Ecology Review Draft Western Port Angeles Harbor RI/FS

Data Report for 2013 Field Program

Prepared for
Western Port Angeles Harbor Group, consisting of
City of Port Angeles
Georgia-Pacific LLC
Merrill \& Ring
Nippon Paper Industries USA Co., Ltd.
Port of Port Angeles
Prepared by
Integral Consulting Inc.
Seattle, WA
Anchor QEA, LLC
Seattle, WA
Exponent, Inc.
Bellevue, WA
FloydISnider
Seattle, WA

February 5, 2014

CONTENTS

LIST OF FIGURES iv
LIST OF TABLES vi
ACRONYMS AND ABBREVIATIONS viii
1 INTRODUCTION 1-1
2 FIELD PROGRAM OVERVIEW 2-1
2.1 MODIFICATIONS FROM THE SAP 2-1
3 DATA AND DATA QUALITY REVIEW 3-1
3.1 FIELD DATA 3-1
3.2 CHEMICAL ANALYSES 3-1
3.2.1 Data Validation 3-1
3.2.2 Data Qualification 3-2
3.2.3 Data Usability 3-3
3.3 BIOLOGICAL TESTING 3-3
3.4 SPI/PV 3-4
4 RESULTS 4-1
4.1 SEDIMENT CHEMISTRY 4-1
4.2 SEDIMENT TOXICITY 4-1
4.3 TISSUE CHEMISTRY 4-1
4.4 SPME CHEMISTRY AND ESTIMATED POREWATER CONCENTRATIONS 4-2
4.5 SEDIMENT PROFILE/PLAN VIEW IMAGING 4-3
4.6 SUMMARY. 4-3
5 REFERENCES 5-1
Appendix A. Field NotesAppendix B. Sediment Sample Photos
Appendix C. Data Validation Report for Analyses by Alpha Analytical
Appendix D. Data Validation Report for Analyses by ALS Environmental
Appendix E. Data Validation Report for Analyses by AXYS Analytical Services, Ltd.
Appendix F. Data Validation Report for Analyses by SGS-Analytical Perspectives

Appendix G. 2013 Sediment and Tissue Chemistry Data Set (on DVD)
Appendix H. Biological Testing Laboratory Reports and Data QA Summaries
Appendix I. Sediment Profile/Plan View Imaging Report
Appendix J. SPI and Plan View Data
Appendix K. SPI and Plan View Images (on DVD)

LIST OF FIGURES

Figure 1-1. General Location of Western Port Angeles Harbor Site
Figure 2-1. Sediment Locations Sampled in 2013
Figure 2-2. SPI Locations Sampled in 2013
Figure 4-1. Percent Fines in Surface Sediment
Figure 4-2. Total Organic Carbon in Surface Sediment
Figure 4-3. Total Black Carbon in Surface Sediment
Figure 4-4. Ammonia in Surface Sediment Porewater
Figure 4-5. Sulfides in Surface Sediment Porewater
Figure 4-6. Arsenic in Surface Sediment
Figure 4-7. Cadmium in Surface Sediment
Figure 4-8. Mercury in Surface Sediment
Figure 4-9. Zinc in Surface Sediment
Figure 4-10. PCB Aroclors (dry wt) in Surface Sediment
Figure 4-11. PCB Congeners (dry wt) in Surface Sediment
Figure 4-12a. Dioxin/Furan Congener TEQ (0.5DL) in Surface Sediment
Figure 4-12b. Dioxin/Furan Congener TEQ (0DL) in Surface Sediment
Figure 4-13. Copper in Surface Sediment
Figure 4-14. cPAH TEQ in Surface Sediment
Figure 4-15. PCB Congener TEQ in Surface Sediment
Figure 4-16. Bis(2-ethylhexyl)phthalate in Surface Sediment
Figure 4-17. Butylbenzyl Phthalate in Surface Sediment
Figure 4-18. Naphthalene in Surface Sediment
Figure 4-19. Fluorene in Surface Sediment
Figure 4-20. Phenanthrene in Surface Sediment
Figure 4-21. 2-Methylnaphthalene in Surface Sediment
Figure 4-22. LPAH in Surface Sediment
Figure 4-23. Fluoranthene in Surface Sediment
Figure 4-24. Dibenzofuran in Surface Sediment

Figure 4-25. 2,4-Dimethylphenol in Surface Sediment
Figure 4-26. 2-Methylphenol in Surface Sediment
Figure 4-27. 4-Methylphenol in Surface Sediment
Figure 4-28. 2013 Toxicity Test Results
Figure 4-29. Historical and 2013 Toxicity Test Results

LIST OF TABLES

Table 2-1. Summary of Field Notes and Observations from Surface Sediment Collection in Western Port Angeles Harbor
Table 2-2. Sediment Sampling Station Coordinates
Table 2-3. SPI Station Coordinates
Table 3-1. Data Validation Qualifiers and Definitions
Table 3-2. Summary of Qualified Data Points by Data Qualification Reason
Table 3-3. Test Results for the 10-Day Acute Toxicity Test Using Eohaustorius estuarius
Table 3-4. Initial Biomass for 20-Day Chronic Toxicity Test with Neanthes arenaceodentata
Table 3-5. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (dry weight)
Table 3-6. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (ash free dry weight)
Table 3-7a. Test Results for the Larval Development Test with Mytilus galloprovencialis, Using the Resuspension Protocol, Batch 1
Table 3-7b. Test Results for the Larval Development Test with Mytilus galloprovencialis, Using the Resuspension Protocol, Batch 2
Table 3-8. Survival Summary for 45-Day Bioaccumulation Test Using Macoma nasuta and Nephtys caecoides
Table 4-1. SMS Comparison for the Benthic Amphipod Test with Eohaustorius estuarius
Table 4-2. SMS Comparison for the Juvenile Polychaete Test with Neanthes arenaceodentata
Table 4-3a. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis, Test Batch 1
Table 4-3b. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis, Test Batch 2
Table 4-4. Summary of SMS Comparisons for Western Port Angeles Harbor Samples
Table 4-5a. Tissue Concentrations of Dioxins/Furans and PCB Congeners from Bioaccumulation Tests

Table 4-5b. Tissue Concentrations of Dioxins/Furans and PCB Congeners from Bioaccumulation Tests With and Without GAC Treatment
Table 4-6. Summary of $\log K_{\text {ow, }} \log K_{f}$, Measured C_{f}, and Calculated C_{w} Values for PCB Congeners

Table 4-7. \quad Summary of $\log K_{f}$, Measured C_{f}, and Calculated C_{w} Values for Dioxin/Furan Congeners
Table 4-8. Key SPI Parameters Measured in Each Replicate Image
Table 4-9. Key Plan View Parameters Measured in Each Replicate Image

ACRONYMS AND ABBREVIATIONS

Agreed Order	Agreed Order No. DE9781	
Alpha	Alpha Analytical	
ALS	ALS Environmental	
AXYS	AXYS Analytical Services	
cm	centimeter	
Ecology	Washington State Department of Ecology	
EPA	U.S. Environmental Protection Agency	
G\&A	Germano \& Associates	
GAC	granular activated carbon	
GPS	global positioning system	
Integral	Integral Consulting Inc.	
Kow	octanol-water partition coefficient	
m	meter	
MTCA	Model Toxics Control Act	
PAH	polycyclic aromatic hydrocarbon	
РСВ	polychlorinated biphenyl	
PDMS	polydimethylsiloxane	
PRC	performance reference compounds	
QA/QC	quality assurance and quality control	
RI/FS	remedial investigation and feasibility study	
SAP	sampling and analysis plan	
SGS	SGS Analytical Perspectives	
SMS	Washington State Sediment Management Standards	
SPI/PV	sediment profile imaging and plan view	
SPME	solid-phase microextraction	
SVOC	semivolatile organic compound	
TOC	total organic carbon	
TVS	total volatile sulfides	
Data Report for 201 Western Port Angel	Field Program viii	ECOLOGY REVIEW DRAFT February 5, 2014

WAC Washington Administrative Code
WPAH Group Western Port Angeles Harbor Group

1 INTRODUCTION

Port Angeles Harbor, Washington, has been identified as a priority environmental cleanup and restoration project by the Washington State Department of Ecology (Ecology) as part of the Puget Sound Initiative. Under Agreed Order No. DE9781 (Agreed Order) effective May 28, 2013, the Western Port Angeles Harbor Group ${ }^{1}$ (WPAH Group) has agreed to perform a remedial investigation and feasibility study (RI/FS) of Western Port Angeles Harbor (Figure 1-1). Ecology and the WPAH Group have the mutual objective of completing the RI/FS called for under the Agreed Order by January 2015. The Western Port Angeles Harbor RI/FS work plan (WPAHG 2013) is Exhibit B to the Agreed Order, and describes data gaps and data collection to complete the RI/FS report.

A supplemental sampling and analysis plan (SAP) was prepared in accordance with the Agreed Order and RI/FS work plan that describes the data collection tasks and associated methods to fill the remaining data gaps and allow completion of the RI/FS report (Integral et al. 2013). The SAP followed the requirements of the Washington State Model Toxics Control Act (MTCA) Chapter 173-340 Washington Administrative Code (WAC) (Ecology 2001) and the guidance for SAP development provided in Ecology (2008). The types of analyses conducted are listed in Table 4-3 of the SAP (Integral et al. 2013).

The field program involved the following types of data collection:

1. Sediment collection-Depending on the particular location, surface sediments were collected for one or more of the following types of analyses:
a. Sediment chemistry (conventional parameters and chemicals of potential concern)
b. Porewater analyses for ammonia and sulfides
c. Sediment toxicity bioassays
d. Laboratory bioaccumulation
e. Porewater chemistry as determined using solid phase microextraction (SPME) devices
f. Treatability studies using granular activated carbon (GAC)
2. Photographic images
a. Sediment profile images
b. Plan view images

The remainder of the data report contains the following information:

[^0]- Overview of the field program, including any modifications from the SAP
- The chemical, biological testing, and photographic data and documentation of the data quality review process for all data
- Results of sediment chemical, bioassay, bioaccumulation, SPME, and sediment profile image/plan view (SPI/PV) analyses
- References.

2 FIELD PROGRAM OVERVIEW

This data collection effort (described in Integral et al. 2013) was conducted to fill specific remaining data gaps that were identified in the RI/FS work plan (WPAHG 2013), and to provide additional information for use in the feasibility study. Surface sediment grab samples ($0-10$ centimeters [cm]) were collected from 52 stations in Port Angeles Harbor from June 25 through July 9, 2013, and from 2 stations at the reference area (Carr Inlet) on June 25, 2013. Samples were collected at all surface sediment sampling stations that were proposed in the SAP (Integral et al. 2013). Actual station locations and the types of analyses conducted at each location are shown in Figure 2-1.

WPAH and reference area sediments were collected for conventional parameter analysis, which included total organic carbon (TOC), black carbon, total solids, and sediment grain size. Total volatile solids (TVS) were also analyzed in all of the WPAH sediment samples. Samples for porewater ammonia and sulfides analysis were collected at all bioassay stations. Metals, semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, and dioxin and furans were analyzed in sediments collected from a subset of WPAH stations to fill sediment chemistry data gaps on a station-bystation basis in accordance with the SAP (Integral et al. 2013).

A summary of field observations made during the surface sediment collection is presented in Table 2-1. The actual station coordinates for the surface sediment grab samples are provided in Table 2-2. Additional field observations, including sampling times, weather conditions, water conditions, sample composition and other noteworthy information are included in the field notes (Appendix A). Photographs documenting each sample collected are presented in Appendix B.

SPI/PV images were collected from July 15 through 18, 2013. Images were collected from a total of 97 stations (Figure 2-2). These locations were either the same as those sampled for surface sediments or were either reoccupied historical SPI locations or additional data gap stations. The actual station coordinates for the SPI/PV stations are listed in Table 2-3. The 97 stations sampled include the 92 proposed in the SAP (Integral et al. 2013) plus five new stations that were added to the study as a result of a preliminary review of images conducted with Ecology during the SPI/PV survey. A brief summary of this SPI/PV image review process and the results of the survey effort are included in Section 4 of this data report.

2.1 MODIFICATIONS FROM THE SAP

Sediment sample and SPI data collection followed the methods and sampling design presented in the SAP (Integral et al. 2013). During the course of the field event, the following minor modifications to the SAP were made:

- The specific stations where some field quality control samples were collected were changed during the surface grab sediment sampling because better sediment recovery was achieved at the alternative locations. Field quality control samples were collected as follows:
- Field split sample was collected at Station WPAH013 instead of at WPAH015
- Field split sample was collected at Station WPAH040 instead of at WPAH039
- Field split sample was collected at Station WPAH046 instead of at WPAH047
- Station WPAH020 was moved 50 meters (m) west from the target location because of multiple failed attempts at the target location due to logs and large wood debris at the proposed station coordinate
- Station SPI08 was moved to the northwest because a log boom was present at the target location
- Station SPI047 was moved 52 m offshore because cobble and rocks at the original location prevented the grab from closing
- Station SPI061 was moved to the west because a log boom was present at the target location.
- Five new SPI stations (SPI101 to SPI105, see Figure 2-2) were added to the survey per Ecology request based on the preliminary review of the images collected during the survey.

None of these changes to the sampling program were material deviations that affected meeting the requirements of the SAP.

3 DATA AND DATA QUALITY REVIEW

3.1 FIELD DATA

Information on sampling locations, dates, water depths, equipment, and other conditions, and sample identifiers were entered into the WPAH project database, which includes data from 2002 through the current RI collection activities. One hundred percent of hand-entered data was verified based on hard copy records. Quality assurance checks on 100 percent of the electronic field data (e.g., global positioning system [GPS] coordinates from the navigation system) were also conducted following data compilation.

3.2 CHEMICAL ANALYSES

The specific analyses and conventional parameters measured, the laboratories (ALS Environmental [ALS], Alpha Analytical [Alpha], AXYS Analytical Services, Ltd. [AXYS], and SGS Analytical Perspectives [SGS]) performing the analyses, and the analytical methods used are detailed in Section 5 of the SAP (Integral et al. 2013). ALS analyzed all sediment samples for grain size, TVS, metals, SVOCs, and PAHs. ALS also measured ammonia and sulfides in porewater extracted from sediment samples in the laboratory. AXYS measured dioxin/furans and PCB congeners in sediments. Alpha measured sediment TOC and black carbon. SPME and tissue samples from the bioaccumulation tests were analyzed for dioxin/furans and PCB congeners by SGS. SGS also analyzed tissue samples for percent lipids.

3.2.1 Data Validation

Analytical data received from ALS, Alpha, AXYS, and SGS were validated by EcoChem, Inc. Approximately 10 percent of the data was fully validated (Stage 3 validation), and the remaining 90 percent of the data was subjected to Stage 2B validation, which includes the evaluation and assessment of the sample results and applicable quality control results reported by the laboratories.

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan - Western Port Angeles Harbor RI/FS (Integral et al. 2013)
- USEPA National Functional Guidelines for Organic Data Review (USEPA 2008)
- USEPA National Functional Guidelines for Inorganic Data Review (USEPA 2004)
- USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (USEPA 2005)

Data qualifiers were assigned during data validation if applicable control limits were not met, in accordance with U.S. Environmental Protection Agency (EPA) data validation guidelines and the quality control requirements included in the referenced methods. The data validation qualifiers and definitions are summarized in Table 3-1.

The following laboratory deliverables were reviewed during Stage 2B and Stage 3 data validation:

- The case narrative discussing analytical procedures and problems (if any)
- Chain-of-custody documentation and laboratory sample receipt logs
- Instrument calibration results
- Method blank results
- Results for laboratory quality control samples required by the referenced method, including laboratory control sample/laboratory control sample duplicate analyses, matrix spike/matrix spike duplicate analyses, surrogate recoveries, and other method specific quality control samples (e.g., serial dilutions for inductively coupled plasma analyses)
- Results for field quality control samples (i.e., equipment blanks and field duplicates)
- Analytical results.

In addition to the review and assessment of the documentation identified above, data packages subjected to Stage 3 (full) validation included verification of reported concentrations for the field and quality control samples, verification of intermediate transcriptions, and review of instrument data such as mass spectra to verify analyte identification procedures.

3.2.2 Data Qualification

A total of 23,989 data points were reported. Of these, 1,312 (5 percent) were estimated (J/UJ qualified), 1,182 (5 percent) were restated as non-detect (U qualified), and 7 (0.03 percent) were rejected (R qualified). The number of results qualified is summarized by data qualification reason in Table 3-2. Completeness was >99 percent.

Results were estimated (J/UJ-qualified) due to the following reasons:

- Samples analyzed outside of their respective hold times
- Matrix spike recovery outliers
- Precision (all replicates)
- Surrogate spike recovery outliers
- Other
- Instrument performance
- Compound identification.

Results were restated as non-detected (U-qualified) due to the following reasons:

- Field and/or laboratory blank contamination
- Surrogate spike recovery outliers
- Compound identification.

Seven results were rejected during data validation. Two results for benzoic acid in samples SD0003 and SD0015 were rejected due to low matrix spike/matrix spike duplicate recoveries ($\% \mathrm{R}<10 \%$). Seven porewater results for sulfide were rejected due to the samples being analyzed more than three times the holding time criterion of 7 days.

3.2.3 Data Usability

The bulk sediment and porewater sampling and analysis data collected in 2013 meet the criteria set forth in the referenced quality assurance documents, with the exceptions noted above. All results are acceptable for their intended use in the RI/FS, with the exception of the rejected data. Ecology approval of the data for use in the RI/FS was received on December 20, 2013 (Groven 2013, pers. comm.). The data validation reports for each analytical chemistry laboratory are provided in Appendices C through F. The complete validated 2013 sediment chemistry data set is compiled in Appendix G.

3.3 BIOLOGICAL TESTING

Bioassay and bioaccumulation testing was performed by NewFields, Port Gamble, Washington. Sediment bioassays included the 10-day amphipod test using Eohaustorius estuarius, the larval development bioassay with the resuspension protocol (Kendall et al. 2012) using the mussel Mytilus galloprovincialis, and the 20-day Neanthes sp. growth test. All bioassay data were validated by Integral Consulting Inc. (Integral) by comparing methods, positive and negative control results, and water quality monitoring data to Puget Sound Estuary Program protocols (USEPA 1997) and Ecology (2008) method requirements. The results of the bioassays are summarized in Tables 3-3 through 3-8. The complete laboratory bioassay testing report prepared by NewFields is provided in Appendix H.

The bioaccumulation tests exposed adult bivalves (Macoma nasuta) and adult polychaetes (Nephtys caecoides) to sediments for 45 days followed by chemical analysis of the tissues for dioxin/furan and PCB congeners. All bioaccumulation data were validated by Integral by
comparing methods and water quality monitoring data to Dredged Material Management Program guidelines (Corps 2013; Lee et al. 1989, with modifications as provided in Kendall and McMillan 2009). The survival results of the bioaccumulation tests are provided in Table 3-9. The NewFields laboratory bioaccumulation testing report is included in Appendix H.

The validated, analytical tissue results from the bioaccumulation testing are included in Appendix G, and data validation of the tissue chemistry data is discussed above in Section 3.2.

The biological testing data from the Western Port Angeles Harbor RI/FS were complete with respect to the data requirements outlined in the SAP (Integral et al. 2013). The data meet the criteria set forth in the referenced quality assurance documents, with the exceptions noted in the data validation reports that are provided as part of Appendix H .

Despite several minor deviations from the established protocols in the bioassay tests and minor water quality deviations in the larval test and bioaccumulation test as noted in Appendix H , the data provided for the bioassays and bioaccumulation tests are acceptable for use in the RI/FS.

3.4 SPI/PV

Germano \& Associates (G\&A; Bellevue, Washington) conducted the SPI/PV survey, analyzed all images selected for analysis per the methods detailed in the SAP, conducted a quality assurance review of the data set, and prepared a detailed technical report, which is provided in Appendix I. The quality assurance and quality control (QA/QC) methods used during SPI/PV image collection and analysis are detailed in Appendix I. The image analysis approach included importing the jpeg images into Sigmascan Pro^{\circledR} (Aspire Software International) for image calibration and analysis. Color calibration information was determined by measuring $1-\mathrm{cm}$ gradations from the Kodak ${ }^{\circledR}$ Color Separation Guide. This calibration information was applied to all SPI images analyzed. Linear and area measurements were recorded as number of pixels and converted to scientific units using the calibration information. SPI/PV measurements or observational features were recorded on a Microsoft ${ }^{\circledR}$ Excel spreadsheet by an experienced G\&A image analyst. Following the analysis of all images, G\&A's senior scientist (Dr. J. Germano) visually checked 100 percent of the images for the data recorded for each image as an independent QA/QC review of the measurements. A subset of measured parameters was revised based on this senior QA/QC review and all SPI/PV data were approved for use by Dr. Germano before final data interpretation/reporting was conducted.

4 RESULTS

4.1 SEDIMENT CHEMISTRY

Conventional parameters, including TOC, black carbon, total solids, TVS, and sediment grain size were analyzed at all sediment sampling locations. Porewater ammonia and porewater sulfides were analyzed at all bioassay stations. A subset of chemicals was analyzed at stations in accordance with the SAP (Integral et al. 2013) to address existing data gaps as determined through the DQO process (WPAHG 2013).

Chemicals measured in surface $(0-10 \mathrm{~cm})$ sediments, as well as some sediment conventional parameters, are mapped in Figures 4-1 through 4-27. Ecology's preliminary sediment cleanup objectives (NewFields 2013) are used in these maps for screening purposes only and will be further refined in the WPAH RI/FS. These maps include both the data generated by the 2013 RI/FS sampling event conducted by the WPAH Group as well as other recent and validated surface sediment data that will be used in the RI/FS, consistent with the Ecology-approved RI/FS work plan (see Table 3 in WPAHG 2013). Contouring methods followed the conventions used in NewFields (2013).

4.2 SEDIMENT TOXICITY

Full suite bioassay testing (i.e., amphipod survival, larval development, and polychaete growth) was conducted at 15 stations and, when combined with other recent and validated data, provides a robust sediment toxicity data set with 63 sample locations for use in the RI/FS. In addition, the larval test was performed at 27 previously tested locations using the recently improved resuspension protocol (Kendall et al. 2012).

Sediment toxicity data were evaluated according to SMS Table IV (WAC 173-204 Table IV) to determine whether each sediment sample exceeded sediment cleanup objective or cleanup screening level biological criteria. Evaluation results are provided for each test in Tables 4-1, 4-2, and 4-3a,b. Table 4-4 summarizes the SMS pass/fail outcomes for each station across all tests. Figure 4-28 summarizes the final SMS pass/fail designation for the 2013 toxicity testing data set. Figure 4-29 summarizes the final SMS pass/fail designation for all data that will be used in the RI/FS.

4.3 TISSUE CHEMISTRY

Bioaccumulation testing was performed at 15 locations, and the resulting tissue samples were analyzed for dioxin/furan and PCB congeners and for percent lipids. Tissue concentrations of
dioxin/furan and PCB congeners are reported in Table 4-5a. At two locations, WPAH050 and WPAH051, bioaccumulation exposures were conducted a second time after GAC was mixed into the sediment at a concentration of approximately 4 percent (dry weight basis) 48 hours prior to organism exposure. The goal of this treatability testing was to evaluate whether GAC addition affected the uptake of dioxins/furans and PCBs into the test organisms. Tissue concentrations following GAC treatment are provided in Table 4-5b.

4.4 SPME CHEMISTRY AND ESTIMATED POREWATER CONCENTRATIONS

SPME fibers exposed to porewater during the bioaccumulation exposures were analyzed for PCB and dioxin/furan congeners. These data were then used to estimate porewater concentrations using the following approach.

Uptake of hydrophobic organic compounds including PCB and dioxin/furan congeners onto SPME fibers coated with polydimethylsiloxane (PDMS) is described by the fiber-water partition coefficient, or K_{F}. At equilibrium, dissolved porewater concentrations of PCB and dioxin/furan congeners can be estimated from measured concentrations sorbed onto the fiber and the PDMSwater partition coefficient as shown by Equation 1.

$$
C_{w}=C_{F} / K_{F}(E q .1)
$$

where:

C_{W}	$=$	concentration in porewater $(\mathrm{pg} / \mathrm{L})$
C_{F}	$=$	concentration measured in the PDMS coating on the fiber $(\mathrm{pg} / \mathrm{L})$
K_{F}	$=$	PDMS-water partition coefficient $(\mathrm{L} / \mathrm{L})$

To evaluate uptake kinetics and estimate the fraction to steady state achieved over the 45 day deployment in the bioaccumulation test chambers, the SPME fibers were pre-impregnated with a range of ${ }^{13} \mathrm{C}$-labeled performance reference compounds (PRCs), as described in the SAP. The PRC data verified that equilibrium had been achieved or very nearly achieved during the deployment for all PCB and dioxin/furan congeners. Thus, Equation 1 was used to estimate porewater concentrations.

PDMS-water partition coefficients for PCB congeners were estimated from a correlation with literature-based octanol-water partition coefficients (Kow) as shown by Equation 2 (Smedes et al. 2009). A similar correlation was developed for dioxin/furan congeners with the partition coefficients of seven dioxin-like PCB congeners averaged from three measurements (Hsieh et al. 2011; Smedes et al. 2009; Ter Laak et al. 2008) (Equation 3).

$$
\begin{gathered}
\log K_{F}=0.943 * \log K_{\text {OW }}+0.0059 \quad \text { PCBs } \\
\log K_{F}=1.04 * \log K_{\text {OW }}-0.93 \quad \text { Dioxins } / \text { Furans } \\
\text { (Eq.3) }
\end{gathered}
$$

Tables 4-6 and 4-7 present a summary of $\log K_{\text {ow, }} \log \mathrm{K}_{\mathrm{F}}$, measured C_{F}, and calculated C_{w} values for PCB and dioxin/furan congeners, respectively.

4.5 SEDIMENT PROFILE/PLAN VIEW IMAGING

SPI/PV images (at least three replicate images per station) were collected at 97 locations in Port Angeles Harbor from July 15 through 18, 2013. Five stations were added to the 92 locations proposed in the SAP (Integral et al. 2013) based on the daily review of all images collected the previous day by Integral and Ecology scientists. These five stations, WPAH101 through WPAH105, are located across the northern portion of the harbor and were situated to help define onshore-offshore gradients in benthic conditions (Figure 2-2).

The SAP specified analysis of images from a total of 92 stations (one replicate plus a second replicate at 20 percent of the stations), and so images from five stations (WPAH029, WPAH040, WPAH041, WPAH044, and WPAH072) were not fully analyzed as part of this effort. These stations were selected by Integral and Ecology scientists based on a post-survey review of the preliminary SPI/PV results mapped during the preliminary image review.

G\&A conducted the SPI/PV survey and prepared a detailed technical report, which is provided as Appendix I. The report includes maps of key SPI parameters measured and a detailed discussion of the survey results. Summary tables of a subset of key parameters for each SPI and PV image analyzed are provided in Tables 4-8 and 4-9. Full data tables of all SPI and PV image parameters measured and associated metadata are provided in Appendix J. A DVD with jpegs of all SPI/PV images collected in 2013 is also included with this report (Appendix K).

4.6 SUMMARY

The 2013 data generation effort met the requirements of the project SAP (Integral et al. 2013), and the resulting high quality data were approved for use in the WPAH RI/FS by Ecology (Groven 2013). These data, in concert with the historical data identified in the Ecologyapproved project work plan (WPAHG 2012), are sufficient to complete the WPAH RI/FS. The WPAH data set will be used to conduct the analyses needed to complete the RI/FS including the establishment of sediment management areas.

5 REFERENCES

Corps. 2013. Dredged material evaluation and disposal procedures (users' manual). July 2008 with updates in 2009 and 2013. U.S. Army Corps of Engineers, Dredged Material Management Office, Seattle District, Seattle, WA.

Ecology. 2001. Model Toxics Control Act Clean-Up Regulation Chapter 173-340 (Amended February 12, 2001). Publication No. 94-06. Washington State Department of Ecology, Toxics Cleanup Program, Olympia, WA.

Ecology. 2008. Sediment sampling and analysis plan, appendix. Guidance on the development of sediment sampling and analysis plans meeting the requirements of the Sediment Management Standards (Chapter 173-204 WAC). Ecol. Pub. No. 03-09-043. Available at: https://fortress.wa.gov/ecy/publications/summarypages/0309043.html. Washington State Department of Ecology, Sediment Management Unit, Lacey, WA.

Ecology. 2012. Draft sediment cleanup users manual II. Guidance for implementing the Sediment Management Standards, Chapter 173-204 WAC. Publication no. 12-09-057.
Washington State Department of Ecology, Olympia, WA. August.
Groven, C. 2013. Personal communication (e-mail to Western Port Angeles Harbor Group regarding RI/FS validated data approval, dated December 20, 2013). Washington State Department of Ecology.

Hsieh, M.K., C.T. Fu, and S.C.Wu. 2011. Simultaneous estimation of glass-water distribution and PDMS-water partition coefficients of hydrophobic organic compounds using simple batch method. Environ. Sci. Technol. 45:7785-7791.

Integral, Anchor QEA, Exponent, and Floyd Snider. 2013. Sampling and analysis plan Western Port Angeles Harbor RI/FS. Prepared for the Western Port Angeles Harbor Group. Integral Consulting Inc., Seattle, WA, Anchor QEA, LLC, Seattle, WA, Exponent, Bellevue, WA, and Floyd ISnider, Seattle, WA.

Kendall, D., and R. McMillan. 2009. DMMP clarification paper/SMS technical information memorandum. Clarifications to the DMMP bioaccumulation protocol. Prepared by U.S. Army Corps of Engineers, and Washington State Department of Ecology. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

Kendall, D., R. McMillan, B. Gardiner, B. Hester, and J.D. Word. 2012. DMMP/SMS clarification paper. Bioassay endpoint refinements: bivalve larval and Neanthes growth bioassays. Prepared by U.S. Army Corps of Engineers, Washington State Department of Ecology, and NewFields, LLC. U.S. Army Corps of Engineers, Seattle District, Seattle, WA.

Lee, H., B.L. Boese, J. Pelliter, M. Winsor, D.T. Specht, and R.C. Randall. 1989. Guidance manual: bedded sediment tests. EPA-600/x-89-302. U.S. Environmental Protection Agency, Pacific Ecosystems Branch, Bioaccumulation Team, Newport, OR.

NewFields. 2013. Preliminary sediment cleanup objectives for Port Angeles Harbor Port Angeles, WA. Final Report. May 22, 2013. Prepared for Washington State Department of Ecology, Lacey, WA. NewFields, Edmonds, WA.

SAIC. 1999. Port Angeles Harbor wood waste study, Port Angeles, Washington. Prepared for Washington State Department of Ecology, Olympia, WA. Science Applications International Corporation, Environmental Sciences Division, Bothell, WA.

Smedes, F., R.W. Geertmas, T. van der Zande, and K. Booij. 2009. Polymer-water partition coefficients of hydrophobic compounds for passive sampling: Application of cosolvent models for validation. Environ. Sci. Technol. 43(18):7047-7054.

Ter Laak, T.L., F.J.M. Busser, and J.L.M. Hermens. 2008. Poly-(dimethylsiloxane) as passive sampler material for hydrophobic chemicals: effect of chemical properties and sampler characteristics on partitioning and equilibration times. Anal. Chem. 80:3859-3866.

USEPA. 1997. Recommended guidelines for the conducting laboratory toxicity tests on Puget Sound sediments. U.S. Environmental Protection Agency, Region 10, Puget Sound Estuary Program, Seattle, WA.

USEPA. 2004. USEPA Contract Laboratory Program national functional guidelines for inorganic data review. EPA-540-R-04-004. U.S. Environmental Protection Agency, Washington, DC.

USEPA. 2005. USEPA Analytical Services Branch national functional guidelines for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) data review. EPA-540-R-05001. U.S. Environmental Protection Agency, Washington, DC.

USEPA. 2008. USEPA Contract Laboratory Program national functional guidelines for Superfund organic methods data review. EPA-540-R-08-01. U.S. Environmental Protection Agency, Washington, DC.

WPAHG. 2013. Western Port Angeles Harbor remedial investigation/feasibility study work plan. Exhibit B to Agreed Order DE9781. Prepared by the Western Port Angeles Harbor Work Group.

Figures

2/4/2014

1/31/2014

N:IGISIPro
1/31/2014

2/4/2014

2/4/2014

2/3/2014

TABLES

Table 2-1. Summary of Field Notes and Observations from Surface Sediment Collection in Western Port Angeles Harbor

Station	$\begin{gathered} \text { Sample } \\ \text { No. } \\ \hline \end{gathered}$	Date	$\begin{aligned} & \text { Tim } \\ & \text { PDT } \end{aligned}$	$\begin{gathered} \text { Bottom } \\ \text { Deth (m) } \\ \text { MLLW } \end{gathered}$	Penetration (cm) (cm)	Substrate	Color ${ }^{\text {a }}$	Odor		Wood Debris (\%)	Collection Method	$\begin{gathered} \text { Grab } \\ \text { Attempts } \\ \hline \end{gathered}$	Comments and Notes
WPAH001	SD0001	7/3/2013	12:15	${ }^{1.75}$	15	Silt	7.5 YR $2.5 / 1$	No	80	40	Ekman	1	40.50% moisture. Fine wood particles throughout sample. Seaweed on surface of grabs.
WPAHOO2	SD0002	7/3/2013	14:35	$1.5{ }^{\text {b }}$	15	silt	7.5 YR 2.511	No	65	30	Ekman	1	40\% moisture. Fine wood pariciles throughout sample. Seaweed on surface of grabs.
WPAH003	sDooo3	71/2013	11:11	3.2	14	Silt with wood debris	$7.5 \mathrm{YR} 2.5 / 1$	No	103	80	van veen	5	20\% moisture. Coarse wood particles throughout sample. Grain size result confounded by wood particles. Small eel, crabs, juvenie spot prawn. 8 in. crab claw
WPAH004	sDooo4	$7 / 2 / 2013$	9:40	6.3	16	Silt with wood debris	$5 \mathrm{Y} 2.5 / 2$	No	42.5	70	van veen	7	30% moisture. Wood debris, coarse sawdust. Juvenile shrimp, shell fragments, red worms.
WPAH005	sD0005	6/27/2013	14:26	11.7	16	Sandy sitt	$10 \mathrm{YR} 4 / 1$	Faint sulfide	50	5	van Veen	3	$20-30 \%$ moisture. Juvenile crabs, clam shell fragments. 2 grabs were collected for bioaccumulation samples. Station moved 4 m east due to log boom
WPAH006	sD0006	6/27/2013	15:46	6.6	17	Silt	$10 \mathrm{YR} 2 / 1$	Faint sulide	42.5	5	van veen	3	30% moisture. Some larger pieces of bark and small coarse sawdust. Shell fragments. Moved 6 m toward shoreline.
WPAH007	SD0007	6/27/2013	16:52	12.4	${ }^{13}$	Sandy sitt	$7.5 \mathrm{YR} 2.5 / 11$	Sulfide	6^{68}	<5	van veen	3	15\% moisture. Moved station 10 m east due to log boom. Shell fragment and spot prawn. Sediment covered by large piece of kelp.
WPAH008	sD0008	79/2013	10:15	9	16	silt	5 y 2.512	Sulfide	46	40	van veen		Large pieces of bark throughout sample, small crabs and mussel shell.
WPAH009	sD0009	71/2013	9:40	8.6	17	Silt	$2.5 Y 3 / 2$	No	35	<5	van veen	5	20% moisture, shell fragments, barmacle on piece of bark. Few large pieces of bark, organic debris.
WPAH010	SD0010	71/2013	15:34	14.9	17	Silt with some sand	$5 \mathrm{Y} 2.5 / 2$	No	50	15	van veen		30-40\% moisture. Some white fiberous material, similar to what was seen at WPAH050 10 YR 6/3.
WPAH011	sD0011	71/2013	14:06	15.2	17	Silt	7.5 YR 4/1	No	53	<5	van veen	7	50% moisture, few large pieces of bark, worms.
WPAHO12	SD0012	71/12013	11:01	26.7 171	15	Silt with wood debris	7.5 YR 411	NA	63 5	30 <5	van veen	${ }_{6}$	20% moisture. Worms and bark in multiple grabs.
WPAHO13	sD0013	781/2013	9:19	17.1	16	Sitt with some sand	$2.5 Y 3 / 2$	No	55	<5	van veen	4	Split sample. Few shell fragments, few worm tubes.
WPAHO14	SD0015	718/2013	8.41	20.4 189	17	Silt wandy sitt	10YR2/2	Sufide No	48	Trace	van veen	4	20\% moisture. Worm and large piece of bark. ${ }_{30 \%}$ moisure. Small piece of red plastic, shell fragments and worms. Few pieces of bark ($2-3 \mathrm{in}$)
WPAH016	SD0017	6/28/2013	9:25	14.7	16.5	Sandy silt	$10 \mathrm{YR} 4 / 1$	No	45	Trace	van veen	2	Shell fragments and worm tubes, trace wood.
WPAH017	sD0018	79/2013	8:43	14.2	16	Silt with some clay and sand	2.5 Y 3/2	No	60	,	van veen	4	20\% moisture. Few shell fragments and worms.
WPAH018	sD0019	6/28/2013	10:46	11.4	14	Silt	10 YR $2 / 1$	Sulfide	60	30	van veen		10-15\% moisture. Bark and wood throughout sample interval. Large pieces of bark on top of substrate.
WPAH019	sD0020	6/28/2013	11:43	11.8	17	Silt	$10 \mathrm{YR} 2 / 1$	Sulfide	33	50	van Veen	3	Coarse wood chips and shell fragments.
WPAHO2O	sD0021	78/2013	13:05	12.7	17	Silt with some clay	$10 \mathrm{YR} 2 / 1$	Faint Sulide	15	70	van veen	6	Moved station 50 m west. Attempted this station on $6 / 28.30 \%$ moisture. Herrit crab and eel.
WPAHO21	SD0022	713/2013	10:45	$1.3{ }^{\text {b }}$	15	Silt	7.5 YR 2.511	No	68	30	Ekman		40\% moisture, large (6 in.) worm, very fine wood particles (sawdust) throughout sample.
WPAHO22	SD0023	6/26/2013	8:12	11.5	${ }^{13}$	Silt with hitle sand	10 YR 5/1	Sulfide	35	<5	van veen	1	10% moisture, large pieces of bark, clam shell, small crab. Some terrestrial grass on surface.
WPAHO23	SD0024	6/26/2013	8:56	5.7	12	Silt with wood debris	NA	Strong Sulfide	5	80	van veen	3	Wood debris is like sawdust, abundant shell frags, sea lettuce on surface
WPAH026	SD0027	6/25/2013	9:13	12.5	17	Silt with wood debris	$10 \mathrm{YR} 5 / 2$	Sulitide	50	10	van veen	4	60-70\% moisture
WPAHO27	SD0028	6/27/2013	12:48	3.1	16	Silt	$7.5 \mathrm{YR} 4 / 2$	no	5	50	van veen	6	Six grabs were collected for bioaccumulation samples. Spot prawns, juvenile prawns, seaweed, worms.
WPAHO28	sD0029	6/27/2013	8:38	10.6	16	Silt with wood debris	10 YR 4/1	Sulfide	50	50	van veen	1	Worm in grab, sea lettuce on surface of substrate. Wood debris throughout sample. With wood debris 97.5% fines
WPAHO29	SDoo30	6/25/2013	9:54	24.3	17	Silt with wood debris	10 YR 5/2	Sulfide	47.5	<10	van veen	1	50\% moisture
WPAH03O	sD0031	6/25/2013	10:26	22.5	15	Silty with clay	10 YR 5/1	No	62.5	<5	van veen	1	30% moisture, small shell fragments, few pieces of bark
WPAH031	sDoo32	6/25/2013	11:00	16	11	Clayey silt	10 YR 5/1	No	60	<5	van veen	1	30\% moisture
WPAHO32	SD0033	6/2512013	11:34	13.1	13	Clayey silt	10 YR 5/1	No	${ }^{62.5}$	20	van Veen	1	40\% moisture, large (2 in.) pieces of woodbark
WPAH033	sDoo34	6/25/2013	13:02	10.9	14	Clayey sitt with sand	10 YR 5/1	Faint sulfide	18	10	van veen	1	With wood fines, percent fines $=55 \%$
WPAH034	sDoo35	6/25/2013	13:30	13.7	15	Silt with some sand	10 YR $5 / 1$	No	${ }^{46}$	${ }^{10}$	van veen	4	10% moisture, live clam, 3 (6 in.) worms, sculpin, crab and eel
WPAHO35 WPAH036	SD0036 SDoo37	6/25/2013 6/25/2013	$\begin{aligned} & 14: 38 \\ & 1514 \end{aligned}$	14.4 9.6	$\begin{aligned} & 11 \\ & 16 \end{aligned}$	Mostly silt, with gravel surface Silt with some sand	$10 \mathrm{YR} 2 / 2$ $7.5 \mathrm{YR} 2.5 / 1$	No No	35 62.5	5 <5	van Veen van Veen	5 1	10% moisture, sand in upper 1 cm , remainder silt, large piece of bark 10% moisture, few pieces bark, bark in grab's jaws, shell frags.
шРАНозт	SDoo38	6/25/2013	15:45	10.3	16.5	Silt with some sand	10 YR 5/1	Sulfide	45	<5	van veen	1	12 small (0.5 cm) crabs, 2% shell frags, mix of bark milled wood frags.
WPAH038	sDoo39	6/25/2013	17:14	4.3	11	Clayey silt	$10 \mathrm{YR} 4 / 1$	No	50	0	van veen	4	Sample collected from 3 grabs, sloped surface $3-11 \mathrm{~cm}$ penetration, lots of kelp. Shell fragments. Live clam (Clinocardium)
WPAH039	sD0040	6/26/2013	17:11	27.2	17	Silt	$10 \mathrm{YR} 4 / 1$	Sulfide	40	20	van veen	2	20% moisture, large worm ($5-6 \mathrm{in}$.) on outside of Van veen
WPAHO40	SD0042	${ }^{\text {6/266/2013 }}$	9:27	40.2	16	Silt	${ }^{7.5} 5 \mathrm{YR} 2.5 / 1$	Sulfide	75	0	van veen	1	Field spilit. 10% moisture.
WPAHO41	spoou3 sDoo44	6/26/2013 6/25/2013	$\begin{aligned} & 10.22 \\ & 10.20 \\ & 17.30 \end{aligned}$	23.8	16	$\begin{gathered} \text { silt } \\ \text { Clayey silt } \end{gathered}$	7.5 YR 4/1 10 YR 4/1	No No	62.5 65	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	van Veen van veen	1	15% moisture, thin red worms. < 10% moisture, several worms and small crabs
WPAH043	SD0045	6/26/2013	10:52	${ }_{24.6}$	16	Silt with wood debris	7.5 YR 2.511	No	50	40	van veen	1	< 10% moistre, Several worms and small crabs
WPAH044	sD0046	6/26/2013	11:21	40.3	11	Silt with clay	$7.5 \mathrm{YR} 4 / 1$	No	90	0	van veen	1	10% moisture, few particles of organic debris, worms.
WPAH045	SD0047	6/26/2013	12:37	24.3	15	Silt with some sand	10 YR 4/1	No	60	<5	van Veen	1	20\% moisture, small sticks and reed like grasses, few worms.
WPAH046	SD0048	6/26/2013	14:43	15.2	11	Silt with some sand	10 YR 4/1	No		0	Power grab	6	Rocks throughout sample interval and some shell fragments.
WPAH047	sD0049	6/26/2013	16:38	44.9	7.5	Fine sand with sitt	$5 \mathrm{Y} 2.5 / 2$	No	16	<3	Power grab	4	10% moisture, few shell fragments. Moved station 50 m south.
WPAHO48	SD0051	77312013	15:50	$1.4{ }^{6}$	15	Sill ${ }_{\text {Silt }}$	$7.5 \mathrm{YR} 2.5 / 1$	Sulife	NA	10	Ekman		Large pieces of bark ($2-4 \mathrm{in}$.) throughout sample. Seaweed on surface of sample. No photo.
WPAHO49 WPAHO5O	sDo052	7/1/2013	$\begin{aligned} & 13: 09 \\ & 14: 26 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\underset{\substack{\text { Silt with wood debris } \\ \text { Sitt }}}{\text { cher }}$	$10 \mathrm{YR} 2 / 2$ 7.5 YR 2.511	Sulfide	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \end{aligned}$	van veen	4	20% moisture. White fiberous material in sample. Small crabs.
WPAH051	SDoo54	7/3/2013	17:14	$1.5{ }^{\text {b }}$	15	Silt	NA	No	NA	20	Ekman	1	60\% moisture. Sea slugs, small eel, , oall crab and smal amphipods.
wPAH052	sD0055	78/2013	14:16	34.4	17	Silt with some clay	7.5 YR 4/2	Sulfide	69	69	van veen	4	20\% moisture

Notes:
$\%=$ percent
$\mathrm{cm}=$ centimeter
$1 \mathrm{D}=$ identificaion
$\mathrm{m}=$ meter
$\mathrm{MLLW}=$ mean low low water
$\mathrm{mm}=$ milineter
$\mathrm{mm}=$ milimeter
$\mathrm{NA}=$ not avaiable
PDT $=$ Pacific Dayight Time
The Globe Program. 2004. The Globe soil color book. A pocket guide for the identificaion of soil colors.

Table 2-2. Sediment Sampling Station Coordinates

Station	Description	Longitude	Latitude
WPAH003	Sediment	-123.4633125	48.13465958
WPAH004	Sediment	-123.4611905	48.13333024
WPAH005	Sediment	-123.4606175	48.13292583
WPAH006	Sediment	-123.4609267	48.132805
WPAH007	Sediment	-123.4596958	48.13192917
WPAH008	Sediment	-123.4584394	48.13032833
WPAH009	Sediment	-123.4608233	48.13664567
WPAH010	Sediment	-123.4597204	48.13514583
WPAH011	Sediment	-123.4595754	48.13360083
WPAH012	Sediment	-123.45616	48.13570333
WPAH013	Sediment	-123.4565971	48.13311042
WPAH014	Sediment	-123.4530956	48.133145
WPAH015	Sediment	-123.45308	48.13153958
WPAH016	Sediment	-123.45383	48.12935583
WPAH017	Sediment	-123.4520725	48.12829667
WPAH018	Sediment	-123.4495511	48.12691167
WPAH019	Sediment	-123.4499908	48.139365
WPAH020	Sediment	-123.4455361	48.13956556
WPAH022	Sediment	-123.4602883	48.13301
WPAH023	Sediment	-123.4597217	48.131285
WPAH024	Sediment	-123.4566567	48.12862333
WPAH025	Sediment	-123.4533806	48.12626055
WPAH026	Sediment	-123.4605133	48.13631667
WPAH027	Sediment	-123.4534942	48.13835667
WPAH028	Sediment	-123.45119	48.13888167
WPAH029	Sediment	-123.44899	48.13293667
WPAH030	Sediment	-123.446095	48.13106667
WPAH031	Sediment	-123.4492467	48.12849667
WPAH032	Sediment	-123.4501083	48.12713333
WPAH033	Sediment	-123.447195	48.12522167
WPAH034	Sediment	-123.443355	48.12542667
WPAH035	Sediment	-123.4413983	48.12553667
WPAH036	Sediment	-123.44015	48.12427667
WPAH037	Sediment	-123.4388183	48.123765
WPAH038	Sediment	-123.4339156	48.12213389
WPAH039	Sediment	-123.4446933	48.13919333
WPAH040	Sediment	-123.443765	48.13674
WPAH041	Sediment	-123.440985	48.13085667
WPAH042	Sediment	-123.435495	48.12564
WPAH043	Sediment	-123.4389767	48.14049
WPAH044	Sediment	-123.4349367	48.13600333
WPAH045	Sediment	-123.4313083	48.13037667
WPAH046	Sediment	-123.416685	48.13968833
WPAH047	Sediment	-123.4048083	48.13706667
WPAH049	Sediment	-123.4636592	48.1352025
WPAH050	Sediment	-123.4613233	48.13403333
WPAH052	Sediment	-123.4520525	48.13636917
WPAH001	Sediment	-123.4689427	48.13221838
WPAH002	Sediment	-123.4686079	48.13256533
WPAH021	Sediment	-123.4690761	48.13217884
WPAH048	Sediment	-123.4696667	48.13311913
WPAH051	Sediment	-123.4681973	48.13292975

Table 2-3. SPI Station Coordinates

Station	Description	Longitude	Latitude
SPI_WPAH003	SPI and Full Suite Bioassay Station	-123.4633388	48.13467125
SPI_WPAH004	SPI and Full Suite Bioassay Station	-123.4611879	48.13334417
SPI_WPAH005	SPI and Full Suite Bioassay Station	-123.4605438	48.13294125
SPI_WPAH006	SPI and Full Suite Bioassay Station	-123.4609229	48.13282958
SPI_WPAH007	SPI and Full Suite Bioassay Station	-123.4596944	48.13192542
SPI_WPAH008	SPI and Full Suite Bioassay Station	-123.4589388	48.13032625
SPI_WPAH009	SPI and Full Suite Bioassay Station	-123.4607973	48.1366775
SPI_WPAH010	SPI and Full Suite Bioassay Station	-123.4597421	48.13513208
SPI_WPAH011	SPI and Full Suite Bioassay Station	-123.4595821	48.13361625
SPI_WPAH012	SPI and Full Suite Bioassay Station	-123.4561731	48.135715
SPI_WPAH013	SPI and Full Suite Bioassay Station	-123.4566175	48.13311958
SPI_WPAH014	SPI and Full Suite Bioassay Station	-123.4531104	48.13316708
SPI_WPAH015	SPI and Full Suite Bioassay Station	-123.4531067	48.13154833
SPI_WPAH016	SPI and Full Suite Bioassay Station	-123.4538079	48.12935083
SPI_WPAH017	SPI and Full Suite Bioassay Station	-123.4521258	48.12831708
SPI_WPAH018	SPI and Full Suite Bioassay Station	-123.4495308	48.12690167
SPI_WPAH019	SPI and Full Suite Bioassay Station	-123.4500063	48.13933646
SPI_WPAH020	SPI and Full Suite Bioassay Station	-123.4455419	48.13955937
SPI_WPAH022	SPI and Larval Bioassay Re-test Station	-123.4602542	48.13298792
SPI_WPAH023	SPI and Larval Bioassay Re-test Station	-123.4597217	48.1313075
SPI_WPAH024	SPI and Larval Bioassay Re-test Station	-123.4566477	48.128615
SPI_WPAH025	SPI and Larval Bioassay Re-test Station	-123.4533204	48.12623917
SPI_WPAH026	SPI and Larval Bioassay Re-test Station	-123.4604846	48.13631208
SPI_WPAH027	SPI and Larval Bioassay Re-test Station	-123.4534517	48.13830625
SPI_WPAH028	SPI and Larval Bioassay Re-test Station	-123.4512304	48.13888917
SPI_WPAH029	SPI and Larval Bioassay Re-test Station	-123.4489646	48.13291167
SPI_WPAH030	SPI and Larval Bioassay Re-test Station	-123.4460625	48.13106583
SPI_WPAH031	SPI and Larval Bioassay Re-test Station	-123.4492392	48.12850167
SPI_WPAH032	SPI and Larval Bioassay Re-test Station	-123.4501017	48.12716333
SPI_WPAH033	SPI and Larval Bioassay Re-test Station	-123.4472179	48.12520917
SPI_WPAH034	SPI and Larval Bioassay Re-test Station	-123.4433438	48.12541417
SPI_WPAH035	SPI and Larval Bioassay Re-test Station	-123.4413796	48.1255075
SPI_WPAH036	SPI and Larval Bioassay Re-test Station	-123.4401617	48.12430833
SPI_WPAH037	SPI and Larval Bioassay Re-test Station	-123.4387975	48.12381708
SPI_WPAH038	SPI and Larval Bioassay Re-test Station	-123.4339133	48.1221825
SPI_WPAH039	SPI and Larval Bioassay Re-test Station	-123.4446667	48.139165
SPI_WPAH040	SPI and Larval Bioassay Re-test Station	-123.4437875	48.13673729
SPI_WPAH041	SPI and Larval Bioassay Re-test Station	-123.441015	48.13086292
SPI_WPAH042	SPI and Larval Bioassay Re-test Station	-123.4354896	48.12560417
SPI_WPAH043	SPI and Larval Bioassay Re-test Station	-123.4389925	48.14051333
SPI_WPAH044	SPI and Larval Bioassay Re-test Station	-123.4349373	48.13601417
SPI_WPAH045	SPI and Larval Bioassay Re-test Station	-123.4313508	48.1303725
SPI_WPAH046	SPI and Larval Bioassay Re-test Station	-123.4166525	48.13966875
SPI_WPAH047	SPI and Larval Bioassay Re-test Station	-123.4048125	48.13709208
SPI_WPAH053	SAIC 1999 Woodwaste Study SPI Station	-123.4620075	48.13467
SPI_WPAH054	SAIC 1999 Woodwaste Study SPI Station	-123.4600683	48.13318375
SPI_WPAH055	SAIC 1999 Woodwaste Study SPI Station	-123.4576446	48.13084125
SPI_WPAH056	SAIC 1999 Woodwaste Study SPI Station	-123.4564138	48.12933125
SPI_WPAH057	SAIC 1999 Woodwaste Study SPI Station	-123.46087	48.13586917
SPI_WPAH058	SAIC 1999 Woodwaste Study SPI Station	-123.4593463	48.13416833
SPI_WPAH059	SAIC 1999 Woodwaste Study SPI Station	-123.4581129	48.1328475
SPI_WPAH060	SAIC 1999 Woodwaste Study SPI Station	-123.4552025	48.12981708

Table 2-3. SPI Station Coordinates

Station	Description	Longitude	Latitude
SPI_WPAH061	SAIC 1999 Woodwaste Study SPI Station	-123.4594902	48.13672812
SPI_WPAH062	SAIC 1999 Woodwaste Study SPI Station	-123.4590067	48.13547833
SPI_WPAH063	SAIC 1999 Woodwaste Study SPI Station	-123.4560052	48.13468396
SPI_WPAH064	SAIC 1999 Woodwaste Study SPI Station	-123.4555288	48.13201021
SPI_WPAH065	SAIC 1999 Woodwaste Study SPI Station	-123.4540163	48.13088333
SPI_WPAH066	SAIC 1999 Woodwaste Study SPI Station	-123.4502463	48.12736708
SPI_WPAH067	SAIC 1999 Woodwaste Study SPI Station	-123.4495054	48.12784083
SPI_WPAH068	SAIC 1999 Woodwaste Study SPI Station	-123.4470158	48.1267925
SPI_WPAH069	SAIC 1999 Woodwaste Study SPI Station	-123.4445417	48.12633792
SPI_WPAH070	SAIC 1999 Woodwaste Study SPI Station	-123.4403438	48.12833292
SPI_WPAH071	SAIC 1999 Woodwaste Study SPI Station	-123.4397733	48.12619062
SPI_WPAH072	SAIC 1999 Woodwaste Study SPI Station	-123.4393317	48.12472333
SPI_WPAH073	SAIC 1999 Woodwaste Study SPI Station	-123.4376879	48.12500917
SPI_WPAH074	SAIC 1999 Woodwaste Study SPI Station	-123.4543442	48.13532729
SPI_WPAH075	SAIC 1999 Woodwaste Study SPI Station	-123.453981	48.13380976
SPI_WPAH076	SAIC 1999 Woodwaste Study SPI Station	-123.4525163	48.13199708
SPI_WPAH077	SAIC 1999 Woodwaste Study SPI Station	-123.450695	48.13099083
SPI_WPAH078	SAIC 1999 Woodwaste Study SPI Station	-123.4547076	48.13749905
SPI_WPAH079	SAIC 1999 Woodwaste Study SPI Station	-123.4522877	48.13652083
SPI_WPAH080	SAIC 1999 Woodwaste Study SPI Station	-123.4518204	48.1350225
SPI_WPAH081	SAIC 1999 Woodwaste Study SPI Station	-123.4506621	48.13364917
SPI_WPAH082	SAIC 1999 Woodwaste Study SPI Station	-123.4495304	48.13232
SPI_WPAH083	SAIC 1999 Woodwaste Study SPI Station	-123.4520358	48.13767542
SPI_WPAH084	SAIC 1999 Woodwaste Study SPI Station	-123.4499983	48.136695
SPI_WPAH085	SAIC 1999 Woodwaste Study SPI Station	-123.4488025	48.1354425
SPI_WPAH086	SAIC 1999 Woodwaste Study SPI Station	-123.4473225	48.13385583
SPI_WPAH087	SAIC 1999 Woodwaste Study SPI Station	-123.4496881	48.13866333
SPI_WPAH088	SAIC 1999 Woodwaste Study SPI Station	-123.4476446	48.1376525
SPI_WPAH089	SAIC 1999 Woodwaste Study SPI Station	-123.4453558	48.13767167
SPI_WPAH090	SAIC 1999 Woodwaste Study SPI Station	-123.4433671	48.1368275
SPI_WPAH091	SAIC 1999 Woodwaste Study SPI Station	-123.4403838	48.13597125
SPI_WPAH092	SAIC 1999 Woodwaste Study SPI Station	-123.4440088	48.13933708
SPI_WPAH093	SAIC 1999 Woodwaste Study SPI Station	-123.4407967	48.13970333
SPI_WPAH094	SAIC 1999 Woodwaste Study SPI Station	-123.4337758	48.13850583
SPI_WPAH095	SAIC 1999 Woodwaste Study SPI Station	-123.4316675	48.13765458
SPI_WPAH096	SAIC 1999 Woodwaste Study SPI Station	-123.4253346	48.13833375
SPI_WPAH097	SPI Only Station	-123.4596563	48.13747167
SPI_WPAH098	SPI Only Station	-123.4549033	48.13852958
SPI_WPAH099	SPI Only Station	-123.4402821	48.1409775
SPI_WPAH100	SPI Only Station	-123.4347042	48.14098917
SPI_WPAH101	SPI Stations Added During 2013 Quick Look	-123.4405875	48.13785667
SPI_WPAH102	SPI Stations Added During 2013 Quick Look	-123.4374217	48.13881208
SPI_WPAH103	SPI Stations Added During 2013 Quick Look	-123.4342425	48.1397975
SPI_WPAH104	SPI Stations Added During 2013 Quick Look	-123.4300371	48.139675
SPI_WPAH105	SPI Stations Added During 2013 Quick Look	-123.4238167	48.13840792

[^1]Table 3-1. Data Validation Qualifiers and Definitions

Data Qualifier	Definition	Explanation
J	Estimated	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	Estimated non-detect	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	Rejected	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
U	Non-detect	The sample was analyzed for the analyte, but the analyte was not detected above the reported sample quantitation limit.
EMPC	Estimated	Estimated maximum possible concentration
DNR	Do not report	Do not report; a more appropriate result is reported from another analysis or dilution.

Table 3-2. Summary of Qualified Data Points by Data Qualification Reason

Data Qualification Reason	Number of Data Points Estimated ${ }^{\text {a }}$	Number of Data Points Qualified Not-Detected	Number of Data Points Rejected
Calculated TOC result per memo "PM and Data Sum Rules memo 071013 FINAL.pdf".	171	57	
Improper sample handling or sample preservation; exceeded holding times	88		5
Field blank contamination		81	
Lab blank contamination	3	142	
Matrix spike (MS and/or MSD) recoveries - low bias	4		2
Precision (all replicates)	222		
Surrogate spike recoveries - high bias	154		
Surrogate spike recoveries - low bias	133	4	
Other (see DV report for details)	62		
Instrument performance	10		
Compound identification	500	898	
Totals ${ }^{\text {b }}$	1,347	1,182	7
Notes: DV = data validation MS = matrix spike MSD = matrix spike duplicate			
${ }^{\text {a }}$ Includes all J and UJ qualified results. ${ }^{\mathrm{b}}$ Some results were assigned data qualifiers based on more than one data quality issue. Therefore, sums presented in this table may not be equal to the sums discussed in Section 3.2.2 of the report text.			

Table 3-3. Test Results for the 10-Day Acute Toxicity Test Using Eohaustorius estuarius

Lab	Station	Treatment/ Sample Number	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
NewFields	NA	Control	1	20	17	3	85	96	7
			2	20	19	1	95		
			3	20	20	0	100		
			4	20	20	0	100		
			5	20	20	0	100		
NewFields	CR-12	CR-12	1	20	20	0	100	96	2
			2	20	19	1	95		
			3	20	19	1	95		
			4	20	19	1	95		
			5	20	19	1	95		
NewFields	CARR-20	CARR-20	1	20	18	2	90	93	3
			2	20	19	1	95		
			3	20	19	1	95		
			4	20	19	1	95		
			5	20	18	2	90		
NewFields	CR-02	CR-02	1	20	20	0	100	98	4
			2	20	20	0	100		
			3	20	20	0	100		
			4	20	18	2	90		
			5	20	20	0	100		
NewFields	WPAH001	SD0001	1	20	20	0	100	93	4
			2	20	18	2	90		
			3	20	18	2	90		
			4	20	19	1	95		
			5	20	18	2	90		
NewFields	WPAH002	SD0002	1	20	16	4	80	95	9
			2	20	19	1	95		
			3	20	20	0	100		
			4	20	20	0	100		
			5	20	20	0	100		

Table 3-3. Test Results for the 10-Day Acute Toxicity Test Using Eohaustorius estuarius

Lab	Station	Treatment/ Sample Number	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
NewFields	WPAH003	SD0003	1	20	19	1	95	94	4
			2	20	18	2	90		
			3	20	18	2	90		
			4	20	20	0	100		
			5	20	19	1	95		
NewFields	WPAH004	SD0004	1	20	19	1	95	96	4
			2	20	19	1	95		
			3	20	20	0	100		
			4	20	18	2	90		
			5	20	20	0	100		
NewFields	WPAH005	SD0005	1	20	20	0	100	100	0
			2	20	20	0	100		
			3	20	20	0	100		
			4	20	20	0	100		
			5	20	20	0	100		
NewFields	WPAH006	SD0006	1	20	20	0	100	96	7
			2	20	20	0	100		
			3	20	19	1	95		
			4	20	17	3	85		
			5	20	20	0	100		
NewFields	WPAH007	SD0007	1	20	19	1	95	90	12
			2	20	18	2	90		
			3	20	14	6	70		
			4	20	20	0	100		
			5	20	19	1	95		
NewFields	WPAH008	SD0008	1	20	20	0	100	98	4
			2	20	20	0	100		
			3	20	20	0	100		
			4	20	18	2	90		
			5	20	20	0	100		

Table 3-3. Test Results for the 10-Day Acute Toxicity Test Using Eohaustorius estuarius

Lab	Station	Treatment/ Sample Number	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
NewFields	WPAH009	SD0009	1	20	20	0	100	99	2
			2	20	19	1	95		
			3	20	20	0	100		
			4	20	20	0	100		
			5	20	20	0	100		
NewFields	WPAH010	SD0010	1	20	20	0	100	99	2
			2	20	20	0	100		
			3	20	20	0	100		
			4	20	19	1	95		
			5	20	20	0	100		
NewFields	WPAH011	SD0011	1	20	17	3	85	92	8
			2	20	20	0	100		
			3	20	17	3	85		
			4	20	18	2	90		
			5	20	20	0	100		
NewFields	WPAH012	SD0012	1	20	20	0	100	96	4
			2	20	19	1	95		
			3	20	19	1	95		
			4	20	20	0	100		
			5	20	18	2	90		
NewFields	WPAH013	SD0013	1	20	19	1	95	98	3
			2	20	20	0	100		
			3	20	20	0	100		
			4	20	19	1	95		
			5	20	20	0	100		
NewFields	WPAH014	SD0014	1	20	19	1	95	97	3
			2	20	20	0	100		
			3	20	20	0	100		
			4	20	19	1	95		
			5	20	19	1	95		

Table 3-3. Test Results for the 10-Day Acute Toxicity Test Using Eohaustorius estuarius

Lab	Station	Treatment/ Sample Number	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
NewFields	WPAH015	SD0015	1	20	19	1	95	95	4
			2	20	19	1	95		
			3	20	20	0	100		
			4	20	18	2	90		
			5	20	19	1	95		
NewFields	WPAH016	SD0017	1	20	19	1	95	98	3
			2	20	20	0	100		
			3	20	19	1	95		
			4	20	20	0	100		
			5	20	20	0	100		
NewFields	WPAH017	SD0018	1	20	17	3	85	95	6
			2	20	20	0	100		
			3	20	19	1	95		
			4	20	20	0	100		
			5	20	19	1	95		
NewFields	WPAH018	SD0019	1	20	19	1	95	94	2
			2	20	19	1	95		
			3	20	19	1	95		
			4	20	19	1	95		
			5	20	18	2	90		
NewFields	WPAH019	SD0020	1	20	20	0	100	96	7
			2	20	20	0	100		
			3	20	17	3	85		
			4	20	19	1	95		
			5	20	20	0	100		
NewFields	WPAH020	SD0021	1	20	20	0	100	94	7
			2	20	20	0	100		
			3	20	18	2	90		
			4	20	17	3	85		
			5	20	19	1	95		

Notes:
NA = not applicable
SD = standard deviation

Table 3-4. Initial Biomass for 20-Day Chronic Toxicity Test with Neanthes arenaceodentata

Notes:
$\mathrm{mg}=$ milligram
SD = standard deviation

Table 3-5. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (dry weight)

Lab	Station	Treatment/ Sample Number	Replicate	Number Alive	Number Dead or Missing	Percent Survival	Mean Percent Survival	SD	Tare Weight (mg)	End Weight (mg)	Total Biomass (mg)	Biomass per Individual (mg)	Individual Growth Rate (mg/ind/d)	Mean Total Biomass (mg)	SD	Mean Individual Biomass (mg)	SD	Individual Growth Rate (mg/ind/d)	SD
NewFields			1	5	0	100			152.84	196.50	43.66	8.732	0.409						
			2	5	0	100			146.92	200.82	53.90	10.780	0.512						
	NA	Control	3	5	0	100			165.03	228.59	63.56	12.712	0.608						
			4	5	0	100			120.84	167.02	46.18	9.236	0.434						
			5	5	0	100	100	0.0	133.14	196.05	62.91	12.582	0.602	54.04	9.2	10.81	1.8	0.513	0.092
NewFields			1	5	0	100			148.72	215.06	66.34	13.268	0.636						
			2	5	0	100			156.53	225.47	68.94	13.788	0.662						
	CR-12	CR-12	3	5	0	100			148.46	219.26	70.80	14.160	0.681						
			4	5	0	100			140.98	204.44	63.46	12.692	0.607						
			5	5	0	100	100	0.0	138.89	200.22	61.33	12.266	0.586	66.17	3.9	13.23	0.8	0.634	0.039
NewFields			1	5	0	100			141.75	209.21	67.46	13.492	0.647						
			2	5	0	100			151.12	216.24	65.12	13.024	0.624						
	CARR-20	CARR-20	3	5	0	100			152.35	224.05	71.70	14.34	0.690						
			4	5	0	100			148.54	199.41	50.87	10.174	0.481						
			5	5	0	100	100	0.0	155.97	212.52	56.55	11.31	0.538	62.34	8.5	12.47	1.7	0.596	0.085
NewFields			1	5	0	100			144.98	192.26	47.28	9.456	0.445						
			2	5	0	100			145.33	190.22	44.89	8.978	0.422						
	CR-02	CR-02	3	5	0	100			133.92	167.24	33.32	6.664	0.306						
			4	5	0	100			131.09	168.47	37.38	7.476	0.346						
			5	5	0	100	100	0.0	122.42	181.78	59.36	11.872	0.566	44.45	10.1	8.89	2.0	0.417	0.101
NewFields			1	5	0	100			135.78	195.31	59.53	11.906	0.568						
			2	5	0	100			143.85	194.38	50.53	10.106	0.478						
	WPAH001	SD0001	3	5	0	100			124.63	185.24	60.61	12.122	0.579						
			4	5	0	100			133.27	204.51	71.24	14.248	0.685						
			5	5	0	100	100	0.0	130.79	186.14	55.35	11.07	0.526	59.45	7.7	11.89	1.5	0.567	0.077
NewFields			1	5	0	100			142.06	209.82	67.76	13.552	0.650						
			2	5	0	100			132.46	186.36	53.90	10.78	0.512						
	WPAH002	SD0002	3	5	0	100			139.10	198.19	59.09	11.818	0.564						
			4	5	0	100			133.59	194.28	60.69	12.138	0.580						
			5	5	0	100	100	0.0	140.70	211.91	71.21	14.242	0.685	62.53	6.9	12.51	1.4	0.598	0.069
NewFields			1	5	0	100			157.53	223.64	66.11	13.222	0.634						
			2	5	0	100			142.33	210.18	67.85	13.57	0.651						
	WPAH003	SD0003	3	5	0	100			144.70	214.22	69.52	13.904	0.668						
			4	5	0	100			135.65	218.76	83.11	16.622	0.804						
			5	5	0	100	100	0.0	143.80	230.47	86.67	17.334	0.839	74.65	9.5	14.93	1.9	0.719	0.095
NewFields			1	5	0	100			152.94	225.77	72.83	14.566	0.701						
			2	5	0	100			128.99	197.25	68.26	13.652	0.655						
	WPAH004	SD0004	3	5	0	100			118.21	189.51	71.30	14.26	0.686						
			4	5	0	100			124.61	194.48	69.87	13.974	0.671						
			5	5	0	100	100	0.0	137.63	213.39	75.76	15.152	0.730	71.60	2.9	14.32	0.6	0.689	0.029
NewFields			1	5	0	100			136.81	204.72	67.91	13.582	0.652						
			2	5	0	100			162.65	240.18	77.53	15.506	0.748						
	WPAH005	SD0005	3	5	0	100			131.15	213.04	81.89	16.378	0.792						
			4	5	0	100			129.49	191.59	62.10	12.42	0.594						
			5	5	0	100	100	0.0	136.45	211.11	74.66	14.932	0.719	72.82	7.9	14.56	1.6	0.701	0.079

Table 3-5. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (dry weight)

Lab	Station	Treatment/ Sample Number	Replicate	Number Alive	Number Dead or Missing	Percent Survival	Mean Percent Survival	SD	Tare Weight (mg)	End Weight (mg)	Total Biomass (mg)	```Biomass per Individual (mg)```	Individual Growth Rate (mg/ind/d)	Mean Total Biomass (mg)	SD	Mean Individual Biomass (mg)	SD	Individual Growth Rate (mg/ind/d)	SD
NewFields			1	5	0	100			150.15	229.04	78.89	15.778	0.762						
			2	5	0	100			154.22	232.92	78.70	15.74	0.760						
	WPAH006	SD0006	3	5	0	100			136.08	209.78	73.70	14.74	0.710						
			4	6	0	100			130.20	219.59	89.39	14.89833	0.718						
			5	5	0	100	100	0.0	140.39	230.13	89.74	17.948	0.870	82.08	7.1	15.82	1.3	0.764	0.064
NewFields			1	5	0	100			143.02	223.70	80.68	16.136	0.779						
			2	5	0	100			138.19	215.56	77.37	15.474	0.746						
	WPAH007	SD0007	3	5	0	100			148.00	209.43	61.43	12.286	0.587						
			4	5	0	100			123.64	186.37	62.73	12.546	0.600						
			5	5	0	100	100	0.0	142.58	216.74	74.16	14.832	0.714	71.27	8.7	14.25	1.7	0.685	0.087
NewFields			1	5	0	100			128.81	188.62	59.81	11.962	0.571						
			2	5	0	100			131.58	209.02	77.44	15.488	0.747						
	WPAH008	SD0008	3	5	0	100			130.96	203.13	72.17	14.434	0.694						
			4	5	0	100			124.30	185.75	61.45	12.29	0.587						
			5	5	0	100	100	0.0	142.23	198.76	56.53	11.306	0.538	65.48	8.9	13.10	1.8	0.627	0.089
NewFields			1	5	0	100			145.31	215.10	69.79	13.958	0.671						
			2	5	0	100			155.40	234.38	78.98	15.796	0.762						
	WPAH009	SD0009	3	5	0	100			149.08	220.72	71.64	14.328	0.689						
			4	5	0	100			141.15	214.76	73.61	14.722	0.709						
			5	5	0	100	100	0.0	146.32	223.88	77.56	15.512	0.748	74.32	3.9	14.86	0.8	0.716	0.039
NewFields			1	5	0	100			152.79	232.87	80.08	16.016	0.773						
			2	5	0	100			146.89	215.52	68.63	13.726	0.659						
	WPAH010	SD0010	3	5	0	100			148.67	222.57	73.90	14.78	0.712						
			4	5	0	100			151.93	230.56	78.63	15.726	0.759						
			5	5	0	100	100	0.0	164.69	253.17	88.48	17.696	0.857	77.94	7.4	15.59	1.5	0.752	0.074
NewFields			1	5	0	100			132.33	169.27	36.94	7.388	0.342						
			2	5	0	100			164.16	235.31	71.15	14.23	0.684						
	WPAH011	SD0011	3	5	0	100			143.42	207.87	64.45	12.89	0.617						
			4	5	0	100			144.26	211.04	66.78	13.356	0.640						
			5	5	0	100	100	0.0	131.10	196.19	65.09	13.018	0.624	60.88	13.6	12.18	2.7	0.581	0.136
NewFields			1	5	0	100			148.20	223.24	75.04	15.008	0.723						
			2	5	0	100			145.12	219.94	74.82	14.964	0.721						
	WPAH012	SD0012	3	5	0	100			136.77	212.94	76.17	15.234	0.734						
			4	5	0	100			145.19	223.79	78.60	15.72	0.759						
			5	5	0	100	100	0.0	146.60	213.89	67.29	13.458	0.646	74.38	4.2	14.88	0.8	0.716	0.042
NewFields			1	5	0	100			141.22	202.04	60.82	12.164	0.581						
			2	5	0	100			133.86	195.81	61.95	12.39	0.592						
	WPAH013	SD0013	3	5	0	100			139.64	210.40	70.76	14.152	0.680						
			4	5	0	100			148.15	226.47	78.32	15.664	0.756						
			5	5	0	100	100	0.0	149.34	224.77	75.43	15.086	0.727	69.46	7.9	13.89	1.6	0.667	0.079
NewFields			1	5	0	100			135.97	208.92	72.95	14.59	0.702						
			2	5	0	100			134.67	192.60	57.93	11.586	0.552						
	WPAH014	SD0014	3	5	0	100			140.82	219.97	79.15	15.83	0.764						
			4	5	0	100			146.05	213.55	67.50	13.5	0.648						
			5	5	0	100	100	0.0	126.45	192.44	65.99	13.198	0.633	68.70	7.9	13.74	1.6	0.660	0.079

Table 3-5. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (dry weight)

Lab	Station	Treatment/ Sample Number	Replicate	Number Alive	Number Dead or Missing	Percent Survival	Mean Percent Survival	SD	Tare Weight (mg)	End Weight (mg)	Total Biomass (mg)	\qquad	Individual Growth Rate (mg/ind/d)	Mean Total Biomass (mg)	SD	Mean Individual Biomass (mg)	SD	$\begin{aligned} & \text { Individual } \\ & \text { Growth } \\ & \text { Rate } \\ & \text { (mg/ind/d) } \end{aligned}$	SD
NewFields			1	5	0	100			117.63	197.34	79.71	15.942	0.770						
			2	5	0	100			127.13	181.61	54.48	10.896	0.517						
	WPAH015	SD0015	3	5	0	100			125.15	204.36	79.21	15.842	0.765						
			4	5	0	100			124.22	183.53	59.31	11.862	0.566						
			5	5	0	100	100	0.0	125.76	185.84	60.08	12.016	0.573	66.56	12.0	13.31	2.4	0.638	0.120
NewFields			1	5	0	100			129.08	204.98	75.90	15.18	0.732						
			2	5	0	100			141.33	220.76	79.43	15.886	0.767						
	WPAH016	SD0017	3	5	0	100			119.83	196.28	76.45	15.29	0.737						
			4	5	0	100			133.78	218.70	84.92	16.984	0.822						
			5	5	0	100	100	0.0	132.40	222.64	90.24	18.048	0.875	81.39	6.1	16.28	1.2	0.787	0.061
NewFields			1	5	0	100			130.12	207.20	77.08	15.416	0.743						
			2	5	0	100			124.05	192.07	68.02	$17.005^{\text {a }}$	0.823						
	WPAH017	SD0018	3	5	0	100			123.49	195.26	71.77	14.354	0.690						
			4	5	0	100			126.07	214.81	88.74	17.748	0.860						
			5	5	0	100	100	0.0	111.40	174.50	63.10	12.62	0.604	73.74	9.8	15.43	2.1	0.744	0.103
NewFields			1	5	0	100			123.20	187.88	64.68	12.936	0.619						
			2	5	0	100			131.78	194.94	63.16	12.632	0.604						
	WPAH018	SD0019	3	5	0	100			139.81	214.35	74.54	14.908	0.718						
			4	5	0	100			136.85	229.90	93.05	18.61	0.903						
			5	5	0	100	100	0.0	137.02	221.78	84.76	16.952	0.820	76.04	12.9	15.21	2.6	0.733	0.129
NewFields			1	5	0	100			146.04	222.09	76.05	15.21	0.733						
			2	5	0	100			142.92	202.79	59.87	11.974	0.571						
	WPAH019	SD0020	3	5	0	100			135.74	217.77	82.03	16.406	0.793						
			4	5	0	100			135.02	207.16	72.14	14.428	0.694						
			5	5	0	100	100	0.0	138.86	218.64	79.78	15.956	0.770	73.97	8.7	14.79	1.7	0.712	0.087
NewFields			1	5	0	100			144.02	224.55	80.53	16.106	0.778						
			2	5	0	100			138.22	210.06	71.84	14.368	0.691						
	WPAHO20	SD0021	3	5	0	100			127.75	208.78	81.03	16.206	0.783						
			4	5	0	100			173.95	255.83	81.88	16.376	0.791						
			5	5	0	100	100	0.0	152.70	232.10	79.40	15.88	0.767	78.94	4.1	15.79	0.8	0.762	0.041

Notes:
$d=$ day
ind $=$ individual
$\mathrm{ind}=$ individual
$\mathrm{mg}=$ milligram
NA $=$ not applicable
SD = standard deviation
${ }^{\text {a }}$ A worm was lost by the testing laboratory from Sample SD0018, Replicate 2 during transit to the balance; five worms were removed from the test chamber, but only four worms were in the weigh boat prior to weighing.

