

PERIODIC REVIEW

Arden's Country Store F/SID #: 419

1458 Old Highway 97 Malott, Washington 98829

Central Region Office

TOXICS CLEANUP PROGRAM

July 29, 2008

1.0 IN	NTRODUCTION	1
2.0 SI	UMMARY OF SITE CONDITIONS	2
2.1	Site History	2
2.2	Cleanup Levels	
2.3	Points of Compliance	
2.4	Summary of Cleanup Actions	3
2.5	Monitoring	5
3.0 Pl	ERIODIC REVIEW	8
3.1	Effectiveness of completed cleanup actions	8
3.2	New scientific information for individual hazardous substances for mixtures present	t at
	the site.	8
3.3	New applicable state and federal laws for hazardous substances present at the Site	8
3.4	Current and projected site use	9
3.5	Availability and practicability of higher preference technologies	9
3.6	Availability of improved analytical techniques to evaluate compliance with cleanup	1
	levels	10
	ONCLUSIONS	
5.0 R	EFERENCES	12
6.0 A	PPENDICIES	13
6.1	Vicinity Map	14
6.2	Site Plan	15
6.3	2008 Sample Data Sheets	16
6.4	Sample Results	21
6.5	Photo log	28

1.0 INTRODUCTION

This document is the Department of Ecology's review of post-cleanup site conditions and monitoring data to assure that human health and the environment are being protected at the Arden's Country Store Property (Site), also known as Rodeway Stores. Cleanup at this Site was implemented under the Model Toxics Control Act (MTCA), Chapter 173-340 WAC.

Cleanup actions at this Site were completed under Enforcement Order No. DE 91-C141. The cleanup actions resulted in residual concentrations of volatile organic compounds and gasoline-range petroleum hydrocarbons exceeding MTCA Method A cleanup levels for soil established under WAC 173-340-740(2). WAC 173-340-420 (1) requires that "if the department selects or approves a cleanup action that results in hazardous substances remaining at a site at concentrations which exceed Method A or Method B cleanup levels established under WAC 173-340-700 through 173-340-760 or if conditional points of compliance have been established, the department shall review the cleanup action no less frequently than every five years after the initiation of such cleanup action to ensure that human health and the environment are being protected".

When evaluating whether human health and the environment are being protected, the factors the department shall consider include [WAC 173-340-420(2)]:

- (a) The effectiveness of ongoing or completed cleanup actions;
- (b) New scientific information for individual hazardous substances of mixtures present at the site:
- (c) New applicable state and federal laws for hazardous substances present at the Site;
- (d) Current and projected site use;
- (e) Availability and practicability of higher preference technologies; and
- (f) The availability of improved analytical techniques to evaluate compliance with cleanup levels.

The department shall publish a notice of all periodic reviews in the site register and provide an opportunity for public comment.

2.0 SUMMARY OF SITE CONDITIONS

2.1 Site History

Arden's Country Store is located in Malott, Okanogan County, Washington (Appendix 6.1). An emergency action and remedial activities were conducted at the Site between 1988 and 1999. Enforcement Order No. DE 91-C141 was issued in May 1991. There has been no activity at the Site since 1999.

The Site is located on the southwest corner of Old Highway 97 and Allen Street, in Malott. Arden's Country Store is currently operating as a convenience store, and prior to 1991 it operated as a gasoline station. In 1988, the Site was reported to the Ecology as an emergency situation due to the presence of explosive levels of gasoline vapors in the store.

2.2 Cleanup Levels

The Enforcement Order states that all remedial actions are to be conducted in accordance with Washington Administrative Code 173-340. Based on that requirement, the following levels are used at the site:

Soil - Method A cleanup levels are appropriate for the Site soils.

Table 1: 1991 MTCA Method A Soil Cleanup Levels

Analyte	1991 MTCA Soil Cleanup Level (ppm)
Benzene	0.5
Lead	250
Tetrachloroethylene	0.5
Toluene	40
Total Xylenes	20
TPH	NL
TPH-Gas	100
TPH-Diesel	200
TPH-Oil	200
NL = None listed	

Groundwater - Method A cleanup levels are appropriate for Site groundwater.

Table 2: 1991 MTCA Method A Groundwater Cleanup Levels

Analyte	1991 MTCA Method A Groundwater Cleanup level (ppb)
Benzene	5
Lead	5
Tetrachloroethylene	5
Toluene	40
Total Xylenes	20
TPH	1000
TPH-Gas	NL
TPH-Diesel	NL
TPH-Oil	NL
NL = None listed	

2.3 Points of Compliance

The Site is defined as Arden's Country Store. The extent of the Site includes the area containing soil and/or groundwater that have been impacted by the release of petroleum hydrocarbons from the Arden's Country Store property. The point of compliance for soil shall be defined as the area affected by petroleum hydrocarbons released from the Site into soil at concentrations above MTCA Method A cleanup levels, regardless of depth, to protect groundwater.

The groundwater point of compliance is throughout the Site from the uppermost level of the saturated zone to the lowest depth that could possibly be affected by the Site.

2.4 Summary of Cleanup Actions

Following the emergency notification of explosive vapors in the basement of the store, immediate actions at the Site included the removal of two abandoned underground storage tanks (USTs) along with associated contaminated soils. An abandoned domestic well in the floor of the store was also sealed to prevent additional vapor migration into the structure. A site map is available as Appendix 6.2.

In 1989, a shallow dug well in the basement of the store was sampled by Hart-Crowser. Groundwater contamination was confirmed by the presence of benzene at 4,000 micrograms per liter (ug/L), toluene at 170 ug/L, and xylenes at 321 ug/L. Additional samples from the basement well were collected in 1990. They indicated increasing concentrations of benzene,

toluene, ethylbenzene and xylenes (BTEX) at 8,600 ug/L, 2,500 ug/L, 200 ug/L and 2,300 ug/L, respectively. The City of Malott does not have a public water supply, and several private domestic water wells were identified in the vicinity of the store. Samples collected from these domestic water wells detected BTEX above laboratory detection limits, but below MTCA Method A cleanup levels.

Following the discovery of the extent of contamination at the Site, the property owner failed to take action. In May 1991, Ecology issued an Enforcement Order requiring a Remedial Investigation/Feasibility Study (RI/FS). The Order was not complied with, so Ecology contracted for the work to be done using funds from the State Toxics Control Account. Field work conducted for the RI/FS covered the majority of downtown Malott, and included domestic well sampling, a soil gas survey, installation of five monitoring wells, and sampling of soil and groundwater.

