FINAL IN SITU SOIL REMEDIATION TREATABILITY STUDY REPORT

Port of Longview's Maintenance Facility Area Longview, Washington

Prepared for

INTERNATIONAL PAPER

International Paper Company Memphis, Tennessee

Prepared by

1501 Fourth Avenue, Suite 1400 Seattle, Washington 98101-1616 (206) 438-2700 URS PN 33763156

June 28, 2013

Executive S	ummary			ES-1
List of Abbr	eviations			vii
Section 1	Introd	Introduction		
	1.1		t Content	
	1.2		ocation and Description	
	1.3		eology and Hydrogeology	
	1.4		nd Investigation History	
	1.5		ability Study Purpose and Objectives	
		1.5.1 1.5.2	RI/FS Soil Cleanup Alternatives	
		1.0.2	Study Objective	
		1.5.3	ISTR – Soil Cleanup Alternatives Description and	1
			Treatability Study Objective	1-5
Section 2	Field \	Work Ob	pjectives, Methods, and Results	2-1
	2.1	Field '	Work Objectives	2-1
	2.2	Field '	Work Methods	2-1
		2.2.1	Field Work Preparation	2-1
		2.2.2	Test Pit Excavation	2-1
		2.2.3	Test Pit Characterization and Sampling	2-2
		2.2.4	Test Pit Backfilling	2-3
	2.3	Field '	Work Results	
		2.3.1	Test Pit Observations	
		2.3.2	Analytical Chemistry Results	2-4
Section 3	ISS Tr	ISS Treatability Study Objectives, Methods, Approach, and Results		3-1
	3.1	ISS T	reatability Study Objectives	3-1
	3.2		reatability Study Methods	
		3.2.1	Physical Properties	3-1
		3.2.2	Strength	
		3.2.3	Leachability	
		3.2.4	Hydraulic Conductivity	
	3.3		reatability Study Appoach	3-3
		3.3.1	Physical Properties Characterization and ISS Reagent Selection	3_1
		3.3.2	Preliminary ISS Evaluation	
		3.3.3	Optimization ISS Evaluation	
	3.4		reatability Study Results	
	J. T	3.4.1	Test Soil Characterization Results	
		3.4.2	Preliminary ISS Evaluation Results	
		3.4.3	Optimization ISS Evaluation Results	
		22	- r	

Table of Contents

Section 4	ISTR Treatability Study Objectives, Methods, and Results		4-1
	4.1	ISTR Treatability Study Objectives	4-1
	4.2	ISTR Treatability Study Methods	
		4.2.1 Test Soil Characterization	
		4.2.2 Boiling Flask Testing	4-3
		4.2.3 Soil Cell Testing	
	4.3	ISTR Treatability Study Results	
		4.3.1 Test Soil Characterization Results	
		4.3.2 Boiling Flask Test Results	
		4.3.3 Soil Cell Test Results	
Section 5	Treat	ability Study Conclusions and Future RI/FS Activities	5-1
	5.1	Treatability Study Conclusions	5-1
		5.1.1 ISS Treatability Study Results Summary and Conclusions	
		5.1.2 ISTR Treatability Study Results Summary and Conclusions	
	5.2	Future RI/FS Activities	
		5.2.1 Future Cleanup Action Alternative Evaluation	
		5.2.2 Final Revised RI/FS Report Schedule	
Section 6	Refer	ences	6-1

lables	
Table 2-1	Summary of Chemical Analyses for Field Soil Samples
Table 2-2	Summary of Analytical Results for Field Soil Samples
Table 3-1	ITRC Example Performance Tests
Table 3-2	Summary of Analytical Results for Untreated Soil from Test Pit TP-01
Table 3-3	Summary of Analytical Results for Untreated Soil from Test Pit TP-02
Table 3-4	Summary of Physical Properties Results for Untreated Soil
Table 3-5	Preliminary ISS Evaluations – Penetrometer Results
Table 3-6	Preliminary ISS Evaluations – UCS Results
Table 3-7	Preliminary ISS Evaluations – TCLP and SPLP Results
Table 3-8	Preliminary ISS Evaluations – Hydraulic Conductivity Results
Table 3-9	Optimization ISS Evaluations – 5-Day ANS 16.1 Results – Mix 16
Table 3-10	Optimization ISS Evaluations – Complete ANS 16.1 Results – Mix 17
Table 3-11	Optimization ISS Evaluations – UCS, Permeability, and Volumetric Expansion Results
Table 3-12	Optimization ISS Evaluations – SPLP Results – Mix 17A, 17 Dup, and 28
Table 3-13	Optimization ISS Evaluations – 5-Day ANS 16.1 Results – Mixes 17 Dup and 26
Table 3-14	Optimization ISS Evaluations – Complete ANS 16.1 Results – Mix 17A
Table 3-15	Optimization ISS Evaluations – Complete ANS 16.1 Results – Mix 28
Table 3-16	Optimization ISS Evaluations – Additional Analytical Results – Mix 28
Table 4-1	ISTR Study Test Questions, Methods, and Goals
Table 4-2	ISTR Baseline Soil Concentrations
Table 4-3	ISTR Dry Heating Test Results – Impacted Soil
Table 4-4	ISTR Dry Heating Test Results – Highly-Impacted Soil
Table 4-5	ISTR Steaming Test Results – Highly-Impacted Soil

Figures	
Figure 1-1	Former International Paper Facility Layout
Figure 1-2	Well and Piping Layout – MFA
Figure 2-1	Treatability Study Test Pit Locations
Figure 2-2	Geologic Cross Section D-D' (TP-01)
Figure 2-3	Geologic Cross Section E-E' (TP-02)
Figure 3-1	Bench-Scale Testing Tiered Testing Approach - ITRC
Figure 3-2	ISS Treatability Study Approach Process Flow Diagram
Figure 3-3	Physical Properties Characterization and ISS Reagent Selection Process Flow Diagram
Figure 3-4	Preliminary ISS Evaluation Process Flow Diagram
Figure 3-5	Optimization ISS Evaluation Process Flow Diagram – Mix 17
Figure 3-6	Optimization ISS Evaluation Process Flow Diagram – Additional Mixes
Figure 3-7	Preliminary Leachability Evaluation after 8 to 9 Day Cure Time – SPLP Results
Figure 3-8	Unconfined Compressive Strength vs Cure Time
Figure 3-9	Percentage Reduction in DRO and Naphthalene - SPLP Results
Figure 3-10	5-Day ANS 16.1 DRO and Naphthalene Concentrations
Figure 3-11	Mix 17A ANS 16.1 Results, DRO and Naphthalene Concentrations vs Sample Time
Figure 3-12	Mix 17 ANS 16.1 Results, DRO and Naphthalene Concentrations vs Sample Time
Figure 3-13	Mix 28 ANS 16.1 Results, DRO and Naphthalene Concentrations vs Sample Time
Figure 4-1	ISTR Treatability Study Site Soil Characterization Process Flow Diagram
Figure 4-2	ISTR Treatability Study Approach Process Flow Diagram
Figure 4-3	Percentage Reductions in DRO and Naphthalene Concentrations for Dry Heating of Impacted Soil
Figure 4-4	Percentage Reductions in DRO and Naphthalene Concentrations for Dry Heating of Highly-Impacted Soil
Figure 4-5	Percentage Reductions in DRO and Naphthalene Concentrations for Steam Heating of Highly-Impacted Soil
Figure 5-1	ITRC ISS Design and Implementation Process Diagram

Appendices

Appendix A	Test Pit Excavation Photo Log
Appendix B	Test Pit Geologic Logs
Appendix C	Test Pit Backfilling Log
Appendix D	ISS Treatability Study Data Summary Table
Appendix E	Analytical Laboratory Reports
Appendix F	Laboratory Quality Assurance Reviews
Appendix G	ISS Treatability Study Laboratory Report – Kemron Environmental Services
Appendix H	Vendor Supplied ISS Material Safety Data Sheets
Appendix I	ISTR Treatability Study Laboratory Report – Global Remediation Solutions

AAFS additional action feasibility study

ANS American Nuclear Society

ASTM American Society of Testing and Materials

below ground surface bgs

cPAH carcinogenic polynuclear aromatic hydrocarbon

CAP cleanup action plan **COCs** chemicals of concern cm/sec centimeters per second

DΙ de-ionized

DNAPL dense non-aqueous phase liquid

DRO diesel range organics DW dangerous waste

EPA Environmental Protection Agency

ERH electrical resistive heating

GRS Global Remediation Solutions LLC

HASP Health and Safety Plan

HDPE high-density polyethylene

HWMU hazardous waste management unit

ISS in situ solidification

ISSS in situ solidification and stabilization

ISTR in situ thermal remediation

ITRC Interstate Technology Regulatory Council

LNAPL light non-aqueous phase liquid

msl mean sea level

MFA Maintenance Facility Area Model Toxics Control Act MTCA

ncPAH non-carcinogenic polynuclear aromatic hydrocarbon

NAPL non-aqueous phase liquid

NGVD National Geodetic Vertical Datum PAH polynuclear aromatic hydrocarbon

PCMP performance and compliance monitoring plan

PCP pentachlorophenol

PID photoionization detector

parts per million ppm

psi pounds per square inch

PVC polyvinyl chloride

RCRA Resource Conservation and Recovery Act

RI/FS remedial investigation/feasibility study

RRO residual range organics

SPLP synthetic precipitation leaching procedure

SVOC semi-volatile organic compound

SWMU solid waste management unit

TCLP toxicity characteristic leaching procedure

TPH total petroleum hydrocarbons

TSF tons per square foot

TWP Area Treated Wood Products Area

UCS unconfined compressive strength **USCS** unified soil classification system **USGS United States Geological Survey**

VI vapor intrusion

VOC volatile organic compound

WAC Washington Administrative Code This Final In Situ Soil Remediation Treatability Study Report (Report) summarizes activities performed by International Paper Company (International Paper) associated with treatability studies conducted on soil excavated from test pits within the Port of Longview's (Port's) Maintenance Facility Area (MFA). Treatability studies were performed to support evaluation of cleanup action alternatives being considered in a remedial investigation/feasibility study (RI/FS) report that International Paper is currently finalizing.

Activities described in this Report include:

- Excavating two test pits, collecting soil samples, and characterizing site soil;
- Conducting an *in situ* solidification (ISS) treatability study, and evaluating study results; and
- Conducting an *in situ* thermal remediation (ISTR) treatability study, and evaluating study results.

This Report also presents conclusions resulting from the above characterization and evaluation activities, and describes how those conclusions will be incorporated into the Final Revised RI/FS Report.

Two test pits were excavated in two distinct areas within the MFA. Test pit TP-01 was located to the north of the Port's Mechanics Shop in an area previously characterized as less impacted. Test pit TP-02 was located east of the Port's Mechanics Shop in an area previously characterized as more impacted, and where dense non-aqueous phase liquid (DNAPL) would likely be encountered. Field observations made during test pit excavation were recorded on geologic test pit logs, and samples were collected for chemical analysis as well as delivery to treatability laboratories. Test pit TP-02 was observed to be significantly more impacted than test pit TP-01, and free product was observed collecting at the base of test pit TP-02 after excavation was completed.

The ISS treatability study was conducted by Kemron Environmental Services of Atlanta, Georgia in accordance with Interstate Technology Regulatory Council (ITRC) guidance (ITRC 2011). This study included both preliminary ISS evaluation testing of 25 test mixes and additional optimization ISS evaluation testing of variations of one preliminary test mix as well as 6 newly developed test mixes. Tests were performed to evaluate test mixes for strength, leachability, and hydraulic conductivity criteria. Multiple test mixes were identified that could meet these criteria, and this Report presents the following ISS treatability study conclusions:

- ISS results indicate that soil from test pit TP-01 can be expected to meet remediation goals with simple test mixes.
- Soil from test pit TP-02 was also able to meet remediation goals in multiple test mixes, including Mix 28 (8 percent slag cement/2 percent bentonite/0.5 percent caustic soda) and Mix 17 (12.5 percent slag cement/2 percent bentonite/2 percent organoclay).

The ISTR treatability study testing described herein was conducted by Global Remediation Solutions of Longview, Washington. The study included both boiling flask and soil cell testing. Tests were performed to evaluate the following: physical behavior of non-aqueous phase liquid (NAPL); reductions of COC concentrations in heating soil using both dry heating and steaming methods; and whether special construction considerations (e.g., heat tracing of process piping) would be required for thermal treatment of soil in the MFA.

ISTR results indicate that polynuclear aromatic hydrocarbon (PAH) concentrations in highlyimpacted soil collected from test pit TP-02 could be reduced by 45 percent with 5 days of steam heating, and that diesel-range organics (DRO) concentrations could be reduced by 50 percent with 5 days of steam heating. Continued heating through 15 days resulted in an additional 23 percent reduction in DRO concentrations, and negligible additional reduction was observed in PAH concentrations. If these treatability study reduction percentages were realized in the MFA during field implementation, 13 of 17 locations that currently exceed the applicable total toxicity equivalent concentration (TTEC) cleanup level would have TTEC concentrations reduced to below the cleanup level. In addition, no special construction requirements were identified during the ISTR treatability study.

The results and conclusions presented in this Report will be incorporated into further evaluation of RI/FS cleanup action alternatives, and this evaluation will be presented in a Final Revised RI/FS Report in August 2014.

SECTIONONE Introduction

This Final *In Situ* Soil Remediation Treatability Study Report (Report) presents the rationale, approach, objectives, methods, and results related to collecting soil samples and performing bench-scale testing of two cleanup action technologies being evaluated for remediation of soil located adjacent to the Treated Wood Products (TWP) Area formerly owned by International Paper Company (International Paper) in Longview, Washington. The primary technology evaluated in this Report includes the recommended cleanup action alternative technology (in situ solidification [ISS]) presented in International Paper's Draft Revised Remedial Investigation/Feasibility Study (RI/FS) Report (URS 2011). Solidification is the process of encapsulating contaminants and reducing the mobility of contaminant constituents in a treated material. The second technology evaluated (in situ thermal remediation [ISTR]) in this Report was also highly ranked in the RI/FS and was a significant element of other cleanup action alternatives being considered. ISTR uses heat primarily to mobilize contaminants from the subsurface and capture them for treatment and/or disposal at the surface. ISTR affects physical, chemical, and biological processes that can also reduce contaminant concentrations in situ.

This Report describes activities that were conducted on the contiguous parcel of land adjacent to and northwest of the former TWP Area, which is known as the Port of Longview's (Port's) Maintenance Facility Area (MFA). Both the TWP Area and the MFA are currently owned by the Port. Historical site activities discussed in this document were conducted first under Agreed Order No. DEHS-S437 (1997) and then under Consent Decree 97-2-01088-9 (1997) between International Paper and the Washington State Department of Ecology (Ecology).

The ISS treatability study described herein was discussed with Ecology and the Port following submittal of the Draft Revised RI/FS report, which included ISS in the preferred cleanup action alternative. A scoping call between International Paper and Ecology was held on June 8, 2011, to discuss details related to sample collection and other details related to the ISS treatability study. The results of that scoping call and subsequent comments were incorporated into the Final ISS Treatability Study Work Plan (Work Plan, URS 2011).

The Work Plan focused on sample collection and ISS treatability study activities. In September 2011, after completion of the Work Plan and field sampling effort, comments were received from Ecology in regards to a separate investigation being conducted at the Port's Mechanics Shop. In addition, comments were also received from Ecology which indicated the Port's desire to include a more aggressive treatment approach to address contamination under the Mechanics Shop. Both ISS and ISTR are being considered to address this concern. Treatment using ISTR technology was considered in two alternatives included in the RI/FS, and one of those included treatment under the Mechanics Shop. A vendor was identified that could perform bench-scale testing of electrical resistive heating (ERH) using soil already excavated for bench testing. In response to comments, International Paper, after communicating with Ecology, determined to also perform a treatability study for ISTR technology. Therefore, treatability study results related to ISTR are also included in this Report.

URS Corporation (URS) is assisting International Paper with development of this Report in accordance with relevant Washington State Model Toxics Control Act (MTCA) regulations (as revised in November 2007) pertaining to treatability studies (WAC 173-340-350(9)(c)).

SECTIONONE Introduction

1.1 REPORT CONTENT

This Report summarizes the background, purpose, objectives, methodology, and results related to treatability study activities that were conducted in the MFA in accordance with the Work Plan (URS, 2011). Information is presented as follows:

- Section 1 Introduction
- Section 2 Field Work Objectives, Methods, and Results
- Section 3 ISS Treatability Study Objectives, Methods, and Results
- Section 4 ISTR Treatability Study Objectives, Methods, Approach, and Results
- Section 5 Treatability Study Conclusions and Future RI/FS Activities
- Section 6 References

1.2 SITE LOCATION AND DESCRIPTION

The former International Paper Longview facility is located in Sections 8.0 and 9.0, Township 7 North, Range 2 West, in Cowlitz County, in Longview, Washington (Figure 1-1). The facility is located near the north shore of the Columbia River, approximately 66 miles upriver from the Pacific Ocean. This location is located less than 2 miles downstream (west) of the confluence of the Columbia and Cowlitz Rivers. The facility lies within a 100-year floodplain but is protected by control levees. The site area is relatively level and ranges in elevation from 10 to 15 feet above mean sea level (msl).

Port maintenance operations border the former TWP Area to the west in the MFA, a formerly active Port grain terminal borders the TWP Area to the south, a paved storage area used by Port tenants is located to the northwest of the TWP Area, and additional vacant Port property is located to the northeast of the TWP Area. The Columbia River is located approximately 300 feet southwest of the former TWP Area.

Vehicles operated by the Port are serviced and washed at the Port's Mechanics Shop in the MFA. The Mechanics Shop measures approximately 15,000 square feet in area, and includes separate areas for maintenance, washing, storage, and office space. According to Port personnel, no underground storage tanks are present beneath or in the vicinity of the building. A security fence surrounds the building, parking lot, and the immediately surrounding area, as shown on Figure 1-2.

The area northeast of the security fence is used by the Port's tenants for storage. The area is flat and paved with asphalt. A linear feature (lineament) observed in historic aerial photographs of this area, taken between 1957 and 1965, has been interpreted to be a trench connecting the former TWP Area wastewater ponds with former off-site impoundments (Figure 1-2).

1.3 SITE GEOLOGY AND HYDROGEOLOGY

Native soil materials are chiefly poorly graded fine to medium sands with layers of silt occurring at three distinct depths. In the vicinity of the site, the Upper Silt is located approximately 10 feet below ground surface (bgs), the Intermediate Silt is located approximately 40 feet bgs, and the Lower Silt is located at approximately 100 feet bgs. The Upper Sand is located above the Upper **SECTIONONE** Introduction

Silt, and the Lower Sand is located below the Upper Silt. Two groundwater units are located between the silt layers. Aguifer A is located between the Upper Silt and the Intermediate Silt. Aquifer B is located between the Intermediate Silt and the Lower Silt. Previous investigations have shown that groundwater potentiometric heads fluctuate due to both tidal and seasonal influences, but that groundwater generally flows toward the north-northeast (Woodward-Clyde 1996).

1.4 SITE AND INVESTIGATION HISTORY

The former International Paper Longview facility and the surrounding area were undeveloped in 1919 (USGS 1919). Long Bell operated a saw mill at the site beginning in the early 1920s until 1964. The former TWP Area wood treating facility was active from 1937 to 1982. International Paper purchased Long Bell in 1956. The TWP operation included a treatment building, wastewater plant, boiler house, pentachlorophenol (PCP) mix tank, two PCP work tanks, four creosote and carrier oil tanks, and two unlined surface impoundments (Ponds 1 and 2).

The TWP Area became inactive in 1982. As part of RCRA corrective action and closure activities, soil was removed from several locations within the former TWP Area in 1985; the former ponds and process areas were capped with an engineered cover, including a high-density polyethylene (HDPE) liner in 1989 (J.L. Grant 1990).

In 1997, Ecology requested additional corrective action at the TWP Area that included the physical containment of chemicals of concern (COCs) by construction of a subsurface barrier wall and an additional engineered cover system; removal of light non-aqueous-phase liquids (LNAPL) within the contained area; and in situ treatment of contaminants using a combined system of active biosparging wells and passive bioventing wells. These cleanup actions were implemented during 1997 and 1998 and are described in the engineering design report (Woodward-Clyde 1997d) and cleanup action report (URS Greiner Woodward-Clyde 1999e) prepared for the former TWP Area.

In a letter dated November 7, 1997, Ecology noted three areas of concern that were identified during barrier wall construction activities in the fall of 1997. During a conference call on October 24, 2006, Ecology (Ecology 2006) requested that a RI/FS report be produced for the MFA to document the historical investigation and evaluation efforts conducted in accordance with the requirements of both the WAC Dangerous Waste (DW) Regulations (173-303-646) and the MTCA Cleanup Regulations (173-340-350 through 440 and 700 through 760). In January 2007, a draft MFA RI/FS report was submitted to Ecology to summarize historic site activities conducted under both Agreed Order DEHS-S437 (1997) and Consent Decree 97-2-01088-9 (1997). As requested by Ecology, that report presented the results of previous investigations and evaluation efforts conducted for the MFA area, and a table (Table 1-1 of that report) was included to cross-reference between MTCA regulatory requirements and those previous historical site actions that were conducted to satisfy those requirements.

Comments received from Ecology on the January 2007 draft RI/FS report were subsequently received and incorporated into a revised document that was submitted to Ecology in May 2007. International Paper received comments from Ecology in March 2008 that requested additional investigation in the MFA to further delineate affected site media and to further quantify affected media for evaluation of cleanup action alternatives (Kaia Petersen, personal communication 2008). Subsequently, URS prepared an Additional Investigation Work Plan (URS 2008b), which was submitted to Ecology in June 2008. The results of that additional investigation as well previous investigations and cleanup actions were presented in the Draft Revised RI/FS Report (URS 2011), which also evaluated future cleanup action alternatives for the MFA. Based on previous investigation results and the evaluation of cleanup action alternatives in the Draft Revised RI/FS Report, the selected preferred cleanup action alternative for affected MFA soils was ISS outside the footprint of the Port's Mechanics Shop. Institutional controls and monitored natural attenuation are recommended as the long-term cleanup action alternative for affected groundwater in the MFA following solidification of source soil.

TREATABILITY STUDY PURPOSE AND OBJECTIVES 1.5

The purpose of the treatability studies described in this Report was to evaluate the effectiveness and field parameters associated with in situ soil remediation technologies at the International Paper Longview site. Both the preferred cleanup action alternative technology (ISS) and also highly-ranked in situ soil remediation technology (ISTR) were evaluated using excavated soil from the site. Treatability studies used representative soil samples that were collected from two different site areas to bracket the range of anticipated cleanup conditions. A list of cleanup alternatives presented in the Draft Revised RI/FS Report (URS 2011) is presented below along with a summary description of the two technologies being evaluated in this treatability study report along with specific treatability objectives.

1.5.1 RI/FS Soil Cleanup Alternatives

This section summarizes the cleanup action technologies and the associated alternatives for soil presented in the Draft Revised RI/FS Report. The cleanup alternative components that were considered and retained for use in developing complete alternatives are listed below.

- Excavation
- **ISS**
- ERH (one form of *in situ* thermal remediation)
- Containment (but not as a stand-alone cleanup alternative for soil containing dense nonaqueous phase liquid [DNAPL])

Each of the component technologies above were developed into complete alternatives as shown below and discussed further in Section 7.3 of the Draft Revised RI/FS Report.

- Alternative S1 Baseline Alternative for Soil Comprehensive Excavation
- Alternative S2 Comprehensive Excavation Outside Building Footprint
- Alternative S3 DNAPL Excavation Outside Building Footprint
- Alternative S4 DNAPL Excavation Outside Building Footprint, Limited Excavation Inside
- Alternative S5 Solidification Outside Building Footprint
- Alternative S6 DNAPL Treatment by Electrical Resistance Heating
- Alternative S7 DNAPL Excavation and Electrical Resistance Heating

SECTIONONE

1.5.2 ISS – Soil Cleanup Alternative Description and Treatability Study Objective

The Draft Revised RI/FS Report identified Alternative S5 (Solidification Outside Building Footprint) as the preferred soil cleanup action alternative. Alternative S5 consists of in-place mixing of solidifying agents with MFA soil outside the footprint of the Port's Mechanics Shop that contains NAPL and/or the primary COCs (polynuclear aromatic hydrocarbons [PAHs] and diesel-range organics [DRO]) concentrations exceeding associated cleanup levels (Figure 2-1). The mixing agent would be selected to bind the COCs within a modified matrix exhibiting significantly lower permeability compared to the surrounding soil. This treatment reduces the likelihood of contaminant migration by diverting groundwater around the treated matrix and chemically binding the contamination within the matrix. Solidification of soil beneath the Mechanics Shop was not included in this alternative. Residual, unsolidified soil containing COCs would remain beneath the building, with the building structure and the solidified soil outside the building acting as containment to limit water infiltration and thus mobilization of residual COCs.

Alternative S5 for soil included the following estimated quantity assumptions:

- 32,200 square feet of solidification area
- 8,100 cubic yards total volume of site materials within solidification area
- 3,500 cubic yards of clean overburden fill materials to be excavated, segregated, and stockpiled

The main objective for this ISS treatability study was to reduce the permeability of site soil through the use of common and readily available binding reagents. To achieve this two representative soil samples from the site were collected and mixed using different admixtures and ratios to determine the following:

- Hydraulic conductivity
- Leachability of COCs (PAHs and DRO)
- Soil strength
- Other geotechnical properties of treated soil

1.5.3 ISTR – Soil Cleanup Alternatives Description and Treatability Study Objective

The Draft Revised RI/FS Report included two alternatives (S6 and S7) that incorporated ERH technology. These two ERH alternatives ranked high in the RI/FS evaluation, second only to the ISS alternative. Alternative S6 primarily includes soil treatment by ERH throughout the area of DNAPL occurrence (including beneath Mechanics Shop) and preservation of the existing engineered cap (approximately 6 inches of asphalt, 2.5 feet of gravel, and geotextile) over soil containing COCs at concentrations exceeding the cleanup level. Alternative S7 includes excavation and off-site landfill disposal or incineration of soil at the MFA located outside the footprint of the Mechanics Shop that contains DNAPL and ERH treatment of soil within the building footprint.

These alternatives would require installation of an array of electrodes throughout the treatment area and passing electricity into the array. The resistance of the soil to the electrical conduction

between the electrodes results in heating soil and perched groundwater to near boiling (≤100 degrees C), causing transfer of contaminants with lower boiling points into the vapor phase. A multi-phase extraction system (wells, piping, and pumps) removes volatilized contaminants for treatment prior to discharge. Extracted liquids would also be cooled and treated prior to discharge.

The main objective for ISTR treatability study was to determine if conditions are suitable to applying ERH at the site and if heating the samples would reduce COC concentrations to below cleanup levels. Other objectives include the following:

- Determine whether changes occur in NAPL density during ERH treatment
- Determine whether heavier constituents can be steam stripped from the soil matrix
- Determine the degree of COC reduction (PAHs and DRO) that can be achieved during heating
- Evaluate whether volatilization, steam stripping, multi-phase extraction, chemical, and biological are viable treatment processes for implementation of ERH for MFA soil
- Determine the rate of COC reduction to estimate duration of ERH field implementation in the MFA
- Determine whether recovered liquids and vapors solidify upon cooling, and whether any special construction considerations (e.g. heat tracing of process piping) might be necessary for implementation of ERH for MFA soil

This section summarizes the objectives and methods related to field work presented in this Report.

2.1 FIELD WORK OBJECTIVES

The overall objectives for field work related to the treatability study were the following:

- Observe and document the physical characteristics of soil being considered for treatment within open test pits
- Assess the workability of soil being considered for treatment
- Collect representative samples from material being considered for treatment
- Collect enough sample volume as necessary to perform multiple tests

2.2 FIELD WORK METHODS

Two locations were evaluated by advancing test pits to the top of the Upper Silt layer (approximately 6 to 8 feet bgs) using an excavator. One test pit location (TP-01) was excavated within an area where DNAPL has not been encountered. The second location (TP-02) was excavated within an area where DNAPL has been encountered previously. The two test pit locations are shown on Figure 2-1.

2.2.1 **Field Work Preparation**

Prior to initiating field activities, test pit locations were identified and a private subcontractor (APS of Issaquah, Washington) surveyed the site to identify potential concerns with subsurface structures and/or utilities. In addition to test pit locations TP-01 and TP-02, three contingency test pit locations were also identified and checked for utilities. A public utility locate was also performed (following a 'one-call' notification) prior to field mobilization.

2.2.2 Test Pit Excavation

Excavator operation and other field construction services were performed by Cowlitz Clean Sweep (CCS) of Longview, Washington. Geologic cross-section alignments D-D' and E-E' are identified relative to sampling locations on Figure 2-1. The asphalt surface was saw cut at both test pit locations, and asphalt was removed in an area measuring approximately 10 feet by 10 feet (100 square feet) at each location. Removed asphalt was segregated and transported to an offsite facility for recycling.

A small excavator was then used to slowly remove the upper clean gravel fill materials at test pit TP-01 and stockpile them on plastic sheeting. The upper gravel layer was clearly distinct and separated from the Upper Sand by a layer of geotextile filter fabric. Upper Sand soil from beneath the clean fill layer was then excavated to the top of the Upper Silt. Geologic crosssection D-D' is shown on Figure 2-2 and identifies the approximate thicknesses and locations of geologic layers that were encountered during excavation at test pit TP-01. Soil samples were field screened in the excavator bucket and then placed in a roll-off container. Sample collection details are described in the following Section 2.2.3 Test Pit Characterization. Photographs of each test pit are presented in Appendix A.

Test pit TP-02 was completed in a similar manner as TP-01, by first removing and stockpiling the upper clean gravel fill materials on plastic sheeting. Soil from beneath the clean fill layer was then excavated. Within 1 foot bgs (immediately below the asphalt cover) a concrete pipe was encountered. After consulting with Port personnel, the pipe within the test pit was removed, and excavation continued to the top of the Upper Silt. Upon reaching the top of the Upper Silt, free product was observed flowing into the pit from the test pit sidewalls (see photos in Appendix A). Geologic cross-section E-E' is shown on Figure 2-3 and identifies the approximate thicknesses and locations of geologic layers that were encountered during excavation at test pit TP-02. Soil samples were screened in the excavator bucket and then placed in a roll-off container. Soil containing DNAPL and soil exhibiting stronger field indications (e.g., odor, staining, or elevated photoionization detector [PID] readings) of contamination were kept segregated within the roll-off container. Sample collection details are described in the following section.

Test Pit Characterization and Sampling 2.2.3

Test pit logs were prepared for both test pits, and they are provided in Appendix B. The logs identify soil types and field observations made while screening soil samples collected using the excavator. The test pit logs include observations for the full depth of the Upper Sand. The excavator bucket was used to collect two samples from each test pit after excavation was completed at each test pit, and the excavator bucket was decontaminated between test pit locations. One sample from each test pit was collected across the full depth of Upper Sand material below the clean gravel fill, which is the depth interval being considered for treatment by ISS. This was done by scraping a thin layer of material from the excavation sidewall across the desired depth interval. The second sample from each test pit was taken from material immediately above the Upper Silt layer, which is typically the depth at which highest concentrations have been observed in historical samples. The following samples were taken from the test pits at the depths indicated:

- TP-01 (2 to 7.5 feet bgs)
- TP-01 (7.5 feet bgs)
- TP-02 (2 to 6.5 feet bgs)
- TP-02 (6.5 feet bgs)

Both samples from each test pit were submitted to Columbia Analytical Services (CAS) of Kelso, Washington for laboratory analysis. Soil samples from the entire-depth interval proposed for treatment within the Upper Sand were analyzed for PAHs and total petroleum hydrocarbons (TPH) in both site soil and in leachate resulting from synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) extraction methods. The samples from the bottom of each test pit were also analyzed for PAHs and TPH. The purpose of analyzing soil collected from the entire depth interval proposed for treatment was to develop baseline concentrations for comparison against treatability results (both soil and leachate). The purpose of analyzing soil collected from the bottom of the test pits was to develop upper end concentrations to bracket the range of anticipated soil concentrations requiring treatment at those test pit locations (soil only).

Five 1-gallon containers were also filled with soil from each test pit and submitted to Kemron Environmental Services, Inc. (Kemron) of Atlanta, Georgia for the ISS treatability study. The soil submitted to Kemron from each test pit was collected from the full-depth interval of the Upper Sand at each test pit, to be representative of the depth interval being considered for treatment by ISS.

2.2.4 Test Pit Backfilling

Test pit TP-01 was backfilled immediately following the completion of sample collection and backfill was then compacted in lifts using native soil from the roll-off container. A log providing a description of backfilling methods and a record of compaction testing is included as Appendix C. New geotextile fabric was placed over the surface of the native soil materials to overlap the existing surrounding geotextile fabric, and then the upper clean gravel fill was replaced to the elevation of the base of the asphalt surfacing. Test pit TP-01 was backfilled to the base of the asphalt prior to commencing excavation at test pit TP-02. All excavated materials were replaced at test pit location TP-01.

Test pit TP-02 was backfilled following sample collection using compacted lifts. Clean imported fill amended with cement was used as backfill at the bottom of the excavation due to the presence of free-product and perched groundwater. After backfilling above the elevation of the free-product and perched groundwater was completed, backfilling continued using previously excavated native soil stockpiled in the roll-off container. New geotextile fabric was placed over the surface of the native soil materials to overlap the existing surrounding geotextile fabric, and then the upper clean gravel fill was replaced to the elevation of the base of the asphalt surfacing. Approximately five drums of excess soil remained in the roll-off container after backfilling of test pit TP-01 was completed. This soil was drummed and stored within the secure chain-link fenced area containing the MFA remediation system enclosure.

Asphalt restoration was performed the following morning (Thursday, August 23, 2011) by Lakeside Industries of Longview, Washington. Asphalt was placed and compacted in two lifts.

2.3 FIELD WORK RESULTS

This section summarizes the field observations made during test pit excavation and also presents the analytical results for samples collected from the two test pits.

Test Pit Observations 2.3.1

Both test pits generally consist of an asphalt surface 7 to 9 inches thick overlaying a gray, coarse gravel fill to approximately 2 feet bgs. A geotextile fabric is located below the gravel and marks the top of the Upper Sand layer. The Upper Sand geologic unit varies in color from light to dark brown and is gray in places. The sand is fine to medium in size and is moist. The Upper Silt unit is gray in color and is located below the Upper Sand. Some differences observed for subsurface conditions at the two test pits are described below.

No odor was noticed in test pit TP-01; conversely TP-02 was documented to have strong creosote odor, with PID readings of 70 to 170 parts per million (ppm). The Upper Sand unit was found to have a higher percentage of silt (SM vs SP) in test pit TP-01. The Upper Silt unit was

observed at a depth of 7.5 feet bgs in test pit TP-01 and at a depth of 6.5 feet bgs in test pit TP-02. A significant difference in observations between the two test pits was observed near the bottom of test pit TP-02, where significant staining was observed and free product flowed into the excavation from the side walls.

Analytical Chemistry Results

Two soil samples from each test pit TP-01 and TP-02 (four total) as indicated in Section 2.2.3 were collected and submitted to CAS for chemical analyses. These field samples were submitted for analyses indicated in Table 2-1. Analytical results for these field samples submitted to CAS indicate that test pit TP-02 has significantly higher COC concentrations than test pit TP-01. Furthermore, the samples collected at the bottom of the test pits (TP-1 at 7.5 feet bgs and TP-2 at 6.5 feet bgs) generally contained higher COC concentrations than the samples collected from a broader range of depths at the same test pit.

Analytical laboratory results for field soil samples from each test pit are summarized in Table 2-2 and in a more detailed data summary table included in Appendix D. Analytical laboratory reports are provided in Appendix E. Following the receipt of analytical laboratory reports, URS conducted quality assurance reviews of the submitted data. Summaries of these reviews are provided in Appendix F.

ISS Treatability Study Objectives, Methods, Approach, and Results

As described in Section 2, test pit samples were delivered to Kemron for ISS Treatability Study immediately following test pit excavation on August 22, 2011. This section includes a description of the objectives, methods, approach, and results of the treatability study testing performed by Kemron. A summary of the decisions made during the study are also presented in this section. Specific details of work performed by Kemron are presented in their final report dated September 26, 2012, which is provided in Appendix G. All ISS testing performed during the ISS treatability study was conducted at Kemron's facilities located in Atlanta, Georgia. All analytical testing was performed by CAS located in Kelso, Washington for analytical consistency.

3.1 ISS TREATABILITY STUDY OBJECTIVES

This section describes the objectives of ISS treatability study conducted by Kemron. The primary objective of the treatability study was to evaluate whether amendment of site soil with solidification reagents could achieve typical ISS goals related to reduced hydraulic conductivity and leachability of COCs from the site soil. A secondary objective was to evaluate the improvement of physical properties including unconfined compressive strength (UCS) and volumetric expansion for the treated materials in relation to goals expressed by the Port. The specific goals related to the objectives of reduced hydraulic conductivity, reduced leachability, and optimal strength were identified as follows:

- Reduce hydraulic conductivity (K) to the order of 10⁻⁶ cm/sec
- Reduce contaminant concentrations in groundwater in contact with solidified soil to below MTCA Method A (TPH) or MTCA Method C (PAHs) cleanup levels for groundwater.
- Achieve soil strengths between 50 and 200 psi to provide enough strength to allow current use for storage of materials and operation of heavy equipment, as well as to allow for future site development using standard excavating equipment.

3.2 ISS TREATABILITY STUDY METHODS

The following sections describe specific test methods that were performed during the ISS treatability study. They are consistent with industry standard practices for ISS site applications and with the example performance tests identified in ITRC guidance (ITRC 2011) and as summarized in Table 3-1.

3.2.1 Physical Properties

The following physical properties were tested by the identified methods during the ISS treatability study:

- Grain Size by ASTM Method D422/D1140
- Moisture Content by ASTM Method D2216
- Loss on Ignition (Organic Content) by ASTM Method D2974
- Volumetric Expansion

ISS Treatability Study Objectives, Methods, Approach, and Results

Additional details on these properties methods are included in Appendix G. Soil samples also were logged according to soil classification and descriptions by Unified Soil Classification System (USCS) Method D2487.

3.2.2 Strength

Strength testing was performed on ISS test mixes to evaluate whether treatment goals could be met. The following strength tests were performed by the methods identified below during the ISS study:

- Strength by pocket penetrometer
- Strength by the Unconfined Compressive Strength (UCS) by ASTM Method D2166

The pocket penetrometer is a factory-calibrated, hand-held instrument used to determine the relative strength of a solidified or cohesive material. The penetrometer instrument is pressed into the surface of the test specimen, and the resistance to penetration of the specimen is then displayed on the penetrometer in units of tons per square foot (TSF). The penetrometer is typically used as a guide to estimate the potential setting characteristics of a solidified material. The standard penetrometer instrument provides approximate resistance strengths ranging from 0.0 to 4.5 TSF. Materials which exhibit extreme resistance to penetration may display penetrometer strengths greater than 4.5 TSF. Penetrometer testing alone was used to estimate potential initial strengths during initial curing intervals.

UCS is a measure of the shear strength of the treated material. Testing is performed on cylindrical specimens with a diameter to height ratio of 1:2. Typical sample measurements performed by Kemron are 2 inches in diameter and 4 inches in height or 3 inches in diameter and 6 inches in height. As specified by ASTM Method D2166, testing was performed at a strain rate of 1 percent per minute. Testing was terminated at sample failure or at an overall sample deformation of 15 percent, whichever occurred first.

Leachability 3.2.3

Three primary test methods were used for evaluating leachability:

- TCLP by EPA Method 1311
- SPLP by EPA Method 1312
- Mass Flux by American Nuclear Society (ANS) Method ANS 16.1 (Revised and Updated 2008) - Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure

The TCLP test was developed to simulate the more aggressive extraction that occurs in municipal landfills where the waste decomposition can produce organic acids. Generally, one of two leaching fluids is used based on the buffering capacity of the material being tested. TCLP procedures include particle-size reduction to pass a 9.5-mm sieve following sample crushing. The test sample is then tumbled in the presence of the appropriate TCLP leaching fluid. The fluid is then separated from the solid portion of the sample and analyzed for the COCs.

ISS Treatability Study Objectives, Methods, Approach, and Results

The SPLP test is similar to the TCLP test, but uses an inorganic acid that simulates leaching by acid rain, rather than the organic acid that is used in the TCLP test. The SPLP test also requires crushing of the sample to create particles with diameters measuring less than 3/8-inch (approximately 9.5-mm) for the test.

Both the TCLP and SPLP tests are very conservative (results are biased high) for use in evaluating ISS leachability. The crumbling of samples exposes contaminants to leaching which may have been otherwise completely encapsulated in the treated monolith in the field. In addition, the acid used as a leachant in these tests is much more aggressive than would be typical for groundwater at an ISS site. These tests, however, are commonly used for screening and developing relative comparisons between multiple ISS test mixes. More direct comparison to anticipated groundwater concentrations following ISS implementation can be evaluated using mass flux methods such as ANS 16.1.

The ANS 16.1 leaching procedure utilizes 7 leaching intervals, including cumulative times of 2, 7, and 24 hours; and 2, 3, 4, and 5 days. The procedure uses a sample of the treated test mix material which is moved between baths of de-ionized (DI) water at the interval indicated. The resulting leachate can be analyzed for COCs and the solidified test specimen is placed into a new bath of DI water for additional leaching. For this project, chemical analysis was typically performed on the final 5-day interval for all ANS 16.1 tests. Complete ANS 16.1 testing was performed on three optimization test mixes with leachate from each of the seven test intervals indicated above.

Leachate from each of the above three leachability test methods was analyzed by EPA Method 8270 for PAHs and by Ecology Method NWTPH-Dx for TPH, including both DRO and residualrange organics (RRO). URS conducted quality assurance reviews of all analytical data.

Hydraulic Conductivity 3.2.4

Hydraulic conductivity is the quantitative measure of soil's ability to transmit water when subject to a hydraulic gradient. It is a function of both the porous medium (e.g., soil) and a fluid (e.g., groundwater). Hydraulic testing as outlined in ASTM D5084 was performed to estimate the flow rate of water through ISS test mixes under saturated conditions. Kemron performed hydraulic conductivity testing on cylinders measuring approximately 3 inches in diameter and 2 inches in height at an effective confining pressure of 10 psi.

3.3 ISS TREATABILITY STUDY APPOACH

The overall approach guiding typical ISS treatability studies as identified in ITCR guidance (ITCR 2011) can be broken down into three categories as listed below and shown on Figure 3-1:

- Physical Properties Characterization and ISS Reagent Selection (Figure 3-3)
- Preliminary ISS evaluation (Figure 3-4)
- Optimization ISS evaluation (Figure 3-5 and Figure 3-6)

A more detailed overview of the activities performed under each of the above approach categories is provided in a process flow diagram presented in Figure 3-2. Descriptions for each step performed for the ISS treatability study are presented below.

ISS Treatability Study Objectives, Methods, Approach, and Results

Physical Properties Characterization and ISS Reagent Selection 3.3.1

Following delivery to Kemron, soil samples submitted from each test pit were individually homogenized by blending in an open pan using a stainless steel spoon. These untreated but homogenized samples were then submitted for analytical testing at CAS to develop baseline concentrations against which to measure leachability concentration reductions for future test mixes. The soil samples were analyzed for PAHs, TPH, as well as leachate samples for PAHs and TPH from SPLP and TCLP methods.

In addition to analytical characterization, samples were also characterized for physical properties by testing for moisture content, loss on ignition (carbon content), and particle size distribution.

A process flow diagram representing the activities associated with this phase of the treatability study is presented on Figure 3-3. The diagram includes a list of reagent materials that were delivered to Kemron from various suppliers to be mixed with site soil for the ISS treatability study. The materials selected were based on a combined Kemron and URS evaluation of physical properties, COC concentrations, material availability, and experience on similar projects. The ISS materials selected are commonly utilized in solidification treatment and would be readily available for delivery to the project site during potential field implementation. Detailed descriptions of the reagents selected are included in Appendix G and vendor supplied material safety data sheets are provided in Appendix H.

Preliminary ISS Evaluation 3.3.2

A process flow diagram illustrating the activities associated with the preliminary ISS evaluation and their relationships is presented on Figure 3-4. The preliminary ISS evaluation consisted of first incorporating reagents selected as described above with site soil to create various test mixes. These test mixes were made by precisely measuring reagents, mixing them with water in a commercial blender to create a pumpable slurry, mixing the reagent slurry with site soil, and then pouring that test mix into cylindrical molds for curing. Numerous test mixes were created from reagents by changing the admixture type (different reagent combinations) and dosage (amount of reagent added). Sample material from TP-01 was used to create 9 preliminary ISS test mixes, and 16 preliminary ISS test mixes were created using TP-02 sample material. Therefore, a total of 25 preliminary test mixes were created.

The preliminary ISS evaluation approach included strength testing both by pocket penetrometer and UCS methods. Pocket penetrometer testing was performed on all 25 test mixes following 1, 3, 5, 7, and 14 days of cure time; and UCS testing was performed on 24 of the 25 test mixes after approximately 8 days cure time. One test mix (test mix 0397-007 or "Mix 7") had extremely low penetrometer data and, therefore, was not tested for UCS. Leachability testing was also conducted during the preliminary ISS evaluation phase and consisted of analyzing leaching from the test mixes for PAHs and TPH using the SPLP method. SPLP testing was performed on 11 of the 16 mixes created from sample material from TP-02. Because TP-01 soil concentrations were much lower than TP-02 concentrations, no SPLP testing was performed on mixes generated from TP-01. Test mixes capable of meeting leachability criteria for TP-02 soil concentrations would also be assumed to be capable of meeting leachability criteria for TP-01 soil concentrations. In the case of five test mixes (Mix 10, Mix 16, Mix 17, Mix 19, and Mix 24), hydraulic conductivity testing was also performed as an extension of the preliminary ISS evaluation.

ISS Treatability Study Objectives, Methods, Approach, and Results

Additional details regarding preliminary ISS evaluation test methods and approach are included in Appendix G.

3.3.3 **Optimization ISS Evaluation**

A process flow diagram illustrating the activities associated with the optimization ISS evaluation and their relationships related to Mix 17 (Mix 17Dup and Mix 17A) is presented on Figure 3-5. A similar process flow diagram illustrating the activities associated with the optimization ISS evaluation and their relationships related to the six additional test mixes (Mix 26 to Mix 31) developed for the optimization ISS evaluation is presented on Figure 3-6.

The optimization ISS evaluation consisted of developing new test mixes based upon results obtained from the preliminary ISS evaluation, as well as conducting additional testing on select test mixes previously evaluated during the preliminary ISS evaluation. Based upon information received from organoclay supplier CETCO, additional testing was conducted to further evaluate Mix 17 (Mix 17Dup and Mix 17A), since Mix 17 had yielded the greatest reduction in COCs for preliminary test mixes evaluated for leachability using the SPLP screening evaluation. Testing of Mix 17Dup and Mix 17A was performed to evaluate two different methods for mixing of CETCO's organoclay with the remainder of the test mix materials. Mix 17A differs from Mix 17 in that the organoclay was hydrated separately prior to combining it with the remaining reagents (slag cement and bentonite). Mix 17A also required less water (113 percent by reagent weight) to create a pumpable slurry than Mix 17 (150 percent by reagent weight).

In addition to the optimization testing performed related to Mix 17, six new optimization test mixes (Mix 26 to Mix 31) were developed using TP-02 soil. Optimization test mixes were evaluated for strength, leachability, hydraulic conductivity, and volumetric expansion. All six of the new optimization test mixes (along with Mix 17Dup and Mix 17A) were evaluated for strength, leachability, and volumetric expansion, with UCS and volumetric expansion testing generally being conducted after approximately 7, 14, 28, and 56 days of cure time. Hydraulic conductivity testing was completed on four test mixes (Mix 17A, Mix 26, Mix 27, and Mix 28) during the optimization ISS evaluation.

3.4 ISS TREATABILITY STUDY RESULTS

The following sections summarize results from the various elements of the ISS Treatability Study. A table summarizing analytical results is included in Appendix D.

3.4.1 **Test Soil Characterization Results**

Results for test pit TP-01 soil that had been homogenized by Kemron and submitted to CAS for the purpose of identifying baseline concentrations in untreated soil are presented in Table 3-2. For comparison, Table 3-2 also includes results for test pit TP-01 soil samples that were submitted directly to CAS from the site immediately following the test pit excavation and sampling. Similar results are presented for test pit TP-02 baseline soil samples in Table 3-3. Physical properties characterization results are presented in Table 3-4.

Baseline analytical results identify significantly higher COC concentrations in test pit TP-02 than in test pit TP-01. Comparison of field samples to Kemron's homogenized samples show that

ISS Treatability Study Objectives, Methods, Approach, and Results

COC concentrations are similar and that Kemron's baseline COC concentrations are generally representative of site COC concentration. However, two analytes (naphthalene and 2 methylnaphthalene) had substantially higher concentrations (an order of magnitude for naphthalene) in Kemron's test pit TP-02 homogenized soil sample. Large variability in naphthalene concentrations has also been observed in samples collected previously at this site. However, comparison of TCLP and SPLP results between the field soil samples and Kemron's baseline soil samples show no significant differences. In general, Kemron's homogenized soil samples appear representative of site conditions based on field sample results.

Physical property characterization results indicate that soil samples collected from the full treatment interval within the Upper Sand soil in test pit TP-01 and test pit TP-02 yielded similar moisture and carbon contents. Particle size distribution results, however, indicated grain size differences between soil samples collected from the two test pits. Test pit TP-01 soil was determined to have a significantly higher percentage of fines (23 percent) than test pit TP-02 soil (9 percent). The resulting USCS classification for TP-01 is SM, and the resulting USCS classification for TP-02 soil is SP-SM, as presented in Table 3-4.

3.4.2 **Preliminary ISS Evaluation Results**

The preliminary ISS evaluation included testing of strength and leachability for nearly all test mixes. Strength testing included both pocket penetrometer and UCS methods. Pocket penetrometer testing was performed on all 25 mixes following 1, 3, 5, 7, and 14 days of cure time (Table 3-5). UCS testing was performed on 24 of the 25 mixes after approximately 8 days cure time (Table 3-6). Leachability testing was performed by performing SPLP extraction and analysis of PAHs and DRO for 11 of the 16 test mixes created from TP-02 soil (Table 3-7).

Evaluation of SPLP leachability data (Table 3-7) indicated better results for 4 test mixes (Mix 16, Mix 17, Mix 19, and Mix 24) and the preliminary ISS evaluation was expanded to include additional long-term (67- or 69-day) UCS testing (Table 3-5) and hydraulic conductivity testing (Table 3-8) on those test mixes. Additional testing was also performed on Mix 10 (12.5) percent Portland Cement) to develop a baseline with which to compare other more complex test mixes. Leachability testing was also expanded to include ANS 16.1 mass flux testing on Mix 16 (5-day interval only) and Mix17 (all 7 intervals). ANS 16.1 results are summarized in Table 3-9 (Mix 16) and in Table 3-10 (Mix 17), as well as in the comprehensive table that summarizes all project ANS 16.1 results included as Appendix D. Additional details regarding ANS 16.1 testing methodology and results are included in Appendix G. A discussion of the optimization evaluation is presented in the next section. Preliminary ISS evaluation of Mix 17 was also expanded to include volumetric expansion testing, and those results are presented in Table 3-11.

Preliminary ISS evaluation strength results indicate that most test mixes would likely meet the minimum strength goal of 50 psi. Conversely, multiple test mixes exceed the maximum strength goal of 200 psi or would likely if tested after longer cure times. Strengths of these mixes could be further reduced by decreasing cement percentages in the optimization ISS evaluation.

Leachability testing using the SPLP method on the preliminary test mixes indicated that Mix 17 achieved the highest percent reduction in COCs (DRO and PAHs[naphthalene]) by nearly a factor of two over most test mixes (Figure 3-7). Mix 17 showed an approximately 60 percent reduction in both naphthalene and DRO concentrations when compared to untreated soil from test pit TP-02 (Table 3-7). Naphthalene is presented on Figure 3-7 as a representative indicator

ISS Treatability Study Objectives, Methods, Approach, and Results

of the most mobile PAHs. The percent reduction was calculated by comparing test mix SPLP concentrations to baseline soil SPLP concentrations. Mix 16, Mix 17, Mix 19, and Mix 24 yielded better SPLP results (Figure 3-7); the preliminary ISS evaluation for these test mixes, along with baseline Mix 10, was expanded to also include additional hydraulic conductivity and long-term strength testing.

3.4.3 Optimization ISS Evaluation Results

The eight test mixes (six new test mixes and two test mixes associated with preliminary Mix 17) included in the optimization ISS evaluation were tested for strength (UCS testing), leachability (SPLP and ANS 16.1), hydraulic conductivity, and volumetric expansion. The non-chemical results (i.e., strength [UCS], hydraulic conductivity, and volumetric expansion) are summarized in Table 3-11.

UCS results for test mixes included in the optimization ISS evaluation ranged between 50 psi and 450 psi at the end of their cure time (see Figure 3-8). All UCS results met the minimum strength goal of 50 psi. Although cement percentages had been reduced during development of new test mixes during the optimization ISS evaluation, some UCS results exceeded the maximum strength goal of 200 psi. Strength could likely be further reduced with additional reduction of cement percentages, as well as with an increase in bentonite percentages. An increase in the amount of bentonite included in an ISS mix would be expected to reduce strength while potentially also reducing hydraulic conductivity and leachability. UCS results for Mix 19, Mix 24, and Mix 26 were within ISS treatability study minimum and maximum strength goals.

Leachability was tested using both SPLP and ANS 16.1 methods during the optimization ISS evaluation. Leachability results indicate that all test mixes significantly reduce leaching of COCs (compared to untreated soil SPLP results). Two test mixes (Mix 16 and Mix 17) yielded leachate concentrations at or below MTCA Method C cleanup levels for groundwater using the ANS 16.1 method. Given the conservative nature of the tests, other test mixes may also meet cleanup levels if implemented at the site.

As shown on Figure 3-9, SPLP results indicate that Mix 17Dup and Mix 17A achieve the highest percent reduction in COCs (DRO and PAHs [as shown by mobile indicator naphthalene]). Complete SPLP results (including other PAHs) for Mix 17A, Mix 17Dup, and Mix 28 are summarized in Table 3-12. Mix 17 and Mix 28 also yielded better SPLP results than other test mixes. These test mixes were selected for further leachability testing using ANS 16.1 methods.

5-Day ANS 16.1 results for Mix 17Dup and Mix 26 are shown in Table 3-13. Analytical data for the 5-day interval indicate that two test mixes, including one duplicate (Mix 16 and Mix 17/Mix 17Dup) were able to reduce leachate concentrations to at or below applicable MTCA Method A or C cleanup levels (see Figure 3-10). Mix 17A and Mix 28 yielded leachate concentrations that met MTCA Method C cleanup levels for PAHs, but contained concentrations of DRO that slightly exceeded MTCA Method A cleanup levels. ANS 16.1 results for the complete seven intervals of testing on Mix 17A are shown on Figure 3-11 to illustrate the decrease in leachate concentrations of DRO and naphthalene over time. Similar concentration trends are presented for Mix 17 and Mix 28 on Figure 3-12 and Figure 3-13, respectively, and complete (seven interval) ANS 16.1 results for Mix 17A and Mix 28 are summarized in Table 3-14 and Table 3-15, respectively. Figure 3-11, Figure 3-12, and Figure 3-13 all illustrate the typical phenomenon identified in the ANS 16.1 test methodology as the "initial rapid removal of mobile

ISS Treatability Study Objectives, Methods, Approach, and Results

surface contamination (wash off)." The lower concentrations illustrated at later test intervals on Figure 3-11 are indicative of lower long-term diffusion rates, as also described in the ANS methodology. ANS concentrations are related to both the diffusivity rate and the volume of water into which diffusion occurs.

The results summarized above indicate that leachate concentrations would be expected to be lower with increased time, and this is consistent with the discussion in Kemron's report (Appendix G) on page 13, which states "in many cases the contaminant concentrations continue to reduce with extended leaching intervals." In addition, leachate concentrations would be expected to be lower with increased distance from a treated monolith (due to increase leachate volume), as would be the case with a monitoring well located at a typical point of compliance at some distance from the ISS remediation area.

Hydraulic conductivity results met the goal of 1 x 10⁻⁶ cm/sec in all test mixes analyzed by at least one order of magnitude, as shown in Table 3-11.

Volumetric expansion results varied from 26 to 48 percent, as shown in Table 3-11. For a 7-foot ISS treatment interval this would equate to an additional 1.8 to 3.4 feet of bulking during treatment. It is important to note, however, that volumetric expansion testing was performed in a small cylinder on a test interval measuring slightly more than one inch in depth and that no compaction was conducted during curing.

In addition to the testing described above, a wipe test was performed on Mix 28. Wipe sampling was performed on a 100 square centimeter area on a cured Mix 28 test cylinder. Results are presented in Table 3-16. PAHs were detected in the wipe sample at quantities generally less than 1 μg (concentrations less than 0.01 μg/cm²). However, it is important to note that wipe testing was performed on a sample surface immediately after it had been removed from a mold. This, again, would be biased by "initial rapid removal of mobile surface contamination (wash off)," as identified in the ANS 16.1 test methodology.

As described in Section 2, test pit samples were collected for the ISS treatability study from two test pit excavations on August 22, 2011 and after the completion of backfilling excess soil from test pit TP-02 was drummed on site. Also as previously discussed, comments were received from Ecology in September 2011 indicating that the Port had requested additional development of alternatives to address treatment of contamination beneath the Mechanics Shop. Treatment using ISTR technology had been considered in two alternatives included in the Draft Revised RI/FS Report (URS 2011), and one of those alternatives included treatment of impacted areas beneath the Mechanics Shop. Global Remediation Services (GRS) of Longview, Washington, was retained to perform bench-scale testing of ERH using soil already excavated for bench testing. In response to Ecology comments, International Paper expanded the scope of the treatability study to include evaluation of ISTR technology. Communication regarding the ISTR treatability study included an e-mail from URS to Ecology on behalf of International Paper on May 9, 2012. Drummed soil from the TP-02 excavation, as well as purge water and NAPL from site well BV-13, were transported by CCS to ETEC, LLC of Portland, Oregon in May 2012. Both CCS and GRS are two of several divisions of PNE Corporation of Longview, Washington. ETEC, LLC is a bioremediation services company with treatability laboratory facilities that GRS utilized for this ISTR treatability study.

This section describes the objectives, testing methods, and results for the ISTR treatability study. A summary of ISTR treatability study activities is presented in this Report. Additional details regarding work performed by GRS are presented in their letter report dated September 14, 2012 and summary letter dated November 2, 2012, provided in Appendix I.

4.1 ISTR TREATABILITY STUDY OBJECTIVES

The main objective of ISTR treatability study was to evaluate the use of ISTR to treat site soil and determine if ISTR and included multi-phase extraction (MPE) processes are viable components of future cleanup action alternatives for the site. The following six basic questions and associated test goals were developed to evaluate this main objective:

- 1. Will DRO and PAHs transition off the soil matrix during heating?
 - Test Goal: Evaluate the effectiveness of bubble floatation and MPE.
- 2. If so, will a LNAPL or a DNAPL be produced?
 - Test Goal: Evaluate design options for contaminant extraction.
- 3. How much DRO and PAH can be boiled off the soil matrix?
 - Test Goal: Evaluate the effectiveness of steam stripping during ISTR.
- 4. Will recovered liquids and vapors solidify upon cooling?
 - Test Goal: Evaluate options for system materials and construction.
- 5. Is site NAPL primarily lighter or denser than water?
 - Test Goal: Evaluate the effectiveness of MPE and bubble floatation.
- 6. Does the density of site NAPL change upon heating?
 - Test Goal: Evaluate the effectiveness of MPE and bubble floatation.

SECTIONFOUR

ISTR Treatability Study Objectives, Methods, and Results

GRS conducted treatability testing using methodology as described below to develop data to answer the questions above and evaluate the test goals identified above, and to evaluate the overall objective of evaluating whether ISTR would be effective at treating site soil.

4.2 ISTR TREATABILITY STUDY METHODS

Table 4-1 summarizes the test questions and associated test goals presented above, as well as the associated test methods discussed in this section. GRS initiated treatability testing in May 2012 by sorting drummed soil and characterizing it by degree of impact. Following site soil characterization, soil was submitted for chemical analysis to obtain baseline concentrations against which to compare results of the ISTR treatability study. Next, two types of thermal heating methods were performed to address the six goal questions identified above. One method involved steam heating using boiling flask tests, and one method involved dry heating using soil cell tests. Additional discussion regarding these methods is presented below.

4.2.1 **Test Soil Characterization**

Soil from test pit TP-02 was prepared for testing by emptying the drums received and segregating soil into the following three categories based upon visual observations, PID readings, and odor characteristics.

- Less-impacted soil
- Impacted soil
- Highly-impacted soil

Soil classified as less-impacted soil was placed back into drums for disposal and was not used for testing. Impacted soil and highly-impacted soil were homogenized separately in large mixing containers. Approximately 600 pounds of impacted soil and 75 pounds of highly-impacted soil were produced for characterization and testing using this method of segregation. Homogenized soil from both the impacted soil and highly-impacted soil categories were sent to an independent analytical laboratory for chemical analysis. Soil samples were submitted for the following analyses.

- DRO by Ecology Method NWTPH-Dx
- PAHs by EPA Method 8270-SIM
- Percent Dry Weight by ASTM D2216-80

A total of five soil samples were submitted for chemical analysis, three samples from the impacted soil category (BL1, BL2, and BL3) and two samples from highly-impacted soil category (BL4 and BL5). Total toxicity equivalent concentrations (TTEC) were calculated for each sample using PAH results. In addition, one sample of highly-impacted soil was also submitted for SPLP extraction by EPA Method 1312 and subsequent chemical analysis of PAH and DRO. A process flow diagram identifying site soil segregation and characterization activities is presented on Figure 4-1.

4.2.2 **Boiling Flask Testing**

Treatability study boiling flask tests were performed on site soil to address questions 1, 2, 4, 5, and 6 presented both above and in Table 4-1. Two types of boiling flask tests were performed on highly-impacted soil using 500-ml flasks. One test used a half-filled (250 ml of tap water) flask with an additional 50 ml of NAPL to evaluate the effects of heating on NAPL viscosity and density. The second test used a layer of glass beads at the bottom of the flask and covered the beads with highly-impacted soil. The flask was then filled with tap water until the soil was saturated and covered by approximately 1 inch of water. A water-cooled condenser and vacuum source were then attached to the boiling flask in order to evaluate the effects of cooling on extracted vapors.

Boiling flask tests were performed as short-duration tests. Flasks were heated to approximately 100 degrees Celsius while observations were documented. A process flow diagram identifying boiling flask testing activities, their relationships, and associated chemical analyses is shown on Figure 4-2.

Additional details on the boiling flask test methods used by GRS are presented in Appendix I.

4.2.3 Soil Cell Testing

Treatability study soil cell tests were performed on site soil to address question 3 (i.e., How much DRO and PAH can be boiled off the soil matrix?) presented both above and in Table 4-1. A total of 12 soil cell tests were performed as part of the treatability study as follows:

- Dry Heating Impacted Soil 7 tests
- Dry Heating Highly-Impacted Soil 3 tests
- Steaming Highly-Impacted Soil 2 tests

The tests listed above were performed on both impacted and highly-impacted soil. Ten of the tests involved dry heating of the soil over different time intervals. In addition, two soil cell tests involved steaming of highly-impacted soil to which water was added to the soil cell throughout testing. A summary of the soil cell testing performed is provided below.

Soil cell tests were performed over 5-, 15-, and 25-day intervals on impacted soil and over 5- and 15-day intervals for highly-impacted soil. Soil cell tests were performed on approximately 1,100 to 1,200 grams of soil. The soil cells were placed in an oil bath heated to approximately 104 degrees Celsius for the time interval specified above; they were then removed for cooling, homogenization, and sampling for chemical analysis. In addition to sampling of soil from the soil cells, one condensate sample recovered from soil cell testing of highly-impacted soil was also submitted for chemical analysis. Soil cell testing activities, their relationships, and associated chemical analyses are also identified in the process flow diagram shown on Figure 4-2.

4.3 ISTR TREATABILITY STUDY RESULTS

4.3.1 **Test Soil Characterization Results**

Characterization testing results are presented in Table 4-2 for samples of impacted and highlyimpacted soil. The average for three impacted soil samples (BL1, BL2, and BL3) submitted for testing indicate baseline DRO concentrations of 1,310 mg/kg and naphthalene (as an indicator of mobile PAHs) concentrations of 2,810 µg/kg. The average baseline concentrations for two highly-impacted soil samples (BL4 and BL5) indicate DRO concentrations of 862 mg/kg and naphthalene concentrations of 800 µg/kg. Baseline results for total PAHs indicated concentrations of 113,036 µg/kg for impacted soil and 137,295 µg/kg for highly-impacted soil. Both impacted soil and highly-impacted soil came from similar soil excavated from test pit TP-02. Sorting of impacted and highly-impacted soil was performed primarily using visual and olfactory observations; and concentrations resulting from chemical analyses did not vary significantly between the two soil types. This was also the case for benzo(a)pyrene results and the TTEC value calculated for cPAHs. The benzo(a)pyrene concentration in impacted soil and the corresponding TTEC value were 4,423 µg/kg and 6,005 µg/kg, respectively, while corresponding results for highly-impacted soil were 4,625 µg/kg and a TTEC value of 6,547 μg/kg, respectively.

4.3.2 **Boiling Flask Test Results**

Boiling flask test results answer test questions 1, 2, 4, 5, and 6 as follows:

- 1. Will DRO and PAHs transition off the soil matrix during heating? Yes
- 2. If so, will a LNAPL or a DNAPL be produced? LNAPL will be produced
- 4. Will recovered liquids and vapors solidify upon cooling?
- 5. Is site NAPL primarily lighter or denser than water? NAPL was observed to exist as DNAPL (denser than water) in the field, but to transition off the soil matrix and convert to LNAPL (lighter than water) upon heating to between 80° and 90°C.
- 6. Does the density of site NAPL change upon heating? Yes, the DNAPL present converts to LNAPL and floats

Boiling flask testing results indicates that COCs can be liberated from site soil via heating and that DNAPL converts to LNAPL at temperatures near boiling. The conversion of DNAPL to LNAPL has also been observed when implementing ISTR at other sites impacted with creosote and diesel. This conversion can increase the ease with which that NAPL can be extracted from the subsurface.

In some cases heat tracing of aboveground process piping is required to prevent crystallization of extracted vapors when implementing ISTR, but treatability results indicate that this requirement would not be anticipated during implementation in the MFA.

4.3.3 Soil Cell Test Results

Soil cell test results answer test question 3 as follows:

- 3. How much DRO and PAH can be boiled off the soil matrix? Reductions in concentrations were as follows:
 - a. PAH concentrations in impacted soil were reduced by 55 percent with 5 days of dry heating. Continued dry heating produced a 60 percent reduction in 25 days. A 42 percent reduction in PAH concentrations was observed in highly-impacted soil with 5 days of dry heating, and no appreciable additional reductions were observed at subsequent test intervals.
 - b. DRO concentrations in impacted soil were reduced by 74 percent with 5 days of dry heating, and by 82 percent with 25 days of dry heating. A 64 percent reduction in DRO concentrations was observed in highly-impacted soil with 5 days of dry heating, and no appreciable additional reductions were observed at subsequent test intervals.
 - c. Steaming of highly-impacted soil resulted in greater reduction of both PAH (46 percent) and DRO (73 percent) concentrations at 15 days than for tests involving dry heating only.

A summary of analytical results for soil cell tests for both dry heating of impacted soil and steaming of highly-impacted soil are presented in Table 4-3 and Table 4-4, respectively. Variability of results in test cell C6 was attributed to a 'tar ball,' that was observed in the initial homogenization of test soil. These 'tar balls' were observed to be generally eliminated eventually with longer duration of treatment. The percent reductions in DRO and naphthalene during dry heating of impacted soil, dry heating of highly-impacted soil, and steaming of highlyimpacted soil are shown on Figure 4-3, Figure 4-4, and Figure 4-5, respectively. If these percent reductions of COC concentrations observed during the ISTR treatability study were realized in the MFA, site soil TTEC cleanup levels would be reduced to below MTCA Method C cleanup levels for soil at 13 of the 17 boring locations where those values currently exceed those cleanup levels.

The ISTR bench tests described herein indicated that DNAPL will convert to LNAPL during heating, and that NAPL will transition off the soil matrix. Historically, results from ISTR bench tests designed to measure percentage reduction in contaminant concentrations with heating have correlated well with actual results achieved in the field. There is a high probability that the percentage reductions achieved in the laboratory would also be observed in the field. Existing bench test data can be used to design and implement a field application of steam heating technology to incorporate ERH, MPE, and a soil saturation system.

SECTIONFIVE

Treatability Study Conclusions and Future RI/FS Activities

This section summarizes the conclusions of the treatability studies presented in this Report and describes the further evaluation and schedule related to incorporation of treatability results into the Final Revised RI/FS Report.

5.1 TREATABILITY STUDY CONCLUSIONS

Results developed during the ISS and ISTR treatability studies summarized in this Report indicate that both ISS and ISTR could be applicable cleanup technologies warranting further consideration as components of cleanup action alternatives addressing MFA soil. This section provides a summary of results and conclusions for each treatability study.

ISS Treatability Study Results Summary and Conclusions 5.1.1

ISS treatability study results indicate that there are multiple test mixes that would be expected to meet remediation goals at the site. Evaluation of test mixes with both TP-01 and TP-02 soil indicate that hydraulic conductivity goal of 1 x 10⁻⁶ cm/sec could be met for all samples tested. For the area representative of TP-01, a basic mix of Portland cement and bentonite would likely be sufficient to reduce leachable COC concentrations to below applicable MTCA Method A or C cleanup levels for groundwater. Test mixes for TP-02 soil were also identified for which leachability tests yielded COC concentrations that met MTCA Method C cleanup levels for groundwater. In addition, results indicate that concentrations would continue to decrease with time, and concentrations would also be expected to decrease with distance from the treated material since increased distance results in an increased volume of groundwater into which diffusion from the treated material would occur.

Mix 16, Mix 17, and Mix 28 all appear to be test mixes capable of meeting remediation goals at the site based upon the results of this ISS treatability study. All three of these mixes met hydraulic conductivity criterion, with permeability results of 3.2 x 10⁻⁸ cm/sec (Mix 16), 3.0 x 10⁻⁸ cm/sec (Mix 17), and 1.9 x 10⁻⁷ cm/sec (Mix 28). All three of these mixes also met leachability criterion, with ANS 16.1 5-Day results meeting MTCA Method C groundwater cleanup levels, with the exception of DRO in Mix 28. Finally, these three mixes also had longterm UCS results of 321.5 psi (Mix 16 at 67 days), 443.7 psi (Mix 17 at 101 days), 355.3 psi (Mix 28 at 86 days). All three mixes met the minimum strength criterion, and also met the longterm maximum strength criterion at 28 days. Mixes continued to cure on the bench after 28 days, however. Mix 16 (12.5 percent NewCem slag cement, 2 percent bentonite, and 0.5 percent organoclay). The volumetric expansion result was 43 percent for Mix 17 and 35 percent for Mix 28 at 28 days. This is primarily attributed to the relatively larger quantity of additives in Mix 17 (12.5 percent NewCem slag cement, 2 percent bentonite, and 2 percent organoclay) than in Mix 28 (8 percent NewCem slag cement, 2 percent bentonite, and 0.5 percent caustic soda). In general, the most favorable combination of results (low leachability, low strength, and low volumetric expansion) would likely be attributed to the least amount of additives that still met leachability goals. Mix 16, Mix 17, and Mix 28 all met permeability goals with a safety factor of at least an order of magnitude. A lower percentage of additives, therefore, would likely still meet permeability and leachability criteria while also having more favorable strength and volumetric expansion results.

The relationship between an ISS treatability study and other components of an ISS cleanup action is outlined in the ITRC guidance (ITRC 2011) and is shown on Figure 5-1.

ISTR Treatability Study Results Summary and Conclusions 5.1.2

Based on the results from ISTR treatability study boiling flask tests and soil cell tests, ISTR including subsurface hydration and multi-phase extraction (MPE) also appears to be an applicable cleanup technology warranting further consideration in future evaluation of cleanup action alternatives for vadose zone soil in the MFA. DNAPL was observed to both desorb from soil and to convert to LNAPL during the ISTR study, and this could result in efficient removal of NAPL from the site subsurface. Achieving the equivalent percent reductions in COC concentrations in the field as observed in the ISTR treatability study would be expected to reduce 13 of 17 locations that currently exceed TTEC cleanup levels to below those values. In addition, ISTR treatability study results indicate that no special construction considerations (e.g., heat tracing of process piping) would be required for the COCs located in the MFA.

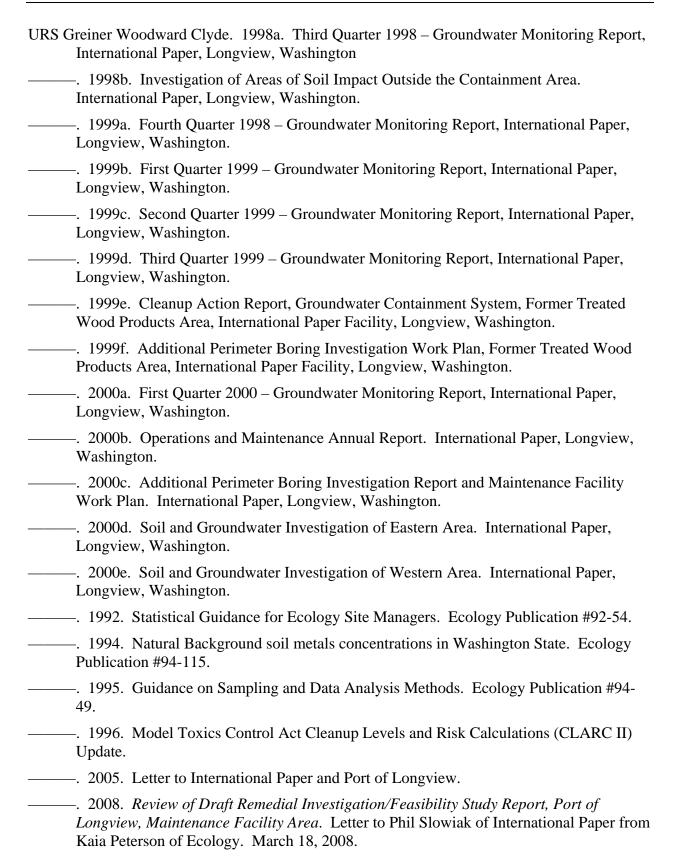
5.2 **FUTURE RI/FS ACTIVITIES**

This section describes the incorporation of information gained through the treatability studies presented in this Report into a Final Revised RI/FS Report.

5.2.1 **Future Cleanup Action Alternative Evaluation**

Draft Revised RI/FS Report Alternative S5 includes ISS, and Alternatives S6 and S7 include ISTR components. Information gained during the treatability study of these two technologies will be incorporated into further evaluation of these three cleanup action alternatives and adjustments made, as appropriate. No additional treatability testing is anticipated during future cleanup action alternative evaluation prior to submittal of the Final Revised RI/FS Report.

5.2.2 Final Revised RI/FS Report Schedule


The following schedule is proposed through delivery of the Final Revised RI/FS Report:

June 28, 2013	Final Treatability Study Report submitted to Ecology
August 30, 2013	Draft Final Revised RI report sections submitted to Ecology
September 20, 2013	Cleanup Action Alternatives Conceptual Technical Memorandum submitted to Ecology
November 13, 2013	Meeting at Port of Longview to discuss Cleanup Action Alternatives Conceptual Technical Memorandum, and operational logistics
February 28, 2014	Draft Final Revised FS report sections submitted to Ecology
June 13, 2014	Draft Final Revised RI/FS Report submitted to Ecology
August 15, 2014	Final Revised RI/FS Report submitted to Ecology

EPA (U.S. Environmental Protection Agency). 1989. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities – Interim Final Guidance. Office of Solid Waste, Waste Management Division. Washington, D.C. February, 1989. -. 1992. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities – Draft Addendum to Interim Final Guidance. Office of Solid Waste, Waste Management Division. Washington, D.C. July, 1992. -. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures – Ground Water Issue. Office of Research and Development, Solid Waste and Emergency Response. April, 1996. International Paper Company. 1985. Closure Plan and RI/FS for Dangerous Waste Impoundments. Longview Treated Wood Products Plant, Longview, Washington. ITRC. 2011. Development of Performance Specifications for Solidification/Stabilization. J.L. Grant & Associates. 1990. Closure Certification. Radian Corporation. 1983. Pre-closure Evaluation of Treated Wood Products Facility and Site C. URS Corporation (URS). 2000. Off-site Investigation Report and Additional Action Feasibility Study, Port of Longview Maintenance Facility, Longview, Washington. —. 2002. Work Plan, Additional Action for Port of Longview Maintenance Facility Area, Port of Longview Maintenance Facility, Longview, Washington. -. 2003a. As-Built Report/Operation and Maintenance Manual – Biosparging/Bioventing System, Maintenance Facility Area, Former International Paper Facility, Longview, Washington. -.2003b. Fifth Annual Groundwater Performance and Compliance Monitoring Plan Report. Former International Paper Facility, Longview, Washington. —. 2003c. Annual Operation and Maintenance Report, Former International Paper Facility, Longview, Washington. ——. 2004. 2004 Annual Remedial Operations and Groundwater Monitoring Report, Former International Paper Facility, Longview, Washington. —. 2005. 2005 Annual Remedial Operations and Groundwater Monitoring Report, Former International Paper Facility, Longview, Washington. ——. 2006. Remediation System Decommissioning Work Plan, Treated Wood Products Area, Former International Paper Facility, Longview, Washington. —. 2007. Draft Remedial Investigation/Feasibility Study, Maintenance Facility Area, Former International Paper Facility, Longview, Washington. —. 2011. Draft Revised Remedial Investigation/Feasibility Study, Maintenance Facility Area, Former International Paper Facility, Longview, Washington. -. 2011. Treatability Study Work Plan, Maintenance Facility Area, Former International

Paper Facility, Longview, Washington.

SECTIONSIX **References**

International Paper, Longview, Washington.
——. 1995a. Interim Corrective Action Groundwater Containment System 50% Design Report.
. 1995b. 1995 Update to the Site Characterization Report.
——. 1996a. South Pond 2 Investigation Data Summary Report.
——. 1996b. LNAPL Recovery Evaluation for the Former Treated Wood Products Area.
——. 1996c. Tidal Study Summary Report, Former Treated Wood Products Area, International Paper Facility, Longview, Washington.
——. 1997a. LNAPL Recovery Interim Action for the Former Treated Wood Products Area. Memorandum.
———. 1997b. Cleanup Action Plan. Former Treated Wood Products Area - International Paper Facility, Longview, Washington. July 1997.
———. 1997c. Performance and Compliance Monitoring Plan, Former Treated Wood Products Area, International Paper Facility, Longview, Washington.
———. 1997d. Engineering Design Report – Groundwater Containment System. Former Treated Wood Products Area, International Paper Facility, Longview, Washington.
———. 1997e. Focused Feasibility Study, Former Treated Wood Products Area, International Paper Facility, Longview, Washington.
———. 1998. Off-site Investigation Work Plan, Former Treated Wood Products Area, International Paper Facility, Longview, Washington.

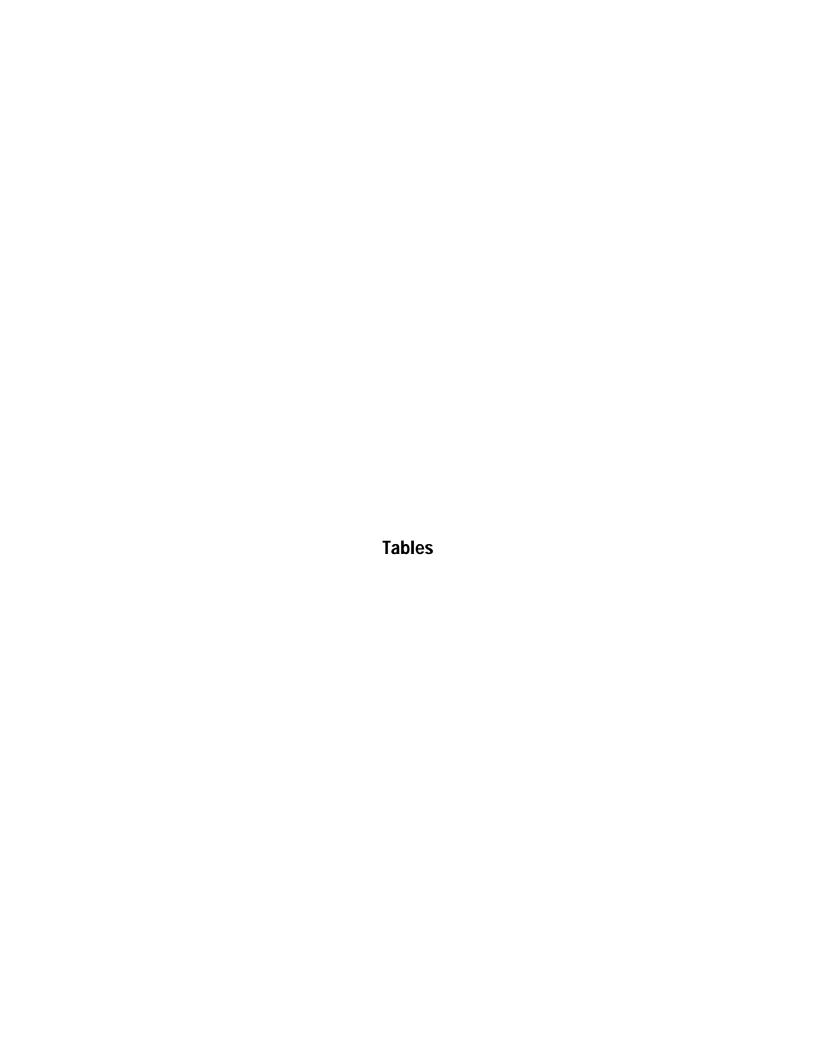


Table 2-1 **Summary of Chemical Analyses for Field Soil Samples**

Parameter	TP-1	TP-1	TP-2	TP-2
Analysis (Method)	(2 to 7.5 ft bgs)	(7.5 ft bgs)	(2 to 6.5 ft bgs)	(6.5 ft bgs)
PAHs (EPA 8270)	Х	Х	Х	Х
TPH (DRO and RRO by NWTPH-Dx)	Х	Х	Х	Х
TCLP PAHs (EPA 8270)	Х		Х	
TCLP TPH (NWTPH-Dx)	Х		Х	
SPLP PAHs (EPA 8270)	Х		X	
SPLP TPH (NWTPH-Dx)	Х		Х	

ft bgs – feet below ground surface

DRO – diesel-range organics TCLP – toxicity characteristic leaching procedure

TP – test pit
TPH – total petroleum hydrocarbons
PAHs – polynuclear aromatic hydrocarbons
RRO – residual-range organics
SPLP – synthetic precipitation leaching procedure

Table 2-2 Summary of Analytical Results for Field Soil Samples International Paper Longview Site

Sample ID:		MTCA Scre	ening Levels		Alternative		Т	P-01					
Sample Depth (ft bgs):					Treatment		2.0-7.5		7.5		2.0-6.5		6.5
Date Collected:	Method B		Method C		Standards 1		8/22/2011		8/22/2011		8/22/2011		8/22/2011
ТРН	Groundwater (μg/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg) ³	Groundwater (µg/L)	μg/kg	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (mg/kg)	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (mg/kg)
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	45	270 U	250 U	56	9,000	25,000	27,000	9,300
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	390	530 U	500 U	160 J	1,800 J	500 U	510	2,000 J
PAHs	μg/L	μg/kg	μg/kg	μg/L	μg/kg	Total (µg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (µg/kg)	Total (µg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (µg/kg)
Naphthalene	160	70,000,000	9,700	350	56,000	110	1.5 J	1.2 J	220	35,000	13,000	12,000	46,000
Acenaphthylene	NE	NE	210,000	NE	34,000	2.0	0.20 U	0.20 UJ	5.7	1,100	10	10	1,200
Acenaphthene	960	210,000,000	210,000	2,100	34,000	200	1.6 J	1.3 UJ	430	<u>81,000</u>	460	420	<u>82,000</u>
Fluorene	640	140,000,000	220,000	1,400	34,000	84	0.35 J	0.28 UJ	130	<u>85,000</u>	230	210	90,000
Phenanthrene	NE	NE	5,000,000	NE	NE	44	0.20 U	0.20 UJ	110	240,000	210	210	240,000
Anthracene	4,800	1,050,000,000	5,000,000	10,500	34,000	4.3	0.20 U	0.20 UJ	35	45,000	18	31	77,000
Fluoranthene	640	140,000,000	1,400,000	1,400	34,000	7.7	0.20 U	0.20 UJ	380	120,000	21	40	130,000
Pyrene	480	105,000,000	1,400,000	1,050	82,000	5.4	0.20 U	0.20 UJ	260	74,000	11	23	77,000
Benz(a)anthracene ²	0.12	180,000	8,600	1.2	34,000	1.9	0.20 U	0.20 UJ	80	17,000	0.36	3.8	20,000
Chrysene ²	12	18,000,000	960,000	120	34,000	3.1	0.20 U	0.20 UJ	130	14,000	0.35	3.4	17,000
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	68,000	4.7	0.20 U	0.20 UJ	170	7,900	0.20 U	1.7	10,000
Benzo(k)fluoranthene 2	1.2	1,800,000	300,000	12	68,000	1.1 J	0.20 U	0.20 UJ	46	2,700	0.20 U	0.67	3,000
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	34,000	6.1	0.20 U	0.20 UJ	160	4,400	0.20 U	1.0	5,400
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	34,000	5.8	0.20 U	0.20 UJ	180	1,300	0.20 U	0.36	1,800
Dibenz(a,h)anthracene ²	0.012	18,000	4,300	0.12	82,000	1.8 U	0.20 U	0.20 UJ	27	310	0.20 U	0.20 U	420
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	18,000	6.1	0.20 U	0.20 UJ	170	1,100	0.20 U	0.39	1,500
2-Methylnaphthalene	32	14,000,000	4,200	70	NE	45	0.33 J	0.23 J	79	48,000	1,100	1,000	38,000
Dibenzofuran	16	3,500,000	35	NE	96	0.38 J	0.29 UJ	150	60,000	260	240	58,000	
		Т	TEC (screening crite	ria based on be	nzo(a)pyrene)	7.5	NA	NA	212	7,461	0.04	1.7	9,092

Soil (mg/kg or ug/kg) numbers in **bold** font meet or exceed a MTCA soil protection of groundwater cleanup level. <u>Underlined</u> numbers meet or exceed the Alternative Treatment Standard (10 x UTS') for contaminated soils. ANS 16.1 and BV-13 water numbers in **bold** font meet or exceed a MTCA c groundwater cleanup level. TCLP and SPLP numbers are not bolded.

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A, B, and C from Ecology website downloaded

November 2011 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx). (I) - Industrial land use (R) - Unrestricted land use

J - estimated value ft bgs - feet below ground surface

mg/kg - miligram per kilogram NA - not applicable, not analyzed, or not available NE - not established PAHs - Polynuclear Aromatic Hydrocarbons SPLP - Synthetic Precipitation Leaching Procedure TCLP - Toxicicity Characteristic Leaching Procedure TPH - Total Petroleum Hydrocarbons TTEC - Total Toxic Equivalent Concentration

 μ g/kg - microgram per kilogram μ g/L - microgram per liter

U - Compound was analyzed for but not detected above the reporting limit shown.

¹ Alternative Treatment Standards are 10 times the Universal Treatment Standards (UTS, 40 CFR 268.48) for contaminated soils.

² These compounds are carcinogenic PAHs and are subject to TTEC calculations.

³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁽http://www.ecy.wa.gov/programs/tcp/tools/toolmain.html) except for dibenzofuran and 2-methylnaphthalene which were obtained from the J&E model (USEPA 2004).

⁴ TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

Table 3-1 **ITRC Example Performance Tests**

Performance parameter	Performance measurement	Example performance test(s)
Strength	Compressive Strength	ASTM D1633
Hydraulic Conductivity	Hydraulic Conductivity	ASTM D5084 (constant head) ASTM D5084 (falling head)
Leachability Treatability Study	LSP as function of pH LSP as function of L/S Mass transfer (flux)	PreMethod 1313 PreMethods 1314, 1316 PreMethods 1315, 1315 (modified); ANSI 16.1
Consistency Testing	LSP at natural pH, mass transfer (flux)	PreMethod 1316, SPLP, abbreviated flux tests

LS - liquid-solid partitioning,
L/S - liquid-solid ratio
ITRC - Interstate Technology & Regulatory Council SPLP - synthetic precipitation leaching procedure

Source: Table 3-3 from Development of Performance Specifications for Solidification/Stabilization, Prepared by the Interstate Technology & Regulatory Council Solidification/Stabilization Team. July 2011.

Table 3-2 Summary of Analytical Results for Untreated Soil from Test Pit TP-01 **International Paper Longview Site**

Sample ID: Sample Depth (ft bgs):		MTCA Sc	reening Levels		Alternative Treatment		TP-01 (Field	d Samples)	7.5	TP-01 (Kemron Samples)			
Date Collected:	Method B		Method C		Standards 1		8/22/2011		8/22/2011		9/1/2011		
ТРН	Groundwater (µg/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg) ³	Groundwater (µg/L)	μg/kg	Total (mg/kg)	TCLP (μg/L)	SPLP (µg/L)	Total (mg/kg)	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	45	270 U	250 U	56	42	250 UJ	280 U	
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	390	530 U	500 U	160 J	120 J	500 UJ	560 U	
PAHs	μg/L	μg/kg	μg/kg	μg/L	μg/kg	Total (µg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (μg/kg)	Total (µg/kg)	TCLP (µg/L)	SPLP (µg/L)	
Naphthalene	160	70,000,000	9,700	350	56,000	110	1.5 J	1.2 J	220	140	1.7 U	0.49	
Acenaphthylene	NE	NE	210,000	NE	34,000	2.0	0.20 U	0.20 UJ	5.7	11	0.20 U	0.20 U	
Acenaphthene	960	210,000,000	210,000	2,100	34,000	200	1.6 J	1.3 UJ	430	220	2.0 U	1.3	
Fluorene	640	140,000,000	220,000	1,400	34,000	84	0.35 J	0.28 UJ	130	84	0.57 U	0.39	
Phenanthrene	NE	NE	5,000,000	NE	NE	44	0.20 U	0.20 UJ	110	100	0.30 U	0.21	
Anthracene	4,800	1,050,000,000	5,000,000	10,500	34,000	4.3	0.20 U	0.20 UJ	35	39	0.20 U	0.20 U	
Fluoranthene	640	140,000,000	1,400,000	1,400	34,000	7.7	0.20 U	0.20 UJ	380	100	0.20 U	0.20 U	
Pyrene	480	105,000,000	1,400,000	1,050	82,000	5.4	0.20 U	0.20 UJ	260	80	0.20 U	0.20 U	
Benz(a)anthracene 2	0.12	180,000	8,600	1.2	34,000	1.9	0.20 U	0.20 UJ	80	29	0.20 U	0.20 U	
Chrysene ²	12	18,000,000	960,000	120	34,000	3.1	0.20 U	0.20 UJ	130	59	0.20 U	0.20 U	
Benzo(b)fluoranthene 2	0.12	180,000	30,000	1.2	68,000	4.7	0.20 U	0.20 UJ	170	290	0.20 U	0.20 U	
Benzo(k)fluoranthene 2	1.2	1,800,000	300,000	12	68,000	1.1 J	0.20 U	0.20 UJ	46	49	0.20 U	0.20 U	
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	34,000	6.1	0.20 U	0.20 UJ	160	300	0.20 U	0.20 U	
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	34,000	5.8	0.20 U	0.20 UJ	180	300	0.20 U	0.20 U	
Dibenz(a,h)anthracene 2	0.012	18,000	4,300	0.12	82,000	1.8 U	0.20 U	0.20 UJ	27	40	0.20 U	0.20 U	
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	18,000	6.1	0.20 U	0.20 UJ	170	260	0.20 U	0.20 U	
2-Methylnaphthalene	32	14,000,000	4,200	70	NE	45	0.33 J	0.23 J	79	92	0.49 U	0.20 U	
Dibenzofuran	16	3,500,000	3,700	35	NE	96	0.38 J	0.29 UJ	150	110	0.74 U	0.50	
(screening criteria based on benzo(a)pyrene)						7.5	NA	NA	212	371	NA	NA	

Soil (mg/kg or µg/kg) results in **bold** font meet or exceed a MTCA soil protection of groundwater cleanup level. Underlined numbers meet or exceed the Alternative Treatment Standard (10 x UTS') for contaminated soils. Water results in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded.

ft bgs - feet below ground surface

J - estimated value

mg/kg - miligram per kilogram

NA - not applicable, not analyzed, or not available

PAHs - Polynuclear Aromatic Hydrocarbons

SPLP - Synthetic Precipitation Leaching Procedure

TCLP - Toxicicity Characteristic Leaching Procedure

TPH - Total Petroleum Hydrocarbons

TTEC - Total Toxic Equivalent Concentration

μg/kg - microgram per kilogram μg/L - microgram per liter

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

¹ Alternative Treatment Standards are 10 times the Universal Treatment Standards (UTS, 40 CFR 268.48) for contaminated soils.