Table 3-6. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (ash free dry weight)

Lab	Station	Treatment/ Sample Number	Replicate	Number Alive	Number Dead or Missing	Percent Survival	Mean Percent Survival	SD	End Ash Weight (mg)	Gut Content (mg)	Mean Gut Content	Biomass per Individual of Ashed Specimen (mg)	Mean Biomass per Individual of Ashed Specimen (mg)	Individual Growth Rate-ashed (mg/ind/d)	Mean Individual Growth Rate-ashed (mg/ind/d)	SD
NewFields	NA	Control	1	5	0	100			163.89	11.05		6.52		0.304		
			2	5	0	100			164.58	17.66		7.25		0.340		
			3	5	0	100			186.06	21.03		8.51		0.403		
			4	5	0	100			137.67	16.83		5.87		0.271		
			5	5	0	100	100	0.0	152.39	19.25	17.16	8.73	7.38	0.414	0.347	0.062
NewFields	CR-12	CR-12	1	5	0	100			173.61	24.89		8.29		0.392		
			2	5	0	100			179.72	23.19		9.15		0.435		
			3	5	0	100			174.36	25.90		8.98		0.427		
			4	5	0	100			162.23	21.25		8.44		0.400		
			5	5	0	100	100	0.0	161.86	22.97	23.64	7.67	8.51	0.361	0.403	0.029
NewFields	CARR-20	CARR-20	1	5	0	100			165.94	24.19		8.65		0.410		
			2	5	0	100			174.86	23.74		8.28		0.392		
			3	5	0	100			179.42	27.07		8.93		0.424		
			4	5	0	100			159.71	11.17		7.94		0.375		
			5	5	0	100	100	0.0	173.30	17.33	20.70	7.84	8.33	0.370	0.394	0.023
NewFields	CR-02	CR-02	1	5	0	100			158.66	13.68		6.72		0.314		
			2	5	0	100			159.66	14.33		6.11		0.283		
			3	5	0	100			145.51	11.59		4.35		0.195		
			4	5	0	100			141.19	10.10		5.46		0.251		
			5	5	0	100	100	0.0	137.62	15.20	12.98	8.83	6.29	0.419	0.292	0.083
NewFields	WPAH001	SD0001	1	5	0	100			145.16	9.38		10.03		0.479		
			2	5	0	100			152.91	9.06		8.29		0.392		
			3	5	0	100			136.57	11.94		9.73		0.464		
			4	5	0	100			147.02	13.75		11.50		0.553		
			5	5	0	100	100	0.0	140.32	9.53	10.73	9.16	9.74	0.436	0.465	0.059
NewFields	WPAH002	SD0002	1	5	0	100			152.63	10.57		11.44		0.550		
			2	5	0	100			143.53	11.07		8.57		0.406		
			3	5	0	100			149.92	10.82		9.65		0.460		
			4	5	0	100			144.33	10.74		9.99		0.477		
			5	5	0	100	100	0.0	154.15	13.45	11.33	11.55	10.24	0.555	0.490	0.063
NewFields	WPAH003	SD0003	1	5	0	100			165.91	8.38		11.55		0.555		
			2	5	0	100			151.35	9.02		11.77		0.566		
			3	5	0	100			154.82	10.12		11.88		0.572		
			4	5	0	100			147.20	11.55		14.31		0.693		
			5	5	0	100	100	0.0	154.85	11.05	10.02	15.12	12.93	0.734	0.624	0.083
NewFields	WPAH004	SD0004	1	5	0	100			163.14	10.20		12.53		0.604		
			2	5	0	100			138.61	9.62		11.73		0.564		
			3	5	0	100			126.87	8.66		12.53		0.604		
			4	5	0	100			133.94	9.33		12.11		0.583		
			5	5	0	100	100	0.0	149.74	12.11	9.98	12.73	12.32	0.614	0.594	0.020

Table 3-6. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (ash free dry weight)

Lab	Station	Treatment/ Sample Number	Replicate	Number Alive	Number Dead or Missing	Percent Survival	Mean Percent Survival	SD	End Ash Weight (mg)	Gut Content (mg)	Mean Gut Content	Biomass per Individual of Ashed Specimen (mg)	Mean Biomass per Individual of Ashed Specimen (mg)	Individual Growth Rate-ashed (mg/ind/d)	Mean Individual Growth Rate-ashed (mg/ind/d)	SD
NewFields	WPAH005	SD0005	1	5	0	100			148.98	12.17		11.15		0.535		
			2	5	0	100			176.79	14.14		12.68		0.612		
			3	5	0	100			146.93	15.78		13.22		0.639		
			4	5	0	100			137.61	8.12		10.80		0.518		
			5	5	0	100	100	0.0	147.41	10.96	12.23	12.74	12.12	0.615	0.584	0.054
NewFields	WPAH006	SD0006	1	5	0	100			162.00	11.85		13.41		0.648		
			2	5	0	100			165.76	11.54		13.43		0.649		
			3	5	0	100			147.64	11.56		12.43		0.599		
			4	6	0	100			144.45	14.25		12.52		0.604		
			5	5	0	100	100	0.0	154.99	14.60	12.76	15.03	13.36	0.729	0.646	0.052
NewFields	WPAH007	SD0007	1	5	0	100			158.41	15.39		13.06		0.631		
			2	5	0	100			150.85	12.66		12.94		0.625		
			3	5	0	100			157.79	9.79		10.33		0.494		
			4	5	0	100			133.46	9.82		10.58		0.507		
			5	5	0	100	100	0.0	154.26	11.68	11.87	12.50	11.88	0.603	0.572	0.066
NewFields	WPAH008	SD0008	1	5	0	100			136.96	8.15		10.33		0.494		
			2	5	0	100			145.23	13.65		12.76		0.616		
			3	5	0	100			143.07	12.11		12.01		0.578		
			4	5	0	100			134.36	10.06		10.28		0.492		
			5	5	0	100	100	0.0	150.24	8.01	10.40	9.70	11.02	0.463	0.529	0.065
NewFields	WPAH009	SD0009	1	5	0	100			155.25	9.94		11.97		0.576		
			2	5	0	100			169.34	13.94		13.01		0.628		
			3	5	0	100			161.33	12.25		11.88		0.572		
			4	5	0	100			153.04	11.89		12.34		0.595		
			5	5	0	100	100	0.0	155.53	9.21	11.45	13.67	12.57	0.661	0.606	0.038
NewFields	WPAH010	SD0010	1	5	0	100			166.96	14.17		13.18		0.637		
			2	5	0	100			158.99	12.10		11.31		0.543		
			3	5	0	100			159.97	11.30		12.52		0.604		
			4	5	0	100			163.80	11.87		13.35		0.645		
			5	5	0	100	100	0.0	177.62	12.93	12.47	15.11	13.09	0.733	0.632	0.069
NewFields	WPAH011	SD0011	1	5	0	100			137.94	5.61		6.27		0.291		
			2	5	0	100			174.69	10.53		12.12		0.584		
			3	5	0	100			155.20	11.78		10.53		0.504		
			4	5	0	100			155.82	11.56		11.04		0.530		
			5	5	0	100	100	0.0	143.23	12.13	10.32	10.59	10.11	0.507	0.483	0.112
NewFields	WPAH012	SD0012	1	5	0	100			160.53	12.33		12.54		0.605		
			2	5	0	100			158.22	13.10		12.34		0.595		
			3	5	0	100			151.18	14.41		12.35		0.595		
			4	5	0	100			156.38	11.19		13.48		0.652		
			5	5	0	100	100	0.0	158.59	11.99	12.60	11.06	12.36	0.531	0.596	0.043

Table 3-6. Test Results for the 20-Day Chronic Toxicity Test Using Neanthes arenaceodentata (ash free dry weight)

Lab	Station	Treatment/ Sample Number	Replicate	Number Alive	Number Dead or Missing	Percent Survival	Mean Percent Survival	SD	End Ash Weight (mg)	Gut Content (mg)	Mean Gut Content	Biomass per Individual of Ashed Specimen (mg)	Mean Biomass per Individual of Ashed Specimen (mg)	Individual Growth Rate-ashed (mg/ind/d)	Mean Individual Growth Rate-ashed (mg/ind/d)	SD
NewFields	WPAH013	SD0013	1	5	0	100			154.03	12.81		9.60		0.458		
			2	5	0	100			146.13	12.27		9.94		0.475		
			3	5	0	100			152.99	13.35		11.48		0.552		
			4	5	0	100			162.13	13.98		12.87		0.621		
			5	5	0	100	100	0.0	162.63	13.29	13.14	12.43	11.26	0.599	0.541	0.073
NewFields	WPAH014	SD0014	1	5	0	100			150.70	14.73		11.64		0.560		
			2	5	0	100			143.90	9.23		9.74		0.465		
			3	5	0	100			155.71	14.89		12.85		0.620		
			4	5	0	100			158.46	12.41		11.02		0.529		
			5	5	0	100	100	0.0	138.31	11.86	12.62	10.83	11.22	0.519	0.539	0.057
NewFields	WPAH015	SD0015	1	5	0	100			136.48	18.85		12.17		0.586		
			2	5	0	100			142.14	15.01		7.89		0.372		
			3	5	0	100			142.79	17.64		12.31		0.593		
			4	5	0	100			140.73	16.51		8.56		0.406		
			5	5	0	100	100	0.0	138.42	12.66	16.13	9.48	10.08	0.452	0.482	0.103
NewFields	WPAH016	SD0017	1	5	0	100			144.06	14.98		12.18		0.587		
			2	5	0	100			156.38	15.05		12.88		0.622		
			3	5	0	100			131.55	11.72		12.95		0.625		
			4	5	0	100			149.37	15.59		13.87		0.671		
			5	5	0	100	100	0.0	150.10	17.70	15.01	14.51	13.28	0.703	0.642	0.046
NewFields	WPAH017	SD0018	1	5	0	100			144.65	14.53		12.51		0.603		
			2	5	0	100			134.25	10.20		11.56		0.556		
			3	5	0	100			137.82	14.33		11.49		0.552		
			4	5	0	100			141.97	15.90		14.57		0.706		
			5	5	0	100	100	0.0	125.45	14.05	13.80	9.81	11.99	0.468	0.577	0.087
NewFields	WPAH018	SD0019	1	5	0	100			136.24	13.04		10.33		0.494		
			2	5	0	100			144.83	13.05		10.02		0.479		
			3	5	0	100			157.03	17.22		11.46		0.551		
			4	5	0	100			160.23	23.38		13.93		0.674		
			5	5	0	100	100	0.0	155.83	18.81	17.10	13.19	11.79	0.637	0.567	0.086
NewFields	WPAH019	SD0020	1	5	0	100			166.02	19.98		11.21		0.538		
			2	5	0	100			155.72	12.80		9.41		0.448		
			3	5	0	100			154.04	18.30		12.75		0.615		
			4	5	0	100			150.68	15.66		11.30		0.543		
			5	5	0	100	100	0.0	155.11	16.25	16.60	12.71	11.48	0.613	0.552	0.068
NewFields	WPAH020	SD0021	1	5	0	100			157.83	13.81		13.34		0.645		
			2	5	0	100			152.61	14.39		11.49		0.552		
			3	5	0	100			142.87	15.12		13.18		0.637		
			4	5	0	100			190.02	16.07		13.16		0.636		
			5	5	0	100	100	0.0	168.6	. 9	15.07	12.69	12.77	0.612	0.616	0.038

Notes:
$\mathrm{d}=$ day
ind $=$ individual
$\mathrm{mg}=$ milligram

NA = not applicable
SD = standard deviation

Table 3-7a. Test Results for the Larval Development Test Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch ${ }^{10}$

Table 3-7a. Test Results for the Larval Development Test Mytius galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch $1^{\text {b }}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields		SD0023	1	137	10	147	42	38	7							58		
			2	139	21	160	41	32	13							59		
			3	147	3	150	38	37	2							62		
	WPAH022		4	154	17	171	35	28	10							65		
			5	158	8	166	33	30	5	37.8	3.9	32.8	4.3	7.3	4.3	67	62.2	3.9
			Mean	147														
NewFields		SD0024	1	149	8	157	37	34	5							63		
			2	162	10	172	31	27	6							69		
			3	158	4	162	33	31	2							67		
	WPAH023		4	176	8	184	26	22	4							74		
			5	145	2	147	39	38	1	33.2	5.1	30.5	6.0	3.8	1.9	61	66.8	5.1
			Mean	158														
NewFields		SD0025	1	138	18	156	42	34	12							58		
			2	133	19	152	44	36	13							56		
			3	145	23	168	39	29	14							61		
	WPAH024		4	101	35	136	57	42	26							43		
			5	97	25	122	59	48	20	48.1	9.4	37.9	7.6	16.8	6.1	41	51.9	9.4
			Mean	122.8														
NewFields		SD0026	1	182	3	185	23	22	2							77		
			2	177	2	179	25	24	1							75		
			3	161	4	165	32	30	2							68		
	WPAH025		4	166	5	171	30	28	3							70		
			5	219	3	222	7	6	1	23.4	9.7	22.0	9.5	1.9	0.8	93	76.6	9.7
			Mean	181														
NewFields		SD0027	1	138	1	139	42	41	1							58		
			2	126	6	132	47	44	5							53		
			3	166	10	176	30	26	6							70		
	WPAH026		4	122	10	132	48	44	8							52		
			5	111	11	122	53	48	9	43.9	8.9	40.7	8.8	5.5	3.2	47	56.1	8.9
			Mean	132.6														
$\overline{\text { NewFields }}$		SD0028	1	171	10	181	28	23	6							72		
			2	178	10	188	25	20	5							75		
			3	172	12	184	27	22	7							73		
	WPAH027		4	183	8	191	23	19	4							77		
			5	172	15	187	27	21	8	25.9	2.2	21.2	1.6	5.9	1.4	73	74.1	2.2
			Mean	175.2														
$\overline{\text { NewFields }}$		SD0029	1	157	4	161	34	32	2							66		
			2	137	22	159	42	33	14							58		
			3	164	4	168	31	29	2							69		
	WPAH028		4	114	15	129	52	45	12							48		
			5	137	25	162	42	31	15	40.0	8.3	34.1	6.5	9.2	6.3	58	60.0	8.3
			Mean	141.8														

Table 3-7a. Test Results for the Larval Development Test Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch ${ }^{10}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields	WPAH029	SD0030	1	156	2	158	34	33	1							66		
			2	166	3	169	30	29	2							70		
			3	172	5	177	27	25	3							73		
			4	156	3	159	34	33	2							66		
			5	152	3	155	36	34	2	32.1	3.5	30.8	3.9	1.9	0.6	64	67.9	3.5
			Mean	160.4														
NewFields	WPAH030	SD0031	1	154	0	154	35	35	0							65		
			2	190	10	200	20	15	5							80		
			3	164	14	178	31	25	8							69		
			4	156	3	159	34	33	2							66		
			5	167	4	171	29	28	2	29.7	6.1	27.1	7.7	3.4	3.1	71	70.3	6.1
			Mean	166.2														
NewFields	WPAH031	SD0032	1	169	4	173	29	27	2							71		
			2	184	11	195	22	18	6							78		
			3	181	9	190	23	20	5							77		
			4	216	4	220	9	7	2							91		
			5	192	16	208	19	12	8	20.3	7.4	16.6	7.6	4.4	2.4	81	79.7	7.4
			Mean	188.4														
NewFields	WPAH032	SD0033	1	186	8	194	21	18	4							79		
			2	179	6	185	24	22	3							76		
			3	175	5	180	26	24	3							74		
			4	108	13	121	54	49	11							46		
			5	155	6	161	34	32	4	32.1	13.4	28.8	12.3	4.9	3.3	66	67.9	13.4
			Mean	160.6														
NewFields	WPAH033	SD0034	1	159	6	165	33	30	4							67		
			2	162	13	175	31	26	7							69		
			3	156	15	171	34	28	9							66		
			4	131	4	135	45	43	3							55		
			5	181	9	190	23	20	5	33.2	7.6	29.3	8.6	5.5	2.5	77	66.8	7.6
			Mean	157.8														
$\overline{\text { NewFields }}$	WPAH034	SD0035	1	164	9	173	31	27	5							69		
			2	185	3	188	22	20	2							78		
			3	194	2	196	18	17	1							82		
			4	192	4	196	19	17	2							81		
			5	151	2	153	36	35	1	25.0	8.0	23.4	7.8	2.2	1.7	64	75.0	8.0
			Mean	177.2														
NewFields	WPAH035	SD0036	1	179	11	190	24	20	6							76		
			2	201	11	212	15	10	5							85		
			3	170	6	176	28	26	3							72		
			4	200	7	207	15	12	3							85		
			5	167 183	6	173	29	27	3	22.4	6.9	19.0	7.5	4.2	1.2	71	77.6	6.9
			Mean															

Table 3-7a. Test Results for the Larval Development Test Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch ${ }^{1}{ }^{\text {b }}$

Table 3-7a. Test Results for the Larval Development Test Mytius galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch $1^{\text {b }}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields	WPAH043	SD0045	1	186	6	192	21	19	3							79		
			2	154	3	157	35	34	2							65		
			3	163	6	169	31	29	4							69		
			4	155	12	167	34	29	7							66		
			5	147	3	150	38	37	2	31.9	6.4	29.4	6.7	3.6	2.1	62	68.1	6.4
			Mean	161														
NewFields	WPAH044	SD0046	1	193	11	204	18	14	5							82		
			2	171	10	181	28	23	6							72		
			3	211	6	217	11	8	3							89		
			4	212	7	219	10	7	3							90		
			5	196	6	202	17	15	3	16.8	7.1	13.5	6.4	4.0	1.4	83	83.2	7.1
			Mean	196.6														
$\overline{\text { NewFields }}$	WPAH045	SD0047	1	166	3	169	30	29	2							70		
			2	186	4	190	21	20	2							79		
			3	194	7	201	18	15	3							82		
			4	220	10	230	7	3	4							93		
			5	159	5	164	33	31	3	21.7	10.2	19.3	11.3	3.0	1.0	67	78.3	10.2
			Mean	185														
$\overline{\text { NewFields }}$	WPAH046	SD0048	1	192	8	200	19	15	4							81		
			2	215	14	229	9	3	6							91		
			3	193	10	203	18	14	5							82		
			4	209	11	220	12	7	5							88		
			5	200	14	214	15	9	7	14.6	4.2	9.8	5.1	5.3	1.0	85	85.4	4.2
			Mean	201.8														
NewFields	WPAH047	SD0049	1	220	3	223	7	6	1							93		
			2	212	5	217	10	8	2							90		
			3	214	7	221	9	7	3							91		
			4	198	7	205	16	13	3							84		
			Mean ${ }^{5}$	185 205.8	6	191	22	19	3	12.9	6.0	10.6	5.7	2.7	0.9	78	87.1	6.0

Notes:
NA = not applicable
SD = standard deviation
${ }^{\text {a }}$ Kendall et al. (2012)
${ }^{\mathrm{b}}$ Due to holding time requirements, the larval development bioassay was performed in two batches.

Table 3-7b. Test Results for the Larval Development Test with Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch $2{ }^{\text {b }}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields	NA	Control	1	351	17	368	8	3	5							92		
			2	326	11	337	14	11	3							86		
			3	331	5	336	13	12	1							87		
			4	319	11	330	16	13	3							84		
			5	357	9	366	6	4	2	11.4	4.3	8.6	4.8	3.0	1.2	94	88.6	4.3
			Mean	336.8														
NewFields	CR-12	CR-12	1	265	2	267	21	21	1							79		
			2	281	5	286	17	15	2							83		
			3	306	9	315	9	6	3							91		
			4	297	6	303	12	10	2							88		
			5	296	8	304	12	10	3	14.2	4.8	12.4	5.6	2.0	0.8	88	85.8	4.8
			Mean	289														
NewFields	CARR-20	CARR-20	1	274	15	289	19	14	5							81		
			2	289	31	320	14	5	10							86		
			3	281	15	296	17	12	5							83		
			4	277	14	291	18	14	5							82		
			5	250	24	274	26	19	9	18.6	4.4	12.7	5.0	6.7	2.3	74	81.4	4.4
			Mean	274.2														
NewFields	CR-02	CR-02	1	278	16	294	17	13	5							83		
			2	278	13	291	17	14	4							83		
			3	272	20	292	19	13	7							81		
			4	264	7	271	22	20	3							78		
			5	267	15	282	21	16	5	19.3	1.9	15.1	2.8	4.9	1.6	79	80.7	1.9
			Mean	271.8														
NewFields	WPAH001	SD0001	1	207	16	223	39	34	7							61		
			2	210	32	242	38	28	13							62		
			3	278	11	289	17	14	4							83		
			4	247	31	278	27	17	11							73		
			5	219	46	265	35	21	17	31.1	8.9	23.0	8.0	10.5	5.3	65	68.9	8.9
			Mean	232.2														
NewFields	WPAH002	SD0002	1	276	16	292	18	13	5							82		
			2	245	26	271	27	20	10							73		
			3	197	43	240	42	29	18							58		
			4	228	26	254	32	25	10							68		
			5	203	31	234	40	31	13	31.8	9.6	23.3	7.0	11.3	4.6	60	68.2	9.6
			Mean	229.8														
NewFields	WPAH003	SD0003	1	168	25	193	50	43	13							50		
			2	227	32	259	33	23	12							67		
			3	226	49	275	33	18	18							67		
			4	240	38	278	29	17	14							71		
			5	198	36	234	41	31	15	37.1	8.6	26.4	10.5	14.4	2.2	59	62.9	8.6
			Mean	211.8														

Table 3-7b. Test Results for the Larval Development Test with Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch $2{ }^{\text {b }}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields	WPAH004	SD0004	1	199	33	232	41	31	14							59		
			2	194	43	237	42	30	18							58		
			3	210	58	268	38	20	22							62		
			4	209	47	256	38	24	18							62		
			5	192	41	233	43	31	18	40.4	2.5	27.2	4.8	18.0	2.6	57	59.6	2.5
			Mean	200.8														
NewFields	WPAH008	SD0008	1	259	11	270	23	20	4							77		
			2	236	6	242	30	28	2							70		
			3	247	10	257	27	24	4							73		
			4	265	6	271	21	20	2							79		
			5	265	11	276	21	18	4	24.5	3.8	21.9	4.1	3.3	0.9	79	75.5	3.8
			Mean	254.4														
$\overline{\text { NewFields }}$	WPAH009	SD0009	1	229	29	258	32	23	11							68		
			2	233	13	246	31	27	5							69		
			3	190	7	197	44	42	4							56		
			4	236	6	242	30	28	2							70		
			5	230	12	242	32	28	5	33.6	5.6	29.6	6.9	5.5	3.4	68	66.4	5.6
			Mean	223.6														
NewFields	WPAHO10	SD0010	1	215	17	232	36	31	7							64		
			2	232	6	238	31	29	3							69		
			3	220	13	233	35	31	6							65		
			4	180	17	197	47	42	9							53		
			5	202	11	213	40	37	5	37.7	5.9	33.9	5.1	5.8	2.3	60	62.3	5.9
			Mean	209.8														
NewFields	WPAH011	SD0011	1	243	7	250	28	26	3							72		
			2	256	12	268	24	20	4							76		
			3	265	15	280	21	17	5							79		
			4	244	20	264	28	22	8							72		
			5	235	20	255	30	24	8	26.2	3.5	21.8	3.5	5.6	2.1	70	73.8	3.5
			Mean	248.6														
NewFields	WPAH012	SD0012	1	266	9	275	21	18	3							79		
			2	270	8	278	20	17	3							80		
			3	261	7	268	23	20	3							77		
			4	245	14	259	27	23	5							73		
			5	265	12	277	21	18	4	22.4	2.9	19.4	2.4	3.7	1.2	79	77.6	2.9
			Mean	261.4														
$\overline{\text { NewFields }}$	WPAH013	SD0013	1	233	13	246	31	27	5							69		
			2	246	9	255	27	24	4							73		
			3	274	7	281	19	17	2							81		
			4	260	11	271	23	20	4							77		
			5	278	10	288	17	14	3	23.3	5.6	20.4	5.2	3.8	1.0	83	76.7	5.6

Table 3-7b. Test Results for the Larval Development Test with Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{\text {a }}$ Batch $2{ }^{\text {b }}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields		SD0014	1	270	9	279	20	17	3							80		
			2	225	13	238	33	29	5							67		
			3	217	7	224	36	33	3							64		
	WPAH014		4	229	13	242	32	28	5							68		
			5	222	5	227	34	33	2	30.9	6.3	28.1	6.5	3.9	1.5	66	69.1	6.3
			Mean	232.6														
NewFields		SD0015	1	213	6	219	37	35	3							63		
			2	223	14	237	34	30	6							66		
			3	269	14	283	20	16	5							80		
	WPAH015		4	270	14	284	20	16	5							80		
			5	243	17	260	28	23	7	27.7	7.7	23.8	8.5	5.0	1.4	72	72.3	7.7
			Mean	243.6														
NewFields		SD0017	1	239	11	250	29	26	4							71		
			2	222	14	236	34	30	6							66		
			3	267	15	282	21	16	5							79		
	WPAH016		4	243	14	257	28	24	5							72		
			5	272	11	283	19	16	4	26.2	6.2	22.3	6.1	5.0	0.8	81	73.8	6.2
			Mean	248.6														
NewFields		SD0018	1	274	9	283	19	16	3							81		
			2	304	4	308	10	9	1							90		
			3	290	5	295	14	12	2							86		
	WPAH017		4	275	6	281	18	17	2							82		
			5	258	15	273	23	19	5	16.8	5.2	14.5	4.1	2.8	1.7	77	83.2	5.2
			Mean	280.2														
NewFields		SD0019	1	234	4	238	31	29	2							69		
			2	276	6	282	18	16	2							82		
			3	278	5	283	17	16	2							83		
	WPAH018		4	283	9	292	16	13	3							84		
			5	259	18	277	23	18	6	21.0	5.9	18.5	6.3	3.0	2.0	77	79.0	5.9
			Mean	266														
NewFields		SD0020	1	203	21	224	40	33	9							60		
			2	248	14	262	26	22	5							74		
			3	202	21	223	40	34	9							60		
	WPAH019		4	227	16	243	33	28	7							67		
			5	221	44	265	34	21	17	34.6	5.6	27.7	5.9	9.5	4.4	66	65.4	5.6
			Mean	220.2														
NewFields		SD0021	1	255	14	269	24	20	5							76		
			2	294	6	300	13	11	2							87		
			3	331	9	340	2	0	3							98		
	WPAH020		4	304	27	331	10	2	8							90		
			5	294	7	301	13	11	2	12.2	8.1	8.7	8.1	4.1	2.6	87	87.8	8.1
			Mean	295.6														

Table 3-7b. Test Results for the Larval Development Test with Mytilus galloprovencialis Using the Resuspension Protocol, ${ }^{a}$ Batch $2^{\text {b }}$

Lab	Station	Treatment/ Sample Number	Replicate	Normal	Abnormal	Total	Percent Combined Mortality	Percent Mortality	Percent Abnormal	Mean Percentage Combined Mortality	SD	Mean Percentage Mortality	SD	Mean Percentage Abnormal	SD	Normal Survivorship	Mean Normal Survivorship	SD
NewFields	WPAH021	SD0022	1	244	7	251	28	25	3							72		
			2	266	12	278	21	17	4							79		
			3	262	7	269	22	20	3							78		
			4	279	2	281	17	17	1							83		
			5	273	9	282	19	16	3	21.4	4.0	19.2	3.8	2.7	1.3	81	78.6	4.0
			Mean	264.8														

Notes:
NA $=$
NA $=$ not applicable
SD = standard deviation
${ }^{2}$ Kendall et al. (2012)
${ }^{\mathrm{b}}$ Due to holding time requirements, the larval development bioassay was performed in two batches.

Table 3-8. Survival Summary for 45-Day Bioaccumulation Test Using Macoma nasuta and Nephtys caecoides

Notes:
-- = not calculable
$\mathrm{AC}=$ sediment treated with activated carbon
NA = not applicable
SD = standard deviation
${ }^{a}$ Single replicate only.

Table 4-1. SMS Comparison for the Benthic Amphipod Test with Eohaustorius estuarius

Station	Treatment/ Sample Number	Mean Mortality (\%)	Reference	Statistically More than Reference?	Mortality Comparison to Reference Mt - MR (\%)	$\begin{gathered} \text { Fails SCO? } \\ >25 \%{ }^{a} \\ \hline \end{gathered}$	Fails CSL? $>30 \%^{\mathrm{b}}$
--	Control	4	--	--	--	--	--
CR-12	CR-12 Reference	4	--	--	--	--	--
CARR-20	CARR-20 Reference	7	--	--	--	--	--
CR-02	CR-02 Reference	2	--	--	--	--	--
WPAH001	SD0001	7	CR-02	Yes	5	No	No
WPAH002	SD0002	5	CR-02	No	3	No	No
WPAH003	SD0003	6	CARR-20	No	-1	No	No
WPAH004	SD0004	4	CARR-20	No	-3	No	No
WPAH005	SD0005	0	CR-02	No	-2	No	No
WPAH006	SD0006	4	CR-02	No	2	No	No
WPAH007	SD0007	10	CR-02	No	8	No	No
WPAH008	SD0008	2	CR-02	No	0	No	No
WPAH009	SD0009	1	CR-02	No	-1	No	No
WPAH010	SD0010	1	CR-02	No	-1	No	No
WPAH011	SD0011	8	CR-02	No	6	No	No
WPAH012	SD0012	4	CR-02	No	2	No	No
WPAH013	SD0013	2	CR-02	No	0	No	No
WPAH014	SD0014	3	CR-02	No	1	No	No
WPAH015	SD0015	5	CR-02	No	3	No	No
WPAH016	SD0017	2	CR-02	No	0	No	No
WPAH017	SD0018	5	CR-02	No	3	No	No
WPAH018	SD0019	6	CR-02	No	4	No	No
WPAH019	SD0020	4	CR-02	No	2	No	No
WPAH020	SD0021	6	CR-02	No	4	No	No

[^2]Table 4-2. SMS Comparison for the Juvenile Polychaete Test with Neanthes arenaceodentata

Station	Treatment/ Sample Number	$\begin{gathered} \text { MIG } \\ \text { (mg/ind/day) } \\ \text { AFDW } \\ \hline \end{gathered}$	Reference	AFDW Statistically More than Reference?	Comparison to Reference MIGT / MIGR	Fails SCO? $>70 \%{ }^{a}$	Fails CSL? $>50 \%{ }^{\text {b }}$
--	Control	0.347	--	--	--	--	--
CR-12	CR-12 Reference	0.403	--	--	--	--	--
CARR-20	CARR-20 Reference	0.394	--	--	--	--	--
CR-02	CR-02 Reference	0.292	--	--	--	--	--
WPAH001	SD0001	0.465	CR-02	No	159	No	No
WPAH002	SD0002	0.490	CR-02	No	167	No	No
WPAH003	SD0003	0.624	CARR-20	No	158	No	No
WPAH004	SD0004	0.594	CARR-20	No	151	No	No
WPAH005	SD0005	0.584	CR-02	No	200	No	No
WPAH006	SD0006	0.646	CR-02	No	221	No	No
WPAH007	SD0007	0.572	CR-02	No	196	No	No
WPAH008	SD0008	0.529	CR-02	No	181	No	No
WPAH009	SD0009	0.606	CR-02	No	207	No	No
WPAH010	SD0010	0.632	CR-02	No	216	No	No
WPAH011	SD0011	0.483	CR-02	No	165	No	No
WPAH012	SD0012	0.596	CR-02	No	204	No	No
WPAH013	SD0013	0.541	CR-02	No	185	No	No
WPAH014	SD0014	0.539	CR-02	No	184	No	No
WPAH015	SD0015	0.482	CR-02	No	165	No	No
WPAH016	SD0017	0.642	CR-02	No	219	No	No
WPAH017	SD0018	0.577	CR-02	No	197	No	No
WPAH018	SD0019	0.567	CR-02	No	194	No	No
WPAH019	SD0020	0.552	CR-02	No	189	No	No
WPAH020	SD0021	0.616	CR-02	No	211	No	No

Notes:
No = Meets criteria; Yes = Does not meet criteria
$\mathrm{N}=$ Normal Survivorship, $\mathrm{C}=$ Negative Control, $\mathrm{R}=$ Reference Sediment, $\mathrm{T}=$ Test Sediment
-- = not applicable
AFDW = ash-free dry weight
CSL = cleanup screening level
d = day
ind = individual
$\mathrm{mg}=$ milligram
MIG = mean individual growth
SMS = sediment management standards
SCO = sediment cleanup objective
${ }^{a}$ SCO: Statistical Significance and $\left(N_{T} / N_{C}\right) /\left(N_{R} / N_{C}\right)<0.70$
${ }^{\mathrm{b}} \mathrm{CSL}$: Statistical Significance and $\left(\mathrm{N}_{\mathrm{T}} / \mathrm{N}_{\mathrm{C}}\right) /\left(\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\mathrm{C}}\right)<0.50$

Table 4-3a. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis, Test Batch 1

Station	Treatment/ Sample Number	Mean Normal Survival (\%)	Reference	Statistically Less than Reference?	Normal Survival Comparison to Reference $\left(N_{T} / N_{C}\right) /\left(N_{R} / N_{C}\right)$	$\begin{aligned} & \text { Fails SCO? } \\ & <85 \%^{a} \end{aligned}$	$\begin{aligned} & \text { Fails CSL? } \\ & <70 \%^{b} \end{aligned}$
--	Control	236	--	--	--	--	--
CR-12	CR-12 Reference	196	--	--	--	--	--
CARR-20	CARR-20 Reference	189	--	--	--	--	--
CR-02	CR-02 Reference	182	--	--	--	--	--
WPAH005	SD0005	159	--	--	--	--	--
WPAH006	SD0006	142	--	--	--	--	--
WPAH007	SD0007	163	--	--	--	--	--
WPAH022	SD0023	147	CARR-20	Yes	78	Yes	No
WPAH023	SD0024	158	CR-02	Yes	87	No	No
WPAH024	SD0025	123	CARR-20	Yes	65	Yes	Yes
WPAH025	SD0026	181	CR-02	No	99	No	No
WPAH026	SD0027	133	CARR-20	Yes	70	Yes	No
WPAH027	SD0028	175	CR-02	No	96	No	No
WPAH028	SD0029	142	CR-02	Yes	78	Yes	No
WPAH029	SD0030	160	CR-02	Yes	88	No	No
WPAH030	SD0031	166	CR-02	No	91	No	No
WPAH031	SD0032	188	CR-02	No	103	No	No
WPAH032	SD0033	161	CR-02	No	88	No	No
WPAH033	SD0034	158	CR-02	Yes	87	No	No
WPAH034	SD0035	177	CARR-20	No	94	No	No
WPAH035	SD0036	183	CR-02	No	101	No	No
WPAH036	SD0037	176	CR-02	No	97	No	No
WPAH037	SD0038	188	CR-02	No	103	No	No
WPAH038	SD0039	161	CR-02	Yes	88	No	No
WPAH039	SD0040	178	CR-02	No	98	No	No
WPAH040	SD0042	170	CR-02	No	93	No	No
WPAH041	SD0043	199	CR-02	No	109	No	No
WPAH042	SD0044	190	CR-02	No	104	No	No
WPAH043	SD0045	161	CR-02	No	88	No	No
WPAH044	SD0046	197	CR-12	No	100	No	No
WPAH045	SD0047	185	CR-12	No	94	No	No
WPAH046	SD0048	202	CR-02	No	111	No	No
WPAH047	SD0049	206	CR-02	No	113	No	No

[^3]Table 4-3b. SMS Comparison for the Benthic Larval Test with Mytilus galloprovincialis, Test Batch 2

Station	Treatment/ Sample Number	Mean Normal Survival (\%)	Reference	Statistically Less than Reference?	Normal Survival Comparison to Reference $\left(\mathrm{N}_{\mathrm{T}} / \mathrm{N}_{\mathrm{C}}\right) /\left(\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\mathrm{C}}\right)$	$\begin{gathered} \text { Fails SCO? } \\ <85 \%^{\text {a }} \end{gathered}$	$\begin{gathered} \text { Fails CSL? } \\ <70 \%^{b} \end{gathered}$
--	Control	337	--	--	--	--	--
CR-12	CR-12 Reference	289	--	--	--	--	--
CARR-20	CARR-20 Reference	274	--	--	--	--	--
CR-02	CR-02 Reference	272	--	--	--	--	--
WPAH001	SD0001	232	CR-02	Yes	85	No	No
WPAH002	SD0002	230	CR-02	Yes	85	No	No
WPAH003	SD0003	212	CARR-20	Yes	77	Yes	No
WPAH004	SD0004	201	CARR-20	Yes	73	Yes	No
WPAH008	SD0008	254	CR-02	Yes	94	No	No
WPAH009	SD0009	224	CR-02	Yes	82	Yes	No
WPAH010	SD0010	210	CR-02	Yes	77	Yes	No
WPAH011	SD0011	249	CR-02	Yes	91	No	No
WPAH012	SD0012	261	CR-02	Yes	96	No	No
WPAH013	SD0013	258	CR-02	No	95	No	No
WPAH014	SD0014	233	CR-02	Yes	86	No	No
WPAH015	SD0015	244	CR-02	Yes	90	No	No
WPAH016	SD0017	249	CR-02	Yes	91	No	No
WPAH017	SD0018	280	CR-02	No	103	No	No
WPAH018	SD0019	266	CR-02	No	98	No	No
WPAH019	SD0020	220	CR-02	Yes	81	Yes	No
WPAH020	SD0021	296	CR-02	No	109	No	No
WPAH021	SD0022	265	CR-02	No	97	No	No

Notes:

$$
\begin{aligned}
& \text { No = Meets criteria; Yes = Does not meet criteria } \\
& \mathrm{N}=\text { Normal Survivorship, C = Negative Control, } \mathrm{R}=\text { Reference Sediment, } \mathrm{T}=\text { Test Sediment } \\
& \%=\text { percent } \\
& --=\text { not applicable } \\
& \text { CSL = cleanup screening level } \\
& \text { SCO = sediment cleanup objective } \\
& \text { SMS = sediment management standards } \\
& { }^{\text {a }} \text { SCO: Statistical Significance and }\left(N_{T} / N_{C}\right) /\left(N_{\mathrm{R}} / \mathrm{N}_{\mathrm{C}}\right)<0.85 \\
& { }^{\text {b }} \text { CSL: Statistical Significance and }\left(\mathrm{N}_{\mathrm{T}} / \mathrm{N}_{\mathrm{C}}\right) /\left(\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\mathrm{C}}\right)<0.70
\end{aligned}
$$

Table 4-4. Summary of SMS Comparisons for Western Port Angeles Harbor Samples

Station	Treatment/ Sample Number	$\begin{aligned} & \text { Grain } \\ & \text { Size }^{\text {a }} \end{aligned}$	Reference Comparison	Amphipod	Juvenile Polychaete	Benthic Larval
WPAH001	SD0001	53	CR-02	Pass	Pass	Pass
WPAH002	SD0002	48	CR-02	Pass	Pass	Pass
WPAH003	SD0003	38	CARR-20	Pass	Pass	Fails SCO
WPAH004	SD0004	39	CARR-20	Pass	Pass	Fails SCO
WPAH005	SD0005	78	CR-02	Pass	Pass	Pass
WPAH006	SD0006	56	CR-02	Pass	Pass	Fails SCO
WPAH007	SD0007	80	CR-02	Pass	Pass	Pass
WPAH008	SD0008	66	CR-02	Pass	Pass	Pass
WPAH009	SD0009	71	CR-02	Pass	Pass	Fails SCO
WPAH010	SD0010	67	CR-02	Pass	Pass	Fails SCO
WPAH011	SD0011	79	CR-02	Pass	Pass	Pass
WPAH012	SD0012	82	CR-02	Pass	Pass	Pass
WPAH013	SD0013	77	CR-02	Pass	Pass	Pass
WPAH014	SD0014	77	CR-02	Pass	Pass	Pass
WPAH015	SD0015	77	CR-02	Pass	Pass	Pass
WPAH016	SD0017	70	CR-02	Pass	Pass	Pass
WPAH017	SD0018	78	CR-02	Pass	Pass	Pass
WPAH018	SD0019	50	CR-02	Pass	Pass	Pass
WPAH019	SD0020	56	CR-02	Pass	Pass	Fails SCO
WPAHO2O	SD0021	64	CR-02	Pass	Pass	Pass
WPAH021	SD0022	65	CR-02	$N T^{\text {b }}$	NT	Pass
WPAH022	SD0023	31	CARR-20	NT	NT	Fails SCO
WPAH023	SD0024	44	CR-02	NT	NT	Pass
WPAH024	SD0025	24	CARR-20	NT	NT	Fails CSL
WPAH025	SD0026	77	CR-02	NT	NT	Pass
WPAH026	SD0027	20	CARR-20	NT	NT	Fails SCO
WPAH027	SD0028	45	CR-02	NT	NT	Pass
WPAH028	SD0029	73	CR-02	NT	NT	Fails SCO
WPAH029	SD0030	73	CR-02	NT	NT	Pass
WPAH030	SD0031	84	CR-02	NT	NT	Pass
WPAH031	SD0032	81	CR-02	NT	NT	Pass
WPAH032	SD0033	59	CR-02	NT	NT	Pass
WPAH033	SD0034	71	CR-02	NT	NT	Pass
WPAH034	SD0035	28	CARR-20	NT	NT	Pass
WPAH035	SD0036	76	CR-02	NT	NT	Pass
WPAH036	SD0037	60	CR-02	NT	NT	Pass
WPAH037	SD0038	63	CR-02	NT	NT	Pass
WPAH038	SD0039	71	CR-02	NT	NT	Pass
WPAH039	SD0040	85	CR-02	NT	NT	Pass
WPAH040	SD0042	75	CR-02	NT	NT	Pass

Table 4-4. Summary of SMS Comparisons for Western Port Angeles Harbor Samples

	Treatment/ Sample Number	Grain Size a	Reference Comparison	Amphipod	Juvenile Polychaete	Benthic Larval
Station	WPAH041	SD0043	77	CR-02	NT	NT

Notes:
CSL = cleanup screening level
NT = not tested
SCO = sediment cleanup objective
SMS = sediment management standards
${ }^{\text {a }}$ Percent fines (Σ silt and clay)
${ }^{\mathrm{b}}$ Treatment evaluated with the larval test only

Table 4-5a. Tissue Concentrations of Dioxins/Furans and PCB Congeners from Bioaccumulation Tests

Test Organism	Station	$\begin{gathered} \text { Treatment// } \\ \text { Sample } \\ \text { Number } \\ \hline \hline \end{gathered}$	Laboratory Replicate	$\begin{gathered} \text { Dioxin/Furan } \\ \text { TEQ }^{\mathrm{a}} \\ (\mathrm{pg} / \mathrm{g}, \mathrm{ww}) \\ \hline \hline \end{gathered}$	PCB Congeners (pg/g, ww)
Macoma nasuta					
	--	Pretest ${ }^{\text {a }}$	--	0.137	--
	--	Pretest ${ }^{\text {a }}$	--	--	488
	WPAH004	Mn SD0004	1	0.830	--
	WPAH004	Mn SD0004	2	0.741	--
	WPAH004	Mn SD0004	3	0.964	--
	WPAH004	Mn SD0004	1	--	10,700
	WPAH004	Mn SD0004	2	--	11,100
	WPAH004	Mn SD0004	3	--	11,300
	WPAH009	Mn SD0009	--	1.52	--
	WPAH009	Mn SD0009	--	--	12,500
	WPAH010	Mn SD0010	--	1.89	--
	WPAH010	Mn SD0010	--	--	20,500
	WPAH011	Mn SD0011	--	0.798	--
	WPAH011	Mn SD0011	--	--	13,100
	WPAH013	Mn SD0013	--	0.755	--
	WPAH013	Mn SD0013	--	--	20,500
	WPAH015	Mn SD0015	--	0.347	--
	WPAH015	Mn SD0015	--	--	14,400
	WPAH017	Mn SD0018	--	0.474	--
	WPAH017	Mn SD0018	--	--	29,400
	WPAH024	Mn SD0025	--	0.491	--
	WPAH024	Mn SD0025	--	--	46,200
	WPAH025	Mn SD0026	--	1.02	--
	WPAH025	Mn SD0026	--	--	22,600
	WPAH027	Mn SD0028	--	0.258	--
	WPAH027	Mn SD0028	--	--	4,340
	WPAH048	Mn SD0051	--	0.657	--
	WPAH048	Mn SD0051	--	--	8,230
	WPAH049	Mn SD0052	--	0.473	--
	WPAH049	Mn SD0052	--	--	11,200
	WPAH050	Mn SD0053	1	1.89	--
	WPAH050	Mn SD0053	2	2.51	--
	WPAH050	Mn SD0053	3	3.16	--
	WPAH050	Mn SD0053	1	--	20,200
	WPAH050	Mn SD0053	2	--	19,400
	WPAH050	Mn SD0053	3	--	22,900
	WPAH051	Mn SD0054	--	1.29	--
	WPAH051	Mn SD0054	--	--	15,700
	WPAH052	Mn SD0055	--	0.156	--
	WPAH052	Mn SD0055	--	--	3,180

Table 4-5a. Tissue Concentrations of Dioxins/Furans and PCB Congeners from Bioaccumulation Tests

Test Organism	Station	$\begin{gathered} \text { Treatment/ } \\ \text { Sample } \\ \text { Number } \\ \hline \hline \end{gathered}$	Laboratory Replicate	$\begin{gathered} \text { Dioxin/Furan } \\ \text { TEQ }{ }^{a} \\ (\mathrm{pg} / \mathrm{g}, \mathrm{ww}) \\ \hline \hline \end{gathered}$	PCB Congeners (pg/g, ww)
Nephtys caecoides	--	Pretest ${ }^{\text {a }}$	--	0.172	--
	--	Pretest ${ }^{\text {a }}$	--	--	820
	WPAH004	Nc SD0004	1	0.250	--
	WPAH004	Nc SD0004	2	0.331	--
	WPAH004	Nc SD0004	3	0.312	--
	WPAH004	Nc SD0004	1	--	8,200
	WPAH004	Nc SD0004	2	--	7,430
	WPAH004	Nc SD0004	3	--	8,100
	WPAH009	Nc SD0009	--	0.863	--
	WPAH009	Nc SD0009	--	--	9,420
	WPAH010	Nc SD0010	--	2.89	--
	WPAH010	Nc SD0010	--	--	15,000
	WPAH011	Nc SD0011	--	0.276	--
	WPAH011	Nc SD0011	--	--	8,980
	WPAH013	Nc SD0013	--	0.347	--
	WPAH013	Nc SD0013	--	--	12,500
	WPAH015	Nc SD0015	--	0.233	--
	WPAH015	Nc SD0015	--	--	12,200
	WPAH017	Nc SD0018	--	0.274	--
	WPAH017	Nc SD0018	--	--	16,700
	WPAH024	Nc SD0025	--	0.188	--
	WPAH024	Nc SD0025	--	--	29,800
	WPAH025	Nc SD0026	--	0.597	--
	WPAH025	Nc SD0026	--	--	14,300
	WPAH027	Nc SD0028	--	0.173	--
	WPAH027	Nc SD0028	--	--	3,130
	WPAH048	Nc SD0051	--	0.549	--
	WPAH048	Nc SD0051	--	--	6,660
	WPAH049	Nc SD0052	--	0.193	--
	WPAH049	Nc SD0052	--	--	6,360
	WPAH050	Nc SD0053	1	0.742	--
	WPAH050	Nc SD0053	2	0.812	--
	WPAH050	Nc SD0053	3	0.755	--
	WPAH050	Nc SD0053	1	--	13,600
	WPAH050	Nc SD0053	2	--	13,500
	WPAH050	Nc SD0053	3	--	13,300
	WPAH051	Nc SD0054	--	0.584	--
	WPAH051	Nc SD0054	--	--	8,890
	WPAH052	Nc SD0055	--	0.131	--
	WPAH052	Nc SD0055	--	--	2,100

Notes:
-- = not applicable
PCB = polychlorinated biphenyl
$\mathrm{pg} / \mathrm{g}=$ picograms per gram
$T E Q=$ toxicity equivalent
$\mathrm{ww}=$ wet weight
${ }^{\text {a }}$ One-half the detection limit was used for TEQ calculation.

Table 4-5b. Tissue Concentrations of Dioxins/Furans and PCB Congeners from Bioaccumulation Tests With and Without GAC Treatment

Notes:

-- = not applicable
GAC = granular activated carbon
PCB = polychlorinated biphenyl
pg/g = picograms per gram
TEQ = toxicity equivalent
$\mathrm{ww}=$ wet weight
${ }^{\text {a }}$ One-half the detection limit was used for TEQ calculation.

	SD0025				SD0018		SD0051		SD0010		SD0028		SD0026		
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\bar{C}_{\text {F }, ~} \mathrm{pg} / \mu \mathrm{L}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{Pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\bar{C}_{\text {F }, ~ \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier		$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier
PCB-1	4.46	4.21	$4.16 \mathrm{E}+00$	$2.56 \mathrm{E}+02$	8.15E-03	5.01E-01 U	$1.19 \mathrm{E}-02$	$7.28 \mathrm{E}-01 \mathrm{U}$	$9.40 \mathrm{E}-03$	5.77E-01 U	$5.39 \mathrm{E}-02$	$3.31 \mathrm{E}+00 \mathrm{~J}$	$8.38 \mathrm{E}-03$	5.15E-01	
PCB-2	4.69	4.43	$1.11 \mathrm{E}-01$	$4.14 \mathrm{E}+00$	$1.06 \mathrm{E}-02$	3.93E-01 U	$1.46 \mathrm{E}-02$	$5.44 \mathrm{E}-01 \mathrm{U}$	$1.15 \mathrm{E}-02$	$4.29 \mathrm{E}-01 \mathrm{U}$	$9.00 \mathrm{E}-03$	$3.35 \mathrm{E}-01 \mathrm{U}$	$1.02 \mathrm{E}-02$	$3.79 \mathrm{E}-01$	
РСВ-3	4.69	4.43	8.09E-01	$3.02 \mathrm{E}+01$	9.80E-03	$3.65 \mathrm{E}-01 \mathrm{U}$	$1.36 \mathrm{E}-02$	$5.05 \mathrm{E}-01 \mathrm{U}$	$1.07 \mathrm{E}-02$	$3.97 \mathrm{E}-01 \mathrm{U}$	$8.35 \mathrm{E}-03$	$3.11 \mathrm{E}-01 \mathrm{U}$	$9.69 \mathrm{E}-03$	3.61E-01	
PCB-4	4.65	4.39	$1.15 \mathrm{E}+00$	$4.68 \mathrm{E}+01$	$2.35 \mathrm{E}-01$	$9.55 \mathrm{E}+00$	$9.33 \mathrm{E}-02$	$3.79 \mathrm{E}+00$	$3.88 \mathrm{E}-01$	$1.58 \mathrm{E}+01$	$1.81 \mathrm{E}-01$	7.36E+00 EMPC	$9.73 \mathrm{E}-02$	3.96E+00	
PCB-10	4.84	4.57	$1.24 \mathrm{E}-01$	$3.34 \mathrm{E}+00$	$2.96 \mathrm{E}-02$	$7.97 \mathrm{E}-01 \mathrm{~J}$	$3.32 \mathrm{E}-02$	8.94E-01 U	$2.12 \mathrm{E}-02$	$5.69 \mathrm{E}-01 \mathrm{U}$	$2.30 \mathrm{E}-02$	6.18E-01 U	$2.24 \mathrm{E}-02$	6.03E-01	
РСВ-9	5.06	4.78	$3.07 \mathrm{E}-01$	$5.12 \mathrm{E}+00$	$2.94 \mathrm{E}-02$	$4.90 \mathrm{E}-01 \mathrm{U}$	$3.29 \mathrm{E}-02$	$5.49 \mathrm{E}-01 \mathrm{~J}$	$3.30 \mathrm{E}-02$	$5.51 \mathrm{E}-01 \mathrm{~J}$	$3.24 \mathrm{E}-02$	$5.41 \mathrm{E}-01 \mathrm{~J}$	$1.62 \mathrm{E}-02$	$2.71 \mathrm{E}-01$	
PCB-7	5.07	4.79	$2.67 \mathrm{E}-01$	$4.36 \mathrm{E}+00$	$4.44 \mathrm{E}-02$	$7.25 \mathrm{E}-01 \mathrm{~J}$	$3.21 \mathrm{E}-02$	$5.24 \mathrm{E}-01 \mathrm{U}$	$1.98 \mathrm{E}-02$	$3.23 \mathrm{E}-01 \mathrm{~J}$	$2.34 \mathrm{E}-02$	$3.82 \mathrm{E}-01 \mathrm{~J}$	$1.66 \mathrm{E}-02$	$2.72 \mathrm{E}-01$	
PCB-6	5.06	4.78	$6.67 \mathrm{E}-01$	$1.11 \mathrm{E}+01$	5.86E-02	$9.78 \mathrm{E}-01 \mathrm{~J}$	$5.85 \mathrm{E}-02$	$9.77 \mathrm{E}-01 \mathrm{~J}$	$1.76 \mathrm{E}-01$	$2.94 \mathrm{E}+00$	$6.10 \mathrm{E}-02$	$1.02 \mathrm{E}+00 \mathrm{~J}$	$6.53 \mathrm{E}-02$	$1.09 \mathrm{E}+00$	
PCB-5	4.97	4.69	$1.74 \mathrm{E}-01$	$3.53 \mathrm{E}+00$	$2.79 \mathrm{E}-02$	$5.66 \mathrm{E}-01 \mathrm{U}$	3.50E-02	7.09E-01 U	$2.67 \mathrm{E}-02$	5.41E-01 U	$2.92 \mathrm{E}-02$	5.92E-01 U	$2.39 \mathrm{E}-02$	4.85E-01	
PCB-8	5.07	4.79	$2.80 \mathrm{E}+00$	$4.57 \mathrm{E}+01$	$3.93 \mathrm{E}-01$	$6.42 \mathrm{E}+00$	$2.40 \mathrm{E}-01$	$3.92 \mathrm{E}+00$	$7.72 \mathrm{E}-01$	$1.26 \mathrm{E}+01$	$2.55 \mathrm{E}-01$	4.17E+00	$2.80 \mathrm{E}-01$	4.58E+00	
PCB-14	5.28	4.98	$2.34 \mathrm{E}-02$	$2.42 \mathrm{E}-01 \mathrm{U}$	$2.29 \mathrm{E}-02$	2.37E-01 U	$2.87 \mathrm{E}-02$	2.97E-01 U	$2.19 \mathrm{E}-02$	$2.26 \mathrm{E}-01 \mathrm{U}$	$2.39 \mathrm{E}-02$	$2.47 \mathrm{E}-01 \mathrm{U}$	1.98E-02	2.05E-01	
PCB-11	5.28	4.98	$2.37 \mathrm{E}-01$	$2.45 \mathrm{E}+00$	$1.06 \mathrm{E}-01$	$1.10 \mathrm{E}+00 \mathrm{EMPC}$	$3.95 \mathrm{E}-01$	$4.09 \mathrm{E}+00$	$1.02 \mathrm{E}-01$	$1.06 \mathrm{E}+00$	$1.11 \mathrm{E}-01$	$1.15 \mathrm{E}+00$	$1.92 \mathrm{E}-01$	1.99E+00	EMPC
PCB-13/12	5.26	4.97	$2.15 \mathrm{E}-01$	$2.32 \mathrm{E}+00^{\text {a }}$	$2.71 \mathrm{E}-02$	$2.92 \mathrm{E}-01 \mathrm{U}$	$3.39 \mathrm{E}-02$	$3.66 \mathrm{E}-01 \mathrm{U}$	$4.64 \mathrm{E}-02$	$5.02 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$2.83 \mathrm{E}-02$	$3.05 \mathrm{E}-01 \mathrm{U}$	$2.34 \mathrm{E}-02$	$2.53 \mathrm{E}-01$	
PCB-15	5.3	5.00	$5.29 \mathrm{E}-01$	$5.24 \mathrm{E}+00$	7.67E-02	$7.60 \mathrm{E}-01 \mathrm{~J}$	$6.37 \mathrm{E}-02$	$6.31 \mathrm{E}-01 \mathrm{~J}$	$1.43 \mathrm{E}-01$	$1.42 \mathrm{E}+00$	$4.78 \mathrm{E}-02$	$4.74 \mathrm{E}-01 \mathrm{~J}$	$8.67 \mathrm{E}-02$	8.59E-01	
PCB-19	5.02	4.74	5.62E-01	$1.02 \mathrm{E}+01$	$2.76 \mathrm{E}-01$	5.03E+00	$1.02 \mathrm{E}-01$	$1.86 \mathrm{E}+00$	$4.30 \mathrm{E}-01$	$7.83 \mathrm{E}+00$	$6.87 \mathrm{E}-02$	$1.25 \mathrm{E}+00 \mathrm{~J}$	$7.52 \mathrm{E}-02$	$1.37 \mathrm{E}+00$	
PCB-30/18	5.34	5.04	$8.65 \mathrm{E}+00$	$7.86 \mathrm{E}+01^{\text {a }}$	$2.78 \mathrm{E}+00$	$2.53 \mathrm{E}+01^{\text {a }}$	$1.02 \mathrm{E}+00$	$9.27 \mathrm{E}+00^{\text {a }}$	$4.90 \mathrm{E}+00$	$4.45 \mathrm{E}+01^{\text {a }}$	$4.65 \mathrm{E}-01$	$4.23 \mathrm{E}+00^{\text {a }}$	$9.27 \mathrm{E}-01$	$8.43 \mathrm{E}+00$	
PCB-17	5.25	4.96	$3.56 \mathrm{E}+00$	$3.93 \mathrm{E}+01$	$1.36 \mathrm{E}+00$	$1.50 \mathrm{E}+01$	$5.19 \mathrm{E}-01$	$5.73 \mathrm{E}+00$	$2.06 \mathrm{E}+00$	$2.28 \mathrm{E}+01$	$2.78 \mathrm{E}-01$	$3.07 \mathrm{E}+00$	$5.19 \mathrm{E}-01$	$5.74 \mathrm{E}+00$	
PCB-27	5.44	5.14	$4.80 \mathrm{E}-01$	$3.51 \mathrm{E}+00$	$2.85 \mathrm{E}-01$	$2.08 \mathrm{E}+00$	$7.96 \mathrm{E}-02$	$5.82 \mathrm{E}-01 \mathrm{~J}$	$3.21 \mathrm{E}-01$	$2.35 \mathrm{E}+00$	$6.96 \mathrm{E}-02$	$5.09 \mathrm{E}-01 \mathrm{~J}$	$8.77 \mathrm{E}-02$	6.41E-01	
PCB-24	5.35	5.05	$1.47 \mathrm{E}-02$	$1.31 \mathrm{E}-01 \mathrm{U}$	$1.40 \mathrm{E}-02$	$1.25 \mathrm{E}-01 \mathrm{U}$	$1.68 \mathrm{E}-02$	1.49E-01 U	$5.03 \mathrm{E}-02$	$4.47 \mathrm{E}-01 \mathrm{~J}$	$1.17 \mathrm{E}-02$	1.04E-01 U	$1.07 \mathrm{E}-02$	9.53E-02	
PCB-16	5.16	4.87	$2.96 \mathrm{E}+00$	$3.98 \mathrm{E}+01$	$1.03 \mathrm{E}+00$	$1.38 \mathrm{E}+01$	$4.60 \mathrm{E}-01$	$6.18 \mathrm{E}+00$	$2.03 \mathrm{E}+00$	$2.73 \mathrm{E}+01$	$1.82 \mathrm{E}-01$	$2.45 \mathrm{E}+00$	$3.39 \mathrm{E}-01$	$4.56 \mathrm{E}+00$	
PCB-32	5.44	5.14	$2.95 \mathrm{E}+00$	$2.16 \mathrm{E}+01$	$1.10 \mathrm{E}+00$	8.05E+00	$3.34 \mathrm{E}-01$	$2.44 \mathrm{E}+00$	$1.56 \mathrm{E}+00$	$1.14 \mathrm{E}+01$	$1.78 \mathrm{E}-01$	$1.30 \mathrm{E}+00$	$3.81 \mathrm{E}-01$	$2.78 \mathrm{E}+00$	
PCB-34	5.66	5.34	$1.71 \mathrm{E}-02$	7.73E-02 U	$1.50 \mathrm{E}-02$	6.78E-02 U	$1.75 \mathrm{E}-02$	7.92E-02 U	$1.20 \mathrm{E}-02$	$5.44 \mathrm{E}-02 \mathrm{U}$	$1.26 \mathrm{E}-02$	$5.72 \mathrm{E}-02 \mathrm{U}$	1.04E-02	4.71E-02	
PCB-23	5.57	5.26	$1.68 \mathrm{E}-02$	9.24E-02 U	$1.47 \mathrm{E}-02$	$8.08 \mathrm{E}-02 \mathrm{U}$	$1.71 \mathrm{E}-02$	9.43E-02 U	$1.18 \mathrm{E}-02$	6.48E-02 U	$1.24 \mathrm{E}-02$	$6.81 \mathrm{E}-02 \mathrm{U}$	$1.02 \mathrm{E}-02$	5.65E-02	
PCB-26/29	5.63	5.31	$1.66 \mathrm{E}+00$	$8.04 \mathrm{E}+00^{\text {a }}$	$3.17 \mathrm{E}-01$	$1.53 \mathrm{E}+00^{\text {a }}$	$2.76 \mathrm{E}-01$	$1.34 \mathrm{E}+00^{\text {a }}$	$7.30 \mathrm{E}-01$	$3.53 \mathrm{E}+00^{\text {a }}$	$7.86 \mathrm{E}-02$	$3.81 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$3.20 \mathrm{E}-01$	$1.55 \mathrm{E}+00$	
PCB-25	5.67	5.35	$6.41 \mathrm{E}-01$	$2.85 \mathrm{E}+00$	$1.89 \mathrm{E}-01$	8.39E-01	$1.02 \mathrm{E}-01$	$4.53 \mathrm{E}-01$	$2.86 \mathrm{E}-01$	$1.27 \mathrm{E}+00$	$2.45 \mathrm{E}-02$	$1.09 \mathrm{E}-01 \mathrm{~J}$	$1.51 \mathrm{E}-01$	6.71E-01	
PCB-31	5.67	5.35	$1.31 \mathrm{E}+01$	$5.82 \mathrm{E}+01$	$2.40 \mathrm{E}+00$	1.07E+01	$1.30 \mathrm{E}+00$	5.77E+00	$4.44 \mathrm{E}+00$	$1.97 \mathrm{E}+01$	$3.77 \mathrm{E}-01$	$1.67 \mathrm{E}+00$	$1.46 \mathrm{E}+00$	6.47E+00	
PCB-28/20	5.62	5.31	$1.16 \mathrm{E}+01$	$5.74 \mathrm{E}+01^{\text {a }}$	$2.56 \mathrm{E}+00$	$1.27 \mathrm{E}+01^{\text {a }}$	$1.37 \mathrm{E}+00$	$6.78 \mathrm{E}+00^{\text {a }}$	$4.04 \mathrm{E}+00$	$2.00 \mathrm{E}+01^{\text {a }}$	$4.41 \mathrm{E}-01$	$2.18 \mathrm{E}+00^{\text {a }}$	$1.77 \mathrm{E}+00$	8.77E+00	
PCB-21/33	5.55	5.24	$5.29 \mathrm{E}+00$	$3.05 \mathrm{E}+01^{\text {a }}$	$1.25 \mathrm{E}+00$	$7.20 \mathrm{E}+00^{\text {a }}$	$6.53 \mathrm{E}-01$	$3.76 \mathrm{E}+00^{\text {a }}$	$2.38 \mathrm{E}+00$	1.37E+01 ${ }^{\text {a }}$	$1.94 \mathrm{E}-01$	$1.12 \mathrm{E}+00^{\text {a }}$	$7.28 \mathrm{E}-01$	4.19E+00	
PCB-22	5.58	5.27	$3.93 \mathrm{E}+00$	$2.12 \mathrm{E}+01$	$6.85 \mathrm{E}-01$	$3.70 \mathrm{E}+00$	$5.21 \mathrm{E}-01$	$2.81 \mathrm{E}+00$	$1.54 \mathrm{E}+00$	8.31E+00	$1.32 \mathrm{E}-01$	7.12E-01	$4.30 \mathrm{E}-01$	$2.32 \mathrm{E}+00$	
PCB-36	5.88	5.55	$1.65 \mathrm{E}-02$	$4.63 \mathrm{E}-02 \mathrm{U}$	$1.44 \mathrm{E}-02$	4.05E-02 U	$1.69 \mathrm{E}-02$	$4.74 \mathrm{E}-02 \mathrm{U}$	$1.16 \mathrm{E}-02$	$3.25 \mathrm{E}-02 \mathrm{U}$	$1.22 \mathrm{E}-02$	$3.42 \mathrm{E}-02 \mathrm{U}$	$9.82 \mathrm{E}-03$	$2.76 \mathrm{E}-02$	
PCB-39	5.89	5.56	$1.01 \mathrm{E}-01$	$2.78 \mathrm{E}-01$	$4.35 \mathrm{E}-02$	$1.20 \mathrm{E}-01 \mathrm{~J}$	$1.64 \mathrm{E}-02$	$4.52 \mathrm{E}-02 \mathrm{U}$	$1.13 \mathrm{E}-02$	$3.10 \mathrm{E}-02 \mathrm{U}$	$1.19 \mathrm{E}-02$	$3.26 \mathrm{E}-02 \mathrm{U}$	$9.48 \mathrm{E}-03$	$2.61 \mathrm{E}-02$	
PCB-38	5.76	5.44	$1.75 \mathrm{E}-02$	6.37E-02 U	$1.53 \mathrm{E}-02$	5.59E-02 U	$1.79 \mathrm{E}-02$	$6.52 \mathrm{E}-02 \mathrm{U}$	$1.23 \mathrm{E}-02$	4.49E-02 U	$1.29 \mathrm{E}-02$	$4.71 \mathrm{E}-02 \mathrm{U}$	1.06E-02	3.86E-02	
PCB-35	5.82	5.49	8.02E-02	$2.57 \mathrm{E}-01 \mathrm{~J}$	$1.64 \mathrm{E}-02$	$5.26 \mathrm{E}-02 \mathrm{U}$	$1.92 \mathrm{E}-02$	6.14E-02 U	$1.32 \mathrm{E}-02$	4.23E-02 U	$1.39 \mathrm{E}-02$	$4.44 \mathrm{E}-02 \mathrm{U}$	$1.14 \mathrm{E}-02$	3.66E-02	
PCB-37	5.83	5.50	$1.51 \mathrm{E}+00$	$4.74 \mathrm{E}+00$	$2.16 \mathrm{E}-01$	6.77E-01 EMPC	$2.05 \mathrm{E}-01$	$6.43 \mathrm{E}-01$	$5.49 \mathrm{E}-01$	$1.72 \mathrm{E}+00$	$1.55 \mathrm{E}-02$	$4.85 \mathrm{E}-02 \mathrm{U}$	$2.12 \mathrm{E}-01$	6.64E-01	
PCB-54	5.21	4.92	5.85E-02	$7.05 \mathrm{E}-01 \mathrm{~J}$	$2.62 \mathrm{E}-02$	$3.16 \mathrm{E}-01 \mathrm{~J}$	$1.07 \mathrm{E}-02$	1.29E-01 U	$8.55 \mathrm{E}-03$	1.03E-01 U	$7.80 \mathrm{E}-03$	$9.40 \mathrm{E}-02 \mathrm{U}$	$7.01 \mathrm{E}-03$	$8.45 \mathrm{E}-02$	
PCB-50/53	5.625	5.31	$2.85 \mathrm{E}+00$	$1.39 \mathrm{E}+01^{\text {a }}$	$1.74 \mathrm{E}+00$	$8.52 \mathrm{E}+00^{\text {a }}$	$3.19 \mathrm{E}-01$	$1.56 \mathrm{E}+00^{\text {a }}$	$1.29 \mathrm{E}+00$	$6.31 \mathrm{E}+00^{\text {a }}$	$1.29 \mathrm{E}-01$	$6.31 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$6.43 \mathrm{E}-01$	$3.15 \mathrm{E}+00$	
PCB-45	5.53	5.22	$3.20 \mathrm{E}+00$	$1.93 \mathrm{E}+01$	$1.80 \mathrm{E}+00$	$1.08 \mathrm{E}+01$	$3.00 \mathrm{E}-01$	$1.80 \mathrm{E}+00$	$1.37 \mathrm{E}+00$	$8.24 \mathrm{E}+00$	$1.37 \mathrm{E}-01$	$8.24 \mathrm{E}-01$	$4.27 \mathrm{E}-01$	$2.57 \mathrm{E}+00$	
PCB-51	5.63	5.31	$6.84 \mathrm{E}-01$	$3.31 \mathrm{E}+00$	$3.91 \mathrm{E}-01$	$1.89 \mathrm{E}+00$	7.84E-02	$3.80 \mathrm{E}-01 \mathrm{~J}$	$3.32 \mathrm{E}-01$	$1.61 \mathrm{E}+00$	$2.46 \mathrm{E}-02$	$1.19 \mathrm{E}-01 \mathrm{~J}$	$2.09 \mathrm{E}-01$	$1.01 \mathrm{E}+00$	
PCB-46	5.53	5.22	$1.15 \mathrm{E}+00$	$6.92 \mathrm{E}+00$	$6.37 \mathrm{E}-01$	$3.83 \mathrm{E}+00$	$1.41 \mathrm{E}-01$	8.48E-01	$5.57 \mathrm{E}-01$	$3.35 \mathrm{E}+00$	$4.53 \mathrm{E}-02$	$2.73 \mathrm{E}-01 \mathrm{~J}$	$2.12 \mathrm{E}-01$	$1.27 \mathrm{E}+00$	
PCB-52	5.84	5.51	$3.10 \mathrm{E}+01$	$9.51 \mathrm{E}+01$	$1.30 \mathrm{E}+01$	$3.99 \mathrm{E}+01$	$3.94 \mathrm{E}+00$	$1.21 \mathrm{E}+01$	$1.22 \mathrm{E}+01$	$3.74 \mathrm{E}+01$	$1.35 \mathrm{E}+00$	4.14E+00	$9.41 \mathrm{E}+00$	$2.89 \mathrm{E}+01$	
PCB-73	6.04	5.70	$9.90 \mathrm{E}-03$	1.97E-02 U	$1.08 \mathrm{E}-02$	$2.15 \mathrm{E}-02 \mathrm{U}$	$1.21 \mathrm{E}-02$	$2.41 \mathrm{E}-02 \mathrm{U}$	$1.17 \mathrm{E}-02$	$2.33 \mathrm{E}-02 \mathrm{U}$	$9.30 \mathrm{E}-03$	$1.85 \mathrm{E}-02 \mathrm{U}$	$9.55 \mathrm{E}-03$	1.90E-02	
PCB-43	5.75	5.43	8.35E-01	$3.12 \mathrm{E}+00$	4.10E-01	$1.53 \mathrm{E}+00$	9.35E-02	$3.49 \mathrm{E}-01$	$3.27 \mathrm{E}-01$	$1.22 \mathrm{E}+00$	$1.47 \mathrm{E}-02$	5.47E-02 U	$1.35 \mathrm{E}-01$	5.04E-01	
PCB-69/49	5.95	5.62	$1.45 \mathrm{E}+01$	$3.50 \mathrm{E}+01^{\text {a }}$	$6.73 \mathrm{E}+00$	$1.63 \mathrm{E}+01^{\text {a }}$	$1.44 \mathrm{E}+00$	$3.48 \mathrm{E}+00^{\text {a }}$	$4.53 \mathrm{E}+00$	$1.09 \mathrm{E}+01^{\text {a }}$	$6.19 \mathrm{E}-01$	$1.50 \mathrm{E}+00^{\text {a }}$	$4.58 \mathrm{E}+00$	$1.11 \mathrm{E}+01$	
PCB-48	5.78	5.46	$4.39 \mathrm{E}+00$	$1.53 \mathrm{E}+01$	$1.91 \mathrm{E}+00$	$6.68 \mathrm{E}+00$	$4.63 \mathrm{E}-01$	$1.62 \mathrm{E}+00$	$1.72 \mathrm{E}+00$	$6.01 \mathrm{E}+00$	$1.29 \mathrm{E}-01$	$4.51 \mathrm{E}-01$	$7.65 \mathrm{E}-01$	$2.68 \mathrm{E}+00$	
PCB-44/47/65	5.82	5.49	$2.21 \mathrm{E}+01$	$7.08 \mathrm{E}+01^{\text {a }}$	$8.98 \mathrm{E}+00$	$2.88 \mathrm{E}+01^{\text {a }}$	$2.22 \mathrm{E}+00$	$7.12 \mathrm{E}+00^{\text {a }}$	$7.83 \mathrm{E}+00$	$2.51 \mathrm{E}+01^{\text {a }}$	$8.89 \mathrm{E}-01$	$2.85 \mathrm{E}+00^{\text {a }}$	$4.80 \mathrm{E}+00$	$1.54 \mathrm{E}+01$	
PCB-59/62/75	5.96	5.63	$1.70 \mathrm{E}+00$	$4.02 \mathrm{E}+00^{\text {a }}$	$7.55 \mathrm{E}-01$	$1.79 \mathrm{E}+00^{\text {a }}$	$1.85 \mathrm{E}-01$	$4.38 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	6.02E-01	$1.42 \mathrm{E}+00^{\text {a }}$	$5.42 \mathrm{E}-02$	$1.28 \mathrm{E}-01 \mathrm{JEMPC}^{\text {a }}$	$3.71 \mathrm{E}-01$	8.77E-01	
PCB-42	5.76	5.44	$5.61 \mathrm{E}+00$	$2.05 \mathrm{E}+01$	$2.35 \mathrm{E}+00$	8.58E+00	$5.75 \mathrm{E}-01$	$2.10 \mathrm{E}+00$	$1.83 \mathrm{E}+00$	6.68E+00	$1.80 \mathrm{E}-01$	$6.57 \mathrm{E}-01$	$1.13 \mathrm{E}+00$	$4.14 \mathrm{E}+00$	
PCB-41	5.69	5.37	$1.71 \mathrm{E}+00$	7.27E+00	$5.29 \mathrm{E}-01$	$2.25 \mathrm{E}+00$	$2.40 \mathrm{E}-01$	$1.02 \mathrm{E}+00$	$8.35 \mathrm{E}-01$	$3.55 \mathrm{E}+00$	$6.21 \mathrm{E}-02$	$2.64 \mathrm{E}-01 \mathrm{~J}$	$2.34 \mathrm{E}-01$	9.93E-01	
PCB-71/40	5.82	5.49	$8.33 \mathrm{E}+00$	$2.67 \mathrm{E}+01^{\text {a }}$	$3.54 \mathrm{E}+00$	$1.13 \mathrm{E}+01^{\text {a }}$	$9.06 \mathrm{E}-01$	$2.90 \mathrm{E}+00^{\text {a }}$	$3.25 \mathrm{E}+00$	$1.04 \mathrm{E}+01^{\text {a }}$	$2.71 \mathrm{E}-01$	$8.69 \mathrm{E}-01^{\text {a }}$	$1.69 \mathrm{E}+00$	$5.42 \mathrm{E}+00$	
PCB-64	5.95	5.62	$9.21 \mathrm{E}+00$	$2.23 \mathrm{E}+01$	$3.61 \mathrm{E}+00$	8.72E+00	$9.17 \mathrm{E}-01$	$2.22 \mathrm{E}+00$	$3.10 \mathrm{E}+00$	7.49E+00	$2.93 \mathrm{E}-01$	7.08E-01	$1.72 \mathrm{E}+00$	$4.15 \mathrm{E}+00$	
PCB-72	6.26	5.91	$1.63 \mathrm{E}-02$	$2.01 \mathrm{E}-02 \mathrm{U}$	$9.01 \mathrm{E}-02$	1.11E-01 EMPC	$1.45 \mathrm{E}-02$	$1.79 \mathrm{E}-02 \mathrm{U}$	$1.79 \mathrm{E}-02$	$2.21 \mathrm{E}-02 \mathrm{U}$	$1.25 \mathrm{E}-02$	$1.53 \mathrm{E}-02 \mathrm{U}$	$1.02 \mathrm{E}-01$	1.26E-01	

			SD0025		SD0018		SD0051		SD0010		SD0028		SD0026	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}} \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}, \mathrm{pg}} \mathrm{pgL}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F},}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L} \quad$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F},} \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{p} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\text {w }} \mathrm{pg} / \mathrm{L} \quad$ Qualifier
PCB-68	6.26	5.91	$1.29 \mathrm{E}-02$	$1.59 \mathrm{E}-02 \mathrm{U}$	$6.55 \mathrm{E}-02$	$8.08 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.15 \mathrm{E}-02$	$1.41 \mathrm{E}-02 \mathrm{U}$	$1.42 \mathrm{E}-02$	$1.74 \mathrm{E}-02 \mathrm{U}$	$9.90 \mathrm{E}-03$	$1.22 \mathrm{E}-02 \mathrm{U}$	$5.28 \mathrm{E}-02$	$6.51 \mathrm{E}-02 \mathrm{~J}$
PCB-57	6.17	5.82	$1.02 \mathrm{E}-01$	$1.53 \mathrm{E}-01$	$1.23 \mathrm{E}-02$	1.84E-02 U	$1.27 \mathrm{E}-02$	1.90E-02 U	$1.57 \mathrm{E}-02$	$2.35 \mathrm{E}-02 \mathrm{U}$	$1.09 \mathrm{E}-02$	1.63E-02 U	$1.50 \mathrm{E}-02$	$2.26 \mathrm{E}-02 \mathrm{U}$
PCB-58	6.17	5.82	1.41E-02	2.11E-02 U	$1.21 \mathrm{E}-02$	$1.81 \mathrm{E}-02 \mathrm{U}$	$1.25 \mathrm{E}-02$	1.87E-02 U	$1.54 \mathrm{E}-02$	2.31E-02 U	$1.08 \mathrm{E}-02$	1.61E-02 U	$1.50 \mathrm{E}-02$	$2.26 \mathrm{E}-02 \mathrm{U}$
PCB-67	6.2	5.85	5.39E-01	7.57E-01	$1.90 \mathrm{E}-01$	$2.67 \mathrm{E}-01$	$1.21 \mathrm{E}-02$	1.70E-02 U	$1.26 \mathrm{E}-01$	1.77E-01 EMPC	$1.05 \mathrm{E}-02$	1.47E-02 U	$1.16 \mathrm{E}-01$	$1.63 \mathrm{E}-01$
PCB-63	6.17	5.82	7.02E-01	$1.05 \mathrm{E}+00$	$2.74 \mathrm{E}-01$	$4.11 \mathrm{E}-01$	$4.27 \mathrm{E}-02$	$6.40 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.70 \mathrm{E}-01$	$2.55 \mathrm{E}-01$	$9.70 \mathrm{E}-03$	$1.45 \mathrm{E}-02 \mathrm{U}$	$1.80 \mathrm{E}-01$	$2.70 \mathrm{E}-01$
PCB-61/70/74/76	6.14	5.80	3.07E+01	$4.91 \mathrm{E}+01^{\text {a }}$	$9.05 \mathrm{E}+00$	$1.45 \mathrm{E}+01^{\text {a }}$	$3.00 \mathrm{E}+00$	$4.80 \mathrm{E}+00^{\text {a }}$	$9.78 \mathrm{E}+00$	$1.56 \mathrm{E}+01^{\text {a }}$	$9.85 \mathrm{E}-01$	$1.58 \mathrm{E}+00^{\text {a }}$	$7.67 \mathrm{E}+00$	$1.23 \mathrm{E}+01^{\text {a }}$
PCB-66	6.2	5.85	$1.51 \mathrm{E}+01$	$2.12 \mathrm{E}+01$	$4.32 \mathrm{E}+00$	6.07E+00	$1.30 \mathrm{E}+00$	$1.83 \mathrm{E}+00$	$4.33 \mathrm{E}+00$	$6.08 \mathrm{E}+00$	$4.41 \mathrm{E}-01$	6.19E-01	$3.96 \mathrm{E}+00$	5.56E+00
PCB-55	6.11	5.77	3.43E-01	5.86E-01	$1.30 \mathrm{E}-02$	$2.21 \mathrm{E}-02 \mathrm{U}$	$1.34 \mathrm{E}-02$	$2.28 \mathrm{E}-02 \mathrm{U}$	$1.65 \mathrm{E}-02$	$2.82 \mathrm{E}-02 \mathrm{U}$	$1.15 \mathrm{E}-02$	$1.96 \mathrm{E}-02 \mathrm{U}$	$7.15 \mathrm{E}-02$	$1.22 \mathrm{E}-01 \mathrm{~J}$
PCB-56	6.11	5.77	7.78E+00	$1.33 \mathrm{E}+01$	$2.16 \mathrm{E}+00$	$3.69 \mathrm{E}+00$	$6.28 \mathrm{E}-01$	$1.07 \mathrm{E}+00$	$2.20 \mathrm{E}+00$	3.76E+00	$2.16 \mathrm{E}-01$	3.69E-01	$1.50 \mathrm{E}+00$	$2.56 \mathrm{E}+00$
PCB-60	6.11	5.77	$4.24 \mathrm{E}+00$	$7.24 \mathrm{E}+00$	$9.04 \mathrm{E}-01$	$1.54 \mathrm{E}+00$	$3.05 \mathrm{E}-01$	5.21E-01	$1.24 \mathrm{E}+00$	$2.12 \mathrm{E}+00$	$8.91 \mathrm{E}-02$	1.52E-01 EMPC	$6.22 \mathrm{E}-01$	$1.06 \mathrm{E}+00$
PCB-80	6.48	6.12	$1.29 \mathrm{E}-02$	$9.83 \mathrm{E}-03 \mathrm{U}$	$1.11 \mathrm{E}-02$	8.45E-03 U	$1.14 \mathrm{E}-02$	$8.72 \mathrm{E}-03 \mathrm{U}$	$1.41 \mathrm{E}-02$	$1.08 \mathrm{E}-02 \mathrm{U}$	$9.80 \mathrm{E}-03$	7.49E-03 U	$1.39 \mathrm{E}-02$	$1.07 \mathrm{E}-02 \mathrm{U}$
PCB-79	6.42	6.06	$1.52 \mathrm{E}-01$	$1.32 \mathrm{E}-01$	$8.44 \mathrm{E}-02$	7.35E-02 EMPC	$1.14 \mathrm{E}-02$	$9.93 \mathrm{E}-03 \mathrm{U}$	$6.17 \mathrm{E}-02$	$5.37 \mathrm{E}-02 \mathrm{~J}$	$9.80 \mathrm{E}-03$	$8.54 \mathrm{E}-03 \mathrm{U}$	$1.07 \mathrm{E}-01$	9.36E-02
РСВ-78	6.35	5.99	1.60E-02	1.62E-02 U	$1.37 \mathrm{E}-02$	$1.39 \mathrm{E}-02 \mathrm{U}$	$1.42 \mathrm{E}-02$	$1.44 \mathrm{E}-02 \mathrm{U}$	$1.75 \mathrm{E}-02$	1.77E-02 U	$1.22 \mathrm{E}-02$	$1.24 \mathrm{E}-02 \mathrm{U}$	$1.72 \mathrm{E}-02$	$1.75 \mathrm{E}-02 \mathrm{U}$
PCB-81	6.36	6.00	6.28E-02	$6.23 \mathrm{E}-02 \mathrm{~J}$	$1.35 \mathrm{E}-02$	$1.33 \mathrm{E}-02 \mathrm{U}$	$1.39 \mathrm{E}-02$	$1.38 \mathrm{E}-02 \mathrm{U}$	$1.72 \mathrm{E}-02$	$1.70 \mathrm{E}-02 \mathrm{U}$	$1.20 \mathrm{E}-02$	$1.19 \mathrm{E}-02 \mathrm{U}$	$1.68 \mathrm{E}-02$	$1.66 \mathrm{E}-02 \mathrm{U}$
PCB-77	6.36	6.00	7.14E-01	$7.08 \mathrm{E}-01$	$1.52 \mathrm{E}-01$	$1.51 \mathrm{E}-01$	$8.74 \mathrm{E}-02$	8.67E-02	$1.88 \mathrm{E}-01$	$1.87 \mathrm{E}-01$	$1.31 \mathrm{E}-02$	1.30E-02 U	$2.31 \mathrm{E}-01$	$2.29 \mathrm{E}-01$
PCB-104	5.81	5.48	$7.95 \mathrm{E}-03$	2.60E-02 U	$7.75 \mathrm{E}-03$	2.54E-02 U	$1.07 \mathrm{E}-02$	$3.50 \mathrm{E}-02 \mathrm{U}$	8.05E-03	$2.64 \mathrm{E}-02 \mathrm{U}$	$8.15 \mathrm{E}-03$	2.67E-02 U	$1.63 \mathrm{E}-02$	5.33E-02 U
PCB-96	5.71	5.39	$2.21 \mathrm{E}-01$	$8.99 \mathrm{E}-01$	$1.57 \mathrm{E}-01$	$6.39 \mathrm{E}-01$	$2.90 \mathrm{E}-02$	$1.18 \mathrm{E}-01 \mathrm{~J}$	$1.17 \mathrm{E}-01$	$4.76 \mathrm{E}-01$	$9.00 \mathrm{E}-03$	$3.66 \mathrm{E}-02 \mathrm{U}$	$9.12 \mathrm{E}-02$	3.71E-01 EMPC
PCB-103	6.22	5.87	1.80E-01	2.42E-01 EMPC	$2.10 \mathrm{E}-01$	$2.82 \mathrm{E}-01$	$3.12 \mathrm{E}-02$	4.19E-02 U	$2.34 \mathrm{E}-02$	$3.15 \mathrm{E}-02 \mathrm{U}$	$1.73 \mathrm{E}-02$	$2.32 \mathrm{E}-02 \mathrm{U}$	$1.83 \mathrm{E}-01$	$2.46 \mathrm{E}-01$
PCB-94	6.13	5.79	$1.43 \mathrm{E}-01$	$2.34 \mathrm{E}-01$	$2.87 \mathrm{E}-02$	4.68E-02 U	$3.29 \mathrm{E}-02$	5.37E-02 U	$2.47 \mathrm{E}-02$	4.04E-02 U	$1.82 \mathrm{E}-02$	$2.98 \mathrm{E}-02 \mathrm{U}$	$1.90 \mathrm{E}-02$	$3.10 \mathrm{E}-02 \mathrm{U}$
PCB-95	6.13	5.79	$1.56 \mathrm{E}+01$	$2.55 \mathrm{E}+01$	$1.11 \mathrm{E}+01$	$1.81 \mathrm{E}+01$	$3.95 \mathrm{E}+00$	$6.46 \mathrm{E}+00$	$8.76 \mathrm{E}+00$	$1.43 \mathrm{E}+01$	$1.61 \mathrm{E}+00$	$2.63 \mathrm{E}+00$	$1.06 \mathrm{E}+01$	$1.73 \mathrm{E}+01$
PCB-100/93	6.14	5.80	$2.29 \mathrm{E}-01$	$3.66 \mathrm{E}-01^{\text {a }}$	$2.64 \mathrm{E}-02$	$4.22 \mathrm{E}-02 \mathrm{U}$	$3.02 \mathrm{E}-02$	$4.83 \mathrm{E}-02 \mathrm{U}$	$2.27 \mathrm{E}-02$	$3.63 \mathrm{E}-02 \mathrm{U}$	$1.68 \mathrm{E}-02$	$2.68 \mathrm{E}-02 \mathrm{U}$	$1.78 \mathrm{E}-02$	$2.85 \mathrm{E}-02 \mathrm{U}$
PCB-102	6.16	5.81	6.63E-01	$1.02 \mathrm{E}+00$	$4.75 \mathrm{E}-01$	$7.28 \mathrm{E}-01$	$2.72 \mathrm{E}-02$	$4.17 \mathrm{E}-02 \mathrm{U}$	$2.84 \mathrm{E}-01$	$4.35 \mathrm{E}-01$	$1.51 \mathrm{E}-02$	$2.31 \mathrm{E}-02 \mathrm{U}$	$3.57 \mathrm{E}-01$	5.47E-01
PCB-98	6.13	5.79	1.98E-02	3.23E-02 U	$2.74 \mathrm{E}-02$	4.48E-02 U	$3.15 \mathrm{E}-02$	5.14E-02 U	$2.36 \mathrm{E}-02$	$3.86 \mathrm{E}-02 \mathrm{U}$	$1.74 \mathrm{E}-02$	$2.84 \mathrm{E}-02 \mathrm{U}$	$1.80 \mathrm{E}-02$	2.94E-02 U
PCB-88	6.07	5.73	2.33E-02	4.33E-02 U	$3.23 \mathrm{E}-02$	$6.01 \mathrm{E}-02 \mathrm{U}$	$3.70 \mathrm{E}-02$	6.88E-02 U	$2.78 \mathrm{E}-02$	5.18E-02 U	$2.05 \mathrm{E}-02$	$3.82 \mathrm{E}-02 \mathrm{U}$	$2.15 \mathrm{E}-02$	4.01E-02 U
PCB-91	6.13	5.79	$2.51 \mathrm{E}+00$	$4.10 \mathrm{E}+00$	$1.69 \mathrm{E}+00$	$2.76 \mathrm{E}+00$	$5.07 \mathrm{E}-01$	$8.29 \mathrm{E}-01$	$1.15 \mathrm{E}+00$	$1.88 \mathrm{E}+00$	$1.86 \mathrm{E}-01$	$3.04 \mathrm{E}-01$	$1.55 \mathrm{E}+00$	$2.54 \mathrm{E}+00$
PCB-84	6.04	5.70	$5.59 \mathrm{E}+00$	$1.11 \mathrm{E}+01$	$3.96 \mathrm{E}+00$	$7.87 \mathrm{E}+00$	$1.21 \mathrm{E}+00$	$2.41 \mathrm{E}+00$	$3.14 \mathrm{E}+00$	$6.24 \mathrm{E}+00$	$5.39 \mathrm{E}-01$	$1.07 \mathrm{E}+00$	$3.52 \mathrm{E}+00$	6.99E+00
PCB-89	6.07	5.73	2.96E-01	$5.51 \mathrm{E}-01$	$1.88 \mathrm{E}-01$	3.50E-01	$3.36 \mathrm{E}-02$	6.25E-02 U	$1.12 \mathrm{E}-01$	$2.09 \mathrm{E}-01$	$1.86 \mathrm{E}-02$	$3.46 \mathrm{E}-02 \mathrm{U}$	$1.44 \mathrm{E}-01$	$2.69 \mathrm{E}-01$
PCB-121	6.64	6.27	$1.41 \mathrm{E}-02$	7.59E-03 U	$1.95 \mathrm{E}-02$	1.05E-02 U	$2.24 \mathrm{E}-02$	$1.21 \mathrm{E}-02 \mathrm{U}$	$1.68 \mathrm{E}-02$	$9.08 \mathrm{E}-03 \mathrm{U}$	$1.24 \mathrm{E}-02$	$6.70 \mathrm{E}-03 \mathrm{U}$	$1.26 \mathrm{E}-02$	$6.83 \mathrm{E}-03 \mathrm{U}$
PCB-92	6.35	5.99	$3.39 \mathrm{E}+00$	$3.44 \mathrm{E}+00$	$2.34 \mathrm{E}+00$	$2.37 \mathrm{E}+00$	$7.99 \mathrm{E}-01$	$8.10 \mathrm{E}-01$	$1.64 \mathrm{E}+00$	$1.66 \mathrm{E}+00$	$3.06 \mathrm{E}-01$	$3.10 \mathrm{E}-01$	$2.64 \mathrm{E}+00$	$2.68 \mathrm{E}+00$
PCB-113/90/101	6.43	6.07	$2.00 \mathrm{E}+01$	$1.70 \mathrm{E}+01^{\text {a }}$	$1.24 \mathrm{E}+01$	$1.06 \mathrm{E}+01^{\text {a }}$	$4.54 \mathrm{E}+00$	$3.87 \mathrm{E}+00^{\text {a }}$	$9.10 \mathrm{E}+00$	$7.76 \mathrm{E}+00^{\text {a }}$	$1.78 \mathrm{E}+00$	$1.52 \mathrm{E}+00^{\text {a }}$	$1.46 \mathrm{E}+01$	$1.24 \mathrm{E}+01^{\text {a }}$
PCB-83	6.26	5.91	$1.25 \mathrm{E}+00$	$1.54 \mathrm{E}+00$	$6.37 \mathrm{E}-01$	7.85E-01	$2.64 \mathrm{E}-01$	$3.25 \mathrm{E}-01$	$4.95 \mathrm{E}-01$	6.10E-01	$6.89 \mathrm{E}-02$	$8.49 \mathrm{E}-02 \mathrm{~J}$	$6.88 \mathrm{E}-01$	8.49E-01
PCB-99	6.39	6.03	$9.20 \mathrm{E}+00$	8.55E+00	$6.27 \mathrm{E}+00$	5.83E+00	$2.18 \mathrm{E}+00$	$2.03 \mathrm{E}+00$	$3.91 \mathrm{E}+00$	$3.64 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$9.30 \mathrm{E}-01$	$7.54 \mathrm{E}+00$	7.01E+00
PCB-112	6.45	6.09	1.47E-02	$1.20 \mathrm{E}-02 \mathrm{U}$	$2.04 \mathrm{E}-02$	$1.66 \mathrm{E}-02 \mathrm{U}$	$2.34 \mathrm{E}-02$	$1.91 \mathrm{E}-02 \mathrm{U}$	$1.76 \mathrm{E}-02$	$1.43 \mathrm{E}-02 \mathrm{U}$	$1.30 \mathrm{E}-02$	$1.06 \mathrm{E}-02 \mathrm{U}$	$1.33 \mathrm{E}-02$	$1.09 \mathrm{E}-02 \mathrm{U}$
PCB-108/119/86/97/125/87	6.44	6.08	$1.32 \mathrm{E}+01$	$1.10 \mathrm{E}+01^{\text {a }}$	$6.85 \mathrm{E}+00$	$5.71 \mathrm{E}+00^{\text {a }}$	$3.15 \mathrm{E}+00$	$2.63 \mathrm{E}+00^{\text {a }}$	$6.41 \mathrm{E}+00$	$5.35 \mathrm{E}+00^{\text {a }}$	$9.55 \mathrm{E}-01$	$7.96 \mathrm{E}-01^{\text {a }}$	$7.78 \mathrm{E}+00$	$6.49 \mathrm{E}+00^{\text {a }}$
PCB-117	6.46	6.10	5.05E-01	4.03E-01	$3.28 \mathrm{E}-01$	$2.62 \mathrm{E}-01$	$2.59 \mathrm{E}-02$	$2.07 \mathrm{E}-02 \mathrm{U}$	$1.95 \mathrm{E}-02$	1.56E-02 U	$3.94 \mathrm{E}-02$	$3.15 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$4.19 \mathrm{E}-01$	$3.35 \mathrm{E}-01$
PCB-116/85	6.32	5.97	$3.00 \mathrm{E}+00$	$3.25 \mathrm{E}+00^{\text {a }}$	$1.72 \mathrm{E}+00$	$1.86 \mathrm{E}+00^{\text {a }}$	$8.48 \mathrm{E}-01$	$9.18 \mathrm{E}-01^{\text {a }}$	$1.58 \mathrm{E}+00$	$1.71 \mathrm{E}+00^{\text {a }}$	$1.99 \mathrm{E}-01$	$2.15 \mathrm{E}-01^{\text {a }}$	$1.83 \mathrm{E}+00$	$1.98 \mathrm{E}+00{ }^{\text {a }}$
PCB-110	6.48	6.12	$2.07 \mathrm{E}+01$	$1.58 \mathrm{E}+01$	$1.29 \mathrm{E}+01$	$9.86 \mathrm{E}+00$	$5.67 \mathrm{E}+00$	$4.34 \mathrm{E}+00$	$1.12 \mathrm{E}+01$	$8.56 \mathrm{E}+00$	$1.83 \mathrm{E}+00$	$1.40 \mathrm{E}+00$	$1.55 \mathrm{E}+01$	$1.19 \mathrm{E}+01$
PCB-115	6.49	6.13	$1.38 \mathrm{E}-02$	$1.03 \mathrm{E}-02 \mathrm{U}$	$1.91 \mathrm{E}-02$	$1.43 \mathrm{E}-02 \mathrm{U}$	$2.19 \mathrm{E}-02$	$1.63 \mathrm{E}-02 \mathrm{U}$	$1.65 \mathrm{E}-02$	$1.23 \mathrm{E}-02 \mathrm{U}$	$1.21 \mathrm{E}-02$	$9.05 \mathrm{E}-03 \mathrm{U}$	$1.28 \mathrm{E}-02$	$9.56 \mathrm{E}-03 \mathrm{U}$
PCB-82	6.2	5.85	$2.51 \mathrm{E}+00$	$3.53 \mathrm{E}+00$	$1.17 \mathrm{E}+00$	$1.64 \mathrm{E}+00$	$5.43 \mathrm{E}-01$	$7.63 \mathrm{E}-01$	$1.17 \mathrm{E}+00$	$1.64 \mathrm{E}+00$	$1.75 \mathrm{E}-01$	$2.46 \mathrm{E}-01$	$1.28 \mathrm{E}+00$	$1.80 \mathrm{E}+00$
PCB-111	6.76	6.38	$1.38 \mathrm{E}-02$	$5.72 \mathrm{E}-03 \mathrm{U}$	$1.91 \mathrm{E}-02$	$7.95 \mathrm{E}-03 \mathrm{U}$	$2.19 \mathrm{E}-02$	$9.10 \mathrm{E}-03 \mathrm{U}$	$1.65 \mathrm{E}-02$	$6.85 \mathrm{E}-03 \mathrm{U}$	$1.22 \mathrm{E}-02$	$5.06 \mathrm{E}-03 \mathrm{U}$	$1.28 \mathrm{E}-02$	$5.32 \mathrm{E}-03 \mathrm{U}$
PCB-120	6.79	6.41	1.41E-02	$5.48 \mathrm{E}-03 \mathrm{U}$	$1.95 \mathrm{E}-02$	$7.61 \mathrm{E}-03 \mathrm{U}$	$2.24 \mathrm{E}-02$	$8.72 \mathrm{E}-03 \mathrm{U}$	$1.68 \mathrm{E}-02$	$6.55 \mathrm{E}-03 \mathrm{U}$	$1.24 \mathrm{E}-02$	4.84E-03 U	$1.28 \mathrm{E}-02$	$4.98 \mathrm{E}-03 \mathrm{U}$
PCB-107/124	6.72	6.34	5.16E-01	$2.34 \mathrm{E}-01^{\text {a }}$	$2.18 \mathrm{E}-01$	$9.90 \mathrm{E}-02{ }^{\text {a }}$	$1.71 \mathrm{E}-01$	$7.76 \mathrm{E}-02^{\text {a }}$	$2.71 \mathrm{E}-01$	$1.23 \mathrm{E}-01^{\text {a }}$	$1.36 \mathrm{E}-02$	6.15E-03 U	$3.63 \mathrm{E}-01$	$1.65 \mathrm{E}-01^{\text {a }}$
PCB-109	6.48	6.12	8.64E-01	$6.61 \mathrm{E}-01$	$5.03 \mathrm{E}-01$	3.85E-01	$2.56 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	$3.78 \mathrm{E}-01$	2.89E-01	$9.44 \mathrm{E}-02$	7.22E-02	$7.76 \mathrm{E}-01$	5.94E-01
PCB-123	6.74	6.36	2.11E-01	9.17E-02 EMPC	$2.12 \mathrm{E}-02$	9.22E-03 U	$2.43 \mathrm{E}-02$	1.06E-02 U	$1.18 \mathrm{E}-01$	5.13E-02	$1.35 \mathrm{E}-02$	$5.85 \mathrm{E}-03 \mathrm{U}$	$1.47 \mathrm{E}-01$	6.39E-02
PCB-106	6.64	6.27	1.50E-02	$8.08 \mathrm{E}-03 \mathrm{U}$	$2.07 \mathrm{E}-02$	$1.12 \mathrm{E}-02 \mathrm{U}$	$2.38 \mathrm{E}-02$	$1.28 \mathrm{E}-02 \mathrm{U}$	$1.79 \mathrm{E}-02$	9.64E-03 U	$1.32 \mathrm{E}-02$	7.10E-03 U	$1.44 \mathrm{E}-02$	$7.79 \mathrm{E}-03 \mathrm{U}$
PCB-118	6.74	6.36	$1.24 \mathrm{E}+01$	$5.39 \mathrm{E}+00$	$6.12 \mathrm{E}+00$	$2.66 \mathrm{E}+00$	$3.10 \mathrm{E}+00$	$1.35 \mathrm{E}+00$	$5.96 \mathrm{E}+00$	$2.59 \mathrm{E}+00$	$9.81 \mathrm{E}-01$	$4.27 \mathrm{E}-01$	$9.98 \mathrm{E}+00$	4.34E+00
PCB-122	6.64	6.27	$1.19 \mathrm{E}-01$	6.43E-02 EMPC	$2.47 \mathrm{E}-02$	1.33E-02 U	$2.62 \mathrm{E}-02$	1.41E-02 U	$9.39 \mathrm{E}-02$	5.07E-02 EMPC	$1.50 \mathrm{E}-02$	$8.08 \mathrm{E}-03 \mathrm{U}$	$1.55 \mathrm{E}-02$	$8.39 \mathrm{E}-03 \mathrm{U}$
PCB-114	6.65	6.28	2.52E-01	$1.33 \mathrm{E}-01$	$2.20 \mathrm{E}-02$	1.16E-02 U	$2.33 \mathrm{E}-02$	$1.23 \mathrm{E}-02 \mathrm{U}$	$1.67 \mathrm{E}-01$	8.83E-02 EMPC	$1.33 \mathrm{E}-02$	$7.03 \mathrm{E}-03 \mathrm{U}$	$1.59 \mathrm{E}-01$	8.43E-02
PCB-105	6.65	6.28	5.35E+00	2.83E+00	$2.27 \mathrm{E}+00$	$1.20 \mathrm{E}+00$	$1.36 \mathrm{E}+00$	7.19E-01	$2.56 \mathrm{E}+00$	$1.35 \mathrm{E}+00 \mathrm{EMPC}$	$4.10 \mathrm{E}-01$	$2.17 \mathrm{E}-01$	$3.48 \mathrm{E}+00$	$1.84 \mathrm{E}+00$
PCB-127	6.95	6.56	1.81E-02	$4.99 \mathrm{E}-03 \mathrm{U}$	$2.44 \mathrm{E}-02$	6.72E-03 U	$2.63 \mathrm{E}-02$	$7.23 \mathrm{E}-03 \mathrm{U}$	$1.95 \mathrm{E}-02$	$5.37 \mathrm{E}-03 \mathrm{U}$	$1.40 \mathrm{E}-02$	$3.86 \mathrm{E}-03 \mathrm{U}$	$1.39 \mathrm{E}-02$	$3.82 \mathrm{E}-03 \mathrm{U}$
PCB-126	6.89	6.50	1.41E-02	$4.41 \mathrm{E}-03 \mathrm{U}$	$1.53 \mathrm{E}-02$	$4.79 \mathrm{E}-03 \mathrm{U}$	$1.54 \mathrm{E}-02$	$4.83 \mathrm{E}-03 \mathrm{U}$	$1.55 \mathrm{E}-02$	$4.85 \mathrm{E}-03 \mathrm{U}$	$1.12 \mathrm{E}-02$	$3.52 \mathrm{E}-03 \mathrm{U}$	1.27E-02	$3.99 \mathrm{E}-03 \mathrm{U}$