The RI/FS examined eight potential contamination sources. These included the following:

- 1. <u>Source Area 1</u>: West end of Arden's Country Store. Two USTs were previously removed from this location.
- 2. <u>Source Area 2</u>: North end of Arden's Country Store property. Three USTs were in operation here until 1991.
- 3. <u>Source Area 3</u>: USTs located on the Allen Street side of the former Malott Garage property and former site of an Arco gasoline station. Two inactive USTs were located here during the RI/FS.
- 4. <u>Source Area 4</u>: La Esquina Pool Hall building area, and former Malott Garage Arco Station. Solvents were reportedly discharged down a floor drain here into a septic tank.
- 5. Source Area 5: Open dump south of the former Malott Garage property.
- 6. <u>Source Area 6</u>: Former Chevron Station Site. No information was known about this site. No physical evidence of the station was present in 1991.
- 7. <u>Source Area 7</u>: Vacant building with abandoned UST at Old Highway 97 and B&O Road.
- 8. <u>Source Area 8</u>: Scroggins Property. Mr. Scroggins Property was the former site of auto body repairs and painting.

Based data collected in the RI/FS, it was determined that source area 2, the location of the active tanks at Arden's Country Store, was the primary source of contamination in the area. Contaminants included BTEX, gasoline-range petroleum hydrocarbons (TPH-G) and diesel-range petroleum hydrocarbons (TPH-D).

Following the RI/FS, EVOCA Corporation (EVOKA) was contracted to perform remedial activities at the Site. These activities included UST removals, soil and groundwater sampling, and soil and groundwater treatment at the Site. The tanks consisted of a 4,000-gallon leaded gasoline tank, two 2,000-gallon unleaded gasoline tanks, associated piping and a dispenser island. Following removal of the tanks, a photoionization detector (PID) was used to screen soils

from the excavation for the presence of volatile organic compounds (VOCs). No elevated PID readings were observed in soils from the UST excavation. Seven soil samples were collected from the limits of the excavation and analyzed for TPH-G, TPH-D, BTEX and total lead. Sample results did not detect contamination above MTCA Method A cleanup levels. Soil under the dispenser island had strong visual and odor indications of TPH-G contamination. Excavation of contaminated soils from below the dispenser island continued until PID readings no longer detected contamination. Approximately 1100 cubic yards of soil were excavated from this location and stockpiled at the Site for treatment. CET Environmental Services treated this soil by thermal desorption. Samples collected from the south and east sidewalls of the final excavation still contained petroleum hydrocarbon contamination at concentrations exceeding MTCA Method A cleanup levels. Excavation could not continue in those directions without risking structural damage to the store building. Following treatment, the treated material was used for backfilling the excavation.

One groundwater monitoring well and one groundwater pumping well were installed at the Site at this time. Both wells were advanced to depths of 40 feet below ground surface (bgs). Soil samples were collected at 5 foot intervals during drilling. Benzene was detected at 0.058 ppm, just above the cleanup level of 0.5 ppm, in the recovery well boring at 15 feet bgs.

Groundwater samples were collected from the new monitoring well, MW-2, as well as two wells installed during the RI/FS, MW-1 and MW-A5. MW-A5, which is the only monitoring well in the immediate vicinity of the tank excavation, exceeded MTCA Method A cleanup levels for TPH-G, benzene, toluene and xylenes. MW-2, located southeast of the tank excavation, exceeded MTCA Method A cleanup levels for lead and benzene.

A groundwater treatment system was installed at the Site in June 1993. The system consisted of a groundwater pumping well, two granular activated carbon units, and an infiltration gallery located upgradient of the pumping well for reinjection of treated groundwater.

2.5 Monitoring

Groundwater monitoring was conducted by Ecology on an annual basis from 1993 until 1997, and again in 1999. Contaminant concentrations have trended generally downward. Results from the final sampling event in 1999 indicate that only RW-2 contains benzene and concentrations exceeding MTCA Method A cleanup levels.

On July 22, 2008, Ecology conducted an additional sampling event at the Site as part of the periodic review process. Samples were collected from MW-1, RW-1, MW-A5 and RW-2. MW-2 could not be sampled because it was dry at the time of the sampling event. All wells were sampled using low flow techniques with the exception of MW-1, which did not have enough water in the well casing to use an in-well pump. A disposable bailer was used to collect the sample from MW-1. No visible sheen or odor was detected in any of the wells indicating the

presence of petroleum hydrocarbons. Sample data sheets and laboratory results are available as Appendix 3 and Appendix 4.

Analytical results from the July 2008 sampling event did not detect contamination in any of the wells at the Site. Monitoring data is available below:

Table 3: Groundwater Monitoring Data

Table 3: Groundwater Monitoring Data												
Date	benzene	toluene	ethylbenzene	xylenes	TPH-G							
RW1												
12/15/1993	0.2	0.2	0.2	0.6	NA							
4/13/1994	NS	NS	NS	NS	NS							
3/21/1995	1	1	1	1	0.25							
3/25/1996	1	1	1	3	0.12							
12/15/1997	1	1	1	3	0.12							
10/13/1999	1	1	1	3	0.03							
7/22/2008	.5	2	1	1.5	.1							
RW2												
12/15/1993	4.1	0.2	0.2	0.6	NA							
duplicate	28.4	0.3	0.2	0.6	NA							
4/13/1994	NS	NS	NS	NS	NS							
3/21/1995	130	11	16	85	680							
3/25/1996	370	10	150	210	2700							
12/15/1997	35	7.4	33	95	560							
10/13/1999	26	1	30	84	290							
7/22/2008	.5	2	1	1.5	.1							
MW1												
12/15/1993	0.2	0.2	0.2	0.6	NA							
4/13/1994	0.2	0.2	0.2	0.6	0.024							
3/21/1995	1	1	1	1	0.25							
3/25/1996	1	1	1	3	0.12							
12/15/1997	1	1	1	3	0.12							
10/13/1999	1	1	1	3	0.03							
7/22/2008	.5	2	1	1.5	.1							
MW2												
12/15/1993	NS	NS	NS	NS	NS							
4/13/1994	1.2	0.2	0.2	0.5	0.024							
3/21/1995	1	1	1	1	0.25							
3/25/1996	1	1	1	3	0.12							
12/15/1997	1	1	1	3	0.12							

