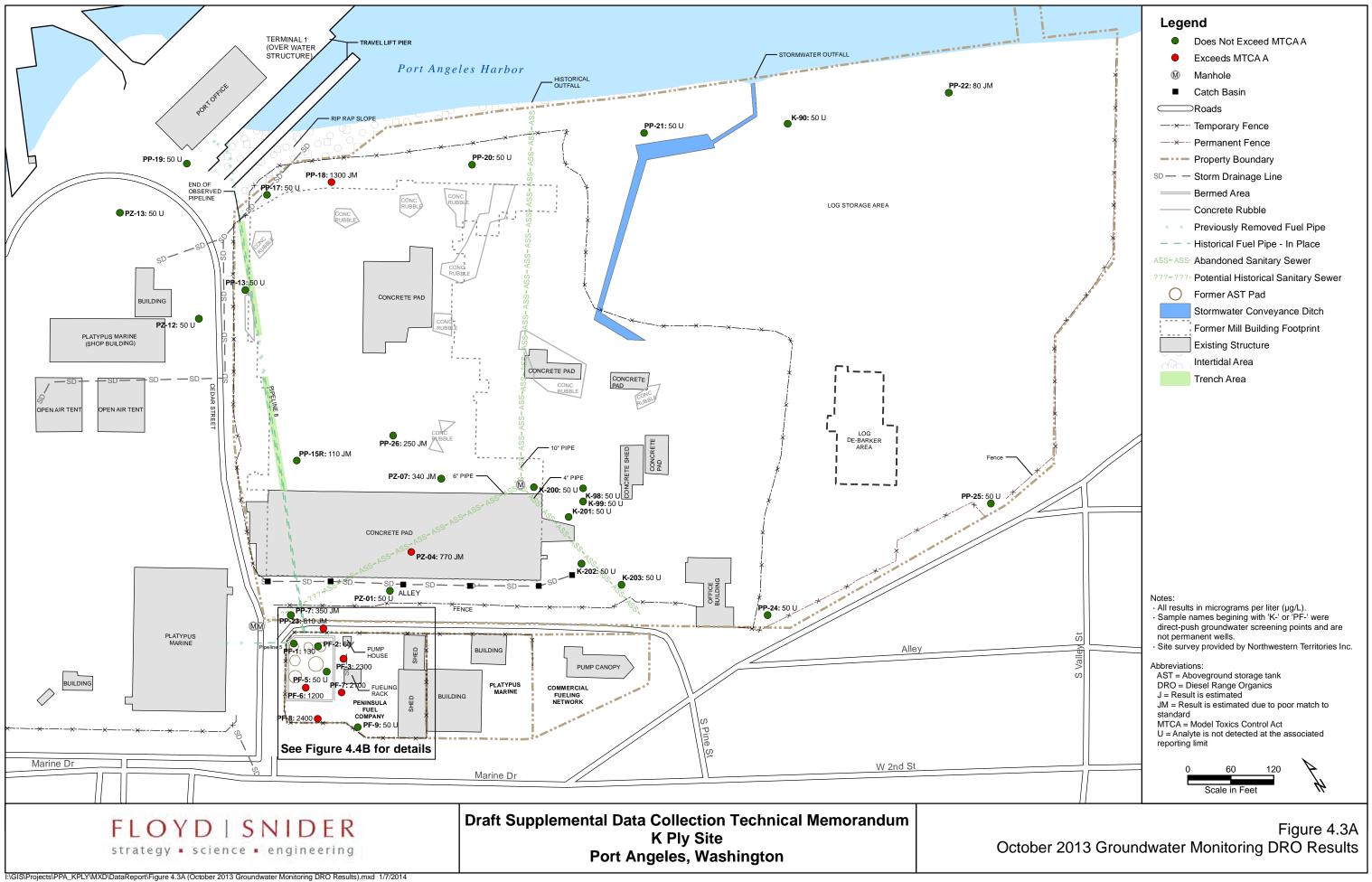

1/7/2014

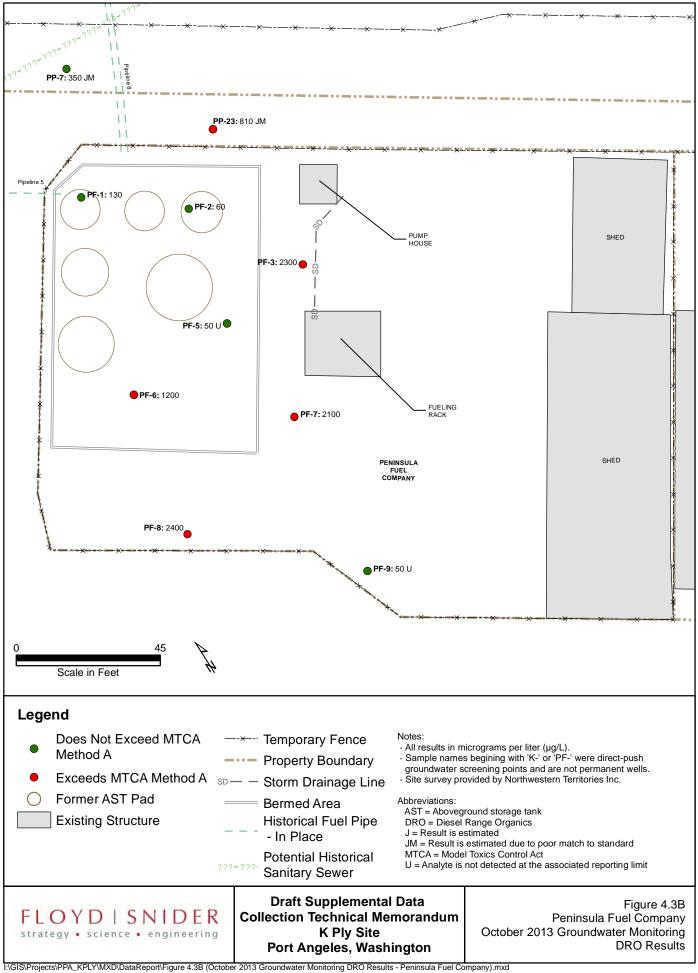


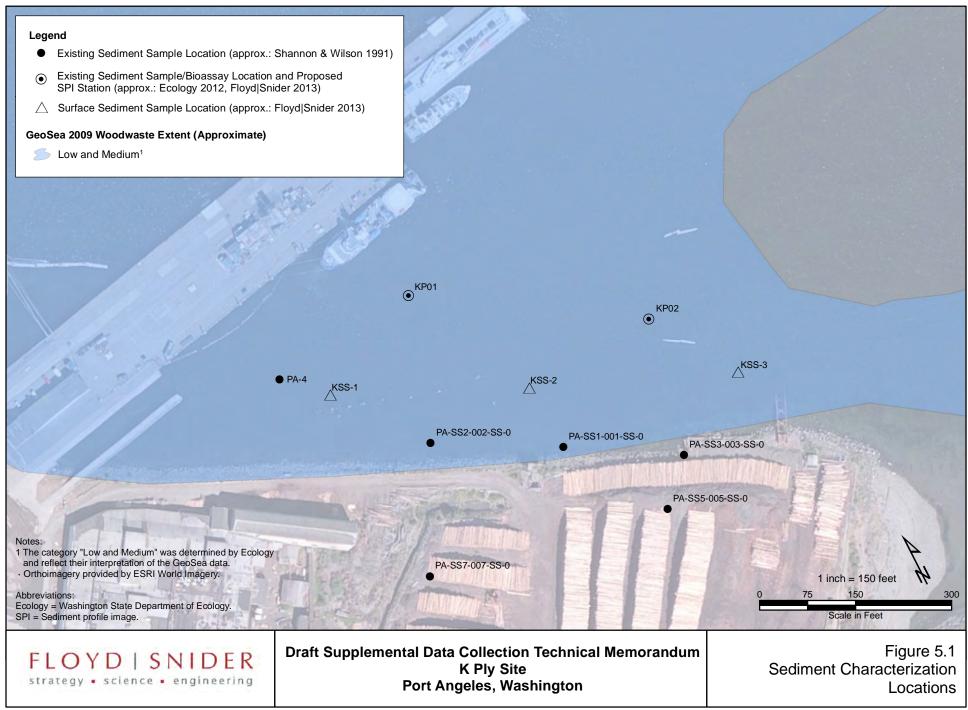





L:\GIS\Projects\PPA_KPLY\MXD\DataReport\Figure 3.6C (Soil Benzene Results in Gasoline Area).mxd 1/7/2014







I:\GIS\Projects\PPA_KPLY\MXD\DataReport\Figure 5.1 (Sediment Characterization Locations).mxd 1/16/2014

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix A Data Validation Reports

ECOLOGY DRAFT

Appendix A

The following data validation reports are included in Appendix A:

- 1. Data Validation Report Prepared by Floyd|Snider July 2013 Sediment Sampling
- 2. Data Validation Report Prepared by EcoChem July 2013 Sediment Sampling
- 3. Data Validation Report Prepared by Floyd|Snider 2013 Remedial Investigation Soil and Groundwater Sampling Event
- 4. Data Validation Report Prepared by EcoChem 2013 Remedial Investigation Soil and Groundwater Sampling Event

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix A Data Validation Reports

Data Validation Report Prepared by Floyd|Snider July 2013 Sediment Sampling

ECOLOGY DRAFT

K Ply Site

Data Validation Report July 2013 Sediment Sampling

Prepared for

Port of Port Angeles 338 West First Street Port Angeles, Washington 98362

Prepared by

Floyd|Snider 601 Union Street, Suite 600 Seattle, Washington 98101

November 2013

Table of Contents

1.0	Project Narrative			1-1
	1.1	OVERV	EW OF DATA VALIDATION	1-1
2.0	Data	Validatio	on Report Select Metals by USEPA Methods 6020A and	
				2-1
	2.1	DATA P	ACKAGE COMPLETENESS	2-1
	2.2	TECHNI	CAL DATA VALIDATION	2-1
		2.2.1	Matrix Spike	2-1
	2.3	OVERA	LL ASSESSMENT	2-2
3.0	Data	Validatio	on Report Butyltins by Krone Method	3-1
	3.1	DATA P	ACKAGE COMPLETENESS	3-1
	3.2	TECHNI	CAL DATA VALIDATION	3-1
		3.2.1	Extraction and Analysis Holding Times	3-1
		3.2.2	Reporting Limits and Reported Results	3-2
	3.3	OVERA	LL ASSESSMENT	3-2
4.0			on Report Total Petroleum Hydrocarbons by NWTPH-Dx	4-1
	4.1		ACKAGE COMPLETENESS	
	4.2	TECHNI	CAL DATA VALIDATION	4-1
		4.2.1	Laboratory Sample Duplicate RPDs	4-1
		4.2.2	Reporting Limits and Reported Results	4-1
		4.2.3	Chromatographic Match to TPH Standards	4-2
	4.3	OVERA	LL ASSESSMENT	4-2
5.0			on Report Semivolatile Organic Compounds by USEPA	5_1
	5.1		ACKAGE COMPLETENESS	
	5.2		CAL DATA VALIDATION	
	•	5.2.1	Surrogate Recoveries	
		5.2.2	Matrix Spike and Matrix Spike Duplicates	
		5.2.3	Laboratory Control Sample and Laboratory Control Sample Duplicate	
		5.2.4	Reporting Limits and Reported Results	
		5.2.5	Continuing Calibration Verification	5-2

	5.3	OVERA	ALL ASSESSMENT	5-2
6.0			ion Report Polynuclear Aromatic Hydrocarbons by ood 8270D-SIM	6-1
	6.1	DATA I	PACKAGE COMPLETENESS	6-1
	6.2	TECHN	NICAL DATA VALIDATION	6-1
		6.2.1	Matrix Spike and Matrix Spike Duplicate	6-1
		6.2.2	Reporting Limits and Reported Results	6-1
	6.3	OVERA	ALL ASSESSMENT	6-2
7.0	Refe	rences.		7-1

List of Appendices

- Appendix A Data Qualifier Definitions and Criteria Tables
- Appendix B Qualified Data Summary Table

List of Abbreviations and Acronyms

Abbreviation/ Acronym	Definition
ALS	ALS Environmental
CCV	Continuing calibration verification
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MDL	Method detection limit
MRL	Method reporting limit
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QA	Quality assurance
QC	Quality control
TPH	Total petroleum hydrocarbons
USEPA	U. S. Environmental Protection Agency

1.0 **Project Narrative**

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the sediment sample data for the K Ply July 2013 Sediment Sampling Event. A complete list of samples is provided below.

Sample Delivery Group	Sample ID	Laboratory ID	USEPA 6020A/7471A	Krone	NWTPH- Dx	USEPA 8270D	USEPA 8270D-SIM
K1306878	SD0001K	K1306878-001	х	х	х	Х	х
K1306878	SD0002K	K1306878-002	х	Х	Х	Х	х
K1306878	SD0003K	K1306878-003	х	Х	Х	Х	х

Project Sample Index

The chemical analyses were performed by ALS Environmental (ALS) in Kelso, Washington. Three sediment samples were collected on July 9, 2013, and submitted to ALS for chemical analyses. The analytical methods include the following:

- Select Metals—USEPA Methods 6020A and 7471A
- Butyltins—Krone Method
- Total Petroleum Hydrocarbons (TPH)—NWTPH-Dx Method
- Semivolatile Organic Compounds—USEPA Method 8270D
- Polynuclear Aromatic Hydrocarbons—USEPA Method 8270D-SIM

The data were reviewed using guidance and quality control (QC) criteria documented in the analytical methods, the Sampling and Analysis Plan for the Western Port Angeles Harbor RI/FS (Integral et al. 2013), *National Functional Guidelines for Inorganic Data Review* (USEPA 1994, 2004), and *National Functional Guidelines for Organic Data Review* (USEPA 1999, 2008).

Conventional parameters of total solids, total volatile solids, ammonia as nitrogen, sulfide, total organic carbon, and grain size were also analyzed; however they do not have data quality compliance requirements; therefore, the results are not included in this data validation report. Data quality review of dioxan/furan and polychlorinated biphenyl (PCB) analytical results is not included in this report because these analyses were validated and reported separately by EcoChem.

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no

data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. The Qualified Data Summary Table is included in Appendix B. Data validation worksheets (Excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Select Metals by USEPA Methods 6020A and 7471A

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory QC samples. Samples were analyzed by ALS. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	¹ Matrix spike
Extraction and analysis holding times	Laboratory sample duplicates
Blank contamination	Reporting limits and reported results
Laboratory control sample	Target analyte list

QC Requirements

Note:

1 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Matrix Spike

The matrix spike (MS) recoveries for arsenic (50.4 percent), copper (42.6 percent), and zinc (56 percent) were outside laboratory control limits of 75 to 125 percent. The original concentrations of arsenic and copper in the batch QC sample were 724 and 303 milligrams per kilogram (mg/kg), respectively. These were greater than four times the spike amounts of 89.23 mg/kg for arsenic and 44.62 mg/kg for copper. Per U.S. Environmental Protection Agency (USEPA) guidelines, spike recovery limits do not apply when sample concentrations exceed the spike concentration by a factor of four or greater, and in such an event, the data will be reported unflagged. Therefore, no qualifiers will be added to the arsenic and copper results based on this MS recovery information alone. The original concentration of zinc in the sample was 243 mg/kg and is less than four times the spike amount of 89.23 mg/kg. Therefore, the MS recovery suggests a potential low bias, and the detected results for zinc have been qualified "J" to indicate they should be considered an estimate.

2.3 OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS for all analytes except zinc, as noted above, and laboratory control sample (LCS) percent recovery values. Precision was acceptable, as demonstrated by the laboratory sample/laboratory sample duplicate relative percent differences (RPDs).

3.0 Data Validation Report Butyltins by Krone Method

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory QC samples. Samples were analyzed by ALS. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes, and any anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

	Cooler temperature and preservation		MS and MS duplicate
1	Extraction and analysis holding times		LCS
	Blank contamination	1	Reporting limits and reported results
	Surrogate recoveries		

Note:

1 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

3.2.1 Extraction and Analysis Holding Times

The laboratory noted that a significant portion of the original extract for sample SD002K had been lost during the extraction process and could indicate a potential low bias to the sample. The reanalysis was performed as soon as possible after this problem was identified; however the reextraction occurred 2 days past the recommended hold time for the method. Surrogates met control limits for both sets of analyses, and per the laboratory, the final result numbers suggest that approximately two-thirds of the original extract was lost. Therefore, on the basis of professional judgment, the original analysis was flagged as DNR in favor of the results from the reanalysis. Because the reanalysis occurred outside of the recommended method hold time, all results from the Krone method for sample SD0002K have been flagged "J" to indicate they are estimated.

3.2.2 Reporting Limits and Reported Results

Sample SD003K had reported results for tri-n-butyltin cation, di-n-butyltin cation, and n-butyltin cation that were flagged "J" by the laboratory to indicate they were estimates between the method detection limit (MDL) and the method reporting limit (MRL). The results have been flagged "JQ," which is the interpretive qualifier to be used for database entry and project reporting to indicate estimated concentrations due to the reporting of a value between the MDL and MRL.

3.3 OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS, matrix spike duplicate (MSD), and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs.

4.0 Data Validation Report Total Petroleum Hydrocarbons by NWTPH-Dx Method

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory QC samples. Samples were analyzed by ALS. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes, and any anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	¹ Laboratory sample duplicate RPDs
Extraction and analysis holding times	LCS
Blank contamination	² Reporting limits and reported results
Surrogate recoveries	² Chromatographic match to TPH standards

Notes:

1 Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

Appendix A presents data validation criteria tables for diesel-range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

4.2.1 Laboratory Sample Duplicate RPDs

The laboratory noted that the RPDs for the sample/sample duplicate were not applicable for diesel-range organics or residual-range organics because the analyte concentrations were not significantly greater than the MRL. The RPDs were still within the laboratory limit of 40 percent. Therefore, no results have been qualified based on the notation by the laboratory.

4.2.2 Reporting Limits and Reported Results

The results for diesel-range organics and residual-range organics for samples SD0001K and SD0003K were flagged "J" by the laboratory to indicate they were estimates between the MDL and MRL. The results have been flagged "JQ," which is the interpretive qualifier to be used for database entry and project reporting to indicate estimated concentrations due to the reporting of a value between the MDL and MRL.

4.2.3 Chromatographic Match to TPH Standards

As part of the validation of TPH data, the detectable hydrocarbons and/or organics within the diesel, gasoline, or residual hydrocarbon chromatogram ranges have been reviewed relative to the appropriate laboratory standard. If the hydrocarbons are not identifiable based on a poor chromatographic match with the standards, the data will be qualified "MP" to reflect a poor match, and the interpretive qualifier to be used for database entry and project reporting is "JM" to indicate estimated concentrations due the poor chromatographic match. Similarly, if the hydrocarbons provide a good chromatographic match with the standards, the data will be qualified "MG" to reflect a good match, and no interpretive qualifier will be used for database entry or project reporting.

Sample SD002K was the only sample with detected results above the MRL; therefore only chromatograms for this sample were compared with laboratory standards. The laboratory qualified both the diesel-range organics and residual-range organics results with "Z" qualifiers to indicate the chromatograms did not match standards. The chromatogram review conducted as part of TPH data validation, as described above, concurred with the laboratory assessment, and the results have been qualified "MP" with an interpretive qualifier of "JM."

4.3 OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS recovery values. Precision was acceptable, as demonstrated by the laboratory sample duplicate RPDs.

5.0 Data Validation Report Semivolatile Organic Compounds by USEPA Method 8270D

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory QC samples. Samples were analyzed by ALS. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

5.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

5.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	¹ MS and MSD
Extraction and analysis holding times	¹ LCS and LCSD
Blank contamination	² Reporting limits and reported results
¹ Surrogate recoveries	¹ Continuing calibration verification

QC Requirements

Notes:

1 Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

5.2.1 Surrogate Recoveries

The 2,4,6-tribromophenol acid surrogate for the batch MSD sample was outside the upper control limit. Per USEPA guidelines, no action is taken on surrogate recoveries unless two or more surrogates from the same fraction (acid or base/neutral) are outside the specification. Because only one surrogate was outside the specification, no results were qualified based on this recovery information.

5.2.2 Matrix Spike and Matrix Spike Duplicates

The MS recovery for phenol in the batch QC analysis was outside the laboratory control limits. The laboratory advised it was due to the heterogeneous character of the sample, which was why the RPD between the MS and MSD was outside the laboratory control limits as well. Per USEPA guidelines, data are not qualified based on MS/MSD information alone. Because all other quality assurance (QA)/QC objectives were met for phenol in this analysis and the batch

QC analysis was performed on a sample for another client, professional judgment was used in deciding that no phenol results should be qualified based on this MS/MSD recovery information.

5.2.3 Laboratory Control Sample and Laboratory Control Sample Duplicate

Benzoic acid was outside the control limits for the LCS and LCSD. Per the laboratory, the limits are default values temporarily in use until sufficient data points are generated to calculate statistical control limits. Based on the method and historical data, the recoveries observed were in the range expected for this analysis. Professional judgment was used in deciding that no benzoic acid results should be qualified based on this LCS/LCSD recovery information.

5.2.4 Reporting Limits and Reported Results

All three samples had reported results for multiple analytes that were flagged "J" by the laboratory to indicate they were estimates between the MDL and MRL. The results have been flagged "JQ," which is the interpretive qualifier to be used for database entry and project reporting to indicate estimated concentrations due to the reporting of a value between the MDL and MRL. Details of which analyte was qualified in each sample are provided in Appendix B.

The laboratory noted that detection limits for samples SD0001K and SD0002K were elevated because the extracted sample mass was less than optimal for analysis. The samples contained a low percentage of solids, which prevented extraction of the sample mass necessary to achieve target detection limits.

5.2.5 Continuing Calibration Verification

The laboratory advised that three analytes, benzoic acid, 2,4-dinitrophenol, and 2,-methyl-4,6dinitriophenol, were outside the lower control criterion for continuing calibration verification (CCV), and two analytes, hexachlorobutadiene and 2,4,6-tribromphenol, were outside the upper control criterion. Per the laboratory, in accordance with the USEPA Method 8270D, 80 percent or more of the CCV analytes must be within 20 percent of the true value, and the remaining analytes are allowed a 40 percent difference per the ALS standard operating procedure. The laboratory advised that the CCV met these criteria, and that the data quality was not affected; therefore, no further corrective action was required. Professional judgment was used in deciding that the results should not be qualified based on this continuing calibration information.

5.3 OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, MS, MSD, LCS, and LCSD recoveries as discussed above. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs, as discussed above.

6.0 Data Validation Report Polynuclear Aromatic Hydrocarbons by USEPA Method 8270D-SIM

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory QC samples. Samples were analyzed by ALS. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

6.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

6.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	¹ MS and MSD
Extraction and analysis holding times	LCS and LCSD
Blank contamination	¹ Reporting limits and reported results
Surrogate recoveries	Target analyte list

QC Requirements

Note:

1 Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

6.2.1 Matrix Spike and Matrix Spike Duplicate

The MS recoveries for numerous analytes were outside the laboratory control limits. The laboratory advised that it was due to the heterogeneous character of the sample which was why the RPDs between the MS and MSD were also outside the laboratory control limits. Per USEPA guidelines, data are not qualified based on MS/MSD information alone. Because all other QA/QC objectives were met in this analysis, professional judgment was used in deciding that no results should be qualified based on this MS/MSD recovery information.

6.2.2 Reporting Limits and Reported Results

The laboratory noted that detection limits for samples SD0001K and SD0002K were elevated because the extracted sample mass was less than optimal for analysis. The samples contained a low percentage of solids, which prevented extraction of the sample mass necessary to achieve target detection limits.

6.3 OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

All data, as reported by the laboratory, are acceptable for use.

7.0 References

- Integral Consulting Inc. (Integral); Anchor QEA, LLC; Exponent; and Floyd|Snider. 2013. Sampling and Analysis Plan, Western Port Angeles Harbor RI/FS. Prepared for Western Port Angeles Harbor Group (City of Port Angeles; Georgia-Pacific LLC; Merrill & Ring; Nippon Paper Industries USA Co., Ltd.; and Port of Port Angeles). 13 June.
- U.S. Environmental Protection Agency (USEPA). 1994. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. OSWER 9240.1-05-01; EPA 540/R-94/013. Office of Emergency and Remedial Response, Washington, D.C. February.
- ———. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. OSWER 9240.1-05A-P; EPA 540/R-99/008. October.
- ———. 2004. USEPA National Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. OSWER 9240.1-45; EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, D.C. October.
- ———. 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review. EPA-540/R-99/008. October.

K Ply Site

Data Validation Report July 2013 Sediment Sampling

Appendix A Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported
	sample quantitation limit.

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action	
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%- 49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)	
Interference Check Samples (ICSA/ICSAB)	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present		
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level	
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%	
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL	
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch	
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element	
		J/UJ if RPD > 20% or diff > RL All samples in batch	
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch	

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

Floyd|Snider Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C ± 2°	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	Water: J/UJ if ext. > 7 and < 21 days J/R if ext > 21 days (Floyd Snider PJ) Solids/Wastes: J/UJ if ext. > 14 and < 42 days J/R if ext. > 42 days (Floyd Snider PJ) J/UJ if analysis >40 days
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)

Validation QC Element	Acceptance Criteria	Action
Method Blank (continued)	No TICs present	RTICs using 10X rule
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% Floyd Snider PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS CLP low conc. H2O only	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J /R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ associated compounds in all samples
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J if %R > UCL J/UJ if %R < LCL J/R if %R < 10%
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)

Validation QC Element	Acceptance Criteria	Action
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Abbreviation:

PJ Professional judgment

Floyd|Snider Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range and Gasoline Range (Based on USEPA National Functional Guidelines as applied to criteria in NWTPH-Dx and NWTPH-Gx, June 1997, Ecology & Oregon DEQ)

Validation QC Element	Acceptance Criteria	Action		
Cooler Temperature & Preservation	4°C± 2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C		
Holding Time	Ext. Waters: 14 days preserved 7 days unpreserved Ext. Solids: 14 Days Analysis: 40 days from extraction	J/UJ if hold times exceeded J/R if exceeded > 3X (Floyd Snider PJ)		
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: R2 >0.990 If used, RSD of response factors <20%	Narrate if fewer than 5 calibration levels or if %R >15% J/UJ if R2 <0.990 J/UJ if %RSD > 20%		
Mid-range Calibration Check Std.	Analyzed before and after each analysis shift & every 20 samples. Recovery range 85% to 115%	Narrate if frequency not met. J/UJ if %R < 85% J if %R >115%		
Method Blank	At least one per batch (<10 samples)	U (at the RL) if sample result is < RL & < 5X blank result.		
	Method Blank No results >RL	U (at reported sample value) if sample result is > RL and < 5X blank result		
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.		
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J if both %R > upper control limit (UCL) J/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked. Use PJ if only one %R outlier		
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (<10 samples) RPD < lab control limit	J if RPD > lab control limits		

Validation QC Element	Acceptance Criteria	Action
LCS (not required by method)	%R within lab control limits	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% (Floyd Snider PJ)
Surrogates	2-fluorobiphenyl, p-terphenyl, o-terphenyl, and/or pentacosane added to all samples (inc. QC samples). %R = 50-150%	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits. (Floyd Snider PJ)
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J
Field Duplicates	Use project control limits, if stated in QAPP Floyd Snider default: water: RPD < 35% solids: RPD < 50%	Narrate (Floyd Snider PJ to qualify)
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" (or client requested qualifier) all results that should not be reported

Abbreviation:

PJ Professional judgment

K Ply Site

Data Validation Report July 2013 Sediment Sampling

Appendix B Qualified Data Summary Table

Qualified Data Summary Table

	Sample						Lab	DV	Final
SDG	ID	Lab ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Qualifier
K1306878	SD0001K	K1306878-001	6020A	Zinc	88	mg/kg	N	J	J
K1306878	SD0002K	K1306878-002	6020A	Zinc	65.7	mg/kg	Ν	J	J
K1306878	SD0003K	K1306878-003	6020A	Zinc	57.9	mg/kg	Ν	J	J
K1306878	SD0002K	K1306878-002	Krone	Tetra-n-butyltin	2.2	µg/kg	ND	DNR	DNR
K1306878	SD0002K	K1306878-002	Krone	Tri-n-butyltin Cation	5.7	µg/kg		DNR	DNR
K1306878	SD0002K	K1306878-002	Krone	Di-n-butyltin Cation	2	µg/kg	J	DNR	DNR
K1306878	SD0002K	K1306878-002	Krone	n-Butyltin Cation	0.93	µg/kg	J	DNR	DNR
K1306878	SD0002K	K1306878-002 RE	Krone	Tetra-n-butyltin	2.1	µg/kg	ND	JH	UJ
K1306878	SD0002K	K1306878-002 RE	Krone	Tri-n-butyltin Cation	13	µg/kg		JH	J
K1306878	SD0002K	K1306878-002 RE	Krone	Di-n-butyltin Cation	5	µg/kg		JH	J
K1306878	SD0002K	K1306878-002 RE	Krone	n-Butyltin Cation	2.5	µg/kg		JH	J
K1306878	SD0003K	K1306878-003	Krone	Tri-n-butyltin Cation	1.3	µg/kg	J		JQ
K1306878	SD0003K	K1306878-003	Krone	Di-n-butyltin Cation	0.59	µg/kg	J		JQ
K1306878	SD0003K	K1306878-003	Krone	n-Butyltin Cation	0.52	µg/kg	J		JQ
K1306878	SD0001K	K1306878-001	NWTPH-Dx	Diesel Range	47	mg/kg	J		JQ
				Organics					
K1306878	SD0001K	K1306878-001	NWTPH-Dx	Residual Range	210	mg/kg	J		JQ
				Organics					
K1306878	SD0002K	K1306878-002	NWTPH-Dx	Diesel Range	94	mg/kg	Z	MP	JM
				Organics					
K1306878	SD0002K	K1306878-002	NWTPH-Dx	Residual Range	330	mg/kg	Z	MP	JM
				Organics					
K1306878	SD0003K	K1306878-003	NWTPH-Dx	Diesel Range	16	mg/kg	J		JQ
				Organics					
K1306878	SD0003K	K1306878-003	NWTPH-Dx	Residual Range	120	mg/kg	J		JQ
				Organics					
K1306878	SD0001K	K1306878-001	8270D	Phenol	28	µg/kg	J		JQ
K1306878	SD0001K	K1306878-001	8270D	Bis(2-ethylhexyl)-	37	µg/kg	J		JQ
				phthalate					
K1306878	SD0002K	K1306878-002	8270D	2-Chlorophenol	5	µg/kg	J		JQ
K1306878	SD0002K	K1306878-002	8270D	2,4-Dimethylphenol	15	µg/kg	J		JQ
K1306878	SD0002K	K1306878-002	8270D	Di-n-butyl Phthalate	7.2	µg/kg	J		JQ
K1306878	SD0002K	K1306878-002	8270D	Bis(2-ethylhexyl)-	44	µg/kg	J		JQ
				phthalate					

FLOYD | SNIDER

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
K1306878	SD0003K	K1306878-003	8270D	Phenol	12	µg/kg	J		JQ
K1306878	SD0003K	K1306878-003	8270D	4-Methylphenol	5.1	µg/kg	J		JQ
K1306878	SD0003K	K1306878-003	8270D	Bis(2-ethylhexyl)- phthalate	17	µg/kg	J		JQ

Abbreviations:

DV Data validation

µg/kg Micrograms per kilogram

mg/kg Milligrams per kilogram

RE Reextraction

SDG Sample Delivery Group

Qualifiers:

DNR Do not report.

J The result is an estimated value.

JH The result should be considered an estimated value; the analysis occurred outside of holding time.

JM The result should be considered an estimated value; there was a poor match to the chromatographic standard.

JQ The result should be considered an estimated value; it has been reported between the method reporting limit and the method detection limit.

N The matrix spike sample recovery is not within control limits.

ND Not detected.

MP The chromatograph was a poor match to standard.

UJ Not detected at the associated reporting limit, which is an estimate.

Z The chromatographic fingerprint does not resemble a petroleum product.

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix A Data Validation Reports

Data Validation Report Prepared by EcoChem July 2013 Sediment Sampling

ECOLOGY DRAFT

DATA VALIDATION REPORT CITY OF PORT ANGELES – K-Ply

Prepared for:

Floyd | Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 1011 Western Ave. Suite 1011 Seattle, WA 98104

EcoChem Project: C15218-1

November 1, 2013

Approved for Release

Melissa Swanson Project Manager **EcoChem, Inc.**

Basis for Data Validation

This report summarizes the results of validation (EPA Stage 2B) performed on sediment, and quality control (QC) sample data for the City of Port Angeles – K-Ply site. Field sample ID, laboratory sample ID, and requested analyses are provided in the **Sample Index**. Laboratory batch ID numbers and associated level of validation are provided at the beginning of each technical section.

Samples were analyzed by Axys Analytical, Sidney, British Columbia, Canada. The analytical methods and EcoChem project chemists are listed below.

Analysis	Method of Analysis	Primary Review	Secondary Review	
Dioxin Furans	EPA1613B	M. Swanson	E. Strout	
Polychlorinated Biphenyls	EPA1668A	IVI. SWAIISUII	E. Strout	

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan *Western Port Angeles Harbor RI/FS* (Integral/Anchor QEA/Exponent/Floyd | Snider, June 2013)
- USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (EPA, 2002, 2005)

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. The qualified data summary table is included as **Appendix B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) was also submitted with this report.

Sample Index City of Port Angeles - K Ply

SDG	Sample ID	Lab ID	Dioxin	PCB
WG44197	SD0001K	L19903-1	 ✓ 	√
WG44197	SD0002K	L19903-2	√	1
WG44197	SD0003K	L19903-3	√	1

DATA VALIDATION REPORT City of Port Angeles K-Ply Dioxin & Furan Compounds by Axys Method MLA-017 (EPA 1613B)

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Axys Analytical Services, Ltd. of Sidney, British Columbia, Canada. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
WG44197	3 Sediment	EPA Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

\checkmark	Sample Receipt, Preservation, and Holding Time	✓	Ongoing Precision and Recovery (OPR)
✓	System Performance and Resolution Checks	1	Field Replicates
\checkmark	Initial Calibration (ICAL)	1	Laboratory Duplicates
✓	Calibration Verification (CVER)	✓	Target Analyte List
1	Method Blanks	2	Reported Results
✓	Labeled Compounds	2	Compound Identification

The QC requirements reviewed are summarized in the following table:

✓ Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Method Blanks

In order to assess the impact of blank contamination on the reported sample results, action levels are established at five times the blank concentrations. If the concentrations in the associated field samples are less than the action levels, the results are qualified as not detected (U-7).

The laboratory assigned K-flags to dioxin and furan values when a peak was detected but did not meet identification criteria. These values cannot be considered as positive identifications, but are "estimated maximum possible concentrations". When these occurred in the method blank the results were considered as false positives. No action levels were established for these analytes.

The analytes 2,3,7,8-TCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD were reported in the method blank as K-flagged results. No data were qualified.

Field Replicates

No field replicates were submitted.

Laboratory Duplicates

No laboratory duplicates were analyzed.

Reported Results

All results for 2,3,7,8-TCDF were confirmed on a DB-225 column as required by the method. The 2,3,7,8-TCDF results from both columns were reported. The 2,3,7,8-TCDF results from the DB-5 column were qualified do-not-report (DNR-11).

Compound Identification

The laboratory assigned a" K" flag to one or more analytes in all samples to indicate the ion ratio criterion were not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. All "K" flagged results were qualified as not detected (U-25) at the reported concentration.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the labeled compound and OPR recoveries. Precision could not be assessed.

Detection limits were elevated based on ion ratio outliers.

Results for 2,3,7,8-TCDF on the DB-5 column were qualified do-not-report (DNR). Since a usable result remains for this compound in all samples; completeness was unaffected. Data that have been flagged DNR are not useable for any purpose.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT City of Port Angeles K-Ply PCB Congeners by Axys Method MLA-010 (EPA 1668)

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Axys Analytical Services, Ltd. of Sydney, British Columbia, Canada. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
WG44197	3 Sediment	EPA Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

\checkmark	Sample Receipt, Preservation, and Holding Times	✓	Ongoing Precision and Recovery (OPR)
\checkmark	System Performance and Resolution Checks	1	Field Replicates
\checkmark	Initial Calibration (ICAL)	1	Laboratory Duplicates
\checkmark	Calibration Verification (CVER)	2	Compound Identification
1	Method Blanks	2	Reported Results
\checkmark	Labeled Compounds	1	Reporting Limits

The QC requirements reviewed are summarized in the following table:

✓ Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

¹ Quality control results are discussed below, but no data were qualified.

 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Method Blanks

In order to assess the impact of blank contamination on the reported sample results, action levels are established at five times the blank concentrations. If the concentrations in the associated field samples are less than the action levels, the results are qualified as not detected (U-7).

The laboratory assigned K-flags to PCB congener values when a peak was detected but did not meet identification criteria. These values cannot be considered as positive identifications, but are "estimated maximum possible concentrations". When these occurred in the method blank the results were considered as false positives. No action levels were established for these analytes.

Many PCB congeners were detected in the method blank, but all sample results were either not detected or detected at concentrations greater than the action levels; no data were qualified.

Field Replicates

No field replicates were submitted.

Laboratory Duplicates

No laboratory duplicates were analyzed.

Compound Identification

The laboratory assigned a "K" flag to one or more analytes in all samples to indicate the ion ratio criterion were not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "K" flagged results were qualified as not-detected (U-25) at elevated detection limits.

Reported Results

Although the percent recovery (%R) values for all labeled compounds were within control limits, the laboratory noted that labeled congener 13C-PCB 206 was impacted by interferences in Samples SD0001K and SD0002K. The target analytes PCB 206 and PCB 207 are normally quantitated against 13C-PCB 206 (or an average of 13C-PCB 206 & 13C-PCB 208), but due to the interference they were quantitated using 13C-PCB 208 only. The results for PCB 206 and PCB 207 were estimated (J-14) in these samples.

Reporting Limits

Samples SD0001K, SD0002K, and SD0003K were analyzed or reanalyzed at dilution (5x or 10x) to reduce interferences. Reporting limits were elevated accordingly.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the labeled compound and OPR recoveries. Precision could not be assessed.

Data were estimated due to interference resulting in the use of a different labeled congener to calculate compound concentrations. Detection limits were elevated due to ion ratio outliers.

All data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
Instrument Performance	5A	Initial Calibration (RF, %RSD, r ²)
	5B	Calibration Verification (ICV, CCV, CCAL; RF, %D, %R) Use bias flags (H,L) ¹ where appropriate
	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
Blank Contamination	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L) ¹ for negative instrument blanks
	8	Matrix Spike (MS &/or MSD) Recoveries Use bias flags (H,L) ¹ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
Precision and Accuracy	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L) ¹ where appropriate
	12	Reference Material Use bias flags (H,L) ¹ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ¹ where appropriate
	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L) ¹ where appropriate
Interferences	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	2 nd column confirmation (RPD or %D)
Identification and Quantitation	4	Tentatively Identified Compound (TIC) (associated with NJ only)
Quantitation	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, re- extractions, etc. Associated with "R" and "DNR" only)
Miscellaneous	14	Other (See DV report for details)
	26	Method QC information not provided

¹H = high bias indicated

L = low bias indicated

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection <i>Note:</i> Under CWA, SDWA, and RCRA the HT for H2O is 7 days [*] Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = $(x/y)^{100\%}$ x = ht. of TCDD y = baseline to bottom of valleyFor all isomers eluting near 2378-TCDD/TCDF isomers(TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /		J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35%	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	OR absolute diff. < 1X RL (for results < 5X RL) Report only one result per analyte	"DNR" results that should not be used	11

EcoChem Validation Guidelines for PCB Congener Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 1, 12/1995 & EPA SW-846, Method 1668)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids <4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Samples: Up to one year if stored in the dark & temp as above. Extracts: Up to 1 year if stored at <-10°C and in the dark	J(+)/UJ(-) if HT > 1 year EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 330.9792 <5 ppm deviation from each m/z listed in Table 7 of method. Analyzed prior to ICAL and at the beginning and end of each 12 hr. shift	R(+/-) if not met	14
Column Resolution 209 Congener Solution	Mix of all 209 PCBs run prior to each ICAL and each 12 hour shift RT of PCB209 must be > 55 min PCB 156 & 157 must coelute w/in 2 sec PCB34 & 23 and PCB187 & 182 must be resolved where ((x/y)*100%) < 40% x = ht. of valley and y = ht of shortest peak	J(+) if valley >40%	5A (ICAL) 5B (CCAL)
	Minimum of five standards %RSD < 20% for native compounds %RSD < 35% for labeled compounds	J(+) natives if %RSD > 20%	
Initial Calibration	Ion Abundance ratios within QC limits (Method 1668, Table 8) in CS1 std.	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	
	Every 12 hours: Concentrations must meet criteria specified in Method 1668, Table 6	J(+)/(UJ(-) natives if %D = 30% - 50% J(+)/R(-) natives if %D > 75%	
Continuing Calibration	Absolute RT of all Labelled Compounds and Window Defining Congeners must be +/- 15 sec of RT in ICAL RRT of all compounds must meet Table 2 of method.	EcoChem PJ, see ICAL section of TM-05	5B
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
	Ion Abundance ratios must meet criteria specified in Method 1668, Table 8	EcoChem PJ, see TM-05	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7

EcoChem Validation Guidelines for PCB Congener Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 1, 12/1995 & EPA SW-846, Method 1668)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Rinse/Field Blank (if required)	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	One per matrix per batch %R Values w/in limits specified in Method 1668, Table 6	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (if required)	Accuracy: %R values within laboratory limits	Qualify parent sample only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
	Precision: RPD < 20%	J(+) in parent sample if RPD > 20%	9
Duplicate (if required)	RPD <25%	J(+)/UJ(-) if outside limts	9
Labeled Compounds / Internal Standards	%R must meet limits specified in Method 1668, Table 6.	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL J(+)/R(-) if %R < 10%	13
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 Ion abundance (IA ratios) must meet limits stated in Table 8 of Method 1668 Relative retention times (RRT) must be w/in limits stated in Table 2 of Method 1668	If RT criteria not met, use PJ (see TM-05) J(+) if S/N criteria not met if unlabelled ion abundance not met, change to EMPC J(+) if labelled ion abundance not met.	21
Interferences	Lock masses must not deviate +/- 20%	Change result to EMPC	14
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11

APPENDIX B QUALIFIED DATA SUMMARY TABLE

JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

Qualified Data Summary Table City of Port Angeles - K Ply

	Sample						Lab	Validation	Validation
SDG	ID	Lab ID	Method	Analyte	Result	Units	Flags	Qualifier	Reason
WG44197	SD0001K	L19903-1	EPA 1613B	2,3,7,8-TCDF	9.51	pg/g		DNR	11
WG44197	SD0002K	L19903-2	EPA 1613B	2,3,7,8-TCDF	30.5	pg/g		DNR	11
WG44197	SD0003K	L19903-3	EPA 1613B	1,2,3,7,8,9-HXCDF	0.094	pg/g	КJ	U	25
WG44197	SD0003K	L19903-3	EPA 1613B	1,2,3,7,8-PECDF	0.393	pg/g	КJ	U	25
WG44197	SD0003K	L19903-3	EPA 1613B	2,3,7,8-TCDF	2.41	pg/g		DNR	11
WG44197	SD0001K	L19903-1 W	EPA 1668A	2,2',3,3',4,4',5,5',6-NoCB	86.2	pg/g	DT	J	14
WG44197	SD0001K	L19903-1 W	EPA 1668A	2,2',3,3',4,4',5,6,6'-NoCB	9.89	pg/g	DJT	J	14
WG44197	SD0001K	L19903-1 W	EPA 1668A	2,2',3,4,4',5,6,6'-OcCB	0.154	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	2,2',3,4,4',6,6'-HpCB	0.423	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	2,2',3,4,5,6,6'-HpCB	0.223	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	2,2',3,4',5,6,6'-HpCB	0.723	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	3,3',5-TriCB	2.46	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	3,4,4',5-TeCB	1.64	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	3,4,5-TriCB	1	pg/g	KDJ	U	25
WG44197	SD0001K	L19903-1 W	EPA 1668A	3,5-DiCB	2.21	pg/g	KDJ	U	25
WG44197	SD0002K	L19903-2 LW	EPA 1668A	2,2',3,3',4,4',5,5',6-NoCB	93.4	pg/g	DT	J	14
WG44197	SD0002K	L19903-2 LW	EPA 1668A	2,2',3,3',4,4',5,6,6'-NoCB	14.7	pg/g	DT	J	14
WG44197	SD0002K	L19903-2 LW	EPA 1668A	2,2',3,4,4',5,6,6'-OcCB	0.227	pg/g	KDJ	U	25
WG44197	SD0002K	L19903-2 LW	EPA 1668A	2,2',3,4,4',6,6'-HpCB	0.545	pg/g	KDJ	U	25
WG44197	SD0002K	L19903-2 LW	EPA 1668A	2,2',3,5,6,6'-HxCB	0.89	pg/g	KDJ	U	25
WG44197	SD0002K	L19903-2 LW	EPA 1668A	2,3,3',5,5'-PeCB	0.551	pg/g	KDJ	U	25
WG44197	SD0002K	L19903-2 LW	EPA 1668A	3,4,4',5-TeCB	2.2	pg/g	KDJ	U	25
WG44197	SD0003K	L19903-3 i	EPA 1668A	2,2',3,4,6,6'-HxCB	0.097	pg/g	ΚJ	U	25
WG44197	SD0003K	L19903-3 i	EPA 1668A	2,2',3,5,6,6'-HxCB	0.151	pg/g	ΚJ	U	25
WG44197	SD0003K	L19903-3 i	EPA 1668A	3,4,4',5-TeCB	0.392	pg/g	ΚJ	U	25

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix A Data Validation Reports

Data Validation Report Prepared by Floyd|Snider 2013 Remedial Investigation Soil and Groundwater Sampling Event

K Ply Site September 2013 Soil and Groundwater Sampling Event Port Angeles, Washington

Data Validation Report

Prepared for

Port of Port Angeles 338 West First Street Port Angeles, Washington 98362

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

January 2014

DRAFT

Table of Contents

1.0	Project Narrative1									
	1.1	OVERVIEW OF DATA VALIDATION								
2.0	Data Validation Report TPH by NWTPH-Dx2									
	2.1	DATA PACKAGE COMPLETENESS								
	2.2	TECHN	ICAL DATA VALIDATION							
		2.2.1	Surrogate Recoveries	2						
		2.2.2	Chromatographic Match to Total Petroleum Hydrocarbon Standards	3						
	2.3	OVER	ALL ASSESSMENT	3						
3.0	Data Validation Report TPH by NWTPH-Gx4									
	3.1	DATA PACKAGE COMPLETENESS4								
	3.2	TECHNICAL DATA VALIDATION4								
	3.3	OVERALL ASSESSMENT4								
4.0	Data Validation Report BTEX by USEPA Method 8021B5									
	4.1		PACKAGE COMPLETENESS							
	4.2	TECHNICAL DATA VALIDATION								
	4.3	OVER/	OVERALL ASSESSMENT							
5.0	Data	Validati	ion Report Metals by USEPA Methods 200.8 and 6020A	6						
	5.1		PACKAGE COMPLETENESS							
	5.2	TECHNICAL DATA VALIDATION								
		5.2.1	Matrix Spike and Matrix Spike Duplicate	6						
	5.3	OVER/	ALL ASSESSMENT	7						
6.0	Data	Validati	ion Report VOCs by USEPA 8260C and 8260C-Direct							
	6.1	DATA I	PACKAGE COMPLETENESS	8						
	6.2	TECHN	TECHNICAL DATA VALIDATION							
		6.2.1	Cooler Temperature and Preservation	8						
		6.2.2	Surrogate Recoveries	8						
		6.2.3	Laboratory Control Samples and Laboratory Control Sample Duplicates	9						
		6.2.4	Matrix Spike and Matrix Spike Duplicate	9						

		6.2.5	Laboratory Contamination	10
		6.2.6	Internal Standards	10
	6.3	OVERA	LL ASSESSMENT	10
7.0	Data	Validatio	on Report PAHs by USEPA Method 8270D-SIM	11
	7.1	DATA P	ACKAGE COMPLETENESS	11
	7.2	TECHN	CAL DATA VALIDATION	11
		7.2.1	Surrogate Recoveries	11
		7.2.2	Matrix Spike and Matrix Spike Duplicate	11
	7.3	OVERA	LL ASSESSMENT	12
8.0	Data	Validatio	on Report SVOCs by USEPA Method 8270D	13
	8.1	DATA P	ACKAGE COMPLETENESS	13
	8.2	TECHN	CAL DATA VALIDATION	13
		8.2.1	Surrogate Recoveries	13
		8.2.2	Laboratory Control Sample and Laboratory Control Sample Duplicate	14
		8.2.3	Matrix Spike and Matrix Spike Duplicate	14
		8.2.4	Calibration Standards	15
	8.3	OVERA	LL ASSESSMENT	15
9.0	Data	Validatio	on Report PCBs by USEPA Method 8082A	16
	9.1	DATA P	ACKAGE COMPLETENESS	16
	9.2	TECHN	ICAL DATA VALIDATION	16
		9.2.1	Matrix Spike and Matrix Spike Duplicate	16
	9.3	OVERA	LL ASSESSMENT	16
10.0	Refer	ences		17

List of Tables

Table 1Project Sample Index

List of Appendices

- Appendix A Data Qualifier Definitions and Criteria Tables
- Appendix B Qualified Data Summary Table

List of Abbreviations and Acronyms

Abbreviation/ Acronym	Definition
BTEX	Benzene, toluene, ethylbenzene, and xylenes
DNR	Do not report
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
mg/kg	Milligrams per kilogram
MS	Matrix spike
MSD	Matrix spike duplicate
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
RPD	Relative percent difference
QA	Quality assurance
QC	Quality control
SDG	Sample delivery group
SVOC	Semivolatile organic compound
TPH	Total petroleum hydrocarbons
USEPA	U. S. Environmental Protection Agency
VOC	Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the soil, groundwater, and quality control (QC) water sample data for the K Ply September 2013 Soil and Groundwater Sampling Event. A complete list of samples is provided in Table 1.

The chemical analyses were performed by Friedman & Bruya, Inc. in Seattle, Washington. Soil, groundwater, and QC water samples were collected between September 10, 2013 and October 16, 2013 and submitted to Friedman & Bruya for chemical analyses. The analytical methods include the following:

- Total petroleum hydrocarbons (TPHs)—NWTPH-Dx and NWTPH-Gx
- Benzene, toluene, ethylbenzene, and xylenes (BTEX)—USEPA Method 8021B
- Metals—USEPA Methods 200.8 and 6020
- Volatile organic compounds (VOCs) —USEPA Methods 8260C and 8260C-Direct Sparge
- Polycyclic aromatic hydrocarbons (PAHs)—USEPA Method 8270D-SIM
- Semivolatile organic compounds (SVOCs) —USEPA Method 8270D
- Polychlorinated biphenyls (PCBs)—USEPA Method 8082A

The data were reviewed using guidance and quality control criteria documented in the analytical methods: *K Ply Site Remedial Investigation/Feasibility Study Work Plan Appendix B Sampling and Analysis Plan/Quality Assurance and Project Plan* (Floyd|Snider 2013), *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 and 2004), and *National Functional Guidelines for Organic Data Review* (USEPA 1999 and 2008).

Data quality review of dioxin/furan analytical results is not included in this report because these analyses were validated and reported separately by EcoChem, Inc.

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions or by multiple analytical methods, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution or analytical method. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. The Qualified Data Summary Table is included in Appendix B. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report TPH by NWTPH-Dx

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Laboratory control samples (LCS)
Extraction and analysis holding times	¹ Surrogate recoveries
Blank contamination	Reporting limits and reported results
Laboratory Sample Duplicate Relative Percent Difference (RPD)	¹ Chromatographic match to TPH standards

Note:

1 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

Appendix A presents data validation criteria tables for diesel-range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Surrogate Recoveries

For sample delivery group (SDG) 309355, the surrogate recoveries for Samples K-46-7-8, K-46-7-8-D, and K-46-10-11 were flagged as outside of normal control limits by the laboratory with no numeric percent of recovery provided. The laboratory noted that it was due to compounds in the sample matrix interfering with the quantitation of the surrogate analyte. It is with professional judgment that the diesel- and oil-range organics results be qualified "J-S" to reflect the surrogate recovery, and the interpretive qualifier to be used for database entry and project reporting is a "J" to indicate estimated concentrations.

For SDG 309413, the surrogate recovery for Sample K-48-10-11 was flagged as outside of normal control limits by the laboratory with no numeric percent of recovery provided. The laboratory noted that it was due to compounds in the sample matrix interfering with the quantitation of the surrogate analyte. It is with professional judgment that the diesel- and oil-range organics results be qualified "J-S" to reflect the surrogate recovery, and the interpretive

qualifier to be used for database entry and project reporting is a "J" to indicate estimated concentrations.

2.2.2 Chromatographic Match to Total Petroleum Hydrocarbon Standards

As part of the validation of TPH data, the detectable hydrocarbons and/or organics within the diesel and residual hydrocarbon chromatogram ranges were reviewed relative to the appropriate laboratory standard. If the hydrocarbons are not identifiable based on a poor chromatographic match with the standards, the data were qualified "MP" to reflect a poor match, and the interpretive qualifier to be used for database entry and project reporting is a "JM" to indicate estimated concentrations. Similarly, if the hydrocarbons provide a good chromatographic match with the standards, the data were qualified "MG" to reflect a good match, and no interpretive qualifier will be used for database entry or project reporting.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS percent recovery values. Precision was acceptable, as demonstrated by the Laboratory Sample Duplicate RPDs.

All data are acceptable for use as qualified. Refer to Appendix B for details.

3.0 Data Validation Report TPH by NWTPH-Gx

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	LCS
Extraction and analysis holding times	Surrogate recoveries
Blank contamination	Reporting limits and reported results
Laboratory Sample Duplicate RPD	

Appendix A presents data validation criteria tables for gasoline-range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS percent recovery values. Precision was acceptable, as demonstrated by the Laboratory Sample Duplicate RPDs.

All data, as reported by the laboratory, are acceptable for use.

4.0 Data Validation Report BTEX by USEPA Method 8021B

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	LCS
Extraction and analysis holding times	Surrogate recoveries
Blank contamination	Reporting limits and reported results
Laboratory Sample Duplicate RPD	Target analyte list

All QC requirements were met without exception, and did not require further evaluation.

4.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate and LCS percent recovery values. Precision was acceptable, as demonstrated by the Laboratory Sample Duplicate RPDs.

All data, as reported by the laboratory, are acceptable for use.

5.0 Data Validation Report Metals by USEPA Methods 200.8 and 6020A

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

5.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

5.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation LCS Extraction and analysis holding times Internal standards Blank contamination Reporting limits and reported results 1 Matrix spike (MS) and Matrix spike duplicate (MSD)

QC Requirements

Note:

1 Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

5.2.1 Matrix Spike and Matrix Spike Duplicate

For SDG 309237, the laboratory noted that the MS/MSD recoveries and RPDs for lead in soil may not be meaningful, as they were spiked at a level that was less than five times that present in the sample. The MS/MSD was performed on Sample 309114-01 at a ten times dilution with no recovery of the MS or MSD. The spike amount was 50 milligrams per kilogram (mg/kg) with an original concentration of 165 mg/kg. Per U.S. Environmental Protection Agency (USEPA) guidelines, the sample concentration should be greater than four times the spike amount to report the data unflagged when the recovery does not meet criteria. The guidelines also state that professional judgment should be used to determine if the samples are sufficiently similar to apply the flags to all samples. As the MS/MSD was performed on a sample for another client from an unknown location, it is with professional judgment that no lead results be flagged based on this MS/MSD recovery information, as sample similarity cannot be evaluated, and all other quality assurance (QA)/QC objectives for this lead analysis have been met.

5.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS, MSD, and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs.

All data, as reported by the laboratory, are acceptable for use.

6.0 Data Validation Report VOCs by USEPA 8260C and 8260C-Direct Sparge

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

6.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

6.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

² Cooler temperature and preservation	¹ MS and MSD
Extraction and analysis holding times	² Lab contamination
Blank contamination	² Internal standards
¹ Surrogate recoveries	Reporting limits and reported results
¹ LCS and laboratory control sample duplicate (LCSD)	Target analyte list

QC Requirements

Notes:

1 Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

6.2.1 Cooler Temperature and Preservation

The vinyl chloride results associated with water samples from SDG 309169were noted by the laboratory to be considered estimates due to the use of hydrochloric acid as the sample preservative. All vinyl chloride results were non-detect. It is with professional judgment that the laboratory flag be retained and the vinyl chloride results be qualified as "UJ" to indicate the reporting limit should be considered an estimate.

6.2.2 Surrogate Recoveries

For SDG 309169, the laboratory noted that the surrogate recoveries for 1,2-dichloroethane-d4 and 4-bromofluorobenzene in the USEPA Method 8260C-Direct Sparge analysis of soil were

outside of laboratory control limits high for Sample K-50-3.5-6. The only reported compound for this sample by this analysis was 1,2-dibromoethane and it was a non-detect. Per USEPA guidelines, only detected results are qualified when surrogate recoveries are greater than control limits; therefore, no qualifiers have been added to the 1,2-dibromoethane result for Sample K-50-3.5-6.

For SDG 309267, the laboratory noted that the surrogate recoveries for toulene-d8 and 4-bromofluroaobenze in the USEPA Method 8260C-Direct Sparge analysis of soil were outside of laboratory control limits high for Sample PF-6-6.7-8 due to compounds in the sample matrix interfering with the quantitation of the surrogate analytes. The only reported compound for this sample by this analysis was 1,2-dibromoethane and it was a non-detect. Per USEPA guidelines, only detected results are qualified when surrogate recoveries are greater than control limits; therefore, no qualifiers have been added to the 1,2-dibromoethane result for Sample PF-6-6.7-8.

For SDG 309267, the laboratory noted that the surrogate recovery for toluene-d8 in the USEPA Method 8260C analysis of soil was outside the laboratory control limits high for Sample K-40-10.5-12. Hexane was the only detected compound, and it was flagged estimated due to a response greater than the valid instrument calibration range requiring a dilution to obtain accurate quantification. Per USEPA guidelines, only detected results are qualified when surrogate recoveries are greater than control limits. Therefore the non-detect results for this sample will not be qualified based on the surrogate recovery information. The hexane result will be flagged "DNR" in favor of the result from the re-analysis of the sample at 100 times dilution, which had no surrogate recovery issues.

6.2.3 Laboratory Control Samples and Laboratory Control Sample Duplicates

For SDG 309169, the laboratory noted that the LCS recoveries for bromoethane, acetone, trans-1,3-dichloropropene, and 1,1,2-trichlorethane were outside control limits high for water. The recoveries for these analytes in the LCSD were within control limits. All results for these compounds were non-detect. Per USEPA guidelines, only detected results are qualified when LCS recoveries are greater than control limits; therefore, no qualifiers have been added to the reported results for these analytes.

6.2.4 Matrix Spike and Matrix Spike Duplicate

For SDG 309237, the laboratory noted that the MS/MSD recoveries and RPD for benzene may not be meaningful as they were spiked at a level less than five times that found in the original sample. The MS/MSD recoveries were within laboratory standards and the RPD was outside the laboratory control limit by 1 percent. All sample results were non-detect. Per USEPA guidelines, data are not qualified based on MS/MSD information alone. As all other QA/QC objectives for this analysis were met, it is with professional judgment that no results be qualified based on this RPD information.

For SDG 309331, the laboratory noted that the MS/MSD recoveries for naphthalene were outside of normal control limits due to sample matrix interference. The MS/MSD recoveries for hexane were flagged as potentially not meaningful as the spike level was less than five times that present in the original sample. The LCS recoveries for both analytes were within control limits. Per USEPA guidelines, data are not qualified based on MS/MSD information alone, as all

other QA/QC objectives for these analytes were met. It is with professional judgment that no naphthalene or hexane results be qualified.

For SDG 309355, the laboratory noted that the MS/MSD recoveries and RPD for hexane may not be meaningful as the analyte was spiked at a level that was less than five times that found in the original sample. The MS/MSD recoveries and RPD were within laboratory control limits; therefore, no results were qualified based on this laboratory notation.

For SDG 301255, the MS recovery of 1,2-dichloroethane was outside laboratory control limits high for the analysis of water. The MS was for the batch QC and run on Sample 310277-02 from another client. The analyte was a non-detect in the field sample. Per USEPA guidelines, data are not qualified based on MS/MSD information alone; therefore, it is with professional judgment that no qualifiers be added to the 1,2-dichlorethane results based on this MS recovery information.

6.2.5 Laboratory Contamination

For SDG 309169, the laboratory noted that the detected methylene chloride result of 5.4 micrograms per liter (μ g/L) for Sample K-98-5-15 was likely due to laboratory contamination from the use of methylene chloride in the extraction steps of UESPA Method 8270D and NWTPH-Dx in other areas of the laboratory. Methylene chloride was not reported in the method blank and had acceptable recoveries in the MS, LCS, and LCSD. It is with professional judgment that this result be flagged "J" to indicate it should be considered an estimated result due to the potential laboratory contamination.

6.2.6 Internal Standards

For SDG 309331, the laboratory noted that the internal standard failed in the USEPA Method 8260C-Direct Sparge analysis of Sample PP-23-10-11.5 due to matrix interference. They flagged the surrogate recoveries and the sample result as estimated based on this failure. 1,2-Dibromoethane was the only analyte reported and it was a non-detect. The "J" flag from the laboratory will be preserved and the result will be reported with a final qualifier of "UJ" to indicate an estimated reporting limit.

6.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, MS, MSD, LCS, and LCSD percent recovery values, and as discussed above. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LSCD RPDs, and as discussed above.

All data are acceptable for use as qualified. Refer to Appendix B for details.

7.0 Data Validation Report PAHs by USEPA Method 8270D-SIM

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

7.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

7.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

	Cooler temperature and preservation	¹ MS and MSD
	Extraction and analysis holding times	Continuing Calibrations
	Blank contamination	Reporting limits and reported results
1	Surrogate recoveries	Target analyte list
	LCS and LCSD	

QC Requirements

Note:

1 Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

7.2.1 Surrogate Recoveries

For SDG 309237, the laboratory noted that Samples K-64-10.5-11.5 and K-63-11-12 were diluted due to matrix interference and the surrogate recoveries may not be meaningful. All surrogate recoveries were still within laboratory control limits; therefore, no results have been qualified based on this notation by the laboratory.

7.2.2 Matrix Spike and Matrix Spike Duplicate

For SDG 309331, the laboratory noted that the MS/MSD recoveries and RPDs in soil for benzo(b)fluoranthene, benzo(a)pyrene, and indeno(1,2,3-cd)pyrene may not be meaningful as they were spiked at a level less than five times that present in the sample. All recoveries were within laboratory control limits; however, the RPDs for benzo(b)fluoranthene at 26 percent and benzo(a)pyrene at 28 percent were outside control limits. All LCS/LCSD recoveries and RPDs

were within control limits. Per USEPA guidelines, data are not qualified based on MS/MSD information alone. As all other QA/QC objectives for this analysis were met, it is with professional judgment that no results be qualified.

7.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, MS, MSD, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LSCD RPDs.

All data, as reported by the laboratory, are acceptable for use.

8.0 Data Validation Report SVOCs by USEPA Method 8270D

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

8.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

8.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

	Cooler temperature and preservation	1	MS and MSD
	Extraction and analysis holding times	2	Calibration standards
	Blank contamination		Reporting limits and reported results
1	Surrogate recoveries		Target analyte list
1	LCS and LCSD		

QC Requirements

Notes:

1 Quality control results are discussed below, but no data were qualified.

2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

8.2.1 Surrogate Recoveries

For SDG 309237, the laboratory noted that Sample AOPC3-10 was diluted due to matrix interference and that the surrogate recoveries may not be meaningful. The sample was first diluted 50 times with four of the six surrogates still within laboratory control limits; the remaining two surrogates were nitrobenzene-d5 from the base/neutral fraction and tribromophenol from the acid fraction. The pentachlorophenol result for the 50 times dilution had a response greater than the valid instrument calibration range, requiring a 500 times dilution to also be analyzed. For the 500 times dilution, only two of the six surrogates were within laboratory control limits. The only analyte that will be reported from this 500 times dilution is pentachlorophenol. Per USEPA guidelines, data are only qualified if two or more surrogates in the same fraction are outside laboratory control limits; therefore, no results from the 50 times dilution shall be qualified. It is with professional judgment that the pentachlorophenol results from the 500 times

dilution not be qualified due to the large dilution factor potentially interfering with recovery results.

For SDG 309243, the surrogate recovery in Sample K-39-0-4 for base/neutral fraction surrogate terphyenyl-d14 was outside laboratory control limits high. Per USEPA guidelines, data are only qualified if two or more surrogates in the same fraction are outside laboratory control limits; therefore, it is with professional judgment that no results for Sample K-39-0-4 be qualified based on this surrogate recovery information.

For SDG 309267, the laboratory noted that Sample PF-6-6.7-8 was diluted due to matrix interference and that the surrogate recoveries may not be meaningful. Four of the six surrogate recoveries were still within laboratory control limits. The remaining two surrogates were nitrobenzene-d5 from the base/neutral fraction and 2,4,6-tribromophenol from the acid fraction. Per USEPA guidelines, data are not qualified based on surrogate recovery unless two or more surrogates in the same fraction are outside laboratory control limits; therefore, no results have been qualified based on this recovery information.

For SDG 320155, the surrogate recoveries in Sample PZ-12 for the acid fraction surrogate 2,4,6-tribromophenol and the base/neutral fraction surrogate terphenyl-d14 were outside laboratory control limits high. All analytes in this sample were non-detect. Per USEPA guidelines, data are only qualified if two or more surrogates in the same fraction are outside laboratory control limits. Therefore it is with professional judgment that no results for Sample PZ-12 be qualified based on this surrogate recovery information.

8.2.2 Laboratory Control Sample and Laboratory Control Sample Duplicate

For SDG 310255, the LCS recovery and RPD for pyrene was outside laboratory control limits high, the LCSD recovery for 3-+ 4-methylphenol was outside laboratory control limits high. These recoveries indicate a potential high bias in the results; however, all field sample results for these analytes were non-detect. As all other LCS/LSCD and RPDs for the remaining analytes were within control limits, it is with professional judgment that no pyrene or 3- + 4-methylphenol results be qualified for the USEPA Method 8270D analysis of water samples.

For SDG 309243, the LCSD recovery for 4,6-dinitro-2-methylphenol was outside laboratory control limits high. All sample results for this analyte were non-detect. Per USEPA guidelines, only detected results are qualified when recoveries are outside of control limits high; therefore, no results for this analyte have been qualified.

8.2.3 Matrix Spike and Matrix Spike Duplicate

For SDG 309243, the laboratory noted that the MS/MSD recoveries for benzoic acid and the MSD recovery for hexachlorocyclopentadiene were outside laboratory control limits low. All sample results for these analytes were non-detect, and the LCS/LCSD recoveries were within laboratory control limits. The benzoic acid results have already been qualified "UJ" based on calibration verification standard failures (refer to Section 8.2.4). Per USEPA guidelines, data are not qualified based on MS/MSD recovery information alone; therefore, it is with professional judgment that no hexachlorocylcopentadiene results be qualified based on the MSD recovery information, as the MS, LCS, and LCSD recoveries were within laboratory control limits, and all other QA/QC objectives for the analyte have been met.

8.2.4 Calibration Standards

For SDGs 309169, 309237, 309243, and 309267, the laboratory noted that the calibration standard failed the acceptance criteria for benzoic acid, 2,4-dinitrophenol, and 4,6-dintrio-2-methylphneol and flagged all sample results for these analytes. All results for these analytes were non-detect. Per USEPA guidelines, all non-detect results have been flagged "UJ" due to the calibration standard failing the acceptance criteria.

8.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LSCD RPDs.

All data are acceptable for use as qualified. Refer to Appendix B for details.

9.0 Data Validation Report PCBs by USEPA Method 8082A

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated laboratory QC samples. Samples were analyzed by Friedman & Bruya. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

9.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

9.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	LCS
Extraction and analysis holding times	¹ MS and MSD
Blank contamination	Reporting limits and reported results
Surrogate recoveries	Target analyte list

QC Requirements

Note:

1 Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

9.2.1 Matrix Spike and Matrix Spike Duplicate

For SDG 309382, the laboratory noted that the MS/MSD recoveries and RPDs for Aroclor 1260 in soil may not be meaningful as the analyte was spiked at a level that was less than five times that present in the sample. The recoveries and RPD were still within laboratory control limits; therefore, no results were qualified based on this laboratory notation.

9.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the surrogate, MS, MSD, and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs.

All data, as reported by the laboratory, are acceptable for use.