	SD0025				SD0018		SD0051		SD0010		SD0028		SD0026	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\bar{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	C_{w}, pg/L Qualifier	$\overline{C_{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier		$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\overline{C_{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier
PCB-155	6.41	6.05	$7.40 \mathrm{E}-03$	$6.59 \mathrm{E}-03 \mathrm{U}$	8.65E-03	$7.70 \mathrm{E}-03 \mathrm{U}$	1.09E-02	$9.70 \mathrm{E}-03 \mathrm{U}$	$7.90 \mathrm{E}-03$	$7.03 \mathrm{E}-03 \mathrm{U}$	$7.35 \mathrm{E}-03$	$6.54 \mathrm{E}-03 \mathrm{U}$	$6.60 \mathrm{E}-03$	$5.88 \mathrm{E}-03 \mathrm{U}$
PCB-152	6.22	5.87	$7.85 \mathrm{E}-03$	$1.06 \mathrm{E}-02 \mathrm{U}$	$9.20 \mathrm{E}-03$	1.24E-02 U	$1.16 \mathrm{E}-02$	$1.56 \mathrm{E}-02 \mathrm{U}$	$8.40 \mathrm{E}-03$	1.13E-02 U	$7.80 \mathrm{E}-03$	$1.05 \mathrm{E}-02 \mathrm{U}$	$7.08 \mathrm{E}-03$	$9.52 \mathrm{E}-03 \mathrm{U}$
PCB-150	6.32	5.97	7.75E-03	$8.39 \mathrm{E}-03 \mathrm{U}$	$9.10 \mathrm{E}-03$	$9.85 \mathrm{E}-03 \mathrm{U}$	$1.15 \mathrm{E}-02$	$1.24 \mathrm{E}-02 \mathrm{U}$	$8.30 \mathrm{E}-03$	8.98E-03 U	$7.70 \mathrm{E}-03$	$8.33 \mathrm{E}-03 \mathrm{U}$	$6.87 \mathrm{E}-03$	$7.44 \mathrm{E}-03 \mathrm{U}$
PCB-136	6.22	5.87	$1.38 \mathrm{E}+00$	$1.86 \mathrm{E}+00$	$1.65 \mathrm{E}+00$	$2.22 \mathrm{E}+00$	5.37E-01	7.22E-01	$1.11 \mathrm{E}+00$	$1.49 \mathrm{E}+00$	$2.95 \mathrm{E}-01$	3.97E-01	$1.50 \mathrm{E}+00$	$2.01 \mathrm{E}+00$
PCB-145	6.25	5.90	$8.25 \mathrm{E}-03$	1.04E-02 U	$9.70 \mathrm{E}-03$	$1.22 \mathrm{E}-02 \mathrm{U}$	$1.22 \mathrm{E}-02$	$1.54 \mathrm{E}-02 \mathrm{U}$	$8.85 \mathrm{E}-03$	$1.12 \mathrm{E}-02 \mathrm{U}$	$8.20 \mathrm{E}-03$	1.03E-02 U	$7.35 \mathrm{E}-03$	$9.26 \mathrm{E}-03 \mathrm{U}$
PCB-148	6.73	6.35	1.07E-02	$4.75 \mathrm{E}-03 \mathrm{U}$	$1.20 \mathrm{E}-02$	5.33E-03 U	$1.58 \mathrm{E}-02$	7.02E-03 U	$1.27 \mathrm{E}-02$	5.64E-03 U	$1.03 \mathrm{E}-02$	$4.55 \mathrm{E}-03 \mathrm{U}$	$1.02 \mathrm{E}-02$	$4.52 \mathrm{E}-03 \mathrm{U}$
PCB-151/135	6.64	6.27	$3.79 \mathrm{E}+00$	$2.05 \mathrm{E}+00^{\text {a }}$	$3.79 \mathrm{E}+00$	$2.05 \mathrm{E}+00^{\text {a }}$	$1.15 \mathrm{E}+00$	$6.21 \mathrm{E}-01^{\text {a }}$	$2.37 \mathrm{E}+00$	$1.28 \mathrm{E}+00^{\text {a }}$	$7.13 \mathrm{E}-01$	$3.85 \mathrm{E}-01^{\text {a }}$	$3.57 \mathrm{E}+00$	$1.93 \mathrm{E}+00^{\text {a }}$
PCB-154	6.76	6.38	9.95E-03	4.14E-03 U	$1.72 \mathrm{E}-01$	7.16E-02	$1.47 \mathrm{E}-02$	$6.10 \mathrm{E}-03 \mathrm{U}$	$4.52 \mathrm{E}-02$	$1.88 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$3.72 \mathrm{E}-02$	$1.55 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.54 \mathrm{E}-01$	6.41E-02
PCB-144	6.67	6.30	5.78E-01	$2.93 \mathrm{E}-01$	$5.12 \mathrm{E}-01$	2.59E-01	$2.32 \mathrm{E}-01$	$1.17 \mathrm{E}-01$	$3.56 \mathrm{E}-01$	1.80E-01	$1.15 \mathrm{E}-01$	5.82E-02	5.00E-01	$2.53 \mathrm{E}-01$
PCB-147/149	6.655	6.28	$9.54 \mathrm{E}+00$	$4.99 \mathrm{E}+00^{\text {a }}$	$9.35 \mathrm{E}+00$	$4.89 \mathrm{E}+00^{\text {a }}$	$2.85 \mathrm{E}+00$	$1.49 \mathrm{E}+00^{\text {a }}$	$5.80 \mathrm{E}+00$	$3.03 \mathrm{E}+00^{\text {a }}$	$1.68 \mathrm{E}+00$	$8.79 \mathrm{E}-01^{\text {a }}$	$9.32 \mathrm{E}+00$	$4.87 \mathrm{E}+00^{\text {a }}$
PCB-134	6.55	6.18	8.28E-01	$5.44 \mathrm{E}-01$	$7.24 \mathrm{E}-01$	4.76E-01	$3.18 \mathrm{E}-01$	2.09E-01	$4.89 \mathrm{E}-01$	3.21E-01	$1.19 \mathrm{E}-01$	7.82E-02	$9.15 \mathrm{E}-01$	6.01E-01
PCB-143	6.6	6.23	$1.10 \mathrm{E}-02$	6.48E-03 U	$1.24 \mathrm{E}-02$	$7.28 \mathrm{E}-03 \mathrm{U}$	$1.63 \mathrm{E}-02$	$9.58 \mathrm{E}-03 \mathrm{U}$	$1.31 \mathrm{E}-02$	7.69E-03 U	$1.06 \mathrm{E}-02$	$6.22 \mathrm{E}-03 \mathrm{U}$	$1.01 \mathrm{E}-02$	5.95E-03 U
PCB-139/140	6.67	6.30	$1.71 \mathrm{E}-01$	$8.66 \mathrm{E}-02{ }^{\text {a }}$	$1.71 \mathrm{E}-01$	$8.66 \mathrm{E}-02^{\text {a }}$	$9.80 \mathrm{E}-02$	$4.96 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.19 \mathrm{E}-01$	$6.02 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.02 \mathrm{E}-02$	$5.16 \mathrm{E}-03 \mathrm{U}$	$2.46 \mathrm{E}-01$	$1.24 \mathrm{E}-01^{\text {a }}$
PCB-131	6.58	6.21	$1.27 \mathrm{E}-02$	7.82E-03 U	$1.39 \mathrm{E}-01$	8.55E-02	$1.87 \mathrm{E}-02$	$1.15 \mathrm{E}-02 \mathrm{U}$	$1.26 \mathrm{E}-01$	7.75E-02	$1.22 \mathrm{E}-02$	7.48E-03 U	$1.94 \mathrm{E}-01$	$1.19 \mathrm{E}-01$
PCB-142	6.51	6.14	$1.28 \mathrm{E}-02$	$9.17 \mathrm{E}-03 \mathrm{U}$	$1.44 \mathrm{E}-02$	1.03E-02 U	$1.89 \mathrm{E}-02$	$1.35 \mathrm{E}-02 \mathrm{U}$	$1.52 \mathrm{E}-02$	1.09E-02 U	$1.23 \mathrm{E}-02$	$8.78 \mathrm{E}-03 \mathrm{U}$	1.19E-02	$8.52 \mathrm{E}-03 \mathrm{U}$
PCB-132	6.58	6.21	$4.03 \mathrm{E}+00$	$2.48 \mathrm{E}+00$	$3.60 \mathrm{E}+00$	$2.22 \mathrm{E}+00$	$1.30 \mathrm{E}+00$	$8.00 \mathrm{E}-01$	$2.56 \mathrm{E}+00$	$1.58 \mathrm{E}+00$	$5.86 \mathrm{E}-01$	3.61E-01	$4.09 \mathrm{E}+00$	$2.52 \mathrm{E}+00$
PCB-133	6.86	6.47	7.55E-02	$2.53 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.33 \mathrm{E}-01$	4.46E-02	$1.71 \mathrm{E}-02$	$5.73 \mathrm{E}-03 \mathrm{U}$	$9.23 \mathrm{E}-02$	3.09E-02	$1.11 \mathrm{E}-02$	$3.72 \mathrm{E}-03 \mathrm{U}$	$1.47 \mathrm{E}-01$	4.93E-02
PCB-165	7.05	6.65	$9.25 \mathrm{E}-03$	$2.05 \mathrm{E}-03 \mathrm{U}$	$1.04 \mathrm{E}-02$	$2.31 \mathrm{E}-03 \mathrm{U}$	$1.37 \mathrm{E}-02$	$3.03 \mathrm{E}-03 \mathrm{U}$	$1.10 \mathrm{E}-02$	$2.44 \mathrm{E}-03 \mathrm{U}$	$8.85 \mathrm{E}-03$	$1.96 \mathrm{E}-03 \mathrm{U}$	$8.73 \mathrm{E}-03$	$1.94 \mathrm{E}-03 \mathrm{U}$
PCB-146	6.89	6.50	$1.47 \mathrm{E}+00$	$4.61 \mathrm{E}-01$	$1.47 \mathrm{E}+00$	$4.61 \mathrm{E}-01$	$5.28 \mathrm{E}-01$	$1.66 \mathrm{E}-01$	$8.56 \mathrm{E}-01$	$2.69 \mathrm{E}-01$	$2.96 \mathrm{E}-01$	9.29E-02	$1.65 \mathrm{E}+00$	5.18E-01
PCB-161	7.08	6.68	$8.80 \mathrm{E}-03$	$1.83 \mathrm{E}-03 \mathrm{U}$	$9.85 \mathrm{E}-03$	$2.05 \mathrm{E}-03 \mathrm{U}$	$1.30 \mathrm{E}-02$	2.70E-03 U	$1.05 \mathrm{E}-02$	$2.17 \mathrm{E}-03 \mathrm{U}$	8.45E-03	$1.76 \mathrm{E}-03 \mathrm{U}$	$8.18 \mathrm{E}-03$	$1.70 \mathrm{E}-03 \mathrm{U}$
PCB-153/168	7.01	6.62	$8.25 \mathrm{E}+00$	$2.00 \mathrm{E}+00^{\text {a }}$	$7.76 \mathrm{E}+00$	$1.88 \mathrm{E}+00^{\text {a }}$	$2.53 \mathrm{E}+00$	$6.12 \mathrm{E}-01^{\text {a }}$	$4.66 \mathrm{E}+00$	$1.13 \mathrm{E}+00^{\text {a }}$	$1.58 \mathrm{E}+00$	$3.82 \mathrm{E}-01^{\text {a }}$	$8.71 \mathrm{E}+00$	$2.11 \mathrm{E}+00^{\text {a }}$
PCB-141	6.82	6.44	$1.83 \mathrm{E}+00$	6.69E-01	$1.21 \mathrm{E}+00$	$4.42 \mathrm{E}-01$	$5.73 \mathrm{E}-01$	$2.09 \mathrm{E}-01$	$1.19 \mathrm{E}+00$	$4.35 \mathrm{E}-01$	$2.65 \mathrm{E}-01$	9.68E-02	$1.40 \mathrm{E}+00$	5.12E-01
PCB-130	6.8	6.42	$6.55 \mathrm{E}-01$	$2.50 \mathrm{E}-01$	$5.69 \mathrm{E}-01$	$2.17 \mathrm{E}-01$	$2.85 \mathrm{E}-01$	$1.09 \mathrm{E}-01$	$4.09 \mathrm{E}-01$	$1.56 \mathrm{E}-01$	$1.06 \mathrm{E}-01$	$4.05 \mathrm{E}-02 \mathrm{EMPC}$	$6.68 \mathrm{E}-01$	$2.55 \mathrm{E}-01 \mathrm{EMPC}$
PCB-137	6.83	6.45	$3.87 \mathrm{E}-01$	$1.38 \mathrm{E}-01$	$2.62 \mathrm{E}-01$	9.37E-02	$1.99 \mathrm{E}-01$	7.12E-02	$3.05 \mathrm{E}-01$	$1.09 \mathrm{E}-01$	$7.51 \mathrm{E}-02$	$2.69 \mathrm{E}-02 \mathrm{~J}$	$4.78 \mathrm{E}-01$	$1.71 \mathrm{E}-01$
PCB-164	7.02	6.63	6.68E-01	$1.58 \mathrm{E}-01$	$6.18 \mathrm{E}-01$	$1.46 \mathrm{E}-01$	$2.33 \mathrm{E}-01$	$5.52 \mathrm{E}-02$	$4.35 \mathrm{E}-01$	1.03E-01	$1.20 \mathrm{E}-01$	$2.84 \mathrm{E}-02$	$6.94 \mathrm{E}-01$	$1.64 \mathrm{E}-01$
PCB-163/138/129	6.85	6.47	$1.16 \mathrm{E}+01$	$3.97 \mathrm{E}+00^{\text {a }}$	$9.50 \mathrm{E}+00$	$3.25 \mathrm{E}+00^{\text {a }}$	$3.50 \mathrm{E}+00$	$1.20 \mathrm{E}+00^{\text {a }}$	$6.59 \mathrm{E}+00$	$2.26 \mathrm{E}+00^{\text {a }}$	$1.74 \mathrm{E}+00$	$5.96 \mathrm{E}-01^{\text {a }}$	$1.10 \mathrm{E}+01$	$3.78 \mathrm{E}+00^{\text {a }}$
PCB-160	6.93	6.54	$9.10 \mathrm{E}-03$	$2.62 \mathrm{E}-03 \mathrm{U}$	$1.02 \mathrm{E}-02$	$2.94 \mathrm{E}-03 \mathrm{U}$	$1.34 \mathrm{E}-02$	3.86E-03 U	$1.08 \mathrm{E}-02$	$3.09 \mathrm{E}-03 \mathrm{U}$	$8.70 \mathrm{E}-03$	$2.50 \mathrm{E}-03 \mathrm{U}$	$8.73 \mathrm{E}-03$	$2.51 \mathrm{E}-03 \mathrm{U}$
PCB-158	7.02	6.63	$1.16 \mathrm{E}+00$	$2.75 \mathrm{E}-01$	$7.25 \mathrm{E}-01$	$1.72 \mathrm{E}-01$	$3.50 \mathrm{E}-01$	8.29E-02 EMPC	$6.97 \mathrm{E}-01$	$1.65 \mathrm{E}-01$	$1.82 \mathrm{E}-01$	$4.31 \mathrm{E}-02$	$1.11 \mathrm{E}+00$	$2.62 \mathrm{E}-01$
PCB-128/166	6.47	6.11	$1.56 \mathrm{E}+00$	$1.22 \mathrm{E}+00^{\text {a }}$	$1.17 \mathrm{E}+00$	$9.14 \mathrm{E}-01^{\text {a }}$	$5.61 \mathrm{E}-01$	$4.38 \mathrm{E}-01 \mathrm{EMPC}^{\text {a }}$	$9.50 \mathrm{E}-01$	$7.42 \mathrm{E}-01^{\text {a }}$	$1.73 \mathrm{E}-01$	$1.35 \mathrm{E}-01^{\text {a }}$	$1.65 \mathrm{E}+00$	$1.29 \mathrm{E}+00^{\text {a }}$
PCB-159	7.24	6.83	$1.23 \mathrm{E}-02$	$1.81 \mathrm{E}-03 \mathrm{U}$	$1.29 \mathrm{E}-02$	$1.89 \mathrm{E}-03 \mathrm{U}$	$1.84 \mathrm{E}-02$	$2.70 \mathrm{E}-03 \mathrm{U}$	$1.52 \mathrm{E}-02$	$2.22 \mathrm{E}-03 \mathrm{U}$	$1.38 \mathrm{E}-02$	$2.02 \mathrm{E}-03 \mathrm{U}$	$3.59 \mathrm{E}-02$	$5.27 \mathrm{E}-03 \mathrm{~J}$
PCB-162	7.24	6.83	1.21E-02	$1.78 \mathrm{E}-03 \mathrm{U}$	$1.28 \mathrm{E}-02$	$1.87 \mathrm{E}-03 \mathrm{U}$	$1.82 \mathrm{E}-02$	$2.66 \mathrm{E}-03 \mathrm{U}$	$1.50 \mathrm{E}-02$	$2.19 \mathrm{E}-03 \mathrm{U}$	$1.36 \mathrm{E}-02$	1.99E-03 U	$1.22 \mathrm{E}-02$	1.79E-03 U
PCB-167	7.27	6.86	$2.97 \mathrm{E}-01$	$4.09 \mathrm{E}-02$	$2.05 \mathrm{E}-01$	$2.82 \mathrm{E}-02$	$1.21 \mathrm{E}-01$	$1.66 \mathrm{E}-02$	$1.53 \mathrm{E}-01$	$2.10 \mathrm{E}-02$	$4.41 \mathrm{E}-02$	6.07E-03 J	$3.20 \mathrm{E}-01$	$4.40 \mathrm{E}-02$
PCB-156/157	7.18	6.78	9.42E-01	$1.58 \mathrm{E}-01^{\text {a }}$	5.97E-01	$9.98 \mathrm{E}-02^{\text {a }}$	$3.12 \mathrm{E}-01$	$5.22 \mathrm{E}-02^{\text {a }}$	$5.56 \mathrm{E}-01$	$9.30 \mathrm{E}-02^{\text {a }}$	$1.13 \mathrm{E}-01$	$1.89 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$8.57 \mathrm{E}-01$	$1.43 \mathrm{E}-01^{\text {a }}$
PCB-169	7.42	7.00	1.67E-02	$1.65 \mathrm{E}-03 \mathrm{U}$	$1.85 \mathrm{E}-02$	$1.84 \mathrm{E}-03 \mathrm{U}$	$2.63 \mathrm{E}-02$	$2.61 \mathrm{E}-03 \mathrm{U}$	$2.03 \mathrm{E}-02$	$2.02 \mathrm{E}-03 \mathrm{U}$	$1.80 \mathrm{E}-02$	$1.79 \mathrm{E}-03 \mathrm{U}$	$1.55 \mathrm{E}-02$	$1.54 \mathrm{E}-03 \mathrm{U}$
PCB-188	6.82	6.44	$8.90 \mathrm{E}-03$	$3.25 \mathrm{E}-03 \mathrm{U}$	$7.50 \mathrm{E}-03$	$2.74 \mathrm{E}-03 \mathrm{U}$	$1.17 \mathrm{E}-02$	$4.28 \mathrm{E}-03 \mathrm{U}$	$8.80 \mathrm{E}-03$	$3.22 \mathrm{E}-03 \mathrm{U}$	$7.00 \mathrm{E}-03$	$2.56 \mathrm{E}-03 \mathrm{U}$	$6.21 \mathrm{E}-03$	$2.27 \mathrm{E}-03 \mathrm{U}$
PCB-179	6.73	6.35	6.21E-01	$2.76 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$4.30 \mathrm{E}-01$	$2.97 \mathrm{E}-01$	$1.32 \mathrm{E}-01$	$5.64 \mathrm{E}-01$	$2.51 \mathrm{E}-01$	$1.73 \mathrm{E}-01$	7.69E-02	$6.57 \mathrm{E}-01$	$2.92 \mathrm{E}-01$
PCB-184	6.85	6.47	$1.08 \mathrm{E}-02$	$3.68 \mathrm{E}-03 \mathrm{U}$	$9.10 \mathrm{E}-03$	$3.12 \mathrm{E}-03 \mathrm{U}$	$1.42 \mathrm{E}-02$	$4.85 \mathrm{E}-03 \mathrm{U}$	$1.07 \mathrm{E}-02$	$3.65 \mathrm{E}-03 \mathrm{U}$	$8.45 \mathrm{E}-03$	$2.89 \mathrm{E}-03 \mathrm{U}$	$7.42 \mathrm{E}-03$	$2.54 \mathrm{E}-03 \mathrm{U}$
PCB-176	6.76	6.38	$1.67 \mathrm{E}-01$	$6.95 \mathrm{E}-02$	$2.96 \mathrm{E}-01$	$1.23 \mathrm{E}-01$	$7.39 \mathrm{E}-02$	$3.08 \mathrm{E}-02 \mathrm{~J}$	$1.46 \mathrm{E}-01$	6.08E-02 EMPC	$5.15 \mathrm{E}-02$	$2.14 \mathrm{E}-02 \mathrm{~J}$	$2.01 \mathrm{E}-01$	$8.35 \mathrm{E}-02$
PCB-186	6.69	6.31	$1.05 \mathrm{E}-02$	$5.06 \mathrm{E}-03 \mathrm{U}$	$8.85 \mathrm{E}-03$	$4.29 \mathrm{E}-03 \mathrm{U}$	$1.38 \mathrm{E}-02$	6.66E-03 U	$1.04 \mathrm{E}-02$	$5.02 \mathrm{E}-03 \mathrm{U}$	$8.20 \mathrm{E}-03$	$3.97 \mathrm{E}-03 \mathrm{U}$	$7.01 \mathrm{E}-03$	$3.40 \mathrm{E}-03 \mathrm{U}$
PCB-178	7.14	6.74	$2.74 \mathrm{E}-01$	$5.00 \mathrm{E}-02$	$4.13 \mathrm{E}-01$	$7.53 \mathrm{E}-02$	$1.41 \mathrm{E}-01$	$2.57 \mathrm{E}-02$	$2.68 \mathrm{E}-01$	4.89E-02	$9.29 \mathrm{E}-02$	1.69E-02	$3.00 \mathrm{E}-01$	5.46E-02
PCB-175	7.17	6.77	$1.85 \mathrm{E}-02$	$3.15 \mathrm{E}-03 \mathrm{U}$	$6.10 \mathrm{E}-02$	$1.04 \mathrm{E}-02 \mathrm{~J}$	$2.18 \mathrm{E}-02$	$3.72 \mathrm{E}-03 \mathrm{U}$	$1.66 \mathrm{E}-02$	$2.84 \mathrm{E}-03 \mathrm{U}$	$1.50 \mathrm{E}-02$	$2.56 \mathrm{E}-03 \mathrm{U}$	5.70E-02	$9.75 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$
PCB-187	7.17	6.77	$1.47 \mathrm{E}+00$	$2.51 \mathrm{E}-01$	$2.31 \mathrm{E}+00$	$3.95 \mathrm{E}-01$	$7.90 \mathrm{E}-01$	$1.35 \mathrm{E}-01$	$1.21 \mathrm{E}+00$	2.07E-01	$5.20 \mathrm{E}-01$	8.89E-02	$1.81 \mathrm{E}+00$	3.10E-01
PCB-182	7.2	6.80	$1.60 \mathrm{E}-02$	$2.55 \mathrm{E}-03 \mathrm{U}$	$1.67 \mathrm{E}-02$	$2.67 \mathrm{E}-03 \mathrm{U}$	$1.88 \mathrm{E}-02$	$3.01 \mathrm{E}-03 \mathrm{U}$	$1.44 \mathrm{E}-02$	$2.30 \mathrm{E}-03 \mathrm{U}$	$1.30 \mathrm{E}-02$	$2.07 \mathrm{E}-03 \mathrm{U}$	$1.24 \mathrm{E}-02$	$1.98 \mathrm{E}-03 \mathrm{U}$
PCB-183	7.2	6.80	$6.54 \mathrm{E}-01$	$1.05 \mathrm{E}-01$	$9.38 \mathrm{E}-01$	$1.50 \mathrm{E}-01$	$3.31 \mathrm{E}-01$	5.30E-02	$5.04 \mathrm{E}-01$	8.07E-02	$2.33 \mathrm{E}-01$	$3.73 \mathrm{E}-02$	$7.54 \mathrm{E}-01$	$1.21 \mathrm{E}-01$
PCB-185	7.11	6.71	8.76E-02	$1.71 \mathrm{E}-02$	$1.56 \mathrm{E}-01$	$3.04 \mathrm{E}-02$	$2.19 \mathrm{E}-02$	$4.26 \mathrm{E}-03 \mathrm{U}$	$1.40 \mathrm{E}-01$	$2.73 \mathrm{E}-02$	$1.51 \mathrm{E}-02$	$2.94 \mathrm{E}-03 \mathrm{U}$	$7.52 \mathrm{E}-02$	$1.46 \mathrm{E}-02 \mathrm{~J}$
PCB-174	7.11	6.71	$1.21 \mathrm{E}+00$	$2.36 \mathrm{E}-01$	$1.83 \mathrm{E}+00$	$3.56 \mathrm{E}-01$	$6.15 \mathrm{E}-01$	$1.20 \mathrm{E}-01$	$1.14 \mathrm{E}+00$	$2.22 \mathrm{E}-01$	$3.25 \mathrm{E}-01$	6.33E-02	$1.23 \mathrm{E}+00$	$2.39 \mathrm{E}-01$
PCB-177	7.08	6.68	6.19E-01	$1.29 \mathrm{E}-01$	$1.08 \mathrm{E}+00$	$2.24 \mathrm{E}-01$	$3.11 \mathrm{E}-01$	6.46E-02	$5.94 \mathrm{E}-01$	$1.23 \mathrm{E}-01$	$2.22 \mathrm{E}-01$	4.61E-02	$7.89 \mathrm{E}-01$	$1.64 \mathrm{E}-01$
PCB-181	7.11	6.71	1.78E-02	$3.46 \mathrm{E}-03 \mathrm{U}$	$1.86 \mathrm{E}-02$	3.61E-03 U	$2.09 \mathrm{E}-02$	$4.07 \mathrm{E}-03 \mathrm{U}$	$1.60 \mathrm{E}-02$	$3.11 \mathrm{E}-03 \mathrm{U}$	$1.44 \mathrm{E}-02$	$2.80 \mathrm{E}-03 \mathrm{U}$	$1.35 \mathrm{E}-02$	$2.62 \mathrm{E}-03 \mathrm{U}$
PCB-171/173	7.065	6.67	3.71E-01	$7.96 \mathrm{E}-02^{\text {a }}$	$4.96 \mathrm{E}-01$	$1.06 \mathrm{E}-01^{\text {a }}$	$1.51 \mathrm{E}-01$	$3.24 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$3.11 \mathrm{E}-01$	$6.68 \mathrm{E}-02^{\text {a }}$	$1.17 \mathrm{E}-01$	$2.51 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$4.45 \mathrm{E}-01$	$9.56 \mathrm{E}-02^{\text {a }}$
PCB-172	7.33	6.92	$1.49 \mathrm{E}-01$	$1.80 \mathrm{E}-02$	$2.43 \mathrm{E}-01$	$2.93 \mathrm{E}-02$	$5.60 \mathrm{E}-02$	$6.76 \mathrm{E}-03 \mathrm{~J}$	$1.38 \mathrm{E}-01$	$1.67 \mathrm{E}-02$	$1.56 \mathrm{E}-02$	1.88E-03 U	$1.92 \mathrm{E}-01$	$2.32 \mathrm{E}-02$
PCB-192	7.52	7.10	$1.56 \mathrm{E}-02$	$1.24 \mathrm{E}-03 \mathrm{U}$	$1.63 \mathrm{E}-02$	$1.30 \mathrm{E}-03 \mathrm{U}$	$1.83 \mathrm{E}-02$	$1.46 \mathrm{E}-03 \mathrm{U}$	$1.40 \mathrm{E}-02$	$1.12 \mathrm{E}-03 \mathrm{U}$	$1.26 \mathrm{E}-02$	$1.01 \mathrm{E}-03 \mathrm{U}$	$1.13 \mathrm{E}-02$	$9.01 \mathrm{E}-04 \mathrm{U}$

Chemicals	$\log \mathrm{K}_{\text {ow }} \quad \log \mathrm{K}_{\mathrm{F}}$		SD0025		SD0018		SD0051			SD0010			SD0028			SD0026	
			$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier
PCB-180/193	7.44	7.02	$1.97 \mathrm{E}+00$	$1.87 \mathrm{E}-01^{\text {a }}$	$2.40 \mathrm{E}+00$	$2.28 \mathrm{E}-01^{\text {a }}$	$9.14 \mathrm{E}-01$	$8.69 \mathrm{E}-02$		$1.80 \mathrm{E}+00$	$1.71 \mathrm{E}-01$		$5.86 \mathrm{E}-01$	$5.57 \mathrm{E}-02$		$2.12 \mathrm{E}+00$	$2.01 \mathrm{E}-01^{\text {a }}$
PCB-191	7.55	7.13	$1.47 \mathrm{E}-02$	1.10E-03 U	$6.08 \mathrm{E}-02$	$4.55 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$1.74 \mathrm{E}-02$	$1.30 \mathrm{E}-03$		$1.33 \mathrm{E}-02$	$9.92 \mathrm{E}-04$		$1.20 \mathrm{E}-02$	8.95E-04		$5.35 \mathrm{E}-02$	$4.00 \mathrm{E}-03 \mathrm{~J}$
PCB-170	7.27	6.86	8.74E-01	$1.20 \mathrm{E}-01$	$1.24 \mathrm{E}+00$	$1.71 \mathrm{E}-01$	$3.34 \mathrm{E}-01$	4.59E-02		$7.31 \mathrm{E}-01$	$1.01 \mathrm{E}-01$		$2.07 \mathrm{E}-01$	$2.85 \mathrm{E}-02$		$9.56 \mathrm{E}-01$	$1.32 \mathrm{E}-01$
PCB-190	7.46	7.04	$1.54 \mathrm{E}-01$	$1.40 \mathrm{E}-02$	$2.37 \mathrm{E}-01$	$2.16 \mathrm{E}-02$	$5.19 \mathrm{E}-02$	4.73E-03	J EMPC	$1.25 \mathrm{E}-01$	$1.14 \mathrm{E}-02$		$1.26 \mathrm{E}-02$	1.14E-03		$1.58 \mathrm{E}-01$	$1.44 \mathrm{E}-02$
PCB-189	7.71	7.28	3.02E-02	$1.60 \mathrm{E}-03 \mathrm{~J}$	$2.23 \mathrm{E}-02$	1.18E-03 U	$1.62 \mathrm{E}-02$	8.57E-04		$1.41 \mathrm{E}-02$	$7.46 \mathrm{E}-04$		$1.06 \mathrm{E}-02$	5.61E-04		$9.82 \mathrm{E}-03$	5.20E-04 U
PCB-202	7.24	6.83	1.01E-01	$1.48 \mathrm{E}-02$	$1.30 \mathrm{E}-01$	$1.91 \mathrm{E}-02$	$4.85 \mathrm{E}-02$	7.12E-03		$9.68 \mathrm{E}-02$	$1.42 \mathrm{E}-02$		$3.46 \mathrm{E}-02$	5.08E-03		$8.84 \mathrm{E}-02$	$1.30 \mathrm{E}-02$
PCB-201	7.62	7.19	8.45E-03	5.44E-04 U	$6.81 \mathrm{E}-02$	$4.38 \mathrm{E}-03 \mathrm{~J}$	$1.56 \mathrm{E}-02$	$1.00 \mathrm{E}-03$		$6.93 \mathrm{E}-02$	$4.46 \mathrm{E}-03$		$1.30 \mathrm{E}-02$	8.33E-04		$3.98 \mathrm{E}-02$	$2.56 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$
PCB-204	7.3	6.89	$9.05 \mathrm{E}-03$	1.17E-03 U	$1.08 \mathrm{E}-02$	$1.39 \mathrm{E}-03 \mathrm{U}$	$1.67 \mathrm{E}-02$	$2.15 \mathrm{E}-03$		$1.17 \mathrm{E}-02$	$1.51 \mathrm{E}-03$		$1.39 \mathrm{E}-02$	1.79E-03		$1.06 \mathrm{E}-02$	$1.36 \mathrm{E}-03 \mathrm{U}$
PCB-197	7.3	6.89	7.80E-03	$1.01 \mathrm{E}-03 \mathrm{U}$	$9.35 \mathrm{E}-03$	$1.21 \mathrm{E}-03 \mathrm{U}$	$1.44 \mathrm{E}-02$	1.86E-03		$1.01 \mathrm{E}-02$	$1.30 \mathrm{E}-03$		$1.20 \mathrm{E}-02$	1.55E-03		$9.27 \mathrm{E}-03$	$1.20 \mathrm{E}-03 \mathrm{U}$
PCB-200	7.27	6.86	9.50E-03	$1.31 \mathrm{E}-03 \mathrm{U}$	$7.30 \mathrm{E}-02$	$1.00 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.75 \mathrm{E}-02$	$2.40 \mathrm{E}-03$		$1.23 \mathrm{E}-02$	$1.69 \mathrm{E}-03$		$1.46 \mathrm{E}-02$	2.00E-03		$1.11 \mathrm{E}-02$	$1.52 \mathrm{E}-03 \mathrm{U}$
PCB-198/199	7.41	6.99	3.62E-01	$3.67 \mathrm{E}-02{ }^{\text {a }}$	$6.80 \mathrm{E}-01$	$6.90 \mathrm{E}-02{ }^{\text {a }}$	$2.06 \mathrm{E}-01$	$2.09 \mathrm{E}-02$		$4.12 \mathrm{E}-01$	$4.18 \mathrm{E}-02$		$1.32 \mathrm{E}-01$	$1.34 \mathrm{E}-02$	$\mathrm{JEMPC}^{\text {a }}$	$3.79 \mathrm{E}-01$	$3.85 \mathrm{E}-02{ }^{\text {a }}$
PCB-196	7.65	7.22	1.51E-01	$9.10 \mathrm{E}-03$	$3.20 \mathrm{E}-01$	$1.93 \mathrm{E}-02$	$9.87 \mathrm{E}-02$	5.95E-03	EMPC	$2.10 \mathrm{E}-01$	$1.27 \mathrm{E}-02$		$1.86 \mathrm{E}-02$	$1.12 \mathrm{E}-03$		$1.69 \mathrm{E}-01$	1.02E-02
PCB-203	7.65	7.22	1.74E-01	1.05E-02 EMPC	$3.48 \mathrm{E}-01$	$2.10 \mathrm{E}-02$	$1.44 \mathrm{E}-01$	8.68E-03	EMPC	$1.98 \mathrm{E}-01$	$1.19 \mathrm{E}-02$		$1.79 \mathrm{E}-02$	$1.08 \mathrm{E}-03$		$1.72 \mathrm{E}-01$	1.04E-02 EMPC
PCB-195	7.56	7.13	7.60E-02	$5.57 \mathrm{E}-03 \mathrm{~J}$	$1.61 \mathrm{E}-01$	$1.18 \mathrm{E}-02$	$3.10 \mathrm{E}-02$	$2.27 \mathrm{E}-03$		$1.16 \mathrm{E}-01$	$8.50 \mathrm{E}-03$		$2.61 \mathrm{E}-02$	$1.91 \mathrm{E}-03$		$8.89 \mathrm{E}-02$	$6.52 \mathrm{E}-03$
PCB-194	7.8	7.36	$1.83 \mathrm{E}-01$	7.96E-03	$3.87 \mathrm{E}-01$	$1.68 \mathrm{E}-02$	$1.40 \mathrm{E}-01$	6.09E-03		$2.61 \mathrm{E}-01$	$1.14 \mathrm{E}-02$		$6.32 \mathrm{E}-02$	$2.75 \mathrm{E}-03$		$2.53 \mathrm{E}-01$	1.10E-02
PCB-205	8	7.55	1.50E-02	$4.21 \mathrm{E}-04 \mathrm{U}$	1.50E-02	$4.23 \mathrm{E}-04 \mathrm{U}$	$2.04 \mathrm{E}-02$	5.75E-04		$1.31 \mathrm{E}-02$	$3.68 \mathrm{E}-04$		$1.72 \mathrm{E}-02$	4.85E-04		$1.52 \mathrm{E}-02$	4.28E-04 U
PCB-208	7.71	7.28	1.51E-02	7.96E-04 U	$4.96 \mathrm{E}-02$	$2.62 \mathrm{E}-03 \mathrm{~J}$	$2.00 \mathrm{E}-02$	1.06E-03		$1.36 \mathrm{E}-02$	7.17E-04		$1.34 \mathrm{E}-02$	7.06E-04		$1.57 \mathrm{E}-02$	8.32E-04 U
PCB-207	7.74	7.30	1.47E-02	$7.26 \mathrm{E}-04 \mathrm{U}$	$1.20 \mathrm{E}-02$	$5.95 \mathrm{E}-04 \mathrm{U}$	$1.95 \mathrm{E}-02$	9.67E-04		$1.32 \mathrm{E}-02$	$6.54 \mathrm{E}-04$		$1.30 \mathrm{E}-02$	6.45E-04		$1.53 \mathrm{E}-02$	7.56E-04 U
PCB-206	8.09	7.63	2.07E-02	4.80E-04 U	$1.12 \mathrm{E}-01$	$2.60 \mathrm{E}-03$	$2.74 \mathrm{E}-02$	6.35E-04		$6.36 \mathrm{E}-02$	$1.47 \mathrm{E}-03$		$1.98 \mathrm{E}-02$	4.59E-04		$1.10 \mathrm{E}-01$	$2.54 \mathrm{E}-03$
PCB-209	8.18	7.72	1.54E-02	$2.93 \mathrm{E}-04 \mathrm{U}$	$1.58 \mathrm{E}-02$	3.00E-04 U	$2.03 \mathrm{E}-02$	3.86E-04		$1.64 \mathrm{E}-02$	$3.13 \mathrm{E}-04$		$1.68 \mathrm{E}-02$	$3.20 \mathrm{E}-04$		$4.08 \mathrm{E}-02$	$7.78 \mathrm{E}-04 \mathrm{~J}$

			SD0055		SD009		SD0015		SD0013		SD0011		SD0052	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L} \quad$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w},} \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier
PCB-1	4.46	4.21	5.35E-03	$3.29 \mathrm{E}-01 \mathrm{U}$	$5.35 \mathrm{E}-03$	$3.29 \mathrm{E}-01$	$7.75 \mathrm{E}-03$	$4.76 \mathrm{E}-01 \mathrm{U}$	$8.00 \mathrm{E}-03$	$4.91 \mathrm{E}-01 \mathrm{U}$	$6.40 \mathrm{E}-03$	$3.93 \mathrm{E}-01 \mathrm{U}$	$8.30 \mathrm{E}-03$	$5.10 \mathrm{E}-01 \mathrm{U}$
PCB-2	4.69	4.43	$6.50 \mathrm{E}-03$	2.42E-01 U	$6.50 \mathrm{E}-03$	$2.42 \mathrm{E}-01 \mathrm{U}$	$9.65 \mathrm{E}-03$	$3.60 \mathrm{E}-01 \mathrm{U}$	$1.01 \mathrm{E}-02$	$3.75 \mathrm{E}-01 \mathrm{U}$	$7.80 \mathrm{E}-03$	$2.91 \mathrm{E}-01 \mathrm{U}$	$1.03 \mathrm{E}-02$	3.84E-01 U
PCB-3	4.69	4.43	$6.20 \mathrm{E}-03$	$2.31 \mathrm{E}-01 \mathrm{U}$	$6.20 \mathrm{E}-03$	$2.31 \mathrm{E}-01 \mathrm{~J} \mathrm{EMPC}$	$9.20 \mathrm{E}-03$	$3.43 \mathrm{E}-01 \mathrm{U}$	$9.50 \mathrm{E}-03$	$3.54 \mathrm{E}-01 \mathrm{U}$	$7.40 \mathrm{E}-03$	$2.76 \mathrm{E}-01 \mathrm{U}$	$9.80 \mathrm{E}-03$	$3.65 \mathrm{E}-01 \mathrm{U}$
PCB-4	4.65	4.39	$1.18 \mathrm{E}-01$	$4.80 \mathrm{E}+00 \mathrm{EMPC}$	$1.18 \mathrm{E}-01$	$4.80 \mathrm{E}+00$	$1.00 \mathrm{E}-01$	$4.07 \mathrm{E}+00$	$1.24 \mathrm{E}-01$	$5.04 \mathrm{E}+00$	$1.54 \mathrm{E}-01$	$6.26 \mathrm{E}+00$	$2.06 \mathrm{E}-01$	$8.38 \mathrm{E}+00$
PCB-10	4.84	4.57	$1.28 \mathrm{E}-02$	$3.43 \mathrm{E}-01 \mathrm{U}$	$1.28 \mathrm{E}-02$	$3.43 \mathrm{E}-01$	$1.75 \mathrm{E}-02$	$4.71 \mathrm{E}-01 \mathrm{U}$	$2.09 \mathrm{E}-02$	5.63E-01 U	$1.49 \mathrm{E}-02$	$4.01 \mathrm{E}-01 \mathrm{U}$	$1.75 \mathrm{E}-02$	$4.70 \mathrm{E}-01 \mathrm{U}$
РСВ-9	5.06	4.78	$1.60 \mathrm{E}-02$	$2.66 \mathrm{E}-01 \mathrm{U}$	$1.60 \mathrm{E}-02$	$2.66 \mathrm{E}-01$	$2.08 \mathrm{E}-02$	$3.46 \mathrm{E}-01 \mathrm{U}$	$2.15 \mathrm{E}-02$	3.59E-01 U	$1.88 \mathrm{E}-02$	3.14E-01 U	$2.09 \mathrm{E}-02$	3.48E-01 U
PCB-7	5.07	4.79	$1.40 \mathrm{E}-02$	$2.28 \mathrm{E}-01 \mathrm{U}$	$1.40 \mathrm{E}-02$	$2.28 \mathrm{E}-01$	$1.83 \mathrm{E}-02$	$2.99 \mathrm{E}-01 \mathrm{U}$	$1.90 \mathrm{E}-02$	$3.10 \mathrm{E}-01 \mathrm{U}$	$1.66 \mathrm{E}-02$	$2.71 \mathrm{E}-01 \mathrm{U}$	$1.84 \mathrm{E}-02$	$3.01 \mathrm{E}-01 \mathrm{U}$
PCB-6	5.06	4.78	$2.94 \mathrm{E}-02$	$4.91 \mathrm{E}-01 \mathrm{~J}$	$2.94 \mathrm{E}-02$	$4.91 \mathrm{E}-01$	3.27E-02	$5.46 \mathrm{E}-01 \mathrm{~J}$	$3.47 \mathrm{E}-02$	$5.79 \mathrm{E}-01 \mathrm{~J}$	$5.05 \mathrm{E}-02$	$8.43 \mathrm{E}-01 \mathrm{~J}$	$2.00 \mathrm{E}-01$	$3.34 \mathrm{E}+00$
PCB-5	4.97	4.69	$1.50 \mathrm{E}-02$	$3.03 \mathrm{E}-01 \mathrm{U}$	$1.50 \mathrm{E}-02$	$3.03 \mathrm{E}-01 \mathrm{~J}$	$1.95 \mathrm{E}-02$	3.96E-01 U	$2.03 \mathrm{E}-02$	4.11E-01 U	$1.77 \mathrm{E}-02$	$3.59 \mathrm{E}-01 \mathrm{U}$	$1.97 \mathrm{E}-02$	3.99E-01 U
PCB-8	5.07	4.79	$1.00 \mathrm{E}-01$	$1.63 \mathrm{E}+00$	$1.00 \mathrm{E}-01$	$1.63 \mathrm{E}+00$	$1.36 \mathrm{E}-01$	$2.22 \mathrm{E}+00$	$1.36 \mathrm{E}-01$	$2.22 \mathrm{E}+00$	$2.12 \mathrm{E}-01$	$3.46 \mathrm{E}+00$	$5.53 \mathrm{E}-01$	$9.03 \mathrm{E}+00$
PCB-14	5.28	4.98	$1.24 \mathrm{E}-02$	1.28E-01 U	$1.24 \mathrm{E}-02$	$1.28 \mathrm{E}-01 \mathrm{U}$	$1.62 \mathrm{E}-02$	1.67E-01 U	$1.68 \mathrm{E}-02$	1.73E-01 U	$1.47 \mathrm{E}-02$	1.52E-01 U	$1.63 \mathrm{E}-02$	1.68E-01 U
PCB-11	5.28	4.98	$7.59 \mathrm{E}-02$	$7.86 \mathrm{E}-01 \mathrm{~J}$	$7.59 \mathrm{E}-02$	$7.86 \mathrm{E}-01$	$8.01 \mathrm{E}-02$	$8.29 \mathrm{E}-01 \mathrm{~J}$	$9.26 \mathrm{E}-02$	$9.59 \mathrm{E}-01$	$1.19 \mathrm{E}-01$	$1.23 \mathrm{E}+00$	$3.28 \mathrm{E}-01$	$3.40 \mathrm{E}+00$
PCB-13/12	5.26	4.97	$1.46 \mathrm{E}-02$	1.58E-01 U	$1.46 \mathrm{E}-02$	$1.58 \mathrm{E}-01 \mathrm{JEMPC}^{\text {a }}$	$1.92 \mathrm{E}-02$	$2.08 \mathrm{E}-01 \mathrm{U}$	$1.99 \mathrm{E}-02$	$2.15 \mathrm{E}-01 \mathrm{U}$	$1.74 \mathrm{E}-02$	$1.88 \mathrm{E}-01 \mathrm{U}$	$1.94 \mathrm{E}-02$	2.09E-01 U
PCB-15	5.3	5.00	$1.44 \mathrm{E}-02$	1.43E-01 U	$1.44 \mathrm{E}-02$	$1.43 \mathrm{E}-01$	$1.95 \mathrm{E}-02$	1.93E-01 U	$2.03 \mathrm{E}-02$	$2.01 \mathrm{E}-01 \mathrm{U}$	$4.69 \mathrm{E}-02$	$4.65 \mathrm{E}-01 \mathrm{~J}$	$1.61 \mathrm{E}-01$	$1.60 \mathrm{E}+00$
PCB-19	5.02	4.74	$4.19 \mathrm{E}-02$	$7.63 \mathrm{E}-01 \mathrm{~J}$	$4.19 \mathrm{E}-02$	7.63E-01	$1.80 \mathrm{E}-01$	$3.28 \mathrm{E}+00$	$2.39 \mathrm{E}-01$	$4.35 \mathrm{E}+00$	$1.76 \mathrm{E}-01$	$3.20 \mathrm{E}+00$	$1.51 \mathrm{E}-01$	$2.75 \mathrm{E}+00 \mathrm{EMPC}$
PCB-30/18	5.34	5.04	$4.03 \mathrm{E}-01$	$3.66 \mathrm{E}+00^{\text {a }}$	$4.03 \mathrm{E}-01$	$3.66 \mathrm{E}+00^{\text {a }}$	$1.25 \mathrm{E}+00$	$1.14 \mathrm{E}+01^{\text {a }}$	$1.94 \mathrm{E}+00$	$1.76 \mathrm{E}+01^{\text {a }}$	$1.57 \mathrm{E}+00$	$1.43 \mathrm{E}+01^{\text {a }}$	$1.57 \mathrm{E}+00$	$1.43 \mathrm{E}+01^{\text {a }}$
PCB-17	5.25	4.96	$1.88 \mathrm{E}-01$	$2.08 \mathrm{E}+00$	$1.88 \mathrm{E}-01$	2.08E+00	$4.97 \mathrm{E}-01$	$5.49 \mathrm{E}+00$	$7.91 \mathrm{E}-01$	$8.74 \mathrm{E}+00$	$7.18 \mathrm{E}-01$	$7.93 \mathrm{E}+00$	$9.08 \mathrm{E}-01$	$1.00 \mathrm{E}+01$
PCB-27	5.44	5.14	3.23E-02	$2.36 \mathrm{E}-01 \mathrm{~J}$	$3.23 \mathrm{E}-02$	$2.36 \mathrm{E}-01$	$1.08 \mathrm{E}-01$	7.90E-01	$1.79 \mathrm{E}-01$	$1.31 \mathrm{E}+00$	$1.46 \mathrm{E}-01$	$1.07 \mathrm{E}+00$	$1.54 \mathrm{E}-01$	$1.13 \mathrm{E}+00$
PCB-24	5.35	5.05	$8.60 \mathrm{E}-03$	$7.65 \mathrm{E}-02 \mathrm{U}$	$8.60 \mathrm{E}-03$	$7.65 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.01 \mathrm{E}-02$	8.98E-02 U	$1.08 \mathrm{E}-02$	$9.56 \mathrm{E}-02 \mathrm{U}$	$1.02 \mathrm{E}-02$	$9.07 \mathrm{E}-02 \mathrm{U}$	$9.60 \mathrm{E}-03$	$8.54 \mathrm{E}-02 \mathrm{U}$
PCB-16	5.16	4.87	$1.68 \mathrm{E}-01$	$2.26 \mathrm{E}+00$	$1.68 \mathrm{E}-01$	$2.26 \mathrm{E}+00$	$4.66 \mathrm{E}-01$	$6.26 \mathrm{E}+00$	$6.97 \mathrm{E}-01$	$9.36 \mathrm{E}+00$	$6.08 \mathrm{E}-01$	$8.17 \mathrm{E}+00$	$5.59 \mathrm{E}-01$	$7.51 \mathrm{E}+00$
PCB-32	5.44	5.14	$1.25 \mathrm{E}-01$	$9.14 \mathrm{E}-01$	$1.25 \mathrm{E}-01$	$9.14 \mathrm{E}-01$	$4.47 \mathrm{E}-01$	$3.27 \mathrm{E}+00$	$6.48 \mathrm{E}-01$	$4.74 \mathrm{E}+00$	$5.18 \mathrm{E}-01$	$3.79 \mathrm{E}+00$	$6.17 \mathrm{E}-01$	$4.51 \mathrm{E}+00$
PCB-34	5.66	5.34	$7.65 \mathrm{E}-03$	$3.47 \mathrm{E}-02 \mathrm{U}$	$7.65 \mathrm{E}-03$	3.47E-02 U	$1.23 \mathrm{E}-02$	$5.58 \mathrm{E}-02 \mathrm{U}$	$1.20 \mathrm{E}-02$	5.42E-02 U	$1.13 \mathrm{E}-02$	5.10E-02 U	$1.34 \mathrm{E}-02$	6.06E-02 U
PCB-23	5.57	5.26	$7.60 \mathrm{E}-03$	4.19E-02 U	$7.60 \mathrm{E}-03$	$4.19 \mathrm{E}-02 \mathrm{U}$	$1.21 \mathrm{E}-02$	6.65E-02 U	$1.18 \mathrm{E}-02$	6.48E-02 U	$1.10 \mathrm{E}-02$	6.07E-02 U	$1.31 \mathrm{E}-02$	7.23E-02 U
PCB-26/29	5.63	5.31	5.61E-02	$2.72 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$5.61 \mathrm{E}-02$	$2.72 \mathrm{E}-01^{\text {a }}$	$1.44 \mathrm{E}-01$	$6.97 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$2.22 \mathrm{E}-01$	$1.07 \mathrm{E}+00^{\text {a }}$	$2.19 \mathrm{E}-01$	$1.06 \mathrm{E}+00^{\text {a }}$	$5.06 \mathrm{E}-01$	$2.45 \mathrm{E}+00^{\text {a }}$
PCB-25	5.67	5.35	3.15E-02	$1.40 \mathrm{E}-01 \mathrm{~J}$	3.15E-02	$1.40 \mathrm{E}-01 \mathrm{EMPC}$	$7.29 \mathrm{E}-02$	$3.24 \mathrm{E}-01 \mathrm{~J}$	$1.17 \mathrm{E}-01$	5.19E-01	$9.20 \mathrm{E}-02$	$4.08 \mathrm{E}-01$	$2.45 \mathrm{E}-01$	$1.09 \mathrm{E}+00$
PCB-31	5.67	5.35	$2.63 \mathrm{E}-01$	$1.17 \mathrm{E}+00$	$2.63 \mathrm{E}-01$	$1.17 \mathrm{E}+00$	$1.14 \mathrm{E}+00$	$5.06 \mathrm{E}+00$	$1.39 \mathrm{E}+00$	$6.17 \mathrm{E}+00$	$1.27 \mathrm{E}+00$	$5.64 \mathrm{E}+00$	$2.38 \mathrm{E}+00$	$1.06 \mathrm{E}+01$
PCB-28/20	5.62	5.31	$2.75 \mathrm{E}-01$	$1.36 \mathrm{E}+00^{\text {a }}$	$2.75 \mathrm{E}-01$	$1.36 \mathrm{E}+00{ }^{\text {a }}$	$1.09 \mathrm{E}+00$	$5.39 \mathrm{E}+00^{\text {a }}$	$1.35 \mathrm{E}+00$	$6.68 \mathrm{E}+00^{\text {a }}$	$1.19 \mathrm{E}+00$	$5.89 \mathrm{E}+00^{\text {a }}$	$2.70 \mathrm{E}+00$	$1.34 \mathrm{E}+01^{\text {a }}$
PCB-21/33	5.55	5.24	$1.45 \mathrm{E}-01$	$8.35 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$1.45 \mathrm{E}-01$	$8.35 \mathrm{E}-01^{\text {a }}$	$5.87 \mathrm{E}-01$	$3.38 \mathrm{E}+00^{\text {a }}$	$6.95 \mathrm{E}-01$	$4.00 \mathrm{E}+00^{\text {a }}$	$6.82 \mathrm{E}-01$	$3.93 \mathrm{E}+00^{\text {a }}$	$8.62 \mathrm{E}-01$	$4.97 \mathrm{E}+00^{\text {a }}$
PCB-22	5.58	5.27	$9.04 \mathrm{E}-02$	$4.88 \mathrm{E}-01$	$9.04 \mathrm{E}-02$	4.88E-01	$3.29 \mathrm{E}-01$	$1.78 \mathrm{E}+00$	$4.29 \mathrm{E}-01$	$2.32 \mathrm{E}+00$	$4.52 \mathrm{E}-01$	$2.44 \mathrm{E}+00$	7.89E-01	$4.26 \mathrm{E}+00$
PCB-36	5.88	5.55	7.25E-03	$2.04 \mathrm{E}-02 \mathrm{U}$	$7.25 \mathrm{E}-03$	$2.04 \mathrm{E}-02 \mathrm{U}$	$1.18 \mathrm{E}-02$	$3.32 \mathrm{E}-02 \mathrm{U}$	$1.15 \mathrm{E}-02$	3.24E-02 U	$1.08 \mathrm{E}-02$	$3.04 \mathrm{E}-02 \mathrm{U}$	$1.29 \mathrm{E}-02$	$3.62 \mathrm{E}-02 \mathrm{U}$
PCB-39	5.89	5.56	$7.05 \mathrm{E}-03$	1.94E-02 U	$7.05 \mathrm{E}-03$	1.94E-02 U	$1.15 \mathrm{E}-02$	$3.15 \mathrm{E}-02 \mathrm{U}$	3.54E-02	$9.75 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.05 \mathrm{E}-02$	$2.88 \mathrm{E}-02 \mathrm{U}$	$1.25 \mathrm{E}-02$	$3.43 \mathrm{E}-02 \mathrm{U}$
PCB-38	5.76	5.44	$7.80 \mathrm{E}-03$	$2.85 \mathrm{E}-02 \mathrm{U}$	$7.80 \mathrm{E}-03$	$2.85 \mathrm{E}-02 \mathrm{U}$	$1.21 \mathrm{E}-02$	$4.40 \mathrm{E}-02 \mathrm{U}$	$1.18 \mathrm{E}-02$	$4.29 \mathrm{E}-02 \mathrm{U}$	$1.11 \mathrm{E}-02$	4.03E-02 U	$1.31 \mathrm{E}-02$	$4.78 \mathrm{E}-02 \mathrm{U}$
PCB-35	5.82	5.49	8.45E-03	$2.71 \mathrm{E}-02 \mathrm{U}$	$8.45 \mathrm{E}-03$	$2.71 \mathrm{E}-02 \mathrm{~J}$	$1.35 \mathrm{E}-02$	$4.33 \mathrm{E}-02 \mathrm{U}$	$1.32 \mathrm{E}-02$	$4.21 \mathrm{E}-02 \mathrm{U}$	$1.23 \mathrm{E}-02$	$3.94 \mathrm{E}-02 \mathrm{U}$	$1.47 \mathrm{E}-02$	$4.70 \mathrm{E}-02 \mathrm{U}$
PCB-37	5.83	5.50	$9.45 \mathrm{E}-03$	$2.96 \mathrm{E}-02 \mathrm{U}$	$9.45 \mathrm{E}-03$	$2.96 \mathrm{E}-02$	$1.33 \mathrm{E}-01$	4.17E-01	$1.25 \mathrm{E}-01$	3.92E-01 EMPC	$1.13 \mathrm{E}-01$	3.54E-01	$4.55 \mathrm{E}-01$	$1.43 \mathrm{E}+00$
PCB-54	5.21	4.92	5.20E-03	6.27E-02 U	$5.20 \mathrm{E}-03$	$6.27 \mathrm{E}-02 \mathrm{U}$	$5.25 \mathrm{E}-03$	6.33E-02 U	$6.90 \mathrm{E}-03$	8.32E-02 U	$4.29 \mathrm{E}-03$	5.16E-02 U	$4.95 \mathrm{E}-03$	5.97E-02 U
PCB-50/53	5.625	5.31	$1.38 \mathrm{E}-01$	$6.75 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$1.38 \mathrm{E}-01$	$6.75 \mathrm{E}-01^{\text {a }}$	$1.25 \mathrm{E}+00$	$6.12 \mathrm{E}+00^{\text {a }}$	$1.32 \mathrm{E}+00$	$6.46 \mathrm{E}+00^{\text {a }}$	$5.95 \mathrm{E}-01$	$2.91 \mathrm{E}+00^{\text {a }}$	$4.39 \mathrm{E}-01$	$2.15 \mathrm{E}+00^{\text {a }}$
PCB-45	5.53	5.22	$1.43 \mathrm{E}-01$	$8.60 \mathrm{E}-01$	$1.43 \mathrm{E}-01$	8.60E-01	$1.18 \mathrm{E}+00$	$7.10 \mathrm{E}+00$	$1.25 \mathrm{E}+00$	$7.52 \mathrm{E}+00$	$5.50 \mathrm{E}-01$	$3.31 \mathrm{E}+00$	4.04E-01	$2.43 \mathrm{E}+00$
PCB-51	5.63	5.31	3.60E-02	$1.74 \mathrm{E}-01 \mathrm{~J}$	$3.60 \mathrm{E}-02$	$1.74 \mathrm{E}-01$	$3.44 \mathrm{E}-01$	$1.67 \mathrm{E}+00$	$3.19 \mathrm{E}-01$	$1.54 \mathrm{E}+00$	$1.70 \mathrm{E}-01$	8.23E-01	$9.86 \mathrm{E}-02$	4.77E-01
PCB-46	5.53	5.22	$4.74 \mathrm{E}-02$	$2.85 \mathrm{E}-01 \mathrm{~J}$	$4.74 \mathrm{E}-02$	$2.85 \mathrm{E}-01$	$4.94 \mathrm{E}-01$	$2.97 \mathrm{E}+00$	$5.39 \mathrm{E}-01$	$3.24 \mathrm{E}+00$	$2.32 \mathrm{E}-01$	$1.40 \mathrm{E}+00$	$1.53 \mathrm{E}-01$	$9.20 \mathrm{E}-01$
PCB-52	5.84	5.51	$1.00 \mathrm{E}+00$	$3.07 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$3.07 \mathrm{E}+00$	$7.30 \mathrm{E}+00$	$2.24 \mathrm{E}+01$	$8.92 \mathrm{E}+00$	$2.74 \mathrm{E}+01$	$5.77 \mathrm{E}+00$	$1.77 \mathrm{E}+01$	$4.78 \mathrm{E}+00$	$1.47 \mathrm{E}+01$
PCB-73	6.04	5.70	6.15E-03	$1.22 \mathrm{E}-02 \mathrm{U}$	$6.15 \mathrm{E}-03$	$1.22 \mathrm{E}-02 \mathrm{U}$	$6.50 \mathrm{E}-03$	1.29E-02 U	$9.05 \mathrm{E}-03$	1.80E-02 U	$6.15 \mathrm{E}-03$	$1.22 \mathrm{E}-02 \mathrm{U}$	$6.45 \mathrm{E}-03$	$1.28 \mathrm{E}-02 \mathrm{U}$
PCB-43	5.75	5.43	$9.15 \mathrm{E}-03$	3.41E-02 U	$9.15 \mathrm{E}-03$	3.41E-02	$2.36 \mathrm{E}-01$	$8.81 \mathrm{E}-01$	$2.76 \mathrm{E}-01$	$1.03 \mathrm{E}+00$	$1.43 \mathrm{E}-01$	5.34E-01	$8.55 \mathrm{E}-02$	3.19E-01 EMPC
PCB-69/49	5.95	5.62	$4.56 \mathrm{E}-01$	$1.10 \mathrm{E}+00^{\text {a }}$	$4.56 \mathrm{E}-01$	$1.10 \mathrm{E}+00{ }^{\text {a }}$	$3.20 \mathrm{E}+00$	$7.73 \mathrm{E}+00^{\text {a }}$	$3.97 \mathrm{E}+00$	$9.59 \mathrm{E}+00^{\text {a }}$	$2.47 \mathrm{E}+00$	$5.97 \mathrm{E}+00^{\text {a }}$	$2.03 \mathrm{E}+00$	$4.91 \mathrm{E}+00^{\text {a }}$
PCB-48	5.78	5.46	$1.49 \mathrm{E}-01$	$5.21 \mathrm{E}-01$	$1.49 \mathrm{E}-01$	$5.21 \mathrm{E}-01$	$1.13 \mathrm{E}+00$	$3.95 \mathrm{E}+00$	$1.28 \mathrm{E}+00$	4.47E+00	$6.82 \mathrm{E}-01$	$2.38 \mathrm{E}+00$	$5.78 \mathrm{E}-01$	$2.02 \mathrm{E}+00$
PCB-44/47/65	5.82	5.49	$6.46 \mathrm{E}-01$	$2.07 \mathrm{E}+00{ }^{\text {a }}$	$6.46 \mathrm{E}-01$	$2.07 \mathrm{E}+00^{\text {a }}$	$5.21 \mathrm{E}+00$	$1.67 \mathrm{E}+01^{\text {a }}$	$5.96 \mathrm{E}+00$	$1.91 \mathrm{E}+01^{\text {a }}$	$3.48 \mathrm{E}+00$	$1.12 \mathrm{E}+01^{\text {a }}$	$2.92 \mathrm{E}+00$	$9.36 \mathrm{E}+00^{\text {a }}$
PCB-59/62/75	5.96	5.63	5.33E-02	$1.26 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$5.33 \mathrm{E}-02$	$1.26 \mathrm{E}-01^{\text {a }}$	$4.09 \mathrm{E}-01$	$9.67 \mathrm{E}-01^{\text {a }}$	$4.76 \mathrm{E}-01$	$1.13 \mathrm{E}+00^{\text {a }}$	$2.51 \mathrm{E}-01$	$5.94 \mathrm{E}-01^{\text {a }}$	$2.38 \mathrm{E}-01$	$5.63 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$
PCB-42	5.76	5.44	$1.52 \mathrm{E}-01$	5.55E-01	$1.52 \mathrm{E}-01$	5.55E-01	$1.35 \mathrm{E}+00$	$4.93 \mathrm{E}+00$	$1.52 \mathrm{E}+00$	$5.55 \mathrm{E}+00$	$8.28 \mathrm{E}-01$	$3.02 \mathrm{E}+00$	$7.25 \mathrm{E}-01$	$2.65 \mathrm{E}+00$
PCB-41	5.69	5.37	$4.90 \mathrm{E}-02$	$2.08 \mathrm{E}-01 \mathrm{~J}$	$4.90 \mathrm{E}-02$	$2.08 \mathrm{E}-01$	$3.37 \mathrm{E}-01$	$1.43 \mathrm{E}+00$	$4.24 \mathrm{E}-01$	$1.80 \mathrm{E}+00$	$2.22 \mathrm{E}-01$	$9.44 \mathrm{E}-01$	$1.86 \mathrm{E}-01$	7.91E-01
PCB-71/40	5.82	5.49	$2.45 \mathrm{E}-01$	$7.85 \mathrm{E}-01^{\text {a }}$	$2.45 \mathrm{E}-01$	$7.85 \mathrm{E}-01^{\text {a }}$	$2.44 \mathrm{E}+00$	$7.82 \mathrm{E}+00^{\text {a }}$	$2.49 \mathrm{E}+00$	$7.98 \mathrm{E}+00^{\text {a }}$	$1.40 \mathrm{E}+00$	$4.49 \mathrm{E}+00^{\text {a }}$	$1.13 \mathrm{E}+00$	$3.62 \mathrm{E}+00^{\text {a }}$
PCB-64	5.95	5.62	$2.32 \mathrm{E}-01$	5.61E-01	$2.32 \mathrm{E}-01$	5.61E-01	$2.08 \mathrm{E}+00$	5.03E+00	$2.37 \mathrm{E}+00$	$5.73 \mathrm{E}+00$	$1.34 \mathrm{E}+00$	$3.24 \mathrm{E}+00$	$1.13 \mathrm{E}+00$	$2.73 \mathrm{E}+00$
PCB-72	6.26	5.91	$8.35 \mathrm{E}-03$	1.03E-02 U	$8.35 \mathrm{E}-03$	1.03E-02 U	$1.16 \mathrm{E}-02$	$1.42 \mathrm{E}-02 \mathrm{U}$	$3.94 \mathrm{E}-02$	$4.86 \mathrm{E}-02 \mathrm{~J}$	$1.09 \mathrm{E}-02$	$1.34 \mathrm{E}-02 \mathrm{U}$	$1.11 \mathrm{E}-02$	$1.36 \mathrm{E}-02 \mathrm{U}$

			SD0055		SD009		SD0015		SD0013		SD0011		SD0052	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier
PCB-68	6.26	5.91	$6.95 \mathrm{E}-03$	$8.57 \mathrm{E}-03 \mathrm{U}$	$6.95 \mathrm{E}-03$	$8.57 \mathrm{E}-03 \mathrm{U}$	$9.65 \mathrm{E}-03$	$1.19 \mathrm{E}-02 \mathrm{U}$	$1.13 \mathrm{E}-02$	$1.39 \mathrm{E}-02 \mathrm{U}$	$9.05 \mathrm{E}-03$	$1.12 \mathrm{E}-02 \mathrm{U}$	$9.20 \mathrm{E}-03$	$1.13 \mathrm{E}-02 \mathrm{U}$
PCB-57	6.17	5.82	$7.50 \mathrm{E}-03$	$1.12 \mathrm{E}-02 \mathrm{U}$	$7.50 \mathrm{E}-03$	$1.12 \mathrm{E}-02 \mathrm{U}$	$1.09 \mathrm{E}-02$	1.63E-02 U	$1.28 \mathrm{E}-02$	1.91E-02 U	$1.02 \mathrm{E}-02$	$1.53 \mathrm{E}-02 \mathrm{U}$	$1.04 \mathrm{E}-02$	$1.56 \mathrm{E}-02 \mathrm{U}$
PCB-58	6.17	5.82	7.50E-03	$1.12 \mathrm{E}-02 \mathrm{U}$	$7.50 \mathrm{E}-03$	$1.12 \mathrm{E}-02 \mathrm{U}$	$1.05 \mathrm{E}-02$	$1.57 \mathrm{E}-02 \mathrm{U}$	$1.23 \mathrm{E}-02$	1.84E-02 U	$9.85 \mathrm{E}-03$	$1.48 \mathrm{E}-02 \mathrm{U}$	$1.01 \mathrm{E}-02$	$1.51 \mathrm{E}-02 \mathrm{U}$
PCB-67	6.2	5.85	7.20E-03	$1.01 \mathrm{E}-02 \mathrm{U}$	$7.20 \mathrm{E}-03$	$1.01 \mathrm{E}-02$	$6.58 \mathrm{E}-02$	9.24E-02 J EMPC	$7.57 \mathrm{E}-02$	1.06E-01 J EMPC	$5.85 \mathrm{E}-02$	8.22E-02 J EMPC	$7.86 \mathrm{E}-02$	1.10E-01 J EMPC
PCB-63	6.17	5.82	$6.95 \mathrm{E}-03$	$1.04 \mathrm{E}-02 \mathrm{U}$	$6.95 \mathrm{E}-03$	1.04E-02	$1.09 \mathrm{E}-01$	1.63E-01 EMPC	$1.52 \mathrm{E}-01$	$2.28 \mathrm{E}-01$	$8.88 \mathrm{E}-02$	$1.33 \mathrm{E}-01$	8.22E-02	$1.23 \mathrm{E}-01 \mathrm{~J}$
PCB-61/70/74/76	6.14	5.80	5.27E-01	$8.43 \mathrm{E}-01^{\text {a }}$	$5.27 \mathrm{E}-01$	$8.43 \mathrm{E}-01^{\text {a }}$	$4.76 \mathrm{E}+00$	$7.62 \mathrm{E}+00^{\text {a }}$	$5.61 \mathrm{E}+00$	$8.98 \mathrm{E}+00{ }^{\text {a }}$	$3.76 \mathrm{E}+00$	$6.02 \mathrm{E}+00^{\text {a }}$	$4.18 \mathrm{E}+00$	$6.69 \mathrm{E}+00^{\text {a }}$
PCB-66	6.2	5.85	$2.44 \mathrm{E}-01$	$3.43 \mathrm{E}-01$	$2.44 \mathrm{E}-01$	$3.43 \mathrm{E}-01$	$2.18 \mathrm{E}+00$	$3.06 \mathrm{E}+00$	$2.54 \mathrm{E}+00$	$3.57 \mathrm{E}+00$	$1.68 \mathrm{E}+00$	$2.36 \mathrm{E}+00$	$2.10 \mathrm{E}+00$	$2.95 \mathrm{E}+00$
PCB-55	6.11	5.77	$8.00 \mathrm{E}-03$	1.37E-02 U	$8.00 \mathrm{E}-03$	$1.37 \mathrm{E}-02 \mathrm{~J}$	$2.70 \mathrm{E}-02$	4.61E-02 J EMPC	$1.31 \mathrm{E}-02$	$2.23 \mathrm{E}-02 \mathrm{U}$	$1.05 \mathrm{E}-02$	1.78E-02 U	$1.07 \mathrm{E}-02$	1.82E-02 U
PCB-56	6.11	5.77	$9.77 \mathrm{E}-02$	1.67E-01	$9.77 \mathrm{E}-02$	$1.67 \mathrm{E}-01$	$1.19 \mathrm{E}+00$	$2.03 \mathrm{E}+00$	$1.33 \mathrm{E}+00$	$2.27 \mathrm{E}+00$	$8.39 \mathrm{E}-01$	$1.43 \mathrm{E}+00$	$8.76 \mathrm{E}-01$	$1.50 \mathrm{E}+00$
PCB-60	6.11	5.77	$7.35 \mathrm{E}-02$	$1.26 \mathrm{E}-01 \mathrm{~J}$	$7.35 \mathrm{E}-02$	$1.26 \mathrm{E}-01$	5.83E-01	$9.95 \mathrm{E}-01$	$6.31 \mathrm{E}-01$	$1.08 \mathrm{E}+00$	$4.21 \mathrm{E}-01$	$7.19 \mathrm{E}-01$	$4.75 \mathrm{E}-01$	8.11E-01
PCB-80	6.48	6.12	6.95E-03	$5.31 \mathrm{E}-03 \mathrm{U}$	$6.95 \mathrm{E}-03$	$5.31 \mathrm{E}-03 \mathrm{U}$	$9.45 \mathrm{E}-03$	$7.23 \mathrm{E}-03 \mathrm{U}$	$1.11 \mathrm{E}-02$	$8.45 \mathrm{E}-03 \mathrm{U}$	$8.85 \mathrm{E}-03$	$6.77 \mathrm{E}-03 \mathrm{U}$	$9.00 \mathrm{E}-03$	$6.88 \mathrm{E}-03 \mathrm{U}$
PCB-79	6.42	6.06	6.80E-03	$5.92 \mathrm{E}-03 \mathrm{U}$	$6.80 \mathrm{E}-03$	5.92E-03 J	$5.11 \mathrm{E}-02$	$4.45 \mathrm{E}-02 \mathrm{~J}$	$4.09 \mathrm{E}-02$	$3.56 \mathrm{E}-02 \mathrm{~J}$	$4.44 \mathrm{E}-02$	$3.87 \mathrm{E}-02 \mathrm{~J}$	$9.25 \mathrm{E}-03$	8.06E-03 U
PCB-78	6.35	5.99	$8.60 \mathrm{E}-03$	8.72E-03 U	$8.60 \mathrm{E}-03$	$8.72 \mathrm{E}-03 \mathrm{U}$	$1.18 \mathrm{E}-02$	1.19E-02 U	$1.38 \mathrm{E}-02$	1.39E-02 U	$1.10 \mathrm{E}-02$	$1.12 \mathrm{E}-02 \mathrm{U}$	$1.12 \mathrm{E}-02$	1.14E-02 U
PCB-81	6.36	6.00	$8.40 \mathrm{E}-03$	$8.33 \mathrm{E}-03 \mathrm{U}$	$8.40 \mathrm{E}-03$	$8.33 \mathrm{E}-03 \mathrm{U}$	$1.20 \mathrm{E}-02$	1.19E-02 U	$1.40 \mathrm{E}-02$	1.39E-02 U	$1.12 \mathrm{E}-02$	1.11E-02 U	$1.15 \mathrm{E}-02$	1.14E-02 U
PCB-77	6.36	6.00	$8.20 \mathrm{E}-03$	$8.14 \mathrm{E}-03 \mathrm{U}$	$8.20 \mathrm{E}-03$	$8.14 \mathrm{E}-03$	$8.71 \mathrm{E}-02$	8.64E-02	$9.00 \mathrm{E}-02$	$8.93 \mathrm{E}-02$	$6.81 \mathrm{E}-02$	6.76E-02 J EMPC	$1.19 \mathrm{E}-01$	$1.18 \mathrm{E}-01$
PCB-104	5.81	5.48	$4.36 \mathrm{E}-03$	1.43E-02 U	$4.36 \mathrm{E}-03$	1.43E-02 U	$5.70 \mathrm{E}-03$	1.87E-02 U	$6.20 \mathrm{E}-03$	2.03E-02 U	$3.84 \mathrm{E}-03$	$1.26 \mathrm{E}-02 \mathrm{U}$	$4.44 \mathrm{E}-03$	1.45E-02 U
PCB-96	5.71	5.39	$4.77 \mathrm{E}-03$	$1.94 \mathrm{E}-02 \mathrm{U}$	$4.77 \mathrm{E}-03$	$1.94 \mathrm{E}-02 \mathrm{~J}$	$1.38 \mathrm{E}-01$	5.62E-01	$9.59 \mathrm{E}-02$	$3.90 \mathrm{E}-01$	$5.63 \mathrm{E}-02$	$2.29 \mathrm{E}-01 \mathrm{~J}$	$2.60 \mathrm{E}-02$	$1.06 \mathrm{E}-01 \mathrm{~J} \mathrm{EMPC}$
PCB-103	6.22	5.87	$9.95 \mathrm{E}-03$	$1.34 \mathrm{E}-02 \mathrm{U}$	$9.95 \mathrm{E}-03$	$1.34 \mathrm{E}-02 \mathrm{~J}$	$6.73 \mathrm{E}-02$	$9.05 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$7.67 \mathrm{E}-02$	1.03E-01 J	$1.75 \mathrm{E}-02$	$2.35 \mathrm{E}-02 \mathrm{U}$	$1.38 \mathrm{E}-02$	1.85E-02 U
PCB-94	6.13	5.79	$1.10 \mathrm{E}-02$	$1.79 \mathrm{E}-02 \mathrm{U}$	$1.10 \mathrm{E}-02$	1.79E-02 U	$1.33 \mathrm{E}-02$	$2.17 \mathrm{E}-02 \mathrm{U}$	$2.05 \mathrm{E}-02$	3.35E-02 U	$1.89 \mathrm{E}-02$	3.09E-02 U	$1.49 \mathrm{E}-02$	2.43E-02 U
PCB-95	6.13	5.79	9.31E-01	$1.52 \mathrm{E}+00$	$9.31 \mathrm{E}-01$	$1.52 \mathrm{E}+00$	$6.17 \mathrm{E}+00$	$1.01 \mathrm{E}+01$	$7.70 \mathrm{E}+00$	$1.26 \mathrm{E}+01$	$5.66 \mathrm{E}+00$	$9.25 \mathrm{E}+00$	$3.92 \mathrm{E}+00$	$6.41 \mathrm{E}+00$
PCB-100/93	6.14	5.80	1.03E-02	$1.64 \mathrm{E}-02 \mathrm{U}$	$1.03 \mathrm{E}-02$	$1.64 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.15 \mathrm{E}-02$	1.83E-02 U	$1.77 \mathrm{E}-02$	$2.83 \mathrm{E}-02 \mathrm{U}$	$1.63 \mathrm{E}-02$	$2.61 \mathrm{E}-02 \mathrm{U}$	$1.28 \mathrm{E}-02$	$2.05 \mathrm{E}-02 \mathrm{U}$
PCB-102	6.16	5.81	9.30E-03	$1.42 \mathrm{E}-02 \mathrm{U}$	$9.30 \mathrm{E}-03$	$1.42 \mathrm{E}-02$	3.24E-01	$4.96 \mathrm{E}-01$	3.19E-01	$4.89 \mathrm{E}-01$	$1.75 \mathrm{E}-01$	$2.68 \mathrm{E}-01$	$1.36 \mathrm{E}-02$	$2.08 \mathrm{E}-02 \mathrm{U}$
PCB-98	6.13	5.79	$1.04 \mathrm{E}-02$	$1.70 \mathrm{E}-02 \mathrm{U}$	$1.04 \mathrm{E}-02$	1.70E-02 U	$1.20 \mathrm{E}-02$	$1.95 \mathrm{E}-02 \mathrm{U}$	$1.85 \mathrm{E}-02$	$3.02 \mathrm{E}-02 \mathrm{U}$	$1.70 \mathrm{E}-02$	2.78E-02 U	$1.34 \mathrm{E}-02$	2.18E-02 U
PCB-88	6.07	5.73	$1.25 \mathrm{E}-02$	$2.32 \mathrm{E}-02 \mathrm{U}$	$1.25 \mathrm{E}-02$	$2.32 \mathrm{E}-02 \mathrm{U}$	$1.54 \mathrm{E}-02$	$2.87 \mathrm{E}-02 \mathrm{U}$	$2.39 \mathrm{E}-02$	4.44E-02 U	$2.20 \mathrm{E}-02$	$4.09 \mathrm{E}-02 \mathrm{U}$	$1.73 \mathrm{E}-02$	$3.21 \mathrm{E}-02 \mathrm{U}$
PCB-91	6.13	5.79	0.163	2.67E-01 EMPC	0.163	$2.67 \mathrm{E}-01$	$9.71 \mathrm{E}-01$	$1.59 \mathrm{E}+00$	$1.04 \mathrm{E}+00$	$1.70 \mathrm{E}+00$	$6.71 \mathrm{E}-01$	$1.10 \mathrm{E}+00$	$5.18 \mathrm{E}-01$	8.47E-01
PCB-84	6.04	5.70	3.63E-01	$7.22 \mathrm{E}-01$	$3.63 \mathrm{E}-01$	$7.22 \mathrm{E}-01$	$2.44 \mathrm{E}+00$	4.85E+00	$2.72 \mathrm{E}+00$	5.41E+00	$1.86 \mathrm{E}+00$	$3.70 \mathrm{E}+00$	$1.27 \mathrm{E}+00$	$2.52 \mathrm{E}+00$
PCB-89	6.07	5.73	$1.13 \mathrm{E}-02$	2.10E-02 U	$1.13 \mathrm{E}-02$	$2.10 \mathrm{E}-02$	$1.47 \mathrm{E}-01$	$2.74 \mathrm{E}-01$	$6.45 \mathrm{E}-02$	1.20E-01 J EMPC	$6.75 \mathrm{E}-02$	1.26E-01 J EMPC	$1.49 \mathrm{E}-02$	$2.77 \mathrm{E}-02 \mathrm{U}$
PCB-121	6.64	6.27	7.30E-03	3.94E-03 U	$7.30 \mathrm{E}-03$	$3.94 \mathrm{E}-03 \mathrm{U}$	$8.60 \mathrm{E}-03$	$4.65 \mathrm{E}-03 \mathrm{U}$	$1.33 \mathrm{E}-02$	7.19E-03 U	$1.23 \mathrm{E}-02$	6.62E-03 U	$9.65 \mathrm{E}-03$	$5.21 \mathrm{E}-03 \mathrm{U}$
PCB-92	6.35	5.99	$2.43 \mathrm{E}-01$	$2.46 \mathrm{E}-01$	$2.43 \mathrm{E}-01$	$2.46 \mathrm{E}-01$	$1.14 \mathrm{E}+00$	$1.16 \mathrm{E}+00$	$1.50 \mathrm{E}+00$	1.52E+00	$1.06 \mathrm{E}+00$	$1.07 \mathrm{E}+00$	$8.03 \mathrm{E}-01$	8.14E-01
PCB-113/90/101	6.43	6.07	$1.20 \mathrm{E}+00$	$1.02 \mathrm{E}+00^{\text {a }}$	$1.20 \mathrm{E}+00$	$1.02 \mathrm{E}+00^{\text {a }}$	$6.35 \mathrm{E}+00$	$5.41 \mathrm{E}+00^{\text {a }}$	$7.88 \mathrm{E}+00$	$6.72 \mathrm{E}+00{ }^{\text {a }}$	$6.17 \mathrm{E}+00$	$5.26 \mathrm{E}+00^{\text {a }}$	$4.40 \mathrm{E}+00$	$3.75 \mathrm{E}+00^{\text {a }}$
PCB-83	6.26	5.91	5.93E-02	7.31E-02 J EMPC	$5.93 \mathrm{E}-02$	7.31E-02	$3.56 \mathrm{E}-01$	$4.39 \mathrm{E}-01$	3.82E-01	$4.71 \mathrm{E}-01$	$2.56 \mathrm{E}-01$	3.16E-01	$2.34 \mathrm{E}-01$	$2.88 \mathrm{E}-01 \mathrm{EMPC}$
PCB-99	6.39	6.03	5.70E-01	5.30E-01	$5.70 \mathrm{E}-01$	$5.30 \mathrm{E}-01$	$3.09 \mathrm{E}+00$	$2.87 \mathrm{E}+00$	$3.60 \mathrm{E}+00$	$3.35 \mathrm{E}+00$	$2.87 \mathrm{E}+00$	2.67E+00	$2.02 \mathrm{E}+00$	$1.88 \mathrm{E}+00$
PCB-112	6.45	6.09	$7.70 \mathrm{E}-03$	6.28E-03 U	$7.70 \mathrm{E}-03$	6.28E-03 U	$9.40 \mathrm{E}-03$	7.67E-03 U	$1.46 \mathrm{E}-02$	1.19E-02 U	$1.35 \mathrm{E}-02$	1.10E-02 U	$1.06 \mathrm{E}-02$	$8.61 \mathrm{E}-03 \mathrm{U}$
PCB-108/119/86/97/125/87	6.44	6.08	$6.16 \mathrm{E}-01$	$5.14 \mathrm{E}-01^{\text {a }}$	$6.16 \mathrm{E}-01$	$5.14 \mathrm{E}-01^{\text {a }}$	$3.99 \mathrm{E}+00$	$3.33 \mathrm{E}+00^{\text {a }}$	$4.66 \mathrm{E}+00$	$3.89 \mathrm{E}+00^{\text {a }}$	$3.65 \mathrm{E}+00$	$3.04 \mathrm{E}+00^{\text {a }}$	$2.79 \mathrm{E}+00$	$2.33 \mathrm{E}+00^{\text {a }}$
PCB-117	6.46	6.10	$2.05 \mathrm{E}-02$	$1.64 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$2.05 \mathrm{E}-02$	$1.64 \mathrm{E}-02$	$8.75 \mathrm{E}-03$	6.99E-03 U	$1.17 \mathrm{E}-01$	9.34E-02	$1.25 \mathrm{E}-02$	9.98E-03 U	$9.80 \mathrm{E}-03$	$7.83 \mathrm{E}-03 \mathrm{U}$
PCB-116/85	6.32	5.97	$1.61 \mathrm{E}-01$	$1.74 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$1.61 \mathrm{E}-01$	$1.74 \mathrm{E}-01^{\text {a }}$	$1.25 \mathrm{E}+00$	$1.35 \mathrm{E}+00^{\text {a }}$	$1.25 \mathrm{E}+00$	$1.35 \mathrm{E}+00{ }^{\text {a }}$	$9.84 \mathrm{E}-01$	$1.06 \mathrm{E}+00^{\text {a }}$	$8.07 \mathrm{E}-01$	$8.73 \mathrm{E}-01^{\text {a }}$
PCB-110	6.48	6.12	$1.12 \mathrm{E}+00$	$8.56 \mathrm{E}-01$	$1.12 \mathrm{E}+00$	$8.56 \mathrm{E}-01$	$6.38 \mathrm{E}+00$	$4.88 \mathrm{E}+00$	$7.67 \mathrm{E}+00$	5.86E+00	$5.98 \mathrm{E}+00$	$4.57 \mathrm{E}+00$	$4.72 \mathrm{E}+00$	$3.61 \mathrm{E}+00$
PCB-115	6.49	6.13	7.40E-03	5.54E-03 U	$7.40 \mathrm{E}-03$	$5.54 \mathrm{E}-03$	$9.50 \mathrm{E}-03$	7.11E-03 U	$1.47 \mathrm{E}-02$	1.10E-02 U	$1.36 \mathrm{E}-02$	$1.01 \mathrm{E}-02 \mathrm{U}$	$1.07 \mathrm{E}-02$	7.97E-03 U
PCB-82	6.2	5.85	$8.59 \mathrm{E}-02$	1.21E-01 EMPC	$8.59 \mathrm{E}-02$	$1.21 \mathrm{E}-01$	$8.38 \mathrm{E}-01$	$1.18 \mathrm{E}+00$	$7.93 \mathrm{E}-01$	$1.11 \mathrm{E}+00$	$6.58 \mathrm{E}-01$	$9.24 \mathrm{E}-01$	$4.56 \mathrm{E}-01$	$6.40 \mathrm{E}-01$
PCB-111	6.76	6.38	$7.35 \mathrm{E}-03$	$3.06 \mathrm{E}-03 \mathrm{U}$	$7.35 \mathrm{E}-03$	$3.06 \mathrm{E}-03 \mathrm{U}$	$8.60 \mathrm{E}-03$	$3.58 \mathrm{E}-03 \mathrm{U}$	$1.33 \mathrm{E}-02$	5.54E-03 U	$1.23 \mathrm{E}-02$	5.10E-03 U	$9.60 \mathrm{E}-03$	$4.00 \mathrm{E}-03 \mathrm{U}$
PCB-120	6.79	6.41	$7.40 \mathrm{E}-03$	$2.89 \mathrm{E}-03 \mathrm{U}$	$7.40 \mathrm{E}-03$	$2.89 \mathrm{E}-03 \mathrm{U}$	$8.70 \mathrm{E}-03$	$3.39 \mathrm{E}-03 \mathrm{U}$	$1.35 \mathrm{E}-02$	$5.25 \mathrm{E}-03 \mathrm{U}$	$1.24 \mathrm{E}-02$	4.84E-03 U	$9.75 \mathrm{E}-03$	$3.80 \mathrm{E}-03 \mathrm{U}$
PCB-107/124	6.72	6.34	8.15E-03	$3.70 \mathrm{E}-03 \mathrm{U}$	$8.15 \mathrm{E}-03$	$3.70 \mathrm{E}-03{ }^{\text {a }}$	$1.67 \mathrm{E}-01$	$7.58 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.36 \mathrm{E}-01$	$6.18 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}^{\text {a }}$	$1.32 \mathrm{E}-01$	$5.99 \mathrm{E}-02 \mathrm{JEMPC}^{\text {a }}$	$1.25 \mathrm{E}-01$	$5.68 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$
PCB-109	6.48	6.12	5.06E-02	$3.87 \mathrm{E}-02 \mathrm{~J}$	$5.06 \mathrm{E}-02$	$3.87 \mathrm{E}-02$	$2.92 \mathrm{E}-01$	$2.23 \mathrm{E}-01$	$3.01 \mathrm{E}-01$	$2.30 \mathrm{E}-01$	$2.64 \mathrm{E}-01$	$2.02 \mathrm{E}-01$	$2.12 \mathrm{E}-01$	$1.62 \mathrm{E}-01$
PCB-123	6.74	6.36	$8.30 \mathrm{E}-03$	$3.61 \mathrm{E}-03 \mathrm{U}$	$8.30 \mathrm{E}-03$	3.61E-03 EMPC	$8.82 \mathrm{E}-02$	3.83E-02 EMPC	$7.35 \mathrm{E}-02$	$3.20 \mathrm{E}-02 \mathrm{~J}$	$6.31 \mathrm{E}-02$	$2.74 \mathrm{E}-02 \mathrm{~J}$	$4.42 \mathrm{E}-02$	$1.92 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$
PCB-106	6.64	6.27	$8.35 \mathrm{E}-03$	$4.51 \mathrm{E}-03 \mathrm{U}$	$8.35 \mathrm{E}-03$	$4.51 \mathrm{E}-03 \mathrm{U}$	$9.45 \mathrm{E}-03$	5.11E-03 U	$1.47 \mathrm{E}-02$	7.91E-03 U	$1.35 \mathrm{E}-02$	$7.29 \mathrm{E}-03 \mathrm{U}$	$1.06 \mathrm{E}-02$	5.73E-03 U
PCB-118	6.74	6.36	5.25E-01	$2.28 \mathrm{E}-01$	$5.25 \mathrm{E}-01$	$2.28 \mathrm{E}-01$	$3.29 \mathrm{E}+00$	$1.43 \mathrm{E}+00$	$4.11 \mathrm{E}+00$	$1.79 \mathrm{E}+00$	$3.68 \mathrm{E}+00$	$1.60 \mathrm{E}+00$	$3.08 \mathrm{E}+00$	$1.34 \mathrm{E}+00$
PCB-122	6.64	6.27	8.80E-03	$4.75 \mathrm{E}-03 \mathrm{U}$	$8.80 \mathrm{E}-03$	$4.75 \mathrm{E}-03 \mathrm{EMPC}$	$1.15 \mathrm{E}-02$	6.19E-03 U	$1.73 \mathrm{E}-02$	9.35E-03 U	$1.55 \mathrm{E}-02$	8.35E-03 U	$4.78 \mathrm{E}-02$	$2.58 \mathrm{E}-02 \mathrm{~J}$
PCB-114	6.65	6.28	7.90E-03	$4.18 \mathrm{E}-03 \mathrm{U}$	$7.90 \mathrm{E}-03$	$4.18 \mathrm{E}-03$	$1.01 \mathrm{E}-01$	5.34E-02 EMPC	$7.57 \mathrm{E}-02$	$4.00 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	7.07E-02	$3.74 \mathrm{E}-02 \mathrm{~J}$	$6.34 \mathrm{E}-02$	$3.35 \mathrm{E}-02 \mathrm{~J}$
PCB-105	6.65	6.28	$2.22 \mathrm{E}-01$	$1.17 \mathrm{E}-01$	$2.22 \mathrm{E}-01$	$1.17 \mathrm{E}-01$	$1.48 \mathrm{E}+00$	7.82E-01	$1.64 \mathrm{E}+00$	8.67E-01	$1.48 \mathrm{E}+00$	7.82E-01	$1.22 \mathrm{E}+00$	$6.45 \mathrm{E}-01$
PCB-127	6.95	6.56	$8.00 \mathrm{E}-03$	$2.20 \mathrm{E}-03 \mathrm{U}$	$8.00 \mathrm{E}-03$	$2.20 \mathrm{E}-03 \mathrm{U}$	$1.08 \mathrm{E}-02$	$2.96 \mathrm{E}-03 \mathrm{U}$	$1.66 \mathrm{E}-02$	4.56E-03 U	$1.49 \mathrm{E}-02$	$4.09 \mathrm{E}-03 \mathrm{U}$	$1.13 \mathrm{E}-02$	$3.10 \mathrm{E}-03 \mathrm{U}$
PCB-126	6.89	6.50	6.75E-03	$2.12 \mathrm{E}-03 \mathrm{U}$	$6.75 \mathrm{E}-03$	$2.12 \mathrm{E}-03 \mathrm{U}$	$1.08 \mathrm{E}-02$	$3.39 \mathrm{E}-03 \mathrm{U}$	$1.26 \mathrm{E}-02$	$3.96 \mathrm{E}-03 \mathrm{U}$	$6.65 \mathrm{E}-03$	$2.09 \mathrm{E}-03 \mathrm{U}$	$8.60 \mathrm{E}-03$	$2.70 \mathrm{E}-03 \mathrm{U}$