10/13/1999	1	1	1	3	0.03
7/22/2008	NS	NS	NS	NS	NS
DW2					
12/15/1993	0.2	0.2	0.2	0.6	NA
4/13/1994	NS	NS	NS	NS	NS
3/21/1995	NS	NS	NS	NS	NS
3/25/1996	NS	NS	NS	NS	NS
12/15/1997	NS	NS	NS	NS	NS
10/13/1999	NS	NS	NS	NS	NS
MWA2					
12/15/1993	NS	NS	NS	NS	NS
4/13/1994	0.2	0.2	0.2	0.6	0.024
3/21/1995	NS	NS	NS	NS	NS
3/25/1996	NS	NS	NS	NS	NS
12/15/1997	NS	NS	NS	NS	NS
10/13/1999	NS	NS	NS	NS	NS
MWA5					
12/15/1993	NS	NS	NS	NS	NS
4/13/1994	NS	NS	NS	NS	NS
3/21/1995	3100	2300	560	3260	30000
3/25/1996	40	4.4	7	8.5	3600
12/15/1997	32	24	53	39	1100
10/13/1999	3.6	10	3.6	4	850
7/22/2008	.5	2	1	1.5	.1
MW1B					
12/15/1993	NS	NS	NS	NS	NS
4/13/1994	NS	NS	NS	NS	NS
3/21/1995	NS	NS	NS	NS	NS
3/25/1996	1	1	1	3	0.12
12/15/1997	1	1	1	3	0.12
10/13/1999	1	1	1	3	0.03

1991 Cleanup levels	5	40	30	20	1000
2008 Cleanup levels	5	1000	700	1000	800/1000*

Red = Exceeds 1991 MTCA Method A cleanup levels

Green = Below laboratory detection limits

*= value if benzene detected / value with no benzene detected

3.0 PERIODIC REVIEW

3.1 Effectiveness of completed cleanup actions

The excavation conducted during the interim action eliminated the human exposure pathways (ingestion, contact) to highly contaminated soils at the Site. The buildings and asphalt surface at the site also helps prevent direct contact with the contaminated soils. Groundwater sampling results indicate that contamination is no longer present in groundwater at concentrations exceeding laboratory detection limits. Based upon the site visit conducted on July 22, 2008, no repair, maintenance, or contingency actions have been required. The Site continues to operate as a convenience store without gasoline facilities. The surface completions of all monitoring wells were intact. Two of the five monitoring wells that were gauged prior to sampling had obstructions in the well casings. A photo log is available as Appendix 6.5.

A Restrictive Covenant has not been recorded for the Site.

Conclusions:

Soils with TPH concentrations higher than the 2000 mg/Kg Method A cleanup level for TPH-D may still be present at the Site. However, the asphalt cap and the clean soil cap prevent the human exposure of the TPH by ingestion and direct contact with soils. Groundwater no longer has concentrations of TPH or BTEX exceeding MTCA Method A cleanup levels. An Environmental Covenant is necessary to ensure that the integrity of the asphalt cap will be protected through maintaining the current use of the Site.

3.2 New scientific information for individual hazardous substances for mixtures present at the site

There is no new scientific information for the petroleum contaminants related to the Site.

3.3 New applicable state and federal laws for hazardous substances present at the Site

The cleanup at the site was governed by Chapter 173-340 WAC (1996 ed.). WAC 173-340-702(12)(c) [2001 ed.] provides that,

"A release cleaned up under the cleanup levels determined in (a) or (b) of this subsection shall not be subject to further cleanup action due solely to subsequent amendments to the provision in this chapter on cleanup levels, unless the department determines, on a case-by-case basis, that the

previous cleanup action is no longer sufficiently protective of human health and the environment."

Although cleanup levels changed for gasoline, diesel, and volatile organic compounds as a result of modifications to MTCA in 2001, contamination remains at the site above MTCA Method A cleanup levels and the cleanup action is still protective of human health and the environment. A table comparing cleanup levels is available below:

Table 4: Changes to MTCA Method A Cleanup Levels

Analyte	1991 MTCA Soil Cleanup Level (ppm)	2001 MTCA Method A Soil Cleanup Level (ppm)	1991 MTCA Method A Groundwater Cleanup level (ppb)	2001 MTCA Method A Groundwater Cleanup Level (ppb)
Benzene	0.5	0.03	5	5
Ethylbenzene	20	6	30	700
Lead	250	250	5	15
Toluene	40	7	40	1000
Total Xylenes	20	9	20	1000
TPH	NL	NL	1000	NL
TPH-Gas	100	100/30*	NL	1000/800^
TPH-Diesel	200	2000	NL	500
TPH-Oil	200	2000	NL	500

Red = Changed value for 2001

3.4 Current and projected site use

The site is currently used for commercial purposes. There have been no changes in current or projected future site or resource uses.

3.5 Availability and practicability of higher preference technologies

The remedy implemented included removal/recycling of hazardous substances as well as containment, and it continues to be protective of human health and the environment. While higher preference cleanup technologies may be available, they are still not practicable at this Site.

^{* = 100} ppm for gasoline mixtures without Benzene / 30 ppm when benzene present.

 $^{^{\}wedge}$ = 1000 ppb for gasoline mixtures without benzene / 800 ppb when benzene present.

3.6 Availability of improved analytical techniques to evaluate compliance with cleanup levels.

The analytical methods used at the time of the remedial action were capable of detection well below MTCA Method A cleanup levels for the contaminants of concern. The presence of improved analytical techniques would not effect decisions or recommendations made for the site.

4.0 CONCLUSIONS

- The cleanup action completed at the Site is protective of human health and the environment.
- Soils cleanup levels have not been met at the Site; however, under WAC 173-340-740(6)(d), the cleanup action is determined to comply with cleanup standards, since the long-term integrity of the containment system is ensured and the requirements for containment technologies in WAC 173-340-360(8) have been met.
- Groundwater cleanup levels have been met at the Site.
- A Restrictive Covenant has not been recorded for the property. A Restrictive Covenant is
 necessary to issue a No Further Action determination for the Site, because soil
 contamination remains at concentrations exceeding MTCA Method A cleanup levels. A
 Restrictive covenant would serve to protect the integrity of the soil cleanup action and the
 soil cap.

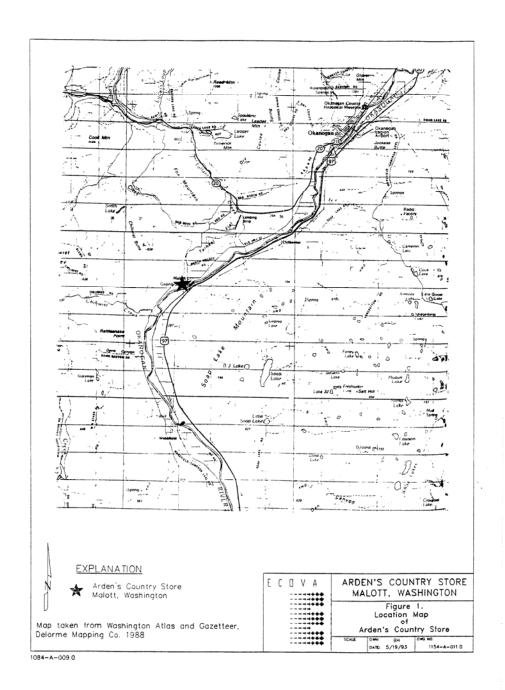
Based on this five-year review, the Department of Ecology has determined that the requirements of the Model Toxics Control Act have not been met for the Site. Additional actions are required by the property owner in order to receive a No Further Action determination for the Site.