10.0 References

- Floyd|Snider. 2013. *K Ply Site Remedial Investigation/Feasibility Study Work Plan Appendix B Sampling and Analysis Plan/Quality Assurance and Project Plan.* Prepared for the Port of Port Angeles. September.
- U.S. Environmental Protection Agency (USEPA), 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P. EPA540/R-99/008. October.
- ———. 2004. USEPA National Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-45, EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation (OSRTI), Washington, D.C. October.
- ———. 2008. USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review. EPA-540/R-99/008. October.

K Ply Site September 2013 Soil and Groundwater Sampling Event Port Angeles, Washington

Data Validation Report

Table

DRAFT

				TF	PHs	BTEX	Metals	VOCs		PAHs	SVOCs	PCBs
SDG	Sample ID	Lab ID	Matrix	NWTPH-Dx	NWTPH-Gx	USEPA 8021B	USEPA 6010A	USEPA 8260C	USEPA 8260C- Direct Sparge	USEPA 8270D-SIM	USEPA 8270D	USEPA 8082A
FB309169	K-61-11-12	309169-01	Soil	Х								
FB309169	K-59-11-11.5	309169-02	Soil	X						Х		
FB309169	K-57-11-11.5	309169-03	Soil	Х								
FB309169	K-55-10.5-11	309169-04	Soil	Х	Х	Х						
FB309169	K-56-10-10.5	309169-05	Soil	Х	Х	Х						
FB309169	K-52-10.5-11	309169-06	Soil	Х	Х	Х						
FB309169	K-99-10.5-11.5	309169-07	Soil	Х	Х	Х	Х	Х			Х	
FB309169	K-99-6.5-16.5	309169-08	Water	Х	Х	Х		Х				
FB309169	K-98-10.5-11.5	309169-09	Soil	Х	Х	Х	Х	Х			Х	
FB309169	K-98-5-15	309169-10	Water	Х	Х	Х		X				
FB309169	K-50-3.5-6	309169-11	Soil	Х	Х	Х		Х	Х			
FB309169	K-66-3.5-5.5	309169-12	Soil	Х	Х	Х						
FB309169	K-66-11.5-15.5	309169-13	Soil	Х	Х	Х						
FB309169	K-65-9.5-11.5	309169-14	Soil	Х	Х	Х						
FB309169	KT-12-3-3.5	309169-15	Soil	Х			X				Х	
FB309169	KT-12-8.5-9	309169-16	Soil	Х			X				Х	
FB309237	KT-11-1-1.5	309237-01	Soil	Х	Х	Х	X					
FB309237	K-64-10.5-11.5	309237-02	Soil	X	Х	Х	X			Х		
FB309237	K-63-11-12	309237-03	Soil	Х	Х	Х		X		Х		Х
FB309237	P7-06A-3-4	309237-04	Soil	Х	Х	Х	X	X				
FB309237	KT-20-10.5-11	309237-05	Soil	X	Х	Х		X				
FB309237	KT-10-2-3	309237-06	Soil	Х	Х	Х	Х					
FB309237	K-11-1.5-2.5	309237-07	Soil		Х	Х	X	X				
FB309237	K-12-1-2	309237-08	Soil		Х	Х						
FB309237	K-13-3-4	309237-09	Soil		Х	Х						
FB309237	K-13-10-11	309237-10	Soil		Х	Х						
FB309237	K-14-9.5-10.5	309237-11	Soil		Х	Х						
FB309237	K-15-9.5-10.5	309237-12	Soil		Х	Х						
FB309237	K-19-8.5-10	309237-13	Soil		Х	Х						
FB309237	K-20-3-4	309237-14	Soil		Х	Х						
FB309237	K-21-3.8-5.2	309237-15	Soil		Х	Х						
FB309237	K-33-3-4	309237-16	Soil		Х	Х		X				

				TP	'Hs	BTEX	Metals	VOCs		PAHs	SVOCs	PCBs
SDG	Sample ID	Lab ID	Matrix	NWTPH-Dx	NWTPH-Gx	USEPA 8021B	USEPA 6010A	USEPA 8260C	USEPA 8260C- Direct Sparge	USEPA 8270D-SIM	USEPA 8270D	USEPA 8082A
FB309237	SS-1	309237-17	Soil			00218		n/Furan - Outs			02100	0002/1
FB309237	SS-2	309237-18	Soil					n/Furan - Outs				
FB309237	SS-3	309237-19	Soil					n/Furan - Outs				
FB309237	AOPC3-10	309237-20	Soil								Х	
FB309237	AOPC3-11	309237-21	Soil		Х	Х					X	
FB309237	K-35-3-4	309237-22	Soil		Х	Х						
FB309237	K-34-3-4	309237-23	Soil		Х	Х			Х			
FB309237	K-35-9-10	309237-24	Soil		Х	Х						
FB309237	K-36-3-4	309237-25	Soil		Х	Х						
FB309237	K-36-9-10	309237-26	Soil		Х	Х						
FB309237	K-36-10-11	309237-27	Soil		Х	Х						
FB398243	K-39-9-10	309243-01	Soil	Х	Х	Х					Х	
FB398243	K-39-0-4	309243-02	Soil								Х	
FB398243	K-29-8.5-9.5	309243-03	Soil	Х	Х	Х					Х	
FB398243	K-37-8.5-9.5	309243-04	Soil								Х	
FB398243	KT-1-W-4-4.2	309243-05	Soil	Х	Х	Х						
FB398243	K-94-10-11	309243-06	Soil	Х	Х	Х						
FB398243	Pipeline 8-East	309243-07	Water	Х		Х						
FB398243	K-90-14-15	309243-08	Soil	Х	Х	Х						
FB309267	KT-21-0.5-1.5	309267-01	Soil		Х	Х						
FB309267	K-40-7-8	309267-02	Soil		Х	Х						
FB309267	K-40-10.5-12	309267-03	Soil		Х	Х	Х		Х			
FB309267	K-100-11-15.5	309267-04	Soil	Х	Х	Х	Х			Х		
FB309267	K96-10.5-11.5	309267-05	Soil	Х	Х	Х						
FB309267	K-101-13.5-15	309267-06	Soil	Х	Х	Х	Х			Х		
FB309267	K-90-11-16	309267-07	Water	Х	Х	Х						
FB309267	K-95-5.5-7	309267-08	Soil	Х	Х	Х						
FB309267	K-97-5.5-7	309267-09	Soil	Х	Х	Х						
FB309267	PF-1-7-8	309267-10	Soil	Х	Х	Х	Х		Х		Х	
FB309267	PF-2-7-8	309267-11	Soil	Х	Х	Х						
FB309267	PF-5-7-8	309267-12	Soil	Х	Х	Х						
FB309267	PF-6-6.7-8	309267-13	Soil	Х	Х	Х	Х		Х		Х	

				TPHs		BTEX	Metals	VOCs		PAHs	SVOCs	PCBs
SDG	Sample ID	Lab ID	Matrix	NWTPH-Dx	NWTPH-Gx	USEPA 8021B	USEPA 6010A	USEPA 8260C	USEPA 8260C- Direct Sparge	USEPA 8270D-SIM	USEPA 8270D	USEPA 8082A
FB309267	PF-6-3.5-8.5	309267-14	Water	X	Х	Х						
FB309267	PF-5-4-9	309267-15	Water	X	Х	Х						
FB309267	PF-2-4-9	309267-16	Water	X	Х	Х						
FB309267	PF-1-4-9	309267-17	Water	Х	Х	Х						
FB309267	PF-8-7-8	309267-18	Soil	X	Х	Х						
FB309267	PF-8-7-8-D	309267-19	Soil	X	Х	Х						
FB309267	PF-8-3-4	309267-20	Soil	X	Х	Х						
FB309267	PF-8-5-10	309267-21	Water	Х	Х	Х						
FB309267	PF-7-3.5-6.5	309267-22	Soil	Х	Х	Х						
FB309267	PF-7-7-8	309267-23	Soil	Х	Х	Х						
FB309267	PF-7-4-9	309267-24	Water	Х	Х	Х						
FB309331	PF-3-7-8	309331-01	Soil	Х	Х	Х						
FB309331	PF-3-4-9	309331-02	Water	Х	Х	Х						
FB309331	PF-4-6-8	309331-03	Soil	Х	Х	Х						
FB309331	PF-4-6-8-D	309331-04	Soil	Х	Х	Х						
FB309331	PF-4-5-10	309331-05	GW	Х	Х	Х						
FB309331	PF-9-7-8	309331-06	Water	Х	Х	Х						
FB309331	PF-9-4-9	309331-07	GW	Х	Х	Х						
FB309331	PP-23-10-11.5	309331-08	Soil	Х	Х	Х	Х	Х	Х	Х		
FB309331	K-45-9-11	309331-09	Soil	Х	Х	Х				Archived		
FB309331	K-45-9-11-D	309331-10	Soil	Х	X	Х				Archived		
FB309331	K-28-9.5-11.5	309331-11	Soil	Х	Х	Х						
FB309331	TB-091813	309331-12	QC Water			Х						
FB309355	K-27-9.5-11.5	309355-01	Soil	Х	X							
FB309355	K-26-9.8-10.3	309355-02	Soil	Х	Х							
FB309355	TB-091913	309355-03	QC Water			Х						
FB309355	K-46-7-8	309355-04	Soil	Х	Х							
FB309355	K-46-7-8-D	309355-05	Soil	Х	X							
FB309355	K-46-10-11	309355-06	Soil	Х	X		Х	Х		Х		
FB309382	TB-091913-B	309382-01	QC Water			Х						
FB309382	K-200-8-10	309382-02	Soil	Х	X	Х						
FB309382	K-201-10-11	309382-03	Soil	Х	Х	Х						

				TF	°Hs	BTEX	Metals	VC)Cs	PAHs	SVOCs	PCBs
SDG	Sample ID	Lab ID	Matrix	NWTPH-Dx	NWTPH-Gx	USEPA 8021B	USEPA 6010A	USEPA 8260C	USEPA 8260C- Direct Sparge	USEPA 8270D-SIM	USEPA 8270D	USEPA 8082A
FB309382	K-202-10-11	309382-04	Soil	Х	Х	Х						
FB309382	K-202-10-11-D	309382-05	Soil	X	Х	Х						
FB309382	K-203-11-12	309382-06	Soil	Х	Х	Х						
FB309382	K-200-7-12	309382-07	Water	Х	Х	Х						
FB309382	K-201-10-15	309382-08	Water	Х	Х	Х						
FB309382	K-202-10-15	309382-09	Water	X	Х	Х						
FB309382	K-203-10-15	309382-10	Water	Х	Х	Х						
FB309382	SS-4-0-0.25	309382-11	Soil				Dioxa	n/Furan - Outs	ide DV			
FB309382	SS-5-0-0.25	309382-12	Soil				Dioxa	n/Furan - Outs	ide DV			
FB309382	SS-6-0-0.25	309382-13	Soil				Dioxa	n/Furan - Outs	ide DV			
FB309382	K-91-10-12	309382-14	Soil	Х	Х	Х	Х					
FB309382	K-91-10-12-D	309382-15	Soil	Х	Х	Х	Х					
FB309382	K-91-8.5-13.5	309382-16	Water	Х	Х	Х						
FB309382	K-62-7.5-8	309382-17	Soil	Х	Х	Х	Х					
FB309382	K-92-8.5-13.5	309382-18	Water	Х	Х	Х						
FB309382	K-2-0-0.5	309382-19	Soil									Х
FB309382	K-91-10-12	309382-14	Soil	Х	Х	Х	Х					
FB309382	K-2-1.5-2	309382-20	Soil					Archived				
FB309382	K-23-10-10.5	309382-21	Soil	Х	Х	Х						
FB309382	K-42-11.5-12	309382-22	Soil	Х	Х	Х						
FB309382	K-24-14-15	309382-23	Soil	Х	Х	Х						
FB309382	K-24-14-15-D	309382-24	Soil	Х	Х	Х						
FB309382	K18-14-15.5	309382-25	Soil	Х	X	Х						
FB309382	TB-092013	309382-26	QC Water			Х						
FB309413	K-16-15.5-16.5	309413-01	Soil	Х	X	Х						
FB309413	K-17-16.8-17.8	309413-02	Soil	Х	X	Х						
FB309413	K-17-16.8-17.8-D	309413-03	Soil	Х	X	Х						
FB309413	K-25-7-8	309413-04	Soil	Х	X	Х						
FB309413	K-47-7-8	309413-05	Soil	Х	X	Х						
FB309413	K-47-7-8-D	309413-06	Soil	Х	X	Х						
FB309413	K-48-10-11	309413-07	Soil	Х	X	Х						
FB309413	K-49-10-11	309413-08	Soil	X	Х	Х						

				TPHs	PHs	BTEX	Metals V		DCs PAHs		SVOCs	PCBs
SDG	Sample ID	Lab ID	Matrix	NWTPH-Dx	NWTPH-Gx	USEPA 8021B	USEPA 6010A	USEPA 8260C	USEPA 8260C- Direct Sparge	USEPA 8270D-SIM	USEPA 8270D	USEPA 8082A
FB309413	K-43-10-11	309413-09	Soil	Х	Х	Х						
FB309413	K-44-15-16	309413-10	Soil	Х	Х	Х						
FB309413	K-09-15-16	309413-11	Soil	Х	Х	Х						
FB309413	K-08-11-12	309413-12	Soil	Х	Х	Х						
FB309413	K-08-11-12-D	309413-13	Soil	Х	Х	Х						
FB309413	RB-092313	309413-14	QC Water	Х	Х	Х						
FB309413	TB-092313	309413-15	QC Water			Х						

Abbreviations:

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

DV Data validation

PAH Polycyclic aromatic hydrocarbon

PCB Polychlorinated biphenyl

QC Quality control

SDG Sample delivery group

SVOC Semi volatile organic compound

TPH Total petroleum hydrocarbon

VOC Volatile organic compound

K Ply Site September 2013 Soil and Groundwater Sampling Event Port Angeles, Washington

Data Validation Report

Appendix A Data Qualifier Definitions and Criteria Tables

DRAFT

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported
	sample quantitation limit.

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%- 49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

Floyd|Snider Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C ± 2°	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	Water: J/UJ if ext. > 7 and < 21 days J/R if ext > 21 days (Floyd Snider PJ) Solids/Wastes: J/UJ if ext. > 14 and < 42 days J/R if ext. > 42 days (Floyd Snider PJ) J/UJ if analysis >40 days
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF <0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)

Validation QC Element	Acceptance Criteria	Action
Method Blank (continued)	No TICs present	RTICs using 10X rule
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% Floyd Snider PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS CLP low conc. H2O only	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J /R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ associated compounds in all samples
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J if %R > UCL J/UJ if %R < LCL J/R if %R < 10%
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)

Validation QC Element	Acceptance Criteria	Action
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Abbreviation:

PJ Professional judgment

Floyd|Snider Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range and Gasoline Range (Based on USEPA National Functional Guidelines as applied to criteria in NWTPH-Dx and NWTPH-Gx, June 1997, Ecology & Oregon DEQ)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature & Preservation	4°C± 2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C
Holding Time	Ext. Waters: 14 days preserved 7 days unpreserved Ext. Solids: 14 Days Analysis: 40 days from extraction	J/UJ if hold times exceeded J/R if exceeded > 3X (Floyd Snider PJ)
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: R2 >0.990 If used, RSD of response factors <20%	Narrate if fewer than 5 calibration levels or if %R >15% J/UJ if R2 <0.990 J/UJ if %RSD > 20%
Mid-range Calibration Check Std.	Analyzed before and after each analysis shift & every 20 samples. Recovery range 85% to 115%	Narrate if frequency not met. J/UJ if %R < 85% J if %R >115%
Method Blank	At least one per batch (<10 samples)	U (at the RL) if sample result is < RL & < 5X blank result.
	Method Blank No results >RL	U (at reported sample value) if sample result is > RL and < 5X blank result
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J if both %R > upper control limit (UCL) J/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked. Use PJ if only one %R outlier
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (<10 samples) RPD < lab control limit	J if RPD > lab control limits

Validation QC Element	Acceptance Criteria	Action
LCS (not required by method)	%R within lab control limits	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% (Floyd Snider PJ)
Surrogates	2-fluorobiphenyl, p-terphenyl, o-terphenyl, and/or pentacosane added to all samples (inc. QC samples). %R = 50-150%	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits. (Floyd Snider PJ)
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J
Field Duplicates	Use project control limits, if stated in QAPP Floyd Snider default: water: RPD < 35% solids: RPD < 50%	Narrate (Floyd Snider PJ to qualify)
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" (or client requested qualifier) all results that should not be reported

Abbreviation:

PJ Professional judgment

K Ply Site September 2013 Soil and Groundwater Sampling Event Port Angeles, Washington

Data Validation Report

Appendix B Qualified Data Summary Table

DRAFT

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309169	K-99-10.5-11.5	309169-07	EPA 8260C	Benzene	1	0.03	mg/kg	U	DNR	DNR
FB309169	K-99-10.5-11.5	309169-07	EPA 8260C	Ethylbenzene	1	0.05	mg/kg	U	DNR	DNR
FB309169	K-99-10.5-11.5	309169-07	EPA 8260C	Toluene	1	0.05	mg/kg	U	DNR	DNR
FB309169	K-99-6.5-16.5	309169-08	EPA 8260C	Benzene	1	0.35	µg/L	U	DNR	DNR
FB309169	K-99-6.5-16.5	309169-08	EPA 8260C	Ethylbenzene	1	1	µg/L	U	DNR	DNR
FB309169	K-99-6.5-16.5	309169-08	EPA 8260C	Toluene	1	1	µg/L	U	DNR	DNR
FB309169	K-99-6.5-16.5	309169-08	EPA 8260C	Vinyl chloride	1	0.2	µg/L	U pr	J	UJ
FB309169	K-98-10.5-11.5	309169-09	EPA 8260C	Benzene	1	0.03	mg/kg	U	DNR	DNR
FB309169	K-98-10.5-11.5	309169-09	EPA 8260C	Ethylbenzene	1	0.05	mg/kg	U	DNR	DNR
FB309169	K-98-10.5-11.5	309169-09	EPA 8260C	Naphthalene	1	0.05	mg/kg	U	DNR	DNR
FB309169	K-98-10.5-11.5	309169-09	EPA 8260C	Toluene	1	0.05	mg/kg	U	DNR	DNR
FB309169	K-98-5-15	309169-10	EPA 8260C	Benzene	1	0.35	µg/L	U	DNR	DNR
FB309169	K-98-5-15	309169-10	EPA 8260C	Ethylbenzene	1	1	µg/L	U	DNR	DNR
FB309169	K-98-5-15	309169-10	EPA 8260C	Methylene chloride	1	5.4	µg/L	lc	J	J
FB309169	K-98-5-15	309169-10	EPA 8260C	Toluene	1	1	µg/L	U	DNR	DNR
FB309169	K-98-5-15	309169-10	EPA 8260C	Vinyl chloride	1	0.2	µg/L	U pr	J	UJ
FB309169	K-99-10.5-11.5	309169-07	EPA 8270D	Naphthalene	10	0.3	mg/kg	U	DNR	DNR
FB309169	K-99-10.5-11.5	309169-07	EPA 8270D	2,4-Dinitrophenol	10	9	mg/kg	U ca	J	UJ
FB309169	K-99-10.5-11.5	309169-07	EPA 8270D	4,6-Dinitro-o-cresol	10	9	mg/kg	U ca	J	UJ
FB309169	K-99-10.5-11.5	309169-07	EPA 8270D	Benzoic acid	10	15	mg/kg	U ca	J	UJ
FB309169	K-98-10.5-11.5	309169-09	EPA 8270D	2,4-Dinitrophenol	1	0.9	mg/kg	U	J	UJ
FB309169	K-98-10.5-11.5	309169-09	EPA 8270D	4,6-Dinitro-o-cresol	1	0.9	mg/kg	U	J	UJ
FB309169	K-98-10.5-11.5	309169-09	EPA 8270D	Benzoic acid	1	1.5	mg/kg	U	J	UJ
FB309169	KT-12-3-3.5	309169-15	EPA 8270D	2,4-Dinitrophenol	250	220	mg/kg	U	J	UJ
FB309169	KT-12-3-3.5	309169-15	EPA 8270D	4,6-Dinitro-o-cresol	250	220	mg/kg	U	J	UJ
FB309169	KT-12-3-3.5	309169-15	EPA 8270D	Benzoic acid	250	370	mg/kg	U	J	UJ
FB309169	KT-12-8.5-9	309169-16	EPA 8270D	2,4-Dinitrophenol	1	0.9	mg/kg	U	J	UJ
FB309169	KT-12-8.5-9	309169-16	EPA 8270D	4,6-Dinitro-o-cresol	1	0.9	mg/kg	U	J	UJ
FB309169	KT-12-8.5-9	309169-16	EPA 8270D	Benzoic acid	1	1.5	mg/kg	U	J	UJ
FB309169	K-55-10.5-11	309169-04	NWTPH-Dx SG	Diesel-range organics	0.5	1500	mg/kg	x1	MP	JM
FB309169	K-56-10-10.5	309169-05	NWTPH-Dx SG	Diesel-range organics	0.5	990	mg/kg	x1	MP	JM
FB309169	K-99-10.5-11.5	309169-07	NWTPH-Dx SG	Oil-range organics	0.5	240	mg/kg		MG	
FB309169	K-99-10.5-11.5	309169-07	NWTPH-Dx SG	Diesel-range organics	0.5	35	mg/kg	x2	MP	JM
FB309169	K-50-3.5-6	309169-11	NWTPH-Dx SG	Oil-range organics	0.5	5400	mg/kg		MG	

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309169	K-50-3.5-6	309169-11	NWTPH-Dx SG	Diesel-range organics	0.5	5200	mg/kg	x3	MP	JM
FB309169	K-66-3.5-5.5	309169-12	NWTPH-Dx SG	Oil-range organics	0.5	6800	mg/kg		MG	
FB309169	K-66-3.5-5.5	309169-12	NWTPH-Dx SG	Diesel-range organics	0.5	4200	mg/kg	x3	MP	JM
FB309169	K-66-11.5-15.5	309169-13	NWTPH-Dx SG	Oil-range organics	0.5	310	mg/kg		MG	
FB309169	K-66-11.5-15.5	309169-13	NWTPH-Dx SG	Diesel-range organics	0.5	220	mg/kg	x3	MP	JM
FB309169	K-65-9.5-11.5	309169-14	NWTPH-Dx SG	Oil-range organics	5	16000	mg/kg		MG	
FB309169	K-65-9.5-11.5	309169-14	NWTPH-Dx SG	Diesel-range organics	5	3300	mg/kg	x3	MP	JM
FB309169	KT-12-8.5-9	309169-16	NWTPH-Dx SG	Diesel-range organics	0.5	34	mg/kg	x2	MP	JM
FB309237	K-63-11-12	309237-03	EPA 8260C	Benzene	1	0.6	mg/kg		DNR	DNR
FB309237	K-63-11-12	309237-03	EPA 8260C	Ethylbenzene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-63-11-12	309237-03	EPA 8260C	Toluene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-11-1.5-2.5	309237-07	EPA 8260C	1,2-Dibromoethane	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-11-1.5-2.5	309237-07	EPA 8260C	Benzene	1	0.03	mg/kg	U	DNR	DNR
FB309237	K-11-1.5-2.5	309237-07	EPA 8260C	Ethylbenzene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-11-1.5-2.5	309237-07	EPA 8260C	Toluene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-33-3-4	309237-16	EPA 8260C	Benzene	1	0.03	mg/kg	U	DNR	DNR
FB309237	K-33-3-4	309237-16	EPA 8260C	Ethylbenzene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-33-3-4	309237-16	EPA 8260C	Toluene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-34-3-4	309237-23	EPA 8260C	Benzene	1	0.03	mg/kg	U	DNR	DNR
FB309237	K-34-3-4	309237-23	EPA 8260C	Ethylbenzene	1	0.05	mg/kg	U	DNR	DNR
FB309237	K-34-3-4	309237-23	EPA 8260C	Toluene	1	0.05	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	bis(2-Ethylhexyl)phthalate	50	50	mg/kg		DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Pentachlorophenol	50	180	mg/kg	ve	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4-Dinitrophenol	50	9	mg/kg	U ca	J	UJ
FB309237	AOPC3-10	309237-20	EPA 8270D	4,6-Dinitro-o-cresol	50	9	mg/kg	U ca	J	UJ
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzoic acid	50	15	mg/kg	U ca	J	UJ
FB309237	AOPC3-10	309237-20	EPA 8270D	1,2,4-Trichlorobenzene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	1,2-Dichlorobenzene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	1,3-Dichlorobenzene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	1,4-Dichlorobenzene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4,5-Trichlorophenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4,6-Trichlorophenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4-Dichlorophenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4-Dimethylphenol	500	30	mg/kg	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4-Dinitrophenol	500	90	mg/kg	U ca	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,4-Dinitrotoluene	500	15	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2,6-Dinitrotoluene	500	15	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2-Chloronaphthalene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2-Chlorophenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2-Methylnaphthalene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2-Methylphenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2-Nitroaniline	500	15	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	2-Nitrophenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	3- & 4-Methylphenol	500	60	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	3-Nitroaniline	500	300	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4,6-Dinitro-o-cresol	500	90	mg/kg	U ca	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4-Bromophenyl phenyl ether	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4-Chloro-3-methylphenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4-Chloroaniline	500	300	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4-Chlorophenyl phenyl ether	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4-Nitroaniline	500	300	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	4-Nitrophenol	500	90	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Acenaphthene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Acenaphthylene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Anthracene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzo(a)anthracene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzo(a)pyrene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzo(b)fluoranthene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzo(g,h,i)perylene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzo(k)fluoranthene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzoic acid	500	150	mg/kg	U ca	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Benzyl alcohol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	bis(2-Chloroethoxy)methane	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	bis(2-Chloroethyl)ether	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	bis(2-Chloroisopropyl)ether	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Butyl benzyl phthalate	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Carbazole	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Chrysene	500	3	mg/kg	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309237	AOPC3-10	309237-20	EPA 8270D	Di-n-butyl phthalate	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Di-n-octyl phthalate	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Dibenzo(a,h)anthracene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Dibenzofuran	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Diethylphthalate	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Dimethyl phthalate	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Fluoranthene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Fluorene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Hexachlorobenzene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Hexachlorobutadiene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Hexachlorocyclopentadiene	500	9	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Hexachloroethane	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Indeno(1,2,3-cd)pyrene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Isophorone	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	N-Nitroso-di-n-propylamine	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	N-Nitrosodiphenylamine	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Naphthalene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Nitrobenzene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Phenanthrene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Phenol	500	30	mg/kg	U	DNR	DNR
FB309237	AOPC3-10	309237-20	EPA 8270D	Pyrene	500	3	mg/kg	U	DNR	DNR
FB309237	AOPC3-11	309237-21	EPA 8270D	2,4-Dinitrophenol	1	0.18	mg/kg	U ca	J	UJ
FB309237	AOPC3-11	309237-21	EPA 8270D	4,6-Dinitro-o-cresol	1	0.18	mg/kg	U ca	J	UJ
FB309237	AOPC3-11	309237-21	EPA 8270D	Benzoic acid	1	0.3	mg/kg	U ca	J	UJ
FB309237	K-63-11-12	309237-03	EPA 8270D-SIM	Naphthalene	50	0.1	mg/kg	U	DNR	DNR
FB309237	KT-11-1-1.5	309237-01	NWTPH-Dx SG	Oil-range organics	0.5	2600	mg/kg		MG	
FB309237	KT-11-1-1.5	309237-01	NWTPH-Dx SG	Diesel-range organics	0.5	200	mg/kg	x2	MP	JM
FB309237	K-64-10.5-11.5	309237-02	NWTPH-Dx SG	Oil-range organics	5	23000	mg/kg		MG	
FB309237	K-64-10.5-11.5	309237-02	NWTPH-Dx SG	Diesel-range organics	5	3500	mg/kg	x3	MP	JM
FB309237	K-63-11-12	309237-03	NWTPH-Dx SG	Oil-range organics	5	32000	mg/kg		MG	
FB309237	K-63-11-12	309237-03	NWTPH-Dx SG	Diesel-range organics	5	3300	mg/kg	x2	MP	JM
FB309237	PZ-06A-3-4	309237-04	NWTPH-Dx SG	Diesel-range organics	0.5	140	mg/kg	x1	MP	JM
FB309243	K-39-9-10	309243-01	EPA 8270D	2,4-Dinitrophenol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-39-9-10	309243-01	EPA 8270D	4,6-Dinitro-o-cresol	1	0.18	mg/kg	U ca	J	UJ

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309243	K-39-9-10	309243-01	EPA 8270D	Benzoic acid	1	0.3	mg/kg	U ca	J	UJ
FB309243	K-39-0-4	309243-02	EPA 8270D	2,4-Dinitrophenol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-39-0-4	309243-02	EPA 8270D	4,6-Dinitro-o-cresol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-39-0-4	309243-02	EPA 8270D	Benzoic acid	1	0.3	mg/kg	U ca	J	UJ
FB309243	K-29-8.5-9.5	309243-03	EPA 8270D	2,4-Dinitrophenol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-29-8.5-9.5	309243-03	EPA 8270D	4,6-Dinitro-o-cresol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-29-8.5-9.5	309243-03	EPA 8270D	Benzoic acid	1	0.3	mg/kg	U ca	J	UJ
FB309243	K-37-8.5-9.5	309243-04	EPA 8270D	2,4-Dinitrophenol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-37-8.5-9.5	309243-04	EPA 8270D	4,6-Dinitro-o-cresol	1	0.18	mg/kg	U ca	J	UJ
FB309243	K-37-8.5-9.5	309243-04	EPA 8270D	Benzoic acid	1	0.3	mg/kg	U ca	J	UJ
FB309243	K-39-9-10	309243-01	NWTPH-Dx SG	Diesel-range organics	0.5	48	mg/kg	x2	MP	JM
FB309267	K-40-10.5-12	309267-03	EPA 8260C	n-Hexane	1	110	mg/kg	ve	DNR	DNR
FB309267	K-40-10.5-12	309267-03	EPA 8260C	1,2-Dibromoethane	100	5	mg/kg	U	DNR	DNR
FB309267	K-40-10.5-12	309267-03	EPA 8260C	1,2-Dichloroethane	100	5	mg/kg	U	DNR	DNR
FB309267	K-40-10.5-12	309267-03	EPA 8260C	Methyl-tert-butyl ether	100	5	mg/kg	U	DNR	DNR
FB309267	PF-1-7-8	309267-10	EPA 8270D	2,4-Dinitrophenol	1	0.18	mg/kg	U ca	J	UJ
FB309267	PF-1-7-8	309267-10	EPA 8270D	4,6-Dinitro-o-cresol	1	0.18	mg/kg	U ca	J	UJ
FB309267	PF-1-7-8	309267-10	EPA 8270D	Benzoic acid	1	0.3	mg/kg	U ca	J	UJ
FB309267	PF-6-6.7-8	309267-13	EPA 8270D	2,4-Dinitrophenol	50	9	mg/kg	U ca	J	UJ
FB309267	PF-6-6.7-8	309267-13	EPA 8270D	4,6-Dinitro-o-cresol	50	9	mg/kg	U ca	J	UJ
FB309267	PF-6-6.7-8	309267-13	EPA 8270D	Benzoic acid	50	15	mg/kg	U ca	J	UJ
FB309267	K-96-10.5-11.5	309267-05	NWTPH-Dx SG	Oil-range organics	0.5	320	mg/kg		MG	
FB309267	K-96-10.5-11.5	309267-05	NWTPH-Dx SG	Diesel-range organics	0.5	55	mg/kg	x2	MP	JM
FB309267	K-101-13.5-15	309267-06	NWTPH-Dx SG	Oil-range organics	0.5	2800	mg/kg		MG	
FB309267	K-101-13.5-15	309267-06	NWTPH-Dx SG	Diesel-range	0.5	250	mg/kg	x2	MP	JM
FB309267	PF-1-7-8	309267-10	NWTPH-Dx SG	Diesel-range	0.5	160	mg/kg		MG	
FB309267	PF-2-7-8	309267-11	NWTPH-Dx SG	Diesel-range	0.5	1000	mg/kg		MG	
FB309267	PF-5-7-8	309267-12	NWTPH-Dx SG	Diesel-range	0.5	350	mg/kg		MG	
FB309267	PF-6-6.7-8	309267-13	NWTPH-Dx SG	Diesel-range	0.5	910	mg/kg		MG	
FB309267	PF-6-3.5-8.5	309267-14	NWTPH-Dx SG	Diesel-range	1	1200	µg/L		MP	
FB309267	PF-2-4-9	309267-16	NWTPH-Dx SG	Diesel-range	1	60	µg/L		MP	
FB309267	PF-1-4-9	309267-17	NWTPH-Dx SG	Diesel-range	1	130	µg/L		MP	
FB309267	PF-8-7-8	309267-18	NWTPH-Dx SG	Diesel-range	0.5	8600	mg/kg		MG	
FB309267	PF-8-7-8	309267-18	NWTPH-Dx SG	Oil-range organics	0.5	140	mg/kg	x4	MP	JM

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309267	PF-8-7-8-D	309267-19	NWTPH-Dx SG	Diesel-range organics	0.5	12000	mg/kg		MG	
FB309267	PF-8-7-8-D	309267-19	NWTPH-Dx SG	Oil-range organics	0.5	180	mg/kg	x4	MP	JM
FB309267	PF-8-3-4	309267-20	NWTPH-Dx SG	Diesel-range	0.5	39	mg/kg		MP	
FB309267	PF-8-5-10	309267-21	NWTPH-Dx SG	Diesel-range	1	2400	µg/L		MP	
FB309267	PF-7-3.5-6.5	309267-22	NWTPH-Dx SG	Diesel-range	0.5	3400	mg/kg		MG	
FB309267	PF-7-3.5-6.5	309267-22	NWTPH-Dx SG	Oil-range organics	0.5	430	mg/kg		MP	JM
FB309267	PF-7-7-8	309267-23	NWTPH-Dx SG	Diesel-range organics	0.5	1200	mg/kg		MG	
FB309267	PF-7-7-8	309267-23	NWTPH-Dx SG	Oil-range organics	0.5	180	mg/kg		MP	JM
FB309267	PF-7-4-9	309267-24	NWTPH-Dx SG	Diesel-range	1	2100	µg/L		MP	
FB309331	PF-3-7-8	309331-01	NWTPH-Dx SG	Diesel-range	0.5	300	mg/kg		MG	
FB309331	PF-3-4-9	309331-02	NWTPH-Dx SG	Diesel-range	1	2300	µg/L		MP	
FB309331	PF-4-6-8	309331-03	NWTPH-Dx SG	Diesel-range	0.5	34	mg/kg		MP	
FB309331	PF-4-6-8-D	309331-04	NWTPH-Dx SG	Diesel-range	0.5	38	mg/kg		MP	
FB309331	PF-4-5-10	309331-05	NWTPH-Dx SG	Diesel-range	1	73	µg/L		MP	
FB309331	PP-23-10-11.5	309331-08	EPA 8260C-DS	1,2-Dibromoethane	1	0.005	mg/kg	UJ	J	UJ
FB309331	PP-23-10-11.5	309331-08	NWTPH-Dx SG	Diesel-range organics	0.5	4500	mg/kg		MG	
FB309331	PP-23-10-11.5	309331-08	NWTPH-Dx SG	Oil-range organics	0.5	180	mg/kg	x4	MP	JM
FB309331	K-28-9.5-11.5	309331-11	NWTPH-Dx SG	Diesel-range organics	0.5	1100	mg/kg	x1	MP	JM
FB309355	K-46-10-11	309355-06	EPA 8260C	Naphthalene	1	44	mg/kg	ve	DNR	DNR
FB309355	K-46-10-11	309355-06	EPA 8260C	1,2-Dibromoethane	10	0.5	mg/kg	U	DNR	DNR
FB309355	K-46-10-11	309355-06	EPA 8260C	1,2-Dichloroethane	10	0.5	mg/kg	U	DNR	DNR
FB309355	K-46-10-11	309355-06	EPA 8260C	Methyl-Tert-Butyl Ether	10	0.5	mg/kg	U	DNR	DNR
FB309355	K-46-10-11	309355-06	EPA 8260C	n-Hexane	10	6.7	mg/kg		DNR	DNR
FB309355	K-27-9.5-11.5	309355-01	NWTPH-Dx SG	Diesel-range organics	0.5	3400	mg/kg		MP	JM
FB309355	K-26-9.8-10.3	309355-02	NWTPH-Dx SG	Diesel-range	0.5	6300	mg/kg		MG	
FB309355	K-46-7-8	309355-04	NWTPH-Dx SG	Diesel-range	0.5	8800	mg/kg		MG, J-S	J
FB309355	K-46-7-8	309355-04	NWTPH-Dx SG	Oil-range organics	0.5	120	mg/kg	U	J-S	UJ
FB309355	K-46-7-8-D	309355-05	NWTPH-Dx SG	Diesel-range organics	0.5	11000	mg/kg		MG, J-S	J
FB309355	K-46-7-8-D	309355-05	NWTPH-Dx SG	Oil-range organics	0.5	120	mg/kg	U	J-S	UJ
FB309355	K-46-10-11	309355-06	NWTPH-Dx SG	Diesel-range organics	0.5	17000	mg/kg		MG, J-S	J
FB309355	K-46-10-11	309355-06	NWTPH-Dx SG	Oil-range organics	0.5	120	mg/kg	U	J-S	UJ
FB309382	K-92-7.5-8	309382-17	NWTPH-Dx SG	Diesel-range	0.5	79	mg/kg	x1	MP	JM
FB309382	K-23-10-10.5	309382-21	NWTPH-Dx SG	Diesel-range	0.5	1700	mg/kg		MP	JM
FB309382	K-42-11.5-12	309382-22	NWTPH-Dx SG	Diesel-range	0.5	13000	mg/kg		MP	JM

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB309382	K-42-11.5-12	309382-22	NWTPH-Dx SG	Oil-range organics	0.5	1100	mg/kg	x4	MP	JM
FB309382	K-24-14-15	309382-23	NWTPH-Dx SG	Diesel-range	0.5	5800	mg/kg		MG	
FB309382	K-24-14-15-D	309382-24	NWTPH-Dx SG	Diesel-range	0.5	6200	mg/kg		MG	
FB309382	K-18-14-15.5	309382-25	NWTPH-Dx SG	Diesel-range	0.5	690	mg/kg		MP	JM
FB309413	K-16-15.5-16.5	309413-01	NWTPH-Dx SG	Diesel-range	0.5	710	mg/kg	x1	MP	JM
FB309413	K-17-16.8-17.8	309413-02	NWTPH-Dx SG	Diesel-range	0.5	180	mg/kg	x1	MP	JM
FB309413	K-17-16.8-17.8-D	309413-03	NWTPH-Dx SG	Diesel-range	0.5	200	mg/kg	x1	MP	JM
FB309413	K-25-7-8	309413-04	NWTPH-Dx SG	Diesel-range	0.5	38	mg/kg	x1	MP	JM
FB309413	K-47-7-8	309413-05	NWTPH-Dx SG	Diesel-range	0.5	2100	mg/kg	x1	MP	JM
FB309413	K-47-7-8-D	309413-06	NWTPH-Dx SG	Diesel-range	0.5	2400	mg/kg	x1	MP	JM
FB309413	K-48-10-11	309413-07	NWTPH-Dx SG	Diesel-range	0.5	24000	mg/kg		MG, J-S	J
FB309413	K-48-10-11	309413-07	NWTPH-Dx SG	Oil-range organics	0.5	230	mg/kg	x4	MP, J-S	JM
FB309413	K-49-10-11	309413-08	NWTPH-Dx SG	Diesel-range	0.5	6300	mg/kg		MG	
FB309413	K-43-10-11	309413-09	NWTPH-Dx SG	Diesel-range	0.5	9500	mg/kg		MG	
FB309413	K-43-10-11	309413-09	NWTPH-Dx SG	Oil-range organics	0.5	8700	mg/kg		MG	
FB310255	PP-23	310255-01	EPA 8260C	1,2-Dibromoethane	1	1	µg/L	U	DNR	DNR
FB310255	PP-23	310255-01	NWTPH-Dx SG	Diesel-range	1	810	µg/L	x1	MP	JM
FB310255	PP-07	310255-02	NWTPH-Dx SG	Diesel-range	1	350	µg/L	x1	MP	JM
FB310255	PZ-04	310255-03	NWTPH-Dx SG	Diesel-range	1	770	µg/L	x1	MP	JM
FB310255	PP-26	310255-06	NWTPH-Dx SG	Diesel-range	1.1	250	µg/L	x1	MP	JM
FB310255	PZ-07	310255-07	NWTPH-Dx SG	Diesel-range	1	340	µg/L	x1	MP	JM
FB310255	K-67-11-12	310255-11	NWTPH-Dx SG	Oil-range organics	4	24000	mg/kg		MG	
FB310255	K-67-11-12	310255-11	NWTPH-Dx SG	Diesel-range organics	4	2000	mg/kg	x2	MP	JM
FB310255	K-69-11-12	310255-13	NWTPH-Dx SG	Oil-range organics	0.4	180	mg/kg		MG	
FB310255	K-69-11-12	310255-13	NWTPH-Dx SG	Diesel-range organics	0.4	30	mg/kg	x3	MP	JM
FB310255	K-70-11-12	310255-14	NWTPH-Dx SG	Oil-range organics	0.4	3100	mg/kg		MG	
FB310255	K-70-11-12	310255-14	NWTPH-Dx SG	Diesel-range organics	0.4	940	mg/kg	x3	MP	JM
FB310255	K-72-11-12	310255-17	NWTPH-Dx SG	Oil-range organics	0.4	1300	mg/kg		MG	
FB310255	K-72-11-12	310255-17	NWTPH-Dx SG	Diesel-range organics	0.4	200	mg/kg	x2	MP	JM
FB310255	K-73-11-12	310255-18	NWTPH-Dx SG	Oil-range organics	4	25000	mg/kg		MG	
FB310255	K-73-11-12	310255-18	NWTPH-Dx SG	Diesel-range	4	2500	mg/kg	x2	MP	JM
FB310255	K-79-6-7	310255-23	NWTPH-Dx SG	Diesel-range	0.4	670	mg/kg	x1	MP	JM
FB310277	PP-17	310277-04	EPA 8260C	Benzene	1	160	µg/L	ve	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Naphthalene	1	1	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-17	310277-04	EPA 8260C	1,1,1,2-Tetrachloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,1,1-Trichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,1,2,2-Tetrachloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,1,2-Trichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,1-Dichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,1-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,1-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2,3-Trichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2,3-Trichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2,4-Trichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2,4-Trimethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2-Dibromo-3-chloropropane	10	100	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2-Dibromoethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2-Dichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,2-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,3,5-Trimethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,3-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,3-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	1,4-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	2,2-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	2-Chlorotoluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	2-Hexanone	10	100	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	4-Chlorotoluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Acetone	10	100	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Bromobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Bromodichloromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Bromoform	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Bromomethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Carbon tetrachloride	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Chlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Chloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Chloroform	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Chloromethane	10	100	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-17	310277-04	EPA 8260C	cis-1,2-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	cis-1,3-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Cymene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Dibromochloromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Dibromomethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Dichlorodifluoromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Ethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Hexachlorobutadiene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	iso-Propylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Methyl ethyl ketone	10	100	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Methyl iso butyl ketone	10	100	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Methyl-tert-butyl ether	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Methylene chloride	10	50	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	n-Propylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Naphthalene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	sec-Butylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Styrene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	tert-Butylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Tetrachloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Toluene	10	10	μg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	trans-1,2-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	trans-1,3-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Trichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Trichlorofluoromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Vinyl chloride	10	2	µg/L	U pr	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Xylene (meta & para)	10	20	μg/L	U	DNR	DNR
FB310277	PP-17	310277-04	EPA 8260C	Xylene (ortho)	10	10	µg/L	U	DNR	DNR
FB310277	PP-19	310277-05	EPA 8260C	Naphthalene	1	1	μg/L	U	DNR	DNR
FB310277	PP-20	310277-06	EPA 8260C	Naphthalene	1	1	μg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2-Dibromoethane	1	1	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Benzene	1	250	µg/L	ve	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Ethylbenzene	1	400	µg/L	ve	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	n-Propylbenzene	1	250	µg/L	ve	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Naphthalene	1	240	µg/L	ve	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18	310277-07	EPA 8260C	1,1,1,2-Tetrachloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,1,1-Trichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,1,2,2-Tetrachloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,1,2-Trichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,1-Dichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,1-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,1-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2,3-Trichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2,3-Trichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2,4-Trichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2,4-Trimethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2-Dibromo-3-chloropropane	10	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2-Dibromoethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2-Dichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,2-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,3,5-Trimethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,3-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,3-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	1,4-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	2,2-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	2-Chlorotoluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	2-Hexanone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	4-Chlorotoluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Acetone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Bromobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Bromodichloromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Bromoform	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Bromomethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Carbon tetrachloride	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Chlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Chloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Chloroform	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Chloromethane	10	100	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18	310277-07	EPA 8260C	cis-1,2-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	cis-1,3-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Cymene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Dibromochloromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Dibromomethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Dichlorodifluoromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Hexachlorobutadiene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	iso-Propylbenzene	10	67	µg/L		DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Methyl ethyl ketone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Methyl iso butyl ketone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Methyl-tert-butyl ether	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Methylene chloride	10	50	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	sec-Butylbenzene	10	10	µg/L		DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Styrene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	tert-Butylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Tetrachloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Toluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	trans-1,2-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	trans-1,3-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Trichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Trichlorofluoromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Vinyl chloride	10	2	μg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Xylene (meta & para)	10	20	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8260C	Xylene (ortho)	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2-Dibromoethane	1	1	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Benzene	1	250	μg/L	ve	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Ethylbenzene	1	430	µg/L	ve	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	n-Propylbenzene	1	250	µg/L	ve	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Naphthalene	1	260	μg/L	ve	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,1,1,2-Tetrachloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,1,1-Trichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,1,2,2-Tetrachloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,1,2-Trichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,1-Dichloroethane	10	10	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18-D	310277-08	EPA 8260C	1,1-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,1-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2,3-Trichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2,3-Trichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2,4-Trichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2,4-Trimethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2-Dibromo-3-chloropropane	10	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2-Dibromoethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2-Dichloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,2-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,3,5-Trimethylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,3-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,3-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	1,4-Dichlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	2,2-Dichloropropane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	2-Chlorotoluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	2-Hexanone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	4-Chlorotoluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Acetone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Bromobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Bromodichloromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Bromoform	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Bromomethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Carbon tetrachloride	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Chlorobenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Chloroethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Chloroform	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Chloromethane	10	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	cis-1,2-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	cis-1,3-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Cymene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Dibromochloromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Dibromomethane	10	10	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18-D	310277-08	EPA 8260C	Dichlorodifluoromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Hexachlorobutadiene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	iso-Propylbenzene	10	63	µg/L		DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Methyl ethyl ketone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Methyl iso butyl ketone	10	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Methyl-tert-butyl ether	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Methylene chloride	10	50	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	sec-Butylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Styrene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	tert-Butylbenzene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Tetrachloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Toluene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	trans-1,2-Dichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	trans-1,3-Dichloropropene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Trichloroethene	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Trichlorofluoromethane	10	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Vinyl chloride	10	2	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Xylene (meta & para)	10	20	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8260C	Xylene (ortho)	10	10	µg/L	U	DNR	DNR
FB310277	PP-21	310277-09	EPA 8260C	Naphthalene	1	1	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2-Methylnaphthalene	1	150	µg/L	ve	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	1,2,4-Trichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	1,2-Dichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	1,3-Dichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	1,4-Dichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,4,5-Trichlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,4,6-Trichlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,4-Dichlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,4-Dimethylphenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,4-Dinitrophenol	50	300	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,4-Dinitrotoluene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2,6-Dinitrotoluene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2-Chloronaphthalene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2-Chlorophenol	50	100	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18	310277-07	EPA 8270D	2-Methylphenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2-Nitroaniline	50	30	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	2-Nitrophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	3- & 4-Methylphenol	50	200	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	3-Nitroaniline	50	30	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4,6-Dinitro-o-cresol	50	300	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4-Bromophenyl phenyl ether	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4-Chloro-3-methylphenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4-Chloroaniline	50	30	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4-Chlorophenyl phenyl ether	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4-Nitroaniline	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	4-Nitrophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Benzoic acid	50	500	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Benzyl alcohol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	bis(2-Chloroethoxy)methane	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	bis(2-Chloroethyl)ether	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	bis(2-Chloroisopropyl)ether	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	bis(2-Ethylhexyl)phthalate	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Butyl benzyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Carbazole	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Di-n-butyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Di-n-octyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Dibenzofuran	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Diethylphthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Dimethyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Hexachlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Hexachlorobutadiene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Hexachlorocyclopentadiene	50	30	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Hexachloroethane	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Isophorone	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	n-Nitroso-di-n-propylamine	50	100	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	n-Nitrosodiphenylamine	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Nitrobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D	Pentachlorophenol	50	100	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18	310277-07	EPA 8270D	Phenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2-Methylnaphthalene	1	150	µg/L	ve	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	1,2,4-Trichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	1,2-Dichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	1,3-Dichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	1,4-Dichlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,4,5-Trichlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,4,6-Trichlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,4-Dichlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,4-Dimethylphenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,4-Dinitrophenol	50	300	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,4-Dinitrotoluene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2,6-Dinitrotoluene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2-Chloronaphthalene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2-Chlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2-Methylphenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2-Nitroaniline	50	30	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	2-Nitrophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	3- & 4-Methylphenol	50	200	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	3-Nitroaniline	50	30	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4,6-Dinitro-o-cresol	50	300	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4-Bromophenyl phenyl ether	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4-Chloro-3-methylphenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4-Chloroaniline	50	30	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4-Chlorophenyl phenyl ether	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4-Nitroaniline	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	4-Nitrophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Benzoic acid	50	500	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Benzyl alcohol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	bis(2-Chloroethoxy)methane	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	bis(2-Chloroethyl)ether	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	bis(2-Chloroisopropyl)ether	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	bis(2-Ethylhexyl)phthalate	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Butyl benzyl phthalate	50	10	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18-D	310277-08	EPA 8270D	Carbazole	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Di-n-butyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Di-n-octyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Dibenzofuran	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Diethylphthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Dimethyl phthalate	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Hexachlorobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Hexachlorobutadiene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Hexachlorocyclopentadiene	50	30	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Hexachloroethane	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Isophorone	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	n-Nitroso-di-n-propylamine	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	n-Nitrosodiphenylamine	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Nitrobenzene	50	10	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Pentachlorophenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D	Phenol	50	100	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Methylnaphthalene	1	2.2	µg/L		DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	3- & 4-Methylphenol	1	100	µg/L	ve	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Benzoic acid	1	140	µg/L	ve	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Phenol	1	74	µg/L	ve	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,2,4-Trichlorobenzene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,2-Dichlorobenzene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,3-Dichlorobenzene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,4-Dichlorobenzene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4,5-Trichlorophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4,6-Trichlorophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dichlorophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dimethylphenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dinitrophenol	10	60	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dinitrotoluene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,6-Dinitrotoluene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Chloronaphthalene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Chlorophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Methylphenol	10	20	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-22	310277-10	EPA 8270D	2-Nitroaniline	10	6	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Nitrophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	3-Nitroaniline	10	6	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4,6-Dinitro-o-cresol	10	60	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Bromophenyl phenyl ether	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Chloro-3-methylphenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Chloroaniline	10	6	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Chlorophenyl phenyl ether	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Nitroaniline	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Nitrophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Benzoic acid	10	300	µg/L	ve	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Benzyl alcohol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Chloroethoxy)methane	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Chloroethyl)ether	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Chloroisopropyl)ether	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Ethylhexyl)phthalate	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Butyl benzyl phthalate	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Carbazole	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Di-n-butyl phthalate	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Di-n-octyl phthalate	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Dibenzofuran	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Diethylphthalate	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Dimethyl phthalate	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachlorobenzene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachlorobutadiene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachlorocyclopentadiene	10	6	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachloroethane	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Isophorone	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	n-Nitroso-di-n-propylamine	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	n-Nitrosodiphenylamine	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Nitrobenzene	10	2	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Pentachlorophenol	10	20	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,2,4-Trichlorobenzene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,2-Dichlorobenzene	20	4	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-22	310277-10	EPA 8270D	1,3-Dichlorobenzene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	1,4-Dichlorobenzene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4,5-Trichlorophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4,6-Trichlorophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dichlorophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dimethylphenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dinitrophenol	20	120	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,4-Dinitrotoluene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2,6-Dinitrotoluene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Chloronaphthalene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Chlorophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Methylnaphthalene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Methylphenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Nitroaniline	20	12	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	2-Nitrophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	3- & 4-Methylphenol	20	80	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	3-Nitroaniline	20	12	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4,6-Dinitro-o-cresol	20	120	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Bromophenyl phenyl ether	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Chloro-3-methylphenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Chloroaniline	20	12	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Chlorophenyl phenyl ether	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Nitroaniline	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	4-Nitrophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Benzyl alcohol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Chloroethoxy)methane	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Chloroethyl)ether	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Chloroisopropyl)ether	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	bis(2-Ethylhexyl)phthalate	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Butyl benzyl phthalate	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Carbazole	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Di-n-butyl phthalate	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Di-n-octyl phthalate	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Dibenzofuran	20	4	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-22	310277-10	EPA 8270D	Diethylphthalate	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Dimethyl phthalate	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachlorobenzene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachlorobutadiene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachlorocyclopentadiene	20	12	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Hexachloroethane	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Isophorone	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	n-Nitroso-di-n-propylamine	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	n-Nitrosodiphenylamine	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Nitrobenzene	20	4	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Pentachlorophenol	20	40	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D	Phenol	20	55	µg/L		DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Naphthalene	1	130	µg/L	ve	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Acenaphthene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Acenaphthylene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Anthracene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Benzo(a)anthracene	100	5	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Benzo(a)pyrene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Benzo(b)fluoranthene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Benzo(g,h,i)perylene	100	5	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Benzo(k)fluoranthene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Chrysene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Dibenzo(a,h)anthracene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Fluoranthene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Fluorene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Indeno(1,2,3-cd)pyrene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Naphthalene	100	170	µg/L		DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Phenanthrene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18	310277-07	EPA 8270D-SIM	Pyrene	100	5	µg/L	UJ	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Acenaphthylene	1	0.05	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Anthracene	1	0.05	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(a)anthracene	1	0.05	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(a)pyrene	1	0.01	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(b)fluoranthene	1	0.01	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(g,h,i)perylene	1	0.05	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(k)fluoranthene	1	0.01	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Chrysene	1	0.01	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Dibenzo(a,h)anthracene	1	0.01	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Fluoranthene	1	0.05	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Fluorene	1	0.58	µg/L	J	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Indeno(1,2,3-cd)pyrene	1	0.01	µg/L	UJ	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Naphthalene	1	150	µg/L	ve J	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Phenanthrene	1	0.55	µg/L	J	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Pyrene	1	0.05	µg/L	UJ	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Acenaphthene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Naphthalene	10	190	µg/L	ve	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Acenaphthene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Acenaphthylene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Anthracene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(a)anthracene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(a)pyrene	100	1	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(b)fluoranthene	100	1	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(g,h,i)perylene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Benzo(k)fluoranthene	100	1	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Chrysene	100	1	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Dibenzo(a,h)anthracene	100	1	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Fluoranthene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Fluorene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Indeno(1,2,3-cd)pyrene	100	1	µg/L	UJ	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Naphthalene	100	200	µg/L		DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Phenanthrene	100	5	µg/L	U	DNR	DNR
FB310277	PP-18-D	310277-08	EPA 8270D-SIM	Pyrene	100	5	µg/L	UJ	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Naphthalene	1	11	µg/L	ve	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Acenaphthene	10	4.2	µg/L		DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Acenaphthylene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Anthracene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Benzo(a)anthracene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Benzo(a)pyrene	10	0.1	µg/L	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310277	PP-22	310277-10	EPA 8270D-SIM	Benzo(b)fluoranthene	10	0.1	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Benzo(g,h,i)perylene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Benzo(k)fluoranthene	10	0.1	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Chrysene	10	0.1	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Dibenzo(a,h)anthracene	10	0.1	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Fluoranthene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Fluorene	10	1.1	µg/L		DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Indeno(1,2,3-cd)pyrene	10	0.1	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Naphthalene	10	17	µg/L		DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Phenanthrene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-22	310277-10	EPA 8270D-SIM	Pyrene	10	0.5	µg/L	U	DNR	DNR
FB310277	PP-15R	310277-02	NWTPH-Dx SG	Diesel-range organics	1	110	µg/L	x	MP	JM
FB310277	PP-18	310277-07	NWTPH-Dx SG	Diesel-range	1	1200	µg/L	x	MP	JM
FB310277	PP-18-D	310277-08	NWTPH-Dx SG	Diesel-range	1	1300	µg/L	x	MP	JM
FB310277	PP-22	310277-10	NWTPH-Dx SG	Diesel-range	1	80	µg/L	x	MP	JM
FB310278	K-80-6.5-7.5	310278-02	NWTPH-Dx SG	Diesel-range	0.4	1500	mg/kg	x1	MP	JM
FB310278	K-81-7.5-9.5	310278-03	NWTPH-Dx SG	Diesel-range	0.4	580	mg/kg	x1	MP	JM
FB310278	K-83-6.5-9	310278-06	NWTPH-Dx SG	Diesel-range	0.4	170	mg/kg	x1	MP	JM
FB310278	K-84-11.5-12	310278-07	NWTPH-Dx SG	Diesel-range	0.4	130	mg/kg	x1	MP	JM
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Acenaphthene	500	230	mg/kg	ve	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Fluoranthene	500	190	mg/kg	ve	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Fluorene	500	210	mg/kg	ve	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Naphthalene	500	650	mg/kg	ve	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Phenanthrene	500	480	mg/kg	ve	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Acenaphthylene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Anthracene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Benzo(a)anthracene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Benzo(a)pyrene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Benzo(b)fluoranthene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Benzo(g,h,i)perylene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Benzo(k)fluoranthene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Chrysene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Dibenzo(a,h)anthracene	50000	100	mg/kg	U	DNR	DNR
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Indeno(1,2,3-cd)pyrene	50000	100	mg/kg	U	DNR	DNR

Sample Delivery Group	Sample ID	Lab ID	Analytical Method	Analyte	Dilution Factor	Result	Unit	Lab Qualifier	DV Qualifier	Final Qualifier
FB310328	K-89-14-15	310328-02	EPA 8270D-SIM	Pyrene	50000	120	mg/kg		DNR	DNR
FB310328	K-103-13-14	310328-01	NWTPH-Dx SG	Oil-range organics	1	2400	mg/kg		MG	
FB310328	K-103-13-14	310328-01	NWTPH-Dx SG	Diesel-range	1	2300	mg/kg	x3	MP	JM
FB310328	K-89-14-15	310328-02	NWTPH-Dx SG	Diesel-range	1	8100	mg/kg	x5	MP	JM
FB310328	K-89-14-15	310328-02	NWTPH-Dx SG	Oil-range organics	1	1200	mg/kg	x5	MP	JM
FB310328	K-01-10-11	310328-03	NWTPH-Dx SG	Diesel-range	1	13000	mg/kg		MP	JM
FB310328	K-07-11-12	310328-04	NWTPH-Dx SG	Diesel-range	1	7000	mg/kg		MG	
FB310328	K-07-11-12	310328-04	NWTPH-Dx SG	Oil-range organics	1	4600	mg/kg		MG	
FB310328	K-00-14-15	310328-05	NWTPH-Dx SG	Diesel-range organics	1	23000	mg/kg		MP	JM
FB310328	K-00-14-15	310328-05	NWTPH-Dx SG	Oil-range organics	1	690	mg/kg		MP	JM
FB310328	K-02-14-15	310328-06	NWTPH-Dx SG	Diesel-range	1	14000	mg/kg		MG	
FB310328	K-06-15.5-16	310328-09	NWTPH-Dx SG	Diesel-range	1	2100	mg/kg		MP	
FB310328	K-06-15.5-16-D	310328-10	NWTPH-Dx SG	Diesel-range	1	2600	mg/kg		MP	

Abbreviations:

DV Data validation

µg/L Micrograms per liter

mg/kg Milligrams per kilogram

Laboratory Qualifiers:

- J The internal standard associated with the analyte is outside control limits. The reported concentration is an estimate.
- U The analyte was not detected.

U ca The analyte was not detected. The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

- U J The analyte was not detected. The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- U pr The analyte was not detected. The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- ve J Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte. The internal standard associated with the analyte is out of control limits.
- The diesel range concentration reported is due to overlap from a gasoline range product and is not due to the presence of a middle distillate, such as diesel fuel. Х
- The diesel range concentration reported is due to overlap from a weathered gasoline product and is not due to the presence of a middle distillate, such as diesel fuel. x1
- The diesel range concentration reported is due to overlap from a residual range product and is not due to the presence of a middle distillate, such as diesel fuel. x2
- The diesel range concentration reported is due to overlap from a weathered gasoline product, as well as a residual range product and is not due to the presence of a middle distillate, such as diesel fuel. xЗ
- the residual range concentration reported is due to overlap from a diesel range product and is not due to the presence of a heavy oil product. x4
- The diesel and motor oil range concentrations reported are due to a material that does not resemble diesel fuel or motor oil range compounds. The material resembles creosote. x5

DV Qualifiers:

- DNR Do not report in favor of a more appropriate result from another dilution or analysis method.
- The associated value is an estimate due to quality assurance concerns, see data validation report for details. .1
- J-S The associated value is an estimate due to surrogate recovery outside of control limits.
- MG Chromatogram has a good spectral match to standard.
- MG, J-S Chromatogram has a good spectral match to standard; the associated value should be considered an estimate due to surrogate recovery outside of control limits.
- Chromatogram has a poor spectral match to standard. MP

MP, J-S Chromatogram has a poor spectral match to standard; the associated value should be considered an estimate due to surrogate recovery outside of control limits

Final Qualifiers:

- DNR Do not report in favor of a more appropriate result from another dilution or analysis method.
- The concentration is estimated but acceptable for most uses. J
- JM The concentration is estimated due to poor match to standard, acceptable for use with gualification.
- UJ Analyte is not detected at the associated reporting limit, which should be considered an estimate.

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix A Data Validation Reports

Data Validation Report Prepared by EcoChem 2013 Remedial Investigation Soil and Groundwater Sampling Event

DATA VALIDATION REPORT CITY OF PORT ANGELES – K-Ply 2

Prepared for:

Floyd | Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 1011 Western Ave. Suite 1011 Seattle, WA 98104

EcoChem Project: C15218-2

December 17, 2013

Vige

Melissa Swanson Project Manager **EcoChem, Inc.**

Approved for Release

Basis for Data Validation

This report summarizes the results of validation (EPA Stage 2A) performed on sediment, and quality control (QC) sample data for the City of Port Angeles – K-Ply site, round 2. Field sample ID, laboratory sample ID, and requested analyses are provided in the **Sample Index**. Laboratory batch ID numbers and associated level of validation are provided at the beginning of each technical section.

Samples were analyzed by Ceres Analytical Laboratory, El Dorado Hills, California. The analytical method and EcoChem project chemists are listed below.

Analysis	Method of Analysis	Primary Review	Secondary Review
Dioxin Furans	EPA1613B	M. Swanson	C. Frans

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan *Western Port Angeles Harbor RI/FS* (Integral/Anchor QEA/Exponent/Floyd | Snider, June 2013)
- USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (EPA, 2011)

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. The qualified data summary table is included as **Appendix B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) was also submitted with this report.

Sample Index City of Port Angeles - K Ply

SDG	Sample ID	Lab ID	Dioxin
10168	SS-1	10168-001	\checkmark
10168	SS-2	10168-002	~
10168	SS-3	10168-003	~
10193	SS-4-0-0.25	10193-001	\checkmark
10193	SS-5-0-0.25	10193-002	\checkmark
10193	SS-6-0-0.25	10193-003	\checkmark

DATA VALIDATION REPORT City of Port Angeles K-Ply Dioxin & Furan Compounds by EPA Method 1613

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Ceres Analytical Laboratory, Inc. of El Dorado Hills, California. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
10168	3 Sediment	
10196	3 Sediment	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

The QC requirements reviewed are summarized in the following table:

\checkmark	Sample Receipt, Preservation, and Holding Time	✓	Ongoing Precision and Recovery (OPR)	
\checkmark	✓ System Performance and Resolution Checks		Field Replicates	
✓	✓ Initial Calibration (ICAL)		Laboratory Duplicates	
✓	✓ Calibration Verification (CVER)		Target Analyte List	
1	1 Method Blanks		Reported Results	
\checkmark	Labeled Compounds		Compound Identification	

✓ Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Method Blanks

In order to assess the impact of blank contamination on the reported sample results, action levels are established at five times the blank concentrations. If the concentrations in the associated field samples are less than the action levels, the results are qualified as not detected (U-7).

The analyte OCDD was reported in both method blanks. All OCDD results were greater than the action levels; no data were qualified.

Field Replicates

No field replicate results were submitted with this SDG.

Laboratory Duplicates

No laboratory duplicate sample results were submitted with this SDG.

Reported Results

All results for 2,3,7,8-TCDF were confirmed on a DB-225 column as required by the method. Only the 2,3,7,8-TCDF results from the confirmation column were reported.

Compound Identification

The laboratory reported EMPC or "estimated maximum possible concentrations" values for one or more of the target analytes in most samples. An EMPC value was reported when a peak was detected but did not meet identification criteria as required by the method; therefore the result cannot be considered as positive identification for the analyte. The EMPC values were qualified as not detected (U-25) to indicate that the result is not-detected at an elevated reporting limit. The EMPC values for total homolog groups were qualified as estimated (J-25) at the reported values.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the labeled compound and OPR recoveries. Precision could not be assessed.

Detection limits were elevated based on ion ratio outliers. Total homolog results were estimated based on ion ratio outliers.