² These compounds are carcinogenic PAHs and are subject to TTEC calculations.

³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁴TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

Table 3-2 Summary of Analytical Results for Untreated Soil from Test Pit TP-01 International Paper Longview Site

Sample ID: Sample Depth (ft bgs):		MTCA Sc	reening Levels		Alternative Treatment		TP-01 (Field 2.0-7.5	l Samples)	7.5	TP-01 (Kemron Samples)			
Date Collected:	Method B		Method C		Standards ¹		8/22/2011		8/22/2011		9/1/2011		
ТРН	Groundwater (µg/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg) ³	Groundwater (µg/L)	μg/kg	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (mg/kg)	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	45	270 U	250 U	56	42	250 UJ	280 U	
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	390	530 U	500 U	160 J	120 J	500 UJ	560 U	
PAHs	μg/L	μg/kg	μg/kg	μg/L	μg/kg	(µg/kg)	(µg/L)	(µg/L)	(µg/kg)	(µg/kg)	(µg/L)	(µg/L)	
Naphthalene	160	70,000,000	9,700	350	56,000	110	1.5 J	1.2 J	220	140	1.7 U	0.49	
Acenaphthylene	NE	NE	210,000	NE	34,000	2.0	0.20 U	0.20 UJ	5.7	11	0.20 U	0.20 U	
Acenaphthene	960	210,000,000	210,000	2,100	34,000	200	1.6 J	1.3 UJ	430	220	2.0 U	1.3	
Fluorene	640	140,000,000	220,000	1,400	34,000	84	0.35 J	0.28 UJ	130	84	0.57 U	0.39	
Phenanthrene	NE	NE	5,000,000	NE	NE	44	0.20 U	0.20 UJ	110	100	0.30 U	0.21	
Anthracene	4,800	1,050,000,000	5,000,000	10,500	34,000	4.3	0.20 U	0.20 UJ	35	39	0.20 U	0.20 U	
Fluoranthene	640	140,000,000	1,400,000	1,400	34,000	7.7	0.20 U	0.20 UJ	380	100	0.20 U	0.20 U	
Pyrene	480	105,000,000	1,400,000	1,050	82,000	5.4	0.20 U	0.20 UJ	260	80	0.20 U	0.20 U	
Benz(a)anthracene ²	0.12	180,000	8,600	1.2	34,000	1.9	0.20 U	0.20 UJ	80	29	0.20 U	0.20 U	
Chrysene ²	12	18,000,000	960,000	120	34,000	3.1	0.20 U	0.20 UJ	130	59	0.20 U	0.20 U	
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	68,000	4.7	0.20 U	0.20 UJ	170	290	0.20 U	0.20 U	
Benzo(k)fluoranthene 2	1.2	1,800,000	300,000	12	68,000	1.1 J	0.20 U	0.20 UJ	46	49	0.20 U	0.20 U	
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	34,000	6.1	0.20 U	0.20 UJ	160	300	0.20 U	0.20 U	
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	34,000	5.8	0.20 U	0.20 UJ	180	300	0.20 U	0.20 U	
Dibenz(a,h)anthracene ²	0.012	18,000	4,300	0.12	82,000	1.8 U	0.20 U	0.20 UJ	27	40	0.20 U	0.20 U	
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	18,000	6.1	0.20 U	0.20 UJ	170	260	0.20 U	0.20 U	
2-Methylnaphthalene	32	14,000,000	4,200	70	NE	45	0.33 J	0.23 J	79	92	0.49 U	0.20 U	
Dibenzofuran	16	3,500,000	3,700	35	NE	96	0.38 J	0.29 UJ	150	110	0.74 U	0.50	
TTEC (screening criteria based on benzo(a)pyrene)	_	_	_	_	_	7.5	NA	NA	212	371	NA	NA	

Soil (mg/kg or µg/kg) results in **bold** font meet or exceed a MTCA soil protection of groundwater cleanup level. <u>Underlined</u> numbers meet or exceed the Alternative Treatment Standard (10 x UTS') for contaminated soils. Water results in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded.

ft bgs - feet below ground surface

J - estimated value

mg/kg - miligram per kilogram

NA - not applicable, not analyzed, or not available

PAHs - Polynuclear Aromatic Hydrocarbons

SPLP - Synthetic Precipitation Leaching Procedure

TCLP - Toxicicity Characteristic Leaching Procedure

TPH - Total Petroleum Hydrocarbons

TTEC - Total Toxic Equivalent Concentration

μg/kg - microgram per kilogram μg/L - microgram per liter

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

¹ Alternative Treatment Standards are 10 times the Universal Treatment Standards (UTS, 40 CFR 268.48) for contaminated soils.

² These compounds are carcinogenic PAHs and are subject to TTEC calculations.

³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁴TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

Table 3-3
Summary of Analytical Results for Untreated Soil from Test Pit TP-02
International Paper Longview Site

Sample ID: Sample Depth (ft bgs):		MTCA Sc	reening Levels		Alternative Treatment		TP-02 (Field 2.0-6.5	d Samples)	6.5	TP-02 (Kemron Samples)			
Date Collected:	Method B		Method C		Standards ¹		8/22/2011		8/22/2011	9/1/2011			
ТРН	Groundwater (μg/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg) ³	Groundwater (μg/L)	μg/kg	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	Total (mg/kg)	Total (mg/kg)	TCLP (µg/L)	SPLP (µg/L)	
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	9,000	25,000	27,000	9,300	8,500	26,000	26,000	
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	1,800 J	500 U	510	2,000 J	1,600 J	530 U	560 U	
PAHs	μg/L	μg/kg	μg/kg	μg/L	μg/kg	(µg/kg)	(µg/L)	(µg/L)	(µg/kg)	(µg/kg)	(µg/L)	(µg/L)	
Naphthalene	160	70,000,000	9,700	350	56,000	35,000	13,000	12,000	46,000	420,000	12,000	12,000	
Acenaphthylene	NE	NE	210,000	NE	34,000	1,100	10	10	1,200	1,800	11	12	
Acenaphthene	960	210,000,000	210,000	2,100	34,000	81,000	460	420	82,000	110,000	460	540	
Fluorene	640	140,000,000	220,000	1,400	34,000	85,000	230	210	90,000	97,000	250	300	
Phenanthrene	NE	NE	5,000,000	NE	NE	240,000	210	210	240,000	260,000	240	360	
Anthracene	4,800	1,050,000,000	5,000,000	10,500	34,000	<u>45,000</u>	18	31	<u>77,000</u>	<u>49,000</u>	25	51	
Fluoranthene	640	140,000,000	1,400,000	1,400	34,000	120,000	21	40	130,000	130,000	22	73	
Pyrene	480	105,000,000	1,400,000	1,050	82,000	74,000	11	23	77,000	74,000	11	42	
Benz(a)anthracene ²	0.12	180,000	8,600	1.2	34,000	17,000	0.36	3.8	20,000	20,000	0.43	7.9	
Chrysene ²	12	18,000,000	960,000	120	34,000	14,000	0.35	3.4	17,000	17,000	0.41	7.1	
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	68,000	7,900	0.20 U	1.7	10,000	9,300	0.20 U	3.3	
Benzo(k)fluoranthene ²	1.2	1,800,000	300,000	12	68,000	2,700	0.20 U	0.67	3,000	3,300	0.20 U	1.0	
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	34,000	4,400	0.20 U	1.0	5,400	5,500	0.20 U	1.8	
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	34,000	1,300	0.20 U	0.36	1,800	1,700	0.20 U	0.38	
Dibenz(a,h)anthracene 2	0.012	18,000	4,300	0.12	82,000	310	0.20 U	0.20 U	420	410	0.20 U	0.20 U	
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	18,000	1,100	0.20 U	0.39	1,500	1,400	0.20 U	0.36	
2-Methylnaphthalene	32	14,000,000	4,200	70	NE	48,000	1,100	1,000	38,000	140,000	1,100	1,200	
Dibenzofuran	16	3,500,000	3,700	35	NE	60,000	260	240	58,000	73,000	280	320	
TTEC (screening criteria based on benzo(a)pyrene)						7,461	0.04	1.7	9,092	9,141	0.05	3.1	

Soil (mg/kg or µg/kg) numbers in **bold** font meet or exceed a MTCA soil cleanup level. <u>Underlined</u> numbers meet or exceed the Alternative Treatment Standard (10 x UTS) for contaminated soils. Water results in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded.

ft bgs - feet below ground surface

J - estimated value

mg/kg - miligram per kilogram

NA - not applicable, not analyzed, or not available

PAHs - Polynuclear Aromatic Hydrocarbons

SPLP - Synthetic Precipitation Leaching Procedure

TCLP - Toxicicity Characteristic Leaching Procedure

TPH - Total Petroleum Hydrocarbons

TTEC - Total Toxic Equivalent Concentration

μg/kg - microgram per kilogram μg/L - microgram per liter

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

¹ Alternative Treatment Standards are 10 times the Universal Treatment Standards (UTS, 40 CFR 268.48) for contaminated soils.

²These compounds are carcinogenic PAHs and are subject to TTEC calculations.

³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

 $^{^4}$ TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

Table 3-4
Summary of Physical Properties Results for Untreated Soil

Testing	Test		TP-01 (2-7.5)	TP-02
Parameter	Method	Unit	Results	Results
Moisture Content	ASTM D2216			
ASTM Moisture Content		%	31.85	24.72
Percent Solids		%	75.85	80.18
Loss on Ignition	ASTM D2974	%	1.93	1.16
Particle Size Distribution	ASTM D422/D854			
Gravel		%	1.0	0.0
Sand		%	76.5	91.0
Silt		%	21.3	8.3
Clay		%	1.2	0.3
Sample Description	USCS (D2487)		Dark grey silty sand	V. Dk Grey poorly graded sand with silt
Sample Classification	USCS (D2487)		SM	SP-SM

% - Percent

Sample descriptions based on the Unified Classification System. Where atterberg limits were not tested, the description is based on an assumed PI < 4.

Sample color determined by the Munsell Soil Color Charts.

Table 3-5
Preliminary ISS Evaluations - Penetrometer Results

Kemron	Untreated					Reagent	Water	Penetrometer Testing				
Sample	Material	Reagent				Addition % by	Addition % by			(tons/ft ²)		
No.	Type	Туре	F	Reagen	t ID	wet soil wt.	Reagent wt.	1 Day	3 Day	5 Day	7 Day	14 Day
0397-001	TP-01	Portland Cement	842	-	-	7.5	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-002	TP-01	Portland Cement	842	-	-	12.5	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-003	TP-01	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	3.5	4.5	>4.5	>4.5	>4.5
0397-004	TP-01	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	77	1.5	3.25	3.75	3.75	3.75
0397-005	TP-01	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	12.5 / 2 / 0.5	150	>4.5	>4.5	>4.5	>4.5	>4.5
0397-006	TP-01	Portland Cement / Class "C" Flyash	842	921	-	7.5 / 7.5	50	3.75	>4.5	>4.5	>4.5	>4.5
0397-007	TP-01	NewCem Slag Cement / Bentonite	920	807	-	15 / 2	132	0.0	0.0	0.0	0.0	0.25
0397-008	TP-01	50:50 TerraCem	916	-	-	12.5	50	4.25	>4.5	>4.5	>4.5	>4.5
0397-009	TP-01	50:50 TerraCem / Bentonite	916	807	-	15 / 2	135	1.25	3.50	4.25	>4.5	>4.5
0397-010	TP-02	Portland Cement	842	-	-	12.5	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-011	TP-02	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	3.25	>4.5	>4.5	>4.5	>4.5
0397-012	TP-02	Portland Cement / Bentonite	842	807	-	17.5 / 2	125	>4.5	>4.5	>4.5	>4.5	>4.5
0397-013	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	75	3.25	>4.5	>4.5	>4.5	>4.5
0397-014	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 12.5	75	1.25	2.5	3.0	3.75	4.25
0397-015	TP-02	Portland Cement / Hydrated Lime	842	917	-	10 / 12.5	75	2.5	3.75	>4.5	>4.5	>4.5
0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 0.5	150	0.0	0.0	2.5	4.25	>4.5
0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	0.0	0.0	1.25	3.0	>4.5
0397-018	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	17.5 / 2 / 0.5	150	0.5	3.75	>4.5	>4.5	>4.5
0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	10 / 2 / 0.5	150	3.25	4.5	>4.5	>4.5	>4.5
0397-020	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	15 / 2 / 0.5	150	3.25	>4.5	>4.5	>4.5	>4.5
0397-021	TP-02	Portland Cement / Class "C" Flyash	842	921	-	10 / 10	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	920	921	-	10 / 10	50	1.0	1.75	3.25	3.75	3.75
0397-023	TP-02	NewCem Slag Cement / Bentonite	920	807	-	15 / 2	132	0.0	3.25	4.5	>4.5	>4.5
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	916	807	922	15 / 2 / 0.5	135	2.75	3.25	4.25	>4.5	>4.5
0397-025	TP-02	50:50 TerraCem / Bentonite	916	807	-	15 / 2	135	1.25	2.5	4.0	4.5	>4.5
0397-026	TP-02	Portland Cement #842/Bentonite	842	807	-	8/2	150	4.50	-	>4.5		
0397-027	TP-02	NewCem Slag Cement/ Portland Cement/Bentonite	920	842	807	6/2/2	150	4.25	-	>4.5		
0397-028	TP-02	NewCem Slag Cement/Bentonite/Caustic Soda	920	807	926	8/2/0.5	175	0.75	-	>4.5		
		NewCem Slag Cement/Bentonite/Organoclay SS 199/Caustic										
0397-029	TP-02	Soda	920	807	922/926	8/2/0.5/0.5	175	0.75	-	>4.5		
0397-030	TP-02	NewCem Slag Cement/Bentonite/Caustic Soda	920	807	926	10/2/0.5	175	1.25	-	>4.5		
		NewCem Slag Cement/Bentonite/OrganoClay SS199 /Caustic										
0397-031	TP-02	Soda	920	807	922/926	10/2/0.5/0.5	175	2.00	-	>4.5		

^{*} Mixes 003, 005, 007, 009, 011, 012, 016, 017, 018, 019, 020, 023, 024, and 025-031 were subjected to an initial bentonite slurry where water was added to bentonite and allowed to hydrate under continuous stirring overnight. The additional reagents were added the next day to the hydrated bentonite with the water additions to make a pumpable slurry.

Table 3-6
Preliminary ISS Evaluations
UCS Results

						Reagent	Water		Unconfined Compressive Strength (tons/ft2)				
Kemron	Untreated					Addition % by	Addition % by	Cure	Moisture	Bulk	Dry	UCS	
Sample No.	Material Type	Reagent Type	R	eagent	ID	'wet soil wt	Reagent wt.	Days	Content (%)	Density (lb/ft³)	Density (lb/ft³)	(lb/in²)	
0397-001	TP-01	Portland Cement	842	-	-	7.5	50	9	32.7	111.6	84.1	69.2	
0397-002	TP-01	Portland Cement	842	-	-	12.5	50	9	31.7	114.4	86.9	169.3	
0397-003	TP-01	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	8	47.4	107.9	73.2	44.9	
0397-004	TP-01	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	77	9	39.3	111.5	80.0	27.1	
0397-005	TP-01	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	12.5 / 2 / 0.5	150	8	44.4	108.6	75.2	70.3	
0397-006	TP-01	Portland Cement / Class "C" Flyash	842	921	-	7.5 / 7.5	50	8	32.3	117.3	88.7	64.5	
0397-007	TP-01	NewCem Slag Cement / Bentonite	920	807	-	15 / 2	132	NT	NT	NT	NT	NT	
0397-008	TP-01	50:50 TerraCem	916	-	-	12.5	50	9	34.2	113.8	84.8	58.7	
0397-009	TP-01	50:50 TerraCem / Bentonite	916	807	-	15 / 2	135	8	48.8	105.6	71.0	29.4	
0397-010	TP-02	Portland Cement	842			12.5	50	9	24.1	127.1	102.4	285.0	
0397-010	17-02	Portiana Cement	042	_	-	12.5	50	69	23.2	122.8	99.7	306.2	
0397-011	TP-02	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	8	39.1	110.7	79.6	47.6	
0397-012	TP-02	Portland Cement / Bentonite	842	807	-	17.5 / 2	125	8	41.4	108.8	77.0	78.1	
0397-013	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	75	9	30.8	115.1	88.0	32.4	
0397-014	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 12.5	75	9	34.2	110.6	82.4	14.9	
0397-015	TP-02	Portland Cement / Hydrated Lime	842	917	-	10 / 12.5	75	9	34.3	110.8	82.5	31.9	
0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 0.5	150	8	44.5	108.7	75.2	36.4	
0397-016	17-02	NewCell Slag Cellent / Bentonite / Organociay 55 199	920	007	922	12.5 / 2 / 0.5	150	67	38.7	91.7	66.1	321.5	
								8	42.5	107.7	75.6	31.7	
0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	67	41.3	106.6	75.5	326.0	
					-			101	38.3	106.1	76.7	443.7	
0397-018	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	17.5 / 2 / 0.5	150	8	42.7	109.0	76.4	76.6	
								8	40.3	109.1	77.8	35.2	
0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	10 / 2 / 0.5	150.0	67	38.5	100.9	72.8	57.9	
0397-020	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	15 / 2 / 0.5	150.0	8	43.1	106.1	74.2	60.8	
0397-021	TP-02	Portland Cement / Class "C" Flyash	842	921	-	10 / 10	50.0	8	24.9	121.0	96.9	143.6	
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	920	921	-	10 / 10	50.0	8	29.6	118.4	91.3	15.2	
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	920	921	-	10 / 10	50.0	17	30.0	122.0	93.8	14.1	
0397-023	TP-02	NewCem Slag Cement / Bentonite	920	807	-	15 / 2	132	8	41.1	107.9	76.5	61.3	
0007.001		· ·	046	007	000	45.40.40.5	405	8	38.4	108.6	78.5	37.7	
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	916	807	922	15 / 2 / 0.5	135	67	36.6	105.4	77.2	87.7	
0397-025	TP-02	50:50 TerraCem / Bentonite	916	807	-	15 / 2	135	8	39.4	110.7	79.4	32.4	

NT - Not Tested

Source: Kemron Environmental Services, Longview Site Treatability Study Final Report, Prepared for URS Corporation, Seattle, WA, September 26, 2012.

Table 3-6 - UCS results.xisx

URS CORPORATION

^{*} Mixes 008, 009, 017, and 018 were subjected to an initial bentonite slurry where water was added to bentonite and allowed to hydrate under continuous stirring overnight. The additional reagents were added the next day to the hydrated bentonite with the water additions to make a pumpable slurry.

Shaded rows indicate mixes that were carried over to the optimization phase.

Table 3-7
Preliminary ISS Evaluations
TCLP and SPLP Results

Testing Parameter	Untreated 1	ΓP-02 2.0-6.5 genized		Treated Mixes with Percent Reduction in Contaminants Compared to Untreated TP-02 sample (2.0-6.5, homogenized)														
	TCLP	SPLP	0397-010	O (SPLP)	0397-01	1 (SPLP)	0397-01	3 (SPLP)	0397-010	(SPLP) 0397-017 (SPLP)		0397-019 (SPLP)		0397-021 (SPLP)		0397-02	2 (SPLP)	
PAHs (μg/L)																		
Naphthalene	12,000	12,000	7,500	38%	7,400	38%	7,700	36%	6,800	43%	4,400	63%	6,400	47%	7,000	42%	7,900	34%
2-Methyl naphthalene	1100	1,200	840	30%	890	26%	820	32%	780	35%	460	62%	740	38%	860	28%	770	36%
Acenaphthylene	11	12	9.5	21%	9.1	24%	8.5	29%	7.3	39%	3.6	70%	7.1	41%	8.6	28%	8.7	28%
Acenaphthene	460	540	420	22%	430	20%	380	30%	400	26%	260	52%	380	30%	420	22%	380	30%
Dibenzofuran	280	320	270	16%	270	16%	240	25%	230	28%	98	69%	210	34%	260	19%	240	25%
Fluorene	250	300	240	20%	240	20%	210	30%	210	30%	92	69%	180	40%	230	23%	210	30%
Phenanthrene	240	360	240	33%	250	31%	210	42%	210	42%	15	96%	210	42%	240	33%	220	39%
Anthracene	25	51	35	31%	33	35%	29	43%	30	41%	12	76%	30	41%	31	39%	30	41%
Fluoranthene	22	73	22	70%	20	73%	19	74%	22	70%	6.6	91%	20	73%	19	74%	20	73%
Pyrene	11	42	11	74%	10	76%	9.1	78%	11	74%	0.3	99%	10	76%	9.2	78%	9.3	78%
Benz(a)anthracene	0.43	7.9	0.42	95%	0.57	93%	0.36	95%	0.47	94%	0.23	97%	0.4	95%	0.32	96%	0.35	96%
Chrysene	0.41	7.1	0.4	94%	0.28	96%	0.31	96%	0.38	95%	0.026 J	> 99%	0.35	95%	0.32	95%	0.34	95%
Benzo(b)fluoranthene	< 0.2	3.3	< 0.20	> 94%	0.046 J	> 99%	0.037 J	> 99%	0.062 J	> 98%	< 0.20	> 94%	0.03 J	> 99%	< 0.20	> 94%	0.03 J	> 99%
Benzo(k)fluoranthene	< 0.2	1	< 0.20	> 80%	< 0.20	> 80%	< 0.20	> 80%	0.037 J	> 96%	< 0.20	> 80%	< 0.20	> 80%	< 0.20	> 80%	< 0.20	> 80%
Indeno(1,2,3-cd)pyrene	< 0.2	0.38	< 0.20	> 47%	< 0.20	> 47%	< 0.20	> 47%	0.031 J	> 92%	< 0.20	> 47%	< 0.20	> 47%	< 0.20	> 47%	< 0.20	> 47%
TPH (μg/L)																		
DRO ¹	26,000	26,000	19,000	27%	20,000	23%	20,000	23%	18,000	31%	11,000	58%	17,000	35%	19,000	27%	20,000	23%
RRO ¹	< 530	< 560	< 550	-	570	-	610	-	< 500	-	< 500	-	< 500	-	510	-	660	-

Table 3-7 URS CORPORATION

Table 3-7 (Cont.) Preliminary ISS Evaluations TCLP and SPLP Results

Testing Parameter	Untreated T Homog		Treated Mixes with Percent Reduction in Contaminants Compared to Untreated TP-02 sample (2.0-6.5, homogenized)											
	TCLP	SPLP	0397-02	3 (SPLP)	0397-024 (SPLP)		0397-025 (SPLP)		0397-28 (TCLP)		0397-28 (SPLP)			
PAHs (μg/L)														
Naphthalene	12,000	12,000	7,300	39%	6,500	46%	9,400	22%	5100	58%	5400	55%		
2-Methyl naphthalene	1100	1,200	760	37%	860	28%	800	33%	750	32%	790	34%		
Acenaphthylene	11	12	8.7	28%	7.2	40%	8.1	33%	8.4	24%	9	25%		
Acenaphthene	460	540	390	28%	400	26%	380	30%	420	9%	440	19%		
Dibenzofuran	280	320	220	31%	250	22%	240	25%	260	7%	290	9%		
Fluorene	250	300	190	37%	220	27%	210	30%	230	8%	250	17%		
Phenanthrene	240	360	210	42%	220	39%	210	42%	260	-8%	270	25%		
Anthracene	25	51	34	33%	28	45%	31	39%	31	-24%	36	29%		
Fluoranthene	22	73	23	68%	22	70%	18	75%	22	0%	24	67%		
Pyrene	11	42	11	74%	11	74%	8.2	80%	13	-18%	13	69%		
Benz(a)anthracene	0.43	7.9	0.41	95%	0.41	95%	0.29	96%	0.58	-35%	0.71	91%		
Chrysene	0.41	7.1	0.4	94%	0.4	94%	0.29	96%	0.48	-17%	0.46	94%		
Benzo(b)fluoranthene	< 0.2	3.3	0.034 J	> 99%	0.044 J	> 99%	0.024 J	> 99%	0.063 J	-	0.049 J	99%		
Benzo(k)fluoranthene	< 0.2	1	< 0.20	> 80%	< 0.20	> 80%	< 0.20	> 80%	0.034 J	-	0.028 J	97%		
Indeno(1,2,3-cd)pyrene	< 0.2	0.38	< 0.20	> 47%	< 0.20	> 47%	< 0.20	> 47%	0.22	-	0.21	45%		
TPH (μg/L)														
DRO ¹	26,000	26,000	18,000	31%	18,000	31%	23,000	12%	15,000	42%	17,000	35%		
RRO ¹	< 530	< 560	540	-	< 500	-	580	-	< 540	-	920	-		

Notes:

Values represented as "<" (less than) indicate that the compound was not detected at a concentration above the listed detection limit. The "J" qualifier indicates that the compound was detected at the estimated concentration which was between the analytical reporting limit and the method detection limit. A ">" (greater than) indicates that the value was calculated using a detection limit (or a value less than the analytical reporting limit) rather than a known compound concentration because the compound was not detected or was detected below the analytical reporting limit.

NE - not established

Source: Kemron Environmental Services, Longview Site Treatability Study Final Report, Prepared for URS Corporation, Seattle, WA, September 26, 2012.

Table 3-7 URS CORPORATION

¹ – TPH cleanup levels are based on the MTCA Method A industrial cleanup standards.

Table 3-8
Preliminary ISS Evaluations
Hydraulic Conductivity Results

Kemron	Untreated					Reagent	Water	Cure		Hydraulic Co (cm/	• ,	
Sample No.	Material	Reagent	D.	eagent	ID	Addition % by wet soil wt.	Addition % by Reagent wt.	•	Moisture	Bulk Density (lb/ft³)	Dry	Hyd. Cond.
	Type	Туре	T.	eageni	עו	wet son wt.	Reagent Wt.		Content (%)	Density (ID/It')	Density (ID/It')	
0397-010	TP-02	Portland Cement	842	-	-	12.5	50	69	25.2	123.9	98.9	7.1E-07
*0397-016 **	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 0.5	150	67	39.3	110.2	79.1	3.2E-08
*0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	67	42.6	105.4	73.9	3.0E-08
*0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	10 / 2 / 0.5	150	67	40.2	108.9	77.7	7.4E-07
*0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199		807	922	15 / 2 / 0.5	135	67	38.7	106.6	76.9	3.0E-07

^{*} Mixes 016, 017, 019, and 024 were subjected to an initial bentonite slurry where water was added to bentonite and allowed to hydrate under continuous stirring overnight. The additional reagents were added the next day to the hydrated bentonite with the water additions to make a pumpable slurry.

^{**} Preliminary Data

Table 3-9 Optimization ISS Evaluations 5-Day ANS 16.1 Results Mix 16

	MTCA Clea	nup Levels,	Samp	le 0397-016	
	Groundw	ater (µg/L)		5-Day	
Testing Parameter	Method B	Method C	Results (µg/L)	MRL	MDL
ТРН					
Diesel Range Organics (DRO)	500 ¹	500 ¹	500 Z	260	-
Residual Range Organics (RRO)	500 ¹	500 ¹	< 520	520	-
PAHs					
Naphthalene	160	350	100 D	1,800	370
2-Methylnaphthalene	32	70	780 D	89.0	11.0
Acenaphthylene	NE	NE	0.13	4.50	0.490
Acenaphthene	960	2,100	10 D	89.0	9.40
Dibenzofuran	16	35	6.7 D	89.0	11.0
Fluorene	640	1,400	6.8 D	89.0	11.0
Phenanthrene	NE	NE	17 D	89.0	19.0
Anthracene	4,800	10,500	1.7	4.50	0.380
Fluoranthene	640	1,400	4 D	89.0	12.0
Pyrene	480	1,050	1.7	4.50	1.10
Benz(a)anthracene	0.12	1.2	0.1	4.50	0.450
Chrysene	12	120	0.1	4.50	0.850
Benzo(b)fluoranthene	0.12	1.2	0.013	4.50	0.330
Benzo(k)fluoranthene	1.2	12	0.004 J	4.50	0.540
Benzo(a)pyrene	0.012	0.12	0.0062	4.50	0.540
Indeno(1,2,3-cd)pyrene	0.12	1.2	0.0015 J	4.50	0.580
Dibenz(a,h)anthracene	0.012	0.12	0.00086 J	4.50	0.590
Benzo(g,h,i)perylene	NE	NE	0.0019 J	4.50	0.470

Notes:

Bolded values meet or exceed MTCA Method C (PAHs) or MTCA Method A (TPH) groundwater cleanup levels.

MRL - Method Reporting Limit

MDL - Method Detection Limit

PAHs - polynuclear aromatic hydrocarbons

TPH - total petroleum hydrocarbons

μg/L - micrograms per liter

- D The reported result is from a dilution.
- J The result is an estimated value.
- Z The chromatographic fingerprint does not resemble a petroleum product.

¹ - TPH cleanup levels are based on the MTCA Method A cleanup standards.

Table 3-10 Optimization ISS Evaluations Complete ANS 16.1 Results Mix 17

	MTCA Clea	nup Levels.										Sample	0397-017										
	Groundwa			2-Hour			7-Hour			24-Hour			2-Day			3-Day			4-Day			5-Day	
Testing Parameter	Method B	Method C	Results (µg/L)	MRL	MDL	Results (µg/L)	MRL	MDL	Results (µg/L)	MRL	MDL	Results (µg/L)	MRL	MDL	Results (µg/L)	MRL	MDL	Results (µg/L)	MRL	MDL	Results (µg/L)	MRL	MDL
ТРН	•	•					•				•		•									•	
Diesel Range Organics (DRO)	500 ¹	500 ¹	ND	260		ND	300		500 Z	290		550 Z	280	12	600 Z	280	12	660 Z	270	12.00	420 Z	280	
Residual Range Organics (RRO)	500 ¹	500 ¹	ND	520		ND	600		ND	570		75 J	550	21	53 J	550	21	55 J	530	20.00	ND	560	
PAHs	•	•					•			•	•	•	•	•			•						
Naphthalene	160	350	7 D	0.036	0.0074	23 D	0.068	0.015	84 D	0.180	0.037	110 D	0.44	0.065	150 D	0.46	0.069	140 D	0.42	0.062	68 D	0.43	0.064
2-Methylnaphthalene	32	70	0.890	0.0036	0.00042	3.1 D	0.068	0.008	11 D	0.180	0.021	13 D	0.44	0.050	19 D	0.46	0.053	19 D	0.42	0.048	8.9	0.022	0.0025
Acenaphthylene	NE	NE	0.040	0.0036	0.00039	0.057	0.0034	0.00037	0.130	0.004	0.00039	0.19	0.022	0.0037	0.23	0.023	0.0039	0.22	0.021	0.0036	0.13	0.022	0.0037
Acenaphthene	960	2,100	1.200	0.0036	0.00038	3.1 D	0.068	0.0072	8.9 D	0.180	0.019	11 D	0.44	0.095	15 D	0.46	0.10	14 D	0.42	0.091	8.3	0.022	0.0047
Dibenzofuran	16	35	0.840	0.0036	0.00044	1.7	0.0034	0.00042	5.4 D	0.180	0.022	6.3	0.022	0.0050	8.0	0.023	0.0053	7.7	0.021	0.0048	5 D	0.43	0.098
Fluorene	640	1,400	0.670	0.0036	0.00044	1.3	0.0034	0.00042	3.4 D	0.180	0.022	4.6	0.022	0.0041	5.5	0.023	0.0044	5.0	0.021	0.0040	3.5	0.022	0.0041
Phenanthrene	NE	NE	4.20 D	0.036	0.0075	4.5 D	0.068	0.015	9.0 D	0.180	0.038	11 D	0.44	0.11	13 D	0.46	0.12	12 D	0.420	0.11	10	0.022	0.0054
Anthracene	4,800	10,500	0.590	0.0036	0.0003	0.540	0.0034	0.00029	1.1	0.0036	0.0003	1.2	0.022	0.0039	1.4	0.023	0.0041	1.2	0.021	0.0038	0.30	0.022	0.0039
Fluoranthene	640	1,400	2.40 D	0.036	0.0048	1.1	0.0034	0.00046	1.7	0.0036	0.00048	2.0	0.022	0.0048	2.2	0.023	0.0050	2.0	0.021	0.0046	2.1	0.022	0.0047
Pyrene	480	1,050	1.300	0.0036	0.00081	0.690	0.0034	0.00078	1.1	0.0036	0.00081	1.3	0.022	0.0038	1.3	0.023	0.0040	1.3	0.021	0.0037	1.1	0.022	0.0038
Benz(a)anthracene	0.12	1.2	0.390	0.0036	0.00036	0.120	0.0034	0.00034	0.140	0.0036	0.00036	0.092	0.022	0.0028	0.091	0.023	0.0030	0.079	0.021	0.0027	0.12	0.022	0.0028
Chrysene	12	120	0.360	0.0036	0.00068	0.120	0.0034	0.00065	0.120	0.0036	0.00068	0.052	0.022	0.0037	0.058	0.023	0.0039	0.056	0.021	0.0036	0.092	0.022	0.0037
Benzo(b)fluoranthene	0.12	1.2	0.200	0.0036	0.00026	0.055	0.0034	0.00025	0.052	0.0036	0.00026	0.014 J	0.022	0.0025	0.014 J	0.023	0.0027	0.015 J	0.021	0.0024	0.04 X	0.022	0.0025
Benzo(k)fluoranthene	1.2	12	0.078	0.0036	0.00043	0.019	0.0034	0.00041	0	0.0036	0.00043	0.006 J	0.022	0.0027	0.0048 J	0.023	0.0029	0.0055 J	0.021	0.0026	ND X	0.022	0.0027
Benzo(a)pyrene	0.012	0.12	0.100	0.0036	0.00043	0.031	0.0034	0.00041	0	0.0036	0.00043	0.0062 J	0.022	0.0047	0.0069 J	0.023	0.0049	0.0066 J	0.021	0.0045	0.012 J	0.022	0.0046
Indeno(1,2,3-cd)pyrene	0.12	1.2	0.050	0.0036	0.00046	0.010	0.0034	0.00044	0	0.0036	0.00046	0.0045 J	0.022	0.0028	ND	0.023	0.0030	ND	0.021	0.0027	0.0088 J	0.022	0.0028
Dibenz(a,h)anthracene	0.012	0.12	0.021	0.0036	0.00047	0.0034	0.0034	0.00045	0.0032 J	0.0036	0.00047	ND	0.022	0.0027	ND	0.023	0.0029	ND	0.021	0.0026	ND	0.022	0.0027
Benzo(g,h,i)perylene	NE	NE	0.041	0.0036	0.00038	0.0088	0.0034	0.00036	0.009	0.0036	0.00038	0.0066 J	0.022	0.0032	ND	0.023	0.0033	ND	0.021	0.0030	0.0065 J	0.022	0.0031

Notes:

Bolded values meet or exceed MTCA Method C (PAHs) or MTCA Method A (TPH) groundwater cleanup levels

MRL - Method Reporting Limit

MDL - Method Detection Limit

PAHs - Polynuclear Aromatic Hydrocarbons

TPH - Total Petroleum Hydrocarbons

μg/L - micrograms per liter

ND - Not Detected

D - The reported result is from a dilution.

J - estimated value

U - The analyte was analyzed for, but was not detected at or above the MRL/MDL.

X - See case narrative.

Z - The chromatographic fingerprint does not resemble a petroleum product.

Source: Kemron Environmental Services, Longview Site Treatability Study Final Report, Prepared for URS Corporation, Seattle, WA, September 26, 2012.

Table 3-10 - 017 ANS Analytical Results

¹- TPH cleanup levels are based on the MTCA Method A cleanup standards.

Table 3-11 **Optimization ISS Evaluations** UCS, Hydraulic Conductivity, and Volumetric Expansion Results

Kemron	Untreated	Reagent				Reagent Addition	Water Addition % by Reagent	Cure	Volumetric		Unconfined Compr				Hydraulic Cond		
Sample No.	Material Type	Туре		Reage	nt ID	% by Wet Soil wt.	wt.	Days	Expansion	Moisture Content (%)	Bulk Density (lb/ft³)	Dry Density (lb/ft³)	UCS (lb/in²)	Moisture Content (%)	Bulk Density (lb/ft³)	Dry Density (lb/ft³)	Perm (cm/sec)
0397-017A	TP-02	NewCem Slag Cement / Bentonite /	920	807	922	12.5 / 2 / 2	150*	7		32.3	117.5	88.9	23.7				
0397-017A	TP-02	Organoclay SS 199	920	807	922	12.5 / 2 / 2	150-	28	30.36	33.2	115.5	86.8	184.5	34.9	105.2	78.0	5.5E-07
		NewCem Slag Cement /						3	48.21								
0397-017DUP	TP-02	Bentonite /	920	807	922	12.5 / 2 / 2	150	7	42.86								
		Organoclay SS 199						28	42.86	36.4	106.1	77.8	180.2				
								7	28.57	33.8	103.3	77.2	31.9				
0207 026	TP-02	Portland Cement	040	007	_	8/2	450	14		33.0	105.6	79.4	44.9				
0397-026	TP-02	#842/Bentonite	842	807	-	8/2	150	28	31.25	33.2	106.8	80.2	243.3**	30.2	102.0	78.0	2.6E -07
								56	27.55	32.7	104.2	78.5	77.7				
								7	25.80	34.1	106.1	79.1	68.8				
0397-027	TP-02	NewCem Slag Cement/	020	842	807	6/2/2	150	14		34.1	106.1	79.2	127.7				
0397-027	TP-02	Portland Cement/Bentonite	920	042	607	6/2/2	150	28	29.64	34.6	104.9	78.0	239.8	33.4	106.0	79.5	3.3E-07
								56	31.21	32.7	105.6	79.6	333.1				
								7	36.61	39.7	100.7	72.1	91.7				
		NewCem Slag						14		37.9	102.7	74.5	119.1				
0397-028	TP-02	Cement/Bentonite/Caustic	920	807	926	8/2/0.5	175	28	34.82	37.6	103.0	74.8	245.5	38.0	102.0	74.1	1.9E-07
		Soda						56	36.07	36.0	102.6	75.4	383.5				
								86	25.51	34.9	102.1	75.7	355.3				
								7	35.71	39.7	105.1	75.2	44.8				
0397-029	TP-02	NewCem Slag Cement/Bentonite/Organoclay	920	807	922/926	8/2/0.5/0.5	175	14		38.3	106.3	76.8	117.7				
0007 020	02	SS 199/Caustic Soda	020	00.	022/020	0,2,0,0,0		28	37.86								
								56	38.21	35.1	103.5	76.6	358.3				
								7	40.18	39.3	106.1	76.2	120.8				
0397-030	TP-02	NewCem Slag Cement/Bentonite/Caustic	920	807	926	10/2/0.5	175	14		37.9	104.1	75.5	192.0				
		Soda						28	40.80								
								56	40.09	35.8	100.9	74.3	341.1				
								7	40.18	38.6	106.6	76.9	127.1				
0397-031	TP-02	NewCem Slag Cement/Bentonite/OrganoClay	920	807	922/926	10/2/0.5/0.5	175	14		37.8	105.5	76.5	221.5				
	-	SS199 /Caustic Soda					-	28	40.45								
								56	42.59	35.5	104.6	77.2	433.9				

Notes:
* For Mix 0397-017A, the mixing procedure used by CETCO was replicated. Cetco based on a 150% water addition by Slag Cement weight only. This resulted in a 113.6% water addition rate by total reagent weight
** This result was determined to be inaccurate.

- Not Tested

Source: Kemron Environmental Services, Longview Site Treatability Study Final Report, Prepared for URS Corporation, Seattle, WA, September 26, 2012.

URS CORPORATION Table 3-11 UCS, Perm, and VE Results.xlsx

Table 3-12 Optimization ISS Evaluations SPLP Results Mixes 17A, 17Dup, and 28

Testing Parameter	Unit	0397-017A	0397-017 DUP	0397-028
SPLP PAH				
Naphthalene	μg/L	1,800	1,700	5,400 J
Acenaphthylene	μg/L	3.4	3.6	9.0 J
Acenaphthene	μg/L	280	250	440 J
Fluorene	μg/L	99 J	94	250 J
Phenanthrene	μg/L	140	140	270 J
Anthracene	μg/L	17	18	36 J
Fluoranthene	μg/L	16	16	24 J
Pyrene	μg/L	9.3	9.4	13 J
Benz(a)anthracene	μg/L	0.43	0.43	0.71 J
Chrysene	μg/L	0.35	0.38	0.46 J
Benzo(b)fluoranthene	μg/L	0.046 J	0.045 J	0.049 J
Benzo(k)fluoranthene	μg/L	0.20 U	0.20 U	0.028 J
Benzo(a)pyrene	μg/L	0.20 U	0.20 U	0.21 U
Indeno(1,2,3-cd)pyrene	μg/L	0.031 J	0.20 U	0.21 U
Dibenz(a,h)anthracene	μg/L	0.20 U	0.20 U	0.21 U
Benzo(g,h,i)perylene	μg/L	0.040 J	0.20 U	0.21 U
2-Methylnaphthalene	μg/L	380	340	790 J
Dibenzofuran	μg/L	97 J	95	290 J
SPLP TPH				
Diesel Range Organics (DRO)	μg/L	6,700	6,900	17,000 J
Residual Range Organics (RRO)	μg/L	520 U	510 U	920 J

Notes:

PAHs - polynuclear aromatic hydrocarbons

SPLP - synthetic precipitation leaching procedure

TPH - total petroleum hydrocarbons

μg/L - micrograms per liter

J - estimated value

U - The analyte was analyzed for, but was not detected at or above the outlined value.

Table 3-13 Optimization ISS Evaluations 5-Day ANS 16.1 Results Mixes 17 Dup and 26

	MTCA Clea	nup Levels	Sample	e 0397-017 Dl	JP	Sample 0397-026
	Groundwa	ater (µg/L)		5-Day		5-Day
Testing Parameter	Method B	Method C	Results (µg/L)	MRL	MDL	Results (µg/L)
TPH						
Diesel Range Organics (DRO)	500 ¹	500 ¹	500	260	-	1,300
Residual Range Organics (RRO)	500 ¹	500 ¹	ND	550	-	< 560
PAHs	•					
Naphthalene	160	350	81 D	1.5	0.31	170
2-Methylnaphthalene	32	70	15 D	0.07	0.0087	0.54
Acenaphthylene	NE	NE	0.20	0.0037	0.00041	21
Acenaphthene	960	2,100	15 D	0.074	0.0079	16
Dibenzofuran	16	35	8.2 D	0.074	0.0092	44
Fluorene	640	1,400	9.3 D	0.074	0.0092	5.7
Phenanthrene	NE	NE	15 D	0.074	0.016	11
Anthracene	4,800	10,500	1.6	0.0037	0.00032	5.9
Fluoranthene	640	1,400	2.1	0.0037	0.0005	0.56
Pyrene	480	1,050	1.3	0.0037	0.00085	0.47
Benz(a)anthracene	0.12	1.2	0.830	0.0037	0.00037	0.085
Chrysene	12	120	0.0700	0.0037	0.00071	< 0.039
Benzo(b)fluoranthene	0.12	1.2	0.0120	0.0037	0.00028	< 0.039
Benzo(k)fluoranthene	1.2	12	0.0036 J	0.0037	0.00045	< 0.039
Benzo(a)pyrene	0.012	0.12	0.0055	0.0037	0.00045	< 0.039
Indeno(1,2,3-cd)pyrene	0.12	1.2	0.0086 J	0.0037	0.00048	< 0.039
Dibenz(a,h)anthracene	0.012	0.12	ND	0.0037	0.00049	30
Benzo(g,h,i)perylene	NE	NE	0.0076 J	0.0037	0.00040	15

Notes:

Bolded values meet or exceed MTCA Method C (PAHs) or MTCA Method A (TPH) groundwater cleanup levels.

MRL - Method Reporting Limit

MDL - Method Detection Limit

PAHs - Polynuclear Aromatic

Hydrocarbons

TPH - Total Petroleum

Hydrocarbons

ug/L - micrograms per liter

D - The reported result is from a dilution.

J - estimated value

¹ - TPH cleanup levels are based on the MTCA Method A cleanup standards.

[&]quot;<" indicates that the compound was not detected above the value presented.

Table 3-14 Optimization ISS Evaluations Complete ANS 16.1 Results Mix 17A

	MTCA Clea	nup Levels							Sample 039	97-017A						
Testing Parameter	Groundwa	ater (µg/L)	2-Ho	ur	7-H	our	24-H	our	2-Da	ay	3-D	ay	4-Da	ıy	5-Da	ay
resulting rarameter	Method B	Method C	Results (µg/L)	MDL	Results (µg/L)	MDL	Results (μg/L)	MDL	Results (μg/L)	MDL	Results (µg/L)	MRL	Results (µg/L)	MRL	Results (µg/L)	MRL
TPH																
Diesel Range Organics (DRO)	500 ¹	500 ¹	390 Z	12.00	710 Z	12	1,600 Z	12	1,600 Z	12	1,100 Z	270	1,100 Z	270	570 Z	290
Residual Range Organics (RRO)	500 ¹	500 ¹	35 J	21.00	33 J	20	53 J	21	56 J	20	ND	540	ND	540	ND	570
PAHs									•	•			•		•	
Naphthalene	160	350	71 D	0.15	130 D	0.15	340 D	0.29	310 D	0.30	270 D	0.8	310 D	0.77	100 D	1.5
2-Methylnaphthalene	32	70	13 D	0.0042	22 D	0.0840	57 D	0.1700	55 D	0.1700	48 D	8.0	56 D	0.77	17 D	0.074
Acenaphthylene	NE	NE	0.16	0.00039	0.22	0.00039	0.40	0.00038	0.37	0.00039	0.57 D	0.040	0.63 D	0.039	0.23	0.0037
Acenaphthene	960	2,100	12 D	0.0038	16 D	0.0038	41 D	0.150	38 D	0.0076	36 D	0.80	42 D	0.77	16 D	0.074
Dibenzofuran	16	35	6.5 D	0.0044	8.4 D	0.0044	21 D	0.0086	20 D	0.0089	17 D	0.040	19 D	0.039	9.2 D	0.074
Fluorene	640	1,400	8.2 D	0.0044	10 D	0.0044	25 D	0.0086	23 D	0.0089	20 D	0.040	22 D	0.039	11 D	0.074
Phenanthrene	NE	NE	13 D	0.0075	12 D	0.0076	28 D	0.015	28 D	0.016	29 D	0.80	31 D	0.77	18 D	0.074
Anthracene	4,800	10,500	1.7	0.0003	1.5	0.00031	4.3 D	0.006	4.2 D	0.0062	3.8 D	0.040	4.1 D	0.039	2.00	0.0037
Fluoranthene	640	1,400	2.7 D	0.0048	1.8	0.00048	4.1 D	0.0094	4.2 D	0.0097	4.5 D	0.040	4.7 D	0.039	3.5 D	0.074
Pyrene	480	1,050	1.6	0.00081	1.0	0.00082	2 D	0.016	2.2 D	0.017	2.6 D	0.040	2.8 D	0.039	1.7	0.0037
Benz(a)anthracene	0.12	1.2	0.13	0.00036	0.10	0.00036	0.18	0.00035	0.180	0.00036	0.15 D	0.040	0.17 D	0.039	0.11	0.0037
Chrysene	12	120	0.064	0.00068	0.055	0.00068	0.085	0.00067	0.080	0.00069	0.087 D	0.040	0.1 D	0.039	0.088	0.0037
Benzo(b)fluoranthene	0.12	1.2	0.011	0.00026	0.019	0.00027	0.023	0.00026	0.018	0.00027	0.018 J,D	0.040	0.026 J,D	0.039	0.015	0.0037
Benzo(k)fluoranthene	1.2	12	0.0034 J	0.00043	0.0079	0.00043	0.0078	0.00042	0.0048	0.00044	0.0065 J,D	0.040	0.0083 J,D	0.039	0.0047	0.0037
Benzo(a)pyrene	0.012	0.12	0.0066	0.00043	0.013	0.00043	0.013	0.00042	0.0098	0.00044	0.0081 J,D	0.040	0.012 J,D	0.039	0.008	0.0037
Indeno(1,2,3-cd)pyrene	0.12	1.2	0.00078 J	0.00046	0.0036 J	0.00046	0.003 J	0.00045	0.0017 J	0.00047	ND	0.040	ND	0.039	0.0013 J	0.0037
Dibenz(a,h)anthracene	0.012	0.12	ND	0.00047	0.0011 J	0.00047	0.0012 J	0.00046	0.00063 J	0.00048	ND	0.040	ND	0.039	0.00053 J	0.0037
Benzo(g,h,i)perylene	NE	NE	0.00068 J	0.00038	0.0029 J	0.00038	0.0026 J	0.00037	0.0014 J	0.00038	ND	0.040	ND	0.039	0.001 J	0.0037

Notes:

Bolded values meet or exceed MTCA Method C (PAHs) or MTCA Method A (TPH) groundwater cleanup levels.

MDL - Method Detection Limit

MRL - Method Reporting Limit

PAHs - polynuclear aromatic hydrocarbons

TPH - total petroleum hydrocarbons

μg/L - micrograms per liter

ND - not detected

D - The reported result is from a dilution.

J - estimated value

Z - The chromatographic fingerprint does not resemble a petroleum product.

Source: Kemron Environmental Services, Longview Site Treatability Study Final Report, Prepared for URS Corporation, Seattle, WA, September 26, 2012.

Table 3-14 - 017A ANS Analytical Results

¹ - TPH cleanup levels are based on the MTCA Method A cleanup standards.

Table 3-15 Optimization ISS Evaluations Complete ANS 16.1 Results Mix 28

	MTCA Clea	nup Levels							Sample	0397-028						
		ater (µg/L)	2-H	our	7-H	our	24-H	lour	2-D	ay	3-Da	ıy	4-D	ay	5-Da	ay
Testing Parameter	Method B	Method C	Results (µg/L)	MDL	Results (µg/L)	MDL	Results (µg/L)	MDL	Results (µg/L)	MDL	Results (µg/L)	MRL	Results (µg/L)	MRL	Results (µg/L)	MRL
ТРН																
Diesel Range Organics (DRO)	500 ¹	500 ¹	520 Z	270	570 Z	280	930 Z	250	910 Z	280	920 Z	310	1,000 Z	310	860 Z	290
Residual Range Organics (RRO)	500 ¹	500 ¹	ND	540	ND	550	ND	500	ND	550	ND	610	ND	610	ND	580
PAHs				•		<u> </u>		•		•						
Naphthalene	160	350	30 D	0.015	64 D	0.071	170 D	0.079	120 D	0.071	140 D	0.071	120 D	0.071	100 D	0.071
2-Methylnaphthalene	32	70	61 D	0.008	12 D	0.0400	34 D	0.0440	23 D	0.0400	29 D	0.04	26 D	0.04	22 D	0.04
Acenaphthylene	NE	NE	0.12	0.00037	0.19	0.00037	0.41	0.00041	0.30	0.00037	0.44 D	0.0037	0.390 D	0.0037	0.34 D	0.0037
Acenaphthene	960	2,100	6.0 D	0.0072	11 D	0.036	29 D	0.040	20 D	0.036	24 D	0.0360	19 D	0.0360	17 D	0.0360
Dibenzofuran	16	35	4.1 D	0.0084	6.6 D	0.042	19 D	0.047	14 D	0.042	14 D	0.0042	12 D	0.0042	11 D	0.0042
Fluorene	640	1,400	4.6 D	0.0084	8.3 D	0.042	22 D	0.047	16 D	0.042	16 D	0.0042	14 D	0.0042	13 D	0.0042
Phenanthrene	NE	NE	7.2 D	0.015	13 D	0.072	42 D	0.08	35 D	0.072	41 D	0.072	35 D	0.072	31 D	0.072
Anthracene	4,800	10,500	0.980 D	0.00029	1.4	0.00029	5.6 D	0.032	5.4 D	0.029	5.3 D	0.0029	4.7 D	0.0029	4.4 D	0.0029
Fluoranthene	640	1,400	1.0	0.00046	1.7	0.00046	6.9 D	0.051	7.0 D	0.046	8.2 D	0.0046	7.3 D	0.0046	7.7 D	0.0046
Pyrene	480	1,050	0.660	0.00078	1.1	0.00078	4.3 D	0.086	4.3 D	0.078	4.8 D	0.0078	4.2 D	0.0078	4.5 D	0.0078
Benz(a)anthracene	0.12	1.2	0.094	0.00034	0.12	0.00034	0.33	0.00038	0.350	0.00034	0.390 D	0.0034	0.330 D	0.0034	0.380 D	0.0034
Chrysene	12	120	0.071	0.00027	0.100	0.00027	0.270	0.000372	0.270	0.00027	0.390 D	0.0065	0.320 D	0.0065	0.380 D	0.0065
Benzo(b)fluoranthene	0.12	1.2	0.027	0.00025	0.030	0.00025	0.068	0.00028	0.052	0.00025	0.0065 D	0.0025	0.048 D	0.0025	0.058 D	0.0025
Benzo(k)fluoranthene	1.2	12	0.012	0.00041	0.0110	0.00041	0.0230	0.00046	0.0160	0.00041	0.0026 JD	0.0041	0.022 JD	0.0041	0.025 JD	0.0041
Benzo(a)pyrene	0.012	0.12	0.019	0.00041	0.017	0.00041	0.034	0.00046	0.0240	0.00041	0.0034 D	0.0041	0.023 JD	0.0041	0.029 JD	0.0041
Indeno(1,2,3-cd)pyrene	0.12	1.2	0.0057	0.00044	0.0045	0.00044	0.0095	0.00049	0.0047	0.00044	0.0020 JD	0.0044	0.0096 JD	0.0044	0.0081 JD	0.0044
Dibenz(a,h)anthracene	0.012	0.12	0.0015 J	0.00045	0.0013 J	0.00045	0.0025 J	0.0005	0.0012 J	0.00045	0.0011 JD	0.0045	0.0059 JD	0.0045	ND	0.0045
Benzo(g,h,i)perylene	NE	NE	0.0052	0.00036	0.0041	0.00036	0.0074	0.0004	0.0032 J	0.00036	0.0023 JD	0.0036	0.0097JD	0.0036	0.0088 JD	0.0036

Notes:

Bolded values meet or exceed MTCA Method C (PAHs) or MTCA Method A (TPH) groundwater cleanup levels.

MDL - Method Detection Limit

MRL - Method Reporting Limit

PAHs - polynuclear aromatic hydrocarbons

TPH - total petroleum hydrocarbons

μg/L - micrograms per liter

ND - not detected

D - The reported result is from a dilution.

J - estimated value

Z - The chromatographic fingerprint does not resemble a petroleum product.

Source: Kemron Environmental Services, Longview Site Treatability Study Final Report, Prepared for URS Corporation, Seattle, WA, September 26, 2012.

Table 3-15 - 028 ANS Analytical Results

¹- TPH cleanup levels are based on the MTCA Method A cleanup standards.

Table 3-16 Optimization ISS Evaluations Other Analytical Results Mix 28

		0397	-028	
Testing Parameter	WIPE Results (μg/Wipe)	Total Results (mg/kg)	TCLP Results (μg/L)	SPLP Results (μg/L)
PAHs	•	•		
Naphthalene	0.48 J	150,000 J	5,100 J	5,400 J
Acenaphthylene	0.010	1,300 J	8.4 J	9.0 J
Acenaphthene	0.26 J	91,000 J	420 J	440 J
Fluorene	0.28	86,000 J	230 J	250 J
Phenanthrene	1.1	250,000 J	260 J	270 J
Anthracene	0.21	48,000 J	31 J	36 J
Fluoranthene	0.62	110,000 J	22 J	24 J
Pyrene	0.44	74,000 J	13 J	13 J
Benz(a)anthracene	0.13	17,000 J	0.58 J	0.71 J
Chrysene	0.12	19,000 J	0.48 J	0.46 J
Benzo(b)fluoranthene	0.085	9,600 J	0.063 J	0.049 J
Benzo(k)fluoranthene	0.033	3,600 J	0.034 J	0.028 J
Benzo(a)pyrene	0.090 J	6,100 J	0.22 U	0.21 U
Indeno(1,2,3-cd)pyrene	0.024	2,000 J	0.22 U	0.21 U
Dibenz(a,h)anthracene	0.0065	510 J	0.22 U	0.21 U
Benzo(g,h,i)perylene	0.022	1,600 J	0.22 U	0.21 U
2-Methylnaphthalene	0.18 J	84,000 J	750 J	790 J
Dibenzofuran	0.20	67,000 J	260 J	290 J
TPHs				
Diesel Range Organics				
(DRO)	500 U	4,300 J	15,000 J	17,000 J
Residual Range Organics (RRO)	560 J	1,000 J	540 U	920 J

Notes:

PAHs - Polynuclear Aromatic Hydrocarbons

SPLP - Synthetic Precipitation Leaching Procedure

TCLP - Toxicity Characteristic Leaching Procedure

TPH - Total Petroleum Hydrocarbons

μg/L - micrograms per liter

J - estimated value

U - The analyte was analyzed for, but was not detected at or above the outlined value.

Table 4-1
ISTR Study Test Questions, Methods, and Goals

Test Question	Test Method	Test Goal
Will DRO and PAHs transition off the soil matrix during heating?	Heating and visual observations	Evaluate the effectiveness of bubble flotation and MPE
If so, will a LNAPL or a DNAPL be produced?	Heating and visual observations	Evaluate design options for contaminant extraction
3. How much DRO and PAH can be boiled off the soil matrix?	Chemical analysis before and after heating	Evaluate the effectiveness of steam stripping during ISTR
Will recovered liquids and vapors solidify upon cooling?	Heating, extraction, and visual observations	Evaluate options for system materials and construction
5. Is site NAPL primarily lighter or denser than water?		Evaluate the effectiveness of MPE and bubble flotation
6. Does the density of site NAPL change upon heating?	Heating and visual observations	Evaluate the effectiveness of MPE and bubble flotation

Source: Global Remediation Solutions, LLC Letter Report: ISTR Bench Scale Study - Creosote Site in Washington State. Prepared for URS Corporation, Seattle, WA, September 14, 2012.

Tables 4-1 through 4-5 URS CORPORATION

Table 4-2
ISTR Baseline Soil Concentrations

Analyte	Unit	Impacted Soil ² Concentration	Highly-Impacted Soil ³ Concentration	Highly-Impacted SPLP ⁴ Concentration	Expected Cleanup Target ¹
DRO	mg/kg	1,310	862	5.9	2,000
Benzo(a)pyrene	μg/kg	4,423	4,625	1.9	2,300
Naphthalene	μg/kg	2,810	800	0.52	9,700
Total PAHs	μg/kg	113,036	137,295	NA	NA
TTEC ⁵	μg/kg	6,005	6,547	209	2,300

- ¹ Based upon Washington State Department of Ecology (Ecology) requirements to be protective of groundwater except for DRO which is protective of direct contact.
- ² Average of three sample results BL1, BL2, and BL3.
- ³ Average of three sample results BL4 and BL5.
- ⁴ SPLP concentrations are from sample BL4 and are shown in μg/L, except for DRO which is in mg/L.
- ⁵ Total Toxicity Equivalent Concentration (TTEC) based on benzo(a)pyrene.

DRO - diesel-range organics

NA - not applicable-

PAHs - polynuclear aromatic hydrocarbons

mg/kg - milligrams per kilogram

μg/kg – micrograms per kilogram

Source:

Global Remediation Solutions, LLC Letter Report: ISTR Bench Scale Study - Creosote Site in Washington State. Prepared for URS Corporation, Seattle, WA, September 14, 2012.

Table 4-3
ISTR Dry Heating Test Results – Impacted Soil

Analyte ¹	Unit	Baseline (Avg) ² Concentration	5 Days ³ Concentration	5 Days ¹ (% Reduction)	15 Days Concentration	15 Days ² (% Reduction)	25 Days Concentration	25-Days ³ (% Reduction)
DRO	mg/kg	1,310	338	74.2%	317	75.8%	237	81.9%
Benzo(a)pyrene	μg/kg	4,423	4,025	9.0%	2,620	40.8%	3,460	21.8%
Naphthalene	μg/kg	2,810	383	86.4%	246	91.2%	375	86.7%
Total PAHs	μg/kg	113,036	50,578	55.3%	56,032	50.4%	45,535	59.7%

DRO – diesel-range organics

PAHs - polynuclear aromatic hydrocarbons

mg/kg – milligrams per kilogram

μg/kg - micrograms per kilogram

Source: Global Remediation Solutions, LLC Letter Report: ISTR Bench Scale Study - Creosote Site in Washington State. Prepared for URS Corporation, Seattle, WA, September 14, 2012.

¹ - Analytical Methods: Diesel = NWTPH-Dx; PAHs = SW8270D.

 $^{^{2}}$ - Average of three sample results: BL1, BL2, and BL3 for impacted soil.

 $^{^{\}rm 3}$ - Average results from cells C7 and C12.

Table 4-4
ISTR Dry Heating Test Results – Highly-Impacted Soil

Analyte ¹	Unit	Baseline Concentration ²	5 Days Concentration	5 Days (% Reduction)	15 Days Concentration	15 Days (% Reduction)
Diesel	mg/kg	1,030	371	64.0%	418	59.4%
Benzo(a)pyrene	μg/kg	4,990	3,160	36.7%	2,470	50.5%
Naphthalene	μg/kg	807	257	68.2%	127	84.3%
Total PAHs	μg/kg	169,337	98,907	41.6%	99,170	41.4%

DRO – diesel-range organics

PAHs - polynuclear aromatic hydrocarbons

mg/kg – milligrams per kilogram

μg/kg – micrograms per kilogram

Source: Global Remediation Solutions, LLC Letter Report: ISTR Bench Scale Study - Creosote Site in Washington State. Prepared for URS Corporation, Seattle, WA, September 14, 2012.

¹ - Analytical Methods: Diesel = NWTPH-DX; PAHs = SW8270D.

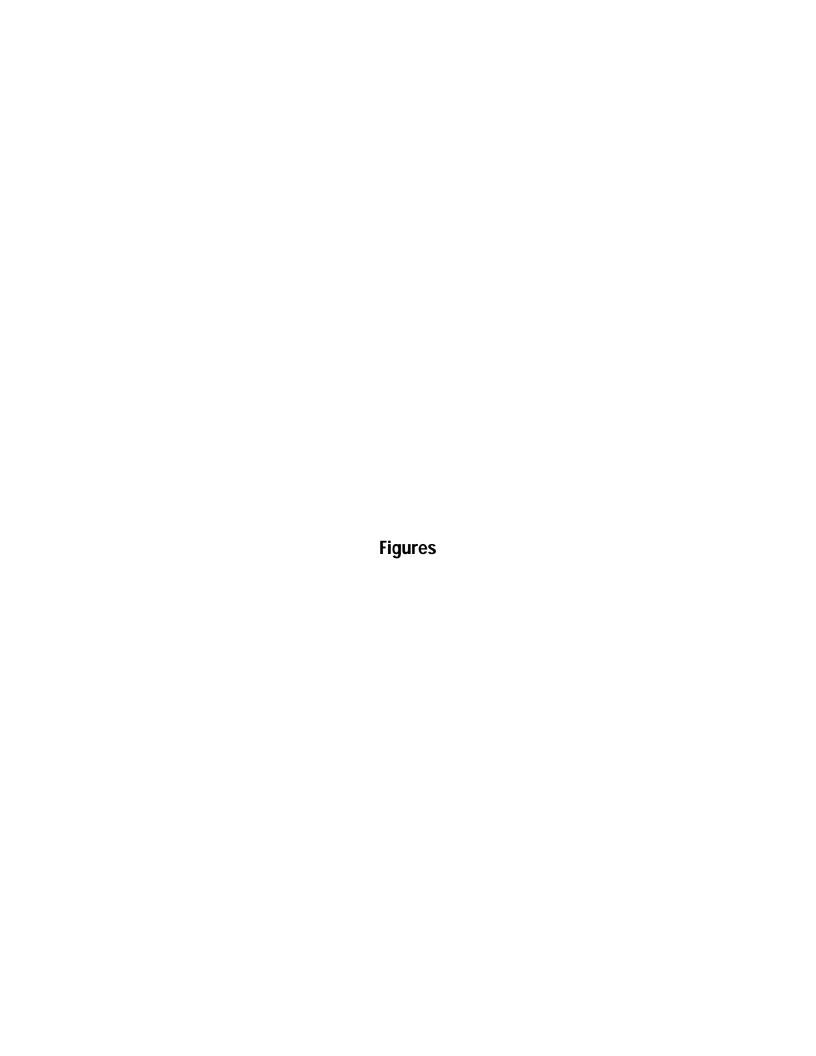
² - Results from the analysis of sample BL4 for highly-impacted soil.

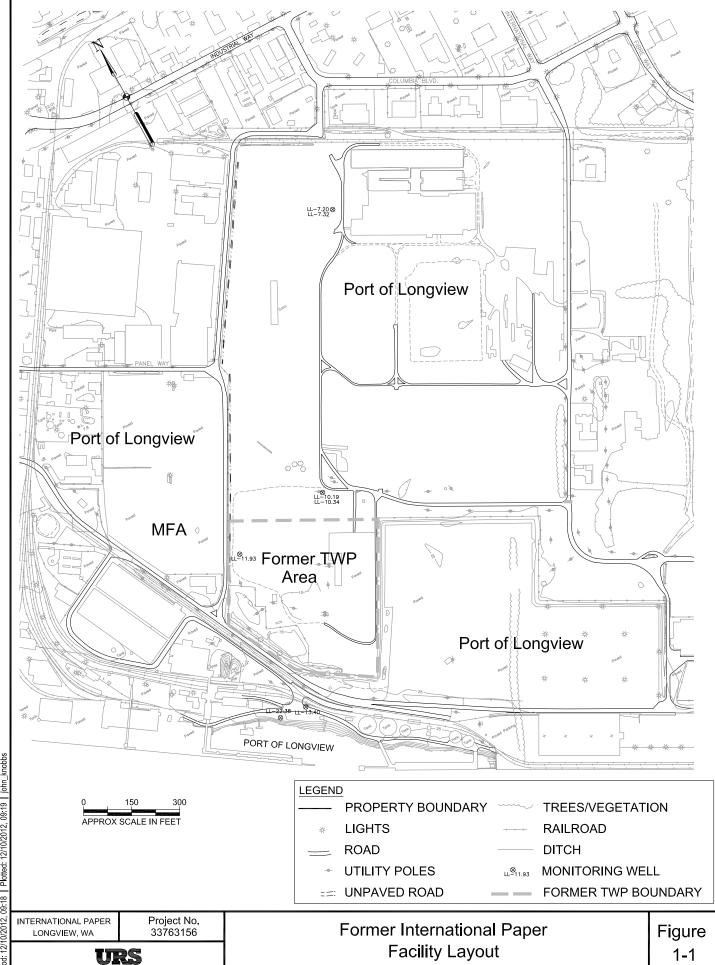
Table 4-5
ISTR Steaming Test Results – Highly-Impacted Soil

Analyte ¹	Unit	Baseline Concentration ²	5 Days Concentration	5 Days (% Reduction)	15 Days Concentration	15 Days (% Reduction)
DRO	mg/kg	693	384	44.6%	190	72.6%
Benzo(a)pyrene	μg/kg	4,260	2,180	48.8%	2,890	32.2%
Naphthalene	μg/kg	793	61	92.3%	48	93.9%
Total PAHs	μg/kg	105,253	58,394	44.5%	56,342	46.5%

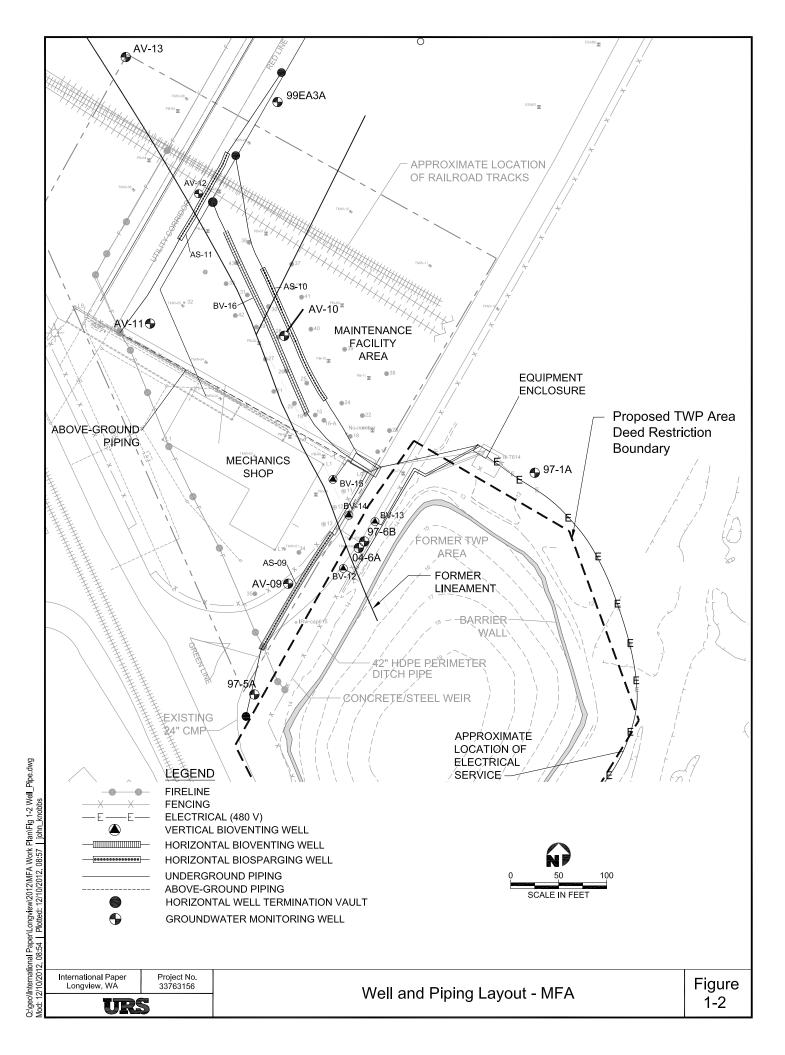
DRO – diesel-range organics

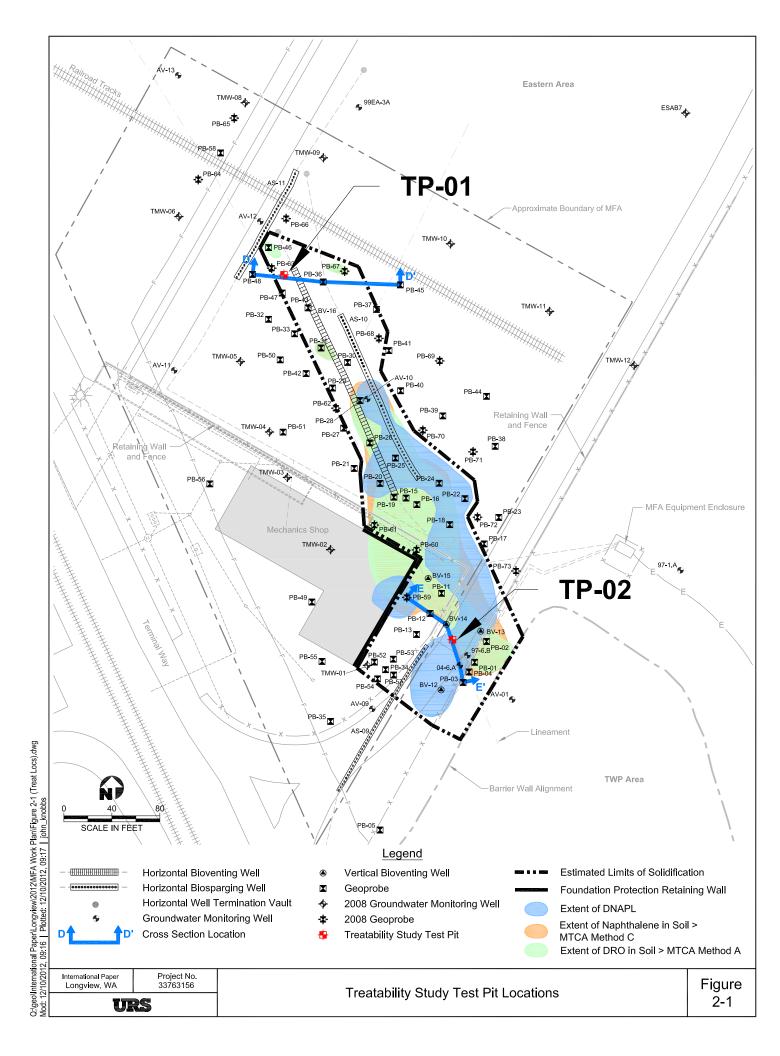
PAHs - polynuclear aromatic hydrocarbons

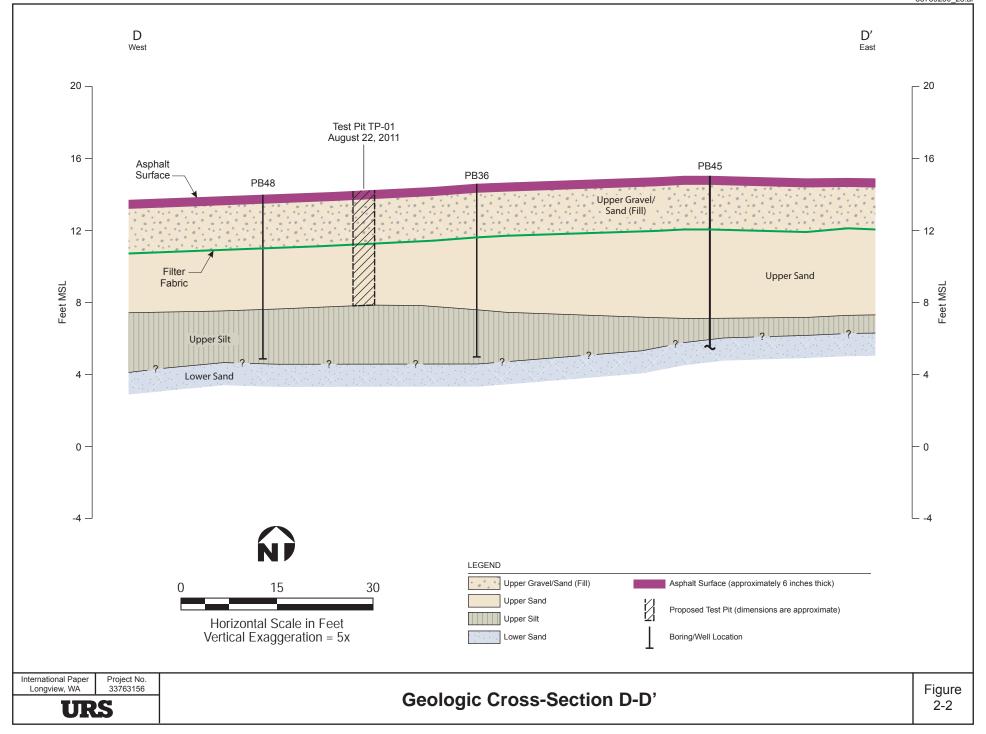

mg/kg – milligrams per kilogram


μg/kg – micrograms per kilogram

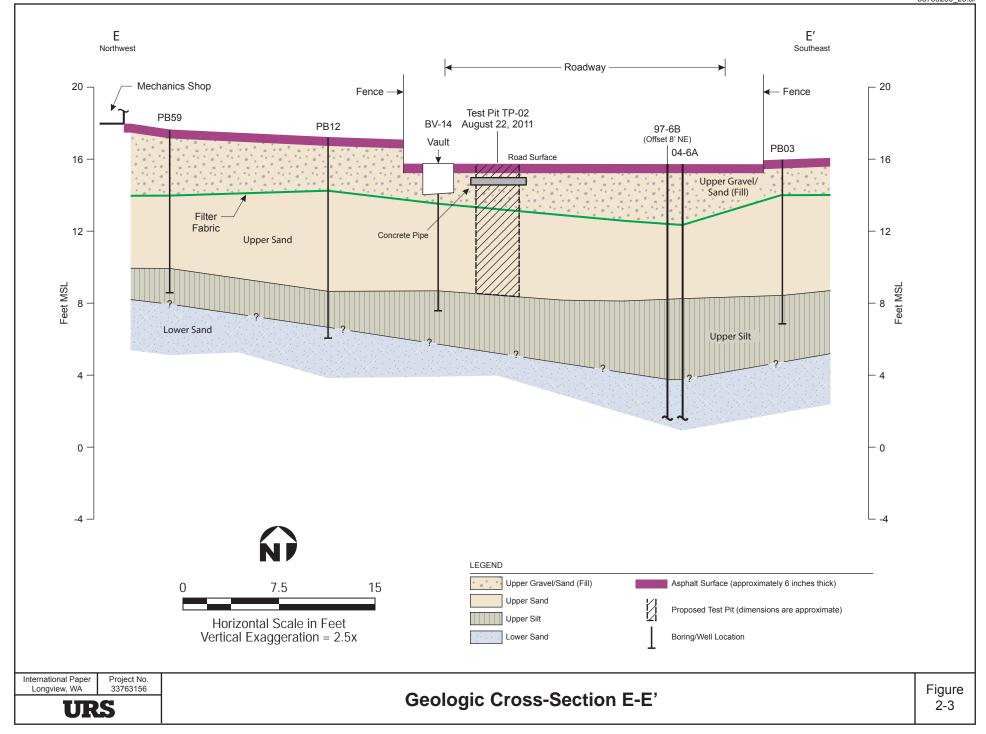
Source: Global Remediation Solutions, LLC Letter Report: ISTR Bench Scale Study - Creosote Site in Washington State. Prepared for URS Corporation, Seattle, WA, September 14, 2012.


¹ - Analytical Methods: Diesel = NWTPH-DX; PAHs = SW8270D.


² - Results from the analysis of sample BL5 for highly impacted soil.



C:geoUnternational PaperLongview/2012/MFA Work Plan/Fig 1-1 Facility Layout.dwg Mod: 12/10/2012, 09:18 | Plotted: 12/10/2012, 09:19 | john_knobbs



53

Bench-Scale Testing Tiered Testing Approach

- ▶ Tier 1
 - Physical tests UCS, and Hydraulic Conductivity using candidate reagents, narrow the range of reagents.
- ▶ Tier 2
 - Testing the selected reagents and combination of reagents and additives (if used) to assess contaminant immobilization.
- ▶ Tier 3
 - Optimizing the reagents and additives to minimize the quantity required to meet the performance criteria.
- ▶ Tier 4
 - Scale-up considerations, development of QC parameters, baseline consistency tests, and performance criteria acceptance limits.

Source: Slide 53 from ITRC Training Class Presentation of Solidification/Stabilization. Prepared by Interstate Technology & Regulatory Council Solidification/Stabilization Team, July 2011.