5.0 REFERENCES

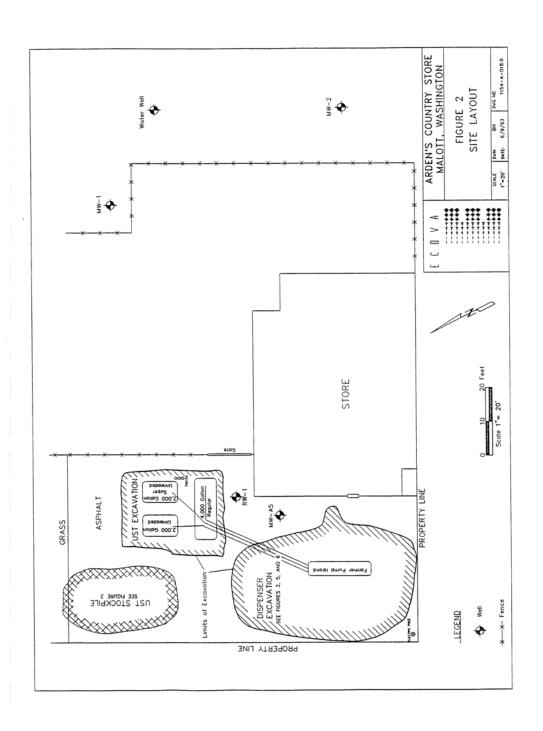
GN Northern, Inc. 1997, Underground Storage Tank Site Assessment Report

Kent, Richard, 1997, Geologic Logs

Northwest Envirocon, Inc., 1998, Bioremediation of Petroleum Contaminated Soil


Ecology, 1999, No Further Action Letter

Ecology, 1999, Restrictive Covenant


Ecology, 2008, Site Visit

6.0 APPENDICIES

6.1 Vicinity Map

6.2 Site Plan

6.3 2008 Sample Data Sheets

GROUNDWATER SAMPLING DATA SHEET

NAME: Arc	den's Cour	try Store				SITE LOCATION:	Malott, V	Vashington				
WELL NO:		-		SAMPLE		W-1-				22-03		
						GING DA				000		
WELL DIAMETER (i	inches): 2"	TUBING DIAMETER (inches): 1/2		REEN INTE 3 5 feet to	RVAL 23.5 feet	STATIC D	EPTH R (feet): [6-3	PURGE PUMP OR BAILER: S	TYPE ubmersible Electr	ic Disp	
WELL VOLU only fill out if	ME PURGE: applicable)	1 WELL VOLU	JME ≃ (TOTA = (/7			ATIC DEPTH		X WELL C		4 2	,	
EQUIPMENT	VOLUME PUR	RGE: 1 EQUIF		•	1001			X O.16	gallons/foc NGTH) + FLOW CE	LL VOLUME	gallons	
only fill out if	applicable)			= ga	allons + (galle	ons/foot X		feet) +	gallons =	gallons	
NITIAL PUM DEPTH IN W	P OR TUBING ELL (feet):	1	FINAL PUMP DEPTH IN W		3	PURGIN	ED AT:	PURG ENDE	D AT:	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/c m or µS/cm)	OXYGEN (circle mg/L % saturation	or (NTUs)	COLOR (describe)	ODOR (describe)	
0845	1	ľ	/	16.31	7.43	14.7	501		SI Tulbic	Clear	000	
							-					
		\cap	1	121	, (. ,,		.,				
-		U	nly	12	01	Hz) in	well	casing.			
		11.1	11 -		1	1	050	ible l	1/20			
		00	41 5	ample	<u> </u>	1/01	15 / 00	1012 1	Dailer			
$\overline{}$												
WELL CAPAC TUBING INSI	CITY (Gallons I DE DIA. CAPA	Per Foot): 0.7 CITY (Gal./Ft.	75" = 0.02;): 1/8" = 0.00	1" = 0.04; 006; 3/16"	= 0.0014;	6; 2" = 0.1 1/4" = 0.002		37; 4" = 0.6 = 0.004; 3/	5; 5" = 1.02; 8" = 0.006; 1/2"		= 5.88 = 0.016	
AMPLED BY	(PRINT) / AFI	FILIATION:	SA	MPLER(8) SI		PLING DA	ATA			SAMPLING		
	schwande	er/WSDO		146 /	SAMPLING INITIATED							
PUMP OR TU EPTH IN WE		7'	FL	MPLE PUMP OW RATE (m					Polyethylene			
IELD DECO	NTAMINATION	_		LD-FILTERE ration Equipm		N FILT	ER SIZE: _	μm	DUPLICATE:	Y N	>	
	SAMPLE CO SPECIFIO	CATION			SAN	IPLE PRESER	RVATION		INTENDED		MPLING	
SAMPLE ID CODE	CONTAINE RS	MATERI E AL CODE	VOLUME	PRESERV USE		TOTAL VO		FINAL pH	ANALYSIS AND METHOD		UIPMENT CODE	
	8 3			HU	l							
(W-1-0722												
(W-(-0722			_		- 1							
(W-(-0722					-+							
(W-(-0722)												
(W-(-0722		,										
(W-(-0772)								,				
REMARKS:												
		AG = Amber (Clear Glass;		olyethylene;			= Silicone; T = T	eflon; O = Oth	er (Specify)	