All data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
Instrument Performance	5A	Initial Calibration (RF, %RSD, r ²)
	5B	Calibration Verification (ICV, CCV, CCAL; RF, %D, %R) Use bias flags (H,L) ¹ where appropriate
	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
Blank Contamination	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L) ¹ for negative instrument blanks
	8	Matrix Spike (MS &/or MSD) Recoveries Use bias flags (H,L) ¹ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
Precision and Accuracy	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L) ¹ where appropriate
	12	Reference Material Use bias flags (H,L) ¹ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ¹ where appropriate
	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L) ¹ where appropriate
Interferences	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	2 nd column confirmation (RPD or %D)
Identification and Quantitation	4	Tentatively Identified Compound (TIC) (associated with NJ only)
	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, re- extractions, etc. Associated with "R" and "DNR" only)
Miscellaneous	14	Other (See DV report for details)
	26	Method QC information not provided

¹H = high bias indicated

L = low bias indicated

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection <i>Note:</i> Under CWA, SDWA, and RCRA the HT for H2O is 7 days* Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = $(x/y)^{100\%}$ x = ht. of TCDD y = baseline to bottom of valleyFor all isomers eluting near 2378-TCDD/TCDF isomers(TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required) No positive results		If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
May not analyze MS/MSD MS/MSD (recovery) %R should meet lab limits.		Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD May not analyze MS/MSD (RPD) RPD < 20%		J(+) in parent sample if RPD > CL	9

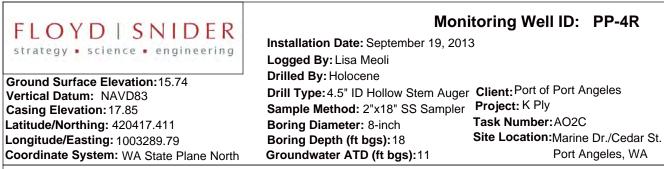
EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method 8290:</i> %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	
Quantitation/ S/N >2.5 Identification IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290		If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35%	Narrate and qualify if required by project (EcoChem PJ)	9
OR absolute diff. < 1X RL (for results < 5X RL) Two analyses for one sample Report only one result per analyte		"DNR" results that should not be used	11

APPENDIX B QUALIFIED DATA SUMMARY TABLE

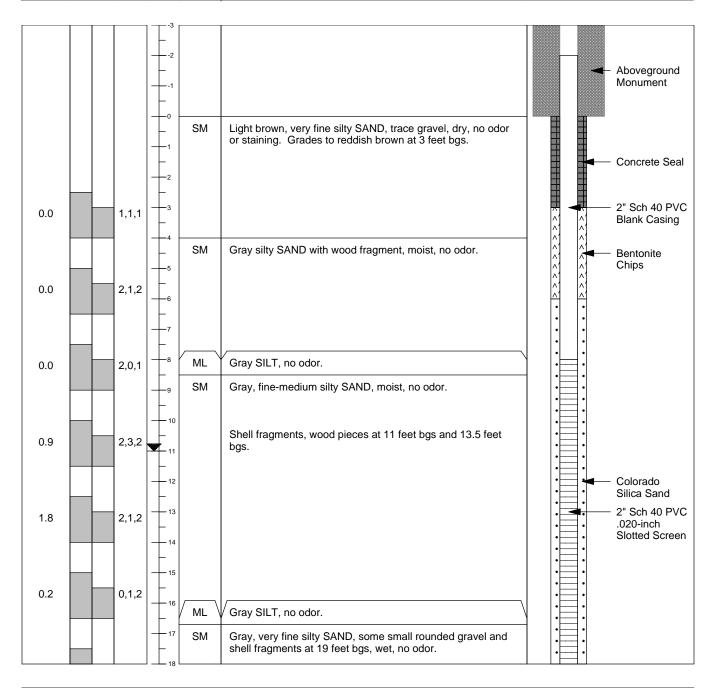
JC 06/14/95 10:12 AM I:\APPENDICES\APPENDIX.DOC

Qualified Data Summary Table City of Port Angeles - K Ply


SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
10168	SS-1	10168-001	EPA 1613B	2,3,7,8-TCDF	0.620	pg/g	EMPC	U	25
10168	SS-1	10168-001	EPA 1613B	1,2,3,4,7,8-HxCDF	0.328	pg/g	EMPC	U	25
10168	SS-1	10168-001	EPA 1613B	Total TCDD	18.3	pg/g	EMPC	J	25
10168	SS-1	10168-001	EPA 1613B	Total PeCDD	13.8	pg/g	EMPC	J	25
10168	SS-1	10168-001	EPA 1613B	Total TCDF	12.3	pg/g	EMPC	J	25
10168	SS-1	10168-001	EPA 1613B	Total PeCDF	7.02	pg/g	EMPC	J	25
10168	SS-1	10168-001	EPA 1613B	Total HxCDF	7.51	pg/g	EMPC	J	25
10168	SS-3	10168-003	EPA 1613B	Total TCDF	3.23	pg/g	EMPC	J	25
10168	SS-3	10168-003	EPA 1613B	Total HxCDF	1.31	pg/g	EMPC	J	25
10168	SS-3	10168-003	EPA 1613B	Total Hp CDF	1.94	pg/g	EMPC	J	25
10193	SS-4-0-0.25	10193-001	EPA 1613B	Total PeCDD	107	pg/g	EMPC	J	25
10193	SS-4-0-0.25	10193-001	EPA 1613B	Total PeCDF	98.7	pg/g	EMPC	J	25

K Ply Site

Draft Supplemental Data Collection Technical Memorandum


Appendix B Monitoring Well Logs

ECOLOGY DRAFT

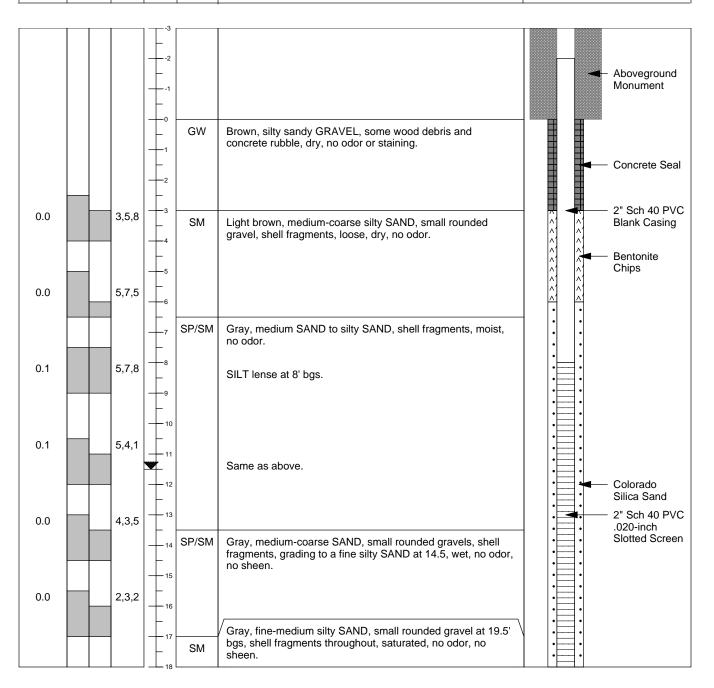
Remarks: Replacement well for PP-4. Installed directly northwest of original well location.

	DRIVE /	BLOW	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS: (color, texture,	MONITORING WELL
PID (ppm)	RECOVERY	COUNT	FT BGS	SYMBOL	moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)	DETAIL

Notes:	Dashed contact line in soil description indicates a gradational contact	
FT BGS = feet below ground surface ppm = parts per million	USCS = Unified Soil Classification System T = denotes groundwater occurrence based on soil saturation observation	Page 1 of 1

Ground Surface Elevation: 15.91 Vertical Datum: NAVD83 Casing Elevation: 18.01 Latitude/Northing: 420512.277 Longitude/Easting: 1003411.101 Coordinate System: WA State Plane North

Installation Date: September 19, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 4.5" ID Hollow Stem Auger Client: Port of Port Angeles Sample Method: 2"x18" SS Sampler Project: K Ply Boring Diameter: 8-inch Boring Depth (ft bgs):18 Groundwater ATD (ft bgs):11.5


Monitoring Well ID: PP-6R

Task Number: AO2C Site Location: Marine Dr./Cedar St.

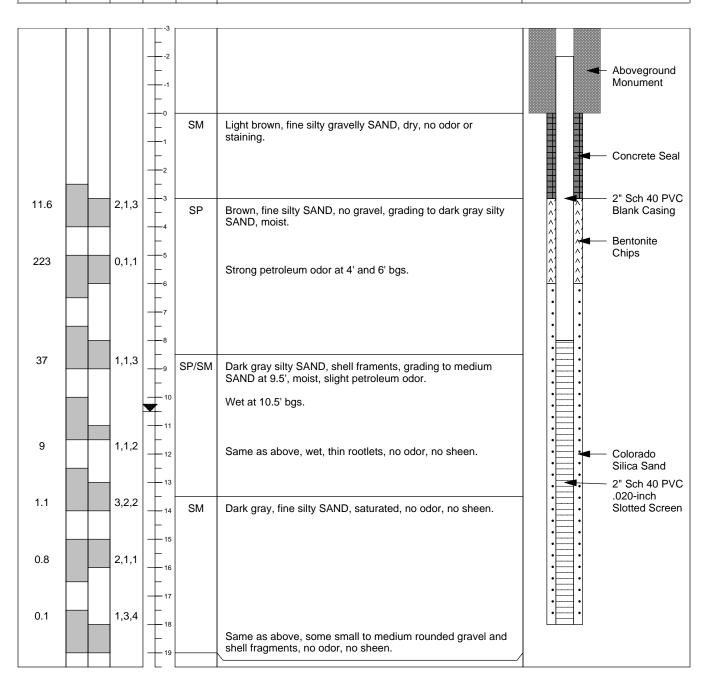
Port Angeles, WA

Remarks: Replacement well for PP-6.

USCS DRIVE / BLOW DEPTH SOIL DESCRIPTION AND OBSERVATIONS: (color, texture, MONITORING WELL PID (ppm) RECOVERY COUNT FT BGS SYMBOL moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.) DETAIL

Notes:	Dashed contact line in soil description indicates a gradational contact	
FT BGS = feet below ground surface	USCS = Unified Soil Classification System	Page 1 of 1
ppm = parts per million	\mathbf{T} = denotes groundwater occurrence based on soil saturation observation	

Ground Surface Elevation: 14.81 Vertical Datum: NAVD83 Casing Elevation: 17.72 Latitude/Northing: 420492.915 Longitude/Easting: 1003105.213 Coordinate System: WA State Plane North


Installation Date: September 19, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 4.5" ID Hollow Stem Auger Client: Port of Port Angeles Sample Method: 2"x18" SS Sampler Project: K Ply Boring Diameter: 8-inch Boring Depth (ft bgs):18 Groundwater ATD (ft bgs): 10.5

Monitoring Well ID: PP-15R

Task Number: AO2C Site Location: Marine Dr./Cedar St. Port Angeles, WA

Remarks: Replacement well for PP-15.

DRIVE / BLOW DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS: (color, texture, MONITORING WELL PID (ppm) RECOVERY COUNT FT BGS SYMBOL moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.) DETAIL

Notes: FT BGS = feet below ground surface ppm = parts per million

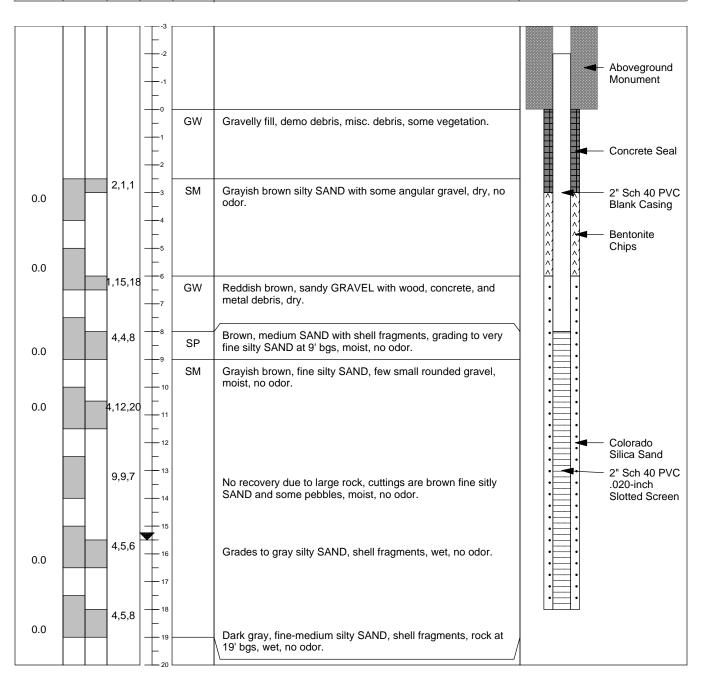
--- Dashed contact line in soil description indicates a gradational contact USCS = Unified Soil Classification System

Page 1 of 1

= denotes groundwater occurrence based on soil saturation observation

Ground Surface Elevation: 17.62 Vertical Datum: NAVD83 Casing Elevation: 20.09 Latitude/Northing: 420710.608 Longitude/Easting: 1003533.372 Coordinate System: WA State Plane North

Installation Date: September 20, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 4.5" ID Hollow Stem Auger Client: Port of Port Angeles Sample Method: 2"x18" SS Sampler Project: K Ply Boring Diameter: 8-inch Boring Depth (ft bgs): 18 Groundwater ATD (ft bgs): 15.5


Monitoring Well ID: PP-20

Task Number: AO2C Site Location: Marine Dr./Cedar St. Port Angeles, WA

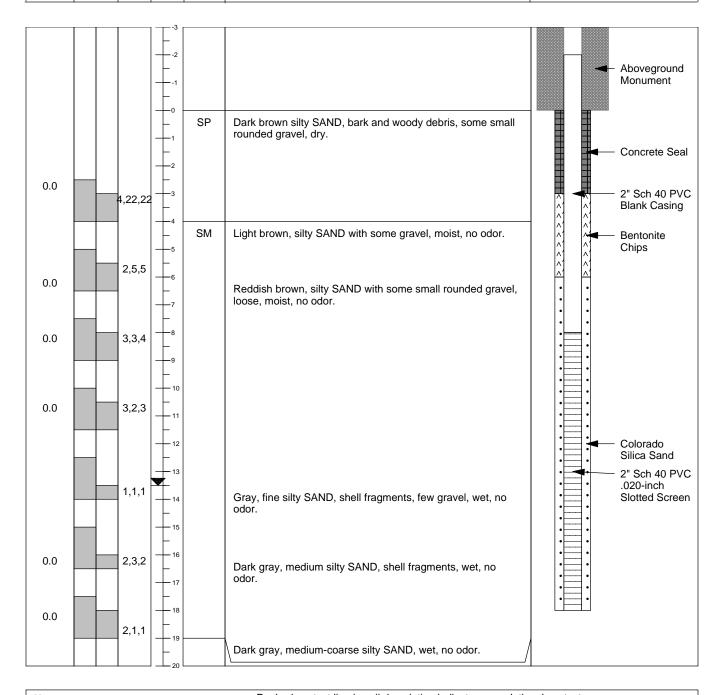
Remarks: Located along the shoreline.

DRIVE / BLOW DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS: (color, texture, PID (ppm) RECOVERY COUNT FT BGS SYMBOL moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)

MONITORING WELL DETAIL

Notes:	Dashed contact line in soil description indicates a gradational contact	
FT BGS = feet below ground surface ppm = parts per million	USCS = Unified Soil Classification System	Page 1 of 1

Ground Surface Elevation: 15.41 Vertical Datum: NAVD83 Casing Elevation: 17.26 Latitude/Northing: 420618.442 Longitude/Easting: 1003760.228 Coordinate System: WA State Plane North


Installation Date: September 20, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 4.5" ID Hollow Stem Auger Client: Port of Port Angeles Sample Method: 2"x18" SS Sampler Project: K Ply Boring Diameter: 8-inch Boring Depth (ft bgs): 18 Groundwater ATD (ft bgs): 13.5

Monitoring Well ID: PP-21

Task Number: AO2C Site Location: Marine Dr./Cedar St. Port Angeles, WA

Remarks: Located along the shoreline on the log debarker property.

	DRIVE /	BLOW	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS: (color, texture,	MONITORING WELL
PID (ppm)	RECOVERY	COUNT	FT BGS	SYMBOL	moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)	DETAIL

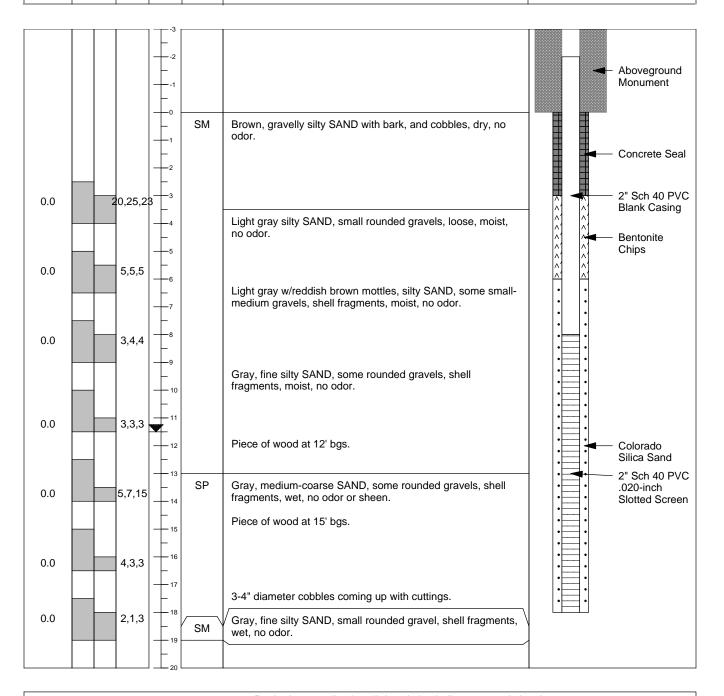
Notes: FT BGS = feet below ground surface ppm = parts per million

--- Dashed contact line in soil description indicates a gradational contact USCS = Unified Soil Classification System

= denotes groundwater occurrence based on soil saturation observation

Monitoring Well ID: PP-22

Ground Surface Elevation: 15.34 Vertical Datum: NAVD83 Casing Elevation: 17.53 Latitude/Northing: 420437.557 Longitude/Easting: 1004150.138 Coordinate System: WA State Plane North


Installation Date: September 20, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 4.5" ID Hollow Stem Auger Client: Port of Port Angeles Sample Method: 2"x18" SS Sampler Project: K Ply Boring Diameter: 8-inch Boring Depth (ft bgs): 18 Groundwater ATD (ft bgs):11.5

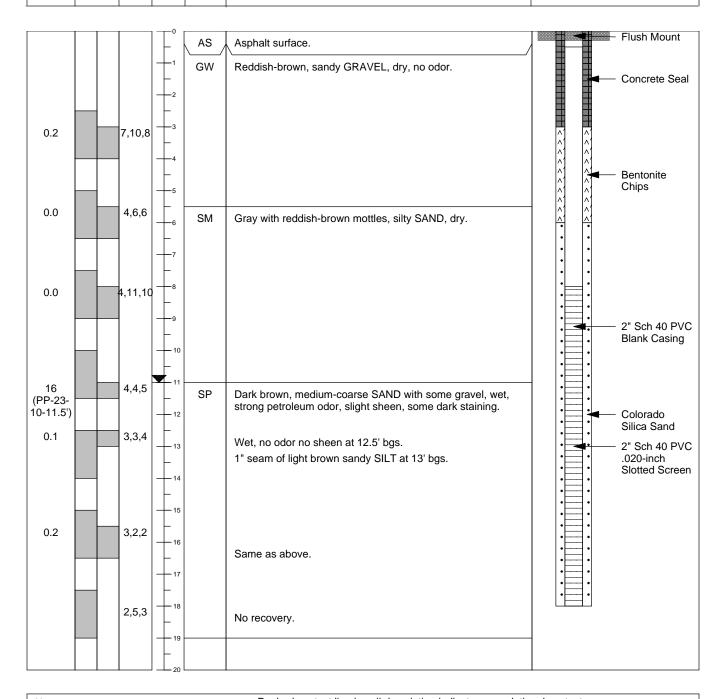
Task Number: AO2C Site Location: Marine Dr./Cedar St.

Port Angeles, WA

Remarks: Located along the shoreline on the log debarker property.

	DRIVE /	BLOW	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS: (color, texture,	MONITORING WELL
PID (ppm)	RECOVERY	COUNT	FT BGS	SYMBOL	moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)	DETAIL

--- Dashed contact line in soil description indicates a gradational contact Notes: FT BGS = feet below ground surface USCS = Unified Soil Classification System Page 1 of 1 ppm = parts per million = denotes groundwater occurrence based on soil saturation observation


Monitoring Well ID: PP-23

Ground Surface Elevation:16.581 Vertical Datum: NAVD83 Casing Elevation: No Data Available Latitude/Northing: 420275.443 Longitude/Easting: 1003009.985 Coordinate System: WA State Plane North Installation Date: September 18, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" SS Sampler Boring Diameter: 8-inch Boring Depth (ft bgs):18 Groundwater ATD (ft bgs):11

Client: Port of Port Angeles Project: K Ply Task Number: AO2C Site Location: Marine Dr./Cedar St.

Remarks: Located in the alleyway south of the concrete pad and north of Pensiula Fuel Company property.

DID (nnm)	DRIVE /	BLOW	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS: (color, texture,	MONITORING WELL
PID (ppm)	RECOVERY	COUNT	FT BGS	SYMBOL	moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)	DETAIL

Notes: FT BGS = feet below ground surface ppm = parts per million

--- Dashed contact line in soil description indicates a gradational contact USCS = Unified Soil Classification System

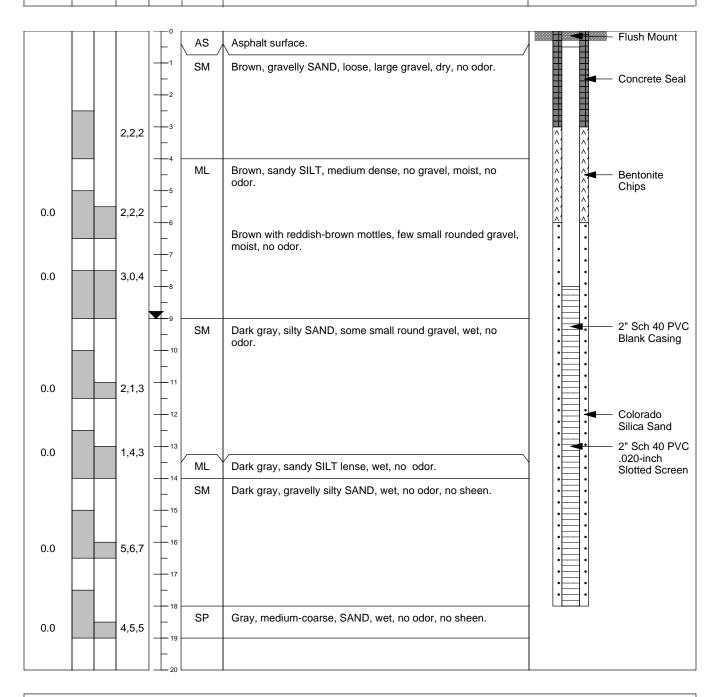
Page 1 of 1

= denotes groundwater occurrence based on soil saturation observation

Ground Surface Elevation:17.845 Vertical Datum: NAVD83 Casing Elevation: No Data Available Latitude/Northing: 419957.504 Longitude/Easting: 1003543.849 Coordinate System: WA State Plane North

Installation Date: September 19, 2013 Logged By: Lisa Meoli Drilled By: Holocene Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" SS Sampler Boring Diameter: 8-inch Boring Depth (ft bgs):18 Groundwater ATD (ft bgs):9

15


Monitoring Well ID: PP-24

Client: Port of Port Angeles Project: K Ply Task Number: AO2C Site Location: Marine Dr. (Coder S

Site Location: Marine Dr./Cedar St.

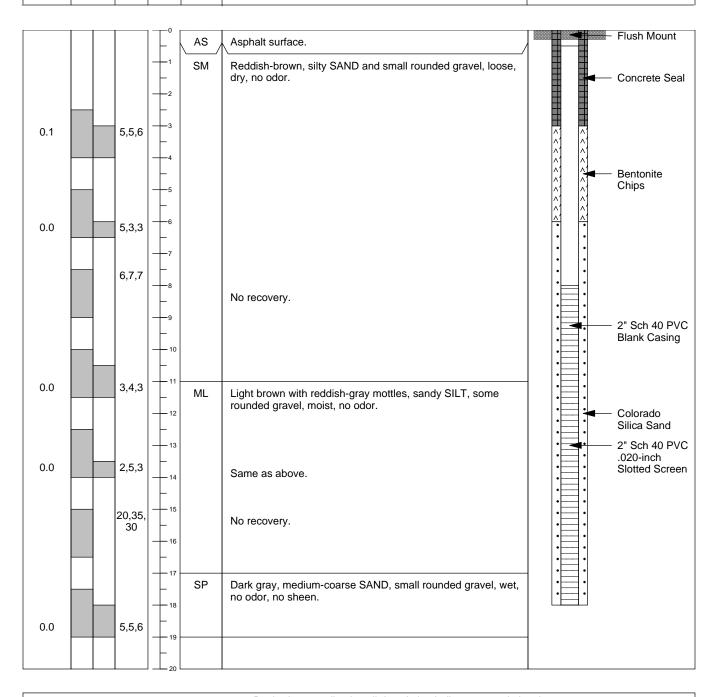
Remarks: Located near the west side of the south entrance of the log debarker property.

PID (ppm) DRIVE / BLOW DEPTH USCS SOIL DESCRIPTION AND OBSERVATIONS: (color, texture, RECOVERY COUNT FT BGS SYMBOL moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.) DETAIL



Notes:

FT BGS = feet below ground surface ppm = parts per million --- Dashed contact line in soil description indicates a gradational contact USCS = Unified Soil Classification System


Page 1 of 1

= denotes groundwater occurrence based on soil saturation observation

Remarks: Located on the east side of the south entrance of the log debarker property.

BLOW DEPTH DRIVE / USCS SOIL DESCRIPTION AND OBSERVATIONS: (color, texture, MONITORING WELL PID (ppm) RECOVERY COUNT FT BGS SYMBOL moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.) DETAIL

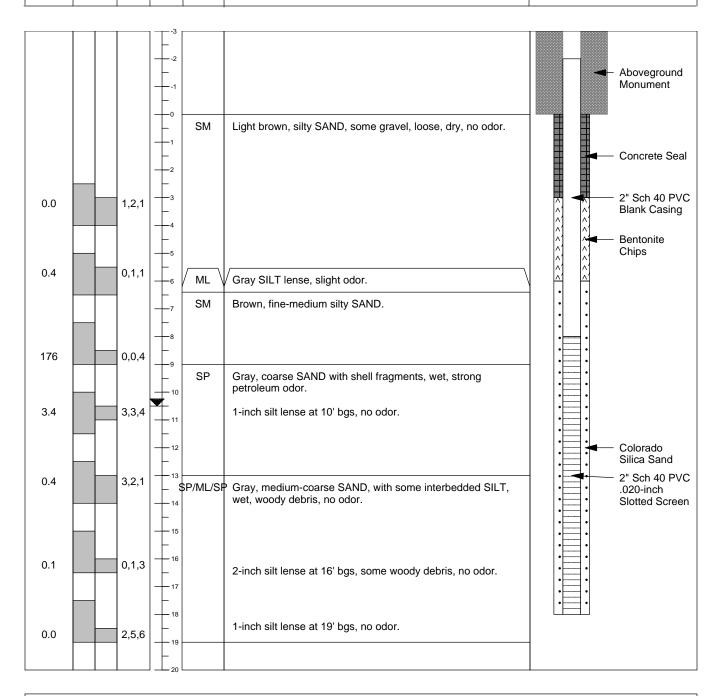
Notes:

FT BGS = feet below ground surface ppm = parts per million

--- Dashed contact line in soil description indicates a gradational contact USCS = Unified Soil Classification System = denotes groundwater occurrence based on soil saturation observation

Ground Surface Elevation: 15.46 Vertical Datum: NAVD83 Casing Elevation: 17.96 Latitude/Northing: 420450.165 Longitude/Easting: 1003236.968 Coordinate System: WA State Plane North

Installation Date: September 18, 2013 Logged By: Jenny Graves Drilled By: Holocene Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" SS Sampler Boring Diameter: 8-inch Boring Depth (ft bgs): 18 feet bgs Groundwater ATD (ft bgs): 10.5


Client: Port of Port Angeles Project: K Ply Task Number: AO2C

Monitoring Well ID: PP-26

Site Location: Marine Dr./Cedar St.

Remarks: North of concrete pad and approximately 60 feet west of PP-4R.

	DRIVE /	BLOW	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS: (color, texture,	MONITORING WELL
PID (ppm)	RECOVERY	COUNT	FT BGS	SYMBOL	moisture, MAJOR CONSTITUENT, odor, staining, sheen, debris, etc.)	DETAIL

Notes:

FT BGS = feet below ground surface ppm = parts per million --- Dashed contact line in soil description indicates a gradational contact USCS = Unified Soil Classification System

Page 1 of 1

= denotes groundwater occurrence based on soil saturation observation

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix C Groundwater Sampling Forms

ECOLOGY DRAFT

Depth Sounder decontaminated Prior to Placemer Depth of water (from top of well casing):	Secure: Ø Yes □ No It in Well: Ø Yes □ No • 7o' 016:17.51	Well Condition/Dam	nnel: age Descrip e (gal):	T.5	ITEVENS	v wfll
Vell ID: PP-24 Depth Sounder decontaminated Prior to Placemer Depth of water (from top of well casing): 11 After 5 minutes of purging (from top of casing): 12 Begin purge (time): 1312 End purge (time): 1342 Gallons purged: 3.5 4 GALLONS	nt in Well: 2 Yes □ No .70' 076=17.51	One Casing Volume	e (gal): iameter/Scr			
Depth Sounder decontaminated Prior to Placemer Depth of water (from top of well casing):	nt in Well: 2 Yes □ No .70' 076=17.51	One Casing Volume	e (gal): iameter/Scr			
End purge (time): 1747 Gallons purged: 3.5 4 GALLONS	.70' DTB=17.51'		iameter/Scr			
After 5 minutes of purging (from top of casing): Begin purge (time): End purge (time): Gallons purged: Purge water disposal method: DRUM	11.00					
End purge (time): 1747 Gallons purged: 3.5 4 GALLONS		Diamatar	O.D.	e of Sche	edule 40 PVC Pi Volume	Weight of Water
Gallons purged: 3.5 4 GALLONS		Diameter	1.660"	1,380"	(Gal/Linear Ft.) 0.08	(Lbs/Lineal Ft.) 0.64
		2" 3"	2.375" 3.500"	2.067" 3.068"	0.17 0.38	1.45 3.2
Purge water disposal method:	1 /	. 4"	4.500" 6.625"	4.026"	0.66	5.51 12.5
Time Depth to Vol.	IDW pH mall	Conductivity	NTU Turbidit	=(11	Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.837 0.291 0.904 0.901 0.897 0.897	19.7 14.6 12.3 11.9 10.8 11.1	14 13. 13. 13. 13. 13.	of - 42 85 -55 74 -54 74 -53	
Sampling Data						
Sample No: PP-24		Location and Der	oth: P	p-24	@ 15.5	/
Date Collected (mo/dy/yr):10/12/13						
Type: Dround Water D Surface Water Othe						
Sample Collected with: Bailer				•		
			-011121			
Water Quality Instrument Data Collected with: Typ				-		
Sample Decon Procedure: Sample collected wit	h (circle one): decontamina					
Sample Description (Color, Turbidity, Odor, Other)		cape, No 3	HEEN	1, SLIC	HT SHEEN	J & YELLOW T
ample Analyses						
TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX	(unpres) 🗌 COD / 1 (HCl) 🌠 Total Ma				FILTER) Diss N2SO4) D	Metals (HNO3)
Additional Information						
Types of Sample Containers: Quantity: 500 mL AMBER 1	Duplicate Sample N	umbers:			Comments:	
40 ml VOA W/HCL 2						
40ml VOA 2						
	_					
Signature: Tuck Sh				Date:	. 1	1

X.

Project Name: <u>k PLY</u>		Date of Colle	ection:	10/10	1/13	
Project Number: FRY RI GI	n sampling	Field Perso	onnel:	T. STE	1.12 C.	
Purge Data						
	ure: Yes 🗆 No	Well Condition/Dar	nage Descrij	otion: $Z''P$	VI, NEH	1-bood con
Depth Sounder decontaminated Prior to Placement in	Well: 🔀 Yes 🗆 No	One Casing Volum	ne (gal):			
	PTB= 20.65'	Well Casing Type/	Diameter/Sci	eened Interval		
After 5 minutes of purging (from top of casing):	11.99'	_	Volum	e of Sched	lule 40 PVC P	
Begin purge (time): 15:40		Diameter	O D		Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time):		1 ¼" 2"	1.660" 2.375"	1.380" 2,067"	0.08 0.17	0.64 1.45
Gallons purged: 3.5 GALLONS		3" 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Purge water disposal method:		6"	6.625"	6.065"	1.5	12.5
	DH DOL	Conductivity	NT 4 Turbidit	· · · ·	p ORP	Comments
1545 11.99' ZL 6.		0.566	42.3			
	23 3.60	1.20	33.7	1.4		
	42 2.36	1.25	20.2			
600 <u>11.98' 9L 7</u> 605 <u>11.98' 11L 7</u> .	43 2.13	1.17	16.7	15.2		-
610 11-97' 130 7	11 2.17	1.28	13.4	15.30		
1615 11.96' 142 7.4		1.28	17.2	15.3	H 60	
626 11-19 186 2.	39 1.83	1.29	7.0	5 [2.4	11 310	
					0	1
Date Collected (mo/dv/vr): 10/14/13	Time Collected:	622 0	AM R P	Weather:	CLEAR/SI	UNINY
Date Collected (mo/dv/vr): 10/14/13	Time Collected:	622 0	AM R P	Weather:	CLEAR/SI	UNINY
Date Collected (mo/dy/yr): 10/14/13 Type: Et Ground Water 🛛 Surface Water Other:	Time Collected:	□	AM B P	Weather:	CLEAR/S	UNINY
Date Collected (mo/dy/yr): 10/14/13 Type: El Ground Water 🛛 Surface Water Other: Sample Collected with: 🗋 Bailer IPPump Other:	Time Collected:	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		Unfiltere	CLEAR/S	UNINY
Date Collected (mo/dy/yr): 10/14/13 Type: Et Ground Water Surface Water Other: Sample Collected with: Bailer Et Pump Other: Water Quality Instrument Data Collected with: Type:	Time Collected: 1		AM E P	Weather:	CUER R /S	UNINY
Date Collected (mo/dy/yr): 10/14/13 Type: Ht Ground Water Surface Water Other: Sample Collected with: Bailer Ht Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with	Time Collected: 1	Type: R iba U-50 Other: disponential ated all tubing; disponential	AM & P ple: Filtero FR ISTA	Weather:	CUER R /S	UNINY
Date Collected (mo/dy/yr): 10/14/13 Type: Et Ground Water Surface Water Other: Sample Collected with: Bailer Et Pump Other: _ Water Quality Instrument Data Collected with: Type:	Time Collected: 1	Type: R iba U-50 Other: disponential ated all tubing; disponential	AM & P ple: Filtero FR ISTA	Weather:	CUER R /S	UNINY
Date Collected (mo/dy/yr): <u>10/14/13</u> Type: Ht Ground Water Gurface Water Other: Sample Collected with: Bailer Ht Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): G Sample Analyses	Time Collected:		AM P P ple: Filtero FR ISTA	dedicated silico	OTHER /S	Other:
Date Collected (mo/dy/yr): <u>10/14/13</u> Type: Ht Ground Water Surface Water Other: Sample Collected with: Bailer Ht Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): G Sample Analyses LEAD	Time Collected: 1	22 □ Sam Type: Iba U-50 Other: ated all tubing; dispose R, MC SHE R, MC SHE R, EDL, HEX	AM B P ple: Filtero FR ISTAN sable and/or EN	dedicated silico	OTHER or HER on and poly tubing	•••••••••••••••••••••••••••••••••••••
Date Collected (mo/dy/yr): 10/14/13 Type: H Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Gample Analyses Fett-D (HCI) Chlor / Fluor	Time Collected:	Sam Type: Type: iba U-50 Other: ated all tubing; dispose R, MC SHE C, EDL, HEL TOC (H2SO4) [AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: H Ground Water Surface Water Other: Sample Collected with: Bailer HPump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Gample Analyses TPH-D (HCl) Chlor / Fluor (HCl) K ETEX	Time Collected: 1	Sam Type: Type: iba U-50 Other: ated all tubing; dispose R, MC SHE C, EDL, HEL TOC (H2SO4) [AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	OTHER or HER on and poly tubing	•••••••••••••••••••••••••••••••••••••
Date Collected (mo/dy/yr): 10/14/13 Type: H Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (HCI) Chlor / Fluor Chlor / Fluor Chlor / Fluor	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (HCI) Chlor / Fluor Chlor / Fluor Mdditional Information Types of Sample Containers: Quantity:	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: Decomposition (Color, Turbidity, Odor, Other): Sample Decomprocedure: Sample collected with: Type: Sample Decomprocedure: Sample collected with: Sample Decomprocedure:	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer A Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Chlor / Fluor Types of Sample Containers: Quantity: Scom 1 A PABER 1 York, Surf Hul 4	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: Scom 1 APABER 1 Home Volas of Hul 4 Home Volas of Hul 4	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCl) Chlor / Fluor TPH-G (HCl) Chlor / Fluor Types of Sample Containers: Quantity: Scom 1 A PABER 1 40 mt VOAS / HCL 4 40 mt VOAS / HCL 4	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: Soc m 1 APABER 1 Ho mt VOA, J HUL 4 HO mt VOA, J HUL 4	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Date Collected (mo/dy/yr): 10/14/13 Type: B Ground Water □ Surface Water Other: Sample Collected with: □ Bailer IPPump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): ① Sample Analyses 	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER R /S	Other:
Type: B Ground Water Surface Water Other: Sample Collected with: □ Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with: Type: Sample Decon Procedure: Sample collected with: Sample collected with: Sample Description (Color, Cultor, Cultor, Sample Analyses TPH-D (HCl) PH-G (HCl) PH-G (HCl) PH-G (HCl) Socomil AgenBER I Yound Vound	Time Collected:	222 Sam Type: R iba U-50 Other: ated all tubing; dispose A R, MC SHE C, EDC, HEXI C TOC (H2SO4) Ietals (HNO3)	AM P ple: Filter FR ISTA sable and/fr EN WWE, W Onth	dedicated silico	CUER & /s.	Other:

Frojec	t Name:	LANX			Date of Co	llection	10	14/13	
Project	Number:	K PLY	RI SAMI	ZING	Field Per	sonnel:	T. STE	VENS	
urge Da	ta								
Well ID:	P2-12	_	Secure: 🗖	Yes 🗌 No	Well Condition/E)amage Descri	ption: <u>6000</u>	o caudit	ION
Depth of wa	ter (from top of wel	I casing):	9.34 T	18=14.67	Well Casing Typ	e/Diameter/Sc	reened Interva	l:	
After 5 minu	tes of purging (from	n top of casing	10.70		-	Volun	ne of Scheo	dule 40 PVC P	
Begin purge	: (time):}	4:25			Diameter	-	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 14	55			_ 1 ¼" 2"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64 1.45
Gallons pur	ged: 4 C	ALLANS			3" 4"	3.500" 4.500"	3_068" 4,026"	0.38 0.66	3.2 5.51
Purge wate	disposal method:	DRUW	1-10W		6"	6.625" NTU	6.065"	1.5	12.5
Time	Depth to Water	Vol. Purged	рН	malu	Conductivity	Turbidi	ty Terr	ip ORP	Comments
1430	10.70	1.52	6.56	11.39	-	215	<u> </u>		-
1435	10.69'	42	7.06	2.24	0.746	<u>28.7</u> 13.6			
1445	10.68	6L GL	7.02	1.57	0.760	6.6			-
1450	10.68'	9.52		1.02	0.762	1.2			
1455	10.66	112	7.03	1.60	0.765	5.1	15.6	5 -17	
						-	-		÷
ampling	g Data								
Sample No:	PZ-12				Location and	Depth: P	2-12	ø	12.5'
-	12	10/14/							NWY
				5 C					
	lected with: Bail								
	ity Instrument Data								
	con Procedure:								
Sample De	scription (Color, Tu	rbidity, Odor, (Other): CLEA	R ME OD	ur, no si	YEEN. 1	ANTE F	WATIES F	RESENT
	Analyses								
ampio /	50025	(X)	FORMA	LDEINDE	F				
TPH-D		Chlor / Flu) 🔲 🛛 Ortl	hophos (F	ILTER) Dis	s. Metals (HNO3)
TPH-C	(HCI) 🗖	ВТ	EX (HCI)	Total N	/letals (HNO3)	П тк	N/Phos (N	2SO4) 🗌	VOCs (HCI) E
	al Informatio	on					_		
Addition		ers: Qua	ntity: Dupl	icate Sample I	Numbers:			Comments:	
	Sample Containe								
Types of	Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3. S.							
Types of	Sample Containe <u>mL</u> AMBE AMBER	R)	_						
Types of Sce IL	me Ampe	R) 2							
Types of Sce IL 40 ml	ML AMBE ANBER	R) 2							
Types of Sce IL 40 ml	ML AMBE AMBER VOA N/ H	R) 2							
Types of Sce IL 40 ml	ML AMBE AMBER VOA N/ H	R) 2							
Types of Sce IL 40 ml	ML AMBE AMBER VOA N/ H	R) 2							
Types of Soc I L 40 ml	ml Ambe Amber Vor n/ H Vor	R) 2					Date:	10/141	13

Project Name: KPLy		Date o	of Collection:	10/14	113		
Project Number: LPLY GW SI	AMPLING	Field	d Personnel:	T. STEN	ENS		
PurgejData							
Well ID: P?-047 s		Well Cond	dition/Damage Desg	ription: 1	PE/John	ETER. W	I NO MONUMEN
MARKER BY CONE, THBIN			PULLED 1				
Depth Sounder decontaminated Prior to Placement							
Depth of water (from top of well casing): 9.24							
After 5 minutes of purging (from top of casing):				me of Sch			
		Dia	ameter O.D.	1.D.	Vo	lume inear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time):		1	1 ¼" 1.660" 2" 2.375"	1.380" 2.067"	().08).17	0.64
Gallons purged: 2 GAUCINS			3" 3.500" 4" 4.500"	3.068" 4.026"	C	0.38	3.2 5.51
Purge water disposal method: DRum - I	DW		6" 6.625"	6.065"		1.5	12.5
Time Depth to Vol. Water Purged	pH DO	Conducti	ivity Turbi	dity T	emp *C	ORP	Comments
	5.98 9.83	0.128			5.66	65	FEW DIRT /F
	08 10.12				5.60	64	PIELES PURGE
	<u>-11</u> <u>2.97</u> <u>7,04</u> <u>4.30</u>	0.45			<u>.46</u> .41	<u>Le</u> <u>41</u>	-
	7.04 2.35				1.20	30	
	7.03 1.91	0.50	76 2.0	14	4.25	22	1
ampling Data					_		
		Locatio	on and Depth:	82-67	Ø 12.1	 \$'	
Sample No: P2-07	Time Collected:						רהנ
Sample No: <u>PZ-67</u> Date Collected (mo/dy/yr): <u>10/14/13</u>	Time Collected:	13/5	- AM 191	Weather:	L	AR / SUL	
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: ØGround Water 🗆 Surface Water Other	Time Collected:	1315	AM 🗗 F	Weather: red 🔀 Unfil	tered Ot	her:	
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>I0/14/15</u> Type: D Ground Water D Surface Water Other Sample Collected with: Dailer K Pump Other	Time Collected:	1315 	AM BF Sample: C Filte	Weather: red 🔀 Unfil	tered Ot	her:	
Sample No: <u>P2-67</u> Date Collected (mo/dy/yr): <u>I0/14/15</u> Type: D Ground Water Durface Water Other Sample Collected with: Dailer S Pump Other Water Quality Instrument Data Collected with: Typ	Time Collected: : : e: 🗆 Hanna 9828 🚺	1315 Type Horiba U-50 Ot	AM PR	Weather: ared BUnfill	tered Ot	А. Г. 5ил her:	
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>I0/14/15</u> Type: C Ground Water Collected Water Other Sample Collected with: Bailer C Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with	Time Collected:	1315 Type Horiba U-50 Ot minated <u>all</u> tubing	AM PF	Weather: red BUnfill LTIC	tered Ot	А. Г. 5ил her:	
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>I0/14/15</u> Type: C Ground Water Collected Water Other Sample Collected with: Bailer C Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with	Time Collected:	1315 Type Horiba U-50 Ot minated <u>all</u> tubing	AM PR	Weather: red BUnfill LTIC	tered Ot	А. Г. 5ил her:	
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>Io 14/13</u> Type: D Ground Water I Surface Water Other Sample Collected with: I Bailer K Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other):	Time Collected:	1315 Type Horiba U-50 Ot minated <u>all</u> tubing	AM PF	Weather: red BUnfill LTIC	tered Ot	А. Г. 5ил her:	
Date Collected (mo/dy/yr): Type: Defined Water Surface Water Other Sample Collected with: Bailer & Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses	Time Collected:	ISIS Type Horiba U-50 Ot minated <u>all</u> tubing	AM PR	r dedicate	tered Ot	her:	Other:
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>Io /14/13</u> Type: D Ground Water I Surface Water Other Sample Collected with: I Bailer A Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses (HCI) A Chlor / Fluor	Time Collected:	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	tered Ot	her:	Other:
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>IO 144115</u> Type: D Ground Water Surface Water Other Sample Collected with: Bailer X Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses	Time Collected:	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	tered Ot	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: Ground Water Surface Water Other Sample Collected with: Bailer Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (HCI) Chlor / Fluor (HCI) Chlor / Fluor	Time Collected:	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	tered Ot	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: Ground Water Surface Water Other Sample Collected with: Bailer Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor (HCI) Chlor / Fluor (HCI) Chlor / Fluor	Time Collected:	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	tered Ot	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: Ground Water Surface Water Other Sample Collected with: Bailer Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor	Time Collected: 	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	(FILTER) (N2SO4)	her:	Other:
Sample No: <u>PZ-07</u> Date Collected (mo/dy/yr): <u>IO 144 IS</u> Type: D Ground Water Durface Water Other Sample Collected with: Dailer A Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses <u>TPH-D</u> (HCI) <u>A</u> Chlor / Fluor <u>TPH-G</u> (HCI) <u>A</u> Chlor / Fluor <u>TPH-G</u> (HCI) <u>A</u> DTEX Additional Information Types of Sample Containers: Quantity: <u>Som M AMBER</u> 1	Time Collected: 	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	(FILTER) (N2SO4)	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: Ground Water Surface Water Other Sample Collected with: Sample Collected with: Typ Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: Som M AMBER	Time Collected: 	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	(FILTER) (N2SO4)	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: CGround Water Surface Water Other Sample Collected with: Bailer Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: Scomt AmBER 1 40 mL VOA WHCL 2	Time Collected: 	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	(FILTER) (N2SO4)	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: CGround Water Surface Water Other Sample Collected with: Bailer CPump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: Som M AMBER 1 40 AL VOA W HCL 2	Time Collected: 	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	(FILTER) (N2SO4)	her:	Other:
Sample No: P2-07 Date Collected (mo/dy/yr): 10/14/15 Type: CGround Water Surface Water Other Sample Collected with: Bailer Pump Other Water Quality Instrument Data Collected with: Typ Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: Scomt AmBER 1 40 mL VOA WHCL 2	Time Collected: 	I315 Type Horiba U-50 Ot minated <u>all</u> tubing TROLEUM D / TOC (H: al Metals (H	AM PR	Meather: ared DUnfill CTIC r dedicateds SHEEN thophos	(FILTER) (N2SO4)	her:	Other:

ţ.

Droiget	i name,	KPIY			Date of C	ollection:	10]	14/13		
Project Number: <u>KPLY RI SAMPLING</u>		LING	Field Personnel:							
urge Data	a					-				
Well ID:	7-01		Secure: 🔀	Yes 📋 No	Well Condition	/Damage Desc	ription: 🔭	I" PERCE	METER	IN ALLE
								CASING ,		
Depth Sound	er decontamin	ated Prior to Placer	ment in Well: §	Yes 🗆 No	One Casing V	olume (gal):		,		
		well casing):		•						
		from top of casing):						edule 40 PV		
		11:27			- Diamete		I.D.	Volume	Weigh	t of Water
		12:03			1 1%"	1_660"	1.380"	(Gal/Linear F 0.08	(ineal Ft.) 0.64
		3.5 GALLON			- 2 3*	2.375" 3.500"	2.067" 3.068"	0.17 0.38		1.45 3.2
					- 4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5		5.51 12.5
		d: DRIM				slow		emp [°] C O		
Time	Depth to Water	Vol. Purged	pН	DO	Conductivity	I UFDIC			RP NV	Comments
11:32	10.69		5.57	10.50		213		1.92 5		
11:37	<u>B.69</u>		5.68	3.60	0.456					
11:42	10.68		6.53	1.64	0.857			1.51 <u>14</u> 164 <u>4</u>		
	10.66		6.54	1.35	0.853			1.74 1		
11:57	10.65	122	6.54	1.50	0.851	8.3			3	
12:02	10.65	146	6.54	1.28	0.848	5.1		88 -5		
ampling	Data									
	ed (mo/dy/yr):	10/14/		ne Collected:						
Date Collecte Type: 💼 Grou Sample Collec	d (mo/dy/yr): und Water 🛛 cted with: 🗆 B	Io/I4/	13 Tin ther:	ne Collected:] 2:64 S Type:	to AM d X (ample: □ Filte PELISTA	Weather: red &Unfill	clered Other:	'sureny	
Date Collecte Type: 😰 Grou Sample Collec Water Quality	d (mo/dy/yr): und Water cted with: Instrument Da	Io/I4/ Surface Water O tailer Pump O ata Collected with:	13 Tin ther: ther: Type: []]	ne Collected: na 9828 🍃 Hori	1 2:64 s type: ba U-50 Other:	to AM DX ample: □ Filte PELISTA	Weather: red &Unfill	CLERR /	SUUNY	
Date Collecte Type: 💼 Grou Sample Collect Water Quality	d (mo/dy/yr): und Water cted with: Instrument Da	Io/I4/	13 Tin ther: ther: Type: []]	ne Collected: na 9828 🍃 Hori	1 2:64 s type: ba U-50 Other:	to AM DX ample: □ Filte PELISTA	Weather: red &Unfill	CLERR /	SUUNY	
Date Collecte Type: 😰 Grou Sample Collec Water Quality Sample Deco	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure:	Io/I4/ Surface Water O tailer Pump O ata Collected with:	13 Tin ther: ther: Type: [] Hann with (circle on	ne Collected: na 9828 🍃 Hori ne): decontamina	12:64 s Type:s ba U-50 Other: ated <u>all</u> tubine: dia	the AM DY Complex of Filte	Weather: red CUnfill	CLERR /	SUUNY	
Date Collecte Type: 🖆 Grou Sample Collec Water Quality Sample Deco Sample Desc	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color,	Io/I4/ Surface Water O tailer Pump O ata Collected with: Sample collected	13 Tin ther: ther: Type: [] Hann with (circle on	ne Collected: na 9828 🍃 Hori ne): decontamina	12:64 s Type:s ba U-50 Other: ated <u>all</u> tubine: dia	the AM DY Complex of Filte	Weather: red CUnfill	CLERR /	SUUNY	
Date Collecte Type: 😰 Grou Sample Collec Water Quality Sample Deco Sample Desc	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color,	Io/I4/ Surface Water O tailer Pump O ata Collected with: Sample collected	13 Tin ther: ther: Type: [] Hann with (circle on	ne Collected: na 9828 🍃 Hori ne): decontamina	12:64 s Type:s ba U-50 Other: ated <u>all</u> tubine: dia	the AM DY Complex of Filte	Weather: red CUnfill	CLERR /	SUUNY	
Date Collecte Type: 😰 Grou Sample Collec Water Quality Sample Deco Sample Desc	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color,	Io/I4/	13 Tin ther: ther: Type: □ Hann with (circle or her): SLIG	ne Collected: na 9828 D Hori ne): decontamina	JZ:64 Type:S ba U-50 Other: ated all tubine: dia LELLA	the AM DY ample: Filte PFRISTA	Weather: red & Unfill KLT1T r dedicated SAR	CLERR /	SUUNY	
Date Collecte Type: 🖻 Grou Sample Collec Water Quality Sample Deco Sample Desce Sample Ar	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color, nalyses (HCI)	Ic/14/ Surface Water O Bailer Pump O ata Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor	13 Tin ther:	ne Collected: na 9828 Phori ne): decontamina HT PETPA	12:64 Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA	Weather: red & Unfill NLT/TC r dedicated FAR hophos	CLERR /	bing Other:	
Date Collecte Type: Sample Collect Water Quality Sample Deco Sample Desce Sample An TPH-D TPH-G	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color, nalyses (HCI)	Ic/14/	13 Tin ther:	ne Collected: na 9828 Phori ne): decontamina HT PETPA	12:64 Type:S ba U-50 Other: ated <u>all</u> tubine: dia CELLAN OT TOC (H2SO	t AM DY (ample: [] Filte PERISTA	Weather: red & Unfill NLT/TC r dedicated FAR hophos	CLERE /	Diss. Metals	(HNO3)
Date Collecte Type: 😭 Grou Sample Collect Water Quality Sample Deco Sample Deco Sample Desc Cample An TPH-D TPH-G	d (mo/dy/yr): und Water cted with: Instrument Date n Procedure: ription (Color, nalyses (HCl) (HCl) Linformat	Ic/14/ Surface Water O tailer Pump O ata Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected:	12:64 Type: ba U-50 Other: ated <u>all</u> tubing: dia CELLM AL TOC (H2SO etails (HNOS	t AM DY (ample: [] Filte PERISTA	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: Sample Collect Water Quality Sample Deco Sample Descr Cample Art TPH-D TPH-G Contained	d (mo/dy/yr): und Water cted with: Instrument Date Instrument Date Instrument Date Instrument Date Instrument Date (HCI) (HCI) (HCI) Informat ample Contai	Ic/14/	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	CLERE /	Diss. Metals	(HNO3)
Date Collecte Type: 🔁 Grou Sample Collect Water Quality Sample Deco Sample Desce Sample Desce Cample An TPH-D TPH-G Cdditional Types of Sa	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color, nalyses (HCl) (HCl) (HCl) Informat ample Contact	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected:	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: 1 Grou Sample Collect Water Quality Sample Deco Sample Descr ample An TPH-D TPH-G dditional Types of Sa Scc. m	d (mo/dy/yr): und Water cted with: Instrument Da Instrument Da n Procedure: ription (Color, nalyses (HCI) (HCI) (HCI) Informat ample Contact	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: 🖻 Grou Sample Collect Water Quality Sample Deco Sample Desce Sample An TPH-D TPH-G dditional Types of Sa	d (mo/dy/yr): und Water cted with: Instrument Da Instrument Da n Procedure: ription (Color, nalyses (HCI) (HCI) (HCI) Informat ample Contact	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: Sample Collect Water Quality Sample Deco Sample Descr Sample An TPH-D TPH-G Additional Types of Sa Scc. m L	d (mo/dy/yr): und Water cted with: Instrument Da Instrument Da n Procedure: ription (Color, nalyses (HCI) (HCI) (HCI) Informat ample Contact	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: Sample Collect Water Quality Sample Deco Sample Descr Sample An TPH-D TPH-G Additional Types of Sa Scc. m (d (mo/dy/yr): und Water cted with: Instrument Da Instrument Da n Procedure: ription (Color, nalyses (HCI) (HCI) (HCI) Informat ample Contact	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: Sample Collect Water Quality Sample Deco Sample Descr Sample An TPH-D TPH-G Additional Types of Sa Scc. m L	d (mo/dy/yr): und Water cted with: Instrument Da Instrument Da n Procedure: ription (Color, nalyses (HCI) (HCI) (HCI) Informat ample Contact	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red & Unfill NLT/TC r dedicated FAR hophos	(FILTER)	Diss. Metals	(HNO3)
Date Collecte Type: Sample Collect Water Quality Sample Deco Sample Descr Sample Arr TPH-D TPH-G Additional Types of Sa Scc m 1 40 m L 40 m L	d (mo/dy/yr): und Water cted with: Instrument Da n Procedure: ription (Color, nalyses (HCI) (HCI) Informat ample Contac KA	Io/IY/ Surface Water O Hailer Pump O haita Collected with: Sample collected Turbidity, Odor, Oth Chlor / Fluor BTEX	13 Tin ther:	ne Collected: na 9828 P Hori ne): decontamina HT PETRO COD / Total Ma Cate Sample N	12:64 S Type:S ba U-50 Other: ated <u>all</u> tubine: dia CE	t AM DY (ample: [] Filte PERISTA sposable nd/or	Weather: red CUnfill LTTTC r dedicated FAR hophos N/Phos	(FILTER)	bing Other:	(HNO3)

Depth Sounder decontaminated Prior to Placement in Welt: Press IN One Casing Volum Depth of water (from top of well casing): 10.51 ' press 12.3' Well Casing Type/I After 5 minutes of purging (from top of casing): 12.38' Well Casing Type/I Begin purge (time): 10:20 Diameter End purge (time): 10:30 12.38' Diameter Gallons purged: 3.5 GALLOND P 2" Gallons purged: 3.5 GALLOND PH DO Conductivity Time Depth to Purged Purged Water Scan 0.3'41 10:35 11.87 6.2 6.32 1.03 0.3'41 10:35 11.84 1.22 1.23 0.3'40 0.3'40 10:45 11.82 122 4:24 0.3'40 0.3'40 10:45 11.82 122 4:24 0.3'40 0.3'40 10:45 11.82 124 6.32 1.03 0.3'40 10:45 11.82 124 6.3'41 0.3'40 0.3'40 Sampling Data Incellected (mo/dy/yn): 14/113 Time Collected: <th>ollection: 10/14/13</th>	ollection: 10/14/13
Well ID: PP-07 Secure: Yes No Well Condition/Dar Depth Sounder decontaminated Prior to Placement in Well: Yes No One Casing Volum One Casing Volum Depth of water (from top of well casing): 10.51 PrB2 S.2 One Casing Volum Begin purge (time): 10:20 Dr Dr Purge water disposal method: DRUM pH DO Do: 10:32 11.81 L GL GL	rsonnel: T. Stavens
Depth Sounder decontaminated Prior to Placement in Welt: IFYes □ No One Casing Volum Depth of water (from top of well casing): □0.51 ′ prb=10.1′ Well Casing Type/I After 5 minutes of purging (from top of casing): 12 - 38′ Diameter Begin purge (time): //0:20 Diameter End purge (time): //0:20 Diameter Gallons purged: 3 - 5 GALLOND Gallons purged: 3 - 5 GALLOND Time Depth to 0 Vol. pH Do: 35 12.38 4 L 5.64 4.15 IO: 35 11.84 GalL G.241 0.340 IO: 35 11.84 GalL G.241 0.340 IO: 35 11.84 GalL G.341 0.340 IO: 35 11.84 GalL G.341 0.340 IO: 35 11.84 GalL G.341 0.340 IO: 45 11.82 12.2 G.340 0.340 IO: 45 11.82 12.4 G.341 0.340 IO: 45 11.82 12.4 G.341 0.340 IO: 45 11.82 12.4 G.341 0.340 Gallons purged	
Depth of water (from top of well casing): $10.51'$ $ptb = 10.4'$ Well Casing Type/ After 5 minutes of purging (from top of casing): $12 \cdot 38'$ Bagin purge (time): $10:20$ End purge (time): $10:20$ Ballons purge(time): $10:50$ Ballons the formula to the fo	Damage Description: 2" STEEL CASING, CL. B
Depth of water (from top of well casing): $10.51'$ DTB $12.38'$ Well Casing Type/ After 5 minutes of purging (from top of casing): $12.38'$ agin purge (time): $10:20$ End purge (time): $10:20$ Sallons purged: 3.5 GALLOND Duge water disposal method: DRUM Time Depth to DRUM Time Depth to DRUM To Depth to DRUM Time Depth to DRUM 10:25 12.38 $4L$ $5.64'$ 4.15 $6.040.3410.35$ $11.84'$ $6L$ 6.27 1.23 $0.3410.3400.35$ $11.84'$ $6L$ 6.27 1.23 $0.3400.3520.3400.3400.3520.3400.3520.3400.3520.3400.3520.3400.3520.3400.3520.3520.3400.3520.3520.3520.3520.352$	GOUD CUNDITION
After 5 minutes of purging (from top of casing): 12 - 38' alogin purge (time): 10:20 End purge (time): 10:50 Salions purged: 3.5 GALLOND Purge water disposal method: DRUM Time Depth to Vol. pH D0 Conductivity Purged Water disposal method: DRUM Time Depth to Vol. pH D0 Conductivity Purged U = 5.64 4.15 5.64 9.1.21 6.24 1.23 0.3440 10:35 11.94 8L 6.27 1.22 0.340 0:45 11.82 12L 6.24 1.21 0.340 0:45 11.82 12L 6.24 1.21 0.340 0:45 11.82 12L 6.24 1.21 0.340 Date Collected (moldy/yr): 10 114 13 Time Collected: 10:52 12 Sample No: PP-07 Location and De Date Collected with: Bailer DPump Other: Sample Collected with: Type: For Route and State and Stat	lume (gal):
Begin purge (time): 10:10 Diameter 10:50 Callons purged (time): 10:50 Sallons purged: 3.5 GALLONS Durge water disposal method: DRUM Purged 00 Note: 25 12.38 1.87 6L 0.35 11.87 6L 6.24 0.35 11.87 6L 6.24 0.35 11.84 1.84 1.21 6.35 11.82 1.82 124 1.82 124 1.82 124 1.82 124 1.82 124 1.82 144 6.24 1.21 6.341 6.341 1.82 144 6.24 1.21 6.341 6.341 1.82 144 6.24 1.21 6.341 6.341 1.82 144 6.24 1.21 6.341 6.341 1.82 144	pe/Diameter/Screened Interval: 2" STEEL
aregin purge (time): 10:50 and purge (time): 10:50 Saltons purged: 3.5 GALLOND Purge water disposal method: DRUM Time Depth to A Vol. PH Douge water disposal method: DRUM Valer Purged Vol. PH Do Conductivity Valer Purged Vol. PH Do: 25 12.38 II.87 6.2 Vol. PH Conductivity Vol. PH Do: 25 12.38 II.87 6.2 Conductivity 0.340 Date Collected (moldylyr): 0.114113 Time Collected with:	Volume of Schedule 40 PVC Pipe
End purge (time): 10.30 21.30 Saltons purged: 3.5 GALLON! 3.4 Purge water disposal method: DRUM Conductivity Time Depth to A Vol. pH DO Conductivity 10:25 12.38 4 5.64 4.15 6.00 0:35 11.87 6 6.24 1.23 0.340 10:35 11.84 6 6.32 1.03 0.340 10:35 11.84 6 6.32 1.03 0.340 10:35 11.82 122 6.341 0.340 0.340 10:35 11.82 122 6.324 0.340 0.340 10:35 11.82 122 6.341 0.340 0.340 ampling Data 5.64 4.15 0.340 0.340 Sample No: PP-07 Location and De 0.340 0.340 Date Collected (moldylyn): 10.141 15 Time Collected: 10252 10 Sample Decon Procedure: Sample Other: Type: Fei 5 5	(Gal/Linear Ft.) (Los/Linear Ft.)
3.5 GALLONS 3' Purge water disposal method: DRUM Time Depth to A Water Purged 10:25 12.38 11.87 6L 6:30 11.87 10:35 11.87 11.87 6L 6:30 11.87 10:35 11.84 11.81 6.717 10:35 11.84 11.82 12L 6:45 1.03 6:35 11.82 10:40 11.82 11.82 12L 6:45 1.03 6:45 1.03 6:45 1.03 6:45 1.21 6:45 1.21 6:45 1.22 10:45 1.22 10:45 1.22 10:45 1.22 10:45 1.22 10:45 1.22 10:45 1.42 10:45 1.42 10:45 1.42 10:45 1.42 10:45 <td>1.660" 1.380" 0.08 0.64 2.375" 2.067" 0.17 1.45</td>	1.660" 1.380" 0.08 0.64 2.375" 2.067" 0.17 1.45
Purge water disposal method: DRUM Water Purged PH DO Conductivity 10:125 12.38 4 5.64 4.15 6.04 3.341 10:35 11.84 6 6.24 1.23 6.341 10:35 11.84 6 6.24 1.23 6.341 10:35 11.84 6 6.24 1.23 6.340 10:35 11.84 6 6.36 1.03 6.399 10:45 11.84 12 6.36 1.21 6.341 10:45 11.82 12 6.24 1.21 6.341 10:45 11.82 12 6.34 1.33 6.399 10:45 11.82 12 6.24 1.21 6.341 10:45 11.82 12 6.341 0.340 6.391 ampling Data 11.82 12 6.24 1.21 6.341 Sample No: PP-07 Location and De 1.22 1.22 1.24 Date Collected (mo/dy/yr): 10/14/15 Time Collected: 10:52<	3.500" 3.068" 0.38 3.2 4.500" 4.026" 0.66 5.51
Water Purged 10:25 12.38 4 5.64 4.15 6.04 0:35 11.84 6 6.24 1.33 6.341 0:35 11.84 6 6.24 1.23 6.341 0:35 11.84 6 6.24 1.23 6.341 0:45 11.84 6 6.24 1.21 6.340 0:45 11.82 124 6.34 1.21 6.341 0:45 11.82 124 6.24 1.21 6.341 0:45 11.82 124 6.341 6.341 6.341 0:45 11.82 124 6.341 6.341 6.341 0:45 11.82 124 6.341 6.341 6.341 0:45 11.82 124 6.341 6.341 6.341 0:45 11.82 124 6.341 6.341 6.341 0:45 11.82 124 6.341 6.341 6.341 0:46 0:40 1.41 15 1.41 1.41 1.41	6.625" 6.065" 1.5 12.5
$\bullet:So$ $II.8T$ GL $b:2A$ $I.33$ $o.741$ $II.84$ SL $b.777$ $I.23$ $o.741$ $II.82$ $II.2L$ 6.36 $I.03$ $o.740$ $II.82$ $II.2L$ 6.36 $I.03$ $o.739$ $II.82$ $II.2L$ 6.36 $I.23$ $o.739$ $II.82$ $II.2L$ 6.36 $I.23$ $o.739$ $II.82$ IIL 6.24 $I.21$ $o.340$ $II.82$ IIL 6.24 $I.24$ $o.340$ $II.82$ IIL 6.24 $I.21$ $o.340$ $II.82$ IIL 6.24 $I.24$ $o.340$ $III.82$ $III.82$ $III.82$ $III.82$ $III.82$ $III.82$ $III.82$ <	
Image: State of the state	9.7 15.30 64
Image:	1.9 14.75 3
i-45 i1.82 i2L i2L i.21 i.21 i.21 i.24 i-340 i.21 i.21 i.24 i.24 i.24 i.24 i.24 i-340 i-340 i.21 i.24 i.24 i.24 i.24 i-340 i-340 i.21 i.24 i.24 i.24 i.24 i-340 i-340 i.42 i.24 i.24 i.24 i.340 ampling Data Sample No:	3.8 14.85 -7
ampling Data Sample No: PP-07 Date Collected (mo/dy/yr): NO / 14/ 13 Time Collected: //2:52 Type: Ground Water Surface Water Other:	<u>4.3</u> <u>14,89</u> <u>-12</u> 0.0 <u>14,94</u> <u>-13</u>
ampling Data Sample No: PP-07 Date Collected (mo/dy/yr): Noter Collected (mo/dy/yr): Noter Collected (mo/dy/yr): Noter Collected with: Bailer Sample Collected with: Bailer Sample Collected with: Bailer Sample Collected with: Bailer Sample Collected with: Type: Sample Collected with: Type: Sample Decon Procedure: Sample Description (Color, Turbidity, Odor, Other): Pathol Rallyses TPH-D (HCI) Chlor / Fluor (unpres) COD / TOC (H2S04) TPH-G (HCI) Chlor / Fluor (unpres) COD / TOC (H2S04) Coditional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: - Soo mL Amber A Yet Mice A	0.0 14.97 -13
iample No: PP-07 Date Collected (mo/dy/yr): No / 14/13 Time Collected: 10:52 iype: Ground Water Sample Collected with: Bailer Bailer Pump Other: Sample Collected with: Bailer Water Quality Instrument Data Collected with: Type: Image: Sample Decon Procedure: Sample collected with: Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; dispos Sample Description (Color, Turbidity, Odor, Other): Patherise users, Subject on Color, Turbidity, Odor, Other): TPH-D (HCI) Chlor / Fluor (HCI) Chlor / Fluor (unpres) Colditional Information Color (H2SO4) Types of Sample Containers: Quantity: Umil York Umil Kcl	
iample No: PP-07 Date Collected (mo/dy/yr): No / 14/13 Time Collected: 10:52 iype: Ground Water Sample Collected with: Bailer Bailer Pump Other: Sample Collected with: Bailer Water Quality Instrument Data Collected with: Type: Image: Sample Decon Procedure: Sample collected with: Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; dispos Sample Description (Color, Turbidity, Odor, Other): Patherise users, Subject on Color, Turbidity, Odor, Other): TPH-D (HCI) Chlor / Fluor (HCI) Chlor / Fluor (unpres) Colditional Information Color (H2SO4) Types of Sample Containers: Quantity: Umil York Umil Kcl	
Date Collected (mo/dy/yr): 101413 Time Collected: 10:52 Sype: Ground Water Surface Water Other: Samp Sample Collected with: Bailer Depump Other: Type: Sample Collected with: Bailer Depump Other: Type: Vater Quality Instrument Data Collected with: Type: Hanna 9828 Water Quality Instrument Data Collected with: Type: Hanna 9828 Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; dispos Sample Description (Color, Turbidity, Odor, Other): Person element of the state of the sta	
Type: Ground Water Surface Water Other: Sample Sample Collected with: Bailer Pump Other: Type: Nater Quality Instrument Data Collected with: Type: Hanna 9828 Nater Quality Instrument Data Collected with: Type: Hanna 9828 Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; dispos Sample Description (Color, Turbidity, Odor, Other): Petroceum obors, Scient Stricture ample Analyses (HCI) Chlor / Fluor (HCI) Ex (HCI) Ex <	
Sample Collected with: Bailer Pump Other: Type: Type: Type: Nater Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with: Color, Turbidity, Odor, Other): Performed and the processing of	AM Weather: CLEAR SUNNY
Water Quality Instrument Data Collected with: Type: Hanna 9828 Horiba U-50 Other:	ample: 🔲 Filtered D Unfiltered Other:
Water Quality Instrument Data Collected with: Type: Hanna 9828 Sample Decon Procedure: Sample collected with (circle one): decontaminated <u>all</u> tubing; disposes Sample Description (Color, Turbidity, Odor, Other): Perfected with (circle one): decontaminated <u>all</u> tubing; dispose Construction Sample Analyses (HCI) Chlor / Fluor (HCI) Chlor / Fluor (HCI) Example (HCI) Example (HCI) Example (HCI) Chlor / Fluor (HCI) Example	ERISTALTIC
Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposes Sample Description (Color, Turbidity, Odor, Other): Petrocedure with (circle one): decontaminated all tubing; dispose ample Analyses (HCI) M Chlor / Fluor (unpres) COD / TOC (H2SO4) TPH-D (HCI) M Chlor / Fluor (unpres) COD / TOC (H2SO4) TPH-G (HCI) M Chlor / Fluor (Unpres) Total Metals (HNO3) dditional Information Types of Sample Containers: Quantity: Uplicate Sample Numbers: Uplicate Sample Numbers: 40 ml yok ml Hcc 2	
Sample Description (Color, Turbidity, Odor, Other): Performed Service and Odor, Subject Service and Odor, Subject Service and Odor, Subject Service and Odor, Subject Service and Service and Service an	,
ample Analyses TPH-D (HCl) X Chlor / Fluor (unpres) COD / TOC (H2SO4) C TPH-G (HCl) X BTEX (HCl) Y Total Metals (HNO3) C dditional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: - Soo mL AmBER 1 HO ml HCL 2	
TPH-D (HCI) X Chlor / Fluor (unpres) C COD / TOC (H2SO4) C TPH-G (HCI) X BTEX (HCI) Y Total Metals (HNO3) C dditional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: - Soo mL AmBER I HO ml HCL 2	SHEEN
TPH-G (HCI) X BTEX (HCI) X Total Metals (HNO3) E dditional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: - 500 mL AMBER 1 HUml YUA m/HcL 2	
TPH-G (HCI) X BTEX (HCI) X Total Metals (HNO3) C dditional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: 1 - 500 mL AmBER 1 HOml yok HCL 2) Orthophos (FILTER) Diss. Metals (HNO3)
dditional Information Types of Sample Containers: Quantity: - 500 mL AmBER YUml voa HcL	
Types of Sample Containers: Quantity: Duplicate Sample Numbers: - 500 mL AMBER 1 40 ml yok ml HcL 2	
40 ml yor w/ Hcl 2	
40 ml you my Her 2	Comments:
40 m1 VOA Z	
TH P	Die tal este
Signature: Tecker Sum	Date: 10/14/13