Figure 3-2 ISS TREATABILITY STUDY APPROACH

Process Flow Diagram

Figure 3-3 PHYSICAL PROPERTIES CHARACTERIZATION & ISS REAGENT SELECTION Process Flow Diagram

Figure 3-4 PRELIMINARY ISS EVALUATION

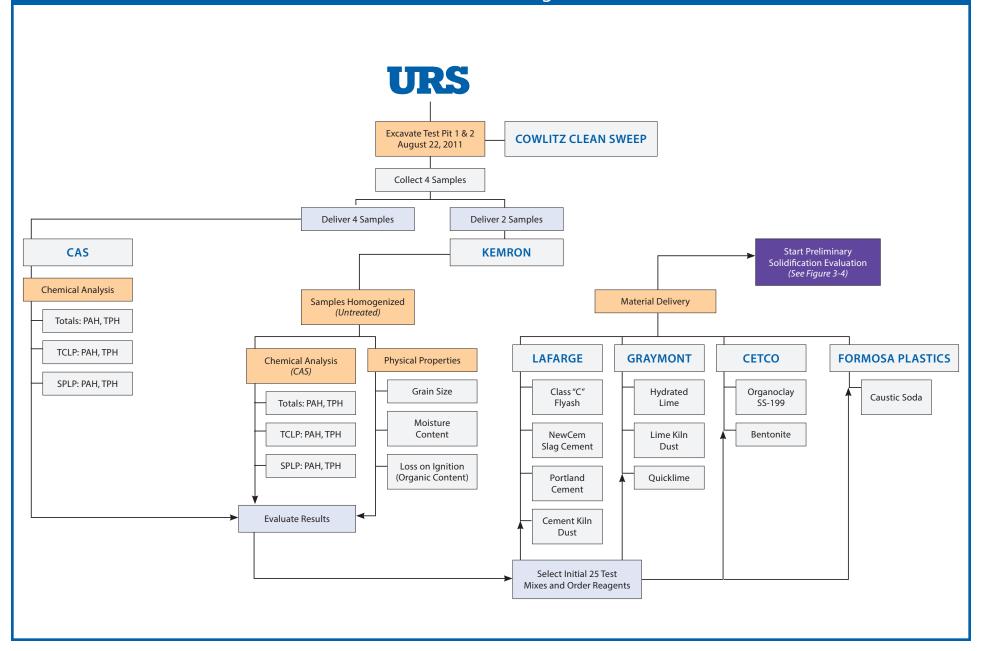
Process Flow Diagram
Screening of Initial 25 Test Mixes (Mix 1 to Mix 25)

Review Preliminary Results and Compare to Strength, Leachability, and Hydraulic Conductivity Goals

Figure 3-5 OPTIMIZATION ISS EVALUATION

Process Flow Diagram

Mix 17 (NewCem Slag Cement / Bentonite / Organoclay SS 199, 12.5 / 2 / 2)


Figure 3-6
OPTIMIZATION ISS EVALUATION

Process Flow Diagram

Additional Mixes (Mix 26 to Mix 31)

Review Optimization Results and Compare to Strength, Leachability, and Hydraulic Conductivity Goals

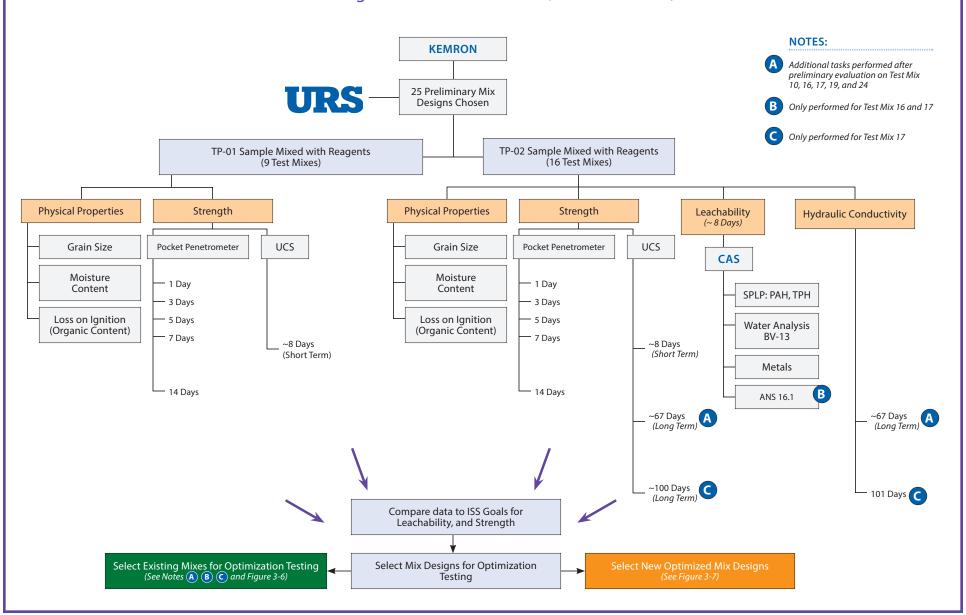

Figure 3-3 PHYSICAL PROPERTIES CHARACTERIZATION & ISS REAGENT SELECTION Process Flow Diagram

Figure 3-4 PRELIMINARY ISS EVALUATION

Process Flow Diagram

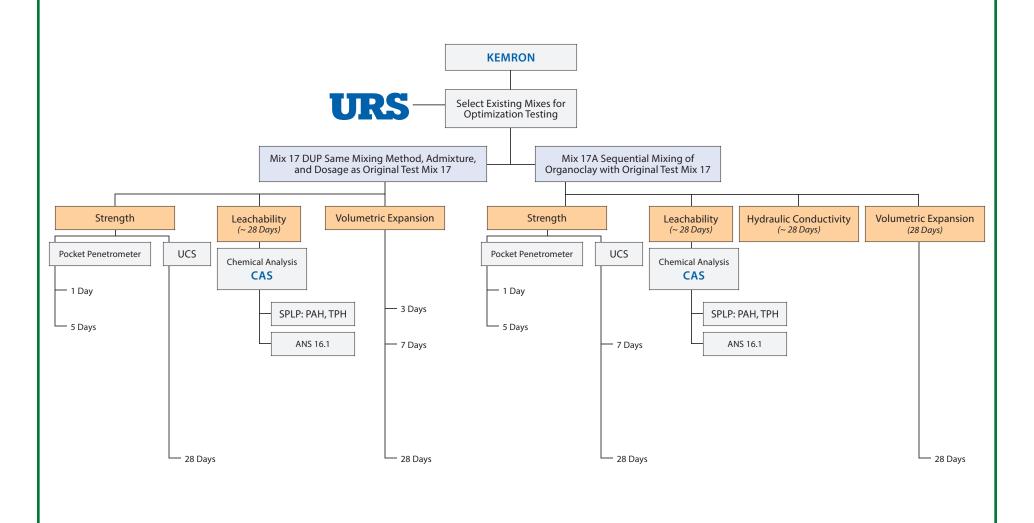

Screening of Initial 25 Test Mixes (Mix 1 to Mix 25)

Figure 3-5 OPTIMIZATION ISS EVALUATION

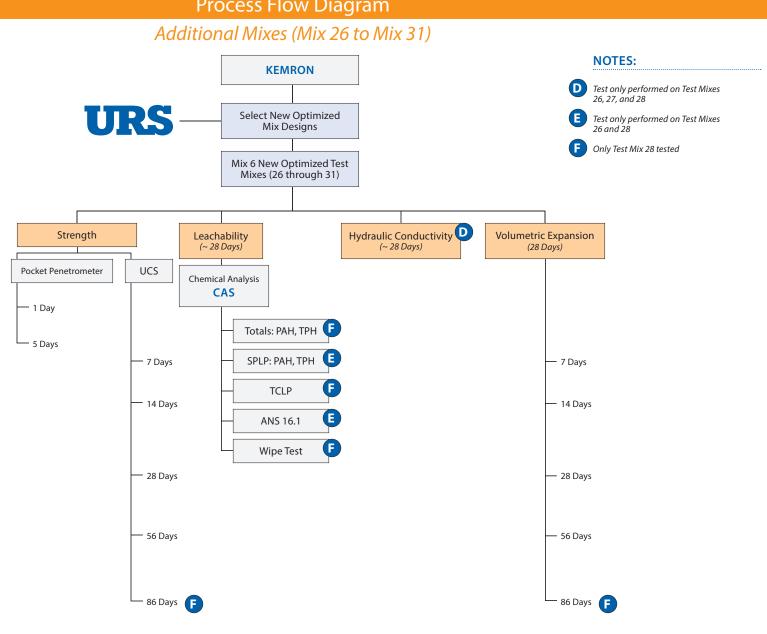
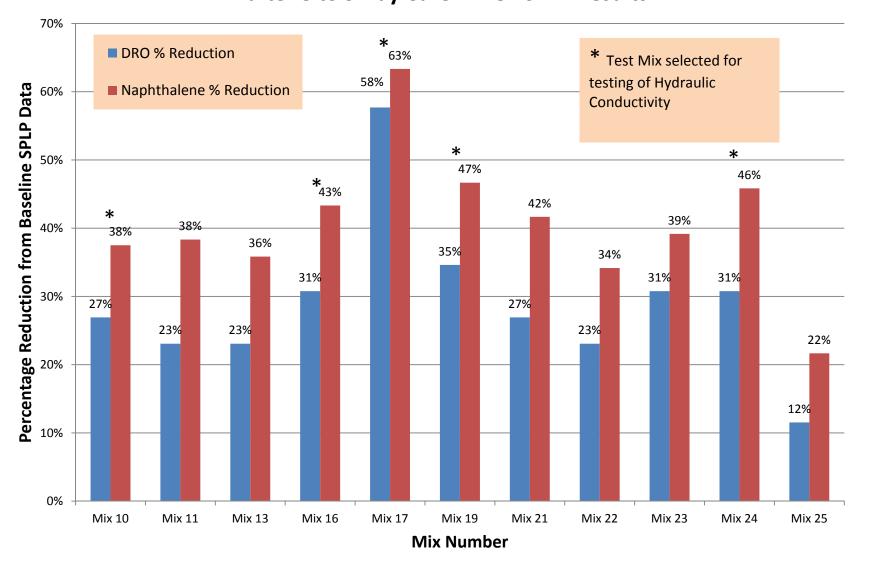
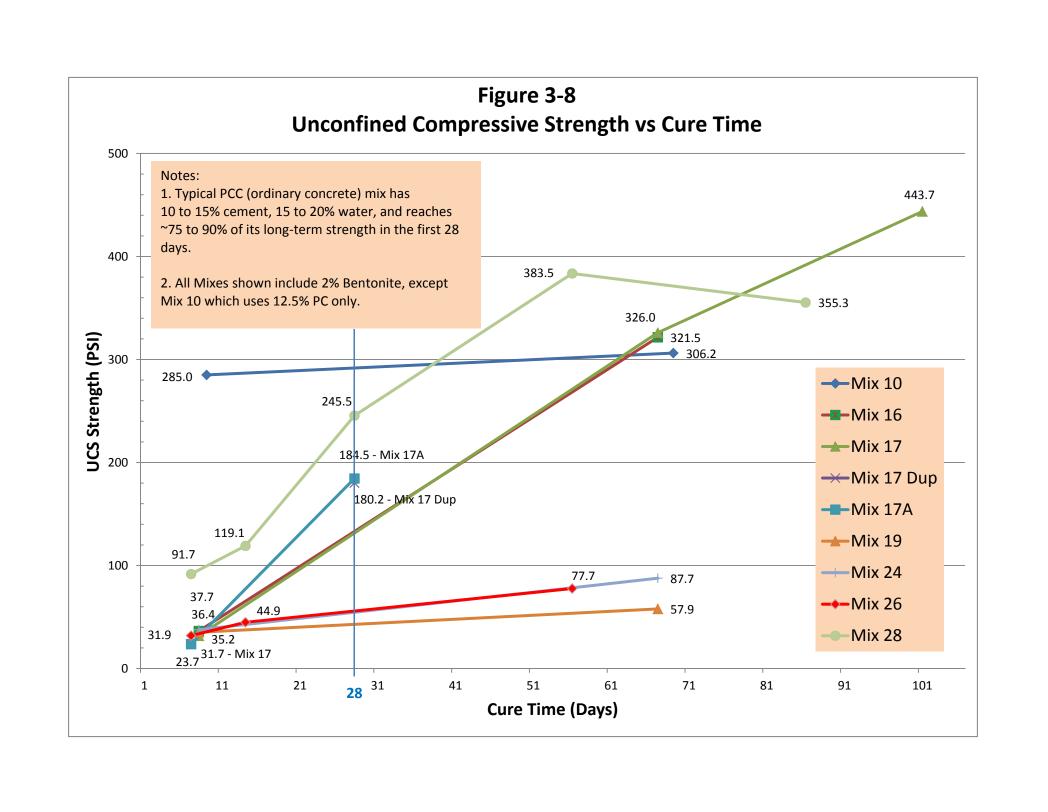
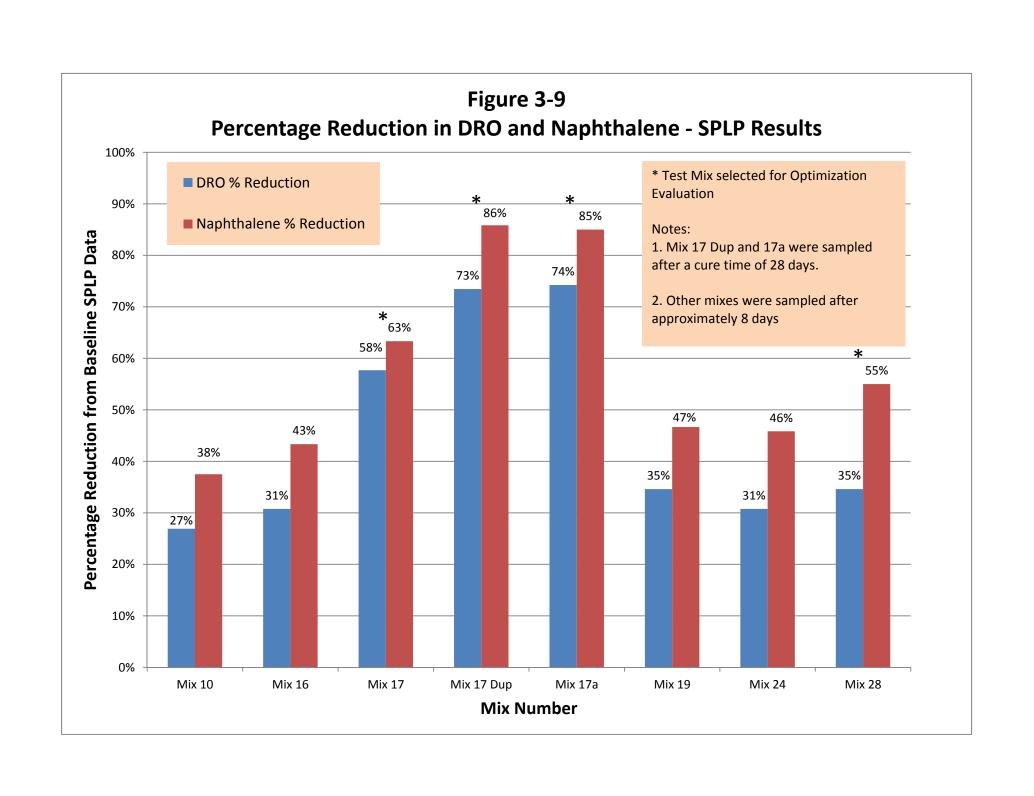
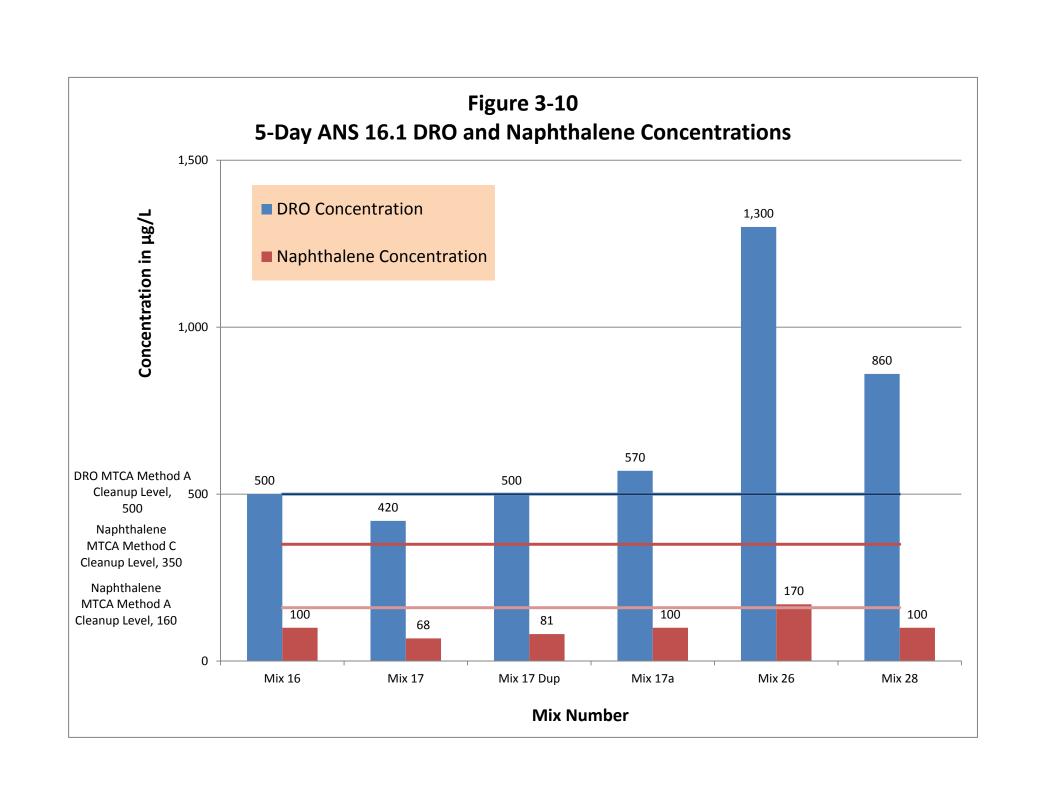
Process Flow Diagram

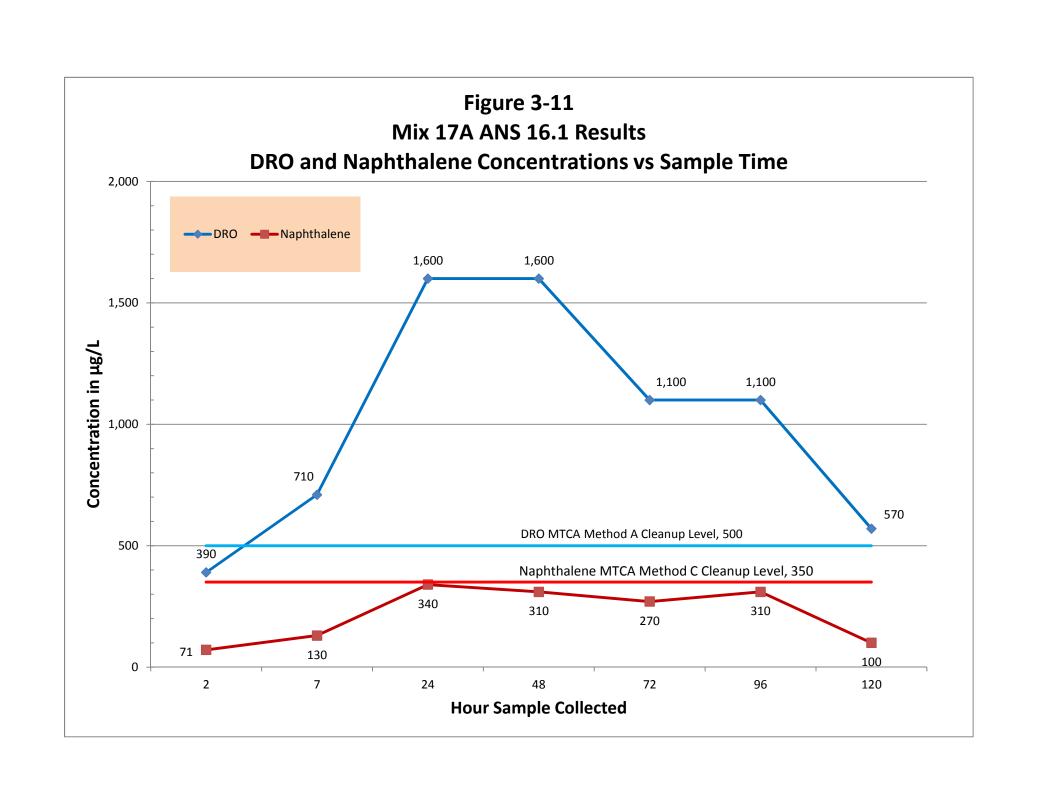
Mix 17 (NewCem Slag Cement / Bentonite / Organoclay SS 199, 12.5 / 2 / 2)

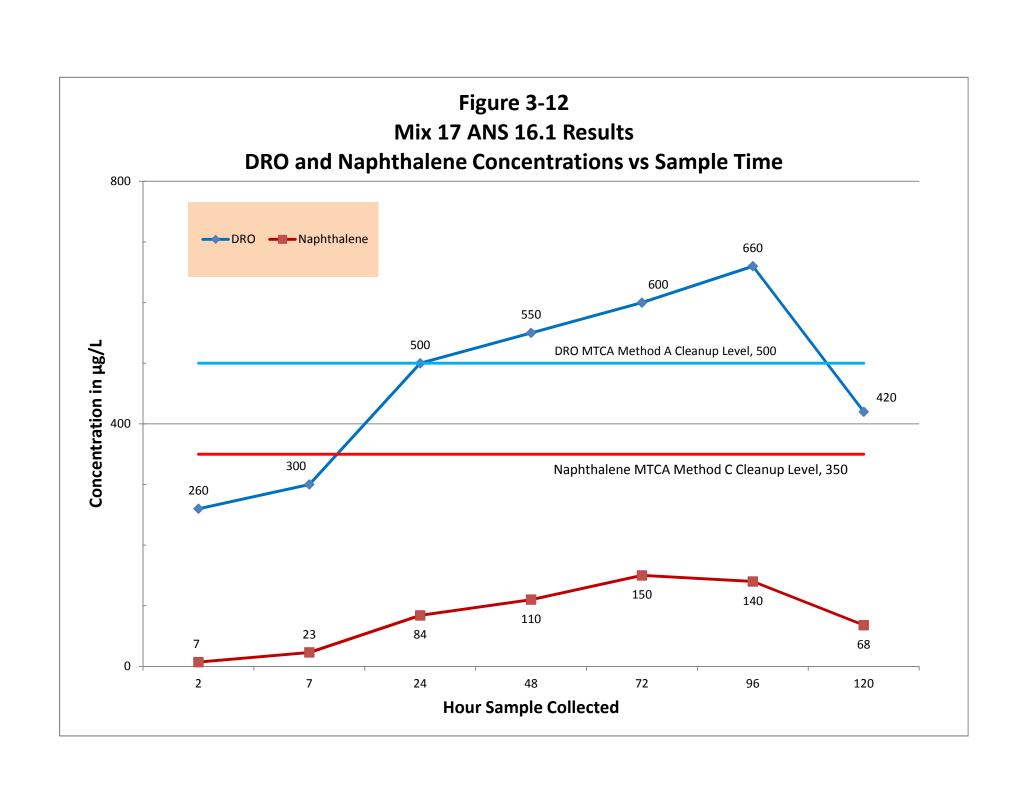
Figure 3-6

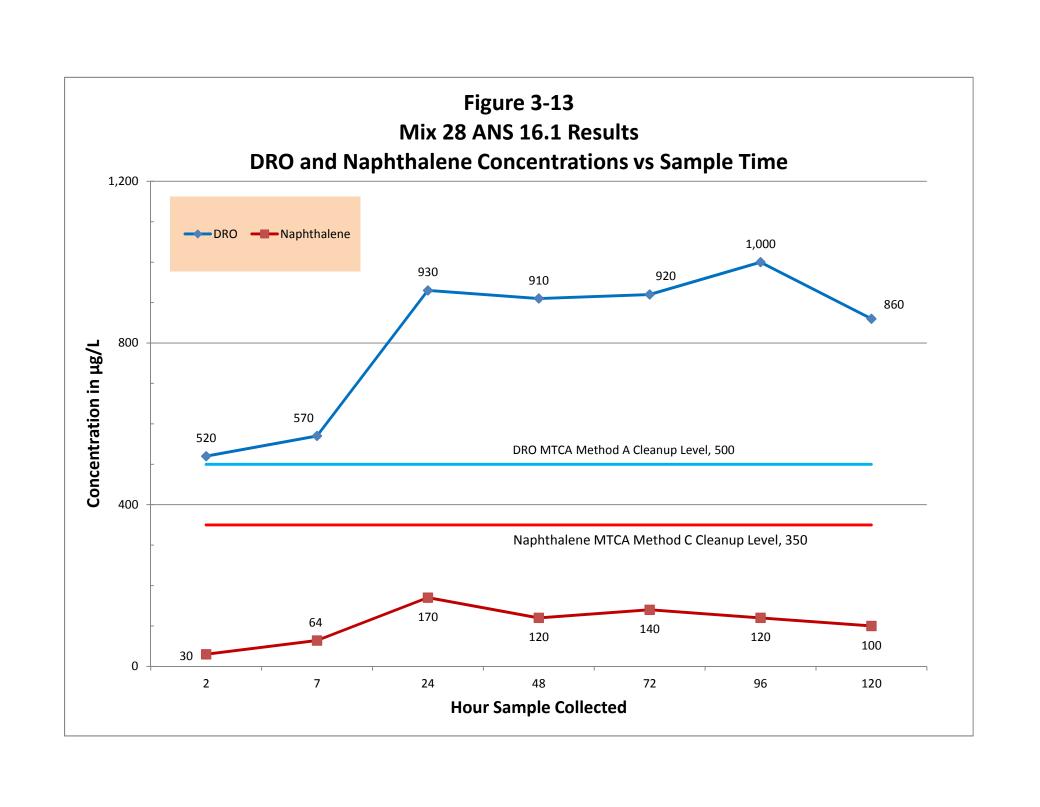
OPTIMIZATION ISS EVALUATION

Process Flow Diagram


Figure 3-7
Preliminary Leachability Evaluation
after 8 to 9 Day Cure Time - SPLP Results





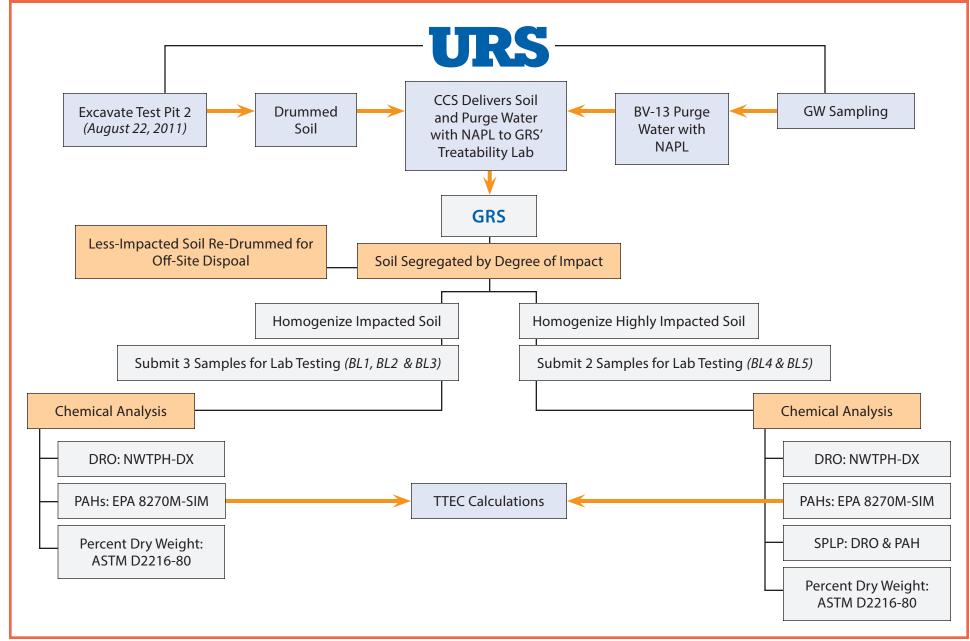


Figure 4-1 ISTR TREATABILITY STUDY SITE SOIL CHARACTERIZATION

Process Flow Diagram

Figure 4-2 ISTR TREATABILITY STUDY APPROACH

Process Flow Diagram

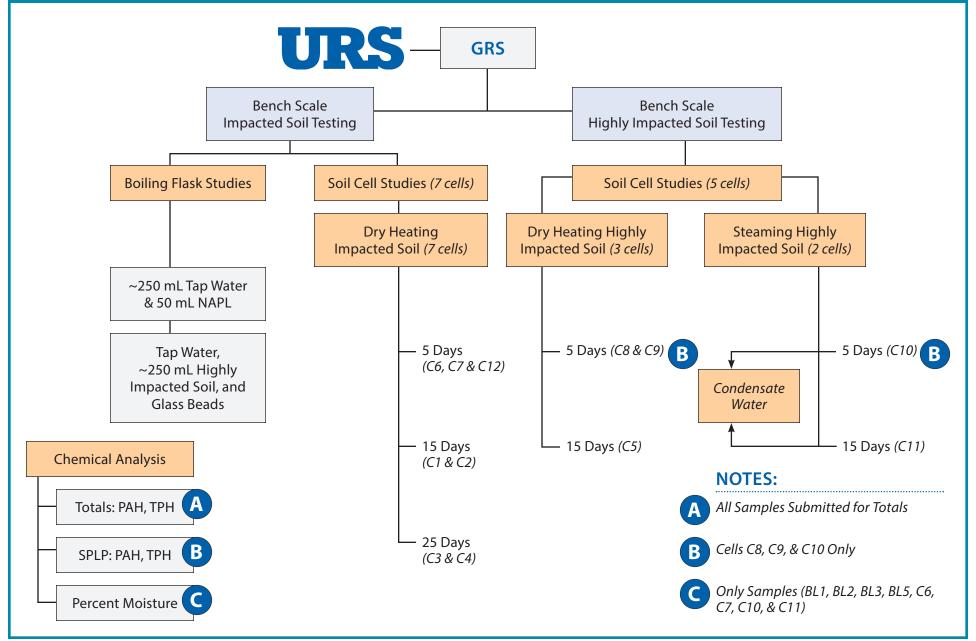
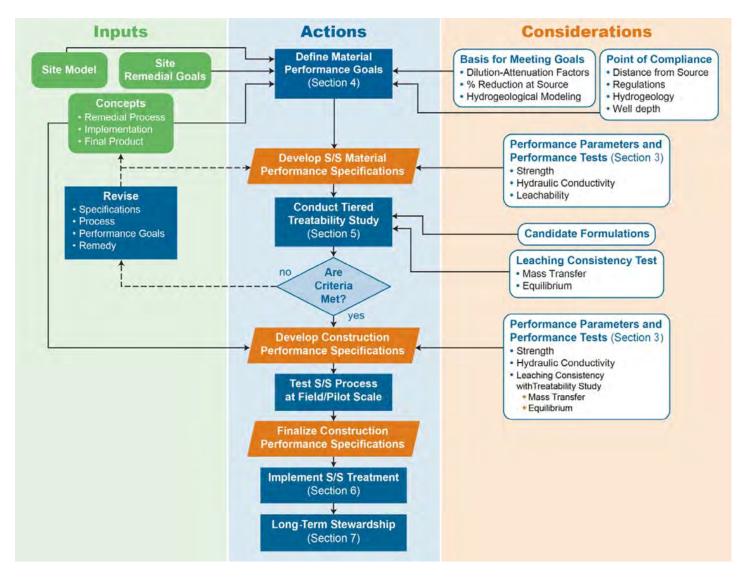



Figure 4-3 **Percentage Reductions in DRO and Naphthalene Concentrations** for Dry Heating of Impacted Soil 100% 94% 92% 91% Percentage Reduction from Baseline Concentrations 90% 83% 80% 76% 72% 70% 60% 50% 40% 30% ■ DRO % Reduction 20% ■ Naphthalene % Reduction 10% 0% 5 Days 15 Days 25 Days Samples at 5, 15, and 25 Days of Dry Heating

Figure 4-4 **Percentage Reductions in DRO and Naphthalene Concentrations** for Dry Heating of Highly-Impacted Soil 90% 84% Percentage Reduction from Baseline Concentrations 80% 68% 70% 64% 60% 50% 40% 30% ■ DRO % Reduction 20% ■ Naphthalene % Reduction 10% 0% 5 Days 15 Days Samples at 5 and 15 Days of Dry Heating

Figure 4-5 **Percentage Reductions in DRO and Naphthalene Concentrations** for Steam Heating of Highly-Impacted Soil 100% 94% 92% Percentage Reduction from Baseline Concentrations 90% 80% 73% 70% 60% 50% 50% 40% 30% ■ DRO % Reduction 20% ■ Naphthalene % Reduction 10% 0% 5 Days 15 Days Samples at 5 and 15 Days of Steam Heating

Source: Figure 4-1, Development of Performance Specifications for Solidification/Stabilization. Prepared by Interstate Technology & Regulatory Council Solidification/Stabilization Team, July 2011.

Figure 5-1. ITRC ISS Design and Implementation Process Diagram

Appendix A

Test Pit Excavation Photo Log

PHOTOGRAPHIC LOG

IP Longview

Test Pit Excavation
Port of Longview Maintenance Facility Area
Longview, Washington

URS Project No. 33763156

Date: August 22, 2011

Photo No.

Direction Photo Taken:

Northeast (in portrait view)

Description:

Test Pit TP-01 after excavating to the bottom of the Upper Sand. Geotextile can be observed at upper left, separating gravel fill above it and Upper Sand below it. No soil staining was observed in the Upper Sand below the geotextile, and no liquids were encountered in this test pit.

Photo No.

Direction Photo Taken:

Northwest

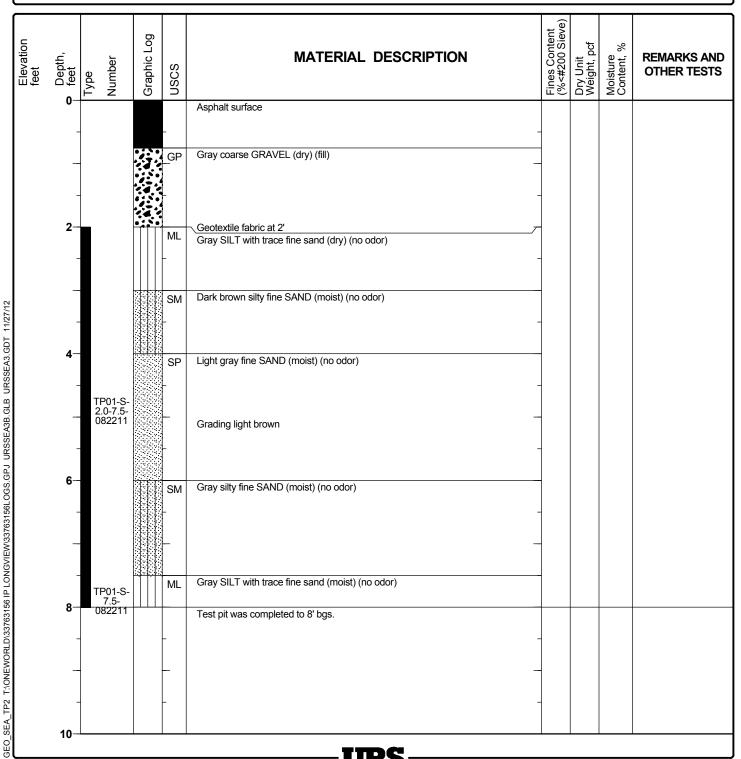
Description:

Test Pit TP-02 soon after excavating to the bottom of the Upper Sand.

Abandoned pipe that was encountered can be observed below the base of the pavement, and soil staining can be observed below the geotextile underneath the pipe.

Dark liquids with sheen can be observed entering the test pit from the sidewalls at the base of the excavation.

Appendix B
Test Pit Geologic Logs

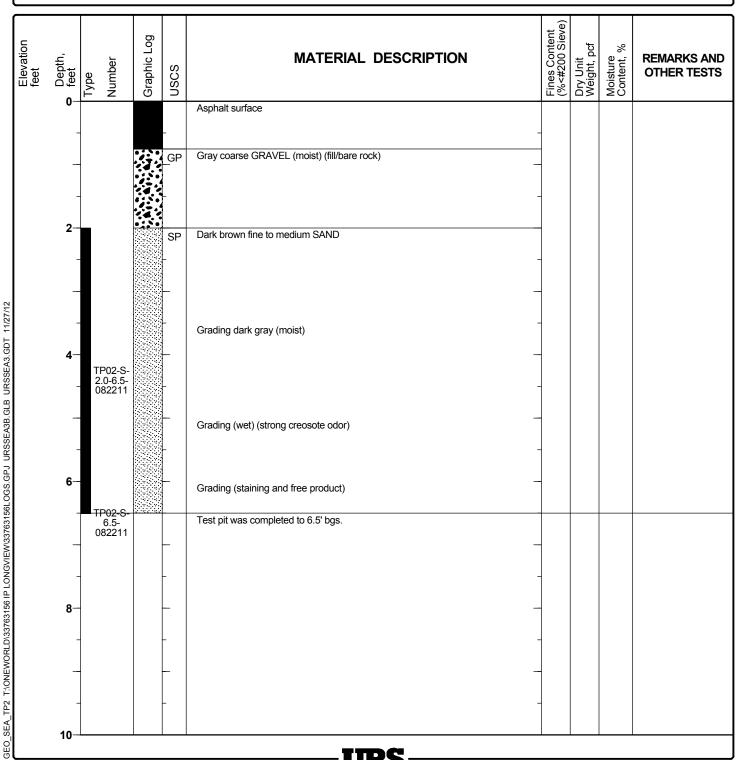

Project: IP Longview Treatability Study
Project Location: Longview, Washington

Project Number: 33763156

Log of Test Pit TP-01

Sheet 1 of 1

Date(s) Excavated 8/	/22/11	Logged By	IPV	Checked By	
Excavation Equipment CA	AT KCS1770	Excavation Contractor	ccs	Total Depth of Test Pit	8 feet
Excavation Dimensions ft	tx ft	Pit Alignment		Ground Surface Elevation	
Groundwater Lev	vel	Sampling Method(s)			
Location					


Project: IP Longview Treatability Study
Project Location: Longview, Washington

Project Number: 33763156

Log of Test Pit TP-02

Sheet 1 of 1

Date(s) Excavated	8/22/11	Logged By	IPV	Checked By	
Excavation Equipment	CAT KCS1770	Excavation Contractor	ccs	Total Depth of Test Pit	6.5 feet
Excavation Dimensions	ft x ft	Pit Alignment		Ground Surface Elevation	
Groundwater	Level	Sampling Method(s)			
Location		•			

Appendix C
Test Pit Backfilling Log

DAILY FIELD REPORT

Page 1 of 1

Date: 8/22/2011

Client or Owner: IP	Project Name: IP Longview In-situ Soil Stabilization	URS Inspector: J. Dabkowski / S. Bonnart
Job Location: Longview, Washington	Project No. 33763156	Day of Week : Monday
General Contractor: CCS	Grading Contractor:	Weather: P. Cloudy, 70's
GC Representative:	Grading Foreman:	Report Sequence:
Source and Description of Fill Material: 5/8"-0	Base Rock (137.0 PCF @ 11% moiture, ASTM D-1557)	

TEST NO.	TEST LOCATION	DEPTH (IN., BGS*)	REQUIRED % OF MAXIMUM DRY DENSITY	MAXIMUM DRY DENSITY (lbs/cu. ft.)	FILL MOISTURE (%)	TEST DRY DENSITY (lbs/cu. Ft.)	% OF MAXIMUM DRY DENSITY	REMARKS
			Tes	st Pit 1				
1	Insitu Density (SILT with sand)	36.0	n/a	n/a	38.6	73.7	n/a	
2	Backfilled Sand	36.0	n/a	n/a	21.9	91.3	n/a	with minimal compaction
3	Backfilled Sand	36.0	n/a	n/a	19.5	99.2	n/a	after additional compaction
4	Backfilled Sand	28.0	n/a	n/a	20.7	93.4	n/a	
5	Backfilled Sand	20.0	n/a	n/a	15.3	104.1	n/a	
6	Import Aggregate	8.0	95%	137.0	3.2	131.7	96.1%	
			Tes	st Pit 2				
7	Backfilled Sand	30.0	n/a	n/a	9.9	114.1	n/a	
8	Backfilled Sand	26.0	n/a	n/a	16.3	111.6	n/a	
9	Backfilled Sand	20.0	n/a	n/a	16.1	104.7	n/a	
10	Import Aggregate	8.0	95%	137.0	3.3	126.6	92.4%	Fail
10a	Import Aggregate	8.0	95%	137.0	5.1	133.4	97.4%	Retest/Pass

^{*} Below Ground Surface

SUPPLEMENTARY REPORT (Describe equipment used for hauling, spreading, watering, conditioning & compacting, also report thickness of lifts & number of roller trips)

Sebastien Bonnart (URS Portland) arrived on-site at 0730 hrs, Jim Dabkowski (URS Portland) at 0900 hrs to observe the excavation, sampling, backfilling and compaction of material within two test pits at the Port of Longview Maintenance Facility Area, a former IP site. Notes on excavating and sampling of the test pits are not provided in this daily field report. Please see field reports by others for this information.

Test Pit #1 was backfilled from the completion of the excavation to within 20 inches of the ground surface with excavated silt and sand. Compaction tests were recorded to assess the inplace density of the material. A proctor result was not available for the excavated material to determin a percent compaction. The general level of effort used to compact the material was observed and met typical visual compaction standards. A woven geotextile and geogrid was placed at the subgrade elevation spanning the width of the pavement sawcut. 4 inches of 5/8-inch aggregate was placed and compacted. An additional layer of geogrid was placed at this location. The remaining 8 inches of aggregate was then placed and compacted to the bottom of the pavement elevation. Density tests on this material met project specifications.

Test Pit #2 encountered free product at the bottom of the excavation, and the larger, existing aggregate base material was used to stabilize the bottom 12 inches of the excavation. Additional, import 5/8-inch material was then used to backfill the test pit above the surface of the free product. Five, 80 lb bags of cement was added to the placed material, mixed in place and compacted. The addition of the cement adsorbed the moisture and allowed for reasonable visual compactive effort to be applied. Over time this zone will become harder as the cement hardens. The remainder of the excavation was backfilled with excavated silty sand material. Compaction tests were recorded to assess the inplace density of the material. A proctor result was not available for the excavated material to determin a percent compaction. The general level of effort used to compact the material was observed and met typical visual compaction standards. A woven geotextile and geogrid was placed at the subgrade elevation spanning the width of the pavement sawcut. 4 inches of 5/8-inch aggregate was placed and compacted. An additional layer of geogrid was placed at this location. The remaining 8 inches of aggregate was then placed and compacted to the bottom of the pavement elevation. Density tests on this material met project specifications.

Materials Testing & Consulting, Inc.

Geotechnical Engineering • Special Inspection • Materials Testing • Environmental Consulting

Proctor Report

	ject: IP I					Received:	_	Unified S	Soils Classifi	cation Syste	m, ASTM	D-2487	Ì		ASTM C-	136	
	ct#: 11S					npled By: (Vell-graded Sai	nd with Silty (Clay and Gra	vel, Crushed	Sieve	Size	Percent	Specif	ications
		S-PNE Co	р			e Tested:		Sample (Color				US	mm	Passing	Max	Min
	rce: Sto				T	ested By: 1	FP/MG	Grey					12.00 ⁿ	300,00			
Samı	ole#: 11-	479											10.00"	250,00			
			Sample Pre	pared:		Moist:	X		Manu				8.00"	200,00			
						Dry:			Mechanic				6.00"	150.00			
			Test Sta	ndard;		TM D698:			AASHTO T 9			Method	4.00"	100.00			
						M D 1557: 2			AASHTO T 18			С	3,00"	75.00			
Ass	sumed Sp.	Gr.	Poin			rcent	Dry			ncorrected P			2.50"	63.00			
	2.90		Numb	er		oisture	Density			ry Density	•	mum Moist.	2.00"	50.00			
	5 1	_	I			.5 %	124.0		137.0	lbs/ft ³		11.0 %	1.75"	45.00			
7			2			.6 %	128.6						1.50"	37.50			
			3			.8 %	137.6			v/ Oversize C		•	1.25"	31.50			
ACC	REDITE	ਜੀ ਜੀ	4		10	0.8 %	136.2			ry Density	Opti	mum Moist.	1.00"	25.00			
	1368 01, 1368.0								N/A	lbs/ft ³		N/A	3/4"	19.00	100 %	100.0 %	100.0 %
		-											5/8"	16.00	100 %		
						Iniatuus Di							1/2"	12.50	96 %	100.0 %	80.0 %
138.0 -					10	ioisture De	ensity Relat	nonsnip					3/8"	9.50	89 %		
130,0 -	[,	•						1/4"	6.30	75 %		
136.0 -							÷			.,,~.(#4	4.75	66 %	66.0 %	46.0 %
134.0 -	<u> </u>					! !		ļ 	ļ				#8	2.36	10.07		
	E			1			1	1			144	-	#10	2.00	48 %		
E 132.0 -	È						-	+					#16	1.18	21.0/		
E 130.0 -	<u></u>			 	/	i !			ļ ļ .				#20	0.850	31 %		
132.0 -					\langle	1	1	1					#30 #40	0.600 0.425	22 %	24.0 %	8.0 %
A 120.0	F					!	!						#40 #50	0.425	22 %	24.0 %	8.0 %
126,0 -	:						ļ	ļ					#60	0.300	17%		
124.0 -	<u> </u>		<u> </u>			; 	ļ	į	ļļ.				#80	0.230	15 %		
	F					į	1	1					#100	0.150	13 %		
(22.0 - 3	,	* , 4%	5%	6%	, , ,	** · · · · · · · · · · · · · · · · · ·	1% 5	 	 	12%	13%	14%	#140	0.106	13 /0		
·							ent Moisture		1170		.570	.470	#170	0.090			
							•	Data Points	7.	ro Air Voids Cı	HEVA -	— Curve Fit	#200	0.075	9.7 %	10.0 %	0.0 %
<u></u>							Ψ.	Data 1 Oillis		io Ali Yolus Cl	ui ve	Curve Fil	Specs:	0,075		eets Specs?	
													11 ^	SDOT 9-0	3.9(3) Top	•	
	AST	ГМ D-4718,	Misc. Overs	ize Cor	rection	Values			e	% Oversize N	Iat'l: 0%				o., (5) 10p	course	
		% Oversize	Correct			timum	9	6 Oversize	Corrected	Optim			9	6 Gravel:	34.0%	D _{ctm} ;	0.080
		Retained	Densi	y	Me	oisture		Retained	Density	Moistu				% Sand:	56.2%		0.801
		5%	138.7	·	1	0.5%		20%	144.0	8.9%			% S	ilt&Clay:			3.856
		10%	140.4		1	0.0%		25%	145.8	8.4%	ó				2.07		n/a
		15%	142.2		ç	9.4%		30%	147.8	7.9%	ó			Ctt:	47.99	PL:	n/a
														FM:		PI:	n/a
		Copyright	Spears Engine	ering &	Technical	Services PS,	1996-98						Fra	acture %:		Sand Eq.:	
results apply	conty to actual	locations and mate	rials tested. As a m	utual protec	tion to clien	ts the nublic and o	orselves all reports	are submitted as th	e confidential property	of clients, and author	orization for publica	tion of statements a	anclusions or e	stracts from or	regarding our rec	arte is recorned no	. C

All results apply only to actual tocations and materials tested. As a mutual protection to clients, the purple and ourserves, all reports are submitted as the contactnutal property of clients, and authorization of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

Comments:

Reviewed by:

Mark Gordon, WARO Supervising Laboratory Manager, SW Region

Appendix D

ISS Treatability Study Data Summary Table

Data Summary Table																						
Sample Type:								UNTRI			Ţ	INTREATE	D				TREAT	ED (PRELIMINAR	Y MIXES)			
Sample ID:		MTCA Scr	reening Levels		Universal	Alternate		TP	-01			TP-01						TP-01				
Sample Depth (ft bgs):					Treatment	Treatment		2.0-7.5		7.5		2.0-7.5						2.0-7.5				
Kemron Sample Number:					Standards 1	Sandards								0397-001	0397-002	0397-003	0397-004	0397-005	0397-006	0397-007	0397-008	0397-009
Kemron Reagent Type						(10xUTS)								Portland Cement	Portland Cement	Portland Cement /	Portland Cement /	Portland Cement / Bentonite /	Portland Cement /	NewCem Slag	50:50 TerraCem	50:50 TerraCem /
Kemron Keagent Type							No	n-Homogeni	zed		1	Homogenize	d	Toruma comen	romana cemen	Bentonite	Hydrated Lime	Organoclay SS-199	Class "C" Flyash	Cement / Bentonite	50.50 Terracem	Bentonite
Reagent Addition % by wet soil wt.														7.5	12.5	12.5 / 2	7.5 / 7.5	12.5 / 2 / 0.5	7.5 / 7.5	15 / 2	12.5	15 / 2
Date Test Mix Prepared:														10/5/2011	10/5/2011	10/6/2011	10/5/2011	10/5/2011	10/6/2011	10/6/2011	10/5/2011	10/6/2011
Date Sample Collected:	Method B		Method C																			
				1				8/22/2011		8/22/2011		9/1/2011		NA	NA	NA	NA	NA	NA	NA	NA	NA
TDII	Groundwater	Soil - Direct Contact	Soil - Protection of	Groundwater			Total	TCLP	SPLP	Total	Total	TCLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP
ТРН	(ug/L)	(mg/kg)	Groundwater (mg/kg) ³	(ug/L)	ug/kg	ug/kg	(mg/kg)	(ug/L)	(ug/L)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	45	270 U	250 U	56	42	250 UJ	280 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	390	530 U	500 U	160 J	120 J	500 UJ	560 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs	ug/L	ug/kg	ug/kg	ug/L	ug/kg	ug/kg	Total	TCLP	SPLP	Total	Total	TCLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP
Alis	ug/L	ug/kg	ug/kg	ug/L	ug/kg	ug/kg	(ug/kg)	(ug/L)	(ug/L)	(ug/kg)	(ug/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Naphthalene	160	70,000,000	9,700	350	5,600	56,000	110	1.5 J	1.2 J	220	140	1.7 U	0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methyl Naphthalene	32	14,000,000	4,200	70	NE	NE	45	0.33 J	0.23 J	79	92	0.49 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NE	NE	210,000	NE	3,400	34,000	2.0	0.20 U	0.20 UJ	5.7	11	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	960	210,000,000	210,000	2,100	3,400	34,000	200	1.6 J	1.3 UJ	430	220	2.0 U	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	16	3,500,000	3,700	35	NE	NE	96	0.38 J	0.29 UJ	150	110	0.74 U	0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	640	140,000,000	220,000	1,400	3,400	34,000	84	0.35 J	0.28 UJ	130	84	0.57 U	0.39	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	NE	NE	5,000,000	NE	NE	NE	44	0.20 U	0.20 UJ	110	100	0.30 U	0.21	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	4,800	1,050,000,000	5,000,000	10,500	3,400	34,000	4.3	0.20 U	0.20 UJ	35	39	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	640	140,000,000	1,400,000	1,400	3,400	34,000	7.7	0.20 U	0.20 UJ	380	100	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	480	105,000,000	1,400,000	1,050	8,200	82,000	5.4	0.20 U	0.20 UJ	260	80	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene ²	0.12	180,000	8,600	1.2	3,400	34,000	1.9	0.20 U	0.20 UJ	80	29	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene ²	12	18,000,000	960,000	120	3,400	34,000	3.1	0.20 U	0.20 UJ	130	59	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	6,800	68,000	4.7	0.20 U	0.20 UJ	170	290	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene ²	1.2	1,800,000	300,000	12	6,800	68,000	1.1 J	0.20 U	0.20 UJ	46	49	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
` '	0.012	18,000	2,300																			
Benzo(a)pyrene ²				0.12	3,400	34,000	6.1	0.20 U	0.20 UJ	160	300	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	3,400	34,000	5.8	0.20 U	0.20 UJ	180	300	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene ²	0.012	18,000	4,300	0.12	8,200	82,000	1.8 U	0.20 U	0.20 UJ	27	40	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	1,800	18,000	6.1	0.20 U	0.20 UJ	170	260	0.20 U	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
			тт	TFC (screening c	riteria based on	hanzo(a)nyrana	7.5	NA	NA	212	371	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			11	EC (screening c	TCLP	TCLP	Total	TCLP	SPLP	Total	Total	TCLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP
Metals	ug/L	mg/kg	mg/kg	ug/L	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			0.34	0.58	5	50																
Arsenic	0.058	88					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	3,200	700,000	5,768	7,000	21	210	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	16	NE	4.8	35	0.11	1.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	24,000 (Cr ⁺³) /	5,250,000 (Cr ⁺³) /	1,050,210 (Cr ⁺³) /	52,500 (Cr ⁺³) /																		
Chromium	48 (Cr ⁺⁶)	10,500 (Cr ⁺⁶)	40 (Cr ⁺⁶)	105 (Cr ⁺⁶)	0.60 (total)	0.60 (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	NE	NE NE	NE NE	NE	0.75	7.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	NE	NE	NE	NE	0.025	0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
·																						
Selenium	80	17,500	18	175	5.7	57.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	80	17,500	30	175	0.14	1.40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cure Days	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	9	9	8	9	8	8	NA	9	8
Unconfined Compressive Strength																						
Moisture Content (%)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	32.7	31.7	47.4	39.3	44.4	32.3	NA	34.2	48.8
Bulk Density (lb/fi³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	111.6	114.4	107.9	111.5	108.6	117.3	NA	113.8	105.6
Dry Density (lb/ff³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.1	86.9	73.2	80.0	75.2	88.7	NA	84.8	71.0
UCS (lb/in ²)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	69.2	169.3	44.9	27.1	70.3	64.5	NA	58.7	29.4
Permeability (k)																						
Moisture Content (%)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bulk Density (lb/f ³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dry Density (lb/ft³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perm (cm/sec)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cure Days	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volumetric Expansion (%)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Estimated Costs 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	\$82,800	\$138,000	\$161,040	\$264,600	\$351,060	\$132,300	\$163,440	\$120,000	\$167,040

Notes:
Soil (mg/kg or ug/kg) numbers in bold font meet or exceed a MTCA soil cleanup level. Underlined numbers meet or exceed the Universal Treatment Standard.

TPH - Total Petroleum Hydrocarbons

R:\Projects\WCIA\02\IP\Longview\MFA CAP\MFA RI-FS\2012 In-Situ Soil Stabilization Treatability Testing\Task 40 - Final Report\Appendix D\Client Review Draft 062013\Appendix D - ISS Study Summary Table (All Results-TPH.PAH) 6/20/2013 URS CORPORATION Page 1 of 5

ug/L - microgram per liter

ANS 16.1 and BV-13 water numbers in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded. Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A, B, and C from Ecology website downloaded

November 2011 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx). (I) - Industrial land use (R) - Unrestricted land use ¹ Universal Treatment Standards (UTS, 40 CFR 268.48) for nonwastewaters.

 $^{^{2}\,\}mathrm{These}$ compounds are carcinogenic PAHs and are subject to TTEC calculations. ³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁽http://www.ecy.wa.gov/programs/tcp/tools/toolmain.html) except for dibenzofuran and 2-methylnaphthalene which were obtained from the J&E model (USEPA 2004).

4TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

 $^{^{6}}Laboratory\ was\ unable\ to\ differenate\ between\ benzo(b) fluoranthene\ and\ benzo(k) fluoranthene.\ Laboratory\ reported\ result\ as\ benzo(b) fluoranthene.$

J - estimated value

ft bgs - feet below ground surface
NA - not applicable, not analyzed, or not available mg/kg - miligram per kilogram NE - not established

PAHs - Polynuclear Aromatic Hydrocarbons SPLP - Synthetic Precipitation Leaching Procedure TCLP - Toxicicity Characteristic Leaching Procedure TTEC - Total Toxic Equivalent Concentration

ug/kg - microgram per kilogram

U - Compound was analyzed for but not detected above the reporting limit shown. UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

Summary Table																					
Sample Type:								UNTR	EATED			UNTREATED)			7	TREATED (PREL	IMINARY MIXES	S)		
Sample ID:		MTCA Sc	reening Levels		Universal	Alternate			P-02			TP-02						2-02			
Sample Depth (ft bgs): Kemron Sample Number:					Treatment Standards ¹	Treatment Sandards		2.0-6.5		6.5		2.0-6.5		0397-010	0397-011	0397-012	0397-013	0397-014	0397-015	0397-0	
Kemron Reagent Type	,					(10xUTS)								Portland Cement	Portland Cement / Bentonite	Portland Cement / Bentonite	Portland Cement /	Portland Cement /	Portland Cement /	NewCem Cement / Ber	
							N	on-Homogen	ized			Homogenized		12.5			Hydrated Lime 7.5 / 7.5	Hydrated Lime 7.5 / 12.5	Hydrated Lime	Organoclay	
Reagent Addition % by wet soil wt. Date Test Mix Prepared:														10/5/2011	12.5 / 2 10/6/2011	17.5 / 2 10/7/2011	10/5/2011	10/5/2011	10 / 12.5 10/5/2011	12.5 / 2 / 10/7/20	
Date Sample Collected:	Method B		Method C					8/22/2011		8/22/2011		9/1/2011		10/24/2011	10/24/2011	NA	10/24/2011	NA	NA	10/24/2011	Start Date 02/13/2012
ТРН	Groundwater (ug/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg)	Groundwater (ug/L)	ug/kg	ug/kg	Total (mg/kg)	TCLP (ug/L)	SPLP (ug/L)	Total (mg/kg)	Total (mg/kg)	TCLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)	5 Day (ug/L)
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	9,000	25,000	27,000	9,300	8,500	26,000	26,000	19,000	20,000	NA	20,000	NA	NA	18,000	500
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	1,800 J	500 U	510	2,000 J	1,600 J	530 U	560 U	550 U	570	NA	610	NA	NA	500 U	520 U
		,					Total	TCLP	SPLP	Total	Total	TCLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	5 Day
PAHs	ug/L	ug/kg	ug/kg	ug/L	ug/kg	ug/kg	(ug/kg)	(ug/L)	(ug/L)	(ug/kg)	(ug/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Naphthalene	160	70,000,000	9,700	350	5,600	56,000	35,000	13,000	12,000	46,000	420,000	12,000	12,000	7,500	7,400	NA	7,700	NA	NA	6,800	100
2-Methyl Naphthalene	32	14,000,000	4,200	70	NE	NE	48,000	1,100	1,000	38,000	140,000	1,100	1,200	840	890	NA	820	NA	NA	780	13
Acenaphthylene	NE	NE	210,000	NE	3,400	34,000	1,100	10	10	1,200	1,800	11	12	9.5	9.1	NA	8.5	NA	NA	7.3	0.13
	960	210,000,000	210,000	2,100	3,400	34,000	81,000	460	420	82,000	110,000	460	540	420	430	NA	380	NA	NA	400	10
Acenaphthene																					
Dibenzofuran	16	3,500,000	3,700	35	NE	NE	60,000	260	240	58,000	73,000	280	320	270	270	NA	240	NA	NA	230	6.7
Fluorene	640	140,000,000	220,000	1,400	3,400	34,000	<u>85,000</u>	230	210	90,000	97,000	250	300	240	240	NA	210	NA	NA	210	6.8
Phenanthrene	NE	NE	5,000,000	NE	NE	NE	240,000	210	210	240,000	260,000	240	360	240	250	NA	210	NA	NA	210	17
Anthracene	4,800	1,050,000,000	5,000,000	10,500	3,400	34,000	45,000	18	31	<u>77,000</u>	49,000	25	51	35	33	NA	29	NA	NA	30	1.7
Fluoranthene	640	140,000,000	1,400,000	1,400	3,400	34,000	120,000	21	40	130,000	130,000	22	73	22	20	NA	19	NA	NA	22	4.0
Pyrene	480	105,000,000	1,400,000	1,050	8,200	82,000	74,000	11	23	77,000	74,000	11	42	11	10	NA	9.1	NA	NA	11	1.7
Benzo(a)anthracene ²	0.12	180,000	8,600	1.2	3,400	34,000	17,000	0.36	3.8	20,000	20,000	0.43	7.9	0.42	0.57	NA	0.36	NA	NA	0.47	0.1
Chrysene 2	12	18,000,000	960,000	120	3,400	34,000	14,000	0.35	3.4	17,000	17,000	0.41	7.1	0.40	0.28	NA	0.31	NA	NA	0.38	0.1
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	6,800	68,000	<u>7,900</u>	0.20 U	1.7	10,000	9,300	0.20 U	3.3	0.20 U	0.046 J	NA	0.037 J	NA	NA	0.062 J	0.013
Benzo(k)fluoranthene ²	1.2	1,800,000	300,000	12	6,800	68,000	2,700	0.20 U	0.67	3,000	3,300	0.20 U	1.0	0.20 U	0.20 U	NA	0.20 U	NA	NA	0.037 J	0.004 J
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	3,400	34,000	<u>4,400</u>	0.20 U	1.0	<u>5,400</u>	<u>5,500</u>	0.20 U	1.8	0.20 U	0.20 U	NA	0.20 U	NA	NA	0.20 U	0.0062
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	3,400	34,000	1,300	0.20 U	0.36	1,800	1,700	0.20 U	0.38	0.20 U	0.20 U	NA	0.20 U	NA	NA	0.031 J	0.0015 J
Dibenzo(a,h)anthracene ²	0.012	18,000	4,300	0.12	8,200	82,000	310	0.20 U	0.20 U	420	410	0.20 U	0.20 U	0.20 U	0.20 U	NA	0.20 U	NA	NA	0.20 U	0.00086 J
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	1,800	18,000	1,100	0.20 U	0.39	1,500	1,400	0.20 U	0.36	0.20 U	0.20 U	NA	0.20 U	NA	NA	0.20 U	0.0019 J
			T	TEC (screening c	riteria based on	benzo(a)pyrene)	7,461	0.04	1.7	9,092	9,141	0.05	3.1	0.046	0.064	NA	0.043	NA	NA	0.064	0.019
	_		_		TCLP	TCLP	Total	TCLP	SPLP	Total	Total	TCLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	SPLP	5 Day
Metals	ug/L	mg/kg	mg/kg	ug/L	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Arsenic	0.058	88	0.34	0.58	5	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	3,200	700,000	5,768	7,000	21	210	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	16	NE	4.8	35	0.11	1.10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	24,000 (Cr ⁺³) /	5,250,000 (Cr ⁺³) /	1,050,210 (Cr ⁺³) /	52,500 (Cr ⁺³) /																	
Chromium	48 (Cr ⁺⁶)	10,500 (Cr ⁺⁶)	40 (Cr ⁺⁶)	105 (Cr ⁺⁶)	0.60 (total)	0.60 (total)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	NE	NE	NE	NE	0.75	7.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	NE	NE	NE	NE	0.025	0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	80	17,500	18	175	5.7	57.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	80	17,500	30	175	0.14	1.40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cure Days	NA	NA	NA	NA	NA	NA								9 69	8	8	9	9	9	8 67	
Unconfined Compressive Strength																					
Moisture Content (%)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.1 23.2		41.4	30.8	34.2	34.3	44.5 38.7	NA
Bulk Density (lb/fi³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	127.1 122.8		108.8	115.1	110.6	110.8	108.7 91.7	NA
Dry Density (lb/fl³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	102.4 99.7		77.0	88.0	82.4	82.5	75.2 66.1	NA
UCS (lb/in²)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	285.0 306.2	47.6	78.1	32.4	14.9	31.9	36.4 321.5	NA
Permeability (k) Moisture Content (%)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 25.2	NA	NA	NA	NA	NA	NA 39.3	NA
Bulk Density (lb/f ³)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 123.9		NA NA	NA NA	NA NA	NA NA	NA 39.3 NA 110.2	NA NA
Dry Density (lb/fi³)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 98.9		NA NA	NA NA	NA NA	NA NA	NA 79.1	NA NA
Perm (cm/sec)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 7.1E-0		NA NA	NA NA	NA NA	NA NA	NA 79.1 NA 3.2E-08	
Cure Days	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volumetric Expansion (%)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 021 c 240	NA	NA	NA	NA	NA
Estimated Costs 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	\$138,000	\$161,040	\$216,240	\$264,600	\$385,800	\$413,400	\$330,0	160

URS CORPORATION Page 2 of 5

Notes:
Soil (mg/kg or ug/kg) numbers in **bold** font meet or exceed a MTCA soil cleanup level. <u>Underlined</u> numbers meet or exceed the Universal Treatment Standard.

ANS 16.1 and BV-13 water numbers in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded. Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A, B, and C from Ecology website downloaded

 $No wear be 2011 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx). \hspace{0.5cm} (I) - Industrial I and use \\ {}^{1} Universal Treatment Standards (UTS, 40 CFR 268.48) for nonwastewaters. } \hspace{0.5cm} (R) - Unrestricted I and use \\ {}^{2} Universal Treatment Standards (UTS, 40 CFR 268.48) for nonwastewaters. }$

 $^{^{2}\,\}mathrm{These}$ compounds are carcinogenic PAHs and are subject to TTEC calculations.

³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁽http://www.ecy.wa.gov/programs/tep/tools/toolmain.html) except for dibenzofuran and 2-methylnaphthalene which were obtained from the J&E model (USEPA 2004).

4 TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

⁵ See Table 3 for estimated costs calculation details

⁶ Laboratory was unable to differenate between benzo(b)fluoranthene and benzo(k)fluoranthene. Laboratory reported result as benzo(b)fluoranthene.

J - estimated value ft bgs - feet below ground surface

NA - not applicable, not analyzed, or not available PAHs - Polynuclear Aromatic Hydrocarbons mg/kg - miligram per kilogram NE - not established

SPLP - Synthetic Precipitation Leaching Procedure TCLP - Toxicicity Characteristic Leaching Procedure TPH - Total Petroleum Hydrocarbons TTEC - Total Toxic Equivalent Concentration ug/L - microgram per liter

ug/kg - microgram per kilogram U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

Appendix D

ISS Treatability Study Data Summary Table

bility Study Data Summary Ta	able					1	GW TREATED (PRELIMINARY MIX WITH ADDITIONAL TESTING)																				
Sample Type:	4	MTCLE	orooning Lovels		Universal	Altomoto	GW BV-13		TREA	TED (PREL				AL TESTIN	NG)		ļ		TRE		TIMIZATIO	N TESTING	ON ORIG	INAL MIX I	DESIGN)	TP-	02
Sample ID: Sample Depth (ft bgs):		MTCA So	creening Levels		Universal Treatment	Alternate Treatment	BV-13 NA					2 (continued 5 (continue									TP-02 2.0-6.5					TP- 2.0-	
Kemron Sample Number:					Standards 1	Sandards	BV-13					397-017	u)								97-017A					0397-01	
Varran Bassant Torra						(10xUTS)				NowC	em Slag Cement	/ Pantonita / C	heannaday CC 1	00					NawCarr	Slog Comont /	Bentonite / Orga	mooley CC 100				NewCem Sla	ig Cement /
Kemron Reagent Type										NewC	em siag Cemen	/ Bentonite / C	nganociay 55-1	,,					NewCell	i Siag Cement /	Bentonne / Orga	шостау 33-199				Bentonite / Orga	noclay SS-199
Reagent Addition % by wet soil wt.												2.5 / 2 / 2									2.5 / 2 / 2					12.5 /	
Date Test Mix Prepared:		I					NA				1	0/7/2011								1/1	17/2012					1-17-	
Date Sample Collected:	Method B		Method C				2/16/2012	10	/24/2011			ANS 16	.1 Start Date	01/16/2012			2/15/2012			A	NS 16.1 Start	t Date 2/13/2	012			2/15/2012	ANS 16.1 Start Date 02/13/2012
	C11	S. T. Discort Courts of	Soil - Protection of	G			Cuana dimatan		CDI D	2 110	7 HD	24 HR	2 Days	2 Dan	4 Don	5 Dani	28 Day SPLP	2 HR	7 HD	24 HD	2 Dani	2 Dani	4 Days	5 Dan	5 Day DUP	28 Day SPLP	5 Days
ТРН	Groundwater (ug/L)	Soil - Direct Contact (mg/kg)	Groundwater (mg/kg) 3	Groundwater (ug/L)	ug/kg	ug/kg	Groundwater (ug/L)		SPLP (ug/L)	2 HR (ug/L)	7 HR (ug/L)	(ug/L)	2 Day (ug/L)	3 Day (ug/L)	4 Day (ug/L)	5 Day (ug/L)	(ug/L)	(ug/L)	7 HR (ug/L)	24 HR (ug/L)	2 Day (ug/L)	3 Day (ug/L)	4 Day (ug/L)	5 Day (ug/L)	(ug/L)	(ug/L)	5 Day (ug/L)
			Groundwater (mg/ng/														<u></u>										
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	19,000		11,000	260 U	J 300 U	500	550	600	660	420	6,700	390	710	1,600	1,600	1,100	1,100	570	500	6,900	500
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	890		500 U	520 U		570 U	75 J	53 J	55 J	560 U	520 U	35 J	33 J	53 J	56 J	540 U	540 U	570 U	550 U	510 U	550 U
PAHs	ug/L	ug/kg	ug/kg	ug/L	ug/kg	ug/kg	Groundwater		SPLP	2 HR	7 HR	24 HR	2 Day	3 Day	4 Day	5 Day	SPLP	2 HR	7 HR	24 HR	2 Day	3 Day	4 Day	5 Day	5 Day	SPLP	5 Day
							(ug/L)		(ug/L)	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Naphthalene	160	70,000,000	9,700	350	5,600	56,000	5,300		4,400	7	23	84	110	150	140	68	1,800	71	130	340	310	270	310	100	81	1,700	81
2-Methyl Naphthalene	32	14,000,000	4,200	70	NE	NE	580		460	0.89	3.1	11	13	19	19	8.9	380	13	22	57	55	48	56	17	15	340	15
Acenaphthylene	NE	NE	210,000	NE	3,400	34,000	8.2		3.6	0.04	0.057	0.13	0.19	0.23	0.22	0.13	3.4	0.16	0.22	0.4	0.37	0.57	0.63	0.23	0.20	3.6	0.2
Acenaphthene	960	210,000,000	210,000	2,100	3,400	34,000	400		260	1.2	3.1	8.9	11	15	14	8.3	280	12	16	41	38	36	42	16	15	250	15
Dibenzofuran	16	3,500,000	3,700	35	NE	NE	270		98	0.84	1.7	5.4	6.3	8.0	7.7	5.0	97 J	6.5	8.4	21	20	17	19	9.2	8.2	95	8.2
Fluorene	640	140,000,000	220,000	1,400	3,400	34,000	270		92	0.67	1.3	3.4	4.6	5.5	5.0	3.5	99 J	8.2	10	25	23	20	22	11	9.3	94	9.3
Phenanthrene	NE	NE	5,000,000	NE	NE	NE	300		15	4.2	4.5	9	11	13	12	10	140	13	12	28	28	29	31	18	15	140	15
Anthracene	4,800	1,050,000,000	5,000,000	10,500	3,400	34,000	42		12	0.59	0.54	1.1	1.2	1.4	1.2	0.30	17	1.7	1.5	4.3	4.2	3.8	4.1	2.0	1.6	18	1.6
Fluoranthene	640	140,000,000	1,400,000	1,400	3,400	34,000	99		6.6	2.4	1.1	1.7	2.0	2.2	2.0	2.1	16	2.7	1.8	4.1	4.2	4.5	4.7	3.5 J	2.1 J	16	2.1
Pyrene	480	105,000,000	1,400,000	1,050	8,200	82,000	62		0.30	1.3	0.69	1.1	1.3	1.3	1.3	1.1	9.3	1.6	1.0	2.0	2.2	2.6	2.8	1.7	1.3	9.4	1.3
	0.12	180,000	8,600		3,400	34,000	15		0.23								0.43									0.43	0.083
Benzo(a)anthracene ²			· ·	1.2						0.39	0.12	0.14	0.092	0.091	0.079	0.12		0.13	0.1	0.18	0.18	0.15	0.17	0.11	0.083		
Chrysene ²	12	18,000,000	960,000	120	3,400	34,000	13		0.026 J	0.36	0.12	0.12	0.052	0.058	0.056	0.092	0.35	0.064	0.055	0.085	0.08	0.087	0.10	0.088	0.070	0.38	0.070
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	6,800	68,000	7.0		0.20 U	0.2	0.055	0.052	0.014 J	0.014 J	0.015 J		0.046 J	0.011	0.019	0.023	0.018	0.018 J	0.026 J	0.015	0.012	0.045 J	0.012
Benzo(k)fluoranthene ²	1.2	1,800,000	300,000	12	6,800	68,000	3.8 J		0.20 U	0.078	0.019	0.019	0.0060 J	0.0048 J	0.0055 J	NA ⁶	0.20 U	0.0034 J	0.0079	0.0078	0.0048	0.0065 J	0.0083 J	0.0047	0.0036 J	0.20 U	0.0036 J
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	3,400	34,000	3.6 J		0.20 U	0.1	0.031	0.029	0.0062 J	0.0069 J	0.0066 J	0.012 J	0.20 U	0.0066	0.013	0.013	0.0098	0.0081 J	0.012 J	0.0075	0.0055	0.20 U	0.0055
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	3,400	34,000	1.5 J		0.20 U	0.050	0.010	0.011	0.0045 J	0.023 U	0.021 U	0.0088 J	0.031 J	0.00078 J	0.0036 J	0.003 J	0.0017 J	0.04 U	0.039 U	0.0013 J	0.0009 J	0.20 U	0.00086 J
Dibenzo(a,h)anthracene ²	0.012	18,000	4,300	0.12	8,200	82,000	0.72 J		0.20 U	0.021	0.0034	0.0032 J	0.022 U	0.023 U	0.021 U	0.022 U	0.20 U	0.0036 U	0.0011 J	0.0012 J	0.00063 J	0.04 U	0.039 U	0.00053 J	0.00370 U	0.20 U	0.0037 U
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	1,800	18,000	1.5 J		0.20 U	0.041	0.0088	0.0089	0.0066 J	0.023 U	0.021 U	0.0065 J	0.040 J	0.00068 J	0.0029 J	0.0026 J	0.0014 J	0.04 U	0.039 U	0.001 J	0.00076 J	0.20 U	0.00076 J
		1	TI	TEC (screening c		n	6.5		0.023	0.18	0.053	0.053	0.018	0.018	0.017	0.030	0.054	0.022	0.027	0.035	0.031	0.026	0.033	0.022	0.022	0.051	0.016
Metals	па/Т	ma/ka	ma/ka	ng/I	TCLP (mg/L)	TCLP (mg/L)	Groundwater (ug/L)		SPLP (mg/L)	2 HR (mg/L)	7 HR (mg/L)	24 HR (mg/L)	2 Day (mg/L)	3 Day (mg/L)	4 Day (mg/L)	5 Day (mg/L)	SPLP (mg/L)	2 HR (mg/L)	7 HR (mg/L)	24 HR (mg/L)	2 Day (mg/L)	3 Day (mg/L)	4 Day (mg/L)	5 Day (mg/L)	5 Day (mg/L)	SPLP (mg/L)	<u>5 Day</u> (mg/L)
	ug/L 0.058	<u>mg/kg</u> 88	mg/kg 0.34	ug/L 0.58	(mg/L) 5	(mg/L) 50		·	NA	(IIIg/L)	(HIZ/13)	(HIZ/L)	NA	(IIIg/13)	(IIIg/L)	(HIZ/L)	NA	(IIIg/L)	(Hig/L)	(HIE/15)		NA	(HIZ/15)	(IIIg/L)	(IIIg/L)	NA	NA
Arsenic							NA NA																				
Barium	3,200	700,000	5,768	7,000	21	210	NA		NA				NA				NA					JA				NA	NA
Cadmium	16	NE	4.8	35	0.11	1.10	NA		NA				NA				NA				N	ΙA				NA	NA
	24,000 (Cr ⁺³) /	5,250,000 (Cr ⁺³) /	1,050,210 (Cr ⁺³) /	52,500 (Cr ⁺³) /																							
Chromium Lead	48 (Cr ⁺⁶) NE	10,500 (Cr ⁺⁶) NE	40 (Cr ⁺⁶) NE	105 (Cr ⁺⁶) NE	0.60 (total) 0.75	0.60 (total) 7.50	NA NA		NA NA				NA NA				NA NA					NA NA				NA NA	NA NA
Mercury	NE NE	NE NE	NE NE	NE NE	0.025	0.250	NA NA		NA				NA NA				NA NA					NA NA				NA NA	NA NA
	80	17,500	18			57.0			NA NA								NA NA										
Selenium	80	17,500	30	175 175	5.7 0.14	1.40	NA NA		NA NA				NA NA				NA NA					JA				NA NA	NA NA
Silver Cure Days	NA	17,500 NA	NA	NA	0.14 NA	1.40 NA	NA	8	67 10	1			NA				7 28				N	ΙA				NA 7 28	
Unconfined Compressive Strength	I	- 12.4															===									, 20	
Moisture Content (%)	NA	NA	NA	NA	NA	NA	NA	42.5	41.3 38.	.3			NA				32.3 33.2				N	NΑ				NA NA 36.	.4 NA
Bulk Density (lb/ft³)	NA	NA	NA	NA	NA	NA	NA	107.7	106.6 106	5.1			NA				117.5 115.5				N	NΑ				NA NA 106	
Dry Density (lb/ft³)	NA	NA	NA	NA	NA	NA	NA	75.6	75.5 76.	.7			NA				88.9 86.8				N	JΑ				NA NA 77.	
UCS (lb/in ²)	NA	NA	NA	NA	NA	NA	NA 31.7 326.0 443.7 NA							23.7 184.5				N	JΑ				NA NA 180				
Permeability (k) Moisture Content (%)	NA	NA	NA	N/A	NA	N' A	NI A	N/A	42.6 NA				NA				NA 34.9				N	NA				NA	NA
Bulk Density (lb/fi³)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	42.6 NA 105.4 NA				NA NA				NA 34.9 NA 105.2					NA NA				NA NA	NA NA
Dry Density (lb/ft³)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	73.9 NA				NA NA									NA NA				NA NA	NA NA
Perm (cm/sec)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		3.0E-08 NA				NA				NA 78.0 NA 5.5E-07					NA NA				NA NA	NA NA
Cure Days	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 0 3 7 NA 7 NA 0 48.21 42.86 NA NA						7 28 NA 30.36					JA				3 7 28 48.21 42.86 42.8					
Volumetric Expansion (%) Estimated Costs ⁵	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	48.21 42.3	90		921,120	NA				NA 30.36	1		¢r.	921,120	NΑ				48.21 42.86 42.8 \$921.	
Estillated Costs	NΑ	INA	INA	NΑ	NΑ	NΑ	INA	1				921,120					1			\$9	721,12U					\$921.	14U

ug/L - microgram per liter

R:\Projects\WCIA\02\IP\Longview\MFA CAP\MFA RI-FS\2012 In-Situ Soil Stabilization Treatability Testing\Task 40 - Final Report\Appendix D\Client Review Draft 062013\Appendix D - ISS Study Summary Table (All Results-TPH.PAH) 6/20/2013 URS CORPORATION Page 3 of 5

Notes:
Soil (mg/kg or ug/kg) numbers in bold font meet or exceed a MTCA soil cleanup level. Underlined numbers meet or exceed the Universal Treatment Standard.

ANS 16.1 and BV-13 water numbers in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded.

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A, B, and C from Ecology website downloaded November 2011 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx). (I) - Industrial land use (R) - Unrestricted land use ¹ Universal Treatment Standards (UTS, 40 CFR 268.48) for nonwastewaters.

² These compounds are carcinogenic PAHs and are subject to TTEC calculations.

³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁽http://www.ecy.wa.gov/programs/tcp/tools/toolmain.html) except for dibenzofuran and 2-methylnaphthalene which were obtained from the J&E model (USEPA 2004).

4TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

⁵ See Table 3 for estimated costs calculation details $^{6} Laboratory \ was \ unable \ to \ differenate \ between \ benzo(b) fluoranthene \ and \ benzo(k) fluoranthene. \ Laboratory \ reported \ result \ as \ benzo(b) fluoranthene.$

J - estimated value

ft bgs - feet below ground surface
NA - not applicable, not analyzed, or not available mg/kg - miligram per kilogram NE - not established

PAHs - Polynuclear Aromatic Hydrocarbons SPLP - Synthetic Precipitation Leaching Procedure TCLP - Toxicicity Characteristic Leaching Procedure TPH - Total Petroleum Hydrocarbons TTEC - Total Toxic Equivalent Concentration

ug/kg - microgram per kilogram

UJ - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

ary Table						TREATED (PRELIMINARY MIXES)												
Sample Type:										T	REATED (PRELI	MINARY M	(IXES)				TREATED (OPTI	MIZATION MIXES)
Sample ID:		MTCA Scr	eening Levels		Universal	Alternate					TP-02 (co							continued)
Sample Depth (ft bgs):					Treatment	Treatment	0207.010		1	0207 020	2.0-6.5 (co		1					continued)
Kemron Sample Number:					Standards 1	Sandards (10xUTS)	0397-018 NewCem Slag	0397- Portland C		0397-020 Portland Cement /	0397-021	0397-0 NewCem		0397-023 NewCem Slag	0397-02 50:50 TerraCe	m /		0397-027 NewCem Slag Cement /
Kemron Reagent Type						(10x013)	Cement / Bentonite /	Benton	ite /	Bentonite /	Portland Cement / Class "C" Flyash	Cemen	nt /	Cement /	Bentonite /	50:50 Terral Rentoni		Portland Cement /
Propert Addition 9/ has mot soil out							Organoclay SS-199 17.5 / 2 / 0.5	Organoclay 10 / 2 /		Organoclay SS-199 15 / 2 / 0.5	10 / 10	Class "C" 1		Bentonite 15 / 2	Organoclay SS 15 / 2 / 0.5	199	8/2	Bentonite 6/2/2
Reagent Addition % by wet soil wt. Date Test Mix Prepared:	1						10/7/2011	10/7/		10/7/2011	10/6/11	10/7/1		10/6/11	10/7/11	10/6/11		4/11/12
Date Sample Collected:			Method C				NA	10/24/2		NA	10/24/2011	10/24/2		10/24/2011	10/24/201			
трн	Groundwater (ug/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg) ³	Groundwater (ug/L)	ug/kg	ug/kg	SPLP (ug/L)	SPL (ug/l		SPLP (ug/L)	SPLP (ug/L)	SPL (ug/I		SPLP (ug/L)	SPLP (ug/L)	SPLF (ug/L		SPLP (ug/L)
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	NA	17,000		NA	19,000	20,000		18,000	18,000	23,000	1,300	NA
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	NA	500	r i	NA	510	660		540	500 U	580	560 U	NA
PAHs	ug/L	·	ug/kg	ug/L	ug/kg		SPLP	SPL	P	SPLP	SPLP	SPL	<u>P</u>	SPLP	SPLP	SPLE	5 Day	SPLP
		ug/kg				ug/kg	(ug/L)	(ug/)	<u>L)</u>	(ug/L)	(ug/L)	(ug/I	<u>L)</u>	(ug/L)	(ug/L)	(ug/L		(ug/L)
Naphthalene	160	70,000,000	9,700	350	5,600	56,000	NA	6,400		NA	7,000	7,900		7,300	6,500	9,400	170	NA
2-Methyl Naphthalene	32	14,000,000	4,200	70	NE	NE	NA	740		NA	860	770		760	860	800	30	NA
Acenaphthylene	NE	NE	210,000	NE	3,400	34,000	NA	7.1		NA	8.6	8.7		8.7	7.2	8.1	0.54	NA
Acenaphthene	960	210,000,000	210,000	2,100	3,400	34,000	NA	380		NA	420	380		390	400	380	21	NA
Dibenzofuran	16	3,500,000	3,700	35	NE	NE	NA	210		NA	260	240		220	250	240	15	NA
Fluorene	640	140,000,000	220,000	1,400	3,400	34,000	NA	180		NA	230	210		190	220	210	16	NA
Phenanthrene	NE	NE	5,000,000	NE	NE	NE	NA	210		NA	240	220		210	220	210	44	NA
Anthracene	4,800	1,050,000,000	5,000,000	10,500	3,400	34,000	NA	30		NA	31	30		34	28	31	5.7	NA
Fluoranthene	640	140,000,000	1,400,000	1,400	3,400	34,000	NA	20		NA	19	20		23	22	18	11	NA
Pyrene	480	105,000,000	1,400,000	1,050	8,200	82,000	NA	10		NA	9.2	9.3		11	11	8.2	5.9	NA
Benzo(a)anthracene ²	0.12	180,000	8,600	1.2	3,400	34,000	NA	0.40		NA	0.32	0.35		0.41	0.41	0.29	0.56	NA
Chrysene ²	12	18,000,000	960,000	120	3,400	34,000	NA	0.35		NA	0.32	0.34		0.40	0.40	0.29	0.47	NA NA
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	6,800	68,000	NA NA	0.030	r	NA NA	0.32 0.20 U	0.030 J	T	0.034 J	0.044 J	0.024 J	0.085	NA NA
. , ,						,												
Benzo(k)fluoranthene ²	1.2	1,800,000	300,000	12	6,800	68,000	NA	0.20		NA	0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.039 U	NA NA
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	3,400	34,000	NA	0.20		NA	0.20 U	0.20 U		0.20 U	0.20 U	0.20 U		NA NA
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	3,400	34,000	NA	0.20		NA	0.20 U	0.20 U		0.20 U	0.20 U	0.20 U		NA
Dibenzo(a,h)anthracene ²	0.012	18,000	4,300 1,400,000	0.12 NE	8,200 1,800	82,000 18,000	NA	0.20		NA	0.20 U	0.20 U		0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.039 U 0.039 U	NA NA
Benzo(g,h,i)perylene	NE	NE					NA NA		U	NA	0.20 U	0.20 t	U					NA NA
	ı		TI	EC (screening cr	TCLP	TCLP	NA SPLP	0.047 SPL	P	NA SPLP	0.035 SPLP	0.041 SPL	P	0.048 SPLP	0.049 SPLP	0.034 SPLF	0.069 SPLP	NA SPLP
Metals	ug/L	mg/kg	mg/kg	ug/L	(mg/L)	(mg/L)	(mg/L)	(mg/		(mg/L)	(mg/L)	(mg/l	<u>L)</u>	(mg/L)	(mg/L)	(mg/L	(mg/L)	(mg/L)
Arsenic	0.058	88	0.34	0.58	5	50	NA	NA		NA	0.007 U	0.007 U	U	NA	NA	NA	NA	NA
Barium	3,200	700,000	5,768	7,000	21	210	NA	NA		NA	5.2	0.3 J	J	NA	NA	NA	NA	NA
Cadmium	16	NE	4.8	35	0.11	1.10	NA	NA		NA	0.0003 U	0.0003 U	U	NA	NA	NA	NA	NA
	24,000 (Cr ⁺³) /	5,250,000 (Cr ⁺³) /	1,050,210 (Cr ⁺³) /	52,500 (Cr ⁺³)/														
Chromium	48 (Cr ⁺⁶)	10,500 (Cr ⁺⁶)	40 (Cr ⁺⁶)	105 (Cr ⁺⁶)	0.60 (total)	0.60 (total)	NA	NA		NA	0.004 J	0.013		NA	NA	NA	NA NA	NA NA
Lead	NE	NE NE	NE	NE	0.75	7.50	NA NA	NA		NA	0.004 U	0.004 t		NA	NA	NA NA	NA NA	NA NA
Mercury	NE	NE	NE	NE 175	0.025	0.250	NA	NA		NA	0.0004 U	0.0004 t		NA	NA	NA	NA NA	NA
Selenium	80	17,500	18	175	5.7	57.0	NA	NA		NA	0.02 U	0.02 U		NA	NA	NA NA	NA NA	NA NA
Silver Cure Days	80 NA	17,500 NA	30 NA	175 NA	0.14 NA	1.40 NA	NA 8	NA 8	67	NA 8	0.006 U 8	0.006 T	U 17	NA 8	NA 8	NA 67 8	NA 7 14 28 56	NA 7 14 28 56
Unconfined Compressive Strength	INA	INA	INA	INA	IVA	INA	°	o	0/	٥		0	1/	o	0	8	/ 14 20 30	/ 14 26 36
Moisture Content (%)	NA	NA	NA	NA	NA	NA	42.7	40.3	38.5	43.1	24.9	29.6	30.0	41.1	38.4	6.6 39.4	33.8 33.0 33.2 32.7	34.1 34.1 34.6 32.7
Bulk Density (lb/fi³)	NA	NA	NA	NA	NA	NA	109.0	109.1	100.9	106.1	121.0	118.4	122.0	107.9		05.4 110.7	103.3 105.6 106.8 104.2	
Dry Density (lb/fr³)	NA	NA	NA	NA	NA	NA	76.4	77.8	72.8	74.2	96.9	91.3	93.8	76.5	78.5	7.2 79.4	77.2 79.4 80.2 78.5	79.1 79.2 78.0 79.6
UCS (lb/in ²)	NA	NA	NA	NA	NA	NA	76.6	35.2	57.9	60.8	143.6	15.2	14.1	61.3	37.7	7.7 32.4	31.9 44.9 NA 77.7	68.8 127.7 239.8 333.1
Permeability (k)	N/A	N/A	NT A	N/A	N/ A	N/ A	N/ A	NI A	40.2	N/A	N/A	NT A		NA	N/A	8.7 NA	NA 202 NA	NA 22.4 NA
Moisture Content (%) Bulk Density (lb/ff³)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	108.9	NA NA	NA NA	NA NA		NA NA		8.7 NA 06.6 NA	NA 30.2 NA NA 102.0 NA	NA 33.4 NA NA 106.0 NA
Dry Density (lb/ft³)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	77.7	NA NA	NA NA	NA NA		NA NA		6.9 NA	NA 102.0 NA NA 78.0 NA	NA 106.0 NA NA 79.5 NA
Perm (cm/sec)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		7.4E-07	NA NA	NA NA	NA NA		NA NA		E-07 NA	NA 78.0 NA NA 2.6E-07 NA	NA 79.5 NA NA 3.3E-07 NA
						27.6		,		.,,								' ' '
Cure Days Volumetric Expansion (%)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	7 14 28 56 28.57 NA 31.25 27.55	7 14 28 56 25.80 NA 29.64 31.21
Estimated Costs 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	\$376,860	\$323,	460	\$378,660	\$176,400	\$159,6	600	\$163,440	\$357,060			\$101,280
		* *	- 14 4			- /4 4		40209				Ψ107,0		,	_557,500	φ100,0		

Notes:
Soil (mg/kg or ug/kg) numbers in bold font meet or exceed a MTCA soil cleanup level. Underlined numbers meet or exceed the Universal Treatment Standard.

ANS 16.1 and BV-13 water numbers in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded. Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A, B, and C from Ecology website downloaded

PAHs - Polynuclear Aromatic Hydrocarbons

ug/L - microgram per liter

TCLP - Toxicicity Characteristic Leaching Procedure TTEC - Total Toxic Equivalent Concentration

Page 4 of 5

URS CORPORATION

November 2011 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx). (I) - Industrial land use (R) - Unrestricted land use ¹ Universal Treatment Standards (UTS, 40 CFR 268.48) for nonwastewaters.

 $^{^{2}\,\}mathrm{These}$ compounds are carcinogenic PAHs and are subject to TTEC calculations. ³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁽http://www.ecy.wa.gov/programs/tep/tools/toolmain.html) except for dibenzofuran and 2-methylnaphthalene which were obtained from the J&E model (USEPA 2004).

4 TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

⁵ See Table 3 for estimated costs calculation details

 $^{^{6}} Laboratory \ was \ unable \ to \ differenate \ between \ benzo(b) fluoranthene \ and \ benzo(k) fluoranthene. \ Laboratory \ reported \ result \ as \ benzo(b) fluoranthene.$

J - estimated value

ft bgs - feet below ground surface NA - not applicable, not analyzed, or not available

mg/kg - miligram per kilogram NE - not established

SPLP - Synthetic Precipitation Leaching Procedure

TPH - Total Petroleum Hydrocarbons ug/kg - microgram per kilogram

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value. R:\Projects\WCIA\02\IP\Longview\MFA CAP\MFA RI-FS\2012 In-Situ Soil Stabilization Treatability Testing\Task 40 - Final Report\Appendix D\Client Review Draft 062013\Appendix D - ISS Study Summary Table (All Results-TPH.PAH) 6/20/2013

ta Summary Table																				
Sample Type:			-										TR	EATED (OP))	-	-	
Sample ID:		MTCA Sc	reening Levels		Universal	Alternate									(continue					
Sample Depth (ft bgs): Kemron Sample Number:					Treatment Standards ¹	Treatment Sandards (10xUTS)					03	97-028		2.0-6.5	5 (continue	ed)		0397-029 NewCem Slag Cement /	0397-030 NewCem Slag Cement /	0397-031 NewCem Slag Cement /
Kemron Reagent Type						(IUAC IS)				Ne	wCem Slag Ceme	nt / Bentonite / Cau	ıstic Soda					Bentonite / Organoclay	Bentonite /	Bentonite / Organoclay
Reagent Addition % by wet soil wt.											8	3/2/0.5						SS-199 / Caustic Soda 8 / 2 / 0.5 / 0.5	Caustic Soda 10 / 2 / 0.5	SS-199 / Caustic Soda 10 / 2 / 0.5 / 0.5
Date Test Mix Prepared:		·										4/11/12						4/11/12	4/11/12	4/11/12
Date Sample Collected:	Method B		Method C	1			7	//6/2012		7/11/2012			ANS 16.1 S	tart Date 7/9/20	012	1		NA	NA	NA
трн	Groundwater (ug/L)	Soil - Direct Contact (mg/kg)	Soil - Protection of Groundwater (mg/kg) ³	Groundwater (ug/L)	ug/kg	ug/kg	Total (mg/kg)	TCLP (ug/L)	SPLP (ug/L)	Wipe (ug/100 cm ²)	2 HR (ug/L)	7 HR (ug/L)	24 HR (ug/L)	2 Day (ug/L)	3 Day (ug/L)	4 Day (ug/L)	5 Day (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)
Diesel	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	4,300	15,000 J	17,000 J	500 U	520	570	930	910	920	1,000	860	NA	NA	NA
Oil	500 ⁴	2,000 4	NE	500 ⁴	NE	NE	1,000	540 UJ	920 J	560	540 U	550 U	500 U	550 U	610 U	610 U	580 U	NA	NA	NA
PAHs	ug/L	ug/kg	ug/kg	ug/L	ug/kg	ug/kg	Total (ug/kg)	TCLP (ug/L)	SPLP (ug/L)	Wipe (ug/100 cm ²)	2 HR (ug/L)	7 HR (ug/L)	24 HR (ug/L)	2 Day (ug/L)	3 Day (ug/L)	4 Day (ug/L)	5 Day (ug/L)	SPLP (ug/L)	SPLP (ug/L)	SPLP (ug/L)
Naphthalene	160	70,000,000	9,700	350	5,600	56,000	150,000 J	5,100	5,400	0.48 J	30	64	170	120	140	120	100	NA	NA	NA
2-Methyl Naphthalene	32	14,000,000	4,200	70	NE	NE	84,000 J	750	790	0.18 J	6.1	12	34	23	29	26	22	NA	NA	NA
Acenaphthylene	NE	NE	210,000	NE	3,400	34,000	1,300 J	8.4	9.0	0.010 J	0.12	0.19	0.41	0.3	0.44	0.39	0.34	NA	NA	NA
Acenaphthene	960	210,000,000	210,000	2,100	3,400	34,000	91,000 J	420	440	0.26 J	6	11	29	20	24	19	17	NA	NA	NA
Dibenzofuran	16	3,500,000	3,700	35	NE	NE	67,000 J	260	290	0.20 J	4.1	6.6	19	14	14	12	11	NA	NA	NA
Fluorene	640	140,000,000	220,000	1,400	3,400	34,000	86,000 J	230	250	0.28 J	4.6	8.3	22	16	16	14	13	NA	NA	NA
Phenanthrene	NE	NE	5,000,000	NE	NE	NE	250,000 J	260	270	1.1	7.2	13	42	35	41	35	31	NA	NA	NA
Anthracene	4,800	1,050,000,000	5,000,000	10,500	3,400	34,000	48,000 J	31	36	0.21	0.98	1.4	5.6	5.4	5.3	4.7	4.4	NA	NA	NA
Fluoranthene	640	140,000,000	1,400,000	1,400	3,400	34,000	110,000 J	22	24	0.62	1	1.7	6.9	7	8.2	7.3	7.7	NA	NA	NA
Pyrene	480	105,000,000	1,400,000	1,050	8,200	82,000	74,000 J	13	13	0.44	0.66	1.1	4.3	4.3	4.8	4.2	4.5	NA	NA	NA
Benzo(a)anthracene ²	0.12	180,000	8,600	1.2	3,400	34,000	17,000 J	0.58	0.71	0.13	0.094	0.12	0.33	0.35	0.39	0.33	0.38	NA	NA	NA
Chrysene ²	12	18,000,000	960,000	120	3,400	34,000	19,000 J	0.48	0.46	0.12	0.071	0.1	0.27	0.27	0.39	0.32	0.38	NA	NA	NA
Benzo(b)fluoranthene ²	0.12	180,000	30,000	1.2	6,800	68,000	9,600 J	0.063 J	0.049 J	0.085	0.027	0.03	0.068	0.052	0.065	0.048	0.058	NA	NA	NA
Benzo(k)fluoranthene ²	1.2	1,800,000	300,000	12	6,800	68,000	3,600 J	0.034 J	0.028 J	0.033	0.012	0.011	0.023	0.016	0.026 J	0.022 J	0.025 J	NA	NA	NA
Benzo(a)pyrene ²	0.012	18,000	2,300	0.12	3,400	34,000	6,100 J	0.22	0.028 3	0.090 J	0.012	0.017	0.023	0.010	0.020 3	0.022 J	0.029 J	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene ²	0.12	180,000	83,000	1.2	3,400	34,000	2,000 J	0.22	0.21	0.024	0.0057	0.0045	0.0095	0.0047	0.02 J	0.0096 J	0.0081 J	NA	NA	NA
Dibenzo(a,h)anthracene ²	0.012	18,000	4,300	0.12	8,200	82,000	510 J	0.22	0.21	0.0065	0.00034 U	0.00034 U	0.00038 U	0.00034 U	0.011 J	0.0059 J	0.033 U	NA	NA	NA
Benzo(g,h,i)perylene	NE	NE	1,400,000	NE	1,800	18,000	1.600 J	0.22	0.21	0.022	0.0052	0.0041	0.0074	0.00034 U	0.023 J	0.0097 J	0.0088 J	NA	NA	NA
	y.	•	T	ΓΕC (screening c	riteria based on	benzo(a)pyrene	9,600	0.073	0.083	0.12	0.034	0.035	0.080	0.069	0.089	0.068	0.083	NA	NA	NA
					TCLP	TCLP	Total	TCLP	SPLP	Wipe	2 HR	7 HR	24 HR	2 Day	3 Day	4 Day	5 Day	SPLP	SPLP	SPLP
Metals	ug/L	mg/kg	mg/kg	ug/L	(mg/L)	(mg/L)	(mg/kg)	(mg/L)	(mg/L)	(ug/100 cm ²)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Arsenic	0.058	88	0.34	0.58	5	50	NA	NA	NA	NA				NA				NA	NA	NA
Barium	3,200	700,000	5,768	7,000	21	210	NA	NA	NA	NA				NA				NA	NA	NA
Cadmium	16	NE	4.8	35	0.11	1.10	NA	NA	NA	NA				NA				NA	NA	NA
	24,000 (Cr ⁺³) /	5,250,000 (Cr ⁺³) /	1,050,210 (Cr ⁺³) /	52,500 (Cr ⁺³) /																
Chromium Lead	48 (Cr ⁺⁶) NE	10,500 (Cr ⁺⁶) NE	40 (Cr ⁺⁶) NE	105 (Cr ⁺⁶)	0.60 (total) 0.75	0.60 (total) 7.50	NA NA	NA NA	NA NA	NA NA				NA NA				NA NA	NA NA	NA NA
Mercury	NE NE	NE NE	NE NE	NE NE	0.73	0.250	NA NA	NA NA	NA NA	NA NA				NA NA				NA NA	NA NA	NA NA
	NE 80	17,500	18															NA NA	NA NA	
Selenium Silver	80	17,500	30	175 175	5.7 0.14	57.0 1.40	NA NA	NA NA	NA NA	NA NA				NA NA				NA NA	NA NA	NA NA
Cure Days	NA	NA	NA	NA	NA	NA	7 14	28	56	86				INA				7 14 28 56		7 14 28 56
Unconfined Compressive Strength																				
Moisture Content (%)	NA	NA	NA	NA	NA	NA	39.7 37.9	37.6	36.0	34.9				NA						38.6 37.8 NA 35.5
Bulk Density (lb/ff ³)	NA	NA	NA	NA	NA	NA	100.7 102.7	103.0	102.6	102.1				NA				105.1 106.3 NA 103.5	106.1 104.1 NA 100.9	106.6 105.5 NA 104.6
Dry Density (lb/ff³)	NA	NA	NA NA	NA	NA	NA	72.1 74.5	74.8	75.4	75.7				NA				75.2 76.8 NA 76.6	76.2 75.5 NA 74.3	76.9 76.5 NA 77.2
UCS (lb/in²) Permeability (k)	NA	NA	NA	NA	NA	NA	91.7 119.1	245.5	383.5	383.5 355.3 NA								44.8 117.7 NA 358.3	120.8 192.0 NA 341.1	127.1 221.5 NA 433.9
Moisture Content (%)	NA	NA	NA	NA	NA	NA	NA	38.0		NA								NA	NA	NA
Bulk Density (lb/ft³)	NA	NA	NA	NA	NA	NA	NA	102.0		NA NA							NA	NA	NA	
Dry Density (lb/ft³)	NA	NA	NA	NA	NA	NA	NA	74.1		NA NA							NA	NA	NA	
Perm (cm/sec)	NA	NA	NA	NA	NA	NA	NA	1.9E-07]	NA NA						NA	NA	NA		
Cure Days	NA	NA	NA	NA	NA	NA	7 14	28	56	86				NA				7 14 28 56	7 14 28 56	7 14 28 56
Volumetric Expansion (%)	NA	NA	NA	NA	NA	NA	36.61 NA		36.07	25.51				NA				35.71 NA 37.86 38.21	40.18 NA 40.80 40.09	40.18 NA 40.45 42.59
Estimated Costs 5	NA	NA	NA	NA	NA	NA					\$	167,220						\$287,940	\$185,940	\$306,660

R:\Projects\WCIA\02\IP\Longview\MFA CAP\MFA RI-FS\2012 In-Situ Soil Stabilization Treatability Testing\Task 40 - Final Report\Appendix D\Client Review Draft 062013\Appendix D - ISS Study Summary Table (All Results-TPH.PAH) 6/20/2013

ug/L - microgram per liter

URS CORPORATION Page 5 of 5

Notes:
Soil (mg/kg or ug/kg) numbers in **bold** font meet or exceed a MTCA soil cleanup level. <u>Underlined</u> numbers meet or exceed the Universal Treatment Standard.