^{1.} Stabilization Criteria For range of variation of Last three consecutive readings (see FS 2212, section 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: A	Arden's Cou	ntry Store				SITE LOCATION:	Malott,	Washington			
WELL NO	: RW-1			SAMPLE	ID: KA	J-1- (072	208	DATE:	7/22/08	3
						GING DA					
WELL DIAMETE	R (inches):2"	TUBING DIAMETER (nches): 1/2.		REEN INTE		TO WA	DEPTH (7.42 TER (feet):	PURGE PUMP T OR BAILER: Su		c .
	LUME PURGE: it if applicable)	1 WELL VOLU	JME = (TOT/	AL WELL DEP	PTH - STA	TIC DEPTH	TO WATE	R) X WELL CAF	PACITY gallons/foot	=	gallons
	NT VOLUME PU	JRGE: 1 EQUIF	MENT VOL.	= PUMP VOL		BING CAPAC			GTH) + FLOW CEL		ganon
Olly IIII OC	it ii applicable)			= ga	allons + (gal	lons/foot X		feet) +	gallons =	gallor
	JMP OR TUBING WELL (feet):	25	FINAL PUM DEPTH IN V			PURGI INITIAT	ED AT:	PURGIN ENDED	AT:	TOTAL VOLUM PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	ÇOND (μmhos m or μS/cm)	(circle mg/L or	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
100		1	.15	171.47	7.11	16.4	301		Clear	SI Orange	NNO
115	2.5	3.5	.15	17.51	7.04	16.4	241		1	1	1
125	1.5	5.0	.15	17.54	7.02	16.4	230				
140	2.0	7.0	.15	17.55	7.02	16.4	235		4	Jr	1
							-				
	<u> </u>										
										,	
			-				-				
WELL CAI	PACITY (Gallons	Per Foot): 0.7	'5" = 0 02.	1" = 0.04;	1.25" = 0.0	6; 2" = 0.	16: 3" =	0.37; 4" = 0.65;	5" = 1.02; 6	" = 1.47; 12 "	= 5.88
	ISIDE DIA. CAP			006; 3/16"	= 0.0014;	1/4" = 0.00	26; 5/1	6" = 0.004; 3/8"			= 0.016
SAMPLED	BY (PRINT) / A	FFILIATION:	S	AMPLER(S) S		LING D	AIA	T			
Jeff Ne	wschwand	ler/WSDO	E	116	r			SAMPLING INITIATED AT:	:	SAMPLING ENDED AT:	
UMP OR	TUBING WELL (feet):	25'		MPLE PUMP OW RATE (m		7).		TUBING MATERIAL: P	olvethylene		
	CONTAMINATIO	N: (Y) N	FI	ELD-FILTERE	D: Y !		TER SIZE:		DUPLICATE:	Y N	3
		CONTAINER		tration Equipn		PLE PRESE	RVATION			-	
SAMPLE	- #	ICATION MATERI NE AL	VOLUME	PRESER	VATIVE	TOTAL V	OL	FINAL	INTENDED ANALYSIS AND METHOD	OR EQU	MPLING JIPMENT CODE
CODE	RS	CODE		USE		DED IN FIE	LD (mL)	pH			
m -(-0.	72208	3		HCI				7.02			
			-	-							
			-	-							
				-							
			-		-						
				-							
REMARKS	:										
MATERIAL	CODES:	AG = Amber (Glass; CG	= Clear Glass;	PE = Po	olyethylene;	PP = Pc	olypropylene, S =	Silicone; T = Te	flon; O = Oth	er (Specify)
	G/PURGING	APP = After Per	staltic Pump;	B = Bai		= Bladder P		ESP = Electric Sub		PP = Peristalt	
TES:	NT CODES: F	RFPP = Reverse	riow Perista	nuc Pump;	SIVI = Stra	w Method (T	ubing Grav	nty Drain); VT	= Vacuum Trap;	O = Other (S	эреспу)

1. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>
pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

	Arden's Cou							/ashington			
WELL NO	MW-A	5		SAMPLE			07220	08	DATE: 7-	22.08	
						SING DA					
NELL DIAMETE	R (inches): 2"	TUBING DIAMETER (inches): 1/2		REEN INTE		TO WATE	EPTH 17.13 R (feet):	PURGE PUMP TO OR BAILER: Sub		ric
	LUME PURGE: it if applicable)	1 WELL VOLU	JME = (TOTA	AL WELL DEF	PTH - STA	TIC DEPTH	TO WATER)	X WELL CAF	PACITY gallons/foot	=	gallons
	NT VOLUME PL	JRGE: 1 EQUIF	`	= PUMP VOL		BING CAPAC			GTH) + FLOW CELI		gunorii
-	t if applicable)			= g	allons + (gall	ons/foot X		feet) +	gallons =	gallor
NITIAL PU EPTH IN	JMP OR TUBING WELL (feet):	-	FINAL PUM DEPTH IN V		G	PURGII INITIAT	ED AT:	PURGIN ENDED	AT:	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μmhos/c m or μS/cm)	DISSOLVED OXYGEN (circle mg/L o % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
330	1.	(.2	17.15	7.32	15.7	211		Sl Tulbil	SI Oreng	, NNO
345	3	ч	.2	ו.רו 1	7.45	15.9	221		1	1	1
400	5	7	.2	17.20	7.41	15.9	240				
410	3	(D	.2	17.20	7.43	15.9	213		4	+	4
			-								
			-				-		-		
					,						
/ELL CAI	PACITY (Gallons ISIDE DIA. CAP	Per Foot): 0.7 ACITY (Gal./Ft.	75" = 0.02; .): 1/8" = 0.0	1" = 0.04; 006; 3/16"	1.25" = 0.00 ' = 0.0014;	6; 2" = 0.1 1/4" = 0.002	16; 3" = 0. 26; 5/16"	37; 4" = 0.65; = 0.004; 3/8"			" = 5.88 " = 0.016
AMDI ED	BY (PRINT) / A	EEII IATION:	T e/	AMPLED(S) S		LING D	ATA				
	wschwand				L-	٠.		SAMPLING INITIATED AT	1310	SAMPLING ENDED AT:	1420
	TUBING WELL (feet):	25'		MFLE PUMP OW RATE (n		e):		TUBING MATERIAL: P	olvethylene		-
	CONTAMINATIO	N: (Y) N	FI	ELD-FILTERE tration Equipr	ED: Y <u>M</u>		TER SIZE: _		DUPLICATE:	Y (N)
		CONTAINER	·			PLE PRESE	RVATION		INTENDED	SA	MPLING
SAMPLE CODE		MATERI	VOLUME	PRESER		TOTAL VO		FINAL pH	ANALYSIS AND/ METHOD		UIPMENT CODE
W-AS	672208	3		HCI							
							-				
			-		-+						
	-		1							1	
EMARKS											
	CODES	AG = Amber (Glass; CG:	Clear Glass	; PE = Pc	lyethylene;	PP = Poly	propylene; S =	Silicone; T = Tel	flon; O = Oth	ner (Specify)