.

	ct Name:	KPLY			Date of Colle	ection:	p/15/13	3	
Project	Number: 😕	PLT RI G	on san	PLING	Field Pers		STEVE		
^D urge Dat	ta								
Well ID:	P2-1	13	Secure: 🚺	Yes 🗌 No	Well Condition/Da	mage Descrip	tion: <u>STA</u>	NOING 4	ATER/MUD ON
		TUP OF	WELL,	NATER	IN AND MO	NUMEN	T. OTHE	RUDE 11	, and cond.
	der decontaminate			Yes 🗌 No	One Casing Volum	ne (gal):			
Depth of wa	ter (from top of we	ell casing):	10.49		Well Casing Type/	Diameter/Scre	eened Interva	1 PVC	
After 5 minu	tes of purging (fro	m top of casing):	11.31	,	-	Volum	e of Schee	dule 40 PVC F	Pipe
Begin purge	(time):	11:5%			Diameter	O,D,	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (t	ime):	121 00500	:28	_	1 ½" 2"	1.660" 2.375"	1,380" 2.067"	0.08 0.17	0.64 1.45
Gallons purç	ed: DRY	3.5 Gal	quens		3" 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51
Purge water	disposal method:				6"	6.625"	6.065"	1.5	12.5
Time	Depth to Water	Vol. Purged	рН	mgle	Conductivity	NT u Turbidity		IP ORP	Comments
11:57	11.39	31	6.38	2.30	0.519	20.7	18.		
12:02	11.29'	42	7.44	5.03	0.784	4.7	16.:		
12:07	11.25'	62	7.18	4.10	0.996	1.4			-
12:17	11.24'	82	7.13	3.63	0.809	0.9	15.1		-
12:22	11.24'	126	7.00	2.48	0.816	0.0	14.9		
12:27	11.21'	IHL	6.97	2.84	6.816	0.0	14.		-
Sampling	Data								
	ναια								
		7.17					20.12	0 1/ 5	0
Sample No:	P								Ran Bottom 6F
Sample No:	P								Ran Bottom of
Sample No:	P ed (mo/dy/yr):	10/15/13	Tin	ne Collected:	230 0	AM 29 PM	Weather:	CLEAR IS	
Sample No: Date Collecto Type: 🔀 Gro	P ed (mo/dy/yr): bund Water 🔲 S	10/15/13 urface Water O	Tin	ne Collected:	230 0	AM 12 PM	Weather:	CLEAR IS	UNNY
Sample No: Date Collecto Type: 28 Gro Sample Colle	Ped (mo/dy/yr): bund Water	urface Water O er Pump Of	Tin ther: ther:	ne Collected:	230 D Samp 		Weather: I II Unfiltere	CLEAR / St	UWNY
Sample No: Date Collecte Type: 2 Gro Sample Colle Water Quality	P ed (mo/dy/yr): bund Water	urface Water O ler P Pump Of Collected with:	ther: ther: ther: Type: 🔲 Hanr	ne Collected:	230 Samp Samp Type: iba U-50 Other:		Weather: Unfiltere	CLEAR / St	UWNY
Sample No: Date Collecte Type: 28 Gro Sample Colle Water Quality Sample Deco	Ped (mo/dy/yr): ound Water _ S ected with: _ Bail y Instrument Data on Procedure: S	urface Water O er 4 Pump O Collected with:	ther: ther: Type: Hann with (circle on	ne Collected: na 9828 _ D Hor ne): decontamin	Z 30 Samp Type: iba U-50 Other: ated <u>all</u> tubing: dispos	AM B PM	Weather: Unfiltere	CLEAR / St	UWNY
Sample No: Date Collecte Type: 28 Gro Sample Colle Water Quality Sample Deco	Ped (mo/dy/yr): ound Water _ S ected with: _ Bail y Instrument Data on Procedure: S	urface Water O er 4 Pump O Collected with:	ther: ther: Type: Hann with (circle on	ne Collected: na 9828 _ D Hor ne): decontamin	230 Samp Samp Type: iba U-50 Other:	AM B PM	Weather: Unfiltere	CLEAR / St	UWNY
Sample No: Date Collecte Type: D Gro Sample Colle Water Quality Sample Deco	Ped (mo/dy/yr): bund Water	urface Water O er 4 Pump O Collected with:	ther: ther: Type: Hann with (circle on	ne Collected: na 9828 _ D Hor ne): decontamin	Z 30 Samp Type: iba U-50 Other: ated <u>all</u> tubing: dispos	AM B PM	Weather: Unfiltere	CLEAR / St	UWNY
Sample No: Date Collector Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deso Sample A	P ed (mo/dy/yr): bund Water [] S ected with: [] Bail y Instrument Data on Procedure: S cription (Color, Tur nalyses	IG IS I 3 urface Water O er Pump Of Collected with: Sample collected rbidity, Odor, Oth	Tin ther: Type: Hann with (circle on her):	ne Collected: na 9828 DC Hor ne): decontamin	Z 30 Samp Samp Type: Pl iba U-50 Other: ated all tubing: dispos	AM E P ole: Filtered FRISTAL	Weather: Unfiltere	CLEAR / St	UWNY
Sample No: Date Collecto Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deco	Ped (mo/dy/yr): bund Water	urface Water O er 4 Pump O Collected with:	Tin ther: Type: Hann with (circle on her):	ne Collected: na 9828 DC Hor ne): decontamin	Z 30 Samp Samp Type: P iba U-50 Other: ated all tubing: dispos	AM E P ole: Filtered FRISTAL	Weather: I D Unfiltere .TLC edicate	CLEAR / S	UWNY
Sample No: Date Collector Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deso Sample A	P ed (mo/dy/yr): bund Water [] S ected with: [] Bail y Instrument Data on Procedure: S cription (Color, Tur nalyses	IG IS I 3 urface Water O er Pump Of Collected with: Sample collected rbidity, Odor, Oth	Tin ther: Type: [] Hann with (circle or her):	ne Collected:	Z 30 Samp Type: Plant Type: Plant iba U-50 Other: ated all tubing dispose Core, NC DOR, NC SNI TOC (H2SO4)	AM E PA ole: Filtered FRISTAL able and/or de EEN Orthog	Weather: I d Unfiltere CTLC edicate Silico	CLEAR / State	Jother:
Sample No: Date Collector Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deco Sample Deco Sample A	ed (mo/dy/yr): bund Water [] S ected with: [] Bail y Instrument Data on Procedure: S cription (Color, Tur malyses (HCI)	Io IS IS urface Water O ler Pump Of Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX	Tin ther: Type: [] Hann with (circle or ner):	ne Collected:	Z 30 Samp Type: Plant Type: Plant iba U-50 Other: ated all tubing: dispose dispose bork; Nc SNI TOC (H2SO4) E	AM E PA ole: Filtered AM Filtered AM Filtered AM Filtered Filtered AM Filtered AM Filte	Weather: I d Unfiltere CTLC edicate Silico	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deco Sample Deso Sample A	ed (mo/dy/yr): bund Water [] S ected with: [] Bail y Instrument Data on Procedure: S cription (Color, Tur nalyses (HCI) []	Io IS IS urface Water O er Pump Or Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX	Tin ther: Type: Hann with (circle on her): (unpres) (HCl)	ne Collected:	Z 30 Samp	AM E PA ole: Filtered AM Filtered AM Filtered AM Filtered Filtered AM Filtered AM Filte	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deco Sample Deco Sample A CTPH-D TPH-G	ed (mo/dy/yr): bund Water [] S bund Water [] S b	Io IS IS urface Water O er Pump Of Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX n ers: Quantit	Tin ther: Type: Hann with (circle on her): (unpres) (HCl)	ne Collected:	Z 30 Samp	AM E PA ole: Filtered AM Filtered AM Filtered AM Filtered Filtered AM Filtered AM Filte	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: 2 Gro Sample Colle Water Quality Sample Deco Sample Deco Sample Deco Sample Deco Sample A CTPH-G TPH-G	ed (mo/dy/yr): bund Water [] S bund Water [] S bu	Io IS IS urface Water O er Pump Of Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX on ers: Quantit	Tin ther: Type: Hann with (circle on her): (unpres) (HCl)	ne Collected:	Z 30 Samp	AM E PA ole: Filtered AM Filtered AM Filtered AM Filtered Filtered AM Filtered AM Filte	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: Date Collector Sample Collector Sample Decor Sample Decor Sample Decor Sample Decor Sample Decor Sample A TPH-D TPH-G	ed (mo/dy/yr): bund Water [] S bund Water [] S b	Io I IS I I3 urface Water O er Pump Or Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX In ers: Quantil Charter Pump Or Collected with: Chlor / Fluor BTEX	ther: ther: Type: □ Hann with (circle on her): (unpres) (HCl) ty: Dupli	ne Collected:	Z 30 Samp	AM E PA ole: Filtered AM Filtered AM Filtered AM Filtered Filtered AM Filtered AM Filte	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: Decords Sample Collector Water Quality Sample Decords Sample Decords Sample Decords Sample Decords Sample Decords Sample Decords Sample Decords Sample Decords Sample Collector Sample Collector Sample Sample A TPH-D TPH-G Additiona Types of S	ed (mo/dy/yr): bund Water [] S bund Water [] S b	Io I IS I I3 urface Water O er Pump Or Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX In ers: Quantil Charter Pump Or Collected with: Chlor / Fluor BTEX	Tin ther: ther: Type: Hann with (circle or her): CLEN ty: Duplin 2	ne Collected:	Z 30 Samp	AM E PA ole: Filtered AM Filtered AM Filtered AM Filtered Filtered AM Filtered AM Filte	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: Decoret Sample Collector Water Quality Sample Decoret Sample Decoret TPH-D TPH-D TPH-D TPH-D TPH-D TPH-D C	ed (mo/dy/yr): bund Water [] S bund Water [] S b	Io I IS I I3 urface Water O er Pump Or Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX In ers: Quantil Charter Pump Or Collected with: Chlor / Fluor BTEX	Tin ther: ther: Type: Hann with (circle or her): CLEN ty: Duplin 2	ne Collected:	Z 30 Samp	AM E PA ole: Filtered FRISTAL abje and/or de EEN Orthog	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: Decoret Sample Collector Water Quality Sample Decoret Sample Decoret TPH-D TPH-D TPH-G	ed (mo/dy/yr): bund Water [] S bund Water [] S b	Io I IS I I3 urface Water O er Pump Or Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX In ers: Quantil Charter Pump Or Collected with: Chlor / Fluor BTEX	Tin ther: ther: Type: Hann with (circle or her): CLEN ty: Duplin 2	ne Collected:	Z 30 Samp	AM E PA ole: Filtered FRISTAL abje and/or de EEN Orthog	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals
Sample No: Date Collector Type: Decoret Sample Collector Water Quality Sample Decoret Sample Decoret TPH-D TPH-D TPH-D TPH-D TPH-D TPH-D C	ed (mo/dy/yr): bund Water [] S bund Water [] S b	Io I IS I I3 urface Water O er Pump Or Collected with: Sample collected rbidity, Odor, Oth Chlor / Fluor BTEX In ers: Quantil Charter Pump Or Collected with: Chlor / Fluor BTEX	Tin ther: ther: Type: Hann with (circle or her): CLEN ty: Duplin 2	ne Collected:	Z 30 Samp Type: Type: Iba U-50 Other: ated all tubing: dispose DOR, NC DOR, NC TOC (H2SO4) Ietals (HNO3)	AM E PA ole: Filtered FRISTAL abje and/or de EEN Orthog	Weather: I d Unfiltere CTLC edicate Silico phos (Fil Phos (N2	CLEAR / Solution	Other: s. Metals

Project Name: <u> </u>	Date of Colle	ection:	10/	15/13	
Project Number: + PLY RI GW SAMPLING	Field Perso	onnel:		EVENS	
urge Data					
Well ID: PP-21 Secure: 12 Yes I No	Well Condition/Dar	nage Descrip	otion:	+ NEW	
Depth Sounder decontaminated Prior to Placement in Well: 🛱 Yes 🔲 No	One Casing Volum	e (gal);			
17-1					
After 5 minutes of purging (from top of casing): 14.01				dule 40 PVC F	1.
Begin purge (time): 9:17-	– Diameter	O.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 1:48	1 ¼" 2"	1.660"	1.380" 2.067"	0.08	0.64
Gallons purged: 315 GALLONS	3"	2.375" 3.500"	3.068"	0.38	3.2
Purge water disposal method: DRum-IDw	- 4" 6"	4.500" 6.625"	4.026" 6.065"	0.66 1.5	5.51 12,5
Time Depth to Vol. pH DO Water Purged Mathematical	Conductivity	NTU Turbidity		np ORP	Comments
1:22 14.01' 2L 7.43 17.03		121	9.9	9 101	
7:22 14.05' 42 6.19 3.09	8.20	0.0	12.5		
9:32 14.05' 6L 6.27 1.66	8.65	00	12.9	-	
9:37 14.05 8L 6.29 1.54 9:42 14.04 10L 6.30 1.54	8.73	0.0	<u> </u>		
9:42 14.00 10L 6.30 1.25 9:47 14.03' 12L 6.31 1.10	9.14	0.0	<u> </u>		
ampling Data					
Date Collected (mo/dy/yr): 10/15/13 Time Collected: 4	9:50 \$	AM 🗖	Weather:	CLEAR / SUI	nnY
Date Collected (mo/dy/yr): 10/15/13 Time Collected: 6	9:50 \$ Samp	AM 🗖	Weather: d tt -Unfilter	clonel/sui	nnY
Date Collected (mo/dy/yr): IO/IS/IS Time Collected: G Type: Sample Collected with: Bailer Pump Other: G	Type: P	AM 🗖 Ne: 🗋 Filtere	Weather: d thunfilten	CLGAL/SUI	nnY
Date Collected (mo/dy/yr): IV IS I3 Time Collected: G Type: Sample Collected with: I Bailer Pump Other: G Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor	Type: P	AM 🗆 Die: 🗆 Filtere	Weather: d #Unfilter	CLGAL/SUI	
Date Collected (mo/dy/yr): 10/15/13 Time Collected: 6	Type: P Type: P riba U-50 Other: uated <u>all</u> tubing; dispos	AM D	Weather: d the Unfilten	ed Other:	
Date Collected (mo/dy/yr): 10/15/13 Time Collected: 7 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample collected with (circle one): decontamina	Type: P Type: P riba U-50 Other: uated <u>all</u> tubing; dispos	AM D	Weather: d the Unfilten	ed Other:	
Date Collected (mo/dy/yr): 10 15 13 Time Collected: C Type: GGround Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 B Hor Sample Decon Procedure: Sample collected with (circle one): decontamine	Type: P Type: P riba U-50 Other: uated <u>all</u> tubing; dispos	AM D	Weather: d the Unfilten	ed Other:	
Date Collected (mo/dy/yr): IV/IS/I3 Time Collected: I Type: Image: Ground Water Image:	Type: P Type: P riba U-50 Other: uated <u>all</u> tubing; dispos	AM D	Weather: d the Unfilten	ed Other:	
Date Collected (mo/dy/yr): IV/IS/IS Time Collected: Image: Collected (mo/dy/yr): Type: Image: Collected (mo/dy/yr): Image: Collected (mo/dy/yr): </td <td>?:50 Samp Type: P riba U-50 Other: mated <u>all</u> tubing; dispos SN OD</td> <td>AM D</td> <td>Weather: d to Unfilter LTIC</td> <td>on and poly tubing</td> <td></td>	?:50 Samp Type: P riba U-50 Other: mated <u>all</u> tubing; dispos SN OD	AM D	Weather: d to Unfilter LTIC	on and poly tubing	
Date Collected (mo/dy/yr): 10/15/13 Time Collected: 7 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 B Hor Sample Decon Procedure: Sample collected with (circle one): decontamine Sample Description (Color, Turbidity, Odor, Other): Sample Analyses	?:50 Samp Type: P Type: P riba U-50 Other: miba U-50 Other: mated <u>all</u> tubing; dispos SN OD TOC (H2SO4)	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d to Unfilter CTIC	on and poly tubing	•••••
Date Collected (mo/dy/yr): IV IS IS Time Collected: IS Type: Is IS IS IS Time Collected: IS Type: Is	?:50 Samp Type: P Type: P riba U-50 Other: miba U-50 Other: mated <u>all</u> tubing; dispos SN OD TOC (H2SO4)	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d to Unfilter CTIC	CLEAN/SUI ed Other: on and poly tubing GE	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS IS Time Collected: Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample Collected with: Color, Turbidity, Odor, Other): Supple Analyses TPH-D (HCI) HCI	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	CLEAN/SUI ed Other: on and poly tubing GE	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS IS Time Collected: IS Type: IS Ground Water Surface Water Other: IS IS <td>P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P</td> <td>AM Filtere Filtere Filtere Filtere Able and/org</td> <td>Weather: d</td> <td>ccan / sur</td> <td>S. Metals (HNO3)</td>	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS I3 Time Collected: Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample Collected with: Color, Turbidity, Odor, Other): Substant Sheet TPH-D (HCI) HCling Chlor / Fluor COD / TPH-G (HCI) BTEX (HCI) Duplicate Sample N Color Duplicate Sample N L Amber	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS IS Time Collected: Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample collected with: Color, Turbidity, Odor, Other): Support Support (HCI) HCI HCI HCI Chlor / Fluor (unpres) COD / TPH-D (HCI) BTEX (HCI) BTEX (HCI) Duplicate Sample N Code Sample Containers: Quantity: Duplicate Sample N Duplicate Sample N Support I L Amber	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS I3 Time Collected: Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Description (Color, Turbidity, Odor, Other): Sample Description (Color, Turbidity, Odor, Other): Supple Analyses TPH-D (HCI) Chlor / Fluor (unpres) COD / Total M Codditional Information Types of Sample Containers: Quantity: Duplicate Sample N Code Sample Containers: Quantity: Duplicate Sample N Code Sample Containers: Quantity: Upublicate Sample N Code Sample Containers: Quantity: Code Sample Containers: Quantity: Code Sample Containers: Code Sample Containers: Quantity: Code Sample Containers: Code Sample C	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS IS Time Collected: C Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample collected with: Circle one): decontamine Sample Description (Color, Turbidity, Odor, Other): Surface Water Surface Water TPH-D (HCI) Chlor / Fluor (unpres) COD / TPH-G (HCI) ETEX (HCI) Total M Additional Information I Duplicate Sample N Types of Sample Containers: Quantity: Duplicate Sample N I Amber I Yow Mark I I	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS IS Time Collected: C Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample collected with: Circle one): decontamine Sample Description (Color, Turbidity, Odor, Other): Surface Water Surface Water TPH-D (HCI) Chlor / Fluor (unpres) COD / TPH-G (HCI) ETEX (HCI) Total M Additional Information I Duplicate Sample N Types of Sample Containers: Quantity: Duplicate Sample N I Amber I Yow Mark I I	P:50 Samp Type: P Type: P riba U-50 Other: P riba U-50 No OD TOC (H2SO4) P Metals (HNO3) P	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)
Date Collected (mo/dy/yr): IV IS IS Time Collected: C Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828 Hor Sample Decon Procedure: Sample collected with: Circle one): decontamine: Sample Description (Color, Turbidity, Odor, Other): Surface Water Surface Water TPH-D (HCI) Chlor / Fluor (unpres) COD / TPH-G (HCI) EX (HCI) Total M Additional Information I Duplicate Sample N Types of Sample Containers: Quantity: I Duplicate Sample N I Amber I I Yow Mark I I I	P:50 Samp Type: P Type: P riba U-50 Other: nated <u>all</u> tubing; dispos No OD TOC (H2SO4) Metals (HNO3)	AM Filtere Filtere Filtere Filtere Able and/org	Weather: d	ccan / sur	S. Metals (HNO3)

Project Name: PP-19		Date of Colle	ection:	10,	115/13		
Project Number: K PLY RI Gw	SAMOLINICS	Field Personnel:		T. STEVENS			
Purge Data						1	
Well ID: PP - 18 Se	ecure: 🕼 Yes 📋 No	Well Condition/Dar	nage Descrij	ption: Good	D CONDIT	ION	
Depth Sounder decontaminated Prior to Placement	in Well: 🔯 Yes 📋 No	One Casing Volum	ie (gal):				
Depth of water (from top of well casing):	22	Well Casing Type/	Diameter/Sci	reened Interval:			
After 5 minutes of purging (from top of casing):	2.40	-	Volum	e of Sched	ule 40 PVC P		
		Diameter	O.D.	I.D. (0	Volume Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)	
A . A		1 ¼" 2"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64 1.45	
Gallons purged: 4 GALLONS		3″ 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5,51	
Purge water disposal method	IDW	6"	6.625"	6.065"	1.5	12.5	
Time Depth to Vol. Water Purged	pH DO	Conductivity	Turbidit			Comments	
	+.87 12.67		216	8.17			
	<u>hio</u> <u>3.01</u>	0.937	0.8	11.3			
	.92 2.31 .74 2.02	0.945	0.0	12.5			
	.71 1.91	0.971	0.0	12.61			
	2.56	0.974	0.0	12.6			
			41				
PP-18 Date Collected (mo/dy/yr);		810 1	AM 🗆	Weather:	2' FRA	n Bottom of W	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other:	Time Collected:	Location and De 8 9 9 9 9 9 9 9 9	AM C AM C CEAQ Dele: SFiltere FRISTACT	P-18 @ Weather: Or the ed to Unfiltered	2' FRA LEAR, COL AS d Other:	D	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type:	Time Collected:	Location and De Control Control Contr	AM C AM C CEAD Dele: DS Filtere RISTACT	P-18 @ Weather: or the or the Unfiltered TIC	2' FRA LEAR, COL AS d Other:	D	
Gampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with	Time Collected:	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispose	AM C AM C CEAD Dole: & Filtere RISTACT	Weather: Weather: d	2 2' FRA CEAR, COL S d Other:	• Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with	Time Collected:	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispose	AM C AM C CEAD Dole: & Filtere RISTACT	Weather: Weather: d	2 2' FRA CEAR, COL S d Other:	• Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other):	Time Collected:	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispose	AM C AM C CEAD Dole: & Filtere RISTACT	Weather: Weather: d	2 2' FRA CEAR, COL S d Other:	• Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other):	Time Collected:	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispose	AM C CEAD Dele: S Filtere RISTALT	Weather: Weather: d	2 2' FRA CEAR, COL S d Other:	• Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses	Time Collected: e: □ Hanna 9828 Hori a (circle one): decontamina GKS0LINE OD	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispos CR, Science CG, CG, CA	AM C CEAD CEAD Sele: Selector Se	Weather: C Weather: C ad H Unfiltered TIC Bedicated silicon	2' FRA LEAR, COL Souther:	• Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: GG Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): Sample Analyses	Time Collected:	Location and De BO Samp Type: PE ba U-50 Other: ated <u>all</u> tubing; dispose CR, SLIME TOC (H2SO4) [AM C CEAS Del: DE Filtere FRISTACT	P-18 e Weather: d to Unfiltered TC Bedicated silicon CC TIM Bedicated silicon CC TIM	2' FRA LEAR, COL Souther:	о Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): Sample Analyses (HCI) Chlor / Fluor (HCI) DTEX		Location and De BO E Samp Type: PE ba U-50 Other: ated all tubing; dispose CR, Science TOC (H2SO4) E	AM C CEAS Del: DE Filtere FRISTACT	P-18 e Weather: d to Unfiltered TC Bedicated silicon CC TIM Bedicated silicon CC TIM	2 2' FRA	Other:	
Gampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with: Type Sample Description (Color, Turbidity, Odor, Other): Gample Analyses TPH-D (HCI) GTEX Additional Information Types of Sample Containers: Quantity:		Location and De BO Samp Type: PE ba U-50 Other: ated <u>all</u> tubing; dispose CR, SLIME TOC (H2SO4) [etals (HNO3) [Aumbers:]	AM C CEAS Del: E Filtere RISTACT	P - IE E Weather: ad Unfiltered IC Unf	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	
ampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: BG Ground Water Surface Water Other: Sample Collected with: Bailer Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-D (HCI) G Chlor / Fluor TPH-G (HCI) G ETEX Additional Information	Time Collected: Time Collecte	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispos CR, SCIAH TOC (H2SO4) [etals (HNO3) [Numbers:	AM C AM C CEAD	P-IE C Weather: C Officered Pd Dufiltered Tic Dedicated silicon Com Tin ophos (Fill I/Phos (N25) C Mot Com	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	
ampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: A Ground Water Sample Collected with: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-B (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: 1 L AMPER		Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispose CR SLIME TOC (H2SO4) [etals (HNO3) [Numbers:	AM C AM C CEAD	P - IE E Weather: ad Unfiltered IC Unf	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	
ampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: A Ground Water Surface Water Other: Sample Collected with: Sample Collected with: Data Collected with: Type Sample Decon Procedure: Sample collected with: Type Sample Description (Color, Turbidity, Odor, Other): ample Analyses TPH-B (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: 1 L AMPER [Sconce Ample Analyse [Sconce Ample Ample Analyse [Sconce Ample Ample Analyse [Sconce Ample Ample Ample Ample Ample Ample Analyse [Sconce Ample	Time Collected: Time Collecte	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispos CR SC SC CR SC SC SC SC SC SC SC SC SC SC	AM C AM C CEAD	P-IE C Weather: C Officered Pd Dufiltered Tic Dedicated silicon Com Tin ophos (Fill I/Phos (N25) C Mot Com	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	
Fampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Sample Decon Procedure: Sample collected with: Type: Sample Description (Color, Turbidity, Odor, Other): Sample Collected with: Type: TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity: I AmpEr [Score mathematical Mathematis Mathematis Mathematis Mathematical Mathematical Mathematis Mat	Time Collected: Time C	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispos CR SC SC CR SC SC SC SC SC SC SC SC SC SC	AM C AM C CEAD	P-IE C Weather: C Officered Pd Dufiltered Tic Dedicated silicon Com Tin ophos (Fill I/Phos (N25) C Mot Com	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: A Ground Water Surface Water Other: Sample Collected with: Sample Collected with: Data Collected with: Type Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): Sample Analyses (HCI) Chlor / Fluor TPH-B (HCI) Chlor / Fluor TUPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: 1 L AMPER Kent Amper Mark 1 Komit (Opt of bick 7	Time Collected:	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispos CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC CR SC SC CR SC SC SC SC SC SC SC SC SC SC	AM C AM C CEAD	P-IE C Weather: C Officered Pd Dufiltered Tic Dedicated silicon Com Tin ophos (Fill I/Phos (N25) C Mot Com	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	
Sampling Data Sample No: PP-18 Date Collected (mo/dy/yr): 10/15/13 Type: A Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) Chlor / Fluor Types of Sample Containers: Quantity: I L AMPER [Scon L AMPER J Comp (OPE of bloc) 9	Time Collected: Time C	Location and De BO Samp Type: PE ba U-50 Other: ated all tubing; dispos CR, SCIMA TOC (H2SO4) [etals (HNO3) [Numbers: CISTED	AM C AM C CEAD	P-IE C Weather: C Officered Pd Dufiltered Tic Dedicated silicon Com Tin ophos (Fill I/Phos (N25) C Mot Com	2' FRA 2:53:2, Color 0 Other: in and poly tubing	Other:	

Project Name: <u>kPLY</u>	Date of Colle	ection:	1	0/15/13		
Project Number: KPLY GW &I Sampun						
urge Data						
Well ID: PP-19 Secure: PYes D No	Well Condition/Da	mage Descri	ption: G	ON CON	DITIM- 7	BOLT
			1	S MISS	ING FOR	
Depth Sounder decontaminated Prior to Placement in Well: 📴 Yes 🛛 🛽	lo One Casing Volun	ne (gal):				LIL
Depth of water (from top of well casing):	Well Casing Type/	Diameter/Sc	reened Inte	rval:		
After 5 minutes of purging (from top of casing): 11: 80/		Volum	ne of Sch	edule 40 P	/C Pipe	
Begin purge (time): 6:28	Diameter	O.D.	I.D.	Volume (Gal/Linear F	t) (Lbs/Line	
End purge (time):	1 ¼" 2"	1.660" 2.375"	1.380" 2.067"	0.08	0.64	
Sallons purged: 2.5 GALLONS	3"	3.500" 4.500"	3,068" 4,026"	0.38 0.66	3,2 5.51	
Purge water disposal method: DRvm - 1 DW	6"	6.625"	6.065"	1.5	12.5	
Time Depth to Vol. pH DU Water Purged	Conductivity	NTV Turbidi			N IRP C	comments
6:33 11.80' 1L 6.35 12.5		227		.81 14	Station 2-4	
<u>6:38</u> <u>11.77</u> <u>3L</u> <u>6.55</u> <u>5.81</u>	1.39	0.0			and the second sec	IDITL READ
6:43 11.76 54 L 6.93 3.91 6:48 11.77 6L 7.17 3.28	2.11	0.0			0.03	Y AN ERRO
6:53 11.74 82 7.25 3.20		0.0				
2:58 11.77' 10L 7.28 3.40		0.0			-6	
ample No: PP-)9					FROM BUTT	
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: Hanna 9828	: Sam Sam Type:P Horiba U-50 Other:	AM D	Weather: ed ککتر Unfil	CLEAR	(m), 1	DARK
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other: Surface Water Other: Sample Collected with: I Bailer Pump Other: Image: Collected with: Nater Quality Instrument Data Collected with: Type: Hanna 9828 Image: Collected with Sample Decon Procedure: Sample collected with (circle one): decontained with	: Sam Sam Type: Horiba U-50 Other: minated <u>all</u> tubing; dispos	AM D	Weather: ed ککتر Unfil	CLEAR	(m), 1	DARK
ampling Data Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Corrected (mo/dy/yr): 10/15/13 Time Collected Sample Collected with: D sample Collected with: D sample Collected with: Type: Water Quality Instrument Data Collected with: Type: Hanna 9828 D Sample Decon Procedure: Sample collected with (circle one): deconta Sample Description (Color, Turbidity, Odor, Other): CLEME, No ample Analyses Colected Sample Collected	: Sam Sam Type: Horiba U-50 Other: minated <u>all</u> tubing; dispos	AM D	Weather: ed ککتر Unfil	CLEAR	(m), 1	DARK
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other:	: Sam Sam Type: Horiba U-50 Other: minated <u>all</u> tubing; dispos	AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR	ubing Other:	DARK
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other:	: 7:00 Sam Sam Type: P Horiba U-50 Other: minated <u>all</u> tubing; dispose ODOK	AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR tered Other: ilicon and poly to (FILTER)	ubing Other:	(HNO3)
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other: Surface Water Other: Sample Collected with: Bailer Pump Other: Surface Water Quality Instrument Data Collected with: Type: Water Quality Instrument Data Collected with: Type: Hanna 9828 Surface Water Quality Instrument Data Collected with: Type: Hanna 9828 Surface Water Quality Instrument Data Collected with: Type: Hanna 9828 Surface Water Quality Instrument Data Collected with: Type: Hanna 9828 Surface Water Quality Instrument Data Collected with: Type: Hanna 9828 Surface Water Quality Instrument Data Collected with: Type: Hanna 9828 Surface Water Quality: No Sample Decon Procedure: Sample collected with: Collected with: Clears, No Surface Water Quality: Clears, No ample Analyses Surface Chlor / Fluor (unpres) Collected Clears Collected Clears TPH-G (HCl) Chlor / Fluor (unpres) Collected Clears Collected Clears Global Information Types of Sample Containers: Quantity: Duplicate Sample	Sam Type: P Horiba U-50 Other: minated <u>all</u> tubing; disposed DD / TOC (H2SO4) [al Metals (HNO3) [AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR tered Other: ilicon and poly to (FILTER)	ubing Other:	(HNO3)
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other:	Sam Type: P Horiba U-50 Other: minated <u>all</u> tubing; disposed DD / TOC (H2SO4) [al Metals (HNO3) [AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR tered Other: ilicon and poly tr (FILTER) [] (N2SO4) []	ubing Other:	(HNO3)
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Sype: Ground Water Surface Water Other:	Sam Type: P Horiba U-50 Other: minated <u>all</u> tubing; disposed DD / TOC (H2SO4) [al Metals (HNO3) [AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR tered Other: ilicon and poly tr (FILTER) [] (N2SO4) []	ubing Other:	(HNO3)
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other:	Sam Type: P Horiba U-50 Other: minated <u>all</u> tubing; disposed DD / TOC (H2SO4) [al Metals (HNO3) [AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR tered Other: ilicon and poly tr (FILTER) [] (N2SO4) []	ubing Other:	(HNO3)
Sample No: PP-19 Date Collected (mo/dy/yr): 10/15/13 Time Collected Type: Ground Water Surface Water Other:	Sam Type: P Horiba U-50 Other: minated <u>all</u> tubing; disposed DD / TOC (H2SO4) [al Metals (HNO3) [AM D ple: Filtere FRISTAN sable and/or Orth	Weather: ed JPUnfil Cedicated s ophos	CLEAR tered Other: ilicon and poly tr (FILTER) [] (N2SO4) []	ubing Other:	(HNO3) □

k

Project Name:	Date of Collection: 10/15/13
Project Number: Phyles Kay	Field Personnel:
Purge Data	
Well ID: Secure: Well	No Well Condition/Damage Description: New
Depth Sounder decontaminated Prior to Placement in Well: () res	No One Casing Volume (gal):
Depth of water (from top of well casing):	Well Casing Type/Diameter/Screened Interval:
After 5 minutes of purging (from top of casing): 3.61	Volume of Schedule 40 PVC Pipe
Begin purge (time): 12:00	Diameter O.D. I.D. Volume (Gal/Linear Ft.) Weight of Water (Lbs/Lineal Ft.)
End purge (time):	
Gallons purged:	3" 3.500" 3.068" 0.38 3.2 4" 4.500" 4.026" 0.66 5.51
Purge water disposal method: 55 gal down	$L = \frac{6"}{M} \frac{6.625"}{6.065"} \frac{6.065"}{1.5} \frac{1.5}{12.5}$
Time Depth to Vol. pH M26 Water Purged	Conductivity Turbidity Temp ORP Sal Comments
12:05 13.61 0.20 6.83 3.7	17 1.2 13 13.3 216 0.1 0.8
12:10 1 0.10 6.69 2.9	0 1.2 110 13.4 170 " "
2:16 0.15 6.02 2.4	2 1.2 18 13.4 99 " 0.7
2:25 13.64 1.15 6.56 2.1	$\frac{1}{0}$ $\frac{1}{12}$ $\frac{19}{17}$ $\frac{13.3}{12.3}$ $\frac{32}{-11}$ $\frac{1}{11}$ $\frac{1}{11}$
1:30 11 1.THER 654 2.1	$\frac{1}{1} \frac{1}{1} \frac{1}{15} \frac{13.3}{12.4} \frac{1}{57} \frac{1}{4} \frac{1}{10} \frac{1}{10}$
Sampling Data	
Sample No: PP-2-D	
	tocation and Depth: d: <u>435</u> □ AM Ø Weather: Sum 65'
	Sample: 🛛 Filtered 🖉 Unfiltered Other:
Sample Collected with: Bailer Ump Other:	
Water Quality Instrument Data Collected with: Type: 🗆 Hanna 9828	Horiba U-50 Other: K- Jo
Sample Decon Procedure: Sample collected with (circle one): decont	taminated all tubing; disposable and/or dedicated silicon and poly tubing Other New Au
Sample Description (Color, Turbidity, Odor, Other):	
ample Analyses	
TPH-D (HCI) 🔣 Chlor / Fluor (unpres) 🗆 Cd	OD / TOC (H2SO4) Conthophos (FILTER) Diss. Metals (HNO3)
ТРН-G (НСІ) 🔀 ВТЕХ (НСІ) 🛒 То	otal Metals (HNO3) TKN/Phos (N2SO4) VOCs (HCI)
dditional Information	
Types of Sample Containers: Quantity: Duplicate Samp	ple Numbers: Comments:
SOD MI Amber 1	
VDA2 4	
Signature:	Date: 10/13

	Date c	f Collection		10/15/13
Project Number: K ILY		Personnel:	meoli	1 1-
Purge Data				
Well ID:	e:🗶 Yes 🗌 No 🛛 Well Cond	dition/Damage Description:	New	
Depth Sounder decontaminated Prior to Placement in V Depth of water (from top of well casing): 13.00 After 5 minutes of purging (from top of casing): Begin purge (time): $9:25$ pump V End purge'(time): $9:55$ Gallons purged: $1:25$ Purge water disposal method: Time Depth to Vol. pH 9:30 13.00 0.20 6.40 0.40 0.40 $0.400.50$ 0.40 $0.400.50$ 0.40 $0.400.50$ 0.40 $0.400.50$ 0.50 $0.500.50$ $0.500.50$ 0.50 $0.500.50$ 0.50 $0.500.50$ 0.50 0.50 $0.500.50$ 0.50 0.5	Well Casi	O.D. I.D. 1%" 1.660" 1.380 2" 2.375" 2.067 3" 3.500" 3.068 4" 4.500" 4.026 6" 6.625" 6.065	Interval: Schedule 40 PVC I Volume (Gal/Linear Ft.) " 0.08 " 0.17 " 0.38 " 0.66	
Sample No:	Time Collected: 10:00	_ Sample: 🗆 Filtered 🔊		my
Sample Collected with: Bailer Bailer Sample Collected with: Bailer Sample Collected with: Bailer Bailer Sample Collected with: Bailer Bailer	Туре	# PREVERS		
	rcle one): decontaminated <u>all</u> tubin	ther: HONNAU-O g; disposable and/or dedicate N; Hydrogen	ed silicon and poly tubing	other: New lefs
,,				
	ipres) 🔲 COD / TOC (H	2SO4) 🔲 Orthophos	(FILTER) Dis	s Metals (HNO3)
				VOCa ' WON M
TPH-G (HCI) 💆 BTEX ((HCI) 🗶 Total Metals (H	INO3) 🔲 TKN/Phos	(N2SO4)	VOCS (HCI)
TPH-G (HCI) 💆 BTEX (INO3) 🔲 TKN/Phos		VOCS (HCI)
TPH-G (HCI) X BTEX (Duplicate Sample Numbers:		Comments:	get bubble
TPH-G (HCI) Description Additional Information Types of Sample Containers: Quantity: Soom (Amber I) If Amber I	Duplicate Sample Numbers:			
TPH-G (HCI) Description Additional Information Types of Sample Containers: Quantity: Sop ml Ambler IL Ambler	Duplicate Sample Numbers:		Comments:	

GROUNDWATER OR SURFACE WATER SAM	PLE COLLECTION FO	DRM
Project Name:	Date of Collection:	10/15/13
Project Number: KRM	Field Personnel:	Mesti
Purge Data		
Well ID: Y-20 Secure: Yes No	Well Condition/Damage Descr	iption:
Depth Sounder decontaminated Prior to Placement in Well: 2 Yes D No	One Casing Volume (gal):	
Depth of water (from top of well casing):	Well Casing Type/Diameter/So	creened Interval:
After 5 minutes of purging (from top of casing):		ne of Schedule 40 PVC Pipe
Begin purge (time): 7:40 terms rate 4	Diameter O.D.	I.D. Volume Weight of Water (Gal/Linear Ft.) (Lbs/Lineal Ft.)
End purge (time):	3 4 1 1 1 6 0 1 1 1 1 1 1 1 6 0 1 1 1 1 1 1 1 6 0 1 1 1 1 1 1 1 1 1 1	1.380" 0.08 0.64 2.067" 0.17 1.45 3.068" 0.38 3.2
Gallons purged: ~1.5	4" 4.500"	4.026" 0.66 5.51 6.065" 1.5 12.5
Purge water disposal method: Contrinenced 65 gal Time Depth to Vol. pH DO	Conductivity Turbidi	n oc mv % gll
7:45 Water Purged 6.44 3.71	0,00 31	12.9 200 0.0 0.00
7:50 61 11 0.40 6.52 2.84	ч 45	13.0 151 0.0 0.00
755 0.50 6.64 2.65	+ 50 aut 52	$\frac{12.9}{12.8}$ $\frac{152}{155}$ $\frac{11}{0.1}$ $\frac{11}{1.3}$
800 0.75 6.56 2.12	2.1 44	12.8 159 " "
810 1.26 6.07 2.00	2,1 31	12.8 164 10 10
815 1.50 6.57 1.99	2.1 30	** 127 166 K N
Sampling Data & Culibrated - turned	ORT + ON + tea	ding affer this.
Sample No:	Location and Depth:	
Date Collected (mo/dy/yr): 101515 Time Collected:	<u>820</u> 🛒 AM □	Weather: 42° Summ
Type 😡 Ground Water 📋 Surface Water Other:		
Sample Collected with: Bailer Pump Other:	Type Autis	
Water Quality Instrument Data Collected with: Type: 🗆 Hanna 9828 📋 H	Ioriba U-50 Other: U-22	
Sample Decon Procedure: Sample collected with (circle one): decontar	ninated all tubing; disposable and/or	dedicated silicon and poly tubing Other: New tubing
Sample Description (Color, Turbidity, Odor, Other): No odor, N	o sheen, clear	left in well.
Sample Analyses	** Appearance	ce cyrestal clear? but reading
		hophos (FILTER) Diss. Metals (HNO3)
		1927)
		N/Phos (N2SO4) VOCs (HCl)
Additional Information		
Types of Sample Containers: Quantity: Duplicate Sample	e Numbers:	Comments:
Sor mi Amber 1 IL pomber 1		
VOAS 8		
Signature: MM		Date: 0 (15(13
Every and a DA KOLY Mill Field Formal Convertinglar	ALL CORPORT OF A CONTRACT	

XON AR E		Date of Collect	ction		.0[15]]
Project Number: 49022	Ply	Field Perso	nnel:		Merci
Purge Data					
Well ID:	Secure: 🛱 es 🛛 No	Well Condition/Dam	age Description:		
Depth Sounder decontaminated Prior to Placement	ent in Well: 🙀 Yes 🛛 No	One Casing Volume	(gal):		
Depth of water (from top of well casing):	1,16	Well Casing Type/D	iameter/Screened In	terval:	
After 5 minutes of purging (from top of casing): _	1477		Volume of So	chedule 40 PVC F	
Begin purge (time):	0 - 1 - 1 -	Diameter	0.D, I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)
End purge (time): 7:10 PW	mirate 5.68	1 ¼" 2"	1.660" 1.380" 2.375" 2.067"	0.08	0.64
Gallons purged. Contument	ed as gul du	Um 3" 4"	3.500" 3.068" 4.500" 4.026"	0.38 0.66	3.2 5.51
Purge water disposal method	ruls	6"	6.625" 6.065"	1.5	12.5 0 1 TDS
Time Depth to Vol. Water Purged	pH DO	Conductivity	Turbidity	Temp ORP	Sal Comments
40 1177 0,20	6.63 3,65	org	5	13,8 205	0.0 016
45 11 (a.54 2.95	0.9		3.8 25	11 U
<u>50 11 0150</u>	6.52 2.01	0.9	0	208 86	- " 11
$\frac{100}{100}$ $\frac{100}{100}$	6.61 1.81	6.7		The TL	
105	6,90 1.81	0.9	2 1	3,8 -40	le r
710 8.00	6,50 1.79	0.9	2 1	3.8 -43	u 11
ampling Data					
Sample No:		Location and Dep	th		
	Time Collected: 7			42º Clean	/
Type:			0	0	
•		Α.		filtered Other:	
Sample Collected with: Bailer Pump Oth	ner:	Iype:	22		
₿.					
•	ype: 🗌 Hanna 9828 🔲 Horib	a U-50 Other: W			
Water Quality Instrument Data Collected with: T	with (circle one): decontaminat	ed <u>all</u> tubing; disposa	ble and/or dedicated	silicon and poly tubing	Other:
Water Quality Instrument Data Collected with: T	with (circle one): decontaminat	ed <u>all</u> tubing; disposa		silicon and poly tubing	Other:
Water Quality Instrument Data Collected with: Tr Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe	with (circle one): decontaminat	ed <u>all</u> tubing; disposa		silicon and poly tubing	Other:
Water Quality Instrument Data Collected with: Tr Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe	with (circle one): decontaminat	ed <u>all</u> tubing; disposa			Other:
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses	vith (circle one): decontaminat er): <u>Suizut oc</u>	ed <u>all</u> tubing; disposa	ar		
Water Quality Instrument Data Collected with: Tr Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor	(unpres) COD/T	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Dise	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Dise	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Disa (N2SO4)	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe ample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX dditional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Disa (N2SO4)	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Cample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Disa (N2SO4)	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Disa (N2SO4)	s Metals (HNO3) 🗌
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Disa (N2SO4)	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Disa (N2SO4)	s Metals (HNO3)
Water Quality Instrument Data Collected with: T Sample Decon Procedure: Sample collected w Sample Description (Color, Turbidity, Odor, Othe Sample Analyses TPH-D (HCI) Chlor / Fluor TPH-G (HCI) BTEX Additional Information Types of Sample Containers: Quantity	vith (circle one): decontaminat er): <u>Suigut or</u> (unpres) COD / T (HCI) Total Me	ed <u>all</u> tubing; disposa	Orthophos	(FILTER) Dise (N2SO4) D Comments:	s Metals (HNO3)

Water (1, 72) Purged 6.10 2.02 0.79 20 5.6 29 7 16:15 0.15 6.09 7.87 0.79 12 15.6 10 8 16:25 0.50 0.75 6.09 1.77 0.79 12 15.6 10 8 16:30 0.50 6.05 1.71 0.79 3 15.5 30 11 16:35 4 0.50 6.05 1.76 0.79 3 15.5 30 11 16:35 4 1.00 6.05 1.76 0.79 3 15.5 30 11 16:35 4 1.00 6.05 1.76 0.79 15.5 30 11 16:35 4 1.00 6.05 1.76 0.79 15.5 30 11 16:35 4 1.00 6.05 1.76 0.79 15.5 30 11 Date Collected (moldylyr): 10.14 15 16.5 30 16.5 30 16.5 Sample Collected wi	
Purge Data	
Well ID: PL-9 Secure @Ves □ No Well Condition/Damage Description: DK Depth Sounder decontaminated Prior to Placement in Well @Ves □ No One Casing Volume (gat):	
Depth of water (from top of vell casing): 11.2.2 Well Casing Type/Dlameter/Screened Interval: After 5 minutes of purging (from top of casing): 11.2.2 Well Casing Type/Dlameter/Screened Interval: Begin purge (firms): 16:10 13.80 (Gal/Linear PL) Weight of Water Begin purge (firms): 16:10 13.80 (Gal/Linear PL) Weight of Water Sallos purged: -1.2.5 35.50 0.68 5.51 Purge water disposal method: -1.2 -1.2 0.70 1.5 0.64 96.55 Purge water disposal method: -1.0 2.02 0.71 1.5 0.72 0.72 1.2 1.5 0.72 0.72 1.2 1.5 0.72 0.72 1.2 1.5 0.72 0.72 1.2 1.5 0.72 0.72 1.2 1.5 0.72 0.72 1.5 0.72 0.72 1.5 0.72 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 1.5 0.72 <t< th=""><th></th></t<>	
After 5 minutes of purging (from top of casing): //. 2> Volume of Schedule 40 PVC Pipe Begin purge (time): //. 2 End purge (time): //. 2 Callons purged: //. 2 Time Diameter Dageht to Weight of	
Begin purge (time): //0<	
End purge (time):	
Gallons purged:	
Purge water disposal method:	
Water (1, 22 Purged 0.15 0.17 0.74 20 5.6 29 0.0 7 16:15 0.15 0.15 0.07 12 15.6 29 0.0 7 16:20 0.15 0.07 12 15.6 10 4 16:20 0.75 0.07 0.79 12 15.6 10 4 16:30 0.75 0.05 1.76 0.144 2 16.5 20 4 16:31 4 1.00 0.05 1.76 0.79 1 5.5 -35 - 16:32 4 1.00 0.05 1.76 0.79 1 5.5 -35 - 16:35 4 1.00 0.05 1.76 0.79 1 5.5 -35 - Sampling Data Sample No: PP-9 Location and Depth: Date Collected (moldylyr): 10(14(13) Time Collected: 16:40 attrice Sample: Filtered Unfiltered Other: Sample: Sample Collected with: Type: Hana 9828 H	
Image: Sample No: Im	nents
Image: Second State Sta	0.50
Image: Sampling Data Sampling Data Sample No: PP-9 Location and Depth: Date Collected (moldy/yr): 10/14/13 Type: Image: Sample Collected with: Sample No: PP-9 Location and Depth: Date Collected (moldy/yr): 10/14/13 Type: Image: Sample Collected with: Sample Collected with: Sample Collected with: Sample Collected with: Bailer Pump Other: Mater Quality Instrument Data Collected with: Collected with: Sample Decon Procedure: Sample collected with: Sample Description (Color, Turbidity, Odor, Other): Clear with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing Other: Sample Description (Color, Turbidity, Odor, Other): Clear with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing Other: Sample Analyses TPH-D (HCl) Color / Fluor TPH-B (HCl) Color / Fluor CoD / TOC (H2SO4) Orthophos TPH-G (HCl) Color / Fluor Cod / TOC (H2SO4) Orthophos (FILTER) Diss. Metals (HN TPH-G (HCl) Color / Fluor <td>0.51</td>	0.51
Sampling Data Sample No: PP-9 Date Collected (mo/dy/yr): 10/14/13 Time Collected: 6:40 Type: Correction and Depth: Sample No: PP-9 Date Collected (mo/dy/yr): 10/14/13 Time Collected: 6:40 Type: Correction and Depth: Sample Collected with: Bailer Sample Collected with: Bailer Water Quality Instrument Data Collected with: Type: Hanna 9828 Horiba U-50 Other: Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing: Other: Sample Description (Color, Turbidity, Odor, Other): Cuttor, Support Part and and poly tubing: Other: Sample Analyses TPH-D (HC) Chlor / Fluor TPH-G (HC) BTEX (HC) Total Metals (HNO3) TKN/Phos (N2S04) VOCs (H Additional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments:	И
Sample No: PP-9 Location and Depth: Date Collected (mo/dylyr): IO(14/13 Time Collected: AM & Weather: Type: Ground Water Surface Water Other: Sample: Filtered Unfiltered Other: Sample Collected with: Bailer Bailer Pump Other: Alexus Petriples full.tc Water Quality Instrument Data Collected with: Type: Hanna 9828 Horiba U-50 Other: Horiba U-232 Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing Other: Neuronal Collected Collected Silicon and poly tubing Other: Neuronal Collected Silicon allected Silicon and poly tubing Other:	4
Sample No: PP-9 Location and Depth: Date Collected (mo/dylyr): IO(14/13 Time Collected: AM & Weather: Type: Ground Water Surface Water Other: Sample: Filtered Unfiltered Other: Sample Collected with: Bailer Bailer Pump Other: Alexus Petriples full.tc Water Quality Instrument Data Collected with: Type: Hanna 9828 Horiba U-50 Other: Horiba U-232 Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing Other: Neuronal Collected Collected Silicon and poly tubing Other: Neuronal Collected Silicon allected Silicon and poly tubing Other:	
Sample No: PP-9 Location and Depth: Date Collected (moldylyr): 10/14/13 Time Collected: 4:40 AM & Weather: Sumple: Sumple: Filtered Unfiltered Other: Type: Qaround Water Surface Water Other: Sample: Filtered Unfiltered Other: Sample: Filtered Unfiltered Other: Sample: Sa	
Date Collected (mo/dy/yr): 10/14/13 Time Collected: 4:40 AM (a) Weather: Summing 66* Type: Ground Water Surface Water Other: Sample: Filtered Unfiltered Other: Sample: Filtered Unfiltered Other: Sample: Sample: Filtered Unfiltered Other: Sample: Sample: Filtered Unfiltered Other: Sample:	
Type: Stround Water	
Sample Collected with: Bailer Pump Other: Alexes Perspective fultic Water Quality Instrument Data Collected with: Type: Hanna 9828 Horiba U-50 Other: Horiba U-532 Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing Other: Neurophysical U-532 Sample Description (Color, Turbidity, Odor, Other): Clear, Sugar personal U-500, Type Persona U-500, Type Persona U-500, Type Personal U-500, Type Persona U-50	
Water Quality Instrument Data Collected with: Type: Hanna 9828 Horiba U-50 Other: Horibac U-52 Sample Decon Procedure: Sample collected with (circle one): decontaminated <u>all</u> tubing; disposable and/or dedicated silicon and poly tubing Other: Neurophysical and/or dedicated silicon and poly tubing Neurophysical and/or dedicated silicon and/or dedicated silicon a	
Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing. Other: Neuroscience of the sample Description (Color, Turbidity, Odor, Other): Color / Suggest the sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing. Other: Neuroscience of the sample Color, Turbidity, Odor, Other): Sample Analyses Color / Fluor (unpres) COD / TOC (H2SO4) Orthophos (FILTER) Diss. Metals (HN) TPH-G (HCI) End BTEX (HCI) Total Metals (HNO3) TKN/Phos (N2SO4) VOCs (H Additional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments:	
Sample Decon Procedure: Sample collected with (circle one): decontaminated all tubing; disposable and/or dedicated silicon and poly tubing. Other: Neuropean Sample Description (Color, Turbidity, Odor, Other): Color, Supple Analyses Pathodian (Color, Turbidity, Odor, Other): Color, Supple Analyses TPH-D (HCI) Chlor / Fluor (unpres) COD / TOC (H2SO4) Orthophos (FILTER) Diss. Metals (HN TPH-G (HCI) Entex HCI Total Metals (HNO3) TKN/Phos (N2SO4) VOCs (H Additional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments:	
Sample Description (Color, Turbidity, Odor, Other): Clear, Sugat per construction of the color of the	-left
TPH-D (HCI) Chlor / Fluor (unpres) COD / TOC (H2SO4) Orthophos (FILTER) Diss. Metals (HN TPH-G (HCI) BTEX (HCI) Total Metals (HNO3) TKN/Phos (N2SO4) VOCs (H Additional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments:	loc h
TPH-G (HCI) Ø BTEX (HCI) Ø Total Metals (HNO3) □ TKN/Phos (N2SO4) □ VOCs (H Additional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments: DO mil Amber I Image: Containers for the sample Numbers: Comments:	
Additional Information Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments:	03) 🗌
Types of Sample Containers: Quantity: Duplicate Sample Numbers: Comments:	CI) 🗖
500 mi Amber 1	
VORS 4	
mi 10/14/13	
Signature: Date: Da	
F:\projects\Port of PA KPLY Mill\Field\Field Forms\Groundwater Pag Sample Collection Form doc	maccounter

GROUNDWATER OR SURFACE V	VATER SAMPLE C	OLLECTI	ON FOR	M		a 1.43.
Project Name:		ate of Collec	tion:		10	14/13
Project Number: KPW AOC	2	Field Persor	nnel: L	~ meal	i.	1 1
Purge Data				000		
Well ID: Secu	ire: 🕢 es 🗖 No 🛛 Well	I Condition/Dama	age Descriptior	n: Good		
Depth Sounder decontaminated Prior to Placement in	Well: 😥 Yes 🗆 No One	Casing Volume	(gal):			
Depth of water (from top of well casing):	9 Well	I Casing Type/Di	ameter/Screen	ned Interval:		
After 5 minutes of purging (from top of casing):	49	'I'	Volume o	of Schedule	40 PVC Pip	De Weight of Water
Begin purge (time): 1430 pump	rate 6.28	Diameter	- 1	I.D. (Gal/L	inear Ft.)	(Lbs/Lineal Ft.) 0.64
End purge (time):		1 ¼" 2" 3"	2.375" 2.	.067"	0.08 0.17 0.38	1,45 3,2
Gallons purged:		-	4.500" 4.	.026"	0.66	5.51 12.5
Gallons purged: Purge water disposal method: CM+Table is	ed-65gal dum	N	6.625" 6.	.065"	1.5	1
Time Depth to Vol. p Water Purged	H DO Co	onductivity	Turbidity	Temp	ORP 🧲	a'l Lomments g/L
1435 1149 0.20 7.	44 3.86 0.	58	5	14-1	73	0.0 0.39
1440 " 0,30 7.	African and a second se	197	Ð	14.1	-57	11 0,36
		.56		14.1	-94	u u u u
1450 0.76 7.	00 1.22 0	.67	Þ	14.1	-99	4 /
1500 1.25 6	98 2.21 0	.57	D	14.1	-105	• 0.37
1505 1.50 6.	99 2.20 0	.97	Ø	14.1	-107	4 0,36
Sampling Data						
Sample No: PP-13	L	ocation and Dep	th.			
Date Collected (mo/dy/yr):					M1165	°
					-	
Type	12 A A A A A A A A A A A A A A A A A A A	and the second s		Promitered O	iner:	
Sample Collected with: Bailer Pump Other:			100	ail.		
Water Quality Instrument Data Collected with: Type: [🖞 Hanna 9828 🔲 Horiba U-5	50 Other:	20 TI	oru ba		
Sample Decon Procedure: Sample collected with (o	circle one): decontaminated <u>all</u>	tubing; disposal	ble and/or dedi	icated silicon and	d poly tubing	Other:
Sample Description (Color, Turbidity, Odor, Other): 💆	lear, sugert	petuo	lerm .	odor, s	"White	Hfioatig u
Sample Analyses					H2O.	. 0
TPH-D (HCI) 🗌 Chlor / Fluor (u	Inpres) 🔲 COD / TOC	(H2SO4) 📋	Orthoph	os (FILTER) Diss. I	Metals (HNO3) 🗌
TPH-G (HCI) 🗌 BTEX	(HCI) 🔲 Total Metals	(HNO3) 🔲	TKN/Ph	os (N2SO4)		VOCs (HCI) 🗍
Additional Information						
Types of Sample Containers: Quantity:	Duplicate Sample Numbe	ers:		Comr	nents:	
Amber 2h 2						
Soom Amer 1						
VOAS 4						
Signature: AM				Date:	10/14/1	3
F:\projects\Port of PA KPLY Mill\Fleid\Fleid Forms\Groundwate	nonform divinious and side building	manual Crab Sportuna	uiter and the second second	National Anna ann an Anna an A		Page 1 of 1
Sample Collection Form doc						1 490 1 01 1

GROUNDWATER OR SURFACE WATER SAMP		TION FC	RM						
Project Name:	Date of Co	llection:	10/1	4/13					
Project Number: K PLY ADC2	Field Personnel: L. Meou								
Purge Data				•					
Well ID: Yes No	Well Condition/Damage Description:								
Depth Sounder decontaminated Prior to Placement in Well: XYes 🔲 No	One Casing Vol	ume (gal):							
Depth of water (from top of well casing):	Well Casing Type/Diameter/Screened Interval:								
After 5 minutes of purging (from top of casing): 10,40	Volume of Schedule 40 PVC Pipe								
Begin purge (time): 10:00 pump rate 3.95	-3. Diameter	O.D.	I.D.	Volume (Gal/Linear Ft.)	Weight of Water (Lbs/Lineal Ft.)				
End purge (time): 10:35	1 1/4" 2"	1.660" 2.375"	1.380" 2.067"	0.08 0.17	0.64 1.45				
Gallons purged: NZ Jullons	3" 4"	3.500" 4.500"	3.068" 4.026"	0.38 0.66	3.2 5.51				
Purge water disposal method: Contumented	6"	6.625"	6.065"	1.5	12.5 9/L				
Time Depth to The pH MD64 Water Purged	- MS/cM Conductivity	Turbidi		emp ORP	Comments				
10:05 10.40 0.25 5.78 3.75	0,28	120		5.1 29	0.0 0.18				
10:10 10,40 0,50 5.81 3.08	0.26	96		5.2 24	0.0 0.17				
10:15 " 0.75 5.82 3.07	0.20	110		5.1 -5	0.0 0.17				
10:25 11 1.15 5.84 2.17	0.27	8	and the second second	5.0 -18	0.0 0.17				
10:30 11 1.50 5.84 2.16	0.24	3		5.1 -23	0.0 0.17				
10:35 11 1.75 6.84 2.17	0.27			1.0 -26	0.0 0.17				
Sampling Data									
Sample No:	Location and	Depth:							
Date Collected (mo/dy/yr): 10/14/2013 Time Collected: 1	0:40	am 🗖	Weather:	Surry 5	·6·				
Type: 💐 Ground Water 📋 Surface Water Other:	Sa	mple: 🖄 Filtere	ed 🕅 Unfil	tered Other: 🎽					
Sample Collected with: Bailer Pump Other:	Туре: 같	wistab	he Al	ieris					
Water Quality Instrument Data Collected with: Type: Hanna 9828									
Sample Decon Procedure: Sample collected with (circle one): decontamin			dedicated s	ilicon and poly tubing	Other: New tub				
Sample Description (Color, Turbidity, Odor, Other): Slighty 4	ellow, 3	hzur	petro	i well. tern odo	r. # Slight				
Sample Analyses		-			- seri				
TPH-D (HCI) X Chlor / Fluor (unpres) COD /	TOC (H2SO4)) 🗋 Orth	ophos	(FILTER) Dis	s. Metals (HNO3)				
TPH-G (HCI) 🗌 BTEX (HCI) 🔀 Total M	letals (HNO3)		I/Phos	(N2SO4)					
Additional Information									
Types of Sample Containers: Quantity: Duplicate Sample N	Numbers:			Comments:					
POIN SOD ML HDRG									
Amper 500 ml									
VOAS 4									
					······				
Signature:			Date	(0/14/	/3				
F:\projects\Port of PA KPLY Mill\Field\Field Forms\Groundwater				A CONTRACTOR OF A CONTRACTOR A	Page 1 of 1				

GROUNDWATER OR SURFACE WATER SAMPL	E COLLECTION FORM
Project Name:	Date of Collection: 10 /14 / 13
Project Number: K PLN Accz	Field Personnel: L. Megli
Purge Data	
Well ID: <u>P2-26</u> Secure Yes No	Well Condition/Damage Description:
Depth Sounder decontaminated Prior to Placement in Well:	One Casing Volume (gal);
Depth of water (from top of well casing):	Well Casing Type/Diameter/Screened Interval:
After 5 minutes of purging (from top of casing): 12.00	Volume of Schedule 40 PVC Pipe Diameter O.D. I.D. Volume Weight of Water
Begin purge (time): 12:35 Pump rate 4.8 End purge (time): 13:05 5	38 1 ¼" 1.660" 1.380" 0.08 0.64
Gallons purged: ~ 1, 40 gals	2" 2.375" 2.067" 0.17 1.45 3" 3.500" 3.068" 0.38 3.2
Purge water disposal method: Confainentud-55 galdin	4" 4.500" 4.026" 0.66 5.51 6" 6.625" 6.065" 1.5 12.5
Time Depth to Vol. pH DOL Water Purged	Conductivity Turbidity Temp ORP Sul Comments
12:40 12.00 0.10 7.14 3.69	1.3 20 14.2 53 0.1 0.8
12:45 12.00 0,25 7.17 2,69	<u>1.3</u> <u>7</u> <u>14.4</u> <u>-10</u> <u>4</u> <u>4</u>
<u>R:50</u> <u>12.00</u> 0.40 7.19 2.20 N:65 11 0150 7.20 2.03	$\frac{1.3}{1.3}$ $\frac{15}{3}$ $\frac{14.4}{14.4}$ $\frac{-6}{-76}$ $\frac{1}{4}$ $\frac{4}{4}$
13:00 11 1.00 7.20 2.02	1.3 0- 14.4 -89 " "
13:05 " 1.25 7.20 2.00	1.3 -0 14.4 96
	A CONTRACTOR CONT
Sampling Data	
Sample No: P2-310	Location and Depth:
Date Collected (mo/dy/yr): 10/14/13 Time Collected: 12	3:10 AM DrpMWeather: Sunny 65°
	Sample: Sam
Sample Collected with: 🗆 Bailer @Pump Other:	Type: Alexis Renstaltic
Water Quality Instrument Data Collected with: Type: Hanna 9828 Horit	Da U-50 Other: Honba U-22
Sample Decon Procedure: Sample collected with (circle one): decontamina	ted all tubing; disposable and/or dedicated silicon and poly tubing Other: New - left
Sample Description (Color, Turbidity, Odor, Other):	ut setroloum edor
Sample Analyses	
TPH-D (HCI) 🔞 Chlor / Fluor (unpres) 🔲 COD / T	TOC (H2SO4) C Orthophos (FILTER) Diss. Metals (HNO3)
TPH-G (HCI) 😿 BTEX (HCI) 🔯 Total Me	etals (HNO3) C TKN/Phos (N2SO4) VOCs (HCI)
Additional Information	
Types of Sample Containers: Quantity: Duplicate Sample N	umbers: Comments:
boomingmber 1	
VDAS 4	
Signature: Mi Merh	Date: 10/14/13
	vettingen antifigatiogenengestenserationsmagenettigen er bontvettingen men men sochts aller zumarfall no de niter

Project N				Dat	Date of Collection: Field Personnel:		10/10	+/ 13				
Project Nu	mber:k	PRY	ADCZ	F			L					
Purge Data												
Well ID: <u>P</u>	4		Secure: Xyes	🗆 No 🛛 Well	-			oK - C			U	ri
Depth Sounder d	lecontaminated	d Prior to Placer	nent in Well: 💢 Yes	No One	Casing Volum	e (gal):				1	0	
Depth of water (from top of well casing):					Well Casing Type/Diameter/Screened Interval:							
After 5 minutes o			1000			Volum	ne of Sc					
Begin purge (time	e):	25 pm	mp rate	3.41	Diameter	O.D.	I.D.	Volu (Gal/Line	ear Ft.)	(Lbs/Li	of Water neal Ft.)	
End purge (time)					1 ¼* 2"	1.660" 2.375"	1.380" 2.067"	0.0 0.1	7	1.	64 45	
Gallons purged:_	N1.5	Sals			3" 4"	3.500" 4.500"	3.068" 4.026"	0.3 0.6	6	5.	.2 51	
Purge water disp	osal method:	contuiv	lerized-55	galdrum	6"	6,625"	6.065"	1.5 • C	n. 1/	12	2.5	91
Time	Depth to Water	Vol. Purged	рН 🧌	pd Cor	ductivity	Turbidit	ty	Temp	ORP	Sal	Comment	s
11:30 1	5.65	0.10	6.16 3.	76 1.	7	94	_	14.6	12	0.[1.(_
11:35	15.43	0.25	6.24 2.	.98	7	48	_	14.6	-14	(C	u	
11:40 _	15.43	0.40		.58 1	7	67	1	14.6	-59	0.1	1.1	
11:40	N N	0.90		$\frac{2.12}{2.10}$ 1	7	15		142	-69	и	<u>и</u>	
DISTOR	Ŋ	1.00		1.11 1	.7	7		14.8 -	102	n	11	_
1,240	K	1.20	6.32 :	2,08	.7	3		14.8	108	u	a	
Sampling Da	ata			_							_	
Sample No:	P2-4				cation and De	woth:						
		10/14/1	3 Time Col				Weather	Sum	460.			
		A						iltered Othe				
			ther:		the samp	ie in Flitere		intered Othe	•			
Water Quality Ins	strument Data	Collected with:	Type: 🔲 Hanna 982	28 Difforiba U-50	Other:	00				(1	. 1	1
			with (circle one): de		ubing; dispos	able and/or	dedicated	silicon and po	bly tubing	Other:	wh	b
Sample Descripti	ion (Color, Tur	bidity, Odor, Otl	ner): Clear	therede	e sliz	at p	end	ent	un v	uecc.		_
ample Ana	lyses		ean	+ shar								_
TPH-D	(HCI) 🔀	Chlor / Fluo	(unpres) 🔲	COD / TOC	(H2SO4) 🗆] Orth	ophos	(FILTER)	Diss.	Metals	(HNO3)	
TPH-G	(HCI) 🔀	втех	(HCI) 🔀	Total Metals	(HNO3) 🗆) TKN	l/Phos	(N2SO4) 🗌		VOCs	(HCI)	
dditional Ir	nformatio	n										
Types of Sam	ple Containe	rs: Quant	ty: Duplicate	Sample Number	s:			Comme	nts:			
500 ML	-											
VDAS-	4											
											_	
	4	• 1/2							, ,			
Signature:	In	m M.	rech				Date	: (D	14/	13		
	0.1.		encount and a first start			Car (Spacebar)	CARD IN COLUMN		T	- derate	and the second	-
		d\Field Forms\Gro	undwater	-							Page 1	of

Sample Collection Form doc

-

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix D Laboratory Analytical Data Reports (provided on CD-ROM)

ECOLOGY DRAFT

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix E Sediment Investigation Field Notes, SPI Images, and Bioassay Report

ECOLOGY DRAFT

Appendix E

The following documents are included in Appendix E:

- 1. Sediment Bioassay Testing Report (*Sediment Testing for Floyd*|*Snider, Inc., October 11, 2013*)
- 2. Sediment Bioassay Testing Report Appendices
- 3. KSS1 Sediment Images
- 4. KSS2 Sediment Images
- 5. KSS3 Sediment Images
- 6. Sediment Sampling Field Notes
- 7. Sediment Profile Imaging Field Log

SEDIMENT TESTING FOR FLOYD|SNIDER, INC

K-PLY MILL PORT OF PORT ANGELES, WASHINGTON

OCTOBER 11, 2013

PREPARED FOR:

FLOYD | SNIDER, Inc. 601 Union Street, Suite 600 Seattle, WA 98101-2341

PREPARED BY:

PO Box 216 4729 NE View Drive Port Gamble, WA 98364

Introduction

NewFields conducted biological toxicity tests with sediment samples collected from the K-Ply plywood mill site in support an ongoing evaluation of sediments in Port Angeles Harbor. Reference sediment samples were tested concurrent to the test sediments and were collected in Carr Inlet by NewFields. Biological testing was conducted on selected stations within the harbor using the 10-day amphipod test with *Eohaustorius estuarius*, the 20-day polychaete test with *Neanthes arenaceodentata* and the 48-h benthic larval test with the bivalve *Mytilus galloprovincialis* following the resuspension protocol. This report presents the results of the toxicity testing conducted on test and reference sediments.