ANS 16.1 and BV-13 water numbers in **bold** font meet or exceed a MTCA C groundwater cleanup level. TCLP and SPLP numbers are not bolded. Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A, B, and C from Ecology website downloaded

November 2011 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx). (I) - Industrial land use (R) - Unrestricted land use ¹ Universal Treatment Standards (UTS, 40 CFR 268.48) for nonwastewaters.

 $^{^{2}\,\}mathrm{These}$ compounds are carcinogenic PAHs and are subject to TTEC calculations. ³ Values were calculated using MTCA workbook tools with default parameters. Chemical specific properties were obtained from the CLARC database

⁽http://www.ecy.wa.gov/programs/tcpfools/toolmain.html) except for dibenzofuran and 2-methylnaphthalene which were obtained from the J&E model (USEPA 2004).

TPH Cleanup levels are based on the MTCA Method A industrial cleanup standards.

⁵ See Table 3 for estimated costs calculation details

 $^{^{6}} Laboratory \ was \ unable \ to \ differenate \ between \ benzo(b) fluoranthene \ and \ benzo(k) fluoranthene. \ Laboratory \ reported \ result \ as \ benzo(b) fluoranthene.$

J - estimated value ft bgs - feet below ground surface NA - not applicable, not analyzed, or not available

mg/kg - miligram per kilogram NE - not established PAHs - Polynuclear Aromatic Hydrocarbons SPLP - Synthetic Precipitation Leaching Procedure TCLP - Toxicicity Characteristic Leaching Procedure

TTEC - Total Toxic Equivalent Concentration TPH - Total Petroleum Hydrocarbons

ug/kg - microgram per kilogram U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

Appendix E
Analytical Laboratory Reports

September 26, 2011

Analytical Report for Service Request No: K1107780

Paul Kalina URS Corporation 1501 4th Ave.,Suite 1400 Seattle, WA 98101

RE: IP Longview Treatability Study/33763156

Dear Paul:

Enclosed are the results of the samples submitted to our laboratory on August 23, 2011. For your reference, these analyses have been assigned our service request number K1107780.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

dWallaca

Ed Wallace

Project Chemist

EW/jw

Page 1 of 1873

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value.
- U The analyte was analyzed for, hut was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project:

Sample Matrix:

URS Corporation

IP Longview

Soils

Service Request No.:

K1108987

Date Received:

8/23/11

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Four soil samples were received for analysis at Columbia Analytical Services on 8/23/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

As received

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample TP01-S-7.5-082211 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Elevated Detection Limits:

Samples TP02-S-2.0-6.5-082211 and TP02-S-6.5-082211 required dilution due to the presence of elevated levels of non-target analyte. The reporting limits were adjusted to reflect the dilution.

Surrogate Exceptions:

The control criteria for o-Terphenyl in samples TP02-S-2.0-6.5-082211 and TP02-S-6.5-082211 were not applicable. The chromatogram indicated the presence non-target background components that masked the surrogate, which prevented adequate resolution for quantitation. No corrective action was appropriate.

After TCLP Leaching

No anomalies with the analysis of these samples were observed.

After SPLP Leaching

No anomalies with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

As received

Matrix Spike Recovery Exceptions:

The matrix spike recovery of Dibenzofuran for sample TP01-S-2.0-7.5-082211DMS was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential low bias in this matrix. No further corrective action was appropriate.

Approved by EWW Date 9/26/11

Elevated Detection Limits:

Samples TP02-S-2.0-6.5-082211 and TP02-S-6.5-082211 required dilution due to the presence of elevated levels of target analytes. The reporting limits were adjusted to reflect the dilution.

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample TP01-S-7.5-082211 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Elevated Detection Limits:

Samples TP02-S-2.0-6.5-082211 and TP02-S-6.5-082211 required dilution due to the presence of elevated levels of non-target analyte. The reporting limits were adjusted to reflect the dilution.

Surrogate Exceptions:

The control criteria for o-Terphenyl in samples TP02-S-2.0-6.5-082211 and TP02-S-6.5-082211 were not applicable. The chromatogram indicated the presence non-target background components that masked the surrogate, which prevented adequate resolution for quantitation. No corrective action was appropriate.

After TCLP Leaching

Calibration Verification Exceptions:

The upper control criterion was exceeded for Indeno(1,2,3-cd)pyrene and Dibenz(a,h)anthracene in Continuing Calibration Verification (CCV) MS11\0909F002.D. The field samples analyzed in this sequence were dilutions for analytes other than those in question. The data quality was not significantly affected. No further corrective action was required.

Method Blank Exceptions:

The Method Blank KWG11089078-4 contained significant levels of numerous analytes above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated. The samples were not re-extracted and re-analyzed because TCLP leach fluid is not controlled for the analytes in question at the levels detected by PAH_SIM analysis. A deionized water blank was extracted at was ND for the analytes in question. No further corrective action was required.

Surrogate Exceptions:

The upper control criterion was exceeded for the surrogates in sample TP01-S-2.0-7.5-082211. The error associated with an elevated recovery equated to a potential high bias. No further corrective action was taken.

The control criteria were exceeded for the surrogates in LCS KWG1108792-1. The associated spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier was flagged accordingly. No further corrective action was appropriate.

Internal Standard Exceptions:

The internal standard recovery of Naphthalene-d8 in sample TP02-S-2.0-6.5-082211 was outside control criteria because of extremely high levels of target compounds. The sample was reanalyzed at a dilution. The internal standard in question was within control criteria in the diluted analysis. All affected analytes were reported from the diluted analysis due to their very high concentration.

Sample Notes and Discussion:

A Matrix Spike/Matrix Spike Duplicate (MS/MSD) was not extracted with this sample batch. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

The equipment and procedures used for the TCLP leachate preparation have not been evaluated for PAHs detected by the SIM_PAH analysis.

Approved by	Enw Date	9	126	111	1
Approved by	- Dut	. 40	in the	1 ~ 5	

After SPLP Leaching

Calibration Verification Exceptions:

The upper control criterion was exceeded for Indeno(1,2,3-cd)pyrene and Dibenz(a,h)anthracene in Continuing Calibration Verification (CCV) MS11\0909F002.D. The field samples analyzed in this sequence were dilutions for analytes other than those in question. The data quality was not significantly affected. No further corrective action was required.

Method Blank Exceptions:

The Method Blanks KWG11089078-3 and KWG1108792-3 contained significant levels of numerous analytes above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated. The samples were not re-extracted and re-analyzed because SPLP leach fluid is not controlled for the analytes in question at the levels detected by PAH_SIM analysis. A deionized water blank was extracted at was ND for the analytes in question. No further corrective action was required.

Surrogate Exceptions:

The upper control criterion was exceeded for the surrogates in sample TP01-S-2.0-7.5-082211. The error associated with an elevated recovery equated to a potential high bias. No further corrective action was taken.

The control criteria were exceeded for the surrogates in LCS KWG1108792-1. The associated spike recoveries of target compounds were in control, indicating the analysis was in control. The surrogate outlier was flagged accordingly. No further corrective action was appropriate.

Internal Standard Exceptions:

The internal standard recovery of Naphthalene-d8 in sample TP02-S-2.0-6.5-082211 was outside control criteria because of extremely high levels of target compounds. The sample was reanalyzed at a dilution. The internal standard in question was within control criteria in the diluted analysis. All affected analytes were reported from the diluted analysis due to their very high concentration.

Sample Notes and Discussion:

A Matrix Spike/Matrix Spike Duplicate (MS/MSD) was not extracted with this sample batch. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

The equipment and procedures used for the SPLP leachate preparation have not been evaluated for PAHs detected by the SIM_PAH analysis.

Approved by Enw Date 9/26/11

CHAIN OF CUSTODY

SR#: 1/10718

102-1-20-6.5-0824 TOU-5-6-5-08211 TO1-5-7-5-082211 TROIS 2.0-7.5 68201 YOU CAFECONT. 1A-00221 Sambayynadmc Signature In VERNEUR *ROJECT MANAGER* rinted Name REPORT REQUIREMENTS SAMPLE I.D IV. CLP Deliverable Report III. Data Validation Report ****** Y. EDD Routine Report: Method Report Dup., MS, MSD as Blank, Surrogate, as (includes all raw data) 10-08211 RELINQUISHED BY: 18-062711 430 2700 JAKE! かれる 150, 300 Date/Time 22 こかだから 1317 South 13th Ave, Kelso, WA 98626 | 360.577.7222 アインシャ 122/11 417 アダイドル E S 50 66 3 TURNAROUND REQUIREMENTS 5 7.O.# H 2 BIII To: TIME (0) INVOICE INFORMATION P 3A 24 hr. _5 Day Standard (10-15 working days) Provide FAX Results Requested Report Date TREATABIL OF JOUR いかんかん 98161 LAB I.D Printed Name Wy 246 1887 1788 MATRIX ¢ person, pr * , mare Ê e e RECEIVED BY: NUMBER OF CONTAINERS SPECIAL INSTRUCTIONS/COMMENTS Sample Shipment contains USDA regulated soil samples (check box if applicable) Dissolved Metals: Al Circle which metals are to be analyzed INDICATE STATE HYDROCARBON PROCEDURE: Total Metals: Al (As) S-33-1 Date/Ilme Semivolatile Organics by GC/MS
8270 8270LL 1 800.695,7222 | 360.636,1068 (fax) Volatile Organics 624 8260 OTHER SAMES OF ALL JAMPLE Hydrocarbons (*see below)

Gas Diesel Diesel

NW-HCID Screen

1664 HEM 1664 18:3 ROLLOFF CONTRAMES ON RUSH TORN AROUND Ās Зb S Ba Ba Ве В Ве В Са Signature Printed Name 1664 SGT Ca Pesticides/Herbicides 8081A 8141A S S RELINQUISHED BY: EYCEPT Chlorophenolics Co (Cr)Cu င္ပ Q 0 8151A 8151M PCP PAHS Ą Date/Time ပ 8310 Metals, Total or Dissolved しているのから Ę, CA WI Fe PAGE P В CHOI LIMB C_{yanide} Μg Μg PH, Cond, CI, SO4, PO4, F, NO2, NH3-N, COD, TOtal-P, TKN, TOC, NORTHWEST Mn Mo Ni 윾 ス ス AOX 1650 8270D Ag Ąg MERY 506 Za 82706 RECEIVED BY Se Se COC # Ñ ď まって Firm \exists CIRCLE _ ŝ Sn AROND 1839 1839 TURN -REMARKS < < ONE) И Zn Ηg

10

Columbia Analytical Cooler Receipt and Pr		
Client / Project: IP/LMANEW / LIRS	Service Request $K11 + 7780$	
Received: 8/22/1/ Opened: 8/23/11 By:	Unloaded: 8/23/11 By:46	
1. Samples were received via? Mail Fed Ex UPS DH	L PDX Courier Hand Delivered	
2. Samples were received in: (circle) Cooler Box Enve	lope OtherNA	
3. Were <u>custody seals</u> on coolers? NA Y N If	yes, how many and where?	
If present, were custody seals intact? Y N	If present, were they signed and dated? Y	[
Cooler Temp Thermometer Cooler/COC Temp °C Blank °C ID ID NA	Tracking Number NA Filed	
		-
		+
7. Packing material used. Inserts Baggies Bubble Wrap Gel Page	cks Wet Ice Sleeves Other	
8. Were custody papers properly filled out (ink, signed, etc.)?	NA (Y)	1
9. Did all bottles arrive in good condition (unbroken)? Indicate in the ta	ble below. NA X	1
10. Were all sample labels complete (i.e analysis, preservation, etc.)?	NA 📉 1	1
11. Did all sample labels and tags agree with custody papers? Indicate m	ajor discrepancies in the table on page 2. NA $\stackrel{ ext{ (Y)}}{ ext{ (Y)}}$. I	1
12. Were appropriate bottles/containers and volumes received for the tests		
13. Were the pH-preserved bottles (see SMO GEN SOP) received at the app	· ·	
14. Were VOA vials received without headspace? <i>Indicate in the table be</i>	American and a second	
15. Was C12/Res negative?	(NA) Y N	ı T
Sample ID on Bottle Sample ID on COC	ldentified by:	
		_
		_
		ا
Bottle Count Out of Head- Sample ID Bottle Type Temp space Broke	PH Reagent added Number Initials Time	
		1
		4
		٦
Notes, Discrepancies, & Resolutions:		
	5	

Polynuclear Aromatic Hydrocarbons

Client: Project:

URS Corporation

1P Longview Treatability Study/33763156

Service Request:

K1107780

Cover Page - Organic Analysis Data Package Polynuclear Aromatic Hydrocarbons

		Date	Date
Sample Name	Lab Code	Collected	Received
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011
TP01-S-7.5-082211	K1107780-002	08/22/2011	08/23/2011
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011
TP02-S-6.5-082211	K1107780-004	08/22/2011	08/23/2011
TP01-S-2.0-7.5-082211MS	KWG1108421-1	08/22/2011	08/23/2011
TP01-S-2.0-7.5-082211DMS	KWG1108421-2	08/22/2011	08/23/2011

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Date:

Name:

Title:

Cover Page - Organic

Page 1 of

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Service Request: K1107780

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
TP01-S-2.0-7.5-082211	K1107780-001	74	77	86
TP01-S-7.5-082211	K1107780-002	70	77	77
TP02-S-2.0-6.5-082211	K1107780-003	75 D	79 D	93 D
TP02-S-6.5-082211	K1107780-004	80 D	85 D	100 D
Method Blank	KWG1108421-5	75	75	86
TP01-S-2.0-7.5-082211MS	KWG1108421-1	75	71	80
TP01-S-2.0-7.5-082211DMS	KWG1108421-2	54	51	58
Lab Control Sample	KWG1108421-3	70	69	77
Duplicate Lab Control Sample	KWG1108421-4	76	72	83

Surrogate Recovery Control Limits (%)

Surl =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/07/2011 13:50:07 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1108421-5

Extraction Method: Analysis Method:

EPA 3541

: EF

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	1,3	0,60	1	08/24/11	08/29/11	KWG1108421	
2-Methylnaphthalene	ND U	1.3	0.46	1	08/24/11	08/29/11	KWG1108421	
Acenaphthylene	ND U	1.3	0.59	1	08/24/11	08/29/11	KWG1108421	
Acenaphthene	ND U	1.3	0.76	1	08/24/11	08/29/11	KWG1108421	
Fluorene	ND U	1.3	0.61	1	08/24/11	08/29/11	KWG1108421	
Dibenzofuran	ND U	1.3	0.63	1	08/24/11	08/29/11	KWG1108421	
Phenanthrene	ND U	1,4	1.4	1	08/24/11	08/29/11	KWG1108421	
Anthracene	ND U	1.3	0.58	1	08/24/11	08/29/11	KWG1108421	
Fluoranthene	ND U	1.3	0.98	1	08/24/11	08/29/11	KWG1108421	
Pyrene	ND U	1.3	0.76	1	08/24/11	08/29/11	KWG1108421	
Benzo(b)fluoranthene	ND U	1.3	0.92	1	08/24/11	08/29/11	KWG1108421	
Benzo(k)fluoranthene	ND U	1.3	0.87	1	08/24/11	08/29/11	KWG1108421	
Benz(a)anthracene	ND U	1.3	0.72	1	08/24/11	08/29/11	KWG1108421	
Chrysene	ND U	1.3	0.80	1	08/24/11	08/29/11	KWG1108421	
Benzo(a)pyrene	ND U	1.3	0.76	1	08/24/11	08/29/11	KWG1108421	
Indeno(1,2,3-cd)pyrene	ND U	1.3	0.87	1	08/24/11	08/29/11	KWG1108421	
Dibenz(a,h)anthracene	ND U	1.3	0.80	1	08/24/11	08/29/11	KWG1108421	
Benzo(g,h,i)perylene	ND U	1.3	0.85	1	08/24/11	08/29/11	KWG1108421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	75	17-104	08/29/11	Acceptable	
Fluoranthene-d10	75	27-106	08/29/11	Acceptable	
Terphenyl-d14	86	35-109	08/29/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Polynuclear Aromatic Hydrocarbons

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8270D SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
		1.8	0.60	1	08/24/11	08/29/11	KWG1108421	11010
Naphthalene	110			1				
2-Methylnaphthalene	45	1.8	0.46	1	08/24/11	08/29/11	KWG1108421	
Acenaphthylene	2.0	1.8	0.59	1	08/24/11	08/29/11	KWG1108421	
Acenaphthene	200	1.8	0.76	1	08/24/11	08/29/11	KWG1108421	
Fluorene	84	1.8	0.61	1 .	08/24/11	08/29/11	KWG1108421	
Dibenzofuran	96	1.8	0.63	1	08/24/11	08/29/11	KWG1108421	
Phenanthrene	44	1.8	1.4	1	08/24/11	08/29/11	KWG1108421	
Anthracene	4.3	1.8	0.58	1	08/24/11	08/29/11	KWG1108421	
Fluoranthene	7.7	1.8	0.98	1	08/24/11	08/29/11	KWG1108421	
Pyrene	5.4	1.8	0.76	1	08/24/11	08/29/11	KWG1108421	
Benzo(b)fluoranthene	4.7	1.8	0.92	1	08/24/11	08/29/11	KWG1108421	
Benzo(k)fluoranthene	1.1 J	1.8	0.87	1	08/24/11	08/29/11	KWG1108421	
Benz(a)anthracene	1.9	1.8	0.72	1	08/24/11	08/29/11	KWG1108421	
Chrysene	3.1	1.8	0.80	1	08/24/11	08/29/11	KWG1108421	
Benzo(a)pyrene	6.1	1.8	0.76	1	08/24/11	08/29/11	KWG1108421	
Indeno(1,2,3-cd)pyrene	5.8	1.8	0.87	1	08/24/11	08/29/11	KWG1108421	
Dibenz(a,h)anthracene	ND U	1.8	0.80	1	08/24/11	08/29/11	KWG1108421	
Benzo(g,h,i)perylene	6.1	1.8	0.85	1	08/24/11	08/29/11	KWG1108421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	74	17-104	08/29/11	Acceptable	
Fluoranthene-d10	77	27-106	08/29/11	Acceptable	
Terphenyl-d14	86	35-109	08/29/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

TP01-S-7.5-082211 K1107780-002

Extraction Method: Analysis Method:

EPA 3541 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

A L / N	n 11 0	MDI		Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	220	1.9	0.60	1	08/24/11	08/29/11	KWG1108421	
2-Methylnaphthalene	79	1.9	0.46	1	08/24/11	08/29/11	KWG1108421	
Acenaphthylene	5. 7	1.9	0.59	1	08/24/11	08/29/11	KWG1108421	
Acenaphthene	430	1.9	0.76	1	08/24/11	08/29/11	KWG1108421	
Fluorene	130	1.9	0.61	1	08/24/11	08/29/11	KWG1108421	
Dibenzofuran	150	1.9	0.63	1	08/24/11	08/29/11	KWG1108421	
Phenanthrene	110	1.9	1.4	1	08/24/11	08/29/11	KWG1108421	
Anthracene	35	1.9	0.58	1	08/24/11	08/29/11	KWG1108421	
Fluoranthene	380	1.9	0.98	1	08/24/11	08/29/11	KWG1108421	
Pyrene	260	1.9	0.76	1	08/24/11	08/29/11	KWG1108421	
Benzo(b)fluoranthene	170	1.9	0.92	1	08/24/11	08/29/11	KWG1108421	
Benzo(k)fluoranthene	46	1.9	0.87	1	08/24/11	08/29/11	KWG1108421	
Benz(a)anthracene	80	1.9	0.72	1	08/24/11	08/29/11	KWG1108421	
Chrysene	130	1.9	0.80	1	08/24/11	08/29/11	KWG1108421	
Benzo(a)pyrene	160	1.9	0.76	1	08/24/11	08/29/11	KWG1108421	
Indeno(1,2,3-cd)pyrene	180	1.9	0.87	1	08/24/11	08/29/11	KWG1108421	
Dibenz(a,h)anthracene	2 7	1.9	0.80	1	08/24/11	08/29/11	KWG1108421	
Benzo(g,h,i)perylene	170	1.9	0.85	1	08/24/11	08/29/11	KWG1108421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	70	17-104	08/29/11	Acceptable	
Fluoranthene-d10	77	27-106	08/29/11	Acceptable	
Terphenyl-d14	77	35-109	08/29/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Polynuclear Aromatic Hydrocarbons

Sample Name:

TP02-S-2.0-6.5-082211

Lab Code:

K1107780-003

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	35000	D	610	73	50	08/24/11	08/30/11	KWG1108421	
2-Methylnaphthalene	48000	D	610	56	50	08/24/11	08/30/11	KWG1108421	
Acenaphthylene	1100	D	61	7.1	5	08/24/11	08/30/11	KWG1108421	
Acenaphthene	81000	D	610	92	50	08/24/11	08/30/11	KWG1108421	
Fluorene	85000	D	610	74	50	08/24/11	08/30/11	KWG1108421	
Dibenzofuran	60000	D	610	76	50	08/24/11	08/30/11	KWG1108421	
Phenanthrene	240000	D	610	170	50	08/24/11	08/30/11	KWG1108421	
Anthracene	45000	D	610	70	50	08/24/11	08/30/11	KWG1108421	
Fluoranthene	120000	D	610	120	50	08/24/11	08/30/11	KWG1108421	
Pyrene	74000	D	610	92	50	08/24/11	08/30/11	KWG1108421	
Benzo(b)fluoranthene	7900	D	61	12	5	08/24/11	08/30/11	KWG1108421	
Benzo(k)fluoranthene	2700	D	61	11	5	08/24/11	08/30/11	KWG1108421	
Benz(a)anthracene	17000	D	61	8.7	5	08/24/11	08/30/11	KWG1108421	
Chrysene	14000	D	61	9.7	5	08/24/11	08/30/11	KWG1108421	
Benzo(a)pyrene	4400	D	61	9.2	5	08/24/11	08/30/11	KWG1108421	
Indeno(1,2,3-cd)pyrene	1300	D	61	11	5	08/24/11	08/30/11	KWG1108421	
Dibenz(a,h)anthracene	310	D	61	9.7	5	08/24/11	08/30/11	KWG1108421	
Benzo(g,h,i)perylene	1100	D	61	11	5	08/24/11	08/30/11	KWG1108421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	75	17-104	08/30/11	Acceptable	
Fluoranthene-d10	79	27-106	08/30/11	Acceptable	
Terphenyl-d14	93	35-109	08/30/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Polynuclear Aromatic Hydrocarbons

Sample Name:

Lab Code:

TP02-S-6.5-082211 K1107780-004

Extraction Method:

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8270D SIM

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene Naphthalene	46000	D	680	82	50	08/24/11	08/30/11	KWG1108421	
2-Methylnaphthalene	38000	D	680	63	50	08/24/11	08/30/11	KWG1108421	
Acenaphthylene	1200	D	68	8.0	5	08/24/11	08/30/11	KWG1108421	
Acenaphthene	82000	D	680	110	50	08/24/11	08/30/11	KWG1108421	
Fluorene	90000	D	680	83	50	08/24/11	08/30/11	KWG1108421	
Dibenzofuran	58000	D	680	86	50	08/24/11	08/30/11	KWG1108421	
Phenanthrene	240000	D	680	190	50	08/24/11	08/30/11	KWG1108421	
Anthracene	77000	D	680	79	50	08/24/11	08/30/11	KWG1108421	
Fluoranthene	130000	D	680	140	50	08/24/11	08/30/11	KWG1108421	
Pyrene	77000	D	680	110	50	08/24/11	08/30/11	KWG1108421	
Benzo(b)fluoranthene	10000	D	68	13	5	08/24/11	08/30/11	KWG1108421	
Benzo(k)fluoranthene	3000	D	68	12	5	08/24/11	08/30/11	KWG1108421	
Benz(a)anthracene	20000	D	68	9.8	5	08/24/11	08/30/11	KWG1108421	
Chrysene	17000	D	68	11	5	08/24/11	08/30/11	KWG1108421	
Benzo(a)pyrene	5400	D	68	11	5	08/24/11	08/30/11	KWG1108421	
Indeno(1,2,3-cd)pyrene	1800	D	68	12	5	08/24/11	08/30/11	KWG1108421	PERSONAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN 1
Dibenz(a,h)anthracene	420	D	68	11	5	08/24/11	08/30/11	KWG1108421	
Benzo(g,h,i)perylene	1500	D	68	12	5	08/24/11	08/30/11	KWG1108421	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	80	17-104	08/30/11	Acceptable	
Fluoranthene-d10	85	27-106	08/30/11	Acceptable	
Terphenyl-d14	100	35-109	08/30/11	Acceptable	

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Extracted: 08/24/2011 **Date Analyzed:** 08/29/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541 **Analysis Method:**

Benzo(g,h,i)perylene

8270D SIM

Units: ug/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1108421

	KW	Control Samp /G1108421-3 Control Spik	3	KV	Lab Control VG1108421-4 e Lab Control	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	149	250	60	163	250	65	43-99	9	40
2-Methylnaphthalene	152	250	61	163	250	65	44-111	7	40
Acenaphthylene	151	250	61	163	250	65	41-110	7	40
Acenaphthene	148	250	59	161	250	64	44-104	8	40
Fluorene	158	250	63	169	250	68	49-105	7	40
Dibenzofuran	151	250	61	163	250	65	43-113	7	40
Phenanthrene	151	250	60	162	250	65	47-104	7	40
Anthracene	167	250	67	178	250	71	47-112	7	40
Fluoranthene	172	250	69	178	250	71	51-111	4	40
Pyrene	160	250	64	178	250	71	48-113	10	40
Benzo(b)fluoranthene	178	250	71	191	250	77	51-113	7	40
Benzo(k)fluoranthene	173	250	69	186	250	74	56-114	7	40
Benz(a)anthracene	165	250	66	177	250	71	51-111	7	40
Chrysene	169	250	68	181	250	72	54-111	7	40
Benzo(a)pyrene	161	250	64	174	250	69	52-118	7	40
Indeno(1,2,3-cd)pyrene	170	250	68	182	250	73	42-123	7	40
Dibenz(a,h)anthracene	166	250	66	177	250	71	44-119	6	40
_ , , , , , ,									

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

162

250

65

173

250

69

46-114

6

40

Printed: 09/07/2011 13:50:53 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Service Request: K1107780

Date Extracted: 08/24/2011 **Date Analyzed:** 08/29/2011

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1108421

TP01-S-2.0-7.5-082211MS

TP01-S-2.0-7.5-082211DM

S

KWG1108421-2 KWG1108421-1

	Sample	Matrix Spike			Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	110	248	172	82	230	172	72	11-119	7	40
2-Methylnaphthalene	45	168	172	72	174	172	76	17-123	4	40
Acenaphthylene	2.0	116	172	66	78.6	172	45	32-106	38	40
Acenaphthene	200	292	172	56	258	172	36	29-110	12	40
Fluorene	84	201	172	69	141	172	33	29-117	35	40
Dibenzofuran	96	195	172	58	139	172	25 *	31-110	34	40
Phenanthrene	44	136	172	54	104	172	35	19-128	27	40
Anthracene	4.3	125	172	70	87.3	172	48	31-115	35	40
Fluoranthene	7.7	128	172	70	87.4	172	46	22-138	38	40
Pyrene	5.4	126	172	70	87.3	172	48	11-148	37	40
Benzo(b)fluoranthene	4.7	135	172	76	93.7	172	52	15-136	36	40
Benzo(k)fluoranthene	1.1	127	172	73	88.2	172	51	29-126	36	40
Benz(a)anthracene	1.9	125	172	72	85.6	172	49	25-128	37	40
Chrysene	3.1	130	172	74	90.8	172	51	25-132	35	40
Benzo(a)pyrene	6.1	126	172	70	88.1	172	48	24-131	36	40
Indeno(1,2,3-cd)pyrene	5.8	141	172	79	103	172	57	20-136	31	40
Dibenz(a,h)anthracene	ND	124	172	72	82.9	172	48	29-124	40	40
Benzo(g,h,i)perylene	6.1	137	172	76	102	172	56	24-127	29	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/07/2011 13:50:49 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Client: Project: **URS** Corporation

IP Longview Treatability Study/33763156

Service Request:

K1107780

Cover Page - Organic Analysis Data Package Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name	Lab Code	Date Collected	Date Received
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

QA/QC Report

URS Corporation Service Request: K1107780 Client:

IP Longview Treatability Study/33763156 Project:

Sample Matrix: Soil

Surrogate Recovery Summary

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Units: PERCENT Preparation Method: EPA 1311

Level: Low **Extraction Method:** EPA 3520C

Analysis Method: 8270D SIM

Sample Name	Lab Code	<u>Sur1</u>	Sur1		Sur2		Sur3	
TP01-S-2.0-7.5-082211	K1107780-001	105	*	128	*	124	*	
TP02-S-2.0-6.5-082211	K1107780-003	82		86		92		
Method Blank	KWG1108709-4	72		79		89		
Method Blank	KWG1108792-4	78		97		95		
Lab Control Sample	KWG1108709-1	83		83		89		
Duplicate Lab Control Sample	KWG1108709-2	81		80		86		
Lab Control Sample	KWG1108792-1	105	*	124	*	114	*	
Duplicate Lab Control Sample	KWG1108792-2	88		103		97		

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	28-98
Sur2 = Fluoranthene-d10	31-105
Sur3 = Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Page Form 2A - Organic 1 of 1 Printed: 09/21/2011 14:30:25

RR133349 SuperSet Reference: u:\Stealth\Crystal.rpt\Form2.rpt 985

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 08/30/2011

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name: Lab Code:

Method Blank KWG1108709-4

Preparation Method: EPA 1311

Extraction Method: EPA 3520C Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	63	0.20	1	09/03/11	09/07/11	KWG1108709	
2-Methylnaphthalene	9.4	0.20	1	09/03/11	09/07/11	KWG1108709	
Acenaphthylene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Acenaphthene	4.5	0.20	1	09/03/11	09/07/11	KWG1108709	
Dibenzofuran	3.0	0.20	1	09/03/11	09/07/11	KWG1108709	
Fluorene	3.0	0.20	1	09/03/11	09/07/11	KWG1108709	
Phenanthrene	3.8	0.20	1	09/03/11	09/07/11	KWG1108709	
Anthracene	0.48	0.20	1	09/03/11	09/07/11	KWG1108709	
Fluoranthene	0.61	0.20	1	09/03/11	09/07/11	KWG1108709	
Pyrene	0.31	0.20	1	09/03/11	09/07/11	KWG1108709	
Benz(a)anthracene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Chrysene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(b)fluoranthene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(k)fluoranthene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(a)pyrene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Indeno(1,2,3-cd)pyrene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Dibenz(a,h)anthracene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(g,h,i)perylene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	72	28-98	09/07/11	Acceptable	
Fluoranthene-d10	79	31-105	09/07/11	Acceptable	
Terphenyl-d14	89	27-112	09/07/11	Acceptable	

Comments:

Analytical Results

Client: URS Corporation

Project: IP Longview Treatability Study/33763156

Sample Matrix: S

Soil

Service Request: K1107780

Date Collected: NA
Date Received: NA

Date Prepared: 09/02/2011

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name: Method Blank Lab Code: KWG1108792-4

Preparation Method: EPA 1311 Extraction Method: EPA 3520C Analysis Method: 8270D SIM Units: ug/L
Basis: NA
Level: Low

3				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
2-Methylnaphthalene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthylene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenzofuran	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Fluorene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Phenanthrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benz(a)anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Chrysene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(b)fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(k)fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(a)pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	78	28-98	09/09/11	Acceptable	
Fluoranthene-d10	97	31-105	09/09/11	Acceptable	
Terphenyl-d14	95	27-112	09/09/11	Acceptable	

Comments:

Analytical Results

Client: URS Corporation

Project: IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780 **Date Collected:** 08/22/2011 **Page Received:** 08/23/2011

Date Received: 08/23/2011 **Date Prepared:** 09/02/2011

Units: ug/L

Basis: NA

Level: Low

Toxicity Characteristic Leaching Procedure (TCLP)
Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code: K1107780-001

Preparation Method: EPA 1311 Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Analysis Method:	8270D SIM				Dilution	Date	Date	Extraction	
Analyte Name		Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	I I	1.5		0.20	1	09/07/11	09/09/11	KWG1108792	
2-Methylnaphthalene		0.33		0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthylene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthene	4.000	1.6		0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenzofuran		0.38		0.20	1	09/07/11	09/09/11	KWG1108792	
Fluorene		0.35		0.20	1	09/07/11	09/09/11	KWG1108792	
Phenanthrene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Anthracene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Fluoranthene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Pyrene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benz(a)anthracene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Chrysene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(b)fluoranthene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(k)fluoranthene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(a)pyrene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Indeno(1,2,3-cd)pyrene	,	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenz(a,h)anthracene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(g,h,i)perylene		ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	105	28-98	09/09/11	Outside Control Limits	
Fluoranthene-d10	128	31-105	09/09/11	Outside Control Limits	
Terphenyl-d14	124	27-112	09/09/11	Outside Control Limits	

Comments:

Printed: 09/21/2011 14:30:12 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011 **Date Prepared:** 08/30/2011

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

TP02-S-2.0-6.5-082211

Lab Code:

K1107780-003

Preparation Method: EPA 1311

EPA 3520C

Extraction Method: Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Dilution Date Date Extraction Factor Extracted Analyzed Lot Note MRL Result Q **Analyte Name** 500 09/03/11 09/09/11 KWG1108709 13000 D 100 Naphthalene KWG1108709 100 09/03/11 09/09/11 2-Methylnaphthalene 1100 D 20 KWG1108709 Acenaphthylene 10 0.20 1 09/03/11 09/07/11 KWG1108709 09/09/11 100 09/03/11 Acenaphthene 460 D 20 100 09/03/11 09/09/11 KWG1108709 260 D 20 Dibenzofuran KWG1108709 100 09/09/11 Fluorene 230 D 20 09/03/11 100 09/09/11 KWG1108709 09/03/11 20 Phenanthrene 210 D KWG1108709 09/03/11 09/07/11 0.20 1 Anthracene 18 KWG1108709 1 09/03/11 09/07/11 Fluoranthene 21 0.20 KWG1108709 1 09/03/11 09/07/11 0.20 Pyrene 11 KWG1108709 Benz(a)anthracene 0.36 0.20 1 09/03/11 09/07/11 0.20 1 09/03/11 09/07/11 KWG1108709 0.35 Chrysene KWG1108709 1 09/03/11 09/07/11 Benzo(b)fluoranthene ND U 0.20 KWG1108709 Benzo(k)fluoranthene 1 09/03/11 09/07/11 ND U 0.20 09/07/11 KWG1108709 0.20 1 09/03/11 ND U Benzo(a)pyrene 09/07/11 KWG1108709 1 09/03/11 Indeno(1,2,3-cd)pyrene ND U 0.20 09/03/11 09/07/11 KWG1108709 1 Dibenz(a,h)anthracene ND U 0.20 KWG1108709 09/07/11 ND U 0.20 1 09/03/11 Benzo(g,h,i)perylene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	82	28-98	09/07/11	Acceptable	
Fluoranthene-d10	86	31-105	09/07/11	Acceptable	
Terphenyl-d14	92	27-112	09/07/11	Acceptable	

Comments:

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Prepared: 08/30/2011 Date Extracted: 09/03/2011

Date Analyzed: 09/07/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Extraction Method:

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

EPA 1311/EPA 3520C

24.2

23.1

25.0

25.0

97

93

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1108709

	KV	Lab Control Sample KWG1108709-1 Lab Control Spike			Duplicate Lab Control Sample KWG1108709-2 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	19.6	25.0	78	19.6	25.0	78	39-110	0	30
2-Methylnaphthalene	18.9	25.0	75	19.1	25.0	76	39-115	1	30
Acenaphthylene	21.2	25.0	85	21.3	25.0	85	44-115	0	30
Acenaphthene	20.2	25.0	81	20.7	25.0	83	44-113	2	30
Dibenzofuran	20.4	25.0	82	20.5	25.0	82	46-116	0	30
Fluorene	22.0	25.0	88	22.0	25.0	88	48-118	0	30
Phenanthrene	21.9	25.0	88	21.1	25.0	84	47-120	4	30
Anthracene	22.7	25.0	91	22.1	25.0	88	44-117	3	30
Fluoranthene	24.2	25.0	97	23.4	25.0	94	48-128	3	30
Pyrene	24.2	25.0	97	23.6	25.0	94	42-133	2	30
Benz(a)anthracene	23.0	25.0	92	22.2	25.0	89	48-125	3	30
Chrysene	23.8	25.0	95	23.1	25.0	92	50-128	3	30
Benzo(b)fluoranthene	24.6	25.0	98	24.1	25.0	97	49-131	2	30
Benzo(k)fluoranthene	24.9	25.0	100	24.3	25.0	97	54-131	3	30
Benzo(a)pyrene	25.3	25.0	101	24.9	25.0	100	43-124	2	30
Indeno(1,2,3-cd)pyrene	24.5	25.0	98	24.0	25.0	96	45-133	2	30

25.0

25.0

24.2

23.3

97

93

49-133

51-124

0

1

30

30

1 of 1

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

 Service Request:
 K1107780

 Date Prepared:
 09/02/2011

 Date Extracted:
 09/07/2011

 Date Analyzed:
 09/09/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Extraction Method:

EPA 1311/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1108792

Lab Control Sample KWG1108792-1 Duplicate Lab Control Sample KWG1108792-2

		Lab Control Spike			Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	20.3	25.0	81	20.4	25.0	81	39-110	0	30
2-Methylnaphthalene	19.4	25.0	78	19.9	25.0	79	39-115	2	30
Acenaphthylene	21.5	25.0	86	21.1	25.0	85	44-115	2	30
Acenaphthene	21.1	25.0	84	20.5	25.0	82	44-113	3	30
Dibenzofuran	20.2	25.0	81	20.3	25.0	81	46-116	1	30
Fluorene	22.0	25.0	88	21.8	25.0	87	48-118	1	30
Phenanthrene	22.1	25.0	89	21.7	25.0	87	47-120	2	30
Anthracene	23.8	25.0	95	23.3	25.0	93	44-117	2	30
Fluoranthene	27.6	25.0	110	26.5	25.0	106	48-128	4	30
Pyrene	22.8	25.0	91	22.5	25.0	90	42-133	2	30
Benz(a)anthracene	23.8	25.0	95	23.3	25.0	93	48-125	2	30
Chrysene	24.0	25.0	96	23.3	25.0	93	50-128	3	30
Benzo(b)fluoranthene	25.6	25.0	102	25.0	25.0	100	49-131	2	30
Benzo(k)fluoranthene	25.6	25.0	102	24.8	25.0	99	54-131	3	30
Benzo(a)pyrene	26.2	25.0	105	25.7	25.0	103	43-124	2	30
Indeno(1,2,3-cd)pyrene	27.0	25.0	108	26.3	25.0	105	45-133	3	30
Dibenz(a,h)anthracene	27.5	25.0	110	26.8	25.0	107	49-133	2	30
Benzo(g,h,i)perylene	25.5	25.0	102	25.0	25.0	100	51-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/21/2011 14:31:20 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1 SuperSet Reference: RR133349

Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Client: Project: **URS** Corporation

IP Longview Treatability Study/33763156

Service Request:

K1107780

Cover Page - Organic Analysis Data Package Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name	Lab Code	Date Collected	Date Received
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Cover Page - Organic

1 of

QA/QC Report

Client: Project:

URS Corporation

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Surrogate Recovery Summary
Synthetic Precipitation Leaching Procedure
Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Preparation Method: EPA 1312

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Service Request: K1107780

Sample Name	Lab Code	<u>Sur1</u>		Sur2		<u>Sur3</u>	
TP01-S-2.0-7.5-082211	K1107780-001	102	*	128	*	120	*
TP02-S-2.0-6.5-082211	K1107780-003	74		77		86	
Method Blank	KWG1108709-3	76		81		91	
Method Blank	KWG1108792-3	65		81		76	
Lab Control Sample	KWG1108709-1	83		83		89	
Duplicate Lab Control Sample	KWG1108709-2	81		80		86	
Lab Control Sample	KWG1108792-1	105	*	124	*	114	*
Duplicate Lab Control Sample	KWG1108792-2	88		103		97	

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	28-98
Sur2 =	Fluoranthene-d10	31-105
Sur3 =	Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/21/2011 14:05:08

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

 $\label{eq:page-loss} Page \quad \ \ 1 \ \ of \quad \ \ 1$ SuperSet Reference: RR133344

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 08/30/2011

Units: ug/L

Basis: NA

Level: Low

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name: Lab Code:

Method Blank KWG1108709-3

Preparation Method: EPA 1312 Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	6.1	0.20	1	09/03/11	09/07/11	KWG1108709	
2-Methylnaphthalene	1.1	0.20	1	09/03/11	09/07/11	KWG1108709	
Acenaphthylene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Acenaphthene	0.77	0.20	1	09/03/11	09/07/11	KWG1108709	
Dibenzofuran	0.64	0.20	1	09/03/11	09/07/11	KWG1108709	
Fluorene	0.74	0.20	1	09/03/11	09/07/11	KWG1108709	
Phenanthrene	1.3	0.20	1	09/03/11	09/07/11	KWG1108709	
Anthracene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Fluoranthene	0.21	0.20	1	09/03/11	09/07/11	KWG1108709	
Pyrene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benz(a)anthracene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Chrysene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(b)fluoranthene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(k)fluoranthene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(a)pyrene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Indeno(1,2,3-cd)pyrene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Dibenz(a,h)anthracene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(g,h,i)perylene	ND U	0.20	1	09/03/11	09/07/11	KWG1108709	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	76	28-98	09/07/11	Acceptable	
Fluoranthene-d10	81	31-105	09/07/11	Acceptable	
Terphenyl-d14	91	27-112	09/07/11	Acceptable	

Comments:

Printed: 09/21/2011 14:05:01 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 09/02/2011

Units: ug/L

Basis: NA

Level: Low

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name: Lab Code:

Method Blank KWG1108792-3

Preparation Method: EPA 1312

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
2-Methylnaphthalene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthylene	ND		0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthene	0.21	•	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenzofuran	0.68		0.20	1	09/07/11	09/09/11	KWG1108792	
Fluorene	0.76		0.20	1	09/07/11	09/09/11	KWG1108792	
Phenanthrene	4.0		0.20	1	09/07/11	09/09/11	KWG1108792	
Anthracene	0.46		0.20	1	09/07/11	09/09/11	KWG1108792	
Fluoranthene	2.4		0.20	1	09/07/11	09/09/11	KWG1108792	
Pyrene	1.3		0.20	1	09/07/11	09/09/11	KWG1108792	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Benz(a)anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Chrysene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(b)fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(k)fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(a)pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	,

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	65	28-98	09/09/11	Acceptable	
Fluoranthene-d10	81	31-105	09/09/11	Acceptable	
Terphenyl-d14	76	27-112	09/09/11	Acceptable	

Comments:

Printed: 09/21/2011 14:05:04 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011

Date Received: 08/23/2011 **Date Prepared:** 09/02/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method: EPA 3520C 8270D SIM **Analysis Method:**

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1.2		0.20	1	09/07/11	09/09/11	KWG1108792	
2-Methylnaphthalene	0.23		0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthylene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Acenaphthene	1.3	В	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenzofuran	0.29	В	0.20	1	09/07/11	09/09/11	KWG1108792	
Fluorene	0.28	В	0.20	1	09/07/11	09/09/11	KWG1108792	
Phenanthrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benz(a)anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Chrysene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(b)fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(k)fluoranthene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(a)pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/07/11	09/09/11	KWG1108792	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	102	28-98	09/09/11	Outside Control Limits	
Fluoranthene-d10	128	31-105	09/09/11	Outside Control Limits	
Terphenyl-d14	120	27-112	09/09/11	Outside Control Limits	

Comments:

553

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011 **Date Prepared:** 08/30/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

TP02-S-2.0-6.5-082211

Lab Code:

K1107780-003

Preparation Method: EPA 1312

Extraction Method: EPA 3520C Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	12000	D	100	500	09/03/11	09/09/11	KWG1108709	
2-Methylnaphthalene	1000	D	20	100	09/03/11	09/09/11	KWG1108 7 09	
Acenaphthylene	10		0.20	1 .	09/03/11	09/07/11	KWG1108709	
Acenaphthene	420	D	20	100	09/03/11	09/09/11	KWG1108709	
Dibenzofuran	240	D	20	100	09/03/11	09/09/11	KWG1108709	
Fluorene	210	D	20	100	09/03/11	09/09/11	KWG1108709	
Phenanthrene	210	D	20	100	09/03/11	09/09/11	KWG1108709	
Anthracene	31		0.20	1	09/03/11	09/07/11	KWG1108709	
Fluoranthene	40		0.20	1	09/03/11	09/07/11	KWG1108 7 09	
Pyrene	23		0.20	1	09/03/11	09/07/11	KWG1108709	
Benz(a)anthracene	3.8		0.20	1	09/03/11	09/07/11	KWG1108709	
Chrysene	3.4		0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(b)fluoranthene	1.7		0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(k)fluoranthene	0.67		0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(a)pyrene	1.0		0.20	1	09/03/11	09/07/11	KWG1108709	
Indeno(1,2,3-cd)pyrene	0.36		0.20	1	09/03/11	09/07/11	KWG1108709	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/03/11	09/07/11	KWG1108709	
Benzo(g,h,i)perylene	0.39		0.20	1	09/03/11	09/07/11	KWG1108709	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	74	28-98	09/07/11	Acceptable	
Fluoranthene-d10	77	31-105	09/07/11	Acceptable	
Terphenyl-d14	86	27-112	09/07/11	Acceptable	

Comments:

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780 **Date Prepared:** 08/30/2011 Date Extracted: 09/03/2011

Date Analyzed: 09/07/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method: EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1108709

	KW	Control Samp /G1108709-1 Control Spik		Duplicate Lab Control Sample KWG1108709-2 Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	19.6	25.0	78	19.6	25.0	78	39-110	0	30
2-Methylnaphthalene	18.9	25.0	75	19.1	25.0	76	39-115	1	30
Acenaphthylene	21.2	25.0	85	21.3	25.0	85	44-115	0	30
Acenaphthene	20.2	25.0	81	20.7	25.0	83	44-113	2	30
Dibenzofuran	20.4	25.0	82	20.5	25.0	82	46-116	0	30
Fluorene	22.0	25.0	88	22.0	25.0	88	48-118	0	30
Phenanthrene	21.9	25.0	88	21.1	25.0	84	47-120	4	30
Anthracene	22.7	25.0	91	22.1	25.0	88	44-117	3	30
Fluoranthene	24.2	25.0	97	23.4	25.0	94	48-128	3	30
Pyrene	24.2	25.0	97	23.6	25.0	94	42-133	2	30
Benz(a)anthracene	23.0	25.0	92	22.2	25.0	89	48-125	3	30
Chrysene	23.8	25.0	95	23.1	25.0	92	50-128	3	30
Benzo(b)fluoranthene	24.6	25.0	98	24.1	25.0	97	49-131	2	30
Benzo(k)fluoranthene	24.9	25.0	100	24.3	25.0	97	54-131	3	30
Benzo(a)pyrene	25.3	25.0	101	24.9	25.0	100	43-124	2	30
Indeno(1,2,3-cd)pyrene	24.5	25.0	98	24.0	25.0	96	45-133	2	30
Dibenz(a,h)anthracene	24.2	25.0	97	24.2	25.0	97	49-133	0	30
Benzo(g,h,i)perylene	23.1	25.0	93	23.3	25.0	93	51-124	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/21/2011 14:06:09 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

564

Page

1 of 1

RR133344 SuperSet Reference:

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Prepared: 09/02/2011 **Date Extracted:** 09/07/2011 **Date Analyzed:** 09/09/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method:

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

EPA 1312/EPA 3520C

27.0

27.5

25.5

25.0

25.0

25.0

108

110

102

26.3

26.8

25.0

25.0

25.0

25.0

105

107

100

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1108792

3

2

2

45-133

49-133

51-124

30

30

30

1 of 1

	KW	Lab Control Sample KWG1108792-1 Lab Control Spike		KV	Duplicate Lab Control Sample KWG1108792-2 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	20.3	25.0	81	20.4	25.0	81	39-110	0	30
2-Methylnaphthalene	19.4	25.0	78	19.9	25.0	79	39-115	2	30
Acenaphthylene	21.5	25.0	86	21.1	25.0	85	44-115	2	30
Acenaphthene	21.1	25.0	84	20.5	25.0	82	44-113	3	30
Dibenzofuran	20.2	25.0	81	20.3	25.0	81	46-116	1	30
Fluorene	22.0	25.0	88	21.8	25.0	87	48-118	1	30
Phenanthrene	22.1	25.0	89	21.7	25.0	87	47-120	2	30
Anthracene	23.8	25.0	95	23.3	25.0	93	44-117	2	30
Fluoranthene	27.6	25.0	110	26.5	25.0	106	48-128	4	30
Pyrene	22.8	25.0	91	22.5	25.0	90	42-133	2	30
Benz(a)anthracene	23.8	25.0	95	23.3	25.0	93	48-125	2	30
Chrysene	24.0	25.0	96	23.3	25.0	93	50-128	3	30
Benzo(b)fluoranthene	25.6	25.0	102	25.0	25.0	100	49-131	2	30
Benzo(k)fluoranthene	25.6	25.0	102	24.8	25.0	99	54-131	3	30
Benzo(a)pyrene	26.2	25.0	105	25.7	25.0	103	43-124	2	30
~ (/F)			_			- 0 -	45 100	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/21/2011 14:06:13 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

RR133344

Diesel and Residual Range Organics

Client: Project:

URS Corporation

IP Longview Treatability Study/33763156

Service Request:

K1107780

Cover Page - Organic Analysis Data Package Diesel and Residual Range Organics

		Date	Date
Sample Name	Lab Code	Collected	Received
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011
TP01-S-2.0-7.5-082211	KWG1108812-1	08/22/2011	08/23/2011

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: For E. Potrocal

Name:_

itle: Scorentit

Date:

9/13/1

Cover Page - Organic

Page 1 of

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Surrogate Recovery Summary Synthetic Precipitation Leaching Procedure

Diesel and Residual Range Organics

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Units: PERCENT

Service Request: K1107780

Level: Low

Analysis Method:

NWTPH-Dx

Lab Code	<u>Sur1</u>	<u>Sur2</u>
K1107780-001	119	123
K1107780-003	139	110
KWG1108812-1	99	103
KWG1108812-3	100	103
KWG1108812-4	91	95
KWG1108812-2	116	117
	K1107780-001 K1107780-003 KWG1108812-1 KWG1108812-3 KWG1108812-4	K1107780-001 119 K1107780-003 139 KWG1108812-1 99 KWG1108812-3 100 KWG1108812-4 91

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/13/2011 10:12:22

Form 2A - Organic

Page 1 of 1

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 08/30/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1108812-3

Preparation Method: EPA 1312

Analysis Method:

Extraction Method: EPA 3510C

Units: ug/L Basis: NA

Level: Low

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/01/11	09/10/11	KWG1108812	
Residual Range Organics (RRO)	ND U	500	500	1	09/01/11	09/10/11	KWG1108812	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	100	50-150	09/10/11	Acceptable Acceptable
n-Triacontane	103	50-150	09/10/11	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 08/30/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1108812-4

Preparation Method: EPA 1312

Analysis Method:

Extraction Method: EPA 3510C

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

,				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/01/11	09/10/11	KWG1108812	
Residual Range Organics (RRO)	ND U	500	500	1	09/01/11	09/10/11	KWG1108812	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	91	50-150	09/10/11	Acceptable
n-Triacontane	95	50-150	09/10/11	Acceptable

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Date Prepared: 08/30/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Preparation Method: EPA 1312

Extraction Method: EPA 3510C **Analysis Method:**

NWTPH-Dx

Units: Basis:	_
Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/01/11	09/10/11	KWG1108812	
Residual Range Organics (RRO)	ND U	500	500	1	09/01/11	09/10/11	KWG1108812	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	119	50-150	09/10/11	Acceptable	
n-Triacontane	123	50-150	09/10/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Date Prepared: 08/30/2011

Units: ug/L

Basis: NA

Level: Low

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

TP02-S-2.0-6.5-082211

Lab Code:

K1107780-003

Preparation Method: EPA 1312

Analysis Method:

Extraction Method: EPA 3510C

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	27000 Z	250	250	1	09/01/11	09/10/11	KWG1108812	
Residual Range Organics (RRO)	510 Z	500	500	1	09/01/11	09/10/11	KWG1108812	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	139	50-150	09/10/11	Acceptable	
n-Triacontane	110	50-150	09/10/11	Acceptable	

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Extracted: 09/01/2011

Date Analyzed: 09/10/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1108812

TP01-S-2.0-7.5-082211DUP

			Sample	KWG11	08812-1	Relative Percent	RPD Limit
Analyte Name	MRL M	MDL	Result	Result	Average	Difference	
Diesel Range Organics (DRO)	250	250	ND	ND	ND	-	30
Residual Range Organics (RRO)	500	500	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/13/2011 10:12:26 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

413

Page 1 of 1

SuperSet Reference: RR132983

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Prepared: 08/30/2011 **Date Extracted:** 09/01/2011

Date Analyzed: 09/10/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

EPA 1312/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1108812

Lab Control Sample KWG1108812-2

Lab Control Spike %Rec Limits %Rec Result Expected **Analyte Name** 46-140 Diesel Range Organics (DRO) 3960 3200 124 Residual Range Organics (RRO) 45-159 1680 1600 105

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/13/2011 10:12:29 $u:\Stealth\Crystal.rpt\Form3LCS.rpt$

Form 3C - Organic

Page 1 of 1 SuperSet Reference:

Diesel and Residual Range Organics

Client: Project: **URS** Corporation

IP Longview Treatability Study/33763156

Service Request:

K1107780

Cover Page - Organic Analysis Data Package Diesel and Residual Range Organics

		Date	Date
Sample Name	Lab Code	Collected	Received
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011
TP01-S-2.0-7.5-082211	KWG1108746-1	08/22/2011	08/23/2011

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Surrogate Recovery Summary

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Preparation Method: EPA 1311

Extraction Method: EPA 3510C **Analysis Method:**

NWTPH-Dx

Service Request: K1107780

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
TP01-S-2.0-7.5-082211	K1107780-001	116	121
TP02-S-2.0-6.5-082211	K1107780-003	141	112
TP01-S-2.0-7.5-082211DUP	KWG1108746-1	122	124
Method Blank	KWG1108746-3	100	108
Method Blank	KWG1108746-4	94	97
Lab Control Sample	KWG1108746-2	104	100

Surrogate Recovery Control Limits (%)

50-150 Sur1 = o-Terphenyl50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/13/2011 10:31:30

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of 1 SuperSet Reference: RR132985

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 08/30/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1108746-3

Preparation Method: EPA 1311 **Extraction Method:** EPA 3510C

H-Dx

Units: ug/L Basis: NA

Level: Low

Analysis Method:	NWTPE

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	260 Z ND U	250 500	250 500	1 1	09/01/11 09/01/11	09/09/11 09/09/11	KWG1108746 KWG1108746	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	100	50-150	09/09/11	Acceptable	
n-Triacontane	108	50-150	09/09/11	Acceptable	

Comments:

265

SuperSet Reference:

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA Date Received: NA

Date Prepared: 08/30/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1108746-4

Preparation Method: EPA 1311

Extraction Method: EPA 3510C

Basis: NA Level: Low

Units: ug/L

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/01/11	09/09/11	KWG1108746	
Residual Range Organics (RRO)	ND U	500	500	1	09/01/11	09/09/11	KWG1108746	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	94	50-150	09/09/11	Acceptable Acceptable
n-Triacontane	97	50-150	09/09/11	

Comments:

Printed: 09/13/2011 10:31:26

266

RR132985

Merged

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Date Prepared: 08/30/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Units: ug/L Basis: NA

Preparation Method: EPA 1311

Level: Low

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	270	270	1	09/01/11	09/09/11	KWG1108746	
Residual Range Organics (RRO)	ND U	530	530	1	09/01/11	09/09/11	KWG1108746	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	116 121	50-150 50-150	09/09/11 09/09/11	Acceptable Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Date Prepared: 08/30/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

TP02-S-2.0-6.5-082211

Lab Code:

K1107780-003

Preparation Method: EPA 1311

Extraction Method: EPA 3510C

Units: ug/L Basis: NA

Level: Low

L'Attitution internout	
Analysis Method:	NWTP

PH-Dx

Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	25000 Z	250	250	1	09/01/11	09/09/11	KWG1108746	
Residual Range Organics (RRO)	ND U	500	500	1	09/01/11	09/09/11	KWG1108746	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	141	50-150	09/09/11	Acceptable	
n-Triacontane	112	50-150	09/09/11	Acceptable	

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Extracted: 09/01/2011 **Date Analyzed:** 09/09/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1108746

TP01-S-2 0-7 5-082211DUP

			Sample	KWG11 Duplicate	08746-1	Relative Percent	RPD Limit
Analyte Name	MRL MDL	MDL	IDL Result	Result	Average	Difference	
Diesel Range Organics (DRO)	270	270	ND	ND	ND	-	30
Residual Range Organics (RRO)	530	530	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/13/2011 10:31:34

Form 3B - Organic

268

RR132985

Page

1 of 1

SuperSet Reference:

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Prepared: 08/30/2011 **Date Extracted:** 09/01/2011

Date Analyzed: 09/09/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

Residual Range Organics (RRO)

EPA 1311/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1108746

Lab Control Sample KWG1108746-2

1600

87

45-159

Analyte Name Result Expected %Rec Limits

Diesel Range Organics (DRO) 3280 3200 103 46-140

1390

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/13/2011 10:31:37 u:\Stealth\Crystal.rpt\Form3LCS.rpt

Diesel and Residual Range Organics

Client: Project: **URS** Corporation

IP Longview Treatability Study/33763156

Service Request:

K1107780

Cover Page - Organic Analysis Data Package Diesel and Residual Range Organics

		Date	Date
Sample Name	Lab Code	Collected	Received
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011
TP01-S-7.5-082211	K1107780-002	08/22/2011	08/23/2011
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011
TP02-S-6.5-082211	K1107780-004	08/22/2011	08/23/2011
TP01-S-7.5-082211	KWG1108323-1	08/22/2011	08/23/2011

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Loru E Potroso Name: Loru Potroso

ate: 9/13/4 Title: Seventist

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Service Request: K1107780

Units: PERCENT

Level: Low

Lab Code	<u>Sur1</u>	Sur2
K1107780-001	111	122
K1107780-002	95	95
K1107780-003	172 D *	124 D
K1107780-004	185 D *	148 D
KWG1108323-1	93	95
KWG1108323-4	91	95
KWG1108323-3	100	97
	K1107780-001 K1107780-002 K1107780-003 K1107780-004 KWG1108323-1 KWG1108323-4	K1107780-001 111 K1107780-002 95 K1107780-003 172 D * K1107780-004 185 D * KWG1108323-1 93 KWG1108323-4 91

Surrogate Recovery Control Limits (%)

Surl =	o-Terphenyl	50-150
Sur2 =	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/13/2011 10:23:49

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of 1

30

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: NA
Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1108323-4

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

te Extraction

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	3.4 J	25	1.2	1	08/24/11	08/30/11	KWG1108323	
Residual Range Organics (RRO)	10 J	99	2.9	1	08/24/11	08/30/11	KWG1108323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	91	50-150	08/30/11	Acceptable	
n-Triacontane	95	50-150	08/30/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011

Date Received: 08/23/2011

Diesel and Residual Range Organics

Sample Name:

TP01-S-2.0-7.5-082211

Lab Code:

K1107780-001

Units: mg/Kg Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	45 Z	35	1.7	1	08/24/11	09/10/11	KWG1108323	
Residual Range Organics (RRO)	390 Z	140	4.0	1	08/24/11	09/10/11	KWG1108323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	111	50-150	09/10/11	Acceptable Acceptable
n-Triacontane	122	50-150	09/10/11	

Comments:

Merged

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Diesel and Residual Range Organics

Sample Name:

TP01-S-7.5-082211

Lab Code:

K1107780-002

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	56 Z 160 Z	37 150	1.8 4.3	1 1	08/24/11 08/24/11	08/30/11 08/30/11	KWG1108323 KWG1108323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	95	50-150	08/30/11	Acceptable Acceptable
n-Triacontane	95	50-150	08/30/11	

Comments:

26

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Diesel and Residual Range Organics

Sample Name:

TP02-S-2.0-6.5-082211

Lab Code:

K1107780-003

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	9000 DZ 1800 JDZ	610 2500	30 71	20 20	08/24/11 08/24/11	09/10/11 09/10/11	KWG1108323 KWG1108323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	172	50-150	09/10/11	Outside Control Limits
n-Triacontane	124	50-150	09/10/11	Acceptable

Comments:

SuperSet Reference:

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 **Date Received:** 08/23/2011

Diesel and Residual Range Organics

Sample Name:

TP02-S-6.5-082211

Lab Code:

K1107780-004

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	9300 DZ	680	33	20	08/24/11	09/10/11	KWG1108323	
Residual Range Organics (RRO)	2000 JDZ	2800	79	20	08/24/11	09/10/11	KWG1108323	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	185	50-150	09/10/11	Outside Control Limits Acceptable
n-Triacontane	148	50-150	09/10/11	

Comments:

Printed: 09/13/2011 10:23:35 u:\Stealth\Crystal.rpt\FormlmNew.rpt

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Extracted: 08/24/2011

Date Analyzed: 08/30/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

TP01-S-7.5-082211

Lab Code:

K1107780-002

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1108323

TP01-S-7.5-082211DUP

			Sample	KWG11 Duplicate	08323-1	Relative Percent	RPD Limit	
Analyte Name	MRL	MDL	Result	Result	Average	Difference		
Diesel Range Organics (DRO)	37	1.8	56	52	54	7 #	40	
Residual Range Organics (RRO)	150	4.3	160	290	2 30	55 #	40	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 $\begin{array}{lll} Printed: & 09/13/2011 & 10:23:55 \\ u:\Stealth\Crystal.rpt\Form3DUP.rpt \end{array}$

Form 3B - Organic

Page

1 of 1

SuperSet Reference: RR132984

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Extracted: 08/24/2011

Date Analyzed: 08/30/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1108323

Lab Control Sample KWG1108323-3

Lab Control Spike %Rec Limits Expected %Rec Result **Analyte Name** Diesel Range Organics (DRO) 56-124 285 267 107 Residual Range Organics (RRO) 133 90 60-135 121

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/13/2011 10:24:00

Form 3C - Organic

32

Page SuperSet Reference:

RR132984

1 of 1

Metals

ns/TCLP1	Date: 9/July race/digforms/TCLP1	Date: 09-2-11 Reviewer:	Analyst:
		Room Temperature at the Beginning of Extraction (Temp. Range 21° C - 25°C): 23.8	Room Temperature at the Beginn
		12 rpm): 28'8	Tumbler Rotational Speed (28 - 32 rpm):
		55 Ampare: 9/3/11	Extraction Finished Time: 10: 65 Ampate:
		300 pc Date: 9-2-11	Extraction Started Time: 50
determination	See previous solution deta	121	Extraction Solution pH:
ŝ		8-15-11 Tumbler # 4	Extraction Solution Prep date:
sample used	Date Balanced Checked: 4-2-11 Check Box if Auto Fluff sample used	17 Today? (Yes) / No Balance I.D. 28	pH Meter Calibrated at pH4 & pH7 Today? (Yes) / No
	4 2	/(
		7	
			- Annature of the state of the
7. 17	1000		CIIV / 010 500
pH	Be Used (g) Volume (mL)	Multiphasic) lcm? Weight (g) Initial pH (mL) Final pH	Sample Number M
Extraction	To Extraction Weight	Size < Determination	
Post-		Description Partical Solution Aliquot of	(S)
		Sample	Sa
		SPLP 1312 Wet Ext. MEP MEP	Method: TCLP 1311
	Prep Run:	If Autofluff sample is used please place an X in this box	Service Request Number(s):
		~	

ıs/TCLP1	r/kep/mise/digforms/TCLP1	Date: Glody		wer:	Reviewer:	Date: 7-2-11		Herry	Analyst:
				23.7	C - 25°C):	mp. Range 21° (action (Te	nning of Extr	Room Temperature at the Beginning of Extraction (Temp. Range 21° C - 25°C):
						28.8		- 32 rpm):	Tumbler Rotational Speed (28 - 32 rpm):
						LUL TILL	e: 9/3	SAM. Dal	Extraction Finished Time: 10:054n. Date:
			and the same of th	A STATE OF THE PARTY OF THE PAR	2-1	12.21 S	3	3:09m Date:	
								20.00	Extraction Solution pH:
				er#	Tumbler #			8-30-	Extraction Solution Prep date:
ample used	Check Box if Auto Fluff sample used	Balanced Checked: 1-2-11	28 Date	Balance I.D.	В	0	(Yes)/No	pH7 Today?	pH Meter Calibrated at pH4 & pH7 Today? (es)/
					- Contract C	A CONTRACTOR OF THE CONTRACTOR			
						Over the second			of the first wife and the second for the first was seconds; the second s
					- Landand				
	manufactural value of the second seco								
		0 - 4-11	/						
		Т							
			i.		1				
									The second secon
7.33	000	ŰC, DO							VID-1/80-001
	1935 1935	2							SOLO WEST BLUK
pH		Be Used (g) (a Volume (mL)	Final pH		Initial pH	Weight (g)	lcm?	Multiphasic)	Sample Number
Post-				Aliquot of		Solution	Partical Size <	(Solid,	
								Sample Description	
				MEP		Wet Ext.	SPLP 1312 🕕	SPLP	Method: TCLP 1311
		Pren Run	iis box	nlace an X in this	ed please place	uff sample is us	If Autof	1	Service Request Number(s):
				Dan			The same of		

Total Solids

Analytical Results

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Total Solids

Prep Method:

NONE

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Service Request: K1107780

Test Notes:

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
TP01-S-2.0-7.5-082211	K1107780-001	08/22/2011	08/23/2011	08/23/2011	72.7	
TP01-S-7.5-082211	K1107780-002	08/22/2011	08/23/2011	08/23/2011	67.7	
TP02-S-2.0-6.5-082211	K1107780-003	08/22/2011	08/23/2011	08/23/2011	82.1	
TP02-S-6.5-082211	K1107780-004	08/22/2011	08/23/2011	08/23/2011	73.4	

SuperSet Reference: W1108194

13

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Treatability Study/33763156

Sample Matrix:

Soil

Service Request: K1107780

Date Collected: 08/22/2011 Date Received: 08/23/2011

Date Analyzed: 08/23/2011

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method: **NONE**

160.3M

Units: PERCENT

Basis: Wet

1

Test Notes:

Relative Duplicate Sample Percent Sample Result Difference

Sample Name

K1107780-001

Lab Code

Result

71.8

Average 72.3

Result

Notes

TP01-S-2.0-7.5-082211

72.7

u:\Stealth\Crystal.rpt\Solids.rpt

Printed: 08/25/2011 13:45

SuperSet Reference: W1108194

Page

1 of 1

September 27, 2011

Analytical Report for Service Request No: K1108452

Paul Kalina URS Corporation 1501 4th Ave.,Suite 1400 Seattle, WA 98101

RE: Longview Treatability Study

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on September 09, 2011. For your reference, these analyses have been assigned our service request number K1108452.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Wallace

Ed Wallace

Project Chemist

EW/afs

Page 1 of 1518

cc: Tressa Pearson-Franks (URS Corporation), Seattle, WA

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

Sample Matrix:

URS Corporation

Project: IP Longview

Soils

Service Request No.: Date Received:

K1108452

9/9/11

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Two soil samples were received for analysis at Columbia Analytical Services on 9/9/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

As received

Surrogate Exceptions:

The control criteria for o-Terphenyl in sample TP-02 were not applicable. The chromatogram indicated the presence of target background components that masked the surrogate, which prevented adequate resolution for quantitation. No corrective action was appropriate.

Elevated Detection Limits:

Sample TP-02 required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of DRO and RRO in sample Batch QC was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

After TCLP Leaching

Holding Time Exceptions:

The TCLP extraction of sample TP-01 was initially performed within the recommended holding time. The chromatographic fingerprint of the TCLP extract was inconsistent with that of the SPLP extract and the original soil analysis. The TCLP extraction was repeated 5 days past the recommended holding time. The chromatographic fingerprint of the TCLP re-extract was consistent with that of the SPLP extract and the original soil analysis. The results from the TCLP re-extract were reported. The data was flagged to indicate the holding time violation. No further corrective action was feasible.

After SPLP Leaching

No anomalies with the analysis of these samples were observed.

Approved by	EMW	_Date_	\overline{q}	130/11	

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

As received

Surrogate Exceptions:

The control criteria were exceeded for Terphenyl-d14 in sample TP-02 due to matrix interference. The presence of non-target background components prevented adequate resolution of the surrogate. Accurate quantitation was not possible. No further corrective action was appropriate.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). An MS and Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) were analyzed and reported in lieu of the MS/MSD for these samples.

After TCLP Leaching

Method Blank Exceptions:

The Method Blank KWG1109056-3 contained significant levels of numerous analytes above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated. The samples were not re-extracted and re-analyzed because TCLP leach fluid is not controlled for the analytes in question at the levels detected by PAH_SIM analysis. A deionized water blank was extracted at the same time was ND for the analytes in question. No further corrective action was required.

Internal Standard Exceptions:

The internal standard recovery of Naphthalene-d8 in sample TP02 was outside control criteria because of extremely high levels of target compounds. The sample was reanalyzed at a dilution. The internal standard in question was within control criteria in the diluted analysis. All affected analytes were reported from the diluted analysis due to their very high concentration.

Sample Notes and Discussion:

A Matrix Spike/Matrix Spike Duplicate (MS/MSD) was not extracted with this sample batch. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

The equipment and procedures used for the TCLP leachate preparation have not been evaluated for PAHs detected by the SIM_PAH analysis.

After SPLP Leaching

Method Blank Exceptions:

The Leachate Fluid Method Blank extracted with the samples in this batch was lost due to a laboratory accident. The deionized water blank which was extracted concurrently was reported. A separate leachate blank of the same fluid originally used was extracted and reported separately (KWG1109277-3). The re-extracted blank of leachate fluid showed elevated levels of Naphthalene and 2-Methylnaphthalene above the Method Reporting Level (MRL).

Internal Standard Exceptions:

The internal standard recovery of Naphthalene-d8 in sample TP02 was outside control criteria because of extremely high levels of target compounds. The sample was reanalyzed at a dilution. The internal standard in question was within control criteria in the diluted analysis. All affected analytes were reported from the diluted analysis due to their very high concentration.

Sample Notes and Discussion:

A Matrix Spike/Matrix Spike Duplicate (MS/MSD) was not extracted with this sample batch. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

The equipment and procedures used for the SPLP leachate preparation have not been evaluated for PAHs detected by the SIM_PAH analysis.

Approved by	2	UN	W	_Date	9	/30	/11	ř
						,	4	

Relinquished by	Relinquished by	Relinquished by "	2 The Town	Reling. by sampler (Sign & Print Name)	Sample Received Intact: Yes No						TP - 02	TO - 01	Columbia Analytical Services* 800.695,7222 www.caslab.com Sample I.D.
											2 X	-	Lab Sample No. No. of Containers Soil
Date Time	Date Time	Date Time	9/4/v 9:51	Date Time								~	Water Air Other Yes No
Received b	Received by	Received by		Received b	Temperature received:						Sm migh	9/1111 1540	Sampling Date Sampling Time
Received by laboratory	Ÿ	У		Received by (Sign & Print Name)	lce						メギャ	X	
M DAS	3				Ō								Treata s
Date 9/9///TI					No ice								Fax No.
Time My good											A	*	Turn Around Time (working days) RVSH 7 - day
			Lab Work No.			\	1 A	RK	⟨ S		P-02 15 1	·¢	Page of/ Method of Shipment Fed & & Special Detection Limit/Reporting Paul_kaline@ussey Tyordon@kemyon.com

1.96%

Cooler Receipt and Preservation Form Client / Project: Service Request *K11* Received: Opened: By: Unloaded: Mail (Fed Ex UPS Samples were received via? DHL PDXCourier Hand Delivered Samples were received in: (circle) Cooler Box2. Envelope Other NA (N) 3. Were custody seals on coolers? NA Y If yes, how many and where? If present, were custody seals intact? If present, were they signed and dated? Y N Cooler/COC Cooler Thermometer Temp Tracking Number Temp °C Blank °C ID NA NA Filed Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other Packing material used. Were custody papers properly filled out (ink, signed, etc.)? NA N Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? NA N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N Were appropriate bottles/containers and volumes received for the tests indicated? NA N 13. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below N Were VOA vials received without headspace? Indicate in the table below. N 15. Was C12/Res negative? N Sample ID on Bottle Sample ID on COC Identified by: Out of Head-**Bottle Count** Volume Reagent Lot Sample ID Number **Bottle Type** added Initials Temp space Broke pH Reagent Time Notes, Discrepancies, & Resolutions:

Columbia Analytical Services, Inc.

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Analysis Method:

Soil

Service Request: K1108452

Surrogate Recovery Summary Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Preparation Method: EPA 1312

Extraction Method: EPA 3520C 8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
TP-01	K1108452-001	85	92	95
TP-02	K1108452-002	88	96	100
Method Blank	KWG1109149-4	89	96	102
Method Blank	KWG1109277-3	83	91	95
Lab Control Sample	KWG1109149-1	86	91	95
Duplicate Lab Control Sample	KWG1109149-2	89	96	97
Lab Control Sample	KWG1109277-1	85	94	96
Duplicate Lab Control Sample	KWG1109277-2	85	92	92

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	28-98
Sur2 = Fluoranthene-d10	31-105
Sur3 = Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/29/2011 17:29:54

u:\Stealth\Crystal.rpt\Form2.rpt

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA Date Received: NA

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

Method Blank

Lab Code:

KWG1109149-4

Units: ug/L Basis: NA

Extraction Method: EPA 3520C

Preparation Method: EPA 1312

Level: Low

Analysis Method:

8270D SIM

marysis memou.	32 10D SHVI			Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
2-Methylnaphthalene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Acenaphthylene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Acenaphthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Dibenzofuran	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Fluorene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Phenanthrene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Fluoranthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Pyrene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benz(a)anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Chrysene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(b)fluoranthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(k)fluoranthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(a)pyrene	ND	U	0.20	l	09/15/11	09/22/11	KWG1109149	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	89	28-98	09/22/11	Acceptable	
Fluoranthene-d10	96	31-105	09/22/11	Acceptable	
Terphenyl-d14	102	27-112	09/22/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Water

Service Request: K1108452

Date Collected: NA

Date Received: NA

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

Method Blank

Lab Code:

KWG1109277-3

Units: ug/L Basis: NA

Extraction Method: EPA 3520C

Preparation Method: EPA 1312

Level: Low

Analysis Method:

8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	8.5	0.20	1	09/19/11	09/23/11	KWG1109277	
2-Methylnaphthalene	0.64	0.20	1	09/19/11	09/23/11	KWG1109277	
Acenaphthylene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Acenaphthene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Dibenzofuran	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Fluorene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Phenanthrene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Anthracene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Fluoranthene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Pyrene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Benz(a)anthracene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Chrysene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Benzo(b)fluoranthene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Benzo(k)fluoranthene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Benzo(a)pyrene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Indeno(1,2,3-cd)pyrene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Dibenz(a,h)anthracene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	
Benzo(g,h,i)perylene	ND U	0.20	1	09/19/11	09/23/11	KWG1109277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	83	28-98	09/23/11	Acceptable	
Fluoranthene-d10	91	31-105	09/23/11	Acceptable	
Terphenyl-d14	95	27-112	09/23/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011 **Date Received:** 09/09/2011

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

TP-01

Lab Code:

K1108452-001

Preparation Method: EPA 1312

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3520C
Analysis Method:	8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0,49		0.20	1	09/15/11	09/22/11	KWG1109149	
2-Methylnaphthalene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Acenaphthylene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Acenaphthene	1.3		0.20	1	09/15/11	09/22/11	KWG1109149	
Dibenzofuran	0.50		0.20	1	09/15/11	09/22/11	KWG1109149	
Fluorene	0.39		0.20	1	09/15/11	09/22/11	KWG1109149	
Phenanthrene	0.21		0.20	1	09/15/11	09/22/11	KWG1109149	-
Anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Fluoranthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Pyrene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benz(a)anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Chrysene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(b)fluoranthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(k)fluoranthene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(a)pyrene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	***************************************
Dibenz(a,h)anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	85	28-98	09/22/11	Acceptable	
Fluoranthene-d10	92	31-105	09/22/11	Acceptable	
Terphenyl-d14	95	27-112	09/22/11	Acceptable	

Comments:

RR133703

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/06/2011 **Date Received:** 09/09/2011

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

TP-02

Lab Code:

K1108452-002

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	12000	D	40	200	09/15/11	09/22/11	KWG1109149	
2-Methylnaphthalene	1200	D	40	200	09/15/11	09/22/11	KWG1109149	
Acenaphthylene	12		0.20	1	09/15/11	09/22/11	KWG1109149	
Acenaphthene	540	D	2.0	10	09/15/11	09/22/11	KWG1109149	
Dibenzofuran	320	D	2.0	. 10	09/15/11	09/22/11	KWG1109149	
Fluorene	300	D	2.0	10	09/15/11	09/22/11	KWG1109149	
Phenanthrene	360	D	2.0	10	09/15/11	09/22/11	KWG1109149	
Anthracene	51		0.20	1	09/15/11	09/22/11	KWG1109149	
Fluoranthene	73		0.20	1	09/15/11	09/22/11	KWG1109149	
Pyrene	42		0.20	1	09/15/11	09/22/11	KWG1109149	
Benz(a)anthracene	7.9		0.20	1	09/15/11	09/22/11	KWG1109149	
Chrysene	7.1		0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(b)fluoranthene	3.3		0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(k)fluoranthene	1.0		0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(a)pyrene	1.8		0.20	1	09/15/11	09/22/11	KWG1109149	
Indeno(1,2,3-cd)pyrene	0.38		0.20	1	09/15/11	09/22/11	KWG1109149	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/15/11	09/22/11	KWG1109149	
Benzo(g,h,i)perylene	0.36		0.20	1	09/15/11	09/22/11	KWG1109149	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	88	28-98	09/22/11	Acceptable	
Fluoranthene-d10	96	31-105	09/22/11	Acceptable	
Terphenyl-d14	100	27-112	09/22/11	Acceptable	

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452 **Date Prepared:** 09/14/2011

Date Extracted: 09/15/2011 **Date Analyzed:** 09/22/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method: EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1109149

Lab Control Sample KWC1100140-1

Duplicate Lab Control Sample KWG1100140-2

		KWG1109149-1 Lab Control Spike			KWG1109149-2 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	21.7	25.0	87	19.9	25.0	80	39-110	8	30
2-Methylnaphthalene	21.2	25.0	85	19.4	25.0	78	39-115	9	30
Acenaphthylene	23.0	25.0	92	21.2	25.0	85	44-115	8	30
Acenaphthene	22.5	25.0	90	20.9	25.0	84	44-113	7	30
Dibenzofuran	22.1	25.0	89	20.6	25.0	83	46-116	7	30
Fluorene	23.9	25.0	96	22.0	25.0	88	48-118	8	30
Phenanthrene	22.5	25.0	90	21.7	25.0	87	47-120	4	30
Anthracene	23.3	25.0	93	22.4	25.0	90	44-117	4	30
Fluoranthene	25.8	25.0	103	24.4	25.0	98	48-128	5	30
Pyrene	25.0	25.0	100	23.2	25.0	93	42-133	7	30
Benz(a)anthracene	24.7	25.0	99	22.9	25.0	92	48-125	7	30
Chrysene	24.6	25.0	98	23.3	25.0	93	50-128	5	30
Benzo(b)fluoranthene	25.9	25.0	103	24.3	25.0	97	49-131	6	30
Benzo(k)fluoranthene	25.7	25.0	103	24.5	25.0	98	54-131	5	30
Benzo(a)pyrene	26.6	25.0	106	25.2	25.0	101	43-124	5	30
Indeno(1,2,3-cd)pyrene	27.3	25.0	109	25.9	25.0	104	45-133	5	30
Dibenz(a,h)anthracene	27.2	25.0	109	26.0	25.0	104	49-133	5	30
Benzo(g,h,i)perylene	25.6	25.0	102	24.6	25.0	98	51-124	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/29/2011 17:30:32 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Water

Service Request: K1108452 **Date Prepared:** 09/14/2011 **Date Extracted:** 09/19/2011

Date Analyzed: 09/23/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method:

EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1109277

Lab Control Sample KWG1109277-1

Duplicate Lab Control Sample KWG1109277-2

	Lab Control Spike			Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	21.6	25.0	86	19.6	25.0	79	39-110	9	30
2-Methylnaphthalene	21.5	25.0	86	19.2	25.0	77	39-115	11	30
Acenaphthylene	22.1	25.0	88	20.8	25.0	83	44-115	6	30
Acenaphthene	21.8	25.0	87	20.5	25.0	82	44-113	6	30
Dibenzofuran	21.4	25.0	86	20.5	25.0	82	46-116	4	30
Fluorene	22.9	25.0	92	22.1	25.0	88	48-118	3	30
Phenanthrene	22.7	25.0	91	21.7	25.0	87	47-120	4	30
Anthracene	23.3	25.0	93	22.5	25.0	90	44-117	3	30
Fluoranthene	25.9	25.0	104	24.9	25.0	99	48-128	4	30
Pyrene	24.8	25.0	99	23.2	25.0	93	42-133	7	30
Benz(a)anthracene	24.5	25.0	98	23.2	25.0	93	48-125	5	30
Chrysene	25.3	25.0	101	23.8	25.0	95	50-128	6	30
Benzo(b)fluoranthene	25.9	25.0	104	25.1	25.0	100	49-131	¹ 3	30
Benzo(k)fluoranthene	25.6	25.0	103	24.5	25.0	98	54-131	5	30
Benzo(a)pyrene	26.2	25.0	105	25.2	25.0	101	43-124	4	30
Indeno(1,2,3-cd)pyrene	25.4	25.0	102	24.2	25.0	97	45-133	5	30
Dibenz(a,h)anthracene	24.3	25.0	97	23.4	25.0	94	49-133	4	30
Benzo(g,h,i)perylene	24.2	25.0	97	23.2	25.0	93	51-124	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/29/2011 17:30:36 u:\Stealth\Crystal.rpt\Form3DLC.rpt

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541

Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
TP-01	K1108452-001	71	86	89
TP-02	K1108452-002	73 D	78 D	111 D *
Method Blank	KWG1108952-5	73	82	89
Lab Control Sample	KWG1108952-3	70	79	86
Duplicate Lab Control Sample	KWG1108952-4	59	67	73

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/16/2011 15:47:35 u:\Stealth\Crystal.rpt\Form2.rpt

RR133200

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA

Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1108952-5

Units: ug/Kg Basis: Dry

Extraction Method: EPA 3541

Level: Low

Analysis Method:

8270D SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	2.5	0.60	1	09/12/11	09/13/11	KWG1108952	
2-Methylnaphthalene	ND U	2.5	0.46	1	09/12/11	09/13/11	KWG1108952	
Acenaphthylene	ND U	2.5	0.59	1	09/12/11	09/13/11	KWG1108952	
Acenaphthene	ND U	2.5	0.76	1	09/12/11	09/13/11	KWG1108952	
Fluorene	ND U	2.5	0.61	1	09/12/11	09/13/11	KWG1108952	
Dibenzofuran	ND U	2.5	0.63	1	09/12/11	09/13/11	KWG1108952	
Phenanthrene	ND U	2,5	1.4	1	09/12/11	09/13/11	KWG1108952	
Anthracenè	ND U	2.5	0.58	1	09/12/11	09/13/11	KWG1108952	
Fluoranthene	ND U	2.5	0.98	1	09/12/11	09/13/11	KWG1108952	
Pyrene	ND U	2.5	0.76	1	09/12/11	09/13/11	KWG1108952	
Benzo(b)fluoranthene	ND U	2.5	0.92	1	09/12/11	09/13/11	KWG1108952	
Benzo(k)fluoranthene	ND U	2.5	0.87	1	09/12/11	09/13/11	KWG1108952	
Benz(a)anthracene	ND U	2.5	0.72	1	09/12/11	09/13/11	KWG1108952	
Chrysene	ND U	2.5	0.80	1	09/12/11	09/13/11	KWG1108952	
Benzo(a)pyrene	ND U	2.5	0.76	1	09/12/11	09/13/11	KWG1108952	
Indeno(1,2,3-cd)pyrene	ND U	2.5	0.87	1	09/12/11	09/13/11	KWG1108952	
Dibenz(a,h)anthracene	ND U	2.5	0.80	1	09/12/11	09/13/11	KWG1108952	
Benzo(g,h,i)perylene	ND U	2.5	0.85	1	09/12/11	09/13/11	KWG1108952	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	73	17-104	09/13/11	Acceptable	
Fluoranthene-d10	82	27-106	09/13/11	Acceptable	
Terphenyl-d14	89	35-109	09/13/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011 **Date Received:** 09/09/2011

Polynuclear Aromatic Hydrocarbons

Sample Name:

TP-01

Lab Code:

K1108452-001

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	140	3.3	0.60	1	09/12/11	09/13/11	KWG1108952	
2-Methylnaphthalene	92	3.3	0.46	1	09/12/11	09/13/11	KWG1108952	
Acenaphthylene	11	3.3	0.59	1	09/12/11	09/13/11	KWG1108952	
Acenaphthene	220	3.3	0.76	1	09/12/11	09/13/11	KWG1108952	
Fluorene	84	3.3	0.61	1	09/12/11	09/13/11	KWG1108952	
Dibenzofuran	110	3.3	0.63	1	09/12/11	09/13/11	KWG1108952	
Phenanthrene	100	3.3	1.4	1	09/12/11	09/13/11	KWG1108952	
Anthracene	39	3.3	0.58	1	09/12/11	09/13/11	KWG1108952	
Fluoranthene	100	3.3	0.98	1	09/12/11	09/13/11	KWG1108952	
Pyrene	80	3.3	0.76	1	09/12/11	09/13/11	KWG1108952	
Benzo(b)fluoranthene	290	3.3	0.92	1	09/12/11	09/13/11	KWG1108952	
Benzo(k)fluoranthene	49	3.3	0.87	· 1	09/12/11	09/13/11	KWG1108952	
Benz(a)anthracene	29	3.3	0.72	1	09/12/11	09/13/11	KWG1108952	
Chrysene	59	3.3	0.80	1	09/12/11	09/13/11	KWG1108952	
Benzo(a)pyrene	300	3.3	0.76	1	09/12/11	09/13/11	KWG1108952	
Indeno(1,2,3-cd)pyrene	300	3.3	0.87	1	09/12/11	09/13/11	KWG1108952	
Dibenz(a,h)anthracene	40	3.3	0.80	1	09/12/11	09/13/11	KWG1108952	
Benzo(g,h,i)perylene	260	3.3	0.85	1	09/12/11	09/13/11	KWG1108952	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	71	17-104	09/13/11	Acceptable	
Fluoranthene-d10	86	27-106	09/13/11	Acceptable	
Terphenyl-d14	89	35-109	09/13/11	Acceptable	

Comments:

RR133200

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/06/2011

Date Received: 09/09/2011

Polynuclear Aromatic Hydrocarbons

Sample Name:

TP-02

Lab Code:

K1108452-002

Extraction Method: Analysis Method:

EPA 3541

K1100+32-002

8270D SIM

Units: ug/Kg
Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	420000	D	2600	310	200	09/12/11	09/13/11	KWG1108952	
2-Methylnaphthalene	140000	D	2600	240	200	09/12/11	09/13/11	KWG1108952	
Acenaphthylene	1800	D	130	16	10	09/12/11	09/13/11	KWG1108952	
Acenaphthene	110000	D	2600	400	200	09/12/11	09/13/11	KWG1108952	
Fluorene	97000	D	2600	320	200	09/12/11	09/13/11	KWG1108952	
Dibenzofuran	73000	D	2600	330	200	09/12/11	09/13/11	KWG1108952	
Phenanthrene	260000	D	2600	720	200	09/12/11	09/13/11	KWG1108952	
Anthracene	49000	D	2600	300	200	09/12/11	09/13/11	KWG1108952	
Fluoranthene	130000	D	2600	510	200	09/12/11	09/13/11	KWG1108952	
Pyrene	74000	D	2600	400	200	09/12/11	09/13/11	KWG1108952	
Benzo(b)fluoranthene	9300	D	130	24	10	09/12/11	09/13/11	KWG1108952	
Benzo(k)fluoranthene	3300	D	130	23	10	09/12/11	09/13/11	KWG1108952	
Benz(a)anthracene	20000	D	130	19	10	09/12/11	09/13/11	KWG1108952	
Chrysene	17000	D	130	21	10	09/12/11	09/13/11	KWG1108952	
Benzo(a)pyrene	5500	D	130	20	10	09/12/11	09/13/11	KWG1108952	
Indeno(1,2,3-cd)pyrene	1700	D	130	23	10	09/12/11	09/13/11	KWG1108952	
Dibenz(a,h)anthracene	410	D	130	21	10	09/12/11	09/13/11	KWG1108952	
Benzo(g,h,i)perylene	1400	D	130	22	10	09/12/11	09/13/11	KWG1108952	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	73	17-104	09/13/11	Acceptable	
Fluoranthene-d10	78	27-106	09/13/11	Acceptable	
Terphenyl-d14	111	35-109	09/13/11	Outside Control Limits	

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Extracted: 09/12/2011 **Date Analyzed:** 09/13/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1108952

Lab Control Sample KWG1108952-3

Duplicate Lab Control Sample KWG1108952-4

		Lab Control Spike			Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	368	500	74	335	500	67	43-99	9	40
2-Methylnaphthalene	384	500	77	352	500	70	44-111	9	40
Acenaphthylene	370	500	74	346	500	69	41-110	7	40
Acenaphthene	371	500	74	346	500	69	44-104	7	40
Fluorene	380	500	76	361	500	72	49-105	5	40
Dibenzofuran	362	500	72	341	500	68	43-113	6	40
Phenanthrene	360	500	72	336	500	67	47-104	7	40
Anthracene	402	500	80	390	500	78	47-112	3	40
Fluoranthene	427	500	85	418	500	84	51-111	2	40
Pyrene	398	500	80	391	500	78	48-113	2	40
Benzo(b)fluoranthene	472	500	94	463	500	93	51-113	2	40
Benzo(k)fluoranthene	470	500	94	458	500	92	56-114	3	40
Benz(a)anthracene	423	500	85	417	500	83 .	51-111	1	40
Chrysene	439	500	88	427	500	85	54-111	3	40
Benzo(a)pyrene	466	500	93	453	500	91	52-118	3	40
Indeno(1,2,3-cd)pyrene	475	500	95	466	500	93	42-123	2	40
Dibenz(a,h)anthracene	457	500	91	446	500	89	44-119	2	40
Benzo(g,h,i)perylene	436	500	87	428	500	86	46-114	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Surrogate Recovery Summary