1. Stabilization Criteria For range of variation of Last three consecutive readings (see FS 2212, section 3) pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NELL NO:	1 -	ntry Store		T				ashington			2.0	
	MW-3			SAMPLE		U-2-0		<u>ರ</u>	DATE: 7	-21	-08	
						ING DA						
VELL IAMETER	(inches): 2"	TUBING DIAMETER (ii	nches): 1/2		REEN INTER		STATIC DI TO WATEI		OR BAILER: Su		ible Electric	;
	UME PURGE: if applicable)	1 WELL VOLU	ME = (TOTA)	WELL DEF	TH - STA	TIC DEPTH T	O WATER)	X WELL CAF	PACITY gallons/foo	t =		gallon
	T VOLUME PU	RGE: 1 EQUIP	,	PUMP VOL		ING CAPACI			GTH) + FLOW CEL		UME	
niy iiii out i	if applicable)			= g:	allons + (gallo	ns/foot X		feet) +	g	allons =	gallo
	MP OR TUBING VELL (feet):	•	FINAL PUMP DEPTH IN W		3	PURGIN INITIATE		PURGIN ENDED			L VOLUME SED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (μmhos/c m or μS/cm)	DISSOLVED OXYGEN (circle mg/L o % saturation)	TURBIDITY (NTUs)		OLOR escribe)	ODOR (describe
7			- 1	C						-		·
		1	161			1						
		ſ	, ,							T		
					14,	,						
										1		
			-							\top		
-								-		\top		
ELL CAPA UBING INS	ACITY (Gallons SIDE DIA. CAPA	Per Foot): 0.7 ACITY (Gal./Ft.)	5" = 0.02; : 1/8" = 0.00	1" = 0.04; 06; 3/16"	= 0.0014;	2" = 0.10 1/4" = 0.002 LING DA	6; 5/16"	37; 4" = 0.65; = 0.004; 3/8"		6" = 1.4 = 0.01		= 5.88 = 0.016
AMPLED E	BY (PRINT) / AF			MPLER(S) S	IGNATURES		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SAMPLING INITIATED AT	·		PLING ED AT:	
eff Nev	vscriwariu	er/wspoi	_ ı									
UMP OR T	UBING	er/wsbo	SAI	MPLE PUMP				TUBING				
JMP OR T EPTH IN W	UBING VELL (feet):		SAI FLO		L per minute		ER SIZE:	MATERIAL: P				
UMP OR T EPTH IN V	TUBING VELL (feet): ONTAMINATION	N: <u>Y</u> N	SAI FLO	W RATE (m	L per minute D: Y <u>N</u> nent Type:	_ FILT			olyethylene DUPLICATE:	Y	N	
UMP OR T EPTH IN V	UBING VELL (feet):	N: Y N ONTAINER	SAI FLO	W RATE (m LD-FILTERE	L per minute D: Y <u>N</u> nent Type:			MATERIAL: P	DUPLICATE:		SAI	MPLING
UMP OR T EPTH IN V	UBING VELL (feet): ONTAMINATION SAMPLE C SPECIFI	N: Y N ONTAINER ICATION MATERI	SAI FLO	W RATE (m LD-FILTERE	D: Y Note that the second seco	_ FILT	RVATION	MATERIAL: P	DUPLICATE:		SAM EQU	MPLING IIPMENT CODE
UMP OR TEPTH IN VI	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
UMP OR TEPTH IN VI	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
JMP OR T	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
UMP OR TEPTH IN VI	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
UMP OR T EPTH IN W ELD DECC	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
UMP OR T EPTH IN W ELD DECC	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
JMP OR T EPTH IN W ELD DECC SAMPLE ID CODE	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT
SAMPLE ID	VELL (feet): ONTAMINATION SAMPLE C SPECIFI CONTAIN	N: Y N ONTAINER CATION MATERI E AL	SAI FLC FIE Filtr	DW RATE (m LD-FILTERE ration Equipn PRESER)	D: Y Note that the second seco	PLE PRESER	RVATION	MATERIAL: P μm FINAL	INTENDED ANALYSIS AND		SAM EQU	IPMENT

1. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME: A	rden's Cou	intry Store						/ashington		,		
WELL NO:	RW-2			SAMPL	EID: RW	2-07	2208		DATE: 7	22-0	3	
	,					SING DA						
WELL DIAMETER	R (inches): 2"	TUBING DIAMETER	(inches): 4'	DEPTH:	REEN INTE		TO WATER	EPTH (6.9 L R (feet):	PURGE PUMP OR BAILER: St		lectric	
	_UME PURGE: t if applicable)	1 WELL VOL	UME = (TOT = (AL WELL DE	PTH - STA	TIC DEPTH	TO WATER)	X WELL CAP	PACITY gallons/foo	t =	gallon	
	NT VOLUME P	URGE: 1 EQUI		= PUMP VO		BING CAPAC			STH) + FLOW CEI		gallon	
					allons + (ons/foot X		feet) +	gallons	= gallor	
	IMP OR TUBIN WELL (feet):	^G 25′		MP OR TUBIN WELL (feet):	G	PURGII INITIAT		PURGIN ENDED		TOTAL VO PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (μmhos/c m or μS/cm)	DISSOLVED OXYGEN (circle mg/L or % saturation)	TURBIDITY (NTUs)	COLO: (describ		
1610	1	1	. 2	16.84	6.40	14.7	391	NM	SI Tulbie	Clean	ONU	
1630	4	2	٠2	16.85	6.50	14.6	510	1	1	1	1	
645	3	8	.2	16.85	6.44	14.6	456					
700	3	11	.2	16.85	6.51	14.6	448	4	-1	4	4	
					-							
TUBING IN	SIDE DIA. CAI	s Per Foot): 0. PACITY (Gal./Ft	1/8" = 0.0	0006; 3/16	' = 0.0014; SAMP	LING D	26; 5/16"	37; 4" = 0.65; = 0.004; 3/8"		6" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016	
Jeff Ne		der/WSDC	E	AMPLER(S)					SAMPLING INITIATED AT: 1600 SAMPLING ENDED AT: 175			
PUMP OR DEPTH IN	TUBING WELL (feet):	25'	F	LOW RATE (r	nL per minute			TUBING MATERIAL: P	olyethylene			
IELD DEC	ONTAMINATIO	ON: Y N		IELD-FILTER iltration Equip		<u>N</u> FILT	TER SIZE: _	μm	DUPLICATE:	Υ	N	
		CONTAINER FICATION			SAM	PLE PRESE	RVATION		INTENDED		SAMPLING	
SAMPLE I	#	MATER	VOLUME	PRESER		TOTAL VO		FINAL pH	ANALYSIS AND METHOD	EQUIPMENT		
W-2-0		3		ltc	1						-	
.5												
	à											
									,			
REMARKS:												
REMARKS		AG = Amber	Glass CG	= Clear Glass	PF = D/	olyethylene;	PP = Polyg	oronylene: S =	Silicone; T = To	efion: O =	Other (Specify)	

NOTES:

1. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

6.4 Sample Results

SPONANE, WA 11922 E. 15T AVENUE SPONANE VALLEY, WA 99206 ph: (509) 924.9200 fax: (509) 924.9290

August 06, 2008

Jeff Newschwander Washington Department of Ecology - Yakima 15 W. Yakima Ave. Suite 200 Yakima, WA 98902

RE: Arden's Country Store

Enclosed are the results of analyses for samples received by the laboratory on 07/23/08 09:55. The following list is a summary of the Work Orders contained in this report, generated on 08/06/08 16:03.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
SRG0122	Arden's Country Store	J1G07
	commy overc	

TestAmerica Spokane

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Randoe Decker, Project Manager

www.testamericainc.com

SPOKANE, WA 11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924-9200 fbx: (509) 924-9290

Washington Department of Ecology - Yakima	Project Name:	Arden's Country Store	
15 W. Yakima Ave. Suite 200	Project Number:	J1G07	Report Created:
Yakima, WA 98902	Project Manager:	Jeff Newschwander	08/06/08 16:03

ANALYTICAL REPORT FOR SAMPLES										
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
MW-1-072208	SRG0122-01	Water	07/22/08 09:10	07/23/08 09:55						
RW-1-072208	SRG0122-02	Water	07/22/08 11:45	07/23/08 09:55						
MW-A5-072208	SRG0122-03	Water	07/22/08 14:20	07/23/08 09:55						
RW-2-072208	SRG0122-04	Water	07/22/08 17:15	07/23/08 09:55						

TestAmerica Spokane

The results in this report apply to the samples analysed in accordance with the chain of curiody document. This analytical report must be reproduced in its entirety

Randee Decker, Project Manager

taring

www.testamericainc.com

Page 2 of 6

SPOKANE, WA 11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924-9200 fax: (509) 924-9290

Washington Department of Ecology - Yakima	Project Name:	Arden's Country Store	
15 W. Yakima Ave. Suite 200	Project Number:	J1G07	Report Crested:
Yakima, WA 98902	Project Manager:	Jeff Newschwander	08/06/08 16:03

Gasoline Hydrocarbons by NWTPH-Gx and BTEX by EPA Method 8021B TestAmerica Spokane											
Analyte		Method	Recult	MDL+	MRL	Units	Dal	Batch	Prepared	Analyzed	Note
SRG0122-01	(MW-1-072208)		Water			Samp	pled: 07/	22/08 09:10			
Sasoline Range Hy	drocarbons	NWTPH-G/8021	ND		100	աց1	1x	8070198	07/30/08 10:00	07/30/08 14:06	
Benzene		. В	ND		0.500						
Toluene			ND		2.00						
Dhylbenzene			ND		1.00						
Kylenes (total)			ND		1.50						
Surrogate(s):	4-BFB (FID)			69.1%		36	- 150%	~			
	4-BFB (PID)			96.4%		64.1	- 131 %	~		-	
RG0122-02	(RW-1-072208)		Wa	iter		Samp	pled: 07/	22/08 11:45			
Gasoline Range Hy	drocarbons	NWTPH-G/8021 B	ND	_	100	աց1	1x	8070198	07/30/08 10:00	07/30/08 15:20	
Benzene		."	ND		0.500						
Toluene			ND		2.00						
Ethylbenzene			ND		1.00						
Xylenes (total)			ND		1.50						
Surrogate(s):	4-BFB (FID)			66.4%		36	- 150%	*			
	4-BFB (PID)			95.6%		64.1	- 131 %	*		•	
SRG0122-03	(MW-A5-072208)		Wa	iter		Sampled: 07/22/08 14:20					
Gasoline Range Hy	drocarbons	NWTPH-G/8021 B	ND		100	ugl	1x	8070198	07/30/08 10:00	07/30/08 15:52	
Benzene			ND		0.500						
Toluene			ND		2.00						
Ethylbenzene			ND		1.00	•					
Xylenes (total)		•	ND		1.50	•	•		•	•	
Surrogate(s):	4-BFB (FID)			67.3%		36	- 150%	*			
	4-BFB (PID)			103%		64.1	- 131 %	*		-	
SRG0122-04	(RW-2-072208)		Wa	iter		Sampled: 07/22/08 17:15					
Gasoline Range Hy	drocarbons	NWTPH-G/8021 B	ND		100	ugl	1x	8070198	07/30/08 10:00	07/30/08 16:23	
Benzene			ND		0.500						
Toluene			ND		2.00		•				
Ethylbenzene			ND		1.00		•				
Xylenes (total)			ND		1.50	•	•	•	•	•	
Surrogate(s):	4-BFB (FID) 4-BFB (PID)			76.3% 103%			- 150% - 131%			:	

TestAmerica Spokane

The results in this report apply to the samples analysed in accordance with the chain of curiody document. This analytical report must be reproduced in its entirety.

Randee Decker, Project Manager

www.testamericainc.com

Page 3 of 6

SPOKANE, WA 11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924-9200 fax: (509) 924-9290

Γ	Washington Department of Ecology - Yakima	Project Name:	Arden's Country Store	
l	15 W. Yakima Ave. Suite 200	Project Number:	J1G07	Report Created:
l	Yakima, WA 98902	Project Manager:	Jeff Newschwander	08/06/08 16:03