			SD0055		SD009		SD0015		SD0013		SD0011		SD0052	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier
PCB-155	6.41	6.05	$5.45 \mathrm{E}-03$	$4.85 \mathrm{E}-03 \mathrm{U}$	$5.45 \mathrm{E}-03$	$4.85 \mathrm{E}-03 \mathrm{U}$	$4.75 \mathrm{E}-03$	$4.22 \mathrm{E}-03 \mathrm{U}$	6.25E-03	5.56E-03 U	4.77E-03	$4.25 \mathrm{E}-03 \mathrm{U}$	$4.90 \mathrm{E}-03$	$4.36 \mathrm{E}-03 \mathrm{U}$
PCB-152	6.22	5.87	5.80E-03	$7.80 \mathrm{E}-03 \mathrm{U}$	$5.80 \mathrm{E}-03$	$7.80 \mathrm{E}-03 \mathrm{U}$	$5.10 \mathrm{E}-03$	$6.86 \mathrm{E}-03 \mathrm{U}$	$6.70 \mathrm{E}-03$	$9.01 \mathrm{E}-03 \mathrm{U}$	$5.10 \mathrm{E}-03$	$6.86 \mathrm{E}-03 \mathrm{U}$	$5.25 \mathrm{E}-03$	$7.06 \mathrm{E}-03 \mathrm{U}$
PCB-150	6.32	5.97	5.65E-03	6.11E-03 U	$5.65 \mathrm{E}-03$	$6.11 \mathrm{E}-03 \mathrm{U}$	$5.15 \mathrm{E}-03$	$5.57 \mathrm{E}-03 \mathrm{U}$	$6.80 \mathrm{E}-03$	$7.36 \mathrm{E}-03 \mathrm{U}$	$5.15 \mathrm{E}-03$	5.57E-03 U	$5.30 \mathrm{E}-03$	5.74E-03 U
PCB-136	6.22	5.87	2.69E-01	$3.62 \mathrm{E}-01$	$2.69 \mathrm{E}-01$	$3.62 \mathrm{E}-01$	$1.04 \mathrm{E}+00$	$1.40 \mathrm{E}+00$	$1.37 \mathrm{E}+00$	$1.84 \mathrm{E}+00$	$8.80 \mathrm{E}-01$	$1.18 \mathrm{E}+00$	$4.79 \mathrm{E}-01$	$6.44 \mathrm{E}-01$
PCB-145	6.25	5.90	6.05E-03	$7.62 \mathrm{E}-03 \mathrm{U}$	$6.05 \mathrm{E}-03$	$7.62 \mathrm{E}-03 \mathrm{U}$	$5.45 \mathrm{E}-03$	$6.87 \mathrm{E}-03 \mathrm{U}$	$7.20 \mathrm{E}-03$	$9.07 \mathrm{E}-03 \mathrm{U}$	$5.50 \mathrm{E}-03$	$6.93 \mathrm{E}-03 \mathrm{U}$	$5.60 \mathrm{E}-03$	$7.06 \mathrm{E}-03 \mathrm{U}$
PCB-148	6.73	6.35	8.60E-03	3.82E-03 U	8.60E-03	3.82E-03 U	$6.50 \mathrm{E}-03$	$2.89 \mathrm{E}-03 \mathrm{U}$	$8.80 \mathrm{E}-03$	3.91E-03 U	$6.95 \mathrm{E}-03$	3.09E-03 U	$7.25 \mathrm{E}-03$	3.22E-03 U
PCB-151/135	6.64	6.27	6.65E-01	$3.59 \mathrm{E}-01^{\text {a }}$	$6.65 \mathrm{E}-01$	$3.59 \mathrm{E}-01^{\text {a }}$	$2.21 \mathrm{E}+00$	$1.19 \mathrm{E}+00^{\text {a }}$	$2.91 \mathrm{E}+00$	$1.57 \mathrm{E}+00^{\text {a }}$	$1.84 \mathrm{E}+00$	$9.94 \mathrm{E}-01^{\text {a }}$	$1.16 \mathrm{E}+00$	$6.27 \mathrm{E}-01^{\text {a }}$
PCB-154	6.76	6.38	7.75E-03	$3.23 \mathrm{E}-03 \mathrm{U}$	$7.75 \mathrm{E}-03$	$3.23 \mathrm{E}-03 \mathrm{U}$	$9.15 \mathrm{E}-02$	3.81E-02	$9.16 \mathrm{E}-02$	3.81E-02	$6.95 \mathrm{E}-02$	$2.89 \mathrm{E}-02 \mathrm{~J}$	$3.71 \mathrm{E}-02$	$1.54 \mathrm{E}-02 \mathrm{~J}$
PCB-144	6.67	6.30	8.78E-02	$4.44 \mathrm{E}-02$	$8.78 \mathrm{E}-02$	$4.44 \mathrm{E}-02$	$3.13 \mathrm{E}-01$	1.58E-01 EMPC	$4.57 \mathrm{E}-01$	$2.31 \mathrm{E}-01$	$2.88 \mathrm{E}-01$	$1.46 \mathrm{E}-01$	$1.51 \mathrm{E}-01$	$7.64 \mathrm{E}-02 \mathrm{EMPC}$
PCB-147/149	6.655	6.28	$1.64 \mathrm{E}+00$	$8.58 \mathrm{E}-01^{\text {a }}$	$1.64 \mathrm{E}+00$	$8.58 \mathrm{E}-01^{\text {a }}$	$5.21 \mathrm{E}+00$	$2.72 \mathrm{E}+00^{\text {a }}$	$6.91 \mathrm{E}+00$	$3.61 \mathrm{E}+00^{\text {a }}$	$4.56 \mathrm{E}+00$	$2.38 \mathrm{E}+00^{\text {a }}$	$2.95 \mathrm{E}+00$	$1.54 \mathrm{E}+00^{\text {a }}$
PCB-134	6.55	6.18	$1.20 \mathrm{E}-02$	$7.85 \mathrm{E}-03 \mathrm{U}$	$1.20 \mathrm{E}-02$	$7.85 \mathrm{E}-03$	$4.21 \mathrm{E}-01$	$2.77 \mathrm{E}-01$	$5.49 \mathrm{E}-01$	3.61E-01	3.13E-01	$2.06 \mathrm{E}-01$	$2.61 \mathrm{E}-01$	$1.71 \mathrm{E}-01$
PCB-143	6.6	6.23	8.50E-03	5.01E-03 U	8.50E-03	5.01E-03 U	$6.35 \mathrm{E}-03$	$3.74 \mathrm{E}-03 \mathrm{U}$	$8.55 \mathrm{E}-03$	5.04E-03 U	$6.75 \mathrm{E}-03$	$3.98 \mathrm{E}-03 \mathrm{U}$	$7.00 \mathrm{E}-03$	4.12E-03 U
PCB-139/140	6.67	6.30	8.60E-03	$4.35 \mathrm{E}-03 \mathrm{U}$	$8.60 \mathrm{E}-03$	$4.35 \mathrm{E}-03 \mathrm{~J}^{\text {a }}$	$1.16 \mathrm{E}-01$	$5.87 \mathrm{E}-02 \mathrm{JEMPC}^{\text {a }}$	$9.89 \mathrm{E}-02$	$5.01 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	8.10E-02	$4.10 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$6.39 \mathrm{E}-02$	$3.23 \mathrm{E}-02 \mathrm{JEMPC}^{\text {a }}$
PCB-131	6.58	6.21	9.95E-03	6.12E-03 U	$9.95 \mathrm{E}-03$	6.12E-03 EMPC	$1.06 \mathrm{E}-01$	$6.52 \mathrm{E}-02$	$1.00 \mathrm{E}-01$	6.15E-02	8.19E-02	$5.04 \mathrm{E}-02 \mathrm{~J}$	$5.57 \mathrm{E}-02$	$3.43 \mathrm{E}-02 \mathrm{~J}$
PCB-142	6.51	6.14	$1.00 \mathrm{E}-02$	7.16E-03 U	$1.00 \mathrm{E}-02$	7.16E-03 U	$7.65 \mathrm{E}-03$	$5.48 \mathrm{E}-03 \mathrm{U}$	$1.04 \mathrm{E}-02$	7.41E-03 U	$8.15 \mathrm{E}-03$	$5.84 \mathrm{E}-03 \mathrm{U}$	8.45E-03	6.05E-03 U
PCB-132	6.58	6.21	4.83E-01	$2.97 \mathrm{E}-01$	$4.83 \mathrm{E}-01$	$2.97 \mathrm{E}-01$	$2.12 \mathrm{E}+00$	$1.30 \mathrm{E}+00$	$2.61 \mathrm{E}+00$	$1.61 \mathrm{E}+00$	$1.85 \mathrm{E}+00$	$1.14 \mathrm{E}+00$	$1.22 \mathrm{E}+00$	7.51E-01
PCB-133	6.86	6.47	9.10E-03	$3.05 \mathrm{E}-03 \mathrm{U}$	$9.10 \mathrm{E}-03$	$3.05 \mathrm{E}-03$	7.28E-02	$2.44 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$7.38 \mathrm{E}-02$	$2.47 \mathrm{E}-02 \mathrm{~J}$	$4.26 \mathrm{E}-02$	$1.43 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$5.21 \mathrm{E}-02$	$1.75 \mathrm{E}-02 \mathrm{~J}$
PCB-165	7.05	6.65	7.35E-03	$1.63 \mathrm{E}-03 \mathrm{U}$	$7.35 \mathrm{E}-03$	1.63E-03 U	$5.60 \mathrm{E}-03$	$1.24 \mathrm{E}-03 \mathrm{U}$	$7.60 \mathrm{E}-03$	$1.69 \mathrm{E}-03 \mathrm{U}$	$6.00 \mathrm{E}-03$	$1.33 \mathrm{E}-03 \mathrm{U}$	$6.20 \mathrm{E}-03$	$1.38 \mathrm{E}-03 \mathrm{U}$
PCB-146	6.89	6.50	$2.77 \mathrm{E}-01$	$8.70 \mathrm{E}-02$	$2.77 \mathrm{E}-01$	$8.70 \mathrm{E}-02$	$8.96 \mathrm{E}-01$	$2.81 \mathrm{E}-01$	$1.02 \mathrm{E}+00$	$3.20 \mathrm{E}-01$	$6.15 \mathrm{E}-01$	$1.93 \mathrm{E}-01$	$4.73 \mathrm{E}-01$	$1.48 \mathrm{E}-01$
PCB-161	7.08	6.68	6.90E-03	$1.43 \mathrm{E}-03 \mathrm{U}$	$6.90 \mathrm{E}-03$	$1.43 \mathrm{E}-03 \mathrm{U}$	$5.10 \mathrm{E}-03$	1.06E-03 U	$6.90 \mathrm{E}-03$	1.43E-03 U	$5.45 \mathrm{E}-03$	1.13E-03 U	$5.65 \mathrm{E}-03$	1.17E-03 U
PCB-153/168	7.01	6.62	$1.47 \mathrm{E}+00$	$3.56 \mathrm{E}-01^{\text {a }}$	$1.47 \mathrm{E}+00$	$3.56 \mathrm{E}-01^{\text {a }}$	5.15E+00	$1.25 \mathrm{E}+00^{\text {a }}$	$5.55 \mathrm{E}+00$	$1.34 \mathrm{E}+00^{\text {a }}$	$3.69 \mathrm{E}+00$	$8.93 \mathrm{E}-01^{\text {a }}$	$2.50 \mathrm{E}+00$	$6.05 \mathrm{E}-01^{\text {a }}$
PCB-141	6.82	6.44	1.84E-01	$6.72 \mathrm{E}-02$	$1.84 \mathrm{E}-01$	$6.72 \mathrm{E}-02$	$9.92 \mathrm{E}-01$	3.63E-01	$1.19 \mathrm{E}+00$	$4.35 \mathrm{E}-01$	$7.78 \mathrm{E}-01$	$2.84 \mathrm{E}-01$	$4.87 \mathrm{E}-01$	$1.78 \mathrm{E}-01$
PCB-130	6.8	6.42	8.19E-02	$3.13 \mathrm{E}-02 \mathrm{~J}$	$8.19 \mathrm{E}-02$	3.13E-02	$4.18 \mathrm{E}-01$	$1.60 \mathrm{E}-01$	$4.26 \mathrm{E}-01$	$1.63 \mathrm{E}-01$	$2.96 \mathrm{E}-01$	$1.13 \mathrm{E}-01$	$2.32 \mathrm{E}-01$	8.85E-02
PCB-137	6.83	6.45	2.87E-02	$1.03 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$2.87 \mathrm{E}-02$	$1.03 \mathrm{E}-02$	$3.11 \mathrm{E}-01$	$1.11 \mathrm{E}-01$	$2.05 \mathrm{E}-01$	7.33E-02	$1.58 \mathrm{E}-01$	$5.65 \mathrm{E}-02$	$1.56 \mathrm{E}-01$	5.58E-02
PCB-164	7.02	6.63	7.09E-02	$1.68 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	7.09E-02	$1.68 \mathrm{E}-02$	$4.11 \mathrm{E}-01$	$9.73 \mathrm{E}-02$	$5.00 \mathrm{E}-01$	$1.18 \mathrm{E}-01$	$3.30 \mathrm{E}-01$	$7.81 \mathrm{E}-02$	$2.31 \mathrm{E}-01$	5.47E-02
PCB-163/138/129	6.85	6.47	$1.55 \mathrm{E}+00$	$5.31 \mathrm{E}-01^{\text {a }}$	$1.55 \mathrm{E}+00$	$5.31 \mathrm{E}-01^{\text {a }}$	$6.33 \mathrm{E}+00$	$2.17 \mathrm{E}+00^{\text {a }}$	$6.52 \mathrm{E}+00$	$2.23 \mathrm{E}+00^{\text {a }}$	$4.69 \mathrm{E}+00$	$1.61 \mathrm{E}+00^{\text {a }}$	$3.43 \mathrm{E}+00$	$1.17 \mathrm{E}+00^{\text {a }}$
PCB-160	6.93	6.54	$7.35 \mathrm{E}-03$	$2.12 \mathrm{E}-03 \mathrm{U}$	$7.35 \mathrm{E}-03$	2.12E-03 U	$5.80 \mathrm{E}-03$	1.67E-03 U	$7.85 \mathrm{E}-03$	$2.26 \mathrm{E}-03 \mathrm{U}$	$6.20 \mathrm{E}-03$	$1.78 \mathrm{E}-03 \mathrm{U}$	$6.40 \mathrm{E}-03$	$1.84 \mathrm{E}-03 \mathrm{U}$
PCB-158	7.02	6.63	$1.03 \mathrm{E}-01$	$2.44 \mathrm{E}-02$	$1.03 \mathrm{E}-01$	$2.44 \mathrm{E}-02$	$6.28 \mathrm{E}-01$	$1.49 \mathrm{E}-01$	$6.15 \mathrm{E}-01$	$1.46 \mathrm{E}-01$	$4.55 \mathrm{E}-01$	$1.08 \mathrm{E}-01$	$3.54 \mathrm{E}-01$	$8.38 \mathrm{E}-02$
PCB-128/166	6.47	6.11	$1.88 \mathrm{E}-01$	$1.47 \mathrm{E}-01^{\text {a }}$	$1.88 \mathrm{E}-01$	$1.47 \mathrm{E}-01^{\text {a }}$	$9.96 \mathrm{E}-01$	$7.78 \mathrm{E}-01^{\text {a }}$	$9.11 \mathrm{E}-01$	$7.12 \mathrm{E}-01^{\text {a }}$	$7.12 \mathrm{E}-01$	$5.56 \mathrm{E}-01^{\text {a }}$	$5.86 \mathrm{E}-01$	$4.58 \mathrm{E}-01^{\text {a }}$
PCB-159	7.24	6.83	8.25E-03	$1.21 \mathrm{E}-03 \mathrm{U}$	$8.25 \mathrm{E}-03$	$1.21 \mathrm{E}-03 \mathrm{~J}$	$4.41 \mathrm{E}-02$	6.47E-03 J	$6.26 \mathrm{E}-02$	9.19E-03 J EMPC	$2.92 \mathrm{E}-02$	$4.29 \mathrm{E}-03 \mathrm{~J}$	$8.75 \mathrm{E}-03$	$1.28 \mathrm{E}-03 \mathrm{U}$
PCB-162	7.24	6.83	8.35E-03	$1.23 \mathrm{E}-03 \mathrm{U}$	$8.35 \mathrm{E}-03$	1.23E-03 U	$1.08 \mathrm{E}-02$	$1.59 \mathrm{E}-03 \mathrm{U}$	$1.29 \mathrm{E}-02$	$1.89 \mathrm{E}-03 \mathrm{U}$	$8.45 \mathrm{E}-03$	$1.24 \mathrm{E}-03 \mathrm{U}$	$8.70 \mathrm{E}-03$	$1.28 \mathrm{E}-03 \mathrm{U}$
PCB-167	7.27	6.86	4.15E-02	$5.71 \mathrm{E}-03 \mathrm{~J}$	$4.15 \mathrm{E}-02$	5.71E-03 EMPC	$2.81 \mathrm{E}-01$	3.87E-02	$1.80 \mathrm{E}-01$	$2.48 \mathrm{E}-02$	$1.46 \mathrm{E}-01$	$2.01 \mathrm{E}-02$	$1.03 \mathrm{E}-01$	1.42E-02 EMPC
PCB-156/157	7.18	6.78	9.74E-02	$1.63 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$9.74 \mathrm{E}-02$	$1.63 \mathrm{E}-02^{\text {a }}$	$8.11 \mathrm{E}-01$	$1.36 \mathrm{E}-01^{\text {a }}$	$4.34 \mathrm{E}-01$	$7.26 \mathrm{E}-02^{\text {a }}$	$3.82 \mathrm{E}-01$	6.39E-02 ${ }^{\text {a }}$	$3.03 \mathrm{E}-01$	$5.07 \mathrm{E}-02^{\text {a }}$
PCB-169	7.42	7.00	$1.23 \mathrm{E}-02$	$1.22 \mathrm{E}-03 \mathrm{U}$	$1.23 \mathrm{E}-02$	$1.22 \mathrm{E}-03 \mathrm{U}$	$1.57 \mathrm{E}-02$	$1.55 \mathrm{E}-03 \mathrm{U}$	$1.77 \mathrm{E}-02$	$1.75 \mathrm{E}-03 \mathrm{U}$	$1.16 \mathrm{E}-02$	$1.15 \mathrm{E}-03 \mathrm{U}$	$1.13 \mathrm{E}-02$	1.12E-03 U
PCB-188	6.82	6.44	$4.00 \mathrm{E}-03$	$1.46 \mathrm{E}-03 \mathrm{U}$	$4.00 \mathrm{E}-03$	$1.46 \mathrm{E}-03 \mathrm{U}$	$4.84 \mathrm{E}-03$	$1.77 \mathrm{E}-03 \mathrm{U}$	$5.55 \mathrm{E}-03$	$2.03 \mathrm{E}-03 \mathrm{U}$	$5.20 \mathrm{E}-03$	$1.90 \mathrm{E}-03 \mathrm{U}$	$5.25 \mathrm{E}-03$	$1.92 \mathrm{E}-03 \mathrm{U}$
PCB-179	6.73	6.35	2.61E-01	$1.16 \mathrm{E}-01$	$2.61 \mathrm{E}-01$	$1.16 \mathrm{E}-01$	$7.08 \mathrm{E}-01$	$3.15 \mathrm{E}-01$	$8.24 \mathrm{E}-01$	$3.66 \mathrm{E}-01$	$4.40 \mathrm{E}-01$	$1.96 \mathrm{E}-01$	$1.58 \mathrm{E}-01$	7.02E-02 EMPC
PCB-184	6.85	6.47	$4.77 \mathrm{E}-03$	$1.63 \mathrm{E}-03 \mathrm{U}$	$4.77 \mathrm{E}-03$	$1.63 \mathrm{E}-03 \mathrm{U}$	$5.50 \mathrm{E}-03$	$1.88 \mathrm{E}-03 \mathrm{U}$	$6.35 \mathrm{E}-03$	$2.17 \mathrm{E}-03 \mathrm{U}$	$5.95 \mathrm{E}-03$	$2.04 \mathrm{E}-03 \mathrm{U}$	$6.00 \mathrm{E}-03$	$2.05 \mathrm{E}-03 \mathrm{U}$
PCB-176	6.76	6.38	7.29E-02	3.03E-02 J	$7.29 \mathrm{E}-02$	3.03E-02 EMPC	$1.90 \mathrm{E}-01$	7.91E-02	$2.16 \mathrm{E}-01$	$8.99 \mathrm{E}-02$	$1.10 \mathrm{E}-01$	$4.58 \mathrm{E}-02$	$5.53 \mathrm{E}-02$	$2.30 \mathrm{E}-02 \mathrm{~J}$
PCB-186	6.69	6.31	4.50E-03	$2.18 \mathrm{E}-03 \mathrm{U}$	$4.50 \mathrm{E}-03$	$2.18 \mathrm{E}-03 \mathrm{U}$	$5.45 \mathrm{E}-03$	$2.64 \mathrm{E}-03 \mathrm{U}$	$6.25 \mathrm{E}-03$	$3.03 \mathrm{E}-03 \mathrm{U}$	$5.90 \mathrm{E}-03$	$2.86 \mathrm{E}-03 \mathrm{U}$	$5.95 \mathrm{E}-03$	$2.88 \mathrm{E}-03 \mathrm{U}$
PCB-178	7.14	6.74	1.36E-01	$2.48 \mathrm{E}-02$	$1.36 \mathrm{E}-01$	$2.48 \mathrm{E}-02$	$3.55 \mathrm{E}-01$	$6.48 \mathrm{E}-02$	$3.90 \mathrm{E}-01$	7.11E-02	$1.63 \mathrm{E}-01$	2.97E-02 EMPC	$1.02 \mathrm{E}-01$	$1.86 \mathrm{E}-02$
PCB-175	7.17	6.77	$1.28 \mathrm{E}-02$	$2.19 \mathrm{E}-03 \mathrm{U}$	$1.28 \mathrm{E}-02$	$2.19 \mathrm{E}-03 \mathrm{~J}$	$7.62 \mathrm{E}-02$	$1.30 \mathrm{E}-02 \mathrm{~J}$	$7.45 \mathrm{E}-02$	$1.27 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.03 \mathrm{E}-02$	$1.75 \mathrm{E}-03 \mathrm{U}$	$1.23 \mathrm{E}-02$	$2.09 \mathrm{E}-03 \mathrm{U}$
PCB-187	7.17	6.77	7.88E-01	$1.35 \mathrm{E}-01$	$7.88 \mathrm{E}-01$	$1.35 \mathrm{E}-01$	$1.72 \mathrm{E}+00$	$2.94 \mathrm{E}-01$	$1.85 \mathrm{E}+00$	3.16E-01	$1.05 \mathrm{E}+00$	$1.79 \mathrm{E}-01$	$5.63 \mathrm{E}-01$	9.62E-02
PCB-182	7.2	6.80	1.14E-02	$1.83 \mathrm{E}-03 \mathrm{U}$	$1.14 \mathrm{E}-02$	$1.83 \mathrm{E}-03 \mathrm{U}$	8.60E-03	$1.38 \mathrm{E}-03 \mathrm{U}$	$1.19 \mathrm{E}-02$	$1.91 \mathrm{E}-03 \mathrm{U}$	$9.00 \mathrm{E}-03$	$1.44 \mathrm{E}-03 \mathrm{U}$	$1.07 \mathrm{E}-02$	$1.71 \mathrm{E}-03 \mathrm{U}$
PCB-183	7.2	6.80	2.81E-01	$4.50 \mathrm{E}-02$	$2.81 \mathrm{E}-01$	$4.50 \mathrm{E}-02$	$8.70 \mathrm{E}-01$	$1.39 \mathrm{E}-01$	$8.60 \mathrm{E}-01$	$1.38 \mathrm{E}-01$	$4.82 \mathrm{E}-01$	7.72E-02	$2.54 \mathrm{E}-01$	4.07E-02
PCB-185	7.11	6.71	$3.56 \mathrm{E}-02$	$6.93 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	0.0356	$6.93 \mathrm{E}-03 \mathrm{~J}$	$9.65 \mathrm{E}-03$	$1.88 \mathrm{E}-03 \mathrm{U}$	0.0904	$1.76 \mathrm{E}-02 \mathrm{EMPC}$	0.0829	$1.61 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.21 \mathrm{E}-02$	$2.35 \mathrm{E}-03 \mathrm{U}$
PCB-174	7.11	6.71	5.12E-01	9.97E-02	$5.12 \mathrm{E}-01$	9.97E-02	$1.54 \mathrm{E}+00$	$3.00 \mathrm{E}-01$	$1.50 \mathrm{E}+00$	2.92E-01	$8.69 \mathrm{E}-01$	$1.69 \mathrm{E}-01$	$4.11 \mathrm{E}-01$	8.00E-02
PCB-177	7.08	6.68	3.17E-01	$6.59 \mathrm{E}-02 \mathrm{EMPC}$	$3.17 \mathrm{E}-01$	$6.59 \mathrm{E}-02$	$8.38 \mathrm{E}-01$	$1.74 \mathrm{E}-01$	$8.69 \mathrm{E}-01$	$1.81 \mathrm{E}-01$	$4.57 \mathrm{E}-01$	$9.50 \mathrm{E}-02$	$2.22 \mathrm{E}-01$	$4.61 \mathrm{E}-02$
PCB-181	7.11	6.71	$1.24 \mathrm{E}-02$	$2.41 \mathrm{E}-03 \mathrm{U}$	$1.24 \mathrm{E}-02$	$2.41 \mathrm{E}-03 \mathrm{U}$	$9.35 \mathrm{E}-03$	$1.82 \mathrm{E}-03 \mathrm{U}$	$1.30 \mathrm{E}-02$	$2.52 \mathrm{E}-03 \mathrm{U}$	$9.80 \mathrm{E}-03$	$1.91 \mathrm{E}-03 \mathrm{U}$	$1.17 \mathrm{E}-02$	$2.27 \mathrm{E}-03 \mathrm{U}$
PCB-171/173	7.065	6.67	1.46E-01	$3.13 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.46 \mathrm{E}-01$	$3.13 \mathrm{E}-02^{\text {a }}$	$4.39 \mathrm{E}-01$	$9.42 \mathrm{E}-02^{\text {a }}$	$4.03 \mathrm{E}-01$	$8.65 \mathrm{E}-02^{\text {a }}$	$2.46 \mathrm{E}-01$	$5.28 \mathrm{E}-02^{\text {a }}$	$1.16 \mathrm{E}-01$	$2.49 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$
PCB-172	7.33	6.92	$6.20 \mathrm{E}-02$	$7.49 \mathrm{E}-03 \mathrm{~J}$	$6.20 \mathrm{E}-02$	7.49E-03 EMPC	$2.10 \mathrm{E}-01$	$2.54 \mathrm{E}-02$	$2.14 \mathrm{E}-01$	$2.58 \mathrm{E}-02$	$9.71 \mathrm{E}-02$	$1.17 \mathrm{E}-02$	$5.34 \mathrm{E}-02$	$6.45 \mathrm{E}-03 \mathrm{~J}$
PCB-192	7.52	7.10	1.04E-02	8.27E-04 U	$1.04 \mathrm{E}-02$	8.27E-04 U	$8.00 \mathrm{E}-03$	$6.39 \mathrm{E}-04 \mathrm{U}$	$1.11 \mathrm{E}-02$	$8.87 \mathrm{E}-04 \mathrm{U}$	$8.40 \mathrm{E}-03$	6.71E-04 U	$1.00 \mathrm{E}-02$	7.99E-04 U

Chemicals	$\log \mathrm{K}_{\text {ow }} \log \mathrm{K}_{\mathrm{F}}$		SD0055			SD009			SD0015			SD0013			SD0011			SD0052				
			$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{l}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier		
PCB-180/193	7.44	7.02	6.63E-01	6.31E-02 ${ }^{\text {a }}$		$6.63 \mathrm{E}-01$	6.31E-02 ${ }^{\text {a }}$		$2.29 \mathrm{E}+00$	$2.18 \mathrm{E}-01^{\text {a }}$		$\begin{array}{r} \hline \hline 2.08 \mathrm{E}+00 \\ 1.08 \mathrm{E}-02 \end{array}$	$1.98 \mathrm{E}-01^{\text {a }}$		$1.31 \mathrm{E}+00$	$1.25 \mathrm{E}-01^{\text {a }}$		$6.83 \mathrm{E}-01$	$6.50 \mathrm{E}-02^{\text {a }}$			
PCB-191	7.55	7.13	$1.00 \mathrm{E}-02$	7.49E-04 U$4.76 \mathrm{E}-02$		$1.00 \mathrm{E}-02$	$7.49 \mathrm{E}-04$		$7.80 \mathrm{E}-03$	5.84E-04			$8.09 \mathrm{E}-04 \mathrm{U}$		$8.15 \mathrm{E}-03$	6.10E-04 U		$9.70 \mathrm{E}-03$	$7.26 \mathrm{E}-04 \mathrm{U}$			
PCB-170	7.27	6.86	3.46E-01			$3.46 \mathrm{E}-01$	$4.76 \mathrm{E}-02$		$1.36 \mathrm{E}+00$	$1.87 \mathrm{E}-01$		$1.05 \mathrm{E}+00$	$1.44 \mathrm{E}-01$		$6.21 \mathrm{E}-01$	8.54E-02		$2.89 \mathrm{E}-01$				
PCB-190	7.46	7.04	6.90E-02	6.28E-03		$6.90 \mathrm{E}-02$	6.28E-03 3.89 E		$1.93 \mathrm{E}-01$	$1.76 \mathrm{E}-02 \mathrm{EMPC}$$2.97 \mathrm{E}-03 \mathrm{~J}$		2.15E-01	$1.96 \mathrm{E}-02$		$1.34 \mathrm{E}-01$	$1.22 \mathrm{E}-02$		$3.39 \mathrm{E}-02$	3.98E-02 3.09E-03 J EMPC			
PCB-189	7.71	7.28	7.35E-03	3.89E-04		$7.35 \mathrm{E}-03$			$5.61 \mathrm{E}-02$			5.87E-04		$1.98 \mathrm{E}-02$	1.05E-03 J 6.47E-03 J EMPC		$8.25 \mathrm{E}-03$	$4.37 \mathrm{E}-04 \mathrm{U}$				
PCB-202	7.24	6.83	$5.59 \mathrm{E}-02$	8.21E-03		$5.59 \mathrm{E}-02$	8.21E-03		$9.17 \mathrm{E}-02$	$1.35 \mathrm{E}-02$			$9.16 \mathrm{E}-02$	1.34E-02 EMPC		$4.41 \mathrm{E}-02$	$\begin{aligned} & 8.25 \mathrm{E}-03 \\ & 3.98 \mathrm{~F}-02 \end{aligned}$	$5.84 \mathrm{E}-03 \mathrm{~J}$				
PCB-201	7.62	7.19	3.17E-02	2.04E-03	J EMPC	$3.17 \mathrm{E}-02$	2.04E-03		$5.26 \mathrm{E}-02$	3.38E-03	J EMPC	$7.40 \mathrm{E}-02$	$4.76 \mathrm{E}-03 \mathrm{~J}$				$3.01 \mathrm{E}-02$	$1.94 \mathrm{E}-03 \mathrm{~J}$		$7.10 \mathrm{E}-03$	$4.57 \mathrm{E}-04 \mathrm{U}$	
PCB-204	7.3	6.89	7.05E-03	9.09E-04		$7.05 \mathrm{E}-03$	9.09E-04		$7.70 \mathrm{E}-03$	9.92E-04		$8.60 \mathrm{E}-03$	$\begin{aligned} & 1.11 \mathrm{E}-03 \mathrm{U} \\ & 1.05 \mathrm{E}-03 \mathrm{U} \end{aligned}$		$6.95 \mathrm{E}-03$	8.96E-04 U		$7.45 \mathrm{E}-03$	$9.60 \mathrm{E}-04 \mathrm{U}$			
PCB-197	7.3	6.89	$6.20 \mathrm{E}-03$	7.99E-04		$6.20 \mathrm{E}-03$	7.99E-04		$7.25 \mathrm{E}-03$	9.34E-04		$8.15 \mathrm{E}-03$			$6.55 \mathrm{E}-03$	8.44E-04 U		$7.05 \mathrm{E}-03$	$9.09 \mathrm{E}-04 \mathrm{U}$			
PCB-200	7.27	6.86	$7.35 \mathrm{E}-03$	1.01E-03		$7.35 \mathrm{E}-03$	1.01E-03		$5.37 \mathrm{E}-02$	$7.39 \mathrm{E}-03$	J EMPC	$6.46 \mathrm{E}-02$	$8.89 \mathrm{E}-03 \mathrm{~J}$		$7.00 \mathrm{E}-03$	$9.63 \mathrm{E}-04 \mathrm{U}$		$7.50 \mathrm{E}-03$	$1.03 \mathrm{E}-03 \mathrm{U}$			
PCB-198/199	7.41	6.99	$2.12 \mathrm{E}-01$	$2.15 \mathrm{E}-02$	EMPC ${ }^{\text {a }}$	$2.12 \mathrm{E}-01$	$2.15 \mathrm{E}-02$		$5.17 \mathrm{E}-01$	$5.25 \mathrm{E}-02$		$5.42 \mathrm{E}-01$	$5.50 \mathrm{E}-02$		$2.87 \mathrm{E}-01$	${ }_{7}^{2.91 \mathrm{E}-02 \mathrm{EMPC}^{\text {a }}}$		$\begin{array}{ll} 1.41 \mathrm{E}-01 & 1.43 \mathrm{E}-02 \mathrm{~J}^{\mathrm{a}} \\ 4.83 \mathrm{E}-02 & 2.91 \mathrm{E}-03 \mathrm{JEMPC} \end{array}$				
PCB-196	7.65	7.22	1.02E-01	6.15E-03		$1.02 \mathrm{E}-01$	6.15E-03		$2.30 \mathrm{E}-01$	$1.39 \mathrm{E}-02$		$1.68 \mathrm{E}-01$	$1.01 \mathrm{E}-02 \mathrm{EMPC}$		$1.23 \mathrm{E}-01$							
PCB-203	7.65	7.22	$9.85 \mathrm{E}-02$	5.94E-03	EMPC	$9.85 \mathrm{E}-02$	5.94E-03		$2.52 \mathrm{E}-01$	$1.52 \mathrm{E}-02$	EMPC	$2.46 \mathrm{E}-01$	$1.48 \mathrm{E}-02$		$1.38 \mathrm{E}-01$	$8.32 \mathrm{E}-03$		$4.83 \mathrm{E}-02$ $7.27 \mathrm{E}-02$	$4.38 \mathrm{E}-03 \mathrm{~J}$			
PCB-195	7.56	7.13	4.30E-02	$3.15 \mathrm{E}-03$		$4.30 \mathrm{E}-02$	3.15E-03		$1.91 \mathrm{E}-01$	$1.40 \mathrm{E}-02$		$1.48 \mathrm{E}-01$	$1.08 \mathrm{E}-02$		$7.51 \mathrm{E}-02$	$5.50 \mathrm{E}-03 \mathrm{~J}$$7.22 \mathrm{E}-03$		$1.57 \mathrm{E}-02$	$1.15 \mathrm{E}-03 \mathrm{U}$			
PCB-194	7.8	7.36	$1.37 \mathrm{E}-01$	5.96E-03		$1.37 \mathrm{E}-01$	5.96E-03		$3.64 \mathrm{E}-01$	$1.58 \mathrm{E}-02$		3.29E-01	$1.43 \mathrm{E}-02$		$1.66 \mathrm{E}-01$			$\begin{aligned} & 8.63 \mathrm{E}-02 \\ & 1.07 \mathrm{E}-02 \end{aligned}$	3.76E-03			
PCB-205	8	7.55	$1.08 \mathrm{E}-02$	3.04E-04		$1.08 \mathrm{E}-02$	3.04E-04		$9.85 \mathrm{E}-03$	$2.78 \mathrm{E}-04$		$1.31 \mathrm{E}-02$	3.68E-04		$1.02 \mathrm{E}-02$	$2.88 \mathrm{E}-04 \mathrm{U}$			3.02E-04 U			
PCB-208	7.71	7.28	$9.65 \mathrm{E}-03$	5.11E-04		$9.65 \mathrm{E}-03$	5.11E-04		$3.77 \mathrm{E}-02$	1.99E-03		$1.36 \mathrm{E}-02$	7.20E-04		$1.22 \mathrm{E}-02$	6.46E-04 U		$\begin{aligned} & 1.07 \mathrm{E}-02 \\ & 1.25 \mathrm{E}-02 \end{aligned}$	6.00E-04 U			
PCB-207	7.74	7.30	$9.40 \mathrm{E}-03$	4.66E-04		$9.40 \mathrm{E}-03$	$4.66 \mathrm{E}-04$		$9.35 \mathrm{E}-03$	4.64E-04		$1.32 \mathrm{E}-02$	6.54E-04		$1.19 \mathrm{E}-02$	5.87E-04 U$1.46 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$		$\begin{aligned} & 1.21 \mathrm{E}-02 \\ & 1.80 \mathrm{E}-02 \end{aligned}$				
PCB-206	8.09	7.63	4.63E-02	1.07E-03		$4.63 \mathrm{E}-02$	1.07E-03	J EMPC	$9.43 \mathrm{E}-02$	$2.19 \mathrm{E}-03$		$1.07 \mathrm{E}-01$	$2.48 \mathrm{E}-03$	J EMPC	$6.29 \mathrm{E}-02$			4.17E-04 U				
PCB-209	8.18	7.72	1.13E-02	$2.15 \mathrm{E}-04$		$1.13 \mathrm{E}-02$	$2.15 \mathrm{E}-04$	J EMPC	1.12E-02	$2.13 \mathrm{E}-04$		$3.47 \mathrm{E}-02$	$6.62 \mathrm{E}-04$		$1.12 \mathrm{E}-02$	1.46E-03 J EMPC2.13E-04 U			$\begin{aligned} & 1.80 \mathrm{E}-02 \\ & 1.04 \mathrm{E}-02 \\ & \hline \end{aligned}$	1.97E-04 U		

	SD004-1				SD004-2		SD004-3		SD0054		SD0054-AC		SD0053-1	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\bar{C}_{\text {F }, ~} \mathrm{pg} / \mu \mathrm{L}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier	$\overline{C_{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{l} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$ Qualifier
PCB-1	4.46	4.21	5.37E-02	$3.30 \mathrm{E}+00 \mathrm{~J}$	$4.35 \mathrm{E}-02$	$2.67 \mathrm{E}+00 \mathrm{~J}$	$5.01 \mathrm{E}-02$	$3.08 \mathrm{E}+00 \mathrm{~J}$	$9.45 \mathrm{E}-03$	5.80E-01 U	$6.30 \mathrm{E}-03$	$3.87 \mathrm{E}-01 \mathrm{U}$	$9.55 \mathrm{E}-03$	5.87E-01 U
PCB-2	4.69	4.43	$7.10 \mathrm{E}-03$	$2.65 \mathrm{E}-01 \mathrm{U}$	$1.04 \mathrm{E}-02$	$3.88 \mathrm{E}-01 \mathrm{U}$	$8.60 \mathrm{E}-03$	$3.21 \mathrm{E}-01 \mathrm{U}$	$1.16 \mathrm{E}-02$	4.31E-01 U	$7.55 \mathrm{E}-03$	$2.82 \mathrm{E}-01 \mathrm{U}$	$1.21 \mathrm{E}-02$	$4.51 \mathrm{E}-01 \mathrm{U}$
РСВ-3	4.69	4.43	$6.75 \mathrm{E}-03$	$2.52 \mathrm{E}-01 \mathrm{U}$	$9.90 \mathrm{E}-03$	$3.69 \mathrm{E}-01 \mathrm{U}$	$8.15 \mathrm{E}-03$	$3.04 \mathrm{E}-01 \mathrm{U}$	$1.08 \mathrm{E}-02$	$4.01 \mathrm{E}-01 \mathrm{U}$	$7.19 \mathrm{E}-03$	$2.68 \mathrm{E}-01 \mathrm{U}$	$1.12 \mathrm{E}-02$	4.17E-01 U
PCB-4	4.65	4.39	$1.37 \mathrm{E}-01$	$5.57 \mathrm{E}+00$	$1.50 \mathrm{E}-01$	$6.10 \mathrm{E}+00$	$1.58 \mathrm{E}-01$	$6.42 \mathrm{E}+00$	$1.27 \mathrm{E}-01$	5.16E+00	$2.14 \mathrm{E}-02$	$8.69 \mathrm{E}-01 \mathrm{U}$	$3.25 \mathrm{E}-01$	$1.32 \mathrm{E}+01$
PCB-10	4.84	4.57	$1.22 \mathrm{E}-02$	3.27E-01 U	$1.90 \mathrm{E}-02$	$5.10 \mathrm{E}-01 \mathrm{U}$	$1.72 \mathrm{E}-02$	$4.62 \mathrm{E}-01 \mathrm{U}$	$2.39 \mathrm{E}-02$	6.42E-01 U	$1.36 \mathrm{E}-02$	$3.66 \mathrm{E}-01 \mathrm{U}$	$2.28 \mathrm{E}-02$	6.14E-01 U
РСВ-9	5.06	4.78	$3.06 \mathrm{E}-02$	$5.11 \mathrm{E}-01 \mathrm{~J}$	$2.70 \mathrm{E}-02$	$4.51 \mathrm{E}-01 \mathrm{~J}$	$3.21 \mathrm{E}-02$	$5.36 \mathrm{E}-01 \mathrm{~J}$	$4.22 \mathrm{E}-02$	7.04E-01 U	$1.95 \mathrm{E}-02$	$3.25 \mathrm{E}-01 \mathrm{U}$	$4.42 \mathrm{E}-02$	$7.38 \mathrm{E}-01 \mathrm{~J}$
PCB-7	5.07	4.79	$2.31 \mathrm{E}-02$	3.77E-01 J	$1.89 \mathrm{E}-02$	$3.09 \mathrm{E}-01 \mathrm{~J}$	$2.83 \mathrm{E}-02$	$4.62 \mathrm{E}-01 \mathrm{~J}$	$3.69 \mathrm{E}-02$	$6.03 \mathrm{E}-01 \mathrm{U}$	$1.70 \mathrm{E}-02$	$2.78 \mathrm{E}-01 \mathrm{U}$	$2.55 \mathrm{E}-02$	$4.17 \mathrm{E}-01 \mathrm{~J}$
PCB-6	5.06	4.78	$6.84 \mathrm{E}-02$	$1.14 \mathrm{E}+00 \mathrm{~J}$	$6.33 \mathrm{E}-02$	$1.06 \mathrm{E}+00 \mathrm{~J}$	$6.32 \mathrm{E}-02$	$1.05 \mathrm{E}+00 \mathrm{~J}$	$4.57 \mathrm{E}-02$	7.63E-01 J	$1.84 \mathrm{E}-02$	$3.06 \mathrm{E}-01 \mathrm{U}$	$1.63 \mathrm{E}-01$	$2.72 \mathrm{E}+00$
PCB-5	4.97	4.69	$1.55 \mathrm{E}-02$	$3.15 \mathrm{E}-01 \mathrm{~J}$	$2.03 \mathrm{E}-02$	$4.12 \mathrm{E}-01 \mathrm{U}$	$1.52 \mathrm{E}-02$	$3.07 \mathrm{E}-01 \mathrm{U}$	$4.02 \mathrm{E}-02$	$8.15 \mathrm{E}-01 \mathrm{U}$	$1.82 \mathrm{E}-02$	$3.69 \mathrm{E}-01 \mathrm{U}$	$3.11 \mathrm{E}-02$	6.30E-01 U
PCB-8	5.07	4.79	$3.26 \mathrm{E}-01$	$5.32 \mathrm{E}+00$	$3.30 \mathrm{E}-01$	$5.39 \mathrm{E}+00$	$3.13 \mathrm{E}-01$	$5.11 \mathrm{E}+00$	$1.98 \mathrm{E}-01$	$3.23 \mathrm{E}+00$	$4.16 \mathrm{E}-02$	$6.80 \mathrm{E}-01 \mathrm{~J}$	$8.80 \mathrm{E}-01$	$1.44 \mathrm{E}+01$
PCB-14	5.28	4.98	$1.20 \mathrm{E}-02$	1.24E-01 U	$1.68 \mathrm{E}-02$	1.73E-01 U	$1.25 \mathrm{E}-02$	1.29E-01 U	$3.29 \mathrm{E}-02$	$3.41 \mathrm{E}-01 \mathrm{U}$	$1.51 \mathrm{E}-02$	1.56E-01 U	$2.55 \mathrm{E}-02$	$2.63 \mathrm{E}-01 \mathrm{U}$
PCB-11	5.28	4.98	$1.49 \mathrm{E}-01$	$1.54 \mathrm{E}+00$	$1.72 \mathrm{E}-01$	$1.78 \mathrm{E}+00$	$1.52 \mathrm{E}-01$	$1.57 \mathrm{E}+00$	$3.20 \mathrm{E}-01$	$3.31 \mathrm{E}+00$	$1.08 \mathrm{E}-01$	$1.11 \mathrm{E}+00$	$9.54 \mathrm{E}-02$	$9.88 \mathrm{E}-01$
PCB-13/12	5.26	4.97	$1.42 \mathrm{E}-02$	$1.53 \mathrm{E}-01 \mathrm{U}$	$1.98 \mathrm{E}-02$	$2.14 \mathrm{E}-01 \mathrm{U}$	$1.49 \mathrm{E}-02$	$1.61 \mathrm{E}-01 \mathrm{U}$	$3.89 \mathrm{E}-02$	$4.21 \mathrm{E}-01 \mathrm{U}$	$1.78 \mathrm{E}-02$	$1.92 \mathrm{E}-01 \mathrm{U}$	$3.01 \mathrm{E}-02$	$3.25 \mathrm{E}-01 \mathrm{U}$
PCB-15	5.3	5.00	7.44E-02	$7.38 \mathrm{E}-01 \mathrm{~J}$	9.04E-02	8.96E-01	$7.75 \mathrm{E}-02$	7.68E-01	7.47E-02	$7.40 \mathrm{E}-01 \mathrm{~J}$	$1.75 \mathrm{E}-02$	1.74E-01 U	$1.74 \mathrm{E}-01$	$1.72 \mathrm{E}+00$
PCB-19	5.02	4.74	$1.18 \mathrm{E}-01$	$2.15 \mathrm{E}+00$	$1.66 \mathrm{E}-01$	$3.02 \mathrm{E}+00$	$1.29 \mathrm{E}-01$	$2.35 \mathrm{E}+00$	$1.24 \mathrm{E}-01$	$2.26 \mathrm{E}+00 \mathrm{EMPC}$	$3.55 \mathrm{E}-02$	$6.45 \mathrm{E}-01 \mathrm{~J}$	$4.13 \mathrm{E}-01$	$7.52 \mathrm{E}+00$
PCB-30/18	5.34	5.04	$1.40 \mathrm{E}+00$	$1.27 \mathrm{E}+01^{\text {a }}$	$1.40 \mathrm{E}+00$	$1.27 \mathrm{E}+01^{\text {a }}$	$1.44 \mathrm{E}+00$	$1.31 \mathrm{E}+01^{\text {a }}$	$1.31 \mathrm{E}+00$	$1.19 \mathrm{E}+01^{\text {a }}$	$3.65 \mathrm{E}-01$	$3.32 \mathrm{E}+00{ }^{\text {a }}$	$5.15 \mathrm{E}+00$	$4.68 \mathrm{E}+01^{\text {a }}$
PCB-17	5.25	4.96	$6.46 \mathrm{E}-01$	$7.14 \mathrm{E}+00$	$6.31 \mathrm{E}-01$	$6.97 \mathrm{E}+00$	$6.81 \mathrm{E}-01$	$7.52 \mathrm{E}+00$	$6.59 \mathrm{E}-01$	$7.28 \mathrm{E}+00$	$1.92 \mathrm{E}-01$	$2.12 \mathrm{E}+00$	$2.04 \mathrm{E}+00$	$2.25 \mathrm{E}+01$
PCB-27	5.44	5.14	$1.04 \mathrm{E}-01$	7.61E-01 EMPC	$1.36 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	$1.24 \mathrm{E}-01$	9.07E-01	$1.22 \mathrm{E}-01$	$8.92 \mathrm{E}-01$	$1.98 \mathrm{E}-02$	$1.44 \mathrm{E}-01 \mathrm{~J} \mathrm{EMPC}$	$2.89 \mathrm{E}-01$	$2.11 \mathrm{E}+00$
PCB-24	5.35	5.05	$7.55 \mathrm{E}-03$	$6.71 \mathrm{E}-02 \mathrm{U}$	$1.26 \mathrm{E}-02$	1.12E-01 U	$7.90 \mathrm{E}-03$	7.03E-02 U	$1.57 \mathrm{E}-02$	1.40E-01 U	$9.21 \mathrm{E}-03$	8.19E-02 U	$1.23 \mathrm{E}-02$	1.09E-01 U
PCB-16	5.16	4.87	5.27E-01	$7.08 \mathrm{E}+00$	$5.30 \mathrm{E}-01$	$7.12 \mathrm{E}+00$	$5.31 \mathrm{E}-01$	$7.13 \mathrm{E}+00$	$6.54 \mathrm{E}-01$	$8.79 \mathrm{E}+00$	$1.62 \mathrm{E}-01$	$2.18 \mathrm{E}+00$	$2.07 \mathrm{E}+00$	$2.78 \mathrm{E}+01$
PCB-32	5.44	5.14	$4.49 \mathrm{E}-01$	$3.28 \mathrm{E}+00$	$4.98 \mathrm{E}-01$	$3.64 \mathrm{E}+00$	$4.97 \mathrm{E}-01$	$3.64 \mathrm{E}+00$	$4.68 \mathrm{E}-01$	$3.42 \mathrm{E}+00$	$1.30 \mathrm{E}-01$	$9.49 \mathrm{E}-01$	$1.56 \mathrm{E}+00$	$1.14 \mathrm{E}+01$
PCB-34	5.66	5.34	$9.90 \mathrm{E}-03$	$4.49 \mathrm{E}-02 \mathrm{U}$	$1.36 \mathrm{E}-02$	6.15E-02 U	$1.22 \mathrm{E}-02$	5.53E-02 U	$1.74 \mathrm{E}-02$	7.89E-02 U	$9.03 \mathrm{E}-03$	$4.10 \mathrm{E}-02 \mathrm{U}$	$1.56 \mathrm{E}-02$	7.05E-02 U
PCB-23	5.57	5.26	$9.75 \mathrm{E}-03$	$5.38 \mathrm{E}-02 \mathrm{U}$	$1.34 \mathrm{E}-02$	$7.39 \mathrm{E}-02 \mathrm{U}$	$1.20 \mathrm{E}-02$	$6.62 \mathrm{E}-02 \mathrm{U}$	$1.71 \mathrm{E}-02$	$9.40 \mathrm{E}-02 \mathrm{U}$	$8.96 \mathrm{E}-03$	$4.94 \mathrm{E}-02 \mathrm{U}$	$1.53 \mathrm{E}-02$	8.41E-02 U
PCB-26/29	5.63	5.31	$2.69 \mathrm{E}-01$	$1.30 \mathrm{E}+00^{\text {a }}$	$2.81 \mathrm{E}-01$	$1.36 \mathrm{E}+00^{\text {a }}$	$2.75 \mathrm{E}-01$	$1.33 \mathrm{E}+00^{\text {a }}$	$3.00 \mathrm{E}-01$	$1.45 \mathrm{E}+00^{\text {a }}$	$9.73 \mathrm{E}-02$	$4.71 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$7.40 \mathrm{E}-01$	$3.58 \mathrm{E}+00^{\text {a }}$
PCB-25	5.67	5.35	$1.05 \mathrm{E}-01$	$4.66 \mathrm{E}-01$	$1.24 \mathrm{E}-01$	$5.50 \mathrm{E}-01$	1.17E-01	5.19E-01	$1.38 \mathrm{E}-01$	6.13E-01	$4.75 \mathrm{E}-02$	$2.11 \mathrm{E}-01 \mathrm{~J}$	$2.97 \mathrm{E}-01$	$1.32 \mathrm{E}+00$
PCB-31	5.67	5.35	$1.68 \mathrm{E}+00$	7.46E+00	$1.87 \mathrm{E}+00$	$8.30 \mathrm{E}+00$	$1.82 \mathrm{E}+00$	8.08E+00	$1.47 \mathrm{E}+00$	$6.53 \mathrm{E}+00$	$5.32 \mathrm{E}-01$	$2.36 \mathrm{E}+00$	$5.18 \mathrm{E}+00$	$2.30 \mathrm{E}+01$
PCB-28/20	5.62	5.31	$1.70 \mathrm{E}+00$	$8.41 \mathrm{E}+00^{\text {a }}$	$1.84 \mathrm{E}+00$	$9.10 \mathrm{E}+00^{\text {a }}$	$1.81 \mathrm{E}+00$	$8.96 \mathrm{E}+00^{\text {a }}$	$1.46 \mathrm{E}+00$	$7.22 \mathrm{E}+00^{\text {a }}$	$5.17 \mathrm{E}-01$	$2.56 \mathrm{E}+00^{\text {a }}$	$4.72 \mathrm{E}+00$	$2.34 \mathrm{E}+01^{\text {a }}$
PCB-21/33	5.55	5.24	7.63E-01	$4.40 \mathrm{E}+00^{\text {a }}$	$8.16 \mathrm{E}-01$	$4.70 \mathrm{E}+00^{\text {a }}$	$8.31 \mathrm{E}-01$	$4.79 \mathrm{E}+00^{\text {a }}$	$6.88 \mathrm{E}-01$	$3.96 \mathrm{E}+00^{\text {a }}$	$2.44 \mathrm{E}-01$	$1.41 \mathrm{E}+00^{\text {a }}$	$2.74 \mathrm{E}+00$	$1.58 \mathrm{E}+01^{\text {a }}$
PCB-22	5.58	5.27	5.72E-01	$3.09 \mathrm{E}+00$	$6.03 \mathrm{E}-01$	$3.25 \mathrm{E}+00$	$6.04 \mathrm{E}-01$	$3.26 \mathrm{E}+00$	$5.36 \mathrm{E}-01$	$2.89 \mathrm{E}+00$	$1.91 \mathrm{E}-01$	$1.03 \mathrm{E}+00$	$1.74 \mathrm{E}+00$	9.39E+00
PCB-36	5.88	5.55	$9.35 \mathrm{E}-03$	$2.63 \mathrm{E}-02 \mathrm{U}$	$1.29 \mathrm{E}-02$	$3.62 \mathrm{E}-02 \mathrm{U}$	$1.18 \mathrm{E}-02$	$3.31 \mathrm{E}-02 \mathrm{U}$	$1.68 \mathrm{E}-02$	$4.73 \mathrm{E}-02 \mathrm{U}$	$8.55 \mathrm{E}-03$	$2.41 \mathrm{E}-02 \mathrm{U}$	$1.50 \mathrm{E}-02$	$4.22 \mathrm{E}-02 \mathrm{U}$
PCB-39	5.89	5.56	$9.05 \mathrm{E}-03$	2.49E-02 U	$1.25 \mathrm{E}-02$	$3.43 \mathrm{E}-02 \mathrm{U}$	$1.14 \mathrm{E}-02$	$3.14 \mathrm{E}-02 \mathrm{U}$	$1.64 \mathrm{E}-02$	$4.50 \mathrm{E}-02 \mathrm{U}$	$8.29 \mathrm{E}-03$	$2.28 \mathrm{E}-02 \mathrm{U}$	$1.46 \mathrm{E}-02$	$4.02 \mathrm{E}-02 \mathrm{U}$
PCB-38	5.76	5.44	$1.01 \mathrm{E}-02$	$3.69 \mathrm{E}-02 \mathrm{U}$	$1.39 \mathrm{E}-02$	5.06E-02 U	$1.20 \mathrm{E}-02$	$4.38 \mathrm{E}-02 \mathrm{U}$	$1.78 \mathrm{E}-02$	6.50E-02 U	$9.21 \mathrm{E}-03$	$3.36 \mathrm{E}-02 \mathrm{U}$	$1.60 \mathrm{E}-02$	5.82E-02 U
PCB-35	5.82	5.49	$1.09 \mathrm{E}-02$	$3.49 \mathrm{E}-02 \mathrm{U}$	$1.50 \mathrm{E}-02$	4.79E-02 U	$1.34 \mathrm{E}-02$	4.29E-02 U	$1.91 \mathrm{E}-02$	6.12E-02 U	$9.95 \mathrm{E}-03$	$3.19 \mathrm{E}-02 \mathrm{U}$	$1.71 \mathrm{E}-02$	5.48E-02 U
PCB-37	5.83	5.50	$2.02 \mathrm{E}-01$	6.34E-01 EMPC	$2.20 \mathrm{E}-01$	$6.90 \mathrm{E}-01$	$2.48 \mathrm{E}-01$	$7.78 \mathrm{E}-01$	$1.77 \mathrm{E}-01$	$5.55 \mathrm{E}-01$	$5.98 \mathrm{E}-02$	$1.87 \mathrm{E}-01 \mathrm{~J} \mathrm{EMPC}$	$6.55 \mathrm{E}-01$	$2.05 \mathrm{E}+00$
PCB-54	5.21	4.92	$4.92 \mathrm{E}-03$	5.92E-02 U	$6.85 \mathrm{E}-03$	$8.26 \mathrm{E}-02 \mathrm{U}$	$5.50 \mathrm{E}-03$	6.63E-02 U	$8.85 \mathrm{E}-03$	1.07E-01 U	$5.60 \mathrm{E}-03$	$6.75 \mathrm{E}-02 \mathrm{U}$	$8.55 \mathrm{E}-03$	$1.03 \mathrm{E}-01 \mathrm{U}$
PCB-50/53	5.625	5.31	5.02E-01	$2.46 \mathrm{E}+00^{\text {a }}$	$5.54 \mathrm{E}-01$	$2.71 \mathrm{E}+00^{\text {a }}$	$6.04 \mathrm{E}-01$	$2.96 \mathrm{E}+00^{\text {a }}$	$4.93 \mathrm{E}-01$	$2.41 \mathrm{E}+00^{\text {a }}$	$2.12 \mathrm{E}-01$	$1.04 \mathrm{E}+00^{\text {a }}$	$1.42 \mathrm{E}+00$	$6.95 \mathrm{E}+00^{\text {a }}$
PCB-45	5.53	5.22	$5.03 \mathrm{E}-01$	$3.03 \mathrm{E}+00$	$6.01 \mathrm{E}-01$	$3.62 \mathrm{E}+00$	$5.23 \mathrm{E}-01$	$3.15 \mathrm{E}+00$	$5.22 \mathrm{E}-01$	$3.14 \mathrm{E}+00$	$2.49 \mathrm{E}-01$	$1.50 \mathrm{E}+00$	$1.52 \mathrm{E}+00$	$9.14 \mathrm{E}+00$
PCB-51	5.63	5.31	$1.25 \mathrm{E}-01$	6.05E-01	$1.26 \mathrm{E}-01$	6.10E-01	$1.53 \mathrm{E}-01$	7.41E-01	$8.06 \mathrm{E}-02$	$3.90 \mathrm{E}-01 \mathrm{~J}$	$5.66 \mathrm{E}-02$	$2.74 \mathrm{E}-01 \mathrm{~J}$	$2.31 \mathrm{E}-01$	$1.12 \mathrm{E}+00$
PCB-46	5.53	5.22	$1.91 \mathrm{E}-01$	$1.15 \mathrm{E}+00$	$2.13 \mathrm{E}-01$	$1.28 \mathrm{E}+00$	$2.18 \mathrm{E}-01$	$1.31 \mathrm{E}+00$	$1.96 \mathrm{E}-01$	$1.18 \mathrm{E}+00$	$9.51 \mathrm{E}-02$	5.72E-01	$5.51 \mathrm{E}-01$	$3.31 \mathrm{E}+00$
PCB-52	5.84	5.51	$5.06 \mathrm{E}+00$	$1.55 \mathrm{E}+01$	$5.56 \mathrm{E}+00$	$1.71 \mathrm{E}+01$	$5.73 \mathrm{E}+00$	$1.76 \mathrm{E}+01$	$5.49 \mathrm{E}+00$	$1.68 \mathrm{E}+01$	$2.96 \mathrm{E}+00$	9.07E+00	$1.54 \mathrm{E}+01$	4.73E+01
PCB-73	6.04	5.70	$6.05 \mathrm{E}-03$	$1.20 \mathrm{E}-02 \mathrm{U}$	$8.70 \mathrm{E}-03$	1.73E-02 U	$6.50 \mathrm{E}-03$	1.29E-02 U	$1.38 \mathrm{E}-02$	$2.73 \mathrm{E}-02 \mathrm{U}$	$7.00 \mathrm{E}-03$	$1.39 \mathrm{E}-02 \mathrm{U}$	$9.00 \mathrm{E}-03$	$1.79 \mathrm{E}-02 \mathrm{U}$
PCB-43	5.75	5.43	$1.17 \mathrm{E}-01$	$4.37 \mathrm{E}-01$	1.47E-01	5.48E-01 EMPC	$1.22 \mathrm{E}-01$	$4.55 \mathrm{E}-01 \mathrm{EMPC}$	$1.53 \mathrm{E}-01$	5.71E-01	$5.22 \mathrm{E}-02$	$1.95 \mathrm{E}-01 \mathrm{~J}$	$2.70 \mathrm{E}-01$	$1.01 \mathrm{E}+00 \mathrm{EMPC}$
PCB-69/49	5.95	5.62	$2.24 \mathrm{E}+00$	$5.41 \mathrm{E}+00^{\text {a }}$	$2.44 \mathrm{E}+00$	$5.90 \mathrm{E}+00^{\text {a }}$	$2.58 \mathrm{E}+00$	$6.24 \mathrm{E}+00^{\text {a }}$	$2.38 \mathrm{E}+00$	$5.75 \mathrm{E}+00^{\text {a }}$	$1.28 \mathrm{E}+00$	$3.10 \mathrm{E}+00{ }^{\text {a }}$	$4.87 \mathrm{E}+00$	$1.18 \mathrm{E}+01^{\text {a }}$
PCB-48	5.78	5.46	6.01E-01	$2.10 \mathrm{E}+00$	6.53E-01	$2.28 \mathrm{E}+00$	$6.95 \mathrm{E}-01$	$2.43 \mathrm{E}+00$	6.68E-01	$2.34 \mathrm{E}+00$	$3.39 \mathrm{E}-01$	$1.19 \mathrm{E}+00$	$1.61 \mathrm{E}+00$	5.63E+00
PCB-44/47/65	5.82	5.49	$3.25 \mathrm{E}+00$	$1.04 \mathrm{E}+01^{\text {a }}$	$3.58 \mathrm{E}+00$	$1.15 \mathrm{E}+01^{\text {a }}$	$3.64 \mathrm{E}+00$	$1.17 \mathrm{E}+01^{\text {a }}$	$3.24 \mathrm{E}+00$	$1.04 \mathrm{E}+01^{\text {a }}$	$1.76 \mathrm{E}+00$	$5.65 \mathrm{E}+00^{\text {a }}$	$8.87 \mathrm{E}+00$	$2.84 \mathrm{E}+01^{\text {a }}$
PCB-59/62/75	5.96	5.63	$2.38 \mathrm{E}-01$	$5.63 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$2.39 \mathrm{E}-01$	$5.65 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$2.48 \mathrm{E}-01$	$5.87 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$2.40 \mathrm{E}-01$	$5.68 \mathrm{E}-01 \mathrm{JEMPC}^{\text {a }}$	$1.26 \mathrm{E}-01$	$2.98 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$	$5.07 \mathrm{E}-01$	$1.20 \mathrm{E}+00^{\text {a }}$
PCB-42	5.76	5.44	$7.36 \mathrm{E}-01$	$2.69 \mathrm{E}+00$	$7.85 \mathrm{E}-01$	$2.87 \mathrm{E}+00$	$8.60 \mathrm{E}-01$	$3.14 \mathrm{E}+00$	$8.42 \mathrm{E}-01$	$3.07 \mathrm{E}+00$	$4.37 \mathrm{E}-01$	$1.60 \mathrm{E}+00$	$1.77 \mathrm{E}+00$	$6.46 \mathrm{E}+00$
PCB-41	5.69	5.37	$2.20 \mathrm{E}-01$	9.35E-01	$2.20 \mathrm{E}-01$	9.35E-01	$2.40 \mathrm{E}-01$	$1.02 \mathrm{E}+00$	$2.90 \mathrm{E}-01$	$1.23 \mathrm{E}+00$	$1.44 \mathrm{E}-01$	6.11E-01	$7.83 \mathrm{E}-01$	$3.33 \mathrm{E}+00$
PCB-71/40	5.82	5.49	$1.18 \mathrm{E}+00$	$3.78 \mathrm{E}+00^{2}$	$1.30 \mathrm{E}+00$	$4.17 \mathrm{E}+00^{\text {a }}$	$1.36 \mathrm{E}+00$	$4.36 \mathrm{E}+00^{\text {a }}$	$1.27 \mathrm{E}+00$	$4.07 \mathrm{E}+00^{\text {a }}$	$6.65 \mathrm{E}-01$	$2.13 \mathrm{E}+00^{\text {a }}$	$3.32 \mathrm{E}+00$	$1.06 \mathrm{E}+01^{\text {a }}$
PCB-64	5.95	5.62	$1.25 \mathrm{E}+00$	$3.02 \mathrm{E}+00$	$1.30 \mathrm{E}+00$	$3.14 \mathrm{E}+00$	$1.41 \mathrm{E}+00$	$3.41 \mathrm{E}+00$	$1.28 \mathrm{E}+00$	$3.09 \mathrm{E}+00$	$6.74 \mathrm{E}-01$	$1.63 \mathrm{E}+00$	$3.22 \mathrm{E}+00$	$7.78 \mathrm{E}+00$
PCB-72	6.26	5.91	$1.01 \mathrm{E}-02$	$1.25 \mathrm{E}-02 \mathrm{U}$	$1.15 \mathrm{E}-02$	1.42E-02 U	$1.10 \mathrm{E}-02$	$1.35 \mathrm{E}-02 \mathrm{U}$	$2.00 \mathrm{E}-02$	$2.46 \mathrm{E}-02 \mathrm{U}$	$7.81 \mathrm{E}-03$	$9.63 \mathrm{E}-03 \mathrm{U}$	$1.62 \mathrm{E}-02$	$2.00 \mathrm{E}-02 \mathrm{U}$