Methods

Methods for sediment collection, storage and handling, and toxicity testing followed those outlined in the "Western Port Angeles Harbor RI/FS Sampling and Analysis Plan" (Integral 2013). Biological test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995) with appropriate modifications as developed in support of the Sediment Management Standards Program (SMS), the WDOE Sediment Sampling and Analysis Plan Appendix (SSAPA; Ecology 2008), and the various updates presented during the Annual Sediment Management Review meetings (SMARM). The SMS Program is administered by the Department of Ecology, providing sediment management standards for marine and estuarine environments in the state of Washington with the goal of reducing or eliminating adverse effects on biological resources.

Sample and Animal Receipt

Three test sediments were collected on July 9, 2013; samples were delivered by courier to NewFields. Two reference sediment samples were collected from Carr Inlet by NewFields personnel on June 25, 2013. Sediment samples were stored in the dark with zero headspace in a walk-in cold room at $4 \pm 2^{\circ}$ C. All of the test sediments were tested using the full suite of PSEP bioassays (amphipod, juvenile polychaete, and benthic larval tests). The test sediment was not sieved prior to testing and all tests were conducted within the eight week holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwestern Aquatic Sciences in Newport, Oregon. *Eohaustorius* were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were obtained from Aquatic Toxicology Support in Bremerton, Washington. Juvenile polychaetes were held in seawater at 20°C (*Neanthes* were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Taylor Shellfish in Shelton, Washington. Broodstock were held in unfiltered seawater at 16°C prior to spawning. Native *E. estuarius* sediment from Yaquina Bay, Oregon was provided by Northwestern Aquatic Sciences for use as control sediment treatments for both the amphipod and polychaete tests.

Sample Grain Size and Reference Comparison

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare with the biological results of the test treatments. The percent fines value is defined as the mass of sediment that passes through a 62.5- μ m sieve, expressed as a percentage of the mass of the total sample analyzed. Percent fines for each of the test treatments and the reference treatments based on analytical laboratory grain size analysis as well as the selected reference for comparison are presented Table 1.

Treatment	Grain Size ¹	Reference Comparison
CARR-20	26	
CR-02	59	
SD0001K	65	CR-02
SD0002K	38	CARR-20
SD0003K	30	CARR-20

Table 1. Sample and Reference Grain Size Compa	rison
--	-------

¹ Percent fines (\sum silt and clay)

10-day Amphipod Bioassay

The 10-day acute toxicity test with *E. estuarius* was initiated on August 27, 2013. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. Seven replicate chambers were prepared for each test treatment, the reference sediments, and the native control sediment. The control and reference sediments were tested concurrently with the test treatments. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial water quality surrogates. One surrogate chamber was sacrificed to measure overlying and interstitial ammonia and sulfides at test initiation and the remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination.

Target test parameters were:

Dissolved Oxygen:	≥5.1 mg/L
pH:	7 - 9 units
Temperature:	15 ± 1°C
Salinity:	28 ± 1‰

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were of a similar sensitivity to prior tests. This test also provided information on the sensitivity of the test population to ammonia concentrations in the test sediments.

20-day Juvenile Polychaete Bioassay

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on August 29, 2013. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. Seven replicate chambers were prepared for each test treatment, the two reference sediments, and control sediment. The control and reference sediment toxicity while the remaining two replicates were designated as sacrificial water quality surrogate chambers. One surrogate chambers was sacrificed to measure porewater and overlying ammonia and sulfides at test initiation. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were as follows:

Dissolved Oxygen:	≥4.6 mg/L
pH:	7 - 9 units
Temperature:	20 ± 1°C
Salinity:	28 ± 2‰

The juvenile polychaete test was initiated by randomly allocating five *N. arenaceodentata* into each test chamber and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. *N. arenaceodentata* were fed every other day with 40 mg of TetraMarin[®] (approximately 8 mg dry weight per worm). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms

was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and then dried in a drying oven at 60°C for approximately 24 hours. Each weigh-boat was removed, cooled in a dessicator, and then weighed on a microbalance to 0.01 mg. Each of the weigh boats was then heated to 550°C for 2 hours in order to determine the ashed weight. Ash-free dry weights (AFDW) were calculated to remove the influence of the mass of sediment in the guts of the test organisms. The ashed boats were weighed to 0.01 mg and the ashed weight was subtracted from the dry weight to calculate the AFDW. Both dry weight and AFDW were used to determine individual worm weight and growth rates.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were of similar sensitivity to prior tests. This test also provided information on the sensitivity of the test population to ammonia concentrations in the test sediments.

Larval Developmental Bioassay

Test sediment was evaluated using the larval benthic toxicity test with the mussel, *M. galloprovincialis*. The mussel larval test was initiated on August 28, 2013. The seawater control and each of the reference sediments were tested concurrently with the test treatments. To prepare the test exposures, 18 g (\pm 0.5 g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 900 mL with 0.45-µm filtered seawater. Six replicate chambers were prepared for each test treatment, reference sediment, and control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16°C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs were transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and sub-samples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogate chambers to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured at initiation and termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S⁻² were monitored using a HACH DR/2800V Spectrophotometer.

Target test parameters were as follows:

Dissolved Oxygen:	≥5.0 mg/L
pH:	7 - 9 units
Temperature:	16 ± 1°C
Salinity:	28 ± 1‰

The development test was conducted as a static test. Aeration was provided for treatments with DO concentrations approaching 5.0 mg/L during the test.

The larval test was conducted following the resuspension technique developed by USACE and Ecology to address the potential entrainment of larvae in very fine sediments or sediments with a high wood-debris component (Kendall et al. 2012). At approximately 40 hours, the controls were checked for development to verify that greater than 90% of the larvae present had developed into the normal D-cell stage. The test sediment was then resuspended in the test chamber by gentle mixing with a perforated plunger for approximately 10 seconds. The contents of the test jar were then allowed to settle. At 48 hours, the tests were terminated by decanting the overlying seawater into a clean 1-L jar. The supernatant was homogenized with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae.

A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity of the test population to ammonia concentrations in the test sediments.

Data Analysis and QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment. All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors.

For the larval test, normal survivorship was used to evaluate the test sediments. Control performance was based on the number of normal larvae in the control divided by the stocking density, expressed as a percentage. Normal survivorship in the test and reference treatments was defined as the number of normal larvae in the test or reference divided by the number of normal larvae in the control, expressed as a percentage, as defined in Ecology (2005).

For SMS suitability determinations, comparisons were made according to SSAPA and Fox et al. (1998). Data reported as percent mortality or survival was transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

Results

The results of sediment testing, including a summary of test results and water quality observations are presented in this section. Laboratory bench sheets are provided in Appendix A, statistical analyses are provided in Appendix B, and chain of custody forms are in Appendix C.

10-day Amphipod Bioassay

The bioassay test with *Eohaustorius estuarius* was validated with 1% mortality in the native sediment control, which met the SMS performance criterion of \leq 10% mortality. This indicates that the test conditions were suitable for adequate amphipod survival. Mean mortality in the reference treatments were each 5% (CARR-20 and CR-02), which met the SMS performance criteria of <25% mortality (SMS). These results indicated that the reference sediments were acceptable for use in suitability determination. Mean percentage survival in each of the test treatments was \geq 95% and is summarized in Table 2.

Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 3, 4, and 5. Water-quality parameters were within the acceptable limits throughout the duration of the test. A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was within control chart limits (±2 standard deviations from the laboratory historical mean). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

Ammonia concentrations observed in the *E. estuarius* test were below the no observed effect concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 4; compare to NOEC of 86.4 mg/L total ammonia). Ammonia values in the test treatments were also at or below the published threshold concentration of 15 mg/L total ammonia (Barton 2002). Total sulfide concentrations in the overlying water ranged from 0.000 to 0.031 mg/L for the test treatments; interstitial total sulfide concentrations ranged from 0.013 to 0.262 mg/L.

		Numb	per Surv	viving		Mean Pe	Standard	
Treatment		R	eplicat	e		Survival	Mortality	Standard Deviation
	1	2	3	4	5	Survivar	Wortanty	Demailer
Control	20	19	20	20	20	99	1	2.2
CARR-20 Reference	19	18	20	18	20	95	5	5.0
CR-02 Reference	17	20	19	20	19	95	5	6.1
SD0001K	20	19	19	19	19	96	4	2.2
SD0002K	19	20	19	19	20	97	3	2.7
SD0003K	20	18	20	20	19	97	3	4.5

Table 2.	Test Results for	Eohaustorius estuarius
----------	-------------------------	------------------------

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (units)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	8.2	7.9	8.4	14.8	13.9	15.7	29	28	29	8.1	7.8	8.4
CARR-20 Reference	7.9	7.5	8.2	15.1	14.3	16.0	28	28	29	8.2	7.9	8.5
CR-02 Reference	8.0	7.6	8.3	15.0	14.0	16.0	28	28	29	8.3	8.0	8.5
SD0001K	7.8	7.3	8.2	15.1	14.1	16.3	29	28	29	8.2	7.8	8.7
SD0002K	8.0	7.6	8.1	14.9	14.0	15.8	29	28	29	8.3	8.0	8.6
SD0003K	7.9	7.6	8.1	15.0	14.1	15.9	29	28	29	8.4	7.9	8.8

Table 3. Water Quality Summary for *Eohaustorius estuarius*

Table 4. Ammonia and Sulfide Summary for Eohaustorius estuarius

		; Ammonia . Total)		l Ammonia . Total)		lying Sulfide	Interstitial Total Sulfide		
Treatment	D	ay	D	ay	D	ay	Day		
	0	10	0	0 10		10	0	10	
Control	0.092	0.024	0.124	0.069	0.000	0.019	0.013	0.195	
CARR-20 Reference	0.743	0.000	15.000	0.153	0.002	0.020	0.035	0.062	
CR-02 Reference	1.610	5.970	14.200	4.250	0.000	0.019	0.162	0.195	
SD0001K	0.413	0.899	3.110	0.467	0.000	0.031	0.046	0.262	
SD0002K	0.417	1.250	3.880	1.060	0.026	0.016	0.184	0.182	
SD0003K	0.415	2.060	3.810	1.870	0.006	0.015	0.104	0.065	

Ammonia NOEC (concurrent reference-toxicant test derived) = 86.4 mg/L total

Table 5. Test Condition Summary for A	t Conditions: E. estuarius (SMS)					
Sample Identification	Control; Refer	ences CARR20, CR-02;				
Sample identification	SD0001K, SD0002K, SD0003K					
Data sampled	Reference Sediment: June 25, 2013					
Date sampled	Test Sedir	ment: July 9, 2013				
Date received at NewFields	Jul	y 10, 2013				
Test dates	August 27 –	September 6, 2013				
Sample storage conditions	4	1°C, dark				
Holding time	E2 daves Defers	unas codimente 67 dous				
Recommended: ≤8 weeks (56 days)	52 days; Refere	ence sediments 67 days				
Source of control sediment	Yaqı	uina Bay, OR				
Test Species	Ε.	estuarius				
Supplier	Northwestern	Aquatic Sciences, OR				
Date acquired	Aug	ust 23, 2013				
Acclimation/holding time		4 days				
Age class	Suba	dult, 3-5 mm				
Test Procedures	PSEP 1995 w	ith SMARM revisions				
Regulatory Program	SMS					
Test location	NewFields Laboratory					
Test type/duration	10	-Day static				
Control water	North Hood Canal sea water, 0.45µm filtered					
Test dissolved oxygen	Recommended: > 4.6 mg/L	Achieved: 7.3 – 8.4 mg/L				
Test temperature	Recommended: 15 \pm 1 °C	Achieved: 13.9- 16.3 °C				
Test Salinity	Recommended: 28 \pm 1 ppt	Achieved: 28 - 29 ppt				
Test pH	Recommended: 7 - 9	Achieved: 7.8 – 8.8				
SMS control performance standard	Recommended: Control <u><</u> 10% mortality	Achieved: 1%; Pass				
SMS reference performance standard	Recommended: Reference mortality < 25%	Achieved: CARR-20: 5%; CR-02: 5%				
Reference Toxicant LC ₅₀ (total ammonia)		ng/L total ammonia				
Mean; Acceptable Range (total ammonia)	144; 24.5-263.	5 mg/L total ammonia				
NOEC (total ammonia)		L total ammonia				
NOEC (unionized ammonia)	1.24	4 mg NH ₃ /L				
Test Lighting		ontinuous				
Test chamber		Glass Chamber				
Replicates/treatment	5 + 2 surrogates (us	sed for WQ measurements)				
Organisms/replicate		20				
Exposure volume	175 mL sedi	ment/ 775 mL water				
Feeding		None				
Water renewal		None				
Deviations from Test Protocol		None				

 Table 5. Test Condition Summary for Echaustorius estuarius

20-day Juvenile Polychaete Bioassay

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) in the control sediment was 0.844 mg/ind/day (dry weight) and 0.584 mg/ind/day (AFDW). These values are within the test acceptability criteria for mean mortality (\leq 10%) and mean individual growth (\geq 0.38 mg/ind/day dry weight; Kendall 1996), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 6. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 7, 8, and 9.

Mean mortality in the reference treatments was 0%, meeting the reference performance standard of \geq 80% of the control survival (Ecology 2008). Mean individual growth rates in the reference treatments CARR20, and CR-12 were 0.748 to 0.836 mg/ind/day (dry weight) respectively, and 0.539 to 0.555 mg/ind/day (AFDW) respectively. Relative to the control, MIG in reference treatments CARR20, and CR-02 was 89% and, 99% respectively, meeting the reference acceptability criteria of \geq 80%.

A reference-toxicant test (positive control) was performed to determine the relative sensitivity of the batch of test organisms utilized in this study. The LC_{50} value of 229 mg/L total ammonia was within control chart limits (±2 standard deviations from the laboratory historical mean, 51.0 - 252 mg total ammonia/L). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

On day 9 of the test, temperatures in all chambers rose above recommended limits (21.0°C) to between 22.5 and 22.9°C. The water bath used to keep the jars in the appropriate temperature range was drained of water and then refilled after the temperature controller was adjusted to 20.5°C. Temperatures remained in range for the remainder of the test. The airline in the water quality surrogate for reference sample CARR20 was inadvertently removed on Day 2. Dissolved oxygen levels in that chamber dropped to 1.1 mg/L. The airline was replaced on Day 3 and following the scheduled water renewal that day DO had risen to 6.3 mg/L. All test chambers were checked for proper aeration and were observed to be functioning correctly. The low DO level was likely isolated to the single surrogate chamber and did not affect the test chambers. DO in the surrogate chamber remained within recommended limits for the remainder of the test. All other water quality parameters were within the target range of the species throughout the duration of the test. Ammonia concentrations observed in the *N. arenaceodentata* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 8; compare to NOEC of 105 mg/L total ammonia). This indicates that ammonia concentrations in interstitial water were below the NOEC (3.47 mg/L; Kendall and Barton 2004) for all samples.

			Mean	Individual Growth (mg/ind/day)							
Treatment	Replicate	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD		
	1	5		0.932			0.648				
	2	5		1.046			0.663				
Control	3	5	0	0.723	0.844	0.149	0.508	0.584	0.080		
	4	5		0.834			0.609				
	5	5		0.686			0.492				
	1	5		0.681			0.515				
	2	5		0.616			0.442				
CARR20	3	5	0	0.848	0.748	0.137	0.591	0.539	0.105		
	4	5		0.660			0.453				
	5	5		0.935			0.695				
	1	5		1.015			0.607				
	2	5		0.957			0.641				
CR-02	3	5	0	0.845	0.836	0.159	0.580	0.555	0.080		
	4	5		0.744			0.503				
	5	5		0.621			0.446				
	1	5		0.634			0.531				
	2	5		0.852			0.658				
SD-0001K	3	5	0	0.650	0.758	0.110	0.490	0.592	0.078		
	4	5		0.868			0.664				
	5	5		0.785			0.617				
	1	5		0.798			0.603				
	2	5		0.732			0.532				
SD-0002K	3	5	0	0.745	0.783	0.056	0.585	0.602	0.061		
	4	5		0.873			0.699				
	5	5		0.768			0.593				
	1	5		0.969			0.723				
	2	5		0.749			0.602				
SD-0003K	3	5	0	0.973	0.858	0.106	0.752	0.663	0.069		
	4	5		0.790			0.614				
	5	5		0.808			0.623				

Table 6. Test Results for Neanthes arenaceodentata

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (units)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.4	7.0	8.7	20.2	19.5	22.9	28.0	28.0	28.0	8.0	7.8	8.2
CARR20	6.7	1.1	7.6	20.2	19.6	22.8	28.0	28.0	28.0	8.0	7.6	8.3
CR-02	7.2	6.7	8.3	20.2	19.6	22.8	28.0	28.0	28.0	8.0	7.8	8.3
SD0001K	7.1	6.4	8.4	20.2	19.5	22.8	28.0	28.0	29.0	8.1	7.7	8.5
SD0002K	7.1	6.5	8.0	20.1	19.4	22.5	28.1	28.0	29.0	8.0	7.7	8.4
SD0003K	7.1	6.3	7.9	20.2	19.5	22.8	28.0	28.0	28.0	8.0	7.6	8.7

 Table 7. Water Quality Summary for Neanthes arenaceodentata

 Table 8. Ammonia and Sulfide Summary for Neanthes arenaceodentata

	Overlying	Ammonia	Interstitia	I Ammonia	Overlying	g Sulfides	Interstitial Sulfides		
Treatment	Day 0 10		Day		Da	ay	Day		
			0	10	0	10	0	10	
Control	0.108	3.88	0.252	*	0.005	0.017	0.170	0.120	
CARR20	3.98	4.85	21.20	*	0.004	0.012	0.770	0.170	
CR-02	2.77	0.177	19.50	2.77	0.015	0.014	0.083	0.104	
SD0001K	1.60	0.171	7.29	2.32	0.026	0.012	0.170	0.164	
SD0002K	0.983	0.066	3.56	0.607	0.012	0.007	0.381	0.200	
SD0003K	1.09	0.232	6.53	1.65	0.010	0.012	0.153	0.315	

NOEC for ammonia = 105 mg/L total ammonia

*Insufficient interstitial water for analysis

Test C	Conditions: PSEP N. arenaceodentata	(SMS)					
	Control; Referen	ces CARR20, CR-02;					
Sample Identification	SD0001K, SD	0002K, SD0003K					
	Reference Sedin	nent: June 25, 2013					
Date sampled	Test Sedime	nt: July 9, 2013					
Date received at NewFields	July	10, 2013					
Test dates	August 29 to Se	ptember 18, 2013					
Sample storage conditions	°	C, dark					
Holding (Recommended: ≤8 wks		e sediments 69 days					
Source of control sediment		Bay, Oregon					
Test Species	N. arenaceodentata						
Supplier		cology Support					
Date acquired		t 29, 2013					
Acclimation/holding time	-	days					
Age class		15 days old					
_		SMARM revisions					
Test Procedures							
Regulatory Program		SMS					
Test location	NewFields Northwest Laboratory 20-Day static renewal						
Test type/duration							
Control water		a water, 0.45µm filtered					
Test dissolved oxygen	Recommended: > 4.6 mg/L Recommended: 20 ± 1 °C	Achieved: 1.1 – 8.7 mg/L					
Test temperature		Achieved: 19.4 – 22.9 °C					
Test Salinity	Recommended: 28 ± 2 ppt Recommended: 7 - 9	Achieved: 28-29 ppt Achieved: 7.6 – 8.7					
Test pH	Recommended: 0.5 - 1.0 mg DW	Achieved. 7.0 – 8.7					
Initial biomass	Minimum: 0.25 mg DW	1.09 mg DW					
SMS control performance standard	Recommended: Mortality: < 10% MIG: ≥ 0.72 mg/ind/day Minimum: ≥ 0.38 mg/ind/day (as dry weight)	Achieved: Mortality: 0%; Pass MIG: 0.844 mg/ind/day; Pass					
SMS and DMMP	Recommended: Mortality ≤20%	Achieved:					
control performance standard	$MIG_{Reference}/MIG_{Control} \ge 80\%$	Mortality: 0%; Pass					
Reference Toxicant LC ₅₀	C _{ro} = 229 m	MIG: 89% to 99%; Pass og $NH_3 + NH_4^+/L$					
Mean; Acceptable Range		$2 \text{ mg NH}_3 + \text{NH}_4^+/\text{L}$					
NOEC (total ammonia)		$JH_3 + NH_4^+/L$					
NOEC (unionized ammonia)	-	ng NH ₃ /L					
Test Lighting	Continuous						
Test chamber	1-Liter Glass Chamber						
Replicates/treatment	5 + 2 surrogates (one used for WQ measurements)						
Organisms/replicate	475 vol. co. dive	5					
Exposure volume	175 mL sediment/ 775 mL water						
Feeding Water renewal		40 mg/jar every other day (8 mg/ind every other day) Water renewed every third day (1/3 test volume)					
Deviations from Test Protocol	Dissolved oxyge	n and Temperature					

 Table 9. Test Condition Summary for Neanthes arenaceodentata

Larval Development Bioassay

The larval development test with *M. galloprovincialis* was validated by 95.3% combined normal survivorship, defined as the mean number of normal larvae within the control divided by the stocking density. This value was within the SMS acceptability criteria of \geq 70%. A summary of the test results for all samples is shown in Table 10. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Tables 11, 12, and 13.

Mean control-normalized normal survival in the reference treatments (CARR20 and CR-02) was 62.6% and 84.6% respectively. CR-02 met the reference performance standard of >65% mean control-normalized normal survival; however, CARR20 failed to meet the criteria. Mean control-normalized survival in test treatments ranged from 77.3% to 88.5%. The test mean chamber stocking density (measured at test initiation) was 33.5 embryos/mL.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC50 value was within control chart limits (±2 standard deviations from the laboratory historical mean). This indicates that the test organisms used in this study were of similar sensitivity to those previously tested at NewFields.

All water quality parameters were within the acceptable limits throughout the duration of the test. Ammonia concentrations observed in the *M. galloprovincialis* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 12; compare to NOEC of 2.39 mg/L for mean observed at NewFields). This indicates that ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments.

All water quality parameters were within the acceptable limits throughout the duration of the test. Total sulfide concentrations in the test and reference treatments ranged from 0.112 - 0.170 mg/L at test initiation and ranged from 0.010 - 0.042 mg/L at test termination. Ammonia concentrations observed in the *M. galloprovincialis* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 12; compare to NOEC of 3.20 mg/L for mean observed at NewFields). This indicates that ammonia concentrations within the sediment samples were below effects levels and should not have been a contributor to adverse biological effects observed in the test treatments.

Treatment	Replicate	Number Normal	Number Abnormal	Mean Number Normal	Normal Survivorship (%) ^{1, 2}	Mean Normal Survivorship (%)	SD
	1	331	15		98.7		
	2	330	20		98.4		
Control	3	317	12	319.6	94.5	95.3	3.4
	4	317	16		94.5		
	5	303	21		90.3		
	1	77	216		24.1		
	2	206	93		64.5		
CARR20	3	305	14	200.2	95.4	62.6	28.1
	4	152	146		47.6		
	5	261	77		81.7		
	1	234	4		73.2		
CR-02	2	277	7		86.7		
	3	287	8	270.4	89.8	84.6	7.2
	4	291	6		91.1		
	5	263	3		82.3		
	1	253	10		79.2		
	2	262	7		82.0		
SD-0001K	3	272	10	273.2	85.1	85.5	5.7
	4	278	18		87.0		
	5	301	9		94.2		
	1	225	49		70.4		
	2	277	10		86.7		
SD-0002K	3	257	20	247.0	80.4	77.3	10.5
	4	276	15		86.4		
	5	200	57		62.6		
	1	270	5		84.5		
	2	284	9		88.9		
SD-0003K	3	261	22	261.8	81.7	81.9	6.9
	4	225	11		70.4		
	5	269	12		84.2		

Table 10. Test Results for Mytilus galloprovincialis Test

¹ Control normality normalized to stocking density (335.4). ² Reference and treatment normal survivorship are normalized to the mean number of normal larvae in the Control (319.6).

Treatment	Dissolved Oxygen (mg/L)			Temperature (°C)			Salinity (ppt)			pH (units)		
	Mean	n Min Max		Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.9	7.6	8.1	15.7	15.3	16.2	29.0	29	29	7.9	7.8	8.0
CARR20	7.2	6.4	8.0	16.3	15.7	16.8	29.0	29	29	7.9	7.9	7.9
CR-02	7.3	6.8	7.7	16.8	16.4	17.1	29.0	29	29	7.9	7.8	7.9
SD0001K	7.3	6.0	8.0	16.2	15.8	16.6	29.0	29	29	7.9	7.8	8.0
SD0002K	7.0	6.1	7.6	16.8	16.5	17.0	29.0	29	29	7.8	7.7	7.8
SD0003K	7.3	5.7	8.1	16.0	15.4	16.7	29.0	29	29	7.8	7.8	7.9

 Table 11. Water Quality Summary for Mytilus galloprovincialis Test

<u> </u>											
Treatment	Overlying Ammo	onia (mg/L Total)	Overlying Sulfides (mg/L)								
freatment	Initial	Final	Initial	Final							
Control	0.062	0.065	0.000	0.023							
CARR20	0.248	0.084	0.112	0.025							
CR-02	0.210	0.017	0.117	0.030							
SD0001K	0.104	0.055	0.170	0.042							
SD0002K	0.062	0.021	0.125	0.019							
SD0003K	0.075	0.000	0.127	0.010							

Table 12. Ammonia and Sulfide Summary for Mytilus galloprovincialis Test

NOEC for ammonia = 3.20 mg/L total ammonia, laboratory mean

Test Cond	itions: PSEP M. galloprovincialis (S	SMS)					
Sample Identification	Control; Referen	ces CARR20, CR-02;					
Sample Identification	SD0001K, SD	0002K, SD0003K					
	Reference Sedin	nent: June 25, 2013					
Date sampled	Test Sedime	nt: July 9, 2013					
Date received at NewFields Northwest	July	10, 2013					
Test dates		28-30, 2013					
Sample storage conditions	-	C, dark					
Holding time		,					
Recommended: < 8 weeks (56 days)	53 days, Referenc	e sediments 68 days					
Test Species	M. gallo	provincialis					
Supplier		sh, Shelton, WA					
Date acquired		t 27, 2013					
Acclimation/holding time (broodstock)		day					
Age class		d embryos					
Test Procedures		SMARM revisions					
Regulatory Program		SMS					
Test location		thwest Laboratory					
Test type/duration		ur static test					
Control water		a water, 0.45µm filtered					
Test dissolved oxygen	Recommended: >5.0 mg/L	Achieved: 5.7 – 8.1 mg/L					
Test temperature	Recommended: 16 ± 1 °C	Achieved: 15.3 – 17.1 °C					
Test Salinity	Recommended: 28 \pm 1 ppt	Achieved: 29 ppt					
Test pH	Recommended: 7 - 9	Achieved: 7.7 – 8.0					
-	Recommended:						
Stocking Density	20 – 40 embryos/mL	Achieved: 33.5 embryos/mL					
	Recommended:	Achieved:					
Control performance standard	Control normal survival >70%	95.3%; Pass					
	Recommended:	Achieved: CARR20:62.6%; Fail					
Reference performance standard	Reference normal survival <u>>65%</u>	CR-02: 84.6% Pass					
Reference Toxicant LC ₅₀		ng NH ₃ + NH ₄ ⁺ /L					
(total ammonia)	$LC_{50} = 3.00$ H	$\log NH_3 + NH_4 / L$					
Mean; Acceptable Range	5 33 1 12 - 9 5	$4 \text{ mg NH}_3 + \text{NH}_4^+/\text{L}$					
(total ammonia)							
NOEC (total ammonia)		$NH_3 + NH_4^+/L$					
NOEC (unionized ammonia)		mg NH $_3$ /L					
Test Lighting	•	t / 10hr Dark					
Test chamber	1-Liter Glass Chamber						
Replicates/treatment		+ 1 surrogate (used for WQ measurements)					
Exposure volume	18 g sediment/ 900 mL water						
Feeding		lone					
Water renewal		lone					
Deviations from Test Protocol	N	lone					

Table 13. Test Condition Summary for Mytilus galloprovincialis Test

Discussion

Sediments were evaluated based on criteria specified in the Sediment Management Standards (SMS). The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology Sediment Sampling and Analysis Plan Appendix (WDOE 2008). The criteria include a lower and a higher threshold, sediment quality standards (SQS) and Cleanup Standards Limit (CSL).

Endpoint comparisons were made for each treatment against the appropriate reference sample. Reference selection was based on a comparison of the percentage of fines for the test treatment and the each of the references. That reference with the most similar percentage of fines was selected for SMS endpoint evaluation. If the difference for two references were similar, the finer grained size reference was selected. The percentage of fines for all selected references were within the SMS recommended range of $\leq 25\%$ (Fox 1997), relative to the test treatments.

Amphipod Test

Under the SMS program, a treatment will fail SQS if mean mortality in the test sediment is >25% more (on an absolute basis) than the mean mortality in the appropriate reference sediment and the difference is statistically significant ($p \le 0.05$). Treatments fail the CSL if mean mortality in the test treatment >30% over that of the reference sediment and the difference is statistically significant. A summary of the SMS evaluation for the K-Ply Mill Site test samples is presented in Table 14. All test treatments met both the SQS and CSL criteria for the benthic amphipod test.

Juvenile Polychaete Test

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG) using ash-free dry weight (AFDW). A test treatment fails SQS criteria if MIG is statistically lower in the test treatment, relative to the reference, and MIG in the test treatment is <70% that of the reference (on a relative basis). The treatments will fail CSL criteria if MIG is significantly lower than the reference treatment and is <50% that of the treatment. A summary of the SMS evaluation for the K-Ply test samples is presented in Table 15. All test treatments met both the SQS and CSL criteria for the juvenile polychaete test.

Larval Bivalve Test

Larval test treatments fail SQS criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if normal survivorship in the test treatment is less than 85%, relative to normal survivorship in the reference (on a relative basis). Test treatments fail CSL criteria if normal survivorship in the test treatment is significantly lower than that of the reference and if the normal survivorship in the test treatment is less than 70%, relative to the reference.

A summary of the SMS comparisons for the benthic larval test is presented in Table 16. Reference sample CARR20 failed to meet criteria for use in test comparisons. As per Michelsen and Shaw (1996), all test treatments were compared to CR-02 which met criteria for use as a reference comparison and CARR20 was removed from statistical analysis. Mean normal survivorship in test samples ranged from 91.3% to 101%, relative to the passing reference (CR-02), meeting both the SQS and CSL criteria.

Overall Summary

A summary of the SMS comparisons for each of the K-Ply test samples is presented in Table 17.

Treatment	Mean Mortality (%)	Reference	Statistically More than Reference?	Mortality Comparison to Reference M _T - M _R (%)	Fails SQS? ¹ >25 %	Fails CSL? ² >30 %
Control	1					
CARR20	5					
CR-02	5					
SD0001K	4	CR-02	No	-1	No	No
SD0002K	3	CARR20	No	-2	No	No
SD0003K	3	CARR20	No	-2	No	No

Table 14. SMS Comparison for the Benthic Amphipod Test with *Eohaustorius estuarius*

M = Mortality, T = Treatment, R = Reference

 1 SQS: Statistical Significance and M_T-M_R >25%

 ^2CSL : Statistical Significance and $M_T\text{-}M_R$ >30%

No = Meets criteria; Yes = Does not meet criteria

Table 15. SMS Comparison for the Juvenile Polycha	ete Test with Neanthes arenaceodentata
---	--

Treatment	MIG (mg/ind/day) AFDW	Reference	AFDW Statistically less than Reference?	Comparison to Reference MIG _T / MIG _R	Fails SQS? ¹ >70 %	Fails CSL? ² >50 %
Control	0.584					
CARR20	0.539					
CR-02	0.555					
SD0001K	0.592	CR-02	No	107%	No	No
SD0002K	0.602	CARR20	No	112%	No	No
SD0003K	0.663	CARR20	No	123%	No	No

T = Treatment, R = Reference

 $^1\text{SQS:}$ Statistical Significance and $N_{\text{CT}}\!\!<\!\!0.70^*N_{\text{CR}}$

 ^2CSL : Statistical Significance and $N_{\text{CT}}{<}0.50^*N_{\text{CR}}$

No = Meets criteria; Yes = Does not meet criteria

Treatment	Mean Number Normal	Reference	Statistically Less than Reference?	Normal Survival Comparison to Reference (N _T /N _c)/(N _R /N _c)	Fails SQS? ¹ < 85%	Fails CSL? ² < 70%
Control	319.6					
CARR20	200.2					
CR-02	270.4					
SD0001K	273.2	CR-02	No	101	No	No
SD0002K	247.0	CR-02	No	91	No	No
SD0003K	261.8	CR-02	No	97	No	No

 Table 16. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis Test

¹SQS: Statistical Significance and N_{CT} <0.85* N_{CR} ²CSL: Statistical Significance and N_{CT} <0.70* N_{CR} No = Meets criteria; Yes = Does not meet criteria

Treatment	Grain Size ¹	Reference Comparison	Amphipod	Juvenile Polychaete	Benthic Larval
SD0001K	65	CR-02 ²	Pass	Pass	Pass
SD0002K	38	CARR20	Pass	Pass	Pass
SD0003K	30	CARR20	Pass	Pass	Pass

 Table 17. Summary of SMS Comparisons for K-Ply Samples

¹ Percent fines (\sum silt and clay) ² Excluding benthic larval test when compared to CARR20

References

- American Society for Testing and Materials (ASTM). 2006. E1688-00 Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates. Annual Book of Standards, Water and Environmental Technology, Vol. 11.06, West Conshohocken, PA.
- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Ecology 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Ecology 2008. Sediment Sampling and Analysis Plan Appendix (SSAPA): Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-204 WAC), Sediment Management Unit, Department of Ecology, Bellevue, Washington. Revised February 2008.
- Fox, D. and T Michelsen. 1997. Selection of Negative Control Seidment and Use of Control Sediments as Reference Sediments. DMMP Clarification Paper. SMS Draft Technical Information Memorandum. Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Fox, D, DA Gustafson, and TC Shaw. 1998. Biostat Software for the Analysis of DMP/SMS. Presented at the 10th Annual Sediment Management Annual Review Meeting.
- Kendall D, R McMillan, and B Gardiner. 2012. Draft DMMP/SMS Clarification Paper: Bioassay Endpoint Refinements: Bivalve Larvae and Neanthes Growth Bioassay. Presented at the 24th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to Neanthes Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Michelsen, T, and TC Shaw. 1996. Statistical Evaluation of Bioassay Results, In: Sediment Management Annual Review Meeting Minutes, PSDDA/SMS agencies.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP. 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- United States Environmental Protection Agency and United States Army Corps of Engineers (USEPA/USACE). 1991. Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual (Ocean Testing Manual). EPA 503/8-91/001. EPA Office of Water, Washington, DC.

USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: -Testing Manual. EPA 823-B-98-004. February 1998.

APPENDICES A. LABORATORY DOCUMENTS B. STATISTICAL COMPARISONS C. CHAIN-OF-CUSTODY FORMS

APPENDIX A

LABORATORY DOCUMENTS

Eohaustorius estuarius Amphipod Bioassay:

Laboratory Data Sheets... A.1.1

Reference Toxicant Test... A.1.2

Neanthes arenaceodentata Juvenile Polychaete Bioassay:

Laboratory Data Sheets... A.2.1

Reference Toxicant Test... A.2.2

Mytilus galloprovincialis Benthic Larval Bioassay:

Laboratory Data Sheets... A.3.1

Reference Toxicant Test... A.3.2

Biological Testing Results

APPENDIX A.1.1

Eohaustorius estuarius Amphipod Bioassay Laboratory Data Sheets

NewFields

10-DAY SOLID PHASE TEST OBSERVATION DATA

CLIENT FloydSnider NEWFIELDS JOB NUN 0	IBER		PROJECT K Ply PROJECT N B. Hester	ANAGER		SPECIES Eohaustori TEST STAR 27-Aug-13	<u>us estuarius</u> T DATE		NEWFIELD Port Gambl TEST END 6-Sep-13		ORY	PROTOCOI PSEP 1995		
N = Normal #E = Emergence	Initial #						ATA AND OF	SERVATION						
#M = Mortality or Molts G = Growth	Organis	sms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	1	
fungal, bacterial.or algal) D = No Air Flow (DO?)			Date	Date	Date	Date	Date	Date	Date	Date	Date	Date	4	
 F Floating on Surface C = Too Cloudy 	2	20	812813	8129	8/30	831	9[0]	9102	913	914	9105	9(06	Alive	Recovere
Client/NewFields ID	Rep	Jar #	Tech. MMB	Tech.) v	Tech.	Tech.	Tech.	Tech. MMB	Tech. MMB	Tech. Ju	Tech. JC	Number Alive	Number Dead Recovered (if any) / Comments
	1		2	Ņ	N	N	N	て	2	2	2	N	20	
	2											1	19	INB
Control	3			LI	<u> _</u>								20	
	4												20	
	5		<u> </u>										20	
	1		N		6		7					2	19	INB
-	2				6		IF						18	ZNB
CARR20	3		-		₽		4						20	
	4												18	2NB
	5		J.						PHEN			C	20	
ļ	1		N			_			2	N	V	N	17	JNB
F	2		2F						N	N	IF		20	
CR 02	3		IF		Im	_			IM, IF	IM	N	ιS	19	ind
	4		N		b		_		N	N	_	٢	20	
	5		11=						IE	N		15	19	
F	1		N						N	N		IF	20	
ł	2		N					_ _		_ _	l	N	19	INB
SD0001K	3		IE			IF				_	IF		19	INB
	4			3F		<u> </u>		V_		_	N		19	
DWX AAAA	5		N	N		2m	U	IE		N		2	19	

Q wc. mms 7/3/13

10-DAY SOLID PHASE TEST OBSERVATION DATA

CLIENT FloydSnider NEWFIELDS JOB NUM 0	MBER		PROJECT K Ply PROJECT N B. Hester	MANAGER		SPECIES Eohaustori TEST STAR 27-Aug-13	<i>us estuarius</i> RT DATE		NEWFIELD Port Gambl TEST END 6-Sep-13		ORY	PROTOCOL PSEP 1995		
N ≠ Normal #E = Emergence	Initial #				l	ENDPOINT D	ATA AND OF	SERVATION	is .			1		
#M = Mortality or Molts G = Growth	Organis	sms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10		
(fungal, bacterial, or algal) D ≈ No Air Flow (DO?) F = Floating on Surface				Date	Date	Date	Date	Date	Date	Date	Date	Date	Ð	s ered
r = rioaung on surface TC = Too Cloudy		20	8/28/13	8129	8 30	831	9601	9(02	913	714	9/05	9100	Number Alive	Number Dead Recovered (if any) / Comments
			Tech.	Tech,	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	mbe	r Deac ny) / C
Client/NewFields ID	Rep	Jar #	MMB	He	JL	Ju		J	MMB	MMB			'n	Numbe (if al
	1		2	N	N	2	て	2-	2	N	2	N	19	l
	_2		N							IF		J	20	
SD0002K	3		2F		Im		16	IF		2		16	19	INB
	4		N		Im		で、	2				26	19	INB
E	5		N		N				2	J.		1E	20	
	1		IE					L_	2	N	L	2	20	
	2		N					6	q	6	6	6	18	I, INB
SD0003K	3		N		l			IF	١F	N	N	Ņ	20	
	4		JE		1É			2F	2	N	l		20	
	5		N	N			7	6	2	G	6	6.15	19	INB

* NewFields

CLIENT	PROJECT	SPECIES			
FI- 10 11		SPECIES		NEWFIELDS LABORATORY	PROTOCOL
FloydSnider	K Ply	Eohaustorius estuarius		Port Gamble	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	
			1	TEST END DATE	TIME
0	B. Hester	27-Aug-13	1100	6-Sep-13	1030
					000

									WATER QUALI	Y DATA	·····		
		Tes	t Conditions	5	DO (mg/L) >4.6 mg/L	Те	emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD0001K	0	wq	5	6	7.3	6	16.0	2	28	5	8.0	CR	8/27
CARR20	0	wa	6		7.5	1	16.0		28		83	1	
CR 02	0	WQ	7		7.6		16.0		28		8.3		
SD0002K	0	WQ	13		7.6		15.6		28		8.3		
SD0003K	0	WQ	17		7.6		15.5		28		8.3		
Control	0	WQ	19	V	7.9	V	15.2	TA	28		8.3	\sim	V

F

CLIENT			PROJECT			٦	SPECIES						
FloydSnider			K Ply				Eohaustorius estuari	us		Port Gamb	S LABORATORY		PROTOCOL
NEWFIELDS JOB NUMBER			PROJECT M	ANAGER			TEST START DATE		TIME	TEST END			PSEP 1995
)			B. Hester				27-Aug-13		1100	6-Sep-13			1030
									WATER QUALI				
		Te	st Conditions		DO (mg/L) >4.6 mg/L	Т	emperature (°C) 15±1		Salinity (ppt) 28±1		рН		
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	7-9 unit	Tech	Date
SD0001K	1	WQ	5	Q	7.9	6	15.1	2	29	S	7.9	MMB	8 28 1
CARR20	1	wq	6	1	8.(15.3		28		8.0	1	- 1001
CR 02	1	WQ	7		8.0		15.1		29		8.0		┼──┼──
SD0002K	1	WQ	13		7.9		15.4		28		8.0		
SD0003K	1	WQ	17		8.0		15.5		29		8.0		
Control	1	WQ	19	\downarrow	8.1	Y	15.6	y	29	₩	8.0	y	

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

LIENT loydSnider EWFIELDS JOB NUMBER			PROJECT K Ply				SPECIES Eohaustorius estuarius			NEWFIELD Port Gamb	S LABORATORY		PROTOCOL PSEP 1995
			PROJECT M B. Hester	ANAGER			TEST START DATE 27-Aug-13		TIME 100	TEST END 6-Sep-13	DATE		TIME 1030
		Te	st Conditions		DO (mg/L)	т	emperature (°C)	<u> </u>	WATER QUA	LITY DATA			
Client/NewFields ID	Day	Rep	Jar#	meter	>4.6 mg/L mg/L	meter	15±1	meter	28±1 ppt	meter	рН 7-9 unit	Tech	Date
SD0001K	2	WQ	5	6	1.5	6	16.3	Z	29	5	7.8	HE	8/29
CARR20	2	wq	6	6	7.9	6	15.8	2	28	5	7.9	The	8/29
CR 02	2	WQ	7	6	7.9	6	15.6	Z	29	5	8.0	the	8/29
SD0002K	_2	WQ	13	6	7.9	6	15.5	Z	29	5	8.0	Ha	8129
SD0003K	2	WQ	17	6	8.0	6	15.4	2	29	5	7.9	the	8/29
Control	2	wq	19	6	8.2	6	15.0	Z	29	5	7.9	75	\$129

.

,

LIENT loydSnider EWFIELDS JOB NUMBER			PROJECT K Ply PROJECT M B. Hester	ANAGER		1	SPECIES Eohaustorius estuar TEST START DATE 27-Aug-13		тіме \\00	NEWFIELD Port Gamb TEST END 6-Sep-13			PROTOCOL PSEP 1995 TIME
		Te	est Conditions		DO (mg/L) >4.6 mg/L	Te	emperature (°C) 15±1		WATER QUALI Salinity (ppt)		рН		
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	28±1 ppt	meter	7 - 9 unit	Tech	Date
SD0001K	3	WQ	5	V	7.7	6	15.8	2	29	C	8.1	11	8130113
CARR20	3	WQ	6	_ /	8.(15.6	(28		8.0		
CR 02	3	WQ	7		7.9		15.5		28		8.1		+ - + -
SD0002K	3	WQ	13		80		15.4		79		8.1		
SD0003K	3	WQ	17		7.9		15.5		29		8.1		+
Control	3	wq	19		8.2		15.4	Ŀ	29		8.0		

CLIENT FloydSnider NEWFIELDS JOB NUMBER			PROJECT K Ply				SPECIES Eohaustorius estua			NEWFIELD Port Gamb		PROTOCOL PSEP 1995	
)			B. Hester				TEST START DATE 27-Aug-13			TEST END 6-Sep-13	DATE		TIME 1030
									WATER QUAL	ITY DATA			
Client/NewFields ID	Davi		st Conditions		DO (mg/L) >4.6 mg/L	Т	emperature (°C) 15±1		Salinity (ppt) 28±1		ρΗ 7 - 9	Tech	
Chemina and a second se	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Tecn	Date
SD0001K	4	wq	5	6	7.5	6	16.3	2	29	5	8.2	173	8/31
CARR20	4	wq	6	6	7.9	6	15.9	2	28	5	8.0	HE	1
CR 02	4	WQ	7	6	1.7	6	15.9	2	29	5	8.(the	+
SD0002K	4	WQ	13	6	7.9	6	15.9	Z	29	5	8.2	He	
SD0003K	4	WQ	17	6	7.9	6	15.9	2	29	5	8.2	the	
Control	4	wq	19	6	8.1	6	15.7	1	29	6	21	- Mit	+-++/

CLIENT	PROJECT	SPECIES			
FloydSnider	K Ply			NEWFIELDS LABORATORY	PROTOCOL
		Eohaustorius estuarius		Port Gamble	
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	PSEP 1995
0	B. Hester		i	I EST END DATE	TIME
		27-Aug-13	1100	6-Sep-13	1030

									WATER QUALIT	Y DATA			
Client/NewFields ID	Day	Te:	st Conditions		DO (mg/L) >4.6 mg/L		emperature (°C) 15±1	S	alinity (ppt) 28±1		рН 7 - 9	Tech	Dete
	Day	Kep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		Date
SD0001K	5	wq	5	6	7.6	6	15.3	2	29	Ś	85	1	91,11
CARR20	5	_wq	6		8.0		15.1		28		Q7		
CR 02	5	wq	7		7.9		15.1		28		8.7.		
SD0002K	5	WQ	13		7.9		14.9		29		87		
SD0003K	5	WQ	17		7.8		15.1		29		8.4	/	
Control	5	WQ	19	J	81	5	14.9		79		8.1	-t-+	£

CLIENT	PROJECT	SPECIES			
FloydSnider	KPly			NEWFIELDS LABORATORY	PROTOCOL
NEWFIELDS JOB NUMBER		Eohaustorius estuariu	IS	Port Gamble	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	
0	B. Hester	27-Aug-13	1100	6-Sep-13	1030

									WATER QUALIT	Y DATA			
			st Conditions	6	DO (mg/L) >4.6 mg/L	Т	emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9		
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Tech	Date
SD0001K	6	WQ	5	6	8.(6	14.7	2	28	5	8.1	JL	9(02
CARR20	6	WQ	6		7.8		15.1	í	29		85	(
CR 02	6	WQ	77		8.1		14.7		28		8.3		
SD0002K	6	wq	13		9.(14,6		29		0.4		
SD0003K	6	WQ	17		7.9		14.7		29		8.5		
Control	6	WQ	19		8.4	L	14.3	5	29		81		

CLIENT	PROJECT	SPECIES			
FloydSnider	КРІу	Eohaustorius estuarius		NEWFIELDS LABORATORY	PROTOCOL
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE			PSEP 1995
0	B. Hester			TEST END DATE	TIME
	D. Hester	27-Aug-13	100	6-Sep-13	1030

			_	WATER QUALITY DATA									
		Test Conditions			DO (mg/L) >4.6 mg/L		Temperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9		1
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Tech	Date
SD0001K	7	WQ	5	6) .9	4	14.4	5	29	5	8.7	MINE	913
CARR20	7	WQ	6		8.1		14.5		58		8.2		
CR 02	7	WQ	7		8.1		14.5		28		8.5		
SD0002K	7	WQ	13		8.1		14.4		29		8.5		
SD0003K	7	WQ	17		8.0		14.6		29		8.6		
Control	7	WQ	19	9	8.3		14.3	5	29		8.2		

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

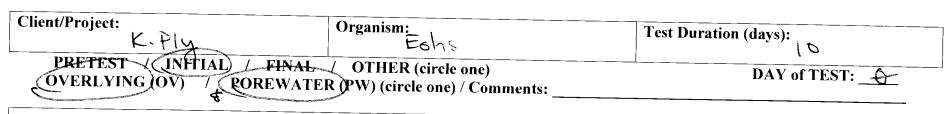
CLIENT	PROJECT	CDECIEC.							
FloydSnider		SPECIES		NEWFIELDS LABORATORY PROTOCOL					
	КРіу	Eohaustorius estuarius		Port Gamble	PSEP 1995				
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE TIME		TEST END DATE					
0				TEST END DATE	TIME				
	B. Hester	27-Aug-13	1100	6-Sep-13	030				

	-			WATER QUALITY DATA									
	_	Tes	at Conditions	s DO (mg/L) >4.6 mg/L		Temperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9		Tech	
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Jech	Date
SD0001K	8	wq	5	6	0.8	6	14.3	5	29	5	8.6	MMB	914
CARR20	8	wq	6		8.7		14.3		58		8.3		1
CR 02	8	WQ	7		8.3		14.2		98		8.5		
SD0002K	8	WQ	13		1.8		14.2		29		8.6		
SD0003K	8	wa	17		8.(14.3		29		8.8		,
Control	8	WQ	19		8.4	17	14.1		29		8.3		

٦

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT	PROJECT	SPECIES			
FloydSnider		SPECIES		NEWFIELDS LABORATORY	PROTOCOL
	КРІу	Eohaustorius estuarius		Port Gamble	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	
0	D. Master	=	_	ILST END DATE	TIME
	B. Hester	27-Aug-13	1100	6-Sep-13	(030
					— ———————————————————————————————————


	· · ·								WATER QUALIT	Y DATA			
			st Conditions		DO (mg/L) >4.6 mg/L	T	emperature (°C) 15±1		Salinity (ppt) 28±1		рН 7 - 9	Tech	Date
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	, vocii	Care
SD0001K	9	wq	5	6	8.2	6	14.1	2	28	5	8.1	X	9/057/3
CARR20	9	wa	6		7.8		14.3		29	1	8.3		
CR 02	9	wq	7		8.2		14.2		28		8.3		
SD0002K	9	WQ	13		0.1		14.4		29		8.3		
SD0003K	9	WQ	17		8.0		14.7		29		8.4		
Control	9	wq	19	5	8,2	U	14.3	4	28		7.8	l	

10 DAY SOLID PHASE BIOASSAY WATER QUALITY DATA SHEET

CLIENT	PROJECT	SPECIES			
FloydSnider	K Ply			NEWFIELDS LABORATORY	PROTOCOL
NEWFIELDS JOB NUMBER	PROJECT MANAGER	Eohaustorius estuarius		Port Gamble	PSEP 1995
	PROJECT MANAGER	TEST START DATE		TEST END DATE	TIME
0	B. Hester	27-Aug-13	1100	6-Sep-13	1030

									WATER QUALIT	Y DATA			
		Tes	t Conditions		DO (mg/L) >4.6 mg/L	Te	emperature (°C) 15±1	8	Salinity (ppt) 28±1		рН 7 - 9	Teat	
Client/NewFields ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Tech	Date
SD0001K	10	wq	5	6	8.2	6	[4.]	2	28	5	83	J.	9106/13
CARR20	10	WQ	6		8.0		14.3		29		8.5		
CR 02	10	WQ	77		6.2		14.0		28		8.5		
SD0002K	10	wq	13		8.1		14.0		29		8.5		
SD0003K	10	wq	17		8.1		14.1		29		8,7		
Control	10	WQ	19		8.4	5	13.9		78	t	8.4		

Ammonia and Sulfide Analysis Record

	ards Temperature	
Date:	Temperature:	Sample temperature should be within $\pm 1^{\circ}$ C of
8(27/13	31.0	standards temperature at time and date of analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf.
	8000.	867113 MMB	0.0915	21.5	8127113 MMB	N		1	10	0.00		(mg/L)
CR.02			1.61							000	+	
CARRZO			0.743					/			-	
SDOTOIK			0.413					X		0.002	$ \longrightarrow $	₭───
SDODO2K			0.417						-	0.076		
J SDODD3K			0.415						_ <u>y</u>	0.006	/	$ - \rangle$
PW Cartrol	_		0.124				8.4	30	10	0.013		
CK-02			14.2	1			7 .8	291	5		5	
CARROO			15.0				7.6	29	10	0.081		0.162
SDOUTIK			3.11				9.4 9.6	30	10	0.033		
, SDOOD2K			3.88				7.7	30	5	0.092	2	+ 10/
SDOODSK	Y	J	3.81	y			7.9	30	55	0.052	8	0.184
							<u> </u>	20		0.052	8	0.104

Page ____of_

• NewFields

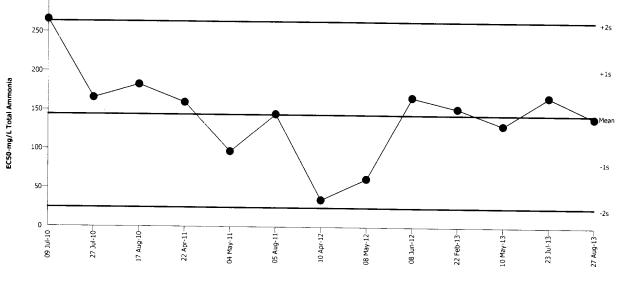
Ammonia and Sulfide Analysis Record

Page _____ of ____

Client/P	-	K-PN		Organis	Eohs			Test	Duration	(days): ()	
OVI	ETEST ERLYIN		/ FINAL OREWATE	2OTH R (PW) (4	ER (circle one) circle one) / Con	nments:				DAY of TI		0
		Calibr Date: 9[06	ation Standa	ards Tem		ure: 21.	5	Sample standar	e temperature ds temperatu	should be with re at time and	hin <u>+</u> 1°C o date of ana	f Ilysis.
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
OV. Canhol 1 CANKR. 20	SWV	9/06/13 26	0.0242	20.6	9/06/13/	Ч	NA	NA	10	0.019	NA	(IIIg/L)
CR-02 SD0001K SD0002K 150003K PW (UNHAP CMRP20 CR-02 SD0001K SD0002K SD0002K SD0003K			5,97 0,899 1.25 2.06 0.0686 0.157 4.25 0,467 1.06 1.87	20.5			7.5 7.6 7.4 6.9 7.1 7.0	26 26 25 26 27 28	2m1 10 2 5 5 10	0. 620 0.019 0.031 0.016 0.039 0.052 0.039 0.131 0.091 0.065	5 5 2 2 2	0.195 0.195 0.262 0.192
00	0.015.	JL 7/06/13										

ORGANISM RECEIPT LOG

Date:		T	lime:		NewFie	lds Batch No.	· · · · · · · · · · · · · · · · · · ·
C. Z.	3.15		1240		N	WA 30-	3 U
Organism	/ Project:					Invoice Atta	ched
Fonac	storius	K-Ply				Yes (No
Source / S	· .	A	1		Contact	::	
Nov	thueste	n Aquat	ic Scien	ces	G	жy	
No. Ordere	d:	N	o. Received		Source	l Batabi	
	00		1100 +			n date, hatchidat	te, etc.):
Condition of (Good, fair, po	of Organisms oor; describe.):	s: Good		Appro (Days fi		• • • • •	s, etc.):
Shipper:		dEx			(Tracking N	-	в
Condition c (Good, fair, pc	of Container: bor; describe.): (bad		Receiv	red By: BN		
Container	D.O. (mg/L)	Temp. (°C)	Cond. or s (Include Un		pH (Units)	Number Dead or Moribund	Technician (Initials)
Milti	7.9	14.7	28.5		9. (BM
Notes:							


Biological Testing Results

APPENDIX A.1.2

Eohaustorius estuarius Amphipod Bioassay Reference Toxicant Test

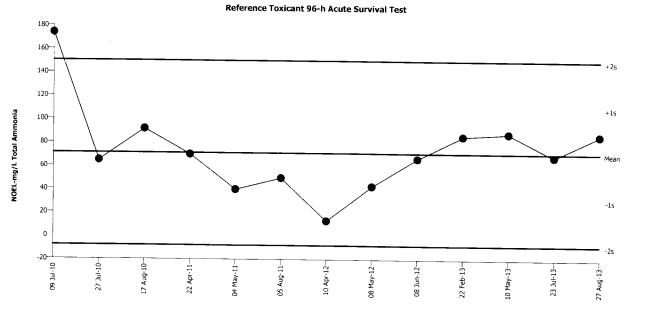
NewFields

Reference	Toxicant 96-h Acute Survival	Test		NewField
Test Type: Protocol:	Survival EPA/600/R-94/025 (1994)	Organism: Eohaustorius estuarius (Amphipod) Endpoint: Proportion Survived	Material: Source:	Total Ammonia Reference Toxicant-REF
	300	Reference Toxicant 96-h Acute Survival Test	·- <u>·</u>	······

Mean:	144	Count:	12	-1s Warning Limit:	84.25	-2s Action Limit:	24 5
Sigma:	59.75	CV:	41.50%	+1s Warning Limit:	203.8	+2s Action Limit:	

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2010	Jul	9	15:20	265.9	121.9	2.041	(+)	(+)	02-9263-1875	13-7083-7088
2			27	14:50	165.5	21.52	0.3602			16-3262-6250	12-1070-3879
3		Aug	17	16:00	182.5	38.54	0.6451			00-5947-2918	13-7468-5586
4	2011	Apr	22	16:45	159.7	15.66	0.2622			12-3251-7366	15-6923-8618
5		May	4	14:20	96.78	-47.22	-0.7903			15-9053-5291	03-3498-4458
6		Aug	5	14:35	144.9	0.8591	0.01438			05-3970-3796	17-5474-7748
7	2012	Apr	10	15:10	34.72	-109.3	-1.829	(-)		02-5902-8958	20-3951-0452
8		May	8	14:30	61.87	-82.13	-1.375	(-)		20-1853-8108	14-9890-9529
9		Jun	8	15:30	166.5	22.49	0.3763			03-4756-9479	07-8270-3224
10	2013	Feb	22	11:40	152.2	8.219	0.1375			09-9358-3146	14-0757-4516
11		May	10	14:20	130.8	-13.24	-0.2217			01-9831-6628	02-4493-3987
12		Jul	23	15:10	167.1	23.14	0.3873			15-9850-7427	05-2897-2730
13		Aug	27	12:10	140.4	-3.607	-0.06037			20-8540-9997	05-1258-2331

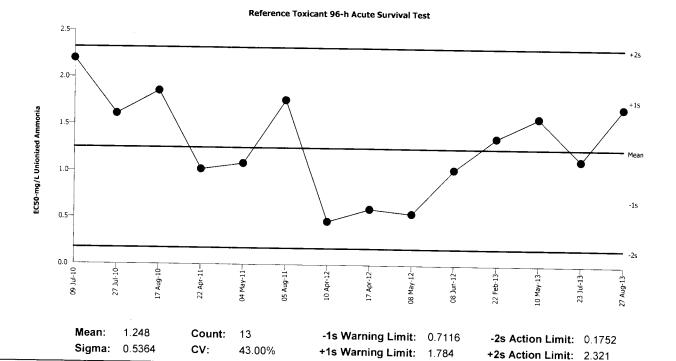

Analyst: D QA: CR

09 Sep-13 16:20 (1 of 1)

Report Date:

Report Date:	09 Sep-13 16:20 (1 of 1)

Reference Toxicant 96-h Acute Survival T	est		NewFields
Test Type: Survival Protocol: EPA/600/R-94/025 (1994)	Organism: Eohaustorius estuarius (Amphipod) Endpoint: Proportion Survived	Total Ammonia Reference Toxicant-REF	

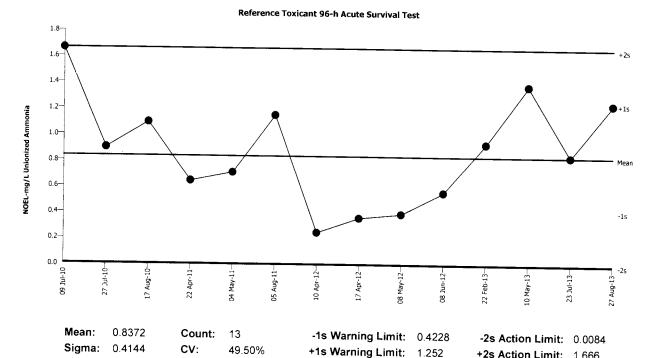

Mean:	71.12	Count:	12	-1s Warning Limit:	31.57	-2s Action Limit:	-7 98
Sigma:	39.55	CV:	55.60%	+1s Warning Limit:	110.7	+2s Action Limit:	

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2010	Jul	9	15:20	174	102.9	2.601	(+)	(+)	02-9263-1875	21-0926-0699
2			27	14:50	64.7	-6.42	-0.1623		. ,	16-3262-6250	07-8105-4494
3		Aug	17	16:00	91.6	20.48	0.5178			00-5947-2918	19-8213-9681
4	2011	Apr	22	16:45	69.8	-1.32	-0.03338			12-3251-7366	16-4565-4919
5		May	4	14:20	39.8	-31.32	-0.7919			15-9053-5291	14-1177-0441
6		Aug	5	14:35	49.6	-21.52	-0.5441			05-3970-3796	20-5970-4725
7	2012	Apr	10	15:10	13	-58.12	-1.47	(-)		02-5902-8958	03-7154-8292
В		May	8	14:30	42.6	-28.52	-0.7211	.,		20-1853-8108	20-5519-2940
9		Jun	8	15:30	66.4	-4.72	-0.1193			03-4756-9479	03-6674-9041
10	2013	Feb	22	11:40	85.6	14.48	0.3661			09-9358-3146	06-2817-6220
11		May	10	14:20	88	16.88	0.4268			01-9831-6628	03-9560-5903
12		Jul	23	15:10	68.3	-2.82	-0.0713			15-9850-7427	18-8212-0119
13		Aug	27	12:10	86.4	15.28	0.3863			20-8540-9997	03-1133-2124

Analyst: D QA: CR

Reference Toxicant 96-h Acute Survival Test NewFields Test Type: Survival Organism: Eohaustorius estuarius (Amphipod) Material: Unionized Ammonia Protocol: EPA/600/R-94/025 (1994) Endpoint: Proportion Survived Source: Reference Toxicant-REF



Quality Control Data

Point		Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2010	Jul	9	15:20	2.198	0.9495	1.77	(+)		01-7209-8485	05-8082-3474
2			27	14:50	1.608	0.3604	0.6719			00-7007-0295	03-9110-2709
3		Aug	17	16:00	1.854	0.6063	1.13	(+)		04-9660-1658	10-4250-3896
4	2011	Apr	22	16:45	1.017	-0.2306	-0.4299			03-6965-3395	14-3447-2473
5		May	4	14:20	1.081	-0.1668	-0.3109			18-8723-9922	17-9305-2155
6		Aug	5	14:35	1.76	0.5122	0.9549			17-9542-0646	06-2792-7024
7	2012	Apr	10	15:10	0.4636	-0.7844	-1.462	(-)		18-7283-5013	07-7471-6807
8			17	15:45	0.5982	-0.6498	-1.211	(-)		18-5229-3668	10-4921-5938
9		May	8	14:30	0.5509	-0.6971	-1.3	(-)		15-4565-2403	06-1396-7211
10		Jun	8	15:30	1.024	-0.2237	-0.4171			03-7901-3036	07-6844-7156
11	2013	Feb	22	11:40	1.364	0.1162	0.2166			10-3861-9695	21-2507-0831
12		May	10	14:20	1.578	0.3298	0.6149			05-8857-3753	18-2954-4563
13		Jul	23	15:10	1.126	-0.1221	-0.2276			08-8059-3744	12-6137-6954
14		Aug	27	12:10	1.689	0.4413	0.8227			18-3860-3992	18-0374-3993

+2s Action Limit: 1.666

Reference Toxicant 96-h Acute Survival	Test			NewFields
Test Type: Survival	Organism: Eohaustorius estuarius (Amphipod)	Material:	Unionized Ammonia	
Protocol: EPA/600/R-94/025 (1994)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF	-

	olgina.	0.4144		v .	49.50%	+1s Warn	ing Lim
Quality Contro	Data						
Point Year Me	onth Day	Time	QC Data	Delta	Sigma	Warning	Action

1 Onit	-	WORT	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2010	Jul	9	15:20	1.665	0.8278	1.998	(+)		01-7209-8485	15-5728-8112
2			27	14:50	0.9	0.0628	0.1515			00-7007-0295	13-8034-1240
3		Aug	17	16:00	1.096	0.2588	0.6245			04-9660-1658	04-8886-1755
4	2011	Apr	22	16:45	0.644	-0.1932	-0.4662			03-6965-3395	08-9559-0930
5		May	4	14:20	0.71	-0.1272	-0.3069			18-8723-9922	06-9505-1415
6		Aug	5	14:35	1.152	0.3148	0.7597			17-9542-0646	01-3764-6854
7	2012	Apr	10	15:10	0.249	-0.5882	-1.419	(-)		18-7283-5013	17-8032-8770
8			17	15:45	0.36	-0.4772	-1.152	(-)		18-5229-3668	21-3980-0168
9		May	8	14:30	0.393	-0.4442	-1.072	(-)		15-4565-2403	07-1675-0393
10		Jun	8	15:30	0.56	-0.2772	-0.6689	.,		03-7901-3036	09-3097-7160
11	2013	Feb	22	11:40	0.935	0.0978	0.236			10-3861-9695	14-6175-2687
12		May	10	14:20	1.38	0.5428	1.31	(+)		05-8857-3753	12-0577-0060
13		Jul	23	15:10	0.839	0.0018	0.004344	. ,		08-8059-3744	14-8468-9199
14		Aug	27	12:10	1.242	0.4048	0.9768			18-3860-3992	13-4279-2307
										10 0000-0002	10-42/0-2007

or no our	mmary Rep	οπ						Report Dat		09 Sep-13 16	
Reference To	oxicant 96-h Aci	uto Sun	uival Test					Test Code:		7C4CD4CD 1	20-8540-99
											NewField
Batch ID:	07-6407-4119		Test Type:					Analyst:			
Start Date:	27 Aug-13 12:		Protocol:	EPA/600/R-94/				Diluent:	Laboratory	Seawater	
Ending Date:	0	35	Species:					Brine:	Not Applica	ble	
Duration:	4d 1h		Source:	Northwestern A	Aquatic Scie	nce, OR		Age:			
Sample ID:	04-5394-3157		Code:	1B0E9F75				Client:	Internal Lab		
Sample Date:	•		Material:	Total Ammonia	1			Project:	Reference 1		
Receive Date	-		Source:	Reference Tox	icant			-			
Sample Age:	700d 12h		Station:	p110927.150							
Comparison S	Summary					<u> </u>					
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τu	Meth	od		
03-1133-2124	Proportion Sur	vived	86.4	169	120.8	26.6%		Bonferroni Adj t Test			
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	ти	Meth	od		
05-1258-2331	Proportion Sur	vived	EC50	140.4	123.8	159.2			rman-Kärber		
Proportion Su	urvived Summa	ry									
C-mg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std D	ev CV%	0/ 55
0	Dilution Water	3	1	1	1	1	1	0	0	0.0%	%Effect
22.1		3	1	1	1	1	1	0	0	0.0%	0.0% 0.0%
43.2		3	0.9333	3 0.7899	1	0.9	1	0.033			6.67%
86.4		3	1	1	1	1	1	0	0	0.0%	0.0%
169		3	0.3	0	1	0.1	0.7	0.2	0.3464		70.0%
318		3	0	0	0	0	0	0	0		100.0%
Proportion Su	rvived Detail									· · · · · · · · · · · · · · · · · · ·	
	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	1	1	1							
22.1		1	1	1							
43.2		1	0.9	0.9							
86.4		1	1	1							
169		0.1	0.1	0.7							
318		0	0	0							
Proportion Su	rvived Binomia	ls								<u></u>	
	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	10/10	10/10	10/10							
22.1		10/10	10/10	10/10							
13.2		10/10	9/10	9/10							
36.4		10/10	10/10	10/10							