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Preparation Method: EPA 1311

Units: PERCENT

Service Request: K1108452

Level: Low

Extraction Method: EPA 3520C **Analysis Method:** 8270D SIM

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
TP-01	K1108452-001	84	89	95
TP-02	K1108452-002	83	87	92
Method Blank	KWG1109056-3	85	87	93
Lab Control Sample	KWG1109056-1	82	86	82
Duplicate Lab Control Sample	KWG1109056-2	82	86	86

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d1028-98 Sur2 = Fluoranthene-d1031-105 Sur3 = Terphenyl-d14 27-112

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/29/2011 17:37:20

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic 866

Page

1 of 1

SuperSet Reference: RR133704

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA Date Received: NA

Date Prepared: 09/12/2011

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

Method Blank

Lab Code:

KWG1109056-3

Preparation Method: EPA 1311

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	32		0.20	1	09/13/11	09/20/11	KWG1109056	
2-Methylnaphthalene	8.5		0.20	1	09/13/11	09/20/11	KWG1109056	
Acenaphthylene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Acenaphthene	1.6		0.20	1	09/13/11	09/20/11	KWG1109056	
Dibenzofuran	2.8		0.20	1	09/13/11	09/20/11	KWG1109056	
Fluorene	1.5		0.20	1	09/13/11	09/20/11	KWG1109056	
Phenanthrene	2.7		0.20	1	09/13/11	09/20/11	KWG1109056	
Anthracene	0.43		0.20	1	09/13/11	09/20/11	KWG1109056	
Fluoranthene	0.59		0.20	1	09/13/11	09/20/11	KWG1109056	
Pyrene	0.31		0.20	1	09/13/11	09/20/11	KWG1109056	
Benz(a)anthracene	ND	U	0.20	. 1	09/13/11	09/20/11	KWG1109056	
Chrysene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(b)fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(k)fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(a)pyrene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	85	28-98	09/20/11	Acceptable	
Fluoranthene-d10	87	31-105	09/20/11	Acceptable	
Terphenyl-d14	93	27-112	09/20/11	Acceptable	

Comments:

RR133704

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011 **Date Received:** 09/09/2011 **Date Prepared:** 09/12/2011

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

TP-01

Lab Code:

K1108452-001

Preparation Method: EPA 1311

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	D 16	_	MOY	Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	1.7	В	0.20	1	09/13/11	09/20/11	KWG1109056	
2-Methylnaphthalene	0.49	В	0.20	. 1	09/13/11	09/20/11	KWG1109056	
Acenaphthylene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Acenaphthene	2.0	В	0.20	1	09/13/11	09/20/11	KWG1109056	
Dibenzofuran	0.74	В	0.20	1	09/13/11	09/20/11	KWG1109056	
Fluorene	0.57	В	0.20	1	09/13/11	09/20/11	KWG1109056	
Phenanthrene	0.30	В	0.20	1	09/13/11	09/20/11	KWG1109056	
Anthracene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Pyrene	ND	U	0,20	1	09/13/11	09/20/11	KWG1109056	
Benz(a)anthracene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Chrysene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(b)fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(k)fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(a)pyrene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	84	28-98	09/20/11	Acceptable	
Fluoranthene-d10	89	31-105	09/20/11	Acceptable	
Terphenyl-d14	95	27-112	09/20/11	Acceptable	

Comments:

Merged

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452 **Date Collected:** 09/06/2011 **Date Received:** 09/09/2011

Date Prepared: 09/12/2011

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

TP-02

Lab Code:

K1108452-002

Preparation Method: EPA 1311 **Extraction Method:** EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date	Extraction	Mada
The state of the s				TV STATEMENT WITH SECTION AND ADDRESS OF THE SECTION ASSESSMENT AND ADDRESS OF THE SECTION ASSESSMENT ASSESSME	Extracted	Analyzed	Lot	Note
Naphthalene	12000		40	200	09/13/11	09/22/11	KWG1109056	
2-Methylnaphthalene	1100	D	40	200	09/13/11	09/22/11	KWG1109056	
Acenaphthylene	11		0.20	1	09/13/11	09/20/11	KWG1109056	
Acenaphthene	460	D	2.0	10	09/13/11	09/21/11	KWG1109056	
Dibenzofuran	280	D	2.0	10	09/13/11	09/21/11	KWG1109056	
Fluorene	250	D	2.0	10	09/13/11	09/21/11	KWG1109056	
Phenanthrene	240	D	2.0	10	09/13/11	09/21/11	KWG1109056	****
Anthracene	25		0.20	1	09/13/11	09/20/11	KWG1109056	
Fluoranthene	22		0.20	1	09/13/11	09/20/11	KWG1109056	
Pyrene	11		0.20	. 1	09/13/11	09/20/11	KWG1109056	
Benz(a)anthracene	0.43		0.20	1	09/13/11	09/20/11	KWG1109056	
Chrysene	0.41		0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(b)fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	***************************************
Benzo(k)fluoranthene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(a)pyrene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Dibenz(a,h)anthracene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	
Benzo(g,h,i)perylene	ND	U	0.20	1	09/13/11	09/20/11	KWG1109056	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	83	28-98	09/20/11	Acceptable	
Fluoranthene-d10	87	31-105	09/20/11	Acceptable	
Terphenyl-d14	92	27-112	09/20/11	Acceptable	

Comments:

Page

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452 **Date Prepared:** 09/12/2011 **Date Extracted:** 09/13/2011 **Date Analyzed:** 09/20/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Extraction Method: EPA 1311/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low Extraction Lot: KWG1109056

Lab Control Sample **Duplicate Lab Control Sample**

		KWG1109056-1 Lab Control Spike			KWG1109056-2 Duplicate Lab Control Spike				RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit
Naphthalene	22.5	25.0	90	19.7	25.0	79	39-110	13	30
2-Methylnaphthalene	22.7	25.0	91	18.8	25.0	75	39-115	19	30
Acenaphthylene	22.5	25.0	90	21.5	25.0	86	44-115	5	30
Acenaphthene	22.4	25.0	90	20.9	25.0	84	44-113	7	30
Dibenzofuran	22.1	25.0	88	20.8	25.0	83	46-116	6	30
Fluorene	23.3	25.0	93	22.0	25.0	88	48-118	6	30
Phenanthrene	22.0	25.0	88	21.5	25.0	86	47-120	2	30
Anthracene	23.1	25.0	92	22.4	25.0	90	44-117	3	30
Fluoranthene	24.9	25.0	99	24.7	25.0	99	48-128	1	30
Pyrene	22.9	25.0	92	22.8	25.0	91	42-133	0	30
Benz(a)anthracene	22.6	25.0	90	21.8	25.0	87	48-125	3	30
Chrysene	23.8	25.0	95	23.3	25.0	93	50-128	2	30
Benzo(b)fluoranthene	25.3	25.0	101	24.4	25.0	98	49-131	4	30
Benzo(k)fluoranthene	25.7	25.0	103	25.0	25.0	100	54-131	3	30
Benzo(a)pyrene	25.2	25.0	101	24.2	25.0	97	43-124	4	30
Indeno(1,2,3-cd)pyrene	24.1	25.0	97	22.9	25.0	92	45-133	5	30
Dibenz(a,h)anthracene	24.4	25.0	98	23.4	25.0	94	49-133	4	30
Benzo(g,h,i)perylene	23.2	25.0	93	22.2	25.0	89	51-124	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/29/2011 17:38:12 u:\Stealth\Crystal.rpt\Form3DLC.rpt

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Surrogate Recovery Summary Synthetic Precipitation Leaching Procedure

Diesel and Residual Range Organics

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Units: PERCENT

Level: Low

Analysis Method:

NWTPH-Dx

Sample Name	Lab Code	Sur1	Sur2
TP-01	K1108452-001	94	95
TP-02	K1108452-002	124	108
TP-02DUP	KWG1109197-1	122	105
Method Blank	KWG1109197-3	109	110
Lab Control Sample	KWG1109197-2	91	88

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/21/2011 14:57:17

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of 1

SuperSet Reference:

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA Date Received: NA

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1109197-3

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/16/11	09/19/11	KWG1109197	
Residual Range Organics (RRO)	ND U	500	500	l	09/16/11	09/19/11	KWG1109197	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	109	50-150	09/19/11	Acceptable	
n-Triacontane	110	50-150	09/19/11	Acceptable	

Comments:

SuperSet Reference:

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011 **Date Received:** 09/09/2011

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

TP-01

Lab Code:

K1108452-001

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	280	280	1	09/16/11	09/19/11	KWG1109197	
Residual Range Organics (RRO)	ND U	560	560	1	09/16/11	09/19/11	KWG1109197	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	94	50-150	09/19/11	Acceptable	
n-Triacontane	95	50-150	09/19/11	Acceptable	

Comments:

Printed: 09/21/2011 14:57:07 u:\Stealth\Crystal.rpt\Form1mNew.rpt

314

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/06/2011 **Date Received:** 09/09/2011

Date Prepared: 09/14/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

TP-02

Lab Code:

K1108452-002

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	26000 Z	280	280	1	09/16/11	09/19/11	KWG1109197	
Residual Range Organics (RRO)	ND U	560	560	1	09/16/11	09/19/11	KWG1109197	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	124	50-150	09/19/11	Acceptable	
n-Triacontane	108	50-150	09/19/11	Acceptable	

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452 **Date Extracted:** 09/16/2011

Date Analyzed: 09/19/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

TP-02

Lab Code:

K1108452-002

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1109197

TP-02DHP

Analyte Name			Sample	KWG110 Duplicate	09197-1	Relative Percent Difference	RPD Limit
	MRL MDL	MDL	Result	Result	Average		
Diesel Range Organics (DRO)	300	300	26000	26000	26000	1	30
Residual Range Organics (RRO)	590	590	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/21/2011 14:57:21

u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

Page 1 of 1

318

SuperSet Reference: RR133353

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Prepared: 09/14/2011 **Date Extracted:** 09/16/2011

Date Analyzed: 09/19/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

EPA 1312/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1109197

Lab Control Sample KWG1109197-2

Lab Control Spike %Rec Limits %Rec **Analyte Name** Result Expected Diesel Range Organics (DRO) 2860 3200 89 46-140 Residual Range Organics (RRO) 1190 1600 45-159 75

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/21/2011 14:57:25

Form 3C - Organic 319

Page

1 of

SuperSet Reference: RR133353

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Surrogate Recovery Summary

Toxicity Characteristic Leaching Procedure (TCLP)

Diesel and Residual Range Organics

Preparation Method: EPA 1311

Extraction Method: EPA 3510C

Units: PERCENT

Level: Low

Analysis Method:

NWTPH-Dx

Sample Name	Lab Code	Sur1	Sur2
TP-01	K1108452-001	112	109
TP-02	K1108452-002	130	97
TP-02DUP	KWG1109379-1	129	96
Method Blank	KWG1109379-3	94	86
Method Blank	KWG1109379-4	98	94
Lab Control Sample	KWG1109379-2	105	96

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/26/2011 16:51:01 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic 177

SuperSet Reference:

RR133554

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA Date Received: NA

Date Prepared: 09/20/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1109379-3

Units: ug/L Basis: NA

Preparation Method: EPA 1311 Extraction Method: EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/22/11	09/23/11	KWG1109379	
Residual Range Organics (RRO)	ND U	500	500	1	09/22/11	09/23/11	KWG1109379	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	94	50-150	09/23/11	Acceptable	
n-Triacontane	86	50-150	09/23/11	Acceptable	

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA Date Received: NA

Date Prepared: 09/20/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1109379-4

Units: ug/L Basis: NA

Preparation Method: EPA 1311

Extraction Method: EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

-				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/22/11	09/23/11	KWG1109379	
Residual Range Organics (RRO)	ND U	500	500	1	09/22/11	09/23/11	KWG1109379	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	98	50-150	09/23/11	Acceptable
n-Triacontane	94	50-150	09/23/11	Acceptable

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011

Date Received: 09/09/2011

Date Prepared: 09/20/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

TP-01

Lab Code:

K1108452-001

Units: ug/L Basis: NA

Preparation Method: EPA 1311

Extraction Method: EPA 3510C

NWTPH-Dx

Level:	Low
--------	-----

Analysis Method:

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	09/22/11	09/23/11	KWG1109379	*
Residual Range Organics (RRO)	ND U	500	500	1	09/22/11	09/23/11	KWG1109379	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
erphenyl	112	50-150	09/23/11	Acceptable
riacontane	109	50-150	09/23/11	Acceptable

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/06/2011

Date Received: 09/09/2011

Date Prepared: 09/20/2011

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

TP-02

Lab Code:

K1108452-002

Units: ug/L Basis: NA

Preparation Method: EPA 1311

Level: Low

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	26000 Z	270	270	1	09/22/11	09/24/11	KWG1109379	
Residual Range Organics (RRO)	ND U	530	530	1	09/22/11	09/24/11	KWG1109379	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	130	50-150	09/24/11	Acceptable	
n-Triacontane	97	50-150	09/24/11	Acceptable	

Comments:

Printed: 09/26/2011 16:50:51 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic 174

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452 Date Extracted: 09/22/2011

Date Analyzed: 09/24/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

TP-02

Lab Code:

K1108452-002

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1109379

TP_02DIIP

			Sample	KWG110 Duplicate	09379-1	Relative Percent	RPD Limit
Analyte Name	MRL	MDL	Result	Result	Average	Difference	
Diesel Range Organics (DRO)	270	270	26000	26000	26000	1	30
Residual Range Organics (RRO)	530	530	ND	ND	ND	-	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/26/2011 16:51:05

Form 3B - Organic 178

SuperSet Reference: RR133554 1 of 1

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Prepared: 09/20/2011

Date Extracted: 09/22/2011

Date Analyzed: 09/23/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 1311/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low Extraction Lot: KWG1109379

Lab Control Sample KWG1109379-2

Lab Control Spike %Rec Limits **Expected** %Rec **Analyte Name** Result Diesel Range Organics (DRO) 3390 3200 106 46-140 Residual Range Organics (RRO) 1430 1600 89 45-159

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/26/2011 16:51:08 $u:\Stealth\Crystal.rpt\Form3LCS.rpt$

Form 3C - Organic 179

SuperSet Reference:

RR133554

Page

1 of 1

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Sediment

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B

Analysis Method:

NWTPH-Dx

Service Request: K1108452

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
Batch QC	K1108247-004	108	111
TP-01	K1108452-001	125	126
TP-02	K1108452-002	217D *	138 D
Batch QCDUP	KWG1109213-1	103	107
Method Blank	KWG1109213-3	89	85
Lab Control Sample	KWG1109213-2	119	112

Surrogate Recovery Control Limits (%)

Sur1 =	o-Terphenyl	50-150
Sur2 =	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 09/19/2011 16:46:13

Form 2A - Organic

Page

1 of 1

SuperSet Reference: RR133248

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1109213-3

Units: mg/Kg

Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	25	1.2	1	09/12/11	09/14/11	KWG1109213	
Residual Range Organics (RRO)	ND U	99	2.9	1	09/12/11	09/14/11	KWG1109213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	89 85	50-150 50-150	09/14/11 09/14/11	Acceptable Acceptable	

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011 **Date Received:** 09/09/2011

Diesel and Residual Range Organics

Sample Name:

TP-01

Lab Code:

K1108452-001

Units: mg/Kg Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	42	33	1.6	1	09/12/11	09/14/11	KWG1109213	
Residual Range Organics (RRO)	120 Ј	140	3.8	1	09/12/11	09/14/11	KWG1109213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	125	50-150	09/14/11	Acceptable	
n-Triacontane	126	50-150	09/14/11	Acceptable	

Comments:

Printed: 09/19/2011 16:46:03 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$

Merged

1 of 1

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/06/2011

Date Received: 09/09/2011

Diesel and Residual Range Organics

Sample Name:

TP-02

Lab Code:

K1108452-002

Units: mg/Kg Basis: Dry

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	8500 DZ	640	31	20	09/12/11	09/14/11	KWG1109213	
Residual Range Organics (RRO)	1600 JD	2600	75	20	09/12/11	09/14/11	KWG1109213	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	217	50-150	09/14/11	Outside Control Limits Acceptable
n-Triacontane	138	50-150	09/14/11	

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Extracted: 09/12/2011

Date Analyzed: 09/14/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

Batch QC

Lab Code:

K1108247-004

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1109213

			Sample	Batch (KWG11 Duplicat e	09213-1	Relative Percent	RPD Limit
Analyte Name	MRL	MDL	Result	Result	Average	Difference	
Diesel Range Organics (DRO)	25	1.2	28	13	21	71 #	40
Residual Range Organics (RRO)	100	2.9	170	95	130	58 #	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/19/2011 16:46:17 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

Page SuperSet Reference: RR133248

1 of

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452 **Date Extracted:** 09/12/2011

Date Analyzed: 09/14/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: mg/Kg

Basis: Dry Level: Low

Extraction Lot: KWG1109213

Lab Control Sample KWG1109213-2 Lab Control Snike

	Lan	Control Spike		%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
Diesel Range Organics (DRO)	302	267	113	56-124		
Residual Range Organics (RRO)	125	133	94	60-135		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 09/19/2011 16:46:20

Form 3C - Organic

Page

1 of 1

SuperSet Reference: RR133248

Analytical Results

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Total Solids

Prep Method:

NONE

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Service Request: K1108452

Test Notes:

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
TP-01	K1108452-001	09/01/2011	09/09/2011	09/12/2011	75.8	
TP-02	K1108452-002	09/06/2011	09/09/2011	09/12/2011	77.8	

Page

1 of 1

 $u:\Stealth\Crystal.rpt\Solids.rpt$

QA/QC Report

Client:

URS Corporation

Project:

Longview Treatability Study

Sample Matrix:

Soil

Service Request: K1108452

Date Collected: 09/01/2011 Date Received: 09/09/2011

Date Analyzed: 09/12/2011

Duplicate Sample Summary Total Solids

Prep Method: Analysis Method:

NONE

Units: PERCENT

Basis: Wet

Page 1 of 1

Test Notes:

160.3M

Relativ

Sample Name	Lab Code	Sample Result	Sample Result	Average	Percent Difference	Result Notes
TP-01	K1108452-001	75.8	77.1	76.5	2	

November 10, 2011

Analytical Report for Service Request No: K1110402

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: Longview

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on October 26, 2011. For your reference, these analyses have been assigned our service request number K1110402.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Wellan

Ed Wallace

Project Chemist

EW/ln

Page 1 of 1261

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-QSM 4.1 definition:* Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 - DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

URS Corporation

Project:

IP Longview

Sample Matrix: Soils

Service Request No.:

K1110402

Date Received:

11/2/11

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Eleven soil samples were received for analysis at Columbia Analytical Services on 11/2/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

SPLP Metals

No anomalies associated with the analysis of these samples were observed

Diesel Range Organics on SPLP Extract by NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample 0397-025 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Method Blank Exceptions:

The Method Blank KWG1110970-5 contained low levels of Naphthalene above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated.

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of numerous analytes for sample 0397-010 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Sample Notes and Discussion:

MDL studies were not performed on SPLP leachates. The MDLs reported were for water samples.

	Co		9 8	8	1.	
Approved by	Separate Sep	Date		10		1

rvices-	Client: Project Manager	Paul Kalina	alin								Project: Telepho	1 81 1	lgvie	6-438-			Fax No.		866-495-5282	5-52	82		
800.695.7222 www.caslab.com	Maliayer			-																			
				Matrix	₹		Prsv.	<u></u>									accessory and the second						ays)
Sample I.D.	Lab Sample No.	No. of Containers Soil		Water	Air	Other	Yes	No	Sampling Date	Sampling Time	SPLP TPH-DRO	SPLP PAH	SPLP RCRA 8 Metals										Turn Around Time (working da
		╁	4	+	4	4	1	4	10/2//1	1440	, (4	ļ	1	+	1	1	4	-	+	\dashv	+	7
0397-010			× >	-		_		<u>× ></u>	10/24/11	1447	××	× >		-				_	\dashv		\dashv	+	
0297-013			×	\dashv		_		×	10/24/11	1452	×	×							-				
0397-016		\vdash	×					×	10/24/11	1458	×	×							_				
0397-017		2	×	\vdash				×	10/24/11	1503	×	×											\vdash
0397-019		├	×	-	-	_		×	10/24/11	1507	×	×	-					ļ	├-	\vdash	\vdash	\vdash	\vdash
0397-021		┼	×	-	<u> </u>		_	×	10/24/11	1510	×	×	×		-			_	╀-	╀	-	-	+-
0397-022		2	×	<u> </u>	ļ			×	10/24/11	1515	×	×	×	-	<u> </u>			_				-	\vdash
0397-023		2	×	_				×	10/24/11	1520	×	×							_	_		ļ	┼──
0397-024		2	×	_	ļ			×	10/24/11	1525	×	×						-	-	-	-	-	
0397-025	30	2	×					×	10/24/11	1528	×	×									-		
Sample Received Intact: Yes N	No			-					Temperature received:	received:		-		Ce			No ice	'n					
Reling, by sampler (Sign & Print Name)				Date		-	Time			Received by (Sign & Print Name)	y (Sig	n & Pr	nt Name)										
me me	Jill Suhm			10/25	2	=	,	Ū	1343														
Relinquished by				Date			Time			Received by	Ž												
Relinquished by	and the second s			Date			Time	.		Received by	٧			San Sand Malaysia .							Ì		
Relinquished by				Date			Time			Received by laboratory	y lab	oratory					Date [/)	19	7		Time (1940)	20	3

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Client / Project: Service Request *K11* Opened: 10 Received: Unloaded: Mail Fed Ex UPS DHLHand Delivered Samples were received via? PDXCourier Samples were received in: (circle) Cooler Box Envelope Other NAWere custody seals on coolers? NA N If yes, how many and where? If present, were custody seals intact? N If present, were they signed and dated? N Thermometer Cooler/COC Cooler Temp Tracking Number Temp °C Blank °C ID NA Filed Inserts Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other Packing material used. NA Were custody papers properly filled out (ink, signed, etc.)? N Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? NA N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N 11. Were appropriate bottles/containers and volumes received for the tests indicated? NA 12. N NA: Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below N 13. Y Were VOA vials received without headspace? *Indicate in the table below*. NA N Y 15. Was C12/Res negative? NA N Sample ID on Bottle Sample ID on COC Identified by: **Bottle Count** Out of Head-Volume Reagent Lot Number Initials Time Sample ID Temp space Broke рΗ added **Bottle Type** Reagent

	-M	 ·	 		 				
								. تد	
	<u> </u>		 		 				
		 							
es, Discrepuncies, &	Resolutions	***************************************	 	VASCASI AND THE TOTAL OF THE TO					
tes, Discrepancies, & I	Resolutions:								
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	ì		3	i		ì			

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Surrogate Recovery Summary Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Preparation Method: EPA 1312

Extraction Method: EPA 3520C Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
0397-010	K1110402-001	76	83	82
0397-011	K1110402-002	74	79	80
0397-013	K1110402-003	76	82	80
0397-016	K1110402-004	78	86	87
0397-017	K1110402-005	76	83	82
0397-019	K1110402-006	78	83	81
0397-021	K1110402-007	76	83	84
0397-022	K1110402-008	79	85	84
0397-023	K1110402-009	80	85	86
0397-024	K1110402-010	7 6 '	83	78
0397-025	K1110402-011	73	80	76
Method Blank	KWG1110970-5	83	79	93
0397-010MS	KWG1110970-1	81 D	82 D	92 D
0397-010DMS	KWG1110970-2	79 D	82 D	91 D
Lab Control Sample	KWG1110970-3	82	77	87
Duplicate Lab Control Sample	KWG1110970-4	84	81	93

Surrogate Recovery Control Limits (%)

Surl =	Fluorene-d10	28-98
Sur2 =	Fluoranthene-d10	31-105
Sur3 =	Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/09/2011 13:50:08

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: NA Date Received: NA

Date Prepared: 10/27/2011

Units: ug/L

Basis: NA

Level: Low

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

Method Blank

Lab Code:

KWG1110970-5

ND U

ND U

Merged

Extraction Method: EPA 3520C

Preparation Method: EPA 1312

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Analysis Method:	8270D SIM									
Analyte Name		Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene		0.24		0.20	0.030	1	10/28/11	11/01/11	KWG1110970	(distribution)) sistem
2-Methylnaphthalene		0.036	J	0.20	0.023	1	10/28/11	11/01/11	KWG1110970	
Acenaphthylene		ND	U	0.20	0.034	1	10/28/11	11/01/11	KWG1110970	
Acenaphthene		ND	U	0.20	0.044	1	10/28/11	11/01/11	KWG1110970	
Dibenzofuran		ND	U	0.20	0.046	1	10/28/11	11/01/11	KWG1110970	
Fluorene		ND	U	0.20	0.038	. 1	10/28/11	11/01/11	KWG1110970	
Phenanthrene		ND	U	0.20	0.050	1	10/28/11	11/01/11	KWG1110970	
Anthracene		ND	U	0.20	0.036	1	10/28/11	11/01/11	KWG1110970	
Fluoranthene		ND	U	0.20	0.044	1	10/28/11	11/01/11	KWG1110970	
Pyrene		ND	U	0.20	0.034	1	10/28/11	11/01/11	KWG1110970	
Benz(a)anthracene		ND	\mathbf{U}	0.20	0.026	1	10/28/11	11/01/11	KWG1110970	
Chrysene		ND	U	0.20	0.034	1	10/28/11	11/01/11	KWG1110970	
Benzo(b)fluoranthene		ND	U	0.20	0.023	1	10/28/11	11/01/11	KWG1110970	
Benzo(k)fluoranthene		ND	U	0.20	0.025	1	10/28/11	11/01/11	KWG1110970	
Benzo(a)pyrene		ND	U	0.20	0.043	1	10/28/11	11/01/11	KWG1110970	
Indeno(1,2,3-cd)pyren	e	ND	U	0.20	0.026	1	10/28/11	11/01/11	KWG1110970	F1.171.000.000.000.000.000.000.000.000

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	83	28-98	11/01/11	Acceptable
Fluoranthene-d10	79	31-105	11/01/11	Acceptable
Terphenyl-d14	93	27-112	11/01/11	Acceptable

0.025

0.029

1

1

10/28/11

10/28/11

11/01/11

11/01/11

KWG1110970

KWG1110970

0.20

0.20

Comments:

Printed: 11/09/2011 13:50:03

u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page

1 of

1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Collected:** 10/24/2011

Date Received: 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-010

Lab Code:

K1110402-001

Preparation Method: EPA 1312

Extraction Method: EPA 3520C **Analysis Method:**

Benzo(g,h,i)perylene

8270D SIM

Units: ug/L Basis: NA

Level: Low

KWG1110970

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7500	D	40	6.0	200	10/28/11	11/07/11	KWG1110970	tananamankan meneralah tan
2-Methylnaphthalene	840	D	4.0	0.46	20	10/28/11	11/05/11	KWG1110970	
Acenaphthylene	9.5		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	420	D	4.0	0.88	20	10/28/11	11/05/11	KWG1110970	
Dibenzofuran	270	D	4.0	0.92	20	10/28/11	11/05/11	KWG1110970	
Fluorene	240	D	4.0	0.76	20	10/28/11	11/05/11	KWG1110970	
Phenanthrene	240	D	4.0	1.0	20	10/28/11	11/05/11	KWG1110970	
Anthracene	35		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	22		0.20	0.044	1	10/28/11	11/04/11	KWG11109 7 0	
Pyrene	11		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.42		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.40		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	ND	U	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	www
Dibenz(a,h)anthracene	ND	U	0.20	0.025	ł	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	28-98	11/04/11	Acceptable
Fluoranthene-d10	83	31-105	11/04/11	Acceptable
Terphenyl-d14	82	27-112	11/04/11	Acceptable

0.029

Ì

10/28/11

11/04/11

0.20

Comments:

Printed: 11/09/2011 13:49:30 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

ND U

Form 1A - Organic

375

Page 1 of 1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Collected:** 10/24/2011

Date Received: 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-011

Lab Code:

K1110402-002

Extraction Method: EPA 3520C

Preparation Method: EPA 1312

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7400 D	40	6.0	200	10/28/11	11/07/11	KWG1110970	
2-Methylnaphthalene	890 D	4.0	0.46	20	10/28/11	11/05/11	KWG1110970	
Acenaphthylene	9.1	0.20	0.034	1	10/28/11	11/01/11	KWG1110970	
Acenaphthene	43 0 D	4.0	0.88	20	10/28/11	11/05/11	KWG1110970	
Dibenzofuran	270 D	4.0	0.92	20	10/28/11	11/05/11	KWG1110970	
Fluorene	240 D	4.0	0.76	20	10/28/11	11/05/11	KWG1110970	
Phenanthrene	250 D	4.0	1.0	20	10/28/11	11/05/11	KWG1110970	
Anthracene	33	0.20	0.036	1	10/28/11	11/01/11	KWG1110970	
Fluoranthene	20	0.20	0.044	1	10/28/11	11/01/11	KWG1110970	
Pyrene	10	0.20	0.034	1	10/28/11	11/01/11	KWG1110970	Australia de la composición dela composición de la composición de la composición de la composición de la composición dela composición dela composición dela composición de la
Benz(a)anthracene	0.57	0.20	0.026	1	10/28/11	11/01/11	KWG1110970	
Chrysene	0.28	0.20	0.034	1	10/28/11	11/01/11	KWG1110970	
Benzo(b)fluoranthene	0.046 Ј	0.20	0.023	1	10/28/11	11/01/11	KWG1110970	
Benzo(k)fluoranthene	ND U	0.20	0.025	1	10/28/11	11/01/11	KWG1110970	
Benzo(a)pyrene	ND U	0.20	0.043	1	10/28/11	11/01/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND U	0.20	0.026	1	10/28/11	11/01/11	KWG1110970	
Dibenz(a,h)anthracene	ND U	0.20	0.025	1	10/28/11	11/01/11	KWG1110970	
Benzo(g,h,i)perylene	ND U	0.20	0.029	1	10/28/11	11/01/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorenc-d10	74	28-98	11/01/11	Acceptable	
Fluoranthene-d10	79	31-105	11/01/11	Acceptable	
Terphenyl-d14	80	27-112	11/01/11	Acceptable	

Comments:

Printed: 11/09/2011 13:49:33

1 of 1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-013

Lab Code:

K1110402-003

Units: ug/L Basis: NA

Preparation Method: EPA 1312 **Extraction Method:** EPA 3520C

Level: Low

Analysis Method:

8270D SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7700 D	40	6.0	200	10/28/11	11/07/11	KWG1110970	
2-Methylnaphthalene	820 D	4.0	0.46	20	10/28/11	11/05/11	KWG1110970	
Acenaphthylene	8.5	0.20	0.034	1 -	10/28/11	11/04/11	KWG1110970	
Acenaphthene	380 D	4.0	0.88	20	10/28/11	11/05/11	KWG1110970	
Dibenzofuran	240 D	4.0	0.92	20	10/28/11	11/05/11	KWG1110970	
Fluorene	210 D	4.0	0.76	20	10/28/11	11/05/11	KWG1110970	
Phenanthrene	210 D	4.0	1.0	20	10/28/11	11/05/11	KWG1110970	
Anthracene	29	0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	19	0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	9.1	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.36	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.31	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.037 J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	***************************************
Dibenz(a,h)anthracene	ND U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	76	28-98	11/04/11	Acceptable	
Fluoranthene-d10	82	31-105	11/04/11	Acceptable	
Terphenyl-d14	80	27-112	11/04/11	Acceptable	

Comments:

Printed: 11/09/2011 13:49:36 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit$

Merged

Form 1A - Organic

Page 1 of 1 SuperSet Reference: RR135285

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-016

Lab Code:

K1110402-004

Preparation Method: EPA 1312

Units: ug/L Basis: NA

Level: Low

Extraction Method: EPA 3520C Analysis Method: 8270D SIM

Analyte Name	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
			# 1980 @ # # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 # 1980 #		·		·········	KWG1110970	11000
Naphthalene	6800		40	6.0	200	10/28/11	11/07/11		
2-Methylnaphthalene	780	D	4.0	0.46	20	10/28/11	11/06/11	KWG11109 7 0	
Acenaphthylene	7.3		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	400	D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	230	D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	210	D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	210	D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	
Anthracene	30		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	22		0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	11		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.47		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.38		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.062	J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	0.037	J	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	0.031	J	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND	U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	78	28-98	11/04/11	Acceptable	VIII.
Fluoranthene-d10	86	31-105	11/04/11	Acceptable	
Terphenyl-d14	87	27-112	11/04/11	Acceptable	

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Collected:** 10/24/2011

Date Received: 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-017

Lab Code:

K1110402-005

Extraction Method:

Preparation Method: EPA 1312

Analysis Method:

EPA 3520C 8270D SIM Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	4400]	D	40	6.0	200	10/28/11	11/07/11	KWG1110970	HOME TO A STATE OF THE STATE OF
2-Methylnaphthalene	460	D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	3.6		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	260	D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	98		0.20	0.046	1	10/28/11	11/04/11	KWG1110970	
Fluorene	100		0.20	0.038	1	10/28/11	11/04/11	KWG1110970	
Phenanthrene	92		0.20	0.050	1	10/28/11	11/04/11	KWG1110970	
Anthracene	15		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	12		0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	6.6		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.30		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.23		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.026	J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND 1	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND 1	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND 1	U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND 1	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND 1	U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	76	28-98	11/04/11	Acceptable	
Fluoranthene-d10	83	31-105	11/04/11	Acceptable	
Terphenyl-d14	82	27-112	11/04/11	Acceptable	

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-019

Lab Code:

K1110402-006

Preparation Method: EPA 1312

Units: ug/L Basis: NA

Level: Low

Extraction Method: EPA 3520C **Analysis Method:**

8270D SIM

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	6400	D	40	6.0	200	10/28/11	11/07/11	KWG1110970	
2-Methylnaphthalene	740	D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	7.1		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	380	D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	210	D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	180	D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	210	D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	
Anthracene	30		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	20		0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	10		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.40		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.35		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.030	J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND	U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	78	28-98	11/04/11	Acceptable	
Fluoranthene-d10	83	31-105	11/04/11	Acceptable	
Terphenyl-d14	81	27-112	11/04/11	Acceptable	

Comments:

Printed: 11/09/2011 13:49:45 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} u: \label{lem:limit$

Merged

Form 1A - Organic

SuperSet Reference: RR135285

Page 1 of 1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-021

Lab Code:

K1110402-007

Preparation Method: EPA 1312

Units: ug/L Basis: NA

Level: Low

Extraction Method: EPA 3520C **Analysis Method:**

8270D SIM

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7000	D	40	6.0	200	10/28/11	11/07/11	KWG1110970	
2-Methylnaphthalene	860	D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	8.6		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	420	D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	260	D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	230	D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	240	D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	
Anthracene	31		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	19		0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	9.2		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.32		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.32		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	ND	U	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND	U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	28-98	11/04/11	Acceptable
Fluoranthene-d10	83	31-105	11/04/11	Acceptable
Terphenyl-d14	84	27-112	11/04/11	Acceptable

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-022

Lab Code:

K1110402-008

Preparation Method: EPA 1312

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	7900 D	40	6.0	200	10/28/11	11/07/11	KWG1110970	
2-Methylnaphthalene	770 D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	8.7	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	380 D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	240 D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	210 D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	220 D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	announce of the second
Anthracene	30	0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	20	0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	9.3	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.35	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.34	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.030 J	0.20	0.023	1	10/28/11	11/04/11	KWG11109 7 0	
Benzo(k)fluoranthene	ND U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND U	0.20	0.043	l	10/28/11	11/04/11	KWG11109 7 0	
Indeno(I,2,3-cd)pyrene	ND U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	79	28-98	11/04/11	Acceptable	
Fluoranthene-d10	85	31-105	11/04/11	Acceptable	
Terphenyl-d14	84	27-112	11/04/11	Acceptable	

Comments:

Printed: 11/09/2011 13:49:51 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We will still the problem of th$

1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Collected:** 10/24/2011

Date Received: 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-023

Lab Code:

K1110402-009

Preparation Method: EPA 1312 Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7300 D	40	6.0	200	10/28/11	11/07/11	KWG1110970	DODGO PO PORTO MANA
2-Methylnaphthalene	760 D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	8.7	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	390 D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	220 D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	190 D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	210 D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	that had been shaded by comment
Anthracene	34	0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	23	0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	11	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.41	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.40	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.034 J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	80	28-98	11/04/11	Acceptable	
Fluoranthene-d10	85	31-105	11/04/11	Acceptable	
Terphenyl-d14	86	27-112	11/04/11	Acceptable	

Comments:

Printed: 11/09/2011 13:49:54 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page

1 of 1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Collected:** 10/24/2011

Date Received: 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-024

Lab Code:

K1110402-010

Preparation Method: EPA 1312 Extraction Method: FPA 3520C

Units: ug/L Basis: NA

Level: Low

Analysis Method:	8270D SIM
Analyte Name	
Nanhthalene	

Analyta Nama	Dagula	0	N/IDY	N/INI	Dilution	Date	Date	Extraction	Note
Analyte Name	Result	<u>v</u>	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	6500	D	40	6.0	200	10/28/11	11/07/11	KWG1110970	
2-Methylnaphthalene	860	D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	7.2		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	400	D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	
Dibenzofuran	250	D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	220	D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	220	D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	
Anthracene	28		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	22		0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	11	***************************************	0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.41		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.40		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.044	J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND	U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	76	28-98	11/04/11	Acceptable	Contract of the latest tenths
Fluoranthene-d10	83	31-105	11/04/11	Acceptable	
Terphenyl-d14	78	27-112	11/04/11	Acceptable	

Comments:

Printed: 11/09/2011 13:49:57 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-025

Lab Code:

K1110402-011

Preparation Method: EPA 1312

Extraction Method: EPA 3520C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8270D SIM

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	9400	D	40	6.0	200	10/28/11	11/08/11	KWG1110970	Reconstruction of the same
2-Methylnaphthalene	800	D	4.0	0.46	20	10/28/11	11/06/11	KWG1110970	
Acenaphthylene	8.1		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Acenaphthene	380	D	4.0	0.88	20	10/28/11	11/06/11	KWG1110970	*******************
Dibenzofuran	240	D	4.0	0.92	20	10/28/11	11/06/11	KWG1110970	
Fluorene	210	D	4.0	0.76	20	10/28/11	11/06/11	KWG1110970	
Phenanthrene	210	D	4.0	1.0	20	10/28/11	11/06/11	KWG1110970	-
Anthracene	31		0.20	0.036	1	10/28/11	11/04/11	KWG1110970	
Fluoranthene	18		0.20	0.044	1	10/28/11	11/04/11	KWG1110970	
Pyrene	8.2		0.20	0.034	1 .	10/28/11	11/04/11	KWG1110970	
Benz(a)anthracene	0.29		0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Chrysene	0.29		0.20	0.034	1	10/28/11	11/04/11	KWG1110970	
Benzo(b)fluoranthene	0.024	J	0.20	0.023	1	10/28/11	11/04/11	KWG1110970	
Benzo(k)fluoranthene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(a)pyrene	ND	U	0.20	0.043	1	10/28/11	11/04/11	KWG1110970	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.026	1	10/28/11	11/04/11	KWG1110970	
Dibenz(a,h)anthracene	ND	U	0.20	0.025	1	10/28/11	11/04/11	KWG1110970	
Benzo(g,h,i)perylene	ND	U	0.20	0.029	1	10/28/11	11/04/11	KWG1110970	

Surrogate Name		%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	a	73	28-98	11/04/11	Acceptable	
Fluoranthene-d10		80	31-105	11/04/11	Acceptable	
Terphenyl-d14		76	27-112	11/04/11	Acceptable	

Comments:

Printed: 11/09/2011 13:50:00 u:\Stealth\Crystal.rpt\Form1mNew.rpt

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Prepared:** 10/27/2011 Date Extracted: 10/28/2011 **Date Analyzed:** 11/04/2011

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-010

Lab Code:

K1110402-001

Extraction Method:

EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1110970

0397-010MS

0397-010DMS

	Sample	KWG1110970-1 Matrix Spike				VG1110970- cate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	7500	4890E	25.0	-10253#	4850E	25.0	-10403#	37-118	. 1	30
2-Methylnaphthalene	840	774E	25.0	-284 #	775E	25.0	-280 #	37-117	0	30
Acenaphthylene	9.5	33.1	25.0	94	32.6	25.0	92	43-114	2	30
Acenaphthene	420	427	25.0	43 #	427	25.0	44 #	45-114	0	30
Dibenzofuran	270	273	25.0	28 #	276	25.0	38 #	44-122	1	30
Fluorene	240	257	25.0	78 #	257	25.0	81 #	45-123	0	30
Phenanthrene	240	258	25.0	67 #	253	25.0	47 #	42-127	2	30
Anthracene	35	53.0	25.0	71	54.5	25.0	77	32-125	3	30
Fluoranthene	22	45.1	25.0	93	46.0	25.0	96	48-134	2	30
Pyrene	11	34.0	25.0	93	33.0	25.0	89	44-130	3	30
Benz(a)anthracene	0.42	22.5	25.0	88	21.3	25.0	84	41-128	6	30
Chrysene	0.40	23.1	25.0	91	22.1	25.0	87	48-128	4	30
Benzo(b)fluoranthene	ND	22.4	25.0	89	21.2	25.0	85	40-139	5	30
Benzo(k)fluoranthene	ND	22.8	25.0	91	22.0	25.0	88	48-134	4	30
Benzo(a)pyrene	ND	21.1	25.0	84	20.1	25.0	80	35-132	5	30
Indeno(1,2,3-cd)pyrene	ND	20.7	25.0	83	19.9	25.0	79	40-135	4	30
Dibenz(a,h)anthracene	ND	21.3	25.0	85	20.4	25.0	82	43-135	5	30
Benzo(g,h,i)perylene	ND	21.1	25.0	84	20.0	25.0	80	44-128	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/09/2011 13:51:49 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page

1 of 1

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Prepared:** 10/27/2011

Date Extracted: 10/28/2011 **Date Analyzed:** 11/01/2011

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method:

EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1110970

Lab Control Sample

Duplicate Lab Control Sample

		VG1110970-3 Control Spik		VG1110970-4 e Lab Control		%Rec	,	RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	18.2	25.0	73	18.8	25.0	75	39-110	3	30
2-Methylnaphthalene	16.7	25.0	67	17.3	25.0	69	39-115	4	30
Acenaphthylene	21.0	25.0	84	20.7	25.0	83	44-115	2	30
Acenaphthene	20.0	25.0	80	20.0	25.0	80	44-113	0	30
Dibenzofuran	20.9	25.0	84	20.9	25.0	84	46-116	0	30
Fluorene	21.5	25.0	86	21.6	25.0	87	48-118	1	30
Phenanthrene	20.0	25.0	80	20.3	25.0	81	47-120	1	30
Anthracene	19.0	25.0	76	20.0	25.0	80	44-117	5	30
Fluoranthene	20.6	25.0	83	21.6	25.0	86	48-128	4	30
Pyrene	21.4	25.0	86	22.3	25.0	89	42-133	4	30
Benz(a)anthracene	18.7	25.0	75	19.5	25.0	78	48-125	5	30
Chrysene	20.5	25.0	82	21.5	25.0	86	50-128	5	30
Benzo(b)fluoranthene	20.0	25.0	80	21.2	25.0	85	49-131	6	30
Benzo(k)fluoranthene	21.3	25.0	85	23.0	25.0	92	54-131	7	30
Benzo(a)pyrene	18.9	25.0	76	20.1	25.0	80	43-124	6	30
Indeno(1,2,3-cd)pyrene	16.7	25.0	67	17.8	25.0	71	45-133	7	30
Dibenz(a,h)anthracene	22.5	25.0	90	21.7	25.0	87	49-133	4	30
Benzo(g,h,i)perylene	21.4	25.0	86	21.6	25.0	86	51-124	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/09/2011 13:51:53 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic

Page 1 of 1

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Surrogate Recovery Summary Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
0397-010	K1110402-001	113	96
0397-011	K1110402-002	115	107
0397-013	K1110402-003	114	102
0397-016	K1110402-004	139	100
0397-017	K1110402-005	98	97
0397-019	K1110402-006	119	97
0397-021	K1110402-007	139	106
0397-022	K1110402-008	135	102
0397-023	K1110402-009	130	89
0397-024	K1110402-010	118	102
0397-025	K1110402-011	124	101
0397-010DUP	KWG1111095-1	122	101
0397-025DUP	KWG1111095-2	136	100
Method Blank	KWG1111095-4	97	100
Method Blank	KWG1111095-5	93	95
Lab Control Sample	KWG1111095-3	101	. 97

Surrogate Recovery Control Limits (%)

Sur1 =	o-Terphenyl	50-150
Sur2 =	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 11/02/2011 17:52:24

Form 2A - Organic

1 of 1

SuperSet Reference: RR135048

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: NA Date Received: NA

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1111095-4

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	ND U	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	97	50-150	11/01/11	Acceptable
n-Triacontane	100	50-150	11/01/11	Acceptable

Comments:

Printed: 11/02/2011 17:52:16 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We will still the problem of th$

Form 1A - Organic

Page 1 of 1

RR135048

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: NA Date Received: NA

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1111095-5

Units: ug/L Basis: NA

Level: Low

Preparation Method: EPA 1312 **Extraction Method:** EPA 3510C

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	1	10/31/11	11/01/11	KWG1111095	-
Residual Range Organics (RRO)	ND U	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	93	50-150	11/01/11	Acceptable
n-Triacontane	95	50-150	11/01/11	Acceptable

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-010

Lab Code:

K1110402-001

Units: ug/L Basis: NA

Preparation Method: EPA 1312 Extraction Method: EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	19000 Z	280	280	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	ND U	550	550	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	113	50-150	11/01/11	Acceptable
n-Triacontane	96	50-150	11/01/11	Acceptable

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-011

Lab Code:

K1110402-002

Units: ug/L Basis: NA

Preparation Method: EPA 1312 Extraction Method: EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	20000 Z 570 Z	250 500	250 500	1 1	10/31/11 10/31/11	11/01/11 11/01/11	KWG1111095 KWG1111095	CONTRACTOR DE LA CONTRA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	115	50-150	11/01/11	Acceptable	
n-Triacontane	107	50-150	11/01/11	Acceptable	

Comments:

Printed: 11/02/2011 17:51:35 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-013

Lab Code:

K1110402-003

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	2 0000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	610 Z	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	114	50-150	11/01/11	Acceptable Acceptable
n-Triacontane	102	50-150	11/01/11	

Comments:

Printed: 11/02/2011 17:51:39 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

148

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Units: ug/L

Basis: NA

Level: Low

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-016

Lab Code:

K1110402-004

Preparation Method: EPA 1312

Extraction Method: EPA 3510C **Analysis Method:**

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	18000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	ND U	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	139 100	50-150 50-150	11/01/11 11/01/11	Acceptable Acceptable	

Comments:

Printed: 11/02/2011 17:51:43 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011 **Date Prepared:** 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-017

Lab Code:

K1110402-005

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	11000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	ND U	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	98	50-150	11/01/11	Acceptable
n-Triacontane	97	50-150	11/01/11	Acceptable

Comments:

Printed: 11/02/2011 17:51:47 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-019

Lab Code:

K1110402-006

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method: EPA 3510C **Analysis Method:**

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	17000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	ND U	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	119	50-150	11/01/11	Acceptable	
n-Triacontane	97	50-150	11/01/11	Acceptable	

Comments:

151

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-021

Lab Code:

K1110402-007

Units: ug/L Basis: NA

Preparation Method: EPA 1312

Level: Low

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	19000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	SOLIO SERVICIO ES CALCONO COLOR
Residual Range Organics (RRO)	510 Z	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	139	50-150	11/01/11	Acceptable	State Control
n-Triacontane	106	50-150	11/01/11	Acceptable	

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-022

Lab Code:

K1110402-008

Units: ug/L Basis: NA

Extraction Method: EPA 3510C

Preparation Method: EPA 1312

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	20000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	660 Z	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	135 102	50-150 50-150	11/01/11 11/01/11	Acceptable Acceptable	

Comments:

Printed: 11/02/2011 17:52:00 $u:\Stealth\Crystal.rpt\Form\Im\New.rpt$

153

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-023

Lab Code:

K1110402-009

Units: ug/L Basis: NA

Level: Low

Extraction Method:

Preparation Method: EPA 1312 EPA 3510C

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	18000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	540 Z	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	130	50-150	11/01/11	Acceptable
n-Triacontane	89	50-150	11/01/11	Acceptable

Comments:

Printed: 11/02/2011 17:52:04 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Form 1A - Organic

Page 1 of 1

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-024

Lab Code:

K1110402-010

Units: ug/L Basis: NA

Preparation Method: EPA 1312 **Extraction Method:** EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	18000 Z	250	250	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	ND U	500	500	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	118	50-150	11/01/11	Acceptable	
n-Triacontane	102	50-150	11/01/11	Acceptable	

Comments:

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011 **Date Received:** 10/26/2011

Date Prepared: 10/27/2011

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-025

Lab Code:

K1110402-011

Units: ug/L

Preparation Method: EPA 1312

Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	23000 Z	270	270	1	10/31/11	11/01/11	KWG1111095	
Residual Range Organics (RRO)	580 Z	530	530	1	10/31/11	11/01/11	KWG1111095	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	124	50-150	11/01/11	Acceptable	
n-Triacontane	101	50-150	11/01/11	Acceptable	

Comments:

156

RR135048

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Extracted: 10/31/2011

Date Analyzed: 11/01/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

0397-010

Lab Code:

K1110402-001

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1111095

0397-010DUP

			Sample	KWG11 Duplicate	11095-1	Relative Percent Difference	RPD Limit
Analyte Name	MRL	MDL	Result	Result	Average		
Diesel Range Organics (DRO) Residual Range Organics (RRO)	280 550	280 550	19000 ND	20000 570	19000 NC	3 NC	30 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 $\begin{array}{llll} Printed: & 11/02/2011 & 17:52:28 \\ u:\Stealth\Crystal.rpt\Form3DUP.rpt & \\ \end{array}$

Form 3B - Organic

Page 1 of 1

SuperSet Reference:

RR135048

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Extracted: 10/31/2011

Date Analyzed: 11/01/2011

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

0397-025

Lab Code:

K1110402-011

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1111095

0397-025DUP

			Sample	KWG11 Duplicate	11095-2	Relative Percent	RPD Limit
Analyte Name	MRL MI	MDL	Result	Result	Average	Difference	
Diesel Range Organics (DRO)	270	270	23000	22000	23000	5	30
Residual Range Organics (RRO)	530	530	580	570	570	3 #	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 11/02/2011 17:52:32 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

Page

1 of 1

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402 **Date Prepared:** 10/27/2011

Date Extracted: 10/31/2011

Date Analyzed: 11/01/2011

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 1312/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1111095

Lab Control Sample KWG1111095-3

	Lab	Control Spike	e	— %Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Diesel Range Organics (DRO)	3370	3200	105	46-140	
Residual Range Organics (RRO)	1410	1600	88	45-159	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

URS Corporation

Service Request: K1110402

Project No.:

NA

Date Collected: 10/24/11

Project Name: Longview

Date Received: 10/26/11

Matrix:

SPLP

Units: mg/L

Basis: NA

Sample Name:

0397-021

Lab Code:

K1110402-007

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.010	0.007	1.0	10/28/11	10/31/11	0.007	บ	
Barium	6010B	1.0	0.1	1.0	10/28/11	10/31/11	5.2		
Cadmium	6010B	0.0050	0.0003	1.0	10/28/11	10/31/11	0.0003	U	
Chromium	6010B	0.005	0.003	1.0	10/28/11	10/31/11	0.004	J	
Lead	6010B	0.050	0.004	1.0	10/28/11	10/31/11	0.004	U	
Mercury	7470A	0.0010	0.0004	1.0	10/28/11	10/31/11	0.0004	U	
Selenium	6010B	0.10	0.02	1.0	10/28/11	10/31/11	0.02	ប	
Silver	6010B	0.010	0.006	1.0	10/28/11	10/31/11	0.006	U	

% Solids:

0.0

Comments:

- 5A -

SPIKE SAMPLE RECOVERY

Client:

URS Corporation

Service Request: K1110402

Project No.: NA

Units:

MG/L

Project Name: Longview

Basis: NA

0.0

Matrix:

SPLP

% Solids:

Sample Name: 0397-021S

Lab Code: K1110402-007S

Analyte	Control Limit %R	Spike Result	Sample Result	С	Spike Added	%R	Q	Method
Arsenic	75 - 125	4.960	0.007	υ	5.00	99.2		6010B
Barium	75 - 125	15.2	5.2		10.00	100.0		6010B
Cadmium	75 - 125	0.950	0.0003	ប	1.00	95.0		6010B
Chromium	75 - 125	4.760	0.004	J	5.00	95.1		6010B
Lead	75 - 125	5.020	0.004	บ	5.00	100.4		6010B
Mercury	75 - 125	0.0046	0.0004	υ	0.005	92.0		7470A
Selenium	75 - 125	0.89	0.02	U	1.00	89.0		6010B
Silver	75 - 125	1.000	0.006	บ	1.00	100.0		6010B

- 5B -

POST SPIKE SAMPLE RECOVERY

Client:

URS Corporation

Service Request: K1110402

Project No.: NA

Units: MG/L

Project Name: Longview

Basis: NA

Matrix:

WATER

Sample Name: 0397-021A

Lab Code: K1110402-007A

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R Q	Method
Mercury	85 - 115	0.0046	0.0004 U	0.0050	92.0	7470A

- 6 -

DUPLICATES

Client:

URS Corporation

Service Request: K1110402

Project No.:

Units:

MG/L

Project Name: Longview

Basis: NA

Matrix:

SPLP

% Solids:

0.0

Sample Name:

0397-021D

Lab Code:

K1110402-007D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.007	U	0.007	U			6010B
Barium	20	5.2		5.4		3.8		6010B
Cadmium		0.0003	U	0.0003	U			6010B
Chromium		0.004	J	0.004	J	0.0		6010B
Lead		0.004	υ	0.004	ט			6010B
Mercury		0.0004	U	0.0004	U			7470A
Selenium		0.02	U	0.02	ט			6010B
Silver		0.006	U	0.006	U			6010B

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

URS Corporation

Service Request: K1110402

Project No.:

NA

Date Collected: 10/24/11

Project Name: Longview

Date Received: 10/26/11

Matrix:

SPLP

Units: mg/L

Basis: NA

Sample Name:

0397-022

Lab Code:

K1110402-008

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	υ	Q
Arsenic	6010B	0.010	0.007	1.0	10/28/11	10/31/11	0.007	Ū	
Barium	6010B	1.0	0.1	1.0	10/28/11	10/31/11	0.3	J	
Cadmium	6010B	0.0050	0.0003	1.0	10/28/11	10/31/11	0.0003	U	
Chromium	6010B	0.005	0.003	1.0	10/28/11	10/31/11	0.013		
Lead	6010B	0.050	0.004	1.0	10/28/11	10/31/11	0.004	Ü	
Mercury	7470A	0.0010	0.0004	1.0	10/28/11	10/31/11	0.0004	ט	
Selenium	6010B	0.10	0.02	1.0	10/28/11	10/31/11	0.02	U	
Silver	6010B	0.010	0.006	1.0	10/28/11	10/31/11	0.006	ט	

% Solids:

Comments:

0.0

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

URS Corporation

Service Request: K1110402

Project No.:

NA

Date Collected:

Project Name: Longview

Date Received:

Matrix:

SPLP

Units: mg/L

Basis: NA

Sample Name:

Method Blank

Lab Code:

K1110402-MB

Analyte	Analysis Method	MRL	MDL	Dil. Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6010B	0.010	0.007	1.0	10/28/11	10/31/11	0.007	ט	
Barium	6010B	1.0	0.1	1.0	10/28/11	10/31/11	0.1	ט	
Cadmium	6010B	0.0050	0.0003	1.0	10/28/11	10/31/11	0.0003	υ	
Chromium	6010B	0.005	0.003	1.0	10/28/11	10/31/11	0.003	U	
Lead	6010B	0.050	0.004	1.0	10/28/11	10/31/11	0.004	ΰ	
Mercury	7470A	0.0010	0.0004	1.0	10/28/11	10/31/11	0.0004	υ	
Selenium	6010B	0.10	0.02	1.0	10/28/11	10/31/11	0.02	U	
Silver	6010B	0.010	0.006	1.0	10/28/11	10/31/11	0.006	U	

% Solids:

0.0

Comments:

-7-

LABORATORY CONTROL SAMPLE

Client:

URS Corporation

Service Request: K1110402

Project No.:

Project Name: Longview

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueou	s: mg/L			Soli	d: mg/	kg	
Analyte	True	Found	%R	True	Found	С	Limits	%R -
Arsenic	5	4.930	98.6					
Barium	10	9.7	97.0					
Cadmium	1	0.972	97.2					
Chromium	5	4.850	97.0		İ			
Lead	5	5.020	100.4				1	
Mercury	0.005	0.0047	94.0					
Selenium	1	0.89	89.0					
Silver	1	0.985	98.5					

Analytical Results

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Total Solids

Prep Method:

NONE

Analysis Method:

160,3M

Units: PERCENT Basis: Wet

Test Notes:

Sample Name	Lab Code	Date Collected	Date Received	Date Analyzed	Result	Result Notes
0397-010	K1110402-001	10/24/2011	10/26/2011	10/27/2011	81.5	
0397-011	K1110402-002	10/24/2011	10/26/2011	10/27/2011	73.1	
0397-013	K1110402-003	10/24/2011	10/26/2011	10/27/2011	77.8	
0397-016	K1110402-004	10/24/2011	10/26/2011	10/27/2011	70.9	
0397-017	K1110402-005	10/24/2011	10/26/2011	10/27/2011	70.9	
0397-019	K1110402-006	10/24/2011	10/26/2011	10/27/2011	72.6	
0397-021	K1110402-007	10/24/2011	10/26/2011	10/27/2011	81.7	
0397-022	K1110402-008	10/24/2011	10/26/2011	10/27/2011	79.3	
0397-023	K1110402-009	10/24/2011	10/26/2011	10/27/2011	72.0	
0397-024	K1110402-010	10/24/2011	10/26/2011	10/27/2011	73.6	
0397-025	K1110402-011	10/24/2011	10/26/2011	10/27/2011	73.4	

Printed: 10/31/2011 08:58

u:\Stealth\Crystal.rpt\Solids.rpt

Page SuperSet Reference: W1110955

1 of 1

11

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Analyzed: 10/27/2011

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Test Notes:

Duplicate Relative Sample Percent Sample Result Difference Result Result Notes Sample Name Lab Code Average 81.5 <1 0397-010 K1110402-001 81.5 81.5

Page

1 of 2

QA/QC Report

Client:

URS Corporation

Project:

Longview

Sample Matrix:

Soil

Service Request: K1110402

Date Collected: 10/24/2011

Date Received: 10/26/2011

Date Analyzed: 10/27/2011

Duplicate Sample Summary Total Solids

Prep Method:

NONE

Analysis Method:

Units: PERCENT

Basis: Wet

Test Notes:

Sample Name

160,3M

Relative Duplicate Sample Percent Sample Result Difference Lab Code Result Average

0397-025

K1110402-011

73.4

13

73.5

73,5

Result Notes

<1

Printed: 10/31/2011 08:58

u:\Stealth\Crystal.rpt\Solids.rpt

SuperSet Reference: W1110955

Page

2 of 2

January 25, 2012

Analytical Report for Service Request No: K1200448

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on January 18, 2012. For your reference, these analyses have been assigned our service request number K1200448.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

d Wallace

Ed Wallace

Project Chemist

EW/jw

Page 1 of <u>508</u>

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 *DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- [J] The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: Project: **URS** Corporation

IP Longview Solidification

Service Request No.: Date Received: K1200448 1/18/12

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three samples were received for analysis at Columbia Analytical Services on 1/18/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel and Residual Range Organics by NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample Batch QC was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Approved by	8	4n W	Date /	135	112
2)/22	ARTICOLO.				

Matrix Prov. Ma		Date Time	Received by laboratory	Rece	Time	_ =	m	Date			Relinquished by	Re
No. of Containers CHAIN OF CUSTODY Containers			eived by	Rece	me	ⅎ	ē	Dat			Relinquished by	Re
No. of Containers Water Matrix Prsv.			aived by	Retu	me	<u></u>	Ō	Dat			Relińquished by	Re
Temperature received: Policy Previous	Lab Work No.		Sived by (sign & Print Name)		ā	7	. (T	Value Da		toplen E. ME	M. Whan S	\sqrt{N}
Turn Around Time (working days)				Temperature rece		اج				0	Sample Received Intact: Yes No	Sa
Project: The sampling Time The samp	paulo kalina@											
Podett To URS Conditions Soil	M Paul Kalina											
Turn Around Time (working days) No. of Containers Soil Water Maffix Other Yes Project	R tiordanok											
Project: TP URS (anglier Soll Artication) No. of Containers Soil X X Water Air Other Yes No No 1171/2 9:45 X X X 1171/2 9:45 X X X X 1171/2 9:45 Turn Around Time (working days)	5 40					-		+	-			T
Project: TP URS CONQUIENT Social Detection of Shipmen No. 26 - 432-2172 FaxNo. 28 - 435-5282 Feo ex X 1/17/12 9:45 X X X X X X X X X X X X X X X X X X X	Please send											TT
Project: TP URS CONQVIEW Solid Method of Shipmen Watrix Prsv. Water Air Other Yes No Sampling Date Telephone No. 26-438-2172 FaxNo. 286-495-5282 Emily Reporting Turn Around Time (working days) Turn Around Time (working days)	*	/ Wes	×	12/	X			×	٦		397-017 (24 45)	Ь
Project: To URS Languier Solidification Method of Shipmen No. 26-432-2172 Fax No. 28-495-5282 Feo EX 1/1/2 9:45 X X 1/1/2 9:45 X 1	2	Des	53 ×	╅┈┈	×	<u> </u>		X	n		0 S97-017 (7 HR)	
No. of Containers Soil Water Air Other Yes No Sampling Date Sampling Time Telephone No. 266-438-2173 Fax No. 286-495-5282 Feo EX Special Detection LimitReporting Turn Around Time (working days)	C	l wee	45 ×	1/2 9	×			X	٦		0397-017 (2 HR)	
Project: TP URS Languiew Solidification Method of Shipmen Telephone No. 206-438-2173 Fax No. 286-495-5282 Feo EX Special Detection Limit/Reporting		Turn Around Time (working days)	TPH-DRO							Lab Sample No.	Sample I.D.	
Project: TP URS Languler Solidification Method of Shipmen Telephone No. 206-438-2172 Fax No. 286-495-5282 FED EX	Limit/Reporting				Jrsv.		atrix		\mathbf{H}		www.caslab.com	
Project: TP URS Language Solidification Method of Shipmen	TOOKX	-438-2172 Fax No. 286-495-5282	Telephone No. 206			ā	110	70	2	Project A	Analytical Services	
UKS Corp. CHAIN of CUSIODY Page /	Method of Shipment	es languled Solidification	Project: IP UR								Columbia	
	Page /_ of _	HAIN of CUSTODY	СН				0	Co	3.5	Client: U.		

52

F

			olumbia Ar oler Receipt	•					PC	<u> </u>	1_
Client / Project	t: URS	COYD				Request <i>I</i>	X12	448			
Received:	18/12	Opened: \	18/12	By:		_ Unload		18/12	By:	R5	j
. Samples we	re received via? re received in: (by seals on coole	circle) Coole	and the same of th	DH Enve	TL PDX	Couri Other	er Ha	and Deliver	·	NA	
. '	vere custody sea		N N	11	If present,	•			Trans.	A) N
Cooler	Temp	Thermometer	Coole	The state of the s		ar was son					
Temp°C	Blank °C	1D 245) (N	4		Trackin	g Number		NA	Filed
		Jt 1									
				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
. Packing mat	terial: Inserts	Baggies Bubb	le Wrap Gel	Packs	Wet Ice)	Dry Ice	Sleeves			l	
•		ly filled out (ink, s	THE PERSON NAMED AND POST OF THE PERSON NAMED	1 40.05		,	3,00,03		NA	(T)	N
		d condition (unbro		e in the to	able below.				NA	Ø	N
		plete (i.e analysis,							NA	(A)	N
		gs agree with cust	-		naior discre	nancies in	the table	on nage 2	NA	0	N
		ontainers and volur					ine tubic	on puge 2.	NA	(A)	N
	-	tles (see SMO GEN					o in the to	hla halow	KIX.	Y	N
				• •	•	i: maicaie	e in ine iu	DIE DEIOW			
		vithout headspace?	(Inaicate in th	1е тарге р	elow.				(NA)	Y	N
5. Was C12/R	es negative?	WANTED TO SERVICE THE TOTAL THE SERVICE TO SERVICE THE SERVICE TO SERVICE THE					and Salah Court	, : 1-12 (8) 101	(NA)	Y	N
Samn	le ID on Bottle		Sample ID	on COC	(4)00 (1) sages at 6		Balanta	Identified b		is in German	
Jamp	ie ib on bottle		Sample ID	on coc			<u> </u>	identified b	у		
				,			·				

					-c general pressor		#18-50 TO THE	25 Traph D Patrice Co	LUKSEYNI SI	NGAR 3 47	
Sam	ıple ID	Bottle Count Bottle Type	Out of Hea		pH R	eagent	Volume added	Reagent Numbe		nitials	Time
	11.							The state of the s			
	A Afficiant and the second					······································					
							·				
· · · · · · · · · · · · · · · · · · ·	-	·				· · · · · · · · · · · · · · · · · · ·					
											
					<u> </u>						
otes, Discrept	ancies, & Reso	olutions:			······································				W.H		
									190		·····
***************************************							·				
				3							

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
0397-017 (2 HR)	K1200448-001	61	75	75
0397-017 (7 HR)	K1200448-002	70	80	83
0397-017 (24 HR)	K1200448-003	62	74	75
Method Blank	KWG1200673-3	71 .	74	86
Lab Control Sample	KWG1200673-1	74	81	87
Duplicate Lab Control Sample	KWG1200673-2	69	77	84

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	29-98
Sur2 = Fluoranthene-d10	31-105
Sur3 = Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 01/23/2012 16:00:46

Form 2A - Organic

Page 1 of 1

SuperSet Reference:

RR137649

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Result Q

2.5 J

0.64 J

ND U

ND U

ND U

ND U

1.6 J

ND U

0.48 J

ND U

Sample Matrix: Wa

Water

Service Request: K1200448

Units: ng/L

Basis: NA

Level: Low

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

MDL

0.71

0.40

0.37

0.36

0.42

0.42

0.72

0.29

0.46

0.78

0.34

0.65

0.25

0.41

0.41

0.44

0.45

0.36

MRL

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

3.4

Dilution

Factor

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

01/19/12

01/19/12

01/19/12

01/19/12

01/19/12

01/19/12

01/21/12

01/21/12

01/21/12

01/21/12

01/21/12

01/21/12

Sample Name:

Method Blank

Lab Code:

KWG1200673-3

Extraction Method:

EPA 3520C

Analysis Method:

Analyte Name

Acenaphthylene

Acenaphthene

Dibenzofuran

Phenanthrene

Anthracene

Fluoranthene

Benz(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

Fluorene

Pyrene

Chrysene

2-Methylnaphthalene

Naphthalene

8270D SIM

Date Extracted	Date Analyzed	Extraction Lot	Note
01/19/12	01/21/12	KWG1200673	

KWG1200673

KWG1200673

KWG1200673

KWG1200673

KWG1200673

KWG1200673

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	71	29-98	01/21/12	Acceptable
Fluoranthene-d10	74	31-105	01/21/12	Acceptable
Terphenyl-d14	86	27-112	01/21/12	Acceptable

Comments:

Printed: 01/23/2012 16:00:42 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP URS Longview Solidification

Water

Service Request: K1200448

Date Collected: 01/17/2012 **Date Received:** 01/18/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 (2 HR)

Lab Code:

K1200448-001

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	7000	D	36	7.4	10	01/19/12	01/23/12	KWG1200673	ANCESTIC CONTRACTOR CO
2-Methylnaphthalene	890		3.6	0.42	. 1	01/19/12	01/21/12	KWG1200673	
Acenaphthylene	40		3.6	0.39	1	01/19/12	01/21/12	KWG1200673	
Acenaphthene	1200		3.6	0.38	1	01/19/12	01/21/12	KWG1200673	
Dibenzofuran	840		3.6	0.44	1	01/19/12	01/21/12	KWG1200673	
Fluorene	670		3.6	0.44	1	01/19/12	01/21/12	KWG1200673	
Phenanthrene	4200	D	36	7.5	10	01/19/12	01/23/12	KWG1200673	
Anthracene	590		3.6	0.30	1	01/19/12	01/21/12	KWG1200673	
Fluoranthene	2400	D	36	4.8	10	01/19/12	01/23/12	KWG1200673	
Pyrene	1300		3.6	0.81	1	01/19/12	01/21/12	KWG1200673	
Benz(a)anthracene	390		3.6	0.36	1	01/19/12	01/21/12	KWG1200673	
Chrysene	360		3.6	0.68	1	01/19/12	01/21/12	KWG1200673	
Benzo(b)fluoranthene	200		3.6	0.26	1	01/19/12	01/21/12	KWG1200673	
Benzo(k)fluoranthene	78		3.6	0.43	1	01/19/12	01/21/12	KWG1200673	
Benzo(a)pyrene	100		3.6	0.43	1	01/19/12	01/21/12	KWG1200673	
Indeno(1,2,3-cd)pyrene	50		3,6	0.46	1	01/19/12	01/21/12	KWG1200673	
Dibenz(a,h)anthracene	21		3.6	0.47	1	01/19/12	01/21/12	KWG1200673	
Benzo(g,h,i)perylene	41		3.6	0.38	1	01/19/12	01/21/12	KWG1200673	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	61	29-98	01/21/12	Acceptable	
Fluoranthene-d10	75	31-105	01/21/12	Acceptable	
Terphenyl-d14	75	27-112	01/21/12	Acceptable	

Comments:

Printed: 01/23/2012 16:00:30 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} u: \label{lem:limit} \\ u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \\ u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \\ u: \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \\ u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:l$

Merged

Form 1A - Organic

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448 **Date Collected:** 01/17/2012

Date Received: 01/18/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 (7 HR)

Lab Code:

K1200448-002

Extraction Method: EPA 3520C

Units: ng/L Basis: NA

Level: Low

Analysis Method: 8270D SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	23000 D	68	15	20	01/19/12	01/23/12	KWG1200673	
2-Methylnaphthalene	3100 D	68	8.0	20	01/19/12	01/23/12	KWG1200673	
Acenaphthylene	57	3.4	0.37	1	01/19/12	01/21/12	KWG1200673	
Acenaphthene	3100 D	68	7.2	20	01/19/12	01/23/12	KWG1200673	
Dibenzofuran	1700	3,4	0.42	1	01/19/12	01/21/12	KWG1200673	
Fluorene	1300	3.4	0.42	1	01/19/12	01/21/12	KWG1200673	
Phenanthrene	4500 D	68	15	20	01/19/12	01/23/12	KWG1200673	
Anthracene	540	3.4	0.29	1	01/19/12	01/21/12	KWG1200673	
Fluoranthene	1100	3.4	0.46	1	01/19/12	01/21/12	KWG1200673	
Pyrene	690	3.4	0.78	1	01/19/12	01/21/12	KWG1200673	
Benz(a)anthracene	120	3.4	0.34	1	01/19/12	01/21/12	KWG1200673	
Chrysene	120	3.4	0.65	1	01/19/12	01/21/12	KWG1200673	
Benzo(b)fluoranthene	55	3.4	0.25	1	01/19/12	01/21/12	KWG1200673	
Benzo(k)fluoranthene	19	3.4	0.41	1	01/19/12	01/21/12	KWG1200673	
Benzo(a)pyrene	31	3.4	0.41	1	01/19/12	01/21/12	KWG1200673	
Indeno(1,2,3-cd)pyrene	10	3.4	0.44	1	01/19/12	01/21/12	KWG1200673	
Dibenz(a,h)anthracene	3.4	3.4	0.45	1	01/19/12	01/21/12	KWG1200673	
Benzo(g,h,i)perylene	8.8	3.4	0.36	1	01/19/12	01/21/12	KWG1200673	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	70	29-98	01/21/12	Acceptable	Proposition (Control of Control o
Fluoranthene-d10	80	31-105	01/21/12	Acceptable	
Terphenyl-d14	83	27-112	01/21/12	Acceptable	

Comments:

Printed: 01/23/2012 16:00:34 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Collected: 01/17/2012

Date Received: 01/18/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 (24 HR)

Lab Code:

K1200448-003

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	84000 D	180	37	50	01/19/12	01/23/12	KWG1200673	DANIES TO CHIEF SHE SHE
2-Methylnaphthalene	11000 D	180	21	50	01/19/12	01/23/12	KWG1200673	
Acenaphthylene	130	3.6	0.39	1	01/19/12	01/21/12	KWG1200673	
Acenaphthene	8900 D	180	19	50	01/19/12	01/23/12	KWG1200673	
Dibenzofuran	5400 D	180	22	50	01/19/12	01/23/12	KWG1200673	
Fluorene	3400 D	180	22	50	01/19/12	01/23/12	KWG1200673	
Phenanthrene	9000 D	180	38	50	01/19/12	01/23/12	KWG1200673	
Anthracene	1100	3.6	0.30	1	01/19/12	01/21/12	KWG1200673	
Fluoranthene	1700	3.6	0.48	1	01/19/12	01/21/12	KWG1200673	
Pyrene	1100	3.6	0.81	1	01/19/12	01/21/12	KWG1200673	
Benz(a)anthracene	140	3.6	0.36	1	01/19/12	01/21/12	KWG1200673	
Chrysene	120	3.6	0.68	1	01/19/12	01/21/12	KWG1200673	
Benzo(b)fluoranthene	52	3.6	0.26	1	01/19/12	01/21/12	KWG1200673	
Benzo(k)fluoranthene	19	3.6	0.43	1	01/19/12	01/21/12	KWG1200673	
Benzo(a)pyrene	29	3.6	0.43	1	01/19/12	01/21/12	KWG1200673	
Indeno(1,2,3-cd)pyrene	11	3.6	0.46	1	01/19/12	01/21/12	KWG1200673	
Dibenz(a,h)anthracene	3.2 J	3.6	0.47	1	01/19/12	01/21/12	KWG1200673	
Benzo(g,h,i)perylene	8.9	3.6	0.38	1	01/19/12	01/21/12	KWG1200673	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	62	29-98	01/21/12	Acceptable	
Fluoranthene-d10	74	31-105	01/21/12	Acceptable	
Terphenyl-d14	75	27-112	01/21/12	Acceptable	

Comments:

Printed: 01/23/2012 16:00:38 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} u: \label{$

Form 1A - Organic

1 of 1 Page

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Extracted: 01/19/2012

Date Analyzed: 01/21/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

8270D SIM

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG1200673

Analysis Method:

Lab Control Sample KWG1200673-1

Duplicate Lab Control Sample

KWG1200673-2

Lab Control Spike **Duplicate Lab Control Spike** RPD %Rec Limits **RPD** Limit **Analyte Name** Result Expected %Rec Result **Expected** %Rec Naphthalene 39-110 2-Methylnaphthalene 39-115 Acenaphthylene 44-115 Acenaphthene 44-113 Dibenzofuran 46-116 Fluorene 48-118 Phenanthrene 47-120 Anthracene 44-117 Fluoranthene 48-128 Pyrene 42-133 Benz(a)anthracene 48-125 Chrysene 50-128 Benzo(b)fluoranthene 49-131 Benzo(k)fluoranthene 54-131 Benzo(a)pyrene 43-134 Indeno(1,2,3-cd)pyrene 45-133 Dibenz(a,h)anthracene 49-133 Benzo(g,h,i)perylene 51-124

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/23/2012 16:01:12

Form 3C - Organic

1 of Page

SuperSet Reference:

RR137649

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: Method **Analysis Method:**

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
Batch QC	K1200435-003	93	97
0397-017 (2 HR)	K1200448-001	103	106
0397-017 (7 HR)	K1200448-002	104	107
0397-017 (24 HR)	K1200448-003	103	109
Batch QCDUP	KWG1200768-1	97	104
Method Blank	KWG1200768-3	109	113
Lab Control Sample	KWG1200768-2	115	112

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 01/25/2012 11:47:46

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

17

RR137680

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Collected: NA

Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1200768-3

Units: ug/L

Extraction Method:

Method

Basis: NA

Analysis Method:

NWTPH-Dx

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND U ND U	250 500	1 1	01/20/12 01/20/12	01/24/12 01/24/12	KWG1200768 KWG1200768	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	109	50-150	01/24/12	Acceptable	
n-Triacontane	113	50-150	01/24/12	Acceptable	

Comments:

Printed: 01/25/2012 11:47:42 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Collected: 01/17/2012

Date Received: 01/18/2012

Diesel and Residual Range Organics

Sample Name:

0397-017 (2 HR)

Lab Code:

K1200448-001

Units: ug/L

Basis: NA

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	260	1	01/20/12	01/24/12	KWG1200768	
Residual Range Organics (RRO)	ND U	520	1	01/20/12	01/24/12	KWG1200768	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	103 106	50-150 50-150	01/24/12 01/24/12	Acceptable Acceptable	

Comments:	

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Collected: 01/17/2012 **Date Received:** 01/18/2012

Diesel and Residual Range Organics

Sample Name:

0397-017 (7 HR)

Lab Code:

K1200448-002

Extraction Method: Analysis Method:

Method

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	300	1	01/20/12	01/24/12	KWG1200768	
Residual Range Organics (RRO)	ND U	600	1	01/20/12	01/24/12	KWG1200768	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	104	50-150	01/24/12	Acceptable Acceptable
n-Triacontane	107	50-150	01/24/12	

Comments:

14

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Collected: 01/17/2012

Date Received: 01/18/2012

Diesel and Residual Range Organics

Sample Name:

0397-017 (24 HR)

Lab Code:

K1200448-003

Units: ug/L

Extraction Method:

Method

Basis: NA

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	500 Z	290	1	01/20/12	01/24/12	KWG1200768	
Residual Range Organics (RRO)	ND U	570	1	01/20/12	01/24/12	KWG1200768	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	103	50-150	01/24/12	Acceptable
n-Triacontane	109	50-150	01/24/12	Acceptable

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Extracted: 01/20/2012

Date Analyzed: 01/24/2012

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

Batch QC

Lab Code:

K1200435-003

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Extraction Lot: KWG1200768

Analyte Name		Sample	Batch QCDUP KWG1200768-1 Duplicate Sample		Relative Percent	RPD Limit
	MRL	Result	Result	Average	Difference	
Diesel Range Organics (DRO) Residual Range Organics (RRO)	260 520	250 600	ND 600	NC 600	NC 0 #	30 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/25/2012 11:47:50 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic 18

Page 1 of 1

SuperSet Reference:

RR137680

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200448

Date Extracted: 01/20/2012

Date Analyzed: 01/24/2012

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1200768

Lab Control Sample KWG1200768-2

Lab Control Spike %Rec Limits Result %Rec Expected **Analyte Name** Diesel Range Organics (DRO) 2010 1600 125 46-140 45-159 Residual Range Organics (RRO) 899 800 112

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/25/2012 11:47:54

Form 3C - Organic

19

SuperSet Reference:

RR137680

Page

1 of 1

January 27, 2012

Analytical Report for Service Request No: K1200585

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 paul_kalina@urscorp.com Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on January 21, 2012. For your reference, these analyses have been assigned our service request number K1200585.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Wellace

Ed Wallace

Project Chemist

EW/jw

Page 1 of <u>467</u>

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-OSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as definition."
 - DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- ${\sf Q}$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

URS Corporation

1P Longview Solidification

Service Request No.:

K1200585

Project: Sample Matrix:

Water

Date Received:

1/21/12

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Approved by

Three water samples were received for analysis at Columbia Analytical Services on 1/21/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Emw Date 1/27/12

	Client URS Corp.	CHAIN of CUSTODY	Page _/_ of/
Columbia Analytical Services	~	otone No. 206-438-2172 Fax No. 886-495-5282	Method of Shipment FEDEX
800.695.7222 www.caslab.com	- 450 		Special Detection Limit/Reporting
	Matrix Prsv.	70 SIM	
Sample I.D.	Lab Sample No. No. of Containers Soil Water Air Other Yes No Sampling Date	TPH-DRO PAH 8270	
7-017(2 × 1/1/5/	13:10 X X	₹
0397-017 (4-Day)	××	2 1(32 X X) (week	
			Please send results to; o tonny Jordan
			A Poul Kalina
			paul. kalina puscop.
		Temperature received: Ice No ice	
ler (Sign & Print Name)	oli2	(Sign & Print Name)	Lab Work No.
Relinquished by Relinquished by	Date Time	Received by	TAXXXX
Relinquished by	Date Time	Received by laboratory Date Time	(1/0000)
			·

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC_	EL

Client / Project: URS				_Serv	rice Request K	12 00	5555		
Received: 1/21/12 0	pened: 1 21	12 1	Ву:	16T	Unloade	ed: \	21 12 By	ر: <u> </u>	<u>† </u>
 Samples were received via? Samples were received in: (circ Were <u>custody seals</u> on coolers? If present, were custody seals in Cooler Temp Temp °C Blank °C 	NA G	UPS Box N N Cooler/C		ope yes, ho	Otherow many and when they	nere?signed an	nd Delivered A front d dated? g Number	NA Ŷ	
7. Packing material: <i>Inserts Bi</i> 8. Were custody papers properly f 9. Did all bottles arrive in good co 10. Were all sample labels complet 11. Did all sample labels and tags a 12. Were appropriate bottles/conta 13. Were the pH-preserved bottles 14. Were VOA vials received with 15. Was C12/Res negative? Sample ID on Bottle	illed out (ink, signer and tion (unbroken)) te (i.e analysis, presagree with custody piners and volumes respondent (see SMO GEN SOP) out headspace? Ind	? Indicate in ervation, etcopapers? Indicate in received for the preceived at	n the ta :.)? icate m the test: the app table b	ajor da ajor da s indic	low. iscrepancies in t ated?		N.	A (Y)	N N N N N
Sample ID AUC Notes, Discrepancies, & Resolu	Bottle Type	Out of Head- Temp space	Broke	рН	/ Reagent	Volume added I m/s	Reagent Lot Number	Initials	Time ///5
								٥	

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
0397-017 (2-Day)	K1200585-001	76	81	93
0397-017 (3-Day)	K1200585-002	77	84	93
0397-017 (4-Day)	K1200585-003	78	84	93
Method Blank	KWG1200760-3	81	80	93
Lab Control Sample	KWG1200760-1	79	80	86
Duplicate Lab Control Sample	KWG1200760-2	80	83	87

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	28-98
Sur2 =	Fluoranthene-d10	31-105
Sur3 =	Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 01/26/2012 14:50:19

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Page 1 of

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1200760-3

Extraction Method:

EPA 3520C

Units: ug/L Basis: NA

Level: Low

8270D SIM **Analysis Method:**

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.020	0.0030	1	01/23/12	01/25/12	KWG1200760	
2-Methylnaphthalene	ND U	0.020	0.0023	1	01/23/12	01/25/12	KWG1200760	
Acenaphthylene	ND U	0.020	0.0034	1	01/23/12	01/25/12	KWG1200760	
Acenaphthene	ND U	0.020	0.0044	1	01/23/12	01/25/12	KWG1200760	
Dibenzofuran	ND U	0.020	0.0046	1	01/23/12	01/25/12	KWG1200760	
Fluorene	ND U	0.020	0.0038	1	01/23/12	01/25/12	KWG1200760	
Phenanthrene	ND U	0.020	0.0050	1	01/23/12	01/25/12	KWG1200760	
Anthracene	ND U	0.020	0.0036	1	01/23/12	01/25/12	KWG1200760	
Fluoranthene	ND U	0.020	0.0044	1	01/23/12	01/25/12	KWG1200760	
Pyrene	ND U	0.020	0.0035	1	01/23/12	01/25/12	KWG1200760	
Benz(a)anthracene	ND U	0.020	0.0026	1	01/23/12	01/25/12	KWG1200760	
Chrysene	ND U	0.020	0.0034	1	01/23/12	01/25/12	KWG1200760	
Benzo(b)fluoranthene	ND U	0.020	0.0023	1	01/23/12	01/25/12	KWG1200760	
Benzo(k)fluoranthene	ND U	0.020	0.0025	.1	01/23/12	01/25/12	KWG1200760	
Benzo(a)pyrene	ND U	0.020	0.0043	1	01/23/12	01/25/12	KWG1200760	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	01/23/12	01/25/12	KWG1200760	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	01/23/12	01/25/12	KWG1200760	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	01/23/12	01/25/12	KWG1200760	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	81	28-98	01/25/12	Acceptable	
Fluoranthene-d10	80	31-105	01/25/12	Acceptable	
Terphenyl-d14	93	27-112	01/25/12	Acceptable	

Comments:

Printed: 01/26/2012 14:50:15 $u:\Stealth\Crystal.rpt\Form\1mNew.rpt$

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: 01/19/2012 **Date Received:** 01/21/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 (2-Day)

Lab Code:

K1200585-001

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	110 D	0.44	0.065	20	01/23/12	01/25/12	KWG1200760	
2-Methylnaphthalene	13 D	0.44	0.050	20	01/23/12	01/25/12	KWG1200760	
Acenaphthylene	0.19	0.022	0.0037	1	01/23/12	01/25/12	KWG1200760	
Acenaphthene	11 D	0.44	0.095	20	01/23/12	01/25/12	KWG1200760	
Dibenzofuran	6.3	0.022	0.0050	1	01/23/12	01/25/12	KWG1200760	
Fluorene	4.6	0.022	0.0041	1	01/23/12	01/25/12	KWG1200760	
Phenanthrene	11 D	0.44	0.11	20	01/23/12	01/25/12	KWG1200760	
Anthracene	1.2	0.022	0.0039	1	01/23/12	01/25/12	KWG1200760	
Fluoranthene	2.0	0.022	0.0048	1	01/23/12	01/25/12	KWG1200760	
Pyrene	1.3	0.022	0.0038	1	01/23/12	01/25/12	KWG1200760	
Benz(a)anthracene	0.092	0.022	0.0028	1	01/23/12	01/25/12	KWG1200760	
Chrysene	0.052	0.022	0.0037	1	01/23/12	01/25/12	KWG1200760	
Benzo(b)fluoranthene	0.014 Ј	0.022	0.0025	1	01/23/12	01/25/12	KWG1200760	
Benzo(k)fluoranthene	0.0060 Ј	0.022	0.0027	1	01/23/12	01/25/12	KWG1200760	
Benzo(a)pyrene	0.0062 J	0.022	0.0047	1	01/23/12	01/25/12	KWG1200760	
Indeno(1,2,3-cd)pyrene	0.0045 Ј	0.022	0.0028	1	01/23/12	01/25/12	KWG1200760	
Dibenz(a,h)anthracene	ND U	0.022	0.0027	1	01/23/12	01/25/12	KWG1200760	
Benzo(g,h,i)perylene	0.0066 Ј	0.022	0.0032	1	01/23/12	01/25/12	KWG1200760	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	76	28-98	01/25/12	Acceptable	
Fluoranthene-d10	81	31-105	01/25/12	Acceptable	
Terphenyl-d14	93	27-112	01/25/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: 01/19/2012

Date Received: 01/21/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 (3-Day)

Lab Code:

K1200585-002

Extraction Method:

EPA 3520C

Units: ug/L Basis: NA

Level: Low

EAH actio	n memou.	LIII.	200
Analysis l	Method:	8270D	SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	150 D	0.46	0.069	20	01/23/12	01/25/12	KWG1200760	
2-Methylnaphthalene	19 D	0.46	0.053	20	01/23/12	01/25/12	KWG1200760	
Acenaphthylene	0.23	0.023	0.0039	1	01/23/12	01/25/12	KWG1200760	
Acenaphthene	15 D	0.46	0.10	20	01/23/12	01/25/12	KWG1200760	
Dibenzofuran	8.0	0.023	0.0053	1	01/23/12	01/25/12	KWG1200760	
Fluorene	5.5	0.023	0.0044	1	01/23/12	01/25/12	KWG1200760	
Phenanthrene	13 D	0.46	0.12	20	01/23/12	01/25/12	KWG1200760	
Anthracene	1.4	0.023	0.0041	1	01/23/12	01/25/12	KWG1200760	
Fluoranthene	2.2	0.023	0.0050	1	01/23/12	01/25/12	KWG1200760	
Pyrene	1.3	0.023	0.0040	1	01/23/12	01/25/12	KWG1200760	
Benz(a)anthracene	0.091	0.023	0.0030	1	01/23/12	01/25/12	KWG1200760	
Chrysene	0.058	0.023	0.0039	1	01/23/12	01/25/12	KWG1200760	
Benzo(b)fluoranthene	0.014 Ј	0.023	0.0027	1	01/23/12	01/25/12	KWG1200760	
Benzo(k)fluoranthene	0.0048 Ј	0.023	0.0029	1 .	01/23/12	01/25/12	KWG1200760	
Benzo(a)pyrene	0.0069 J	0.023	0.0049	1	01/23/12	01/25/12	KWG1200760	
Indeno(1,2,3-cd)pyrene	ND U	0.023	0.0030	1	01/23/12	01/25/12	KWG1200760	
Dibenz(a,h)anthracene	ND U	0.023	0.0029	1	01/23/12	01/25/12	KWG1200760	
Benzo(g,h,i)perylene	ND U	0.023	0.0033	1	01/23/12	01/25/12	KWG1200760	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	77	28-98	01/25/12	Acceptable	
Fluoranthene-d10	84	31-105	01/25/12	Acceptable	
Terphenyl-d14	93	27-112	01/25/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: 01/20/2012

Note

Date Received: 01/21/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 (4-Day)

Lab Code:

K1200585-003

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot
Naphthalene	140 D	0.42	0.062	20	01/23/12	01/25/12	KWG1200760
2-Methylnaphthalene	19 D	0.42	0.048	20	01/23/12	01/25/12	KWG1200760
Acenaphthylene	0.22	0.021	0.0036	1	01/23/12	01/25/12	KWG1200760
Acenaphthene	14 D	0.42	0.091	20	01/23/12	01/25/12	KWG1200760
Dibenzofuran	7.7	0.021	0.0048	1	01/23/12	01/25/12	KWG1200760
Fluorene	5.0	0.021	0.0040	1	01/23/12	01/25/12	KWG1200760

Naphthalene	140 D	0.42	0.062	20	01/23/12	01/25/12	KWG1200760
2-Methylnaphthalene	19 D	0.42	0.048	20	01/23/12	01/25/12	KWG1200760
Acenaphthylene	0.22	0.021	0.0036	1	01/23/12	01/25/12	KWG1200760
Acenaphthene	14 D	0.42	0.091	20	01/23/12	01/25/12	KWG1200760
Dibenzofuran	7.7	0.021	0.0048	1	01/23/12	01/25/12	KWG1200760
Fluorene	5.0	0.021	0.0040	1	01/23/12	01/25/12	KWG1200760
Phenanthrene	12 D	0.42	0.11	20	01/23/12	01/25/12	KWG1200760
Anthracene	1.2	0.021	0.0038	1	01/23/12	01/25/12	KWG1200760
Fluoranthene	2.0	0.021	0.0046	1	01/23/12	01/25/12	KWG1200760
Pyrene	1.3	0.021	0.0037	1	01/23/12	01/25/12	KWG1200760
Benz(a)anthracene	0.079	0.021	0.0027	1	01/23/12	01/25/12	KWG1200760
Chrysene	0.056	0.021	0.0036	1	01/23/12	01/25/12	KWG1200760
Benzo(b)fluoranthene	0.015 Ј	0.021	0.0024	1	01/23/12	01/25/12	KWG1200760
Benzo(k)fluoranthene	0.0055 J	0.021	0.0026	1	01/23/12	01/25/12	KWG1200760
Benzo(a)pyrene	0.0066 J	0.021	0.0045	1	01/23/12	01/25/12	KWG1200760
Indeno(1,2,3-cd)pyrene	ND U	0.021	0.0027	1	01/23/12	01/25/12	KWG1200760
Dibenz(a,h)anthracene	ND U	0.021	0.0026	1	01/23/12	01/25/12	KWG1200760
Benzo(g,h,i)perylene	ND U	0.021	0.0030	. 1	01/23/12	01/25/12	KWG1200760

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	78	28-98	01/25/12	Acceptable	
Fluoranthene-d10	84	31-105	01/25/12	Acceptable	
Terphenyl-d14	93	27-112	01/25/12	Acceptable	

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Extracted: 01/23/2012

Date Analyzed: 01/25/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520C **Analysis Method:**

8270D SIM

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1200760

Lab Control Sample KWG1200760-1

Duplicate Lab Control Sample KWG1200760-2

		Control Spike	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	1.95	2.50	78	1.87	2.50	75	39-110	4	30
2-Methylnaphthalene	1.93	2.50	77	1.82	2.50	73	39-115	6	30
Acenaphthylene	2.20	2.50	88	2.15	2.50	86	44-115	2	30
Acenaphthene	2.05	2.50	82	2.01	2.50	80	44-113	2	30
Dibenzofuran	2.12	2.50	85	2.11	2.50	84	46-116	0	30
Fluorene	2.17	2.50	87	2.13	2.50	85	48-118	2	30
Phenanthrene	2.13	2.50	85	2.15	2.50	86	47-120	. 1	30
Anthracene	2.16	2.50	86	2.17	2.50	87	44-117	1	30
Fluoranthene	2.21	2.50	88	2.28	2.50	91	48-128	3	30
Pyrene	2.44	2.50	97	2.43	2.50	97	42-133	0	30
Benz(a)anthracene	2.22	2.50	89	2.20	2.50	88	48-125	1	30
Chrysene	2.33	2.50	93	2.31	2.50	92	50-128	1	30
Benzo(b)fluoranthene	2.29	2.50	91	2.33	2.50	93	49-131	2	30
Benzo(k)fluoranthene	2.41	2.50	96	2.42	2.50	97	54-131	0	30
Benzo(a)pyrene	2.35	2.50	94	2.34	2.50	94	43-134	0	30
Indeno(1,2,3-cd)pyrene	2.08	2.50	83	2.10	2.50	84	45-133	1	30
Dibenz(a,h)anthracene	1.89	2.50	76	1.97	2.50	79	49-133	4	30
Benzo(g,h,i)perylene	2.05	2.50	82	2.09	2.50	83	51-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/26/2012 14:50:35 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary

Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Service Request: K1200585

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
0397-017 (2-Day)	K1200585-001	100	98
0397-017 (3-Day)	K1200585-002	103	104
0397-017 (4-Day)	K1200585-003	106	110
Method Blank	KWG1200867-3	107	107
Lab Control Sample	KWG1200867-1	108	111
Duplicate Lab Control Sample	KWG1200867-2	107	109

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 01/26/2012 13:55:46

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

RR137744

17

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1200867-3

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis	Method:	NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	11	1	01/24/12	01/26/12	KWG1200867	
Residual Range Organics (RRO)	ND U	500	19	1	01/24/12	01/26/12	KWG1200867	

Comments:	

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: 01/19/2012 **Date Received:** 01/21/2012

Diesel and Residual Range Organics

Sample Name:

0397-017 (2-Day)

Lab Code:

K1200585-001

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	550 Z	280	12	1	01/24/12	01/26/12	KWG1200867	
Residual Range Organics (RRO)	75 J	550	21	1	01/24/12	01/26/12	KWG1200867	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	100	50-150	01/26/12	Acceptable	
n-Triacontane	98	50-150	01/26/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Collected: 01/19/2012

Date Received: 01/21/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-017 (3-Day) K1200585-002

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Dilution Date Date **Extraction** MDL **Analyte Name** Result Q MRL **Factor** Extracted Analyzed Lot Note KWG1200867 12 1 01/26/12 Diesel Range Organics (DRO) 600 Z 280 01/24/12 KWG1200867 Residual Range Organics (RRO) 550 21 1 01/24/12 01/26/12 53 J

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	103	50-150	01/26/12	Acceptable	
n-Triacontane	104	50-150	01/26/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

01/20/2012

Date Collected: 01/20/2012

Date Received: 01/21/2012

Diesel and Residual Range Organics

Sample Name:

0397-017 (4-Day)

Lab Code:

K1200585-003

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	660 Z	270	12	1	01/24/12	01/26/12	KWG1200867	
Residual Range Organics (RRO)	55 J	530	20	1	01/24/12	01/26/12	KWG1200867	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	106	50-150	01/26/12	Acceptable
n-Triacontane	110	50-150	01/26/12	Acceptable

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200585

Date Extracted: 01/24/2012 **Date Analyzed:** 01/26/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1200867

Lab Control Sample

Duplicate Lab Control Sample

KWG1200867-2

KWG1200867-1 **Duplicate Lab Control Spike** Lab Control Spike **RPD** %Rec **RPD** Limit Limits %Rec %Rec **Analyte Name** Result **Expected** Result **Expected** Diesel Range Organics (DRO) 1780 1730 1600 108 46-140 3 30 1600 111 30 Residual Range Organics (RRO) 790 800 99 775 800 97 45-159 2

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 01/26/2012 13:55:50

Form 3C - Organic

18

SuperSet Reference:

RR137744

Page

1 of 1

February 1, 2012

Analytical Report for Service Request No. K1200691

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the rush sample submitted to our laboratory on January 25, 2012. For your reference, these analyses have been assigned our service request number K1200691.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Ellellana

Ed Wallace

Project Chemist

EW/ln

Page 1 of 401

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOO/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:URS CorporationService Request No.:K1200691Project:IP Longview SolidificationDate Received:1/25/12

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

One water sample was received for analysis at Columbia Analytical Services on 1/25/12. The sample was received in good condition and consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4° C upon receipt at the laboratory.