			SD004-1		SD004-2		SD004-3		SD0054		SD0054-AC		SD0053-1	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier
PCB-68	6.26	5.91	8.40E-03	$1.04 \mathrm{E}-02 \mathrm{U}$	$9.55 \mathrm{E}-03$	$1.18 \mathrm{E}-02 \mathrm{U}$	$9.15 \mathrm{E}-03$	$1.13 \mathrm{E}-02 \mathrm{U}$	$1.58 \mathrm{E}-02$	$1.95 \mathrm{E}-02 \mathrm{U}$	$6.49 \mathrm{E}-03$	$8.00 \mathrm{E}-03 \mathrm{U}$	$1.28 \mathrm{E}-02$	$1.58 \mathrm{E}-02 \mathrm{U}$
PCB-57	6.17	5.82	$9.10 \mathrm{E}-03$	$1.36 \mathrm{E}-02 \mathrm{U}$	$1.04 \mathrm{E}-02$	$1.55 \mathrm{E}-02 \mathrm{U}$	$1.04 \mathrm{E}-02$	$1.55 \mathrm{E}-02 \mathrm{U}$	$1.75 \mathrm{E}-02$	$2.62 \mathrm{E}-02 \mathrm{U}$	$7.04 \mathrm{E}-03$	$1.06 \mathrm{E}-02 \mathrm{U}$	$1.42 \mathrm{E}-02$	$2.12 \mathrm{E}-02 \mathrm{U}$
PCB-58	6.17	5.82	$9.10 \mathrm{E}-03$	$1.36 \mathrm{E}-02 \mathrm{U}$	$1.04 \mathrm{E}-02$	$1.55 \mathrm{E}-02 \mathrm{U}$	$9.95 \mathrm{E}-03$	1.49E-02 U	$1.72 \mathrm{E}-02$	$2.58 \mathrm{E}-02 \mathrm{U}$	$7.04 \mathrm{E}-03$	1.06E-02 U	$1.40 \mathrm{E}-02$	2.09E-02 U
PCB-67	6.2	5.85	$5.48 \mathrm{E}-02$	7.70E-02 J EMPC	$6.21 \mathrm{E}-02$	8.72E-02 J	$6.29 \mathrm{E}-02$	8.83E-02 J	$7.34 \mathrm{E}-02$	1.03E-01 J EMPC	$3.57 \mathrm{E}-02$	$5.01 \mathrm{E}-02 \mathrm{~J}$	$1.23 \mathrm{E}-01$	$1.73 \mathrm{E}-01$
PCB-63	6.17	5.82	8.10E-02	$1.21 \mathrm{E}-01 \mathrm{~J}$	$8.00 \mathrm{E}-02$	$1.20 \mathrm{E}-01 \mathrm{~J}$	$8.69 \mathrm{E}-02$	$1.30 \mathrm{E}-01 \mathrm{~J}$	$6.71 \mathrm{E}-02$	1.01E-01 J EMPC	$4.27 \mathrm{E}-02$	$6.40 \mathrm{E}-02 \mathrm{~J}$	$1.77 \mathrm{E}-01$	$2.65 \mathrm{E}-01$
PCB-61/70/74/76	6.14	5.80	$4.24 \mathrm{E}+00$	$6.78 \mathrm{E}+00^{\text {a }}$	$4.50 \mathrm{E}+00$	$7.20 \mathrm{E}+00^{\text {a }}$	$4.72 \mathrm{E}+00$	$7.55 \mathrm{E}+00^{\text {a }}$	$4.32 \mathrm{E}+00$	$6.91 \mathrm{E}+00^{\text {a }}$	$2.40 \mathrm{E}+00$	$3.84 \mathrm{E}+00^{\text {a }}$	1.13E+01	$1.81 \mathrm{E}+01^{\text {a }}$
PCB-66	6.2	5.85	$1.92 \mathrm{E}+00$	$2.70 \mathrm{E}+00$	$1.98 \mathrm{E}+00$	$2.78 \mathrm{E}+00$	$2.08 \mathrm{E}+00$	$2.92 \mathrm{E}+00$	$1.85 \mathrm{E}+00$	$2.60 \mathrm{E}+00$	$1.02 \mathrm{E}+00$	$1.43 \mathrm{E}+00$	$4.66 \mathrm{E}+00$	$6.54 \mathrm{E}+00$
PCB-55	6.11	5.77	9.65E-03	$1.65 \mathrm{E}-02 \mathrm{U}$	$1.10 \mathrm{E}-02$	1.88E-02 U	$1.06 \mathrm{E}-02$	$1.81 \mathrm{E}-02 \mathrm{U}$	$1.84 \mathrm{E}-02$	3.14E-02 U	$7.48 \mathrm{E}-03$	$1.28 \mathrm{E}-02 \mathrm{U}$	$1.05 \mathrm{E}-01$	$1.79 \mathrm{E}-01$
PCB-56	6.11	5.77	$9.19 \mathrm{E}-01$	$1.57 \mathrm{E}+00$	$9.45 \mathrm{E}-01$	$1.61 \mathrm{E}+00$	$1.02 \mathrm{E}+00$	$1.74 \mathrm{E}+00$	$8.44 \mathrm{E}-01$	$1.44 \mathrm{E}+00$	$4.89 \mathrm{E}-01$	$8.36 \mathrm{E}-01$	$2.32 \mathrm{E}+00$	3.96E+00
PCB-60	6.11	5.77	$4.89 \mathrm{E}-01$	8.35E-01	5.03E-01	8.59E-01	$5.50 \mathrm{E}-01$	9.39E-01	$4.49 \mathrm{E}-01$	7.67E-01	$2.56 \mathrm{E}-01$	4.37E-01	$1.23 \mathrm{E}+00$	$2.10 \mathrm{E}+00$
PCB-80	6.48	6.12	$8.40 \mathrm{E}-03$	6.42E-03 U	$9.60 \mathrm{E}-03$	7.34E-03 U	$8.95 \mathrm{E}-03$	6.84E-03 U	$1.57 \mathrm{E}-02$	$1.20 \mathrm{E}-02 \mathrm{U}$	$6.52 \mathrm{E}-03$	$4.99 \mathrm{E}-03 \mathrm{U}$	$1.28 \mathrm{E}-02$	$9.75 \mathrm{E}-03 \mathrm{U}$
PCB-79	6.42	6.06	8.20E-03	7.14E-03 U	$3.73 \mathrm{E}-02$	$3.25 \mathrm{E}-02 \mathrm{~J}$	$1.84 \mathrm{E}-02$	$1.60 \mathrm{E}-02 \mathrm{~J}$	$1.57 \mathrm{E}-02$	$1.37 \mathrm{E}-02 \mathrm{U}$	$2.93 \mathrm{E}-02$	$2.55 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$6.11 \mathrm{E}-02$	$5.32 \mathrm{E}-02 \mathrm{~J}$
PCB-78	6.35	5.99	$1.05 \mathrm{E}-02$	$1.06 \mathrm{E}-02 \mathrm{U}$	$1.19 \mathrm{E}-02$	$1.20 \mathrm{E}-02 \mathrm{U}$	$1.12 \mathrm{E}-02$	1.13E-02 U	$1.96 \mathrm{E}-02$	$1.98 \mathrm{E}-02 \mathrm{U}$	8.07E-03	8.18E-03 U	$1.59 \mathrm{E}-02$	1.61E-02 U
PCB-81	6.36	6.00	1.02E-02	$1.01 \mathrm{E}-02 \mathrm{U}$	$1.16 \mathrm{E}-02$	$1.15 \mathrm{E}-02 \mathrm{U}$	$1.14 \mathrm{E}-02$	1.13E-02 U	$1.91 \mathrm{E}-02$	1.90E-02 U	$7.85 \mathrm{E}-03$	7.79E-03 U	$1.55 \mathrm{E}-02$	1.54E-02 U
PCB-77	6.36	6.00	$1.05 \mathrm{E}-01$	$1.04 \mathrm{E}-01$	$9.07 \mathrm{E}-02$	$9.00 \mathrm{E}-02$	$1.00 \mathrm{E}-01$	$9.92 \mathrm{E}-02$	$9.70 \mathrm{E}-02$	$9.62 \mathrm{E}-02$	$5.28 \mathrm{E}-02$	$5.24 \mathrm{E}-02 \mathrm{~J}$	$1.99 \mathrm{E}-01$	$1.97 \mathrm{E}-01$
PCB-104	5.81	5.48	$5.00 \mathrm{E}-03$	1.64E-02 U	$7.30 \mathrm{E}-03$	$2.39 \mathrm{E}-02 \mathrm{U}$	$4.79 \mathrm{E}-03$	1.57E-02 U	$1.26 \mathrm{E}-02$	$4.11 \mathrm{E}-02 \mathrm{U}$	$5.09 \mathrm{E}-03$	1.67E-02 U	$7.15 \mathrm{E}-03$	$2.34 \mathrm{E}-02 \mathrm{U}$
PCB-96	5.71	5.39	$4.79 \mathrm{E}-02$	$1.95 \mathrm{E}-01 \mathrm{~J}$	$5.59 \mathrm{E}-02$	$2.28 \mathrm{E}-01 \mathrm{~J}$	$5.12 \mathrm{E}-02$	2.08E-01 J	$6.22 \mathrm{E}-02$	$2.53 \mathrm{E}-01 \mathrm{~J}$	$4.02 \mathrm{E}-02$	$1.63 \mathrm{E}-01 \mathrm{~J}$	$1.24 \mathrm{E}-01$	5.05E-01 EMPC
PCB-103	6.22	5.87	1.67E-02	$2.24 \mathrm{E}-02 \mathrm{U}$	$4.90 \mathrm{E}-02$	$6.59 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$4.12 \mathrm{E}-02$	$5.54 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$2.47 \mathrm{E}-02$	$3.32 \mathrm{E}-02 \mathrm{U}$	$1.51 \mathrm{E}-02$	$2.04 \mathrm{E}-02 \mathrm{U}$	$2.20 \mathrm{E}-02$	2.96E-02 U
PCB-94	6.13	5.79	$1.84 \mathrm{E}-02$	$3.00 \mathrm{E}-02 \mathrm{U}$	$2.06 \mathrm{E}-02$	$3.37 \mathrm{E}-02 \mathrm{U}$	$1.24 \mathrm{E}-02$	$2.02 \mathrm{E}-02 \mathrm{U}$	$2.61 \mathrm{E}-02$	4.26E-02 U	$1.67 \mathrm{E}-02$	$2.73 \mathrm{E}-02 \mathrm{U}$	$2.32 \mathrm{E}-02$	$3.79 \mathrm{E}-02 \mathrm{U}$
PCB-95	6.13	5.79	$3.67 \mathrm{E}+00$	$6.00 \mathrm{E}+00$	$4.31 \mathrm{E}+00$	$7.05 \mathrm{E}+00$	$4.76 \mathrm{E}+00$	$7.78 \mathrm{E}+00$	$5.70 \mathrm{E}+00$	$9.32 \mathrm{E}+00$	$3.93 \mathrm{E}+00$	6.42E+00	$1.06 \mathrm{E}+01$	$1.73 \mathrm{E}+01$
PCB-100/93	6.14	5.80	$1.72 \mathrm{E}-02$	$2.75 \mathrm{E}-02 \mathrm{U}$	$1.93 \mathrm{E}-02$	$3.09 \mathrm{E}-02 \mathrm{U}$	$1.07 \mathrm{E}-02$	$1.70 \mathrm{E}-02 \mathrm{U}$	$2.40 \mathrm{E}-02$	$3.83 \mathrm{E}-02 \mathrm{U}$	$1.56 \mathrm{E}-02$	$2.50 \mathrm{E}-02 \mathrm{U}$	$8.36 \mathrm{E}-02$	$1.34 \mathrm{E}-01 \mathrm{~J}^{\text {a }}$
PCB-102	6.16	5.81	$1.34 \mathrm{E}-01$	$2.05 \mathrm{E}-01$	$1.23 \mathrm{E}-01$	$1.88 \mathrm{E}-01$	$1.55 \mathrm{E}-01$	$2.37 \mathrm{E}-01$	$1.86 \mathrm{E}-01$	$2.85 \mathrm{E}-01$	$1.11 \mathrm{E}-01$	$1.70 \mathrm{E}-01$	$3.31 \mathrm{E}-01$	5.07E-01
PCB-98	6.13	5.79	$1.75 \mathrm{E}-02$	$2.85 \mathrm{E}-02 \mathrm{U}$	$1.96 \mathrm{E}-02$	$3.20 \mathrm{E}-02 \mathrm{U}$	$1.12 \mathrm{E}-02$	1.82E-02 U	$2.49 \mathrm{E}-02$	4.07E-02 U	$1.58 \mathrm{E}-02$	$2.59 \mathrm{E}-02 \mathrm{U}$	$2.22 \mathrm{E}-02$	3.63E-02 U
PCB-88	6.07	5.73	$2.08 \mathrm{E}-02$	$3.87 \mathrm{E}-02 \mathrm{U}$	$2.34 \mathrm{E}-02$	$4.35 \mathrm{E}-02 \mathrm{U}$	$1.44 \mathrm{E}-02$	$2.68 \mathrm{E}-02 \mathrm{U}$	$2.93 \mathrm{E}-02$	$5.46 \mathrm{E}-02 \mathrm{U}$	$1.89 \mathrm{E}-02$	$3.53 \mathrm{E}-02 \mathrm{U}$	$2.61 \mathrm{E}-02$	$4.86 \mathrm{E}-02 \mathrm{U}$
PCB-91	6.13	5.79	5.84E-01	$9.55 \mathrm{E}-01$	$5.70 \mathrm{E}-01$	$9.32 \mathrm{E}-01$	$6.35 \mathrm{E}-01$	$1.04 \mathrm{E}+00$	$8.01 \mathrm{E}-01$	$1.31 \mathrm{E}+00$	$5.31 \mathrm{E}-01$	$8.68 \mathrm{E}-01$	$1.38 \mathrm{E}+00$	$2.26 \mathrm{E}+00$
PCB-84	6.04	5.70	$1.33 \mathrm{E}+00$	$2.64 \mathrm{E}+00$	$1.46 \mathrm{E}+00$	$2.90 \mathrm{E}+00$	$1.56 \mathrm{E}+00$	$3.10 \mathrm{E}+00$	$1.93 \mathrm{E}+00$	$3.84 \mathrm{E}+00$	$1.30 \mathrm{E}+00$	$2.58 \mathrm{E}+00$	$4.06 \mathrm{E}+00$	8.07E+00
PCB-89	6.07	5.73	$1.89 \mathrm{E}-02$	$3.51 \mathrm{E}-02 \mathrm{U}$	$4.64 \mathrm{E}-02$	8.64E-02 J EMPC	$2.47 \mathrm{E}-02$	4.60E-02 J EMPC	$8.04 \mathrm{E}-02$	$1.50 \mathrm{E}-01 \mathrm{~J}$	$1.72 \mathrm{E}-02$	$3.20 \mathrm{E}-02 \mathrm{U}$	$1.58 \mathrm{E}-01$	$2.94 \mathrm{E}-01$
PCB-121	6.64	6.27	$1.22 \mathrm{E}-02$	6.59E-03 U	$1.37 \mathrm{E}-02$	7.40E-03 U	8.05E-03	$4.35 \mathrm{E}-03 \mathrm{U}$	$1.77 \mathrm{E}-02$	$9.56 \mathrm{E}-03 \mathrm{U}$	$1.11 \mathrm{E}-02$	5.99E-03 U	$1.58 \mathrm{E}-02$	$8.51 \mathrm{E}-03 \mathrm{U}$
PCB-92	6.35	5.99	8.38E-01	$8.50 \mathrm{E}-01$	$8.80 \mathrm{E}-01$	$8.92 \mathrm{E}-01$	$9.23 \mathrm{E}-01$	$9.36 \mathrm{E}-01$	$1.17 \mathrm{E}+00$	$1.19 \mathrm{E}+00$	$8.55 \mathrm{E}-01$	8.67E-01	$1.81 \mathrm{E}+00$	$1.84 \mathrm{E}+00$
PCB-113/90/101	6.43	6.07	$4.84 \mathrm{E}+00$	$4.13 \mathrm{E}+00^{\text {a }}$	$5.11 \mathrm{E}+00$	$4.36 \mathrm{E}+00^{\text {a }}$	$5.40 \mathrm{E}+00$	$4.60 \mathrm{E}+00^{\text {a }}$	$6.76 \mathrm{E}+00$	$5.76 \mathrm{E}+00^{\text {a }}$	$4.90 \mathrm{E}+00$	$4.18 \mathrm{E}+00^{\text {a }}$	$1.08 \mathrm{E}+01$	$9.21 \mathrm{E}+00^{\text {a }}$
PCB-83	6.26	5.91	$2.86 \mathrm{E}-01$	3.53E-01	$2.30 \mathrm{E}-01$	$2.84 \mathrm{E}-01 \mathrm{EMPC}$	$2.69 \mathrm{E}-01$	3.32E-01 EMPC	$3.61 \mathrm{E}-01$	$4.45 \mathrm{E}-01$	$2.41 \mathrm{E}-01$	$2.97 \mathrm{E}-01$	$5.63 \mathrm{E}-01$	$6.94 \mathrm{E}-01$
PCB-99	6.39	6.03	$2.50 \mathrm{E}+00$	2.32E+00	$2.54 \mathrm{E}+00$	$2.36 \mathrm{E}+00$	$2.76 \mathrm{E}+00$	$2.57 \mathrm{E}+00$	$3.28 \mathrm{E}+00$	3.05E+00	$2.21 \mathrm{E}+00$	$2.06 \mathrm{E}+00$	$4.51 \mathrm{E}+00$	$4.19 \mathrm{E}+00$
PCB-112	6.45	6.09	$1.29 \mathrm{E}-02$	1.05E-02 U	$1.45 \mathrm{E}-02$	1.18E-02 U	$8.80 \mathrm{E}-03$	7.18E-03 U	$1.86 \mathrm{E}-02$	$1.51 \mathrm{E}-02 \mathrm{U}$	$1.17 \mathrm{E}-02$	$9.56 \mathrm{E}-03 \mathrm{U}$	$1.65 \mathrm{E}-02$	1.35E-02 U
PCB-108/119/86/97/125/87	6.44	6.08	$2.89 \mathrm{E}+00$	$2.41 \mathrm{E}+00^{\text {a }}$	$2.97 \mathrm{E}+00$	$2.48 \mathrm{E}+00^{\text {a }}$	$3.21 \mathrm{E}+00$	$2.68 \mathrm{E}+00^{\text {a }}$	$4.34 \mathrm{E}+00$	$3.62 \mathrm{E}+00^{\text {a }}$	$2.89 \mathrm{E}+00$	$2.41 \mathrm{E}+00^{\text {a }}$	$7.76 \mathrm{E}+00$	6.47E+00 ${ }^{\text {a }}$
PCB-117	6.46	6.10	1.55E-01	$1.24 \mathrm{E}-01$	$6.32 \mathrm{E}-02$	5.05E-02 J EMPC	$1.33 \mathrm{E}-01$	$1.06 \mathrm{E}-01$	$1.99 \mathrm{E}-01$	$1.59 \mathrm{E}-01$	$1.08 \mathrm{E}-01$	8.59E-02	$2.75 \mathrm{E}-01$	$2.20 \mathrm{E}-01$
PCB-116/85	6.32	5.97	$6.60 \mathrm{E}-01$	$7.14 \mathrm{E}-01^{\text {a }}$	$9.39 \mathrm{E}-01$	$1.02 \mathrm{E}+00^{\text {a }}$	$8.83 \mathrm{E}-01$	$9.56 \mathrm{E}-01^{\text {a }}$	$9.54 \mathrm{E}-01$	$1.03 \mathrm{E}+00^{\text {a }}$	$7.33 \mathrm{E}-01$	7.93E-01 ${ }^{\text {a }}$	$1.67 \mathrm{E}+00$	$1.81 \mathrm{E}+00^{\text {a }}$
PCB-110	6.48	6.12	$5.43 \mathrm{E}+00$	$4.15 \mathrm{E}+00$	$5.72 \mathrm{E}+00$	$4.37 \mathrm{E}+00$	$5.54 \mathrm{E}+00$	$4.24 \mathrm{E}+00$	$7.97 \mathrm{E}+00$	6.09E+00	$5.56 \mathrm{E}+00$	4.25E+00	$1.34 \mathrm{E}+01$	$1.02 \mathrm{E}+01$
PCB-115	6.49	6.13	$1.24 \mathrm{E}-02$	$9.24 \mathrm{E}-03 \mathrm{U}$	$1.39 \mathrm{E}-02$	$1.04 \mathrm{E}-02 \mathrm{U}$	$8.90 \mathrm{E}-03$	$6.66 \mathrm{E}-03 \mathrm{U}$	$1.74 \mathrm{E}-02$	$1.30 \mathrm{E}-02 \mathrm{U}$	$1.12 \mathrm{E}-02$	$8.41 \mathrm{E}-03 \mathrm{U}$	$1.55 \mathrm{E}-02$	$1.16 \mathrm{E}-02 \mathrm{U}$
PCB-82	6.2	5.85	5.71E-01	$8.02 \mathrm{E}-01$	5.37E-01	$7.54 \mathrm{E}-01$	$6.06 \mathrm{E}-01$	$8.51 \mathrm{E}-01$	$7.81 \mathrm{E}-01$	$1.10 \mathrm{E}+00$	$5.84 \mathrm{E}-01$	$8.21 \mathrm{E}-01$	$1.50 \mathrm{E}+00$	$2.11 \mathrm{E}+00$
PCB-111	6.76	6.38	$1.24 \mathrm{E}-02$	5.14E-03 U	$1.39 \mathrm{E}-02$	5.77E-03 U	$8.00 \mathrm{E}-03$	$3.33 \mathrm{E}-03 \mathrm{U}$	$1.74 \mathrm{E}-02$	$7.22 \mathrm{E}-03 \mathrm{U}$	$1.12 \mathrm{E}-02$	$4.66 \mathrm{E}-03 \mathrm{U}$	$1.55 \mathrm{E}-02$	6.43E-03 U
PCB-120	6.79	6.41	$1.24 \mathrm{E}-02$	$4.82 \mathrm{E}-03 \mathrm{U}$	$1.39 \mathrm{E}-02$	$5.40 \mathrm{E}-03 \mathrm{U}$	$8.10 \mathrm{E}-03$	3.16E-03 U	$1.78 \mathrm{E}-02$	6.92E-03 U	$1.12 \mathrm{E}-02$	$4.38 \mathrm{E}-03 \mathrm{U}$	$1.58 \mathrm{E}-02$	6.16E-03 U
PCB-107/124	6.72	6.34	$1.30 \mathrm{E}-01$	$5.90 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.28 \mathrm{E}-01$	$5.81 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.64 \mathrm{E}-01$	$7.45 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$2.60 \mathrm{E}-01$	$1.18 \mathrm{E}-01^{\text {a }}$	$1.61 \mathrm{E}-01$	$7.30 \mathrm{E}-02^{\text {a }}$	$3.47 \mathrm{E}-01$	$1.58 \mathrm{E}-01^{\text {a }}$
PCB-109	6.48	6.12	2.53E-01	$1.93 \mathrm{E}-01$	$2.33 \mathrm{E}-01$	$1.78 \mathrm{E}-01$	$2.54 \mathrm{E}-01$	$1.94 \mathrm{E}-01$	$4.02 \mathrm{E}-01$	$3.07 \mathrm{E}-01$	$2.53 \mathrm{E}-01$	$1.93 \mathrm{E}-01$	$4.77 \mathrm{E}-01$	$3.65 \mathrm{E}-01$
PCB-123	6.74	6.36	$5.18 \mathrm{E}-02$	$2.25 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$3.66 \mathrm{E}-02$	$1.59 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$6.08 \mathrm{E}-02$	$2.64 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.01 \mathrm{E}-01$	4.39E-02 EMPC	$6.22 \mathrm{E}-02$	2.70E-02 EMPC	$1.31 \mathrm{E}-01$	5.70E-02
PCB-106	6.64	6.27	$1.40 \mathrm{E}-02$	7.54E-03 U	$1.57 \mathrm{E}-02$	8.45E-03 U	$8.80 \mathrm{E}-03$	$4.75 \mathrm{E}-03 \mathrm{U}$	$1.89 \mathrm{E}-02$	$1.02 \mathrm{E}-02 \mathrm{U}$	$1.27 \mathrm{E}-02$	$6.85 \mathrm{E}-03 \mathrm{U}$	$1.68 \mathrm{E}-02$	$9.05 \mathrm{E}-03 \mathrm{U}$
PCB-118	6.74	6.36	$3.25 \mathrm{E}+00$	$1.41 \mathrm{E}+00$	$3.41 \mathrm{E}+00$	$1.48 \mathrm{E}+00$	$3.68 \mathrm{E}+00$	$1.60 \mathrm{E}+00$	$4.37 \mathrm{E}+00$	$1.90 \mathrm{E}+00$	$2.88 \mathrm{E}+00$	$1.25 \mathrm{E}+00$	$7.28 \mathrm{E}+00$	$3.17 \mathrm{E}+00$
PCB-122	6.64	6.27	$1.53 \mathrm{E}-02$	8.27E-03 U	$1.66 \mathrm{E}-02$	8.94E-03 U	$3.02 \mathrm{E}-02$	1.63E-02 U	$2.16 \mathrm{E}-02$	$1.16 \mathrm{E}-02 \mathrm{U}$	$6.05 \mathrm{E}-02$	$3.27 \mathrm{E}-02 \mathrm{~J}$	$1.09 \mathrm{E}-01$	5.89E-02
PCB-114	6.65	6.28	$6.23 \mathrm{E}-02$	3.29E-02 J EMPC	$4.32 \mathrm{E}-02$	2.28E-02 J EMPC	$6.77 \mathrm{E}-02$	3.58E-02 J EMPC	$1.92 \mathrm{E}-02$	1.01E-02 U	$7.12 \mathrm{E}-02$	3.76E-02 EMPC	$1.96 \mathrm{E}-01$	1.04E-01 EMPC
PCB-105	6.65	6.28	$1.32 \mathrm{E}+00$	6.98E-01	$1.45 \mathrm{E}+00$	7.67E-01	$1.48 \mathrm{E}+00$	7.82E-01	$1.87 \mathrm{E}+00$	9.89E-01	$1.25 \mathrm{E}+00$	$6.62 \mathrm{E}-01$	$3.54 \mathrm{E}+00$	1.87E+00 EMPC
PCB-127	6.95	6.56	$1.44 \mathrm{E}-02$	$3.97 \mathrm{E}-03 \mathrm{U}$	$1.63 \mathrm{E}-02$	$4.49 \mathrm{E}-03 \mathrm{U}$	$1.03 \mathrm{E}-02$	$2.84 \mathrm{E}-03 \mathrm{U}$	$2.12 \mathrm{E}-02$	5.84E-03 U	$1.41 \mathrm{E}-02$	$3.89 \mathrm{E}-03 \mathrm{U}$	$1.82 \mathrm{E}-02$	$5.02 \mathrm{E}-03 \mathrm{U}$
PCB-126	6.89	6.50	$6.90 \mathrm{E}-03$	$2.17 \mathrm{E}-03 \mathrm{U}$	$9.95 \mathrm{E}-03$	$3.12 \mathrm{E}-03 \mathrm{U}$	$1.09 \mathrm{E}-02$	$3.41 \mathrm{E}-03 \mathrm{U}$	$1.13 \mathrm{E}-02$	$3.53 \mathrm{E}-03 \mathrm{U}$	$7.19 \mathrm{E}-03$	$2.26 \mathrm{E}-03 \mathrm{U}$	$1.54 \mathrm{E}-02$	$4.83 \mathrm{E}-03 \mathrm{U}$

			SD004-1		SD004-2		SD004-3		SD0054		SD0054-AC		SD0053-1	
Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{F}$	$\overline{\mathrm{C}_{\mathrm{F},} \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{p} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F},} \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F},} \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ L Qualifier	$\overline{\mathrm{C}_{\mathrm{F}, \mathrm{pg}} \mathrm{pgL}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L} \quad$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w},} \mathrm{pg} / \mathrm{L}$ Qualifier
PCB-155	6.41	6.05	5.05E-03	$4.50 \mathrm{E}-03 \mathrm{U}$	$6.85 \mathrm{E}-03$	$6.10 \mathrm{E}-03 \mathrm{U}$	$3.99 \mathrm{E}-03$	$3.55 \mathrm{E}-03 \mathrm{U}$	$7.10 \mathrm{E}-03$	$6.32 \mathrm{E}-03 \mathrm{U}$	$6.41 \mathrm{E}-03$	5.71E-03 U	$7.20 \mathrm{E}-03$	$6.41 \mathrm{E}-03 \mathrm{U}$
PCB-152	6.22	5.87	$5.40 \mathrm{E}-03$	$7.26 \mathrm{E}-03 \mathrm{U}$	$7.30 \mathrm{E}-03$	$9.82 \mathrm{E}-03 \mathrm{U}$	$4.28 \mathrm{E}-03$	$5.75 \mathrm{E}-03 \mathrm{U}$	$7.50 \mathrm{E}-03$	$1.01 \mathrm{E}-02 \mathrm{U}$	$6.85 \mathrm{E}-03$	$9.22 \mathrm{E}-03 \mathrm{U}$	$7.65 \mathrm{E}-03$	$1.03 \mathrm{E}-02 \mathrm{U}$
PCB-150	6.32	5.97	$5.25 \mathrm{E}-03$	$5.68 \mathrm{E}-03 \mathrm{U}$	$7.15 \mathrm{E}-03$	7.74E-03 U	$4.32 \mathrm{E}-03$	$4.68 \mathrm{E}-03 \mathrm{U}$	$7.45 \mathrm{E}-03$	8.06E-03 U	$6.67 \mathrm{E}-03$	$7.22 \mathrm{E}-03 \mathrm{U}$	$7.55 \mathrm{E}-03$	8.17E-03 U
PCB-136	6.22	5.87	$5.59 \mathrm{E}-01$	$7.52 \mathrm{E}-01$	$5.66 \mathrm{E}-01$	$7.61 \mathrm{E}-01$	$6.25 \mathrm{E}-01$	$8.40 \mathrm{E}-01$	$7.87 \mathrm{E}-01$	$1.06 \mathrm{E}+00$	$6.17 \mathrm{E}-01$	$8.30 \mathrm{E}-01$	$1.04 \mathrm{E}+00$	$1.40 \mathrm{E}+00$
PCB-145	6.25	5.90	$5.65 \mathrm{E}-03$	7.12E-03 U	$7.65 \mathrm{E}-03$	9.64E-03 U	$4.58 \mathrm{E}-03$	5.76E-03 U	$7.90 \mathrm{E}-03$	9.95E-03 U	$7.15 \mathrm{E}-03$	$9.01 \mathrm{E}-03 \mathrm{U}$	$8.05 \mathrm{E}-03$	$1.01 \mathrm{E}-02 \mathrm{U}$
PCB-148	6.73	6.35	$6.80 \mathrm{E}-03$	$3.02 \mathrm{E}-03 \mathrm{U}$	$1.01 \mathrm{E}-02$	4.47E-03 U	$6.50 \mathrm{E}-03$	$2.89 \mathrm{E}-03 \mathrm{U}$	$1.16 \mathrm{E}-02$	5.15E-03 U	$9.58 \mathrm{E}-03$	$4.26 \mathrm{E}-03 \mathrm{U}$	$1.03 \mathrm{E}-02$	$4.55 \mathrm{E}-03 \mathrm{U}$
PCB-151/135	6.64	6.27	$1.25 \mathrm{E}+00$	6.75E-01 ${ }^{\text {a }}$	$1.27 \mathrm{E}+00$	$6.86 \mathrm{E}-01^{\text {a }}$	$1.34 \mathrm{E}+00$	$7.24 \mathrm{E}-01^{\text {a }}$	$1.70 \mathrm{E}+00$	$9.18 \mathrm{E}-01^{\text {a }}$	$1.32 \mathrm{E}+00$	$7.13 \mathrm{E}-01^{\text {a }}$	$1.94 \mathrm{E}+00$	$1.05 \mathrm{E}+00^{\text {a }}$
PCB-154	6.76	6.38	$6.23 \mathrm{E}-02$	$2.59 \mathrm{E}-02 \mathrm{~J}$	$5.60 \mathrm{E}-02$	$2.33 \mathrm{E}-02 \mathrm{~J}$	$4.68 \mathrm{E}-02$	$1.95 \mathrm{E}-02 \mathrm{~J}$	$1.08 \mathrm{E}-02$	4.48E-03 U	$4.59 \mathrm{E}-02$	$1.91 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$9.50 \mathrm{E}-03$	$3.95 \mathrm{E}-03 \mathrm{U}$
PCB-144	6.67	6.30	$1.88 \mathrm{E}-01$	9.52E-02 EMPC	$2.05 \mathrm{E}-01$	$1.04 \mathrm{E}-01$	$2.05 \mathrm{E}-01$	$1.04 \mathrm{E}-01$	3.27E-01	$1.66 \mathrm{E}-01$	$2.24 \mathrm{E}-01$	$1.13 \mathrm{E}-01$	3.19E-01	$1.61 \mathrm{E}-01$
PCB-147/149	6.655	6.28	3.05E+00	$1.59 \mathrm{E}+00^{\text {a }}$	$3.05 \mathrm{E}+00$	$1.59 \mathrm{E}+00^{\text {a }}$	$3.45 \mathrm{E}+00$	$1.80 \mathrm{E}+00^{\text {a }}$	$4.46 \mathrm{E}+00$	$2.33 \mathrm{E}+00^{\text {a }}$	$3.34 \mathrm{E}+00$	$1.75 \mathrm{E}+00^{\text {a }}$	$4.88 \mathrm{E}+00$	$2.55 \mathrm{E}+00^{\text {a }}$
PCB-134	6.55	6.18	2.83E-01	1.86E-01	$2.34 \mathrm{E}-01$	$1.54 \mathrm{E}-01 \mathrm{EMPC}$	$3.14 \mathrm{E}-01$	$2.06 \mathrm{E}-01 \mathrm{EMPC}$	$4.56 \mathrm{E}-01$	$3.00 \mathrm{E}-01$	$2.61 \mathrm{E}-01$	$1.71 \mathrm{E}-01$	$4.76 \mathrm{E}-01$	3.13E-01
PCB-143	6.6	6.23	$6.75 \mathrm{E}-03$	3.98E-03 U	$9.95 \mathrm{E}-03$	5.86E-03 U	$6.30 \mathrm{E}-03$	$3.71 \mathrm{E}-03 \mathrm{U}$	$1.19 \mathrm{E}-02$	7.01E-03 U	$9.51 \mathrm{E}-03$	5.60E-03 U	$1.06 \mathrm{E}-02$	6.22E-03 U
PCB-139/140	6.67	6.30	$6.49 \mathrm{E}-02$	$3.28 \mathrm{E}-02 \mathrm{JEMPC}^{\text {a }}$	$7.01 \mathrm{E}-02$	$3.55 \mathrm{E}-02 \mathrm{JEMPC}^{\text {a }}$	$1.04 \mathrm{E}-01$	$5.26 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}^{\text {a }}$	$1.46 \mathrm{E}-01$	$7.39 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$8.84 \mathrm{E}-02$	$4.48 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.27 \mathrm{E}-01$	$6.43 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$
PCB-131	6.58	6.21	$6.16 \mathrm{E}-02$	3.79E-02 J EMPC	$5.89 \mathrm{E}-02$	3.62E-02 J EMPC	$7.02 \mathrm{E}-02$	$4.32 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$1.40 \mathrm{E}-01$	$8.62 \mathrm{E}-02$	$8.18 \mathrm{E}-02$	$5.03 \mathrm{E}-02$	$1.16 \mathrm{E}-01$	$7.14 \mathrm{E}-02$
PCB-142	6.51	6.14	$7.95 \mathrm{E}-03$	5.70E-03 U	$1.17 \mathrm{E}-02$	8.38E-03 U	$7.65 \mathrm{E}-03$	$5.48 \mathrm{E}-03 \mathrm{U}$	$1.39 \mathrm{E}-02$	9.92E-03 U	$1.12 \mathrm{E}-02$	8.00E-03 U	$1.23 \mathrm{E}-02$	$8.78 \mathrm{E}-03 \mathrm{U}$
PCB-132	6.58	6.21	$1.20 \mathrm{E}+00$	7.38E-01	$1.30 \mathrm{E}+00$	$8.00 \mathrm{E}-01$	$1.33 \mathrm{E}+00$	8.18E-01	$1.98 \mathrm{E}+00$	$1.22 \mathrm{E}+00$	$1.43 \mathrm{E}+00$	$8.80 \mathrm{E}-01$	$2.46 \mathrm{E}+00$	$1.51 \mathrm{E}+00$
PCB-133	6.86	6.47	$4.15 \mathrm{E}-02$	$1.39 \mathrm{E}-02 \mathrm{~J}$	$2.57 \mathrm{E}-02$	8.61E-03 J EMPC	$4.98 \mathrm{E}-02$	1.67E-02 J EMPC	$1.08 \mathrm{E}-01$	3.62E-02 EMPC	$5.56 \mathrm{E}-02$	$1.86 \mathrm{E}-02 \mathrm{~J}$	$5.33 \mathrm{E}-02$	$1.79 \mathrm{E}-02 \mathrm{~J}$
PCB-165	7.05	6.65	5.85E-03	$1.30 \mathrm{E}-03 \mathrm{U}$	$8.60 \mathrm{E}-03$	$1.91 \mathrm{E}-03 \mathrm{U}$	$5.60 \mathrm{E}-03$	$1.24 \mathrm{E}-03 \mathrm{U}$	$1.00 \mathrm{E}-02$	$2.22 \mathrm{E}-03 \mathrm{U}$	$8.22 \mathrm{E}-03$	$1.82 \mathrm{E}-03 \mathrm{U}$	8.85E-03	$1.96 \mathrm{E}-03 \mathrm{U}$
PCB-146	6.89	6.50	$4.63 \mathrm{E}-01$	$1.45 \mathrm{E}-01$	$5.00 \mathrm{E}-01$	$1.57 \mathrm{E}-01$	$4.98 \mathrm{E}-01$	$1.56 \mathrm{E}-01$	$8.16 \mathrm{E}-01$	$2.56 \mathrm{E}-01$	$5.61 \mathrm{E}-01$	$1.76 \mathrm{E}-01$	$6.87 \mathrm{E}-01$	$2.16 \mathrm{E}-01$
PCB-161	7.08	6.68	5.45E-03	1.13E-03 U	$8.05 \mathrm{E}-03$	$1.67 \mathrm{E}-03 \mathrm{U}$	$5.10 \mathrm{E}-03$	$1.06 \mathrm{E}-03 \mathrm{U}$	$9.55 \mathrm{E}-03$	$1.98 \mathrm{E}-03 \mathrm{U}$	7.70E-03	$1.60 \mathrm{E}-03 \mathrm{U}$	8.45E-03	$1.76 \mathrm{E}-03 \mathrm{U}$
PCB-153/168	7.01	6.62	$2.64 \mathrm{E}+00$	6.39E-01 ${ }^{\text {a }}$	$2.71 \mathrm{E}+00$	$6.56 \mathrm{E}-01^{\text {a }}$	$2.95 \mathrm{E}+00$	$7.14 \mathrm{E}-01^{\text {a }}$	$3.77 \mathrm{E}+00$	$9.12 \mathrm{E}-01^{\text {a }}$	$2.73 \mathrm{E}+00$	6.62E-01 ${ }^{\text {a }}$	$3.88 \mathrm{E}+00$	9.39E-01 ${ }^{\text {a }}$
PCB-141	6.82	6.44	$5.47 \mathrm{E}-01$	$2.00 \mathrm{E}-01$	5.36E-01	$1.96 \mathrm{E}-01$	$6.15 \mathrm{E}-01$	$2.25 \mathrm{E}-01$	$9.33 \mathrm{E}-01$	$3.41 \mathrm{E}-01$	$6.43 \mathrm{E}-01$	$2.35 \mathrm{E}-01$	$1.01 \mathrm{E}+00$	$3.69 \mathrm{E}-01$
PCB-130	6.8	6.42	$2.22 \mathrm{E}-01$	8.47E-02 EMPC	$1.94 \mathrm{E}-01$	$7.40 \mathrm{E}-02 \mathrm{EMPC}$	$2.48 \mathrm{E}-01$	$9.47 \mathrm{E}-02 \mathrm{EMPC}$	$4.39 \mathrm{E}-01$	$1.68 \mathrm{E}-01$	$2.35 \mathrm{E}-01$	8.97E-02 EMPC	$3.45 \mathrm{E}-01$	$1.32 \mathrm{E}-01$
PCB-137	6.83	6.45	$1.31 \mathrm{E}-01$	$4.68 \mathrm{E}-02 \mathrm{EMPC}$	$1.64 \mathrm{E}-01$	5.86E-02	$1.80 \mathrm{E}-01$	$6.44 \mathrm{E}-02$	$2.78 \mathrm{E}-01$	9.94E-02 EMPC	$1.50 \mathrm{E}-01$	5.35E-02	$3.50 \mathrm{E}-01$	$1.25 \mathrm{E}-01$
PCB-164	7.02	6.63	$2.45 \mathrm{E}-01$	5.80E-02	$2.38 \mathrm{E}-01$	$5.63 \mathrm{E}-02$	$2.44 \mathrm{E}-01$	$5.78 \mathrm{E}-02$	$3.29 \mathrm{E}-01$	$7.79 \mathrm{E}-02$	$2.90 \mathrm{E}-01$	6.87E-02	3.45E-01	$8.17 \mathrm{E}-02$
PCB-163/138/129	6.85	6.47	$3.37 \mathrm{E}+00$	$1.15 \mathrm{E}+00^{\text {a }}$	$3.37 \mathrm{E}+00$	$1.15 \mathrm{E}+00^{\text {a }}$	$3.74 \mathrm{E}+00$	$1.28 \mathrm{E}+00^{\text {a }}$	$5.37 \mathrm{E}+00$	$1.84 \mathrm{E}+00^{\text {a }}$	$3.71 \mathrm{E}+00$	$1.27 \mathrm{E}+00^{\text {a }}$	$6.19 \mathrm{E}+00$	$2.12 \mathrm{E}+00^{\text {a }}$
PCB-160	6.93	6.54	$5.80 \mathrm{E}-03$	1.67E-03 U	$8.60 \mathrm{E}-03$	2.48E-03 U	$5.80 \mathrm{E}-03$	1.67E-03 U	$9.85 \mathrm{E}-03$	2.83E-03 U	$8.18 \mathrm{E}-03$	$2.35 \mathrm{E}-03 \mathrm{U}$	$8.70 \mathrm{E}-03$	$2.50 \mathrm{E}-03 \mathrm{U}$
PCB-158	7.02	6.63	$3.33 \mathrm{E}-01$	$7.88 \mathrm{E}-02$	$3.48 \mathrm{E}-01$	$8.24 \mathrm{E}-02$	$3.96 \mathrm{E}-01$	9.37E-02	$6.39 \mathrm{E}-01$	$1.51 \mathrm{E}-01$	$4.09 \mathrm{E}-01$	$9.68 \mathrm{E}-02$	$6.17 \mathrm{E}-01$	$1.46 \mathrm{E}-01$
PCB-128/166	6.47	6.11	$4.92 \mathrm{E}-01$	$3.84 \mathrm{E}-01^{\text {a }}$	$5.47 \mathrm{E}-01$	$4.27 \mathrm{E}-01^{\text {a }}$	$6.13 \mathrm{E}-01$	$4.79 \mathrm{E}-01^{\text {a }}$	$8.59 \mathrm{E}-01$	$6.71 \mathrm{E}-01^{\text {a }}$	$5.93 \mathrm{E}-01$	$4.63 \mathrm{E}-01^{\text {a }}$	$9.65 \mathrm{E}-01$	$7.54 \mathrm{E}-01^{\text {a }}$
PCB-159	7.24	6.83	$9.20 \mathrm{E}-03$	$1.35 \mathrm{E}-03 \mathrm{U}$	$1.23 \mathrm{E}-02$	1.81E-03 U	$7.80 \mathrm{E}-03$	$1.15 \mathrm{E}-03 \mathrm{U}$	$1.63 \mathrm{E}-02$	$2.39 \mathrm{E}-03 \mathrm{U}$	$8.51 \mathrm{E}-03$	$1.25 \mathrm{E}-03 \mathrm{U}$	$1.76 \mathrm{E}-02$	$2.58 \mathrm{E}-03 \mathrm{U}$
PCB-162	7.24	6.83	$9.30 \mathrm{E}-03$	$1.37 \mathrm{E}-03 \mathrm{U}$	$1.24 \mathrm{E}-02$	$1.82 \mathrm{E}-03 \mathrm{U}$	$7.75 \mathrm{E}-03$	$1.14 \mathrm{E}-03 \mathrm{U}$	$1.61 \mathrm{E}-02$	$2.36 \mathrm{E}-03 \mathrm{U}$	$8.59 \mathrm{E}-03$	$1.26 \mathrm{E}-03 \mathrm{U}$	$1.74 \mathrm{E}-02$	$2.55 \mathrm{E}-03 \mathrm{U}$
PCB-167	7.27	6.86	$9.49 \mathrm{E}-02$	$1.31 \mathrm{E}-02$	$8.27 \mathrm{E}-02$	$1.14 \mathrm{E}-02 \mathrm{~J}$	$1.25 \mathrm{E}-01$	$1.72 \mathrm{E}-02 \mathrm{~J}$	$1.96 \mathrm{E}-01$	$2.70 \mathrm{E}-02$	$1.18 \mathrm{E}-01$	$1.62 \mathrm{E}-02$	$1.60 \mathrm{E}-01$	$2.20 \mathrm{E}-02$
PCB-156/157	7.18	6.78	$2.71 \mathrm{E}-01$	$4.53 \mathrm{E}-02{ }^{\text {a }}$	$3.20 \mathrm{E}-01$	5.35E-02 ${ }^{\text {a }}$	$3.44 \mathrm{E}-01$	5.75E-02 ${ }^{\text {a }}$	$4.99 \mathrm{E}-01$	$8.35 \mathrm{E}-02{ }^{\text {a }}$	3.29E-01	$5.51 \mathrm{E}-02^{\text {a }}$	$5.75 \mathrm{E}-01$	$9.62 \mathrm{E}-02^{\text {a }}$
PCB-169	7.42	7.00	$1.19 \mathrm{E}-02$	$1.18 \mathrm{E}-03 \mathrm{U}$	$1.55 \mathrm{E}-02$	$1.53 \mathrm{E}-03 \mathrm{U}$	$1.09 \mathrm{E}-02$	1.08E-03 U	$2.24 \mathrm{E}-02$	$2.22 \mathrm{E}-03 \mathrm{U}$	$1.25 \mathrm{E}-02$	$1.24 \mathrm{E}-03 \mathrm{U}$	$2.31 \mathrm{E}-02$	2.29E-03 U
PCB-188	6.82	6.44	$6.10 \mathrm{E}-03$	$2.23 \mathrm{E}-03 \mathrm{U}$	$5.75 \mathrm{E}-03$	$2.10 \mathrm{E}-03 \mathrm{U}$	$4.60 \mathrm{E}-03$	$1.68 \mathrm{E}-03 \mathrm{U}$	$8.20 \mathrm{E}-03$	$3.00 \mathrm{E}-03 \mathrm{U}$	$5.09 \mathrm{E}-03$	$1.86 \mathrm{E}-03 \mathrm{U}$	$6.70 \mathrm{E}-03$	$2.45 \mathrm{E}-03 \mathrm{U}$
PCB-179	6.73	6.35	$2.38 \mathrm{E}-01$	$1.06 \mathrm{E}-01$	$2.79 \mathrm{E}-01$	$1.24 \mathrm{E}-01$	$2.85 \mathrm{E}-01$	$1.27 \mathrm{E}-01$	$4.15 \mathrm{E}-01$	$1.84 \mathrm{E}-01$	$2.83 \mathrm{E}-01$	$1.26 \mathrm{E}-01$	$4.47 \mathrm{E}-01$	$1.99 \mathrm{E}-01$
PCB-184	6.85	6.47	7.25E-03	$2.48 \mathrm{E}-03 \mathrm{U}$	$6.85 \mathrm{E}-03$	$2.35 \mathrm{E}-03 \mathrm{U}$	$5.25 \mathrm{E}-03$	$1.80 \mathrm{E}-03 \mathrm{U}$	$9.95 \mathrm{E}-03$	$3.41 \mathrm{E}-03 \mathrm{U}$	$6.04 \mathrm{E}-03$	$2.07 \mathrm{E}-03 \mathrm{U}$	$8.10 \mathrm{E}-03$	2.77E-03 U
PCB-176	6.76	6.38	$6.78 \mathrm{E}-02$	$2.82 \mathrm{E}-02 \mathrm{~J}$	$7.05 \mathrm{E}-02$	$2.94 \mathrm{E}-02 \mathrm{~J}$	$7.81 \mathrm{E}-02$	$3.25 \mathrm{E}-02 \mathrm{~J}$	$1.39 \mathrm{E}-01$	$5.79 \mathrm{E}-02$	$6.97 \mathrm{E}-02$	$2.90 \mathrm{E}-02$	$1.25 \mathrm{E}-01$	5.20E-02
PCB-186	6.69	6.31	6.85E-03	$3.32 \mathrm{E}-03 \mathrm{U}$	$6.45 \mathrm{E}-03$	$3.13 \mathrm{E}-03 \mathrm{U}$	$5.20 \mathrm{E}-03$	$2.52 \mathrm{E}-03 \mathrm{U}$	$9.65 \mathrm{E}-03$	$4.68 \mathrm{E}-03 \mathrm{U}$	$5.71 \mathrm{E}-03$	$2.77 \mathrm{E}-03 \mathrm{U}$	$7.90 \mathrm{E}-03$	$3.83 \mathrm{E}-03 \mathrm{U}$
PCB-178	7.14	6.74	$9.59 \mathrm{E}-02$	$1.75 \mathrm{E}-02$	$1.24 \mathrm{E}-01$	$2.26 \mathrm{E}-02$	$1.46 \mathrm{E}-01$	$2.66 \mathrm{E}-02$	$2.27 \mathrm{E}-01$	$4.14 \mathrm{E}-02$	$1.16 \mathrm{E}-01$	$2.12 \mathrm{E}-02$	$1.94 \mathrm{E}-01$	$3.54 \mathrm{E}-02$
PCB-175	7.17	6.77	$1.20 \mathrm{E}-02$	$2.05 \mathrm{E}-03 \mathrm{U}$	$1.33 \mathrm{E}-02$	$2.27 \mathrm{E}-03 \mathrm{U}$	$2.05 \mathrm{E}-02$	$3.50 \mathrm{E}-03 \mathrm{U}$	$2.34 \mathrm{E}-02$	$4.00 \mathrm{E}-03 \mathrm{U}$	$3.60 \mathrm{E}-02$	$6.16 \mathrm{E}-03 \mathrm{~J}$	$1.65 \mathrm{E}-02$	$2.81 \mathrm{E}-03 \mathrm{U}$
PCB-187	7.17	6.77	6.94E-01	$1.19 \mathrm{E}-01$	$7.17 \mathrm{E}-01$	$1.23 \mathrm{E}-01$	$7.49 \mathrm{E}-01$	$1.28 \mathrm{E}-01$	$9.46 \mathrm{E}-01$	$1.62 \mathrm{E}-01$	$8.33 \mathrm{E}-01$	$1.42 \mathrm{E}-01$	$9.87 \mathrm{E}-01$	$1.69 \mathrm{E}-01$
PCB-182	7.2	6.80	1.07E-02	$1.71 \mathrm{E}-03 \mathrm{U}$	$1.19 \mathrm{E}-02$	$1.90 \mathrm{E}-03 \mathrm{U}$	$8.40 \mathrm{E}-03$	$1.35 \mathrm{E}-03 \mathrm{U}$	$2.03 \mathrm{E}-02$	3.24E-03 U	$9.51 \mathrm{E}-03$	$1.52 \mathrm{E}-03 \mathrm{U}$	$1.42 \mathrm{E}-02$	2.27E-03 U
PCB-183	7.2	6.80	$2.79 \mathrm{E}-01$	4.47E-02	$3.28 \mathrm{E}-01$	$5.25 \mathrm{E}-02$	$3.46 \mathrm{E}-01$	5.54E-02	$4.08 \mathrm{E}-01$	6.53E-02	$3.65 \mathrm{E}-01$	5.84E-02	$4.56 \mathrm{E}-01$	7.30E-02
PCB-185	7.11	6.71	5.17E-02	$1.01 \mathrm{E}-02 \mathrm{~J}$	0.0331	$6.44 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	0.0354	$6.89 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$2.36 \mathrm{E}-02$	$4.59 \mathrm{E}-03 \mathrm{U}$	$3.46 \mathrm{E}-02$	$6.73 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$7.94 \mathrm{E}-02$	$1.55 \mathrm{E}-02 \mathrm{~J}$
PCB-174	7.11	6.71	$5.29 \mathrm{E}-01$	1.03E-01	$5.11 \mathrm{E}-01$	$9.95 \mathrm{E}-02$	$5.72 \mathrm{E}-01$	$1.11 \mathrm{E}-01$	$6.78 \mathrm{E}-01$	$1.32 \mathrm{E}-01$	$6.05 \mathrm{E}-01$	$1.18 \mathrm{E}-01$	$8.71 \mathrm{E}-01$	$1.70 \mathrm{E}-01$
PCB-177	7.08	6.68	$2.95 \mathrm{E}-01$	$6.13 \mathrm{E}-02$	$3.02 \mathrm{E}-01$	$6.28 \mathrm{E}-02$	$3.38 \mathrm{E}-01$	7.02E-02	$4.03 \mathrm{E}-01$	$8.37 \mathrm{E}-02$	$3.11 \mathrm{E}-01$	$6.46 \mathrm{E}-02$	$4.45 \mathrm{E}-01$	9.25E-02
PCB-181	7.11	6.71	1.16E-02	$2.26 \mathrm{E}-03 \mathrm{U}$	$1.29 \mathrm{E}-02$	$2.51 \mathrm{E}-03 \mathrm{U}$	$9.15 \mathrm{E}-03$	$1.78 \mathrm{E}-03 \mathrm{U}$	$2.25 \mathrm{E}-02$	$4.38 \mathrm{E}-03 \mathrm{U}$	$1.03 \mathrm{E}-02$	$2.01 \mathrm{E}-03 \mathrm{U}$	$1.58 \mathrm{E}-02$	$3.08 \mathrm{E}-03 \mathrm{U}$
PCB-171/173	7.065	6.67	$1.63 \mathrm{E}-01$	$3.50 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.38 \mathrm{E}-01$	$2.96 \mathrm{E}-02 \mathrm{JEMPC}{ }^{\text {a }}$	$1.49 \mathrm{E}-01$	$3.20 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$ a	$1.85 \mathrm{E}-01$	$3.97 \mathrm{E}-02^{\text {a }}$	$1.46 \mathrm{E}-01$	$3.13 \mathrm{E}-02^{\text {a }}$	$2.33 \mathrm{E}-01$	$5.00 \mathrm{E}-02^{\text {a }}$
PCB-172	7.33	6.92	6.05E-02	$7.31 \mathrm{E}-03 \mathrm{~J}$	$6.89 \mathrm{E}-02$	$8.32 \mathrm{E}-03 \mathrm{~J}$	$9.79 \mathrm{E}-02$	$1.18 \mathrm{E}-02 \mathrm{~J}$	8.88E-02	1.07E-02 EMPC	$7.74 \mathrm{E}-02$	9.35E-03	$7.84 \mathrm{E}-02$	$9.47 \mathrm{E}-03 \mathrm{~J}$
PCB-192	7.52	7.10	$9.70 \mathrm{E}-03$	$7.75 \mathrm{E}-04 \mathrm{U}$	$1.08 \mathrm{E}-02$	$8.59 \mathrm{E}-04 \mathrm{U}$	$7.85 \mathrm{E}-03$	6.27E-04 U	$1.97 \mathrm{E}-02$	$1.57 \mathrm{E}-03 \mathrm{U}$	$8.62 \mathrm{E}-03$	$6.89 \mathrm{E}-04 \mathrm{U}$	$1.39 \mathrm{E}-02$	$1.11 \mathrm{E}-03 \mathrm{U}$

Chemicals	$\log \mathrm{K}_{\text {ow }} \log \mathrm{K}_{\mathrm{F}}$		SD004-1		SD004-2			SD004-3			SD0054			SD0054-AC			SD0053-1		
			$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F},} \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w},} \mathrm{pg} / \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F},} \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w},} \mathrm{pg} / \mathrm{L}$	Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{l}$	Qualifier
PCB-180/193	7.44	7.02	8.36E-01	$7.95 \mathrm{E}-02^{\text {a }}$	$8.48 \mathrm{E}-01$	8.06E-02		$9.08 \mathrm{E}-01$	8.64E-02		$1.12 \mathrm{E}+00$	1.07E-01		$9.51 \mathrm{E}-01$	9.04E-02		$1.42 \mathrm{E}+00$	1.35E-01	
PCB-191	7.55	7.13	$9.35 \mathrm{E}-03$	$7.00 \mathrm{E}-04 \mathrm{U}$	$1.04 \mathrm{E}-02$	7.79E-04		$7.65 \mathrm{E}-03$	5.73E-04		$1.87 \mathrm{E}-02$	1.40E-03		$8.33 \mathrm{E}-03$	6.24E-04		$1.31 \mathrm{E}-02$	9.81E-04	
PCB-170	7.27	6.86	$3.36 \mathrm{E}-01$	4.62E-02	$3.63 \mathrm{E}-01$	$4.99 \mathrm{E}-02$		$3.79 \mathrm{E}-01$	$5.21 \mathrm{E}-02$		$4.25 \mathrm{E}-01$	$5.85 \mathrm{E}-02$	EMPC	$3.73 \mathrm{E}-01$	5.13E-02		$5.56 \mathrm{E}-01$	7.65E-02	
PCB-190	7.46	7.04	6.82E-02	$6.21 \mathrm{E}-03 \mathrm{~J}$	$5.90 \mathrm{E}-02$	5.37E-03		$8.33 \mathrm{E}-02$	7.59E-03		$5.28 \mathrm{E}-02$	4.81E-03		$6.99 \mathrm{E}-02$	6.36E-03		$1.19 \mathrm{E}-01$	1.08E-02	
PCB-189	7.71	7.28	1.15E-02	6.09E-04 U	9.30E-03	4.92E-04		$7.35 \mathrm{E}-03$	3.89E-04		$1.32 \mathrm{E}-02$	6.96E-04		$8.40 \mathrm{E}-03$	$4.45 \mathrm{E}-04$		1.50E-02	7.91E-04	
PCB-202	7.24	6.83	5.21E-02	$7.65 \mathrm{E}-03 \mathrm{~J}$	$3.99 \mathrm{E}-02$	5.86E-03		$4.57 \mathrm{E}-02$	6.71E-03		$6.16 \mathrm{E}-02$	9.04E-03	J EMPC	$5.05 \mathrm{E}-02$	7.41E-03	J EMPC	$8.52 \mathrm{E}-02$	1.25E-02	
PCB-201	7.62	7.19	3.23E-02	$2.08 \mathrm{E}-03 \mathrm{~J}$	$1.05 \mathrm{E}-02$	6.76E-04		$9.90 \mathrm{E}-03$	6.37E-04		$1.69 \mathrm{E}-02$	1.09E-03		$2.86 \mathrm{E}-02$	1.84E-03	J EMPC	$6.31 \mathrm{E}-02$	4.06E-03	
PCB-204	7.3	6.89	$1.15 \mathrm{E}-02$	$1.48 \mathrm{E}-03 \mathrm{U}$	$1.12 \mathrm{E}-02$	1.44E-03		$7.30 \mathrm{E}-03$	$9.41 \mathrm{E}-04$		$1.81 \mathrm{E}-02$	$2.33 \mathrm{E}-03$		$7.26 \mathrm{E}-03$	9.36E-04		$1.01 \mathrm{E}-02$	1.30E-03	
PCB-197	7.3	6.89	1.01E-02	$1.30 \mathrm{E}-03 \mathrm{U}$	$9.80 \mathrm{E}-03$	$1.26 \mathrm{E}-03$		$6.90 \mathrm{E}-03$	8.89E-04		$1.57 \mathrm{E}-02$	$2.02 \mathrm{E}-03$		$6.38 \mathrm{E}-03$	$8.22 \mathrm{E}-04$		$8.75 \mathrm{E}-03$	$1.13 \mathrm{E}-03$	
PCB-200	7.27	6.86	1.20E-02	$1.65 \mathrm{E}-03 \mathrm{U}$	$1.17 \mathrm{E}-02$	$1.60 \mathrm{E}-03$		$7.35 \mathrm{E}-03$	1.01E-03		$1.90 \mathrm{E}-02$	$2.61 \mathrm{E}-03$		$7.55 \mathrm{E}-03$	1.04E-03		$1.06 \mathrm{E}-02$	$1.46 \mathrm{E}-03$	
PCB-198/199	7.41	6.99	1.91E-01	$1.94 \mathrm{E}-02^{\text {a }}$	$1.72 \mathrm{E}-01$	$1.75 \mathrm{E}-02$		$2.29 \mathrm{E}-01$	$2.32 \mathrm{E}-02$		$2.70 \mathrm{E}-01$	$2.74 \mathrm{E}-02$		$2.00 \mathrm{E}-01$	$2.03 \mathrm{E}-02$	EMPC ${ }^{\text {a }}$	$3.96 \mathrm{E}-01$	4.02E-02	
PCB-196	7.65	7.22	9.23E-02	5.56E-03	$6.31 \mathrm{E}-02$	3.80E-03	J EMPC	$6.33 \mathrm{E}-02$	3.82E-03	J EMPC	$1.02 \mathrm{E}-01$	6.15E-03		$9.14 \mathrm{E}-02$	5.51E-03		$1.82 \mathrm{E}-01$	$1.10 \mathrm{E}-02$	
PCB-203	7.65	7.22	9.97E-02	6.01E-03	$9.95 \mathrm{E}-02$	6.00E-03		$1.13 \mathrm{E}-01$	6.81E-03		$1.21 \mathrm{E}-01$	$7.29 \mathrm{E}-03$	EMPC	$1.06 \mathrm{E}-01$	6.40E-03		$2.11 \mathrm{E}-01$	$1.27 \mathrm{E}-02$	
PCB-195	7.56	7.13	$1.63 \mathrm{E}-02$	1.19E-03 U	$2.02 \mathrm{E}-02$	1.48E-03		$2.67 \mathrm{E}-02$	1.95E-03		$6.95 \mathrm{E}-02$	5.09E-03		$1.89 \mathrm{E}-02$	$1.39 \mathrm{E}-03$		$1.19 \mathrm{E}-01$	$8.72 \mathrm{E}-03$	
PCB-194	7.8	7.36	1.02E-01	4.44E-03 EMPC	$9.34 \mathrm{E}-02$	4.06E-03		$1.12 \mathrm{E}-01$	$4.87 \mathrm{E}-03$		$1.40 \mathrm{E}-01$	6.09E-03		$1.33 \mathrm{E}-01$	5.77E-03		$2.58 \mathrm{E}-01$	$1.12 \mathrm{E}-02$	
PCB-205	8	7.55	$1.15 \mathrm{E}-02$	$3.23 \mathrm{E}-04 \mathrm{U}$	$1.42 \mathrm{E}-02$	4.00E-04		$1.01 \mathrm{E}-02$	2.83E-04		$1.68 \mathrm{E}-02$	$4.72 \mathrm{E}-04$		$1.33 \mathrm{E}-02$	3.75E-04		$1.71 \mathrm{E}-02$	4.82E-04	
PCB-208	7.71	7.28	$1.25 \mathrm{E}-02$	$6.61 \mathrm{E}-04 \mathrm{U}$	$1.47 \mathrm{E}-02$	7.75E-04		$1.10 \mathrm{E}-02$	5.82E-04		$1.73 \mathrm{E}-02$	9.13E-04		$9.62 \mathrm{E}-03$	5.09E-04		$1.56 \mathrm{E}-02$	8.23E-04	
PCB-207	7.74	7.30	$1.22 \mathrm{E}-02$	$6.02 \mathrm{E}-04 \mathrm{U}$	$1.43 \mathrm{E}-02$	7.06E-04		$1.07 \mathrm{E}-02$	5.30E-04		$1.68 \mathrm{E}-02$	8.33E-04		$9.36 \mathrm{E}-03$	4.64E-04		$1.52 \mathrm{E}-02$	7.51E-04	
PCB-206	8.09	7.63	7.31E-02	1.69E-03 J EMPC	$2.01 \mathrm{E}-02$	4.66E-04		$1.54 \mathrm{E}-02$	3.56E-04		$2.35 \mathrm{E}-02$	5.45E-04		$3.76 \mathrm{E}-02$	8.72E-04		1.10E-01	$2.55 \mathrm{E}-03$	
PCB-209	8.18	7.72	1.33E-02	$2.54 \mathrm{E}-04 \mathrm{U}$	$1.52 \mathrm{E}-02$	2.89E-04		$1.11 \mathrm{E}-02$	2.12E-04		$1.74 \mathrm{E}-02$	3.32E-04		1.03E-02	1.97E-04		4.79E-02	9.13E-04	J EMPC

Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	SD0053-2		SD0053-3		SD0053-AC		
			$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{L}$	Qualifier
PCB-1	4.46	4.21	6.65E-03	$4.08 \mathrm{E}-01 \mathrm{U}$	$8.80 \mathrm{E}-03$	$5.41 \mathrm{E}-01 \mathrm{U}$	$8.35 \mathrm{E}-03$	5.13E-01	
PCB-2	4.69	4.43	7.80E-03	$2.91 \mathrm{E}-01 \mathrm{U}$	$1.05 \mathrm{E}-02$	3.91E-01 U	$1.07 \mathrm{E}-02$	3.99E-01	
PCB-3	4.69	4.43	$7.45 \mathrm{E}-03$	2.78E-01 U	$1.00 \mathrm{E}-02$	$3.73 \mathrm{E}-01 \mathrm{U}$	$9.95 \mathrm{E}-03$	3.71E-01	
PCB-4	4.65	4.39	3.35E-01	$1.36 \mathrm{E}+01$	$3.35 \mathrm{E}-01$	$1.36 \mathrm{E}+01$	$3.76 \mathrm{E}-02$	$1.53 \mathrm{E}+00$	
PCB-10	4.84	4.57	$1.23 \mathrm{E}-02$	3.30E-01 U	$1.58 \mathrm{E}-02$	4.24E-01 U	$2.14 \mathrm{E}-02$	5.76E-01	
PCB-9	5.06	4.78	3.49E-02	$5.83 \mathrm{E}-01 \mathrm{~J}$	$3.74 \mathrm{E}-02$	$6.24 \mathrm{E}-01 \mathrm{~J}$	$5.41 \mathrm{E}-02$	$9.03 \mathrm{E}-01$	
PCB-7	5.07	4.79	$2.26 \mathrm{E}-02$	3.69E-01 J	$2.25 \mathrm{E}-02$	$3.68 \mathrm{E}-01 \mathrm{~J}$	$4.72 \mathrm{E}-02$	7.71E-01	
PCB-6	5.06	4.78	1.60E-01	$2.67 \mathrm{E}+00$	$1.56 \mathrm{E}-01$	$2.60 \mathrm{E}+00$	$2.69 \mathrm{E}-02$	4.49E-01	
PCB-5	4.97	4.69	1.50E-02	$3.04 \mathrm{E}-01 \mathrm{U}$	$1.81 \mathrm{E}-02$	$3.67 \mathrm{E}-01 \mathrm{U}$	$2.57 \mathrm{E}-02$	5.22E-01	
PCB-8	5.07	4.79	8.75E-01	$1.43 \mathrm{E}+01$	$8.70 \mathrm{E}-01$	$1.42 \mathrm{E}+01$	$1.25 \mathrm{E}-01$	$2.04 \mathrm{E}+00$	
PCB-14	5.28	4.98	1.24E-02	$1.28 \mathrm{E}-01 \mathrm{U}$	$1.50 \mathrm{E}-02$	$1.55 \mathrm{E}-01 \mathrm{U}$	$2.11 \mathrm{E}-02$	2.18E-01	
PCB-11	5.28	4.98	9.68E-02	$1.00 \mathrm{E}+00$	$1.31 \mathrm{E}-01$	$1.36 \mathrm{E}+00$	$6.35 \mathrm{E}-02$	$6.57 \mathrm{E}-01$	
PCB-13/12	5.26	4.97	$1.47 \mathrm{E}-02$	$1.58 \mathrm{E}-01 \mathrm{U}$	$1.77 \mathrm{E}-02$	$1.91 \mathrm{E}-01 \mathrm{U}$	$2.49 \mathrm{E}-02$	$2.69 \mathrm{E}-01$	
PCB-15	5.3	5.00	1.64E-01	$1.63 \mathrm{E}+00$	$1.59 \mathrm{E}-01$	$1.58 \mathrm{E}+00$	$3.97 \mathrm{E}-02$	3.94E-01	
PCB-19	5.02	4.74	4.39E-01	$7.99 \mathrm{E}+00$	$4.16 \mathrm{E}-01$	$7.57 \mathrm{E}+00$	$1.10 \mathrm{E}-01$	$2.00 \mathrm{E}+00$	
PCB-30/18	5.34	5.04	5.39E+00	$4.90 \mathrm{E}+01^{\text {a }}$	$5.06 \mathrm{E}+00$	$4.60 \mathrm{E}+01^{\text {a }}$	$1.75 \mathrm{E}+00$	$1.59 \mathrm{E}+01^{\text {a }}$	
PCB-17	5.25	4.96	$2.01 \mathrm{E}+00$	$2.22 \mathrm{E}+01$	$1.94 \mathrm{E}+00$	$2.14 \mathrm{E}+01$	$7.13 \mathrm{E}-01$	$7.88 \mathrm{E}+00$	
PCB-27	5.44	5.14	$2.93 \mathrm{E}-01$	$2.14 \mathrm{E}+00$	$2.82 \mathrm{E}-01$	$2.06 \mathrm{E}+00$	$1.15 \mathrm{E}-01$	8.41E-01	
PCB-24	5.35	5.05	3.62E-02	$3.22 \mathrm{E}-01 \mathrm{~J}$	$6.60 \mathrm{E}-03$	5.87E-02 U	$1.13 \mathrm{E}-02$	1.00E-01	
PCB-16	5.16	4.87	2.04E+00	$2.74 \mathrm{E}+01$	$2.03 \mathrm{E}+00$	$2.73 \mathrm{E}+01$	$6.52 \mathrm{E}-01$	8.76E+00	
PCB-32	5.44	5.14	$1.58 \mathrm{E}+00$	$1.16 \mathrm{E}+01$	$1.50 \mathrm{E}+00$	$1.10 \mathrm{E}+01$	$5.49 \mathrm{E}-01$	4.02E+00	
PCB-34	5.66	5.34	8.40E-03	$3.81 \mathrm{E}-02 \mathrm{U}$	$1.06 \mathrm{E}-02$	4.79E-02 U	$1.29 \mathrm{E}-02$	5.83E-02	
PCB-23	5.57	5.26	8.30E-03	$4.58 \mathrm{E}-02 \mathrm{U}$	$1.05 \mathrm{E}-02$	5.76E-02 U	$1.26 \mathrm{E}-02$	6.95E-02	
PCB-26/29	5.63	5.31	7.23E-01	$3.50 \mathrm{E}+00^{\text {a }}$	$7.08 \mathrm{E}-01$	$3.43 \mathrm{E}+00^{\text {a }}$	$2.78 \mathrm{E}-01$	$1.35 \mathrm{E}+00^{\text {a }}$	
PCB-25	5.67	5.35	$2.85 \mathrm{E}-01$	$1.27 \mathrm{E}+00$	$2.80 \mathrm{E}-01$	$1.24 \mathrm{E}+00$	$9.20 \mathrm{E}-02$	$4.08 \mathrm{E}-01$	
PCB-31	5.67	5.35	5.19E+00	$2.30 \mathrm{E}+01$	$4.86 \mathrm{E}+00$	$2.16 \mathrm{E}+01$	$1.94 \mathrm{E}+00$	8.61E+00	
PCB-28/20	5.62	5.31	$4.77 \mathrm{E}+00$	$2.36 \mathrm{E}+01^{\text {a }}$	$4.48 \mathrm{E}+00$	$2.22 \mathrm{E}+01^{\text {a }}$	$1.79 \mathrm{E}+00$	$8.86 \mathrm{E}+00{ }^{\text {a }}$	
PCB-21/33	5.55	5.24	$2.74 \mathrm{E}+00$	$1.58 \mathrm{E}+01^{\text {a }}$	$2.55 \mathrm{E}+00$	$1.47 \mathrm{E}+01^{\text {a }}$	$1.02 \mathrm{E}+00$	$5.88 \mathrm{E}+00^{\text {a }}$	
PCB-22	5.58	5.27	$1.77 \mathrm{E}+00$	$9.55 \mathrm{E}+00$	$1.68 \mathrm{E}+00$	9.07E+00	$6.41 \mathrm{E}-01$	$3.46 \mathrm{E}+00$	
PCB-36	5.88	5.55	$7.95 \mathrm{E}-03$	$2.24 \mathrm{E}-02 \mathrm{U}$	$1.00 \mathrm{E}-02$	$2.81 \mathrm{E}-02 \mathrm{U}$	$1.24 \mathrm{E}-02$	3.49E-02	
PCB-39	5.89	5.56	7.70E-03	$2.12 \mathrm{E}-02 \mathrm{U}$	$3.97 \mathrm{E}-02$	$1.09 \mathrm{E}-01 \mathrm{~J}$	$2.42 \mathrm{E}-02$	6.66E-02	
PCB-38	5.76	5.44	8.60E-03	$3.14 \mathrm{E}-02 \mathrm{U}$	$1.08 \mathrm{E}-02$	3.94E-02 U	$1.32 \mathrm{E}-02$	4.80E-02	
PCB-35	5.82	5.49	$9.25 \mathrm{E}-03$	$2.96 \mathrm{E}-02 \mathrm{U}$	$1.17 \mathrm{E}-02$	$3.73 \mathrm{E}-02 \mathrm{U}$	$1.41 \mathrm{E}-02$	$4.52 \mathrm{E}-02$	
PCB-37	5.83	5.50	6.78E-01	$2.13 \mathrm{E}+00$	$6.52 \mathrm{E}-01$	$2.04 \mathrm{E}+00$	$2.74 \mathrm{E}-01$	8.59E-01	
PCB-54	5.21	4.92	1.49E-02	1.80E-01 J EMPC	$1.38 \mathrm{E}-02$	$1.66 \mathrm{E}-01 \mathrm{~J}$	$1.51 \mathrm{E}-02$	$1.82 \mathrm{E}-01$	
PCB-50/53	5.625	5.31	$1.32 \mathrm{E}+00$	$6.46 \mathrm{E}+00^{\text {a }}$	$1.16 \mathrm{E}+00$	$5.68 \mathrm{E}+00^{\text {a }}$	$6.47 \mathrm{E}-01$	$3.17 \mathrm{E}+00{ }^{\text {a }}$	
PCB-45	5.53	5.22	$1.46 \mathrm{E}+00$	$8.78 \mathrm{E}+00$	$1.25 \mathrm{E}+00$	$7.52 \mathrm{E}+00$	$7.10 \mathrm{E}-01$	$4.27 \mathrm{E}+00$	
PCB-51	5.63	5.31	$2.96 \mathrm{E}-01$	$1.43 \mathrm{E}+00$	$2.58 \mathrm{E}-01$	$1.25 \mathrm{E}+00$	$1.51 \mathrm{E}-01$	7.31E-01	
PCB-46	5.53	5.22	5.74E-01	$3.45 \mathrm{E}+00$	$4.45 \mathrm{E}-01$	$2.68 \mathrm{E}+00$	$2.69 \mathrm{E}-01$	$1.62 \mathrm{E}+00$	
PCB-52	5.84	5.51	1.46E+01	$4.48 \mathrm{E}+01$	$1.25 \mathrm{E}+01$	$3.84 \mathrm{E}+01$	$8.19 \mathrm{E}+00$	$2.51 \mathrm{E}+01$	
PCB-73	6.04	5.70	6.35E-03	$1.26 \mathrm{E}-02 \mathrm{U}$	$7.75 \mathrm{E}-03$	$1.54 \mathrm{E}-02 \mathrm{U}$	$8.45 \mathrm{E}-03$	$1.68 \mathrm{E}-02$	
PCB-43	5.75	5.43	2.84E-01	$1.06 \mathrm{E}+00$	$2.30 \mathrm{E}-01$	$8.58 \mathrm{E}-01$	$1.55 \mathrm{E}-01$	5.78E-01	
PCB-69/49	5.95	5.62	4.67E+00	$1.13 \mathrm{E}+01^{\text {a }}$	$4.04 \mathrm{E}+00$	$9.76 \mathrm{E}+00^{\text {a }}$	$2.67 \mathrm{E}+00$	$6.45 \mathrm{E}+00^{\text {a }}$	
PCB-48	5.78	5.46	$1.47 \mathrm{E}+00$	$5.14 \mathrm{E}+00$	$1.31 \mathrm{E}+00$	$4.58 \mathrm{E}+00$	$8.47 \mathrm{E}-01$	$2.96 \mathrm{E}+00$	
PCB-44/47/65	5.82	5.49	$8.40 \mathrm{E}+00$	$2.69 \mathrm{E}+01^{\text {a }}$	$7.30 \mathrm{E}+00$	$2.34 \mathrm{E}+01^{\text {a }}$	$4.76 \mathrm{E}+00$	$1.53 \mathrm{E}+01^{\text {a }}$	
PCB-59/62/75	5.96	5.63	5.02E-01	$1.19 \mathrm{E}+00^{\text {a }}$	$4.24 \mathrm{E}-01$	$1.00 \mathrm{E}+00^{\text {a }}$	$2.72 \mathrm{E}-01$	$6.43 \mathrm{E}-01{ }^{\text {a }}$	
PCB-42	5.76	5.44	$1.71 \mathrm{E}+00$	$6.24 \mathrm{E}+00$	$1.48 \mathrm{E}+00$	$5.40 \mathrm{E}+00$	$9.99 \mathrm{E}-01$	$3.65 \mathrm{E}+00$	
PCB-41	5.69	5.37	7.10E-01	$3.02 \mathrm{E}+00$	$6.15 \mathrm{E}-01$	$2.61 \mathrm{E}+00$	$3.87 \mathrm{E}-01$	$1.64 \mathrm{E}+00$	
PCB-71/40	5.82	5.49	$3.14 \mathrm{E}+00$	$1.01 \mathrm{E}+01^{\text {a }}$	$2.71 \mathrm{E}+00$	$8.69 \mathrm{E}+00^{\text {a }}$	$1.73 \mathrm{E}+00$	$5.54 \mathrm{E}+00^{\text {a }}$	
PCB-64	5.95	5.62	$3.06 \mathrm{E}+00$	$7.40 \mathrm{E}+00$	$2.64 \mathrm{E}+00$	$6.38 \mathrm{E}+00$	$1.75 \mathrm{E}+00$	$4.23 \mathrm{E}+00$	
PCB-72	6.26	5.91	$9.65 \mathrm{E}-03$	$1.19 \mathrm{E}-02 \mathrm{U}$	$1.33 \mathrm{E}-02$	$1.63 \mathrm{E}-02 \mathrm{U}$	$1.24 \mathrm{E}-02$	$1.52 \mathrm{E}-02$	

Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	SD0053-2		SD0053-3		SD0053-AC	
			$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\bar{C}_{\text {F }, ~ \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\bar{C}_{\text {F }, ~ \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ Qualifier
PCB-68	6.26	5.91	$8.00 \mathrm{E}-03$	$9.86 \mathrm{E}-03 \mathrm{U}$	$1.10 \mathrm{E}-02$	$1.36 \mathrm{E}-02 \mathrm{U}$	$9.80 \mathrm{E}-03$	$1.21 \mathrm{E}-02 \mathrm{U}$
PCB-57	6.17	5.82	8.65E-03	$1.30 \mathrm{E}-02 \mathrm{U}$	$1.20 \mathrm{E}-02$	$1.79 \mathrm{E}-02 \mathrm{U}$	$1.08 \mathrm{E}-02$	1.62E-02 U
PCB-58	6.17	5.82	8.65E-03	$1.30 \mathrm{E}-02 \mathrm{U}$	$1.20 \mathrm{E}-02$	1.79E-02 U	1.07E-02	1.60E-02 U
PCB-67	6.2	5.85	1.18E-01	$1.66 \mathrm{E}-01$	$9.00 \mathrm{E}-02$	1.26E-01 EMPC	$5.71 \mathrm{E}-02$	8.02E-02 EMPC
PCB-63	6.17	5.82	$1.65 \mathrm{E}-01$	$2.47 \mathrm{E}-01$	$1.35 \mathrm{E}-01$	$2.02 \mathrm{E}-01$	$9.15 \mathrm{E}-02$	1.37E-01
PCB-61/70/74/76	6.14	5.80	$1.06 \mathrm{E}+01$	$1.70 \mathrm{E}+01^{\text {a }}$	$9.18 \mathrm{E}+00$	$1.47 \mathrm{E}+01^{\text {a }}$	$6.44 \mathrm{E}+00$	$1.03 \mathrm{E}+01^{\text {a }}$
PCB-66	6.2	5.85	4.22E+00	5.93E+00	3.64E+00	5.11E+00	$2.61 \mathrm{E}+00$	$3.67 \mathrm{E}+00$
PCB-55	6.11	5.77	$7.58 \mathrm{E}-02$	$1.29 \mathrm{E}-01 \mathrm{~J}$	$7.47 \mathrm{E}-02$	$1.28 \mathrm{E}-01 \mathrm{~J}$	$2.27 \mathrm{E}-02$	3.88E-02 U
PCB-56	6.11	5.77	$2.06 \mathrm{E}+00$	$3.52 \mathrm{E}+00$	$1.89 \mathrm{E}+00$	$3.23 \mathrm{E}+00$	$1.26 \mathrm{E}+00$	$2.15 \mathrm{E}+00$
PCB-60	6.11	5.77	$1.12 \mathrm{E}+00$	$1.91 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	$1.71 \mathrm{E}+00$	$6.84 \mathrm{E}-01$	1.17E+00
PCB-80	6.48	6.12	8.00E-03	$6.12 \mathrm{E}-03 \mathrm{U}$	$1.11 \mathrm{E}-02$	8.45E-03 U	$9.75 \mathrm{E}-03$	7.46E-03 U
PCB-79	6.42	6.06	6.22E-02	$5.42 \mathrm{E}-02 \mathrm{~J}$	$4.64 \mathrm{E}-02$	4.04E-02 J EMPC	$5.30 \mathrm{E}-02$	4.62E-02 J EMPC
PCB-78	6.35	5.99	$9.95 \mathrm{E}-03$	1.01E-02 U	$1.37 \mathrm{E}-02$	$1.39 \mathrm{E}-02 \mathrm{U}$	$1.21 \mathrm{E}-02$	$1.23 \mathrm{E}-02 \mathrm{U}$
PCB-81	6.36	6.00	$9.65 \mathrm{E}-03$	$9.58 \mathrm{E}-03 \mathrm{U}$	$1.33 \mathrm{E}-02$	$1.32 \mathrm{E}-02 \mathrm{U}$	$1.19 \mathrm{E}-02$	$1.18 \mathrm{E}-02 \mathrm{U}$
PCB-77	6.36	6.00	1.84E-01	$1.83 \mathrm{E}-01$	$1.87 \mathrm{E}-01$	$1.86 \mathrm{E}-01$	$9.45 \mathrm{E}-02$	$9.38 \mathrm{E}-02$
PCB-104	5.81	5.48	4.34E-03	1.42E-02 U	$5.25 \mathrm{E}-03$	$1.72 \mathrm{E}-02 \mathrm{U}$	$6.45 \mathrm{E}-03$	$2.11 \mathrm{E}-02 \mathrm{U}$
PCB-96	5.71	5.39	9.79E-02	$3.98 \mathrm{E}-01$	$9.10 \mathrm{E}-02$	$3.70 \mathrm{E}-01$	$6.22 \mathrm{E}-02$	$2.53 \mathrm{E}-01$
PCB-103	6.22	5.87	4.06E-02	$5.46 \mathrm{E}-02 \mathrm{~J}$	$1.35 \mathrm{E}-02$	1.82E-02 U	$2.31 \mathrm{E}-02$	$3.11 \mathrm{E}-02 \mathrm{U}$
PCB-94	6.13	5.79	$4.30 \mathrm{E}-02$	7.03E-02 J EMPC	$1.49 \mathrm{E}-02$	$2.43 \mathrm{E}-02 \mathrm{U}$	$2.44 \mathrm{E}-02$	$3.99 \mathrm{E}-02 \mathrm{U}$
PCB-95	6.13	5.79	9.63E+00	$1.57 \mathrm{E}+01$	$7.91 \mathrm{E}+00$	$1.29 \mathrm{E}+01$	$6.48 \mathrm{E}+00$	1.06E+01
PCB-100/93	6.14	5.80	6.03E-02	$9.65 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$1.39 \mathrm{E}-02$	$2.22 \mathrm{E}-02 \mathrm{U}$	$2.25 \mathrm{E}-02$	3.59E-02 U
PCB-102	6.16	5.81	$2.95 \mathrm{E}-01$	$4.52 \mathrm{E}-01$	$2.37 \mathrm{E}-01$	$3.63 \mathrm{E}-01$	$1.95 \mathrm{E}-01$	$2.99 \mathrm{E}-01$
PCB-98	6.13	5.79	1.05E-02	$1.71 \mathrm{E}-02 \mathrm{U}$	$1.41 \mathrm{E}-02$	$2.31 \mathrm{E}-02 \mathrm{U}$	$2.34 \mathrm{E}-02$	3.82E-02 U
PCB-88	6.07	5.73	$1.25 \mathrm{E}-02$	$2.33 \mathrm{E}-02 \mathrm{U}$	$1.69 \mathrm{E}-02$	3.14E-02 U	$2.75 \mathrm{E}-02$	5.11E-02 U
PCB-91	6.13	5.79	$1.23 \mathrm{E}+00$	$2.01 \mathrm{E}+00$	$1.03 \mathrm{E}+00$	$1.68 \mathrm{E}+00$	$8.19 \mathrm{E}-01$	$1.34 \mathrm{E}+00$
PCB-84	6.04	5.70	$3.41 \mathrm{E}+00$	$6.78 \mathrm{E}+00$	$3.10 \mathrm{E}+00$	$6.16 \mathrm{E}+00$	$2.39 \mathrm{E}+00$	$4.75 \mathrm{E}+00$
PCB-89	6.07	5.73	1.17E-01	$2.18 \mathrm{E}-01$	$1.08 \mathrm{E}-01$	$2.01 \mathrm{E}-01$	$6.60 \mathrm{E}-02$	$1.23 \mathrm{E}-01$
PCB-121	6.64	6.27	7.35E-03	3.97E-03 U	$9.90 \mathrm{E}-03$	$5.35 \mathrm{E}-03 \mathrm{U}$	$1.66 \mathrm{E}-02$	8.97E-03 U
PCB-92	6.35	5.99	$1.56 \mathrm{E}+00$	$1.58 \mathrm{E}+00$	$1.36 \mathrm{E}+00$	$1.38 \mathrm{E}+00$	$1.12 \mathrm{E}+00$	$1.14 \mathrm{E}+00$
PCB-113/90/101	6.43	6.07	$9.75 \mathrm{E}+00$	$8.31 \mathrm{E}+00^{\text {a }}$	$8.53 \mathrm{E}+00$	$7.27 \mathrm{E}+00^{\text {a }}$	$6.78 \mathrm{E}+00$	$5.78 \mathrm{E}+00^{\text {a }}$
PCB-83	6.26	5.91	4.85E-01	5.98E-01	$4.52 \mathrm{E}-01$	5.57E-01	3.05E-01	$3.76 \mathrm{E}-01$
PCB-99	6.39	6.03	$3.97 \mathrm{E}+00$	$3.69 \mathrm{E}+00$	$3.40 \mathrm{E}+00$	$3.16 \mathrm{E}+00$	$2.96 \mathrm{E}+00$	$2.75 \mathrm{E}+00$
PCB-112	6.45	6.09	7.75E-03	6.32E-03 U	$1.05 \mathrm{E}-02$	8.53E-03 U	$1.74 \mathrm{E}-02$	1.42E-02 U
PCB-108/119/86/97/125/87	6.44	6.08	6.75E+00	$5.63 \mathrm{E}+00^{\text {a }}$	$5.84 \mathrm{E}+00$	$4.87 \mathrm{E}+00{ }^{\text {a }}$	$4.75 \mathrm{E}+00$	$3.96 \mathrm{E}+00{ }^{\text {a }}$
PCB-117	6.46	6.10	1.97E-01	1.57E-01	$2.04 \mathrm{E}-01$	$1.63 \mathrm{E}-01$	$2.36 \mathrm{E}-01$	$1.88 \mathrm{E}-01$
PCB-116/85	6.32	5.97	$1.64 \mathrm{E}+00$	$1.77 \mathrm{E}+00^{\text {a }}$	$1.42 \mathrm{E}+00$	$1.54 \mathrm{E}+00{ }^{\text {a }}$	$9.77 \mathrm{E}-01$	$1.06 \mathrm{E}+00^{\text {a }}$
PCB-110	6.48	6.12	$1.22 \mathrm{E}+01$	$9.33 \mathrm{E}+00$	$1.06 \mathrm{E}+01$	8.11E+00	$8.55 \mathrm{E}+00$	6.54E+00
PCB-115	6.49	6.13	$7.40 \mathrm{E}-03$	5.54E-03 U	$1.00 \mathrm{E}-02$	$7.48 \mathrm{E}-03 \mathrm{U}$	$1.63 \mathrm{E}-02$	$1.22 \mathrm{E}-02 \mathrm{U}$
PCB-82	6.2	5.85	$1.30 \mathrm{E}+00$	$1.83 \mathrm{E}+00$	$1.15 \mathrm{E}+00$	$1.62 \mathrm{E}+00$	$9.00 \mathrm{E}-01$	$1.26 \mathrm{E}+00$
PCB-111	6.76	6.38	7.40E-03	$3.08 \mathrm{E}-03 \mathrm{U}$	$1.00 \mathrm{E}-02$	4.16E-03 U	$1.63 \mathrm{E}-02$	6.77E-03 U
PCB-120	6.79	6.41	$7.40 \mathrm{E}-03$	$2.89 \mathrm{E}-03 \mathrm{U}$	$1.00 \mathrm{E}-02$	$3.90 \mathrm{E}-03 \mathrm{U}$	$1.66 \mathrm{E}-02$	$6.47 \mathrm{E}-03 \mathrm{U}$
PCB-107/124	6.72	6.34	$2.67 \mathrm{E}-01$	$1.21 \mathrm{E}-01^{\text {a }}$	$2.28 \mathrm{E}-01$	$1.04 \mathrm{E}-01^{\text {a }}$	$1.77 \mathrm{E}-01$	$8.04 \mathrm{E}-02{ }^{\text {a }}$
PCB-109	6.48	6.12	4.14E-01	3.17E-01	$3.35 \mathrm{E}-01$	$2.56 \mathrm{E}-01$	$2.91 \mathrm{E}-01$	$2.23 \mathrm{E}-01$
PCB-123	6.74	6.36	1.40E-01	$6.09 \mathrm{E}-02$	$7.72 \mathrm{E}-02$	3.36E-02 J EMPC	$9.13 \mathrm{E}-02$	3.97E-02 J EMPC
PCB-106	6.64	6.27	8.35E-03	4.51E-03 U	$1.13 \mathrm{E}-02$	6.10E-03 U	$1.77 \mathrm{E}-02$	$9.54 \mathrm{E}-03 \mathrm{U}$
PCB-118	6.74	6.36	$6.80 \mathrm{E}+00$	$2.96 \mathrm{E}+00$	$5.50 \mathrm{E}+00$	$2.39 \mathrm{E}+00$	$4.57 \mathrm{E}+00$	$1.99 \mathrm{E}+00$
PCB-122	6.64	6.27	9.77E-02	5.28E-02	$7.53 \mathrm{E}-02$	4.07E-02 J EMPC	$4.17 \mathrm{E}-02$	$2.25 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$
PCB-114	6.65	6.28	$1.72 \mathrm{E}-01$	$9.09 \mathrm{E}-02 \mathrm{EMPC}$	$1.23 \mathrm{E}-01$	$6.50 \mathrm{E}-02 \mathrm{EMPC}$	$1.32 \mathrm{E}-01$	$6.98 \mathrm{E}-02 \mathrm{EMPC}$
PCB-105	6.65	6.28	3.13E+00	$1.65 \mathrm{E}+00 \mathrm{EMPC}$	$2.59 \mathrm{E}+00$	$1.37 \mathrm{E}+00 \mathrm{EMPC}$	$2.21 \mathrm{E}+00$	1.17E+00 EMPC
PCB-127	6.95	6.56	8.40E-03	$2.31 \mathrm{E}-03 \mathrm{U}$	$1.12 \mathrm{E}-02$	$3.07 \mathrm{E}-03 \mathrm{U}$	$1.95 \mathrm{E}-02$	5.37E-03 U
PCB-126	6.89	6.50	1.04E-02	$3.26 \mathrm{E}-03 \mathrm{U}$	$1.35 \mathrm{E}-02$	4.24E-03 U	$1.40 \mathrm{E}-02$	4.39E-03 U

Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	SD0053-2		SD0053-3		SD0053-AC	
			$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	C_{w}, pg/L Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}}, \mathrm{pg} / \mathrm{L}$ Qualifier
PCB-155	6.41	6.05	$4.48 \mathrm{E}-03$	$3.98 \mathrm{E}-03 \mathrm{U}$	6.05E-03	$5.39 \mathrm{E}-03 \mathrm{U}$	$6.65 \mathrm{E}-03$	$5.92 \mathrm{E}-03 \mathrm{U}$
PCB-152	6.22	5.87	$4.78 \mathrm{E}-03$	$6.42 \mathrm{E}-03 \mathrm{U}$	$6.45 \mathrm{E}-03$	$8.67 \mathrm{E}-03 \mathrm{U}$	$7.05 \mathrm{E}-03$	$9.48 \mathrm{E}-03 \mathrm{U}$
PCB-150	6.32	5.97	$4.66 \mathrm{E}-03$	$5.04 \mathrm{E}-03 \mathrm{U}$	$6.30 \mathrm{E}-03$	$6.82 \mathrm{E}-03 \mathrm{U}$	$7.00 \mathrm{E}-03$	$7.58 \mathrm{E}-03 \mathrm{U}$
PCB-136	6.22	5.87	$9.53 \mathrm{E}-01$	$1.28 \mathrm{E}+00$	$8.23 \mathrm{E}-01$	$1.11 \mathrm{E}+00$	$7.25 \mathrm{E}-01$	$9.75 \mathrm{E}-01$
PCB-145	6.25	5.90	$4.99 \mathrm{E}-03$	$6.28 \mathrm{E}-03 \mathrm{U}$	$6.75 \mathrm{E}-03$	$8.50 \mathrm{E}-03 \mathrm{U}$	$7.45 \mathrm{E}-03$	$9.39 \mathrm{E}-03 \mathrm{U}$
PCB-148	6.73	6.35	6.20E-03	$2.75 \mathrm{E}-03 \mathrm{U}$	$7.65 \mathrm{E}-03$	$3.40 \mathrm{E}-03 \mathrm{U}$	$8.55 \mathrm{E}-03$	$3.80 \mathrm{E}-03 \mathrm{U}$
PCB-151/135	6.64	6.27	$1.64 \mathrm{E}+00$	$8.86 \mathrm{E}-01^{\text {a }}$	$1.38 \mathrm{E}+00$	$7.46 \mathrm{E}-01^{\text {a }}$	$1.24 \mathrm{E}+00$	6.70E-01 ${ }^{\text {a }}$
PCB-154	6.76	6.38	3.02E-02	$1.26 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$2.50 \mathrm{E}-02$	1.04E-02 J	$2.59 \mathrm{E}-02$	1.08E-02 J
PCB-144	6.67	6.30	$2.76 \mathrm{E}-01$	$1.40 \mathrm{E}-01$	$1.99 \mathrm{E}-01$	$1.01 \mathrm{E}-01$	$2.04 \mathrm{E}-01$	$1.03 \mathrm{E}-01$
PCB-147/149	6.655	6.28	$4.33 \mathrm{E}+00$	$2.26 \mathrm{E}+00^{\text {a }}$	$3.56 \mathrm{E}+00$	$1.86 \mathrm{E}+00^{\text {a }}$	$3.25 \mathrm{E}+00$	$1.70 \mathrm{E}+00{ }^{\text {a }}$
PCB-134	6.55	6.18	$4.20 \mathrm{E}-01$	$2.76 \mathrm{E}-01$	$3.38 \mathrm{E}-01$	$2.22 \mathrm{E}-01$	$2.53 \mathrm{E}-01$	$1.66 \mathrm{E}-01$
PCB-143	6.6	6.23	$6.15 \mathrm{E}-03$	3.62E-03 U	$7.55 \mathrm{E}-03$	$4.45 \mathrm{E}-03 \mathrm{U}$	$8.75 \mathrm{E}-03$	5.16E-03 U
PCB-139/140	6.67	6.30	$8.75 \mathrm{E}-02$	$4.43 \mathrm{E}-02 \mathrm{JEMPC}^{\text {a }}$	$5.19 \mathrm{E}-02$	$2.63 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$	$6.40 \mathrm{E}-02$	$3.24 \mathrm{E}-02 \mathrm{~J}^{\text {a }}$
PCB-131	6.58	6.21	8.83E-02	5.43E-02 EMPC	$4.93 \mathrm{E}-02$	$3.03 \mathrm{E}-02 \mathrm{~J}$	$7.71 \mathrm{E}-02$	$4.74 \mathrm{E}-02 \mathrm{~J}$
PCB-142	6.51	6.14	$7.20 \mathrm{E}-03$	5.16E-03 U	$8.90 \mathrm{E}-03$	$6.38 \mathrm{E}-03 \mathrm{U}$	$1.02 \mathrm{E}-02$	7.31E-03 U
PCB-132	6.58	6.21	$2.11 \mathrm{E}+00$	$1.30 \mathrm{E}+00$	$1.73 \mathrm{E}+00$	$1.06 \mathrm{E}+00$	$1.58 \mathrm{E}+00$	$9.72 \mathrm{E}-01$
PCB-133	6.86	6.47	$5.42 \mathrm{E}-02$	$1.82 \mathrm{E}-02 \mathrm{~J}$	$3.30 \mathrm{E}-02$	1.11E-02 J EMPC	$3.11 \mathrm{E}-02$	1.04E-02 J EMPC
PCB-165	7.05	6.65	$5.30 \mathrm{E}-03$	$1.18 \mathrm{E}-03 \mathrm{U}$	$6.55 \mathrm{E}-03$	$1.45 \mathrm{E}-03 \mathrm{U}$	$7.35 \mathrm{E}-03$	$1.63 \mathrm{E}-03 \mathrm{U}$
PCB-146	6.89	6.50	$6.13 \mathrm{E}-01$	$1.92 \mathrm{E}-01$	$4.79 \mathrm{E}-01$	$1.50 \mathrm{E}-01$	$4.71 \mathrm{E}-01$	$1.48 \mathrm{E}-01$
PCB-161	7.08	6.68	4.97E-03	$1.03 \mathrm{E}-03 \mathrm{U}$	$6.15 \mathrm{E}-03$	$1.28 \mathrm{E}-03 \mathrm{U}$	$7.00 \mathrm{E}-03$	$1.45 \mathrm{E}-03 \mathrm{U}$
PCB-153/168	7.01	6.62	$3.46 \mathrm{E}+00$	$8.37 \mathrm{E}-01^{\text {a }}$	$2.87 \mathrm{E}+00$	$6.94 \mathrm{E}-01^{\text {a }}$	$2.63 \mathrm{E}+00$	6.36E-01 ${ }^{\text {a }}$
PCB-141	6.82	6.44	$9.29 \mathrm{E}-01$	$3.40 \mathrm{E}-01$	$7.52 \mathrm{E}-01$	$2.75 \mathrm{E}-01$	$7.08 \mathrm{E}-01$	$2.59 \mathrm{E}-01$
PCB-130	6.8	6.42	$3.61 \mathrm{E}-01$	$1.38 \mathrm{E}-01$	$2.46 \mathrm{E}-01$	9.39E-02	$2.49 \mathrm{E}-01$	$9.50 \mathrm{E}-02$
PCB-137	6.83	6.45	$2.95 \mathrm{E}-01$	$1.05 \mathrm{E}-01$	$2.29 \mathrm{E}-01$	8.19E-02	$1.84 \mathrm{E}-01$	$6.58 \mathrm{E}-02$
PCB-164	7.02	6.63	$3.60 \mathrm{E}-01$	$8.52 \mathrm{E}-02$	$3.03 \mathrm{E}-01$	7.17E-02	$2.62 \mathrm{E}-01$	$6.20 \mathrm{E}-02$
PCB-163/138/129	6.85	6.47	$5.25 \mathrm{E}+00$	$1.80 \mathrm{E}+00^{\text {a }}$	$4.40 \mathrm{E}+00$	$1.51 \mathrm{E}+00^{\text {a }}$	$4.17 \mathrm{E}+00$	$1.43 \mathrm{E}+00^{\text {a }}$
PCB-160	6.93	6.54	$5.30 \mathrm{E}-03$	$1.53 \mathrm{E}-03 \mathrm{U}$	$6.55 \mathrm{E}-03$	$1.89 \mathrm{E}-03 \mathrm{U}$	$7.25 \mathrm{E}-03$	2.09E-03 U
PCB-158	7.02	6.63	$5.43 \mathrm{E}-01$	$1.29 \mathrm{E}-01$	$4.48 \mathrm{E}-01$	$1.06 \mathrm{E}-01$	$4.32 \mathrm{E}-01$	$1.02 \mathrm{E}-01$
PCB-128/166	6.47	6.11	8.80E-01	$6.88 \mathrm{E}-01^{\text {a }}$	$6.72 \mathrm{E}-01$	$5.25 \mathrm{E}-01^{\text {a }}$	$6.49 \mathrm{E}-01$	$5.07 \mathrm{E}-01^{\text {a }}$
PCB-159	7.24	6.83	$3.11 \mathrm{E}-02$	$4.57 \mathrm{E}-03 \mathrm{~J}$	$1.31 \mathrm{E}-02$	$1.92 \mathrm{E}-03 \mathrm{U}$	$1.63 \mathrm{E}-02$	$2.39 \mathrm{E}-03 \mathrm{U}$
PCB-162	7.24	6.83	$1.34 \mathrm{E}-02$	1.96E-03 U	$1.32 \mathrm{E}-02$	1.94E-03 U	$1.61 \mathrm{E}-02$	$2.36 \mathrm{E}-03 \mathrm{U}$
PCB-167	7.27	6.86	$1.48 \mathrm{E}-01$	$2.04 \mathrm{E}-02$	$9.15 \mathrm{E}-02$	1.26E-02 EMPC	$1.03 \mathrm{E}-01$	1.42E-02 EMPC
PCB-156/157	7.18	6.78	$5.29 \mathrm{E}-01$	$8.85 \mathrm{E}-02{ }^{\text {a }}$	$4.28 \mathrm{E}-01$	$7.16 \mathrm{E}-02{ }^{\text {a }}$	$3.82 \mathrm{E}-01$	$6.39 \mathrm{E}-02{ }^{\text {a }}$
PCB-169	7.42	7.00	$1.69 \mathrm{E}-02$	1.67E-03 U	$1.66 \mathrm{E}-02$	$1.65 \mathrm{E}-03 \mathrm{U}$	$2.00 \mathrm{E}-02$	$1.98 \mathrm{E}-03 \mathrm{U}$
PCB-188	6.82	6.44	$4.25 \mathrm{E}-03$	$1.55 \mathrm{E}-03 \mathrm{U}$	$5.50 \mathrm{E}-03$	$2.01 \mathrm{E}-03 \mathrm{U}$	$6.30 \mathrm{E}-03$	$2.30 \mathrm{E}-03 \mathrm{U}$
PCB-179	6.73	6.35	$3.64 \mathrm{E}-01$	$1.62 \mathrm{E}-01$	$3.22 \mathrm{E}-01$	$1.43 \mathrm{E}-01$	3.07E-01	$1.36 \mathrm{E}-01$
PCB-184	6.85	6.47	$5.05 \mathrm{E}-03$	$1.73 \mathrm{E}-03 \mathrm{U}$	$6.55 \mathrm{E}-03$	$2.24 \mathrm{E}-03 \mathrm{U}$	$7.60 \mathrm{E}-03$	$2.60 \mathrm{E}-03 \mathrm{U}$
PCB-176	6.76	6.38	$9.78 \mathrm{E}-02$	4.07E-02	$7.19 \mathrm{E}-02$	$2.99 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$9.87 \mathrm{E}-02$	4.11E-02 J EMPC
PCB-186	6.69	6.31	$4.79 \mathrm{E}-03$	$2.32 \mathrm{E}-03 \mathrm{U}$	$6.15 \mathrm{E}-03$	$2.98 \mathrm{E}-03 \mathrm{U}$	$7.40 \mathrm{E}-03$	$3.59 \mathrm{E}-03 \mathrm{U}$
PCB-178	7.14	6.74	$1.72 \mathrm{E}-01$	$3.14 \mathrm{E}-02$	$1.08 \mathrm{E}-01$	1.97E-02 EMPC	$1.20 \mathrm{E}-01$	$2.19 \mathrm{E}-02 \mathrm{EMPC}$
PCB-175	7.17	6.77	$3.24 \mathrm{E}-02$	$5.54 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$1.41 \mathrm{E}-02$	$2.41 \mathrm{E}-03 \mathrm{U}$	$1.50 \mathrm{E}-02$	$2.56 \mathrm{E}-03 \mathrm{U}$
PCB-187	7.17	6.77	$9.54 \mathrm{E}-01$	$1.63 \mathrm{E}-01$	$7.26 \mathrm{E}-01$	$1.24 \mathrm{E}-01$	$6.64 \mathrm{E}-01$	$1.13 \mathrm{E}-01$
PCB-182	7.2	6.80	$9.30 \mathrm{E}-03$	$1.49 \mathrm{E}-03 \mathrm{U}$	$1.26 \mathrm{E}-02$	$2.01 \mathrm{E}-03 \mathrm{U}$	$1.30 \mathrm{E}-02$	$2.07 \mathrm{E}-03 \mathrm{U}$
PCB-183	7.2	6.80	$4.44 \mathrm{E}-01$	7.11E-02	$3.16 \mathrm{E}-01$	$5.06 \mathrm{E}-02$	$3.39 \mathrm{E}-01$	$5.43 \mathrm{E}-02$
PCB-185	7.11	6.71	0.0504	$9.81 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	0.0691	$1.35 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	0.0302	$5.88 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$
PCB-174	7.11	6.71	$8.16 \mathrm{E}-01$	$1.59 \mathrm{E}-01$	$6.63 \mathrm{E}-01$	$1.29 \mathrm{E}-01$	$5.96 \mathrm{E}-01$	$1.16 \mathrm{E}-01$
PCB-177	7.08	6.68	$3.85 \mathrm{E}-01$	8.00E-02	$3.03 \mathrm{E}-01$	6.30E-02 EMPC	$3.12 \mathrm{E}-01$	$6.48 \mathrm{E}-02 \mathrm{EMPC}$
PCB-181	7.11	6.71	$1.01 \mathrm{E}-02$	1.97E-03 U	$1.37 \mathrm{E}-02$	$2.66 \mathrm{E}-03 \mathrm{U}$	$1.44 \mathrm{E}-02$	$2.80 \mathrm{E}-03 \mathrm{U}$
PCB-171/173	7.065	6.67	$1.99 \mathrm{E}-01$	$4.27 \mathrm{E}-02{ }^{\text {a }}$	$1.83 \mathrm{E}-01$	$3.93 \mathrm{E}-02{ }^{\text {a }}$	$1.53 \mathrm{E}-01$	$3.28 \mathrm{E}-02^{\text {a }}$
PCB-172	7.33	6.92	9.74E-02	1.18E-02	$7.82 \mathrm{E}-02$	$9.44 \mathrm{E}-03 \mathrm{~J}$	$5.67 \mathrm{E}-02$	$6.85 \mathrm{E}-03 \mathrm{~J}$
PCB-192	7.52	7.10	$8.40 \mathrm{E}-03$	6.71E-04 U	$1.14 \mathrm{E}-02$	$9.11 \mathrm{E}-04 \mathrm{U}$	$1.26 \mathrm{E}-02$	1.01E-03 U

Table 4-6. Summary of $\log \mathrm{K}_{\text {ow }}, \log$
K_{F}, Measured C_{F}, and Calculated C_{w}

Chemicals	$\log \mathrm{K}_{\text {ow }}$	$\log \mathrm{K}_{\mathrm{F}}$	SD0053-2		SD0053-3		SD0053-AC		
			$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg}} \mathrm{pg}$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w},} \mathrm{pg} / \mathrm{L}$ Qualifier	$\mathrm{C}_{\mathrm{F}, \mathrm{pg} / \mu \mathrm{L}}$	$\mathrm{C}_{\mathrm{w}, \mathrm{pg} / \mathrm{L}}$	Qualifier
PCB-180/193	7.44	7.02	$1.35 \mathrm{E}+00$	$1.28 \mathrm{E}-01^{\text {a }}$	$1.13 \mathrm{E}+00$	$1.07 \mathrm{E}-01^{\text {a }}$	$1.01 \mathrm{E}+00$	$9.61 \mathrm{E}-02$	
PCB-191	7.55	7.13	$8.15 \mathrm{E}-03$	6.10E-04 U	$1.10 \mathrm{E}-02$	$8.24 \mathrm{E}-04 \mathrm{U}$	$1.20 \mathrm{E}-02$	8.95E-04	
PCB-170	7.27	6.86	5.17E-01	7.11E-02	$4.67 \mathrm{E}-01$	$6.42 \mathrm{E}-02$	$3.95 \mathrm{E}-01$	5.43E-02	
PCB-190	7.46	7.04	9.60E-02	8.74E-03	$9.55 \mathrm{E}-02$	$8.70 \mathrm{E}-03$	$8.98 \mathrm{E}-02$	8.18E-03	
PCB-189	7.71	7.28	$1.08 \mathrm{E}-02$	$5.69 \mathrm{E}-04 \mathrm{U}$	$1.15 \mathrm{E}-02$	$6.09 \mathrm{E}-04 \mathrm{U}$	$1.18 \mathrm{E}-02$	6.24E-04	
PCB-202	7.24	6.83	7.07E-02	$1.04 \mathrm{E}-02 \mathrm{~J} \mathrm{EMPC}$	$4.86 \mathrm{E}-02$	7.14E-03 J	$6.78 \mathrm{E}-02$	$9.95 \mathrm{E}-03$	
PCB-201	7.62	7.19	$4.75 \mathrm{E}-02$	$3.06 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$3.13 \mathrm{E}-02$	$2.01 \mathrm{E}-03 \mathrm{~J}$	$3.17 \mathrm{E}-02$	$2.04 \mathrm{E}-03$	
PCB-204	7.3	6.89	5.55E-03	7.15E-04 U	$1.08 \mathrm{E}-02$	$1.39 \mathrm{E}-03 \mathrm{U}$	$1.14 \mathrm{E}-02$	$1.46 \mathrm{E}-03$	
PCB-197	7.3	6.89	$1.44 \mathrm{E}-02$	$1.86 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$9.45 \mathrm{E}-03$	$1.22 \mathrm{E}-03 \mathrm{U}$	$9.80 \mathrm{E}-03$	$1.26 \mathrm{E}-03$	
PCB-200	7.27	6.86	$4.01 \mathrm{E}-02$	5.52E-03 J EMPC	$1.12 \mathrm{E}-02$	$1.54 \mathrm{E}-03 \mathrm{U}$	$2.19 \mathrm{E}-02$	3.01E-03	
PCB-198/199	7.41	6.99	$3.57 \mathrm{E}-01$	$3.62 \mathrm{E}-02^{\text {a }}$	$3.02 \mathrm{E}-01$	$3.07 \mathrm{E}-02^{\text {a }}$	$3.23 \mathrm{E}-01$	$3.28 \mathrm{E}-02$	
PCB-196	7.65	7.22	$1.60 \mathrm{E}-01$	$9.64 \mathrm{E}-03$	$1.49 \mathrm{E}-01$	8.98E-03 EMPC	$1.36 \mathrm{E}-01$	8.20E-03	EMPC
PCB-203	7.65	7.22	2.05E-01	$1.24 \mathrm{E}-02$	$1.99 \mathrm{E}-01$	1.20E-02	$1.55 \mathrm{E}-01$	$9.34 \mathrm{E}-03$	
PCB-195	7.56	7.13	8.29E-02	6.08E-03 J EMPC	$8.36 \mathrm{E}-02$	$6.13 \mathrm{E}-03 \mathrm{~J}$	$8.64 \mathrm{E}-02$	$6.33 \mathrm{E}-03$	
PCB-194	7.8	7.36	$2.71 \mathrm{E}-01$	$1.18 \mathrm{E}-02$	$2.04 \mathrm{E}-01$	8.88E-03	$1.36 \mathrm{E}-01$	$5.92 \mathrm{E}-03$	
PCB-205	8	7.55	9.15E-03	$2.58 \mathrm{E}-04 \mathrm{U}$	$1.48 \mathrm{E}-02$	4.16E-04 U	$1.22 \mathrm{E}-02$	3.44E-04	
PCB-208	7.71	7.28	4.62E-02	$2.44 \mathrm{E}-03 \mathrm{~J} \mathrm{EMPC}$	$3.20 \mathrm{E}-02$	1.69E-03 J EMPC	$2.96 \mathrm{E}-02$	$1.57 \mathrm{E}-03$	J EMPC
PCB-207	7.74	7.30	6.40E-03	$3.17 \mathrm{E}-04 \mathrm{U}$	$1.05 \mathrm{E}-02$	$5.21 \mathrm{E}-04 \mathrm{U}$	$1.44 \mathrm{E}-02$	7.14E-04	
PCB-206	8.09	7.63	1.18E-01	2.74E-03 EMPC	$1.38 \mathrm{E}-01$	$3.20 \mathrm{E}-03 \mathrm{EMPC}$	$9.16 \mathrm{E}-02$	$2.12 \mathrm{E}-03$	EMPC
PCB-209	8.18	7.72	7.85E-02	$1.50 \mathrm{E}-03 \mathrm{~J}$	5.76E-02	$1.10 \mathrm{E}-03 \mathrm{~J}$	$3.50 \mathrm{E}-02$	6.67E-04	

Notes:
$\mathrm{C}_{\mathrm{F}}=$ concentration measured in the polydimethylsiloxane (PDMS) coating on the fiber
$\mathrm{C}_{\mathrm{w}}=$ concentration in porewater
$\mathrm{K}_{\mathrm{ow}}=$ octanol-water partition coefficient
$K_{F}=$ PDMS fiber-water partition coefficient (L/L)
$\mathrm{PCB}=$ polychlorinated biphenyl
$\mathrm{pg} / \mathrm{L}=$ picogram per liter
Data Qualifiers:
EMPC = estimated
$\mathrm{J}=$ estimated
$\mathrm{U}=$ non-detect
${ }^{a}$ Two or more congeners co-elute

Table 4-7. Summary of $\log \mathrm{K}_{\mathrm{F}}$, Measured
C_{f}, and Calculated C_{w} Values for
Dioxin/Furan Congeners

025					SD0054			SD0054-AC			SD0018			SD0053-1			SD0053-2		
Chemicals	$\log K_{F}$	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier
2378-TCDD	6.31	$3.10 \mathrm{E}-03$	1.52E-03		$3.21 \mathrm{E}-03$	$1.58 \mathrm{E}-03$		$3.11 \mathrm{E}-03$	1.53E-03	U	$2.95 \mathrm{E}-03$	$1.45 \mathrm{E}-03$		$3.01 \mathrm{E}-02$	1.48E-02	EMPC	$3.78 \mathrm{E}-02$	$1.86 \mathrm{E}-02$	
12378-PeCDD	6.87	$6.45 \mathrm{E}-03$	$8.70 \mathrm{E}-04$		$7.85 \mathrm{E}-03$	$1.06 \mathrm{E}-03$		$5.65 \mathrm{E}-03$	7.62E-04		$5.50 \mathrm{E}-03$	$7.42 \mathrm{E}-04$		$1.29 \mathrm{E}-02$	$1.74 \mathrm{E}-03$		$1.20 \mathrm{E}-02$	$1.61 \mathrm{E}-03$	
$123478-\mathrm{HxCDD}$	7.33	$3.66 \mathrm{E}-03$	1.72E-04		$5.12 \mathrm{E}-02$	$2.41 \mathrm{E}-03$		3.69E-02	$1.74 \mathrm{E}-03$	J EMPC	$5.15 \mathrm{E}-03$	$2.42 \mathrm{E}-04$		$1.58 \mathrm{E}-02$	7.43E-04		$1.17 \mathrm{E}-02$	$5.50 \mathrm{E}-04$	
$123678-\mathrm{HxCDD}$	7.37	$3.65 \mathrm{E}-03$	$1.56 \mathrm{E}-04$		$3.42 \mathrm{E}-02$	1.46E-03		$1.33 \mathrm{E}-02$	5.68E-04		$5.15 \mathrm{E}-03$	$2.20 \mathrm{E}-04$		5.10E-02	$2.18 \mathrm{E}-03$		$4.57 \mathrm{E}-02$	$1.95 \mathrm{E}-03$	J EmPC
$123789-\mathrm{HxCDD}$	7.37	$9.18 \mathrm{E}-03$	3.92E-04		$6.30 \mathrm{E}-03$	$2.69 \mathrm{E}-04$		$1.09 \mathrm{E}-02$	$4.66 \mathrm{E}-04$		$5.15 \mathrm{E}-03$	2.20E-04		$1.58 \mathrm{E}-02$	6.73E-04		$1.15 \mathrm{E}-02$	4.89E-04	
1234678-HpCDD	7.81	$3.68 \mathrm{E}-02$	5.75E-04		$9.28 \mathrm{E}-02$	$1.45 \mathrm{E}-03$		$6.15 \mathrm{E}-02$	$9.61 \mathrm{E}-04$		$5.38 \mathrm{E}-02$	8.41E-04		$1.04 \mathrm{E}+00$	1.63E-02		$1.02 \mathrm{E}+00$	$1.59 \mathrm{E}-02$	
OCDD	8.17	$6.58 \mathrm{E}-02$	$4.45 \mathrm{E}-04$		$1.70 \mathrm{E}-01$	$1.15 \mathrm{E}-03$		$1.13 \mathrm{E}-01$	7.64E-04		$8.64 \mathrm{E}-02$	5.84E-04		$1.00 \mathrm{E}+01$	6.76E-02		$1.05 \mathrm{E}+01$	7.10E-02	
2378-TCDF	5.79	$2.75 \mathrm{E}-03$	4.47E-03		$4.17 \mathrm{E}-03$	6.78E-03		$2.49 \mathrm{E}-03$	4.05E-03		$3.18 \mathrm{E}-03$	5.18E-03	U	$5.05 \mathrm{E}-03$	8.22E-03		$7.05 \mathrm{E}-03$	$1.15 \mathrm{E}-02$	
12378-PeCDF	6.34	$3.45 \mathrm{E}-03$	$1.58 \mathrm{E}-03$		$4.24 \mathrm{E}-03$	1.94E-03		$4.88 \mathrm{E}-03$	$2.23 \mathrm{E}-03$		$3.82 \mathrm{E}-03$	1.75E-03	U	$1.06 \mathrm{E}-02$	4.85E-03		$1.26 \mathrm{E}-02$	$5.74 \mathrm{E}-03$	
23478-PeCDF	6.46	$3.29 \mathrm{E}-03$	$1.13 \mathrm{E}-03$		$4.04 \mathrm{E}-03$	$1.39 \mathrm{E}-03$		$4.77 \mathrm{E}-03$	1.64E-03		$3.65 \mathrm{E}-03$	$1.25 \mathrm{E}-03$	U	$1.01 \mathrm{E}-02$	3.47E-03		$1.23 \mathrm{E}-02$	$4.20 \mathrm{E}-03$	
123478-HxCDF	6.90	$1.74 \mathrm{E}-03$	$2.18 \mathrm{E}-04$		$3.18 \mathrm{E}-03$	3.99E-04		$2.80 \mathrm{E}-03$	3.51E-04		$3.94 \mathrm{E}-03$	$4.95 \mathrm{E}-04$	J EMPC	$1.15 \mathrm{E}-02$	1.44E-03		$1.50 \mathrm{E}-02$	$1.88 \mathrm{E}-03$	
123678-HxCDF	6.94	$1.67 \mathrm{E}-03$	$1.91 \mathrm{E}-04$		$3.06 \mathrm{E}-03$	$3.49 \mathrm{E}-04$		$2.72 \mathrm{E}-03$	3.10E-04		$1.08 \mathrm{E}-02$	$1.23 \mathrm{E}-03$		7.29E-02	8.32E-03		$1.46 \mathrm{E}-02$	$1.66 \mathrm{E}-03$	
234678-HxCDF	7.14	$1.68 \mathrm{E}-03$	1.22E-04		$3.07 \mathrm{E}-03$	$2.22 \mathrm{E}-04$		$2.70 \mathrm{E}-03$	1.95E-04		$2.16 \mathrm{E}-03$	$1.56 \mathrm{E}-04$		$1.10 \mathrm{E}-02$	7.96E-04		$1.45 \mathrm{E}-02$	$1.05 \mathrm{E}-03$	
123789-HxCDF	7.03	$1.98 \mathrm{E}-03$	1.86E-04		$3.62 \mathrm{E}-03$	$3.41 \mathrm{E}-04$		$3.03 \mathrm{E}-03$	$2.85 \mathrm{E}-04$		$2.55 \mathrm{E}-03$	$2.40 \mathrm{E}-04$		$1.31 \mathrm{E}-02$	$1.23 \mathrm{E}-03$		$1.63 \mathrm{E}-02$	$1.53 \mathrm{E}-03$	
1234678-HpCDF	7.40	$3.37 \mathrm{E}-02$	1.34E-03		$5.50 \mathrm{E}-02$	$2.19 \mathrm{E}-03$		$4.53 \mathrm{E}-02$	$1.80 \mathrm{E}-03$		$5.09 \mathrm{E}-02$	$2.02 \mathrm{E}-03$		$4.26 \mathrm{E}-01$	$1.69 \mathrm{E}-02$		$4.91 \mathrm{E}-01$	$1.95 \mathrm{E}-02$	
1234789-HpCDF	7.63	$1.97 \mathrm{E}-03$	4.61E-05		$2.99 \mathrm{E}-03$	7.01E-05		$2.75 \mathrm{E}-03$	6.46E-05		$2.55 \mathrm{E}-03$	5.99E-05		$1.95 \mathrm{E}-02$	4.58E-04		$2.99 \mathrm{E}-03$	7.01E-05	
OCDF	8.01	$2.47 \mathrm{E}-03$	$2.39 \mathrm{E}-05$		$1.15 \mathrm{E}-02$	1.11E-04	J EMPC	$3.51 \mathrm{E}-03$	3.39E-05		$3.33 \mathrm{E}-03$	3.22E-05		$2.46 \mathrm{E}-01$	$2.38 \mathrm{E}-03$		$2.19 \mathrm{E}-01$	$2.12 \mathrm{E}-03$	

Dioxin/Furan Congeners

SD0053-3				SD0053-AC			SD0051			SD0010			SD0028			SD0026		
Chemicals	$\log K_{F}$	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L}) \quad$ Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier
2378-TCDD	6.31	$3.53 \mathrm{E}-02$	$1.74 \mathrm{E}-02$	$8.44 \mathrm{E}-03$	4.15E-03	J EMPC	$2.55 \mathrm{E}-03$	1.25E-03		$3.64 \mathrm{E}-03$	$1.79 \mathrm{E}-03$		$2.76 \mathrm{E}-03$	$1.35 \mathrm{E}-03$		$3.17 \mathrm{E}-03$	$1.56 \mathrm{E}-0$	
12378-PeCDD	6.87	$1.26 \mathrm{E}-02$	$1.70 \mathrm{E}-03 \mathrm{U}$	$8.35 \mathrm{E}-03$	$1.13 \mathrm{E}-03$		$6.50 \mathrm{E}-03$	8.77E-04		$1.10 \mathrm{E}-02$	$1.48 \mathrm{E}-03$		$5.60 \mathrm{E}-03$	$7.55 \mathrm{E}-04$		$7.80 \mathrm{E}-03$	$1.05 \mathrm{E}-0$	
123478-HxCDD	7.33	$1.27 \mathrm{E}-02$	5.95E-04 U	$6.45 \mathrm{E}-03$	3.03E-04		$2.03 \mathrm{E}-02$	$9.55 \mathrm{E}-04$		$1.12 \mathrm{E}-02$	5.24E-04		$4.31 \mathrm{E}-03$	$2.02 \mathrm{E}-04$		$4.54 \mathrm{E}-03$	$2.13 \mathrm{E}-0$	
123678-HxCDD	7.37	$4.85 \mathrm{E}-02$	$2.07 \mathrm{E}-03 \mathrm{~J}$	4.04E-02	$1.73 \mathrm{E}-03$		$1.88 \mathrm{E}-02$	8.03E-04		$4.27 \mathrm{E}-02$	1.82E-03		$4.30 \mathrm{E}-03$	1.84E-04		$1.48 \mathrm{E}-02$	6.33E-04	
123789-HxCDD	7.37	$1.24 \mathrm{E}-02$	5.28E-04 U	$6.40 \mathrm{E}-03$	$2.74 \mathrm{E}-04$		$3.88 \mathrm{E}-03$	1.66E-04		$1.11 \mathrm{E}-02$	$4.74 \mathrm{E}-04$		$7.61 \mathrm{E}-03$	$3.25 \mathrm{E}-04$	J EMPC	0.00929	3.97E-0	J EMPC
1234678-HpCDD	7.81	$1.12 \mathrm{E}+00$	$1.75 \mathrm{E}-02$	$8.35 \mathrm{E}-01$	$1.31 \mathrm{E}-02$		$9.10 \mathrm{E}-02$	$1.42 \mathrm{E}-03$		7.69E-01	$1.20 \mathrm{E}-02$		$1.46 \mathrm{E}-02$	$2.28 \mathrm{E}-04$		$5.93 \mathrm{E}-02$	$9.27 \mathrm{E}-0$	
OCDD	8.17	$1.00 \mathrm{E}+01$	6.76E-02	$6.52 \mathrm{E}+00$	$4.41 \mathrm{E}-02$		$1.82 \mathrm{E}-01$	$1.23 \mathrm{E}-03$		$3.82 \mathrm{E}+00$	$2.58 \mathrm{E}-02$		$3.07 \mathrm{E}-02$	$2.08 \mathrm{E}-04$		$1.10 \mathrm{E}-01$	$7.44 \mathrm{E}-0$	
2378-TCDF	5.79	$5.15 \mathrm{E}-03$	$8.38 \mathrm{E}-03 \mathrm{U}$	$3.45 \mathrm{E}-03$	5.62E-03		$2.23 \mathrm{E}-03$	3.62E-03		$4.09 \mathrm{E}-03$	6.65E-03		$3.14 \mathrm{E}-03$	5.11E-03		$3.71 \mathrm{E}-03$	6.03E-0	
12378-PeCDF	6.34	$9.55 \mathrm{E}-03$	$4.37 \mathrm{E}-03 \mathrm{U}$	$6.30 \mathrm{E}-03$	2.88E-03		$3.74 \mathrm{E}-03$	$1.71 \mathrm{E}-03$		$6.20 \mathrm{E}-03$	2.84E-03		$3.24 \mathrm{E}-03$	$1.48 \mathrm{E}-03$		$3.92 \mathrm{E}-03$	$1.79 \mathrm{E}-0$	
23478-PeCDF	6.46	$9.30 \mathrm{E}-03$	$3.19 \mathrm{E}-03 \mathrm{U}$	$6.00 \mathrm{E}-03$	2.06E-03		$3.56 \mathrm{E}-03$	$1.22 \mathrm{E}-03$		$5.90 \mathrm{E}-03$	2.03E-03		$3.09 \mathrm{E}-03$	$1.06 \mathrm{E}-03$		$3.83 \mathrm{E}-03$	$1.31 \mathrm{E}-0$	
123478-HxCDF	6.90	$1.47 \mathrm{E}-02$	$1.84 \mathrm{E}-03 \mathrm{U}$	$7.00 \mathrm{E}-03$	8.79E-04		$3.49 \mathrm{E}-03$	4.38E-04		$6.45 \mathrm{E}-03$	8.10E-04		$2.44 \mathrm{E}-03$	3.06E-04		$3.47 \mathrm{E}-03$	$4.35 \mathrm{E}-0$	
123678-HxCDF	6.94	$1.42 \mathrm{E}-02$	$1.62 \mathrm{E}-03 \mathrm{U}$	$6.75 \mathrm{E}-03$	7.70E-04		$3.36 \mathrm{E}-03$	$3.83 \mathrm{E}-04$		$6.20 \mathrm{E}-03$	7.07E-04		$2.35 \mathrm{E}-03$	$2.68 \mathrm{E}-04$		$3.37 \mathrm{E}-03$	$3.84 \mathrm{E}-0$	
234678-HxCDF	7.14	$1.41 \mathrm{E}-02$	1.02E-03 U	$6.80 \mathrm{E}-03$	$4.92 \mathrm{E}-04$		$3.37 \mathrm{E}-03$	$2.44 \mathrm{E}-04$		$6.20 \mathrm{E}-03$	4.49E-04		$2.35 \mathrm{E}-03$	1.70E-04		$3.35 \mathrm{E}-03$	$2.42 \mathrm{E}-0$	
123789-HxCDF	7.03	$3.03 \mathrm{E}-03$	$2.85 \mathrm{E}-04 \mathrm{U}$	$2.55 \mathrm{E}-03$	$2.40 \mathrm{E}-04$		$3.98 \mathrm{E}-03$	$3.74 \mathrm{E}-04$		$7.35 \mathrm{E}-03$	6.92E-04		$2.78 \mathrm{E}-03$	$2.61 \mathrm{E}-04$		$3.76 \mathrm{E}-03$	3.54E-04	
1234678-HpCDF	7.40	$4.51 \mathrm{E}-01$	$1.79 \mathrm{E}-02$	$3.47 \mathrm{E}-01$	1.38E-02		$5.03 \mathrm{E}-02$	$2.00 \mathrm{E}-03$		$4.29 \mathrm{E}-01$	$1.71 \mathrm{E}-02$		$1.47 \mathrm{E}-02$	5.85E-04		$3.91 \mathrm{E}-02$	$1.56 \mathrm{E}-0$	
1234789-HpCDF	7.63	$2.75 \mathrm{E}-03$	6.46E-05 U	$2.55 \mathrm{E}-03$	5.99E-05		$4.19 \mathrm{E}-03$	9.84E-05		$1.09 \mathrm{E}-02$	2.56E-04		$2.95 \mathrm{E}-03$	6.93E-05		$2.37 \mathrm{E}-03$	5.57E-0	
OCDF	8.01	$2.32 \mathrm{E}-01$	$2.25 \mathrm{E}-03$	$1.29 \mathrm{E}-01$	$1.25 \mathrm{E}-03$		$8.96 \mathrm{E}-03$	8.68E-05	J EMPC	$1.05 \mathrm{E}-01$	1.02E-03		$3.43 \mathrm{E}-03$	3.32E-05		$2.21 \mathrm{E}-03$	2.14E-0	

Table 4-7. Summary of $\log \mathrm{K}_{\mathrm{F}}$, Measured
C_{f}, and Calculated C_{w} Values for
Dioxin/Furan Congeners

Chemicals	$\log K_{F}$	SD004-01			SD004-2			SD004-3			SD0055			SD009			SD0015		
		$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier
2378-TCDD	6.31	$4.35 \mathrm{E}-03$	2.14E-03	U	$3.45 \mathrm{E}-03$	1.69E-03	U	$2.71 \mathrm{E}-03$	$1.33 \mathrm{E}-03$	U	$3.44 \mathrm{E}-03$	1.69E-03	U	$3.75 \mathrm{E}-03$	1.84E-03	U	$4.76 \mathrm{E}-03$	$2.34 \mathrm{E}-03$	U
12378-PeCDD	6.87	$8.55 \mathrm{E}-03$	$1.15 \mathrm{E}-03$		$6.70 \mathrm{E}-03$	$9.04 \mathrm{E}-04$		$5.50 \mathrm{E}-03$	$7.42 \mathrm{E}-04$		$6.05 \mathrm{E}-03$	$8.16 \mathrm{E}-04$		$7.55 \mathrm{E}-03$	$1.02 \mathrm{E}-03$		$9.55 \mathrm{E}-03$	$1.29 \mathrm{E}-03$	
123478-HxCDD	7.33	$1.47 \mathrm{E}-02$	6.91E-04		$1.58 \mathrm{E}-02$	7.43E-04	J EMPC	$2.07 \mathrm{E}-02$	$9.74 \mathrm{E}-04$		$4.83 \mathrm{E}-03$	$2.27 \mathrm{E}-04$		$9.65 \mathrm{E}-03$	$4.54 \mathrm{E}-04$		$7.70 \mathrm{E}-03$	3.62E-04	
$123678-\mathrm{HxCDD}$	7.37	$8.33 \mathrm{E}-03$	3.56E-04		$1.00 \mathrm{E}-02$	4.27E-04		$1.32 \mathrm{E}-02$	5.64E-04		$4.83 \mathrm{E}-03$	$2.06 \mathrm{E}-04$		$2.12 \mathrm{E}-02$	$9.06 \mathrm{E}-04$		$7.70 \mathrm{E}-03$	3.29E-04	
$123789-\mathrm{HxCDD}$	7.37	$8.25 \mathrm{E}-03$	3.53E-04		$6.05 \mathrm{E}-03$	$2.59 \mathrm{E}-04$		$5.95 \mathrm{E}-03$	2.54E-04		$4.72 \mathrm{E}-03$	2.02E-04		$9.40 \mathrm{E}-03$	$4.02 \mathrm{E}-04$		$7.55 \mathrm{E}-03$	3.23E-04	
$1234678-\mathrm{HpCDD}$	7.81	$6.00 \mathrm{E}-02$	9.38E-04		$5.99 \mathrm{E}-02$	9.36E-04	J EMPC	$6.69 \mathrm{E}-02$	$1.05 \mathrm{E}-03$		8.57E-03	1.34E-04	J EMPC	$2.29 \mathrm{E}-01$	$3.58 \mathrm{E}-03$		$4.53 \mathrm{E}-02$	7.08E-04	
OCDD	8.17	$1.57 \mathrm{E}-01$	$1.06 \mathrm{E}-03$		$1.53 \mathrm{E}-01$	$1.03 \mathrm{E}-03$		$1.52 \mathrm{E}-01$	$1.03 \mathrm{E}-03$		$1.38 \mathrm{E}-02$	9.33E-05	J EMPC	$9.21 \mathrm{E}-01$	6.23E-03		$1.04 \mathrm{E}-01$	7.03E-04	
2378-TCDF	5.79	$4.37 \mathrm{E}-03$	7.11E-03		$3.99 \mathrm{E}-03$	6.49E-03		$2.77 \mathrm{E}-03$	4.51E-03		3.31E-03	5.38E-03		$4.68 \mathrm{E}-03$	$7.62 \mathrm{E}-03$		$4.83 \mathrm{E}-03$	$7.85 \mathrm{E}-03$	
12378-PeCDF	6.34	$5.65 \mathrm{E}-03$	2.58E-03		$4.77 \mathrm{E}-03$	2.18E-03		$4.84 \mathrm{E}-03$	2.21E-03		$3.74 \mathrm{E}-03$	$1.71 \mathrm{E}-03$		$7.40 \mathrm{E}-03$	$3.39 \mathrm{E}-03$		$6.40 \mathrm{E}-03$	2.93E-03	
23478-PeCDF	6.46	$5.50 \mathrm{E}-03$	1.89E-03		$4.66 \mathrm{E}-03$	1.60E-03		$4.73 \mathrm{E}-03$	1.62E-03		3.65E-03	$1.25 \mathrm{E}-03$		$7.25 \mathrm{E}-03$	$2.49 \mathrm{E}-03$		$6.30 \mathrm{E}-03$	$2.16 \mathrm{E}-03$	
123478-HxCDF	6.90	$4.43 \mathrm{E}-03$	5.56E-04		$2.77 \mathrm{E}-03$	3.47E-04		$3.14 \mathrm{E}-03$	3.94E-04		$2.79 \mathrm{E}-03$	3.50E-04		$4.99 \mathrm{E}-03$	$6.26 \mathrm{E}-04$		$4.63 \mathrm{E}-03$	5.81E-04	
123678-HxCDF	6.94	$4.30 \mathrm{E}-03$	4.91E-04		$2.69 \mathrm{E}-03$	$3.06 \mathrm{E}-04$		$3.08 \mathrm{E}-03$	$3.51 \mathrm{E}-04$		$2.71 \mathrm{E}-03$	3.09E-04		$4.85 \mathrm{E}-03$	$5.53 \mathrm{E}-04$		$4.49 \mathrm{E}-03$	5.12E-04	
$234678-\mathrm{HxCDF}$	7.14	$4.28 \mathrm{E}-03$	3.09E-04		$2.68 \mathrm{E}-03$	1.94E-04		$3.02 \mathrm{E}-03$	2.18E-04		$2.69 \mathrm{E}-03$	1.95E-04		$4.82 \mathrm{E}-03$	3.49E-04		$4.47 \mathrm{E}-03$	3.24E-04	
123789-HxCDF	7.03	$4.80 \mathrm{E}-03$	4.52E-04		$3.00 \mathrm{E}-03$	2.83E-04		$3.43 \mathrm{E}-03$	$3.23 \mathrm{E}-04$		3.02E-03	2.84E-04		$5.40 \mathrm{E}-03$	$5.09 \mathrm{E}-04$		$5.00 \mathrm{E}-03$	4.71E-04	U
$1234678-\mathrm{HpCDF}$	7.40	$6.68 \mathrm{E}-02$	$2.66 \mathrm{E}-03$		$6.22 \mathrm{E}-02$	$2.47 \mathrm{E}-03$		$6.85 \mathrm{E}-02$	$2.72 \mathrm{E}-03$		$3.13 \mathrm{E}-03$	1.24E-04		$1.91 \mathrm{E}-01$	$7.60 \mathrm{E}-03$		$4.19 \mathrm{E}-02$	1.67E-03	J EMPC
$1234789-\mathrm{HpCDF}$	7.63	$6.20 \mathrm{E}-03$	1.46E-04		$5.75 \mathrm{E}-03$	1.35E-04		$2.88 \mathrm{E}-03$	$6.75 \mathrm{E}-05$		$3.73 \mathrm{E}-03$	8.75E-05		$4.52 \mathrm{E}-03$	$1.06 \mathrm{E}-04$		$5.20 \mathrm{E}-03$	1.22E-04	
OCDF	8.01	$8.65 \mathrm{E}-03$	8.38E-05		$3.25 \mathrm{E}-03$	3.14E-05		$6.61 \mathrm{E}-03$	6.40E-05	J EMPC	$2.65 \mathrm{E}-03$	$2.57 \mathrm{E}-05$		4.53E-02	4.39E-04	J EMPC	$4.47 \mathrm{E}-03$	4.32E-05	

Table 4-7. Summary of $\log \mathrm{K}_{\mathrm{F}}$, Measured
C_{f}, and Calculated C_{w} Values for
Dioxin/Furan Congeners

Chemicals	$\log K_{F}$	SD0013			SD0011			SD0052		
		$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier	$\overline{\mathrm{C}_{\mathrm{F}}(\mathrm{pg} / \mu \mathrm{L})}$	$\mathrm{C}_{\mathrm{w}}(\mathrm{pg} / \mathrm{L})$	Qualifier
2378-TCDD	6.31	$3.37 \mathrm{E}-03$	$1.65 \mathrm{E}-03$	U	$4.10 \mathrm{E}-03$	$2.02 \mathrm{E}-03$	U	$3.27 \mathrm{E}-03$	1.61E-03	U
12378-PeCDD	6.87	$7.75 \mathrm{E}-03$	$1.05 \mathrm{E}-03$	U	$7.65 \mathrm{E}-03$	1.03E-03		$7.35 \mathrm{E}-03$	9.91E-04	
123478 -HxCDD	7.33	$7.95 \mathrm{E}-03$	3.74E-04		$6.35 \mathrm{E}-03$	2.99E-04		$1.35 \mathrm{E}-02$	$6.35 \mathrm{E}-04$	
123678-HxCDD	7.37	$8.05 \mathrm{E}-03$	$3.44 \mathrm{E}-04$		$2.42 \mathrm{E}-02$	1.03E-03		$8.99 \mathrm{E}-03$	$3.84 \mathrm{E}-04$	
123789-HxCDD	7.37	$7.85 \mathrm{E}-03$	$3.35 \mathrm{E}-04$		$6.25 \mathrm{E}-03$	2.67E-04		$7.58 \mathrm{E}-03$	3.24E-04	
1234678-HpCDD	7.81	$7.63 \mathrm{E}-02$	$1.19 \mathrm{E}-03$		$8.72 \mathrm{E}-02$	$1.36 \mathrm{E}-03$		$1.93 \mathrm{E}-02$	3.02E-04	
OCDD	8.17	$1.55 \mathrm{E}-01$	$1.05 \mathrm{E}-03$		$2.24 \mathrm{E}-01$	$1.51 \mathrm{E}-03$		$4.39 \mathrm{E}-02$	$2.97 \mathrm{E}-04$	
2378-TCDF	5.79	$4.51 \mathrm{E}-03$	7.33E-03		3.67E-03	5.97E-03		$4.46 \mathrm{E}-03$	$7.25 \mathrm{E}-03$	
12378-PeCDF	6.34	$4.21 \mathrm{E}-03$	$1.92 \mathrm{E}-03$		$5.95 \mathrm{E}-03$	2.72E-03		$3.90 \mathrm{E}-03$	$1.78 \mathrm{E}-03$	
23478-PeCDF	6.46	$4.11 \mathrm{E}-03$	$1.41 \mathrm{E}-03$		$5.80 \mathrm{E}-03$	1.99E-03		$3.81 \mathrm{E}-03$	$1.31 \mathrm{E}-03$	
123478-HxCDF	6.90	$3.29 \mathrm{E}-03$	4.12E-04		$4.44 \mathrm{E}-03$	5.57E-04		$2.77 \mathrm{E}-03$	3.47E-04	
123678-HxCDF	6.94	$3.23 \mathrm{E}-03$	$3.68 \mathrm{E}-04$		$4.35 \mathrm{E}-03$	4.96E-04		$2.72 \mathrm{E}-03$	3.10E-04	
234678-HxCDF	7.14	$3.16 \mathrm{E}-03$	$2.28 \mathrm{E}-04$		$4.26 \mathrm{E}-03$	3.08E-04		$2.66 \mathrm{E}-03$	1.92E-04	
123789-HxCDF	7.03	$3.59 \mathrm{E}-03$	$3.38 \mathrm{E}-04$		$4.84 \mathrm{E}-03$	$4.55 \mathrm{E}-04$		$3.02 \mathrm{E}-03$	2.84E-04	
1234678-HpCDF	7.40	$7.81 \mathrm{E}-02$	$3.11 \mathrm{E}-03$		$8.00 \mathrm{E}-02$	$3.18 \mathrm{E}-03$		$3.10 \mathrm{E}-02$	$1.23 \mathrm{E}-03$	
1234789-HpCDF	7.63	$2.62 \mathrm{E}-03$	6.15E-05		$4.06 \mathrm{E}-03$	9.52E-05		$2.68 \mathrm{E}-03$	6.28E-05	
OCDF	8.01	$9.58 \mathrm{E}-03$	$9.28 \mathrm{E}-05$		$1.14 \mathrm{E}-02$	1.10E-04		3.51E-03	3.40E-05	

C_{F}. concentration measured in the polydimethylsiloxane (PDMS) coating on the fiber
$\mathrm{C}_{w}=$ concentration in porewater
$\mathrm{K}_{\mathrm{F}}=$ PDMS fiber-water partition coefficient
pg/L = picogram per liter
$\mathrm{pg} / \mu \mathrm{L}=$ picogram per microlite

Data Qualifiers:

EMPC $=$ estimated
$\mathrm{J}=$ estimated
$u=$ non-detect

Table 4-8. Key SPI Parameters Measured in Each Replicate Image

Station	Rep	Water Depth (m)	Grain Size Major Mode (phi)	Mean RPD (cm)	Wood Debris	Successional Stage
WPAH003	D	4.6	4-3	IND	High	Stage 2 on 3
WPAH004	A	8.8	>4	2.91	High	Stage 3
WPAH004	D	8.2	>4	IND	High	Stage 1 on 3
WPAH005	A	13.0	>4	5.69	Trace	Stage $2 \rightarrow 3$
WPAH005	B	13.0	>4	3.35	Trace	Stage $2 \rightarrow 3$
WPAH006	C	7.6	>4	IND	High	Stage 2 on 3
WPAH007	D	12.0	>4	1.55	High	Stage 1 on 3
WPAH008	A	6.8	>4	1.90	Med	Stage 1 on 3
WPAH008	D	8.2	>4	0.20	High	IND
WPAH009	A	8.6	>4	1.18	Trace	Stage 1 on 3
WPAH009	D	9.6	>4	2.05	Med	Stage 1 on 3
WPAH010	C	16.0	>4	0.44	Med	Stage 1 on 3
WPAH011	B	16.4	>4	3.31	Low	Stage 1 on 3
WPAH012	B	27.4	>4	3.43	Low	Stage 1 on 3
WPAH012	C	27.4	>4	3.37	High	Stage 1 on 3
WPAH013	A	17.8	>4	2.87	None	Stage 1 on 3
WPAH014	A	21.2	>4	2.65	Low	Stage 1 on 3
WPAH015	A	19.6	>4	2.82	Trace	Stage 1 on 3
WPAH016	A	16.0	>4	2.04	Trace	Stage 1 on 3
WPAH017	A	15.4	>4	2.21	None	Stage 1 on 3
WPAH018	A	12.2	>4	2.35	Low	Stage 1 on 3
WPAH019	C	14.0	4-3	0.10	High	Stage 1 on 3
WPAH020	B	14.6	>4	1.08	Med	Stage 1 on 3
WPAH022	B	12.6	>4	2.50	Low	Stage $2 \rightarrow 3$
WPAH022	C	12.8	>4	3.30	Med	Stage 1 on 3
WPAH023	A	7.4	>4	IND	High	IND
WPAH024	F	5.6	>4	0.10	None	IND
WPAH025	A	6.8	>4	0.00	None	Stage 1
WPAH026	A	13.6	>4	1.99	None	Stage $2 \rightarrow 3$
WPAH027	A	4.8	3-2	1.18	High	Stage 1 on 3
WPAH027	C	4.6	2-1	0.56	High	Stage 1 on 3
WPAH028	A	11.4	>4	0.10	High	Stage 1 on 3
WPAH030	A	23.6	>4	2.40	None	Stage 1 on 3
WPAH030	B	23.6	>4	2.30	None	Stage 1 on 3
WPAH031	A	17.6	>4	2.86	None	Stage 1 on 3
WPAH032	B	14.0	>4	4.38	Med	Stage $2 \rightarrow 3$
WPAH033	A	10.6	>4	2.82	Trace	Stage 1 on 3
WPAH034	A	14.8	>4	2.38	Trace	Stage 1 on 3
WPAH035	A	15.8	4-3	1.62	None	Stage 1 on 3
WPAH035	D	16.0	4-3	1.58	None	IND
WPAH036	A	11.8	>4	6.87	None	Stage 1 on 3
WPAH037	A	10.2	>4	4.46	Trace	Stage 1 on 3

Table 4-8. Key SPI Parameters Measured in Each Replicate Image

Station	Rep	Water Depth (m)	Grain Size Major Mode (phi)	$\begin{aligned} & \text { Mean RPD } \\ & (\mathrm{cm}) \end{aligned}$	Wood Debris	Successional Stage
WPAH038	A	7.0	4-3	1.24	None	Stage 1 on 3
WPAH038	D	5.8	4-3	1.36	None	Stage $2 \rightarrow 3$
WPAH039	A	31.2	>4	3.40	None	Stage 1 on 3
WPAH042	A	15.8	>4	2.36	None	Stage 1 on 3
WPAH043	A	26.4	>4	2.98	High	Stage 1 on 3
WPAH045	A	25.4	>4	2.36	None	Stage $2 \rightarrow 3$
WPAH046	A	16.8	4-3	4.26	Med	IND
WPAH046	B	16.2	4-3	2.94	Trace	Stage 1 on 3
WPAH047	A	46.0	3-2	IND	None	Stage 1 on 3
WPAH053	D	6.4	-3	IND	None	IND
WPAH054	A	13.2	>4	2.95	None	Stage 1 on 3
WPAH055	A	14.4	>4	1.80	None	Stage $2 \rightarrow 3$
WPAH056	A	12.8	>4	4.27	None	Stage 1 on 3
WPAH057	B	14.0	>4	2.00	Low	Stage 1 on 3
WPAH058	C	17.0	>4	3.76	None	Stage 1 on 3
WPAH059	A	17.2	>4	2.80	None	Stage 1 on 3
WPAH060	A	15.0	>4	3.27	Trace	Stage 1 on 3
WPAH061	B	14.8	>4	3.43	None	Stage 1 on 2
WPAH061	E	13.0	>4	3.11	Trace	Stage 1 on 2
WPAH062	B	18.6	>4	2.61	None	Stage $2 \rightarrow 3$
WPAH063	A	19.6	>4	2.84	None	Stage 1 on 3
WPAH064	A	18.0	>4	2.73	Trace	Stage 1 on 3
WPAH065	A	18.2	>4	2.22	None	Stage 1 on 3
WPAH065	B	18.2	>4	2.27	None	Stage 1 on 3
WPAH066	A	14.2	>4	2.25	Med	Stage 1 on 3
WPAH067	A	15.6	>4	3.38	None	Stage 1 on 3
WPAH068	A	13.0	>4	3.35	High	Stage 1 on 3
WPAH069	A	14.0	>4	3.31	Med	Stage 1 on 3
WPAH070	A	20.4	>4	2.26	Low	Stage 1 on 3
WPAH071	A	15.8	4-3	1.84	Trace	Stage 1 on 3
WPAH073	A	14.6	>4	3.49	None	Stage 1 on 3
WPAH074	A	29.0	>4	2.58	Med	Stage 1 on 3
WPAH074	B	29.2	>4	3.22	None	Stage 1 on 3
WPAH075	A	21.0	>4	3.16	Low	Stage 1 on 3
WPAH076	A	20.4	>4	3.97	None	Stage 1 on 3
WPAH076	B	20.4	>4	3.06	None	Stage 1 on 3
WPAH077	A	21.2	>4	2.44	Trace	Stage 1 on 3
WPAH078	B	16.8	>4	1.85	Trace	Stage 1 on 3
WPAH079	D	34.2	>4	2.51	None	Stage 1 on 3
WPAH079	E	33.6	>4	2.92	Trace	Stage 1 on 3
WPAH080	A	26.0	>4	3.77	Trace	Stage 1 on 3
WPAH080	B	28.0	>4	3.34	None	Stage 1 on 3

Table 4-8. Key SPI Parameters Measured in Each Replicate Image

Station	Rep	Water Depth (m)	Grain Size Major Mode (phi)	$\begin{aligned} & \text { Mean RPD } \\ & (\mathrm{cm}) \end{aligned}$	Wood Debris	Successional Stage
WPAH081	A	25.0	>4	4.34	None	Stage 1 on 3
WPAH082	A	23.6	>4	3.12	None	Stage 1 on 3
WPAH083	A	26.6	>4	2.60	Med	Stage 1 on 3
WPAH084	A	41.0	>4	2.78	None	Stage 1 on 3
WPAH084	B	41.6	>4	3.26	None	Stage 1 on 3
WPAH085	B	31.2	>4	2.99	None	Stage 1 on 3
WPAH086	B	29.2	>4	4.46	Trace	Stage 1 on 3
WPAH087	C	24.6	>4	2.97	Trace	Stage 1 on 3
WPAH088	A	45.6	>4	1.70	None	Stage 1 on 3
WPAH089	A	49.6	>4	2.71	Trace	Stage 1 on 3
WPAH090	A	41.8	>4	3.29	None	Stage $2 \rightarrow 3$
WPAH091	A	39.0	>4	4.05	None	Stage 1 on 3
WPAH092	A	28.4	>4	2.73	High	Stage 1 on 3
WPAH093	A	39.6	>4	2.78	None	Stage 1 on 3
WPAH093	B	38.4	>4	4.06	Low	Stage 1 on 3
WPAH094	A	53.8	>4	5.36	None	Stage 1 on 3
WPAH095	B	49.6	>4	3.32	None	Stage 1 on 3
WPAH096	A	58.4	>4	2.86	None	Stage 1 on 3
WPAH097	A	7.8	>4	3.02	Trace	Stage 1 on 3
WPAH098	A	3.4	4-3	IND	Med	IND
WPAH099	A	9.4	>4	IND	High	Stage 1 on 3
WPAH100	A	8.2	4-3	0.00	IND	IND
WPAH101	A	45.6	>4	3.32	None	Stage 1 on 3
WPAH102	A	51.6	>4	3.67	None	Stage 1 on 3
WPAH103	A	37.4	>4	3.25	None	Stage 1 on 3
WPAH104	A	37.0	>4	2.61	None	Stage 1 on 3
WPAH105	A	59.2	>4	1.89	None	Stage $2 \rightarrow 3$
KSS-1	A	9.2	>4	3.02	Low	Stage 1 on 3
KSS-2	A	8.0	>4	2.48	Trace	Stage 1 on 3
KSS-3	E	9.6	>4	1.84	None	Stage 1 on 3

Notes:

cm = centimeter
IND = indeterminate
m = meter
RPD = redox potential discontinuity
SPI = sediment profile image
Successional Stage - See Appendix I for description of successional stage criteria and interpretation
Wood Debris Categories

None	$=$	0
Trace	$=$	$>5 \%$
Low	$=$	$5-20 \%$
Med	$=$	$21-50 \%$
High	$=$	$>50 \%$

Table 4-9. Key Plan View Parameters Measured in Each Replicate Image

Station	Rep	Field of View Imaged Calc. $\left(\mathrm{m}^{2}\right)$	Sediment Type	Lebensspuren ${ }^{\text {a }}$	Epifauna	Wood Debris
WPAH003	D	0.24	Wood and silt	None	No	High
WPAH004	A	0.26	Wood and silt	Low	Yes	High
WPAH004	D	0.15	Wood and silt	Low	Yes	High
WPAH005	A	0.18	Silt	Low	Yes	Low
WPAH005	B	0.19	Silt	Low	Yes	Trace
WPAH006	C	0.27	Wood and silt	Low	No	High
WPAH007	D	0.22	Wood and silt	Low	Yes	High
WPAH008	A	0.21	Silt	Med	Yes	Med
WPAH008	D	0.24	Wood and silt	Med	Yes	High
WPAH009	B	0.14	Silt	Low	Yes	Low
WPAH009	C	0.11	Silt	Med	Yes	Trace
WPAH010	C	0.14	Silt	Med	Yes	Trace
WPAH011	B	0.15	Silt	Med	No	None
WPAH012	E	0.18	Silt	Med	Yes	Low-Med
WPAH012	F	0.26	Silt	Med	Yes	Med
WPAH013	A	0.19	Silt	Med	Yes	Trace
WPAH014	A	0.16	Silt	Med	Yes	Low
WPAH015	B	0.22	Silt	Low	Yes	Trace-Low
WPAH016	A	0.23	Silt	Med	Yes	Trace
WPAH017	A	0.20	Silt	Med	Yes	Trace
WPAH018	A	0.25	Silt	Low	Yes	Med
WPAH019	C	0.15	Silty sand	Low	No	Low
WPAH020	C	0.11	Ind	None	No	Ind
WPAH022	B	0.23	Silt	Med	Yes	Low
WPAH022	C	0.25	Silt	Med	No	Trace
WPAH023	A	0.11	Wood	None	Yes	High
WPAH024	F	0.25	IND	None	Yes	High
WPAH025	A	0.20	Silt	Low	Yes	None
WPAH026	A	0.11	Silt	Low	Yes	None
WPAH027	C	0.27	Wood and silty sand	None	Yes	High
WPAH027	D	0.24	Wood and silty sand	Low	No	High
WPAH028	A	0.10	Wood and silt	None	Yes	High
WPAH030	A	0.23	Silt	Med	Yes	None
WPAH030	B	0.25	Silt	Med	No	None
WPAH031	A	0.28	Silt	Med	Yes	None
WPAH032	B	0.22	Silt	Med	Yes	Trace
WPAH033	A	0.11	Silt	Low	Yes	Trace
WPAH034	A	0.20	Silt	Low	Yes	Trace
WPAH035	A	0.26	Silt	Med	Yes	Trace-Low
WPAH035	C	0.21	Silt with rocks	Med	Yes	None
WPAH036	A	0.29	Silt	Med	Yes	Trace
WPAH037	A	0.21	Silt	High	No	Med

Table 4-9. Key Plan View Parameters Measured in Each Replicate Image

Station	Rep	Field of View Imaged Calc. (m^{2})	Sediment Type	Lebensspuren ${ }^{\text {a }}$	Epifauna	Wood Debris
WPAH038	A	IND	IND	IND	IND	None
WPAH038	D	0.20	Sandy silt	Med	No	Trace
WPAH039	A	0.09	Silt	Med	Yes	Med
WPAH042	A	0.23	Silt	Med	Yes	Low
WPAH043	A	0.21	Wood and silt	Med	Yes	High
WPAH045	A	0.26	Silt	Med	Yes	None
WPAH046	A	0.38	Silty sand	Med	No	Med
WPAH046	B	0.47	Silty sand	Med	No	Low
WPAH047	A	0.22	Sand	Med	Yes	Trace
WPAH053	D	0.20	Gravel	Low	Yes	Low
WPAH054	A	0.16	Silt	Med	No	Trace
WPAH055	A	0.22	Silt	Med	Yes	Low
WPAH056	A	0.22	Silt	Med	No	None
WPAH057	D	0.17	Silt	Med	Yes	Low
WPAH058	A	0.13	Silt	Med	No	None
WPAH059	A	0.18	Silt	Med	No	Trace
WPAH060	A	0.19	Sandy silt	Med	Yes	Trace
WPAH061	B	0.16	Silt	Med	Yes	Trace
WPAH061	E	0.17	Silt	Low	Yes	Trace
WPAH062	B	0.17	Silt	Med	Yes	Trace
WPAH063	E	0.24	Silt	Med	Yes	Low
WPAH064	C	0.22	Silt	Med-High	Yes	Low
WPAH065	A	0.21	Silt	Med	Yes	None
WPAH065	D	0.16	Silt	Med	No	Trace
WPAH066	A	0.20	Silt	Med	No	Med
WPAH067	A	0.22	Silt	Med	Yes	Trace
WPAH068	B	0.25	Silt	Med	Yes	Med
WPAH069	A	0.24	Silt	Med	Yes	High
WPAH070	A	0.18	Silt	Med	Yes	Low
WPAH071	A	0.25	Silt	Med-High	Yes	Trace
WPAH073	C	0.22	Silt	Med	Yes	Trace
WPAH074	C	0.22	Sandy silt	Med	Yes	None
WPAH074	E	0.26	Sandy silt	Med	Yes	None
WPAH075	E	0.15	Silt	Med	Yes	None
WPAH076	A	IND	Silt	IND	Yes	IND
WPAH076	B	IND	Silt	IND	Yes	IND
WPAH077	B	0.22	Silt	Med	No	None
WPAH078	A	0.21	Silt	Med-High	No	Low
WPAH079	D	0.24	Sandy silt	Med	Yes	None
WPAH079	E	0.16	Sandy silt	Med	Yes	None
WPAH080	A	0.21	Silt	Med	Yes	None
WPAH080	B	0.24	Silt	Med	Yes	None

Table 4-9. Key Plan View Parameters Measured in Each Replicate Image

Station	Rep	Field of View Imaged Calc. $\left(\mathrm{m}^{2}\right)$	Sediment Type	Lebensspuren ${ }^{\text {a }}$	Epifauna	Wood Debris
WPAH081	A	0.24	Silt	Med	Yes	Trace
WPAH082	A	0.20	Silt	Med	Yes	Trace
WPAH083	A	0.21	Silt	Med	Yes	Med
WPAH084	A	0.32	Silt	Med	Yes	Trace
WPAH084	B	0.23	Silt	Med	Yes	None
WPAH085	B	0.19	Silt	Low-Med	Yes	Trace
WPAH086	A	0.24	Silt	Low-Med	Yes	None
WPAH087	C	0.17	Silt	Med	No	Low
WPAH088	A	0.25	Silt	Med	Yes	Trace
WPAH089	A	0.22	Silt	Med	Yes	Trace
WPAH090	A	0.15	Silt	Low-Med	Yes	None
WPAH091	A	0.16	Silt	Low	Yes	Trace
WPAH092	A	0.44	Silt	Low	Yes	High
WPAH093	A	0.30	Silt	Low	Yes	None
WPAH093	B	0.34	Silt	Med	Yes	None
WPAH094	A	0.26	Silt	Med	Yes	None
WPAH095	B	0.22	Silt	Med	Yes	Trace
WPAH096	A	0.24	Silt	Med-High	Yes	None
WPAH097	B	0.12	IND	None	Yes	Ind
WPAH098	A	0.11	Silt	None	No	Ind
WPAH099	A	0.38	Silt	Low	No	High
WPAH100	C	0.12	Silt	None	No	Ind
WPAH101	A	0.24	Silt	Med	Yes	None
WPAH102	A	0.27	Silt	Med	Yes	None
WPAH103	A	0.17	Silt	Med-High	No	None
WPAH104	A	0.11	Silt	Med	No	None
WPAH105	A	0.20	Silt	Low	Yes	Trace
KSS-1	A	0.26	Silt	Med	Yes	Trace
KSS-2	A	0.25	Silt	Low	Yes	Trace
KSS-3	B	0.22	Silt	Low	Yes	None

Notes:
IND = indeterminate
$\mathrm{m}^{2}=$ square meter
${ }^{a}$ Lebensspuren are biologically formed, sedimentary structures found in sediments, including tracks, trails, burrows, borings, and fecal casts.

Wood Debris Categories		
None	$=$	0
Trace	$=$	$>5 \%$
Low	$=$	$5-20 \%$
Med	$=$	$21-50 \%$
High	$=$	$>50 \%$

Appendix A
FIELD NOTES

Outdoor writing products
for Outdoor writing people

Rite in the Rain
A patented, environmentally
responsible, all-weather writing pap that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen Rite in the Rain ensures that your notes survive the rigors of the field regardless of the conditions.
J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA www.RiteintheRain.com

Item No. 311
NSN: 7530-01-433-5654
ISBN: 978-1-932149-29-6
Made in the USA
US Pat No. 6,863,940

	Jane Sextor
	Integral Consulting Inc.
Address	41115 Ares. \#550
	seattle WA 98104
	(206) 230-9600

Project Westem Port Angeles Harbor RI/FS

4

Jane Sexton Managing Scientist

411 1st Avenue S, Suite 550 Seattle, WA 98104
206.230.9600 Main 206.957.0342 Direct 206.230.9601 Fax

CONTENTS

Tuesday, Jume 25, 2013
Weather = $\mathrm{Calm}, 55^{\circ} \mathrm{F}$, overcass
crew: Sexton (fieldlead), Wodricli, Estella Eaton, Putram
Derek Beery, City of Port Anecks.
0745 Meetar boar dock; mobgear for day
$0800 H \xi 5$ briefing
0816 Uncunay
0848 First grab at 8tation WPAHO26 overpenctration, silt little bauk dehris
0855 Second grab ar Station UPAHO26 Merpenctration, silt little bank debris remove weigluts from van Veen.
0907 Thire grab-onerpenctration
O913 Fourth attcmpor eleay; 60-70\% moistuce. silt with $<10 \%$ wood debris $3 / 4 \mathrm{WV} ; 17 \mathrm{~cm}$ loyR S/1 sulfide odor i sunface mbioy/RE/2

0954 154 attmyral sfaha WPAHOZ $1 / 275 \%$ $1 / 2$ UV aceptuble, 17 cm pan. silt with $<109 \cdot$ wood debris loYRS 11 sulfide odor, shonger, sulider than station WPAH O2b, high so 90 moristuce. lighter broun ved of langer 10 YR5 $/ 2$ $g-s=47.5 \%$
$10261^{\text {int }}$ attungit at Station WPAHOBO
Pertue grass - Full $V \sqrt{ }$ pen degth $=$ less moistme content 30%, a litth mase day in silt $10 Y R S / 1$, no odor, liter brom Vedox layer 10 YRS/2, 13 cm pen. $g-s=62.5 \%$ FINES $<5 \%$ wood debris
1100 1st allemingt at Ssatim WPAHO 031
sloged sanface $7-11 \mathrm{~cm}$, mijcollected from 11 cm side, $n 3090$ masinue contunt clayey silt. 10 YR 511 , wo odar, lighter brown redox layer $10 Y R S / 2$, 8 m smace shell fragmenks, litte bavk despis, $12 \pm$ wams $\mathrm{g}-\mathrm{s}=60 \%$ < 5% wood / bark desvis
1134 Ist astennet at Statin WPAHO32 13 cm pen. Lok of large prieces of wood debris $\&$ bark $\approx 40^{\circ} 90$ moisture. lange pricles of wood vemoved (after scigping) from <ample >2 inches in length. No oder layey silt 10 YR 511 ; vedor layger sligutly greener ar 5 YR $5 / 2 \quad 20 \%$ wood $g-s=62.5 \%$ Fines. bark ing.s sandle
1200 luren break (1 hv)
1302 18F grab as statin WBAH+033
14 cm pen. $10 Y R 5 / 1$ with lignter $10 Y R 5 / 2$ on sanface redox layer
cont. nest pg .
(station WPart 033 cont.)
clays silt with sand, approx 10% wood debris \& bark, $1 \lg$ stick removed.
no oder in grab, but conugosite had faint sulfide oder 1090 moisture content $g-s=18 \%$ fine (bank fines closing sieve $) 55 \%$ w/ wines.
1330 it attempt at Station WPAH 034

13353 atc attenpt-carper w/ mud; garbage after rinsing off - off static
1343 th atthugt reposition 2.5 mN
15 am penetration, shell fracgmours
10% moisture contents
lo yR $5 / 1$ with lighter surface 10 YR $5 / 2$ vices, (ism piece of slate removed ($1 \times 2^{\prime \prime}$) silt with some sand, 110 oder, 10%
wood deprie/bark, 3 Lg wombs (6 ") obsemedte $a-s=46 \%$ FINES.
142150 grab ar station WFAHO35 wash ont
1425 the attempt - gravel + Vang ($3 \times 5^{\prime \prime}$) piece of bark.
1429 3nd attengr 2.5 mN - inadequate pen.
$2 / 2$ inch ming.

1433 4 th attune 5 MN. Washed ans gravel, rock, barnades.
14385 th ailsmast little wert of 3 rel altungt. $10 Y R 2 / 2$ with lighter surface of $s=35 \%$ 10 YR 512 . lange prices of wood debris ANES (back) removed ($\because>2$ in) nom al odor rook, gravel on surface (vemured) !cm sand is upper 1 ines with lower 3 inches mostly silt. 21090 moisture, 5% wood
1514 is grab ar stand WPAHO36 16 cm pen. T.FYR $2.5 / 1$ with lighter sinface 10 YR 4.13. Fowl pieces of bark, bask in jaws, shell frags. nounal odor 10% mistime $<5 \%$ bark silt with little sand. little sheen $1 / 2^{\prime \prime}$ dias. $g-s=62.59$. FiNES
1545
grab ar Station WPAHO37
16.5 cm pen - $10 Y R 5 / 1$ with lighter surface (redox) 10 YR $5 / 2$ no ode silt w/hitle sand. 12 small $(0.5 \mathrm{~cm})$ cable verooed from sample. $1-2 \%$ shell frap and $<5 \%$ wood debris (mix q bask x milled word) sulf. de odor in composite

$$
g . s=45 \%+N N G
$$

1612 Break per captain request.
1648 1 Sr attemper as stane WP Att 038 3 cm pen.
1651 and grab. Sloped surface 4-11 cm pen some sediment collected from 11 cm end of vanVeen. hamal odor, shell frag <590, IOYR $4 / 1$ through out. No visible wood. debris. Kelp on gonface 8 in jaws.
1701 zed grabs same description poserious only move kelp on surface of sediment TVS sample taken. from this grab Elincardiun clam. in sample, verumed to harbor. Also small crabs, removed.
1714 th grab same desenpition oo previn except more clay than silt and lots of wows, very thin wows mixed throughout $g-s=50 \%$
1739 is grab at Station WPAHO42
16 cm pen. scueral wows t crabs removed from sample. clayey silt with less clay than Station WYat 038 bur move than previans stations. 10 YR $4 / 1$ with lighter surface vedox lager 10 YR $4 / 2<10 \%$ moisture no wood debris, no shell flags, no odor $\mathrm{g}-\mathrm{S}=65 \%$ FINES

1808 Returnto Dock; demobgear
1817 Depart Kittiwake
1900 Take samples to field storage facility re ice \& mob gear for tomonnw. End of Day

Wednesday, June 26
Weather: Right rain, cloudy overcast, $50-55^{\circ} \mathrm{F}$
Crew: Sexton, Wodziclei, Estella (Integral) Eaton, Putman (BrioMarine)
0730 Meet at boat; mob gear + devon; titis meeting. 0806 underway
0812 list grab at station WPAHO22 10 YR $5 / 1$ with lighter surface $10 y R_{5 / 2}$ 10% moisture content, la ge pisces of bask. sparse throughout ($\langle 5 \%$) clam swell sm cabs (removed) sulfide odor silt with little sand, some terrestrial. straw like grass on surface. 13 cm pen $\mathrm{g}-\mathrm{s}=35 \%$ FINES
0835 Is grab at station UPAHO23. inadequate penetration mug 3 inches. switch to vV with weights
0847 Ind grab-inadequase penetration green seaweed in surface. (sea lettuce) 0856 2Mgrab - 12 cm penetration Lots or small Waidedebris (eg. cave and bark fragments about. Sawdust) 10% moisture content, about 80%. (strong) lots of shell hash sm p prese of sea lettuce on surface $\because 3$ in ia. $\mathrm{g}-\mathrm{s}=\$ 5 \%$ Fines

0927188 grabar Static WPAHTO40. 16 cm pen. Homogeneous silt 7.5 YR 2.511 with tighter vedas layer $10 Y R 5 / 2,10 \%$ morita sulfide odor, no wood or shed frags ven little fine grain sand. $g-s=75 \%$ FINE
0946 Collect split sample from station WPA1H040. Deviation from proposed location in SAP (Integraeit 2013) due to perfectly filled grab with sufficient sediment for split. $\leq 283 \mathrm{~N}$ or station 39 .
1010 Break
1022 1SE grab at Station WPAA+ 041 7.5 YR $4 / 1$ with lighter senfree vedox layer $2.5 \mathrm{y} 4 / 2$. Homogeneous silt, no word debris or shell, thin red worms, approx 10-15\% mosime 16 cm pen. barely any sand.
1052 $g-5=62.590$ kings
AT grab ar Station ATPAHO43 sloped surface $14-16 \mathrm{~cm}$ pen. silt $W / \approx 30-40 \%$ sm. Wood debris normal odor, no shell, io pieces $5^{\prime \prime}$ log of back on surface + some lg. bask in (come. not pg.)
(station WPAHO 43 cont.)
in sampling interval. 7.5 YR $2.5 / 1$ with lighter red ox layer $2,5 y 41210 \%$ moisture $g-S=50 \%$ FINES
1121184 grab at Station WPAH 044
11 cm pen. Lighter sinface loge red $1-1 s_{c m}$ $2.5 Y 512,7.5$ YR 411 below. lighter colved layer consistureg of mousse and $1.5-10 \mathrm{~cm}$ has move cain. Worms removed from sample (photo), no oder, silt. the particles of agamic debris. no shell. 10% moseame g-S $=90 \%$ FINES
1145 Lures break
$12371^{\text {st }}$ grab ar Station WPAT 1045
silt with very little sand $20 \% 0$ moisture $<5 \%$ wood debris (sm stickers, reed like grass) 10 YR 4/1 and light er thin vedox layer 10 YR 5/2. No odor. Few whams (removed) $g-s=60 \%$ FINES
1310 180 attrmupt ar Station WPAtIO47 FAne ARIEAP inadequate pen. Lots of sand.
1316 2nd atheist - wash out; rock in jus of VV 1321 3 rd attengst - inadeg; pen in sand
1328. 4thattengs - inadeq, pen muse sand leaving station will retry at and of day with powergpab.

1340 Collect equipment filter wipe FWOOOI on V Ghost wipe lot + Jan 42011 Exp. July 2014 for metals. (supplied by AUs) Whatman Filter popersfor $\mathrm{Hg}, \mathrm{SVOCS}$, PCBS, PCOD|FS. (supplied buy ACS)
1350 Collect filter paper blank. FBOOO1 Ghost wipe lot+ Jan $42011 /$ Exp. July 2014 for metals. (supplied by ALS) Whatman Filter panes for Hz, SVOCS puBS, PCDO/Fs. (supplied by ACS).
1403 St grabs at station WPAHO46 inadequate pen. 6 cm sand + bark 1408 and grab -inadequate pen. 6 cm switching to power grab.
1434 Bad attomgor wok in jaws
1443 th attenige 11 cm penetration 10 YR. 4/1 througghowe lots of rok throughout and some broken clam shells. silt with some sand normal odor. Will switch and do split sawnde here due to roes + move sand ar station 47 and difficulty meehng penetration depth at Station WPAHO 47. $\%$ FINES $=9 \%$ FINES

1503 5th attmugt. Same description as goverious grab bur 12 cm pen.
$15166^{\text {th }}$ attmpl. 12.5 cm pen same descrigtion sloged suface. spolit
collected
1553 attemeg at 8 SAtion WPAHO 47 with powergrab wash out
1606 2nd attenngh W/ Power grab-washed ost; rock in the jaws.
1619 3ra attemgy woshour voeus in jaus wots of roeles in grab
1638 moved 250 metess sowth. 7.5 cm recorry, jeer SAP collecting sonyple nomel adw SY $2.5 / 2$. lithe wood $<3 \%$, fine sand with a little sick. 10% moisture content, flw svell frags.

$$
g-s=16 \% \text { FINES }
$$

1705 IS grab at slation WPAHO39 are perctration
1711 2nd grab at Station 39 pen. 17 cm $10 Y R 4 / 1$ with redog layer at $10 \mathrm{YR} 5 / 2$ n 20\% wood debuis, lg wam ($35-6$ in) on ontside of $V V 209$ moishure casions sulfide odor. homogeneous sitt. $g-5=40 \%$ FNES

1734 Return to Dock
1830 Take samples to field ssorage facility ve ice sanigles 8 mob gear for tomomor. End of Day

$$
\frac{9 \cdot \operatorname{Sextinn}}{6 / 26 / 13}
$$

Thursday, June 21,2013
Weather: light rain, overcast, $50-55^{\circ} \mathrm{F}$
Crew: some as previous day
0730 meet ar boar; mob gear + deco; H is
meeting
0816 Unduway
0838 185 grab ar Station WPA+1028
16 cm pen loyR $4 / 1$ with thin vedox layer on senfuee loyR $4 / 2$. Lg pieces of bark on surface with agporx. 50% wood debris throughout sample, sulfur oder, um in grab, sea lettuce on surface no shell $g-s=50 \%$ FINES wood thanyhare poor er ese
0909 LSH grab at Station WPAHO24 W7. Who $10 Y R 2 / 2$ no visible redo layer due to Sea lettuce on top of moss of surface of grab-removed prior to sample collechon 16 cm pear sulfur odor. crabs tee obsewed in grab. silt with wite sonde (little) sits with small amour of organic debris. no visible bank; 200% nov 0933 2ra grab - additional vol. needed for bioacumulation station. same description as previous, but no eel $g-s=37.5 \%$ FINES

1020 Break.
1047130 grab ar Station WPAHO25 jus SE of new dock addition. IOYR 4|1 with lighter loye $4 / 2$ redox layers. 14 cmpen . candy silt with sulfide odor no wood debris, crab (remade), pice e of Kelp attached to mussel swell (approx $2^{\prime \prime}$) removed from surface. 20% moisture,
1106 The grabs - additimal volume for bisace. some descrigtionas previous grab except surface was sloped $13-15$ am pen, no crab, no kelp, bur mussel snell frag.
11173 res grabs-cadisiond volume for biores. sane desertion as previous grabs hue r 16 cm pens $\& 2$ lager crabs $(1-2 \mathrm{in})$ removed from sample

$$
g \cdot s=45 \% \text { FiNes. }
$$

1200 hunch break.
1241 is attempt ar station WPAHO27

- Only sea lettuce, Kelp, and I spot prawn. trace sediment
1248 Tad grab- $12-16 \mathrm{~cm} 7.5$ YR. Grabs cable covered with Kelp+ cuba went it came out of water. Kelp + lila on surface centimes next pg \rightarrow
(station WPAHO 27 continued)
of grab. 2 sm spot prawns remived. silf with 50% shell hasn, trace. wood debvis, nomal odov, 10% moistme $g-S=5 \%$ FINES (vesults confounded by wood)
1304 3ide grab. Guss seaweed (assorted)
1306 th grab. $1 / 2$ vanveen with 12 cm pen bonke chips on sunface. some deseniption as grab $\# 1$, but $\underline{n} 20 \%$ sawdust (coanse)
1313 昜 convab. 15 cm pen. $\frac{n}{7} 50 \%$ wood (sawiviust) debris. 7.5 YR $4 / 2$ eel in VanVeen, cap cago woms (remard)
$13236^{\text {th }}$ grah. $15 \mathrm{~cm} p e n$. Some deseription as 5th grab, but with loks of veny swernile shrimp, lawe wom (vemwed)
1401 1stattungt at Station WPAHOOS owerpenctration. switeling no noweighe $v V$
14124 Me 2st of station dee to permawent log boom protectry gies 16.5 cm penchation. 10 YR $4 / 1$ with thin vedox layer to YR 512 . Sligur suffide odor. Soudy esit with 5-10\% barke many jewenile crabs. $20-30 \%$ moisture
$14263^{\text {rd }}$ grabs - 16 cm peretration same deseription as previous clam shell less wood $\angle 5 \%$. nomal odor, no crabs. $g-s=50 \%$ FINES.