10/10 10/10 10/10 169 1/10 1/10 7/10 318 0/10 0/10 0/10

Analyst: U QA: (R

CETIS Test Data Worksheet

Report Date: Test Code:

09 Sep-13 16:19 (p 1 of 1) 20-8540-9997/7C4CD4CD

Reference Toxicant 96-h Acute Survival Test

Start Date: End Date: Sample Date	31 /	Aug-1	3 12:1(3 13:35 1	-	: EPA/600/R-94/025 (1994)		NewField 1B0E9F75 Reference Toxicant
					# Survived	Sample Station:	p110927.150
0	D	1	2	10	10	Notes	
0	D	2	5	10	10		
0	D	3	6	10	10		
22.1	I	1	14	10	10		
22.1	-	2	13	10	10		
22.1	l .	3	9	10	10		
43.2	 	1	16	10	10		
43.2		2	8	10	9		
43.2		3	7	10	9		
86.4		1	3	10	10		
86.4	1 .	2	12	10	10		
86.4		3	15	10	10		
169		1	10	10	1		
169		2	11	10	1		
169		3	1	10	7		
318		1	18	10	0		
318		2	4	10	0		
318		3	17	10	0		

000-173-185-2

Analyst: _____ QA: UR__

50 113 SU	mmary Rep	ort						Report Date:		09 Sep-13 16	5:23 (p 1 of 1
Defe-								Test Code:			18-3860-399
Reference I c	oxicant 96-h Ac	ute Sur	vival Test								NewFields
Batch ID:	00-1984-1085	5	Test Type:	Survival				Analyst:		_	
Start Date:	27 Aug-13 12		Protocol:	EPA/600/R-94	/025 (1994)				_aboratory V	Vater	
	31 Aug-13 13	:35	Species:	Eohaustorius e	estuarius				Not Applicat		
Duration:	4d 1h		Source:	Northwestern /	Aquatic Scie	nce, OR		Age:	tot rppilout		
Sample ID:	00-4284-8278		Code:	28DD016				Client:	nternal Lab		
Sample Date:	: 27 Sep-11		Material:	Unionized Amr	nonia				Reference T	ovicent	
Receive Date	: 27 Sep-11		Source:	Reference Tox				i loject. i	vererence n	Uxicant	
Sample Age:	700d 12h		Station:	p110927.150							
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	τυ	Metho	d		
13-4279-2307	Proportion Su	rvived	1.242	2.023	1.585	26.6%			roni Adj t Te	st	
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Metho	ч		
18-0374-3993	Proportion Sur	rvived	EC50	1.689	1.572	1.815			nan-Kärber		
Proportion Su	urvived Summa	iry									
C-mg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err		0.44	
0	Dilution Water	3	1	1	1	1	1		C Std De		%Effect
0.41		3	1	1	1	1	1	0	0	0.0%	0.0%
0.814		3	0.9333	0.7899	1	0.9	1	0.0333;		0.0% \$6.19%	0.0%
1.242		3	1	1	1	1	1	0	0	+ 0.19% 0.0%	6.67%
2.023		3	0.3	0	1	0.1	0.7	0.2	0.3464	0.0 <i>%</i> 115.5%	0.0%
2.376		3	0	0	0	0	0	0	0.5404	115.5%	70.0% 100.0%
Proportion Su	rvived Detail										
	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	1	1	1			_				
0.41		1	1	1							
0.814		1	0.9	0.9							
1.242		1	1	1							
2.023		0.1	0.1	0.7							
2.376		0	0	0							
Proportion Su	rvived Binomia	ls		· · · · · · · · · · · · · · · · · · ·	···		·				
	Control Type	Rep 1	Rep 2	Rep 3							
)	Dilution Water	10/10	10/10	10/10							
).41		10/10	10/10	10/10							
).814		10/10	9/10	9/10							
242				-							

0.4110/1010/1010/100.81410/109/109/101.24210/1010/1010/102.0231/101/107/102.3760/100/100/10

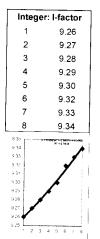
Analyst: UL QA: CR

CETIS Test Data Worksheet

Report Date: Test Code:

09 Sep-13 16:23 (p 1 of 1) 18-3860-3992/6D96DED8

٦


Reference Toxicant 96-h Acute Survival Test

Start Date:	27	A.u.a. 4	2 10.4	<u> </u>			NewField
End Date:			3 12:1	•		Sample Code:	28DD016
Sample Date			3 13:3 1		: EPA/600/R-94/025 (1994)		Reference Toxicant
				Material:	Unionized Ammonia	Sample Station:	p110927.150
C-mg/L	Code	Rep	Pos	#Exposed #	# Survived	Notes	
0	D	1	12	10	10		
0	D	2	16	10	10		
0	D	3	1	10	10		
0.41		1	8	10	10		
0.41		2	2	10	10		
0.41	1	3	13	10	10		
0.814		1	4	10	10		
0.814	•	2	6	10	9		
0.814		3	3	10	G		
1.242		1	10	10	10		
1.242		2	11	10	10		
1.242	-	3	9	10	10		
2.023		1	5	10	1		
2.023		2	18	10	1		
2.023		3	15	10	7		
2.376		1	7	10	0		
2.376		2	14	10	0		
2.376		3	17	10	0		

Analyst: UV QA: CR

CLIENT:	Internal	Date of Test	27-Aug-13
PROJECT:		Test Type:	Eoh
COMMENTS:		<u> </u>	

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding totac another tails and an another sectors and pre-

Target / Sample Name	Actual	22.9	8.0	24.1	temp (K)	i-factor	Mod NH3U (mg/L
Example 3.5	2.000	10.0		the second s	297.26	9.3053	#VALUE!
	2.000	10.0	7.5	5.0	278.16	9.2750	0.008
15	22.1	-	1.5			ļ	+
30	43.2			16.4	288.86	9.3270	0.410
60	86.4		1.2 7.2	(15-5) (4) 7	289.06	9.3270	0.814
120	169				288.46	9.3270	1.242
240	318			1.5	289.06	9.3270	2.023
				15-7	288.86	9.3270	2.376
				<u>+</u>			
<u> </u>							
		+					

NewFieldsAmmonia Reference Toxicant Test Water Quality 'Data Sheet

$ \begin{array}{c} \mbox{lines} do do your p and p an$	CLIENT Floyd Snider NEWFIELDS JOB NUMBER		PROJEC		PIY		SPECIES	Eohaustoi	rius estuar	ius	NEWFIELDS LABORATO Port Gamb		PROTOCOL USEPA/USCOR 1491				
P(10413 +). (S0 (110 + 2) $8/27/13$ (210 $9/66/13$ (235 WATER QUALITY DATA TEST CONDITIONS WATER QUALITY DATA COMONIMUM BULFICE COMONIMUM BULFICE AMMONIA BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM BULFICE COMONIMUM COMONIMUM COMONIMUM COMONIMUM COMONIMUM SULPTICE COMONIMUM COMONIMUM COMONIMUM COMONIMUM COMONIMUM COMONIMUM COMONIMUM COMONIMUM COMONIMUM <th colspan="4" comonimum<<="" td=""><td>1</td><td></td><td></td><td>в</td><td>Hest</td><td>tor</td><td></td><td></td><td></td><td>NTITY OF DILUENT:</td><td></td><td>UL</td><td></td></th>	<td>1</td> <td></td> <td></td> <td>в</td> <td>Hest</td> <td>tor</td> <td></td> <td></td> <td></td> <td>NTITY OF DILUENT:</td> <td></td> <td>UL</td> <td></td>				1			в	Hest	tor				NTITY OF DILUENT:		UL	
WATER QUALITY DATA TEST CONDITIONS WATER QUALITY DATA DO (mpL) TRUTCI SAL (ppl) PH CONDITIONS DO (mpL) TRUTCI SAL (ppl) PH CONDITIONS DO (mpL) TRUTCI SAL (ppl) PH CONDITIONS DO (mpL) TRUTCI SAL (ppl) PH TECHNICIA AMACOM SUPPORT CONDITIONS SAL (ppl) PH SUPPORT AMACOM SUPPORT AMACOM AMACOM SUPPORT AMACOM AMACOM <t< td=""><td></td><td></td><td>LOT #:</td><td></td><td></td><td></td><td>TEST START</td><td>DATE</td><td>y wor ac</td><td>TUAL: /</td><td>SO. Og</td><td>ATE PREP</td><td>3(27)(3</td></t<>			LOT #:				TEST START	DATE	y wor ac	TUAL: /	SO. Og	ATE PREP	3(27)(3				
WATER CUALITY DATA TEST CONDITIONS DO IMAL THY OR SALUPT DATA CONDITIONS DO IMAL THY OR SALUPT DATA CONDITIONS DO IMAL THY OR SALUPT DATA CONDITIONS CONDITIONS CONDITIONS MATER CUALITY DATA CONDITIONS CONDITIONS CONDITIONS CONDITIONS MATER CUALITY DATA CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS SUBJECT TO SUBLE AND TO THE CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS CONDITIONS <th colsp<="" td=""><td>F110137.</td><td>120</td><td></td><td>(()</td><td>0+</td><td>9</td><td>8/2</td><td>27/13</td><td>13</td><td>Z.10</td><td>9/06/13</td><td></td><td>1335</td></th>	<td>F110137.</td> <td>120</td> <td></td> <td>(()</td> <td>0+</td> <td>9</td> <td>8/2</td> <td>27/13</td> <td>13</td> <td>Z.10</td> <td>9/06/13</td> <td></td> <td>1335</td>	F110137.	120		(()	0+	9	8/2	27/13	13	Z.10	9/06/13		1335			
15.0 CONCLAM NUMERIAN	-						WATER Q	JALITY DA			-100[[5						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST	CONDIT	TIONS							TECHNICIAN	AMMONIA	5	ULFIDES				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CONCE	NTRATION	T	1	1											
Ref. Toxammonia 0 Stock $[4]$ 1 $[4]$ $[5]$ $[2]$ $[3]$ $[5]$ $[3]$ $[4]$ $[4]$ $[4]$ $[4]$ $[6]$ $[2]$ $[2]$ $[2]$ $[2]$ $[2]$ $[2]$ $[2]$ $[2]$	CLIENT/ NEWFIELDS ID	value	units	DAY	REP	meter mg/L	meter °C	meter ppt		WQ TECH/ DATE	Tech		Tech				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	0	Stock	677	6155	2 21	5 81	AAAA QIDD		meter	mg/∟				
Ref. Toxammonia 0 mgL 6 2 0 7 1 7 7 1 7 1 1 0 1 0 7 0 1 2 3 0 1 0 0 1 0 1 0 1 0 1 0 1 <th1< th=""> 0 <th1< th=""></th1<></th1<>				4	1						3 0						
8 3 6 6 7 6 14 8 3 6 7 6 15 7 Mu6914 10 1 $U > A < U > A < U > A < U > A < U > A < U > A < A < A < A < A < A < A < A < A < A$	Ref.Toxammonia	0	mg/L	6	2	672	6153	<u> </u>	+			n de la comunicación de la comunica En esta de la comunicación de la com					
Ref. Toxammonia 10 1 $b + 7$, $b + b + 5$, $b + b + 5$, $b + 3$, $b + 5$, $b + 3$, $b + 1$, $c + 5$, $b $				8	3	667	6 14.8		5 8.1	MARGILL							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				10	1	67.9	6 15.1	2 31	583	20905							
Ref. Toxammonia 15 mg/L 6 2 $lale$ $rac{1}{6}$ $rac{$				0	Stock	67.9	6 15.7	2 31	579	MURS 22	2 22.1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				4	1	6 6.6	6 16.4	2 31	5 7.8	Hz 801			r - Linder Hallinger 1997 L				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ref.Toxammonia	15	mg/L	6	2	66.7	615,4	231	579	1,910							
Ref. Toxammonia 10 1 $[0, 7, 4]$ $[5, 0]$ 2 71 S 6.2 $[1, 4]$ (6) 8 3 9 8 $[5, 9]$ 31 5 7.9 Nuese 33 43.2 4 1 6 2 b a b 5 7.9 Nuese 33 43.2 4 1 6 2 b a b 5 7.9 Nuese 33 43.2 8 3 0 5 2 31 5 7.2 $Nuese 33 43.2 8 3 0 7.5 b 5 2 31 5 7.2 Nuese 33 43.2 Ref. Toxammonia 60 mgL 6 2 6 2 5 5 5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 $				8	3	67.5	6 15.3	9 31	5 8.2		na ann an Anna ann an Anna an Anna Anna						
Ref.Toxammonia 30 mg/L		<u> </u>		10	1	67.4	6 15.0	2 31	5 8.2	JL 9/06							
Ref. Toxammonia 30 mg/L 6 2 b 0 10 1 0 15 2 31 5 7.5 10 <th10< th=""> 10 <th10< th=""></th10<></th10<>					Stock	67.8	615.9	2 31	5 7,9	Mues (2)	3 43.2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						67.1	6 16.3	2 31	5 7.8	7/ 8/31							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ref. Ioxammonia	30	mg/L			66.9	615.5	231	S 7.80	st Ju 9/02							
Ref.Toxammonia 100 Stock 0 7.3 1						07.5	6 (5.5			MMB914							
Ref. Toxammonia 60 mg/L 4 1 $6/6,7$ 2 158 2 31 5 7.8 $ML_8,8,9,5$ 80.4 Ref. Toxammonia 60 mg/L 6 2 $6/7,7$ 2 158 2 31 5 7.8 $4/2,9131$ 31 Ref. Toxammonia 10 1 $1/2,7,8$ $6/6,2,7$ 2 31 5 8.2 $MLR_8,914$ Ref. Toxammonia 120 mg/L 6 2 $6/7,4,6$ $6/6,2,7$ 31 5 8.2 $MLR_8,914$ Ref. Toxammonia 120 mg/L 6 32 $6/7,4,6$ $(5,9,9,3,2,3)$ 5 7.8 $31/2,974$ Ref. Toxammonia 120 mg/L 6 32 $6/7,4,6$ $5/7,3,2,33$ $5/7,5$ $MR_8,6,3,3,318$ 318 Ref. Toxammonia 240 mg/L 6 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3						67.5	614.7			519/00		L. Like					
Ref. Toxammonia 60 mg/L 6 2 3 $(5, 8)$ 2 $3i$ 5 $3, 9$ j_{1} $4i_{10}$ 8 3 $(0, 7, 7)$ $(5, 2)$ $3i$ 5 $8, 2$ $MM8904$ 9 0 Stock 6 $7, 9$ $6i_{16, 2i_{10}}$ $3i_{10}$ 5 $7, 7i_{10}$ $4i_{10}$ 9 $0i_{11}$ $6i_{12}$ $7, 9i_{10}$ $6i_{16, 2i_{10}}$ $7i_{10}$ $5i_{16, 7i_{10}}$ $7i_{10}$ $8i_{10}$ 9 120 mg/L $6i_{12}$ $2i_{10}$ $5i_{12}$ $7i_{10}$ $5i_{12}$ $7i_{10}$ $16i_{10}$ 9 120 mg/L $6i_{12}$ $2i_{11}$ $5i_{12}$ $7i_{12}$ $8i_{12}$ $16i_{10}$ $7i_{10}$ $16i_{10}$						67.8				MUB812	3 86.4						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ref Tox -ammonia	60	mall			66.7			5 1.8	7/2 9/31							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kei. roxammonia	00	ing/∟			6+5	6.6.0		5 7.9	Jr 910							
Ref. Toxammonia 240 mg/L 6 2 3 5 7.2 6 6.2 7.9 6.2 7.9 7.8						07.7	Q (5.2			<u> </u>							
Ref. Toxammonia 120 mg/L					_												
Ref. Toxammonia 120 mg/L 6 $3-2$ 6 7.6 6 7.6 7.7 7.9 7.9 9.5 <						100	/				3 169						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ref.Toxammonia	120	mg/L														
IO 10 1 O Stock lo \mathcal{E} . 0 \mathcal{E}	i		Ű.			0 7/6		23	5 71	L YIN			<u>.</u>				
0 Stock 6 8.0 6 15.7 31 5 7.5 $MuB8[2+3]$ 318 4 1.4 6 1.4 6 1.4 6 1.4 5 7.6 112 318 Ref. Toxammonia 240 mg/L 6 2 316 5 7.6 112 318 8 3 316 316 316 316 316 316					1												
A V_{\perp} G 1.0 5.1 5.7 5.7 5.8 5.1 Ref. Toxammonia 240 mg/L 6 2 7 5 7.6 $\frac{14}{3}$ $\frac{31}{3}$ 7 5 7.6 $\frac{14}{3}$ $\frac{31}{3}$ 7 $\frac{31}{3}$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{5}{3}$ $\frac{31}{3}$ </td <td></td> <td></td> <td></td> <td></td> <td>Stock</td> <td>0 & N</td> <td>6157</td> <td>2 21</td> <td>520</td> <td>Lungard</td> <td>2 3/0</td> <td></td> <td></td>					Stock	0 & N	6157	2 21	520	Lungard	2 3/0						
Ref. Toxammonia 240 mg/L 6 2 8 3			ŀ								0 316						
	Ref.Toxammonia	240	mg/L					- 51	<u> </u>								
10 1			ŀ	8	3					1			ana				
				10	1							abaan naabar Marin 1995					

1 WC HE 8/31

τ

* NewFields

Ammonia Reference Toxicant Test Survival Data Sheet

CLIENT		PROJECT		SPECIES	Eohaustorius es]					
		SUR	VIVAL & BEHA		Port Ga							
OBSERVAT			DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10
LOE = Loss of equilib Q = Quinscent DC = Discoloration NB = No body F = Floating on surfac	[INITIAL # OF ORGANISMS	date 8/28/13 technician	DATE 8/29 TECHNICIAN		DATE 831 TECHNICIAN		DATE 9(02 TECHNICIAN			DATE 105 TECHNICIAN	^{date} 4/66
CLIENT/ NEWFIELDS ID	CONC.		MMB	CR	N	JU	JU	J	MMB	MMB	JL	
	value units	1 NUMBER			#ALIVE #DEAD OBS	#ALIVE #DEAD OBS	#ALIVE #DEAD OBS	#ALIVE #DEAD OBS	#ALIVE #DEAD OBS	#ALIVE #DEAD OBS	#ALIVE #DEAD OBS	#ALIVE #DEAD OBS
Ref.Tox Ammonia	0 mg/L	2	10 10 10 10 10 10 10 10 10	C 0 0 0 0 0		10 U N 10 B	10 p V 10 p L	91N 601	9 8 N 9 1 N	8 N 9 & 1	8 B N 9 8 1	71N BII
Ref.Tox Ammonia	15 mg/L	1 2 3	10 & N 10 & IF	10 0 2F 10 0 1F	10 0 1 10 8 N 10 0 1	10 0 /Y	10 0 17 10 0 N 10 0 F	911 912 822E	8 8 INB 8 1 N 7 1 IF	4 4 V 8 4 N 7 4 1	621 712 521	24U 70N
Ref.Tox Ammonia	30 mg/L	1 2 3	10 & IF	10 0 2FC 10 0 IF 9 1 IF 10 0 IF	10 8 N 9 D L	10 0 24 10 0 14 9 6 N 9 1	10 0 N 10 0 N 9 0 1	10 0 N 10 0 N 10 1	10 6 N 10 8 N 8 8	V & 0 N & 0 1 & 8	10 8 1 10 0 N 7 1	$\frac{q}{2}$
Ref.Tox Ammonia	60 mg/L	2	10 & 7F	10 0 1F 10 0 2F 10 0 1F	$\begin{array}{c c} 10 & 2 & F \\ P & 0 & 2F \\ 10 & 10 & 1F \\ P & 10 & 10 \\ P & 10 \\ P & 10 & 10$	1002 1002 1400	901 1001F 1001F		9 & V 7 (N 9 & Q	8 1 9 4 3 N 6 3 Q	7 1 1	431 310 84 N
Ref.Tox Ammonia	120 mg/L	1	000	73 QU 551 82 VO			82N 160 101	7 1 1F 6 1 NA		<u>5 p</u>	230	021
Ref.Tox Ammonia		1	550	0 5 Q · 1 4 C 0 2 4		A U UA			BIN			

OBablies present UR 8/29

NewFields^{ference} Toxicant Spiking Worksheet

Eoh Amp NH₃ RT

Assumptions in Model Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Actual Reading 6820

Те	st Solutions		
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration
mg/L	mg/L	mL	mL stock to increase
			SALT WATER
	240	750	39.589
	120	750	19.795
	60	750	9.897
	30	750	4.949
	15	750	2.474
	0	750	0.000
			0.000
			0.000

Biological Testing Results

APPENDIX A.2.1

Neanthes arenaceodentata Juvenile Polychaete Bioassay Laboratory Data Sheets

* NewFields

,

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

CLIENT FloydSnider	PROJE	CT K Ply		JOB N0.	0	PROJECT	B. Hest			IELDS LA Port Gaml	BORATOR		OTOCOL PSEP 1995				PECIES arenaceodentata	
I = Normal E = Emergence M = Mortality = Growth ungal. bacterial, or algal) = No Ari Flow (00?) = Floating on Surface E = Too Cloudy = Excess food	L# Date and Initials	8/30 JL	9(01)L	911 Surves	9/2 J	9107 Ju	Shimes Prove		Shara III	2	6		9/17.0L	111.	NUMBER REMAINING	TARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASHED WEIGHT (mg)
CUENT NEWFIELDSID REP JA	" INITIAL# (if differs)	2 7	6 4 °	v v	8	б	7	7 7	14	- <u>5</u>	16	; ;	8 6	20			,	
1 2 Control / 3 4 5								N N N N N N N N N N N N N N N N N N N) <mark>2</mark>	2		2) 2E 2E 1E	2	ちろろろろ	¹ 144.30 ² 138.85 ³ 156.27 ⁴ 164.65 ⁵ 162.25	243.01 248.92 234.03 253.51 236.31	173.97 178.35 179.09 188.35 182.92
CARR20 / 3		- 26 - J		2	~ 25		2		J	U N N U N			- 9	Q-, je 0-,	5 5 5 5	 149.66 144.04 143.52 137.09 146.04 	223.24 211.08 233.83 208.Sb 244.96	167.53 162.6 170.51 159.07 171.2
1 2 CR 02 / 3 4 5							2 2 2 2 2	ļ	۳2 Z	V		2 5 5 5 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2	500 500 50	¹¹ 144,59 ¹² 141.98 ¹³ 173,54 ¹⁴ 155,55 ¹⁵ 125.66	251.52 243.16 263.54 235.37 193.18	186.58 174.8 201.32 180.82 144.3
Rep N	umber	Tare Weight (mg)	Dry Weight (mg)	Ashed Weight (mg)	Comments:			(moj)	D	س	wt.(mg)	As	hed	wt. (mg)	
Initial Biomass	5	96.91	102.9	<u>ل</u>	\bigcirc	194.			•	900.	08			ì	95.8	-		
2 3	5		112.77		-	152 200	.33 .19		۱	57	- 34 - 7 7			١	53. Hali	40		

Page 1

OWorms not properly rinsed tor moused for comparisons -weights on right correct and used for comparisons

* NewFields

20-DAY SOLID PHASE BIOASSAY OBSERVATION DATASHEET

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLIENT		PRC	DJECT					JOB N	0.			PROJE		AGER			NEWFI	ELDS LA	BORAT	ORY	PROTO	COL				PECIES	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FloydSnider					К РІу					0							F	ort Garr	ible Bath	7	PSEP	1995			Neanthes	arenaceodentata	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	A) - A11							1					END		ATA & O	BSERVA				I 1								
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	#E = Emergence #M = Mortality G = Growth (fungal, bacterial, or algal) D = No Air Flow (DO?) F = Floating on Surface TC = Too Cloudy		Date and		30 (8/3100		1.2	9 3MmR	glynme	9/VCJr	900 JL	9/07JL	9/08 JL	AMM 6/6		Smmille	CI ZANANS		9/14 Ju	a/15 Jc	allemm	14	5	REMAINI	WEIGHT	AL WEIGHT	HED WEIGHT (
$SD0001K/ = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	CLIENT NEWFIELDS ID	REP JA		(if differs)	-	7	e	4	ŝ	ø	7	æ	σ	9	=	12	13	14	15	16	17	18	6	20	ž	μ	101	S¥ ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1		(u	u	V	5	υ	2	u	"G	щĠ	6	N	9	6		GJU	6	6	N	Ņ	G	5	129.29	198.13	140.79
$SD0002K/ = \frac{1}{2} = 1$		2									"G	u	u	٢		4	N	N	Ч	16	μ		l	Ŋ	5	129.64	219.95	199.89
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	SD0001K /	3								V		ur l		6			1			6	L			l	5	135.04	204.34	151.07
$SD0002K/ = \frac{1}{2} = 1$		4							G	S	-7	4	61	4		ſ					6	1	7	6		153.66	245.92	175.26
SD0002K/ $SD0002K/$	··	5		2	Æ		-		1	6	v			5		6	V	5	V	U	U			٢	_	135.12	219.09	153.15
SD0002K/ $SD0002K/$		1		\	N				U	2		6	- 7		N	9	G	ل -ئ	G	G	9	N	3	9		- [90. 05]	226.11	16161
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2											ta	િત	6	6		_			V				5	107.01	203.36	145.91
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SD0002K /	3	-							3			U		6	6					4				5	199,70		162.00
¹ ² ² ² ³ ⁴ ⁴ ² ³ ⁴ ⁴ ⁴ ⁴ ⁴ ⁵ ⁴ ⁴ ⁴ ⁴ ⁴ ⁵ ⁴ ⁴ ⁴ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵									G			L		2	N	6		5			⁶ /1E	\mathcal{J}		7[E		136.00	245-62	171.47
2 40.63 221.03 156 55		5	-	_						2		+ · ·		5	N	6	× /	G	V , U	1E	6		v C	6	5	19021	230.57	167.04
E E S 140.63 221.03 156 55										4	ħ	4,6	46	6	6-	415	6	6	ما	6	9		5	5	S	- 111.39	249.92	173.44
$ SD0003K/ ^{3} $									G						1							IE	1			190.65	221.03	15653
	SD0003K /								e.											6,		6	1			196.53	249.15	169.76
$\frac{1}{1000}$						$\left \right $	u,	J U	G	J										ιC					5	150.47	-	157.33
1 6 6 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5			y	_	6	6	6		l		L	V	Y	ע	y	y	♥	6	J	V	IE		2	130.43	236.70	170.17

31 137 15 32 142.02 33 149 48

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PROJ	IECT			START TIME/ END	TIME	DILL	ITION WATE	R BATCH	PROTOCOL		TEST START DATE
FloydSnider					K Ply		1030 1	09	30	FSW08	32813.01	PSEP 19	95	29-Aug-2013
JOB NUMBER			PROJ	ECT M	ANAGER		NEWFIELDS LABO			P. RECDR./H	OBO#	TEST SPECIES		TEST END DATE
0					B. Hester					NA	f	Neanthes arenac	eodentata	18-Sep-2013
			•				WATER QU	ALITY DA	ATA .		•			•
TEST CONDITIONS		· .	: .	-	DO (mg/L) > 4.6		TEMP (C)	SA	LINITY (ppt) 28 ± 2	÷	рН 8.0±1.0			
, CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	D.O. mg/L	meter	20 ± 1 TEMP °C	meter		meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
Control /	0	Surr	24	6	1.6	6	ZO. O	2	28	5	7.9	e. ²	SU	Ha 8/29
Control /	1	Surr	24	6	7.2	Ь	19.9	2	23	57	7.9			JL B/30
Control /	2	Surr	24	6	7.4	6	19.9	2	Z S	5	7 80		JL	\$# <u>8/31</u>
Control /	3	Surr	24	6	7.0	6	20.0	2	28	5	7,8	JL		JL 9/01
Control /	4	Surr	24	6	7.2	6	202	2	2	8 5	8.0		Ur	JL 9/02
Control /	5	Surr	24	6	7.2	6	20.1	7	8 C	5	0.8			MmB 913
Control /	6	Surr	24	لع	7.4	6	19.8	2	58	5	8.1	MMB	MAUS	· · .
Control /	7	Surr	24	6	7.3	6	19.5	2	28	5				UL glas
Control /	8	Surr	24	6	7.3	6	19.5	2	28	5	8.0		J	UL 9101
Control /	9	Surr	24	6	7.0	6	D22.9	2	2 B	5	31	J~		JL 9/07
Control /	10	Surr	24	6	7,4	6	201	2	28	5	8.2		UL	UL 9/08
Control /	11	Surr	24	ها	7.7	6	19.7	2	28	5	8, 0			Mms 919
Control /	12	Surr	24	6	7.3	6	20.3	2	28	5	8.0	JL	JL	J_ 9/10
Control /	13	Surr	24	7	8.7	7	20.4	5	58	5	7.9			Murs 9/11
Control /	14	Surr	24	7) H	•7	20.4	7	58	S	80		NINE	MmB 9/12
Control /	15	Surr	24	7	7.5	7	20.3	2	28	5	8.0	CR		CR 9/13
Control /	16	Surr	24	7	7.3	7	20.4	2	28	5	6.1		しし	JL 9/14
Control /	17	Surr	24	7	72	7	20.4	2	28	S	7.9			JL 9/15
Control /	18	Surr	24	Ì	7.3	7	20.4	Ъ	98	5	0.8	MMB	MMB	MMB 9116
Control /	19	Surr	24	7	7.2	7	20.2	2	23	5	7.9			JL 9/17
Control /	20	Surr	24	7	7.3	7	20.3	2	28	5	7.9			02 9/18

OMr Her 8/31 O Both temp. adjusted down to 20.5°C. IL 9/07/13

******NewFields

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PROJ	ЕСТ			START TIME/ END	TIME	DILUTIC	ON WATER	RBATCH	PROTOCOL		TEST START DATE
FloydSnider					K Ply		1030 1	093	0	FSW08	32813.01	PSEP 19	95	29-Aug-2013
JOB NUMBER			PROJ	ЕСТ М.	ANAGER		NEWFIELDS LABO	RATORY	TEMP. I	RECDR./H	OBO#	TEST SPECIES		TEST END DATE
0					B. Hester					NA		Neanthes arenac	eodentata	18-Sep-2013
······································							WATER QU	ALITY DA		1 211				· · · · · · · · · · · · · · · · · · ·
TEST CONDITIONS	- 	:			DO (mg/L) > 4.6		TEMP (C) 20 ± 1	SA	ALINITY (ppt) 28 ± 2		рН 8.0±1.0			
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	D.O. mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
CARR20 /	0	Surr	19	6	1.5	6	20.2	2	28	5	7.9		Ju	75 8129
CARR20 /	1	Surr	19	6	7.2	6	20,0	2	28	5	Q,0			1 8 30
CARR20 /	2	Surr	19	6	1.3	6	20.0	2	28	5	B.Z		JL	HE 8/31
CARR20 /	3	Surr	19	6	0[.]	6	20.1	2	28	5	7.6	JL		JL 9/01
CARR20 /	4	Surr	19	6	7.3	6	20.(2	28	5	8.2		JL	JL 9(02
CARR20 /	5	Surr	19	لع	7.4	لع	1.06	5	58	5	8.3			Mm8913
CARR20 /	6	Surr	19	0	7.3	6	0.06	Ъ	58	S	8.2	MMB	MMS	Mm 8914
CARR20 /	7	Surr	19	6	7.(6	19.6	2	28	5	7.8			JL 9105
CARR20 /	8	Surr	19	6	7.3	6	19.6	2	28	5	в.г		JL	JL 9/06
CARR20 /	9	Surr	19	6	65	6	22.3	2	28	5	B (UL		JL 9107
CARR20 /	10	Surr	19	6	7.0	6	20.0	2	28	5	8.2		JU	1 9198
CARR20 /	11	Surr	19	6	7.1	6	19.9	2	58	5	1.8			MmB 919
CARR20 /	12	Surr	19	6	6.8	6	19.9	2	28	5	9-(JL	JL	UL 9/10
CARR20 /	13	Surr	19	7	7.6	→	Jo. 5	2	28	S	7.8			MMB 9/11
CARR20 /	14	Surr	19	ヿ	6.9	7	20.4	9	38	5	81		MMB	Mul 9/12
CARR20 /	15	Surr	19	7	6.7	7	20.4	2	28	5	8.0	CR		GR 9/13
CARR20 /	16	Surr	19	7	6.8	17	20.3	2	28	\leq	B. (Ju	JL 9/14
CARR20 /	17	Surr	19	7	6.5	7	20.4	2	28	5	7.9			JL 9/5
CARR20 /	18	Surr	19	F	6.7	7	20. 3	2	58	5	7,9	MMB	MMUS	Mars 9/16
CARR20 /	19	Surr	19	7	6.6	7	20.2	2	28	5	7.9			JL 9/17
CARR20 /	20	Surr	19	7	6.9	7	20 l	2	28	S	7.9			U 9/18

© Aivisine vestored to chamber. JL 9/01/13 @ Bath temp. adjusted down to 20.5 ℃ Remeasured at 10.3 mg/L after renewal. JL 9/07/13. Page 2 ***INewFields**

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PROJ	ECT			START TIME/ END	TIME	DILUTIC		R BATCH	PROTOCOL		TEST START DATE
FloydSnider					K Ply		1030 1	0930	2	FSW08	82813.01	PSEP 19	95	29-Aug-2013
JOB NUMBER			PROJ	ECTMA	NAGER		NEWFIELDS LABO	RATORY	TEMP. F	RECDR./H	OBO#	TEST SPECIES		TEST END DATE
0					B. Hester					NA		Neanthes arenac	eodentata	18-Sep-2013
						1	WATER QU					•		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	SA	LINITY (ppt) 28 ± 2		рН 8.0±1.0			
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	D.O. mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	· pH unit	WATER RENEWAL	Feeding	TECH/DATE
CR 02 /	0	Surr	16	6	1.4	6	20.1	2	78	5	7.9		JL	HE 8/29
CR 02 /	1	Surr	16	6	7.1	6	20,1	2	28	5	7,9			j_ 8[30
CR 02 /	2	Surr	16	6	7.4	6	20.0	2	28	5	8.0		\mathcal{I}	HE 8/31
CR 02 /	3	Surr	16	6	7.0	6	20.1	2	28	5	7,8	JL		JL 9/01
CR 02 /	4	Surr	16	6	7.3	6	20.2	2	28	5	8.1		or	JL 9[02
CR 02 /	5	Surr	16	6	7.2	6	20.1	5	58	5	8.1			MMB93
CR 02 /	6	Surr	16	9	7,3	4	30.0	5	9 <i>&</i>	5	8.1	MMB	MUR	MMB 914
CR 02 /	7	Surr	16	6	7.(6	19.6	2	23	5	7.8			JL 9105
CR 02 /	8	Surr	16	6	7.2	6	19,6	2	28	5	81		JL	J_ 9106
CR 02 /	9	Surr	16	6	67	6	D213	2	23	5	82	JL		J_9/07
CR 02 /	10	Surr	16	6	7.3	6	19.9	2	28	5	8.3		JL	JL 9108
CR 02 /	11	Surr	16	6	7.4	6	19.8	2	78	5	8. (MMB 919
CR 02 /	12	Surr	16	6	7.1	6	20.0	2	28	5	8.1	JL	J.	5.9/10
CR 02 /	13	Surr	16	7	8.3	<u></u>	20.4	5	28	S	8.0			MWB 9/11
CR 02 /	14	Surr	16	7	7.1		Ju.4	÷	78	5	8.2		NIMB	MMB 9112
CR 02 /	15	Surr	16	7	7. (7	20.3	2	28	5	8.1	CR		CR 9/13
CR 02 /	16	Surr	16	\mathcal{X}	7.1	7	202	2	28	5	8.1		JL	JL 9/14
CR 02 /	17	Surr	16	フ	9.0	7	20.4	2	28	5	8.0			J. 9/15
CR 02 /	18	Surr	16	7	7.1)	20,3	2	58	5	8.0	MMB	MMB	MMB 9114
CR 02 /	19	Surr	16	7	6.9	7	20.1	2	28_	5	7.9			JL 9/17
CR 02 /	20	Surr	16	7	7.2	7	20.2	2	28	5	30			J 9118

O Bath temp. adjusted down to 20.5°C. JL 9/07/13

* NewFields

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PROJ	ЕСТ			START TIME/ END	TIME	DILUTI	ON WATE	R BATCH	PROTOCOL		TEST START DATE
FloydSnider					K Ply		1030 1	093	0	FSW08	82813.01	PSEP 19	95	29-Aug-2013
JOB NUMBER			PROJ	ЕСТ МА	NAGER		NEWFIELDS LABO	RATORY	TEMP.	RECDR./H	IOBO#	TEST SPECIES		TEST END DATE
0					B. Hester					NA		Neanthes arenac	eodentata	18-Sep-2013
••••••••••••••••••••••••••••••••••••••							WATER QUA	LITY D	ATA			·	-	· · · · · · · · · · · · · · · · · · ·
TEST CONDITIONS		1.1			DO (mg/L)		TEMP (C)	S	ALINITY (ppt)		pH		с. 1	
CLIENT/NEWFIELDS ID	DAY	REP	' JAR	meter	> 4.6 D.O. mg/L	meter	20 ± 1 TEMP °C	meter	28 ± 2 SALINITY	meter	8.0±1.0 pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0001K /	0	Surr	23	6	1.4	6	20.1	2	78	5-	7.7	RENEWAL	JL	He 8129
SD0001K /	1	Surr	23	6	1.9 6,0	6	20.0	2	28	5	7.8			JL 8/30
SD0001K /	2	Surr	23	6	1.2	6	20.0	2	28	5	8.1		JL	the 8/31
SD0001K /	3	Surr	23	6	6.5	6	20.0	2	28	S	9.0	JL		JL 9/07
SD0001K /	4	Surr	23	6	6.8	ط	7,0.2	2	28	5	8.4		in	J. 9/02
SD0001K /	5	Surr	23	6	6.4	6	20.1	2	28	5	8.5			MMB 913
SD0001K /	6	Surr	23	9	7.3	6	20.0	5	58	5	8.5	MMB	MMB	
SD0001K /	7	Surr	23	10	72	6	19.5	2	28	5	8.2			Je glas
SD0001K /	8	Surr	23	6	7,2	6	19.6	2	28	5	4.0		JL	Je alob
SD0001K /	9	Surr	23	6	67	6	022.3	2	28	5	B. 4	K		2 9107
SD0001K /	10	Surr	23	b	7.2	6	20.0	2	28	S	8.4		N	JL 9108
SD0001K /	11	Surr	23	le	7.5	6	19.9	9	28	5	6.8			MmB 919
SD0001K /	12	Surr	23	6	7.2	6	20.0	2	2-B	5	8.2	JL	JL	JL 9/10
SD0001K /	13	Surr	23	for	8.4	6	20.5	2	8-6	5	8.0			MMB 9/11
SD0001K /	14	Surr	23	-7	i, F	Ĩ-Ţ	7. 20	5	58	S	8.2		MUB	MULUS 9112
SD0001K /	15	Surr	23	7	7.1	7	20.4	2	28	5	8.1	CR	2010 - 201 14.1	CR 9/13
SD0001K /	16	Surr	23 (9jZ	7.1	7	20.4	2	28	5	8.(JL	J 9/14
SD0001K /	17	Surr	23	7	7.0	7	20.4	2	29	5	7.9			J 9/15
SD0001K /	18	Surr	23	f	7.0	7	20.4	7	58	Ъ	7.9	Minis	MMG	Mars 9/16
SD0001K /	19	Surr	23	7	6.9	7	20,2	2	28	5	7.9			01 9/17
SD0001K /	20	Surr	23	Ż	7.1	7	20.3	2	28	5	7.9			Jr 9/18

⑦ Bath temp. adjusted down to 20.5 °C. J. 9(07/13.
 ⑧ wrong meter MMB 9/11/13
 ⑨ wrong meter. J. 9/14/13

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PRO.	JECT			START TIME/ END	TIME	DILUTIC	N WATE	R BATCH	PROTOCOL		TEST START DATE
FloydSnider					K Ply		1030 '	0930	2	FSW0	82813.01	PSEP 19	95	29-Aug-2013
JOB NUMBER			PRO.	IECT M	ANAGER		NEWFIELDS LABO	RATORY	TEMP. F	RECDR./H	IOBO#	TEST SPECIES		TEST END DATE
0					B. Hester					NA	r	Neanthes arenac	eodentata	18-Sep-2013
							WATER QU	ALITY DA	ГА		`	<u>ــــــــــــــــــــــــــــــــــــ</u>		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	SAL	.INITY (ppt) 28 ± 2		рН 8.0±1.0		:	
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	 	meter	TEMP	S	ALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0002K /	0	Surr	7	10	7.3	6	19.9	Z	78	5	7.8		SC	1/2 8/29
SD0002K /	1	Surr	7	Ь	7.2	6	19.9	2	28	5	8.0		<u> </u>	12 8 30
SD0002K /	2	Surr	7	6	1.2	6	19.6	2	22	5	3.0		JL	177 8/31
SD0002K /	3	Surr	7	6	7.2	6	19.9	2	28	5	0.8	JU		JL 9/01
SD0002K /	4	Surr	7	6	7.3	6	20.0	2	28	5	8,3		SL.	JL 9/02
SD0002K /	5	Surr	7	y.	7.3	Y	30.0	5	36	5	8.4			MMB 9/3
SD0002K /	6	Surr	7	9	7.4	Q	19.9	5	28	5	8.3	MMB	MAR	Mms 914
SD0002K /	7	Surr	7	6	7.3	6	19.6	2	28	5	8.0	· ·		UL 9/05
SD0002K /	8	Surr	7	6	7.4	6	19.6	2	23	5	8.3		K	dr 9/06
SD0002K /	9	Surr	7	6	6.5	6	022.5	2	24	5	80	JL		JL 9/07
SD0002K /	10	Surr	7	6	7.2	6	(9.4	2	28	S	8.0		UL	JL 9108
SD0002K /	11	Surr	7	4	7.2	Ŀ	19.6	2	29	5	7.9			MMB 919
SD0002K /	12	Surr	7	6	6.8	6	20,1	2	28	5	7.8	<u> </u>	しレ	JL 9/10
SD0002K /	13	Surr	7	Port of	0.8	267	20.4	2	28	5	7.7			Mue 9/11
SD0002K /	14	Surr	7	Э	6.9	F	30.4	5	5 E	5	58		MANB	NUMB9112
SD0002K /	15	Surr	7	7	6.8	7	20.3	2	28	ڪ	7.8	CR		(R 9/13
SD0002K /	16	Surr	7	97	7.0	7	19.9	2	29	5	7.9		JL	J 9/14
SD0002K /	17	Surr	7	\mathcal{F}	6.6	7	20.2	2	29	5	7.7			JL 9/15
SD0002K /	18	Surr	7	7	6.9	7	20.2	Э	58	5	7.8	MMB	Mark	Mue 9/16
SD0002K /	19	Surr	7	7	6.7	7	20.2	2	28	5	7,0			J 9/17
SD0002K /	20	Surr	7	7	6.9	7	20.2	2	28	5	7.8			JL 9/18

① Bath adjusted down to 20.5°C. JL 9(07/13)
② Wrang meter, MMB 9(11/13)
③ Wrong meter, JL 9/14/13

1

20 DAY SOLID PHASE BIOASSAY WATER QUALITY DATASHEET

CLIENT			PRO.	JECT		1	START TIME/ END	ГІМЕ	DILU	TION WATE	R BATCH	PROTOCOL		TEST START DATE
FloydSnider					K Ply		1030 /	093	20	FSW08	32813.01	PSEP 19	95	29-Aug-2013
OB NUMBER			PROJ	JECT MA	NAGER	ľ	NEWFIELDS LABO	RATORY	TEMP	P. RECDR./H	OBO#	TEST SPECIES		TEST END DATE
0					B. Hester					NA	ł	Neanthes arenac	eodentata	18-Sep-2013
				·	. <u> </u>		WATER QUA					·		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S	ALINITY (ppt) 28 ± 2		рН 8.0±1.0			
CLIENT/NEWFIELDS ID	DAY	REP	JAR	meter	D.O. mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	pH unit	WATER RENEWAL	Feeding	TECH/DATE
SD0003K /	0	Surr	20	6	D 20.7.4	6	20.1	2	28	5	7.9		JL	Hr 8/29
SD0003K /	1	Surr	20	6	7,2	6	20.0	2	23	5	Q, 0			Jr 8/30
SD0003K /	2	Surr	20	6	7.4	6	19.9	Z	23	5	8.3		JU	Hz 8/31
SD0003K /	3	Surr	20	6	7,1	6	19.9	2	28	5	8.2	UL		J. QB Ya
SD0003K /	4	Surr	20	6	7.3	6	20.1	2	28	5	8.5		cr	J. 9(02
SD0003K /	5	Surr	20	6	7.3	4	20.1	5	58	5	8.7			MMB 913
SD0003K /	6	Surr	20	4	7.3	6	20.1	Ъ	98	۲	8.5	MMB	NMB	MMB914
SD0003K /	7	Surr	20	6	7.3	6	(9.5	2	28	5	B.1			A 9/05
SD0003K /	8	Surr	20	6	7.2	6	19.6	2	28	5	8.3		J	JL 9106
SD0003K /	9	Surr	20	6	6.4	6	3228	2	28	5	8.1	JL		JL 9107
SD0003K /	10	Surr	20	6	7.0	6	20.0	2	28	5	8,2		a	J 9/08
SD0003K /	11	Surr	20	6	7.7	6	19.8	2	28	5	7.9			MMB 919
SD0003K /	12	Surr	20	6	7.0	6	19.8	2	28	5	7.9	JL	L	J- 9/10
SD0003K /	13	Surr	20	107	7.9	ef or	28.5	2	2-8	5) .7			MMMB 9/11
SD0003K /	14	Surr	20	F]	6.9	F.	7.4	2	58	5	79		Mus	Mins 9112
SD0003K /	15	Surr	20	7	6.8	7	20.4	2	28	5	7.8	CR		CR 9/13
SD0003K /	16	Surr	20	7	6.8	7	20.4	2	28	5	7.8		して	J 9/14
SD0003K /	17	Surr	20	71	0.36.50	ŶŻ	20.4	2	28	S	7.67,05	anda Ragina ang ang ang ang ang ang ang ang ang a		JL 9/15
SD0003K /	18	Surr	20	7	6.5	F	20.4	Ъ	5 8	5	7.6	MMB	MMB	MMB 9116
SD0003K /	19	Surr	20	7	70	7	20.1	2	20	5	7.8			JL 9/17
SD0003K /	20	Surr	20	7	7.2	7	20.3	2	23	5	7.8			JL 9/18

• Wrong met w, MMK 9/11/13 OWP. IL 9/15/13.

Ammonia and Sulfide Analysis Record

Page ____of____

Client/P	K.	Ply		Organis	Neanthes a	venaceod	lent ato		Duration ((days): Z	6	
	RETEST ERLYIN	G (OV) PC			ER (circle one) ircle one) / Com	ments:				DAY of TH	EST:	<u>}</u>
		Calibra	ation Standa	rds Tem	perature			Τ.	<u> </u>			
			9/13		Temperati	ure: 21.	b			should be with re at time and o		
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
ov. Control	SWV.	8/29/13 JU	0.108	20.6	8/29/13 02	N			10	0.005	NA	NA
08.02			2.77		· · · · · · · · · · · · · · · · · · ·				<u> </u>	0.015		<u> </u>
SDOOD IK			3.98 1.60		 			\checkmark		0.004		<u> </u>
SP000 2K			0.983							0.026		+
SD00034			1.09					$\overline{}$		0.010		
and hall			0262	2			7 1	21		N 010		
2W. Control 1 CR-02			0.252	21.0 22.0			7.4	·26 28		0.017 0.083	10	0.170
CAPPR.20			19.5 U.2	1			7.6	26	10 2	0.003	NAS	NA 0.77
SD000 14			7.29				7.4	29	10	0.170	NA	NA
SD0002K			3.56				7.4	28	10	0.381	1	1
1 SD0003K		Ŀ	6.53	L	L	Ý	7.5	29	io	0.153	Ļ	
						1						
												ļ

Ammonia and Sulfide Analysis Record

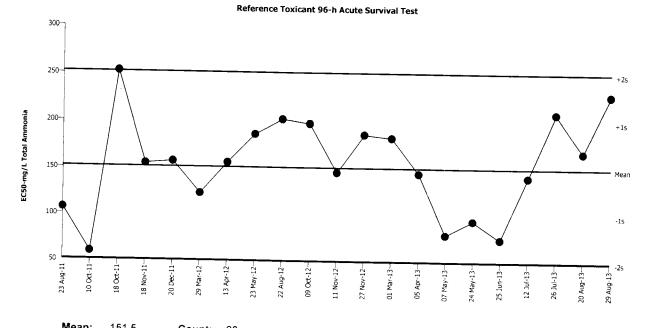
Page _____ of _____

Client/P Floyd	snider,	K-Ply		Organi	Nearthes	,		Test	Duration	(days): 2	,0	
	ETESP	<u>/</u> INITIAL G (OV) / PI	/ (FINAL) OREWATEI	/ OTH R (PW) (ER (circle one) circle one) / Con	nments:				DAY of TI	EST: _2	20
		Calibr Date: 9/18/11	ation Standa 3	rds Tem	perature Temperat			Sample	e temperature	should be wit		
					21.5	<u></u>		standar	ds temperatu	re at time and	date of ana	lysis.
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calculated ulated Sulf.
N. Control	SUVY.	9/10/13 UL	3.88	20.5	9/19/13 718	N	NA	NA	10	0.017	NA	(mg/L NA
Carr 20 (R-02 Sp000011c			4.85							0.012 0.014		
SPOODOZK			0.0658							0.012		
500003K			0.232	J						0.007	<u> </u>	ł
N Control Carr 20			8		9/18/13 MMB		7.5	28 28 28	2	0.024	5	D. 120
CP-02			2.77	22			4.5	28	5	0.034	5Z Z	0.170 D.104
SD00001K			2.32				6.8	z 8	5	0.082		0.164
SD00002F 2 SD00003F		Ļ	0.607	\checkmark			7.0 7.0	·28 27	2 (8.04200 0.063	2 5 5	0.200
		(D Tr	SUFFICIAL	E DUN	collected	EAR A		•	OT	e Hz	4110	

ORGANISM RECEIPT LOG

Date:		Tiı	me:		NewField	s Batch No.	
	29/13		0930)	AT:	5082913	3
Organism	-				I	nvoice Attac	hed
	anthes/	K-Ply			Ý	es N	lo
Source / S	upplier:				Contact:		
	atic Por	X. Supp	ovt		Dn	Fle.	
No. Ordere	d:	No	. Received:		Source B		100 C
	400		~440			date, hatch date	
Condition	of Organisms	1		Approxi	mate Size o	<u>d 8/1411</u>	3
	oor; describe.):	-				tage, size class	, etc.):
	Good				3-5	mm 15	days
Shipper:				B of L (T	racking No	.) /	
	w Fields	Courie	ì		NA		
	of Container:			Receive	d By:	,	
· · · · · · · · · · · · · · · · · · ·		Good			JL		
Container	D.O. (mg/L)	Temp. (°C)	Cond. or (Include ur		pH (Units)	Number Dead or Moribund	Technician (Initials)
1	14.8	20.9	31 p	pt	7.2	Ø	JL
			•				
		· · · · · · · · · · · · · · · · · · ·					
	i						
Notes:			L				

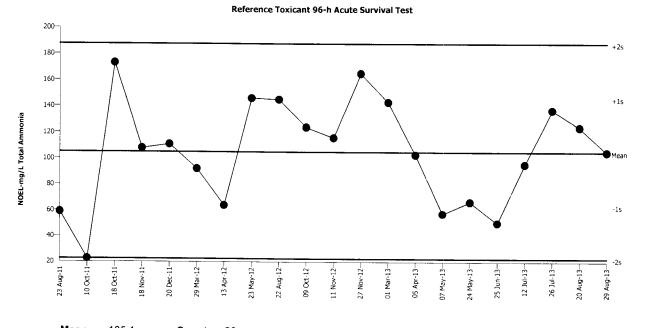
Biological Testing Results


APPENDIX A.2.2

Neanthes arenaceodentata Juvenile Polychaete Bioassay Reference Toxicant Test

Report Date:	05 Sep-13 12:31 (1 of 1)
--------------	--------------------------	---

CETIS QC Plot


Reference Toxicant 96-h Acute Sur	vival Test		N
Test Type: Survival	Organism: Neanthes arenaceodentata (Polycha Endpoint: Proportion Survived	Material:	Total Ammonia
Protocol: PSEP (1995)		Source:	Reference Toxicant-REF

_			ean: igma:	151.5 50.26	-	Count: CV:	20 33.20%	-1s Warn +1s Warn			-2s Action Limit: +2s Action Limit:	50.98 252
Quali	ty Cor	trol Dat	а								· · · · · · · · · · · · · · · · · · ·	
Point	Year	Month	Day	Time	QC Data	a Delta	Sigma	Warning	Action	Test ID	Apolyois ID	
1	2011	Aug	23	11:00	106.6	-44.94	•	g	//00/01	19-2308-3344	Analysis ID	
2		Oct	10	15:35	59.38	-92.12		(-)		06-7843-9085	15-0713-7604	
3			18	14:35	252.7	101.2	2.013	(+)	(+)	20-2964-2236	12-6856-6267	
4		Nov	18	14:45	154.8	3.342	0.06649	(-)	(.)	07-1336-6281	02-6630-2269	
5		Dec	20	14:25	157.3	5.831	0.116			13-2009-7329	16-3327-5847	
6	2012	Mar	29	14:15	123	-28.53				09-7385-3936	09-6676-8731	
7		Apr	13	14:00	156.2	4.727	0.09404			19-8365-3565	17-7765-0407	
8		May	23	13:50	186.8	35.3	0.7023			07-1703-6447	12-2419-3140	
9		Aug	22	11:00	202.7	51.16	1.018	(+)		02-2456-0921	03-0067-3412	
10		Oct	9	14:00	198.3	46.76	0.9304	(.)			14-8617-5684	
11		Nov	11	16:00	146.3	-5.187	-0.1032			09-2476-6828	10-7898-4816	
12			27	16:05	187.1	35.6	0.7082			05-7907-0031	15-4959-5175	
13	2013	Mar	1	14:40	183.7	32.21	0.6408			11-0295-5053	21-1714-9848	
14		Apr	5	10:40	145.7	-5.836	-0.1161			16-0938-7761	05-5518-0938	
15		May	7	13:00	79.7	-71.8	-1.429	(-)		12-4084-6308	11-0088-3368	
16			24	11:30	94.89	-56.61	-1.126			03-6682-4675	04-2369-0564	
17		Jun	25	14:13	75.13	-76.37	-1.519	(-)		19-1651-0673	18-8601-2491	
18		Jul	12	13:20	141.9	-9.567	-0.1903	(-)		08-9049-5052	01-8172-0753	
19				12:00	209.7	58.21	1.158	(1)		14-1288-0905	06-4191-8012	
20		Aug		15:45	168.6	17.15	0.3411	(+)		21-1882-7830	07-5315-7472	
21		•		13:40	229.1	77.63		()		00-0072-4465	03-0193-2385	
			-		0.1	11.00	1.545	(+)		00-4506-4349	11-1553-1817	

Analyst: UL QA: UR

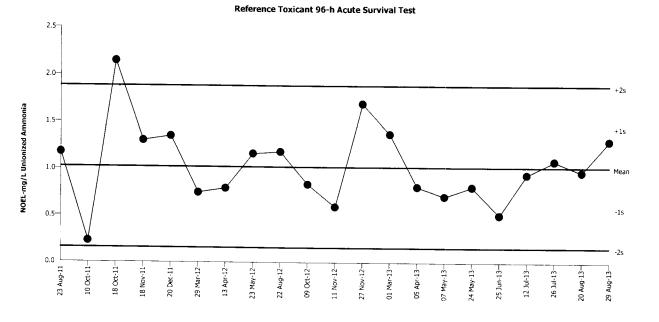
Reference Toxicant 96-h Acute Su	rvival Test			NewFields
Test Type: Survival	Organism: Neanthes arenaceodentata (Polycha	Material:	Total Ammonia	
Protocol: PSEP (1995)	Endpoint: Proportion Survived	Source:	Reference Toxicant-REF	

			ean:	105.1	-	ount:	20	-1s Warr	•		-2s Action Limit:	22.46
		SI	gma:	41.32	C	:V:	39.30%	+1s Warn	ing Limi	it: 146.4	+2s Action Limit:	187.7
Quali	ty Con	trol Data	a								····	·
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2011	Aug	23	11:00	58.9	-46.2	-1.118	(-)		19-2308-3344	00-4985-4824	
2		Oct	10	15:35	22.5	-82.6	-1.999	(-)		06-7843-9085	04-4902-3567	
3			18	14:35	173	67.9	1.643	(+)		20-2964-2236	18-1232-0295	
4		Nov	18	14:45	108	2.9	0.07018			07-1336-6281	00-5718-5578	
5		Dec	20	14:25	111	5.9	0.1428			13-2009-7329	14-4698-1316	
6	2012	Mar	29	14:15	92.2	-12.9	-0.3122			09-7385-3936	12-4682-6521	
7		Apr	13	14:00	63.9	-41.2	-0.9971			19-8365-3565	05-2732-2674	
8		May	23	13:50	146	40.9	0.9898			07-1703-6447	01-7113-3932	
9		Aug	22	11:00	145	39.9	0.9656			02-2456-0921	08-5116-1008	
10		Oct	9	14:00	124	18.9	0.4574			09-2476-6828	01-8486-9232	
11		Nov	11	16:00	116	10.9	0.2638			05-7907-0031	20-7001-2062	
12			27	16:05	165	59.9	1.45	(+)		11-0295-5053	20-4892-3773	
13	2013	Mar	1	14:40	143	37.9	0.9172			16-0938-7761	07-7870-4978	
14		Apr	5	10:40	103	-2.1	-0.05082			12-4084-6308	12-0348-0416	
15		May	7	13:00	57.6	-47.5	-1.15	(-)		03-6682-4675	13-3264-9963	
16			24	11:30	66.7	-38.4	-0.9293			19-1651-0673	19-7443-7088	
17		Jun	25	14:13	50.4	-54.7	-1.324	(-)		08-9049-5052	06-0503-5931	
18		Jul	12	13:20	95.6	-9.5	-0.2299			14-1288-0905	07-0996-7321	
19			26	12:00	137	31.9	0.772			21-1882-7830	14-5107-6466	
20		Aug	20	15:45	124	18.9	0.4574			00-0072-4465	04-2226-9652	
21			29	13:40	105	-0.1	-0.00242			00-4506-4349	03-1605-8937	

Analyst:_____QA:_CR

				R	eferen	ce Toxi	icant 9	6-h Acı	ite Sur	vival T	est							
3.0	\bigwedge																	
e 2.0-									•	•								+2s
EC50-mg/L Unionized Ammonia				•	•	•	٩		<u> </u>			•	•	$\overline{\checkmark}$	/	_		/ Mean -1s
0.5 0.0			ar-12-	or-12⊣	ly-12	9-12-	t-12	v-12	v-12	r-13-	r-13	v-13→	/-13-	-13-	-13-		-13	-2s
23 Aug-11	10 Oct-11- 18 Oct-11-	18 Nov-11- 20 Dec-11-	29 Mar-12	13 Apr-12	23 May-12-	22 Aug-12-	09 Oct-12-	11 Nov-12-	27 Nov-12-	01 Mar-13	05 Apr-13	07 May-13	24 May-13	25 Jun-13-	12 Jui-13-	26 Jul-13-	20 Aug-13-	29 Aug-13

NewFields


Reference Toxicant 96-h Acute Survival Test

Test Type: Survival	Organism: Neanthes arenaceodentata (Polycha	Material:	Unionized Ammonia
Protocol: PSEP (1995)	Endpoint: Proportion Survived		Reference Toxicant-REF

			ean: gma:	1.202		ount: 20 V: 42	.30%	-1s Warn +1s Warn	-		-2s Action Limit: +2s Action Limit:	
Quali	ty Con	trol Dat	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2011	Aug	23	11:00	1.436	0.2341	0.4605	-		09-3666-1661	07-6184-3703	
2		Oct	10	15:35	0.4667	-0.7353	-1.446	(-)		04-4548-8932	08-5329-1975	
3			18	14:35	2.797	1.595	3.137	(+)	(+)	05-4042-6561	09-4508-3623	
4		Nov	18	14:45	1.667	0.4651	0.9149		. ,	07-2418-7894	04-3530-8185	
5		Dec	20	14:25	1.359	0.157	0.3088			01-5692-9953	01-3178-0533	
6	2012	Mar	29	14:15	0.7959	-0.4061	-0.7988			11-8184-4663	15-1974-6098	
7		Apr	13	14:00	1.012	-0.1901	-0.3739			19-8413-7608	13-2594-7323	
8		May	23	13:50	1.183	-0.01869	-0.03677			00-6722-3532	08-3889-1635	
9		Aug	22	11:00	1.31	0.1082	0.2128			12-2636-9338	18-2386-8444	
10		Oct	9	14:00	1.063	-0.1389	-0.2731			11-5377-0688	17-8993-7878	
11		Nov	11	16:00	0.7276	-0.4744	-0.9331			14-7469-3886	03-0259-8994	
12			27	16:05	1.746	0.5436	1.069	(+)		08-6061-4466	00-3182-3735	
13	2013	Mar	1	14:40	1.573	0.3714	0.7305			18-8051-2966	06-9085-4102	
14		Apr	5	10:40	0.9122	-0.2898	-0.57			03-5469-7681	20-0412-7755	
15		May	7	13:00	0.794	-0.408	-0.8025			11-4883-5754	10-2519-8358	
16			24	11:30	0.9143	-0.2877	-0.5659			03-1268-0321	17-3627-5339	
17		Jun	25	14:30	0.6782	-0.5238	-1.03	(-)		07-6412-1006	01-8270-7142	
18		Jul	12	13:20	1.207	0.00519	0.01021			06-2793-5359	03-5477-0692	
19			26	12:00	1.324	0.1217	0.2394			08-3568-6719	13-1071-7473	
20		Aug	20	15:45	1.065	-0.1366	-0.2687			11-8125-8700	06-3963-9074	
21			29	13:40	1.779	0.5769	1.135	(+)		06-4372-6299	20-5863-7836	

Analyst: JL QA: CR

Reference Toxicant 96-h Acute Survival Te	t	NewFields
Test Type: Survival Protocol: PSEP (1995)	Organism: Neanthes arenaceodentata (Polycha Material: Unionized Ammon Endpoint: Proportion Survived Source: Reference Toxicar	

			lean:	1.021		Count:	20	-1s Warr			-2s Action Limit:	0.159
			igma:	0.431		CV:	42.20%	+1s Warn	ning Lim	it: 1.452	+2s Action Limit:	1.883
Quali	Quality Control Data										<u></u>	
Point	Year	Month	Day	Time	QC Dat	a Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2011	Aug	23	11:00	1.176	0.155	0.3596			09-3666-1661	00-3462-6374	
2		Oct	10	15:35	0.228	-0.793	-1.84	(-)		04-4548-8932	20-7967-8150	
3			18	14:35	2.146	1.125	2.61	(+)	(+)	05-4042-6561	09-7290-5956	
4		Nov	18	14:45	1.303	0.282	0.6543	()	()	07-2418-7894	02-8881-3753	
5		Dec	20	14:25	1.35	0.329	0.7633			01-5692-9953	10-0045-4747	
6	2012	Mar	29	14:15	0.747	-0.274	-0.6357			11-8184-4663	00-5057-1480	
7		Apr	13	14:00	0.793	-0.228	-0.529			19-8413-7608	05-2899-5573	
8		May	23	13:50	1.162	0.141	0.3271			00-6722-3532	11-8382-8902	
9		Aug	22	11:00	1.183	0.162	0.3759			12-2636-9338	02-6993-9000	
10		Oct	9	14:00	0.836	-0.185	-0.4292			11-5377-0688	14-5701-8660	
11		Nov	11	16:00	0.596	-0.425	-0.9861			14-7469-3886	17-5882-8497	
12			27	16:05	1.693	0.672	1.559	(+)		08-6061-4466	05-8355-5463	
13	2013	Mar	1	14:40	1.373	0.352	0.8167	()		18-8051-2966	09-6023-4535	
14		Apr	5	10:40	0.811	-0.21	-0.4872			03-5469-7681	20-7653-9268	
15		May	7	13:00	0.71	-0.311	-0.7216			11-4883-5754	20-7240-7121	
16			24	11:30	0.81	-0.211	-0.4896			03-1268-0321	20-4684-2719	
17		Jun	25	14:30	0.51	-0.511	-1.186	(-)		07-6412-1006	18-2969-6397	
18		Jul	12	13:20	0.943	-0.078	-0.181	()		06-2793-5359	18-9450-4090	
19			26	12:00	1.087	0.066	0.1531			08-3568-6719	20-5296-6252	
20		Aug	20	15:45	0.97	-0.051	-0.1183			11-8125-8700	00-8450-2616	
21			29	13:40	1.301	0.28	0.6497			06-4372-6299	17-0691-0612	

JL OA: GR Analyst:

	nmary Rep	ort	Report Date Test Code:		05 Sep-13 10:50 (p 1 of 2AFA09D 00-4506-432						
Reference To	xicant 96-h Ac	ute Sur	vival Test								NewField
Batch ID: Start Date: Ending Date: Duration:	01-8887-4364 29 Aug-13 13 02 Sep-13 13 95h	:40	Test Type: Protocol: Species: Source:	Survival PSEP (1995) Neanthes aren Aquatic Toxico				_	Laboratory Se Not Applicable		
Sample ID: Sample Date: Receive Date: Sample Age:	27 Sep-11		Code: Material: Source: Station:	9550E3B Total Ammonia Reference Toxicant P110927.153				nternal Lab Reference Tox	nal Lab rence Toxicant		
Comparison S	Summary				<u>-</u>						
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τυ	Metho	d		
03-1605-8937	Proportion Sur	vived	105	201	145.3	13.9%			roni Adj t Test		
Point Estimate	Endpoint		Level	mg/L	95% LCL	95% UCL	ти	Metho		·	
11-1553-1817	Proportion Sur	vived	EC50	229.1	205.5	255.5			nan-Kärber		
Proportion Su	rvived Summa	ry									
•	Control Type	Coun	t Mean	0.5% 1.01	0.5% 11.01						
	Dilution Water		1	95% LCL		Min	Max			CV%	%Effect
27		3	1	1	1 1	1	1	0	0	0.0%	0.0%
53.9		3	1	1	1	1 1	1	0	0	0.0%	0.0%
105		3	1	1	1	1	1	0	0	0.0%	0.0%
201		3	0.7	0.2032	1	0.5	1	0	0	0.0%	0.0%
386		3	0	0	0	0.5	0.9 0	0.1155 0	0.2	28.57%	30.0%
Proportion Su	vived Detail								0		100.0%
	Control Type	Rep 1	Rep 2	Bon 2							
	Dilution Water	1	<u>1</u>	Rep 3							
27		1	1	1							
53.9		1	1	1							
05		1	1	•							
201		0.9	0.7	1							
386		0	0.7	0.5 0							
Proportion Sur	vived Binomial							·····			
_	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	10/10	10/10	10/10							
.7		10/10	10/10	10/10							
3.9		10/10	10/10								
05		10/10	10/10	10/10							
01		9/10	7/10	10/10							
86		9/10 0/10	0/10	5/10							

386

0/10

-

0/10

0/10

Analyst: JL QA: CR

·	mmary Rep						-	Report Date Test Code:			1:12 (p 1 of 1 06-4372-629
Reference To	oxicant 96-h Ac	ute Surv	vival Test								NewFields
Batch ID: Start Date: Ending Date: Duration:	13-8206-9525 29 Aug-13 13 02 Sep-13 13 95h	:40	Test Type: Protocol: Species: Source:					Laboratory S Not Applicat			
Sample ID: Sample Date: Receive Date Sample Age:	: 27 Sep-11		Code: Material: Source: Station:	627EADE1 Unionized Amr Reference Tox P110927.153				Client:	Internal Lab Reference To	oxicant	
Comparison	Summary	-	-				_				
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	тυ				
17-0691-0612	Proportion Su	rvived	1.301	1.578	1.433	13.9%	10	Metho	rroni Adj t Te		
Point Estimat	e Summary				· · · · · · · · · · · · · · · · · · ·					si	
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL					
20-5863-7836	Proportion Sur	vived	EC50	1.779	1.689	1.873	10	Metho	man-Kärber	·	
-	rvived Summa Control Type	-									
	Dilution Water	Coun 3	t Mean	95% LCL			Max	Std Er	rr Std De	v CV%	%Effect
0.522	Diation Water	3	1	1	1	1	1	0	0	0.0%	0.0%
0.832		3	1	1 1	1	1	1	0	0	0.0%	0.0%
1.301		3	1	1	1 1	1	1	0	0	0.0%	0.0%
1.578		3	0.7	0.2032	1	1 0.5	1	0	0	0.0%	0.0%
2.414		3	0	0	0	0.5	0.9 0	0.1155 0	5 0.2 0	28.57%	30.0%
Proportion Su	rvived Detail								0		100.0%
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	1	1	1		······					
0.522		1	1	1							
0.832		1	1	1							
1.301		1	1	1							
1.578		0.9	0.7	0.5							
2.414		0	0	0							
Proportion Sur	rvived Binomia	ls								<u> </u>	
	Control Type	Rep 1	Rep 2	Rep 3							
	Dilution Water	10/10	10/10	10/10							
.522		10/10	10/10	10/10							
.832		10/10	10/10	10/10							
.301		10/10	10/10	10/10							
578		0/40	7/40								

1.578

2.414

7/10

0/10

5/10

0/10

9/10

0/10

Analyst: L QA: CR

CETIS Test Data Worksheet

05 \$	Sep-	-13	10:4	14	(p	1	of	1)
C	0-45	506	-434	19/	2A	F	A0	9D

Report Date: Test Code:

Reference Toxicant 96-b Acute Survival Test

Start Date: End Date: Sample Date:	02	Sep-1	3 13:40 3 13:00 1	•	Neanthes arenaceodentata PSEP (1995) Total Ammonia		9550E3B Reference Toxicant P110927.153
C-mg/L	Code	Rep	Pos	#Exposed #	Survived	Notes	
0	D	1	7	10	10		
0	D	2	8	10	10		
0	D	3	1.	10	10		
27		1	4	10	10		
27		2	9	10	10		
27		3	17	10	10		
53.9		1	15	10	10		
53.9		2	14	10	10		
53.9		3	11	10	10		
105		1	3	10	10		
105		2	12	10	10		
105		3	2	10	10		
201		1	6	10	9		
201		2	13	10	7		
201		3	16	10	5		
386		1	5	10	0		
386		2	10	10	0		
386		3	18	10	0		

CETIS Test Data Worksheet

05 Sep-13 11:11 (p 1 of 1) 06-4372-6299/265E7BDB

Report Date:

Test Code:

Reference Toxicant 96-h Acute Survival Test

								NewField
Start Date: End Date: Sample Date:	02 \$	Sep-1	3 13:40 3 13:00 1	-	Neanthes arenaceodentata PSEP (1995) Unionized Ammonia	Sample Code: Sample Source: Sample Station:	627EADE1 Reference Toxicant P110927.153	
C-mg/L	Code	Rep	Pos	#Exposed #	Survived	Notes		
0	D	1	16	10	10			
0	D	2	9	10	10			
0	D	3	18	10	10			
0.522		1	12	10	10			
0.522		2	11	10	10			
0.522		3	4	10	10			
0.832		1	13	10	10			
0.832		2	2	10	10			
0.832		3	7	10	10			
1.301		1	3	10	10			
1.301		2	6	10	10			
1.301		3	1	10	10			
1.578		1	5	10	9			
1.578		2	14	10	7			
1.578		3	17	10	5			
2.414		1	8	10	0			
2.414		2	10	10	0			
2.414		3	15	10	0			

.