Diesel and Residual Range Organics by NWTPH-Dx

No anomalies with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

The following analytes could not be adequately resolved in sample 0397-017(5-day): Benzo(b)fluoranthene and Benzo(k)fluoranthene. The results for these compounds were integrated together and reported as Benzo(b)fluoranthene. The results for both analytes were flagged with "X" to indicate the issue.

pproved by	(L)	Date	21	121	112	
					4	

Reling. by sampler (Sign & Print Name) Sample Received Intact: Relinquished by 0397-017 Columbia
Analytical Services 800.695.7222 www.caslab.com Sample I.D. Yes Amy Herrischke 1/24/12 V Project Manager Client: Lab Sample No. URS Paul No. of Containers Corp. Soil Kalina Date Date Water Vlatrix Air 1/23/12 Other Yes Time Prsv. Νo 800 Temperature received: Sampling Date Received Received by laboratory Received by (Sign & Print Name) Received by Sampling Time Telephone No. 206-438-2172 Project: NWTPH-DX TPH-DRO 8270 SIM IP URS Conquiew CHAIN ce o f Solidi C No ice USTODY 2512 886-495-5282 Fication ime 0:40 Turn Around Time (working days) 200 to Tommy Booken & Paul Kalina servest vitu son level 8270 son Lab Work No. Special Detection Limit/Reporting > paulikalina@usco Method of Shipment Please send results X3 637 Page _ f of

K1200691

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC_Ed_

lient / Project:	INRS					Serv	ice R	equest <i>K</i>	12	691			
eceived: \\	25/12	Opened:	1/25/	12 E	Ву:	16	T_	Unloade	ed:] [25/12	_By:_	<u> </u>	<u>†</u>
Samples wer	e received via? e received in: (v seals on coole	circle)		ÛPS Box N	DH Enve	lope		Courie		nd Delivered	The deal of the contract of th	NA	
	ere custody sea			N	11			ere they			***************************************	CY) N
Cooler	Temp	Thermome	· -	Cooler/CC)C			· · · · · · · · · · · · · · · · · · ·					
Temp °C	Blank °C	289		ID	(NA		<u>ا</u> ا	1W4		9 Number 3 4852	84	NA イ3	Filed
	, .										·		·
							7 -		~-				
=	erial: Inserts y papers proper		B ubble Wrap nk signed etc		icks	Wet Ic	∉ Di	ry Ice S	Sleeves		NA	Æ) _N
•	s arrive in good	•		•	ı the to	able bel	ow.				NA	er er	N
	nple labels com		,								NA	Ø) N
Did all samp	ole labels and ta	gs agree with	custody paper	rs? <i>Indic</i>	cate m	ajor dis	screpa	ncies in t	he table (on page 2.	NA	$\overset{\smile}{\mathfrak{D}}$	N
Were approp	oriate bottles/co	ntainers and v	olumes receiv	ved for th	he test	s indica	ited?				NA	\bigcirc	N
Were the pH	I-preserved bott	les (see SMO (GEN SOP) rece	eived at t	the app	propriat	e pH?	Indicate	in the ta	ble below	MA	Y	N
Were VOA	vials received v	vithout headsp	ace? Indicate	e in the t	able b	elow.					MA	Y	N
Was C12/Re	s negative?										MA	Y	N
Sample	e ID on Bottle		Sam	ple ID on	COC	K W P				Identified by:			
Sam	ple ID	Bottle C Bottle		Head- space	Broke	pН	Rea	agent	Volume added	Reagent Lo Number		nitials	Time
······································													
tes. Discrepe	ıncies, & Reso	olutions		11							1		
ies, Discrepa	meres, a rest				· ·					***************************************			
			444										
	y				·····						Page		of

9

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Service Request: K1200691

Sample Name	Lab Code	Sur1	Sur2	Sur3
0397-017(5-day)	K1200691-001	75	80	82
Method Blank	KWG1200865-3	82	86	92
Lab Control Sample	KWG1200865-1	77	81	83
Duplicate Lab Control Sample	KWG1200865-2	76	80	81

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	28-98
Sur2 = Fluoranthene-d10	31-105
Sur3 = Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/01/2012 15:08:12

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR137909

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200691

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank

Extraction Method: EPA 3520C

KWG1200865-3

Units: ug/L Basis: NA

Level: Low

Analysis	Method:	8270D SIM

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	0.020	0.0030	1	01/25/12	01/30/12	KWG1200865	
2-Methylnaphthalene	0.0038	J	0.020	0.0023	1	01/25/12	01/30/12	KWG1200865	
Acenaphthylene	ND	U	0.020	0.0034	1	01/25/12	01/30/12	KWG1200865	
Acenaphthene	ND	U	0.020	0.0044	1	01/25/12	01/30/12	KWG1200865	
Dibenzofuran	ND	U	0.020	0.0046	1	01/25/12	01/30/12	KWG1200865	
Fluorene	ND	U	0.020	0.0038	1	01/25/12	01/30/12	KWG1200865	
Phenanthrene	ND	U	0.020	0.0050	I	01/25/12	01/30/12	KWG1200865	
Anthracene	ND	U	0.020	0.0036	1	01/25/12	01/30/12	KWG1200865	
Fluoranthene	ND	U	0.020	0.0044	1	01/25/12	01/30/12	KWG1200865	
Pyrene	ND	U	0.020	0.0035	1	01/25/12	01/30/12	KWG1200865	
Benz(a)anthracene	0.0030	J	0.020	0.0026	1	01/25/12	01/30/12	KWG1200865	
Chrysene	ND	U	0.020	0.0034	1	01/25/12	01/30/12	KWG1200865	
Benzo(b)fluoranthene	ND	U	0.020	0.0023	1	01/25/12	01/30/12	KWG1200865	
Benzo(k)fluoranthene	ND	U	0.020	0.0025	1	01/25/12	01/30/12	KWG1200865	
Benzo(a)pyrene	ND	U	0.020	0.0043	1	01/25/12	01/30/12	KWG1200865	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	0.0026	1	01/25/12	01/30/12	KWG1200865	
Dibenz(a,h)anthracene	ND	U	0.020	0.0025	1	01/25/12	01/30/12	KWG1200865	
Benzo(g,h,i)perylene	ND	U	0.020	0.0029	1	01/25/12	01/30/12	KWG1200865	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	82	28-98	01/30/12	Acceptable	
Fluoranthene-d10	86	31-105	01/30/12	Acceptable	
Terphenyl-d14	92	27-112	01/30/12	Acceptable	

Comments:

Printed: 02/01/2012 15:08:07

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic

SuperSet Reference: RR137909

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200691 **Date Collected:** 01/23/2012

Date Received: 01/25/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-017(5-day)

Extraction Method: EPA 3520C

K1200691-001

Units: ug/L Basis: NA

Level: Low

Analysis	Method:	8270D SIN	Ā
·	TITCUIO .	OL TOP DI	• •

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	68 D	0.43	0.064	20	01/25/12	01/31/12	KWG1200865	, , , , , , , , , , , , , , , , , , , ,
2-Methylnaphthalene	8.9	0.022	0.0025	1	01/25/12	01/30/12	KWG1200865	
Acenaphthylene	0.13	0.022	0.0037	1	01/25/12	01/30/12	KWG1200865	
Acenaphthene	8.3	0.022	0.0047	1	01/25/12	01/30/12	KWG1200865	Property and the Pales on Assessed
Dibenzofuran	5.0 D	0.43	0.098	20	01/25/12	01/31/12	KWG1200865	
Fluorene	3.5	0.022	0.0041	1	01/25/12	01/30/12	KWG1200865	
Phenanthrene	10	0.022	0.0054	1	01/25/12	01/30/12	KWG1200865	
Anthracene	0.30	0.022	0.0039	1	01/25/12	01/30/12	KWG1200865	
Fluoranthene	2.1	0.022	0.0047	1	01/25/12	01/30/12	KWG1200865	
Pyrene	1.1	0.022	0.0038	1	01/25/12	01/30/12	KWG1200865	
Benz(a)anthracene	0.12	0.022	0.0028	1	01/25/12	01/30/12	KWG1200865	
Chrysene	0.092	0.022	0.0037	1	01/25/12	01/30/12	KWG1200865	
Benzo(b)fluoranthene	0.040 X	0.022	0.0025	1	01/25/12	01/30/12	KWG1200865	
Benzo(k)fluoranthene	ND UX	0.022	0.0027	1	01/25/12	01/30/12	KWG1200865	
Benzo(a)pyrene	0.012 J	0.022	0.0046	1	01/25/12	01/30/12	KWG1200865	
Indeno(1,2,3-cd)pyrene	0.0088 J	0.022	0.0028	1	01/25/12	01/30/12	KWG1200865	
Dibenz(a,h)anthracene	ND U	0.022	0.0027	1	01/25/12	01/30/12	KWG1200865	
Benzo(g,h,i)perylene	0.0065 J	0.022	0.0031	1	01/25/12	01/30/12	KWG1200865	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	75	28-98	01/30/12	Acceptable	
Fluoranthene-d10	80	31-105	01/30/12	Acceptable	
Terphenyl-d14	82	27-112	01/30/12	Acceptable	

Comments:

1 of 1

Page

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

2.10

2.50

84

2.02

2.50

81

Sample Matrix:

Vater

Service Request: K1200691

Date Extracted: 01/25/2012

Date Analyzed: 01/30/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: Analysis Method:

Benzo(g,h,i)perylene

EPA 3520C

8270D SIM

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1200865

Lab Control Sample

Duplicate Lab Control Sample

KWG1200865-1 KWG1200865-2 Lab Control Spike **Duplicate Lab Control Spike** %Rec RPD Limits **RPD Analyte Name** Result %Rec Limit **Expected** %Rec Result **Expected** 2.03 Naphthalene 2.50 5 81 1.94 2.50 78 39-110 30 2-Methylnaphthalene 2.08 2.50 83 1.99 2.50 39-115 80 4 30 Acenaphthylene 2.21 2.50 89 2.07 2.50 83 44-115 7 30 Acenaphthene 2.08 2.50 83 5 1.98 2.50 79 44-113 30 Dibenzofuran 2.16 2,50 86 2.05 2.50 82 46-116 5 30 Fluorene 2.19 2.50 88 2.07 2.50 48-118 6 30 83 Phenanthrene 2.13 2.50 85 1.99 2.50 79 47-120 7 30 Anthracene 1.78 2.50 71 2.50 44-117 0 1.78 71 30 Fluoranthene 2.27 2.50 91 2.17 2.50 87 48-128 4 30 Pyrene 2.16 2.50 2.09 2.50 86 83 42-133 3 30 Benz(a)anthracene 2.20 2.50 88 2.07 2.50 83 48-125 6 30 Chrysene 2.29 2.50 92 2.16 2.50 87 50-128 6 30 Benzo(b)fluoranthene 2.29 2.50 92 2.15 2.50 86 49-131 6 30 Benzo(k)fluoranthene 2.33 2.50 93 2.20 2.50 5 88 54-131 30 Benzo(a)pyrene 43-134 2.31 2.50 92 2.20 2.50 88 5 30 Indeno(1,2,3-cd)pyrene 2.27 2.50 91 2.20 2.50 88 45-133 3 30 Dibenz(a,h)anthracene 2.27 2.50 91 2.16 2.50 87 49-133 5 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/01/2012 15:08:41 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page

1 of 1

SuperSet Reference: RR137909

51-124

4

30

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200691

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: Analysis Method:

Method

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
0397-017(5-day)	K1200691-001	115	116
Method Blank	KWG1200941-3	111	109
Lab Control Sample	KWG1200941-1	125	117
Duplicate Lab Control Sample	KWG1200941-2	118	114

Surrogate Recovery Control Limits (%)

Surl = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/01/2012 11:00:14

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

15

Page

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200691

Date Collected: NA

NT 4

Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1200941-3

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND U ND U	250 500	1 1	01/26/12 01/26/12	02/01/12 02/01/12	KWG1200941 KWG1200941	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	111	50-150	02/01/12	Acceptable
n-Triacontane	109	50-150	02/01/12	Acceptable

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200691

Date Collected: 01/23/2012 **Date Received:** 01/25/2012

Diesel and Residual Range Organics

Sample Name: Lab Code: 0397-017(5-day) K1200691-001

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	420 Z	280	1	01/26/12	02/01/12	KWG1200941	
Residual Range Organics (RRO)	ND U	560	1	01/26/12	02/01/12	KWG1200941	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	115	50-150	02/01/12	Acceptable
n-Triacontane	116	50-150	02/01/12	Acceptable

Comments:

13

Page

1 of 1

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1200691

Date Extracted: 01/26/2012 **Date Analyzed:** 02/01/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low
Extraction Lot: KWG1200941

Lab Control Sample

KWG1200941-1

Duplicate Lab Control Sample

KWG1200941-2

Lab Control Spike **Duplicate Lab Control Spike RPD** %Rec RPD Limit Limits **Analyte Name** Result Expected %Rec Expected %Rec Result Diesel Range Organics (DRO) 2120 1890 1600 132 1600 118 46-140 11 30 Residual Range Organics (RRO) 933 800 832 800 104 45-159 30 117 11

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/01/2012 11:00:19 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1 SuperSet Reference: RR137901

March 1, 2012

Analytical Report for Service Request No: K1201445

Paul Kalina URS Corporation 1501 4th Ave.,Suite 1400 Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on February 16, 2012. For your reference, these analyses have been assigned our service request number K1201445.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

Ed Wallaco

Columbia Analytical Services, Inc.

Ed Wallace

Project Chemist

EW/jw

Page 1 of 1004

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 *DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petrolcum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client: URS Corporation Service Request No.: K1201445
Project: IP Longview Solidification Date Received: 2/16/12

Sample Matrix: Water and Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Twelve water and two soil samples were received for analysis at Columbia Analytical Services on 2/16/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample Batch QC was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

SPLP

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Dibenzofuran, Fluorene, Naphthalene, 2-Methylnaphthalene, Acenaphthene, and Phenanthrene for sample 0397-017A (28 day) were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Water

Internal Standard Exceptions:

The internal standard recovery of Naphthalene-d8 in the neat analysis of all field samples was outside control criteria because of matrix interference. The samples were reanalyzed at a dilution. The affected internal standard was within control criteria in the diluted analyses. All affected analytes were reported from the diluted analysis.

Elevated Detection Limits:

All samples required multiple dilutions due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Approved by	SUMW	Date_	3/23	115

	tory Allul OHS Date Mall Time OADO	Received by laboratory	lime	Date	WORKSTEINE BESTÄLLIGE STELLEN STELLEN STELLEN STELLE	i kaniyasina by
		Received by	Time	Date		Relinquished by
		Received by	Time	Date		Relinquished by
Lab Work No.			C 1600	2-15-12		THE SHAPE IN
		Received by (Sign & Print Name)	Time	Date	mc	Reling. by sampler (Sign & Print Name)
CASCOLD CON	lce No ice	e received:	Temperature received:			Sample Received Intact: Yes No
Paul Kalina						
≥ Paul Kalima						
A Kemionicar						
R Cordana						
SUCCESSION						
705						AND THE REAL PROPERTY AND THE PROPERTY OF THE
るのが大き						
2 2 2		003	7 7 7 7 7	<	· · · · · · · · · · · · · · · · · · ·	0112010110
		0/0	12-14-12	7	Louis Hay	
SAMPLES		1725	72-3-12	7	Land Control	1-06
ABOO ALL	1 7 M 2 2 2 2 5	1	V2-13-12	7	2	000 N 3
Paul Kalines requests what low Kirch 8270 SIM. 8270 SIM.	Turn Around Time (working days)	Sampling Time TPH-DRO NWTH-D	Other Yes No Sampling Date	Soil Water Air	Lab Sample No. No. of Containers	Sample I.D.
Special Detection Limit/Reporting		X	Prsv.	Watrix	A COLUMN TO THE PROPERTY OF TH	www.caslab.com
X 201	Telephone No. 138-2172 Fax No. 7495-5282	Teleph	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ta in a	Manager Cul	
Method of Shipment	urs Longview Solidification	Project:			Urcing	Columbia Analytical Services:
rage ; oi ;				-		

	Me Time OAN	B Date Mu	hall c	laboratory	Received by laboratory	ANTERNA PROPERTY AND THE PROPERTY OF THE PROPE	Time	Date	PATE SAME BRIGARY VALUE OF THE SAME	ANNERSONS CONTRACTOR OF THE CO	ORTHOGRAPHICAL MANAGEMENT OF THE PROPERTY OF T	Relinquisned by
			a and		Received by		Time	Date				Relinquished by
					Received by		Time	Date				Relinquished by
Lab Work No.						000		21-27-2			3 mg	THE SERVE
			ame)	Received by (Sign & Print Name)	Received by		Time	Date		ji hau,	rint Name)	Reling, by sampler (Sign & Print Name)
5		No ice	lce		Temperature received:	Temperati					Yes No	Sample Received Intact:
part Kalina									THE PROPERTY OF THE PARTY OF TH	TOWN TO THE TAXABLE PROPERTY OF THE PROPERTY O		
Mary Kerring												
A \$000000000000000000000000000000000000												
R I JOS CALCO												
s Towns												The second secon
1 60 87 60 (
るのに大力												
Planse send												
	S			in in	21022	12-15-12		***	Samuel Sa		5	0351-0174
	<i>S</i>			V V	21023	12-14-12		1	Zumere.		24 65)	367-0740
	<i>J</i>			<	700	12-13-12		7	2		ファア	897-074/
	N			V V)	-1		7	N		2 1/	-017A (
Bound Earling. 8270 SIM. 8270 SIM.	Turn Around Time (working days)			TPH-DRU NWTPH-DX PAH 8270 SIM	Sampling Time	No Sampling Date	Other Yes	Water Air	No. of Containers Soil	Lab Sample No.		Sample I.D.
Limit/Reporting							Prsv.	Watrix	To purpose the same of the sam		m	www.caslab.com
ES &	Fax No495-5282	انو	438-2172	0 0			2	2	107	Project A		Analytical Services 800.695.7222
Method of Shipment	Shi diffication Method of Shipment	Constient Solidification	The love	Project:						Olicit.		Columbia
	-											

	Client: Client	CIAIN OF COOL	Method of Shipment
rvices	Project Paul Kalina	Telephone No. 439-2172 Fax No495-5282	95-5282 FC & CX
800.695.7222 www.caslab.com			⊑ S
	Watrix Prsv.	H-DX	
Sample I.D.	Lab Sample No. No. of Containers Soil Water Air Other Yes No	Sampling Date Sampling Time TPH-DRO NWTPH PAH 8270 SIV	Turn Around Time (working days) 1 Crel 8270 SM 1 Report to 8270 SM
0397-017 DW (2 h)	2 1 1 12	12 12	Co #000 KW
337-01 DWP (7 KZ)	7	7 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	\ \ \ \
0357-017 DW (24h)	2 4 624		
STIL OU DAY (45 N.)			Please send
			K S TOMMY
			4
			Paul Kalina
Sample Received Intact Yes No	7	Temperature received: Ice No ice	mesop.com
Jill Suhm JU S	2-15-12 1600	Received by (Sign & Print Name)	Lab Work No.
Relinquished by	Date Time	Received by	
Relinquished by	Date Time	Received by	
Relinquished by	Date Time	Received by laboratory	7

	15 Date 116/12 Time 0910	Received by laboratory	Recei	Time	Te	Date	dibiniones seen plakkins emeen		CONTRACTOR OF THE PROPERTY OF	Relinquished by
		ved by	Received by	Time	· 6	Date				Relinquished by
	a principal de la companya de la com	/ed by	Received by	Time	e e	Date			C	Relinquished by
Lab Work No.			800 0		2-5-2	ņ	line.	28	£	Jul Suhm
		by (Sign & Print Name	Recei	Time	6	Date		2	n & Print Name)	Reling, by sampler (Sign & Print Name)
	No ice	ed: Ice	Temperature received:					No	t: Yes	Sample Received Intact:
wis corp. com										
paul. Kaline				$\frac{1}{1}$					AND THE PERSON OF CHARLES AND THE PERSON OF STREET, SAN THE PERSON OF	
M Fawl Relian						+				
R 703 0 11 (6)					+	-				
K COS COS										
S										
しまれていると										AND THE RESERVE OF THE PARTY OF
RSEL ます										
Phoneso send										A MARKATON OF THE STATE OF THE
						<u> </u>		3		
) (ハ ×	2-15-12 11 0	5		7		<u>e</u>	1 DWP (28 day)	0397-00
	Some	\$\frac{\display}{\display}	12-15-12-1	<u>~</u>		Z		2	7 A (28 day	0-1080
request for low level 8270 SIM 1/120/12	Turn Around Time (working days)	<u>SPLP</u> PAH 8270 SIN SPLP TPH-DRO NWTPH	Sampling Date Sampling Time	Yes No	Air Other	Soil Water	No. of Containers	Lab Sample No.		Sample I.D.
Limit/Reporting		D		Prsv.	Matrix				ab.com	www.caslab.com
Special Detection	11	Telephone No. 206-438-202		decrees of the second	Kalina	Ka	Day.	Project Manager	.7222	800.695.
Method of Shipment		RS 1			-				Columbia	Columb
Page l of l	of CUSTODY	CHAIN			0	8	SS	Client: \		
			A COLUMN TO THE PERSON OF THE		THE REAL PROPERTY.	CORT IN INVICORDINAL		TOTAL COLUMN STREET CONTRACTORIES	Accessed the second sec	

./.		ımbia Ana r Receipt a	v		vices, Inc. vation Form		P	C_EO	LU
Client / Project: K	MVVV) Opened: 2/16	112	By:	_Ser	vice Request A Unload	1	145 16/12 By	:_ <i>U</i>	
 Samples were received via? Samples were received in: (circ Were <u>custody seals</u> on coolers? 	Continue of the second	Box (Y) N	DH Enve	lope	PDX Couri Other ow many and w	7	nd Delivered	NA .	
If present, were custody seals in	ntact? (Y N		If pre	esent, were they	signed an	d dated?	Y	N
Cooler Temp Temp °C Blank °C	Thermometer ID	Cooler/0	COC N	Α		Tracking	g Number	NA	Filed
-0.9 0.4 -0.6 1.2	731	Coolex	比り上の	,					V V
7. Packing material: Inserts B		(V	D !		ce Dry Ice	Sleeves			
8. Were custody papers properly f 9. Did all bottles arrive in good co 10. Were all sample labels comple 11. Did all sample labels and tags 12. Were appropriate bottles/conta 13. Were the pH-preserved bottles 14. Were VOA vials received with 15. Was C12/Res negative? Sample ID on Bottle	ondition (unbroken te (i.e analysis, pre agree with custody iners and volumes (see SMO GEN SOI)? Indicate eservation, et papers? Incorreceived for possible proceived are proceived	c.)? dicate m the test t the app table b	aajor a s indic oropria elow.	liscrepancies in a cated? ate pH? Indicate		N _z	A A A A A Y Y Y	N N N N N N N N N N N N N N N N N N N
Sample ID	Bottle Type	Temp space		рН	Reagent	added	Number	Initials	Time
BNL IL amber per Sumple	I L Amber			X	HCL	2mL	2011062031	PST	10:00
Notes, Discrepancies, & Resolu	tions:							3	

Now part of the ALS Group

Client: URS Corporation Service Request: K1201445

Project: IP URS Longview Solidification

Cover Page - Organic Analysis Data Package Polynuclear Aromatic Hydrocarbons

		Date	Date
Sample Name	Lab Code	Collected	Received
0397-017A (2 hr)	K1201445-005	02/13/2012	02/16/2012
0397-017A (7 hr)	K1201445-006	02/13/2012	02/16/2012
0397-017A (24 hr)	K1201445-007	02/14/2012	02/16/2012
0397-017A (48 hr)	K1201445-008	02/15/2012	02/16/2012

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

,1611dtd10._

Date: 2/24/12

Name:

Title:

Now part of the ALS Group QA/QC Report

Client:

URS Corporation

IP URS Longview Solidification

Project: Sample Matrix:

Water

Service Request: K1201445

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: Analysis Method:

EPA 3520C

8270D SIM

Units: ng/L Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
0397-017A (2 hr)	K1201445-005	68	77	81
0397-017A (7 hr)	K1201445-006	69	7 6	81
0397-017A (24 hr)	K1201445-007	53	64	81
0397-017A (48 hr)	K1201445-008	50	68	82
Method Blank	KWG1201681-3	76	75	83
Lab Control Sample	KWG1201681-1	68	72	71
Duplicate Lab Control Sample	KWG1201681-2	74	76	74

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	29-98
Sur2 =	Fluoranthene-d10	31-105
Sur3 =	Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/24/2012 14:08:19

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR138557

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: NA **Date Received:** NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank KWG1201681-3

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units:	ng/L
Basis:	NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	1.3	J	3.3	0.71	1	02/17/12	02/21/12	KWG1201681	
2-Methylnaphthalene	0.48	J	3.3	0.40	1	02/17/12	02/21/12	KWG1201681	
Acenaphthylene	ND	U	3.3	0.37	1	02/17/12	02/21/12	KWG1201681	
Acenaphthene	ND	U	3.3	0.36	1	02/17/12	02/21/12	KWG1201681	
Dibenzofuran	ND	U	3.3	0.42	1	02/17/12	02/21/12	KWG1201681	
Fluorene	ND	U	3.3	0.42	1	02/17/12	02/21/12	KWG1201681	
Phenanthrene	1.1	J	3.3	0.72	1	02/17/12	02/21/12	KWG1201681	
Anthracene	ND	U	3.3	0.29	1	02/17/12	02/21/12	KWG1201681	
Fluoranthene	ND	U	3.3	0.46	1	02/17/12	02/21/12	KWG1201681	
Pyrene	ND	U	3.3	0.78	1	02/17/12	02/21/12	KWG1201681	
Benz(a)anthracene	ND	U	3.3	0.34	1	02/17/12	02/21/12	KWG1201681	
Chrysene	ND	U	3.3	0.65	1	02/17/12	02/21/12	KWG1201681	
Benzo(b)fluoranthene	ND	U	3.3	0.25	1	02/17/12	02/21/12	KWG1201681	
Benzo(k)fluoranthene	ND	U	3.3	0.41	1	02/17/12	02/21/12	KWG1201681	
Benzo(a)pyrene	ND	U	3.3	0.41	1	02/17/12	02/21/12	KWG1201681	
Indeno(1,2,3-cd)pyrene	ND	U	3.3	0.44	1	02/17/12	02/21/12	KWG1201681	
Dibenz(a,h)anthracene	ND	U	3.3	0.45	1	02/17/12	02/21/12	KWG1201681	
Benzo(g,h,i)perylene	ND	U	3.3	0.36	1	02/17/12	02/21/12	KWG1201681	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	29-98	02/21/12	Acceptable
Fluoranthene-d10	75	31-105	02/21/12	Acceptable
Terphenyl-d14	83	27-112	02/21/12	Acceptable

Comments:

Printed: 02/24/2012 14:08:15

u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged

Form 1A - Organic

Now part of the ALS Group

Analytical Results

Client: URS Corporation

Project: IP URS Longview Solidification

Sample Matrix: Water

Service Request: K1201445 **Date Collected:** 02/13/2012

Date Received: 02/16/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: 0397-017A (2 hr) **Lab Code:** K1201445-005

Extraction Method: EPA 3520C **Analysis Method:** 8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	71000 D	710	150	200	02/17/12	02/22/12	KWG1201681	
2-Methylnaphthalene	13000 D	36	4.2	10	02/17/12	02/21/12	KWG1201681	
Acenaphthylene	160	3.6	0.39	1	02/17/12	02/21/12	KWG1201681	
Acenaphthene	12000 D	36	3.8	10	02/17/12	02/21/12	KWG1201681	
Dibenzofuran	6500 D	36	4.4	10	02/17/12	02/21/12	KWG1201681	
Fluorene	8200 D	36	4.4	10	02/17/12	02/21/12	KWG1201681	
Phenanthrene	13000 D	36	7.5	10	02/17/12	02/21/12	KWG1201681	
Anthracene	1700	3.6	0.30	1	02/17/12	02/21/12	KWG1201681	
Fluoranthene	2700 D	36	4.8	10	02/17/12	02/21/12	KWG1201681	
Pyrene	1600	3.6	0.81	1	02/17/12	02/21/12	KWG1201681	
Benz(a)anthracene	130	3.6	0.36	1	02/17/12	02/21/12	KWG1201681	
Chrysene	64	3.6	0.68	1	02/17/12	02/21/12	KWG1201681	
Benzo(b)fluoranthene	11	3.6	0.26	1	02/17/12	02/21/12	KWG1201681	
Benzo(k)fluoranthene	3.4 J	3.6	0.43	1	02/17/12	02/21/12	KWG1201681	
Benzo(a)pyrene	6.6	3.6	0.43	1	02/17/12	02/21/12	KWG1201681	
Indeno(1,2,3-cd)pyrene	0.78 J	3.6	0.46	1	02/17/12	02/21/12	KWG1201681	
Dibenz(a,h)anthracene	ND U	3.6	0.47	1	02/17/12	02/21/12	KWG1201681	
Benzo(g,h,i)perylene	0.68 Ј	3.6	0.38	1	02/17/12	02/21/12	KWG1201681	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	68	29-98	02/21/12	Acceptable
Fluoranthene-d10	77	31-105	02/21/12	Acceptable
Terphenyl-d14	81	27-112	02/21/12	Acceptable

Comments:

RR138557

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: 02/13/2012 **Date Received:** 02/16/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-017A (7 hr)

Extraction Method:

K1201445-006

EPA 3520C

Units: ng/L Basis: NA

Level: Low

Analysis Method: 8270D SIM

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	130000	D	710	150	200	02/17/12	02/22/12	KWG1201681	-
2-Methylnaphthalene	22000	D	710	84	200	02/17/12	02/22/12	KWG1201681	
Acenaphthylene	220		3.6	0.39	1	02/17/12	02/21/12	KWG1201681	
Acenaphthene	16000	D	36	3.8	10	02/17/12	02/21/12	KWG1201681	
Dibenzofuran	8400	D	36	4.4	10	02/17/12	02/21/12	KWG1201681	
Fluorene	10000	D	36	4.4	10	02/17/12	02/21/12	KWG1201681	
Phenanthrene	12000	D	36	7.6	10	02/17/12	02/21/12	KWG1201681	
Anthracene	1500		3.6	0.31	1	02/17/12	02/21/12	KWG1201681	
Fluoranthene	1800		3.6	0.48	1	02/17/12	02/21/12	KWG1201681	
Pyrene	1000	***************************************	3.6	0.82	1	02/17/12	02/21/12	KWG1201681	
Benz(a)anthracene	100		3.6	0.36	1	02/17/12	02/21/12	KWG1201681	
Chrysene	55		3.6	0.68	1	02/17/12	02/21/12	KWG1201681	
Benzo(b)fluoranthene	19		3.6	0.27	1	02/17/12	02/21/12	KWG1201681	
Benzo(k)fluoranthene	7.9		3.6	0.43	1	02/17/12	02/21/12	KWG1201681	
Benzo(a)pyrene	13		3.6	0.43	1	02/17/12	02/21/12	KWG1201681	
Indeno(1,2,3-cd)pyrene	3.6	J	3.6	0.46	1	02/17/12	02/21/12	KWG1201681	
Dibenz(a,h)anthracene	1.1	J	3.6	0.47	1	02/17/12	02/21/12	KWG1201681	
Benzo(g,h,i)perylene	2.9	J	3.6	0.38	1	02/17/12	02/21/12	KWG1201681	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	69	29-98	02/21/12	Acceptable	
Fluoranthene-d10	76	31-105	02/21/12	Acceptable	
Terphenyl-d14	81	27-112	02/21/12	Acceptable	

Comments:

RR138557

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: 02/14/2012

Date Received: 02/16/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017A (24 hr)

Lab Code:

K1201445-007

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	340000	D	1400	290	400	02/17/12	02/22/12	KWG1201681	
2-Methylnaphthalene	57000	D	1400	170	400	02/17/12	02/22/12	KWG1201681	
Acenaphthylene	400		3.5	0.38	1	02/17/12	02/21/12	KWG1201681	
Acenaphthene	41000	D	1400	150	400	02/17/12	02/22/12	KWG1201681	
Dibenzofuran	21000	D	70	8.6	20	02/17/12	02/21/12	KWG1201681	
Fluorene	25000	D	70	8.6	20	02/17/12	02/21/12	KWG1201681	
Phenanthrene	28000	D	70	15	20	02/17/12	02/21/12	KWG1201681	-
Anthracene	4300	D	70	6.0	20	02/17/12	02/21/12	KWG1201681	
Fluoranthene	4100	D	70	9.4	20	02/17/12	02/21/12	KWG1201681	
Pyrene	2000	D	70	16	20	02/17/12	02/21/12	KWG1201681	
Benz(a)anthracene	180		3.5	0.35	1	02/17/12	02/21/12	KWG1201681	
Chrysene	85		3.5	0.67	1	02/17/12	02/21/12	KWG1201681	
Benzo(b)fluoranthene	23		3.5	0.26	1	02/17/12	02/21/12	KWG1201681	***************************************
Benzo(k)fluoranthene	7.8		3.5	0.42	1	02/17/12	02/21/12	KWG1201681	
Benzo(a)pyrene	13		3.5	0.42	1	02/17/12	02/21/12	KWG1201681	
Indeno(1,2,3-cd)pyrene	3.0	J	3.5	0.45	1	02/17/12	02/21/12	KWG1201681	
Dibenz(a,h)anthracene	1.2	J	3.5	0.46	1	02/17/12	02/21/12	KWG1201681	
Benzo(g,h,i)perylene	2.6	J	3.5	0.37	1	02/17/12	02/21/12	KWG1201681	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	53	29-98	02/21/12	Acceptable
Fluoranthene-d10	64	31-105	02/21/12	Acceptable
Terphenyl-d14	81	27-112	02/21/12	Acceptable

Comments:

Printed: 02/24/2012 14:08:09

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Form 1A - Organic

Now part of the ALS Group

Analytical Results

Client: **URS** Corporation

IP URS Longview Solidification Project:

Sample Matrix: Water Service Request: K1201445 **Date Collected:** 02/15/2012

Date Received: 02/16/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: 0397-017A (48 hr) Lab Code: K1201445-008

Extraction Method: EPA 3520C Analysis Method: 8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	310000	D	1500	300	400	02/17/12	02/22/12	KWG1201681	E-CONTRACTOR CONTRACTOR
2-Methylnaphthalene	55000	D	1500	170	400	02/17/12	02/22/12	KWG1201681	
Acenaphthylene	370		3.6	0.39	1	02/17/12	02/21/12	KWG1201681	
Acenaphthene	38000	D	72	7.6	20	02/17/12	02/21/12	KWG1201681	
Dibenzofuran	20000	D	72	8.9	20	02/17/12	02/21/12	KWG1201681	
Fluorene	23000	D	72	8.9	20	02/17/12	02/21/12	KWG1201681	
Phenanthrene	28000	D	72	16	20	02/17/12	02/21/12	KWG1201681	
Anthracene	4200	D	72	6.2	20	02/17/12	02/21/12	KWG1201681	
Fluoranthene	4200	D	72	9.7	20	02/17/12	02/21/12	KWG1201681	
Pyrene	2200	D	72	17	20	02/17/12	02/21/12	KWG1201681	
Benz(a)anthracene	180		3,6	0.36	1	02/17/12	02/21/12	KWG1201681	
Chrysene	80		3.6	0.69	1	02/17/12	02/21/12	KWG1201681	
Benzo(b)fluoranthene	18		3.6	0.27	1	02/17/12	02/21/12	KWG1201681	
Benzo(k)fluoranthene	4.8		3.6	0.44	1	02/17/12	02/21/12	KWG1201681	
Benzo(a)pyrene	9.8		3.6	0.44	1	02/17/12	02/21/12	KWG1201681	
Indeno(1,2,3-cd)pyrene	1.7	J	3.6	0.47	1	02/17/12	02/21/12	KWG1201681	
Dibenz(a,h)anthracene	0.63	J	3.6	0.48	1	02/17/12	02/21/12	KWG1201681	
Benzo(g,h,i)perylene	1.4	J	3.6	0.38	1	02/17/12	02/21/12	KWG1201681	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	50	29-98	02/21/12	Acceptable	
Fluoranthene-d10	68	31-105	02/21/12	Acceptable	
Terphenyl-d14	82	27-112	02/21/12	Acceptable	

Comments:

Printed: 02/24/2012 14:08:12

Merged

Form 1A - Organic

Now part of the ALS Group
QA/QC Report

Client:

URS Corporation

Project: Sample Matrix: IP URS Longview Solidification

Water

Service Request: K1201445

Date Extracted: 02/17/2012

Date Analyzed: 02/21/2012

Date Extracted: 02/17/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG1201681

Lab Control Sample KWG1201681-1 Duplicate Lab Control Sample

		VG1201681-1 Control Spik			VG1201681-2 e Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	363	500	73	374	500	75	39-110	3	30
2-Methylnaphthalene	390	500	78	406	500	81	39-115	4	30
Acenaphthylene	369	500	74	383	500	77	44-115	4	30
Acenaphthene	354	500	71	366	500	73	44-113	3	30
Dibenzofuran	370	500	74	382	500	76	46-116	3	30
Fluorene	372	500	74	382	500	76	48-118	3	30
Phenanthrene	354	500	71	367	500	73	47-120	4	30
Anthracene	374	500	75	400	500	80	44-117	7	30
Fluoranthene	378	500	76	391	500	78	48-128	3	30
Pyrene	357	500	71	362	500	72	42-133	1	30
Benz(a)anthracene	426	500	85	423	500	85	48-125	1	30
Chrysene	415	500	83	419	500	84	50-128	1	30
Benzo(b)fluoranthene	415	500	83	416	500	83	49-131	0	30
Benzo(k)fluoranthene	433	500	87	451	500	90	54-131	4	30
Benzo(a)pyrene	444	500	89	445	500	89	43-134	0	30
Indeno(1,2,3-cd)pyrene	355	500	71	345	500	69	45-133	3	30
Dibenz(a,h)anthracene	381	500	76	367	500	73	49-133	4	30
Benzo(g,h,i)perylene	361	500	72	341	500	68	51-124	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/24/2012 14:08:47 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

 $\label{eq:page_page} Page = 1 \ of \quad 1 \\ SuperSet Reference: RR138557$

Now part of the ALS Group

Client:

URS Corporation

Service Request:

K1201445

Project:

IP URS Longview Solidification

Cover Page - Organic Analysis Data Package Polynuclear Aromatic Hydrocarbons on SPLP Leachate

		Date	Date
Sample Name	Lab Code	Collected	Received
0397-017A (28 day)	K1201445-013	02/15/2012	02/16/2012
0397-017DUP (28 day)	K1201445-014	02/15/2012	02/16/2012
0397-017A (28 day)MS	KWG1201958-1	02/15/2012	02/16/2012
0397-017A (28 day)DMS	KWG1201958-2	02/15/2012	02/16/2012

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Cover Page - Organic

1 of 1

SuperSet Reference: RR138802

Now part of the ALS Group

QA/QC Report

Client: Project: **URS** Corporation

IP URS Longview Solidification

Sample Matrix:

Surrogate Recovery Summary **Synthetic Precipitation Leaching Procedure** Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Preparation Method: EPA 1312

Extraction Method: EPA 3520C Analysis Method:

8270D SIM

Units: PERCENT Level: Low

Service Request: K1201445

Sample Name	Lab Code	Sur1	Sur2	<u>Sur3</u>
0397-017A (28 day)	K1201445-013	77	81	89
0397-017DUP (28 day)	K1201445-014	77	83	91
Method Blank	KWG1201958-5	78	77	92
0397-017A (28 day)MS	KWG1201958-1	75	80	88
0397-017A (28 day)DMS	KWG1201958-2	76	81	89
Lab Control Sample	KWG1201958-3	76	83	84
Duplicate Lab Control Sample	KWG1201958-4	79	85	86

Surrogate Recovery Control Limits (%)

Surl	==	Fluorene-d10	28-98
Sur2	=	Fluoranthene-d10	31-105
Sur3	=	Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/01/2012 16:04:48 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of

SuperSet Reference: RR138802

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Service Request: K1201445

Date Collected: NA Date Received: NA

Date Prepared: 02/20/2012

Level: Low

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name: Lab Code:

Method Blan

KWG120195

Extraction Method:

Preparation Method: EPA 1312 EPA 3520C

Analysis Method:

8270D SIM

nk	Units: ug/L
58-5	Basis: NA

Dilution Date Date Extraction Analyte Name Result Q MRL MDL Factor Extracted Analyzed Lot Note Naphthalene 0.095 J 0.20 0.030 KWG1201958 1 02/21/12 02/27/12 2-Methylnaphthalene 0.054 J 0.20 KWG1201958 0.023 1 02/21/12 02/27/12 Acenaphthylene ND U 0.20 0.034 1 02/21/12 02/27/12 KWG1201958 Acenaphthene ND U 0.20 0.044 1 02/21/12 02/27/12 KWG1201958 Dibenzofuran ND U 0.20 0.046 KWG1201958 1 02/21/12 02/27/12 Fluorene KWG1201958 ND U 0.20 0.0381 02/21/12 02/27/12 Phenanthrene ND U 0.20 0.050 1 02/21/12 02/27/12 KWG1201958 Anthracene ND U 0.20 0.036 1 02/21/12 02/27/12 KWG1201958 Fluoranthene 0.20 1 02/27/12 KWG1201958 ND U 0.044 02/21/12 1 Pyrene ND U 0.20 0.034 02/21/12 02/27/12 KWG1201958 Benz(a)anthracene ND U 0.20 0.026 1 02/21/12 02/27/12 KWG1201958 Chrysene ND U 0.20 0.034 1 02/21/12 02/27/12 KWG1201958 Benzo(b)fluoranthene ND U 0.20 0.023 1 02/21/12 02/27/12 KWG1201958 Benzo(k)fluoranthene ND U 0.20 1 KWG1201958 0.025 02/21/12 02/27/12 Benzo(a)pyrene ND U 0.20 0.043 1 02/27/12 KWG1201958 02/21/12 Indeno(1,2,3-cd)pyrene ND U KWG1201958 0.20 0.026 1 02/21/12 02/27/12 Dibenz(a,h)anthracene KWG1201958 ND U 0.20 0.025 1 02/21/12 02/27/12 Benzo(g,h,i)perylene ND U 0.20 KWG1201958 0.029 1 02/21/12 02/27/12

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	78	28-98	02/27/12	Acceptable
Fluoranthene-d10	77	31-105	02/27/12	Acceptable
Terphenyl-d14	92	27-112	02/27/12	Acceptable

Comments:

Printed: 03/01/2012 16:04:44

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} w: \label{lem:limit} We w: \label{lem$

Merged

Form 1A - Organic

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client: **URS** Corporation

Project: IP URS Longview Solidification

Sample Matrix: Soil Service Request: K1201445 **Date Collected:** 02/15/2012 **Date Received:** 02/16/2012

Date Prepared: 02/20/2012

Units: ug/L

Basis: NA

Level: Low

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-017A (28 day)

Lab Code: K1201445-013

Preparation Method: EPA 1312 Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Analyte Name	Re	sult	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1	800	D	4.0	0.60	20	02/21/12	02/28/12	KWG1201958	MANAGERYCAN CHANGES
2-Methylnaphthalene		38 0	D	4.0	0.46	20	02/21/12	02/28/12	KWG1201958	
Acenaphthylene		3.4		0.20	0.034	1	02/21/12	02/27/12	KWG1201958	
Acenaphthene		280	D	4.0	0.88	20	02/21/12	02/28/12	KWG1201958	
Dibenzofuran		97		0.20	0.046	1	02/21/12	02/27/12	KWG1201958	
Fluorene		99		0.20	0.038	1	02/21/12	02/27/12	KWG1201958	
Phenanthrene		140	D	4.0	1.0	20	02/21/12	02/28/12	KWG1201958	***************************************
Anthracene		17		0.20	0.036	1	02/21/12	02/27/12	KWG1201958	
Fluoranthene		16		0.20	0.044	1	02/21/12	02/27/12	KWG1201958	
Pyrene		9.3		0.20	0.034	1	02/21/12	02/27/12	KWG1201958	
Benz(a)anthracene	().43		0.20	0.026	1	02/21/12	02/27/12	KWG1201958	
Chrysene	().35		0.20	0.034	1	02/21/12	02/27/12	KWG1201958	
Benzo(b)fluoranthene	0.	046	J	0.20	0.023	1	02/21/12	02/27/12	KWG1201958	
Benzo(k)fluoranthene		ND	U	0.20	0.025	1	02/21/12	02/27/12	KWG1201958	
Benzo(a)pyrene		ND	U	0.20	0.043	1	02/21/12	02/27/12	KWG1201958	
Indeno(1,2,3-cd)pyrene	0.	031	J	0.20	0.026	1	02/21/12	02/27/12	KWG1201958	
Dibenz(a,h)anthracene		ND	U	0.20	0.025	1	02/21/12	02/27/12	KWG1201958	
Benzo(g,h,i)perylene	0.	040	J	0.20	0.029	1	02/21/12	02/27/12	KWG1201958	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	77	28-98	02/27/12	Acceptable	and an arrangement of the second of the seco
Fluoranthene-d10	81	31-105	02/27/12	Acceptable	
Terphenyl-d14	89	27-112	02/27/12	Acceptable	

Comments:

Printed: 03/01/2012 16:04:37 $_u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic

Now part of the ALS Group

Analytical Results

Client: **URS** Corporation

Project: IP URS Longview Solidification

Sample Matrix: Soil Service Request: K1201445 Date Collected: 02/15/2012 **Date Received:** 02/16/2012

Date Prepared: 02/20/2012

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-017DUP (28 day)

Lab Code:

K1201445-014

Units: ug/L Basis: NA

Extraction Method:

Preparation Method: EPA 1312

Level: Low

EPA 3520C Analysis Method: 8270D SIM

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	1700	D	4.0	0.60	20	02/21/12	02/28/12	KWG1201958	ACCOMMUNICATION AND ACCOMMUNICATION
2-Methylnaphthalene	340	D	4.0	0.46	20	02/21/12	02/28/12	KWG1201958	
Acenaphthylene	3.6		0.20	0.034	1	02/21/12	02/28/12	KWG1201958	
Acenaphthene	250	D	4.0	0.88	20	02/21/12	02/28/12	KWG1201958	
Dibenzofuran	95		0.20	0.046	1	02/21/12	02/28/12	KWG1201958	
Fluorene	94		0.20	0.038	1	02/21/12	02/28/12	KWG1201958	
Phenanthrene	140	D	4.0	1.0	20	02/21/12	02/28/12	KWG1201958	
Anthracene	18		0.20	0.036	1	02/21/12	02/28/12	KWG1201958	
Fluoranthene	16		0.20	0.044	1	02/21/12	02/28/12	KWG1201958	
Pyrene	9,4		0.20	0.034	1	02/21/12	02/28/12	KWG1201958	
Benz(a)anthracene	0.43		0.20	0.026	1	02/21/12	02/28/12	KWG1201958	
Chrysene	0.38		0.20	0.034	1	02/21/12	02/28/12	KWG1201958	
Benzo(b)fluoranthene	0.045	J	0.20	0.023	1	02/21/12	02/28/12	KWG1201958	manufacture of the second
Benzo(k)fluoranthene	ND	U	0.20	0.025	1	02/21/12	02/28/12	KWG1201958	
Benzo(a)pyrene	ND	U	0.20	0.043	1	02/21/12	02/28/12	KWG1201958	
Indeno(1,2,3-cd)pyrene	ND	U	0.20	0.026	1	02/21/12	02/28/12	KWG1201958	THE RESTRICT OF STREET AND ADDRESS OF THE
Dibenz(a,h)anthracene	ND	U	0.20	0.025	1	02/21/12	02/28/12	KWG1201958	
Benzo(g,h,i)perylene	ND	U	0.20	0.029	1	02/21/12	02/28/12	KWG1201958	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	77	28-98	02/28/12	Acceptable	
Fluoranthene-d10	83	31-105	02/28/12	Acceptable	
Terphenyl-d14	91	27-112	02/28/12	Acceptable	

Comments:

Printed: 03/01/2012 16:04:40 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic

Now part of the ALS Group QA/QC Report

Client:

URS Corporation

Project: Sample Matrix: IP URS Longview Solidification

Soil

Date Prepared: 02/20/2012 Date Extracted: 02/21/2012 **Date Analyzed:** 02/27/2012

Service Request: K1201445

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name: Lab Code:

0397-017A (28 day) K1201445-013

Extraction Method:

EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1201958

0397-017A (28 day)MS

0397-017A (28 day)DMS

	Sample	KWG1201958-1 Matrix Spike			KWG1201958-2 Duplicate Matrix Spike			- %Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec		RPD	
Naphthalene	1800	718E	25.0	-4398#	753E	25.0	-4255#	37-118	5	30
2-Methylnaphthalene	380	284E	25.0	-394 #	291E	25.0	-364 #	37-117	3	30
Acenaphthylene	3.4	23.4	25.0	80	22.6	25.0	77	43-114	3	30
Acenaphthene	280	202E	25.0	-296 #	202E	25.0	-298 #	45-114	0	30
Dibenzofuran	97	108E	25.0	45	109E	25.0	50	44-122	1	30
Fluorene	99	113E	25.0	55	114E	25.0	60	45-123	1	30
Phenanthrene	140	11 <i>7</i> E	25.0	-80 #	119E	25.0	-69 #	42-127	2	30
Anthracene	17	35.1	25.0	73	34.4	25.0	70	32-125	2	30
Fluoranthene	16	36.9	25.0	84	36.4	25.0	82	48-134	1	30
Pyrene	9.3	30.2	25.0	83	29.8	25.0	82	44-130	1	30
Benz(a)anthracene	0.43	22.5	25.0	88	22.1	25.0	87	41-128	2	30
Chrysene	0.35	22.7	25.0	90	22.0	25.0	87	48-128	3	30
Benzo(b)fluoranthene	0.046	24.0	25.0	96	23.2	25.0	93	40-139	4	30
Benzo(k)fluoranthene	ND	24.2	25.0	97	23.3	25.0	93	48-134	4	30
Benzo(a)pyrene	ND	25.3	25.0	101	24.1	25.0	96	35-132	5	30
Indeno(1,2,3-cd)pyrene	0.031	21.8	25.0	87	21.0	25.0	84	40-135	4	30
Dibenz(a,h)anthracene	ND	21.7	25.0	87	2 0.9	25.0	84	43-135	4	30
Benzo(g,h,i)perylene	0.040	20.5	25.0	82	19.7	25.0	7 9	44-128	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/01/2012 16:05:18 $u:\Stealth\Crystal.rpt\Form3DMS.rpt$

Form 3A - Organic

260

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Soil

Service Request: K1201445

Date Prepared: 02/20/2012 **Date Extracted:** 02/21/2012 **Date Analyzed:** 02/27/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method:

EPA 1312/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1201958

Lab Control Sample KWG1201958-3 **Duplicate Lab Control Sample**

		VG1201958-3 Control Spik		VG1201958-4 e Lab Control		%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	1.86	2.50	74	1.92	2.50	77	39-110	3	30
2-Methylnaphthalene	1.80	2.50	72	1.87	2.50	75	39-115	4	30
Acenaphthylene	2.03	2.50	81	2.11	2.50	84	44-115	4	30
Acenaphthene	1.90	2.50	76	1.99	2.50	80	44-113	5	30
Dibenzofuran	1.93	2.50	77	2.03	2.50	81	46-116	5	30
Fluorene	1.98	2.50	79	2.05	2.50	82	48-118	4	30
Phenanthrene	1.97	2.50	79	2.03	2.50	81	47-120	3	30
Anthracene	2.05	2.50	82	2.12	2.50	85	44-117	3	30
Fluoranthene	2.16	2.50	87	2.19	2.50	88	48-128	1	30
Pyrene	1.97	2.50	79	2.06	2.50	82	42-133	4	30
Benz(a)anthracene	2.05	2.50	82	2.12	2.50	85	48-125	3	30
Chrysene	2.09	2.50	84	2.14	2.50	86	50-128	2	30
Benzo(b)fluoranthene	2.23	2.50	89	2.26	2.50	90	49-131	1	30
Benzo(k)fluoranthene	2.24	2.50	90	2.30	2.50	92	54-131	2	30
Benzo(a)pyrene	2.35	2.50	94	2.37	2.50	95	43-124	1	30
Indeno(1,2,3-cd)pyrene	2.09	2.50	84	2.09	2.50	83	45-133	0	30
Dibenz(a,h)anthracene	2.06	2.50	83	2.07	2.50	83	49-133	0	30
Benzo(g,h,i)perylene	1.97	2.50	79	1.96	2.50	78	51-124	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/01/2012 16:05:22 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Now part of the ALS Group

Client: Project:

URS Corporation

IP URS Longview Solidification

Service Request:

K1201445

Cover Page - Organic Analysis Data Package Diesel and Residual Range Organics

		Date	Date
Sample Name	Lab Code	Collected	Received
0397-017A (2 hr)	K1201445-005	02/13/2012	02/16/2012
0397-017A (7 hr)	K1201445-006	02/13/2012	02/16/2012
0397-017A (24 hr)	K1201445-007	02/14/2012	02/16/2012
0397-017A (48 hr)	K1201445-008	02/15/2012	02/16/2012
0397-017A (28 day)	K1201445-013	02/15/2012	02/16/2012
0397-017DUP (28 day)	K1201445-014	02/15/2012	02/16/2012

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature

Date:

Name:

Title:

1 of

Page

Cover Page - Organic

Now part of the ALS Group QA/QC Report

Client: URS Corporation

Project: IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510C Units: PERCENT

Analysis Method: NWTPH-Dx Level: Low

Sample Name	Lab Code	Sur1	Sur2
0397-017A (2 hr)	K1201445-005	127	128
0397-017A (7 hr)	K1201445-006	117	117
0397-017A (24 hr)	K1201445-007	121	119
0397-017A (48 hr)	K1201445-008	117	117
0397-017A (28 day)	K1201445-013	106	108
0397-017DUP (28 day)	K1201445-014	116	124
Batch QC	K1201477-001	138	119
Batch QCDUP	KWG1201833-1	133	117
Method Blank	KWG1201833-3	106	95
Method Blank	KWG1201878-3	104	104
Method Blank	KWG1201878-4	109	109
Lab Control Sample	KWG1201833-2	109	100
Duplicate Lab Control Sample	KWG1201833-5	109	101
Lab Control Sample	KWG1201878-1	123	119
Duplicate Lab Control Sample	KWG1201878-2	118	116

Surrogate Recovery Control Limits (%)

Surl	=	o-Terphenyl	50-150
Sur2	=	n-Triacontane	50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/23/2012 16:21:34

Form 2A - Organic

Page 1 of 1

Service Request: K1201445

SuperSet Reference: RR138508

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1201833-3

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	11	[KWG1201833	
Residual Range Organics (RRO)	ND U	500	19	and a			KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	106	50-150	02/22/12	Acceptable
n-Triacontane	95	50-150	02/22/12	Acceptable

Comments:

Printed: 02/23/2012 16:21:24 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Form 1A - Organic

1 of 1 Page SuperSet Reference: RR138508

Merged

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Soil

Service Request: K1201445 Date Collected: NA

Date Received: NA

Date Prepared: 02/20/2012

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1201878-3

Units: ug/L Basis: NA

Extraction Method: EPA 3510C

Preparation Method: EPA 1312

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	250	I a			KWG1201878	A CONTRACTOR OF THE PROPERTY O
Residual Range Organics (RRO)	ND U	500	500	percent	02/22/12	02/23/12	KWG1201878	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	104	50-150	02/23/12	Acceptable
n-Triacontane	104	50-150	02/23/12	Acceptable

Comments:

Printed: 02/23/2012 16:21:27

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Soil

Service Request: K1201445

Date Collected: NA Date Received: NA

Date Prepared: 02/20/2012

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1201878-4

Preparation Method: EPA 1312

Analysis Method:

NWTPH-Dx

Extraction Method: EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analyte Name Diesel Range Organics (DRO) Residual Range Organics (RRO)

Result Q ND U ND U

260 520

MRL

260 520

MDL

1 02/22/12 1

Dilution

Factor

02/22/12

Date

Extracted

Analyzed Lot 02/23/12 KWG1201878 02/23/12

Date

KWG1201878

Extraction

Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	109	50-150	02/23/12	Acceptable
n-Triacontane	109	50-150	02/23/12	Acceptable

Comments:

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445 Date Collected: 02/13/2012

Date Received: 02/16/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-017A (2 hr) K1201445-005

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	390 Z 35 I	280 550	12 21	1.	02/21/12 02/21/12	Craws an mos a me	KWG1201833 KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	127 128	50-150 50-150	02/22/12 02/22/12	Acceptable Acceptable	

Comments:

RR138508

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: 02/13/2012
Date Received: 02/16/2012

Diesel and Residual Range Organics

Sample Name:

0397-017A (7 hr)

Lab Code:

K1201445-006

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	710 Z 33 J	270 530	12 20	processing in the second of th	0		KWG1201833 KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	117	50-150	02/22/12	Acceptable	
n-Triacontane	117	50-150	02/22/12	Acceptable	

Comments:

Printed: 02/23/2012 16:21:09

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: 02/14/2012 **Date Received:** 02/16/2012

Diesel and Residual Range Organics

Sample Name:

0397-017A (24 hr)

Lab Code:

K1201445-007

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	1600 Z 53 J	270 540	12 21	10			KWG1201833 KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
p-Terphenyl	121	50-150	02/22/12	Acceptable
n-Triacontane	119	50-150	02/22/12	Acceptable

Comments:

 $\begin{array}{lll} Printed: & 02/23/2012 & 16:21:12 \\ u:\Stealth\Crystal.rpt\Form\ImNew.rpt \end{array}$

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Collected: 02/15/2012

Date Received: 02/16/2012

Diesel and Residual Range Organics

Sample Name:

0397-017A (48 hr)

Lab Code:

K1201445-008

Extraction Method:

EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

NWTPH-Dx

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	1600 Z	260	12	1	02/21/12		KWG1201833	
Residual Range Organics (RRO)	56 J	510	20	1	02/21/12	02/22/12	KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	117	50-150	02/22/12	Acceptable Acceptable
n-Triacontane	117	50-150	02/22/12	

Comments:

Printed: 02/23/2012 16:21:15 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page

1 of 1

Merged

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Soil

Service Request: K1201445

Date Collected: 02/15/2012 **Date Received:** 02/16/2012

Date Prepared: 02/20/2012

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-017A (28 day)

Lab Code:

K1201445-013

Preparation Method: EPA 1312 Extraction Method: EPA 3510C

Units:	ug/L
Basis:	NA

Level: Low

Analysis	Method:	NWTPH-Dx
A a Insta	Name	

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	6700 Z	260	260	1			KWG1201878	
Residual Range Organics (RRO)	ND U	520	520	1	02/22/12	02/23/12	KWG1201878	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	106	50-150	02/23/12	Acceptable
n-Triacontane	108	50-150	02/23/12	Acceptable

Comments:

Printed: 02/23/2012 16:21:18 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} We will describe the limit of t$

Now part of the ALS Group

Analytical Results

Client: **URS** Corporation

IP URS Longview Solidification Project:

Sample Matrix:

Soil

Service Request: K1201445 Date Collected: 02/15/2012

Date Received: 02/16/2012 **Date Prepared:** 02/20/2012

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-017DUP (28 day)

K1201445-014 Lab Code:

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Units: ug/L Basis: NA

Level: Low

NWTPH-Dx Analysis Method:

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	6900 Z ND U	260 510	260 510	, man			KWG1201878 KWG1201878	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	116 124	50-150 50-150	02/23/12 02/23/12	Acceptable Acceptable	

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445 Date Extracted: 02/21/2012

Date Analyzed: 02/22/2012

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

Batch OC

Lab Code:

K1201477-001

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1201833

Batch OCDUP

Analyte Name			Sample	KWG120 Duplicate	01833-1	Relative Percent Difference	RPD Limit
	MRL	MDL	Result	Result	Average		
Diesel Range Organics (DRO) Residual Range Organics (RRO)	280 560	13 22	19000 890	19000 830	19000 860	2 7 #	30 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/23/2012 16:21:38

Form 3B - Organic

Page SuperSet Reference: RR138508

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201445

Date Extracted: 02/21/2012 **Date Analyzed:** 02/22/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1201833

Lab Control Sample

KWG1201833-2

Duplicate Lab Control Sample

KWG1201833-5

	Lab	Control Spike	2	Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	1610	1600	101	1550	1600	97	46-140	4	30
Residual Range Organics (RRO)	711	800	89	673	800	84	45-159	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/23/2012 16:21:41 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic

27

Page RR138508

Now part of the ALS Group QA/QC Report

Client: URS Corporation

Project: IP URS Longview Solidification

Sample Matrix:

Soil

Service Request: K1201445

Date Prepared: 02/20/2012 **Date Extracted:** 02/22/2012 **Date Analyzed:** 02/23/2012

Lab Control Spike/Duplicate Lab Control Spike Summary
Diesel and Residual Range Organics

Extraction Method:

EPA 1312/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1201878

Lab Control Sample

KWG1201878-1

Duplicate Lab Control Sample

KWG1201878-2

Lab Control Spike **Duplicate Lab Control Spike** RPD %Rec Limits **RPD** Limit %Rec Expected %Rec Result Expected Result Analyte Name 7 30 3200 113 46-140 Diesel Range Organics (DRO) 3200 105 3620 3370 45-159 7 30 94 1630 1600 102 Residual Range Organics (RRO) 1510 1600

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/23/2012 16:21:44 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page

March 5, 2012

Analytical Report for Service Request No: K1201477

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: IP Longview

Dear Paul:

Enclosed are the results of the sample submitted to our laboratory on February 16, 2012. For your reference, these analyses have been assigned our service request number K1201477.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Ed Wallace
Ed Wallace

Project Chemist

EW/jw

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Agency	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
DOD ELAP	L11-119
Florida DOH	E87412
Georgia DNR	881
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
ISO 17025	L11-118
Louisiana DEQ	3016
Louisiana DHH	LA080001
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon – DEQ (NELAP)	WA100010
South Carolina DHEC	61002
Texas CEQ	04704427-08-TX
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

URS Corporation

Service Request No.:

K1201477

Project:

IP Longview

Date Received:

2/16/12

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

One water sample was received for analysis at Columbia Analytical Services on 2/16/12. The sample was received in good condition and consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample BV-13 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Surrogate Exceptions:

The control criteria were exceeded for Fluorene-d10 in sample BV-13 due to matrix interference. The presence of non-target background components prevented adequate resolution of the surrogate. Accurate quantitation was not possible. No further corrective action was appropriate.

The control criteria for Terphenyl-d14 in sample BV-13 were not applicable. The analysis of the sample required a dilution, which resulted in a surrogate concentration below the reporting limit. No further corrective action was appropriate.

Elevated Detection Limits:

Sample BV-13 required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Approved by	Emw	Date 3	3/5	/12	

ĭ	
An Employee -	
I	
=	
Ę	
=	
~	
e e	
7	
-	
Owned Comp	(6)
3	~ = =
9	
-	< 7 =
಼	
=	
Ξ	(6) (5)
a	(F)
=	: ≥
~	Ges No
97	
*	

CHAIN OF CUSTODY

	SR#:
2	K
) ‡	101
	上
	1

Signature Date/Time Signature Date/Time Printed Name Firm Printed Name RELINQUISHED BY: 12.50 RELINQUISHED BY:	Requested Report Date	CLP Deliverable Report	(includes all raw data) Standard (10-15 working days)		up., MS, MSD as THEN ABOUND DECLINEMENTS *INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI (NORTHWEST)	als: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni I	hod Bill To: Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag	tals are to be analyzed:	The second secon		・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		201	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			PLEID DATE TIME LABID MATRIX NUMBER OF CONTROL OF CONTR	TAINERS TAINERS TAINERS TOSTE I HOU TAINERS TOSTE I HOU TOSTE I	ASSTEX ()	1317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222x07 • FA	isan E	
Signature Date/Time Printed Name Firm	RECEIVED BY:		"林",一种"一种"一种",一种"一种",一种"一种",一种"一种",一种"一种",一种"一种",一种"一种",一种"一种"一种",一种"一种"一种",一种"一种",一种"一种"一种",一种"一种"一种",一种"一种",一种"一种"一种",一种"一种"一种",一种"一种"一种",一种"一种"一种",一种"一种"一种",一种"		NAM BULLEVEL		/lg Mn Mo Ni K Ag Na Se Sr Ti Sn	Mn Mo Ni K			(1000年) 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	edit of the state	per la	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	The state of the s	- fee 3 l s 1 crest - crest - crest	The second of th	. 10	PH, Const	4. PO4. F. I TDS (circle) II-P. TKN, TO OX 1650	NO2; DC, 506 []		

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC Fd. W

Client / Projec	t: <u>URS</u>					Ser	vice Re	equest <i>K</i>	(12_0	147			
Received: 2	110/12 c	pened: 2/1	16/12	•	Ву:	R	Tc	Unload	ed: <u>2</u>	116/12	By:_	<u>61</u>	
. Samples we	ere received via? Fre received in: (circ State on coolers?	- Contractive -	В	UPS ox	DH Enve	lope		Courie her		nd Delivered		NA	
	vere custody seals in		Y	N		If pre	sent, w	ere they	signed an	d dated?		Y	N
Cooler Temp °C	Temp Blank °C 5 U	Thermometer ID ようり	c	ooler/C ID	oc M	X			Tracking	ı Number		(NA)	Filed
. Packing ma	terial: Inserts B	aggies Bubble	e W) ap	Gel P	acks	(Wet I	ge Di	y Ice	Sleeves		× 11 1 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10		
· ·	dy papers properly f	-	-								NA	D	N
. Did all bott	les arrive in good co	ndition (unbroke	en)? Ind	dicate i	in the t	able be	elow.				NA	Ø	N
	mple labels complete										NA	0	N
	ple labels and tags	_						ncies in i	the table (on page 2.	NA	Ø	N
• •	opriate bottles/conta							T 7:4	to do a da	Ll. L.l	NA MA	S	N
•	H-preserved bottles						ite pH?	Inaicate	e in ine ia	die delow	NA)	Y	N N
	vials received with tes negative?	out neadspace?	inaicaie	in ine	ιαυιε υ	eiow.					DA MA	· Y	N
Sar	mple ID	Bottle Count Bottle Type		Head- space	Broke	рН	Rea	agent	Volume added	Reagent Lo Number		nitials	Time
M													
										same transfer of the same tran			
Votes Discrer	ancies, & Resolu	tions:			<u></u>	L	I		1				
rotes, 2 iserep													
												t	
, , , , , , , , , , , , , , , , , , ,													
										I	Page_		of

Now part of the ALS Group QA/QC Report

Client:

URS Corporation

Project:

IP Longview

Sample Matrix:

Water

Service Request: K1201477

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: Extraction Method: 8

EPA 3520C

8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
BV-13	K1201477-001	107D *	89 D	99D#
Method Blank	KWG1201892-3	74	77	91
Lab Control Sample	KWG1201892-1	79	80	86
Duplicate Lab Control Sample	KWG1201892-2	76	78	84

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	28-98
Sur2 = Fluoranthene-d10	31-105
Sur3 = Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/01/2012 16:20:01

Form 2A - Organic

Page 1 of 1

SuperSet Reference: RR138811

Now part of the ALS Group

Analytical Results

Client: Project: URS Corporation IP Longview

Sample Matrix:

Water

Service Request: K1201477

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Method Blank KWG1201892-3

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.00 32 J	0.020	0.0030	1	02/23/12	02/29/12	KWG1201892	
2-Methylnaphthalene	ND U	0.020	0.0023	1	02/23/12	02/29/12	KWG1201892	
Acenaphthylene	ND U	0.020	0.0034	1	02/23/12	02/29/12	KWG1201892	
Acenaphthene	ND U	0.020	0.0044	1	02/23/12	02/29/12	KWG1201892	
Dibenzofuran	ND U	0.020	0.0046	1	02/23/12	02/29/12	KWG1201892	
Fluorene	ND U	0.020	0.0038	1	02/23/12	02/29/12	KWG1201892	
Phenanthrene	ND U	0.020	0.0050	1	02/23/12	02/29/12	KWG1201892	
Anthracene	ND U	0.020	0.0036	1	02/23/12	02/29/12	KWG1201892	
Fluoranthene	, ND U	0.020	0.0044	1	02/23/12	02/29/12	KWG1201892	
Pyrene	ND U	0.020	0.0035	1	02/23/12	02/29/12	KWG1201892	
Benz(a)anthracene	ND U	0.020	0.0026	1	02/23/12	02/29/12	KWG1201892	
Chrysene	ND U	0.020	0.0034	1	02/23/12	02/29/12	KWG1201892	
Benzo(b)fluoranthene	ND U	0.020	0.0023	1	02/23/12	02/29/12	KWG1201892	
Benzo(k)fluoranthene	ND U	0.020	0.0025	1	02/23/12	02/29/12	KWG1201892	
Benzo(a)pyrene	ND U	0.020	0.0043	1	02/23/12	02/29/12	KWG1201892	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.0026	1	02/23/12	02/29/12	KWG1201892	
Dibenz(a,h)anthracene	ND U	0.020	0.0025	1	02/23/12	02/29/12	KWG1201892	
Benzo(g,h,i)perylene	ND U	0.020	0.0029	1	02/23/12	02/29/12	KWG1201892	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	74	28-98	02/29/12	Acceptable	
Fluoranthene-d10	77	31-105	02/29/12	Acceptable	
Terphenyl-d14	91	27-112	02/29/12	Acceptable	

Comments:

Merged

Now part of the ALS Group

Analytical Results

Client: Project: **URS** Corporation IP Longview

Sample Matrix:

Water

Service Request: K1201477 **Date Collected:** 02/16/2012

Date Received: 02/16/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

BV-13

Lab Code:

K1201477-001

Extraction Method:

EPA 3520C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

8270D SIM

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	5300	D	40	6.0	2000	02/23/12	02/29/12	KWG1201892	
2-Methylnaphthalene	580	D	4.0	0.46	200	02/23/12	02/29/12	KWG1201892	
Acenaphthylene	8.2	D	4.0	0.68	200	02/23/12	02/29/12	KWG1201892	
Acenaphthene	400	D	4.0	0.88	200	02/23/12	02/29/12	KWG1201892	
Dibenzofuran	270	D	4.0	0.92	200	02/23/12	02/29/12	KWG1201892	
Fluorene	270	D	4.0	0.76	200	02/23/12	02/29/12	KWG1201892	
Phenanthrene	300	D	4.0	1.0	200	02/23/12	02/29/12	KWG1201892	
Anthracene	42	D	4.0	0.72	200	02/23/12	02/29/12	KWG1201892	
Fluoranthene	99	D	4.0	0.88	200	02/23/12	02/29/12	KWG1201892	
Pyrene	62	D	4.0	0.70	200	02/23/12	02/29/12	KWG1201892	
Benz(a)anthracene	15	D	4.0	0.52	200	02/23/12	02/29/12	KWG1201892	
Chrysene	13	D	4.0	0.68	200	02/23/12	02/29/12	KWG1201892	
Benzo(b)fluoranthene	7.0	D	4.0	0.46	200	02/23/12	02/29/12	KWG1201892	William Annual Control of Control
Benzo(k)fluoranthene	3.8	JD	4.0	0.50	200	02/23/12	02/29/12	KWG1201892	
Benzo(a)pyrene	3.6	JD	4.0	0.86	200	02/23/12	02/29/12	KWG1201892	
Indeno(1,2,3-cd)pyrene	1.5	JD	4.0	0.52	200	02/23/12	02/29/12	KWG1201892	
Dibenz(a,h)anthracene	0.72	JD	4.0	0.50	200	02/23/12	02/29/12	KWG1201892	
Benzo(g,h,i)perylene	1.5	JD	4.0	0.58	200	02/23/12	02/29/12	KWG1201892	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	107	28-98	02/29/12	Outside Control Limits	
Fluoranthene-d10	89	31-105	02/29/12	Acceptable	
Terphenyl-d14	99	27-112	02/29/12	Acceptable	

Comments:

Printed: 03/01/2012 16:19:54

Merged

 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} v: \label{lem:limit} u: \label{lem:limit} V \label{lem:limit} v: \la$

Form 1A - Organic

Page 1 of 1

Now part of the ALS Group QA/QC Report

Client: Project: URS Corporation IP Longview

Sample Matrix:

Water

Service Request: K1201477

Date Extracted: 02/23/2012

Date Extracted: 02/23/2012 **Date Analyzed:** 02/29/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: Analysis Method:

EPA 3520C

8270D SIM

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1201892

Lab Control Sample KWG1201892-1 Duplicate Lab Control Sample KWG1201892-2

		Control Spik			Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	2.12	2.50	85	1.98	2.50	79	39-110	7	30
2-Methylnaphthalene	2.13	2.50	85	1.98	2.50	79	39-115	7	30
Acenaphthylene	2,24	2.50	90	2.08	2.50	83	44-115	8	30
Acenaphthene	2,15	2.50	86	1.99	2.50	80	44-113	8	30
Dibenzofuran	2.19	2.50	87	2.03	2.50	81	46-116	8	30
Fluorene	2.20	2.50	88	2.04	2.50	82	48-118	7	30
Phenanthrene	2.13	2.50	85	2.05	2.50	82	47-120	4	30
Anthracene	2.22	2.50	89	2.07	2.50	83	44-117	7	30
Fluoranthene	2.30	2.50	92	2.17	2.50	87	48-128	6	30
Pyrene	2.23	2.50	89	2.08	2.50	83	42-133	7	30
Benz(a)anthracene	2.25	2.50	90	2.08	2.50	83	48-125	8	30
Chrysene	2.36	2.50	94	2.17	2.50	87	50-128	9	30
Benzo(b)fluoranthene	2.46	2.50	99	2.30	2.50	92	49-131	7	30
Benzo(k)fluoranthene	2.63	2.50	105	2.44	2.50	98	54-131	7	30
Benzo(a)pyrene	2.64	2.50	105	2.46	2.50	98	43-134	7	30
Indeno(1,2,3-cd)pyrene	2.29	2.50	91	2.10	2.50	84	45-133	8	30
Dibenz(a,h)anthracene	2.38	2.50	95	2.20	2.50	88	49-133	8	30
Benzo(g,h,i)perylene	2.23	2.50	89	2.06	2.50	82	51-124	8	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/01/2012 16:20:17 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page 1 of 1

SuperSet Reference: RR138811

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview

Sample Matrix:

Water

Service Request: K1201477

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
BV-13	K1201477-001	138	119
BV-13DUP	KWG1201833-1	133	117
Method Blank	KWG1201833-3	106	95
Lab Control Sample	KWG1201833-2	109	100
Duplicate Lab Control Sample	KWG1201833-5	109	101

Surrogate Recovery Control Limits (%)

50-150 Sur1 = o-Terphenyl50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/23/2012 11:29:17

Form 2A - Organic

1 of 1 Page

15

Now part of the ALS Group

Analytical Results

Client: Project: **URS** Corporation

Sample Matrix:

IP Longview Water

Service Request: K1201477

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name: Lab Code:

Method Blank

KWG1201833-3

Extraction Method: Analysis Method:

EPA 3510C NWTPH-Dx Units: ug/L Basis: NA

Level: Low

Extraction Dilution Date Date Analyzed Note **Factor** Extracted Lot MRL **Analyte Name** Result Q 1 02/21/12 02/22/12 KWG1201833 ND U 250 Diesel Range Organics (DRO) 02/22/12 KWG1201833 1 02/21/12 Residual Range Organics (RRO) ND U 500

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	106	50-150	02/22/12 02/22/12	Acceptable Acceptable	
n-Triacontane	95	50-150	02/22/12	Acceptable	

Comments:

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP Longview Water

Service Request: K1201477 **Date Collected:** 02/16/2012

Date Received: 02/16/2012

Diesel and Residual Range Organics

Sample Name:

BV-13

Lab Code:

K1201477-001

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	19000 Z	280	1	02/21/12	02/22/12	KWG1201833	
Residual Range Organics (RRO)	890 Z	560	1	02/21/12	02/22/12	KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	138	50-150	02/22/12	Acceptable
n-Triacontane	119	50-150	02/22/12	Acceptable

Comments:

Printed: 02/23/2012 11:29:10 $u: \Stealth \Crystal.rpt \Form \ImNew.rpt$

13

Now part of the ALS Group QA/QC Report

Client: Project: **URS** Corporation IP Longview

Sample Matrix:

Water

Service Request: K1201477 **Date Extracted:** 02/21/2012

Date Analyzed: 02/22/2012

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

BV-13

Lab Code:

K1201477-001

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1201833

BV-13DUP

		Sample	KWG120 Duplicate	_	Relative Percent	RPD Limit
Analyte Name	MRL	Result	Result	Average	Difference	
Diesel Range Organics (DRO)	280	19000	19000	19000	2	30
Residual Range Organics (RRO)	560	890	830	860	7 #	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/23/2012 11:29:21 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

Page

1 of 1

SuperSet Reference: RR138487

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview

Sample Matrix:

Water

Service Request: K1201477 **Date Extracted:** 02/21/2012

Date Analyzed: 02/22/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low **Extraction Lot:** KWG1201833

Lab Control Sample

KWG1201833-2

Duplicate Lab Control Sample

KWG1201833-5

Duplicate Lab Control Spike Lab Control Spike RPD %Rec Limits **RPD** Limit %Rec **Expected** %Rec Result **Expected** Result **Analyte Name** 30 97 46-140 4 101 1550 1600 Diesel Range Organics (DRO) 1610 1600 45-159 5 30 800 84 Residual Range Organics (RRO) 711 800 89 673

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/23/2012 11:29:24 $u: \sl ealth \crystal.rpt \Form 3DLC.rpt$

Form 3C - Organic

SuperSet Reference: RR138487

Page

1 of 1

March 5, 2012

Analytical Report for Service Request No: K1201540

Paul Kalina URS Corporation 1501 4th Ave.,Suite 1400 Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on February 18, 2012. For your reference, these analyses have been assigned our service request number K1201540.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

EdWallace

Columbia Analytical Services, Inc.

Ed Wallace

Project Chemist

EW/afs

Page 1 of 517

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data:
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- $i \ \ \$ The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

URS Corporation

Service Request No.:

K1201540

Project:

IP Longview Solidification

Date Received:

2/18/12

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six water samples were received for analysis at Columbia Analytical Services on 2/18/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4° C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Residual Range Organics (RRO) in sample Batch QC was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Elevated Detection Limits:

Samples 0397-017A (3 Day) and 0397-017A (4 Day) required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). An MS and Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) were analyzed and reported in lieu of the MS/MSD for these samples.

approved by	2 mw	_Date	5	12
				Ł

Relinquished by	Relinquished by	Relinquished by	3	Sample Received Intact: Yes No Reling. by sampler (Sign & Print Name))	7-017 A (4)	0397-017A(3 Day)	Sample I.D.	www.caslab.com		Columbia	
Date Time	Date Time	Date Time	17-12	Date Time								V V 2	2 0 02	Soil Water Air Other	Matrix Prsv.	Manager Pouch Kalima	100 100	Client (1) RS COM
Received by laboratory Date Time	Received by	Received by	Brun Brid Thin CB 2/18/12	Temperature received: Ice No ice								-	70:5547	Sampling Time PAH 8270 S/M TPH - DRO NWTPH - DX Turn Around Time (working days)		Telephone No. +38-2172 Fax No495-52 \ Z	LRS Larguiews	CHAIN OF CUSTODY
			Lab Work No.		mscorp.com	M Paul Kalina	R Kemron. com	x tiordan@	Tommy J	CHURCH SERVICES				request for low level 8270 SIM. 1/20/12	Special Detection Limit/Reporting	Freder	Method of Shipment	Page of

CHAIN OF CUSTODY Reposer: FOUL KOLINA Integrance No. As a recovery of the composition	Relinquished by	Relinquished by	Relinquished by	JIII SWAM SU	Reling. by sampler (Sign & Print Name)	Vor							5241) and 110-11580	0397-017 DW (3 DOW)	Sample I.D.	www.caslab.com	rvices"		
COLL CHAIN of CUSTODY Water Main Water Main Cother Yes Prox. Air Other Yes No				238									2		No. of Containers		0		lennage,
The Received by Javonouvy Due Received by Javonouvy Due Received by Javonouvy Due Received by Javonouvy Due Time Received by Javonouvy Due Time Due Due Time Due Due Due Due Due Due Due D	Date	Date	Date	2-17	Date	-							7	7	Water	Watr	8		$\backslash $
CHAIN of CUSTODY Project MRS LONGVIEW Solidification felephore No. 138-2172 Fax. WS 6-45-232 Received by laboratory Date Time Received by laboratory Date Time CHAIN of CUSTODY Solidification felephore No. 148-2172 Fax. WS 6-45-232 Solidification felephore No. 148-21812 844 Turn Around Time (working days) Turn Around Time (working days) Received by laboratory Date Time Date Time	Time	Time	Time	160										12	Other Yes No	_	2000		55
CHAIN of CUSTODY CHAIN of CUSTODY CHAIN of CUSTODY CHAIN of CUSTODY Solution Manage Faxing - 495-5282	Received by I	Received by	Received by		Received by I								2	1001100	Sampling Time				
2S CONCINEW SOLIDIFICATION No. 138-2172 Faxos - 495-5232 Faxos - 495-6232	aboratory		Communication and		Sign & Print Name									XXX/	PAH 8270 5/M TPH-DRO NOTPH-DX		,	1	0
Paxes Solid Accepts No ice No ice Time Time Time Turn Around Time (working days) Turn Around Time (working days)		TO THE OWNER WHEN THE PARTY OF	į.	\$)								10				100	_ -	- 1
Turn Around Time (working days)	Date			Š	No ice	: -							1 2 3	Λ			1 1.	TAVIEW	- 1
IN MARKS	Time	All and a second a	- 1		The fall of the fa								ŧ	3' 3'	7	-	6-495-0	Solidi	TODY
Page Is Method of Shipment Method of Shipment Method of Shipment Method of Shipment Fall Special Detection Limit/Reporting Paul Ka Paul Ka Pesser Result Solomony K Commy	-											\square	\square			282	1cation		
				Lab Work No.	@ MX	Paul Ru	 M KONYON CON	A thorda	K COR	STORMU	results to	Please:	X	H5/2	tembers the first the firs	Special Detection Limit/Reporting	13PH	Method of Shipment	Page

	Time	Date	/ laboratory	Received by laboratory	Time	Ţ	Date				Relinquished by
				Received by	Time		Date				Relinquished by
				Received by	Time	∃	Date				Relinquished by
Lab Work No.	1 2/18/12	Brud Tobin		P	1600	2-17-12	2-1		338	1 Suhm Sill	910
			Received by (Sign & Print Name)	Received by	Time	1	Date			Reling, by sampler (Sign & Print Name)	Reling, by sampl
		No ice	lce	Temperature received:	Tempe				6	Intact: Yes No	Sample Received Intact:
Paux 27 com											
TOWN NOW THE						+		_			
MU - 73 - 36											
A Kemion, com											
K to go do do											
a Tommy Joran						-					
10 E O E											
DIG 62 62 A											
										<i>J</i>	
The second of th			1 X X 2 X				4	2		16-15-Dec 1	7-1-260
10000000000000000000000000000000000000	PANIMACO I	1010 HU	X	112 10:08	72/17		2	0		TORUL DESCRIPTION	0397-0
V	か 		X	1210:50	72/16		7	N		16 (3 DOLL)	0-1-260
Famil Ratina request for 1000 Here! 8270 SIM. 1/20/12	Turn Around Time (working days)		PAH 8270 SIM TIH-DRO NWTPH-DX	Sampling Time	No Yes No Sampling Date	Other	Water Air	No. of Containers Soil	Lab Sample No.	Sample I.D.	
Special Detection Limit/Reporting										800.695.7222 www.caslab.com	ww 8
redex	Fax No. 86-495-5282	. 2172 Fax No.	Telephone No. 438 - 2172		ام	olina	X	J W	Project Po	Analytical Services	(Ca) Ana
Method of Shipment	Langview Solichification Method of Shipment	LandView ,	Sam Attended							umbia .	े
Page of	TODY	HAIN of CUSTODY	CH/			978	(V	とれい	Client:		
KI 201840											

KI 201 540

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC Fd.W

Client / Project: URS CO			•				equest K	12	01540			
1	pened: 2 18	112		By:	- RJ		Unloade		5 mm./	_By:_	r5	<u> </u>
. Samples were received via? 2. Samples were received in: (circ 3. Were <u>custody seals</u> on coolers?	NA (Be	UPS ox N	DH Enve	<i>lope</i> yes, he	ow ma		ere?l	and Delivered	-	NA	
If present, were custody seals in	ntact? (D	N		If pre	sent, v	vere they s	igned a	nd dated?		Y	N
Cooler Temp Temp °C Blank °C 0.3 0.9 -0.4 0.3	Thermometer ID 307	C	ooler/C	OC (N/)			Trackin	ig Number		NÅ	Filed
7. Packing material: Inserts Bo	-	_	Gel P	acks	Werr	ce D	ry Ice S	leeves		NA	Ø	N N
Were custody papers properly fDid all bottles arrive in good coWere all sample labels complete	ndition (unbroken)? Inc	dicate i		able be	elow.				NA NA	(V)) N
 Did all sample labels and tags a Were appropriate bottles/conta Were the pH-preserved bottles 	iners and volumes	receiv	ed for	the test	s indic	ated?				NA NA NA		N N
4. Were VOA vials received with5. Was C12/Res negative?	out headspace? In	ndicate	in the	table b	elow.	यम् वर्गाटा संदर्भ		₹15 (prins 24)		MA MA	Y Y	N N
Sample ID on Bottle	Herricanell sada	Samp	ole ID o	n COC					Identified by:			
գ ւ Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рН	Re	eagent	Volume added	Reagent L Number		i Initials	Time
1 of 2 of the 16 Ambers	1 x IL Amber				*	H(31	1mL	201101020	131	POT	9:55
Notes, Discrepancies, & Resolu	tions:		1								4	
RUE												

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L

Service Request: K1201540

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
0397-017A (3 Day)	K1201540-001	47 D	47 D	53 D
0397-017A (4 Day)	K1201540-002	82 D	85 D	97 D
Batch QC	K1201568-001	77	85	87
Method Blank	KWG1201791-3	76	80	91
Batch QCMS	KWG1201791-4	72	85	87
Lab Control Sample	KWG1201791-1	73	84	83
Duplicate Lab Control Sample	KWG1201791-2	77	86	86
<u> •</u>		, .	٠.	