Gasoline Hy	ydrocarbons b	y NWTP	H-Gx and I	BTEX by I TestAmeric		od 80	21B - L	aborat	ory Q	uality C	ontro	l Resul	ts	
QC Batch: 8070198	Water I	reparation	Method:		•									
Analyte	Method	Recult	MDL	MRL	Units	Dal	Source Result	Spike Amt	96 REC	(Limit:)	64 RPD	(Limite)	Analyzed	Notez
Blank (8070198-BLK1)								Extr	acted:	07/30/08 10	:60			
Gaseline Range Hydrocarbons	NWTPH-G/S 021B	ND		100	ug/l	1x	-	-		-	-	-	07/30/08 10:43	
Bergune		ND		0.500	•	•	-	-		-				
Tolume		ND		2.00	•	•	-	-		-				
Ethylbenmena		ND		1.00	•	•	-	-		-				
Xylenes (tetal)		ND		1.50	•	•	-	-		-				
Surrogate(s): +8F8 (FE) +8F8 (FE)		Recovery:	68.6% 196%	La	64.1-131% 64.1-131%	:							67/34/08 10:43	_
LCS (8070198-BS1)								Extr	acted:	07/30/08 10	:00			
Gascline Range Hydrocarbons	NWTPH-G/S 021B	812		100	ug/l	1x	-	1000	81.2%	(80-120)		-	07/30/08 12:48	
Surrogate(s): 4-BFB (FID)		Recovery:	103%	La	nder: 36-150%	•							07/30/08 12:48	
LCS (8070198-BS2)								Extr	acted:	07/30/08 10	:00			
Вепали	NWTPH-G/S 021B	19.0		0.500	ug/l	1x	-	20.0	95.0%	(80-120)	-		07/30/08 13:24	
Tolume		19.3		2.00	•	•	-	•	96.3%	•				
Bihylbergana		19.0		1.00	•	•	-	•	94.8%	(77.6-128)				
Xylenes (tetal)		56.9		1.50	•	•	-	60.0	94.8%	(80-121)				
Surrogate(s): 4-BFB (PID)		Recovery:	98.5%	Line	te: 64.1-131N	•							07/30/08 13:24	_
Duplicate (8070198-DUP1)				QC Source	SRG0128-01			Extr	acted:	07/30/08 10	:00			
Gascline Range Hydrocarbons	NWTPH-G/8 021B	ND		100	ug/l	1x	ND	-		-	21.29	(35)	07/31/08 13:13	
Bergune	*****	4.43		0.500			3.94	_		_	11.6%	(30.7)		
Tolume		ND		2.00			ND	_		_	NR.	(16.8)		
Bitylbergena		1.42		1.00			1.76	_		_	21.19	6 (11.5)		R
Xylenes (total)		414		1.50			4.55	_		_		6 (15.3)		
Surrogate(s): 4-BFB (FID)		Recovery:	74.3%	T.	nute: 36-150N								67/31/08 19:13	
+BFB (P.D.)		mooney.	100N	-	64.1-131%	•							•	
Matrix Spike (8070198-MS1)				QC Source	SRG0128-01			Extr	acted:	07/30/08 10	:00			
Gaseline Range Hydrocurbons	NWTPH-G/8 021B	873		100	1gs	lx	12.7	1000	86.0%	(55.6-126)		-	07/31/08 13:48	
Surrogate(s): 4-BFB (FID)		Recovery:	98.4%	La	ndo: 36-150N	•							07/31/08 19:48	
Matrix Spike (8070198-MS2)				QC Source	SRG0128-01			Extr	acted:	07/30/08 10	:00			
Bergane	NWTPH-G/8 021B	23.0		0.500	ra/l	1×	3.94	20.0	95.0%	(76.5-129)			07/31/08 14:24	
Tolume		20.1		2.00		•	0.295	•	99.0%	(80-120)				
Httylbergera		21.0		1.00		•	1.76	•	96.1%	(90-128)				
Xylenes (tetal)		61.8		1.50			4.55	60.0	95.4%	(80-130)				

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced to its entirety.

Randee Decker, Project Manager

taring

www.testamericainc.com

Page 4 of 6

SPOKANE, WA 11922 E. 1ST AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924-9200 fax: (509) 924-9290

Washington Department of Ecology - Yakima Project Name: Arden's Country Store

15 W. Yakima Ave. Suite 200 Project Number: JIGO7 Report Created:
Yakima, WA 98902 Project Manager: Jeff Newschwander 08/06/08 16:03

Gasoline Hydrocarbons by NWTPH-Gx and BTEX by EPA Method 8021B - Laboratory Quality Control Results TestAmerica Spokane											
QC Batch: 8070198	Water l	Preparation M	fethod: GC	C Volatiles	5						
Analyte	Method	Recult	MDL*	MRL	Units	Dil	Source Result	Spike 46 (I Amet REC	Limits) 64 RPD	(Limits) Analyze	Notes

 Matrix Spike
 (8070198-MS2)
 QC Seurce: SRG0128-01
 Extracted: 67/26/06 19:66

 Surrogate(s):
 4.0F8 (PD)
 Recovery: 103%
 Limits: 64.1-131%
 Lx
 67/34/08 19:24

TestAmerica Spokane

The results in this report apply to the samples analysed in accordance with the chain of curiody document. This analytical report must be reproduced in its entirety

Randee Decker, Project Manager

taringotto

www.testamericainc.com

Page 5 of 6

SPOKANE, WA 11922 E. 15T AVENUE SPOKANE VALLEY, WA 99206-5302 ph: (509) 924-9200 fbx: (509) 924-9290

Washington Department of Ecology - Yakima Project Name: Arden's Country Store

15 W. Yakima Ave. Suite 200 Project Number: JIG07 Report Created:
Yakima, WA 98902 Project Manager: Jeff Newschwander 08/06/08 16:03

Notes and Definitions

Report Specific Notes:

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

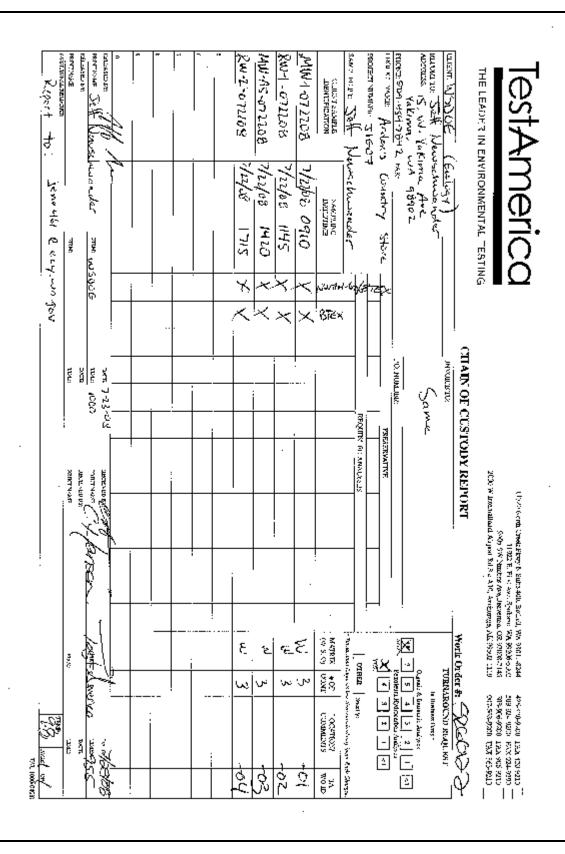
MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.

*MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dil - Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signature Policy.


Signature - Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Spokane

The results in this report apply to the samples analyzed in accordance with the chair of curiody document. This analytical report must be reproduced in its entirety

Randee Decker, Project Manager

Para 6 of 6

6.5 Photo log
Photo 1: Front of Store – from the southwest

Photo 2: Front of store – from the south, former treatment system location

Photo 3: Back of Residence – recovery well and post office from the north

Photo 4: Back of Residence – recovery well and post office from the northwest