CLIENT:	Internal	Date of Test:	29-Aug-13
PROJECT:	RT	Test Type:	Neanthes
COMMENTS			reantines

COMMENTS: | To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding and provide the contraction, and provide the contraction, and provide the contraction of the contraction, and provide the contraction of the contraction of

	Target / Sample Name	ou Am37 ann i Actual			temp (C)		i-factor	Mod NH3U (mg/
nteger: I-factor	Example 3.5	Sector and the sector of the s	22.9	8.0	24.1	297.26	9.3053	#VALUE!
1 9.26	1	2 000	10.0	-75	5.0	278.16	9.2750	0.008
2 9.27	2 15							
3 9.28	3 30	27		:		292.26	9.3187	0.522
4 9.29		53.9				292.26	9.3187	0.832
5 9.30		105			1.0.1	292.36	9.3187	1.301
6 9.32		201		3	1 1	292.36	9.3187	1.578
7 9.33	6 240	386	• ;		12.5	292.46	9.3214	2.414
8 9.34	7							
· · · · · · · · · · · · · · · · · · ·								
4 ···· 0 99.44	9							
	10							
	11							
	12							
	13							
	14							
	15							
	16							
	17					_		
	18							
	19		-		<u>├</u>			
2	20							
	21							
2	22				┼────┼			
2	23					_		
2	24				<u>├</u> ────			
2	25							
2	26			_				
2	.7							
2	8							
	9							
	0							
3								
3								
3								
3								
3								
3								
3								
3								
3								
4								
4								
4:								
4:								
44								
45								
46	5							

-

NewFields 96-HOUR REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES	NEWFIELDS LABORATO	RY	PROTOCOL
FloydSnider	K Ply	Neanthes arenaceodentata	Port G	amble Bath 7	PSEP 1995
NEWFIELDS JOB NUMBER	PROJECT MANAGER	TEST START DATE:	TIME	TEST END DATE	TIME
0	B. Hester	29Aug13	1390	02Sep13	1300
Test ID 110927.153	LOT #: 111079			· has a substantial second	

WATER QUALITY DATA

DILTIN.WA	Т.ВАТСН		TEMP	P REC#				REFE	RENCE TOX. MATERIA	L			REFERENCE	TOXICANT
FSW082	813.01			_			u <u></u> (n n. m a	an	nmonium chloride				ammonia	a - TAN
	TEST C		NG				DO (mg/L)		TEMP(C)		SAL (ppt)		рН	7501000144
	TEST C						> 4.6	20 <u>+</u> 1		28 <u>+</u> 2		7 - 9		
CLIENT/ NEW		CONCEN	TRATION	DAY	REP		D.O.		TEMP.		SALINITY		рН	
		value	units	DAT		meter	mg/L	meter	°C	meter	ppt	meter	unit	WQ TECH
Ref.Tox ammonia -	Target:	0	mg/L	0	Stock	Ġ	1.1	6	WIB5 MD	Z	28	5	7.03	14 8/29
TAN	Actual:		ing/L	4	Rep	Ĺ	7.D	6	20.3	2	28	5	8.1	JL 9102
Ref.Tox ammonia -	Target:	15	mg/L	0	Stock	6	7.8	6	19.1	2	28	5	7.8	HK 8/29
TAN	Actual:		iiig/E	4	Rep	6	6.9	6	20,3	2	28	5	8.0	JL 9102
Ref.Tox ammonia -	Target:	30	mg/L	0	Stock	6	7.8	6	19.1	2	28	5	7.7	He 8/29
TAN	Actual:		iiig/ E	4	Rep	6	7.1	ط	20.3	2	28	5	B.D	J 9102
Ref.Tox ammonia -	Target:	60	mg/L	0	Stock	6	7.8	6	19.2	2	28	5	7.6	Hz 8/29
TAN	Actual:		iiig/ E	4	Rep	6	7.2	6	20.3	2	28	5	8.0	r 9102
Ref.Tox ammonia -	Target:	120	mg/L	0	Stock	G	7.7	6	19.2	2	29	5	7.4	7 8/29
TAN	Actual:		ing/c	4	Rep	6	6.9	6	20.3	2	28	5	7.9	Jr 9102
Ref.Tox ammonia -	Target:	240	mg/L	0	Stock	6	1.1	6	19.3	2	29	5	7.3	Ha 8/29
TAN	Actual:			4	Rep		•				Remark Balance			

OMR # 8129

NewFields⁹ HOUR REFERENCE TOXICAN CEST **OBSERVATION DATASHEET**

									SPECIE	S						
CLIENT			PRÓ	JECT		NE	WFIELDS	JOB #	PROJE	CT MANAG	Nean	hes an		odenta		101
FloydSnider				K Ply			0			Hester				e Bath 7	PROTO	:OL EP 1995
000500470000					SURV	IVAL	& BE	HAVI	OR D	ATA						
OBSERVATIONS KEY N = normal		INITIA	L # OF		DATE	DAY 1		DATE	DAY 2			DAY 3		T	DAY 4	<u>.</u>
Q = quiescent D = Discolored F = Floating on sui	face	ORGA	NISMS	i	1 (ß	DATE	83	?[DATE	910	1	DATE	9(1	52
		ONC.		INITIAL #	TECHNIC			TECHN		;	TECHNI		۱ <u> </u>	TECHNIC		
CLIENT/ NEWFIELDS ID	value	units	REP	if differs	#ALIVE	#DEAD	OBS	#ALIVE			#ALIVE	: #DEAD	OBS	#ALIVE	: #DEAD	
j			1		10	Ø	5	(0	Ø	N	10	Ø	N	10		N
Ref.Tox	0	mg/L	2		10	Ø	\square	10		$\frac{10}{11}$	1.	Ø	<u> </u> ~	+ <u>·</u>		
ammonia - TAN		0			to		-		Þ	<u> </u>	10	P		0	D	
			3			Ø	J.	10	Ø		10	Ø		(0	D	U
		-	1		10	Ø	2	10	Ø	N	10	Ø	N	10	193	N
Ref.Tox ammonia - TAN	15	mg/L	2		10	Ø		10	Т Ø	+1-	10	Ø	\dot{i}	<u> </u>	p b	
			3		10	Ø	H	10	10		10	<u> </u>	$\left - \right $	10	Ø	
	<u> </u>		1		· · ·			-			L'	Ð	<u> </u>	10	D	V
Ref.Tox					10	Ø	て	(0	Ø	2	10	Ø	2	10	0	N
ammonia - TAN	30	mg/L	2		10	P		10	ð		10	Ø		10	Ø	
			3		IJ	Ø	6	[0	0	Y	10	Ø	J	10	6	
			1		0	Ø	5	0	Ø	Ν	10	Ø	2	10	~	0
Ref.Tox ammonia - TAN	60	mg/L	2		10	Ø	1	10	Ď		10	Ø	-	10	Ð	
			3		, ID	D	T				10	0			Ø	
			1					10	Ø		10	~	U	10	Ø	- L
Ref.Tox			-		10	Ø	9	10	6	Ô	10	ø	0	9		0
ammonia - TAN	120	mg/L -	2		10	P		0	0		10	Ø	(]	7	3	1
			3		10	Ю	Ļ	10	0		10	B	J	5	$\boldsymbol{\boldsymbol{\varsigma}}$	
			1		10	Ø	θ	в	10	NA					3	<u> </u>
Ref.Tox ammonia - TAN	240	mg/L	2		10	Ð	Ť	D	10				-+			
			3		10		-								\rightarrow	
			-		10	\mathcal{D}	_	Ø	10	<u>v</u>						\searrow

Neanthes NH₃ RT

Assumptions in Model

Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Actual Reading reading from 6820

Measured		Test Solutions							
Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration						
mg/L	mg/L	mL	mL stock to increase						
			SALT WATER (mL						
386	240	750	39.589						
201	120	750	19.795						
105	60	750	9.897						
53.9	30	750	4.949						
27.0	15	750	2.474						
0.0343	0								

Biological Testing Results

APPENDIX A.3.1

Mytilus galloprovincialis Benthic Larval Bioassay Laboratory Data Sheets

NewFields

NewFields

LARVAL DEVELOPMENT TEST ENDPOINT DATA

				species Mytilus g	alloprovir			
Floyd Snider	PROJECT K-Ply		0093.000	B. Hester			ole / Bath 7	PROTOCOL PSEP (1995)
TS 4580		TEST STA	rt date: 2 8/ 13	TIME	50	TEST END DATE		700
		LARVAL	OBSERVATIO				· · · ·	
CLIENT/ NEWFIELDS ID	REP	NUMBER NORMAL	NUMBER		DATE	TECHNICIAN		COMMENTS
			317	81	87/13	GR		
	2		331					
STOCKING DENSITY	3	Х	358					
	4	\square	334		<u> </u>			
	5		337	1	/	\mathbf{V}		
	1	331	15	81	26/3	CR		
	2	330	20					
Control /	3 -	317	12					
	4	317	16					-
	5	303	21		_			
	1	77	216					
	2	206 305	93					
CARR20 /	3	sos	14					
		52	146					
	5 6	261	77					
	1 2	234	4					
	2	277	7					
CR 02 /	3 2	287	8					
	4	291	6					
	5	263	3					
	1	253	10					
	2 2	262	7					
SD0001K /		272	10					
		278	18		<u>`</u> .			
	5	30	9		\mathbf{V}	√		

OWrong date test counted 912-9/3/13

LARVAL DEVELOPMENT TEST ENDPOINT DATA

				SPECIES Mytilu	is galloprovi	ncialis	
Floyd Snider	PROJECT K-Ply		UMBER 860.0093.000	PROJECT MA B. He	NAGER	NEWFIELDS LAB Port Gamb	le / Bath 7 PSEP (1995)
GANISM BATCH TS 4580		1	BIZBII3		1650	TEST END DATE:	3 1700
			VAL OBSERVATIO	ON DAT	Ą		
CLIENT/ NEWFIELDS ID	REP	NUMBER	NUMBER		DATE	TECHNICIAN	COMMENTS
	1	225	49	*	872645	R	
	2	277	10				
SD0002K /	3	257	20				
	4	276	15				
	5	200	57				
	1	270	5				
	2	284	9				
SD0003K /	3	26	22				
	4	225	1				
	5	269	12		V/	V	

OWrong date test counted 9/2-9/3/13

Owc, MMS	CR 02 /	CR 02 /	CR 02 /	CR 02 /	CR 02 /	CARR20 /	CARR20/	CARR20 /	CARR20 /	CARR20 /	Control /	Control /	Control /	Control /	Control /	CLIENT/ NEWFIELDS ID		Day 3&4 observations needed only if development endpoint not met by day 2 TECT	JUB NUMBER 860.0		NewFields
81/82/13	4	ω	2		0	4	3	N	 	0	4	ω	2		0	DAY	CONDITIONS	eded only if developm	860.0093.000	Floyd Snider	elds
	16	16	16	16	16	19	19	19	19	19	24	24	24	24	24	Random #		ent endpoint not r			
(7) Wr H 8121	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	REP		net by day 2	PROJECT MANAGER B. H	PROJECT	
A			6	<i>b</i>	6			6	9	6			5	603	6	meter	5	7	B. Hester	K-Ply	
81291			4 H	1.5	6.8			s,t	9032	6.4			0.0	8	d't	mg/L	>5.0		ter	~	
			6	a)	6				6	6			6	- <u>-</u>	6	meter		WA		ş	
OWEt:			6.91	17,1	16.4		-	6 (6,0	f	16.3			15.6	15.3	16.2	°C	16 ± 1	TER QU	TEST START DA	SPECIES	VAL DE VATER
4			2	7	C			2	2	с С			N	2	\$	meter			ar∈ 28Aug13		
			29	P2	29			29	b2	P P			29	29	2	SALINITY ppt	Sal (ppt) 28 ± 1	WATER QUALITY DATA	g13	Mytilus galloprovincialis	LARVAL DEVELOPMENT TEST WATER QUALITY DATA
value			5	N	J			5	Ч	ഗ			\sim	Л	J	meter		1		rovinci	
8.1			b.t	7.8	۹.4 ا			e't	7.9	۲. 0			9.0	7.9	8.F	pH unit	7 - 9		™ 1650	ialis	TS
Z			۶		May			Ju	-	MM			5			A Techn.		1	-		
Ar 8129			6,0167		0.210			0.0839		1 mm 0.248			0.0647		MMG 0.0622MMG	AMMONIA 	NA		TEST END DATE	Port Gamble / E	
129			Ju		NMB			J		MMR			2		Mug	Techn.			END DATE 8/30/(3	Gamb	
			0.030				···	0-025		0.112			0.023		0. 9	SULFIDE . mg/L (Total)	NA	2	*	Port Gamble / Bath 7	
			Y	¥,	Ś				¥	Neu			Ur Ur	A.	N		сн	1			
			8(30	b2/S	8613 BMM F11.0			8 30	7K 8/29	86) 8 Smw			8[30	8/2	30 8 Smm	DA	NTE .		1700	PROTOCOL PSEP (1995)	

	1	<u> </u>	T				, -	.		1			7	-		1	<u> </u>	<u> </u>	
SD0003K /	SD0003K /	SD0003K /	SD0003K /	SD0002K /	SD0002K /	SD0002K /	SD0002K /	SD0002K /	SD0001K /	SD0001K /	SD0001K /	SD0001K /	SD0001K /	CLIENT/ NEWFIELDS ID	co	* Day 3&4 observations needed only if development endpoint not met by day 2	JOB NUMBER 860.0093.000	client Floyd Snider	NewFields
3	2	_	0	4	3	2	-	0	4	ω	N	<u> </u>	0	DAY	CONDITIONS	y if developme	000	der	ls
20	20	20	20	7	7	7	7	7	23	23	23	23	23	Random #		nt endpoint not m			
WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	WQ Surr	REP		et by day 2	PROJECT MANAGER	PROJECT	
	6	0	6			5	6	6		,	5	6	6	meter			NAGER B. Hester	K-Ply	
	9.1	0.8	4.2			9 Y	7.4	6.1			e t	Q.S	6.0	D.O. mg/L	>5.0		ster	۹ŀy	
	6	6	6			5	9	6				0	6	meter		×		s	
	15.8	15.4	لله ع			16.8	ó tl	16.5			6 16.2	15.8	16.6	TEMP. ℃	Temp (°C) 16 ± 1	WATER QUALITY DATA	TEST START DATE	SPECIES	LARVAL DEVELOPMENT TEST WATER QUALITY DATA
	2	2	e			2	4	φ			2	0	φ	meter		ALIT	_{ате} 28Aug13	Mytii	
	29	29	19 19			Zh	Z	99			29	29	96	SALINITY ppt	Sal (ppt) 28 ± 1	Y DATA	g13	Mytilus galloprovincialis	OPMEN
	S	5	S			S	S	ທ			\sim	5	S	meter				rovinci	NT TE ATA
	p.t	1.8	8.t			8t	7.7	8. F			00 0	<u>ل</u> و	8.F	pH unit	рН 7 - 9		1650	alis	ST
	7		gm			J		WILL			\sum_{i}		Mine	A Techn.			-		-
	0.00		mue 0.0746 mm 0.127 Mm			0.0210		2012 2000 521.0 Smma100.0 2000			0.0546 JL		mine 0.104 mines	AMMONIA mg/L (total)	NA		TEST END DATE	NÉWFIELDS LAB / LOCATION Port Gamble / E	
	5		NM			С С		nms		_	JC		Smy	S Techn.			Σι/08	AB / LOC. Gambl	
	0, <u>0</u> 10		6127			p 100		0.125			0.042UL		0.170	SULFIDE mg/L (Total)	Sulfide NA		Ś	Port Gamble / Bath 7	
	Ju	Æ	MM			Jι	77	hund				¥	Marte	TE	сн				
	8 30	18/2q	86)8			830	12/B	8618			8130	1218	0.170 May 8/28	DA	TE		M≊	PROTOCOL PSEP (1995)	

Page 2 of 2

SD0003K /

4

20

WQ Surr

NewFields

LARVAL DEVELOPMENT TEST INITIATION DATA SHEET

CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	LABORATORY	PROTOCOL
Floyd Snider	K-Ply	860.0093.000	B. Hester	Port Gamble Bath 7	PSEP (1995)

TEST ORGANISM SPAWNING DATA

SPECIES			SAMPLE STORAGE
Mytilus galloprovin	cialis		4 Degrees Celsius - dark
SUPPLIER Taylor Ste	llfish	ORGANISM BATCH T5 4580	
DATE RECEIVED B. 27.13		DATE USED 8.28.13	TEST CHAMBERS
spawning method feed/boct shock	INITIAL SPAWNING TIME	FINAL SPAWNING TIME	EXPOSURE VOLUME 900mL seawater / 18g Sediment
MALES FEMALES		EGG CONDITION	TIME OF SHAKE 1215-1230
BEGIN FERTILIZATION		CONDITION OF EMBRYOS	TIME OF INITIATION

SPECIAL CONDITIONS

UV LIGHT EXPOSURE (YES/NO)	AERATION FROM TEST INITIATION (YES/NO)
No	No
SCREEN TUBE TEST (YES/NO)	OTHER (EXPLAIN)
No	Resuspersion

EMBRYO DENSITY CALCULATIONS

$$65 \times 100 = 6500 \text{ enbryos/nL}$$
 $7 = 9 = 4200 = 500 = 4200 \text{ ess}$
 $37,000 = 4200 \text{ ess}$
 $37,000 = 50415 \cdot 1000 \text{ = }4200 \text{ ess}$
 $37,000 = 5000 \text{ = }4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$
 $3800 = 4.15$

•NewFields

ORGANISM RECEIPT LOG

Date:		Т	ime;		NewFiel	ds Batch No.	
0	77.13		• • • •			\	
D. 0	タキ・レン		1200		TS	4580	
Organism	/ Project:					Invoice Attac	hed
M. 0	salloprov	incialize	/ K-Ph	1		//	
Source / S		/	/ ' ' /			Yes (49/
)		Contact		
	Taylor	Shellfis	h		Kar	ien Under	wood
No. Ordere	ed:	N	o. Received:		Source I	Batch:	
11	patch		1 betc	h		n date, hatch dat	e, etc.):
	•			•		Field	
Good, fair, p	of Organisms oor; describe.):		1	Approx (Days fro	cimate Size	or Age: stage, size class	
10	ts of imma	,6000	1				s, etc.):
Shipper:	i joi ima	iture seec	<u>x</u>			• •	
	1)	PS		B of L (Tracking N	o.)	
		,		129	8¥ 685	01000345	: 80
Condition of	of Container:	1	1	Receive	ed By:	······································	
(Good, fair, p	oor; describe.):	Good			ß	Ц	
					ν	, f	
Container	D.O.	Temp.	Cond. or	Sal	рН	Number	Technicic
	(mg/L)	(°C)	(Include Ur		(Units)	Dead or Moribund	Technician (Initials)
1		11.3				inoribuitu	11
		11. 5					BH
Notes:							
	transpo	pited o	try w	6	lu ilo	neks	
	•		1 1			- f	

Biological Testing Results

APPENDIX A.3.2

Mytilus galloprovincialis Benthic Larval Bioassay Reference Toxicant Test

NewFields

Mussel Sh	ell De	velopn	nent Te	est																	NewField
Test Type: Protocol:		elopme /600/R-			5)		rganisr ndpoin		/tilus ga				Musse		lateria ource:		otal A Refere		nia oxican	nt-REF	
								Mus	ssel Shell	Develop	ment T	est									
	12-																				
	10—	-											.								2s
nia	8-	-			\wedge					•	•	,	/	\							
EC50-mg/L Total Ammonia	6—				/ `				•			$ \setminus /$			•					+1	ls
)-mg/L To	4	D								/		V	-			Þ				Me	an
ECSC	2						\backslash /	ø		/									•	-1	s
	2				<u>-</u>		¥									_				-29	s
	0 0 Mar-10	22 Mdr-12	07 Jun-12	20 Jun-12	22 Aug-12	30 Aug-12-	09 Oct-12	18 Oct-12	29 Nov-12	14 Feb-13-	28 Feb-13-	06 Mar-13	16 Mar-13	26 Mar-13	or-13	ly-13-	01 Jui-13	-13	g-13	g-13	
	<i>cc</i>	23 23	07	20	52 /	30 4	8	18 (29 N 07 D	14 Fi	28 Fe	06 M	16 M	26 M	03 Apr-13	09 May-13	IC 10	17 Jul-13-	07 Aug-13-	28 Aug-13-	
		Mean:	5.3	3		Count	: 20			-1s Wa	rnina	Limit:	3.2	26	-29	s Act	ion I	imit	1.122	,	

Report Date:

09 Oct-13 14:35 (1 of 1)

			ean: gma:	5.33 2.104		ount: 20 V: 39	.50%	-1s Warr +1s Warr		nit: 3.226 nit: 7.434	-2s Action Limit: +2s Action Limit:	
Quali	ty Cor	ntrol Dat	a									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	
1	2012	Mar	22	12:15	6.852	1.522	0.7232			08-5068-3541	09-7191-1867	
2		Apr	23	18:45	4.66	-0.6696	-0.3183			02-7458-4371	07-2969-7564	
3		Jun	7	18:15	4.304	-1.026	-0.4879			20-4612-5080	14-0164-5214	
4			20	17:50	5.296	-0.03424	-0.01627			21-1169-3016	00-2068-7937	
5		Aug	22	16:05	8.376	3.046	1.448	(+)		03-0988-3309	14-8872-2540	
6			30	17:50	4.311	-1.019	-0.4844			00-6833-5106	09-9193-8473	
7		Oct	9	18:00	1.678	-3.652	-1.736	(-)		06-6024-3093		
8			18	18:00	3.41	-1.92	-0.9126	()		07-3550-9263	07-1414-6248	
9		Nov	29	17:45	5.775	0.4445	0.2113			04-0681-3114	15-5292-9085	
10		Dec	7	18:50	3.016	-2.314	-1.1	(-)		15-7850-6619	00-7625-5304	
11	2013	Feb	14	17:40	8.112	2.782	1.322	(+)		02-6193-4857	03-0562-1566	
12			28	21:20	7.574	2.244	1.066	(+)			04-9672-9086	
13		Mar	6	16:45	4.538	-0.7923	-0.3766	(')		06-9403-7957	07-8992-4017	
14			16	17:45	10.13	4.797	2.28	(+)	(+)	20-1267-3706	09-5346-5604	
15			26	18:15	5.579	0.2491	0.1184	(+)	(+)	14-2253-0526	18-0087-0374	
16		Apr	3	0:00	6.805	1.475	0.7012			03-8532-3895	00-6308-0782	
17		May		17:15	4.927	-0.4033	-0.1917			10-3604-5723	04-8356-0800	
18		Jul		19:00	2.895	-2.435	-1.157	()		00-6360-9095	16-4147-0802	
19				17:55	4.313	-1.017	-0.4832	(-)		19-5961-2730	13-0986-6895	
20		Aug		19:00	4.051	-1.279				18-2536-1347	00-8750-2223	
21				16:55	5.063	-0.2673	-0.608			04-7788-4843	09-8595-7999	
			20	10.00	5.005	-0.2073	-0.127			19-6611-9162	04-7207-2891	

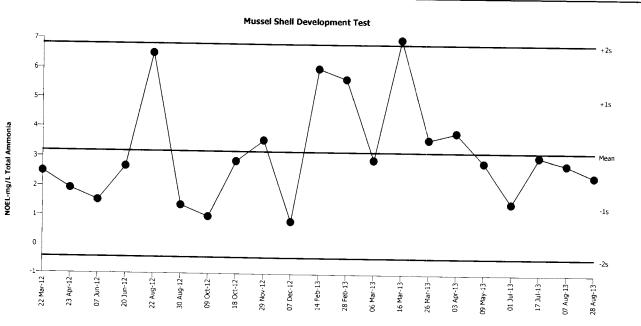
000-173-185-2

CETIS QC Plot

CETIS™ v1.8.6.7

Analyst: CR QA: CR

CETIS QC Plot		Report Date:	10 Oct-13 09:21 (1 of 1)
Mussel Shell Development Test			NewFields
Test Type: Development-Survival	Organism: Mytilus galloprovincialis (Bay Mussel	Material: Total Amr	


Test Type: Developme Organism: Mytilus galloprovincialis (Bay Mussel Protocol: EPA/600/R-95/136 (1995) Endpoint: Combined Proportion Normal

CETIS QC Plot

Source:

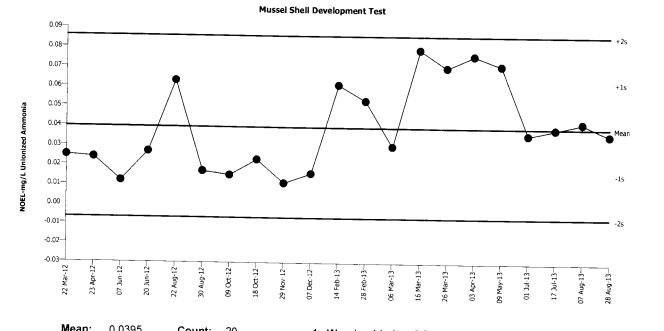
Reference Toxicant-REF

Fields

			Mean: Sigma	3.198 1.818		Count: CV:	20 56.80%	-1s Warr +1s Warr			1.38 5.01	-2s Action Limit: -0.435 +2s Action Limit: 6.825	
Quali	ty Cor	trol Da	ita						<u> </u>				
Point	Year	Mont	h Day	Time	QC Dat	a Delta	Sigma	Warning	Action	То	et ID	Amelusia ID	
1	2012		22	12:15	2.5	-0.695	-	Manning	Action			Analysis ID	
2		Apr	23	18:45	1.92	-1.275	0.0020				-5068-3541	14-6034-1614	
3		Jun	7	18:15	1.52	-1.675					-7458-4371	11-3829-0609	
4			20	17:50	2.68	-0.515	***==•				-4612-5080	06-0541-2169	
5		Aug	22	16:05	6.5	3.305	1.821	(+)			-1169-3016	01-0499-1137	
6		-	30	17:50	1.36	-1.835		(+)			-0988-3309	04-0917-6749	
7		Oct	9	18:00	0.973	-2,222		(-)			-6833-5106	03-2629-4542	
8			18	18:00	2.87	-0.325		(-)			-6024-3093	07-8913-5319	
9		Nov	29	17:45	3.58	0.385	0.2121				-3550-9263	18-1681-7487	
10		Dec	7	18:50	0.817	-2.378					-0681-3114	19-0538-4174	
11	2013	Feb	14	17:40	6	2.805	1.545	(-)			-7850-6619	13-6604-7958	
12			28	21:20	5.65	2.005	1.353	(+)			-6193-4857	07-3889-4891	
13		Mar	6	16:45	2.93	-0.265		(+)			-9403-7957	16-1498-7518	
14			16	17:45	6.99	3.795	•••••	(.)			1267-3706	13-0769-0097	
15			26	18:15	3.62	0.425	2.091	(+)	(+)		-2253-0526	09-1011-9616	
16		Apr	3	0:00	3.85	0.425	0.2342				-8532-3895	01-1639-1779	
17		May	9	17:15	2.85	-0.345	0.3609				3604-5723	13-5448-8759	
18		Jul	1	19:00	1.46		-0.1901				6360-9095	00-7540-8630	
19		• ai	17	17:55	3.05	-1.735	-0.9559				5961-2730	20-9160-8614	
20		Aug	7	19:00	2.79	-0.145	-0.07989				2536-1347	04-3468-0815	
21		,	, 28	16:55	2.79	-0.405	-0.2231				7788-4843	18-8631-2521	
			20	10.05	2.39	-0.805	-0.4435			19-	6611-9162	06-3129-4473	

Analyst: CR QA: CR

								Report Dat Test Code:	:	7:	53098FA 1	9-6611-9
Mussel Shell	Development 1	Test										NewFiel
Batch ID:	04-0705-0482	2 Tes	st Type:	Development-S	Survival			Analyst:	,			
Start Date:	28 Aug-13 16:		tocol:	EPA/600/R-95/	/136 (1995)			Diluent:	Lab	oratory Sea	awater	
Ending Date:	30 Aug-13 17:	:05 Sp		Mytilus gallopre				Brine:		Applicable		
Duration:	48h	So		Taylor Shellfish				Age:	NUL			
Sample ID:	04-3161-6498	Co	de:	19B9F1F2				Client:	Inte	ernal Lab		
Sample Date:		Ma	terial:	Total Ammonia	a			Project:		erence Tox	icant	
Receive Date:	27 Sep-11	So	Jrce:	Reference Tox	icant						ican	
Sample Age:	701d 17h	Sta		P110927.160								
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	τu	Meth	od			
06-3129-4473	Combined Pro	portion Norr	n 2.39	4.7	3.352	22.3%			_	Iultiple Con	nparison Te	st
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	T 11	NI - 41-				
04-7207-2891	Combined Pro	portion Norr		5.063	4.95	5.179	10	Meth		n-Kärber		
Test Acceptab												
Analysis ID	Endpoint		Attribu	ite	Test Stat	TAC Limi		•				
06-3129-4473	Combined Pro	portion Norn			0.2226		IS	Over	lap	Decision		
	portion Norma			<u> </u>	0.2220	NL - 0.25		No		Passes A	cceptability	Criteria
	Control Type	Count	Mean	95% LCL	0.5% 11.04							
	= entret i jpo	oount	mean	95% LUL	95% UCL	Min	Max	Std E		Std Dev	CV%	%Effe
0	Dilution Water	3	0.0121	0 7215	1	0.0500						
1.06	Dilution Water	3	0.9121	0.7215	1	0.8589	1	0.044	29	0.07671	8.41%	0.0%
1.06	Dilution Water	3	0.9366	0.8113	1	0.8988	0.993	0.044 9 0.029	29 12	0.07671 0.05044	8.41% 5.39%	
1.06 2.39	Dilution Water	3 3	0.9366 0.9744	0.8113 0.8645	1 1	0.8988 0.9233	0.993 1	0.044 9 0.029 0.025	29 12 56	0.07671	8.41%	-2.69%
1.06 2.39 4.7	Dilution Water	3 3 3	0.9366 0.9744 0.544	0.8113 0.8645 0.1858	1 1 0.9021	0.8988 0.9233 0.3988	0.993 1 0.687	0.044 9 0.029 0.025	29 12 56	0.07671 0.05044	8.41% 5.39%	-2.69% -6.84%
1.06 2.39 4.7 10	Dilution Water	3 3 3 3	0.9366 0.9744 0.544 0	0.8113 0.8645 0.1858 0	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36%
1.06 2.39 4.7 10 19.3		3 3 3 3 3	0.9366 0.9744 0.544	0.8113 0.8645 0.1858	1 1 0.9021	0.8988 0.9233 0.3988	0.993 1 0.687	0.044 9 0.029 0.025 1 0.083	29 12 56	0.07671 0.05044 0.04428 0.1442	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro	portion Norma	3 3 3 3 3 1 Detail	0.9366 0.9744 0.544 0 0	0.8113 0.8645 0.1858 0 0	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L	portion Norma Control Type	3 3 3 3 I Detail Rep 1	0.9366 0.9744 0.544 0 0 Rep 2	0.8113 0.8645 0.1858 0 0 Rep 3	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L () [portion Norma	3 3 3 3 1 Detail <u>Rep 1</u> 1	0.9366 0.9744 0.544 0 0 Rep 2 0.8773	0.8113 0.8645 0.1858 0 0 Rep 3 0.8589	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L (0 [1.06	portion Norma Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988	0.8113 0.8645 0.1858 0 0 Rep 3 0.8589 0.9172	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39	portion Norma Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939 1	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233	0.8113 0.8645 0.1858 0 0 Rep 3 0.8589 0.9172 1	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7	portion Norma Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988	0.8113 0.8645 0.1858 0 0 Rep 3 0.8589 0.9172	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10	portion Norma Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939 1	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233	0.8113 0.8645 0.1858 0 0 Rep 3 0.8589 0.9172 1	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 (1.06 2.39 4.7 10 19.3	portion Norma Control Type Dilution Water	3 3 3 3 11 Detail Rep 1 1 0.9939 1 0.546 0 0	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.8589 0.9172 1 0.6871	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10 19.3	portion Norma Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939 1 0.546 0 0	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.8589 0.9172 1 0.6871 0	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10 19.3 Combined Proj 0 19.3 Combined Proj C-mg/L Combined Proj	portion Norma Control Type Dilution Water portion Normal Control Type	3 3 3 3 I Detail Rep 1 1 0.9939 1 0.546 0 0 I Binomials Rep 1	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.8589 0.9172 1 0.6871 0	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10 1.06 2.39 4.7 10 19.3 Combined Prop C-mg/L Combined Prop C-mg/L C 0 19.3	portion Norma Control Type Dilution Water	3 3 3 3 11 Detail Rep 1 1 0.9939 1 0.546 0 0	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0 0	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.8589 0.9172 1 0.6871 0 0 Rep 3	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10 1.06 2.39 4.7 10 19.3 Combined Proj C-mg/L 0 C-mg/L 0 Lo6 0 0 C-mg/L 0 0 0 0.06 0	portion Norma Control Type Dilution Water portion Normal Control Type	3 3 3 3 I Detail Rep 1 1 0.9939 1 0.546 0 0 I Binomials Rep 1	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0 0 0 Rep 2	0.8113 0.8645 0.1858 0 0 Rep 3 0.8589 0.9172 1 0.6871 0 0 Rep 3 280/326	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10 19.3 Combined Proj 19.3 Combined Proj 19.3 Combined Proj 19.3 Combined Proj 10.06 2.39	portion Norma Control Type Dilution Water portion Normal Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939 1 0.546 0 0 1 Binomials Rep 1 398/398	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0 0 0 Rep 2 286/326	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.9172 1 0.6871 0 0 Rep 3 280/326 299/326	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L (0 1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L (0 C-mg/L (1) Combined Pro	portion Norma Control Type Dilution Water portion Normal Control Type	3 3 3 3 11 Detail Rep 1 1 0.9939 1 0.546 0 0 1 Binomials Rep 1 398/398 324/326	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0 0 0 Rep 2 286/326 293/326 301/326	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.8589 0.9172 1 0.6871 0 0 Rep 3 280/326 299/326 333/333	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	-2.69% -6.84% 40.36% 100.0%
1.06 2.39 4.7 10 19.3 Combined Pro C-mg/L 0 1.06 2.39 4.7 10 19.3 Combined Proj 19.3 Combined Proj 19.3 Combined Proj 19.3 Combined Proj 10.06 2.39	portion Norma Control Type Dilution Water portion Normal Control Type	3 3 3 3 11 Detail Rep 1 1 0.546 0 0 1 Binomials Rep 1 398/398 324/326 410/410	0.9366 0.9744 0.544 0 0 Rep 2 0.8773 0.8988 0.9233 0.3988 0 0 0 Rep 2 286/326 293/326	0.8113 0.8645 0.1858 0 0 0 Rep 3 0.9172 1 0.6871 0 0 Rep 3 280/326 299/326 333/333	1 1 0.9021 0	0.8988 0.9233 0.3988 0	0.993 1 0.687 0	0.044 9 0.029 0.025 1 0.083 0	29 12 56	0.07671 0.05044 0.04428 0.1442 0	8.41% 5.39% 4.54%	0.0% -2.69% -6.84% 40.36% 100.0%


Analyst:_____ QA:____

CETIS Q	C Plo	ot														Rep	oort [Date:	I	09 Oc	t-13 14	4:42(1 of
Mussel Sh	ell Dev	elopm	ent Te	st																<u></u>		NewField
Test Type: Protocol:		opment 600/R-9			ō)		ganisn Idpoint							Musse		ateria ource				mmon oxicar	iia nt-RE F	
	0.14—]						Μι	ussel Si	hell De	velopr	nent To	est									
	0.12-													•		•	•					2s
monia	0.10				•										·						+1	s
EC50-mg/L Unionized Ammonia	0.06-				\square	<u> </u>					<u> </u>	-	_/									an
EC50-mg/L	0.04-	۲		/			\setminus		•	/			\checkmark						•		-19	5
	0.02						-	•														
	22 Mar-12	23 Apr-12	07 Jun-12-	20 Jun-12-	22 Aug-12-	30 Aug-12-	09 Oct-12	18 Oct-12	29 Nov-12	07 Dec-12-	14 Feb-13-	28 Feb-13-	06 Mar-13	16 Mar-13-	26 Mar-13	03 Apr-13-	09 May-13-	01 Jul-13-	17 Jul-13-	07 Aug-13	28 Aug-13	5
	N	lean:	0.06	586	с	ount:	20			-1s	War	ning l	_imit:	0.0:	3725	-2:	s Act	ion Li	imit:	0.008	364	

		Si	igma	0.02		V: 43.	40%	-1s Warning Limit: 0.03725 +1s Warning Limit: 0.09447	-2s Action Limit: 0.00864 +2s Action Limit: 0.1231
Quali	ty Cor	trol Dat	a						
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning Action Test ID	Analysis ID
1	2012	Mar	22	12:15	0.0669	0.001038	-	16-8530-3093	-
2		Apr	23	18:45	0.04914	-0.01672	-0.5844	11-9474-8117	
3		Jun	7	18:15	0.03798	-0.02788	-0.9745	14-3239-7455	
4			20	17:50	0.05226	-0.0136	-0.4754		
5		Aug	22	16:05	0.08186	0.016	0.5592	16-3362-6154	
6			30	17:50	0.05265	-0.01321	-0.4616	19-7550-7456	
7		Oct	9	18:00	0.02443	-0.04143	-1.448	18-5169-0947	02-7047-2220
8			18	18:00	0.02739	-0.03847	-1.345	(-) 08-9570-9100	07-8331-5723
9		Nov	29	17:45	0.03751	-0.02835	-0.9909	(-) 18-9514-2443	00-3905-9363
10		Dec	7	18:50	0.0569	-0.02835		15-6645-8664	13-4294-0618
11	2013	Feb	14	17:40	0.07388	0.008024	-0.3131	11-6006-3509	05-8108-8018
12			28	21:20	0.0707	0.004842	0.2805	14-1890-1951	14-7902-0800
13		Mar	6	16:45	0.04499		0.1692	19-4434-4552	11-0678-0085
14		(incl)	16	16:10	0.04499	-0.02087	-0.7295	18-3418-4255	07-5324-7355
15			26	18:15		0.04859	1.698	(+) 11-4894-2693	12-9463-9515
16		Apr	3	0:00	0.1079	0.04202	1.469	(+) 10-2444-9875	09-9596-0674
17		Мау	9		0.1168	0.05099	1.782	(+) 20-6076-9735	05-3848-1619
18		Jul	9 1	17:15	0.1144	0.04854	1.697	(+) 14-3450-0734	06-3515-6667
19		Jui	-	19:00	0.07187	0.006011	0.2101	10-8846-7294	05-7595-2849
20		Au.~	17 7	17:55	0.0548	-0.01106	-0.3866	10-3414-5102	08-1738-2772
21		Aug	7	19:00	0.06027	-0.00559	-0.1954	10-7217-0339	06-7338-0554
			28	16:55	0.07491	0.009045	0.3162	19-6745-0030	16-9398-7287

Analyst: R QA: R

CETIS QC Plot	Report D	Date: 10 Oct-13 09:21 (1 of 1)	
Mussel Shell Development Test			NewFields
Test Type:Development-SurvivalProtocol:EPA/600/R-95/136 (1995)	Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Combined Proportion Normal		nionized Ammonia eference Toxicant-REF

			lean: igma	0.03 0.02		Count: CV:	20 58.70%	-1s Warı +1s Warı			0163 0627	-2s Action Limit: +2s Action Limit:	-0.0069 0.0859
Quali	ty Cor	trol Dat	a				······						0.0009
Point	Year	Month	Day	Time	QC Dat	a Delta	Sigma	Warning	Action	Test	n	American	
1	2012	Mar	22	12:15	0.025	-0.014	- 3		Action			Analysis ID	
2		Apr	23	18:45	0.024	-0.015					30-3093	00-2118-8798	
3		Jun	7	18:15	0.012	-0.027					74-8117	16-8822-0741	
4			20	17:50	0.027	-0.012		(-)			39-7455	06-8748-6189	
5		Aug	22	16:05	0.063	0.023		(1)			62-6154	07-4796-6258	
6		-	30	17:50	0.017	-0.022		(+)			50-7456	17-2049-3239	
7		Oct	9	18:00	0.015	-0.022					69-0947	11-3246-0073	
8			18	18:00	0.023	-0.024		(-)			70-9100	07-1156-4394	
9		Nov	29	17:45	0.020	-0.018					4-2443	05-5566-0485	
10		Dec	7	18:50	0.016			(-)			15-8664	07-1864-3452	
11	2013		14	17:40	0.010	-0.023		(-)			06-3509	00-2066-3271	
12	-0.0	100	28	21:20	0.053	0.0215				14-189	0-1951	16-6372-1200	
13		Mar	6	16:45		0.0135				19-443	84-4552	04-8125-6089	
14		With	16	16:10	0.03	-0.009				18-341	8-4255	11-0229-7491	
15			26	18:15	0.079	0.0395		(+)		11-489	4-2693	17-8368-9370	
16		Apr	20 3	-	0.07	0.0305		(+)		10-244	4-9875	00-8976-6127	
17				0:00	0.076	0.0365		(+)		20-607	6-9735	14-2423-4592	
18		May	9	17:15	0.071	0.0315		(+)		14-345	0-0734	19-5425-3899	
19		Jul	1	19:00	0.036	-0.003				10-884	6-7294	11-2659-9719	
20		A	17	17:55	0.039	-0.000				10-341	4-5102	05-6701-2859	
		Aug	7	19:00	0.042	0.0025					7-0339	15-9321-6181	
21			28	16:55	0.036	-0.003	5 -0.1509				5-0030	11-4907-1298	

Analyst: R QA: R

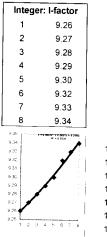
000-173-185-2

	nmary Rep							Report Dat Test Code:			544E7AE 1	:42 (p 1 of 19-6745-0
Mussel Shell	Development	Test										NewFiel
Batch ID:	04-0705-0482	2 Te	st Type:	Development-	Survival			Analyst:		/		
Start Date:	28 Aug-13 16	:55 Pr	otocol:	EPA/600/R-95	/136 (1995)			Diluent:	Labo	oratory Sea	awater	
Ending Date:	30 Aug-13 17	:05 Sp	ecies:	Mytilus gallopr				Brine:		Applicable		
Duration:	48h	Sc	urce:	Taylor Shellfis	h			Age:		(ppilouble		
Sample ID:	21-3741-7198	3 Co	de:	7F6665EE				Client:	Inter	nal Lab		
Sample Date:		Ма	terial:	Unionized Am	monia			Project:		rence Tox	icont	
Receive Date:		So	urce:	Reference Tox	icant				i tere		ican	
Sample Age:	701d 17h	Sta	ation:	P110927.160								
Comparison S	Summary											
Analysis ID	Endpoint	_	NOEL	LOEL	TOEL	PMSD	τu	Meth	od			
11-4907-1298	Combined Pro	oportion Nor	m 0.036	0.069	0.04984	22.3%				ultiple Con	nparison Te	st
Point Estimate	e Summary			- <u>-</u> - ,/ <u>-</u>								
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	T 11	R R - 41-				
16-9398-7287	Combined Pro	portion Nor		0.07491	0.07325	0.0766	10	Meth		14.11		
Test Acceptab						0.0700		Spear	rman-	Kärber		
Analysis ID	Endpoint		A +++=ib.									
11-4907-1298	Combined Pro	nortion Nor		ite	Test Stat	TAC Limi	ts	Overl	ар	Decision		
					0.2226	NL - 0.25		No		Passes A	cceptability	Criteria
Combined Pro C-mg/L												
	Control Type Dilution Water	Count 3	Mean 0.9121	95% LCL	95% UCL	Min	Max	Std E		Std Dev	CV%	%Effe
0.016		3	0.9121	0.7215 0.8113	1	0.8589	1	0.0442		0.07671	8.41%	0.0%
0.036		3	0.9744	0.8645	1	0.8988	0.9939			0.05044	5.39%	-2.69%
0.069		3	0.544	0.0045	1	0.9233	1	0.025		0.04428	4.54%	-6.84%
0.148		3	0	0.1008	0.9021 0	0.3988	0.687			0.1442	26.51%	40.36%
0.227		3	0	0	0	0 0	0 0	0 0		0 0		100.0%
Combined Pro	portion Norma	I Detail								U	- <u> </u>	100.0%
	Control Type	Rep 1	Rep 2	Rep 3								
	Dilution Water	1	0.8773	0.8589								
0.016		0.9939	0.8988	0.9172								
0.036		1	0.9233	1								
0.069		0.546	0.3988	0.6871								
		0	0									
).148		0	0	0 0								
			-	5								
).227	Portion Norma	Binomiala										
0.227 Combined Prop				Por 2								
).227 Combined Prop C-mg/L C	Control Type	Rep 1	Rep 2	Rep 3								.
0.227 Combined Prop C-mg/L C	Control Type	Rep 1 398/398	Rep 2 286/326	280/326			. <u> </u>					
0.227 Combined Prop C-mg/L C 0 E 0.016	Control Type	Rep 1 398/398 324/326	Rep 2 286/326 293/326	280/326 299/326								
0.227 Combined Prop C-mg/L C 0.016 0.036	Control Type	Rep 1 398/398 324/326 410/410	Rep 2 286/326 293/326 301/326	280/326 299/326 333/333								
	Control Type	Rep 1 398/398 324/326	Rep 2 286/326 293/326	280/326 299/326 333/333								

Analyst: R QA: CR

NewFields LARVAL DEVELOPMENT TEST **AMMONIA REF TOX OBSERVATION SHEET**

					5	Mytilus gallo	provincia		_	•		
CLIENT	PROJE			JOB NUM		PROJECT MANAGER	UNUNICE		DS LAB / L	OCATION	PROTOCOL	
Floyd Snider		Ply ISM BATC		860.0093.000		B. Hester		Port Gamble / Incubator		PSEP (1995)		
				TEST START DATE:		TIME			D DATE:	TIME		
P110927.160		54	580			165	5	8/3	50/13		1705	
		_	LA	RVAL	OBSERVA	TION DATA						
CLIENT/ NEWFIELDS ID	Value	DNC. units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DA	TE	TECH	NICIAN	COMMENTS	
		mal		1	398	21	9/3/1	3	Cr	1		
Ref.Tox Ammonia	0	mg/ L		2	286	15				<u> </u>		
				3	280	14	$\uparrow \uparrow$		\uparrow			
		ma/		1	324	15			++	_	<u> </u>	
Ref.Tox Ammonia	0.75	mg/ L		2	293	16						
	╡			3	299	13						
		ma/		1	410	21					· · · · · · · · · · · · · · · · · · ·	
Ref.Tox Ammonia	1.5	mg/ L		2	301	19		-				
	<u> </u>			3	333	11					<u> </u>	
		ma		1	178	136						
Ref.Tox Ammonia	3	mg/		2	130	160						
				3	224	96						
		ma		1	Ø	316						
Ref.Tox Ammonia	6	mg/		2	0	314						
				3	Ö	272						
		mg/		1	O	298						
Ref.Tox Ammonia	12	L		2	0	305						
				3	0	272	V			/	·······	
			T	1			0121			Т-		
STOCKING DENSITY				2		315	<u>9 3 1</u>	3	<u>IR</u>		<u> </u>	
				2 3		346						
						316	V		V			


LARVAL DEVELOPMENT TEST AMMONIA REF TOX WQ

CLIENT Floyd Snider JOB NUMBER	PROJECT K-Ply PROJECT MANAGER	SPECIES Mytilus galloprovincialis		AB / LOCATION Gamble / Incubator	PROTOCOL PSEP (1995)
860.0093.000	B. Hester	TEST START DATE: 28Aug13	TIME 1655	TEST END DATE	TIME
P10927.160	11079		n y ann aidd aidd ayna o ymreithio a daenan arwyn y, arhodo y	L <u>e</u> <u>r</u> e	.70

WATER QUALITY DATA

DILTIN.WAT.B	АТСН	\neg			BATCH	_	LITY DATA						
FSW082813					BATCH	REFE	RENCE TOX. MA	TERIAL		REFER	RENCE TOXICA	NT	
				<u> </u>			Ammo	nium chlor	ide		Am	nonia	
				┣_	DO (mg/L)		TEMP(C)		SAL (ppt)		рН		
	CONCENTRATIO			┣	>5.0		16 <u>+</u> 1		28 ± 1		7 - 9	TECH.	ш
CLIENT/ NEWFIELDS ID	value units		REP		D.O.		TEMP.		SALINITY		рН		DATE
	Target:			meter	mg/L	meter	°C	meter	ppt	meter	unit		
		0	Stock	6	7.7	6	16.0	2	58	5	7.8	NIN	8 8/2
Ref.ToxAmmonia	0 mg/L Actual:	···	Stock	6	1.1	6	16.8	2	27	5	7.6	H	8/29
Rei Tox - Ammonia	1	2	Stock	6	3.0	6	15.3	2	27	Č	7.8	1	8120
	0.0622	3	Stock							1-3-		100	-150
		4	Stock									1-	
	Target:	0	Stock	6	7.8	6	15.8	5	28	5	7.8	nin	8 54 00
_	0.75 mg/L	1	Stock	6	8.0	6	15.8	2	28	5	7.6		<u>8 81 29</u> 8 29
Ref.ToxAmmonia	Actual:	2	Stock	6	8.0	16	14.9	2	28	2	7.8	1 Jr	-
	1.06	3	Stock			10-	-13_1				<u> </u>	100	<u>830</u>
	•••	4	Stock			<u> </u>		+		╂──┤		+	
	Target:	0	Stock	6	8.F	6	15.6		2.0				
	1.5 mg/L	1	Stock	6	8.0	6	15.6	9	28	S	7.8	MM	<u>5 8(98</u>
Ref.ToxAmmonia	Actual:	2	Stock	6	8.2	1	11 2	3	28	5	7.6	1th	3/29
	2.39	3	Stock		0.0	6	14.7	6	28	5	<u>+9</u>	A	817:
	0.51	4	Stock	——		-							
	Target:	0	Stock	4	2 0	├							
	3 mg/L	1	Stock	6	7.8	6	15.4	5	58	হ	7.8	NM	3 8128
Ref.ToxAmmonia	Actual	2	┼──╂		8.0	6	15.2	2	28	5	7.6	#	8129
	4.70		Stock	6	8.2	6	14.5	2	28	5	7.8	Di	8/0
	4.10	3	Stock										
	Target:	4	Stock										
	-	0	Stock	6	7.8	6	15.4	2	58	5	7.8	MMR	8(38
	6 mg/L	1	Stock	6	8.1	6	15.1	7	78	5	7.0		
Ref.ToxAmmonia	Actual:	2	Stock	6	8.3	6	14.7	5	28	5	7.7	XF-	
	0.0	3	Stock							3	7.1	UΨ	830
		4	Stock					┝╼╼┾					
	Target:	0	Stock	6	7.9	6	18.4	2	20	~		A 44 5	
	12 mg/L	1		6	8.1				28	5			8618
Ref.ToxAmmonia	Actual:	2	Stock	6	8.2		15.1	2	28	5	7.6		3/29
	19.3		Stock	- - +-	-0.0	6	19-1	2	28	5	7.7	JL	8/30
	11.0	+	Stock	-+-									
			SIOCK										

CLIENT:	Internal	Date of Test:	28-Aug-13
PROJECT:	RT	Test Type:	Mytilus galloprovincialis
COMMENTS:			ing and ganoprovinciano

r

Sauspte Target / Sample Name	Moor (855, maple) P Actual	- 22.9	62	anage dag		i-factor	Mod NH3U (mg
Example 3.5	2 000		80	24.1	297.26	9.3053	#VALUE
121407 (200 0.0	2 1000	10.0	7.5	5.0	278.16	9.2750	0.008
0.75	1.06			·			
1.5	2.39				288.96	9.3187	0.016
3	4.7		+		288.76	9.3187	0.036
6	10			-	288.56	9.3187	0.069
12	19.3			1 1	288.56	9.3187	0.148
	19.3				288.56	9.3187	0.227
			<u> </u>	+			
				+			
				+			
			_				

Biological Testing Results

APPENDIX B

STATISTICAL COMPARISONS

NewFields

Test	Endpoint	Treatment	Comparison	Prob Normal	Prob Homogeneous	Run Type	Prob T	Significant?	One-tailed T-test
Bivalve Development	Percent Normal Development	CARR20	Control	0.903	0.064	T-test Unequal Var	2.00E-02	Yes	Treatment < Comparison
Bivalve Development	Percent Normal Development	CR-02	Control	0.229	0.832	T-test Equal Var	6.00E-03	Yes	Treatment < Comparison
Bivalve Development	Percent Normal Development	SD0001K	CR-02	0.999	0.719	T-test Equal Var	0.578		Treatment >= Comparison
Bivalve Development	Percent Normal Development	SD0002K	CR-02	0.23	0.404	T-test Equal Var	0.114		Treatment >= Comparison
Bivalve Development	Percent Normal Development	SD0003K	CR-02	0.122	0.667	T-test Equal Var	0.266		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	CARR20	Control	0.169	0.094	T-test Unequal Var	0.09		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	CR-02	Control	0.281	0.184	T-test Equal Var	0.098		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0003K	CARR20	0.081	0.806	T-test Equal Var	7.30E-01		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0002K	CARR20	0.017	0.255	Mann-Whitney	0.705		Treatment >= Comparison
Eohaustorius estuarius	Percent Survival	SD0001K	CR-02	0.021	0.184	Mann-Whitney	0.5		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	CARR20	Control	0.252	0.553	T-test Equal Var	0.235		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	CR-02	Control	0.134	0.889	T-test Equal Var	0.293		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0002K	CARR20	0.472	0.168	T-test Equal Var	0.861		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0003K	CARR20	0.338	0.352	T-test Equal Var	0.97		Treatment >= Comparison
Neanthes arenaceodentata	AFDW Growth (mg/ind/day)	SD0001K	CR-02	0.141	0.986	T-test Equal Var	0.759		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg/ind/day)	CARR20	Control	0.217	0.976	T-test Equal Var	0.159		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg/ind/day)	CR-02	Control	0.685	0.882	T-test Equal Var	4.68E-01		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg/ind/day)	SD0002K	CARR20	0.646	0.019	T-test Unequal Var	0.692		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg/ind/day)	SD0003K	CARR20	0.082	0.357	T-test Equal Var	0.904		Treatment >= Comparison
Neanthes arenaceodentata	Individual Growth Rate (mg/ind/day)	SD0001K	CR-02	0.613	0.461	T-test Equal Var	0.196		Treatment >= Comparison

13:39 Thursday, October 10, 2013

----- Test=Bivalve Development Endpoint=Percent Normal Development Treatment=CARR20 ------

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.3645	0.0849	0.0380	1.2541	1.4565	
	Refe	rence	5	0.9381	0.3247	0.1452	0.5131	1.3546	
	Diff	(1-2)		0.4265	0.2373	0.1501			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
Control				1.3645	1.2591	1.4700	0.0849	0.0509	0.2440
Referenc	е			0.9381	0.5349	1.3412	0.3247	0.1945	0.9330
Diff (1-	2)	Pooled		0.4265	0.0804	0.7726	0.2373	0.1603	0.4546
Diff (1-	2)	Satterthw	vaite	0.4265	0.0287	0.8242			
		Methor	4	Variano		F tValue	Prs Itl		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	2.84	0.0218
Satterthwaite	Unequal	4.5444	2.84	0.0404

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	14.63	0.0235

13:39 Thursday, October 10, 2013

----- Test=Bivalve Development Endpoint=Percent Normal Development Treatment=CR-02 ------

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.3645	0.0849	0.0380	1.2541	1.4565	
	Refe	rence	5	1.1749	0.0970	0.0434	1.0267	1.2679	
	Diff	(1-2)		0.1897	0.0911	0.0576			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL \$	Std Dev
Control				1.3645	1.2591	1.4700	0.0849	0.0509	0.2440
Referenc	е			1.1749	1.0545	1.2953	0.0970	0.0581	0.2787
Diff (1-	2)	Pooled		0.1897	0.0568	0.3226	0.0911	0.0616	0.1746
Diff (1-	2)	Satterthw	aite	0.1897	0.0564	0.3230			
		Method		Varianc	es Di	F t Value	Pr > t		

метпоа	Variances	DF	τ value	Pr > [t]
Pooled	Equal	8	3.29	0.0110
Satterthwaite	Unequal	7.8625	3.29	0.0113

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.30	0.8028

13:39 Thursday, October 10, 2013

----- Test=Eohaustorius estrua Endpoint=Percent Survival Treatment=CARR20 ------

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.5257	0.1009	0.0451	1.3453	1.5708	
	Refe	rence	5	1.3970	0.1635	0.0731	1.2490	1.5708	
	Diff	(1-2)		0.1287	0.1358	0.0859			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
Control				1.5257	1.4005	1.6509	0.1009	0.0604	0.2898
Referenc	е			1.3970	1.1940	1.5999	0.1635	0.0979	0.4697
Diff (1-	2)	Pooled		0.1287	-0.0694	0.3268	0.1358	0.0917	0.2602
Diff (1-	2)	Satterthw	vaite	0.1287	-0.0765	0.3339			
		Method	ł	Varianc	es D	F t Value	Pr > t		

Pooled	Equal	8	1.50	0.1724
Satterthwaite	Unequal	6.6601	1.50	0.1799

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.63	0.3723

13:39 Thursday, October 10, 2013

----- Test=Eohaustorius estrua Endpoint=Percent Survival Treatment=CR-02 ------

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	1.5257	0.1009	0.0451	1.3453	1.5708	
	Refe	rence	5	1.4011	0.1702	0.0761	1.1731	1.5708	
	Diff	(1-2)		0.1246	0.1399	0.0885			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
Control				1.5257	1.4005	1.6509	0.1009	0.0604	0.2898
Referenc	е			1.4011	1.1898	1.6123	0.1702	0.1019	0.4889
Diff (1-	2)	Pooled		0.1246	-0.0793	0.3286	0.1399	0.0945	0.2679
Diff (1-	2)	Satterthw	aite	0.1246	-0.0878	0.3371			
		Methor	I	Varianc		= tValue	Pr > t		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	1.41	0.1965
Satterthwaite	Unequal	6.5017	1.41	0.2048

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.85	0.3352

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=AFDW Growth (mg/ind/day) Treatment=CARR20 ------

The TTEST Procedure

Variable: result

	group)	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contr	ol	5	0.5840	0.0798	0.0357	0.4916	0.6634	
	Refer	rence	5	0.5391	0.1054	0.0471	0.4422	0.6950	
	Diff	(1-2)		0.0449	0.0935	0.0591			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
Control				0.5840	0.4850	0.6830	0.0798	0.0478	0.2292
Referenc	е			0.5391	0.4082	0.6700	0.1054	0.0632	0.3029
Diff (1-	2)	Pooled		0.0449	-0.0914	0.1812	0.0935	0.0631	0.1791
Diff (1-	2)	Satterthw	aite	0.0449	-0.0932	0.1830			
		Method		Varianc	es Di	F t Value	Pr > t		

Pooled	Equal	8	0.76	0.4695
Satterthwaite	Unequal	7.4491	0.76	0.4711

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.75	0.6021

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=AFDW Growth (mg/ind/day) Treatment=CR-02 ------

The TTEST Procedure

Variable: result

	group	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Contro	1 5	0.5840	0.0798	0.0357	0.4916	0.6634	
	Refere	nce 5	0.5554	0.0798	0.0357	0.4456	0.6413	
	Diff (1-2)	0.0286	0.0798	0.0504			
group	Μ	lethod	Mean	95% CL	Mean	Std Dev	95% CL S [.]	td Dev
Control			0.5840	0.4850	0.6830	0.0798	0.0478	0.2292
Reference	е		0.5554	0.4564	0.6544	0.0798	0.0478	0.2292
Diff (1-	2) P	ooled	0.0286	-0.0877	0.1449	0.0798	0.0539	0.1528
Diff (1-	2) S	atterthwaite	0.0286	-0.0877	0.1449			
		Method	Variance	s Di	F t Value	Pr > t		

Pooled	Equal	8	0.57	0.5865
Satterthwaite	Unequal	8	0.57	0.5865

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.00	1.0000

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=Individual Growth Rate (mg Treatment=CARR20 ------

The TTEST Procedure

Variable: result

	group	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Control	L 5	0.8442	0.1486	0.0665	0.6859	1.0460	
	Referer	nce 5	0.7479	0.1366	0.0611	0.6157	0.9345	
	Diff (1	-2)	0.0963	0.1427	0.0903			
group	Me	ethod	Mean	95% CL	Mean	Std Dev	95% CL Std Dev	
Control			0.8442	0.6597	1.0288	0.1486	0.0891 0.4271	
Referenc	е		0.7479	0.5784	0.9175	0.1366	0.0818 0.3924	
Diff (1-	2) Po	ooled	0.0963	-0.1119	0.3044	0.1427	0.0964 0.2734	
Diff (1-	2) Sa	atterthwaite	0.0963	-0.1121	0.3047			
		Method	Varianco	es D	F t Value	Pr > t		

Pooled	Equal	8	1.07	0.3173
Satterthwaite	Unequal	7.9431	1.07	0.3175

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.18	0.8733

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=Individual Growth Rate (mg Treatment=CR-02 ------

The TTEST Procedure

Variable: result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	Cont	rol	5	0.8442	0.1486	0.0665	0.6859	1.0460	
	Refe	rence	5	0.8362	0.1594	0.0713	0.6205	1.0146	
	Diff	(1-2)		0.00802	0.1541	0.0975			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
Control				0.8442	0.6597	1.0288	0.1486	0.0891	0.4271
Referenc	e			0.8362	0.6383	1.0341	0.1594	0.0955	0.4581
Diff (1-	2)	Pooled		0.00802	-0.2168	0.2328	0.1541	0.1041	0.2953
Diff (1-	2)	Satterth	waite	0.00802	-0.2169	0.2330			
		Metho	Ч	Varianc		F tValue	Pr> t		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	0.08	0.9364
Satterthwaite	Unequal	7.9612	0.08	0.9365

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.15	0.8955

13:39 Thursday, October 10, 2013

----- Test=Eohaustorius estrua Endpoint=Percent Survival Treatment=SD0003K ------

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	20	5	1.3970	0.1635	0.0731	1.2490	1.5708	
	Test		5	1.4613	0.1537	0.0687	1.2490	1.5708	
	Diff	(1-2)		-0.0644	0.1586	0.1003			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CARR20				1.3970	1.1940	1.5999	0.1635	0.0979	0.4697
Test				1.4613	1.2705	1.6522	0.1537	0.0921	0.4416
Diff (1-	2)	Pooled		-0.0644	-0.2957	0.1670	0.1586	0.1072	0.3039
Diff (1-	2)	Satterth	waite	-0.0644	-0.2959	0.1672			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.64	0.5392
Satterthwaite	Unequal	7.9698	-0.64	0.5393

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.13	0.9078

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0002K ------

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	20	5	0.5391	0.1054	0.0471	0.4422	0.6950	
	Test		5	0.6024	0.0606	0.0271	0.5322	0.6992	
	Diff	(1-2)		-0.0633	0.0860	0.0544			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CARR20				0.5391	0.4082	0.6700	0.1054	0.0632	0.3029
Test				0.6024	0.5272	0.6777	0.0606	0.0363	0.1741
Diff (1-	2)	Pooled		-0.0633	-0.1887	0.0621	0.0860	0.0581	0.1647
Diff (1-	2)	Satterth	waite	-0.0633	-0.1945	0.0678			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-1.16	0.2776
Satterthwaite	Unequal	6.383	-1.16	0.2858

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	3.03	0.3088

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0003K ------

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	20	5	0.5391	0.1054	0.0471	0.4422	0.6950	
	Test		5	0.6626	0.0692	0.0309	0.6022	0.7516	
	Diff	(1-2)		-0.1235	0.0892	0.0564			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std	Dev
CARR20				0.5391	0.4082	0.6700	0.1054	0.0632 0.	.3029
Test				0.6626	0.5767	0.7484	0.0692	0.0414 0.	1988
Diff (1-	2)	Pooled		-0.1235	-0.2535	0.00657	0.0892	0.0602 0.	.1708
Diff (1-	2)	Satterth	waite	-0.1235	-0.2572	0.0102			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-2.19	0.0600
Satterthwaite	Unequal	6.9055	-2.19	0.0652

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.32	0.4344

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=Individual Growth Rate (mg Treatment=SD0002K ------

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	20	5	0.7479	0.1366	0.0611	0.6157	0.9345	
	Test		5	0.7832	0.0561	0.0251	0.7320	0.8729	
	Diff	(1-2)		-0.0352	0.1044	0.0660			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CARR20				0.7479	0.5784	0.9175	0.1366	0.0818	0.3924
Test				0.7832	0.7135	0.8528	0.0561	0.0336	0.1612
Diff (1-	2)	Pooled		-0.0352	-0.1875	0.1170	0.1044	0.0705	0.2000
Diff (1-	2)	Satterth	nwaite	-0.0352	-0.2020	0.1315			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.53	0.6080
Satterthwaite	Unequal	5.3132	-0.53	0.6151