Surrogate Recovery Control Limits (%)

 Sur1 = Fluorene-d10
 29-98

 Sur2 = Fluoranthene-d10
 31-105

 Sur3 = Terphenyl-d14
 27-112

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/01/2012 16:57:49 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic 175

SuperSet Reference: RR138819

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP URS Longview Solidification

Water

Service Request: K1201540

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1201791-3

Extraction Method: Analysis Method:

EPA 3520C 8270D SIM Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1.3 J	3.3	0.71	1	02/21/12	02/27/12	KWG1201791	
2-Methylnaphthalene	0.82 J	3.3	0.40	1	02/21/12	02/27/12	KWG1201791	
Acenaphthylene	ND U	3.3	0.37	1	02/21/12	02/27/12	KWG1201791	
Acenaphthene	ND U	3.3	0.36	1	02/21/12	02/27/12	KWG1201791	
Dibenzofuran	ND U	3.3	0.42	1 .	02/21/12	02/27/12	KWG1201791	
Fluorene	ND U	3.3	0.42	1	02/21/12	02/27/12	KWG1201791	
Phenanthrene	1.3 J	3.3	0.72	1	02/21/12	02/27/12	KWG1201791	-
Anthracene	ND U	3.3	0.29	1	02/21/12	02/27/12	KWG1201791	
Fluoranthene	1.3 J	3.3	0.46	1	02/21/12	02/27/12	KWG1201791	
Pyrene	ND U	3.3	0.78	1	02/21/12	02/27/12	KWG1201791	-
Benz(a)anthracene	ND U	3.3	0.34	1	02/21/12	02/27/12	KWG1201791	
Chrysene	ND U	3.3	0.65	1 -	02/21/12	02/27/12	KWG1201791	
Benzo(b)fluoranthene	ND U	3.3	0.25	1	02/21/12	02/27/12	KWG1201791	:
Benzo(k)fluoranthene	ND U	3.3	0.41	1	02/21/12	02/27/12	KWG1201791	
Benzo(a)pyrene	ND U	3.3	0.41	1	02/21/12	02/27/12	KWG1201791	
Indeno(1,2,3-cd)pyrene	ND U	3.3	0.44	· · 1	02/21/12	02/27/12	KWG1201791	
Dibenz(a,h)anthracene	ND U	3.3	0.45	1 .	02/21/12	02/27/12	KWG1201791	
Benzo(g,h,i)perylene	ND U	3.3	0.36	1	02/21/12	02/27/12	KWG1201791	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note			
Fluorene-d10	76	29-98	02/27/12	Acceptable			
Fluoranthene-d10	80	31-105	02/27/12	Acceptable			
Terphenyl-d14	91	27-112	02/27/12	Acceptable			

Comments:	
	_

RR138819

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP URS Longview Solidification

trix: Water

-

Service Request: K1201540

Date Collected: 02/16/2012

Date Received: 02/18/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: 0397-017A (3 Day)

Extraction Method:

K1201540-001

Analysis Method:

EPA 3520C 8270D SIM Units: ng/L Basis: NA

Dugig. 1411

Level: Low

Analyte Name	Result	Q I	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	270000 I	D	800	170	200	02/21/12	02/28/12	KWG1201791	
2-Methylnaphthalene	48000]	D	800	. 95	200	02/21/12	02/28/12	KWG1201791	
Acenaphthylene	570 1	D ·	40	4.4	10	02/21/12	02/27/12	KWG1201791	
Acenaphthene	36000 1	D	800	85	200	02/21/12	02/28/12	KWG1201791	
Dibenzofuran	17000 I	D .	40	5.0	10	02/21/12	02/27/12	KWG1201791	
Fluorene	20000 1	D ·	40	5.0	10	02/21/12	02/27/12	KWG1201791	
Phenanthrene	29000 1	D	800	170	200	02/21/12	02/28/12	KWG1201791	
Anthracene	3800 1	D	40	3.5	10	02/21/12	02/27/12	KWG1201791	
Fluoranthene	4500 1	D	40	5.5	10	02/21/12	02/27/12	KWG1201791	
Pyrene	2 600 1	D	40	9.2	10	02/21/12	02/27/12	KWG1201791	
Benz(a)anthracene	150 I	D	40	4.0	10	02/21/12	02/27/12	KWG1201791	
Chrysene	87 I	D .	40	7.7	10	02/21/12	02/27/12	KWG1201791	
Benzo(b)fluoranthene	18 J	ID .	40	3.0	10	02/21/12	02/27/12	KWG1201791	,
Benzo(k)fluoranthene	6.5 J	ID ·	40	4.9	10	02/21/12	02/27/12	KWG1201791	
Benzo(a)pyrene	8.1 J	ID	40	4.9	10	02/21/12	02/27/12	KWG1201791	
Indeno(1,2,3-cd)pyrene	ND U	U	40	5.2	10	02/21/12	02/27/12	KWG1201791	
Dibenz(a,h)anthracene	ND U	U ·	40	5.3	10	02/21/12	02/27/12	KWG1201791	
Benzo(g,h,i)perylene	ND U	U -	40	4.3	10	02/21/12	02/27/12	KWG1201791	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
Fluorene-d10	47	29-98	02/27/12	Acceptable		
Fluoranthene-d10	47	31-105	02/27/12	Acceptable		
Terphenyl-d14	53	27-112	02/27/12	Acceptable		

Comments:

Page

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Collected: 02/17/2012

Date Received: 02/18/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-017A (4 Day)

Extraction Method:

K1201540-002 EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	310000 D	770	160	200	02/21/12	02/28/12	KWG1201791	-
2-Methylnaphthalene	56000 D	770	90	200	02/21/12	02/28/12	KWG1201791	
Acenaphthylene	63 0 D	39	4.2	10	02/21/12	02/27/12	KWG1201791	
Acenaphthene	42 000 D	770	81	200	02/21/12	02/28/12	KWG1201791	
Dibenzofuran	19000 D	39	4.8	10	02/21/12	02/27/12	KWG1201791	
Fluorene	22 000 D	39	4.8	10	02/21/12	02/27/12	KWG1201791	
Phenanthrene	31000 D	770	170	200	02/21/12	02/28/12	KWG1201791	
Anthracene	4100 D	39	3.3	10	02/21/12	02/27/12	KWG1201791	
Fluoranthene	4700 D	39	5.2	10	02/21/12	02/27/12	KWG1201791	
Pyrene	2800 D	39	8.8	10	02/21/12	02/27/12	KWG1201791	
Benz(a)anthracene	170 D	39	3.9	10	02/21/12	02/27/12	KWG1201791	
Chrysene	100 D	39	7.4	10	02/21/12	02/27/12	KWG1201 7 91	
Benzo(b)fluoranthene	26 JD	39	2.9	10	02/21/12	02/27/12	KWG1201791	
Benzo(k)fluoranthene	8.3 JD	39	4.7	10	02/21/12	02/27/12	KWG1201791	
Benzo(a)pyrene	12 JD	39	4.7	10	02/21/12	02/27/12	KWG1201791	
Indeno(1,2,3-cd)pyrene	ND U	39	5.0	10	02/21/12	02/27/12	KWG1201791	
Dibenz(a,h)anthracene	ND U	39	5.1	10	02/21/12	02/27/12	KWG1201791	
Benzo(g,h,i)perylene	ND U	39	4.1	10	02/21/12	02/27/12	KWG1201791	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note			
Fluorene-d10	82	29-98	02/27/12	Acceptable		1 1	.:
Fluoranthene-d10	85	31-105	02/27/12	Acceptable			
Terphenyl-d14	97	27-112	02/27/12	Acceptable			

Comments:

1 of 1

SuperSet Reference:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Extracted: 02/21/2012 **Date Analyzed:** 02/27/2012

Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

Batch QC

Lab Code:

K1201568-001

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L

Basis: NA

Level: Low

Extraction Lot: KWG1201791

Batch QCMS KWG1201791-4

	Sample	Matrix Spike			%Rec	
Analyte Name	Result	Result	Expected	%Rec	Limits	
Naphthalene	5.4	355	476	73	37-118	
2-Methylnaphthalene	1.3	337	476	71	37-117	
Acenaphthylene	0.65	357	476	75	43-114	
Acenaphthene	2.0	343.	476	72	45-114	
Dibenzofuran	1.2	351	476	73	44-122	
Fluorene	1.7	358	476	75	45-123	
Phenanthrene	4.6	366	476	76	42-127	
Anthracene	1.5	377	476	79	32-125	
Fluoranthene	2.0	423	476	88	48-134	
Pyrene	1.9	401	476	84	44-130	
Benz(a)anthracene	1.3	425	476	89	41-128	
Chrysene	1.1	396	476	83	48-128	
Benzo(b)fluoranthene	1.6	434	476	91	40-139	
Benzo(k)fluoranthene	0.60	393	476	82	48-134	
Benzo(a)pyrene	0.88	412	476	86	35-132	
Indeno(1,2,3-cd)pyrene	1.0	391	476	82	40-135	
Dibenz(a,h)anthracene	ND	376	476	79	43-135	
Benzo(g,h,i)perylene	1.0	356	476	75	44-128	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/01/2012 16:58:22 $u:\Stealth\Crystal.rpt\Form3MS.rpt$

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Extracted: 02/21/2012 **Date Analyzed:** 02/27/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520C **Analysis Method:**

8270D SIM

Units: ng/L

Basis: NA Level: Low

Extraction Lot: KWG1201791

Lab Control Sample

Duplicate Lab Control Sample

	KWG1201791-1 Lab Control Spike			KWG1201791-2 Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	377	500	75	390	500	78	39-110	3	30
2-Methylnaphthalene	373	500	75	382	500°	76	39-115	2	30
Acenaphthylene	408	500	82	420	500	84	44-115	3	30
Acenaphthene	385	500	77	398	500	-80-	44-113	3 -	30
Dibenzofuran	378	500	76	398	500	80	46-116	5	30
Fluorene	372	500	74	403	500	81	48-118	8	. 30
Phenanthrene	402	500	80	416	500	83	47-120	3	30
Anthracene	410	500	82	434	500	87	44-117	6	30
Fluoranthene	445	500	89	45 3	500	91	48-128	2	30
Pyrene	380	500	76	407	500	81	42-133	7	30
Benz(a)anthracene	415	500	83	423	500	85	48-125	2	30
Chrysene	419	500	84	430	500	86	50-128	3	30
Benzo(b)fluoranthene	456	500	91	462	500	92	49-131	1	30
Benzo(k)fluoranthene	460.	500	92	465	500	93	54-131	1	30
Benzo(a)pyrene	469	500	94	478	500	96	43-134	2	30
Indeno(1,2,3-cd)pyrene	437	500	87	434	500	87	45-133	- 1	30
Dibenz(a,h)anthracene	432	500	86	432	500	86	49-133	0	30
Benzo(g,h,i)perylene	417	500	83	410	500	82	51-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
Batch QC	K1201477-001	138	119
0397-017A (3 Day)	K1201540-001	110	105
0397-017A (4 Day)	K1201540-002	109	108
Batch QCDUP	KWG1201833-1	133	117
Method Blank	KWG1201833-3	106	95
Lab Control Sample	KWG1201833-2	109	100
Duplicate Lab Control Sample	KWG1201833-5	109	101

Surrogate Recovery Control Limits (%)

50-150 Sur1 = o-Terphenyl50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/22/2012 16:57:32 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

RR138476

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1201833-3

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ND U	250 500	1 1	02/21/12 02/21/12	02/22/12 02/22/12	KWG1201833 KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	106	50-150	02/22/12	Acceptable	
n-Triacontane	95	50-150	02/22/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Collected: 02/16/2012

Date Received: 02/18/2012

Diesel and Residual Range Organics

Sample Name:

0397-017A (3 Day)

Lab Code:

K1201540-001

Units: ug/L Basis: NA

Extraction Method:

Analysis Method:

EPA 3510C

NWTPH-Dx

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	1100 Z	270	1	02/21/12	02/22/12	KWG1201833	
Residual Range Organics (RRO)	ND U	540	1	02/21/12	02/22/12	KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
o-Terphenyl	110	50-150	02/22/12	Acceptable		
n-Triacontane	105	50-150	02/22/12	Acceptable		

Comments:

Printed: 02/22/2012 16:57:22 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} lem \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \lab$

Form 1A - Organic

Page 1 of 1

Merged

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Collected: 02/17/2012

Date Received: 02/18/2012

Diesel and Residual Range Organics

Sample Name:

0397-017A (4 Day)

Lab Code:

K1201540-002

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	1100 Z	270	1	02/21/12	02/22/12	KWG1201833	
Residual Range Organics (RRO)	ND U	540	1	02/21/12	02/22/12	KWG1201833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	109	50-150	02/22/12	Acceptable	
n-Triacontane	108	50-150	02/22/12	Acceptable	

Comments:

Printed: 02/22/2012 16:57:25 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} lem: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} lem: \la$

16

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Extracted: 02/21/2012

Date Analyzed: 02/22/2012

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

Batch QC

Lab Code:

K1201477-001

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

Extraction Lot: KWG1201833

Batch OCDUP

Analyte Name		Sample	KWG12	01833-1	Relative Percent	RPD Limit	
	MRL	Result	Result	Average	Difference		
Diesel Range Organics (DRO)	280	19000	19000	19000	2	30	
Residual Range Organics (RRO)	560	890	830	860	7 #	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/22/2012 16:57:36 $u:\Stealth\Crystal.rpt\Form3DUP.rpt$

Form 3B - Organic

1 of Page RR138476 SuperSet Reference:

19

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201540

Date Extracted: 02/21/2012

Date Analyzed: 02/22/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1201833

Lab Control Sample

KWG1201833-2

Duplicate Lab Control Sample

KWG1201833-5

		Control Spik	e	Duplicate	Duplicate Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	1610	1600	101	1550	1600	97	46-140	4	30
Residual Range Organics (RRO)	711	800	89	673	800	84	45-159	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/22/2012 16:57:40 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page RR138476 SuperSet Reference:

1 of 1

March 5, 2012

Analytical Report for Service Request No: K1201617

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the rush samples submitted to our laboratory on February 22, 2012. For your reference, these analyses have been assigned our service request number K1201617.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

(Wallace

Columbia Analytical Services, Inc.

Ed Wallace

Project Chemist

EW/afs

Page 1 of <u>543</u>

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request No.:

K1201617

Date Received:

2/22/12

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six water samples were received for analysis at Columbia Analytical Services on 2/22/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx

No anomalies with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C

Elevated Detection Limits:

All samples required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Sample Notes and Discussion:

Approved by

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). An MS and Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) were analyzed and reported in lieu of the MS/MSD for these samples.

EMW Date 3/5/12

		- - -	
	Received by laboratory JAUN MS Date 2/2016 Time MAD	Date Time	Relinquished by
	Received by	Date Time	
	Received by	Date Time	0
Lab Work No.		8-12 1600	sucher Qui Suc
Word, Loss	received: Ice No ice Received by (Sign & Print Name)	Temperature received:	eceived Intact: Yes No sampler (Sign & Print Name)
Paul Kau			
不			
R K Jardas			
Pease sers			
			Ç
	1225 XX S221	2	(6 day)
Raul Haline request for lows level 8270 SIM		Water Air Other Yes No Sampling Date	Sample I.D. Lab Sample No. No. of Containers Soil
Special Detection Limit/Reporting	206-438-2172 886-495-5282	5	800.695.7222 www.caslab.com
Method of Shipment	ongvi e		
Page of	CHAIN of CUSTODY	Carp	Client: URS

	Client: URS		CHAIN of CUST	
Columbia Analytical Services		7	S Lorg View E	Method of Shipment
800.695.7222 www.caslab.com			106 700 6116 686 745 5686	Special Detection Limit/Reporting
		Matrix Prsv.		Paul Kalina
Sample I.D.	ab Sample No. No. of Containers Soil Water	Air Other Yes No Sampling Date	Sampling Time PAH 8270 SI TPH-DRO NWT	8270 SIM 1120/12
397-017A (5 day)		1 2bd12		
			N.2	
				1
				, pro-
				Has sent
				results
				K S TONNY
				R JUNES
				M Kennan, com
				Paul Kalina
Sample Received Intact: Yes No	0	Temperatu	Temperature received: Ice No ice	ms carpicam
mpler (Sign & Print Name	Date	Time	by (Sign & Print Name)	
THE SERVICE	Sex - 2	2-20-12 1600		Lab Work No.
Relinquished by	Date	Time	Received by	
Relinquished by	Date	Time	Received by	
Relinquished by	Date	Time	Received by laboratory 1111 145 Date Date Time RM	

Sample I.D. Sample I.D.	Lab Sample No. No. of Containers Soil Water Air Manager Matrix	Other Yes No Sampling Date	Sampling Time Project P US Smariew Solidity Telephone No. 138-2172 Fax No. 1495	Turn Around Time (working days)
0	No	Sa	à	
	1	7 60 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
				Plas ser
				result to
		******		WIND WIND TOTAL
				R HOYDAN @
				A Kemron, Co
				Paul Kalina
Sample Received Intact: Yes No	5	Temperature received:	received: Ice No ice	barra, John
Reling, by sampler (Sign & Print Name)	Date 2-22-	Time 1.600	Received by (Sign & Print Name)	Lab Work No.
Relinquished by	Date	Time	Received by	
Relinguished by	Date	Time	Received by	
contract by	Date	Time	Received by laboratory	Time 1090

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC Ed. W

Client / Project: URS (D	rP		_Service Request I	K12 01617	
$\alpha / \alpha \wedge \gamma \wedge \gamma$	Opened: 2/22/12	By:	AJ Unload	led: 2/22/12	By:
 Samples were received via? Samples were received in: (cir Were <u>custody seals</u> on coolers 	rcle) Cooler Bo	UPS DH	L PDX Cour	ier Hand Deliyered	<i>NA</i>
If present, were custody seals	intact? Y	N	If present, were they	signed and dated?	Y N
Cooler Temp Temp °C Blank °C	Thermometer C	ooler/COC ID NA		Tracking Number	NA Filed
7. Packing material: <i>Inserts</i>	Baggies Bubble Wrap	Cal Packs	Wet Iee Dry Ice	Sleeves	
 Were custody papers properly Did all bottles arrive in good of Were all sample labels completed. Did all sample labels and tags Were appropriate bottles/cont Were the pH-preserved bottle Were VOA vials received with Was C12/Res negative? 	condition (unbroken)? Incepted (i.e. analysis, preservation agree with custody paper ainers and volumes receives (see SMO GEN SOP) receive thout headspace? Indicate	dicate in the to ion, etc.)? s? Indicate m red for the test ived at the app	ajor discrepancies in s indicated? propriate pH? Indica		NA (Y) N N N NA (Y) N N N N N N N N N N
Sample ID 1397-16 (5day) 1397-0174 (5day) 1397-011 Duf 5day)		Head- space Broke	pH Reagent Y HCL Y HCL Y HCL	Volume Reagent I Number 2 NV 2010620	
Notes, Discrepancies, & Resolu	utions:				2

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
0397-016 (5 day)	K1201617-001	68	79	85
0397-017A (5 day)	K1201617-002	65	75	83
0397-017 DUP (5 day)	K1201617-003	67	75	88
Method Blank	KWG1201890-3	73	79	85
Lab Control Sample	KWG1201890-1	70	76	81
Duplicate Lab Control Sample	KWG1201890-2	70	77	80

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	29-98
Sur2 = Fluoranthene-d10	31-105
Sur3 = Terphenyl-d14	27-112

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 03/01/2012 16:55:41

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of

RR138817

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1201890-3

Extraction Method:

EPA 3520C

Units: ng/L Basis: NA

Level: Low

Analysis Method: 8270D SIM

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1.5	J	3.4	0.71	1	02/23/12	02/27/12	KWG1201890	
2-Methylnaphthalene	0.81	J	3.4	0.40	1	02/23/12	02/27/12	KWG1201890	
Acenaphthylene	ND	U	3.4	0.37	1	02/23/12	02/27/12	KWG1201890	
Acenaphthene	ND	U	3.4	0.36	1	02/23/12	02/27/12	KWG1201890	
Dibenzofuran	0.45	J	3.4	0.42	1	02/23/12	02/27/12	KWG1201890	
Fluorene	ND	U	3.4	0.42	1	02/23/12	02/27/12	KWG1201890	
Phenanthrene	1.5	J	3.4	0.72	1	02/23/12	02/27/12	KWG1201890	***************************************
Anthracene	ND	U	3.4	0.29	1	02/23/12	02/27/12	KWG1201890	
Fluoranthene	0.73	J	3.4	0.46	1	02/23/12	02/27/12	KWG1201890	
Pyrene	ND	U	3.4	0.78	1	02/23/12	02/27/12	KWG1201890	······
Benz(a)anthracene	ND	U	3.4	0.34	1	02/23/12	02/27/12	KWG1201890	
Chrysene	ND	U	3.4	0.65	. 1	02/23/12	02/27/12	KWG1201890	
Benzo(b)fluoranthene	0.28	J	3.4	0.25	1	02/23/12	02/27/12	KWG1201890	-
Benzo(k)fluoranthene	ND	U	3.4	0.41	1	02/23/12	02/27/12	KWG1201890	
Benzo(a)pyrene	ND	U	3.4	0.41	. 1	02/23/12	02/27/12	KWG1201890	
Indeno(1,2,3-cd)pyrene	ND	U	3.4	0.44	1	02/23/12	02/27/12	KWG1201890	
Dibenz(a,h)anthracene	ND	U	3.4	0.45	1	02/23/12	02/27/12	KWG1201890	
Benzo(g,h,i)perylene	ND	U	3.4	0.36	1	02/23/12	02/27/12	KWG1201890	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	73	29-98	02/27/12	Acceptable	THE REAL PROPERTY OF THE PROPE
Fluoranthene-d10	79	31-105	02/27/12	Acceptable	
Terphenyl-d14	85	27-112	02/27/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617 **Date Collected:** 02/20/2012

Date Received: 02/22/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-016 (5 day)

Lab Code:

K1201617-001

Extraction Method:

EPA 3520C

Units: ng/L Basis: NA

Level: Low

Analysis Method:

8270D SIM

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	100000	D	1800	370	400	02/23/12	02/29/12	KWG1201890	
2-Methylnaphthalene	13000	D	89	11	20	02/23/12	02/28/12	KWG1201890	
Acenaphthylene	130		4.5	0.49	1	02/23/12	02/27/12	KWG1201890	
Acenaphthene	10000	D	89	9.4	20	02/23/12	02/28/12	KWG1201890	
Dibenzofuran	6700	D .	89	11	20	02/23/12	02/28/12	KWG1201890	
Fluorene	6800	\mathbf{D}_{-}	89	11	20	02/23/12	02/28/12	KWG1201890	
Phenanthrene	17000	D	89	19	20	02/23/12	02/28/12	KWG1201890	
Anthracene	1700		4.5	0.38	1	02/23/12	02/27/12	KWG1201890	
Fluoranthene	4000	D	89	12	20	02/23/12	02/28/12	KWG1201890	
Pyrene	1700		4.5	1.1	1	02/23/12	02/27/12	KWG1201890	
Benz(a)anthracene	100		4.5	0.45	1	02/23/12	02/27/12	KWG1201890	
Chrysene	100		4.5	0.85	1	02/23/12	02/27/12	KWG1201890	
Benzo(b)fluoranthene	13		4.5	0.33	1	02/23/12	02/27/12	KWG1201890	
Benzo(k)fluoranthene	4.0	J	4.5	0.54	1	02/23/12	02/27/12	KWG1201890	
Benzo(a)pyrene	6.2		4.5	0.54	1	02/23/12	02/27/12	KWG1201890	
Indeno(1,2,3-cd)pyrene	1.5	J	4.5	0.58	1	02/23/12	02/27/12	KWG1201890	
Dibenz(a,h)anthracene	0.86	J	4.5	0.59	. 1	02/23/12	02/27/12	KWG1201890	
Benzo(g,h,i)perylene	1.9	J	4.5	0.47	1	02/23/12	02/27/12	KWG1201890	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	68	29-98	02/27/12	Acceptable	MATERIA (MATERIA MATERIA M
Fluoranthene-d10	79	31-105	02/27/12	Acceptable	
Terphenyl-d14	85	27-112	02/27/12	Acceptable	

Comments:

Printed: 03/01/2012 16:55:28 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w: \label{lem:limit} u: \label{lem:limit$

Merged

Form 1A - Organic

160

Page RR138817

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617 **Date Collected:** 02/20/2012

Date Received: 02/22/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017A (5 day)

Lab Code:

K1201617-002

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	100000	D	1500	310	400	02/23/12	02/29/12	KWG1201890	
2-Methylnaphthalene	17000	D	74	8.7	20	02/23/12	02/28/12	KWG1201890	
Acenaphthylene	230		3.7	0.40	1	02/23/12	02/27/12	KWG1201890	
Acenaphthene	16000	D ₁	74	7.8	20	02/23/12	02/28/12	KWG1201890	
Dibenzofuran	9200	D	74	9.1	20	02/23/12	02/28/12	KWG1201890	
Fluorene	11000	D	74	9.1	20	02/23/12	02/28/12	KWG1201890	
Phenanthrene	18000	D	74	16	20	02/23/12	02/28/12	KWG1201890	
Anthracene	2000		3.7	0.32	1	02/23/12	02/27/12	KWG1201890	
Fluoranthene	3500	D	74	9.9	20	02/23/12	02/28/12	KWG1201890	
Pyrene	1700		3.7	0.84	1	02/23/12	02/27/12	KWG1201890	
Benz(a)anthracene	110		3.7	0.37	1	02/23/12	02/27/12	KWG1201890	
Chrysene	88		3.7	0.70	. 1	02/23/12	02/27/12	KWG1201890	
Benzo(b)fluoranthene	15		3.7	0.27	1	02/23/12	02/27/12	KWG1201890	
Benzo(k)fluoranthene	4.7		3.7	0.45	1	02/23/12	02/27/12	KWG1201890	
Benzo(a)pyrene	7.5		3.7	0.45	. 1	02/23/12	02/27/12	KWG1201890	
Indeno(1,2,3-cd)pyrene	1.3	J	3.7	0.48	1	02/23/12	02/27/12	KWG1201890	·
Dibenz(a,h)anthracene	0.53	J	3.7	0.49	1	02/23/12	02/27/12	KWG1201890	
Benzo(g,h,i)perylene	1.0	$\mathbf{J}_{\mathbf{J}}$	3.7	0.39	1	02/23/12	02/27/12	KWG1201890	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
·	,01100		Anaryzeu	11010	
Fluorene-d10	65	29-98	02/27/12	Acceptable	
Fluoranthene-d10	75	31-105	02/27/12	Acceptable	
Terphenyl-d14	83	27-112	02/27/12	Acceptable	

Comments:					

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617 **Date Collected:** 02/20/2012

Date Received: 02/22/2012

Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-017 DUP (5 day)

Lab Code:

K1201617-003

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	81000	D	1500	310	400	02/23/12	02/29/12	KWG1201890	
2-Methylnaphthalene	15000	D	74	8.7	20	02/23/12	02/28/12	KWG1201890	
Acenaphthylene	200		3.7	0.41	1	02/23/12	02/27/12	KWG1201890	
Acenaphthene	15000	D	74	7.9	20	02/23/12	02/28/12	KWG1201890	
Dibenzofuran	_8200	D	74	9.2	20	02/23/12	02/28/12	KWG1201890	
Fluorene	9300	D	74	9.2	20	02/23/12	02/28/12	KWG1201890	
Phenanthrene	15000	D	74	16	20	02/23/12	02/28/12	KWG1201890	
Anthracene	1600		3.7	0.32	1	02/23/12	02/27/12	KWG1201890	
Fluoranthene	2100		3.7	0.50	1	02/23/12	02/27/12	KWG1201890	
Pyrene	1300		3.7	0.85	1	02/23/12	02/27/12	KWG1201890	
Benz(a)anthracene	83		3.7	0.37	1	02/23/12	02/27/12	KWG1201890	
Chrysene	70		3.7	0.71	1	02/23/12	02/27/12	KWG1201890	
Benzo(b)fluoranthene	12		3.7	0.28	1	02/23/12	02/27/12	KWG1201890	
Benzo(k)fluoranthene	3.6	J	3.7	0.45	1	02/23/12	02/27/12	KWG1201890	
Benzo(a)pyrene	5.5		3.7	0.45	1	02/23/12	02/27/12	KWG1201890	
Indeno(1,2,3-cd)pyrene	0.86	J	3.7	0.48	1	02/23/12	02/27/12	KWG1201890	
Dibenz(a,h)anthracene	ND	U	3.7	0.49	1	02/23/12	02/27/12	KWG1201890	
Benzo(g,h,i)perylene	0.76	J	3.7	0.40	1	02/23/12	02/27/12	KWG1201890	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
Fluorene-d10	67	29-98	02/27/12	Acceptable		ar ann ann an Air an Eastain an Air a
Fluoranthene-d10	75	31-105	02/27/12	Acceptable		
Terphenyl-d14	88	27-112	02/27/12	Acceptable		

Comments:

Printed: 03/01/2012 16:55:34

 $u: \label{lem:condition} u: \label{lem:condi$

Merged

Form 1A - Organic

Page RR138817

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617 **Date Extracted:** 02/23/2012

Date Analyzed: 02/27/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG1201890

Lab Control Sample KWG1201890-1

Duplicate Lab Control Sample KWG1201890-2

		Lab Control Spike			Duplicate Lab Control Spike				RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	%Rec Limits	RPD	Limit	
Naphthalene	356	500	71	355	500	71	39-110	1	30	and a state of
2-Methylnaphthalene	357	500	71	356	500	71	39-115	0	30	
Acenaphthylene	379	500	76	386	500	77	44-115	2	.30	
Acenaphthene	362	500	72	369	500	74	44-113	2	30	
Dibenzofuran	371	500	74	371	500	74	46-116	0	30	
Fluorene	375	500	75	375	500	75	48-118	0	30	
Phenanthrene	376	500	75	379	500	76	47-120	1	30	
Anthracene	399	500	80	392	500	78	44-117	2	30	
Fluoranthene	405	500	81	404	500	81	48-128	0.	30	
Pyrene	386	500	77	390	500	78	42-133	1	30	
Benz(a)anthracene	399	500	80	406	500	81	48-125	2	30	
Chrysene	405	500	81	408	500	82	50-128	1	30	
Benzo(b)fluoranthene	435	500	87	438	500	88	49-131	1	30	
Benzo(k)fluoranthene	440	500	88	436	500	87	54-131	1	30	
Benzo(a)pyrene	456	500	91	460	500	92	43-134	1	30	
Indeno(1,2,3-cd)pyrene	425	500	85	429	500	86	45-133	1	30	
Dibenz(a,h)anthracene	418	500	84	418	500	84	49-133	0	30	
Benzo(g,h,i)perylene	397	500	79	400	500	80	51-124	1	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 03/01/2012 16:56:26 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

Page

1 of

SuperSet Reference: RR138817

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:

Method

Analysis Method:

NWTPH-Dx

Service Request: K1201617

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
0397-016 (5 day)	K1201617-001	112	109
0397-017A (5 day)	K1201617-002	110	110
0397-017 DUP (5 day)	K1201617-003	105	105
Method Blank	KWG1201930-3	100	92
Lab Control Sample	KWG1201930-1	109	102
Duplicate Lab Control Sample	KWG1201930-2	104	98
= =			

Surrogate Recovery Control Limits (%)

50-150 Sur1 = o-TerphenylSur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 02/28/2012 14:00:00 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

RR138651

Page

1 of 1

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Date Collected: NA

Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Extraction Method:

Analysis Method:

Method Blank

Lab Code:

KWG1201930-3

Method

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	. ND U	250	1	02/23/12	02/24/12	KWG1201930	
Residual Range Organics (RRO)	ND U	500	1	02/23/12	02/24/12	KWG1201930	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	100	50-150	02/24/12	Acceptable	
n-Triacontane	92	50-150	02/24/12	Acceptable	

Comments:

Printed: 02/28/2012 13:59:56 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$

18

Merged

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Date Collected: 02/20/2012

Date Received: 02/22/2012

Diesel and Residual Range Organics

Sample Name:

0397-016 (5 day)

Lab Code:

K1201617-001

NWTPH-Dx

Extraction Method:

Method

Analysis Method:

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	500 Z	260	1	02/23/12	02/24/12	KWG1201930	
Residual Range Organics (RRO)	ND U	520	1	02/23/12	02/24/12	KWG1201930	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	112	50-150	02/24/12	Acceptable	
n-Triacontane	109	50-150	02/24/12	Acceptable	

Comments:

Printed: 02/28/2012 13:59:47 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Date Collected: 02/20/2012

Date Received: 02/22/2012

Diesel and Residual Range Organics

Sample Name:

0397-017A (5 day)

Lab Code:

K1201617-002

Extraction Method:

Method

NWTPH-Dx

Analysis Method:

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	570 Z	290	1	02/23/12	02/24/12	KWG1201930	
Residual Range Organics (RRO)	ND U	570	1	02/23/12	02/24/12	KWG1201930	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	110	50-150	02/24/12	Acceptable	
n-Triacontane	110	50-150	02/24/12	Acceptable	

Comments:

Merged

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Date Collected: 02/20/2012 **Date Received:** 02/22/2012

Diesel and Residual Range Organics

Sample Name:

0397-017 DUP (5 day)

Lab Code:

K1201617-003

Units: ug/L Basis: NA

Extraction Method:

Method

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	500 Z	280	1	02/23/12	02/24/12	KWG1201930	
Residual Range Organics (RRO)	ND U	550	1	02/23/12	02/24/12	KWG1201930	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	105	50-150	02/24/12	Acceptable	
n-Triacontane	105	50-150	02/24/12	Acceptable	

Comments:

Printed: 02/28/2012 13:59:53 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

17

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1201617

Date Extracted: 02/23/2012

Date Analyzed: 02/24/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: Method

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1201930

Lab Control Sample

KWG1201930-1

Duplicate Lab Control Sample

KWG1201930-2

	Lab	Control Spike	e	Duplicate	Lab Control	Spike	%Rec	%Rec		
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Diesel Range Organics (DRO)	1580	1600	99	1660	1600	104	46-140	5	30	
Residual Range Organics (RRO)	694	800	87	742	800	93	45-159	7	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 02/28/2012 14:00:04 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic

20

Page RR138651

1 of 1

SuperSet Reference:

July 05, 2012

Analytical Report for Service Request No: K1206162

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: IP URS Longview Solidification

Dear Paul:

Enclosed are the results of the samples submitted to our laboratory on June 27, 2012. For your reference, these analyses have been assigned our service request number K1206162.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Zd Wallace Ed Wallace

Project Chemist

EW/jw

Page 1 of 359

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626
PHONE +1 360 577 7222 | FAX+1 360 636 1068
Columbia Analytical Services, Inc.
Part of the ALS Group | A Campbell Brothers Limited Company

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	_
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Louisiana DHH	Not available	LA110003
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
New Mexico ED	http://www.nmenv.state.nm.us/dwb/Index.htm	
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	_
Kelso Laboratory Website	www.caslab.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Client:

URS Corporation

Service Request No.:

K1206162

Project:

IP Longview Solidification

Date Received:

6/27/12

Sample Matrix:

Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Seven water samples were received for analysis at Columbia Analytical Services on 6/27/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory. Six of the samples were placed on hold.

Diesel Range Organics by NWTPH-Dx

Sample Notes and Discussion:

Insufficient sample volume was received to perform a duplicate client sample analysis. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the duplicate analysis for these samples.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM

Elevated Detection Limits:

Sample 0397-026 (5day) required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Approved by	 ZILLU	_Date_	7/3	# 8 B	Carrier our
			î	8	

	Client: URS Corp.		CHAIN of	f CUSTODY	Page of
Columbia			Project IP URS Congueen	new Subdification	Method of Shipment
	Project Paul Kalliner		Telephone No. 758 - 2172	Fax No 495-5282	LED EX
www.caslab.com					Special Detection Limit/Reporting
	Matrix Prsv.		DX		Paul Kalina
			PH -) days	~
			IW T	rorking	
) S	me (w	Sim
D.	ntaine V		OR. 827	und Ti	
nple I	of Co	npling	PH-	urn Arc	-
			_		
1026 (< X	X 6/18/12 1249	*		Fid
1	2 8	16/18/12 1715	X	1	Hold
-026	2 8 x	6/19/12 0912	*		Held
1		16/20/12 0915	<i>x x</i>		Heid
0591-026 (72hm)	200	6/21/12	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Hold Passon south routh
	6	1 1000	+		
	*	010110110	*		5 let of forder Ekenren.
					ROLL TARGET
					A
					spank Kalina
					mscoxb,co
Sample Received Intact: Yes No	-	Temperature received:			
& Print Name)	Date Time	Received by	(Sign & Drint Name)	NO ICO	
Wismill beech	1/12 I	(6/7)	Received by (bigin & riint Name)		Lab Work No.
elinquished by	Date Time	Received by			
Relinquished by	Date Time	Received by			
Relinquished by	Date Time	Received by laboratory	laboratory Sm	Date 177 Time 0946	

PC L

Client / Project:	Coole	r Receipt a		vation Form	v12 C	6/62	1	-
Received: 127/12	Opened: io 27	12	ser By:	vice Request I	. /	1/12 By	1: <u>\$1</u>	(u)
 Samples were received via? Samples were received in: (c Were <u>custody seals</u> on cooler If present, were custody seals 	rs? NA	Box Y N	Envelope If yes, h	PDX Court Other ow many and wesent, were they	here?	nd Delivered	NA Y	N
Cooler Temp	Thermometer	Cooler/C	coc				-72-7	- :
Temp °C Blank °C	319	ID	NA -	7485 487	14 044	Number 9	NA	Filed
				·				
		<u> </u>		**************************************				
. Packing material: Inserts	Baggies Bubble	Wrap Gel I	Packs Wet	ce Dry Ice	Sleeves			
. Were custody papers properl	· · · · · · · · · · · · · · · · · · ·		A COLUMN TO THE PARTY OF THE PA			. N.		N
. Did all bottles arrive in good				elow.		. N	(m>	N
0. Were all sample labels comp	olete (i.e analysis, pro	eservation, et	c.)?			N	A. (Y)	N
1. Did all sample labels and tag	gs agree with custody	papers? Inc	licate major d	liscrepancies in	the table o	n page 2. N	A Y) N
2. Were appropriate bottles/cor	ntainers and volumes	received for	the tests indi	cated?		N	$A \left(\widehat{Y}\right)$	N
3. Were the pH-preserved bottl	es (see SMO GEN SO	P) received a	t the appropri	ate pH? <i>Indicat</i>	e in the tal	ole below N	A Y	N
4. Were VOA vials received w	ithout headspace? In	ndicate in the	table below.			N	A Y	N
5. Was C12/Res negative?						N	A Y	: _N
Sample ID on Bottle		Sample ID o	on COC		- 10 mg	Identified by:		
campic to on bottle		Sample ID C	<i></i> 000	direkti i Pristraki	and the same and t	identified by.	1	
							į.	
Sample ID	Bottle Count Bottle Type	Out of Head- Temp space		Reagent	Volume added	Reagent Lot Number	Initials	Time
							4	
							6.3	
							#15500152m	
Notes, Discrepancies, & Reso	Intione: To R	da PI	KH Am	firmed	only	-007	10	A P
IN Alland	runons: TO	Line Icu	b/27	12 11	1	, — — /	10	
winingsex 4	u P.KU	NNO	4/2 FA	ie Ol			1	
<i>y</i> • • • • • • • • • • • • • • • • • • •					-			
								·
		·			· · · · · · · · · · · · · · · · · · ·			
			9			Pag	re	of

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Service Request: K1206162

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>	Sur4
0397-026 (5 day)	K1206162-007	69 D	94 D	80 D	99 D
Method Blank	KWGI207088-3	67	83	74	96
Duplicate Lab Control Sample	KWG1207088-2	67	85	55	95
Lab Control Sample	KWG1207088-4	72	82	42	97

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	46-114		
Sur2 = Fluoranthene-dI0	51-121		
Sur3 = 2,4,6-Tribromophenol	10-136		
Sur4 = Terphenyl-d14	58-140		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/03/2012 10:27:56

Form 2A - Organic

Page 1 of SuperSet Reference: RR143275

u:\Stealth\Crystal.rpt\Form2.rpt

145

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1206162

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: Method Blank KWG1207088-3

Extraction Method: Analysis Method:

EPA 3520C

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL		Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	0.0034		 1	06/27/12	07/02/12	KWG1207088	
2-Methylnaphthalene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Acenaphthylene	ND	U .	0.0034		1	06/27/12	07/02/12	KWG1207088	
Acenaphthene	ND	U	0.0034	:	1	06/27/12	07/02/12	KWG1207088	-
Dibenzofuran	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Fluorene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Phenanthrene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Anthracene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Fluoranthene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Pyrene	ND	Ü	0.0034		1	06/27/12	07/02/12	KWG1207088	
Benz(a)anthracene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Chrysene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Benzo(b)fluoranthene	ND	U	0.0034		 1	06/27/12	07/02/12	KWG1207088	
Benzo(k)fluoranthene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Benzo(a)pyrene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Indeno(1,2,3-cd)pyrene	ND	U	0.0034		 1	06/27/12	07/02/12	KWG1207088	
Dibenz(a,h)anthracene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Benzo(g,h,i)perylene	ND	U	0.0034		1	06/27/12	07/02/12	KWG1207088	
Pentachlorophenol	ND	U	1.0		1	06/27/12	07/02/12	KWG1207088	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note			
Fluorene-d10	67	46-114	07/02/12	Acceptable			
Fluoranthene-d10	83	51-121	07/02/12	Acceptable			
2,4,6-Tribromophenol	74	10-136	07/02/12	Acceptable			
Terphenyl-d14	96	58-140	07/02/12	Acceptable			

Comments:

SuperSet Reference:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1206162

Date Collected: 06/23/2012 **Date Received:** 06/27/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: 0397-026 (5 day) K1206162-007

Extraction Method:

EPA 3520C

Units: ug/L Basis: NA

Level: Low

Analysis Method: 8270D SIM

Analyte Name	Result	Q	MRL		Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	170	D	0.39		100	06/27/12	07/02/12	KWG1207088	
2-Methylnaphthalene	30	D	0.39		100	06/27/12	07/02/12	KWG1207088	
Acenaphthylene	0.54	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Acenaphthene	21	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Dibenzofuran	15	D	0.039		10	06/27/12	07/02/12	KWG1207088	114 (1)
Fluorene	16	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Phenanthrene	44	D	0.39		100	06/27/12	07/02/12	KWG1207088	
Anthracene	5.7	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Fluoranthene	11	D.	0.039		10	06/27/12	07/02/12	KWG1207088	
Pyrene	5.9	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Benz(a)anthracene	0.56	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Chrysene	0.47	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Benzo(b)fluoranthene	0.085	D	0.039		10	06/27/12	07/02/12	KWG1207088	
Benzo(k)fluoranthene	ND	U	0.039		10	06/27/12	07/02/12	KWG1207088	
Benzo(a)pyrene	ND	U	0.039		10	06/27/12	07/02/12	KWG1207088	
Indeno(1,2,3-cd)pyrene	ND	U	0.039		10	06/27/12	07/02/12	KWG1207088	
Dibenz(a,h)anthracene	ND	U	0.039		10	06/27/12	07/02/12	KWG1207088	
Benzo(g,h,i)perylene	ND	U	0.039		10	06/27/12	07/02/12	KWG1207088	
Pentachlorophenol	ND	U	12	·	10	06/27/12	07/02/12	KWG1207088	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note		
Fluorene-d10	69	46-114	07/02/12	Acceptable		
Fluoranthene-d10	94	51-121	07/02/12	Acceptable		
2,4,6-Tribromophenol	80	10-136	07/02/12	Acceptable		
Terphenyl-d14	99	58-140	07/02/12	Acceptable		

Comments:				

SuperSet Reference:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

1.17

2.00

59

1.34

2.00

Sample Matrix:

Water

Service Request: K1206162 **Date Extracted:** 06/28/2012

Date Analyzed: 07/02/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: Analysis Method:

Pentachlorophenol

EPA 3520C

8270D SIM

Units: ug/L

Basis: NA

Level: Low Extraction Lot: KWG1207088

Lab Control Sample KWG1207088-4

Duplicate Lab Control Sample KWG1207088-2

		Control Spik			Lab Control		%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	-
Naphthalene	0.386	0.500	77	0.348	0.500	70	39-110	11	30	7
2-Methylnaphthalene	0.373	0.500	75	0,337	0.500	67	39-115	10	30	
Acenaphthylene	0.397	0.500	79	0.372	0.500	74	44-115	6	30	
Acenaphthene	0.391	0.500	78	0.366	0.500	73	44-113	7	30	
Dibenzofuran	0.374	0.500	75	0.356	0.500	71	46-116	5	30	
Fluorene	0.377	0.500	75	0.364	0.500	73	48-118	4	30	
Phenanthrene	0.373	0.500	75 . :	0.363	0.500	73	47-120	3	30	
Anthracene	0.386	0.500	77	0.367	0.500	73	44-117	5	30	
Fluoranthene	0.397	0.500	79	0.417	0.500	83	48-128	5	30	
Pyrene	0.440	0.500	88	0.430	0.500	86	42-133	2	30	
Benz(a)anthracene	0.420	0.500	84	0.446	0.500	89	48-125	6	30	
Chrysene	0.442	0.500	88	0.440	0.500	. 88	50-128	1	30	
Benzo(b)fluoranthene	0.421	0.500	84	0.456	0.500	91	49-131	8	30	
Benzo(k)fluoranthene	0.460	0.500	92	0.453	0.500	91	54-131	1	30	
Benzo(a)pyrene	0.439	0.500	88	0.432	0.500	86	43-134	2	30	
1ndeno(1,2,3-cd)pyrene	0.493	0.500	99	0.555	0.500	111	45-133	12	30	
Dibenz(a,h)anthracene	0.511	0.500	102	0.543	0.500	109	49-133	6	30	
Benzo(g,h,i)perylene	0.445	0.500	89	0.471	0.500	94	51-124	6	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/03/2012 10:28:37 u:\Stealth\Crystal.rpt\Form3DLC.rpt

10-123

13

-30

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: PERCENT

Level: Low

Service Request: K1206162

Sample Name	Lab Code	Sur1	Sur2
0397-026 (5 day)	K1206162-007	112	111
Method Blank	KWG1207149-3	97	97
Lab Control Sample	KWG1207149-1	108	107
Duplicate Lab Control Sample	KWG1207149-2	110	113

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 07/05/2012 17:20:37 u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

SuperSet Reference: RR143350

15

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1206162

Date Collected: NA

Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1207149-3

Extraction Method: Analysis Method:

EPA 3510C NWTPH-Dx Units: ug/L Basis: NA

Level: Low

Analyte Name Diesel Range Organics (DRO)

Residual Range Organics (RRO)

Result Q ND U ND U

250 500

MRL

Factor 1 1

Dilution

Extracted Analyzed 07/04/12 06/28/12 06/28/12 07/04/12

Date

Date

KWG1207149

KWG1207149

Extraction

Lot

Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl n-Triacontane	97 97	50-150 50-150	07/04/12 07/04/12	Acceptable Acceptable	

Comments:

14

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1206162

Date Collected: 06/23/2012

Date Received: 06/27/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-026 (5 day) K1206162-007

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

Analysis Method:

NWTPH-Dx

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	1300 Z	280	1	06/28/12	07/04/12	KWG1207149	
Residual Range Organics (RRO)	ND U	560	1	06/28/12	07/04/12	KWG1207149	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	112	50-150	07/04/12	Acceptable	
n-Triacontane	111	50-150	07/04/12	Acceptable	

Comments:

Printed: 07/05/2012 17:20:30

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP URS Longview Solidification

Sample Matrix:

Water

Service Request: K1206162

Date Extracted: 06/28/2012

Date Analyzed: 07/04/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: Analysis Method:

EPA 3510C

NWTPH-Dx

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1207149

Lab Control Sample KWG1207149-1

Duplicate Lab Control Sample

KWG1207149-2

Lab Control Spike **Duplicate Lab Control Spike RPD** %Rec RPD Limits Limit %Rec %Rec Result Expected Result Expected **Analyte Name** Diesel Range Organics (DRO) 1740 1600 108 1590 1600 99 46-140 9 30 45-159 7 30 Residual Range Organics (RRO) 810 800 101 755 800 94

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 07/05/2012 17:20:41 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic 16

Page

1 of 1

RR143350

August 7, 2012

Analytical Report for Service Request No: K1206824

Paul Kalina URS Corporation 1501 4th Ave.,Suite 1400 Seattle, WA 98101

RE: IP Longview Solidification

Dear Paul:

Enclosed are the results of the samples submitted to our laboratory on July 13, 2012. For your reference, these analyses have been assigned our service request number K1206824.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

dWallace

Columbia Analytical Services, Inc.

Ed Wallace

Project Manager

EW/ln

Page 1 of 2159

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection

LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-QSM 4.2 definition*: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	_
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Louisiana DHH	Not available	LA110003
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
New Mexico ED	http://www.nmenv.state.nm.us/dwb/Index.htm	
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	_
Kelso Laboratory Website	www.caslab.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water and Soil

Service Request No.:

K1206824

Date Received:

7/13/12

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Six samples were received for analysis at Columbia Analytical Services on 7/13/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx Waters

Holding Time Exceptions:

The analysis of samples 0397-028 (2hr), 0397-028 (7hr), and 0397-028 (24hr) was initially performed past the recommended holding time. The bottles received for these samples were not preserved; therefore, a 7 day holding time from sample collection applies. Due to a laboratory error, the samples were initially logged in to the Laboratory Information Management System (LIMS) with a 14 day holding time applied. Efforts were made to analyze the samples as soon as the error was identified. The data was flagged to indicate the holding time violation.

Sample Notes and Discussion:

Insufficient sample volume was received to perform a duplicate client sample analysis for extraction lots KWG1207973 and KWG1208040. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the duplicate analysis for these samples.

Diesel Range Organics by NWTPH-Dx Soil

No anomalies associated with the analysis of these samples were observed

Diesel Range Organics by NWTPH-Dx Following TCLP and SPLP

Holding Time Exceptions:

The TCLP and SPLP extraction of sample 0397-028 was initially performed within the recommended holding time. Due to a laboratory error, the TCLP leachate was misidentified as an additional bottle of SPLP leachate. Consequently, the TCLP leachate was improperly extracted in the same preparation batch as the SPLP leachate. The SPLP leachate was mistakenly spiked with the analytes of concern for analysis as a Matrix Spike. Both the TCLP and SPLP extraction were repeated past the recommended holding time after the error was identified. The leachates generated by these procedures were then properly extracted separately and analyzed. Results from both determinations were comparable. The results from the reanalysis were reported. The data was flagged to indicate the holding time violation. No further corrective action was feasible.

Sample Notes and Discussion:

Insufficient leachate volume was available to perform a duplicate client sample analysis. A Laboratory Control Sample and Duplicate Laboratory Control Sample (LCS/DLCS) were analyzed and reported in lieu of the duplicate analysis for these samples.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM Soil

Surrogate Exceptions:

The control criteria were exceeded for Fluorene-d10, Fluoranthene-d10 and Terphenyl-d14 in sample 0397-028, 0397-028MS and 0397-028DMS due to matrix interference. The presence of non-target background components prevented adequate resolution of the surrogate. Accurate quantitation was not possible. No further corrective action was appropriate.

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of all analytes for sample 0397-028 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM Water

No anomalies associated with the analysis of these samples were observed

Sample Notes and Discussion:

It was not possible to maintain satisfactory chromatography and still reach an MDL of 0.012 ug/L. To maintain adequate recovery of internal standards, the extracts needed to be diluted.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM TCLP

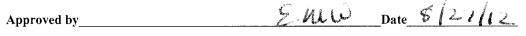
Blank Exceptions:

The Method Blank KWG12-8008-5 (TCLP) contained low levels of Naphthalene, 2-Methylnaphthalene, Acenaphthene, Dibenzofuran, Fluorene and Phenanthrene above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM SPLP

Blank Exceptions:

The Method Blank KWG1208008-5 (SPLP) contained low levels of several analytes above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated.


Surrogate Exceptions:

The control criteria were exceeded for Fluoranthene-d10 in sample 0397-028 Leachate due to matrix interference. The presence of non-target background components prevented adequate resolution of the surrogate. Accurate quantitation was not possible. No further corrective action was appropriate.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270C SIM Wipe

Blank Exceptions:

The Method Blank KWG1208078-3 contained low levels of Naphthalene, 2-Methylnaphthalene, Acenaphthene, Dibenzofuran, Fluorene and Phenanthrene above the Method Reporting Limit (MRL). In accordance with CAS QA/QC policy, all sample results less than twenty times the level found in the Method Blank were flagged as estimated.

Lab Control Sample Exceptions:

The control criterion was exceeded for Naphthalene, 2-Methylnaphthalene, Acenaphthene, Acenaphthene, Dibenzofuran and Fluorene, in Laboratory Control Sample (LCS) KWG128078-1. The problem indicated a potential low bias for results reported from this analytical batch. Samples 0397-028 (wipe) tested positive for the analytes in question. Reanalysis was not performed because insufficient sample remained for additional testing. The data was flagged to indicate the problem

Surrogate Exceptions:

The control criteria were exceeded for Fluorene-d10 in 0397-028 (wipe) and Method Blank KWG1208078-3. The problem indicated a potential low bias for results reported from this analytical batch. A re-analysis was not performed because insufficient sample was available. No further corrective action was possible.

Sample Notes and Discussion:

The result reported for Benzo(a)pyrene in sample 0397-028 (wipe) may contain a slight bias. The chromatogram indicated the presence of non-target background components. The matrix interference may have resulted in a slight high bias in the affected samples. The results were flagged with "X" to indicate the issue.

	Relinquished by	Relinquished by	Relinquished by	Maxim Mileedy 1	Reling, by sampler (Sign & Print Name)	Sample Received Intact: Yes No						0397-028 (wipe)	0397-028 (48 hr)	0397-028 (24 hr)	0397-028 (7 hr)	0397-028 (2hr)	0397-028	Sample I.D.	800.695.7222 www.caslab.com	rvices"	C Columbia	
				In Mon	1 3	. 0				Project and the control of the contr								Lab Sample No.		Project P Manager		Client: U
			_	ñ	`			4-4	_			2	2	2	2	2		No. of Containers Soil	-	Paul Kalina		URS Corp
	Date	Date	Date	<u> </u>	Date			+	\dashv			\dashv	×	×	×	×	×	Water		alina		Corp
	ite	ite	ē	7/11/12	te				1					r	Ĥ	_		Air				
				2				11				×						Other				
	Time	Time	Time	1410	Time				1			×						Yes	1			
	Φ	Ф	0	0	TO L								×	×	×	×	×	Yes No				
						Temperature received:						7/11/2012	7/11/2012	7/10/2012	7/9/2012	7/9/2012	7/6/2012	Sampling Date				
0	Reseived by laboratory nu	Received by	Received by		Received by (Sign & Print Name)	received:						1404	0915	0914	1612	1113	1527	Sampling Time				
	labor				(Sign				1								×	SPLP PAH 8270 SIM		Telephone No.	Project:	
	Ploty				& Pr												×	SPLP DRO NWJPH-DX		hone		
	įλ				int N												×	TCLP PAH 8270 SIM		1	LD LD	C
					me)	lce											×	TCLP DRO NWJPH-DX		206-438-2172	ngvi	ΗA
												×	×	×	×	×		Total PAH 8270 SIM		38-2	ew S	AIN
									1			×	×	×	×	×		Total DRO NWJPH-DX		172	olidif	_
, ,	Date (73)					No ice														Fax No. 88	IP Longview Solidification	of CUS
)							++	\dashv		 	-					-			886-495-5282		\dashv
	Ting						\vdash	11	\dashv	_	\vdash						1			-5282		00
	S. S																	Hold				\prec
	0,											STD	STD	STD	STD	STD	STD	Turn Around Time (working days) —				
				Lab Work No.					paul.kalina.urscorp.com	tjordan@kemron.com, Paul Kalina at	Please sennd results to Tommy Jordan at		Q		The state of the s			Paul Kalina requests ultra low level 8270 SIM	Special Detection Limit/Reporting	FedEx	Method of Shipment	Page of

PC Ed

Cooler Receipt and Preservation Form

Client / Project: WS Co	ph/2		Se	rvice Request K	12 <u> </u>	824	
Received: 1/13/12	Opened: 7/13	3/12	Ву: <u><i>GW</i></u>	Unloade	ed: <u>7/13/12</u>	BLEU	<u> </u>
1. Samples were received via? 2. Samples were received in: (ci 3. Were <u>custody seals</u> on coolers If present, were custody seals Cooler Temp Temp °C Blank °C	s? NA	Box Y N Y N Cooler/ ID	If p	PDX Courie Other how many and wheresent, were they seems.	nere? Fron	<i>N</i>	N Filed
1.8	284			1931771	8 6781		
7. Packing material: <i>Inserts</i> (8. Were custody papers properly 9. Did all bottles arrive in good 6.	filled out (ink, sig	gned, etc.)?		·	Sleeves	NA C	N N
10. Were all sample labels comp 11. Did all sample labels and tag 12. Were appropriate bottles/con	lete (i.e analysis, p s agree with custoo tainers and volume	oreservation, endy papers? <i>Inc</i> es received for	tc.)? dicate major r the tests ind	discrepancies in t		NA (Ý N Ý N Ý N
13. Were the pH-preserved bottle14. Were VOA vials received wi15. Was C12/Res negative?				-	in the table below	(NA)	Y N Y N Ŷ N
Sample ID on Bottle		Sample ID	on COC		ldentified b	oy:	
Sample ID	Bottle Count Bottle Type	Out of Head Temp space		Reagent	Volume Reagent added Numb		s Time
Notes Discourance:- 0 D	ludious:						
Notes, Discrepancies, & Resol	utions:						

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Total Solids

Prep Method:

NONE

Analysis Method:

160.3M

Units: PERCENT

Basis: Wet

Service Request: K1206824

Test Notes:

Lab Code

Date Collected

Date Received

Date Analyzed

Result

Sample Name

07/06/2012

07/13/2012

07/16/2012

Result

0397-028

K1206824-001

76.2

Notes

Printed: 07/18/2012 12:48

 $u:\Stealth\Crystal.rpt\Solids.rpt$

SuperSet Reference: W1207883

12

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Collected: 07/06/2012 **Date Received:** 07/13/2012

Date Analyzed: 07/16/2012

Duplicate Sample Summary

Total Solids

Prep Method:

NONE

Units: PERCENT

Basis: Wet

Test Notes:

Analysis Method:

160.3M

Relative

Sample Name

Lab Code

Sample Result

Sample Result

Duplicate

Average

Percent Difference

0397-028

K1206824-001

76.2

76.6

76.4

<1

Result Notes

Printed: 07/18/2012 12:48 $u:\Stealth\Crystal.rpt\Solids.rpt$

SuperSet Reference: W1207883

13

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Surrogate Recovery Summary

Extraction Method: EPA 3541

Analysis Method:

8270D SIM

Polynuclear Aromatic Hydrocarbons

Units: PERCENT Level: Low

Service Request: K1206824

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
0397-028	K1206824-001	112 D *	117D *	215 D *
Method Blank	KWG1208077-5	35	47	69
0397-028MS	KWG1208077-1	311 D *	84 D	218D *
0397-028DMS	KWG1208077-2	308 D *	119 D *	227 D *
Lab Control Sample	KWG1208077-3	56	59	78
Duplicate Lab Control Sample	KWG1208077-4	45	54	71

Surrogate Recovery Control Limits (%)

Surl =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 11:25:55

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

Page 1 of 1

399

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: Method Blank

Lab Coue.

KWG1208077-5

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.26	J	0.76	0.089	1	07/20/12	07/31/12	KWG1208077	
2-Methylnaphthalene	0.24	J	0.76	0.047	1	07/20/12	07/31/12	KWG1208077	
Acenaphthylene	ND	U	0.38	0.029	1	07/20/12	07/31/12	KWG1208077	
Acenaphthene	0.28	J	0.38	0.032	1	07/20/12	07/31/12	KWG1208077	
Dibenzofuran	0.19	J	0.38	0.022	1	07/20/12	07/31/12	KWG1208077	
Fluorene	0.20	J	0.38	0.039	1	07/20/12	07/31/12	KWG1208077	
Phenanthrene	0.51		0.38	0.033	1	07/20/12	07/31/12	KWG1208077	
Anthracene	0.097	J	0.38	0.026	1	07/20/12	07/31/12	KWG1208077	
Fluoranthene	0.23	J	0.38	0.032	1	07/20/12	07/31/12	KWG1208077	
Pyrene	0.15	J	0.38	0.032	1	07/20/12	07/31/12	KWG1208077	
Benz(a)anthracene	0.057	J	0.38	0.033	1	07/20/12	07/31/12	KWG1208077	
Chrysene	0.034	J	0.38	0.027	1	07/20/12	07/31/12	KWG1208077	
Benzo(b)fluoranthene	ND	U	0.38	0.057	1	07/20/12	07/31/12	KWG1208077	
Benzo(k)fluoranthene	ND	U	0.38	0.045	1	07/20/12	07/31/12	KWG1208077	
Benzo(a)pyrene	ND	U	0.38	0.036	1	07/20/12	07/31/12	KWG1208077	
Indeno(1,2,3-cd)pyrene	ND	U	0.38	0.064	1	07/20/12	07/31/12	KWG1208077	
Dibenz(a,h)anthracene	ND	U	0.38	0.058	1	07/20/12	07/31/12	KWG1208077	
Benzo(g,h,i)perylene	ND	U	0.38	0.059	1	07/20/12	07/31/12	KWG1208077	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	35	17-104	07/31/12	Acceptable
Fluoranthene-d10	47	27-106	07/31/12	Acceptable
Terphenyl-d14	69	35-109	07/31/12	Acceptable

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824 **Date Collected:** 07/06/2012

Date Received: 07/13/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-028

Extraction Method:

K1206824-001

EPA 3541

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8270D SIM

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	150000	D	2000	180	2000	07/20/12	08/02/12	KWG1208077	
2-Methylnaphthalene	84000	D	2000	94	2000	07/20/12	08/02/12	KWG1208077	
Acenaphthylene	1300	D	50	2.9	100	07/20/12	08/01/12	KWG1208077	
Acenaphthene	91000	D	1000	64	2000	07/20/12	08/02/12	KWG1208077	
Dibenzofuran	67000	D	1000	44	2000	07/20/12	08/02/12	KWG1208077	
Fluorene	86000	D	1000	78	2000	07/20/12	08/02/12	KWG1208077	
Phenanthrene	250000	D	1000	66	2000	07/20/12	08/02/12	KWG1208077	
Anthracene	48000	D	1000	52	2000	07/20/12	08/02/12	KWG1208077	
Fluoranthene	110000	D	1000	64	2000	07/20/12	08/02/12	KWG1208077	
Pyrene	74000	D	1000	64	2000	07/20/12	08/02/12	KWG1208077	
Benz(a)anthracene	17000	D	1000	66	2000	07/20/12	08/02/12	KWG1208077	
Chrysene	19000	D	50	2.7	100	07/20/12	08/01/12	KWG1208077	
Benzo(b)fluoranthene	9600	D	50	5.7	100	07/20/12	08/01/12	KWG1208077	
Benzo(k)fluoranthene	3600	D	50	4.5	100	07/20/12	08/01/12	KWG1208077	
Benzo(a)pyrene	6100	D	50	3.6	100	07/20/12	08/01/12	KWG1208077	
Indeno(1,2,3-cd)pyrene	2000	D	50	6.4	100	07/20/12	08/01/12	KWG1208077	
Dibenz(a,h)anthracene	510	D	50	5.8	100	07/20/12	08/01/12	KWG1208077	
Benzo(g,h,i)perylene	1600	D	50	5.9	100	07/20/12	08/01/12	KWG1208077	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	112	17-104	08/01/12	Outside Control Limits	
Fluoranthene-d10	117	27-106	08/01/12	Outside Control Limits	
Terphenyl-d14	215	35-109	08/01/12	Outside Control Limits	

Comments:

397

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824 **Date Extracted:** 07/20/2012

Date Analyzed: 08/01/2012

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

0397-028

Lab Code:

K1206824-001

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1208077

0397-028MS KWG1208077-1

0397-028DMS KWG1208077-2

	Sample	N	latrix Spike		Duplic	ate Matrix S	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	150000	113000E	99.5	-36143#	124000E	99.5	-25402#	23-114	9	40
2-Methylnaphthalene	84000	75600E	99.5	-8530#	81000E	99.5	-3168#	24-115	7	40
Acenaphthylene	1300	1540	99.5	281 #	1500	99.5	237 #	32-117	3	40
Acenaphthene	91000	70800E	99.5	-20032#	72 400E	99.5	-18453#	33-118	2	40
Dibenzofuran	67000	52000E	99.5	-15368#	52700E	99.5	-14680#	34-131	1	40
Fluorene	86000	69500E	99.5	-16417#	68100E	99.5	-17815#	33-125	2	40
Phenanthrene	250000	177000E	99.5	-70840#	178000E	99.5	-69285#	29-125	1	40
Anthracene	48000	43100E	99.5	-5429#	45600E	99.5	-2848#	30-127	6	40
Fluoranthene	110000	106000E	99.5	-7634#	105000E	99.5	-9370#	35-139	2	40
Pyrene	74000	82200E	99.5	8107 #	78900E	99.5	4700 #	27-134	4	40
Benz(a)anthracene	17000	23200E	99.5	6426 #	22400E	99.5	5598 #	35-122	4	40
Chrysene	19000	20400E	99.5	1662 #	20200E	99.5	1475 #	36-126	1	40
Benzo(b)fluoranthene	9600	10600	99.5	1011 #	10100	99.5	514 #	35-124	5	40
Benzo(k)fluoranthene	3600	3850	99.5	248 #	3690	99.5	85 #	38-124	4	40
Benzo(a)pyrene	6100	6750	99.5	649 #	6580	99.5	475 #	37-123	3	40
Indeno(1,2,3-cd)pyrene	2000	2230	99.5	279 #	2170	99.5	212 #	28-133	3	40
Dibenz(a,h)anthracene	510	639	99.5	132 #	603	99.5	96 #	32-125	6	40
Benzo(g,h,i)perylene	1600	1790	99.5	220 #	1740	99.5	168 #	33-128	3	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 11:26:53 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Now part of the ALS Group

QA/QC Report

Client: URS Corporation

Project: IP Longview Solidification

Sample Matrix: Soil

Service Request: K1206824 **Date Extracted:** 07/20/2012

Date Analyzed: 08/01/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541
Analysis Method: 8270D SIM
Basis: Dry
Level: Low

Level: Low
Extraction Lot: KWG1208077

Duplicate Lab Control Sample Lab Control Sample KWG1208077-3 KWG1208077-4 Lab Control Spike **Duplicate Lab Control Spike** %Rec **RPD** RPD Limit Limits %Rec %Rec Result Expected Analyte Name Result Expected 40 2 57.7 100 57 32-124 100 58 56.6 Naphthalene 27-126 7 40 65 60.4 100 60 2-Methylnaphthalene 64.7 100 40 38-126 10 Acenaphthylene 66.4 100 66 60.0 100 60 Acenaphthene 100 65 59.2 100 59 39-124 10 40 65.4 59 41-130 11 40 Dibenzofuran 65.5 100 66 58.9 100 39-129 10 40 61.2 100 61 67.5 100 68 Fluorene 39-123 40 11 100 68 61.1 100 61 Phenanthrene 68.2 9 40 100 63 38-130 Anthracene 68.9 100 69 62.9 7 40 Fluoranthene 69.5 100 69 64.8 100 65 39-135 80 71.4 100 71 39-134 11 40 79.6 100 Pyrene 40 76.4 100 76 46-120 10 Benz(a)anthracene 84.8 100 85 40 49-120 10 75.9 100 76 83 Chrysene 83.5 100 7 40 100 76 51-121 Benzo(b)fluoranthene 80.8 100 81 75.6 55-120 78 7 40 Benzo(k)fluoranthene 83.1 100 83 77.5 100 7 100 88 81.9 100 82 49-122 40 Benzo(a)pyrene 88.2 100 79 40-128 10 40 87 79.1 Indeno(1,2,3-cd)pyrene 87.2 100 40 100 73 43-125 10 81.0 100 81 73.4 Dibenz(a,h)anthracene 10 40 100 72 49-122 72.2 Benzo(g,h,i)perylene 80.1 100 80

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 08/03/2012
 11:26:57
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 407
 SuperSet Reference:
 RR144563
 459

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520C Analysis Method:

8270D SIM

Units: ng/L Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
0397-028 (2hr)	K1206824-002	73	80	96
0397-028 (7hr)	K1206824-003	69	75	91
0397-028 (24hr)	K1206824-004	63	95	97
0397-028 (48hr)	K1206824-005	64	85	93
Method Blank	KWG1207834-3	72	84	106
Lab Control Sample	KWG1207834-1	74	80	98
Duplicate Lab Control Sample	KWG1207834-2	68	74	93

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	46-114
Sur2 =	Fluoranthene-d10	51-121
Sur3 =	Terphenyl-d14	58-140

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 12:17:37

u:\Stealth\Crystal.rpt\Form2.rpt

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: NA **Date Received:** NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1207834-3

Extraction Method: Analysis Method:

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

EPA 3520C 8270D SIM Units: ng/L Basis: NA

Level: Low

KWG1207834

KWG1207834

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1. 7 J	3.4	0.71	1	07/16/12	07/30/12	KWG1207834	
2-Methylnaphthalene	0.63 J	3.4	0.40	1	07/16/12	07/30/12	KWG1207834	
Acenaphthylene	ND U	3.4	0.37	1	07/16/12	07/30/12	KWG1207834	
Acenaphthene	ND U	3.4	0.36	1	07/16/12	07/30/12	KWG1207834	
Dibenzofuran	0.52 J	3.4	0.42	1	07/16/12	07/30/12	KWG1207834	
Fluorene	ND U	3.4	0.42	1	07/16/12	07/30/12	KWG1207834	
Phenanthrene	2. 7 J	3.4	0.72	1	07/16/12	07/30/12	KWG1207834	
Anthracene	ND U	3.4	0.29	1	07/16/12	07/30/12	KWG1207834	
Fluoranthene	0.88 J	3.4	0.46	1	07/16/12	07/30/12	KWG1207834	
Pyrene	1.1 J	3.4	0.78	1	07/16/12	07/30/12	KWG1207834	
Benz(a)anthracene	0.76 J	3.4	0.34	1	07/16/12	07/30/12	KWG1207834	
Chrysene	ND U	3.4	0.65	1	07/16/12	07/30/12	KWG1207834	
Benzo(b)fluoranthene	0.50 J	3.4	0.25	1	07/16/12	07/30/12	KWG1207834	
Benzo(k)fluoranthene	0.42 J	3.4	0.41	1	07/16/12	07/30/12	KWG1207834	
Benzo(a)pyrene	1.4 J	3.4	0.41	1	07/16/12	07/30/12	KWG1207834	
Indeno(1,2,3-cd)pyrene	0.94 Ј	3.4	0.44	1	07/16/12	07/30/12	KWG1207834	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	72	46-114	07/30/12	Acceptable	
Fluoranthene-d10	84	51-121	07/30/12	Acceptable	
Terphenyl-d14	106	58-140	07/30/12	Acceptable	

0.45

0.36

1

1

07/16/12

07/16/12

SuperSet Reference:

07/30/12

07/30/12

3.4

3.4

Comments:

RR144575

0.59 J

1.3 J

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/09/2012 **Date Received:** 07/13/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-028 (2hr) K1206824-002

Extraction Method: Analysis Method:

EPA 3520C 8270D SIM Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	3 0000 D	68	15	20	07/16/12	07/30/12	KWG1207834	
2-Methylnaphthalene	61 00 D	68	8.0	20	07/16/12	07/30/12	KWG1207834	
Acenaphthylene	120	3.4	0.37	1	07/16/12	07/29/12	KWG1207834	
Acenaphthene	6000 D	68	7.2	20	07/16/12	07/30/12	KWG1207834	
Dibenzofuran	4100 D	68	8.4	20	07/16/12	07/30/12	KWG1207834	
Fluorene	4600 D	68	8.4	20	07/16/12	07/30/12	KWG1207834	
Phenanthrene	7200 D	68	15	20	07/16/12	07/30/12	KWG1207834	
Anthracene	980	3.4	0.29	1	07/16/12	07/29/12	KWG1207834	
Fluoranthene	1000	3.4	0.46	1	07/16/12	07/29/12	KWG1207834	
Pyrene	660	3.4	0.78	1	07/16/12	07/29/12	KWG1207834	
Benz(a)anthracene	94	3.4	0.34	1	07/16/12	07/29/12	KWG1207834	
Chrysene	71	3.4	0.65	1	07/16/12	07/29/12	KWG1207834	
Benzo(b)fluoranthene	27	3.4	0.25	1	07/16/12	07/29/12	KWG1207834	
Benzo(k)fluoranthene	12	3.4	0.41	1	07/16/12	07/29/12	KWG1207834	
Benzo(a)pyrene	19	3.4	0.41	1	07/16/12	07/29/12	KWG1207834	
Indeno(1,2,3-cd)pyrene	5.7	3.4	0.44	1	07/16/12	07/29/12	KWG1207834	
Dibenz(a,h)anthracene	1.5 J	3.4	0.45	1	07/16/12	07/29/12	KWG1207834	
Benzo(g,h,i)perylene	5.2	3.4	0.36	1	07/16/12	07/29/12	KWG1207834	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	73	46-114	07/29/12	Acceptable	
Fluoranthene-d10	80	51-121	07/29/12	Acceptable	
Terphenyl-d14	96	58-140	07/29/12	Acceptable	

Comments:

SuperSet Reference:

RR144575

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/09/2012 **Date Received:** 07/13/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-028 (7hr) K1206824-003

Extraction Method: EPA 3520C

Units: ng/L Basis: NA

Level: Low

Analysis Method:

8270D SIM

Analyta Nama	Popult O	MRL	MDL	Dilution	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q			Factor	Extracted			
Naphthalene	64000 D	340	71	100	07/16/12	08/02/12	KWG1207834	
2-Methylnaphthalene	12 000 D	340	40	100	07/16/12	08/02/12	KWG1207834	
Acenaphthylene	190	3.4	0.37	1	07/16/12	07/29/12	KWG1207834	
Acenaphthene	11000 D	340	36	100	07/16/12	08/02/12	KWG1207834	
Dibenzofuran	6600 D	340	42	100	07/16/12	08/02/12	KWG1207834	
Fluorene	8300 D	340	42	100	07/16/12	08/02/12	KWG1207834	
Phenanthrene	13000 D	340	72	100	07/16/12	08/02/12	KWG1207834	
Anthracene	1400	3.4	0.29	1	07/16/12	07/29/12	KWG1207834	
Fluoranthene	1700	3.4	0.46	1	07/16/12	07/29/12	KWG1207834	
Pyrene	1100	3,4	0.78	1	07/16/12	07/29/12	KWG1207834	
Benz(a)anthracene	120	3.4	0.34	1	07/16/12	07/29/12	KWG1207834	
Chrysene	100	3.4	0.65	. 1	07/16/12	07/29/12	KWG1207834	
Benzo(b)fluoranthene	30	3.4	0.25	1	07/16/12	07/29/12	KWG1207834	
Benzo(k)fluoranthene	11	3.4	0.41	1	07/16/12	07/29/12	KWG1207834	
Benzo(a)pyrene	17	3.4	0.41	1	07/16/12	07/29/12	KWG1207834	
Indeno(1,2,3-cd)pyrene	4.5	3.4	0.44	1	07/16/12	07/29/12	KWG1207834	
Dibenz(a,h)anthracene	1.3 J	3.4	0.45	1	07/16/12	07/29/12	KWG1207834	
Benzo(g,h,i)perylene	4.1	3.4	0.36	1	07/16/12	07/29/12	KWG1207834	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	69	46-114	07/29/12	Acceptable	
Fluoranthene-d10	75	51-121	07/29/12	Acceptable	
Terphenyl-d14	91	58-140	07/29/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/10/2012

Date Received: 07/13/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-028 (24hr) K1206824-004

Extraction Method:

EPA 3520C

Units: ng/L Basis: NA

Level: Low

Analysis Method:

8270D SIM

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	170000 D	380	79	100	07/16/12	08/02/12	KWG1207834	
2-Methylnaphthalene	34000 D	380	44	100	07/16/12	08/02/12	KWG1207834	
Acenaphthylene	410	3.8	0.41	1	07/16/12	07/30/12	KWG1207834	
Acenaphthene	29 000 D	380	40	100	07/16/12	08/02/12	KWG1207834	
Dibenzofuran	19000 D	380	47	100	07/16/12	08/02/12	KWG1207834	
Fluorene	22 000 D	380	47	100	07/16/12	08/02/12	KWG1207834	
Phenanthrene	42000 D	380	80	100	07/16/12	08/02/12	KWG1207834	
Anthracene	5600 D	380	32	100	07/16/12	08/02/12	KWG1207834	
Fluoranthene	6900 D	380	51	100	07/16/12	08/02/12	KWG1207834	
Pyrene	4300 D	380	86	100	07/16/12	08/02/12	KWG1207834	
Benz(a)anthracene	330	3.8	0.38	1	07/16/12	07/30/12	KWG1207834	
Chrysene	270	3.8	0.72	1	07/16/12	07/30/12	KWG1207834	
Benzo(b)fluoranthene	68	3.8	0.28	1	07/16/12	07/30/12	KWG1207834	
Benzo(k)fluoranthene	23	3.8	0.46	1	07/16/12	07/30/12	KWG1207834	
Benzo(a)pyrene	34	3.8	0.46	1	07/16/12	07/30/12	KWG1207834	
Indeno(1,2,3-cd)pyrene	9.5	3.8	0.49	1	07/16/12	07/30/12	KWG1207834	
Dibenz(a,h)anthracene	2.5 J	3.8	0.50	1	07/16/12	07/30/12	KWG1207834	
Benzo(g,h,i)perylene	7.4	3.8	0.40	1	07/16/12	07/30/12	KWG1207834	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	63	46-114	07/30/12	Acceptable	
Fluoranthene-d10	95	51-121	07/30/12	Acceptable	
Terphenyl-d14	97	58-140	07/30/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/11/2012 **Date Received:** 07/13/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-028 (48hr) K1206824-005

Extraction Method: Analysis Method:

EPA 3520C

8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	120000	D	340	71	100	07/16/12	08/02/12	KWG1207834	
2-Methylnaphthalene	23000	D	340	40	100	07/16/12	08/02/12	KWG1207834	
Acenaphthylene	300		3.4	0.37	1	07/16/12	07/30/12	KWG1207834	
Acenaphthene	20000	D	340	36	100	07/16/12	08/02/12	KWG1207834	
Dibenzofuran	14000	D	340	42	100	07/16/12	08/02/12	KWG1207834	
Fluorene	16000	D	340	42	100	07/16/12	08/02/12	KWG1207834	
Phenanthrene	35000	D	340	72	100	07/16/12	08/02/12	KWG1207834	
Anthracene	5400	D	340	29	100	07/16/12	08/02/12	KWG1207834	
Fluoranthene	7000	D	340	46	100	07/16/12	08/02/12	KWG1207834	
Pyrene	4300	D	340	78	100	07/16/12	08/02/12	KWG1207834	
Benz(a)anthracene	350		3.4	0.34	1	07/16/12	07/30/12	KWG1207834	
Chrysene	270		3.4	0.65	1	07/16/12	07/30/12	KWG1207834	
Benzo(b)fluoranthene	52		3,4	0.25	1	07/16/12	07/30/12	KWG1207834	
Benzo(k)fluoranthene	16		3.4	0.41	1	07/16/12	07/30/12	KWG1207834	
Benzo(a)pyrene	24		3.4	0.41	1	07/16/12	07/30/12	KWG1207834	
Indeno(1,2,3-cd)pyrene	4.7		3.4	0.44	1	07/16/12	07/30/12	KWG1207834	
Dibenz(a,h)anthracene	1.2	J	3.4	0.45	1	07/16/12	07/30/12	KWG1207834	
Benzo(g,h,i)perylene	3.2	J	3.4	0.36	1	07/16/12	07/30/12	KWG1207834	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	64	46-114	07/30/12	Acceptable	
Fluoranthene-d10	85	51-121	07/30/12	Acceptable	
Terphenyl-d14	93	58-140	07/30/12	Acceptable	

Comments:

RR144575

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Extracted: 07/16/2012 **Date Analyzed:** 07/30/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520C **Analysis Method:**

8270D SIM

Units: ng/L Basis: NA

Level: Low

Extraction Lot: KWG1207834

Lab Control Sample KWG1207834-1

Duplicate Lab Control Sample KWG1207834-2

	Lab	Lab Control Spike			e Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	382	500	76	362	500	72	39-110	5	30
2-Methylnaphthalene	396	500	79	374	500	75	39-115	6	30
Acenaphthylene	397	500	79	381	500	76	44-115	4	30
Acenaphthene	395	500	79	378	500	76	44-113	5	30
Dibenzofuran	404	500	81	385	500	77	46-116	5	30
Fluorene	404	500	81	395	500	79	48-118	2	30
Phenanthrene	402	500	80	386	500	77	47-120	4	30
Anthracene	409	500	82	390	500	78	44-117	5	30
Fluoranthene	400	500	80	384	500	77	48-128	4	30
Pyrene	456	500	91	451	500	90	42-133	1	30
Benz(a)anthracene	444	500	89	435	500	87	48-125	2	30
Chrysene	450	500	90	433	500	87	50-128	4	30
Benzo(b)fluoranthene	439	500	88	421	500	84	49-131	4	30
Benzo(k)fluoranthene	455	500	91	433	500	87	54-131	5	30
Benzo(a)pyrene	482	500	96	453	500	91	43-134	6	30
Indeno(1,2,3-cd)pyrene	452	500	90	442	500	88	45-133	2	30
Dibenz(a,h)anthracene	414	500	83	400	500	80	49-133	3	30
Benzo(g,h,i)perylene	425	500	85	405	500	81	51-124	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 12:18:47 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic 810

SuperSet Reference:

Page

1 of

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Aqueous extract

Surrogate Recovery Summary

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Preparation Method: EPA 1311 Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: PERCENT

Service Request: K1206824

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	Sur3
0397-028 Leachate	K1206824-007	99 D	96 D	11,1 D
Method Blank	KWG1208008-5	90	86	115
Lab Control Sample	KWG1208008-1	69	73	90
Duplicate Lab Control Sample	KWG1208008-2	67	70	89

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	46-114	
Sur2 = Fluoranthene-d10	51-121	
Sur3 = Terphenyl-d14	58-140	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 12:06:59

Form 2A - Organic

1265

RR144573

Page

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP Longview Solidification Aqueous extract

Service Request: K1206824 Date Collected: NA Date Received: NA

Date Prepared: 07/17/2012

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

Method Blank

Lab Code:

KWG1208008-5

Preparation Method: EPA 1311

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name Result Q MRL MDL Factor Extracted Analyzed Lot Note Naphthalene 1.2 0.022 0.0033 1 07/19/12 07/30/12 KWG1208008 2-Methylnaphthalene 0.38 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Acenaphthene 0.056 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Dibenzofuran 0.34 0.022 0.0051 1 07/19/12 07/30/12 KWG1208008 Fluorene 0.14 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Phenanthrene 0.23 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Anthracene 0.0066 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0045 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene </th <th></th> <th></th> <th></th> <th></th> <th>Dilution</th> <th>Date</th> <th>Date</th> <th>Extraction</th> <th></th>					Dilution	Date	Date	Extraction	
2-Methylnaphthalene	Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Acenaphthylene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Acenaphthene 0.056 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Dibenzofuran 0.34 0.022 0.0051 1 07/19/12 07/30/12 KWG1208008 Fluorene 0.14 0.022 0.0042 1 07/19/12 07/30/12 KWG1208008 Phenanthrene 0.23 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Anthracene 0.0066 J 0.022 0.0040 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benz(a)anthracene ND U 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fl	Naphthalene	1.2	0.022	0.0033	1	07/19/12	07/30/12	KWG1208008	
Acenaphthene 0.056 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Dibenzofuran 0.34 0.022 0.0051 1 07/19/12 07/30/12 KWG1208008 Fluorene 0.14 0.022 0.0042 1 07/19/12 07/30/12 KWG1208008 Phenanthrene 0.23 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Anthracene 0.0066 J 0.022 0.0040 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0038 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Enz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Enzo(b)fluoranthene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Enzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Enzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Enzo(a)pyrene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	2-Methylnaphthalene	0.38	0.022	0.0026	1	07/19/12	07/30/12	KWG1208008	
Dibenzofuran 0.34 0.022 0.0051 1 07/19/12 07/30/12 KWG1208008 Fluorene 0.14 0.022 0.0042 1 07/19/12 07/30/12 KWG1208008 Phenanthrene 0.23 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Anthracene 0.0066 J 0.022 0.0040 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benza(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12	Acenaphthylene	ND U	0.022	0.0038	1	07/19/12	07/30/12	KWG1208008	
Fluorene 0.14 0.022 0.0042 1 07/19/12 07/30/12 KWG1208008 Phenanthrene 0.23 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Anthracene 0.0066 J 0.022 0.0040 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U	Acenaphthene	0.056	0.022	0.0049	1	07/19/12	07/30/12	KWG1208008	
Phenanthrene 0.23 0.022 0.0055 1 07/19/12 07/30/12 KWG1208008 Anthracene 0.0066 J 0.022 0.0040 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0028 1 07/19	Dibenzofuran	0.34	0.022	0.0051	1	07/19/12	07/30/12	KWG1208008	
Anthracene 0.0066 J 0.022 0.0040 1 07/19/12 07/30/12 KWG1208008 Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Fluorene	0.14	0.022	0.0042	1	07/19/12	07/30/12	KWG1208008	
Fluoranthene 0.0096 J 0.022 0.0049 1 07/19/12 07/30/12 KWG1208008 Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Phenanthrene	0.23	0.022	0.0055	1	07/19/12	07/30/12	KWG1208008	
Pyrene 0.0045 J 0.022 0.00038 1 07/19/12 07/30/12 KWG1208008 Benz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Anthracene	0.0066 J	0.022	0.0040	1	07/19/12	07/30/12	KWG1208008	
Benz(a)anthracene 0.0038 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008	Fluoranthene	0.0096 J	0.022	0.0049	1	07/19/12	07/30/12	KWG1208008	
Chrysene ND U 0.022 0.0038 1 07/19/12 07/30/12 KWG1208008 Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Pyrene	0.0045 J	0.022	0.00038	1	07/19/12	07/30/12	KWG1208008	
Benzo(b)fluoranthene ND U 0.022 0.0026 1 07/19/12 07/30/12 KWG1208008 Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Benz(a)anthracene	0.00 38 J	0.022	0.0029	1	07/19/12	07/30/12	KWG1208008	
Benzo(k)fluoranthene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008 Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Chrysene	ND U	0.022	0.0038	1	07/19/12	07/30/12	KWG1208008	
Benzo(a)pyrene ND U 0.022 0.0048 1 07/19/12 07/30/12 KWG1208008 Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Benzo(b)fluoranthene	ND U	0.022	0.0026	1	07/19/12	07/30/12	KWG1208008	
Indeno(1,2,3-cd)pyrene 0.0037 J 0.022 0.0029 1 07/19/12 07/30/12 KWG1208008 Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Benzo(k)fluoranthene	ND U	0.022	0.0028	1	07/19/12	07/30/12	KWG1208008	
Dibenz(a,h)anthracene ND U 0.022 0.0028 1 07/19/12 07/30/12 KWG1208008	Benzo(a)pyrene	ND U	0.022	0.0048	1	07/19/12	07/30/12	KWG1208008	
	Indeno(1,2,3-cd)pyrene	0.0037 J	0.022	0.0029	1	07/19/12	07/30/12	KWG1208008	
Benzo(g,h,i)perylene 0.0037 J 0.022 0.0032 1 07/19/12 07/30/12 KWG1208008	Dibenz(a,h)anthracene	ND U	0.022	0.0028	1	07/19/12	07/30/12	KWG1208008	
	Benzo(g,h,i)perylene	0.0037 J	0.022	0.0032	1	07/19/12	07/30/12	KWG1208008	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	90	46-114	07/30/12	Acceptable	
Fluoranthene-d10	86	51-121	07/30/12	Acceptable	
Terphenyl-d14	115	58-140	07/30/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP Longview Solidification

Aqueous extract

Service Request: K1206824

Date Collected: 07/11/2012 **Date Received:** 07/13/2012 **Date Prepared:** 07/17/2012

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Sample Name:

0397-028 Leachate

Lab Code:

K1206824-007

Preparation Method: EPA 1311

Analysis Method:

Extraction Method: EPA 3520C 8270D SIM Units: ug/L Basis: NA

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	5100	D	22	3.3	1000	07/19/12	08/02/12	KWG1208008	
2-Methylnaphthalene	750	D	2.2	0.26	100	07/19/12	08/02/12	KWG1208008	
Acenaphthylene	8.4	D	0.22	0.038	10	07/19/12	07/30/12	KWG1208008	
Acenaphthene	420	D	2.2	0.49	100	07/19/12	08/02/12	KWG1208008	
Dibenzofuran	260	D	2.2	0.51	100	07/19/12	08/02/12	KWG1208008	
Fluorene	230	D	2.2	0.42	100	07/19/12	08/02/12	KWG1208008	
Phenanthrene	260	D	2.2	0.55	100	07/19/12	08/02/12	KWG1208008	
Anthracene	31	D	0.22	0.040	10	07/19/12	07/30/12	KWG1208008	
Fluoranthene	22	D	0.22	0.049	10	07/19/12	07/30/12	KWG1208008	
Pyrene	13	D	0.22	0.0038	10	07/19/12	07/30/12	KWG1208008	
Benz(a)anthracene	0.58	D	0.22	0.029	10	07/19/12	07/30/12	KWG1208008	
Chrysene	0.48	D	0.22	0.038	10	07/19/12	07/30/12	KWG1208008	
Benzo(b)fluoranthene	0,063	D	0.22	0.026	10	07/19/12	07/30/12	KWG1208008	
Benzo(k)fluoranthene	0.034	$\mathfrak{J}\!\mathfrak{D}$	0.22	0.028	10	07/19/12	07/30/12	KWG1208008	
Benzo(a)pyrene	ND	U	0.22	0.048	10	07/19/12	07/30/12	KWG1208008	
Indeno(1,2,3-cd)pyrene	ND	U	0.22	0.029	10	07/19/12	07/30/12	KWG1208008	
Dibenz(a,h)anthracene	ND	U	0.22	0.028	10	07/19/12	07/30/12	KWG1208008	
Benzo(g,h,i)perylene	ND	U	0.22	0.032	10	07/19/12	07/30/12	KWG1208008	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	99	46-114	07/30/12	Acceptable	
Fluoranthene-d10	96	51-121	07/30/12	Acceptable	
Terphenyl-d14	111	58-140	07/30/12	Acceptable	