1526 For grab ar WPAA+006-inadequate penctration. 8 cm .
1531 vad grab - vock in jaws
1533 moved $2 \mathrm{mE} 3^{\text {rad }}$ grab inadequate pen.
1542 switened to heary VV. vock \& picie of bavk. May have nir submenged log.
1546 Moved 6 m pallel
17 cm pen. 10 Yk $2 / 1$ with lighter vedx layer loyk 4/2. Some bargu picces of bouk ($\because 590$) smaller crasse sauduse moistue conkent 30%, suell fragmenks faint sulfide odor, lange prieces of baike renwed frow sangle

$$
g-s=42.5 \% \text { FINEs }
$$

1643 log boon on station, moved 3 MEast 1 so atteuph at Station WPAI+007 washed our, larie picces of bouk, jaus open, seaut sediment.
1648 mone 46 क. metas east of spation coovdinate (dvifted back) wossh our, wood in jaurs a little move sediment in grab, iawrsopen
1652 move 10 meters eas from original coodirate, 13 cm pen. Sediment covered by lasge prece of kely.
(stationWPAtt 607 cont.)
7.5 YR $2.5 / 1$ with lighter vedof lager 5 Y $4 / 2$. sandy silt $<5 \%$ wood dennis + bark. sulfide odor 15% moisture content. clam shell (broken) spot prawn removed. g's $=68 \%$ fins
1710. lg piece of bark, wash our but sediment in grab - not collected
$1713 \quad 17 \mathrm{~cm}$ penetration
1740 Return to dower, demobgear
1805 Degrart Kittiwake. Send Stefan Zach to dinner. Ware, on cos
1815-1915 stefan + zach @dinner
1915-2130 work on cols + simple QH. Stefan

+ Zach leave +2 och leave
2130-2230 Sexton takes ice poclecks to offsite freener. Ice prefects to be used
- for tomonow'sshipment of samples 2400 End of Day for Sexton

Friday, June 28,2013
Weather: overcast, calm $55^{\circ} \mathrm{F}$
crew: same at previous day.
0730 meet at boat; mob gear \checkmark deco; H is meeting
0806 Underway, Stations WPAHOO8 + WPDAHO12 ave under logs.
0815185 grab at Station WPAT+01.4 -over pen 081917 cm pen. IOYR $2 / 2$ with $2.5 y 412$ from $\phi-5 \mathrm{~cm}$. sulfide odor. sandy silt 2090 misisture with vary little (trace) wood (bark. worm removed. $g-s=48 \%$ 083117 cm pen. same description as previous grab. no worn +1 lg pice of buk " $\times 4$ ". only collected from $1 / 2 v V$ due to. over penetration in $1 / 2$ of VV
084117 cm pen. Same description as first grab only collected $1 / 2 \mathrm{VV}$ due to over panernation on $1 / 2$ (other side not collected).
0907 ILK grab at Station WPAHOO16 16.5 cm pens. Sandy Silt (very fine grain) 10 YR $4 \mid 1$ with thin vedox layer 2.5 y $4 / 2$ some shell frags + worm tribes, nome odor 30-40\% moishme trace wood worn venoved, g-s $=45 \%$ Fine

0925 2nd grab at Statim WPAHOI6. 16.5 cm pen. Same deserigtion as previaus grab.
1016 isk grabs at station WPAH 18 12 12.14 cm pen lots of lg pieced of bork, on surface + through
out sample $30 \% \mathrm{lg}$. vood pieces 20% smaile our sample $30 \% \mathrm{lg}$. vood pieces 20% smaller wood, shong sulfide odor, $10^{-} 15 \%$ morisme loyR $2 / 1$ with ligpter green tiur redix lajer on sunface $2,5 y$ 5/4. silk. majoity of xedimene ni bouk, which is cavefully seraged and bak discaided
1034 2rdgrab at station WPAHO18. same deseription as previons grab but 10 cm pen.
1046 3ra gras same deserigion. 12 cm pen $g-S=60 \%$ FINGS
1122 gorab ar station WPATtO19 Need to try to obtain 40 FF MCLW neaw this station coordinate. Is attenypt in 8 meters water degth (muw). Erab a wosh our.
1127 2nd grab - 12 -meters MLLLW (40ft).
$17 \mathrm{~cm} p e n .1$ OYR $2 / 1$ throughour. bouk 10 YR 21150% couse wood chip
11433 3rdgrab $1 / 2 @ 17 \mathrm{~cm} .1 / 2$ discunded $(12.1 \mathrm{~m})$ (descripicontinued for both gralss) \longrightarrow
(sample deseribe Sration WPA 8619).
trace shell frags and same langer prices of bark $1-2^{\prime \prime}$. shong sulfide odor. grs 334 FINES
1210 Luwen break
1225 Ls attemper at SAation WPAHO20 (12.2M) wash out Loks of bonks wod in jaw-s
1231 vad attempt - washed our + inadeq uate penctration $(12.2 \mathrm{M})$ scwitching to weiguted vanVeer
1241 3ra attemps-washed out 12.2 m water deyst NuW iradequate penetratmon more wood + bavk in jaws. Moring 50 M Rash
1246 V' came upside down back to sunface on 4th atthugt hit log?
12505 th attlwid-VV usside down again.
1300 Back ar doek, demob gear \& stare for weekend.
1330 Begin pacllazing samples for shipment
1700 Samples at Fed Ex for ALS-Keeso
Somses jacked us by conier fron Newfillas. Stefoal teaves for Bellinghan
1730 Zanh leaves for Scattle after ice ven 1830 End of Day. Clean up cooless/sungplies. O. sution
$6 / 28 / 13$

Monday, Tuly 1,2013
Weather: Hogsy, overcask, slight wind 55° humid
Crew: Sexton, Wodricki, Essella (Integral)
Charlie Eaton + Chis Eaton (Priomarine)
0730 meet at boar ; mob gear + decon sinngles His meeting
0822 Underway. Cheeked out statims WPAHOO8 012 . Blocked by loge Call Mike at Port of Port Angcles 360-460-2304 to coordikase a date \& time to open the boom sticks to gain acces to
0843181 grab ar station WPat+009. 2.5 y $3 / 2$ with lighter redox layes 5 y $5 / 2$, no odu 12 cm , nomul odor 20% niosture organic dernis, sheel frags. Scaut buk $(\angle 5 \%)$, bunace in piece of bark 0905 zua atsmogr - worled our.
0919 3us grab 17 cm pen. sumu dexesiphn as fikor agab; only collected $1 / 20 \mathrm{~V}$
$09304^{\text {th }}$ grab 17 cm pen. same descenptia as fuss grab witr move shelle, crabshell 0940 5th cgab 16 cm pen. Some desength m as fiver grab.

$$
g-s=35 \% \text { FINSS }
$$

1022 158 grabat Stasion WPAHOO3, 12 cmpen 7.5 YR $2.5 / 1$ throughour no visible redop layer due to layer of $1-2^{\prime \prime}$ barks sea lettuce on surface. 8090 counse sauvdurs wood panticles thrangrour smcrab (venwred) cok of clua in. jous of variVeen. Switch to leeighted sah Veen. 20% moissme $g \cdot s=1039$ confwidel
 (vemold) 4 small crabs. Lazg piece of bask on sunfacer $3 \times 10^{\prime \prime}$ Uwa on surface and in jaus of grab. Some desengstion as previaus grab. juvenile (lanal) soot pramn? amphirad?
1054 3id grab. Twadequate punerration 1100 ath ggab. Stick ins side jaw bur held together - no wash ouer. Same desengrion as firse grabs. no crabss or juverile Lawac obsured, 13 cm pen
111P 5 th grar. 14 cm pen. Ig decemposed crab molt " "cluw to claw vemoved frou grab (red rock cabs). same descoposion-190 wood \%omosome as first grak.
1147 lisan beveak

1238 158 guib ar statim UPAHO49ore peretration, Kely surface
1244 Vnd grab-arergenctration, suviten to $^{\text {an }}$ $\mathrm{VWO}^{\mathrm{W}}$ no meight
1256 3us giab. 17 cm penctration Kelpst Ulva on surface also white fibas on edges of lllar (photo) $10 Y R 2 / 2$ throughout Litte onganic debris $20^{\circ} \%$ olnoisture 10% ovrod
1309 th grab 17 cm penctration, some desenp as previous grats, but no white fibers visible. sulfidé oder-strong. $g-s=35 \%$ FINES
1343 I8r grab ar Statim WPATOSO 7.5 YR $2.5 / 1$ with liguter vedxx langer $2.5 y 5 / 2$. Also loyR $6 / 3$ layer from 4-6 cm with outmeal like texture sulfide oder 25-30\% Wood, 20-30\% moisture, small crab (remored), 17 cm penctration. $g-s=5090$ fines
14012 grab. 17 cm pentitation, somue description as poreviaus grab ineluding crab (removed) but $10 y \mathrm{k}$ 6/3 layer was from 4-5cm.

1412 3rdagab. 17 cmpenetratim, some desenphou as firergrab, bus 10 YR $6 / 3$ layer firm $3-10 \mathrm{~cm}$
$14264^{3} \mathrm{~g}$ grab. 17 cm per. Same desengtin as firor arab, but loyr $6 / 3$ lager from 2-10 cm - fomidpur of a sute egge case ingrab

1534 SVgrais ar station WPAHO10.
17 cm penertation $30-4090 \mathrm{ma}^{2}$ mure sm. cuab (vemoved) 5 Y $2.5 / 2$ thooughant with thin vedox lager $556 / 2$, home odor. soit with little sandy. 10-15\% wood debvis.
1549 2nd grab - over penctration
11554 3rd grab-overpenetration
$15594^{\text {th }}$ grab - orergenctration
1606 5th gjab- 17 cm pen. Same description as 15 e grab, bur onsuned sm crab (removed) some of the lighter layR. $6 / 3$ previously seen ar Stahu. WPARYOSO was danecrapersed thoughour grab (15\%)
$16186^{\text {ch }}$ grab - 17 cm pen. same deseripson as $5^{\text {th }}$ grabs bur with less loyR $/ 3$ $(5-1090)$
16307 th gras $-17 \mathrm{~cm} \cdot 1 / 2 \mathrm{VV}$ orerpen. not collected. $g-s=50^{\circ} 9 \circ$ FINss.

1706 Ir grab ait Station WPAHIOII. over penetration. Return to dock.
1724 Back at dock, demobs gear
1800 To field storage facility, pick up ice, make ice bags for ogfosik freezer stavage, mobilize gear for timonow

Tuesday, Duly 2,2013
Weather: Oveneass, windy (gore fore winds expected today) $55 \cdot 60^{\circ} \mathrm{F}$
Crew: same as previous day
0730 meet at boar; mob gear, deco
sampling equip. ; H\&s meeting
0803 . Underway.
0822 Maras or Station WPAtto0 415 cm pen. Hila on surface 5 y $2.5 / 2$ wis liguser vedox lager $595 / 2$. nounal odor. 7090 wood dennis (course salade dock shrimp (removed), no skill 30% moisture content
0838
jud grab at 16 cm pen. Same descry a previov, but also worn tube the ned worn (vemoved), very small clave (0.5 cm), shrimp juvenile (coral), sea shell froumens.
0850 .3nd nan $1 / 2$ v V acengtable, $1 / 2$ vV not used. Same description oo fives gray but no organisms.
$08594^{\text {th }}$ grab. suiguthy sloped surface full $V V 15-13 \mathrm{~cm}$. Sane desengriv as fiver grab but no organisms.
09135 mgrab . 15 cm pen. some as fire ger red worm
0925. bth gran. 16 cm pan. Save deseription as fies grab, crab
Q940 9 (th 2 grab $16-14 \mathrm{am}$. same descriftion as firso grath with no Wra + wown tubes on sunface. g-s $=42.5 \%$ FINES
1014 15S altmust ar Station WRAHO12 under penetration. switen to weignted $\checkmark \vee$.
1027 vnd grab 15 cm . pen. piece of cable + lavge pieces of bati w jaws of grats. No wosh out though. 30 M West of discontinued disposal ara, sik 7.5 YR $4 / \frac{1}{5}$ with thin vedoy 2.5 Y $5 / 2$ noodor $50^{\circ} \%$ uood debis, few shell fragments. 20% moishure wom (vemoved), Lgbonk 1/2VV sunfoece
1042 2ad attungdr - wash out, bave in jaws $10454^{\text {th }}$ altenint-wos out, bouk in jouns $5^{\prime \prime}$ sq.
1051 5th attewigr - 15 cm penetration. no bavk on surface. Same descriph ich oo ${ }^{\text {ti }} 1$ bue no bank in jows, $15-20 \%$ wood move clay consens infilt. same color no shele tragp; no worm.
11016 th atfuifo $10 / 2 v \mathrm{~V}$ only. $1 / 2 \mathrm{VV}$ oven pen. 8 not used. some deserif os previous grab. 15 am per. $g-s=63 \%$. Fines

1130 Wwes break
1234 Collect equipment puser wipe fwoooz on vV conose wipe lot t Jan $4,2011 /$ EAp. July 2014 for merals. Whatman filter pappess for Fg, SVOC, PCBS, PCDP|FS, (all wipe paques supplid by AUS)
1300 1S도temf atistation WPAHOII. overpenctration
1306 vud grab - $1 / 2 v V$ overgen. $1 / 2 \vee V 17 \mathrm{~cm}$ pen. 7.5 YR $4 / 1$ with lignter vedox layer ($\approx 1 \mathrm{~cm}$ thick) $10 Y R 5 / 3$ silk 50% misthe, no wood debris or bouk, no shell. silx
$13193 \mathrm{ragrab}-17 \mathrm{~cm}$ per. same desenp as previous grab, buit 5% lavgor bank pieces
$13344^{\text {th }}$ grab-overpenctration
13405 th grab-overgentration
13496 th grab- $17 \mathrm{~cm} p e n$. same deserigho as grap \#2, barke in jaw's 45% wood bank
1406 7th Goval - 17 cmpen deseriphon sane an grevitus agrab, worns obsewed. in silty sedinment $g \cdot s=53 \%$ Fincs
1432 Back ar dock
1500 Integal team picks ugice + goes baek to ficld focivitry
(cont. furngrevines page)
QA of samples collected yesterday $-(7 / 1)$ + today ($7 / 2$). Paellaze singles for FedEx shipment to ACS. Reive samples for overnigut storage.
1700 Fed Ex and errands
1730 End of Day for Wodricki+ Estella Dinner ho ale
1830 Pick up rope for par t anchors at havduame stove. Wove on boat avehos, gear, towing strong, light, te.
2130 End of Day for Sexton

$$
\begin{aligned}
& \text { g. Sexton } \\
& 7 / 2 / 13
\end{aligned}
$$

Wednesday, gull 3,2013
Weather: sammy, cold $250^{\circ} \mathrm{F}$ very windy about 10-15 myst. Expected winds to increase as day goes on.
Cow. Sexton, Wodzidei, Estella
0800 meet ar field stowage facility; re ice samples.
0815 Meet Paul Perlwitz ar Nippon. Carny boar to beach on harbor side of Lagoon. Wodridei \& Estella row bout up access channel to lagoon. Anchor hoar on shove. Safely briefing with Pelwitz Deacon gear + ser up sample wising aver. several calls from Put (Jesse t Dean) regarding access to station WPATIO8
1000 undemayy to station WPALD21. Wind macing if difficuer to station hoar ar coordinate. Samples to be collected by Wodricki + Gotellausing Ekman at lagoon.
1010 Devele Beery (City of Pat Angeles) called He whit be coming to observe today g 8 is bluesy next week at another site.
1045 Wind malcing it difficult to ger to station. Sanger collected ar UPPAHO21 description taken of composite sample

(contifuom fog 31)
nownal odor. large giseces of clam shell (removed). seack agunc debris 7.5 yR 2.5/1. Nobark. 40\% Moisture silf. Ig wom 6 " long (photo) very fine wood particles (Be. saurdusk thinughour samghe $\left(=30^{\circ} \% 0^{\circ}\right)$ g. $-5=68 \%$ जfiNes 4.1 it 20 degth WPAH LIA GPS coordinate

1215 cuab cangmice, sea slug, wonns, WPAH1001 wood detmis, seawred on surface on all grabs 1.5 YR $2.5 / 1$ wo odor, \$is frampot, 40-58\% moistuce veng fine wood paticles throughour ($\left.\cong 30-40^{\circ} \%\right) g-s=80 \%, 1 \mathrm{kN}$ 5,51 t20 degth. one cardinale collected.
1435 clam shells, sea slug, wrmus, very fine wood praticles throughout ($=30 \%$) nomul odov. seaweed grass on sunfoce of all grases, $40^{\circ} \%$ mossture 7.5 YR $25 / 1$ 5 ft waser degth. one coordinase collected WPAT1002, $g-s=65 \%$ FINE
1550 Sample colleeted ar Station WPATTO48 colve 7.5 YR 2.5/1. sulfide oder (smory) lange pieces of baik thoughoute sande $\left(2-4^{\prime \prime}\right)$, no organisms obsewed. seaweed gyass onsanfoce but move spanse than (cont nest py) \longrightarrow
(cont. from gg_{3}.34)
prerions statio. Some shellefug.
4. 6 fllwater dygth. one coordinate collected.
$g-s=1 \quad$ phofo missed.
1628 collect eqwipmewt filter wipe FW000 3 an Ekhmar. Ghost wipe lott Jaun 4, 20 U EASp. July 2014 for merals. Whatman filter pageus for itg, SNOCS, PCBES PCDDIFC. (ale wipe pagers sugplied by ALS
1717 collecer sande ar Station WPAHOSI, per coordinates station $51+8$ station 1 are apowr. Ifx. aport called Turegral PM B. Duy. Colleching extra sediment as bacleenf will hoid until decision is made.
sea slugs, smeall eel, I sm. crab, spu. awplinods. Very high mostanue contar so-60\% lagev.phicce of bavk $15-20 \%$, no odov silt
1800 Row boar our of lagoon. Twailer boar boek to field stavage facility.
1900 Reice samples. End of Day for Wodricki + Estclla
2200 wave on arilurs, vigging, lighes ete. Wash domn boar. QA' samples For Newfilld deliveng tomomw. End of Day for Sexton

Monday, tuly 8,2013
Weather: clear, $60^{\circ} \mathrm{F}$, calm, slight wind
CVew: Sexton, Wodricki, Estella (Entegral)
charlil Earon + Cluis Earan (Biomenine)
Pere Shingin (WA Ecolozy)
0730 meet at boar; mob gear + decon sampling equipment, His meetivy $\quad \begin{aligned} & \text { Splir sample } \\ & \text { collected }\end{aligned}$ 0816 Decar Dock
0836 Fograb at Station WAPA+ $013 . \operatorname{sit}$ w $\begin{aligned} & \text { hitu } \\ & \text { sind }\end{aligned}$
25 y $3 / 2$ througnout 101 R 411 thin redoy layes, 15 cm pun. trace wood $\angle 5 \%$ fet shell fracs. no oder $08562^{\text {nd }}$ grab 16 cm pen. Samie descrigtion as swerias ayab. colleor split from station 13. 09083 3adgab 16 cmpou . Same desengria as previans grab. 30% huozhue $g-5=55 \%$ $09194^{\text {th }}$ grab. 16 cmpen . sanedeshiptio FNE bue fow mud wom tubes an surface 10041^{18} grab ar ssasim WPAASOIS. LilC with litte sand 7.5 YR $4 / 1$ with $10 y R 411$ venglittle wood/ogquic debsis $<52_{0}$ 30% mishuce. Wuns in sangle (reneved) san. Ned picee of plastic (yuoto) removed no shell frags. nomual odos. 14.5
1020 and grab. 15.5 cm pen. Station is sururused by caab pots. (cut. noxtga)
(2nd grab ar station WPAHOIS)
same descrigtion as gwevious grab, but also shell frocpments + lavger pieces of claw shells. A coigle of prieces of boule $n \geq 2-3^{\prime \prime}$ vemoved: More woms in this grab (remared when seen) also amphipods (vemoved) no red plastic.
10313 shl grab. Caughr line from absandinee crab pot in guas of V V. gened grab por torenuned to bott-m. Slanted sufface 15.5-17 cm. slightey dameer thon 155 grali 2.5 Y $5 / 2$, but sance $\%$ wood + mos sture. Tew laizer gicees of bauk $\simeq 2-3^{\prime \prime}$ vecuored. Wouns (ove higur blue) removed. chell fracp (truce). Line nor in sayple coll. zove
$10464^{\text {th }}$ grabs. I6 curpen. Same deseription as 3 sh grab (hut no bright blue woma. g-s-60\% FINES.
113o bumes break at mariva.
1222 IS grab at Statim WPAHOO20, oveopenetration Fist attungted this statim on $6 / 28$. Moned today 50M west. 14.2 waterdeghts.
1225 2nd grabs 12.4 M water degth will move in share slightly to ger cobes to 14 M wate degith. 1/2 VW over pen and $1 / 2 V V 16 \mathrm{~cm}$ pen. - this $1 / 2$ saved for possible use.

1236 Mored a little closer to shove. Water degth 12.2M. Nothing in grab but wata + scaweed (nostly lhar) trace sedimens. discanded, switching to v V with no werighs * moving a little furthin our.

1247 -th atthing brek at 13.4M. Fued V 17 cm pen. $10 Y \mathrm{Y} 2 / 1$ thoughout with thin + "Spotty" Layer on sufface 10 YR. 4/2 hemit cran, ell, both removed.
strong sulfide odw. 70% wood dernis no layk bauk picees. no shele prags. $30 q_{n}$

 orespenetration
13056 th attmupt. Water degth $=13.4 \mathrm{M} .17 \mathrm{~cm}$ pen. Same descrigrion as 4 th gravo but no eel or chab ot with sued frags.
$13371^{\text {15 }}$ attengt at Station WPAHO52.
Triadequate penetration.
$1348 V^{2 d}$ aftehyer 17 cm pan 7.5 YR $2.5 / 1$ thooughout 2.5 y $4 / 2$, silt with some Clay slight sulpide odo no aggmic debis in sample 20\% moistue content, no sheel. no aganisms obsened $\mathrm{g}-5=69 \%$ FING

1401 3ot attugt 16.5 cm perientation, same deserighon as gorevines
$14164^{\text {th }}$ atsmytr $V V$ flipged
1438 Return to dock.
1500 Thansfer sansles to offosite field stoageg facicity. QA samples for ALS shipment. Maxe ice bays.
1730. Fedicy senr. Sangles ve-ieed. End of Day

Tuesday, july 9,2013
Weather: Cool $\left(55^{\circ}\right)$, foggy, slight wine
crew: Sexton, Wodricki, estella (Integral)
Charlie Eaton + Chris Eaton (Bi oMarine)
0700 Meet at boat mob gear + deco sampling equipment, His meeting

- 125 Debark dock.

0730 Arrive ar boomstickes blocking WPAHOO Pre arranged meeting time with Pow-toler us in to aver through boom stickles. Called Park; no answer ar cell phone number provided for Port contact. Called geese at Port. He can gev someone esse here in an hour or so.
0806 15T grab at Stain WPAAtO17. silt with some clay and trace sand. normal oder, no wood debris. few shell fragment. worms. 10 YR $5 / 2$ vedox laver on surface $2.5 y ~ 3 / 2$ throughout. 16 cm pen. 20\% moisture content
$08222^{\text {Le grab. Some desertion as firsorgras }}$ 16 cm pen.
08323 ragrab. I6 cm per. same descrip os previar 0843 th grab. 16 cmpen . some dissing as previous $g-4=60 \%$ FANG

0920 log bronc arsines topee boom sticks at WAHOOS.
093418 attend' ar station WPAA1008. Water only with little sediment; switching to heavy van Veer.
$09442^{\text {nd }}$ grab. $542.5 / 2$ throughout with $2.54 \mathrm{4} / 2$ vedoy cager (thin) in suggore $\simeq 30 \%$ wood debris, slight sulfide oder langer pieces of bank on sulfa $\left(2 \cdot 4^{\prime \prime}\right)$ also mussel shell on surface. $20^{\circ} \%$ wuishue. 17 cm
09583 arab - water only.
$10024^{\text {th }}$ gab. 16 cm pen. Sane color maisie content, but move wood debris $\simeq 40 \%$ and more larger pieces of back throyhour sample. Ismael crabs. slighter sulfide odor.
10135 th grasp - water only
$10156^{\text {th }}$ grab- $12-16 \mathrm{con}$ per; sloped surface. same deseripticios grab ti. 4. $\mathrm{g}-\mathrm{S}=46 \% 0$ FIN $6 S$ (Lot of word waste)
1030 End of sample collection for WPAH. 1530-1730 Recce samples and demos gear off Kittivatee. End of Day
$\frac{\text { supt }}{1 / a \mid 13}$

Saion Number $^{\text {a }}$		Sampe	Sampor Typel	Sadimene Chemisty Sa							$\frac{\text { Hioasay Sampes }}{\text { semen }}$			Bioaccumulalion Test -- 45 day adult bivalve [Macoma nasuta] and adult polychaete[Nephtys caecoides]	Treatability Test Samples Treatability Study -- 45-day adult bivalve [Macoma nasuta] and adult polychae [Nephtys caecoides]						
				TS. Grain size	$\underset{\substack{\text { TVS }(N 0 \\ \text { neesposece }}}{ }$		$\begin{array}{\|c\|} \hline \text { PCB congeners, } \\ \text { Dioxin and Furans } \\ \hline \end{array}$		т80	$\begin{array}{\|c\|} \hline \text { 10-day amphipod } \\ \text { (Eohaustorius } \\ \text { estuarius) } \\ \hline \end{array}$			Meraur				svoc	PCB Congenes	$\underbrace{\text { and }}_{\substack{\text { Dixaxn and } \\ \text { Huras }}}$		
		$402 \mathrm{MMG}{ }^{\text { }}$		$802 \mathrm{WMG}{ }^{\circ}$	402 WMag ${ }^{\text {. }}$	882 MmG .	882 MMG.	18 crumb ${ }^{\text {a }}$	$802 \mathrm{MMG}^{\circ}$			$\begin{aligned} & \text { 1-gallon bucket } \\ & \text { with Teflon bag } \end{aligned}$	2, 1-gallon buckets with Teflon bags ${ }^{3.0}$	$\begin{gathered} \text { 2, 1-gallon buckets with } \\ \text { Teflon bags }{ }^{\text {a.s }} \end{gathered}$	$402 \mathrm{Mm0}{ }^{\circ}$	$402 \mathrm{MmG}{ }^{\circ}$	$402 \mathrm{MmG}{ }^{\circ}$	$402 \mathrm{MMG}{ }^{\circ}$	402 MMG ${ }^{\text {a }}$		
		Renerogated		${ }^{\text {Refigasamed }}$	${ }^{\text {Reaginamaed }}$		Retigomed		Fiom	Reatigealed	Remiferaled	Refiferated	${ }_{\text {Refifigerede }}$	Renfigeraed	$\mathrm{Renfa}^{\mathrm{Na}}$	Renfigated	${ }^{\text {Renfamamed }}$	Renataraled	Renfoeated		
	$\sim_{\text {WPAl022 }}$		s50023	Normal	Tas 42185	Tag 21186	Tag\#21187	NA	NA	Tag* 21188	Ta9\#2]	NA.	Tas\#2190	NA							
			s50024	Normal	Tas \# 21191	Tast 21192	Tast 21193	na	NA	Tast 21194	Ta』\#\#1195	NA	Teg\#2196	NA							
	WPath24		ssoo25	Normal	T9* $\# 1269$	Ta* 21270	Test 2187	na	Te9 42272	Ta84 21273	Tas\# 12274	na	${ }^{\text {Tag \# }}$ X	Combined	T99*21275	nA	NA	NA	NA	Na	NA
	wPAH25	spooz	Normal	Ta* $\# 1276$	Ta* $\# 1277$	Tay 41278	Na	Tg8 41279	Ta9*21280	T99*21288	NA	Tas ${ }^{2} \times 88$	compeins	Tas\#21282	na	Na	na	NA	NA	NA	
	wpath2e	s50027	Normal	Tat 41113	Ta $\# 21114$	тя* 21115	nA	NA	Tag $* 21116$	Tos * 21117	NA	Tes*21118		NA							
	wPatroz	spooze.	somal	T99 4 21283	T9* 21284	Tas $\# 21285$	NA	Ta9\#21286	Tag\#21287	Tay $\# 1288$	Na	Tag	$\xrightarrow{\mathrm{NA}} \mathrm{C}$	T99*21289	NA	Na	NA	NA	NA	Na	
	$\square_{\text {WPAHO28 }}$	s00029	Normal	Ta9 421263	Tas 42126	Ta9 41265	Na	NA	Tat 41266	T99 21267	NA	Teg\#\#21268	Na								
	wPAH29	spooso	Normal	т99 21119	тя *2n20	T94 41121	na	NA	Tag $\# 11122$	Tas \#2123	NA	$\operatorname{Tag}+21124$	NA								
	wPatroso	sooos	Nomal	т99\#21125	Tag \#2ill	Tag *21129	NA	NA	Tat 21128	T88*21129	NA	Tog* 2 lliso	NA								
	WPAHOY	spoos2	Normal	Ta* 42131	Tas 21132	Tas 21133	NA	NA	Tas ${ }^{2113}$	Tag\#2135	NA	Tag*21136	NA								
	wPAH032	sooos3	Norma	T99*21177	Tag 21138	T98* 21139	NA	na	Tag $* 21140$	Tog 21141	NA	rea\#2142	NA								
	wPAH033	spoos	Normal	Tag 21143	Tas 21144	Tast 21145	NA	NA	T99 41146	Te9\# 21147	NA	Tast 21148	NA								
	wPat034	spoos5	Normal	Tog $\# 21149$	Tog\#2150	Ta6 \# 21151	NA	Na	Tog* 41152	Tas 21153	NA	Tos* 21154	NA	Na,	NA	NA	NA	na	NA	NA	
	wPatu35	sooos6	Normal	Tag 21155	T99 21156	Tas * 4157	NA	NA	Tag* 21158	Tag\# 21159	NA	$\underline{2042160}$	NA.	NA							
	wPAH09	sp0037	Normal	Tog"21161	Te9*21162	Tag. 21163	NA	NA	Tagt 21164	Tes\#21165	na	ra0\# 21166	NA								
	WPAH037	spoos8	Nomal	Tag 21167	Tag 121168	Teg 41169	na	nA	Tas\# 21170	Tag*21171	NA	198*21172	- NA	NA							
	wpatose	spoose	Normal	Tag $\underline{21173}^{2}$	Tag 21174	Tast21175	NA.	NA	Tag 421176	Tag\# 21177	NA	T90\% $\# 1178$	NA	\cdots NA	Na	Na	NA	na	na	NA	
	${ }_{\text {WPatro39 }}$	sooato	Nomal	Te9\#21257	Tas 41258	Tas 41259	Na	NA	Tag*21260	тas 2126	Na	199\#\#262	NA		NA	na	NA	NA	na	NA	
-2613	wattoreve	spooal	Field Spin ${ }^{\circ}$	Tas\#21203	Ta9 21204	Tas \# 21205	NA	NA	Tay*21206	NA	na	NA	NA	Na_{-}	NA	-	14	21st	,	1456	
	Fw ㅁank	Fwoof 3		NA	NA	NA	Na	NA	NA	${ }^{\mathrm{NA}}$	NA	${ }^{\text {NA }}$	NA	NA	NA	Tos 21455	Tog* 21453	Tog* 21454		T88 71456	
		S00042	diak	Tes 429197	Tes 41198	тея 41199	NA	NA	T98*21200	Ta9\#21201	NA	1ag\#21202	NA	NA	NA	na	NA	NA	${ }^{\text {Na }}$	NA	
	WPath0ar	sooo4 3	Nomal	Tas* 21207	Tag\#21208	Tas\#21209	Na	NA	Tas \#21210	Tag*21211	Na	log* 21212	, NA	Na							
	wpatior	s50004	Normal	Tas 121179	Tes $\# 2180$	Tos*21181	Na	NA	To9 41182	Tag 21183	Na	1as $\# 2184$.	na								

$N A=$ not pppicable
PAH

PCB $=$ polychlorinated biphenyl
sVOC $=$ semiviolatie organic compound
$\mathrm{SVVC}=$ senivolatie orga
$\mathrm{TBD}=$ to be delemmined
$T O C=$ total organic carton
$T S=$ total solidis
TS $=$ tolal solids
TVS $=$ otal volaties solids
WWG $=$ wide mouth g glass
bil

- Blind field spitit samples will be collected d at a minimum treauency of 1 field spit sample per 20 sediment samples.

number will be clearly noted ind the field logsbook.
-The sediment at bioaccumulation repicicate slations, treatabilily stations and in combination with full suite bioassay staions may be conbined into 5 -gallon bucket rather than 5 , 1 -gallon buckets
\longrightarrow PCBs only
${ }^{\text {Integral Consalting Inc. }}$

Appendix B
 Sediment Sample Photos

WPAH ф3

WPAH ф4

WPAH

WPA:I 10

WPAH 17

WPAH

18

WPAH 17

WPAH

18

WPAH 19

WPAH 22

$$
23
$$

WPAH 26

WPAH 26

WPAH
 36

WPAH

39

WPAH $4 \varnothing$

E
WPAH

WPAH
51

Appendix C

Data Validation Report for Analyses by Alpha ANALYTICAL

DATA VALIDATION REPORT WESTERN PORT ANGELES HARBOR RI/FS

Prepared for:
Floyd|Snider
601 Union Street, Suite 600
Seattle, WA 98101

Prepared by:

EcoChem, Inc.
1011 Western Ave. Suite 1011
Seattle, WA 98104

EcoChem Project: C15217-1

Approved for Release

Basis for Data Validation

This report summarizes the results of validation (Stage 2B \& 3) performed on sediment, and quality control (QC) sample data for the Western Port Angeles Harbor RI/FS. Field sample ID, laboratory sample ID, and requested analyses are provided in the Sample Indices. Laboratory batch ID numbers and associated level of validation are provided at the beginning of each technical section.

Samples were analyzed by Alpha Analytical, Mansfield, Massachusetts. The analytical methods and EcoChem project chemists are listed below.

Analysis	Method of Analysis	Primary Review	Secondary Review
Total Organic Carbon	SW 8469060	Y. Hida	C. Ransom
Black Carbon (Soot)	Gustafson (et. al.), 1997		

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan - Western Port Angeles Harbor RI/FS (Integral/Anchor QEA/Exponent/Floyd | Snider, June 2013)
- USEPA National Functional Guidelines for Organic Data Review (USEPA 2008)
- USEPA National Functional Guidelines for Inorganic Data Review (USEPA October 2004).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as Appendix A. The qualified data summary table is included as Appendix B. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) was also submitted with this report.

Sample Index
 Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	TOC	Soot
L1312943	SD0027	L1312943-01	\checkmark	\checkmark
L1312943	SD0030	L1312943-02	\checkmark	\checkmark
L1312943	SD0031	L1312943-03	\checkmark	\checkmark
L1312943	SD0032	L1312943-04	\checkmark	\checkmark
L1312943	SD0033	L1312943-05	\checkmark	\checkmark
L1312943	SD0034	L1312943-06	\checkmark	\checkmark
L1312943	SD0035	L1312943-07	\checkmark	\checkmark
L1312943	SD0036	L1312943-08	\checkmark	\checkmark
L1312943	SD0037	L1312943-09	\checkmark	\checkmark
L1312943	SD0038	L1312943-10	\checkmark	\checkmark
L1312943	SD0039	L1312943-11	\checkmark	\checkmark
L1312943	SD0044	L1312943-12	\checkmark	\checkmark
L1312943	SD0023	L1312943-13	\checkmark	\checkmark
L1312943	SD0024	L1312943-14	\checkmark	\checkmark
L1312943	SD0042	L1312943-15	\checkmark	\checkmark
L1312943	SD0043	L1312943-16	\checkmark	\checkmark
L1312943	SD0045	L1312943-17	\checkmark	\checkmark
L1312943	SD0046	L1312943-18	\checkmark	\checkmark
L1313024	SD0047	L1313024-01	\checkmark	\checkmark
L1313024	SD0049	L1313024-02	\checkmark	\checkmark
L1313024	SD0048	L1313024-03	\checkmark	\checkmark
L1313024	SD0040	L1313024-04	\checkmark	\checkmark
L1313024	SD0029	L1313024-05	\checkmark	\checkmark
L1313024	SD0025	L1313024-06	\checkmark	\checkmark
L1313024	SD0026	L1313024-07	\checkmark	\checkmark
L1313024	SD0028	L1313024-08	\checkmark	\checkmark
L1313024	SD0005	L1313024-09	\checkmark	\checkmark
L1313024	SD0006	L1313024-10	\checkmark	\checkmark
L1313024	SD0007	L1313024-11	\checkmark	\checkmark
L1313024	SD0014	L1313024-12	\checkmark	\checkmark
L1313024	SD0017	L1313024-13	\checkmark	\checkmark
L1313024	SD0019	L1313024-14	\checkmark	\checkmark
L1313024	SD0020	L1313024-15	\checkmark	\checkmark
L1313024	SD0050	L1313024-16	\checkmark	\checkmark
L1313024	SD0041	L1313024-17	\checkmark	\checkmark
L1313024	SD0003	L1313024-18	\checkmark	\checkmark
L1313028	SD0053	L1313028-01	\checkmark	\checkmark
L1313028	SD0010	L1313028-02	\checkmark	\checkmark
L1313028	SD0009	L1313028-03	\checkmark	\checkmark
L1313028	SD0052	L1313028-04	\checkmark	\checkmark
L1313028	SD0004	L1313028-05	\checkmark	\checkmark
L1313028	SD0012	L1313028-06	\checkmark	\checkmark
L1313028	SD0011	L1313028-07	\checkmark	\checkmark
L1313028	SD0051	L1313028-08	\checkmark	\checkmark
L1313028	SD0022	L1313028-09	\checkmark	\checkmark

Sample Index
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	TOC	Soot
L1313028	SD0002	L1313028-10	\checkmark	\checkmark
L1313028	SD0054	L1313028-11	\checkmark	\checkmark
L1313028	SD0001	L1313028-12	\checkmark	\checkmark
L1313028	SD0013	L1313028-13	\checkmark	\checkmark
L1313028	SD0055	L1313028-14	\checkmark	\checkmark
L1313028	SD0016	L1313028-15	\checkmark	\checkmark
L1313028	SD0015	L1313028-16	\checkmark	\checkmark
L1313028	SD0021	L1313028-17	\checkmark	\checkmark
L1313028	SD0008	L1313028-18	\checkmark	\checkmark
L1313028	SD0018	L1313028-19	\checkmark	\checkmark
L1313613	SD0056	L1313613-01	\checkmark	
L1313613	SD0057	L1313613-02	\checkmark	
L1313613	SD0058	L1313613-03	\checkmark	

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Conventional Parameters

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Alpha Analytical, Mansfield, Massachusetts. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
L1312943	18 Sediment	Stage 3
L1313024	18 Sediment	Stage 2B
L1313028	19 Sediment	Stage 2B
L1313613	3 Sediment	Stage 2B

The analytical tests that were performed are summarized below.

Parameter	Method
Total Organic Carbon	SW-846 9060
Black Carbon (Soot)	Gustafson (et. al.), 1997

I. DATA PACKAGE COMPLETENESS

With the exceptions noted below, the laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDGs L1312943, L1313024, and L1313028: The laboratory did not include sufficient information for full validation. The following items were requested and submitted by the laboratory: sample preparation logs, raw data, and instrument printouts. The laboratory was unable to provide instrument calibration verification summaries. Evaluation of the calibration verification and instrument blanks was done using the raw data.

II. VERIFICATION OF EDD TO LABORATORY REPORT

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report; no errors were found.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed in the following table.

$\mathbf{2}$	Sample Receipt, Preservation, and Holding Times	$\mathbf{1}$	Field Duplicates
$\mathbf{1}$	Laboratory Blanks	\checkmark	Matrix Spikes
\checkmark	Laboratory Control Samples (LCS)	\checkmark	Reported Results
$\mathbf{2}$	Laboratory Replicates	\checkmark	Reporting Limits

\checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.
${ }^{1}$ Quality control results are discussed below, but no data were qualified.
${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

SDG L1313024: Samples SD0049 and SD0048 were analyzed for black carbon outside the 28-day holding time. The black carbon results for these samples were estimated (J-1).

SDG L1313613: All three samples in this data package were analyzed for total organic carbon (TOC) outside the 28 day holding time. All TOC results were estimated (J-1).

Laboratory Blanks

SDG L1312943: A positive result for TOC was reported in an instrument blank. The TOC results for the associated samples were greater than the action level of $5 x$ the blank concentration; no data were qualified.

Laboratory Replicates

The laboratory analyzed replicate burns for TOC and black carbon for all samples. The relative percent difference (RPD) control limit for replicate burns is 25%.

SDG L1313024: The RPD values for the replicate burns of TOC for Sample SD0028 and black carbon for Sample SD0019 were greater than the control limit. These results were estimated (J-9).

SDG L1313028: The RPD value for the replicate burns for black carbon in Sample SD0008 was greater than the control limit. These results were estimated (J-9).

Field Duplicates

The following acceptance criteria were used to evaluate precision: the relative percent difference (RPD) control limit is 50% for results greater than $5 x$ the reporting limit (RL). For results less than $5 x$ the RL, the difference between the sample and replicate must be less than $2 x$ the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable

SDG L1313024: Two sets of field duplicates were submitted, Samples SD0040 \& SD0041 and Samples SD0049 \& SD0050. For the pair SD0040 \& SD0041 the RPD values for TOC and black carbon were greater than the control limit. For the pair SD0049 \& SD0050 the RPD value for black carbon and was greater than the control limit.

SDG L1313028: One set of field duplicates, Samples SD0015 \& SD0016, were submitted with this data package. The RPD value for black carbon was greater than the control limit.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical methods. Accuracy was acceptable as demonstrated by the laboratory control sample, reference material, and matrix spike recoveries. With the exceptions noted above, precision was acceptable as demonstrated by the laboratory duplicate RPD, laboratory replicate \%RSD, and field duplicate RPD values.

Data were estimated based on holding time outliers and replicate burn RPD outliers.
All data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.

UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
$\mathrm{R} \quad$ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The following is an EcoChem qualifier that may also be assigned during the data review process:
DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
Instrument Performance	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown)
	5A	Initial Calibration (RF, \%RSD, r²)
	5B	Calibration Verification (ICV, CCV, CCAL; RF, \%D, \%R) Use bias flags (H,L) ${ }^{1}$ where appropriate
Blank Contamination	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L$)^{1}$ for negative instrument blanks
Precision and Accuracy	8	Matrix Spike (MS \&/or MSD) Recoveries Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	12	Reference Material Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ${ }^{1}$ where appropriate
Interferences	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
Identification and Quantitation	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	$2{ }^{\text {nd }}$ column confirmation (RPD or \%D)
	4	Tentatively Identified Compound (TIC) (associated with NJ only)
	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
Miscellaneous	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)
	14	Other (See DV report for details)
	26	Method QC information not provided

[^4]
EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION OC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature and Preservation	Cooler Temperature $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ Preservation: Method Specific	Use Professional Judgment to qualify based to qualify for coole temp outliers $J(+) / U J(-)$ if preservation requirements not met	1
Holding Time	Method Specific	Professional Judgment $J(+) / U J(-)$ if holding time exceeded $J(+) / R(-)$ if HT exceeded by $>3 X$	1
Initial Calibration	Method specific $r>0.995$	Use professional judgment $J(+) / \mathrm{UJ}(-)$ for $r<0.995$	5A
Initial Calibration Verification (ICV)	Where applicable to method Independent source analyzed immediately after calibration \%R method specific, usually $90 \%-110 \%$	$\begin{gathered} R(+/-) \text { if \%R significantly }<L C L \\ J(+) / U J(-) \text { if } \% R<L C L \\ J(+) \text { if } \% R>U C L \\ R(+) \text { if } \% R \text { significantly }>U C L \end{gathered}$	5A
Continuing Cal Verification (CCV)	Where applicable to method Every ten samples, immed. following ICVIICB and end of run \%R method specific, usually $90 \%-110 \%$	$\begin{gathered} R(+(-) \text { if } \% R \text { significantly }<L C L \\ J(+) / U J(-) \text { if } \% R<L C L \\ J(+) \text { if } \% R>U C L \\ R(+) \text { if } \% R \text { significantly }>\text { UCL } \\ \hline \end{gathered}$	5B
Initial and Continuing Cal Blanks (ICB/CCB)	Where applicable to method After each ICV and CCV every ten samples and end of run \| blank < MDL	Action level is $5 x$ absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, $\mathrm{J}(+) / \mathrm{UJ}(-)$ results < action level refer to TM-02 for additional details	7
Method Blank	One per matrix per batch (not to exceed 20 samples) blank < MDL	Action level is $5 x$ absolute value of blank conc. For (+) blk value, $\mathrm{U}(+$) results < action level For (-) blk value, J(+)/UJ(-) results < action level	7
Laboratory Control Sample	Waters: One per matrix per batch \%R (80-120\%)	$\begin{gathered} R(+/-) \text { if } \% R<50 \% \\ J(+) / U J(-) \text { if } \% R=50-79 \% \\ J(+) \text { if } \% R>120 \% \end{gathered}$	10
	Soils: One per matrix per batch Result within manufacturer's certified acceptance range	$\begin{gathered} J(+) / U J(-) \text { if }<L C L, \\ J(+) \text { if }>\mathrm{UCL} \end{gathered}$	10
Matrix Spike	One per matrix per batch; 5% frequency 75-125\% for samples less than $4 \times$ spike level	$\begin{gathered} \mathrm{J}(+) \text { if } \% \mathrm{R}>125 \% \text { or }<75 \% \\ \text { UJ }(-) \text { if } \% R=30-74 \% \\ R(+\mid-) \text { results }<\text { IDL if } \% R<30 \% \end{gathered}$	8
Laboratory Duplicate	One per matrix per batch RPD $<20 \%$ for samples $>5 x$ RL Diff <RL for samples >RL and $<5 \times \mathrm{RL}$ (may use RPD < 35\%, Diff < 2X RL for solids)	$J(+) / U J(-)$ if RPD $>20 \%$ or diff $>$ RL all samples in batch	9

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Field Blank	blank < MDL	Action level is 5 x blank conc. $U(+)$ sample values < action level in associated field samples only	6
Field Duplicate	For results > 5X RL: Water: RPD $<35 \% \quad$ Solid: RPD $<50 \%$ For results < $5 \times$ RL: Water: Diff<RL Solid: Diff <2 X RL	$J(+) / U J(-)$ in parent samples only	9

APPENDIX B
 QUALIFIED DATA SUMMARY TABLE

Qualified Data Summary Table
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
L1313024	SD0049	L1313024-02	ALPHA91_Soot	Soot	0.032	percent	v	J	1
L1313024	SD0049	L1313024-02	ALPHA91_Soot	Soot	0.041	percent	v	J	1
L1313024	SD0048	L1313024-03	ALPHA91_Soot	Soot	0.096	percent	v	J	1
L1313024	SD0048	L1313024-03	ALPHA91_Soot	Soot	0.078	percent	v	J	1
L1313024	SD0028	L1313024-08	EPA9060	TOC	9.31	percent	v	J	9
L1313024	SD0028	L1313024-08	EPA9060	TOC	6.86	percent	v	J	9
L1313024	SD0019	L1313024-14	ALPHA91_Soot	Soot	0.042	percent	v	J	9
L1313024	SD0019	L1313024-14	ALPHA91_Soot	Soot	0.061	percent	v	J	9
L1313028	SD0008	L1313028-18	ALPHA91_Soot	Soot	0.413	percent	v	J	9
L1313028	SD0008	L1313028-18	ALPHA91_Soot	Soot	0.167	percent	v	J	9
L1313613	SD0056	L1313613-01	EPA9060	TOC	0.58	percent	v	J	1
L1313613	SD0056	L1313613-01	EPA9060	TOC	0.591	percent	v	J	1
L1313613	SD0057	L1313613-02	EPA9060	TOC	0.169	percent	v	J	1
L1313613	SD0057	L1313613-02	EPA9060	TOC	0.163	percent	v	J	1
L1313613	SD0058	L1313613-03	EPA9060	TOC	0.289	percent	v	J	1
L1313613	SD0058	L1313613-03	EPA9060	TOC	0.26	percent	v	J	1

APPENDIX D
 Data Validation Report for
 ANALYSES By
 ALS ENVIRONMENTAL

DATA VALIDATION REPORT
 WESTERN PORT ANGELES HARBOR RIIFS

Prepared for:
Floyd|Snider
601 Union Street, Suite 600
Seattle, WA 98101

Prepared by:
EcoChem, Inc.
1011 Western Ave. Suite 1011
Seattle, WA 98104

EcoChem Project: C15217-1

October 28, 2013

Basis for Data Validation

This report summarizes the results of validation (Stage 2A, 2B, 3, \& 4) performed on sediment, pore water, and quality control (QC) sample data for the Western Port Angeles Harbor RI/FS. Field sample ID, laboratory sample ID, and requested analyses are provided in the Sample Indices. Laboratory batch ID numbers and associated level of validation are provided at the beginning of each technical section.

Samples were analyzed by Samples were analyzed by ALS Environmental, Kelso, Washington. The analytical methods and EcoChem project chemists are listed below.

Analysis	Method of Analysis	Primary Review	Secondary Review
Semivolatile Organic Compounds	SW8270D	M. Failor	M. Swanson
Polycyclic Aromatic Hydrocarbons	SW8270D-SIM		
Metals	SW6020A, 7470A, 7471B		
Grain Size	PSEP	Y. Hida	C. Ransom/ M. Swanson
Ammonia	SM4500NH3H		
Sulfide	SW9030M		
Totals Solids/Total Volatile Solids	EPA160.3, 160.4		

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan - Western Port Angeles Harbor RI/FS (Integral/Anchor QEA/Exponent/Floyd|Snider, June 2013)
- USEPA National Functional Guidelines for Organic Data Review (USEPA 2008)
- USEPA National Functional Guidelines for Inorganic Data Review (USEPA October 2004)

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as Appendix A. The qualified data summary table is included as Appendix B. Data Validation Worksheets and the associated communication records will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) was also submitted with this report.

Sample Index
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	SVOC	PAH	Metals	Grain Size	Ammonia	Sulfide	Total Volatile Solids	Total Solids
K1306341	SD0027	K1306341-001				\checkmark			\checkmark	\checkmark
K1306341	SD0030	K1306341-002				\checkmark			\checkmark	\checkmark
K1306341	SD0031	K1306341-003				\checkmark			\checkmark	\checkmark
K1306341	SD0032	K1306341-004				\checkmark			\checkmark	\checkmark
K1306341	SD0033	K1306341-005				\checkmark			\checkmark	\checkmark
K1306341	SD0034	K1306341-006				\checkmark			\checkmark	\checkmark
K1306341	SD0035	K1306341-007				\checkmark			\checkmark	\checkmark
K1306341	SD0036	K1306341-008				\checkmark			\checkmark	\checkmark
K1306341	SD0037	K1306341-009				\checkmark			\checkmark	\checkmark
K1306341	SD0038	K1306341-010				\checkmark			\checkmark	\checkmark
K1306341	SD0039	K1306341-011				\checkmark			\checkmark	\checkmark
K1306341	SD0044	K1306341-012				\checkmark			\checkmark	\checkmark
K1306341	SD0023	K1306341-013				\checkmark			\checkmark	\checkmark
K1306341	SD0024	K1306341-014				\checkmark			\checkmark	\checkmark
K1306341	SD0042	K1306341-015				\checkmark			\checkmark	\checkmark
K1306341	SD0041	K1306341-016				\checkmark			\checkmark	\checkmark
K1306341	SD0043	K1306341-017				\checkmark			\checkmark	\checkmark
K1306341	SD0045	K1306341-018				\checkmark			\checkmark	\checkmark
K1306341	SD0046	K1306341-019				\checkmark			\checkmark	\checkmark
K1306341	SD0047	K1306341-020				\checkmark			\checkmark	\checkmark
K1306341	SD0049	K1306341-021				\checkmark			\checkmark	\checkmark
K1306341	FW0001	K1306341-022	\checkmark		\checkmark					
K1306341	FB0001	K1306341-023	\checkmark		\checkmark					
K1306341	SD0048	K1306341-024				\checkmark			\checkmark	\checkmark
K1306341	SD0050	K1306341-025				\checkmark			\checkmark	\checkmark
K1306341	SD0040	K1306341-026				\checkmark			\checkmark	\checkmark
K1306341	SD0029	K1306341-027				\checkmark			\checkmark	\checkmark
K1306341	SD0025	K1306341-028				\checkmark			\checkmark	\checkmark
K1306341	SD0026	K1306341-029				\checkmark			\checkmark	\checkmark
K1306341	SD0028	K1306341-030				\checkmark			\checkmark	\checkmark
K1306341	SD0005	K1306341-031				\checkmark			\checkmark	\checkmark
K1306341	SD0006	K1306341-032	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306341	SD0007	K1306341-033				\checkmark			\checkmark	\checkmark
K1306341	SD0014	K1306341-034				\checkmark			\checkmark	\checkmark
K1306341	SD0017	K1306341-035	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306341	SD0019	K1306341-036				\checkmark			\checkmark	\checkmark
K1306341	SD0020	K1306341-037				\checkmark			\checkmark	\checkmark
K1306341	SD0027	K1306341-038					\checkmark	\checkmark		
K1306341	SD0030	K1306341-039					\checkmark	\checkmark		
K1306341	SD0031	K1306341-040					\checkmark	\checkmark		

Sample Index
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	SVOC	PAH	Metals	Grain Size	Ammonia	Sulfide	Total Volatile Solids	Total Solids
K1306341	SD0032	K1306341-041					\checkmark	\checkmark		
K1306341	SD0033	K1306341-042					\checkmark	\checkmark		
K1306341	SD0034	K1306341-043					\checkmark	\checkmark		
K1306341	SD0035	K1306341-044					\checkmark	\checkmark		
K1306341	SD0036	K1306341-045					\checkmark	\checkmark		
K1306341	SD0037	K1306341-046					\checkmark	\checkmark		
K1306341	SD0038	K1306341-047					\checkmark	\checkmark		
K1306341	SD0039	K1306341-048					\checkmark	\checkmark		
K1306341	SD0044	K1306341-049					\checkmark	\checkmark		
K1306341	SD0023	K1306341-050					\checkmark	\checkmark		
K1306341	SD0024	K1306341-051					\checkmark	\checkmark		
K1306341	SD0042	K1306341-052					\checkmark	\checkmark		
K1306341	SD0041	K1306341-053					\checkmark	\checkmark		
K1306341	SD0043	K1306341-054					\checkmark	\checkmark		
K1306341	SD0045	K1306341-055					\checkmark	\checkmark		
K1306341	SD0046	K1306341-056					\checkmark	\checkmark		
K1306341	SD0047	K1306341-057					\checkmark	\checkmark		
K1306341	SD0049	K1306341-058					\checkmark	\checkmark		
K1306341	SD0048	K1306341-059					\checkmark	\checkmark		
K1306341	SD0050	K1306341-060					\checkmark	\checkmark		
K1306341	SD0040	K1306341-061					\checkmark	\checkmark		
K1306341	SD0029	K1306341-062					\checkmark	\checkmark		
K1306341	SD0025	K1306341-063					\checkmark	\checkmark		
K1306341	SD0026	K1306341-064					\checkmark	\checkmark		
K1306341	SD0028	K1306341-065					\checkmark	\checkmark		
K1306341	SD0005	K1306341-066					\checkmark	\checkmark		
K1306341	SD0006	K1306341-067					\checkmark	\checkmark		
K1306341	SD0007	K1306341-068					\checkmark	\checkmark		
K1306341	SD0014	K1306341-069					\checkmark	\checkmark		
K1306341	SD0017	K1306341-070					\checkmark	\checkmark		
K1306341	SD0019	K1306341-071					\checkmark	\checkmark		
K1306341	SD0020	K1306341-072					\checkmark	\checkmark		
K1306505	SD0009	K1306505-001				\checkmark			\checkmark	\checkmark
K1306505	SD0003	K1306505-002	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306505	SD0052	K1306505-003				\checkmark			\checkmark	\checkmark
K1306505	SD0053	K1306505-004				\checkmark			\checkmark	\checkmark
K1306505	SD0010	K1306505-005				\checkmark			\checkmark	\checkmark
K1306505	SD0004	K1306505-006				\checkmark			\checkmark	\checkmark
K1306505	SD0012	K1306505-007				\checkmark			\checkmark	\checkmark
K1306505	SD0013	K1306505-008				\checkmark			\checkmark	\checkmark
K1306505	SD0009	K1306505-009					\checkmark	\checkmark		
K1306505	SD0003	K1306505-010					\checkmark	\checkmark		

Sample Index
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	SVOC	PAH	Metals	Grain Size	Ammonia	Sulfide	Total Volatile Solids	Total Solids
K1306505	SD0010	K1306505-011					\checkmark	\checkmark		
K1306505	SD0004	K1306505-012					\checkmark	\checkmark		
K1306505	SD0012	K1306505-013					\checkmark	\checkmark		
K1306505	SD0011	K1306505-014					\checkmark	\checkmark		
K1306618	SD0013	K1306618-001	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306618	SD0015	K1306618-002	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306618	SD0021	K1306618-003				\checkmark			\checkmark	\checkmark
K1306618	SD0055	K1306618-004				\checkmark			\checkmark	\checkmark
K1306618	SD0016	K1306618-005	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306618	SD0022	K1306618-006							\checkmark	
K1306618	SD0001	K1306618-007							\checkmark	
K1306618	SD0002	K1306618-008							\checkmark	
K1306618	SD0051	K1306618-009							\checkmark	
K1306618	SD0054	K1306618-010							\checkmark	
K1306618	SD0013	K1306618-011					\checkmark	\checkmark		
K1306618	SD0015	K1306618-012					\checkmark	\checkmark		
K1306618	SD0021	K1306618-013					\checkmark	\checkmark		
K1306618	SD0016	K1306618-014					\checkmark	\checkmark		
K1306618	SD0022	K1306618-015					\checkmark	\checkmark		
K1306618	SD0001	K1306618-016					\checkmark	\checkmark		
K1306618	SD0002	K1306618-017					\checkmark	\checkmark		
K1306758	SD0018	K1306758-001				\checkmark			\checkmark	\checkmark
K1306758	SD0008	K1306758-002	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
K1306758	FW0002	K1306758-003	\checkmark		\checkmark					
K1306758	FW0003	K1306758-004	\checkmark		\checkmark					
K1306758	SD0018	K1306758-005					\checkmark	\checkmark		
K1306758	SD0008	K1306758-006					\checkmark	\checkmark		
K1307013	SD0056	K1307013-001				\checkmark				\checkmark
K1307013	SD0057	K1307013-002				\checkmark				\checkmark
K1307013	SD0058	K1307013-003				\checkmark				\checkmark

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Semivolatile Organic Compounds by Method SW8270D

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by ALS Environmental, Kelso, Washington. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
K1306341	2 Sediment 2 Filter Wipes	Stage 2B
	Stage 2A	
K1306505	1 Sediment	Stage 4
K1306618	3 Sediment	Stage 2B
K1306758	1 Sediment	Stage 2B
	2 Filter Wipes	Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG K1306758: On the chain of custody (COC), analysis for filter wipe Sample FW0003 were not requested for semivolatile organic compounds (SVOC). The lab analyzed and reported results for this sample.

II. VERIFICATION OF EDD TO LABORATORY REPORT

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report; no errors were found.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

$\mathbf{1}$	Sample Receipt, Preservation, and Holding Times	$\mathbf{1}$	Laboratory Control Samples (LCS/LCSD)
\checkmark	GC/MS Instrument Performance Check	$\mathbf{1}$	Field Replicates
\checkmark	Initial Calibration (ICAL)	\checkmark	Internal Standards
\checkmark	Continuing Calibration (CCAL)	\checkmark	Target Analyte List
$\mathbf{2}$	Laboratory Blanks	$\mathbf{1}$	Reporting Limits (MDL and MRL)
$\mathbf{1}$	Field Blanks	\checkmark	Compound Identification
\checkmark	Surrogate Compounds	\checkmark	Reported Results
$\mathbf{2}$	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	$\mathbf{1}$	Calculation Verification (Full validation only)

[^5]
Sample Receipt, Preservation, and Holding Times

The validation guidance documents state that sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to $6^{\circ} \mathrm{C}$. The laboratory received several sample coolers with temperatures less than the lower limit, the lowest at $0.2{ }^{\circ} \mathrm{C}$. These outliers did not impact data quality; no data were qualified.

Laboratory Blanks

Laboratory (method) blanks were analyzed at the appropriate frequency. To assess the impact of each blank contaminant on the reported sample results, an action level is established at five times ($5 x ; 10 x$ for phthalates) the concentration detected in the blank. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified as not detected (U-7) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

SDG K1306341: A positive result for bis (2-ethylhexyl) phthalate was reported in the filter wipe method blank. This analyte was not detected in the associated samples; no data were qualified.

SDG K1306758: A positive result for bis (2-ethylhexyl) phthalate was reported in the filter wipe method blank. The results for bis (2-ethylhexyl) phthalate were qualified as not detected (U-7) in Samples FW0002 and FW0003.

Field Blanks

The field blanks for this project are filter wipe samples. To evaluate the effect on the sample data, action levels of $5 x$ ($10 x$ for phthalates) the blank concentrations were established. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified (U-6) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

SDG K1306341: Two filter wipes, FW0001 and FB0001, were submitted with this data package. No target analytes were detected in these samples

SDG K1306758: Two filter wipes, FW0002 and FW0003, were submitted with this data package. After qualification due to method blank contamination, there were positive results remaining for benzyl n-butyl phthalate, dibenzofuran, diethyl phthalate, dimethyl phthalate, di-n-butyl phthalate, n-nitrosodiphenylamine, and phenol in Sample FW0002 and positive results for benzyl n-butyl phthalate, diethyl phthalate, and di-n-butyl phthalate in Sample FW0003. All associated results were greater than the action levels or not detected; no data were qualified.

Matrix Spikes/ Matrix Spike Duplicate

Matrix spike/matrix spike duplicates (MS/MSD) were analyzed at the proper frequency. For MS/MSD \%R values that were less than the lower control limit, positive results and/or non-detects in the associated samples were estimated (J/UJ-8L) to indicate a potential low bias. For \%R values greater than the upper control limit, only positive results in the associated samples were estimated $(\mathrm{J}-8 \mathrm{H})$ to indicate a potential high bias. If the $\% \mathrm{R}$ values are less than 10%, positive results were
estimated (J-8L) and reporting limits were rejected (R-8L). No action was taken if only one of the MS or MSD recovery values was outside of the control limit and greater than 10% or if the native sample concentration is greater than 4 x the spike level.

SDG K1306341: The MS/MSD analyses were performed using Sample SD0017. Benzoic acid was not recovered in the MS. The MSD \%R value was acceptable. The reporting limit for benzoic acid was estimated (UJ-8L) in the parent sample to indicate a potential low bias. The RPD value for benzoic acid was greater than the control limit, benzoic acid was not detected in the parent sample; no data were qualified.

For filter wipe samples MS/MSD analyses were not performed. Precision and accuracy were evaluated using the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analyses.

SDG K1306505: The MS/MSD analyses were performed using Sample SD0003. Benzoic acid was not recovered. This analyte was not detected in the parent sample, the reporting limit was rejected (R-8L) to indicate a potentially very low bias.

SDG K1306618: The MS/MSD analyses were performed using sample SD0015. Benzoic acid was not recovered. This analyte was not detected in the parent sample, the reporting limit was rejected (R-8L) to indicate a potentially very low bias.

SDG K1306758: The MS/MSD analyses were performed using a batch QC sample.
For filter wipe samples MS/MSD analyses were not performed. Precision and accuracy were evaluated using the LCS/LCSD analyses.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates (LCS/LCSD) were analyzed at the proper frequency. For LCS/LCSD recovery values that were less than the lower control limit, positive results and/or non-detects in the associated samples were estimated (J/UJ-10L) to indicate a potential low bias. For recovery values greater than the upper control limit, only positive results in the associated samples were estimated $(\mathrm{J}-10 \mathrm{H})$ to indicate a potential high bias. No action was taken if only one of the LCS or LCSD recovery values was outside of the control limit. The relative percent difference (RPD) value control limit is 40%. For RPD values greater than the control limit, positive results in the associated samples were estimated (J-9).

SDG K1306341: The \%R values for di-n-butyl-phthalate were greater than the upper control limit for the sediment LCS/LCSD. This analyte was not detected in the associated samples; no data were qualified.

Field Replicates

To evaluate field precision, the relative percent difference (RPD) is calculated for results greater than $5 x$ the reporting limits (RL). If either result is less than $5 x$ the RL, the difference between the results is calculated. The RPD control limit is 50% and the calculated difference control limit is $2 x$ the RL for sediment samples.

SDG K1306618: One set of field replicates, SD0015 \& SD0016, were submitted. Field precision was acceptable.

Reporting Limits

ALL SDG: The reporting limits (RL) specified by the sampling and analysis plan (SAP) were not met for one or more analytes. The RL were elevated due to reduced sample aliquot and/or high moisture content. No data were qualified.

Calculation Verification

Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recovery values. With the exceptions noted above, precision was also acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate RPD values.

Data were qualified as not detected due to method blank contamination. One data point was estimated based MS/MSD \%R outliers.

Two data points were rejected due to MS/MSD \%R outliers. Data that were rejected should not be used for any purpose.

All other data, as qualified, are acceptable for use

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Polynuclear Aromatic Hydrocarbons by Method SW8270D-SIM

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by ALS Environmental, Kelso, Washington. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
K1306341	2 Sediment	Stage 2B
K1306505	1 Sediment	Stage 4
K1306618	3 Sediment	Stage 2B
K1306758	1 Sediment	Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG K1306505: Analyte concentrations were reported on a wet weight basis in the original PDF and electronic data deliverable (EDD) reports. The laboratory was contacted and resubmitted the data adjusted for percent moisture content, no further action was necessary.

II. VERIFICATION OF EDD TO LABORATORY REPORT

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report; no errors were found.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

$\mathbf{1}$	Sample Receipt, Preservation, and Holding Times	\checkmark	Laboratory Control Samples (LCS/LCSD)
\checkmark	GC/MS Instrument Performance Check	$\mathbf{1}$	Field Replicates
\checkmark	Initial Calibration (ICAL)	\checkmark	Internal Standards
\checkmark	Continuing Calibration (CCAL)	\checkmark	Target Analyte List
$\mathbf{1}$	Laboratory Blanks	$\mathbf{1}$	Reporting Limits (MDL and MRL)
$\mathbf{1}$	Field Blanks	\checkmark	Compound Identification
\checkmark	Surrogate Compounds	\checkmark	Reported Results
$\mathbf{1}$	Matrix Spikes/Matrix Spike Duplicates (MS/MSD)	$\mathbf{1}$	Calculation Verification

[^6]
Sample Receipt, Preservation, and Holding Times

The validation guidance documents state that sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to $6^{\circ} \mathrm{C}$. The laboratory received several sample coolers with temperatures less than the lower control limit, the lowest at $0.2^{\circ} \mathrm{C}$. These outliers did not impact data quality; no data were qualified.

Laboratory Blanks

Laboratory (method) blanks were analyzed at the appropriate frequency. To assess the impact of each blank contaminant on the reported sample results, an action level is established at five times $(5 x)$ the concentration detected in the blank. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified as not detected (U-7) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

SDG K1306341: A positive result for naphthalene was reported in the method blank. Results in the associated samples were greater than the action level. No data were qualified.

SDG K1306505: A positive result for benzo(g,h,i)perylene was reported in the method blank. The result in the associated sample was greater than the action level. No data were qualified.

Field Blanks

No field blanks were submitted.

Matrix Spike/Matrix Spike Duplicates

SDGs K1306341, K1306618, and K1306758: Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed using a batch QC sample. Precision and accuracy were acceptable.

Field Replicates

The following acceptance criteria were used to evaluate precision: the relative percent difference (RPD) control limit is 50% for results greater than $5 x$ the reporting limit (RL). For results less than $5 x$ the RL, the absolute difference between the sample and replicate must be less than $2 x$ the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable.

SDG K1306618: One set of field replicates, SD0015 \& SD0016, were submitted. The RPD values for benzo(a)anthracene and naphthalene were greater than the control limit.

Reporting Limits

SDGs K1306341 and K1306618: The reporting limits (RL) specified by the sampling and analysis plan (SAP) were not met for one or more analytes. The RL were elevated due to reduced sample aliquot and/or high moisture content. No data were qualified.

Calculation Verification

Several results were verified by recalculation from the raw data.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the surrogate and LCS/LCSD and MS/MSD recovery values. With the exceptions noted above, precision was acceptable as demonstrated by the LCS/LCSD and field replicate RPD values.

No data were qualified for any reason.
All data, as reported, are acceptable for use.

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Metals by Methods SW6020A and SW7470A/SW7471B

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. ALS Environmental, Kelso, Washington, analyzed the samples. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
K1306341	 2 Filter Wipe	Stage 2B Stage 2A
K1306505	1 Sediment	Stage 3
K1306618	3 Sediment	Stage 2B
K1306758	1 Sediment \&	Stage 2B
	2 Filter Wipe	Stage 2A

I. DATA PACKAGE COMPLETENESS

With the exception noted below, the laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG K1306758: The case narrative noted an incorrect number of samples and the SDG number was incorrect. The laboratory was contacted and the case narrative was corrected.

II. VERIFICATION OF EDD TO LABORATORY REPORT

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report; no errors were found.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

$\mathbf{1}$	Sample Receipt, Preservation, and Holding Times	\checkmark	Matrix Spike Samples
\checkmark	Initial Calibration	$\mathbf{2}$	Laboratory Duplicates
\checkmark	Continuing Calibration Verification	$\mathbf{1}$	Field Replicates
\checkmark	ICP-MS Tune	\checkmark	Interference Check Samples
\checkmark	CRDL Standards	\checkmark	ICP Serial Dilutions
$\mathbf{2}$	Laboratory Blanks	\checkmark	ICP-MS Internal Standards
$\mathbf{2}$	Field Blanks	\checkmark	Reporting Limits (MDL and MRL)
\checkmark	Laboratory Control Samples (LCS/LCSD)	\checkmark	Reported Results
\checkmark	Reference Materials	$\mathbf{1}$	Calculation Verification (Stage 3 only)

[^7]EcoChem, Inc.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to $6^{\circ} \mathrm{C}$. The laboratory received several sample coolers with temperatures less than the lower limit, the lowest at $0.2^{\circ} \mathrm{C}$. These outliers did not impact data quality; no data were qualified.

Laboratory Blanks

To assess the impact of any blank contaminant on the reported sample results, an action level is established at five times ($5 x$) the concentration reported in the blank. If a contaminant is reported in an associated field sample and the concentration is less than the action level, the result is qualified as not detected (U-7). No action is taken if the sample result is greater than the action level, or for non-detected results.

Laboratory blanks were analyzed at the appropriate frequency. Various target analytes were detected in the method and instrument blanks, however only the following analytes required qualification in the samples listed:

SDG K1306341: Positive results for arsenic, cadmium, chromium, copper, lead, and silver were reported in the filter wipe method blank. Results for copper and silver were qualified as not detected (U-7) in Sample FB0001. Results for cadmium, copper, and silver were qualified as not detected (U-7) in Sample FW0001.

SDG K136758: Positive result for chromium was reported in the method blank. The result for chromium was qualified as not detected (U-7) in Sample FW0002.

Field Blanks

To evaluate the effect on the sample data, action levels of $5 x$ the blank concentrations were established. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified (U-6) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results. All sediment results were greater than the action levels; no sediment data were qualified.

SDG K1306341: Two filter blanks, FB0001 and FW0001, were submitted with this data package. After qualification due to method blank and instrument blank contamination, positive results for cadmium, chromium, lead, and zinc remained in Sample FB0001.

In Sample FW0001 the results for chromium, lead, and zinc were qualified as not detected (U-6) due to contamination from Sample FB0001. No positive results remained in this sample. In Sample FW0002 the results for lead and zinc were qualified as not detected (U-6) due to contamination from Sample FB0001. A positive result for copper remained in this sample. In Sample FW0003 the results for chromium, lead, and zinc were qualified as not detected (U-6) due to contamination from Sample FB0001. A positive result for copper remained in this sample.

SDG K1306758: Two filter blanks, FW0002 and FW0003, were submitted with this data package. After qualification due to method blank and instrument blank contamination, and contamination due to Sample FB0001, positive results for copper remained in Samples FW0002 and FW0003. All associated results were detected at concentrations greater than the action level; no data were qualified.

Laboratory Duplicates

Laboratory duplicates were analyzed at the proper frequency. The laboratory duplicate relative percent difference (RPD) control limit is 20% for results greater than five times ($5 x$) the reporting limit (RL). For results less than the RL, the difference between the sample and duplicate must be less than the RL.

For RPD or difference values greater than the control limits, associated positive results and non-detects were estimated (J/UJ-9). The following outliers were noted:

SDG K1306505: SD0003: lead (28.4\%)
SDGs K1306758 and K1306618: Batch QC: lead (28.4\%)

Field Duplicates

The field duplicate RPD control limit is 50% for results greater than five times ($5 x$) the RL. For results less than $5 x$ the RL, the difference between the sample and duplicate must be less than $2 x$ the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable.

SDG K1306618: One set of field duplicates were submitted, SD0015 \& SD0016, with this data set. The RPD values for cadmium, mercury, and zinc were greater than the control limit.

Calculation Verification

SDG K1306505: Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical methods. Accuracy was acceptable as demonstrated by the laboratory control sample and matrix spike percent recovery values. Precision was also acceptable as demonstrated by the laboratory duplicate relative percent difference values.

Data were qualified as not detected based on laboratory and field blank contamination. Data were estimated based on laboratory duplicate RPD outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Conventional Parameters

This report documents the review of analytical data from the analyses of pore water samples and the associated laboratory quality control (QC) samples. ALS Environmental, Kelso, Washington, analyzed the samples. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
K1306341	35 Pore Water	Stage 2B
K1306505	6 Pore Water	Stage 3
K1306618	7 Pore Water	Stage 2B
K1306758	2 Pore Water	Stage 2B

The analytical tests that were performed are summarized below.

Parameter	Method
Sulfide	EPA 9030B
Ammonia	EPA SM 45-NH3 E

I. DATA PACKAGE COMPLETENESS

With the exception noted below, the laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG K1306758: The case narrative noted seven pore water samples, there were two, and the SDG number noted on the case narrative was incorrect. The laboratory was contacted and the case narrative was corrected.

II. VERIFICATION OF EDD TO LABORATORY REPORT

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report; no errors were found.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed in the following table.

$\mathbf{2}$	Sample Receipt, Preservation, and Holding Times	$\mathbf{1}$	Field Replicates
$\mathbf{1}$	Laboratory Blanks	\checkmark	Reported Results
$\mathbf{1}$	Field Blanks	\checkmark	Reporting Limits
\checkmark	Laboratory Control Samples (LCS)	$\mathbf{1}$	Calculation Verification
\checkmark	Laboratory Duplicates		

[^8]
Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to $6^{\circ} \mathrm{C}$. The laboratory received sample coolers with temperatures less than the lower limit, the lowest at $0.2^{\circ} \mathrm{C}$. These preservation outliers did not impact data quality; no data were qualified.

SDG K1306341: The sediment samples were frozen prior to the extraction of the porewater, with the intention of extending the seven (7) day holding time. In addition, the preservation requirement for sulfide and ammonia analyses is cooling at 2° to $6^{\circ} \mathrm{C}$. All sulfide analyses were performed 19 to 22 days after collection; four samples, SD0027, SD0030, SD0031, and SD0044, were analyzed more than three times the holding time criterion; sulfide was not detected. The sulfide results in these four samples were rejected (R-1). All other sulfide and all ammonia sample results were estimated ($\mathrm{J} / \mathrm{UJ}-1$) for this data package.

SDG K1306505: The samples for sulfide were analyzed at 23 or 24 days, more than three times the holding time criterion of seven days. All positive results for sulfide were estimated (J-1) and non-detected results were rejected ($\mathrm{R}-1$).

SDG K1306618: Sulfide analyses were performed 17 to 22 days after sample collection, which is greater than the criterion of seven (7) days. All results for sulfide were estimated (J/UJ-1).

SDG K1306758: Sulfide analyses were performed 16 days after sample collection, which is greater than the criterion of seven (7) days. All results for sulfide results were estimated (J/UJ-1).

Laboratory Blanks

SDG K1306341: Positive results for ammonia were reported in several instrument and method blanks. All samples results were greater than the five times action level; no data were qualified.

Field Blanks

No field blanks were submitted with this matrix.

Field Replicates

The field duplicate relative percent difference (RPD) control limit is 35% for results greater than five times ($5 x$) the RL. For results less than $5 x$ the RL, the difference between the sample and duplicate must be less than the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable.

SDG K1306341: Two sets of field replicates, SD0040 \& SD0041 and SD0049 \& SD0050, were submitted. The RPD or the difference values for ammonia in both sets of field replicates were greater than the control limit.

SDG K1306618: One set of field duplicates, SD0015 \& SD0016, were submitted with this SDG. The RPD value for ammonia was greater than the control limit.

Calculation Verification

SDG K1306505: Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical methods. Accuracy was acceptable as demonstrated by the laboratory control sample percent recovery values. Precision was acceptable as demonstrated by the laboratory duplicate relative percent difference values.

Data were estimated based holding time outliers.
Data were rejected due to analyses greater than three times the holding time criterion. Data that was rejected should not be used for any purpose.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT Western Port Angeles Harbor RI/FS Conventional Parameters

This report documents the review of analytical data from the analyses of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by ALS Environmental, Kelso, Washington. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
K1306341	35 Sediment	Stage 2B
K1306505	8 Sediment	Stage 3
K1306618	10 Sediment	Stage 2B
K1306758	2 Sediment	Stage 2B
K1307013	3 Sediment	Stage 2B

The analytical tests that were performed are summarized below.

Parameter	Method
Grain Size	PSEP
Total Volatile Solids	160.4
Total Solids	160.3
Total Organic Carbon	SW-846 9060

I. DATA PACKAGE COMPLETENESS

With the exceptions noted below, the laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

SDG K1306618: Sample SD0015 was reanalyzed for total solids (TS), there was no mention in the case narrative of this reanalysis. A note on the bench sheet stated that the incorrect sample was analyzed and that the correct sample would be reanalyzed. The laboratory was contacted and the case narrative was revised. The revised case narrative incorrectly noted the analysis method as 160.4 M , the correct method is 160.3 M .

SDG K1306758: The case narrative noted an incorrect SDG number and number of samples. The laboratory was requested to provide a corrected case narrative.

II. VERIFICATION OF EDD TO LABORATORY REPORT

Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report; with the exceptions noted below no errors were found.

SDG K1306618: In the EDD, the incorrect result for TS in Sample SD0015 was reported. This result was flagged do-not-report (DNR-11) in favor of the correct result which had been reported as a laboratory duplicate value with the laboratory ID K1306618-002DUP. This laboratory ID was changed from K1306618-002DUP to K1306618-002.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed in the following table.

$\mathbf{2}$	Sample Receipt, Preservation, and Holding Times	\checkmark	Matrix Spikes
\checkmark	Laboratory Blanks	$\mathbf{1}$	Reported Results
\checkmark	Laboratory Control Samples (LCS)	\checkmark	Reporting Limits
\checkmark	Laboratory Replicates	$\mathbf{1}$	Calculation Verification
$\mathbf{1}$	Field Duplicates		

\checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.
${ }^{1}$ Quality control results are discussed below, but no data were qualified.
${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to $6^{\circ} \mathrm{C}$. The laboratory received several sample coolers with temperatures less than the lower limit, the lowest at $0.2^{\circ} \mathrm{C}$. These outliers did not impact data quality; no data were qualified.

SDG K1306341: Due to a broken crucible, Sample SD0048 was reanalyzed for total volatile solids (TVS) 12 days after sample collection, which is greater than the TVS holding time criterion of seven (7) days. The TVS result was estimated (J-1).

SDG K1306758: Samples SD0008 and SD0018 were reanalyzed for TVS eight (8) days after sample collection, which is greater than the TVS holding time criterion of seven (7) days. These results were estimated ($\mathrm{J}-1$).

Field Duplicates

The field duplicate RPD control limit is 50% for results greater than five times ($5 x$) the RL. For results less than $5 x$ the RL, the difference between the sample and duplicate must be less than $2 x$ the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable.

SDG K1306341: Two sets of field duplicates, SD0040 \& SD0041 and SD0049 \& SD0050, were submitted. For the pair using Samples SD0049 \& SD0050 the grain size RPD value for very fine sand was greater than the control limit.

SDG K1306618: One set of field duplicates, SD0015 \& SD0016, were submitted. The RPD value for total volatile solids was greater than the control limit.

Reported Results

SDG K1306758: The first analysis of the laboratory duplicates of Samples SD0008 and SD0018 for total solids were flagged do-not-report (DNR-11) in favor of the re-analysis results.

Calculation Verification

SDG K1306505: Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical methods. Accuracy was acceptable as demonstrated by the laboratory control sample, reference material, and matrix spike recoveries. With the exceptions noted above, precision was acceptable as demonstrated by the laboratory duplicate RPD, laboratory replicate \%RSD, and field duplicate RPD values.

Data were estimated based on holding time outliers. Data were also flagged as do-not-report (DNR) to indicate which result should not be used from multiple reported analyses.

Data that were flagged DNR are not useable for any purpose. All other data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.

UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
$\mathrm{R} \quad$ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The following is an EcoChem qualifier that may also be assigned during the data review process:
DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
Instrument Performance	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
	5A	Initial Calibration (RF, \%RSD, r²)
	5B	Calibration Verification (ICV, CCV, CCAL; RF, \%D, \%R) Use bias flags (H,L) ${ }^{1}$ where appropriate
Blank Contamination	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L$)^{1}$ for negative instrument blanks
Precision and Accuracy	8	Matrix Spike (MS \&/or MSD) Recoveries Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	12	Reference Material Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ${ }^{1}$ where appropriate
Interferences	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
Identification and Quantitation	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	$2{ }^{\text {nd }}$ column confirmation (RPD or \%D)
	4	Tentatively Identified Compound (TIC) (associated with NJ only)
	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
Miscellaneous	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)
	14	Other (See DV report for details)
	26	Method QC information not provided

[^9]EcoChem Validation Guidelines for Semivolatile Analysis by GCIMS (Based on Organic NFG 1999)

| VALIDATION
 QC ELEMENT | ACCEPTANCE CRITERIA | ACTION |
| :---: | :---: | :---: | :---: | :---: |

EcoChem Validation Guidelines for Semivolatile Analysis by GCIMS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	$\begin{aligned} & \text { REASON } \\ & \text { CODE } \end{aligned}$
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: $J(+)$ if both \%R > UCL $J(+) / U J(-)$ if both \%R < LCL $J(+) / R(-)$ if both $\% R<10 \%$ PJ if only one \%R outier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	$J(+)$ in parent sample if RPD $>C L$	9
LCS low conc. H2O SVOA	One per lab batch Within method control limits	$\mathrm{J}(+)$ assoc. cmpd if > UCL $\mathrm{J}(+) / \mathrm{R}(-)$ assoc. cmpd if < LCL $J(+) / R(-)$ all cmpds if half are < LCL	10
LCS regular SVOA (H2O \& solid)	One per lab batch Lab or method control limits	$\begin{gathered} J(+) \text { if } \% R>\text { UCL } \quad J(+) / U J(-) \text { if } \% R<L C L \\ J(+) / R(-) \text { if } \% R<10 \% \text { (EcoChem PJ) } \end{gathered}$	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35\%	$\mathrm{J}(+) / \mathrm{UJ}(-)$ assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	$\begin{aligned} & \text { Do not qualify if only } 1 \text { acid and/or } 1 \text { B/N } \\ & \text { surrogate is out unless <10\% } \\ & J(+) \text { if } \% R>U C L \quad J(+) / U J(-) \text { if } \% R<L C L \\ & J(+) / R(-) \text { if } \% R<10 \% \end{aligned}$	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	$\begin{gathered} J(+) \text { if }>200 \% \\ J(+) / U J(-) \text { if }<50 \% \\ J(+) / R(-) \text { if }<25 \% \end{gathered}$ RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD < 50% OR absolute diff. < 2X RL (for results < 5 XRL) Aqueous: RPD <35\% OR absolute diff. < 1 X RL (for results < 5 X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10\%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: $R(+)$ common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	$\begin{gathered} 14 \\ 21 \text { (false }+ \text {) } \end{gathered}$

EcoChem Validation Guidelines for Mercury Analysis by CVAA (Based on Inorganic NFG 1994 \& 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE	
Cooler Temperature and Preservation	Cooler temperature: $4^{\circ} \mathrm{C} \pm 2^{\circ}$ Waters: Nitric Acid to $\mathrm{pH}<2$ For Dissolved Metals: 0.45 um filter \& preserve after filtration	EcoChem Professional Judgment - no qualification based on cooler temperature outliers $J(+) / \mathrm{UJ}(-)$ if pH preservation requirements are not met	1	
Holding Time	28 days from date sampled Frozen tissues: HT extended to 6 months	$J(+) / U J(-)$ if holding time exceeded	1	
Initial Calibration	Blank +4 standards, one at RL $r>0.995$	$J(+) / U J(-)$ if $\mathrm{r}<0.995$	5A	
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration $\% R$ within $\pm 20 \%$ of true value	$\begin{gathered} J(+) / U J(-) \text { if } \% R=65 \%-79 \% \\ J(+) \text { if } \% R=121-135 \% \\ R(+/-) \text { if } \% R<65 \% \quad R(+) \text { if } \% R>135 \% \end{gathered}$	5A	
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run $\% \mathrm{R}$ within $\pm 20 \%$ of true value	$\begin{gathered} J(+) / U J(-) \text { if } \% R=65 \%-79 \% \\ J(+) \text { if } \% R=121-135 \% \\ R(+/-) \text { if } \% R<65 \% \quad R(+) \text { if } \% R>135 \% \end{gathered}$	5B	
Initial and Continuing Calibration Blanks (ICB/CCB)	after each ICV and CCV every ten samples and end of run \| blank	< IDL (MDL)	Action level is $5 x$ absolute value of blank conc. For (+) blanks, $\mathrm{U}(+)$ results < action level For (-) blanks, $\mathrm{J}(+) / \mathrm{UJ}(-)$ results < action level refer to TM-02 for additional details	7
Reporting Limit Standard (CRA)	conc at RL - analyzed beginning of run \%R = 70-130\%	$\begin{gathered} R(-),(+)<2 x R L \text { if } \% R<50 \% \\ J(+)<2 x R L, U J(-) \text { if } \% R 50-69 \% \\ J(+)<2 x R L \text { if } \% R 130-180 \% \\ R(+)<2 x R L \text { if } \% R>180 \% \\ \hline \end{gathered}$	14	
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5 x blank concentration $\mathrm{U}(+)$ results < action level	7	
Laboratory Control Sample (LCS)	One per matrix per batch		10	
	Blank Spike: \%R within 80-120\%	$\begin{gathered} R(+/-) \text { if } \% R<50 \% \\ J(+) / U J(-) \text { if } \% R=50-79 \% \\ J(+) \text { if } \% R>120 \% \end{gathered}$		
	CRM: Result within manufacturer's certified acceptance range or project guidelines	$\begin{gathered} J(+) / \mathrm{UJ}(-) \text { if }<\mathrm{LCL}, \\ \mathrm{~J}(+) \text { if }>\mathrm{UCL} \end{gathered}$		
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 5% frequency $75-125 \%$ for samples less than $4 x$ spike level	$\begin{gathered} J(+) \text { if \%R>125\% } \\ J(+) / U J(-) \text { if } \% R<75 \% \\ J(+) / R(-) \text { if } \% R<30 \% \end{gathered}$ all samples in batch	8	
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20\% for samples > 5x RL Diff $\leq R L$ for samples $>R L$ and $<5 x$ RL (Diff $\leq 2 x$ RL for solids)	$J(+) / U J(-)$ if RPD $>20 \%$ or diff $>R L$ all samples in batch	9	

EcoChem Validation Guidelines for Mercury Analysis by CVAA (Based on Inorganic NFG 1994 \& 2004)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Field Blank	Blank < MDL	Action level is $5 x$ blank conc. $\mathrm{U}(+)$ sample values < action level in associated field samples only	6
Field Duplicate	For results > 5x RL: Water: $\mathrm{RPD}<35 \% \quad$ Solid: RPD $<50 \%$ For results $<5 \times$ RL: Water: Diff<RL Solid: Diff $<2 \times$ RL	$J(+) / U J(-)$ in parent samples only	9
Linear Range	Sample concentrations must be less than 110\% of high standard	J values over range	20

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION OC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature and Preservation	Cooler Temperature $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ Preservation: Method Specific	Use Professional Judgment to qualify based to qualify for coole temp outliers $J(+) / U J(-)$ if preservation requirements not met	1
Holding Time	Method Specific	Professional Judgment $J(+) / U J(-)$ if holding time exceeded $J(+) / R(-)$ if HT exceeded by $>3 X$	1
Initial Calibration	Method specific $r>0.995$	Use professional judgment $J(+) / \mathrm{UJ}(-)$ for $r<0.995$	5A
Initial Calibration Verification (ICV)	Where applicable to method Independent source analyzed immediately after calibration \%R method specific, usually $90 \%-110 \%$	$\begin{gathered} R(+/-) \text { if \%R significantly }<L C L \\ J(+) / U J(-) \text { if } \% R<L C L \\ J(+) \text { if } \% R>U C L \\ R(+) \text { if } \% R \text { significantly }>U C L \end{gathered}$	5A
Continuing Cal Verification (CCV)	Where applicable to method Every ten samples, immed. following ICVIICB and end of run \%R method specific, usually $90 \%-110 \%$	$\begin{gathered} R(+(-) \text { if } \% R \text { significantly }<L C L \\ J(+) / U J(-) \text { if } \% R<L C L \\ J(+) \text { if } \% R>U C L \\ R(+) \text { if } \% R \text { significantly }>\text { UCL } \\ \hline \end{gathered}$	5B
Initial and Continuing Cal Blanks (ICB/CCB)	Where applicable to method After each ICV and CCV every ten samples and end of run \| blank < MDL	Action level is $5 x$ absolute value of blank conc. For (+) blanks, U(+) results < action level For (-) blanks, $\mathrm{J}(+) / \mathrm{UJ}(-)$ results < action level refer to TM-02 for additional details	7
Method Blank	One per matrix per batch (not to exceed 20 samples) blank < MDL	Action level is $5 x$ absolute value of blank conc. For (+) blk value, $\mathrm{U}(+$) results < action level For (-) blk value, J(+)/UJ(-) results < action level	7
Laboratory Control Sample	Waters: One per matrix per batch \%R (80-120\%)	$\begin{gathered} R(+/-) \text { if } \% R<50 \% \\ J(+) / U J(-) \text { if } \% R=50-79 \% \\ J(+) \text { if } \% R>120 \% \end{gathered}$	10
	Soils: One per matrix per batch Result within manufacturer's certified acceptance range	$\begin{gathered} J(+) / U J(-) \text { if }<L C L, \\ J(+) \text { if }>\mathrm{UCL} \end{gathered}$	10
Matrix Spike	One per matrix per batch; 5% frequency 75-125\% for samples less than $4 \times$ spike level	$\begin{gathered} \mathrm{J}(+) \text { if } \% \mathrm{R}>125 \% \text { or }<75 \% \\ \text { UJ }(-) \text { if } \% R=30-74 \% \\ R(+\mid-) \text { results }<\text { IDL if } \% R<30 \% \end{gathered}$	8
Laboratory Duplicate	One per matrix per batch RPD $<20 \%$ for samples $>5 x$ RL Diff <RL for samples >RL and $<5 \times \mathrm{RL}$ (may use RPD < 35\%, Diff < 2X RL for solids)	$J(+) / U J(-)$ if RPD $>20 \%$ or diff $>$ RL all samples in batch	9

EcoChem Validation Guidelines for Conventional Chemistry Analysis (Based on EPA Standard Methods)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Field Blank	blank < MDL	Action level is 5 x blank conc. $U(+)$ sample values < action level in associated field samples only	6
Field Duplicate	For results > 5X RL: Water: RPD $<35 \% \quad$ Solid: RPD $<50 \%$ For results < $5 \times$ RL: Water: Diff<RL Solid: Diff <2 X RL	$J(+) / U J(-)$ in parent samples only	9

APPENDIX B
 QUALIFIED DATA SUMMARY TABLE

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	$\begin{aligned} & \text { Lab } \\ & \text { Flags } \end{aligned}$	Validation Qualifier	Validation Reason
K1306341	SD0017	K1306341-035	SW8270D_3541	Benzoic acid	0.3	mg/kg	U	UJ	8L
K1306505	SD0003	K1306505-002	SW8270D_3541	Benzoic acid	0.53	mg/kg	U	R	8L
K1306618	SD0015	K1306618-002	SW8270D_3541	Benzoic acid	0.26	mg/kg	U	R	8L
K1306758	FW0002	K1306758-003	SW8270D_3541	bis(2-Ethylhexyl)phthalate	0.19	ug	J	U	7
K1306758	FW0003	K1306758-004	SW8270D_3541	bis(2-Ethylhexyl)phthalate	0.2	ug	J	U	7
K1306505	SD0003	K1306505-002	SW6020A_3050B	Lead	15.1	mg/kg	*	J	9
K1306505	SD0003	K1306505-002DUP	SW6020A_3050B	Lead	20.1	mg/kg		J	9
K1306618	SD0013	K1306618-001	SW6020A_3050B	Lead	22.4	mg/kg	*	J	9
K1306618	SD0015	K1306618-002	SW6020A_3050B	Lead	16.7	mg/kg	*	J	9
K1306618	SD0016	K1306618-005	SW6020A_3050B	Lead	23.9	mg/kg	*	J	9
K1306341	FW0001	K1306341-022	SW6020A_CLFAA	Cadmium	0.003	ug	J	U	7
K1306341	FW0001	K1306341-022	SW6020A_CLFAA	Chromium	0.56	ug		U	6
K1306341	FW0001	K1306341-022	SW6020A_CLFAA	Copper	0.13	ug		U	7
K1306341	FW0001	K1306341-022	SW6020A_CLFAA	Lead	0.023	ug		U	6
K1306341	FW0001	K1306341-022	SW6020A_CLFAA	Silver	0.008	ug	J	U	7
K1306341	FW0001	K1306341-022	SW6020A_CLFAA	Zinc	0.42	ug		U	6
K1306341	FB0001	K1306341-023	SW6020A_CLFAA	Copper	0.12	ug		U	7
K1306341	FB0001	K1306341-023	SW6020A_CLFAA	Silver	0.007	ug	J	U	7
K1306758	SD0008	K1306758-002	SW6020A_CLFAA	Lead	17.8	mg/kg	*	J	9
K1306758	FW0002	K1306758-003	SW6020A_CLFAA	Chromium	0.44	ug		U	7
K1306758	FW0002	K1306758-003	SW6020A_CLFAA	Lead	0.019	ug	J	U	6
K1306758	FW0002	K1306758-003	SW6020A_CLFAA	Zinc	0.46	ug	J	U	6
K1306758	FW0003	K1306758-004	SW6020A_CLFAA	Chromium	0.5	ug		U	6
K1306758	FW0003	K1306758-004	SW6020A_CLFAA	Lead	0.027	ug	J	U	6
K1306758	FW0003	K1306758-004	SW6020A_CLFAA	Zinc	0.59	ug		U	6
K1306618	SD0015	K1306618-002	EPA_160.3	Solids	92.7	percent		DNR	11
K1306758	SD0018	K1306758-001DUP	EPA_160.3	Solids	39.9	percent		DNR	11
K1306758	SD0008	K1306758-002DUP	EPA_160.3	Solids	31.3	percent		DNR	11
K1306341	SD0048	K1306341-024	EPA_160.4	Total Volatile Solids	3.19	percent		J	1
K1306758	SD0018	K1306758-001	EPA_160.4	Total Volatile Solids	11.7	percent		J	1
K1306758	SD0008	K1306758-002	EPA_160.4	Total Volatile Solids	23.7	percent		J	1

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	$\begin{gathered} \text { Lab } \\ \text { Flags } \end{gathered}$	Validation Qualifier	Validation Reason
K1306341	SD0027	K1306341-038	SM4500NH3H	Ammonia as Nitrogen	3.12	mg / L		J	1
K1306341	SD0030	K1306341-039	SM4500NH3H	Ammonia as Nitrogen	1.52	mg/L		J	1
K1306341	SD0031	K1306341-040	SM4500NH3H	Ammonia as Nitrogen	7.5	mg/L		J	1
K1306341	SD0032	K1306341-041	SM4500NH3H	Ammonia as Nitrogen	6	mg / L		J	1
K1306341	SD0033	K1306341-042	SM4500NH3H	Ammonia as Nitrogen	4.76	mg/L		J	1
K1306341	SD0034	K1306341-043	SM4500NH3H	Ammonia as Nitrogen	4.5	mg/L		J	1
K1306341	SD0035	K1306341-044	SM4500NH3H	Ammonia as Nitrogen	5.18	mg / L		J	1
K1306341	SD0036	K1306341-045	SM4500NH3H	Ammonia as Nitrogen	4.3	mg/L		J	1
K1306341	SD0037	K1306341-046	SM4500NH3H	Ammonia as Nitrogen	6.97	mg / L		J	1
K1306341	SD0038	K1306341-047	SM4500NH3H	Ammonia as Nitrogen	6.57	mg / L		J	1
K1306341	SD0039	K1306341-048	SM4500NH3H	Ammonia as Nitrogen	29.9	mg / L		J	1
K1306341	SD0044	K1306341-049	SM4500NH3H	Ammonia as Nitrogen	6.85	mg / L		J	1
K1306341	SD0023	K1306341-050	SM4500NH3H	Ammonia as Nitrogen	3.78	mg / L		J	1
K1306341	SD0024	K1306341-051	SM4500NH3H	Ammonia as Nitrogen	5.55	mg / L		J	1
K1306341	SD0042	K1306341-052	SM4500NH3H	Ammonia as Nitrogen	8.61	mg / L		J	1
K1306341	SD0041	K1306341-053	SM4500NH3H	Ammonia as Nitrogen	9.05	mg / L		\checkmark	1
K1306341	SD0043	K1306341-054	SM4500NH3H	Ammonia as Nitrogen	5.74	mg / L		J	1
K1306341	SD0045	K1306341-055	SM4500NH3H	Ammonia as Nitrogen	3.48	mg / L		J	1
K1306341	SD0046	K1306341-056	SM4500NH3H	Ammonia as Nitrogen	12.5	mg/L		J	1
K1306341	SD0047	K1306341-057	SM4500NH3H	Ammonia as Nitrogen	5.68	mg / L		J	1
K1306341	SD0049	K1306341-058	SM4500NH3H	Ammonia as Nitrogen	4.9	mg / L		J	1
K1306341	SD0048	K1306341-059	SM4500NH3H	Ammonia as Nitrogen	11.4	mg / L		J	1
K1306341	SD0050	K1306341-060	SM4500NH3H	Ammonia as Nitrogen	11.3	mg / L		J	1
K1306341	SD0040	K1306341-061	SM4500NH3H	Ammonia as Nitrogen	4.54	mg / L		J	1
K1306341	SD0029	K1306341-062	SM4500NH3H	Ammonia as Nitrogen	5.95	mg / L		J	1
K1306341	SD0025	K1306341-063	SM4500NH3H	Ammonia as Nitrogen	18.2	mg / L		J	1
K1306341	SD0026	K1306341-064	SM4500NH3H	Ammonia as Nitrogen	21.6	mg / L		J	1
K1306341	SD0028	K1306341-065	SM4500NH3H	Ammonia as Nitrogen	11.3	mg / L		J	1
K1306341	SD0005	K1306341-066	SM4500NH3H	Ammonia as Nitrogen	7.55	mg / L		J	1
K1306341	SD0006	K1306341-067	SM4500NH3H	Ammonia as Nitrogen	5.05	mg / L		J	1
K1306341	SD0007	K1306341-068	SM4500NH3H	Ammonia as Nitrogen	13.4	mg/L		J	1

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	$\begin{aligned} & \text { Lab } \\ & \text { Flags } \end{aligned}$	Validation Qualifier	Validation Reason
K1306341	SD0014	K1306341-069	SM4500NH3H	Ammonia as Nitrogen	3.93	mg/L		J	1
K1306341	SD0017	K1306341-070	SM4500NH3H	Ammonia as Nitrogen	8.79	mg/L		J	1
K1306341	SD0019	K1306341-071	SM4500NH3H	Ammonia as Nitrogen	4.13	mg/L		J	1
K1306341	SD0020	K1306341-072	SM4500NH3H	Ammonia as Nitrogen	4.09	mg/L		J	1
K1306341	SD0027	K1306341-038	SW9030M_9030B	Sulfide	0.03	mg/L	U	R	1
K1306341	SD0030	K1306341-039	SW9030M_9030B	Sulfide	0.03	mg/L	U	R	1
K1306341	SD0031	K1306341-040	SW9030M_9030B	Sulfide	0.03	mg/L	U	R	1
K1306341	SD0032	K1306341-041	SW9030M_9030B	Sulfide	0.08	mg/L	J	J	1
K1306341	SD0033	K1306341-042	SW9030M_9030B	Sulfide	1.89	mg/L		J	1
K1306341	SD0034	K1306341-043	SW9030M_9030B	Sulfide	1.05	mg/L		J	1
K1306341	SD0035	K1306341-044	SW9030M_9030B	Sulfide	0.44	mg/L		J	1
K1306341	SD0036	K1306341-045	SW9030M_9030B	Sulfide	0.08	mg/L	J	J	1
K1306341	SD0037	K1306341-046	SW9030M_9030B	Sulfide	0.88	mg/L		J	1
K1306341	SD0038	K1306341-047	SW9030M_9030B	Sulfide	0.2	mg/L		J	1
K1306341	SD0039	K1306341-048	SW9030M_9030B	Sulfide	0.06	mg/L	J	J	1
K1306341	SD0044	K1306341-049	SW9030M_9030B	Sulfide	0.03	mg/L	U	R	1
K1306341	SD0023	K1306341-050	SW9030M_9030B	Sulfide	1.32	mg/L		J	1
K1306341	SD0024	K1306341-051	SW9030M_9030B	Sulfide	5.56	mg/L		J	1
K1306341	SD0042	K1306341-052	SW9030M_9030B	Sulfide	0.54	mg/L		J	1
K1306341	SD0041	K1306341-053	SW9030M_9030B	Sulfide	0.15	mg/L		J	1
K1306341	SD0043	K1306341-054	SW9030M_9030B	Sulfide	0.03	mg/L	U	UJ	1
K1306341	SD0045	K1306341-055	SW9030M_9030B	Sulfide	0.17	mg/L		J	1
K1306341	SD0046	K1306341-056	SW9030M_9030B	Sulfide	0.04	mg/L	J	J	1
K1306341	SD0047	K1306341-057	SW9030M_9030B	Sulfide	0.05	mg/L	J	J	1
K1306341	SD0049	K1306341-058	SW9030M_9030B	Sulfide	0.04	mg/L	U	UJ	1
K1306341	SD0048	K1306341-059	SW9030M_9030B	Sulfide	0.05	mg/L	U	UJ	1
K1306341	SD0050	K1306341-060	SW9030M_9030B	Sulfide	0.04	mg/L	U	UJ	1
K1306341	SD0040	K1306341-061	SW9030M_9030B	Sulfide	0.24	mg/L		J	1
K1306341	SD0029	K1306341-062	SW9030M_9030B	Sulfide	0.03	mg / L	U	UJ	1
K1306341	SD0025	K1306341-063	SW9030M_9030B	Sulfide	0.03	mg/L	U	UJ	1
K1306341	SD0026	K1306341-064	SW9030M_9030B	Sulfide	0.06	mg/L	J	J	1

Qualified Data Summary Table

Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
K1306341	SD0028	K1306341-065	SW9030M_9030B	Sulfide	0.04	mg/L	U	UJ	1
K1306341	SD0005	K1306341-066	SW9030M_9030B	Sulfide	0.03	mg/L	J	J	1
K1306341	SD0006	K1306341-067	SW9030M_9030B	Sulfide	0.57	mg/L		J	1
K1306341	SD0007	K1306341-068	SW9030M_9030B	Sulfide	0.49	mg/L		J	1
K1306341	SD0014	K1306341-069	SW9030M_9030B	Sulfide	0.09	mg/L	J	J	1
K1306341	SD0017	K1306341-070	SW9030M_9030B	Sulfide	0.12	mg / L		J	1
K1306341	SD0019	K1306341-071	SW9030M_9030B	Sulfide	0.11	mg/L		J	1
K1306341	SD0020	K1306341-072	SW9030M_9030B	Sulfide	5.8	mg/L		J	1
K1306505	SD0009	K1306505-009	SW9030M_9030B	Sulfide	0.18	mg/L		J	1
K1306505	SD0003	K1306505-010	SW9030M_9030B	Sulfide	5.86	mg/L		J	1
K1306505	SD0010	K1306505-011	SW9030M_9030B	Sulfide	0.41	mg/L		J	1
K1306505	SD0004	K1306505-012	SW9030M_9030B	Sulfide	0.76	mg/L		J	1
K1306505	SD0012	K1306505-013	SW9030M_9030B	Sulfide	0.03	mg/L	J	J	1
K1306505	SD0011	K1306505-014	SW9030M_9030B	Sulfide	0.03	mg/L	U	R	1
K1306618	SD0013	K1306618-011	SW9030M_9030B	Sulfide	0.1	mg/L		J	1
K1306618	SD0015	K1306618-012	SW9030M_9030B	Sulfide	0.03	mg/L	U	UJ	1
K1306618	SD0021	K1306618-013	SW9030M_9030B	Sulfide	1	mg/L		J	1
K1306618	SD0016	K1306618-014	SW9030M_9030B	Sulfide	0.13	mg/L		J	1
K1306618	SD0022	K1306618-015	SW9030M_9030B	Sulfide	0.79	mg/L		J	1
K1306618	SD0001	K1306618-016	SW9030M_9030B	Sulfide	14.7	mg/L		J	1
K1306618	SD0002	K1306618-017	SW9030M_9030B	Sulfide	1.78	mg/L		J	1
K1306758	SD0018	K1306758-005	SW9030M_9030B	Sulfide	0.03	mg / L	U	UJ	1
K1306758	SD0008	K1306758-006	SW9030M_9030B	Sulfide	1.75	mg/L		J	1

Appendix E

Data Validation Report for
Analyses by AXYS Analytical SERVICES, LTD.

DATA VALIDATION REPORT
 WESTERN PORT ANGELES HARBOR RIIFS

Prepared for:
Floyd|Snider
601 Union Street, Suite 600
Seattle, WA 98101

Prepared by:
EcoChem, Inc.
1011 Western Ave. Suite 1011
Seattle, WA 98104

EcoChem Project: C15217-1

November 13, 2013

Basis for Data Validation

This report summarizes the results of validation (Stage 2A, 2B, \& 4) performed on sediment and quality control (QC) sample data for the Western Port Angeles Harbor RI/FS. Field sample ID, laboratory sample ID, and requested analyses are provided in the Sample Indices. Laboratory batch ID numbers and associated level of validation are provided at the beginning of each technical section.

Samples were analyzed by Samples were analyzed by Axys Analytical Services, Ltd. of Sidney, British Columbia, Canada. The analytical methods and EcoChem project chemists are listed below.

Analysis	Method of Analysis	Primary Review	Secondary Review
Dioxin Furan Compounds	EPA1613B	M. Swanson	E. Strout
Polychlorinated Biphenyls	EPA1668A		

The data were reviewed using guidance and quality control criteria documented in the analytical methods and the following project and guidance documents:

- Sampling and Analysis Plan - Western Port Angeles Harbor RI/FS (Integral/Anchor QEA/Exponent/Floyd|Snider, June 2013)
- USEPA National Functional Guidelines for Organic Data Review (USEPA 2008)
- USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (USEPA, September 2005)

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as Appendix A. The qualified data summary table is included as Appendix B. Data Validation Worksheets and the associated communication records will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) was also submitted with this report.

Sample Index
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	PCB	Dioxin
WG44236	SD0003	L19905-1	\checkmark	
WG44197	SD0004	L19905-2	\checkmark	\checkmark
WG44197	SD0009	L19905-3	\checkmark	\checkmark
WG44197	SD0010	L19905-4	\checkmark	\checkmark
WG44197	SD0011	L19905-5	\checkmark	\checkmark
WG44197	SD0013	L19905-6	\checkmark	\checkmark
WG44197	SD0015	L19905-7	\checkmark	\checkmark
WG44197	SD0016	L19905-8	\checkmark	\checkmark
WG44236	SD0017	L19905-9	\checkmark	\checkmark
WG44197	SD0052	L19905-10	\checkmark	\checkmark
WG44197	SD0018	L19905-11	\checkmark	\checkmark
WG44197	SD0025	L19905-12	\checkmark	\checkmark
WG44197	SD0026	L19905-13	\checkmark	\checkmark
WG44197	SD0028	L19905-14	\checkmark	\checkmark
WG44197	SD0051	L19905-15	\checkmark	\checkmark
WG444197	SD0053	L19905-16	\checkmark	\checkmark
WG44197	SD0054	L19905-17	\checkmark	\checkmark
WG44197	SD0055	L19905-18	\checkmark	\checkmark
WG44198	FW0001	L19906-1	\checkmark	\checkmark
WG44198	FB0001	L19906-2	\checkmark	\checkmark
WG44198	FW0002	L19906-3	\checkmark	\checkmark
WG44198	FW0003	L19906-4	\checkmark	\checkmark
WG44197	SD0026	WG44197-103	\checkmark	\checkmark
WG44236	SD0017	WG44236-103	\checkmark	

DATA VALIDATION REPORT
 City of Port Angeles WPAHG PCB Congeners by Axys Method MLA-010 (EPA 1668)

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Axys Analytical Services Ltd. of Sydney, British Columbia, Canada. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
WG44197	16 Sediment	EPA Stage 4
WG44198	4 Filter Wipes	EPA Stage 2A
WG44236	2 Sediment	EPA Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (100%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

\checkmark	Sample Receipt, Preservation, and Holding Times	\checkmark	Ongoing Precision and Recovery (OPR)
\checkmark	System Performance and Resolution Checks	$\mathbf{1}$	Field Replicates
\checkmark	Initial Calibration (ICAL)	$\mathbf{2}$	Laboratory Duplicates
\checkmark	Continuing Calibration (CCAL)	$\mathbf{2}$	Reported Results
$\mathbf{2}$	Method Blanks	$\mathbf{1}$	Reporting Limits
$\mathbf{2}$	Field Blanks	$\mathbf{2}$	Compound Identification
$\mathbf{2}$	Labeled Compound Recovery	$\mathbf{1}$	Calculation Verification

\checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed. ${ }^{1}$ Quality control results are discussed below, but no data were qualified.
${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Method Blanks

Method blanks were analyzed at the appropriate frequency. To assess the impact of each blank contaminant on the reported sample results, an action level was established at five times the concentration detected in the blank and the sample results were compared to these action levels. The laboratory assigned " K " flag to values when a peak was detected but did not meet identification criteria. These values cannot be considered as positive identifications, but are
"estimated maximum possible concentrations". When these occurred in the method blank the results were considered as false positives. No action levels were established for these analytes.

SDGs WG44197 and WG44236: Many PCB congeners were detected in the method blanks; however, all associated sample results were either greater than the action levels or not-detected.

SDG WG44198: Many PCB congeners were detected in the method blank. The results for 39 congeners in one or more filter wipe samples were qualified as not detected (U-7).

Field Blanks

The field blanks for this project are filter wipe samples. To evaluate the effect on the sample data, action levels of $5 x$ the blank concentrations were established. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified (U-6) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

SDG WG44198: Four filter wipes, FB0001, FW0001, FW0002, and FW0003 were submitted with this data package. After qualification due to method blank contamination, positive results remained for 22 PCB congeners in the master filter blank, FB0001. Results for one or more of these congeners were qualified as not detected (U-6) in filter wipes FW0001, FW0002, and FW0003.

After qualification based on method blank and Sample FB0001 contamination, positive results for nine (9) PCB congeners remained in Sample FW0001. No field samples were associated with this filter wipe.

After qualification based on method blank and Sample FB0001 contamination, positive results for nine (9) PCB congeners remained in Sample FW0002. All associated field sample results were greater than the action levels; no data were qualified.

After qualification based on method blank and Sample FB0001 contamination, positive results for 13 PCB congeners remained in Sample FW0003. All associated field sample results were greater than the action levels; no data were qualified.

Labeled Compound Recovery

Labeled compounds were added to all samples. The labeled compound percent recovery (\%R) values were evaluated using the laboratory control limits.

SDG WG44197: The \%R values for 13C-PCB 206 in Samples SD0009, SD0010, SD0011, SD0013, SD0016, SD0028, SD0051, and SD0054 were greater than the upper control limit, indicating a potential high bias; results for the associated congeners were estimated ($\mathrm{J}-13 \mathrm{H}$) in these samples.

The \%R value for 13C-PCB 169 was greater than the upper control limit in Sample SD0025, indicating a potential high bias; results for the associated congeners were estimated $(\mathrm{J}-13 \mathrm{H})$ in this sample.

In Sample SD0026, the 13C-PCB 1% value was less than 10% and the $13 \mathrm{C}-\mathrm{PCB} 4 \% \mathrm{R}$ value was less than the lower control limit. The associated congeners were all detected and were estimated ($\mathrm{J}-13 \mathrm{~L}$) due to the potential low bias.

SDG WG44236: The recovery value for 13C-PCB 206 in the laboratory duplicate for Sample SD0017 were greater than the upper control limit, indicating a potential high bias; no data were qualified for this QC sample.

Field Replicates

The following acceptance criteria were used to evaluate precision: the relative percent difference (RPD) control limit is 50% for results greater than $5 x$ the reporting limit (RL). For results less than $5 x$ the RL, the absolute difference between the sample and replicate must be less than $2 x$ the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable.

SDG WG44197: One set of field replicates, SD0015 \& SD0016, was submitted. The RPD values for 35 PCB congeners and three (3) homolog groups were greater than the control limit.

Laboratory Duplicates

SDG WG44197: Sample SD0026 was analyzed in duplicate. The RPD values for nine (9) PCB congeners were greater than the control limit. Results for these nine (9) PCB congeners were estimated (J-9) in this sample.

SDG WG44236: Sample SD0017 was analyzed in duplicate. The RPD values for 88 PCB congeners and four (4) homolog groups were greater than the control limit. Results for these 88 PCB congeners were estimated (J-9) in this sample; no qualifiers were applied to homolog groups.

Reported Results

Lock-mass interferences were present that affected the quantitation and/or resolution of one or more results in several samples. These samples were diluted and re-analyzed, the laboratory reported only the most appropriate result for each congener. The laboratory assigned a "G" flag to results affected by lock-mass disturbances. These " G " flagged results were estimated (J/UJ-24).

SDG WG44197: The laboratory noted that labeled congener 13C-PCB 206 was impacted by interferences in all samples in this SDG. The target analytes PCB 206 and PCB 207 are normally quantitated using the response from 13C-PCB 206 (or an average of 13C-PCB 206 \& 13C-PCB 208), but due to the interference were quantitated using 13C-PCB 208 only. The results for PCB 206 and PCB 207 were estimated (J/UJ-14) in these samples.

The \%R value for the labeled congener 13C-PCB 169 was impacted by interferences in Sample SD0025. The hexa-substituted PCB target analytes, normally quantitated against 13C-PCB 169 , were quantitated against 13C-PCB 155, 13C-PCB 156/157, and 13C-PCB 167. The associated congeners were estimated (J/UJ-14) in this sample.

SDG WG44236: Although the \%R values for all labeled compounds were within control limits, the laboratory noted that labeled congener 13C-PCB 206 was impacted by interferences in Sample SD0017. The target analytes PCB 206 and PCB 207 are normally quantitated using the response from 13C-PCB 206 (or an average of 13C-PCB 206 \& 13C-PCB 208), but due to the interference were quantitated using 13C-PCB 208 only. The results for PCB 206 and PCB 207 were estimated (J-14) in this sample.

Reporting Limits

SDG WG44197: All samples in this SDG were reanalyzed at dilution ($5 \mathrm{x}, 6 \mathrm{x}, 10 \mathrm{x}$, and/or 20x) due matrix interferences. Reporting limits were elevated accordingly.

Compound Identification

The laboratory assigned a " K " flag to one or more analytes in all samples to indicate the ion ratio criterion were not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "K" flagged results were qualified as not-detected (U-25) at elevated detection limits.

Calculation Verification

SDG WG44197: Several results were verified by recalculation from the raw data. No transcription or calculation errors were found.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the labeled compound and OPR recoveries and precision was acceptable as demonstrated by the RPD values for the laboratory and field duplicates.

Data were estimated due to lock-mass interferences, labeled compound interferences, labeled compound accuracy outliers, and laboratory duplicate precision outliers. Detection limits were elevated due to ion ratio outliers, method blank, and field blank contamination.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT City of Port Angeles WPAHG Dioxin \& Furan Compounds by Axys Method MLA-017 (EPA 1613B)

This report documents the review of analytical data from the analysis of sediment samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Axys Analytical Services, Ltd. of Sidney, British Columbia, Canada. Refer to the Sample Index for a complete list of samples.

SDG	Number of Samples	Validation Level
WG44197	14 Sediment	EPA Stage 4
WG44198	3 Filter Wipes	EPA Stage 2A
WG44408	1 Filter Wipe	EPA Stage 2A
WG44533	2 Sediment	EPA Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. EDD TO LABORATORY REPORT PACKAGE VERIFICATION

A complete (100\%) verification of the electronic data deliverable (EDD) results was performed by comparison to the laboratory data package. No errors were noted.

III. TECHNICAL DATA VALIDATION

The QC requirements reviewed are summarized in the following table:

\checkmark	Sample Receipt, Preservation, and Holding Time	\checkmark	Ongoing Precision and Recovery (OPR)
\checkmark	System Performance and Resolution Checks	$\mathbf{2}$	Field Replicates
\checkmark	Initial Calibration (ICAL)	$\mathbf{1}$	Laboratory Duplicates
\checkmark	Calibration Verification (CVER)	\checkmark	Target Analyte List
$\mathbf{2}$	Method Blanks	$\mathbf{2}$	Reported Results
$\mathbf{1}$	Field Blanks	$\mathbf{2}$	Compound Identification
$\mathbf{2}$	Labeled Compound Recovery	$\mathbf{1}$	Calculation Verification

\checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.
${ }^{1}$ Quality control results are discussed below, but no data were qualified.
${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Method Blanks

In order to assess the impact of blank contamination on the reported sample results, action levels are established at five times the blank concentrations. If the concentrations in the associated field samples are less than the action levels, the results are qualified as not detected (U-7).

The laboratory assigned K-flags to dioxin and furan values when a peak was detected but did not meet identification criteria. These values cannot be considered as positive identifications, but are "estimated maximum possible concentrations". When these occurred in the method blank the results were considered as false positives. No action levels were established for these analytes.

SDG WG44198: The analyte OCDD was detected in the method blank. The OCDD results in Samples FB0001 and FW0002 were qualified as not detected (U-7).

SDG WG44533: The analyte OCDD was detected in the method blank. The OCDD results in associated samples were greater than the action level; no data were qualified.

Field Blanks

The field blanks for this project are filter wipe samples. To evaluate the effect on the sample data, action levels of $5 x$ the blank concentrations were established. If a contaminant is detected in an associated field sample and the concentration is less than the action level, the result is qualified (U-6) at the reported concentration to indicate an elevation of the reporting limit. No action is taken if the sample result is greater than the action level, or for non-detected results.

SDGs WG44198 and WG44408: Three filter wipes, FB0001, FW0002, and FW0003 were submitted in SDG WG44198. After qualification due to method blank contamination a positive result remained for 2,3,7,8-TCDF (from the DB225 column) in Sample FB0001, the master blank. The 2,3,7,8-TCDF results in Samples FW0001 (SDG WG44408) and FW0003 were qualified as not detected (U-6) due to contamination from FB0001.

After qualification based on Sample FB0001, positive results remained for OCDD and OCDF in Sample FW0001 (SDG WG44408). No field samples were associated with this field blank. No data were qualified.

After qualification based on Sample FB0001, positive results remained for five dioxin compounds and nine furan compounds in Sample FW0002. All associated sample results were either not detected or detected at concentrations greater than the action levels. No data were qualified.

After qualification due to method blank and Sample FB0001 contamination, positive results for $1,2,3,4,6,7,8-\mathrm{HpCDD}, \mathrm{OCDD}$, and OCDF remained in Sample FW0003. All associated results were either not detected or detected at concentrations greater than the action levels. No data were qualified.

Labeled Compound Recovery

SDG WG44197: The percent recovery ($\% \mathrm{R}$) for the labeled compound ${ }^{13} \mathrm{C}_{12}-1,2,3,4,7,8-\mathrm{HxCDD}$ was less than the lower control limit in Sample SD0025. The 1,2,3,4,7,8-HxCDD result for this sample was estimated ($\mathrm{J}-13 \mathrm{~L}$) to indicate a potential low bias.

Field Replicates

The following acceptance criteria were used to evaluate precision: the relative percent difference (RPD) control limit is 50% for results greater than $5 x$ the reporting limit (RL). For results less
than $5 x$ the RL, the absolute difference between the sample and replicate must be less than $2 x$ the RL. No data were qualified based on field replicate precision outliers. Data users should consider the impact of field precision outliers on the reported results. With the exceptions noted below, field precision was acceptable.

SDG WG44197: One set of field replicates, SD0015 \& SD0016, were submitted. The RPD values for $1,2,3,6,7,8-H x C D D, ~ 1,2,3,4,6,7,8-H p C D D, ~ O C D D, ~ 1,2,3,4,6,7,8-H p C D F, ~ O C D F, ~ t o t a l ~$ TCDD, total PeCDD, total HpCDD, total HxCDF, and total HpCDF were greater than the control limit.

Laboratory Duplicates

SDG WG44197: Sample SD0026 was analyzed in duplicate. The RPD value for total TCDD was greater than the control limit. No qualifiers were applied to homolog groups.

Reported Results

All results for $2,3,7,8-\mathrm{TCDF}$ were confirmed on a DB-225 column as required by the method. The $2,3,7,8-\mathrm{TCDF}$ results from both columns were reported. The $2,3,7,8-\mathrm{TCDF}$ results from the DB-5 column were qualified do-not-report (DNR-11).

SDG WG44197: The results for OCDD in Samples SD0004, SD0010, SD0011, and SD0053 and the result for $1,2,3,4,6,7,8-\mathrm{HpCDD}$ in Sample SD0010 exceeded the calibrated range of the instrument. These samples were reanalyzed at dilution (10x). The result for $2,3,7,8-\mathrm{TCDF}$ in Sample SD0013 from the DB225 column was reanalyzed at dilution (3x) due to chromatographic interferences.

SDG WG44533: The result for OCDD in Sample SD0009 exceeded the linear calibration range. This sample was reanalyzed at dilution (3x).

Compound Identification

The laboratory assigned $\mathrm{a}^{\prime \prime} \mathrm{K}^{\prime \prime}$ flag to one or more analytes in all samples to indicate the ion ratio criterion were not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. All " K " flagged results were qualified as not detected (U-25) at the reported concentration.

Calculation Verification

SDG WG44197: Several results were verified by recalculation from the raw data. No calculation or transcription errors were noted.

IV. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the labeled
compound, reference material, and on-going precision and recovery standard recoveries and precision was acceptable as demonstrated by the laboratory and field duplicate RPD values.

Detection limits were elevated based on ion ratio outliers, method blank contamination, and field blank contamination. Data were estimated due to labeled compound recovery outliers.

Results for 2,3,7,8-TCDF on the DB-5 column were qualified do-not-report (DNR). Since a usable result remains for this compound in all samples; completeness was unaffected. Data that have been flagged DNR are not useable for any purpose.

All other data, as qualified, are acceptable for use.

APPENDIX A DATA QUALIFIER DEFINITIONS, REASON CODES, AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.

UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
$\mathrm{R} \quad$ The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

The following is an EcoChem qualifier that may also be assigned during the data review process:
DNR Do not report; a more appropriate result is reported from another analysis or dilution.

DATA QUALIFIER REASON CODES

Group	Code	Reason for Qualification
Sample Handling	1	Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times
Instrument Performance	24	Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass)
	5A	Initial Calibration (RF, \%RSD, r²)
	5B	Calibration Verification (ICV, CCV, CCAL; RF, \%D, \%R) Use bias flags (H,L) ${ }^{1}$ where appropriate
Blank Contamination	6	Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.)
	7	Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L$)^{1}$ for negative instrument blanks
Precision and Accuracy	8	Matrix Spike (MS \&/or MSD) Recoveries Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	9	Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate)
	10	Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	12	Reference Material Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	13	Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L) ${ }^{1}$ where appropriate
Interferences	16	ICP/ICP-MS Serial Dilution Percent Difference
	17	ICP/ICP-MS Interference Check Standard Recovery Use bias flags ($\mathrm{H}, \mathrm{L})^{1}$ where appropriate
	19	Internal Standard Performance (i.e., area, retention time, recovery)
	22	Elevated Detection Limit due to Interference (i.e., chemical and/or matrix)
	23	Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides)
Identification and Quantitation	2	Chromatographic pattern in sample does not match pattern of calibration standard
	3	$2{ }^{\text {nd }}$ column confirmation (RPD or \%D)
	4	Tentatively Identified Compound (TIC) (associated with NJ only)
	20	Calibration Range or Linear Range Exceeded
	25	Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.)
Miscellaneous	11	A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only)
	14	Other (See DV report for details)
	26	Method QC information not provided

[^10]
EcoChem Validation Guidelines for PCB Congener Analysis by HRMS
 (Based on EPA Reg. 10 SOP, Rev. 1, 12/1995 \& EPA SW-846, Method 1668)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	$\begin{aligned} & \text { REASON } \\ & \text { CODE } \end{aligned}$
Cooler/Storage Temperature	Waters/Solids $\angle 4^{\circ} \mathrm{C}$ Tissues $<-10^{\circ} \mathrm{C}$	EcoChem PJ, see TM-05	1
Holding Time	Samples: Up to one year if stored in the dark \& temp as above. Extracts: Up to 1 year if stored at $<-10^{\circ} \mathrm{C}$ and in the dark	$J(+) / \mathrm{UJ}(-)$ if $\mathrm{HT}>1$ year EcoChem PJ, see TM-05	1
Mass Resolution	$>=10,000$ resolving power at $\mathrm{m} / \mathrm{z} 330.9792$ $<5 \mathrm{ppm}$ deviation from each m / z listed in Table 7 of method. Analyzed prior to ICAL and at the beginning and end of each 12 hr . shift	$R(+/-)$ if not met	14
Column Resolution 209 Congener Solution	Mix of all 209 PCBs run prior to each ICAL and each 12 hour shift RT of PCB209 must be >55 min PCB 156 \& 157 must coelute w/in 2 sec PCB34 \& 23 and PCB187 \& 182 must be resolved where $((x / y) * 100 \%)<40 \%$ $x=$ ht. of valley and $y=h t$ of shortest peak	$\mathrm{J}(+)$ if valley $>40 \%$	$\begin{gathered} \text { 5A (ICAL) } \\ 5 \mathrm{~B} \text { (CCAL) } \end{gathered}$
Initial Calibration	Minimum of five standards \%RSD < 20\% for native compounds $\%$ RSD < 35\% for labeled compounds	$\mathrm{J}+$) natives if \%RSD > 20\%	5A
	Ion Abundance ratios within QC limits (Method 1668, Table 8) in CS1 std.	EcoChem PJ, see TM-05	
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or $\mathrm{R}(-)$	
Continuing Calibration	Every 12 hours: Concentrations must meet criteria specified in Method 1668, Table 6	$\begin{gathered} J(+) /(U J(-) \text { natives if } \% \mathrm{D}=30 \%-50 \% \\ \mathrm{J}(+) / R(-) \text { natives if } \% \mathrm{D}>75 \% \end{gathered}$	5B
	Absolute RT of all Labelled Compounds and Window Defining Congeners must be + - 15 sec of RT in ICAL RRT of all compounds must meet Table 2 of method.	EcoChem PJ, see ICAL section of TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or $\mathrm{R}(-)$	
	Ion Abundance ratios must meet criteria specified in Method 1668, Table 8	EcoChem PJ, see TM-05	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7

EcoChem Validation Guidelines for PCB Congener Analysis by HRMS
 (Based on EPA Reg. 10 SOP, Rev. 1, 12/1995 \& EPA SW-846, Method 1668)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	$\begin{aligned} & \text { REASON } \\ & \text { CODE } \end{aligned}$
Rinse/Field Blank (if required)	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	One per matrix per batch \%R Values w/in limits specified in Method 1668, Table 6	$\begin{gathered} J(+) \text { if } \% R>\operatorname{UCL} \\ J(+) / U J(-) \text { if } \% R<L C L \\ J(+) / R(-) \text { using } P J \text { if } \% R \ll L C L(<10 \%) \end{gathered}$	10
MS/MSD (if required)	Accuracy: \%R values within laboratory limits	Qualify parent sample only unless other QC indicates systematic problems: $J(+)$ if both \%R > UCL $J(+) / U J(-)$ if both \%R < LCL $J(+) / R(-)$ if both $\% R<10 \%$ PJ if only one \%R outlier	8
	Precision: RPD < 20\%	$J(+)$ in parent sample if RPD > 20\%	9
Duplicate (if required)	RPD < 25%	$J(+) / U J(-)$ if outside limts	9
Labeled Compounds / Internal Standards	\%R must meet limits specified in Method 1668, Table 6.	$\begin{gathered} J(+) / U J(-) \text { if } \% R=10 \% \text { to } L C L \\ J(+) \text { if } \% R>\text { UCL } \\ J(+) / R(-) \text { if } \% R<10 \% \end{gathered}$	13
Quantitation/ Identification	Ions for analyte, IS, and rec. std. must max w/in 2 sec . $\mathrm{S} / \mathrm{N}>2.5$ Ion abundance (IA ratios) must meet limits stated in Table 8 of Method 1668 Relative retention times (RRT) must be w/in limits stated in Table 2 of Method 1668	If RT criteria not met, use PJ (see TM -05) $J(+)$ if S / N criteria not met if unlabelled ion abundance not met, change to EMPC $J(+)$ if labelled ion abundance not met.	21
Interferences	Lock masses must not deviate +/- 20\%	Change result to EMPC	14
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD < 50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35\% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 \& EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	$\begin{aligned} & \text { REASON } \\ & \text { CODE } \end{aligned}$
Cooler/Storage Temperature	Waters/Solids $<4^{\circ} \mathrm{C}$ Tissues $<-10^{\circ} \mathrm{C}$	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection Note: Under CWA, SDWA, and RCRA the HT for H 2 O is 7 days* Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	$J(+) / U J(-)$ if ext > 30 days $J(+) / U J(-)$ if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	$>=10,000$ resolving power at $\mathrm{m} / \mathrm{z} 304.9824$ Exact mass of $\mathrm{m} / \mathrm{z} 380.9760 \mathrm{w} / \mathrm{in} 5 \mathrm{ppm}$ of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr . shift	$R(+/-)$ if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL $\begin{gathered} \text { Valley }<25 \% \text { (valley }=(x / y) \star 100 \%) \\ x=h t . \text { of TCDD } \end{gathered}$ $y=\text { baseline to bottom of valley }$ For all isomers eluting near 2378-TCDD/TCDF isomers (TCDD only for 8290)	$\mathrm{J}+$) if valley > 25\%	$\begin{aligned} & \text { 5A (ICAL) } \\ & 5 B \text { (CCAL } \end{aligned}$
Initial Calibration	Minimum of five standards $\%$ RSD < 20\% for native compounds \%RSD <30\% for labeled compounds (\%RSD <35\% for labeled compounds under 1613b)	$\mathrm{J}+$) natives if \%RSD > 20\%	5A
	$\begin{gathered} \text { Abs. RT of }{ }^{13} \mathrm{C}_{12}-1234-\text { TCDD } \\ >25 \mathrm{~min} \text { on DB5 } \\ >15 \mathrm{~min} \text { on DB- } 225 \end{gathered}$	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or $R(-)$	

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 \& EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	$\begin{aligned} & \text { REASON } \\ & \text { CODE } \end{aligned}$
Continuing Calibration	Analyzed at the start and end of each 12 hour shift. \%D+/-20\% for native compounds $\% \mathrm{D}+/-30 \%$ for labeled compounds (Must meet limits in Table 6, Method 1613B) (If \%Ds in the closing CCAL are w/in $25 \% / 35 \%$ the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound \%D outliers. For native compound \%D outliers: $\begin{gathered} \text { 8290: } J(+) / U J(-) \text { if } \% D=20 \%-75 \% \\ J(+) / R(-) \text { if } \% D>75 \% \end{gathered}$ 1613: $J(+) / U J(-)$ if \%D is outside Table 6 limits $J(+) / R(-)$ if $\% D$ is $+/-75 \%$ of Table 6 limit	5B
	Abs. RT of ${ }^{13} \mathrm{C}_{12}-1234-$ TCDD and ${ }^{13} \mathrm{C} 12-123789-\mathrm{HxCDD}$ +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or $\mathrm{R}(-)$	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS / OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	$\begin{gathered} \mathrm{J}(+) \text { if } \% \mathrm{R}>\mathrm{UCL} \\ \mathrm{~J}(+) / \mathrm{UJ}(-) \text { if } \% \mathrm{R}<\mathrm{LCL} \\ \mathrm{~J}(+) / \mathrm{R}(-) \text { using } \mathrm{PJ} \text { if } \% \mathrm{R} \ll \mathrm{LCL}(<10 \%) \end{gathered}$	10
MS/MSD (recovery)	May not analyze MS/MSD \%R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: $\mathrm{J}(+)$ if both \%R > UCL $J(+) / U J(-)$ if both \%R < LCL $J(+) / R(-)$ if both $\% R<10 \%$ PJ if only one \%R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20\%	$J(+)$ in parent sample if RPD $>C L$	9

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 \& EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	$\begin{aligned} & \text { REASON } \\ & \text { CODE } \end{aligned}$
Lab Duplicate	RPD <25\% if present.	$J(+) / U J(-)$ if outside limts	9
Labeled Compounds / Internal Standards	Method 8290: $\% \mathrm{R}=40 \%-135 \%$ in all samples Method 1613B: \%R must meet limits specified in Table 7, Method 1613	$\begin{gathered} J(+) / U J(-) \text { if } \% R=10 \% \text { to } \mathrm{LCL} \\ J(+) \text { if } \% R>\mathrm{UCL} \\ J(+) / R(-) \text { if } \% R<10 \% \end{gathered}$	13
Quantitation/ Identification	Ions for analyte, IS, and rec. std. must max w/in 2 sec. $\mathrm{S} / \mathrm{N}>2.5$ IA ratios meet limits in Table 9 of 1613 B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S / N criteria not met, $\mathrm{J}(+)$. if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, $\mathrm{J}(+)$.	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD < 50\% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35\% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used	11

APPENDIX B
 QUALIFIED DATA SUMMARY TABLE

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44533	SD0052	L19905-10	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	14.2	pg/g		DNR	11
WG44197	SD0018	L19905-11	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	8.87	pg/g		DNR	11
WG44197	SD0025	L19905-12	1613B by MLA017	1,2,3,4,7,8,9-Heptachlorodibenzofuran	2.11	pg/g	K J	U	25
WG44197	SD0025	L19905-12	1613B by MLA017	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	2	pg/g	J	J	13L
WG44197	SD0025	L19905-12	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	3.66	pg/g		DNR	11
WG44197	SD0026	L19905-13	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	1.81	pg/g		DNR	11
WG44197	SD0028	L19905-14	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	4.46	pg/g		DNR	11
WG44197	SD0028	L19905-14	1613B by MLA017	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.437	pg/g	K B J	U	25
WG44197	SD0051	L19905-15	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	12.1	pg/g		DNR	11
WG44197	SD0053	L19905-16	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	19.3	pg/g		DNR	11
WG44197	SD0054	L19905-17	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	17.9	pg/g		DNR	11
WG44197	SD0055	L19905-18	1613B by MLA017	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.789	pg/g	K J	U	25
WG44197	SD0055	L19905-18	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	2.18	pg/g		DNR	11
WG44197	SD0055	L19905-18	1613B by MLA017	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.385	pg/g	K B J	U	25
WG44197	SD0004	L19905-2	1613B by MLA017	1,2,3,7,8,9-Hexachlorodibenzofuran	0.377	pg/g	K J	U	25
WG44197	SD0004	L19905-2	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	13.8	pg/g		DNR	11
WG44533	SD0009	L19905-3	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	15	pg/g		DNR	11
WG44197	SD0010	L19905-4	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	24.4	pg/g		DNR	11
WG44197	SD0011	L19905-5	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	11.7	pg/g		DNR	11
WG44197	SD0013	L19905-6	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	20.3	pg/g		DNR	11
WG44197	SD0015	L19905-7	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	9.01	pg/g		DNR	11
WG44197	SD0016	L19905-8	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	11.3	pg/g		DNR	11
WG44408	FW0001	L19906-1	1613B by MLA017	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.848	pg	K B J	U	25
WG44408	FW0001	L19906-1	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	0.982	pg	K J	DNR	11
WG44408	FW0001	L19906-1	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	0.791	pg	J	U	6
WG44408	FW0001	L19906-1	1613B by MLA017	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.576	pg	K J	U	25
WG44198	FB0001	L19906-2	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	1.29	pg	B J	DNR	11
WG44198	FB0001	L19906-2	1613B by MLA017	Octachlorodibenzo-p-dioxin	2.65	pg	B J	U	7
WG44198	FW0002	L19906-3	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	1.59	pg	B J	DNR	11
WG44198	FW0002	L19906-3	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	1.53	pg	K B J	U	25
WG44198	FW0002	L19906-3	1613B by MLA017	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.843	pg	K J	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0002	L19906-3	1613B by MLA017	Octachlorodibenzo-p-dioxin	5.93	pg	B J	U	7
WG44198	FW0003	L19906-4	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	1.32	pg	B J	DNR	11
WG44198	FW0003	L19906-4	1613B by MLA017	2,3,7,8-Tetrachlorodibenzofuran	0.939	pg	B J	U	6
WG44236	SD0003	L19905-1	1668A by MLA010	2,3,4,6-Tetrachlorobiphenyl	1020	pg/g	G	J	24
WG44236	SD0003	L19905-1	1668A by MLA010	2,2',3,5,5'-Pentachlorobiphenyl	334	pg/g	G	J	24
WG44236	SD0003	L19905-1	1668A by MLA010	Coelution of PCB 093 and 095 and 098 and 100 and 102	1350	pg/g	C B G	J	24
WG44197	SD0052	L19905-10	1668A by MLA010	3,5-Dichlorobiphenyl	4.32	pg/g	KDJ	U	25
WG44197	SD0052	L19905-10	1668A by MLA010	2,2',4,6,6'-Pentachlorobiphenyl	0.322	pg/g	K D J	U	25
WG44197	SD0052	L19905-10	1668A by MLA010	2,3',4,5,5'-Pentachlorobiphenyl	2.52	pg/g	K D J	U	25
WG44197	SD0052	L19905-10	1668A by MLA010	2,2',3,4,6,6'-Hexachlorobiphenyl	1.32	pg/g	KDJ	U	25
WG44197	SD0052	L19905-10	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	148	pg/g	D T	J	14
WG44197	SD0052	L19905-10	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	23.8	pg/g	D T	J	14
WG44197	SD0018	L19905-11	1668A by MLA010	2,3,6-Trichlorobiphenyl	19.5	pg/g	K D J	U	25
WG44197	SD0018	L19905-11	1668A by MLA010	2,2',3,4,4',5,6,6'-Octachlorobiphenyl	0.497	pg/g	K D J	U	25
WG44197	SD0018	L19905-11	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	358	pg/g	D T	J	14
WG44197	SD0018	L19905-11	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	42.8	pg/g	D T	J	14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3',4,5,5'-Pentachlorobiphenyl	1.84	pg/g	K D J	U	25
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 128 and 166	368	pg/g	CBD	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 129, 138, 160, and 163	2200	pg/g	CBD	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3',4,5'-Hexachlorobiphenyl	133	pg/g	B D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3',4,6-Hexachlorobiphenyl	27.8	pg/g	D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3',4,6'-Hexachlorobiphenyl	613	pg/g	B D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3',5,5'-Hexachlorobiphenyl	27.1	pg/g	D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 134 and 143	108	pg/g	$C D$	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 135, 151, and 154	486	pg/g	CBD	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3',6,6'-Hexachlorobiphenyl	155	pg/g	B D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4,4',5-Hexachlorobiphenyl	110	pg/g	D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 139 and 140	37.7	pg/g	$C D$	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4,5,5'-Hexachlorobiphenyl	372	pg/g	B D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4,5,6-Hexachlorobiphenyl	1.72	pg/g	U D	UJ	14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4,5',6-Hexachlorobiphenyl	84.3	pg/g	D	J	13H,14

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4,6,6'-Hexachlorobiphenyl	1.03	pg/g	UD	UJ	14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4',5,5'-Hexachlorobiphenyl	247	pg/g	B D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 147 and 149	1410	pg/g	CBD	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4',5,6'-Hexachlorobiphenyl	1.34	pg/g	D J	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,4',6,6'-Hexachlorobiphenyl	2.27	pg/g	K D J	UJ	14,25
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,5,6,6'-Hexachlorobiphenyl	1.44	pg/g	D J	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	Coelution of PCB 153 and 168	1620	pg/g	CBD	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3,3',4,4',6-Hexachlorobiphenyl	253	pg/g	B D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3,3',4,5,5'-Hexachlorobiphenyl	18.8	pg/g	D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3,3',4,5',6-Hexachlorobiphenyl	1.25	pg/g	U D	UJ	14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3,3',4',5,5'-Hexachlorobiphenyl	7.57	pg/g	D J	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3,3',4',5',6-Hexachlorobiphenyl	145	pg/g	D	J	13H,14
WG44197	SD0025	L19905-12	1668A by MLA010	2,3,3',5,5',6-Hexachlorobiphenyl	1.4	pg/g	U D	\checkmark	14
WG44197	SD0025	L19905-12	1668A by MLA010	3,3',4,4',5,5'-Hexachlorobiphenyl	2.39	pg/g	UD	UJ	14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	110	pg/g	D T	J	14
WG44197	SD0025	L19905-12	1668A by MLA010	2,2',3,3', 4, 4',5,6,6'-Nonachlorobiphenyl	11	pg/g	D T	J	14
WG44197	SD0026	L19905-13	1668A by MLA010	2-Chlorobiphenyl	17.9	pg/g	D J	J	9,13L
WG44197	SD0026	L19905-13	1668A by MLA010	3-Chlorobiphenyl	11.4	pg/g	D J	J	9,13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,2'-Dichlorobiphenyl	10.1	pg/g	D J	J	9,13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,3-Dichlorobiphenyl	2.6	pg/g	U D	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,3'-Dichlorobiphenyl	11.5	pg/g	D J	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,4-Dichlorobiphenyl	3.17	pg/g	D J	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,4'-Dichlorobiphenyl	63.7	pg/g	D	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,5-Dichlorobiphenyl	3.05	pg/g	D J	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,6-Dichlorobiphenyl	2.25	pg/g	U D	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	3,3'-Dichlorobiphenyl	35.4	pg/g	D	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	Coelution of PCB 012 and 013	12.9	pg/g	CDJ	J	9,13L
WG44197	SD0026	L19905-13	1668A by MLA010	3,5-Dichlorobiphenyl	2.36	pg/g	UD	J	13L
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',6-Trichlorobiphenyl	4.39	pg/g	B D J	J	9
WG44197	SD0026	L19905-13	1668A by MLA010	Coelution of PCB 045 and 051	27.8	pg/g	CBD	J	9
WG44197	SD0026	L19905-13	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	1.72	pg/g	KDJ	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44197	SD0026	L19905-13	1668A by MLA010	2,3',4,5,5'-Pentachlorobiphenyl	2.47	pg/g	K D J	U	25
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',3,4',6,6'-Hexachlorobiphenyl	1.33	pg/g	D J	J	9
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',4,4',6,6'-Hexachlorobiphenyl	0.114	pg/g	K D J	U	25
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',3,4,4',5,6-Heptachlorobiphenyl	1.98	pg/g	D J	J	9
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.224	pg/g	UD	J	9
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',3,4,4',6,6'-Heptachlorobiphenyl	0.304	pg/g	KDJ	U	25
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',3,4,4',5,6,6'-Octachlorobiphenyl	0.131	pg/g	KDJ	U	25
WG44197	SD0026	L19905-13	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	51.2	pg/g	D T	J	14
WG44197	SD0026	L19905-13	1668A by MLA010	2,2', 3, 3',4,4',5,6,6'-Nonachlorobiphenyl	7.92	pg/g	D JT	J	14
WG44197	SD0028	L19905-14	1668A by MLA010	3,4',5-Trichlorobiphenyl	2.62	pg/g	KBDJ	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,3',4,5'-Tetrachlorobiphenyl	1.35	pg/g	KBDJ	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,3',4,5,5'-Pentachlorobiphenyl	1.96	pg/g	KDJ	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,2',3,4,6,6'-Hexachlorobiphenyl	0.365	pg/g	KDJ	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,2',3,4',5,6'-Hexachlorobiphenyl	1.39	pg/g	KDJ	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,3,3',4',5,5'-Hexachlorobiphenyl	2.46	pg/g	KD J	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,2',3,4,4',6,6'-Heptachlorobiphenyl	0.347	pg/g	KDJ	U	25
WG44197	SD0028	L19905-14	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	51.2	pg/g	D T	J	13H,14
WG44197	SD0028	L19905-14	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	6.94	pg/g	D JT	J	13H,14
WG44197	SD0051	L19905-15	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	4.06	pg/g	KDJ	U	25
WG44197	SD0051	L19905-15	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	275	pg/g	D T	J	13H,14
WG44197	SD0051	L19905-15	1668A by MLA010	2,2', 3, 3',4,4',5,6,6'-Nonachlorobiphenyl	43.3	pg/g	D T	J	13H,14
WG44197	SD0053	L19905-16	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	4.37	pg/g	KDJ	U	25
WG44197	SD0053	L19905-16	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	455	pg/g	D T	J	14
WG44197	SD0053	L19905-16	1668A by MLA010	2,2', 3, 3',4,4',5,6,6'-Nonachlorobiphenyl	59.4	pg/g	D T	J	14
WG44197	SD0054	L19905-17	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	10.4	pg/g	K D J	U	25
WG44197	SD0054	L19905-17	1668A by MLA010	2,2',3,5,6,6'-Hexachlorobiphenyl	3.21	pg/g	KDJ	U	25
WG44197	SD0054	L19905-17	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	342	pg/g	D T	J	13H,14
WG44197	SD0054	L19905-17	1668A by MLA010	2,2', 3, 3',4,4',5,6,6'-Nonachlorobiphenyl	54.1	pg/g	D T	J	13H,14
WG44197	SD0055	L19905-18	1668A by MLA010	3,4',5-Trichlorobiphenyl	1.21	pg/g	KBDJ	U	25
WG44197	SD0055	L19905-18	1668A by MLA010	2,3,3',4,5,5'-Hexachlorobiphenyl	6.23	pg/g	KDJ	U	25
WG44197	SD0055	L19905-18	1668A by MLA010	2,3,3',4',5,5'-Hexachlorobiphenyl	1.85	pg/g	K J J	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	$\begin{aligned} & \text { Lab } \\ & \text { Flags } \end{aligned}$	Validation Qualifier	Validation Reason
WG44197	SD0055	L19905-18	1668A by MLA010	2,2',3,4,4',5,6,6'-Octachlorobiphenyl	0.093	pg/g	K J J	U	25
WG44197	SD0055	L19905-18	1668A by MLA010	2,2', , ,3, $\mathbf{\prime}^{\prime}, 44^{\prime}, 5,5^{\prime}, 6$-Nonachlorobiphenyl	36.9	pg/g	D T	J	14
WG44197	SD0055	L19905-18	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	4.95	pg/g	DJT	J	14
WG44197	SD0004	L19905-2	1668A by MLA010	2,3,6-Trichlorobiphenyl	4.79	pg/g	KD J	U	25
WG44197	SD0004	L19905-2	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	4.85	pg/g	KDJ	U	25
WG44197	SD0004	L19905-2	1668A by MLA010	2,2',4,4',6,6'-Hexachlorobiphenyl	0.262	pg/g	KDJ	U	25
WG44197	SD0004	L19905-2	1668A by MLA010	2,2',3,4',5,6,6'-Heptachlorobiphenyl	0.968	pg/g	KDJ	U	25
WG44197	SD0004	L19905-2	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	122	pg/g	D T	J	14
WG44197	SD0004	L19905-2	1668A by MLA010	2,2', 3, 3',4,4',5,6,6'-Nonachlorobiphenyl	19.4	pg/g	D JT	J	14
WG44197	SD0009	L19905-3	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	4.87	pg/g	K D J	U	25
WG44197	SD0009	L19905-3	1668A by MLA010	2,2',3,4',5,6'-Hexachlorobiphenyl	4.18	pg/g	KDJ	U	25
WG44197	SD0009	L19905-3	1668A by MLA010	2,2',3,4,4',6,6'-Heptachlorobiphenyl	1.15	pg/g	KDJ	U	25
WG44197	SD0009	L19905-3	1668A by MLA010	2,2',3,4,4',5,6,6'-Octachlorobiphenyl	0.33	pg/g	KDJ	U	25
WG44197	SD0009	L19905-3	1668A by MLA010	2,2', 3, 3', 4, 4',5,5',6-Nonachlorobiphenyl	372	pg/g	D T	J	13H,14
WG44197	SD0009	L19905-3	1668A by MLA010	2,2',3,3',4, '4, 5,6,6'-Nonachlorobiphenyl	55.5	pg/g	D T	J	13H,14
WG44197	SD0010	L19905-4	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	12.8	pg/g	K D J	U	25
WG44197	SD0010	L19905-4	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	4880	pg/g	D T	J	13H,14
WG44197	SD0010	L19905-4	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	770	pg/g	D T	J	13H,14
WG44197	SD0011	L19905-5	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	3	pg/g	K D J	U	25
WG44197	SD0011	L19905-5	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	173	pg/g	D T	J	13H,14
WG44197	SD0011	L19905-5	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	23.8	pg/g	D T	J	13H,14
WG44197	SD0013	L19905-6	1668A by MLA010	2,2',3,4,6,6'-Hexachlorobiphenyl	9.55	pg/g	KDJ	U	25
WG44197	SD0013	L19905-6	1668A by MLA010	2,2',3,4',5,6'-Hexachlorobiphenyl	4.42	pg/g	KDJ	U	25
WG44197	SD0013	L19905-6	1668A by MLA010	2,3,3',4',5,5'-Hexachlorobiphenyl	16.3	pg/g	KDJ	U	25
WG44197	SD0013	L19905-6	1668A by MLA010	2,2', 3, 3', 4, 4',5,5',6-Nonachlorobiphenyl	356	pg/g	D T	J	13H,14
WG44197	SD0013	L19905-6	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	45.5	pg/g	D T	J	13H,14
WG44197	SD0015	L19905-7	1668A by MLA010	2,3,6-Trichlorobiphenyl	6.45	pg/g	K D J	U	25
WG44197	SD0015	L19905-7	1668A by MLA010	3,4,4, ,5-Tetrachlorobiphenyl	4.22	pg/g	KDJ	U	25
WG44197	SD0015	L19905-7	1668A by MLA010	2,3',4,5,5'-Pentachlorobiphenyl	1.15	pg/g	KDJ	U	25
WG44197	SD0015	L19905-7	1668A by MLA010	2,2',3,4,6,6'-Hexachlorobiphenyl	1.32	pg/g	KDJ	U	25
WG44197	SD0015	L19905-7	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	725	pg/g	D T	J	14

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	$\begin{aligned} & \text { Lab } \\ & \text { Flags } \end{aligned}$	Validation Qualifier	Validation Reason
WG44197	SD0015	L19905-7	1668A by MLA010	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	111	pg/g	D T	J	14
WG44197	SD0016	L19905-8	1668A by MLA010	3,4,4,,5-Tetrachlorobiphenyl	5.22	pg/g	K D J	U	25
WG44197	SD0016	L19905-8	1668A by MLA010	2,2',4,6,6'-Pentachlorobiphenyl	0.35	pg/g	KDJ	U	25
WG44197	SD0016	L19905-8	1668A by MLA010	2,3',4,5,5'-Pentachlorobiphenyl	2.64	pg/g	KDJ	U	25
WG44197	SD0016	L19905-8	1668A by MLA010	2,3,3',4,5,5',6-Heptachlorobiphenyl	0.984	pg/g	KDJ	U	25
WG44197	SD0016	L19905-8	1668A by MLA010	2,2',3,4,4',5,6,6'-Octachlorobiphenyl	0.234	pg/g	KDJ	U	25
WG44197	SD0016	L19905-8	1668A by MLA010	2,2',3,3', 4, 4',5,5',6-Nonachlorobiphenyl	151	pg/g	D T	J	13H,14
WG44197	SD0016	L19905-8	1668A by MLA010	2,2',3,3', 4, 4',5,6,6'-Nonachlorobiphenyl	21.9	pg/g	D T	J	13H,14
WG44236	SD0017	L19905-9	1668A by MLA010	2-Chlorobiphenyl	239	pg/g	B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 018 and 030	1020	pg/g	C B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,6-Trichlorobiphenyl	6.92	pg/g	K	U	25
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4'-Tetrachlorobiphenyl	2460	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',5-Tetrachlorobiphenyl	17.9	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,4,4'-Tetrachlorobiphenyl	1480	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 061, 070, 074, and 076	9770	pg/g	CB	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,4,5-Tetrachlorobiphenyl	207	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3',4,4'-Tetrachlorobiphenyl	4450	pg/g	B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3',4,5-Tetrachlorobiphenyl	123	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	3,3',4,4'-Tetrachlorobiphenyl	367	pg/g	B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	3,3',4,5'-Tetrachlorobiphenyl	88.8	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	23.1	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4-Pentachlorobiphenyl	1240	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 083 and 099	4370	pg/g	CB	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2, $3,3^{\prime}, 6$-Pentachlorobiphenyl	1870	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 085, 116, and 117	1690	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 086, 087, 097, 108, 119, and 125	5150	pg/g	CB	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 088 and 091	1140	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,6'-Pentachlorobiphenyl	182	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 090, 101, and 113	6160	pg/g	C B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,5,5'-Pentachlorobiphenyl	1060	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 093 and 095 and 098 and 100 and 102	4640	pg/g	C B	J	9

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,5,6'-Pentachlorobiphenyl	49.6	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,6,6'-Pentachlorobiphenyl	78.5	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',4,5',6-Pentachlorobiphenyl	41.7	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,4'-Pentachlorobiphenyl	3200	pg/g	B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 107 and 124	266	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,6-Pentachlorobiphenyl	505	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 110 and 115	7160	pg/g	C B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,4,4',5-Pentachlorobiphenyl	237	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3',4,4',5-Pentachlorobiphenyl	6050	pg/g	B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4',5'-Pentachlorobiphenyl	143	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3',4,4',5'-Pentachlorobiphenyl	148	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	3,3',4,4',5-Pentachlorobiphenyl	17.2	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	3,3',4,5,5'-Pentachlorobiphenyl	11.9	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 128 and 166	958	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 129, 138, 160, and 163	6060	pg/g	CB	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,5'-Hexachlorobiphenyl	359	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,6-Hexachlorobiphenyl	83.7	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,6'-Hexachlorobiphenyl	1990	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',5,5'-Hexachlorobiphenyl	72.9	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 134 and 143	287	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 135, 151, and 154	1700	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',6,6'-Hexachlorobiphenyl	567	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,4',5-Hexachlorobiphenyl	301	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 139 and 140	100	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,5,5'-Hexachlorobiphenyl	1190	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,5',6-Hexachlorobiphenyl	359	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,6,6'-Hexachlorobiphenyl	4.44	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4',5,5'-Hexachlorobiphenyl	782	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 147 and 149	4310	pg/g	C B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4',5,6'-Hexachlorobiphenyl	3.97	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4',6,6'-Hexachlorobiphenyl	6.23	pg/g		J	9

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	$\begin{aligned} & \text { Lab } \\ & \text { Flags } \end{aligned}$	Validation Qualifier	Validation Reason
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,5,6,6'-Hexachlorobiphenyl	5.7	pg/g	K	U	25
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 153 and 168	5380	pg/g	C B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 156 and 157	708	pg/g	CB	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,4',6-Hexachlorobiphenyl	733	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,5,5'-Hexachlorobiphenyl	88.5	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4',5,5'-Hexachlorobiphenyl	17.7	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4',5',6-Hexachlorobiphenyl	430	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3',4,4',5,5'-Hexachlorobiphenyl	235	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,4',5-Heptachlorobiphenyl	1870	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 171 and 173	790	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,5,5'-Heptachlorobiphenyl	424	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,5,6'-Heptachlorobiphenyl	1980	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,5',6-Heptachlorobiphenyl	142	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2', $3,3^{\prime}, 4,6,6^{\prime}$ 'Heptachlorobiphenyl	337	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,5',6'--Heptachlorobiphenyl	1040	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',5,5',6-Heptachlorobiphenyl	399	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',5,6,6'-Heptachlorobiphenyl	772	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 180 and 193	5010	pg/g	C B	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,4',5,6-Heptachlorobiphenyl	22.3	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2', 3,4,4',5,6'-Heptachlorobiphenyl	17	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 183 and 185	2110	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,4',6,6'-Heptachlorobiphenyl	1.92	pg/g	J	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4',5,5',6-Heptachlorobiphenyl	2620	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4',5,6,6'-Heptachlorobiphenyl	2.57	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,4',5,5'-Heptachlorobiphenyl	103	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,4',5,6-Heptachlorobiphenyl	528	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4, ${ }^{\prime}, 5^{\prime}, 6-$ Heptachlorobiphenyl	145	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3, ${ }^{\prime}, 4,4^{\prime}, 5,5^{\prime}$-Octachlorobiphenyl	1550	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3, ${ }^{\prime}, 4,4^{\prime}, 5,6-$ Octachlorobiphenyl	697	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3, 3',4, 4',5,6'-Octachlorobiphenyl	1010	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 197 and 200	329	pg/g	C	J	9

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44236	SD0017	L19905-9	1668A by MLA010	Coelution of PCB 198 and 199	1630	pg/g	C	J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4, ', 6, 6'-Octachlorobiphenyl	245	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	348	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,4',5,5',6-Octachlorobiphenyl	1320	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,4,4, 5, 6,6'-Octachlorobiphenyl	2.01	pg/g	K	U	25
WG44236	SD0017	L19905-9	1668A by MLA010	2,3,3',4,4, ', $^{\prime} 5^{\prime}, 6$-Octachlorobiphenyl	115	pg/g		J	9
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	879	pg/g	T	J	14
WG44236	SD0017	L19905-9	1668A by MLA010	2,2',3,3',4, ${ }^{\prime}, 5,6,6^{\prime}$-Nonachlorobiphenyl	146	pg/g	T	J	14
WG44198	FW0001	L19906-1	1668A by MLA010	2-Chlorobiphenyl	27.6	pg	D J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	3-Chlorobiphenyl	78.6	pg	D J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	4-Chlorobiphenyl	68.2	pg	B D J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2'-Dichlorobiphenyl	4.81	pg	K J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,3'-Dichlorobiphenyl	5.97	pg	K J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,4-Dichlorobiphenyl	63.1	pg	K	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,4'-Dichlorobiphenyl	13.4	pg	K J G	UJ	24,25
WG44198	FW0001	L19906-1	1668A by MLA010	2,5-Dichlorobiphenyl	5.71	pg	K J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	3,3'-Dichlorobiphenyl	48.1	pg	B	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 012 and 013	5.15	pg	CKJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	4,4'-Dichlorobiphenyl	8.73	pg	J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3-Trichlorobiphenyl	4.16	pg	B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',4-Trichlorobiphenyl	5.25	pg	B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 018 and 030	9.53	pg	CBJ	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 020 and 028	20.5	pg	$C B$	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 021 and 033	8.39	pg	CBJ	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,4'-Trichlorobiphenyl	6.61	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 026 and 029	2.84	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,4',5-Trichlorobiphenyl	13.1	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,4',6-Trichlorobiphenyl	4.2	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	3,4,4'-Trichlorobiphenyl	5.32	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 040, 041, and 071	6.03	pg	CBJ	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,4'-Tetrachlorobiphenyl	2.96	pg	KBJ	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 045 and 051	7.77	pg	C B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,6'-Tetrachlorobiphenyl	0.851	pg	J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',4,5-Tetrachlorobiphenyl	2	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 049 and 069	6.45	pg	C B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 050 and 053	1.9	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',5,5'-Tetrachlorobiphenyl	11.3	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,3',4'-Tetrachlorobiphenyl	3.87	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 059, 062, and 075	1.51	pg	CBJ	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,4,4'-Tetrachlorobiphenyl	2.73	pg	B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 061, 070, 074, and 076	14.3	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,4',6-Tetrachlorobiphenyl	4.62	pg	B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,3',4,4'-Tetrachlorobiphenyl	7.85	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	3,3',4,4'-Tetrachlorobiphenyl	1.34	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4-Pentachlorobiphenyl	0.819	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 083 and 099	4.3	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',6-Pentachlorobiphenyl	1.89	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 085, 116, and 117	1.72	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 086, 087, 097, 108, 119, and 125	5.32	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 090, 101, and 113	5.49	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 093 and 095 and 098 and 100 and 102	7.2	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,3',4,4'-Pentachlorobiphenyl	2.15	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 107 and 124	0.5	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 110 and 115	5.99	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,4,4',5-Pentachlorobiphenyl	1.54	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,3',4,4',5-Pentachlorobiphenyl	4.56	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,3',4,4',5'-Pentachlorobiphenyl	0.56	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	3,3',4,4',5-Pentachlorobiphenyl	1.42	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 128 and 166	1.27	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 129, 138, 160, and 163	5.24	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4,6'-Hexachlorobiphenyl	1.67	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 135, 151, and 154	2.21	pg	CKBJ	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',6,6'-Hexachlorobiphenyl	0.687	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,4,5,5'-Hexachlorobiphenyl	1.07	pg	B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 147 and 149	5.23	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 153 and 168	5.04	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 156 and 157	2	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,3',4,4',6-Hexachlorobiphenyl	0.516	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,3',4,4',5,5'-Hexachlorobiphenyl	0.815	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4,4',5-Heptachlorobiphenyl	1.9	pg	KBJG	UJ	24,25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 171 and 173	0.829	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4,5,6'-Heptachlorobiphenyl	1.38	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4, ${ }^{\prime}, 6^{\prime}$-Heptachlorobiphenyl	0.947	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',5,6,6'-Heptachlorobiphenyl	0.638	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 180 and 193	3.53	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.746	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 183 and 185	1.35	pg	CBJ	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,4',5,5',6-Heptachlorobiphenyl	2.83	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,3,3',4,4',5,5'-Heptachlorobiphenyl	0.606	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.504	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	Coelution of PCB 198 and 199	1.51	pg	CKBJ	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.913	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.926	pg	K B J	U	25
WG44198	FW0001	L19906-1	1668A by MLA010	2,2', 3, 3', 4, 4',5,5',6-Nonachlorobiphenyl	0.532	pg	B J	U	7
WG44198	FW0001	L19906-1	1668A by MLA010	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	0.902	pg	B J	U	6
WG44198	FW0001	L19906-1	1668A by MLA010	2,2', 3, 3', 4, 4',5,5',6,6'-Decachlorobiphenyl	1.87	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3'-Dichlorobiphenyl	5.57	pg	K J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,4'-Dichlorobiphenyl	10.7	pg	K J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 012 and 013	3.32	pg	CKJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',6-Trichlorobiphenyl	2.69	pg	K J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 020 and 028	17.6	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3,4'-Trichlorobiphenyl	5.65	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3',4-Trichlorobiphenyl	1.12	pg	K J	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 026 and 029	2.36	pg	C B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3',6-Trichlorobiphenyl	0.769	pg	K J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,4',5-Trichlorobiphenyl	11.5	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,4',6-Trichlorobiphenyl	3.84	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	3,4,4'-Trichlorobiphenyl	6.26	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 044, 047, and 065	11.8	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',4,5-Tetrachlorobiphenyl	1.88	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 049 and 069	6.45	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 050 and 053	1.78	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2, 5,5'-Tetrachlorobiphenyl	10.3	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3,3',4'-Tetrachlorobiphenyl	4.99	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 061, 070, 074, and 076	16.6	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3',4,4'-Tetrachlorobiphenyl	10.2	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	0.621	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',4-Pentachlorobiphenyl	1.14	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 083 and 099	4.49	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',6-Pentachlorobiphenyl	1.81	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 085, 116, and 117	2.08	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 086, 087, 097, 108, 119, and 125	5.89	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 088 and 091	1.42	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 090, 101, and 113	6.64	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,5,5'-Pentachlorobiphenyl	1.11	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 093 and 095 and 098 and 100 and 102	9.43	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',4,6,6'-Pentachlorobiphenyl	0.8	pg	K J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,3,3',4,4'-Pentachlorobiphenyl	2.94	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 110 and 115	7.6	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3,4,4',5-Pentachlorobiphenyl	2.04	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,3',4,4',5-Pentachlorobiphenyl	6.79	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3',4,4',5'-Pentachlorobiphenyl	0.766	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	3,3',4,4',5-Pentachlorobiphenyl	1.7	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 128 and 166	1.24	pg	CBJG	UJ	7,24

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 129, 138, 160, and 163	6.74	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 135, 151, and 154	2.33	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',6,6'-Hexachlorobiphenyl	0.856	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,4',5,5'-Hexachlorobiphenyl	1.16	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 147 and 149	5.97	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 153 and 168	5.41	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 156 and 157	1.96	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,3,3',4,4',6-Hexachlorobiphenyl	0.763	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,3',4,4',5,5'-Hexachlorobiphenyl	0.54	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 171 and 173	0.783	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',4,5,6'-Heptachlorobiphenyl	1.61	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',5,6,6'-Heptachlorobiphenyl	0.904	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 180 and 193	4.14	pg	CBJ	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.516	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 183 and 185	1.33	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,4',5,5',6-Heptachlorobiphenyl	3.13	pg	B J G	UJ	7,24
WG44198	FB0001	L19906-2	1668A by MLA010	2,3,3',4,4',5,6-Heptachlorobiphenyl	0.612	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	1.03	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',4,4',5,6-Octachlorobiphenyl	0.51	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.737	pg	K B J	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	Coelution of PCB 197 and 200	1.12	pg	CKBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.825	pg	KBJ	U	25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2', 3,4,4',5,5',6-Octachlorobiphenyl	1.25	pg	KBJG	UJ	24,25
WG44198	FB0001	L19906-2	1668A by MLA010	2,2', 3, 3',4,4',5,5',6-Nonachlorobiphenyl	1.56	pg	B J	U	7
WG44198	FB0001	L19906-2	1668A by MLA010	2,2',3,3', 4, 4', 5, 5',6,6'-Decachlorobiphenyl	1.8	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2-Chlorobiphenyl	109	pg	D J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	3-Chlorobiphenyl	445	pg	D	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	4-Chlorobiphenyl	372	pg	B D	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,2'-Dichlorobiphenyl	8.65	pg	J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,3'-Dichlorobiphenyl	19.8	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,4'-Dichlorobiphenyl	25.3	pg	K	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0002	L19906-3	1668A by MLA010	3,3'-Dichlorobiphenyl	67.2	pg	B	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	4,4'-Dichlorobiphenyl	27.8	pg		U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3-Trichlorobiphenyl	5.61	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',4-Trichlorobiphenyl	5.94	pg	B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 018 and 030	11.9	pg	C B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',6-Trichlorobiphenyl	1.52	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 020 and 028	22	pg	C B	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 021 and 033	9.13	pg	C B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,4'-Trichlorobiphenyl	6.84	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,3',4-Trichlorobiphenyl	1.41	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 026 and 029	1.98	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,3',6-Trichlorobiphenyl	0.879	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,4',6-Trichlorobiphenyl	4.6	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	3,4,4'-Trichlorobiphenyl	5.62	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 040, 041, and 071	7.01	pg	CBJ	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,4'-Tetrachlorobiphenyl	3.24	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,5-Tetrachlorobiphenyl	0.794	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 044, 047, and 065	15.2	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 045 and 051	4.45	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',4,5-Tetrachlorobiphenyl	2.32	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 049 and 069	7.4	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 050 and 053	1.87	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',5,5'-Tetrachlorobiphenyl	15.2	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',6,6'-Tetrachlorobiphenyl	0.813	pg	J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,3',4'-Tetrachlorobiphenyl	5.17	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 059, 062, and 075	1.57	pg	C B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,4,4'-Tetrachlorobiphenyl	3.12	pg	B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 061, 070, 074, and 076	17.7	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,4',6-Tetrachlorobiphenyl	5.89	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,3',4,4'-Tetrachlorobiphenyl	9.78	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	3,3',4,4'-Tetrachlorobiphenyl	2.82	pg	B J	U	6

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0002	L19906-3	1668A by MLA010	3,4,4',5-Tetrachlorobiphenyl	1.83	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 083 and 099	5.3	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',6-Pentachlorobiphenyl	3.38	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 086, 087, 097, 108, 119, and 125	9.57	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 088 and 091	1.35	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 090, 101, and 113	9.77	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',4,6,6'-Pentachlorobiphenyl	0.654	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,3',4,4'-Pentachlorobiphenyl	4.5	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 110 and 115	10.3	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,3',4,4',5-Pentachlorobiphenyl	8.2	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,3',4,4',5'-Pentachlorobiphenyl	1.92	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	3,3',4,4',5-Pentachlorobiphenyl	1.96	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 128 and 166	1.62	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 129, 138, 160, and 163	8.71	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',4,6'-Hexachlorobiphenyl	2.69	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 135, 151, and 154	3.48	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',6,6'-Hexachlorobiphenyl	1.52	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2, $3,4,5,5^{\prime}$-Hexachlorobiphenyl	1.79	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,4',5,5'-Hexachlorobiphenyl	1.09	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 147 and 149	6.31	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 153 and 168	5.57	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',4,4',6,6'-Hexachlorobiphenyl	1.19	pg	K J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 156 and 157	5.71	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,3',4,4',5,5'-Hexachlorobiphenyl	1.99	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',4,4',5-Heptachlorobiphenyl	3.27	pg	B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',4, ${ }^{\prime}, 6^{\prime}$-Heptachlorobiphenyl	1.49	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',5,6,6'-Heptachlorobiphenyl	1.4	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 180 and 193	6.21	pg	CBJ	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,4,4',5,6'-Heptachlorobiphenyl	2.13	pg	B J	U	7
WG44198	FW0002	L19906-3	1668A by MLA010	Coelution of PCB 183 and 185	2.36	pg	CKBJ	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,4',5,5',6-Heptachlorobiphenyl	5.03	pg	K B J	U	25

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,4',5,6,6'-Heptachlorobiphenyl	1.07	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,3',4, ${ }^{\prime}, 5,5^{\prime}$-Heptachlorobiphenyl	3.74	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.77	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	1.81	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,4,4',5,5',6-Octachlorobiphenyl	1.16	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,3,3',4,4',5,5',6-Octachlorobiphenyl	1.72	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3', 4, 4, $, 5,5^{\prime}, 6$-Nonachlorobiphenyl	2.16	pg	K B J	U	25
WG44198	FW0002	L19906-3	1668A by MLA010	2,2', 3, 3',4,5,5',6,6'-Nonachlorobiphenyl	2.92	pg	B J	U	6
WG44198	FW0002	L19906-3	1668A by MLA010	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	2.66	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2-Chlorobiphenyl	78.6	pg	D J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	3-Chlorobiphenyl	342	pg	D	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	4-Chlorobiphenyl	307	pg	B D	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2'-Dichlorobiphenyl	7.45	pg	J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,3'-Dichlorobiphenyl	21.7	pg	K D J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,4'-Dichlorobiphenyl	27.6	pg	KDJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	3,3'-Dichlorobiphenyl	71.7	pg	B D J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2,3-Trichlorobiphenyl	6.41	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2,4-Trichlorobiphenyl	7.69	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 018 and 030	13.4	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 021 and 033	11.4	pg	CBJ	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 026 and 029	3.23	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,3',6-Trichlorobiphenyl	1	pg	K J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	3,3',4-Trichlorobiphenyl	1.3	pg	K J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	3,4,4'-Trichlorobiphenyl	6.72	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 040, 041, and 071	8.92	pg	CBJ	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,4'-Tetrachlorobiphenyl	4.1	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 044, 047, and 065	19	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 045 and 051	5.62	pg	CBJ	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,6'-Tetrachlorobiphenyl	1.29	pg	K J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',4,5-Tetrachlorobiphenyl	3.4	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 049 and 069	10.1	pg	CBJ	U	7

Qualified Data Summary Table Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 050 and 053	2.79	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',5,5'-Tetrachlorobiphenyl	17.9	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,3',4'-Tetrachlorobiphenyl	5.93	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 059, 062, and 075	1.88	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,4,4'-Tetrachlorobiphenyl	3.25	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 061, 070, 074, and 076	19.5	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,4',6-Tetrachlorobiphenyl	7.62	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,3',4,4'-Tetrachlorobiphenyl	10.9	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	3,3',4,4'-Tetrachlorobiphenyl	1.66	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4-Pentachlorobiphenyl	1.94	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 083 and 099	7.04	pg	CBJG	UJ	7,24
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',6-Pentachlorobiphenyl	4.15	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 085, 116, and 117	2.08	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 086, 087, 097, 108, 119, and 125	9.73	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 090, 101, and 113	10.8	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 093 and 095 and 098 and 100 and 102	15.7	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,3',4,4'-Pentachlorobiphenyl	4.26	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,3',4,6-Pentachlorobiphenyl	0.686	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 110 and 115	10.2	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,4,4',5-Pentachlorobiphenyl	1.7	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3',4,4',5-Pentachlorobiphenyl	8.25	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,3',4,4',5'-Pentachlorobiphenyl	0.701	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 128 and 166	1.28	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 129, 138, 160, and 163	8.35	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4,5'-Hexachlorobiphenyl	0.747	pg	K J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4,6'-Hexachlorobiphenyl	3.39	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 135, 151, and 154	3.39	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',6,6'-Hexachlorobiphenyl	1.56	pg	KBJG	UJ	24,25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,4,5,5'-Hexachlorobiphenyl	2.06	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,4,5',6-Hexachlorobiphenyl	0.502	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,4',5,5'-Hexachlorobiphenyl	1.17	pg	K B J	U	25

Qualified Data Summary Table
Western Port Angeles Harbor RI/FS

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Flags	Validation Qualifier	Validation Reason
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 147 and 149	8.5	pg	C B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 153 and 168	7.14	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 156 and 157	1.95	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,3',4,4',6-Hexachlorobiphenyl	0.733	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3,3',4',5',6-Hexachlorobiphenyl	0.593	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,3',4,4',5,5'-Hexachlorobiphenyl	0.579	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3, ${ }^{\prime}, 4,44^{\prime}, 5$-Heptachlorobiphenyl	1.94	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 171 and 173	0.598	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4,5,5'-Heptachlorobiphenyl	0.64	pg	K J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4,5',6'-Heptachlorobiphenyl	1.28	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',5,6,6'-Heptachlorobiphenyl	1.12	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 180 and 193	5.07	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,4,4',5,6'-Heptachlorobiphenyl	0.714	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 183 and 185	1.29	pg	CBJ	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,4',5,5',6-Heptachlorobiphenyl	3.34	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,2', , , 3', 4, 4',5,6-Octachlorobiphenyl	0.563	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	0.804	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	Coelution of PCB 198 and 199	2.42	pg	CKBJ	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	0.689	pg	K B J	U	25
WG44198	FW0003	L19906-4	1668A by MLA010	2,2', 3, 3', 4, 4',5,5',6-Nonachlorobiphenyl	1.82	pg	B J	U	7
WG44198	FW0003	L19906-4	1668A by MLA010	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	1.13	pg	B J	U	6
WG44198	FW0003	L19906-4	1668A by MLA010	2,2', 3, 3', 4, 4',5,5',6,6'-Decachlorobiphenyl	1.19	pg	K B J	U	25

[^0]: ${ }^{1}$ Members of the WPAH Group include City of Port Angeles, Georgia-Pacific LLC, Merrill \& Ring, Nippon Paper Industries USA Co., Ltd., and Port of Port Angeles.

[^1]: Notes:
 SPI = sediment profile image

[^2]: Notes:
 No = Meets criteria; Yes = Does not meet criteria
 $\mathrm{M}=$ Mortality, $\mathrm{T}=$ Test Sediment, $\mathrm{R}=$ Reference Sediment
 -- = not applicable
 CSL = cleanup screening level
 SCO = sediment cleanup objective
 SMS = sediment management standards
 ${ }^{\text {a }}$ SCO: Statistical Significance and $M_{T}-M_{R}>25 \%$
 ${ }^{b}$ CSL: Statistical significance and $M_{T}-M_{R}>30 \%$

[^3]: Notes:
 No = Meets criteria; Yes = Does not meet criteria
 $\mathrm{N}=$ Normal Survivorship, $\mathrm{C}=$ Negative Control, $\mathrm{R}=$ Reference Sediment, T = Test Sediment
 -- = not applicable
 CSL = cleanup screening level
 SCO = sediment cleanup objective
 SMS = sediment management standards
 ${ }^{a}$ SCO: Statistical Significance and $\left(N_{T} / N_{C}\right) /\left(N_{R} / N_{C}\right)<0.85$
 ${ }^{\mathrm{b}} \mathrm{CSL}$: Statistical Significance and $\left(\mathrm{N}_{\mathrm{T}} / \mathrm{N}_{\mathrm{C}}\right) /\left(\mathrm{N}_{\mathrm{R}} / \mathrm{N}_{\mathrm{C}}\right)<0.70$

[^4]: ${ }^{1} \mathrm{H}=$ high bias indicated
 $\mathrm{L}=$ low bias indicated

[^5]: \checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.
 ${ }^{1}$ Quality control results are discussed below, but no data were qualified.
 ${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

[^6]: \checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.
 ${ }^{1}$ Quality control results are discussed below, but no data were qualified.
 ${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

[^7]: \checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed.
 ${ }^{1}$ Quality control results are discussed below, but no data were qualified.
 ${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

[^8]: \checkmark Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed. ${ }^{1}$ Quality control results are discussed below, but no data were qualified.
 ${ }^{2}$ Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

[^9]: ${ }^{1} \mathrm{H}=$ high bias indicated
 $\mathrm{L}=$ low bias indicated

[^10]: ${ }^{1} \mathrm{H}=$ high bias indicated
 $\mathrm{L}=$ low bias indicated