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	5.92	0.1131

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=Individual Growth Rate (mg Treatment=SD0003K ------

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CARR	20	5	0.7479	0.1366	0.0611	0.6157	0.9345	
	Test		5	0.8578	0.1056	0.0472	0.7493	0.9733	
	Diff	(1-2)		-0.1099	0.1221	0.0772			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Sto	l Dev
CARR20				0.7479	0.5784	0.9175	0.1366	0.0818 (.3924
Test				0.8578	0.7267	0.9890	0.1056	0.0633 0	.3036
Diff (1-	2)	Pooled		-0.1099	-0.2879	0.0681	0.1221	0.0825 0	.2339
Diff (1-	2)	Satterth	waite	-0.1099	-0.2899	0.0701			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-1.42	0.1924
Satterthwaite	Unequal	7.5252	-1.42	0.1947

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.67	0.6311

----- Test=Eohaustorius estrua Endpoint=Percent Survival Treatment=SD0002K ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

group	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
CARR20	5	24.50	27.50	4.472136	4.90
Test	5	30.50	27.50	4.472136	6.10

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	24.5000
Normal Approximation Z One-Sided Pr < Z Two-Sided Pr > Z	-0.5590 0.2881 0.5762
t Approximation One-Sided Pr < Z Two-Sided Pr > Z	0.2949 0.5898

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	0.4500
DF	1
Pr > Chi-Square	0.5023

13:39 Thursday, October 10, 2013

----- Test=Bivalve Development Endpoint=Percent Normal Development Treatment=SD0001K ------

The TTEST Procedure

Variable: Result

	grou	ρ	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	1.1749	0.0970	0.0434	1.0267	1.2679	
	Test		5	1.1868	0.0883	0.0395	1.0972	1.3276	
	Diff	(1-2)		-0.0119	0.0927	0.0586			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				1.1749	1.0545	1.2953	0.0970	0.0581	0.2787
Test				1.1868	1.0772	1.2964	0.0883	0.0529	0.2536
Diff (1-	2)	Pooled		-0.0119	-0.1471	0.1233	0.0927	0.0626	0.1776
Diff (1-	2)	Satterth	waite	-0.0119	-0.1473	0.1235			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.20	0.8440
Satterthwaite	Unequal	7.93	-0.20	0.8441

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.21	0.8595

13:39 Thursday, October 10, 2013

----- Test=Bivalve Development Endpoint=Percent Normal Development Treatment=SD0002K ------

The TTEST Procedure

Variable: Result

	grou	р	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 0	2	5	1.1749	0.0970	0.0434	1.0267	1.2679	
	Test		5	1.0822	0.1252	0.0560	0.9128	1.1975	
	Diff	(1-2)		0.0926	0.1120	0.0708			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	td Dev
CR-02				1.1749	1.0545	1.2953	0.0970	0.0581	0.2787
Test				1.0822	0.9267	1.2377	0.1252	0.0750	0.3598
Diff (1-	2)	Pooled		0.0926	-0.0707	0.2560	0.1120	0.0756	0.2145
Diff (1-	2)	Satterthw	aite	0.0926	-0.0725	0.2578			
		Method		Varianc	es Di	F t Value	Pr > t		

Pooled	Equal	8	1.31	0.2272
Satterthwaite	Unequal	7.529	1.31	0.2294

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.67	0.6327

13:39 Thursday, October 10, 2013

----- Test=Bivalve Development Endpoint=Percent Normal Development Treatment=SD0003K ------

The TTEST Procedure

Variable: Result

	grou	p	Ν	Mean	Std Dev	Std Err	Minimum	Maximum
	CR - 02	2	5	1.1749	0.0970	0.0434	1.0267	1.2679
	Test		5	1.1367	0.0872	0.0390	0.9955	1.2311
	Diff	(1-2)		0.0381	0.0922	0.0583		
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev
CR-02				1.1749	1.0545	1.2953	0.0970	0.0581 0.2787
Test				1.1367	1.0284	1.2450	0.0872	0.0522 0.2506
Diff (1-	2)	Pooled		0.0381	-0.0964	0.1726	0.0922	0.0623 0.1767
Diff (1-	2)	Satterthw	aite	0.0381	-0.0966	0.1729		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	0.65	0.5315
Satterthwaite	Unequal	7.9115	0.65	0.5317

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.24	0.8419

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=AFDW Growth (mg/ind/day) Treatment=SD0001K ------

The TTEST Procedure

Variable: Result

	grou	ρ	Ν	Mean	Std Dev	Std Err	Minimum	Maximum	
	CR - 02	2	5	0.5554	0.0798	0.0357	0.4456	0.6413	
	Test		5	0.5922	0.0779	0.0348	0.4904	0.6643	
	Diff	(1-2)		-0.0368	0.0788	0.0499			
group		Method		Mean	95% CL	Mean	Std Dev	95% CL S	Std Dev
CR-02				0.5554	0.4564	0.6544	0.0798	0.0478	0.2292
Test				0.5922	0.4955	0.6890	0.0779	0.0467	0.2239
Diff (1-	2)	Pooled		-0.0368	-0.1518	0.0781	0.0788	0.0533	0.1510
Diff (1-	2)	Satterth	waite	-0.0368	-0.1518	0.0782			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	-0.74	0.4811
Satterthwaite	Unequal	7.9957	-0.74	0.4811

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	1.05	0.9650

13:39 Thursday, October 10, 2013

----- Test=Neanthes arenaceode Endpoint=Individual Growth Rate (mg Treatment=SD0001K ------

The TTEST Procedure

Variable: Result

	group		Ν	Mean	Std Dev	Std Err	Minimum	Maximum
	CR - 02	2	5	0.8362	0.1594	0.0713	0.6205	1.0146
	Test		5	0.7579	0.1104	0.0494	0.6337	0.8679
	Diff	(1-2)		0.0783	0.1371	0.0867		
group		Method		Mean	95% CL	Mean	Std Dev	95% CL Std Dev
CR-02				0.8362	0.6383	1.0341	0.1594	0.0955 0.4581
Test				0.7579	0.6208	0.8950	0.1104	0.0662 0.3173
Diff (1-	2)	Pooled		0.0783	-0.1216	0.2783	0.1371	0.0926 0.2627
Diff (1-	2)	Satterthw	aite	0.0783	-0.1260	0.2827		

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	8	0.90	0.3927
Satterthwaite	Unequal	7.1201	0.90	0.3959

Method	Num DF	Den DF	F Value	Pr > F
Folded F	4	4	2.08	0.4944

----- Test=Eohaustorius estrua Endpoint=Percent Survival Treatment=SD0001K ------

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Result Classified by Variable group

group	Ν	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
CR-02	5	28.0	27.50	4.183300	5.60
Test	5	27.0	27.50	4.183300	5.40

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic	28.0000								
Normal Approximation									
Z	0.0000								
One-Sided Pr < Z	0.5000								
Two-Sided Pr > Z	1.0000								
t Approximation									
One-Sided Pr < Z	0.5000								
Two-Sided Pr > Z	1.0000								

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square	0.0143				
DF	1				
Pr > Chi-Square	0.9049				

Biological Testing Results

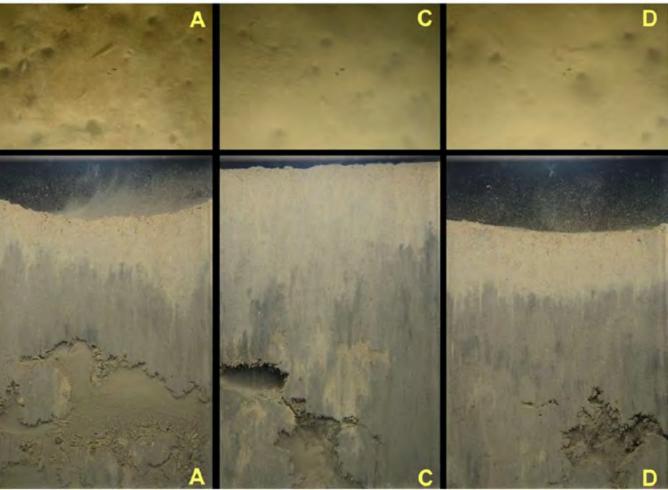
APPENDIX C

CHAIN-OF-CUSTODY FORMS

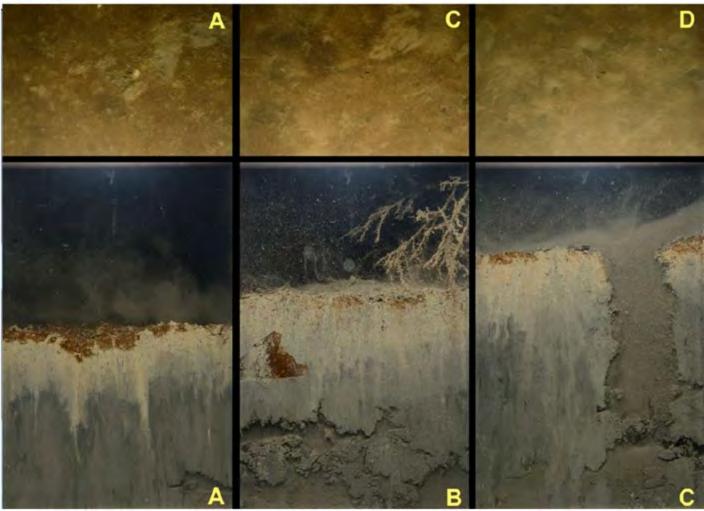
NewFields

Louisville, CO 80027

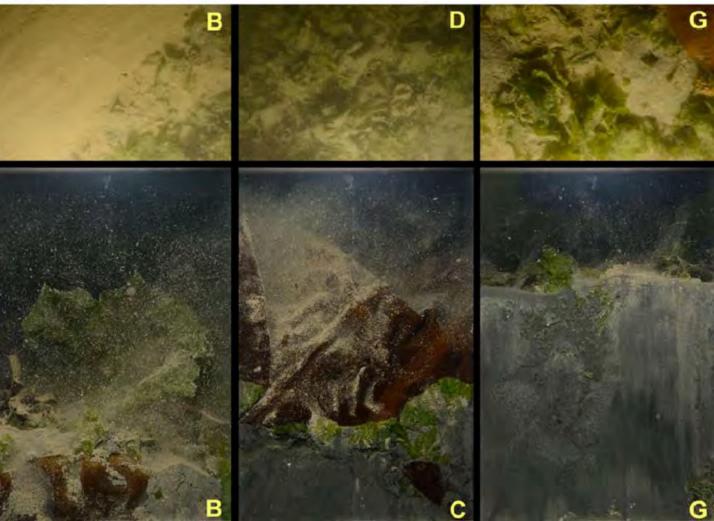
Portland, OR 97204


Project:	C1146 - F	POPA- K	เลง						· · · · · · · · · · · · · · · · · · ·					
Samplers:	SEXTEN			114							·			_
			112716				·····							
Integral Conta		Sexten				A	NALYSES R	EQUEST	ED	r	1			ΙΠΤΟΦΓΑΙ
	Office Seat	167-03-1	7	12	haved revelopment									integral
				2	25									consulting inc.
Ship to:	Lab Name N2W	Freids		122 Supanne	5.3									<u>)</u>
	Address 4724	A NEView	Urive	- E	25							ler		,
		Cample. W	K 13282	15	23	1 x x						taiı		
	Contact Pall C	andiner		ciary	Laural revelopment	20-clark Neamther						Extra Container	ە	
	Phone 300 -	501-337	6	ita .	25	24						a O	Archive	
Sample No.		Date Tim			ます	32						Xt.	Lc	Comments,
SPOUK	Tax No. 2151+	7613 111		<u> </u>								Ш	ব	HAD DEN EIS
20000IX	21515	tellis III	1 -7		+									HUDFORFIS AUMERIZATION
V V	21516			1	1					1				1 ;
SP02:2K	2523		21	V										
ļ	-21524													
60000216	21525				+									
50003K	21532	131	6	- *		<u> </u>								
<u> </u>	21534													
				1			++							V
														and the second
								-	, Sexto	<u> </u>				
									191	13	ļ			
							the second s							
	+													
						<u> </u>						and the second second	and the second se	
Analysis Turn	Time: (Normal	Rush		Rush Re	sults Nee	ded By:					Matrix Co	de.	GW - G	roundwater
Analysis runn		Rush		<u>- Rusii Re</u>	Suns Nec	aca by.					SL - Soil			urface water
Shipped by: (anner s	hipping Track	ing No.								SD -Sedir		Other:	
	amples Upon Rece	aint:		Custody	Seal Inta	ct2								
														71012111
Relinquished b	y: Ame Ser	XIEL	Date/Tim	e: _/[[0	15161	Received	d by:							Date/Time: <u>7.10.13</u> [6]]
	(signature)										(signature)			
Relinquished b	y:(signature)		Date/Tim	e:		Received	d by:			•	(signatura)			Date/Time:
Special Instruct					<u></u>				<u> </u>	<u></u>	(signature)			
Annapolis 200 Harry S. Truma Suite 330 Annapolis, MD 2		Denver Century Place Suite 190 ville, CO 80027	319 SV	tland, Orego W Washingt Suite 1150 and, OR 972	on St	3465 S	Honolulu Waialae Ave Suite 380 ulu, HI 96816		411 Su	eattle I st Ave S ite 550 WA 98104	F	45 Excl Suite	d, Maine nange St e 200 ME 0410	Olympia 1205 West Bay Dr NW Olympia, WA 98502

(


Portland, ME 04101

	NEWFIELDS		NewFields Nor'' west, LLC. Shipping: 472 View Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364 Tel; (360) 297-6040, Fax: (360)297-7268									
Destin	ation Lab: Ahm Fig Ods	Sample	Originator:	Must Fields		Report Re		NA		Phone: NF	4	
	ation Lab: New Fields ation Contact. B. Gavidinus	Contac	Sample Originator: New Fields Contact Name: M Bacon Address: Same as abail			Contact Name:				Fax:	•	
Date:	6/25/13	Addres				Address:				Email:		
Turn-A			Same	cas aba	IR I							
Projec	ct Name	Phone:				Ana	Ilysis		Invoicing To:			
	Part Angelius Hunbor	Fax:		J	c				Comments or Special	Instructions:		
Contra		E-mail	\cap	newfields.	Ref sch Collection							
		m	mane	Can Can	پر- ب ر				1	Course Town		
No.	Sample ID	Matrix	No. & Type of	Date & Time	45				Preservation	Sample Temp Upon Receipt		LAB ID
H		22	Container	612413 1420					4°C			
	CR12 (101 fines)	02	1 baccy	612313142					40			
2	CARR De (301 fines) CRO2 (581 fines)	J.	J	612513 1010					<u> </u>			
		•										
5												
6		-										
7												,
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19									-			
20	Relinquished by:		Recieved	d by:	<u> </u>	Relinqui	ished by:			Recieved by:		Matrix Codes
Print		Print Name:	Tari	, /	Print Name	:			Print Name:			FW = Fresh Water
Signa	ture: ALRECCO	Signature:	City i	Nord	Signature:				Signature:			WW = Waste Water SB = Salt & Brackish Water
Affilia	Name: Mary Bacon ture: MBacon tion: NewFields	Affiliation	Jest	unu	Affiliation:				Affiliation:			SS = Soil & Sediment TS = plant & Animal Tissue
		N, Date/Time:	el Mel	:15	Date/Time:				Date/Time:			OT = Other
Date/	11me: 6/25/13 1835		0/26/13	1835 WHITE return to original		lab • P!NK - retair	ned by originator					


KSS1

KSS2

KSS3

Jane Sexton Name Integral Consulting Inc. 411 15th Ave. S. #550 Address Seattle WA 98104 (206)230-9600 Phone

Project C1146 - Offenore of Former K Ply Facility

POPA-KPLY

integra

consulting inc

Jane Sexton Managing Scientist

411 1st Avenue S, Suite 550 Seattle, WA 98104

> 206.230.9600 Main 206.957.0342 Direct 206.230.9601 Fax

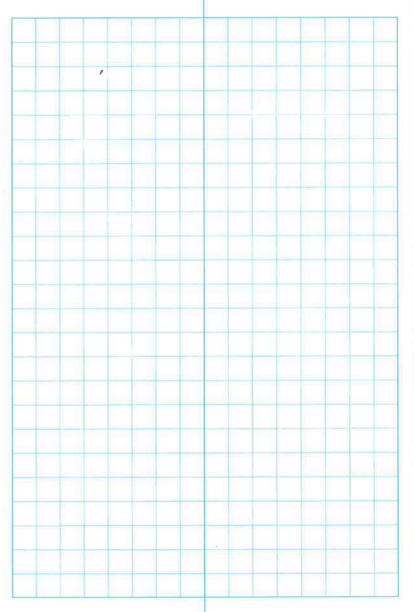
jsexton@integral-corp.com www.integral-corp.com

CONTENTS PAGE REFERENCE 2 2 or W/ zinc acetale; no head space for suffices 4 or no headspace for TVS 802 Amber for POBS/PCOD/PCOF 8 or grain size, total solido, TOC 1602 ammonia, butylins, TPH, metals, SNOCS 802 Anurive Igal Amynipod bioassay 12 Larval bioassay of vesuspensin Igal Nearthes bioassay Bioassay test sediment in hold at las until directed by Floyd Snider.

Mesday, July 9, 2013 Weather: cool (55-60°), clear with slight wind Crew: Sexton, Wodzicki, Estella (Internal) Charlie Eason + Chris Eaton (BioManine) 1045 Bottles for sediment samples arrive at the marina by courier. MAS meeting and decon van Veen oprils and sediment compositive equipment 1119 Collect 1st grats ar Statim KSS-1. 15 cm pen. 7.5 yr 2.5/1 throughour with this vedax layer on sonfale. 2.5 y 4/2. Subide odor. Lange piece of Kelp on surface of grab. Silt with sure claiz. trace sand, shail a possibly Sm. nermit crab on Kelp. 20% moisture no organic debris. no wood debris. 2nd grab - water only. 1129 312 grave - 17 cm penetration, Some 1132 description as Grab#1. 4th grab - water opraw only some Kely. 1149 5th grab - worsh out van Veen; remy 1152 collect 15 cm pen. same description as onalo #1 g-5= 53% FINES. 2h acetate = lot#: 3-122-001 Container #: 27823

STATION	KSS-11	-	Time	Andress	3
Sample #	lug	Date		Analysic	
SPOODIK	21508	7/9/13	1119	Total Sulfi	
	21509		-	TVS (he	
	21510			GS, TS, T	00 800
	21511	_		Am, Butin;	TPH, milas
	21512			PCBs/PCD	0 45 80
- ÷.	21513			Annive	802
	21514			Amphipo	d-Locol
	21515			Lanal-	hold 11
V	21516	*	V	Neathers -	HOLD 19
1230 LI	man bra	k.		_	_
4	cm pen.	TOYR	2/1-10	m KSS-	mrn
Ŵ	bra on sc	nface. 5	everal.	aver on s small due	igners
C C	valos <11	nch. S	got pran	m small	4
				no odor.	
2	Silty Son	A. no	organic	depris.n	0
	wood der				
				ren. m 1/2	
V	een opralo	; only	12 obvi	m Veen se	dimen
				penetratio	
0	ther hal	b of gr	ab. 5°	mall cran	sklin.
n	we silt	and less	sand,	otherwise	Some
0	uscription	as grab	#1 with	< 570 Worth	d clemis
	n acetak	= 10+ #3		261	

		· ·			
lect 3r	H gravo,	15 cm	zinetrati	m	
me des	motion	ao ana	b# Wit	13	
mall c	valses.	0			
			÷		
ag #	Date	Time	Analysis	Jar	
21526	7/9/13	1312		11000-110	
			TVS (nol		10
21528		÷	GSTS, TO	2 802	
			Am, Bietu metais, S	Voca 162	
21530					
21531			4		
21532			S 025		١
21533	i i i		V	. •	
21534		*	Nearthe		1
sexton	Spoke				
ond Sn	ider).5	tation	K45-2	hasa	
		141	Letter Letter	o-citat d	1
vilinate	. In a	nsuetat	ion with	T. Stevens,	
48%	1.4260	N	Ø		
12302	26,3830	W			1
w 140 0	walo air	reposit	ioned S.	lation	
5-21	5 on p	en. 10 y	R 5/2 th	in vedof	
	COV	a rugi	10	7	1
	KSS- ag # 21526 21527 21528 21529 21529 21530 21530 21531 21532 21533 21533 21533 21533 21533 21533 21533 21533 21534 Sextm ord Sm John of Mos de He SE 48°57 123°7	KSS-3 ag # Date 21526 7/9/13 21527 21528 21529 21530 21531 21532 21532 21533 21534 21532 21533 21534 21533 21534 21533 21534 Voo decided H the SE direct 48°07.4260 123°26.3830 Ur 15 grab at 5-2. 15 cm p	KSS-3 Tag # Date Time 21526 7/9/13 1312 21526 7/9/13 1312 21526 7/9/13 1312 21527 1528 1312 21528 12528 12528 21529 21530 12530 21531 21532 12533 21532 21533 12534 21534 V V Sexton spoke with Tond [Suider). Station 1000000000000000000000000000000000000	KSS-3 <u>ag # Date</u> <u>Time</u> <u>Analysis</u> 21526 7/9/13 1312 Totalsulf 21527 TVS (null 21528 GSTS TO 21529 GSTS TO 21530 PCBs + 1 21531 Anchive 21532 Anywipe 21532 Anywipe 21533 Lanae 21534 V Nearther Sexton Spoke with Tucker S ord [Suider]. Station KSS-2 1phin for mooning at the provide valinate. In consultation with Was decided to most the stati the SE directure of consultation with 123°26.3830 W Ur 15r grab at repossitioned Sc 5-2 15 cm pen. 10 YR 5/2 th	KSS-3 ag # Date Time Analysis Jar 21526 7/9/13 1312 Totalsulfides 202 21527 TVS (nubural) 402 21528 CS, TS, TOL 802 21529 PCBS + PCDD/F 802 21530 PCBS + PCDD/F 802 21530 PCBS + PCDD/F 802 21531 Archive 802 21532 Anywipord 102 21533 Lanal 1L 21534 Nearthis Iga Scyton spoke with Tucker Stwens ord/Snider). Station KSS-2 has a 10 phin for mooring or the provided relinate. In consultation with T. Stevens, Woo decided to may the station 20 Meter the SE directury offence of outfall. 48°07. 4260 N


18

.

(Stati	m KSS	-2 Cm	r.)	1	5						
6				IR 4	-11-the	negions					
						vic with a	Ferr				
	mu	sai	park	. 20	20 moi	stine.					
	enel	has	n. no	mal	odor.	Sanda	silt				
	a-5	=0-000))			Sandy.					
	Ina	cetale =	Loft	1: 3.	- 122-	001					
	Crit		Conta	inn t	+: 27-	192					
1428	Colle	cr 240					en.				
	Sm	e colur	fm	vision	e cont	n. 17 cmg	avalo				
	bur	ann	N 40°) Fin	e woo	d + organi	e				
	den	Vi5 5	help !	Case	. no o	dor. Silt	with				
	lill	le san	A	. 0							
449	Colle	cx 310	and	0.17	cm 12	en. same	lescrip				
	asn	Warin	is own	ub. b	ut la	ne guost	Shing				
	Collect 31d grab. 17 cm pen. same descrip as previous grabs, but large guost shring approx 8-10 inches in length caugur in										
	in	sofv	an Ve	en.		0 0					
STAT		K45-									
		Tagt		ase	Time	Analysis	Jar				
And Personnel Name		2151	_	9/13	1421	total sulf	ides 202				
		2151			1	TVS (non	ead) for				
		2151	9			CS,TS,TOU	5 802				
^		2152	20			An Butin, metale, SV	OCS 602				
_		2152				PUBSTPCO	017 802				
	1	2152		1	V	Annive	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

cont. next go ->

STATION KSS-2 (cont.) Station K55-2 Starin N35 L Sample # Tag # Date Time Analysis Jar SD0002K 21523 7/9/13 1421 Amphipood Igal 21524 Lanal IL 21525 Neantheo Igal 1530 Back at dock, demoto geor, hinse von Veen with freshwater. End of Day J. Syxton 7/9/13

7

Germano & Associates, INC.

MEMORANDUM

to:Tucker Stevensfrom:Joe Germanore:PoPA – Kplydate:July 28, 2013

Dear Tucker,

Enclosed please find a CD with high-resolution jpg files of all the SPI and Plan View images collected at the 3 K-Ply stations specified in your memo of June 18; these were collected as part of the Port Angeles survey performed by Germano & Associates, Inc. on the R/V Kittiwake during the week of July 15.

The KPly stations were sampled on Wednesday, July 17; our efforts are outlined in the field log below:

				Depth	# of	Stop Collar
Station	Replicate	Frame #	Time	(m)	weights	Settings
KSS-1	А	338	10:05	9.2	2	15
	В	339	10:07	9.0		
	С	340	10:08	11.2		
	D	341	10:10	9.6		
KSS-2	А	342	10:16	8.0	2	15
	В	343	10:17	11.6		
	С	344	10:18	8.0		
	D	345	10:20	7.6		
KSS-3	А	346	10:25	7.8	2	15
	В	347	10:26	9.4		
	С	348	10:28	7.2		
	D	349	10:32	9.2		
	DOWNLO	AD				
KSS-3	E	350	10:50	9.6	4	16
	F	351	10:51	8.2		
	G	352	10:53	6.8		
	Н	353	10:54	8.2		

The third station was sampled a second time with different camera settings given the low prism penetration we obtained on the first sampling attempt (which is the reason there are 8 replicate images for the 3rd station for both SPI and PV image files).

If you have any questions or need additional information, please do not hesitate to contact me.

X

K Ply Site

Draft Supplemental Data Collection Technical Memorandum

Appendix F Core Photography and Grain Size Curves (PTS Labs)

ECOLOGY DRAFT

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

November 26, 2013

Tom Colligan Floyd/Snider 601 Union St., Suite 600 Seattle, WA 98101

Re: PTS File No: 43617 Physical Properties Data Part of Port Angeles KPLY Site RI; POPA-KPLY AO TASK2C

Dear Mr. Colligan:

Please find enclosed report of Physical Properties data from analysis conducted on cores received from your Part of Port Angeles KPLY Site RI; POPA-KPLY AO TASK2C project. All analyses were performed by applicable ASTM, EPA, or API methodologies. Electronic versions of the core images and physical properties report have been uploaded to PTS Laboratories drop box. The cores remain in frozen storage and will be held indefinitely. Please note that core storage will be billed quarterly beginning March 1, 2014.

PTS Laboratories Inc. appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Morgan Richards at (562) 347-2509

Sincerely, PTS Laboratories, Inc.

Michael Mark Brady, P.G. District Manager

Encl.

PTS Laboratories

Project Name:	Part of Port Angeles KPLY Site RI
Project Number:	POPA-KPLY AO TASK2C

PTS File No: 43617 Client: Floyd/Snider

TEST PROGRAM - 20131031

CORE ID	Depth ft.	Core Recovery ft.	Slab and Core Photo	Grain Size Analyses	Pore Fluid Saturation Package	A/W Drng. Capillarity Pkg.	Free Product Mobility	Residual Saturation by Water Drive	Fluid Properties Pkg.	Notes
Method:		Plugs:	1/4:3/4	Grab	Vert. 1.5"	Hor. 1"	Hor. 1.5"	Vert. 1.5"	Bulk	Keep core frozen
Date Received: 20130920										
PF-7-0-4	0-4	1.30	2							
PF-7-6.5-10	6.5-10	1.70	3	6.5-6.7	6.5-6.7					
PF-5-6.5-8	6.5-8	1.50	2							
K-15-9.5-11	9.5-11	1.70	3	10.6-10.8	10.6-10.8					
EW-2-A-10.5-12	10.5-12	1.70	3	11.5-11.7	11.5-11.7					
K-59-10.5-12	10.5-12	1.70	3							
PZ-06-A-3.5-5.5	3.5-5.5	1.50	2	4.5-4.7	4.5-4.7					
PZ-06-A-8-9.5	8-9.5	1.50	2	9.3-9.5	9.3-9.5					
K-27-9.5-11.5	9.5-11.5	1.50	3	9.8-10.0	9.8-10.0					
TOTALS:	9 cores	14.10	23	6	6					23

Laboratory Test Program Notes

Contaminant identification:

Sample locations to be selected by Floyd/Snider personnel from core photography.

* Analyses to be conducted by PTS Subcontract Consultant.

PTS File No:43617Client:Floyd/SniderReport Date:11/26/13

PHYSICAL PROPERTIES DATA - PORE FLUID SATURATIONS

Project Name:Part of Port Angeles KPLY Site RIProject No:POPA-KPLY AO TASK2C

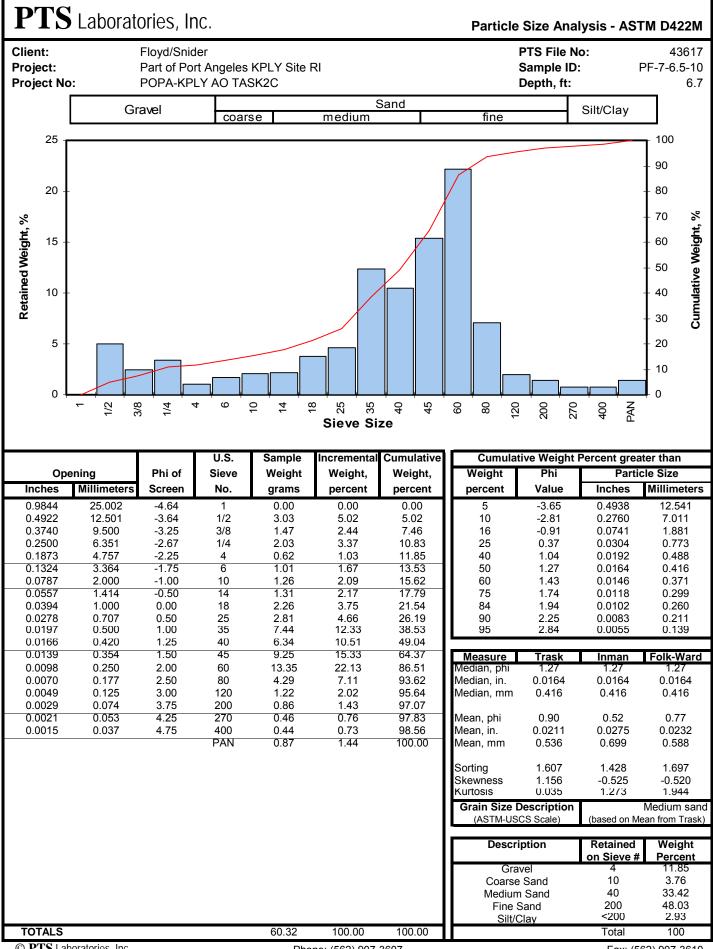
		METHODS:	API RP 40 / ASTM D2216	API RI	> 40	API F	RP 40	API RP 40			
		SAMPLE	MOISTURE	DENS	ITY	POROSIT	Y, %Vb (2)	PORE	FLUID		
SAMPLE	DEPTH,	ORIENTATION	CONTENT,	DRY BULK,	GRAIN,	AIR		SATURATIO	NS, % Pv (3)		
ID.	ft.	(1)	% weight	g/cc	g/cc	TOTAL	FILLED	WATER	NAPL		
PF-7-6.5-10	6.6	V	19.0	1.67	2.73	39.0	7.5	77.5	3.3		
K-15-9.5-11	10.7	V	20.3	1.60	2.72	41.3	8.8	73.7	5.0		
EW-2-A-10.5-12	11.6	V	14.4	1.71	2.73	37.4	10.0	22.4	50.7		
PZ-06-A-3.5-5.5	4.6	V	45.3	1.19	2.68	55.5	1.0	88.4	9.8		
PZ-06-A-8-9.5	9.4	V	13.7	1.94	2.72	28.7	1.7	85.3	8.7		
K-27-9.5-11.5	9.9	V	35.2	1.17	2.69	56.4	14.4	65.4	9.1		

(1) Sample Orientation: H = horizontal; V = vertical; R = remold

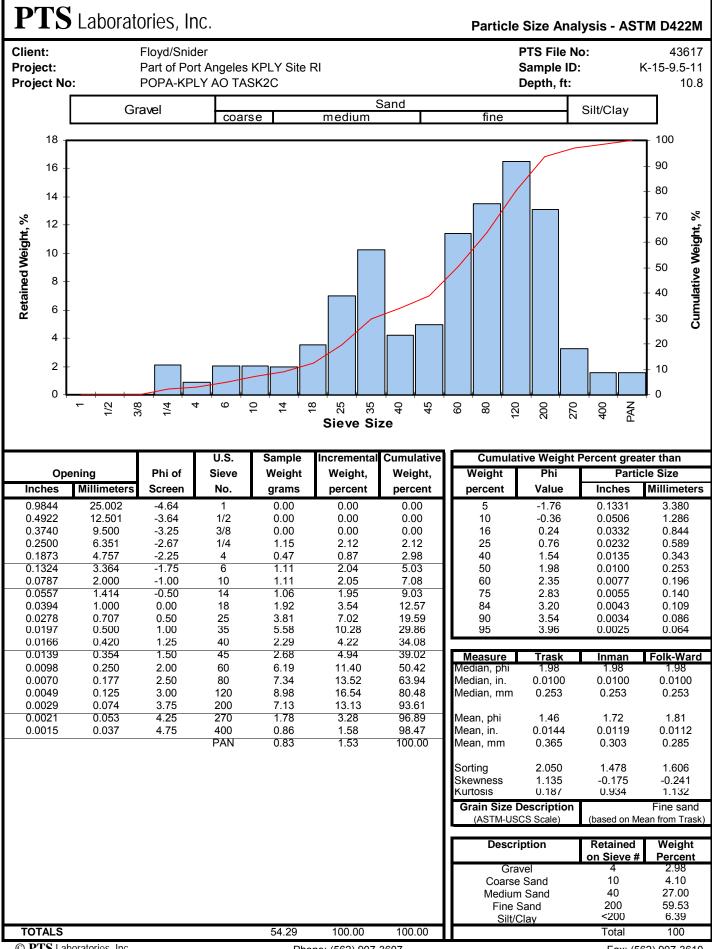
(2) Total Porosity = all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids.

(3) Fluid density used to calculate pore fluid saturations: Water = 0.9996 g/cc, NAPL = 0.8600 g/cc.

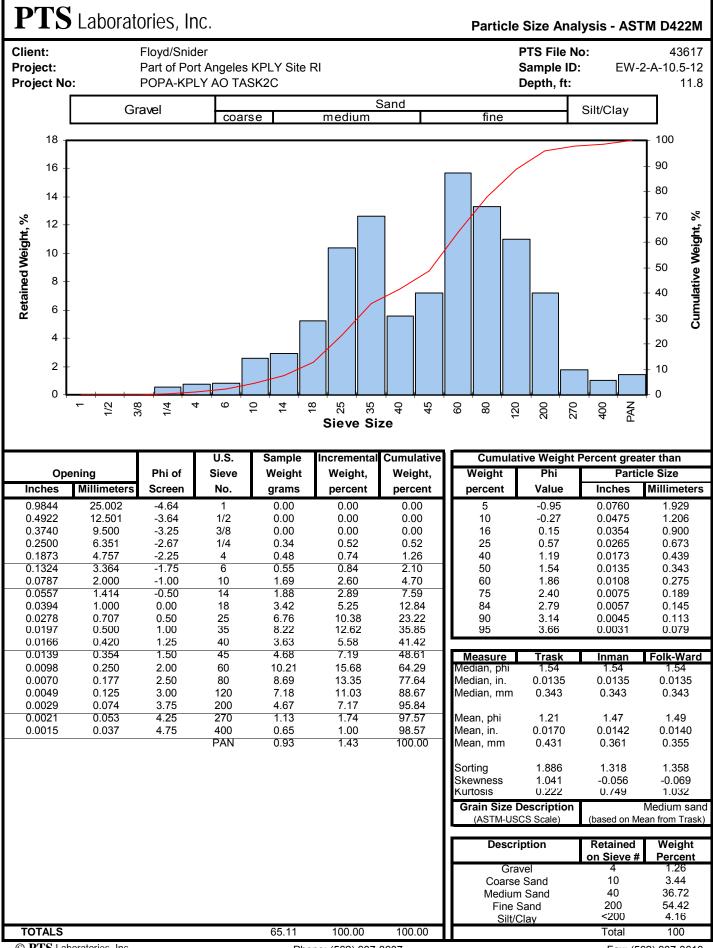
Vb = Bulk Volume, cc; Pv = Pore Volume, cc; ND = Not Detected

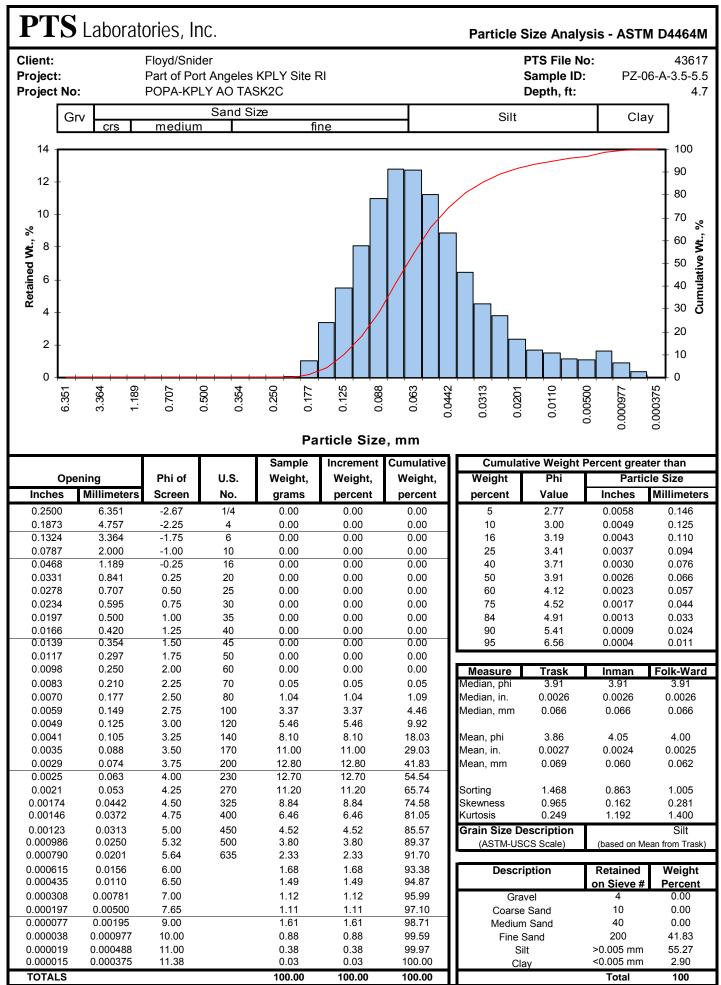

PARTICLE SIZE SUMMARY

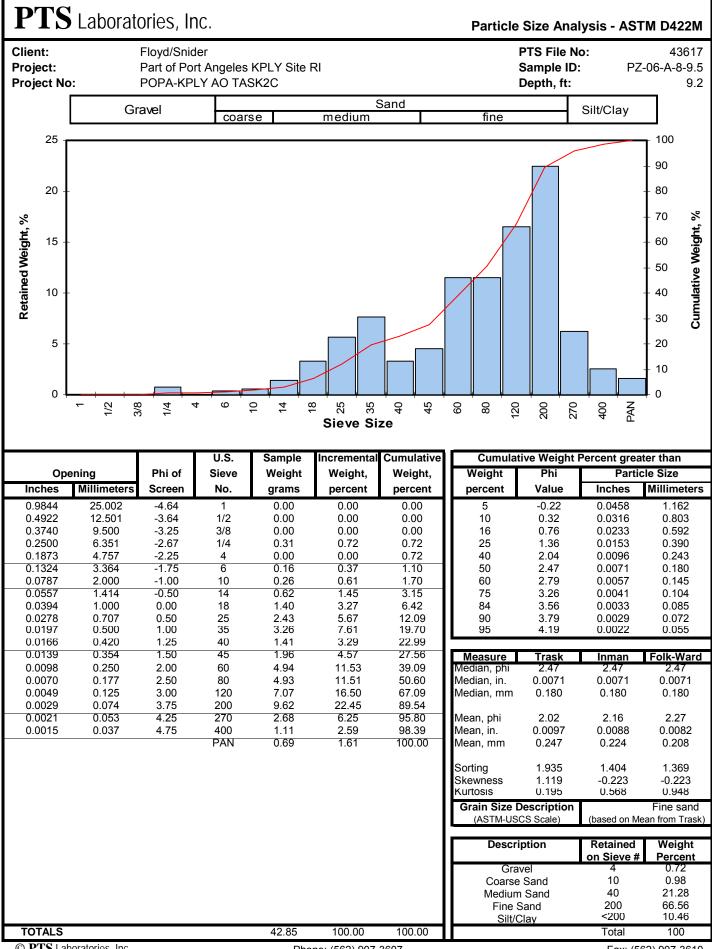
(METHODOLOGY: ASTM D422/D4464M)

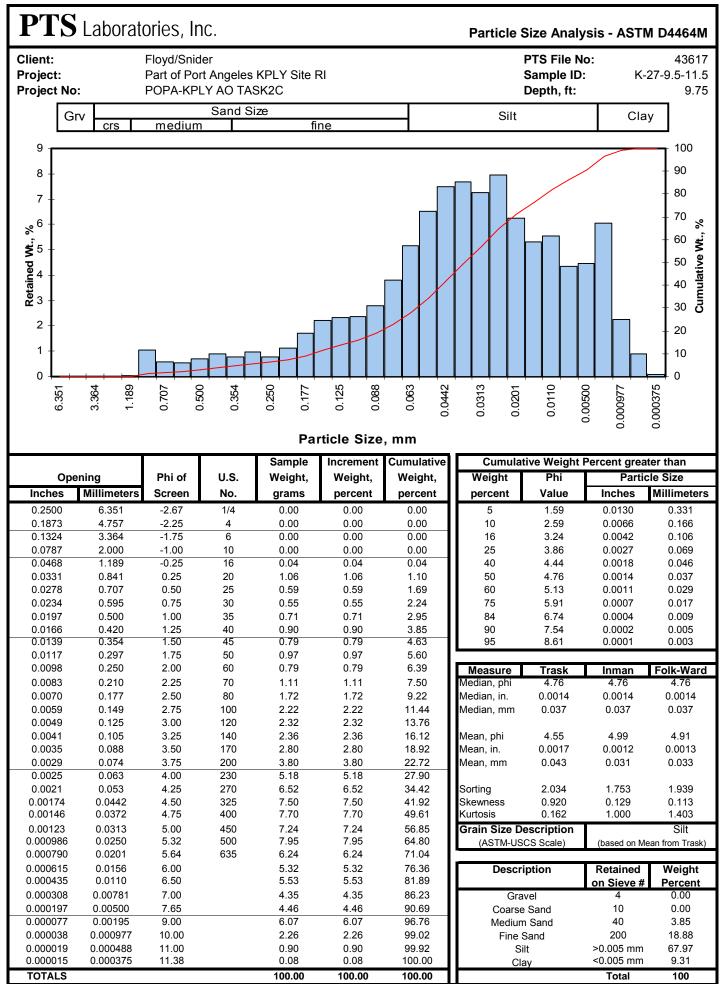

PROJECT NAME: PROJECT NO: Part of Port Angeles KPLY Site RI

POPA-KPLY AO TASK2C

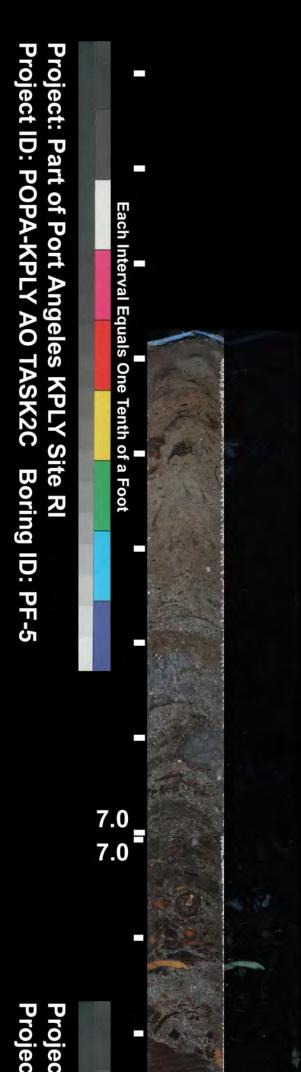

			Median			Silt				
Sample ID	Depth, ft.	Mean Grain Size Description (1)	Grain Size mm	Gravel	Coarse	Sand Size Medium	Fine	Silt	Clay	& Clay
PF-7-6.5-10	6.7	Medium sand	0.416	11.85	3.76	33.42	48.03	(2)	(2)	2.93
K-15-9.5-11	10.8	Fine sand	0.253	2.98	4.10	27.00	59.53	(2)	(2)	6.39
EW-2-A-10.5-12	11.8	Medium sand	0.343	1.26	3.44	36.72	54.42	(2)	(2)	4.16
PZ-06-A-3.5-5.5	4.7	Silt	0.066	0.00	0.00	0.00	41.83	55.27	2.90	58.17
PZ-06-A-8-9.5	9.2	Fine sand	0.180	0.72	0.98	21.28	66.56	(2)	(2)	10.46
K-27-9.5-11.5	9.75	Silt	0.037	0.00	0.00	3.85	18.88	67.97	9.31	77.28


Phone: (562) 907-3607


Phone: (562) 907-3607


Phone: (562) 907-3607

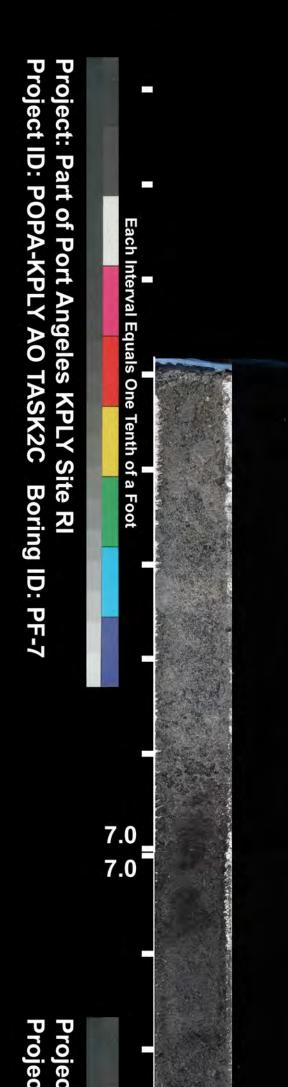
Phone: (562) 907-3607



Phone: (562) 907-3607

Phone: (562) 907-3607

			Sinta		ć	5)	*	s		~	ł	s.	۲					
FORMSĬĊŎĊ\ĊŎĊ.DOĊ		Ph. (200) 201 - 75	1) M	SID Schra Mon	and known one		1K-27-9.5-11.5	5.b-2-4-9-2.2	1PZ-06-A-3.5-5.5	116-59-10.5-12	EN-2-4-10.5-12	11-15-9.5-11	PF-5-6.5-8	01-5-9-E-79	PT-7-0-4	Sample ID		Send Report To Tom (Company <u>Floyd</u> Soit Address <u>60</u> Unith S City, State, ZIP <u>Sca</u> Phone <u># 706 - 297 - 7078</u>
÷	Received by:	Relinquished by:	Received by:	Relinquished by:	SIGNATURE		9/19/13 1430 500	iae 0221 El/19/10	9/19/13 1215	9 1913 1100 50,1	0/18/13/1025 50-1	9/19/13/113/1130 Soil	9/19/13/0945 500	9/19/13/0900 soil	9/19/13 0845 501	Lab Date Time ID Sampled Sampled Sample		olligan elnydenidur.u ler He, wit 98101 He, wit 98101
L			Robert Rojo	Knohn Anderson	PRINT NAME		/ /-	P>	<u>+-</u>	<i>↓</i> →	<u></u>	g>		1-5	/ /	TPH-Diesel TPH-Gasoline BTEX by 8021B VOCs by8260 SVOCs by 8270	ANAI	SAMPLE CHAIN OF CUSTODY NE SAMPLERS (signature)/////// PROJECT NAME/NO. Prot of part Angles A KPIN Site PLS Send VESULE Flayd (Sinder as shown a
	ſ		PTS LABS	Floyd Snider	COMPANY		X	××	× ×	×	X X	X	× ×	×	XX	HFS UV Photography HOLD, for pove	ANALYSES REQUESTED	A to to to to to
			9/20/13 9:32	9/19/13 1450	DATE TIME											Notes		43617 Page # 1 of 1 TURNAROUND TIME Standard (2 Weeks) □ RUSH Rush charges authorized by SAMPLE DISPOSAL □ Dispose after 30 days □ Return samples Will call with instructions
			-16.4															


PTS File No.: 43617

Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: PF-5

Each Interval Equals One Tenth of a Foot

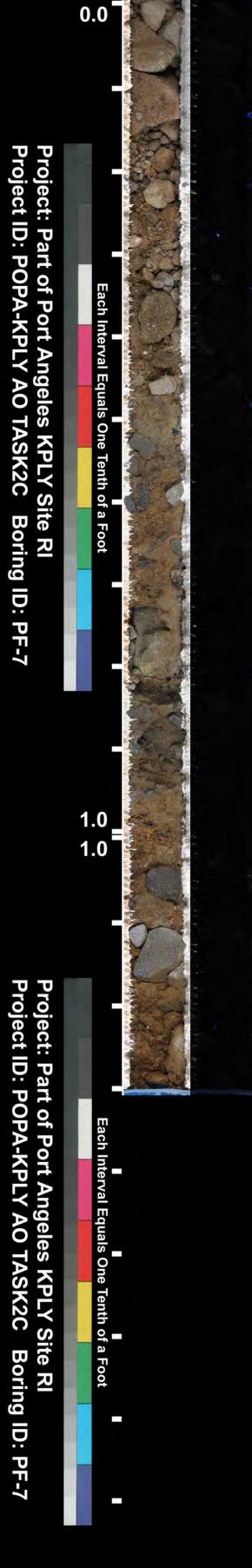
8.0

PTS File No.: 43617 **PTS** Laboratories

Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: PF-7

Each Interval Equals One Tenth of a Foot

8.0 8.0


PTS File No.: 43617

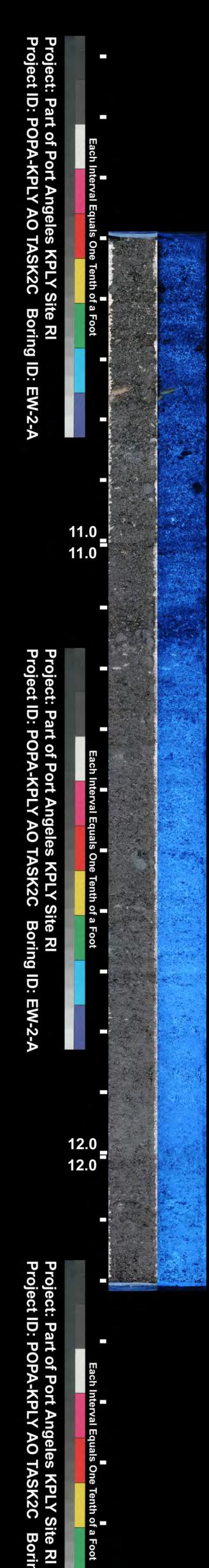
TASK2C Boring ID: PF-7

9.0

PTS File No.: 43617

2.0

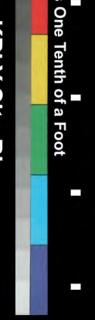
PTS File No.: 43617 **PTS Laboratories**

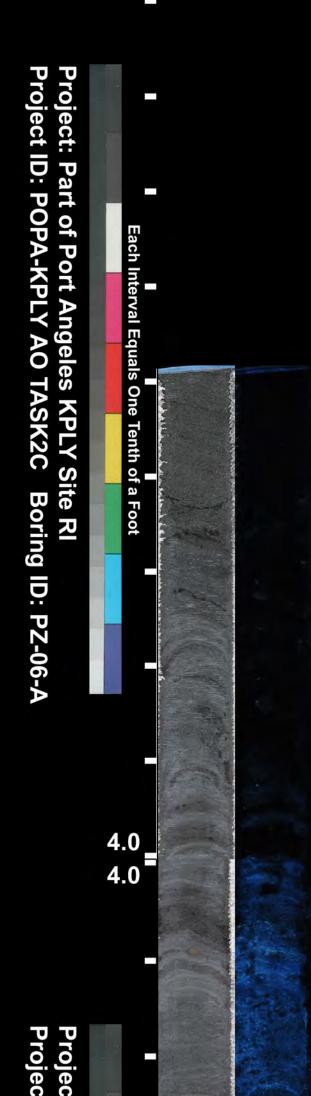

PTS File No.: 43617

PTS Laboratories

of a Foot

12.0

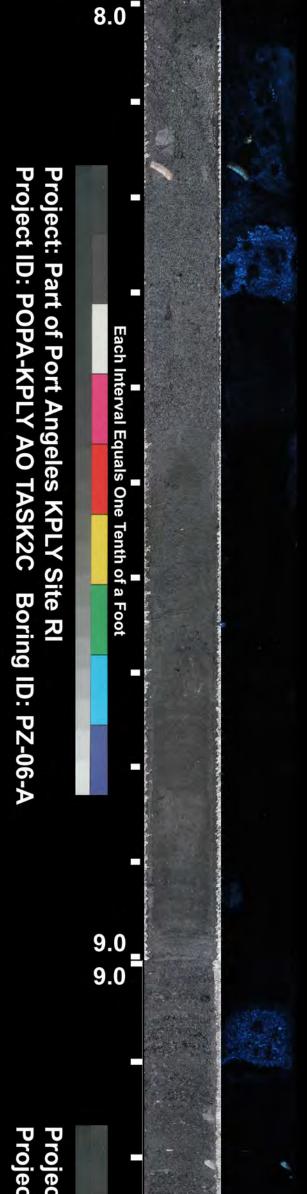

Boring ID: K-15


PTS File No.: 43617 **PTS** Laboratories

PTS File No.: 43617 **PTS** Laboratories

TASK2C Boring ID: EW-2-A

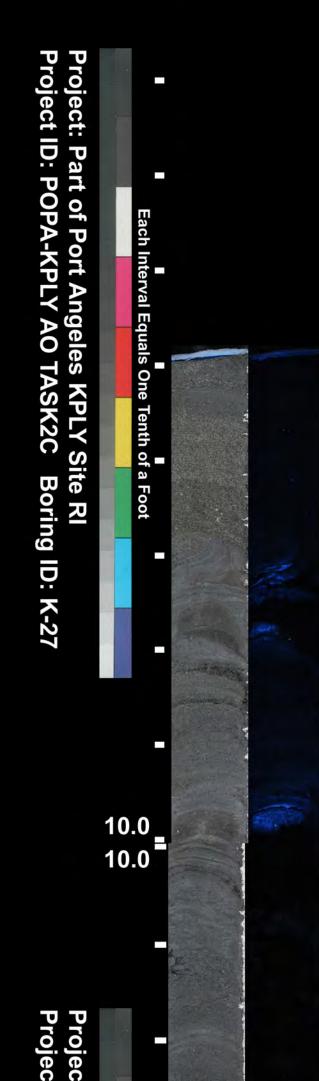
13.0



Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: PZ-06-A

Each Interval Equals One Tenth of a Foot

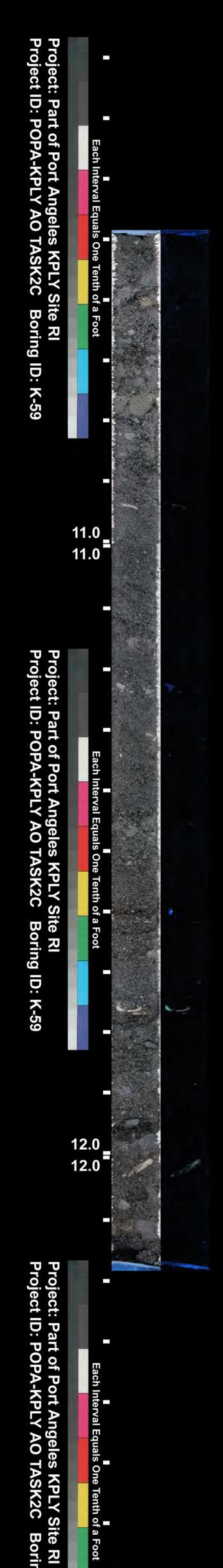
5.0


PTS Laboratories

Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: PZ-06-A

Each Interval Equals One Tenth of a Foot

10.0

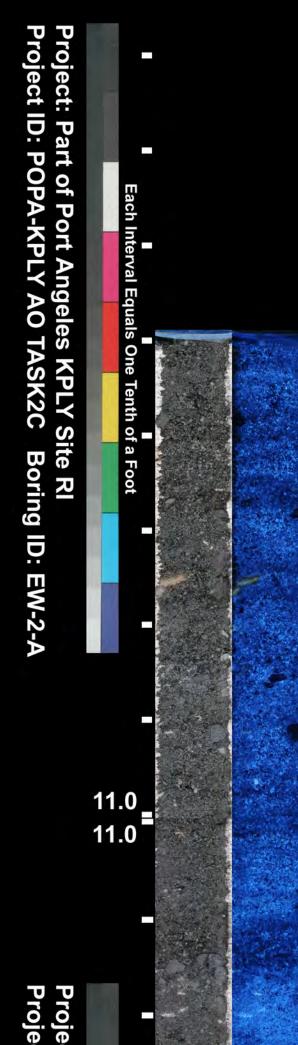

PTS Laboratories

Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: K-27

Each Interval Equals One Tenth of a Foot

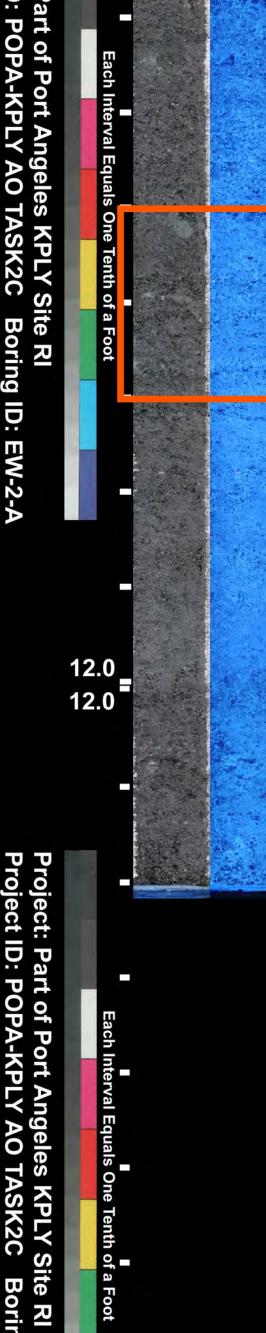
11.0

PTS Laboratories
PTS File No.: 43617

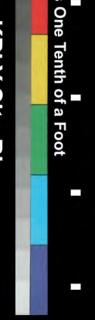


PTS File No.: 43617 **PTS** Laboratories

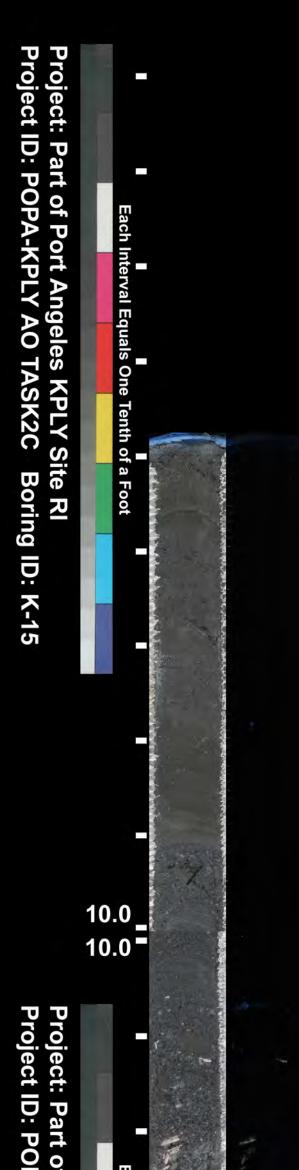
TASK2C Boring ID: K-59

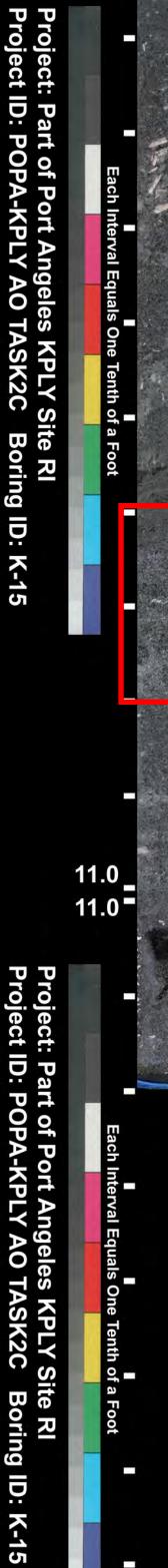


13.0


PTS File No.: 43617 **PTS** Laboratories

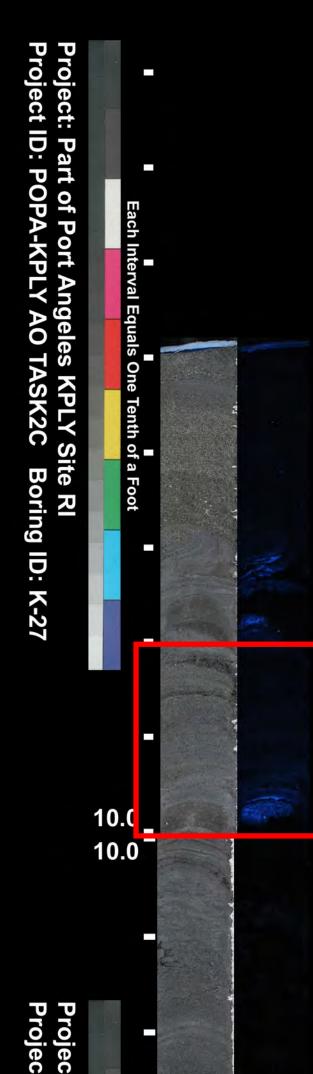
Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: EW-2-A




PTS File No.: 43617 **PTS** Laboratories

TASK2C Boring ID: EW-2-A

13.0



12.0

PTS File No.: 43617

PTS File No.: 43617

PTS Laboratories

9.0

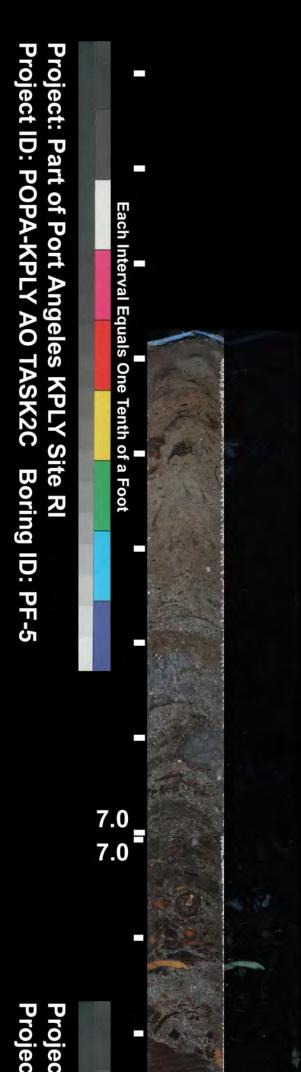
PTS File No.: 43617

Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: K-27

Each Interval Equals One Tenth of a Foot

11.0

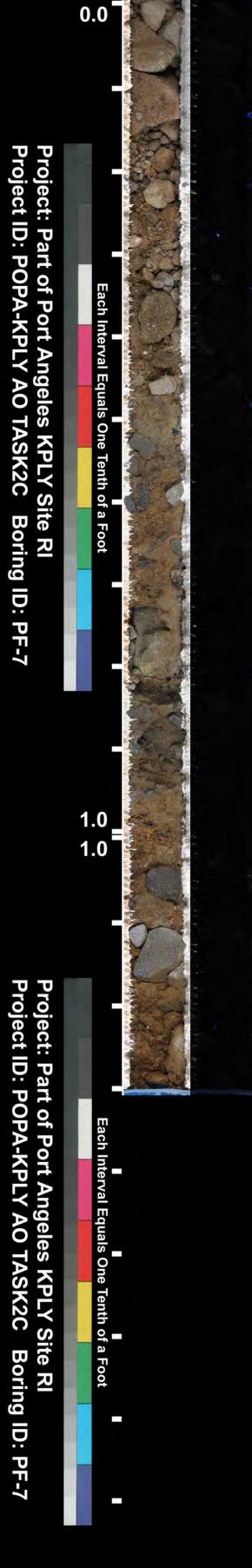
PTS Laboratories
PTS File No.: 43617



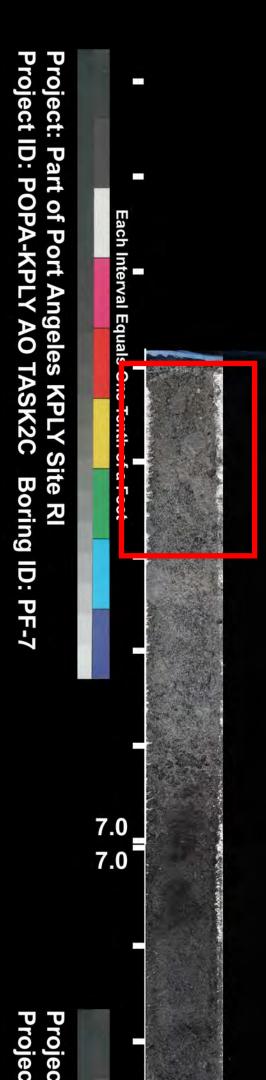
PTS File No.: 43617 **PTS** Laboratories

TASK2C Boring ID: K-59

13.0



Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: PF-5

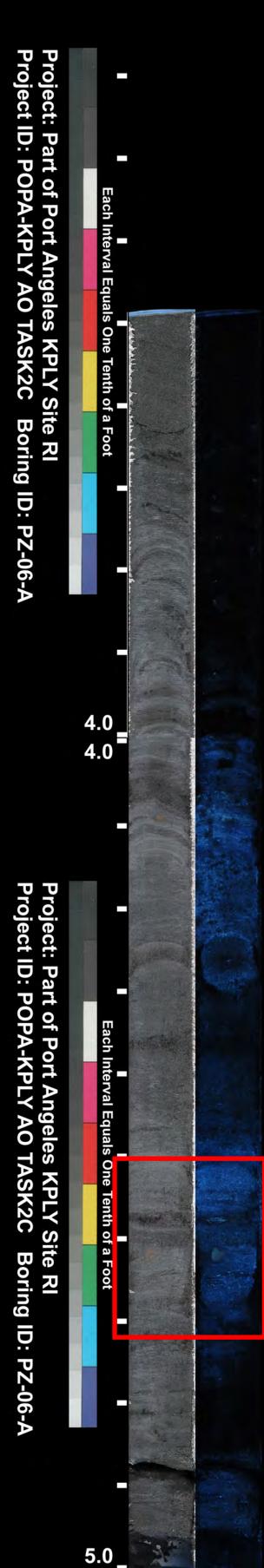

Each Interval Equals One Tenth of a Foot

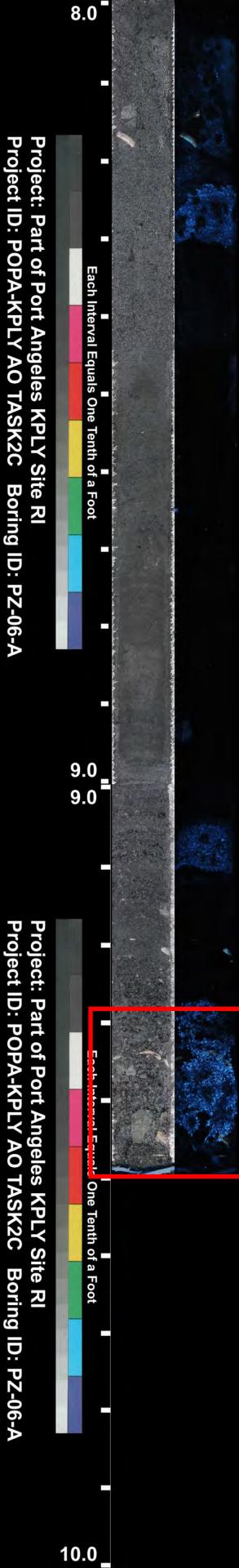
8.0

2.0

Project: Part of Port Angeles KPLY Site RI Project ID: POPA-KPLY AO TASK2C Boring ID: PF-7

Each Interval Equals One Tenth of a Foot


8.0 8.0


PTS File No.: 43617

TASK2C Boring ID: PF-7

9.0