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Prepared: 07/17/2012 **Date Extracted:** 07/19/2012 **Date Analyzed:** 07/30/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on TCLP Leachate

Extraction Method: EPA 1311/EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1208008

Lab Control Sample
KWG1208008-1
Lab Control Spike

Duplicate Lab Control Sample KWG1208008-2

	Lab	Control Spik	e	Duplicate	Lab Control	Spike	%Rec		RPD	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit	
Naphthalene	0.379	0.500	76	0.365	0.500	73	39-110	4	30	
2-Methylnaphthalene	0.390	0.500	78	0.382	0.500	76	39-115	2	30	
Acenaphthylene	0.403	0.500	81	0.393	0.500	79	44-115	2	30	
Acenaphthene	0.390	0.500	78	0.382	0.500	76	44-113	2	30	
Dibenzofuran	0.398	0.500	80	0.392	0.500	78	46-116	2	30	
Fluorene	0.399	0.500	80	0.392	0.500	78	48-118	2	30	
Phenanthrene	0.405	0.500	81	0.378	0.500	76	47-120	7	30	
Anthracene	0.410	0.500	82	0.392	0.500	78	44-117	5	30	
Fluoranthene	0.394	0.500	79	0.372	0.500	74	48-128	6	30	
Pyrene	0.461	0.500	92	0.458	0.500	92	42-133	1	30	
Benz(a)anthracene	0.447	0.500	89	0.435	0.500	87	48-125	3	30	
Chrysene	0.440	0.500	88	0.433	0.500	87	50-128	2	30	
Benzo(b)fluoranthene	0.426	0.500	85	0.424	0.500	85	49-131	0	30	
Benzo(k)fluoranthene	0.453	0.500	91	0.437	0.500	87	54-131	4	30	
Benzo(a)pyrene	0.463	0.500	93	0.455	0.500	91	43-124	2	30	
Indeno(1,2,3-cd)pyrene	0.438	0.500	88	0.425	0.500	85	45-133	3	30	
Dibenz(a,h)anthracene	0.405	0.500	81	0.397	0.500	79	49-133	2	30	
Benzo(g,h,i)perylene	0.412	0.500	82	0.403	0.500	81	51-124	2	30	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 12:07:40 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic

1270

RR144573

Page

1 of 1

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Aqueous extract

Service Request: K1206824

Surrogate Recovery Summary

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Preparation Method: EPA 1312

Extraction Method: EPA 3520C Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
0397-028 Leachate	K1206824-007	104 D	237D *	89 D
Method Blank	KWG1208008-4	67	72	89
Lab Control Sample	KWG1208008-1	69	73	90
Duplicate Lab Control Sample	KWG1208008-2	67	70	89

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	46-114	
Sur2 = Fluoranthene-d10	51-121	
Sur3 = Terphenyl-d14	58-140	
'		

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 12:15:03

Form 2A - Organic 1551

Page

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Aqueous extract

Service Request: K1206824

Date Collected: NA Date Received: NA

Date Prepared: 07/17/2012

Toxicity Characteristic Leaching Procedure (TCLP) Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

Method Blank

Lab Code:

KWG1208008-4

Units: ug/L Basis: NA

Preparation Method: EPA 1311 **Extraction Method:**

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

EPA 3520C

Level: Low

KWG1208008

KWG1208008

Analysis Method

8270D SIM

Analysis Method:	82/0D SIIVI					Dilution	Date	Date	Extraction	
Analyte Name		Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene		29	D	0.20	0.030	10	07/19/12	08/01/12	KWG1208008	
2-Methylnaphthalene		6.8		0.020	0.0023	1	07/19/12	07/30/12	KWG1208008	
Acenaphthylene		0.094		0.020	0.0034	1	07/19/12	07/30/12	KWG1208008	
Acenaphthene		4.4		0.020	0.0044	1	07/19/12	07/30/12	KWG1208008	
Dibenzofuran		3.1		0.020	0.0046	1	07/19/12	07/30/12	KWG1208008	
Fluorene		2.9		0.020	0.0038	1	07/19/12	07/30/12	KWG1208008	
Phenanthrene		3.2	THE RESERVE OF THE PERSON OF T	0.020	0.0050	1	07/19/12	07/30/12	KWG1208008	
Anthracene		0.31		0.020	0.0036	1	07/19/12	07/30/12	KWG1208008	
Fluoranthene		0.32		0.020	0.0044	. 1	07/19/12	07/30/12	KWG1208008	
Pyrene		0.17		0.020	0.00034	1	07/19/12	07/30/12	KWG1208008	
Benz(a)anthracene		0.0089	J	0.020	0.0026	1	07/19/12	07/30/12	KWG1208008	
Chrysene		0.0074	J	0.020	0.0034	1	07/19/12	07/30/12	KWG1208008	
Benzo(b)fluoranthene		ND	U	0.020	0.0023	1	07/19/12	07/30/12	KWG1208008	
Benzo(k)fluoranthene		ND	U	0.020	0.0025	1	07/19/12	07/30/12	KWG1208008	
Benzo(a)pyrene		ND	U	0.020	0.0043	1	07/19/12	07/30/12	KWG1208008	
Indeno(1,2,3-cd)pyrene	;	ND	U	0.020	0.0026	1	07/19/12	07/30/12	KWG1208008	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	67	46-114	07/30/12	Acceptable	
Fluoranthene-d10	72	51-121	07/30/12	Acceptable	
Terphenyl-d14	89	58-140	07/30/12	Acceptable	

0.020

0.020

0.0025

0.0029

1

Comments:

1550

07/19/12

07/19/12

07/30/12

07/30/12

ND U

ND U

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

IP Longview Solidification

Project: Sample Matrix:

Aqueous extract

Service Request: K1206824 **Date Collected:** 07/11/2012 **Date Received:** 07/13/2012 **Date Prepared:** 07/17/2012

Synthetic Precipitation Leaching Procedure Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Sample Name:

0397-028 Leachate

Lab Code:

K1206824-007

Preparation Method: EPA 1312

Extraction Method: EPA 3520C

Analysis Method:

8270D SIM

Units: ug/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	5400 D	21	3.2	1000	07/19/12	08/02/12	KWG1208008	
2-Methylnaphthalene	790 D	2.1	0.24	100	07/19/12	08/02/12	KWG1208008	
Acenaphthylene	9.0 D	0.21	0.036	10	07/19/12	07/30/12	KWG1208008	
Acenaphthene	440 D	2.1	0.46	100	07/19/12	08/02/12	KWG1208008	
Dibenzofuran	29 0 D	2.1	0.48	100	07/19/12	08/02/12	KWG1208008	
Fluorene	25 0 D	2.1	0.40	100	07/19/12	08/02/12	KWG1208008	
Phenanthrene	2 70 D	2.1	0.53	100	07/19/12	08/02/12	KWG1208008	
Anthracene	36 D	0.21	0.038	10	07/19/12	07/30/12	KWG1208008	
Fluoranthene	24 D	0.21	0.046	10	07/19/12	07/30/12	KWG1208008	
Pyrene	13 D	0.21	0.0036	10	07/19/12	07/30/12	KWG1208008	
Benz(a)anthracene	0.71 D	0.21	0.028	10	07/19/12	07/30/12	KWG1208008	
Chrysene	0.46 D	0.21	0.036	10	07/19/12	07/30/12	KWG1208008	
Benzo(b)fluoranthene	0.049 JD	0.21	0.024	10	07/19/12	07/30/12	KWG1208008	
Benzo(k)fluoranthene	0.028 JD	0.21	0.027	10	07/19/12	07/30/12	KWG1208008	
Benzo(a)pyrene	ND U	0.21	0.045	10	07/19/12	07/30/12	KWG1208008	
Indeno(1,2,3-cd)pyrene	ND U	0.21	0.028	10	07/19/12	07/30/12	KWG1208008	
Dibenz(a,h)anthracene	ND U	0.21	0.027	10	07/19/12	07/30/12	KWG1208008	
Benzo(g,h,i)perylene	ND U	0.21	0.031	10	07/19/12	07/30/12	KWG1208008	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	104	46-114	07/30/12	Acceptable	
Fluoranthene-d10	237	51-121	07/30/12	Outside Control Limits	
Terphenyl-d14	89	58-140	07/30/12	Acceptable	

Comments:

1549

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Prepared: 07/17/2012 **Date Extracted:** 07/19/2012 **Date Analyzed:** 07/30/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons on SPLP Leachate

Extraction Method: EPA 1311/EPA 3520C

Benzo(g,h,i)perylene

0.412

0.500

82

Analysis Method:

8270D SIM

Units: ug/L

Basis: NA Level: Low

Extraction Lot: KWG1208008

	KV	Control Samp VG1208008-1 Control Spik		KW	Lab Control /G1208008-2 Lab Control	,	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	0.379	0.500	76	0.365	0.500	73	39-110	4	30
2-Methylnaphthalene	0.390	0.500	78	0.382	0.500	76	39-115	2	30
Acenaphthylene	0.403	0.500	81	0.393	0.500	79	44-115	2	30
Acenaphthene	0.390	0.500	78	0.382	0.500	76	44-113	2	30
Dibenzofuran	0.398	0.500	80	0.392	0.500	78	46-116	2	30
Fluorene	0.399	0.500	80	0.392	0.500	78	48-118	2	30
Phenanthrene	0.405	0.500	81	0.378	0.500	76	47-120	7	30
Anthracene	0.410	0.500	82	0.392	0.500	78	44-117	5	30
Fluoranthene	0.394	0.500	79	0.372	0.500	74	48-128	6	30
Pyrene	0.461	0.500	92	0.458	0.500	92	42-133	1	30
Benz(a)anthracene	0.447	0.500	89	0.435	0.500	87	48-125	3	30
Chrysene	0.440	0.500	88	0.433	0.500	87	50-128	2	30
Benzo(b)fluoranthene	0.426	0.500	85	0.424	0.500	85	49-131	0	30
Benzo(k)fluoranthene	0.453	0.500	91	0.437	0.500	87	54-131	4	30
Benzo(a)pyrene	0.463	0.500	93	0.455	0.500	91	43-124	2	30
Indeno(1,2,3-cd)pyrene	0.438	0.500	88	0.425	0.500	85	45-133	3	30
Dibenz(a,h)anthracene	0.405	0.500	81	0.397	0.500	79	49-133	2	30
` ' '								_	• •

0.403

0.500

81

51-124

2

30

1 of

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 12:15:58 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic

Page SuperSet Reference: RR144574

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3541

Analysis Method:

8270D SIM

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1		Sur2	Sur3
0397-028 (wipe)	K1206824-006	7	*	54	80
Method Blank	KWG1208078-3	5	*	55	82
Lab Control Sample	KWG1208078-1	25		61	81
Duplicate Lab Control Sample	KWG1208078-2	20		50	67

Surrogate Recovery Control Limits (%)

Sur1 =	Fluorene-d10	17-104
Sur2 =	Fluoranthene-d10	27-106
Sur3 =	Terphenyl-d14	35-109

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 11:41:02

u:\Stealth\Crystal.rpt\Form2.rpt

Form 2A - Organic

Page 1 of 1

1873

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824

Date Collected: NA

Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1208078-3

Extraction Method: Analysis Method:

EPA 3541

8270D SIM

Units: ug/WIPE Basis: Wet

Level: Low

A 1 4 N	D 1/ O	78 AT T 9 AT	MDI	Dilution	Date	Date	Extraction	Mata
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.068	0.0050	0.00060	1	07/20/12	07/31/12	KWG1208078	*
2-Methylnaphthalene	0.032	0.0050	0.00046	1	07/20/12	07/31/12	KWG1208078	*
Acenaphthylene	ND U	0.0050	0.00056	1	07/20/12	07/31/12	KWG1208078	*
Acenaphthene	0.017	0.0050	0.00050	1	07/20/12	07/31/12	KWG1208078	*
Dibenzofuran	0.0094	0.0050	0.00063	1	07/20/12	07/31/12	KWG1208078	*
Fluorene	0.0079	0.0050	0.00061	1	07/20/12	07/31/12	KWG1208078	*
Phenanthrene	0.0076	0,0050	0.0014	1	07/20/12	07/31/12	KWG1208078	
Anthracene	0.0019 J	0.0050	0.00055	1	07/20/12	07/31/12	KWG1208078	
Fluoranthene	0.0013 J	0.0050	0.00098	1	07/20/12	07/31/12	KWG1208078	
Pyrene	ND U	0.0050	0.00076	1	07/20/12	07/31/12	KWG1208078	
Benz(a)anthracene	ND U	0.0050	0.00072	1	07/20/12	07/31/12	KWG1208078	
Chrysene	ND U	0.0050	0.00080	1	07/20/12	07/31/12	KWG1208078	
Benzo(b)fluoranthene	ND U	0.0050	0.00092	1	07/20/12	07/31/12	KWG1208078	
Benzo(k)fluoranthene	ND U	0.0050	0.00087	1	07/20/12	07/31/12	KWG1208078	
Benzo(a)pyrene	ND U	0.0050	0.00076	1	07/20/12	07/31/12	KWG1208078	
Indeno(1,2,3-cd)pyrene	ND U	0.0050	0.00087	1	07/20/12	07/31/12	KWG1208078	
Dibenz(a,h)anthracene	ND U	0.0050	0.00080	1	07/20/12	07/31/12	KWG1208078	
Benzo(g,h,i)perylene	ND U	0.0050	0.00085	1	07/20/12	07/31/12	KWG1208078	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	5	17-104	07/31/12	Outside Control Limits	
Fluoranthene-d10	55	27-106	07/31/12	Acceptable	
Terphenyl-d14	82	35-109	07/31/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824

Date Collected: 07/11/2012

Date Received: 07/13/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-028 (wipe) K1206824-006

EPA 3541

Extraction Method: Analysis Method:

8270D SIM

Units: ug/WIPE Basis: Wet

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.48 B	0.0050	0.00060	1	07/20/12	08/01/12	KWG1208078	*
2-Methylnaphthalene	0.18 B	0.0050	0.00046	1	07/20/12	08/01/12	KWG1208078	*
Acenaphthylene	0.010	0.0050	0.00056	1	07/20/12	08/01/12	KWG1208078	*
Acenaphthene	0.26 B	0.0050	0.00050	1	07/20/12	08/01/12	KWG1208078	*
Dibenzofuran	0.20	0.0050	0.00063	1	07/20/12	08/01/12	KWG1208078	*
Fluorene	0.28	0.0050	0.00061	1	07/20/12	08/01/12	KWG1208078	*
Phenanthrene	1.1	0.0050	0.0014	1	07/20/12	08/01/12	KWG1208078	
Anthracene	0.21	0.0050	0.00055	1	07/20/12	08/01/12	KWG1208078	
Fluoranthene	0.62	0.0050	0.00098	1	07/20/12	08/01/12	KWG1208078	
Pyrene	0.44	0.0050	0.00076	1	07/20/12	08/01/12	KWG1208078	
Benz(a)anthracene	0.13	0.0050	0.00072	1	07/20/12	08/01/12	KWG1208078	
Chrysene	0.12	0.0050	0.00080	1	07/20/12	08/01/12	KWG1208078	
Benzo(b)fluoranthene	0.085	0.0050	0.00092	1	07/20/12	08/01/12	KWG1208078	
Benzo(k)fluoranthene	0.033	0.0050	0.00087	1	07/20/12	08/01/12	KWG1208078	
Benzo(a)pyrene	0.090 X	0.0050	0.00076	1	07/20/12	08/01/12	KWG1208078	
Indeno(1,2,3-cd)pyrene	0.024	0.0050	0.00087	1	07/20/12	08/01/12	KWG1208078	
Dibenz(a,h)anthracene	0.0065	0.0050	0.00080	1	07/20/12	08/01/12	KWG1208078	
Benzo(g,h,i)perylene	0.022	0.0050	0.00085	1	07/20/12	08/01/12	KWG1208078	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	7	17-104	08/01/12	Outside Control Limits	
Fluoranthene-d10	54	27-106	08/01/12	Acceptable	
Terphenyl-d14	80	35-109	08/01/12	Acceptable	

Comments:

1871

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824 **Date Extracted:** 07/20/2012

Date Analyzed: 08/01/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3541 **Analysis Method:**

8270D SIM

Units: ug/WIPE Basis: Wet

Level: Low

Extraction Lot: KWG1208078

	KW	Control Samp /G1208078-1 Control Spike		KW	Lab Control (VG1208078-2 Lab Control		%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	0.108	0.500	22 *	0.0155	0.500	3 *	32-124	150 *	40
2-Methylnaphthalene	0.103	0.500	21 *	0.0262	0.500	5 *	27-126	119 *	40
Acenaphthylene	0.0955	0.500	19 *	0.0343	0.500	7 *	38-126	94 *	40
Acenaphthene	0.119	0.500	24 *	0.0397	0.500	8 *	39-124	100 *	40
Dibenzofuran	0.131	0.500	26 *	0.0739	0.500	15 *	41-130	56 *	40
Fluorene	0.184	0.500	37 *	0.154	0.500	31 *	39-129	18	40
Phenanthrene	0.250	0.500	50	0.227	0.500	45	39-123	10	40
Anthracene	0.296	0.500	59	0.282	0.500	56	38-130	5	40
Fluoranthene	0.328	0.500	66	0.300	0.500	60	39-135	9	40
Pyrene	0.374	0.500	75	0.332	0.500	66	39-134	12	40
Benz(a)anthracene	0.402	0.500	80	0.352	0.500	70	46-120	13	40
Chrysene	0.410	0.500	82	0.365	0.500	73	49-120	12	40
Benzo(b)fluoranthene	0.388	0.500	78	0.346	0.500	69	51-121	11	40
Benzo(k)fluoranthene	0.418	0.500	84	0.382	0.500	76	56-114	9	40
Benzo(a)pyrene	0.434	0.500	87	0.387	0.500	77	49-122	11	40
Indeno(1,2,3-cd)pyrene	0.422	0.500	84	0.367	0.500	73	40-128	14	40
Dibenz(a,h)anthracene	0.389	0.500	78	0.350	0.500	70	43-125	10	40
Benzo(g,h,i)perylene	0.391	0.500	78	0.351	0.500	70	49-122	11	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 11:41:44 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

1878

SuperSet Reference: RR144568

Page

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510C **Analysis Method:**

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	Sur1	Sur2
0397-028 (2hr)	K1206824-002	105	105
0397-028 (7hr)	K1206824-003	107	112
0397-028 (24hr)	K1206824-004	94	98
0397-028 (48hr)	K1206824-005	102	103
Method Blank	KWG1207973-3	92	98
Lab Control Sample	KWG1207973-1	101	100
Duplicate Lab Control Sample	KWG1207973-2	104	100

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 17:03:30

 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic

SuperSet Reference:

Page

33

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: NA
Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1207973-3

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	1	07/18/12	07/27/12	KWG1207973	
Residual Range Organics (RRO)	ND U	500	1	07/18/12	07/27/12	KWG1207973	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	92	50-150	07/27/12	Acceptable
n-Triacontane	98	50-150	07/27/12	Acceptable

Comments:

Printed: 08/03/2012 17:03:14 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic 28

SuperSet Reference:

Page 1 of 1 RR144612

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/09/2012 **Date Received:** 07/13/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-028 (2hr)

K1206824-002

Extraction Method: Analysis Method:

EPA 3510C

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	520 Z	270	1	07/18/12	07/27/12	KWG1207973	*
Residual Range Organics (RRO)	ND U	540	1	07/18/12	07/27/12	KWG1207973	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	105	50-150	07/27/12	Acceptable Acceptable
n-Triacontane	105	50-150	07/27/12	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/09/2012 **Date Received:** 07/13/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-028 (7hr)

Extraction Method:

K1206824-003

EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

NWTPH-Dx

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	570 Z	280	1	07/18/12	07/27/12	KWG1207973	*
Residual Range Organics (RRO)	ND U	550	1	07/18/12	07/27/12	KWG1207973	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	107	50-150	07/27/12	Acceptable	
n-Triacontane	112	50-150	07/27/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/10/2012

Date Received: 07/13/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-028 (24hr)

K1206824-004

Extraction Method: EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

NWTPH-Dx

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	930 Z	250	1	07/18/12	07/27/12	KWG1207973	*
Residual Range Organics (RRO)	ND U	500	1	07/18/12	07/27/12	KWG1207973	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	94	50-150	07/27/12	Acceptable
n-Triacontane	98	50-150	07/27/12	Acceptable

Comments:

Printed: 08/03/2012 17:03:08 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} v: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} V: \labe$

Merged

Form 1A - Organic 26

SuperSet Reference:

Page 1 of

RR144612

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Collected: 07/11/2012 **Date Received:** 07/13/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-028 (48hr)

Extraction Method:

K1206824-005

EPA 3510C

Units: ug/L Basis: NA

Level: Low

Analysis Method:

NWTPH-Dx

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	910 Z	280	1	07/18/12	07/27/12	KWG1207973	
Residual Range Organics (RRO)	ND U	550	1	07/18/12	07/27/12	KWG1207973	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	102	50-150	07/27/12	Acceptable	
n-Triacontane	103	50-150	07/27/12	Acceptable	

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206824

Date Extracted: 07/18/2012

Date Analyzed: 07/27/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1207973

Lab Control Sample KWG1207973-1

Duplicate Lab Control Sample

KWG1207973-2

Duplicate Lab Control Spike Lab Control Spike %Rec **RPD RPD** Limit Limits %Rec %Rec Result **Expected** Result Expected **Analyte Name** 1 30 46-140 1600 105 1700 1600 106 1680 Diesel Range Organics (DRO) 30 800 45-159 4 784 98 Residual Range Organics (RRO) 816 800 102

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 17:03:41 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic 36

SuperSet Reference:

Page 1 of RR144612

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:

EPA 3550B

Analysis Method:

NWTPH-Dx

Service Request: K1206824

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
Batch QC	K1206808-006	81	87
0397-028	K1206824-001	102	96
0397-028 (wipe)	K1206824-006	88	98
Batch QCDUP	KWG1208038-1	94	105
Method Blank	KWG1208038-3	87	86
Method Blank	KWG1208040-3	89	92
Lab Control Sample	KWG1208038-2	95	90
Lab Control Sample	KWG1208040-2	100	97
Duplicate Lab Control Sample	KWG1208040-4	96	97

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 17:03:34 $u:\Stealth\Crystal.rpt\Form2.rpt$

SuperSet Reference:

Page

1 of

RR144612

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1208038-3

Extraction Method:

EPA 3550B

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	25	1	07/19/12	07/20/12	KWG1208038	
Residual Range Organics (RRO)	ND U	99	1	07/19/12	07/20/12	KWG1208038	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	87	50-150	07/20/12	Acceptable	
n-Triacontane	86	50-150	07/20/12	Acceptable	

Comments:

Printed: 08/03/2012 17:03:23 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1208040-3

Extraction Method: Analysis Method:

EPA 3550B

NWTPH-Dx

Units: ug/WIPE

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	500	1	07/19/12	07/20/12	KWG1208040	
Residual Range Organics (RRO)	ND U	500	1	07/19/12	07/20/12	KWG1208040	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	89	50-150	07/20/12	Acceptable	
n-Triacontane	92	50-150	07/20/12	Acceptable	

Comments:

Printed: 08/03/2012 17:03:26 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Form 1A - Organic 32

SuperSet Reference:

Page RR144612

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Collected: 07/06/2012 **Date Received:** 07/13/2012

Diesel and Residual Range Organics

Sample Name:

0397-028

Lab Code:

K1206824-001

Extraction Method:

EPA 3550B

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

Analyte Name
Diesel Range Organics (DRO)
Residual Range Organics (RRO)

Result Q 4300 Z 1000 Z

33 140

MRL

Extracted **Factor** 1 07/19/12 1 07/19/12

Date

Dilution

Analyzed 07/20/12 07/20/12

Date

Lot KWG1208038 KWG1208038

Extraction

Note

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	102	50-150	07/20/12	Acceptable	
n-Triacontane	96	50-150	07/20/12	Acceptable	

Comments:

Printed: 08/03/2012 17:03:17 $u: \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} I m \label{lem:limit} I m \label{lem:limit} lem \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{lem:limit} u: \label{lem:limit} \label{lem:limit} u: \label{$

Merged

Form 1A - Organic 29

SuperSet Reference:

Page RR144612

1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824 **Date Collected:** 07/11/2012

Date Received: 07/13/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-028 (wipe) K1206824-006

Extraction Method: Analysis Method:

EPA 3550B NWTPH-Dx Units: ug/WIPE Basis: As received

Level: Low

Analyte Name Diesel Range Organics (DRO)

Residual Range Organics (RRO)

Result Q MRL ND U 560 Z

Factor Extracted 1 07/19/12 1 07/19/12

Date

Dilution

Analyzed 07/20/12 07/20/12

Date

Lot Note KWG1208040 KWG1208040

Extraction

Control Date %Rec Limits Note Surrogate Name Analyzed 88 50-150 07/20/12 Acceptable o-Terphenyl 07/20/12 Acceptable n-Triacontane 98 50-150

500

500

Comments:

Printed: 08/03/2012 17:03:20 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824 **Date Extracted:** 07/19/2012

Date Analyzed: 07/20/2012

Duplicate Sample Summary Diesel and Residual Range Organics

Sample Name:

Batch QC

Lab Code:

K1206808-006

Extraction Method:

EPA 3550B

Analysis Method:

NWTPH-Dx

Units: mg/Kg
Basis: Dry

Dusis. 21

Level: Low

Extraction Lot: KWG1208038

		Sample	Batch (KWG12 Duplicat e	08038-1	Relative Percent Difference	RPD Limit
Analyte Name		Result	Result	Average		
Diesel Range Organics (DRO) Residual Range Organics (RRO)	30 120	290 480	350 600	320 540	17 21	40 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 17:03:38 u:\Stealth\Crystal.rpt\Form3DUP.rpt

Form 3B - Organic

SuperSet Reference:

Page 1 of 1 RR144612

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824 **Date Extracted:** 07/19/2012

Date Analyzed: 07/20/2012

Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B

Analysis Method:

NWTPH-Dx

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1208038

Lab Control Sample KWG1208038-2 Lab Control Spike

	Lau	Control Spike		%Rec		
Analyte Name	Result	Expected	%Rec	Limits		
Diesel Range Organics (DRO)	283	267	106	56-124		
Residual Range Organics (RRO)	122	133	92	60-135		

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 17:03:44

Form 3C - Organic 37

SuperSet Reference:

Page 1 of 1

RR144612

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Wipe

Service Request: K1206824

Date Extracted: 07/19/2012 **Date Analyzed:** 07/20/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3550B

Analysis Method:

NWTPH-Dx

Units: ug/WIPE

Basis: Dry Level: Low

Extraction Lot: KWG1208040

Lab Control Sample

Duplicate Lab Control Sample

KWG1208040-4

KWG1208040-2

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec	%Rec	
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	9120	8000	114	8470	8000	106	70-130	7	40
Residual Range Organics (RRO)	4260	4000	107	3970	4000	99	70-130	7	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 17:03:47 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic 38

SuperSet Reference:

Page 1 of

RR144612

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Surrogate Recovery Summary Synthetic Precipitation Leaching Procedure

Diesel and Residual Range Organics

Preparation Method: EPA 1312

Extraction Method: EPA 3510C

Units: PERCENT

Level: Low

Analysis Method: NWTPH-Dx

Sample Name	Lab Code	<u>Sur1</u>	Sur2
0397-028	K1206824-001	146	137
0397-028 Leachate	K1206824-007	116	107
Method Blank	KWG1208523-4	99	106
Method Blank	KWG1208561-3	97	102
Lab Control Sample	KWG1208523-2	109	115
Duplicate Lab Control Sample	KWG1208523-3	116	115
Lab Control Sample	KWG1208561-1	90	88
Duplicate Lab Control Sample	KWG1208561-2	106	106

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 50-150 Sur2 = n-Triacontane

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 18:36:13 $u:\Stealth\Crystal.rpt\Form2.rpt$

Form 2A - Organic 237

SuperSet Reference:

Page 1 of 1 RR144621

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Collected: NA Date Received: NA

Date Prepared: 07/25/2012

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1208523-4

Preparation Method: EPA 1312 Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA Level: Low

•			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	270	1	07/31/12	08/01/12	KWG1208523	
Residual Range Organics (RRO)	ND U	540	1	07/31/12	08/01/12	KWG1208523	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	99	50-150	08/01/12	Acceptable
n-Triacontane	106	50-150	08/01/12	Acceptable

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Aqueous extract

Service Request: K1206824

Date Collected: NA Date Received: NA

Date Prepared: 07/25/2012

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1208561-3

Preparation Method: EPA 1311 Extraction Method: EPA 3510C

Analysis Mathad

Units: ug/L Basis: NA

Level: Low

Analysis Method:	NWIFH-D
Analyte Name	

NWTPH-Dx

12141 1010 112011041			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	250	1	07/31/12	08/01/12	KWG1208561	
Residual Range Organics (RRO)	ND U	500	1	07/31/12	08/01/12	KWG1208561	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	97	50-150	08/01/12	Acceptable	
n-Triacontane	102	50-150	08/01/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Collected: 07/06/2012 **Date Received:** 07/13/2012

Date Prepared: 07/25/2012

Synthetic Precipitation Leaching Procedure Diesel and Residual Range Organics

Sample Name:

0397-028

Lab Code:

K1206824-001

Preparation Method: EPA 1312

Units: ug/L Basis: NA

Level: Low

Extraction Method:	EPA 3510C
Analysis Method:	NWTPH-Dx
•	

Analysis Method:			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	17000 Z	250	1	07/31/12	08/01/12	KWG1208523	*
Residual Range Organics (RRO)	920 Z	500	1	07/31/12	08/01/12	KWG1208523	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	146	50-150	08/01/12	Acceptable	
n-Triacontane	137	50-150	08/01/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Aqueous extract

Service Request: K1206824

Date Collected: 07/06/2012 **Date Received:** 07/13/2012 **Date Prepared:** 07/25/2012

Toxicity Characteristic Leaching Procedure (TCLP) Diesel and Residual Range Organics

Sample Name:

0397-028 Leachate

Lab Code:

K1206824-007

Preparation Method: EPA 1311

Level: Low

Units: ug/L

Basis: NA

Extraction Method: EPA 3510C NWTPH-Dx **Analysis Method:**

marysis meetiou.			Dilution	Date	Date	Extraction	NI - 4 -
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	15000 Z	270	1	07/31/12	08/01/12	KWG1208561	*
Residual Range Organics (RRO)	ND U	540	1	07/31/12	08/01/12	KWG1208561	*

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	116	50-150	08/01/12	Acceptable	
n-Triacontane	107	50-150	08/01/12	Acceptable	

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Soil

Service Request: K1206824

Date Prepared: 07/25/2012 **Date Extracted:** 07/31/2012

Date Analyzed: 08/01/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 1312/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1208523

Lab Control Sample KWG1208523-2

Duplicate Lab Control Sample

KWG1208523-3

Lab Control Spike **Duplicate Lab Control Spike RPD** %Rec Limits **RPD** Limit %Rec **Expected** %Rec Expected Result Result **Analyte Name** 46-140 7 30 1600 Diesel Range Organics (DRO) 1650 103 1540 1600 96 30 800 97 45-159 1 98 776 Residual Range Organics (RRO) 783 800

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 18:36:17 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic

SuperSet Reference:

Page RR144621

1 of 1

290

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Aqueous extract

Service Request: K1206824

Date Prepared: 07/25/2012 **Date Extracted:** 07/31/2012

Date Analyzed: 08/01/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 1311/EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

Extraction Lot: KWG1208561

Lab Control Sample KWG1208561-1

Duplicate Lab Control Sample

KWG1208561-2

Duplicate Lab Control Spike Lab Control Spike **RPD** %Rec **RPD** Limit Limits %Rec **Expected** %Rec Expected Result Result **Analyte Name** 46-140 13 30 1590 1600 100 Diesel Range Organics (DRO) 1390 1600 87 30 45-159 800 95 16 800 80 759 Residual Range Organics (RRO) 643

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 18:36:20

Form 3C - Organic

SuperSet Reference:

1 of

291

RR144621

Page

 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

August 6, 2012

Analytical Report for Service Request No: K1206890

Paul Kalina URS Corporation 1501 4th Ave., Suite 1400 Seattle, WA 98101

RE: IP Longview Solidification

Dear Paul:

Enclosed are the results of the samples submitted to our laboratory on July 17, 2012. For your reference, these analyses have been assigned our service request number K1206890.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at Ed.Wallace@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Wallace

Ed Wallace

Project Manager

EW/ti

Page 1 of <u>497</u>

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626

PHONE +1 360 577 7222 | FAX+1 360 636 1068

Columbia Analytical Services, Inc.

Part of the ALS Group | A Campbell Brothers Limited Company

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 **DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- O See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.

 DOD-OSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The
- detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	_
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer	3016
Louisiana DHH	mitSupport/LouisianaLaboratoryAccreditationProgram.aspx Not available	LA110003
	Not available	
Maine DHS	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	WA0035 9949
Michigan DEQ	http://www.health.state.mn.us/accreditation	
Minnesota DOH	http://www.dphhs.mt.gov/publichealth/	053-999-368
Montana DPHHS	http://ndep.nv.gov/bsdw/labservice.htm	CERT0047
Nevada DEP	http://www.nj.gov/dep/oqa/	WA35
New Jersey DEP	http://www.nmenv.state.nm.us/dwb/Index.htm	WA005
New Mexico ED		-
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.caslab.com	NA
	A	

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request No.:

K1206890

Date Received:

7/17/12

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Iuc. (CAS). This report contains analytical results for samples designated for Tier III validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three samples were received for analysis at Columbia Analytical Services on 7/17/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by NWTPH-Dx Waters

Sample Notes and Discussion:

Insufficient sample volume was received to perform a duplicate client sample. A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the duplicate analysis for these samples.

Enw Date 8/7/12

TCLP DRO NWJPH. XXX TOTAL DRO NWJPH. Noice TIME TOTAL DRO NWJPH. TOTAL DRO NWJPH. TOTAL DRO NWJPH.	Client: URS C	alina	x / B E	IN of CUSTODY Jew Scholification 3-312 Fax 86-495-5282	Page 1.0 Method of Shipment Method of Shipment Factor Special Detection
STR.	No. of Containers Soil	Air Other Yes No	SPLP PAH 8270 SN SPLP Pro NWJPH- TCLP PAH 8270 SN TCLP DRO NWJPA	Total DRO NWJA	Turn Around Time (working days)
A	1 829 P	N X X X	805 V		ans
Ves No		X Z	21015	X	V) (6)
Yes No Time Perenture received: Ice No ice					
Yes No Date Time Received by Received by Date Time Received by					
Yes No Temperature received: Ice No ice & Print Name) Date Time Received by (Sign & Print Name) No ice ARSYNCYCOLDED Date Time Received by					M 0
Temperature received: Ice No ice & Print Name) & Print Name) Date Time Received by (Sign & Print Name) Date Time Received by Sign & Print Name) Date Time Received by Date Time Received by (Sign & Print Name)					
ler (Sign & Print Name) Pate Time Received by (Sign & Print Name) Date Time Received by Date Time Received by Date Time Received by Date Time Received by Jaboratory	3	Tempera		No ice	
Date Time Received by Date Time Received by Jabogatory Mill Date Time Date Time Received by Jabogatory Mill Date Time	Ayben	Time 12:	Received by (Sign & Print Name)		Lab Work No.
Date Time Received by Jaboratory Date Time Received by Jaboratory Date Time			Received by		4,5
Date Time Received by Jaboratory Date Date Time			Received by		
A A COLUMN TO THE PARTY OF THE			my 3	117	3600)
		NLab Sample No. NNNo. of Containers Soil	Date Time Time XXX No	Date Time Received by Bookers By	Date Time Received by Received

PC_FD

Page____of___

Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered Samples were received in: (circle) Cooler Box Envelope Other NA Were custody seals on coolers? NA Y N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Y N Cooler Temp Thermometer ID NA Tracking Number NA Filed Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below. NA Y NA	Samples were received via? Mail Samples were received in: (circle) Were custody seals on coolers? If present, were custody seals intact? Cooler Temp Thermon Temp °C Blank °C ID Packing material: Inserts Baggies Were custody papers properly filled out Did all bottles arrive in good condition Were all sample labels complete (i.e and 1. Did all sample labels and tags agree wid) Were appropriate bottles/containers and 3. Were the pH-preserved bottles (see SM6) Were VOA vials received without head 5. Was C12/Res negative?	Fed Ex UPS E Cooler Box En NA Y N Smeter Cooler/COC D	DHL PDX Invelope O If yes, how ma If present, w NA 1980 Rs Wet Ice D the table below. It end of the table below.	Unloaded:	d and dated? king Number SA3 es	NA Y NA Y NA Y NA Y NA Y	7 . 6.,4.
Samples were received via? Mail Samples were received via? Mail Samples were received via? Mail Samples were received in: (circle) Cooler Bax Envelope Other NA Were custody seals on coolers? NA Y N If yes, how many and where? If present, were custody seals intact? Y N Tracking Number Tanp'C ID NA Tracking Number NA Filed Thermometer ID NA Filed Tracking Number NA NA NA NA NA NA NA NA NA N	Samples were received via? Mail Samples were received in: (circle) Were custody seals on coolers? If present, were custody seals intact? Cooler Temp Thermon Temp °C Blank °C ID Packing material: Inserts Baggies Were custody papers properly filled out Did all bottles arrive in good condition Were all sample labels complete (i.e and Did all sample labels and tags agree with the work of the pH-preserved bottles (see SMO). Were the pH-preserved bottles (see SMO). Were VOA vials received without heads. Was C12/Res negative?	Fed Ex UPS E Cooler Box En NA Y N Smeter Cooler/COC D	If yes, how may a serve tests indicated? The propriate pH	Courier ther ny and where? vere they signe Trace O 2470 Ory Ice Sleev ancies in the to	d and dated? king Number SA3 es	NA Y NA Y NA Y NA Y NA Y	Filed
Samples were received in: (circle) Were custody seals on coolers? NA Y N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Y N Cooler Temp Thermometer ID NA Tracking Number NA Filed Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing naterial: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing naterial: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing naterial: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing naterial: (Inserts Baggies Bubble Wrap Gel Packs Wel Ice) Packing Number NA Filed NA Y NA (Y N	Samples were received in: (circle) Were custody seals on coolers? If present, were custody seals intact? Cooler Temp Thermon Themp °C Blank °C ID Packing material: Inserts Baggies Were custody papers properly filled out Did all bottles arrive in good condition. Were all sample labels complete (i.e and Did all sample labels and tags agree with the were appropriate bottles/containers and the Were the pH-preserved bottles (see SMC). Were VOA vials received without head. Was C12/Res negative?	Bubble Wrap Gel Packs at (ink, signed, etc.)? In (unbroken)? Indicate in the analysis, preservation, etc.)? With custody papers? Indicate and volumes received for the analysis of the sum	If yes, how ma If present, w 1980 Wet Ice D the table below. It major discreptive tests indicated? The appropriate philosophic in the propriate philosophic	therny and where? were they signe Trac O 24 70	d and dated? king Number SA3 es	NA Y NA Y NA Y NA Y NA Y	Filed
Cooler Temp 'C Blank 'C I'D NA Tracking Number NA Filed 2.	Packing material: Inserts Baggies Were custody papers properly filled out Did all bottles arrive in good condition Were all sample labels complete (i.e and Did all sample labels and tags agree with Were appropriate bottles/containers and Were the pH-preserved bottles (see SMC) Were VOA vials received without head Was C12/Res negative?	Bubble Wrap Gel Packs at (ink, signed, etc.)? In (unbroken)? Indicate in the analysis, preservation, etc.)? with custody papers? Indicate and volumes received for the stand of the stand o	the table below. Ite major discreptive tests indicated? The appropriate pH	Trace Sleev	es	NA Y NA Y NA Y NA Y NA Y	Filed
Packing material: (Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below. Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Identified by: Image: Time Reagent Lot Reagent Lot Roumber Initials Time 1397 - 28 (Balay)) (A)	Packing material: Inserts Baggies Were custody papers properly filled out Did all bottles arrive in good condition Were all sample labels complete (i.e an Did all sample labels and tags agree wi Were appropriate bottles/containers and Were the pH-preserved bottles (see SMO) Were VOA vials received without head Was C12/Res negative?	Bubble Wrap Gel Packs at (ink, signed, etc.)? In (unbroken)? Indicate in the analysis, preservation, etc.)? with custody papers? Indicate and volumes received for the the MO GEN SOP) received at the	the table below. the major discreptive tests indicated? the appropriate pH	ory Ice Sleev	es	NA (Y) NA (Y) NA (Y) NA (Y) NA (Y) NA (Y)	
Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Identified by: Sample ID on Bottle Sample ID on COC Identified by: Initials Time 1397-28 (3 day) I A 1999 1499 1400 14	Were custody papers properly filled out Did all bottles arrive in good condition Were all sample labels complete (i.e an Did all sample labels and tags agree wi Were appropriate bottles/containers and Were the pH-preserved bottles (see SMo Were VOA vials received without head Was C12/Res negative?	at (ink, signed, etc.)? In (unbroken)? Indicate in the analysis, preservation, etc.)? With custody papers? Indicate and volumes received for the second of t	the table below. In the major discreptive tests indicated? The appropriate pH	ancies in the to	uble on page 2.	NA (Y) NA (Y) NA (Y) NA (Y) Y	N N N N N N N N N N N N N N N N N N N
Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Indicate in the table below. Were all sample labels complete (i.e analysis, preservation, etc.)? Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. Were appropriate bottles/containers and volumes received for the tests indicated? Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. Was C12/Res negative? Sample ID on Bottle Sample ID on COC Identified by: Sample ID on Bottle Sample ID on COC Identified by: Imitials Time 1397 - 18 (1444)	Were custody papers properly filled out Did all bottles arrive in good condition. Were all sample labels complete (i.e and Did all sample labels and tags agree with Were appropriate bottles/containers and Were the pH-preserved bottles (see SMO) Were VOA vials received without head Was C12/Res negative?	at (ink, signed, etc.)? In (unbroken)? Indicate in the analysis, preservation, etc.)? With custody papers? Indicate and volumes received for the second of t	the table below. In the major discreptive tests indicated? The appropriate pH	ancies in the to	uble on page 2.	NA (Y) NA (Y) NA (Y) NA (Y) Y	7 1
Sample ID Bottle Type Temp Space Broke pH Reagent added Number Initials Time 1397 - 28 (3 day) 1		Sample ID on Co	50C				
1397-28(3day) ILA - HCL 2ml, 2011062031 EW 1/39 397-28(4day) - ILA - HCL 2ml, 2011062031 EW 1/36							T:
397-28(4day) 10A - 11CL 2mh 2011062031 Ew 1135	Sample ID Bott	ttle Type Temp space Bro		eagent add	Mumber Number	7 0	1136
347-28(50lay) ILA - HCL 2ml 2011062031 EW 1/35	397-28/4day) -11.1	A		FCL 21	nh 2011002031	1 U 3	1136
	397-28(50lay) ILI	A	VH	CL 21	nl 201106201	// Ew	1/35
	"					_	
				,			
				1		1	

_ 9

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:

EPA 3520C

Analysis Method:

8270D SIM

Units: ng/L Level: Low

Service Request: K1206890

Sample Name	Lab Code	Sur1	Sur2	Sur3
0397-28 (3 day)	K1206890-001	81 D	94 D	108 D
0397-28 (4 day)	K1206890-002	80 D	93 D	104 D
0397-28 (5 day)	K1206890-003	77 D	85 D	100 D
Method Blank	KWG1208513-3	74	78	100
Lab Control Sample	KWG1208513-1	69	73	90
Duplicate Lab Control Sample	KWG1208513-2	67	70	89

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	46-114
Sur2 = Fluoranthene-d10	51-121
Sur3 = Terphenyl-d14	58-140

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 14:42:03

RR144603

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Collected: NA
Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Lab Code:

KWG1208513-3

Extraction Method: Analysis Method:

EPA 3520C 8270D SIM Units: ng/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	1.2 J	3.3	0.71	1	07/19/12	07/30/12	KWG1208513	
2-Methylnaphthalene	0.42 J	3.3	0.40	1	07/19/12	07/30/12	KWG1208513	
Acenaphthylene	ND U	3.3	0.37	1	07/19/12	07/30/12	KWG1208513	
Acenaphthene	ND U	3.3	0.36	1	07/19/12	07/30/12	KWG1208513	
Dibenzofuran	ND U	3.3	0.42	1	07/19/12	07/30/12	KWG1208513	
Fluorene	ND U	3.3	0.42	1	07/19/12	07/30/12	KWG1208513	
Phenanthrene	1.3 J	3.3	0.72	1	07/19/12	07/30/12	KWG1208513	
Anthracene	ND U	3,3	0.29	1	07/19/12	07/30/12	KWG1208513	
Fluoranthene	0.54 J	3.3	0.46	1	07/19/12	07/30/12	KWG1208513	
Pyrene	ND U	3.3	0.78	1	07/19/12	07/30/12	KWG1208513	
Benz(a)anthracene	0.58 J	3.3	0.34	1	07/19/12	07/30/12	KWG1208513	
Chrysene	ND U	3.3	0.65	1	07/19/12	07/30/12	KWG1208513	
Benzo(b)fluoranthene	0.35 J	3.3	0.25	1	07/19/12	07/30/12	KWG1208513	
Benzo(k)fluoranthene	ND U	3.3	0.41	1	07/19/12	07/30/12	KWG1208513	
Benzo(a)pyrene	0.42 J	3.3	0.41	1	07/19/12	07/30/12	KWG1208513	
Indeno(1,2,3-cd)pyrene	1.0 J	3.3	0.44	1	07/19/12	07/30/12	KWG1208513	
Dibenz(a,h)anthracene	0.60 Ј	. 3.3	0.45	1	07/19/12	07/30/12	KWG1208513	
Benzo(g,h,i)perylene	1.3 J	3.3	0.36	1	07/19/12	07/30/12	KWG1208513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	74	46-114	07/30/12	Acceptable	
Fluoranthene-d10	78	51-121	07/30/12	Acceptable	
Terphenyl-d14	100	58-140	07/30/12	Acceptable	

Comments:	

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Collected: 07/12/2012 **Date Received:** 07/17/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-28 (3 day) K1206890-001

Extraction Method: Analysis Method:

EPA 3520C 8270D SIM

Units: ng/L Basis: NA

Level: Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	140000	D	330	71	100	07/19/12	08/02/12	KWG1208513	
2-Methylnaphthalene	29000	D	330	40	100	07/19/12	08/02/12	KWG1208513	
Acenaphthylene	440	D	33	3.7	10	07/19/12	07/30/12	KWG1208513	
Acenaphthene	24000	D	330	36	100	07/19/12	08/02/12	KWG1208513	
Dibenzofuran	14000	D	33	4.2	10	07/19/12	07/30/12	KWG1208513	
Fluorene	16000	D	33	4.2	10	07/19/12	07/30/12	KWG1208513	
Phenanthrene	41000	D	330	72	100	07/19/12	08/02/12	KWG1208513	,,,
Anthracene	5300	D	. 33	2.9	10	07/19/12	07/30/12	KWG1208513	
Fluoranthene	8200	D	33	4.6	10	07/19/12	07/30/12	KWG1208513	
Pyrene	4800	D	33	7.8	10	07/19/12	07/30/12	KWG1208513	
Benz(a)anthracene	390	D	33	3.4	10	07/19/12	07/30/12	KWG1208513	
Chrysene	390	D	33	6.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(b)fluoranthene	65	D	33	2.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(k)fluoranthene	26	ЛD	33	4.1	10	07/19/12	07/30/12	KWG1208513	
Benzo(a)pyrene	34	D	33	4.1	10	07/19/12	07/30/12	KWG1208513	
Indeno(1,2,3-cd)pyrene	20	JD	33	4.4	10	07/19/12	07/30/12	KWG1208513	
Dibenz(a,h)anthracene	11	JD	33	4.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(g,h,i)perylene	23	JD	33	3.6	10	07/19/12	07/30/12	KWG1208513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	81	46-114	07/30/12	Acceptable	
Fluoranthene-d10	94	51-121	07/30/12	Acceptable	
Terphenyl-d14	108	58-140	07/30/12	Acceptable	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP Longview Solidification

Water

Service Request: K1206890

Date Collected: 07/13/2012

Date Received: 07/17/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-28 (4 day) K1206890-002

Extraction Method:

EPA 3520C

Units: ng/L Basis: NA

Level: Low

8270D SIM **Analysis Method:**

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	120000	D	330	71	100	07/19/12	08/02/12	KWG1208513	
2-Methylnaphthalene	26000	D	330	40	100	07/19/12	08/02/12	KWG1208513	
Acenaphthylene	390	D	33	3.7	10	07/19/12	07/30/12	KWG1208513	
Acenaphthene	19000	D	33	3.6	10	07/19/12	07/30/12	KWG1208513	
Dibenzofuran	12000	D	33	4.2	10	07/19/12	07/30/12	KWG1208513	
Fluorene	14000	D	33	4.2	10	07/19/12	07/30/12	KWG1208513	
Phenanthrene	35000	D	330	72	100	07/19/12	08/02/12	KWG1208513	
Anthracene	4700	D	33	2.9	10	07/19/12	07/30/12	KWG1208513	
Fluoranthene	7300	D	33	4.6	10	07/19/12	07/30/12	KWG1208513	
Pyrene	4200	D	33	7.8	10	07/19/12	07/30/12	KWG1208513	
Benz(a)anthracene	330	D	33	3.4	10	07/19/12	07/30/12	KWG1208513	
Chrysene	320	D	33	6.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(b)fluoranthene	48	D	33	2.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(k)fluoranthene	22	JD	33	4.1	10	07/19/12	07/30/12	KWG1208513	
Benzo(a)pyrene	23	JD	33	4.1	10	07/19/12	07/30/12	KWG1208513	
Indeno(1,2,3-cd)pyrene	9.6	JD	33	4.4	10	07/19/12	07/30/12	KWG1208513	
Dibenz(a,h)anthracene	5.9	JD	33	4.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(g,h,i)perylene	9.7	JD	33	3.6	10	07/19/12	07/30/12	KWG1208513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	. 80	46-114	07/30/12	Acceptable
Fluoranthene-d10	93	51-121	07/30/12	Acceptable
Terphenyl-d14	104	58-140	07/30/12	Acceptable

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Collected: 07/14/2012 **Date Received:** 07/17/2012

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

0397-28 (5 day)

Extraction Method:

K1206890-003

Analysis Method:

EPA 3520C 8270D SIM Units: ng/L Basis: NA

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	100000 D	330	71	100	07/19/12	08/02/12	KWG1208513	
2-Methylnaphthalene	22 000 D	330	40	100	07/19/12	08/02/12	KWG1208513	
Acenaphthylene	34 0 D	33	3.7	10	07/19/12	07/30/12	KWG1208513	
Acenaphthene	17000 D	33	3.6	10	07/19/12	07/30/12	KWG1208513	
Dibenzofuran	11000 D	33	4.2	10	07/19/12	07/30/12	KWG1208513	
Fluorene	13 000 D	33	4.2	10	07/19/12	07/30/12	KWG1208513	
Phenanthrene	31 000 D	330	72	100	07/19/12	08/02/12	KWG1208513	
Anthracene	4400 D	33	2.9	10	07/19/12	07/30/12	KWG1208513	
Fluoranthene	7700 D	33	4.6	10	07/19/12	07/30/12	KWG1208513	
Pyrene	4500 D	33	7.8	10	07/19/12	07/30/12	KWG1208513	
Benz(a)anthracene	380 D	33	3.4	10	07/19/12	07/30/12	KWG1208513	
Chrysene	380 D	33	6.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(b)fluoranthene	58 D	33	2.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(k)fluoranthene	25 JD	33	4.1	10	07/19/12	07/30/12	KWG1208513	
Benzo(a)pyrene	29 JD	33	4.1	10	07/19/12	07/30/12	KWG1208513	
Indeno(1,2,3-cd)pyrene	8.1 JD	33	4.4	10	07/19/12	07/30/12	KWG1208513	
Dibenz(a,h)anthracene	ND U	33	4.5	10	07/19/12	07/30/12	KWG1208513	
Benzo(g,h,i)perylene	8.8 JD	33	3.6	10	07/19/12	07/30/12	KWG1208513	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	77	46-114	07/30/12	Acceptable	
Fluoranthene-d10	85	51-121	07/30/12	Acceptable	
Terphenyl-d14	100	58-140	07/30/12	Acceptable	

Comments:

Merged

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project: Sample Matrix: IP Longview Solidification

Water

Service Request: K1206890

Date Extracted: 07/19/2012 **Date Analyzed:** 07/30/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: Analysis Method:

EPA 3520C

8270D SIM

Units: ng/L

Basis: NA Level: Low

Extraction Lot: KWG1208513

Lab Control Sample KWG1208513-1

Duplicate Lab Control Sample KWG1208513-2

	Lab	Control Spik	e	Duplicate Lab Control Spike			%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Naphthalene	379	500	76	365	500	73	39-110	4	30
2-Methylnaphthalene	390	500	78	382	500	76	39-115	2	30
Acenaphthylene	403	500	81	393	500	79	44-115	2	30
Acenaphthene	390	500	78	382	500	76	44-113	2	30
Dibenzofuran	397	500	79	392	500	78	46-116	1	30
Fluorene	399	500	80	392	500	78	48-118	2	30
Phenanthrene	405	500	81	378	500	76	47-120	7	30
Anthracene	410	500	82	392	500	78	44-117	5	30
Fluoranthene	394	500	79	372	500	74	48-128	6	30
Pyrene	461	500	92	458	500	92	42-133	1	30
Benz(a)anthracene	447	500	89	435	500	87	48-125	3	30
Chrysene	440	500	88	433	500	87	50-128	2	30
Benzo(b)fluoranthene	426	500	85	424	500	85	49-131	0	30
Benzo(k)fluoranthene	453	500	91	437	500	87	54-131	4	30
Benzo(a)pyrene	463	500	93	455	500	91	43-134	2	30
Indeno(1,2,3-cd)pyrene	438	500	88	425	500	85	45-133	3	30
Dibenz(a,h)anthracene	405	500	81	397	500	79	49-133	2	30
Benzo(g,h,i)perylene	412	500	82	403	500	81	51-124	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 14:42:45 u:\Stealth\Crystal.rpt\Form3DLC.rpt

Form 3C - Organic 155

SuperSet Reference:

RR144603

Page

1 of 1

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Surrogate Recovery Summary
Diesel and Residual Range Organics

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: PERCENT

Level: Low

Sample Name	Lab Code	<u>Sur1</u>	Sur2
0397-28 (3 day)	K1206890-001	109	110
0397-28 (4 day)	K1206890-002	94	108
0397-28 (5 day)	K1206890-003	92	104
Method Blank	KWG1207973-3	92	98
Lab Control Sample	KWG1207973-1	101	100
Duplicate Lab Control Sample	KWG1207973-2	104	100

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Printed: 08/03/2012 12:22:57

Form 2A - Organic

Page 1 of 1

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project: Sample Matrix: IP Longview Solidification

Water

Service Request: K1206890

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name:

Method Blank

Lab Code:

KWG1207973-3

Extraction Method:

EPA 3510C

Units: ug/L Basis: NA

Level: Low

NWTPH-Dx **Analysis Method:**

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	ND U	250	1	07/18/12	07/27/12	KWG1207973	
Residual Range Organics (RRO)	ND U	500	1	07/18/12	07/27/12	KWG1207973	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	92	50-150	07/27/12	Acceptable
n-Triacontane	98	50-150	07/27/12	Acceptable

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Collected: 07/12/2012

Date Received: 07/17/2012

Diesel and Residual Range Organics

Sample Name:

0397-28 (3 day)

Lab Code:

K1206890-001

Units: ug/L Basis: NA

Extraction Method:

EPA 3510C

Level: Low

NWTPH-Dx

Analysis Method:

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	920 Z	310	1	07/18/12	07/27/12	KWG1207973	
Residual Range Organics (RRO)	ND U	610	1	07/18/12	07/27/12	KWG1207973	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	109	50-150	07/27/12	Acceptable Acceptable
n-Triacontane	110	50-150	07/27/12	

Comments:

Printed: 08/03/2012 12:22:43 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$

Form 1A - Organic

13

1 of 1 Page

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Collected: 07/13/2012

Date Received: 07/17/2012

Diesel and Residual Range Organics

Sample Name: Lab Code:

0397-28 (4 day)

K1206890-002

EPA 3510C

Units: ug/L Basis: NA

Level: Low

Extraction Method: Analysis Method:

NWTPH-Dx

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	1000 Z	310	1	07/18/12	07/27/12	KWG1207973	
Residual Range Organics (RRO)	ND U	610	1	07/18/12	07/27/12	KWG1207973	

Comments:

Now part of the ALS Group

Analytical Results

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Collected: 07/14/2012

Date Received: 07/17/2012

Diesel and Residual Range Organics

Sample Name:

0397-28 (5 day)

Lab Code:

K1206890-003

Extraction Method:

EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L Basis: NA

Level: Low

ate Extraction

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	860 Z	290	1	07/18/12	07/27/12	KWG1207973	
Residual Range Organics (RRO)	ND U	580	1	07/18/12	07/27/12	KWG1207973	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Ferphenyl	92	50-150	07/27/12	Acceptable
Friacontane	104	50-150	07/27/12	Acceptable

Comments:

Now part of the ALS Group

QA/QC Report

Client:

URS Corporation

Project:

IP Longview Solidification

Sample Matrix:

Water

Service Request: K1206890

Date Extracted: 07/18/2012

Date Analyzed: 07/27/2012

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method: EPA 3510C

Analysis Method:

NWTPH-Dx

Units: ug/L

Basis: NA

Level: Low

Extraction Lot: KWG1207973

Lab Control Sample

KWG1207973-1

Duplicate Lab Control Sample

KWG1207973-2

	Lab	Control Spike	e	Duplicate	Lab Control	Spike	%Rec		RPD
Analyte Name	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	1700	1600	106	1680	1600	105	46-140	1	30
Residual Range Organics (RRO)	816	800	102	784	800	98	45-159	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 08/03/2012 12:23:01 $u:\Stealth\Crystal.rpt\Form3DLC.rpt$

Form 3C - Organic

18

SuperSet Reference:

Page

1 of 1

Appendix F
Laboratory Quality Assurance Reviews

Memo

1501 4th Avenue, Suite 1400 Seattle, WA 98101-1616 206-438-2700 Telephone 406-438-2699 Fax

To: Paul Kalina, Project Manager Info: FINAL

From: Alison M. Rohde, Chemist Jennifer Garner, Chemist Date: November 16, 2011

Quality Assurance Review

RE: IP Longview – Treatibility Study

Roll-Off Box Samples - August and September 2011

CAS SDGs K1107780 and K1108452

The summary data quality review of 6 soil samples collected between August 22 and September 6, 2011 has been completed. The samples were submitted to Columbia Analytical Services (CAS), a Washington State Department of Ecology (Ecology) accredited laboratory, located in Kelso, Washington. Samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) by Environmental Protection Agency (EPA) Method 8270C ultra low-level modified by select ion monitoring (SIM), total petroleum hydrocarbons (TPH- diesel range and oil range) by Ecology Method NWTPH-Dx, and total solids by EPA Method 160.3 as identified by the cross reference below. The analyses were performed in general accordance with methods specified in EPA's *Test Methods for Evaluating Solid Waste (SW-846) Update IIIB*, June 2005 and *Methods for Chemical Analysis of Water and Wastes*, March 1983, and Ecology's Analytical *Methods for Petroleum Hydrocarbons*, June 1997. The following samples are associated with CAS sample delivery groups (SDGs) K1107780 and K1108452:

Sample ID	CAS ID	Parameters
TP01-S-2.0-7.5-082211	K1107780-001	SPLP PAHs, Total PAHs, TCLP PAHs, SPLP TPHs, TCLP TPHs, Total TPHs, Total Solids
TP01-S-7.5-082211	K1107780-002	Total PAHs, Total TPH, Total solids
TP01-S-2.0-6.5-082211	K1107780-003	SPLP PAHs, Total PAHs, TCLP PAHs, SPLP TPHs, TCLP TPHs, Total TPHs, Total Solids
TP01-S-6.5-082211	K1107780-004	Total PAHs, Total TPH, Total solids
TP-01	K1108452-001	SPLP PAHs, Total PAHs, TCLP PAHs, SPLP TPHs, TCLP TPHs, Total TPHs, Total Solids
TP-02	K1108452-002	SPLP PAHs, Total PAHs, TCLP PAHs, SPLP TPHs, TCLP TPHs, Total TPHs, Total Solids

Upon receipt by CAS, the sample jar information was compared to the associated chain-of-custody (COC). No discrepancies relating to sample identification were noted by the laboratory. The temperature blank and cooler temperatures were recorded as part of the check-in procedure. Cooler (-0.4°C) and cooler blank temperatures (0.8°C) associated with SDG K1108452 were outside the EPA-recommended limits of $4^{\circ}\text{C}\pm2^{\circ}\text{C}$. As the samples were submitted within 3 hours of collection, data were not qualified based on the cooler and cooler blank temperatures.

Data validation is based on method performance criteria and QC criteria as documented in the *Agency Draft Quality Assurance Project Plan (QAPP)*, *Appendix A of the Performance and Compliance Monitoring Plan, Former Treated Wood Products Area, International Paper Facility / Longview, Washington* (Woodward Clyde, 1997). The laboratory provided EPA Contract Laboratory Program-equivalent validatable data packages. The data review conducted on these SDGs included a review of summarized results and QA/QC data, per the requirements set forth in Section A.10 of the QAPP. Hold times, initial and continuing calibrations, method blanks, surrogate

recoveries, laboratory control sample (LCS) results, matrix duplicate results, matrix spike/matrix spike duplicate (MS/MSD) results, field duplicates, and reporting limits were reviewed to assess compliance with applicable methods. Calculation checks and review of the raw data were not included in the data review. If data qualification was required, data were qualified in accordance with USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review, June 2008 and USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Data Review, January 2010, as appropriate.

Organic Analyses

Samples were analyzed for PAHs and TPHs by the methods identified in the introduction to this report.

1. Holding Times – Acceptable except as noted below:

<u>SPLP PAHs by Method 8270D-SIM</u> – Due to laboratory error, sample TP01-S-2.0-7.5-082211 was reextracted 2 days past holding time. The results for SPLP PAHs in this sample are qualified as estimated and flagged with a 'J' or 'UJ' based on the holding time exceedance.

<u>TCLP TPHs by NWTPH-Dx</u> – Due to laboratory error, sample TP01 was re-extracted 5 days past holding time. The results for TCLP PAHs in this sample are qualified as estimated and flagged with a 'UJ' based on the holding time exceedance.

- 2. Instrument Performance (Tunes applicable to PAHs only) Acceptable
- 3. Initial Calibrations Acceptable
- 4. Continuing Calibrations Acceptable except as noted below:

SPLP and TCLP PAHs by Method 8270D-SIM – The percent differences (%Ds) for indeno(1,2,3-cd)pyrene (21%, high) and dibenz(a,h)anthracene (22%, high) were outside the method limits of 20% in the continuing calibration analyzed on September 9, 2011. Indeno(1,2,3-c,d)pyrene and dibenzo(a,h)anthracene were reported as not detected in the samples associated with this continuing calibration; therefore, data were not qualified based on the elevated %Ds.

5. Blanks – Acceptable except as noted below:

<u>TCLP PAHs by Method 8270D-SIM</u> – Several analytes were detected in method blanks extracted on September 3 and September 13, 2011 as shown below:

Method Blank Extracted On:	Analyte	Method Blank Concentration (ug/L)
9/3/2011	Naphthalene	63
	2-Methylnaphthalene	9.4
	Acenaphthene	4.5
	Dibenzofuran	3.0
	Fluorene	3.0
	Phenanthrene	3.8
	Anthracene	0.48
	Fluoranthene	0.61
	Pyrene	0.31

Method Blank Extracted On:	Analyte	Method Blank Concentration (ug/L)
9/13/2011	Naphthalene	32
	2-Methylnaphthalene	8.5
	Acenaphthene	1.6
	Dibenzofuran	2.8
	Fluorene	1.5
	Phenanthrene	2.7
	Anthracene	0.43
	Fluoranthene	0.59
	Pyrene	0.31

Per CLP guidelines, results reported at concentrations less than the method blank concentration are qualified as not detected and flagged with a 'U' at the reported result. When the associated sample results are reported between the method detection limit (MDL) and the reporting limit, the results are qualified as not detected at the reporting limit. Results reported at concentrations between one and two times (2x) the method blank concentrations may be qualified as not detected using professional judgment. Results reported at concentrations greater than 2x the concentration found in the method blank do not require qualification. The concentrations for the above noted analytes in the samples associated with the method blank extracted on September 3, 2011 were more than 2x the method blank concentration; therefore, data were not qualified based on these method blank results.

The results for naphthalene, 2-methyl naphthalene, acenapthene, dibenzofuran, fluorine, and phenanthrene in TP01 are less than 2x the method blank concentrations. The results for these analytes in TP01 are qualified as not detected and flagged 'U' at the reported results.

<u>SPLP PAHs by Method 8270D-SIM</u> – Several analytes were detected in method blanks extracted on September 3, September 7 and September 19, 2011 as shown below:

Method Blank Extracted On:	Analyte	Method Blank Concentration (ug/L)		
9/3/2011	Naphthalene	6.1		
	2-Methylnaphthalene	1.1		
	Acenaphthene	0.77		
	Dibenzofuran	0.64		
	Fluorene	0.74		
	Phenanthrene	1.3		
	Fluoranthene	0.21		
9/7/2011	Acenaphthene	0.21		
	Dibenzofuran	0.68		
	Fluorene	0.76		
	Phenanthrene	4.0		
	Anthracene	0.46		
	Fluoranthene	2.4		
	Pyrene	1.3		
9/19/2011	Naphthalene	8.5		
	2-Methylnaphthalene	0.64		

The concentrations for the analytes noted above in the samples associated with the method blank extracted on September 3, 2011 were more than 2x the method blank concentration; therefore, data were not qualified based on these method blank results.

As the results for phenanthrene, anthracene, fluoranthene, and pyrene in samples associated with the method blank extracted on September 7, 2011 were reported as not detected; data were not qualified based on these method blank results. The results for acenapthene, dibenzofuran, and fluorene in TP01-S-2.0-7.5-082211 are less than 2x the method blank concentrations. The results for acenapthene, dibenzofuran, and fluorene in this sample are qualified as not detected and flagged 'U' at the reported results.

Results associated with the method blank extracted on September 19, 2011 were not reported; therefore, data were not qualified based on these method blank results.

<u>TPH by NWTPH-Dx</u> – Diesel-range hydrocarbons (3.4 mg/kg) and oil-range hydrocarbons (10 mg/kg) were detected at concentrations between the method detection limits (MDLs) and the laboratory reporting limits in the method blank extracted on August 24, 2011. As all associated sample results were reported at concentrations above the reporting limit and more than ten times (10x) the method blank concentrations, data were not qualified based on the method blank results.

<u>TCLP TPH by NWTPH-Dx</u> – Diesel-range hydrocarbons (260 ug/L) was detected in the method blank extracted on September 1, 2011. As all associated sample results were either reported as not detected or reported at concentrations above the reporting limit and more than ten times (10x) the method blank concentrations, data were not qualified based on the method blank result.

6. Surrogates – Acceptable except as noted below:

<u>TCLP and SPLP PAHs by Method 8270D-SIM</u> – The percent recoveries for one or more surrogates did not meet the control limits in several samples as shown below:

Sample ID	Analysis	Fluorene-d10	Fluoranthene-d10	Terphenyl-d14
Control Limits	Type	28-98%	31-105%	27-112%
TP01-S-2.0-7.5-082211	TCLP	105%	128%	124%
LCS (9/7/2011)	TCLP	105%	124%	114%
TP01-S-2.0-7.5-082211	SPLP	102%	128%	120%
LCS (9/7/2011)	SPLP	105%	124%	114%

LCS – laboratory control sample

Per the CLP guidelines, one surrogate per fraction (acid or base/neutral) is allowed to be outside the specified control limits with no qualification. Data were not qualified based on surrogate recoveries in quality control samples (LCS). All detected TCLP PAHs in TP01-S-2.0-7.5-082211are qualified as estimated and flagged with a 'J' based on the surrogate recoveries. The results for SPLP PAHs in TP01-S-2.0-7.5-082211were previously qualified based on method blank detections; no further qualification is necessary.

<u>PAHs by Method 8270D-SIM</u> – The percent recovery for the surrogate terphenyl-d14 in TP-02 (111%) was outside the control limits of 35-109%. As one surrogate per fraction was outside of control limits for TP-02, data were not qualified based on the elevated surrogate recovery.

<u>TPHs by NWTPH-Dx</u> – The percent recoveries for the surrogate o-terphenyl in TP01-S-2.0-6.5-082211 (172%), TP01-S-6.5-082211 (185%), and TP-02 (217%) were outside the laboratory control limits of 50-150%. As the percent recoveries for the alternate surrogate, n-triacontane, were acceptable in these samples, data were not qualified based on the elevated o-terphenyl percent recoveries.

7. Internal Standards (applicable to GC/MS only) – Acceptable except as noted below:

<u>TCLP and SPLP PAHs by Method 8270D-SIM</u> – The internal standard naphthene-d8 area counts exceeded the method limits of -50% to 200% in TP01-S-2.0-6.5-082211 and TP-02. The naphthene-d8 internal standard area counts were acceptable in the dilutions performed on these samples. As data were reported from the dilutions of these samples, qualification is not necessary.

- 8. Laboratory Control/ Laboratory Control Duplicate Samples (LCS/LCSD) Acceptable where applicable
- 9. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – A MS/MSD was performed on TP01-S-2.0-7.5-082211. The percent recovery for the MSD (25%) for dibenzofuran performed on TP01-S-2.0-7.5-082211 was below the control limits of 31-105%. As the percent recovery for the MS and the relative percent difference (RPD) for the MS/MSD pair for dibenzofuran were acceptable, data were not qualified for this analyte based on the MSD result.

A MS/MSD was not performed in association with the PAH analyses (TCLP and SPLP). Accuracy and precision were assessed using the LCS/LCSD results.

<u>TPH by NWTPH-Dx</u> – A MS/MSD was not performed in association with the TPH analyses (total, TCLP, and SPLP). Accuracy was assessed using the LCS. Precision was assessed using the laboratory duplicate results.

10. Laboratory Duplicate – Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – A laboratory duplicate was not performed in association with these analyses (total, TCLP, and SPLP). Precision was assessed using the LCS/LCSD and/or MS/MSD results.

<u>TPH by NWTPH-Dx</u> – Laboratory duplicates were performed on TP01-S-2.0-7.5-082211 and TP-02. Results were acceptable for TCLP and SPLP TPH analyses.

A laboratory duplicate was performed on TP01-S-7.5-082211. The RPD for oil-range TPH (55%) exceeded the laboratory control limit of 40%. The result for oil-range TPH in TP01-S-7.5-082211 is qualified as estimated and flagged 'J' based on the laboratory duplicate RPD.

A laboratory duplicate was performed on a soil sample from an unrelated project. The RPDs for diesel-range (71%) and oil-range TPH (58%) exceeded the laboratory control limit of 40%. Data were not qualified based on unrelated OC.

11. Reporting Limits – Acceptable except as noted below:

<u>General</u> – The reporting limits for one or more analytes were elevated in several samples due to the percent moisture content of the samples. The elevated reporting limits may affect the use of the data for project objectives.

The results for one or more analytes in several samples were assigned a 'D' qualifier by the laboratory to indicate the results were reported from a dilution of the samples. No additional qualifiers were necessary based on the 'D' qualifiers assigned by the laboratory.

The results for one or more analytes in several samples were assigned a 'J' or 'JD' qualifier by the laboratory to indicate that the reported concentration is above the MDL, but below the laboratory reporting limit. All J-flagged results are considered estimated.

<u>TPH by NWTPH-Dx</u> – The results for diesel-range and/or residual-range hydrocarbons in several samples were assigned a 'Z' qualifier by the laboratory to indicate that the chromatographic fingerprint does not match the laboratory standard chromatographic fingerprint. No additional qualifiers were necessary based on the qualifiers assigned by the laboratory.

General Chemistry Parameter

Samples were analyzed for total solids by the method identified in the introduction to this report.

- 1. Holding Times Acceptable
- 2. Laboratory Duplicates Acceptable

Laboratory duplicates were performed on TP01-S-2.0-7.5-082211 and TP-01. Results were acceptable.

3. Reporting Limits – Acceptable

Overall Assessment

The data reported in these SDGs, as qualified, are considered to be usable for meeting project objectives. The completeness for SDGs K1107780 and K1108452 is greater than 99%.

Data Qualifier Definitions:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Table 1. Summary of Qualified Data

Sample ID	Laboratory ID	Analyte	Analysis Type	Lab Result	Unit	Final Result
TP01-S-2.0-7.5-082211	K1107780-001	Benzo(k)fluoranthene	Total PAH	1.1 J	ug/Kg	1.1 J
		Naphthalene	TCLP PAH	1.5	ug/L	1.5 J
		2-Methylnaphthalene	TCLP PAH	0.33	ug/L	0.33 J
		Acenaphthene	TCLP PAH	1.6	ug/L	1.6 J
		Dibenzofuran	TCLP PAH	0.38	ug/L	0.38 J
		Fluorene	TCLP PAH	0.35	ug/L	0.35 J
		Naphthalene	SPLP PAH	1.2	ug/L	1.2 J
		2-Methylnaphthalene	SPLP PAH	0.23	ug/L	0.23 J
		Acenaphthylene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Acenaphthene	SPLP PAH	1.3	ug/L	1.3 UJ
		Dibenzofuran	SPLP PAH	0.29	ug/L	0.29 UJ
		Fluorene	SPLP PAH	0.28	ug/L	0.28 UJ
		Phenanthrene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Anthracene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Fluoranthene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Pyrene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Benz(a)anthracene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Chrysene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Benzo(b)fluoranthene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Benzo(k)fluoranthene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Benzo(a)pyrene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Indeno(1,2,3-cd)pyrene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Dibenz(a,h)anthracene	SPLP PAH	0.20 U	ug/L	0.20 UJ
		Benzo(g,h,i)perylene	SPLP PAH	0.20 U	ug/L	0.20 UJ
TP01-S-7.5-082211	K1107780-002	Residual Range Organics (RRO)	Total TPH	160 Z	mg/Kg	160 J
TP02-S-2.0-6.5-082211	K1107780-003	Residual Range Organics (RRO)	Total TPH	1,800 JDZ	mg/Kg	1,800 J
TP02-S-6.5-082211	K1107780-004	Residual Range Organics (RRO)	Total TPH	2,000 JDZ	mg/Kg	2,000 J
TP-01	K1108452-001	Naphthalene	TCLP PAH	1.7	ug/L	1.7 U
		2-Methylnaphthalene	TCLP PAH	0.49	ug/L	0.49 U
		Acenaphthene	TCLP PAH	2.0	ug/L	2.0 U
		Dibenzofuran	TCLP PAH	0.74	ug/L	0.74 U
		Fluorene	TCLP PAH	0.57	ug/L	0.57 U
		Phenanthrene	TCLP PAH	0.30	ug/L	0.30 U
		Diesel Range Organics (DRO)	TCLP TPH	250 U	ug/L	250 UJ
		Residual Range Organics (RRO)	TCLP TPH	500 U	ug/L	500 UJ
		Residual Range Organics (RRO)	Total TPH	120 J	mg/Kg	120 J
TP-02	K1108452-002	Residual Range Organics (RRO)	Total TPH	1,600 JD	mg/Kg	1,600 J

Memo

1501 4th Avenue, Suite 1400 Seattle, WA 98101-1616 206-438-2700 Telephone 406-438-2699 Fax

To: Paul Kalina, Project Manager Info: FINAL

Alison M. Rohde, Chemist

From: Christine T. Gebel, Chemist Date: April 20, 2012

Jennifer B. Garner, Chemist

Quality Assurance Review

RE: IP Longview – Treatibility Study

Soil Samples – Initial Mixes

CAS SDGs K1110402, K1200448, K1200585, K1200691, K1201445, K1201477, K1201540, and K1201617

The summary data quality review of 11 soil samples, 18 leachates, and one groundwater collected between October 24, 2011 and February 20, 2012 has been completed. The samples were submitted to Columbia Analytical Services (CAS), a Washington State Department of Ecology (Ecology) accredited laboratory, located in Kelso, Washington. Samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) by Environmental Protection Agency (EPA) Method 8270C by select ion monitoring (SIM), total petroleum hydrocarbons (TPH- diesel range and oil range) by Ecology Method NWTPH-Dx, metals by EPA Methods 6010B (arsenic, barium, cadmium, chromium, lead, selenium, and silver) and 7470A (mercury), and/or total solids by EPA Method 160.3 as identified by the cross reference below. Select samples were leached using the Synthetic Precipitation Leaching Procedure (SPLP) by EPA Method 1312. The soil samples were also submitted to Kemron Environmental Services, located in Atlanta, Georgia, for leaching tests. The sample ID includes the length of time leached. These leachates were sent to CAS for analysis. The analyses were performed in general accordance with methods specified in EPA's *Test Methods for Evaluating Solid Waste (SW-846) Update IIIB*, June 2005 and *Methods for Chemical Analysis of Water and Wastes*, March 1983, and Ecology's Analytical *Methods for Petroleum Hydrocarbons*, June 1997. The following samples are associated with CAS sample delivery groups (SDGs) K1110402, K1200448, K1200585, K1200691, K1201445, K1201477, K1201540, and K1201617:

Sample ID	CAS ID	Matrix	Parameters
0397-010	K1110402-001	Soil	TPH-Dx, PAHs, Total Solids
0397-011	K1110402-002	Soil	TPH-Dx, PAHs, Total Solids
0397-013	K1110402-003	Soil	TPH-Dx, PAHs, Total Solids
0397-016	K1110402-004	Soil	TPH-Dx, PAHs, Total Solids
0397-017	K1110402-005	Soil	TPH-Dx, PAHs, Total Solids
0397-019	K1110402-006	Soil	TPH-Dx, PAHs, Total Solids
0397-021	K1110402-007	Soil	TPH-Dx, PAHs, Metals, Total Solids
0397-022	K1110402-008	Soil	TPH-Dx, PAHs, Metals, Total Solids
0397-023	K1110402-009	Soil	TPH-Dx, PAHs, Total Solids
0397-024	K1110402-010	Soil	TPH-Dx, PAHs, Total Solids
0397-025	K1110402-011	Soil	TPH-Dx, PAHs, Total Solids
0397-017 (2 hour)	K1200448-001	Leachate	TPH-Dx, PAHs
0397-017 (7 hour)	K1200448-002	Leachate	TPH-Dx, PAHs
0397-017 (24 hour)	K1200448-003	Leachate	TPH-Dx, PAHs

Sample ID	CAS ID	Matrix	Parameters
0397-017 (2 day)	K1200585-001	Leachate	TPH-Dx, PAHs
0397-017 (3 day)	K1200585-002	Leachate	TPH-Dx, PAHs
0397-017 (4 day)	K1200585-003	Leachate	TPH-Dx, PAHs
0397-017 (5 day)	K1200691-001	Leachate	TPH-Dx, PAHs
0397-017A (2hr)	K1201445-005	Leachate	TPH-Dx, PAHs
0397-017A (7hr)	K1201445-006	Leachate	TPH-Dx, PAHs
0397-017A (24hr)	K1201445-007	Leachate	TPH-Dx, PAHs
0397-017A (48hr)	K1201445-008	Leachate	TPH-Dx, PAHs
0397-017A (28day)	K1201445-013	SPLP Leachate	TPH-Dx, SPLP TPH-Dx,
			PAHs, SPLP PAHs
0397-017DUP (28day)	K1201445-014	SPLP Leachate	TPH-Dx, SPLP TPH-Dx,
Duplicate of 0397-017A (28day)	K1201443-014	SELF Leachate	PAHs, SPLP PAHs
BV-13	K1201477-001	Water	TPH-Dx, PAHs
0397-017A (3day)	K1201540-001	Leachate	TPH-Dx, PAHs
0397-017A (4day)	K1201540-002	Leachate	TPH-Dx, PAHs
0397-016 (5day)	K1201617-001	Leachate	TPH-Dx, PAHs
0397-017A (5day)	K1201617-002	Leachate	TPH-Dx, PAHs
0397-017DUP (5day)	K1201617-003	Leachate	TPH-Dx, PAHs

Upon receipt by CAS, the sample jar information was compared to the associated chain-of-custody (COC). No discrepancies relating to sample identification were noted by the laboratory. The temperature blank and cooler temperatures were recorded as part of the check-in procedure. Cooler temperatures ranged from -0.9°C to 1.0°C and cooler blank temperatures ranged from 0.2°C to 1.6°C which were outside the EPA-recommended limits of 4°C±2°C. Data were not qualified based on the cooler and cooler blank temperatures.

Data validation is based on method performance criteria and QC criteria as documented in the *Agency Draft Quality Assurance Project Plan (QAPP)*, *Appendix A of the Performance and Compliance Monitoring Plan, Former Treated Wood Products Area, International Paper Facility / Longview, Washington* (Woodward Clyde, 1997). The laboratory provided EPA Contract Laboratory Program-equivalent validatable data packages. The data review conducted on these SDGs included a review of summarized results and QA/QC data, per the requirements set forth in Section A.10 of the QAPP. Hold times, initial and continuing calibrations, method blanks, surrogate recoveries, laboratory control sample (LCS) results, matrix duplicate results, matrix spike/matrix spike duplicate (MS/MSD) results, field duplicates, and reporting limits were reviewed to assess compliance with applicable methods. Calculation checks and review of the raw data were not included in the data review. If data qualification was required, data were qualified in accordance with *USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review*, June 2008 and *USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Data Review*, January 2010, as appropriate.

Organic Analyses

Samples were analyzed for PAHs and TPHs by the methods identified in the introduction to this report.

- 1. Holding Times Acceptable
- 2. Instrument Performance (Tunes applicable to PAHs only) Acceptable
- 3. Initial Calibrations Acceptable

Quality Assurance Review
IP Longview – Treatibility Study
Soil Samples – Initial Mixes
CAS SDGs K1110402, K120448, K1200585, K1200691, K1201445, K1201477, K1201540, and K1201617

- 4. Continuing Calibrations Acceptable
- 5. Blanks Acceptable except as noted below:

PAHs by Method 8270D-SIM – Several PAHs were detected in several method blanks as noted below.

Method blank extracted date:	Analyte	Concentration (ug/L)
January 19, 2012	Naphthalene	0.0025 J
	2-Methylnaphthalene	0.00064 J
	Phenanthrene	0.0016 J
	Fluoranthene	0.00048 J
January 25, 2012	2-Methylnaphthalene	0.0038 J
	Benzo(a)anthracene	0.003 J
February 17, 2012	Naphthalene	0.0013 J
	2-Methylnaphthalene	0.00048 J
	Phenanthrene	0.0011 J
February 21, 2012	Naphthalene	0.0013 J
	2-Methylnaphthalene	0.00082 J
	Phenanthrene	0.0013 J
	Fluoranthene	0.0013 J
February 23, 2012 (KWG1201890-3)	Naphthalene	0.0015 J
	2-Methylnaphthalene	0.00081 J
	Dibenzofuran	0.00045 J
	Phenanthrene	0.0015 J
	Fluoranthene	0.00073 J
	Benzo(b)fluoranthene	0.00028 J
February 23, 2012 (KWG1201892-3)	Naphthalene	0.0032 J

The concentrations for the above noted analytes in the samples associated with the method blanks were more than the method blank concentration; therefore, data were not qualified based on these method blank results.

SPLP PAHs by Method 8270D-SIM – Napthalene (0.24 ug/L) and 2-methylnaphthalene (0.036 J ug/L) were detected in method blank extracted on October 28, 2011. Per CLP guidelines, results reported at concentrations less than the method blank concentration are qualified as not detected and flagged with a 'U' at the reported result. When the associated sample results are reported between the method detection limit (MDL) and the reporting limit, the results are qualified as not detected at the reporting limit. Results reported at concentrations between one and two times (2x) the method blank concentrations may be qualified as not detected using professional judgment. Results reported at concentrations greater than 2x the concentration found in the method blank do not require qualification. The concentrations for the above noted analytes in the samples associated with the method blank were more than 2x the method blank concentration; therefore, data were not qualified based on these method blank results.

Napthalene (0.095 ug/L) and 2-methylnaphthalene (0.054 ug/L) were detected in method blank extracted on February 21, 2012 at concentrations greater than the MDL and less than the reporting limit. The concentrations for the above noted analytes in the samples associated with the method blank were more than 2x the method blank concentration; therefore, data were not qualified based on these method blank results.

6. Surrogates – Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – The percent recovery for fluorene-d10 (107%) was above the control limits of 28-98% in BV-13 due to matrix interference. As the percent recoveries for fluoranthene-d10 and terphenyl- d14 were acceptable, the results for PAHs in this sample were not qualified based on the fluorene-d10 recovery.

7. Internal Standards (applicable to GC/MS only) – Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – The internal standard, naphthalene-d8, was not recovered from the initial analysis of 0397-17A (2hr), 0397-17A (7hr), 0397-17A (24hr), and 0397-17A (48hr). These samples were reanalyzed at dilution and the internal standard area counts for naphthalene-d8 were acceptable. Data were not qualified based on these internal standard results.

- 8. Laboratory Control/ Laboratory Control Duplicate Samples (LCS/LCSD) Acceptable where applicable
- 9. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable except as noted below:

<u>TPH by NWTPH-Dx</u> – A MS/MSD was not performed in association with the TPH analysis. Accuracy was assessed using the LCS. Precision was assessed using the laboratory duplicate results.

<u>SPLP TPH by NWTPH-Dx</u> – A MS/MSD was not performed in association with the SPLP TPH analysis. Accuracy was assessed using the LCS. Precision was assessed using the laboratory duplicate results.

<u>PAHs by Method 8270D-SIM</u> – A MS was performed on a sample from an unrelated project. Results were acceptable.

<u>SPLP PAHs by Method 8270D-SIM</u> – A MS/MSD was performed on 0397-010. The percent recoveries for the MS and MSD in several analytes were outside the laboratory control limits as shown below:

Analyte	MS %	MSD %	Control
	Recovery	Recovery	Limit
Naphthalene	-10253%	-10403%	37-118%
2-Methylnaphthalene	-284%	-280%	37-117%
Acenaphthene	43%	44%	45-114%
Dibenzofuran	28%	38%	44-122%

The sample concentrations for the above noted analytes in 0397-010 were more than four times (4x) the spike concentrations; therefore, data was not qualified for these analytes based on these MS/MSD results.

A MS/MSD was performed on 0397-17A (28day). The percent recoveries for several analytes in the MS and MSD were outside the laboratory control limits as shown below:

Analyte	MS %	MSD %	Control
	Recovery	Recovery	Limit
Naphthalene	-4398%	-4255%	37-118%
2-Methylnaphthalene	-394%	-364%	37-117%
Acenaphthene	-296%	-298%	45-114%
Dibenzofuran	45%	50%	44-122%
Phenanthrene	-80%	-69%	42-127%
Fluorene	55%	60%	45-123%

The sample concentrations for naphthalene, 2-methylnaphthalene, acenaphthene, and phenanthrene in 0397-017A (28 day) were more than 4x the spike concentrations; therefore, data was not qualified for these analytes based on these MS/MSD results. The MS/MSD concentrations for dibenzofuran and fluorene exceeded the calibration range of the instrument and were flagged 'E' by the laboratory. Although the laboratory calculated acceptable recoveries for the MS and MSD for dibenzofuran and fluorene, these recoveries are not calculable as the results exceeded the calibration range. The results for dibenzofuran and fluorene in 0397-017A (28 day) are qualified as estimated and flagged 'J' based on the MS/MSD results.

10. Laboratory Duplicate – Acceptable

TPH by NWTPH-Dx – A laboratory duplicate was performed on BV-13. Results were acceptable.

<u>SPLP TPH by NWTPH-Dx</u> – Laboratory duplicates were performed on 0397-010 and 0397-025. Results were acceptable.

<u>SPLP PAHs by Method 8270D-SIM</u> – A laboratory duplicate was not performed in association with this analysis. Precision was assessed using the LCS/LCSD and/or MS/MSD results.

11. Field Duplicate – Acceptable

<u>TPH by NWTPH-Dx</u> – A field duplicate was submitted for sample 0397-017A (5day) and identified as 0397-017DUP (5day). Results were comparable.

<u>PAHs by Method 8270D-SIM</u> – A field duplicate was submitted for sample 0397-017A (5day) and identified as 0397-017DUP (5day). The relative percent difference (RPD) for fluoranthene (50%) was more than the control limit of 30%; therefore, the results for 0397-017DUP (5day) in 0397-017A (5day) and 0397-017DUP (5day) are qualified as estimated and flagged 'J'.

12. Reporting Limits – Acceptable except as noted below:

<u>General</u> – The results for one or more analytes in several samples were assigned a 'D' qualifier by the laboratory to indicate the results were reported from a dilution of the samples. No additional qualifiers were necessary based on the 'D' qualifiers assigned by the laboratory.

The results for one or more analytes in several samples were flagged with a 'J' or 'JD' by the laboratory to indicate that the reported concentration is above the method detection limit (MDL), but below the reporting limit. All J-flagged results are considered estimated unless otherwise qualified as described in this report.

<u>TPH by NWTPH-Dx</u> – The results for diesel-range and/or residual-range hydrocarbons in several samples were assigned a 'Z' qualifier by the laboratory to indicate that the chromatographic fingerprint does not resemble a petroleum product. No additional qualifier was necessary based on this qualifier assigned by the laboratory.

The reporting limits for residual-range hydrocarbons in the samples associated with SDG K12011617 were elevated due to the lower sample volumes used.

<u>SPLP TPH by NWTPH-Dx</u> – The results for diesel-range and/or residual-range hydrocarbons in several samples were assigned a 'Z' qualifier by the laboratory to indicate that the chromatographic fingerprint does not resemble a petroleum product. No additional qualifiers were necessary based on the qualifiers assigned by the laboratory.

<u>PAHs by Method 8270D-SIM</u> – The reporting limits for one or more PAHs were elevated in the samples associated with SDG K1201540 and BV-13 due to the dilutions necessary to quantitate high concentrations of target analytes present in the samples.

<u>SPLP PAHs/PAHs</u> by <u>Method 8270D-SIM</u> – The reporting limits for one or more analytes were elevated in several samples due to the percent moisture content of the samples. The elevated reporting limits may affect the use of the data for project objectives.

The results for benzo(b)fluroathene and benzo(k)fluoranthene for sample 0397-017 (5 day) were reported as benzo(b)fluroanthene due to the laboratory inability to differentiate the two analytes. The result for benzo(b)fluroanthene is qualified as estimated and flagged with a 'J'.

Metals Analysis

Samples were analyzed for metals as identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Initial Calibrations Acceptable
- 3. Continuing Calibrations Acceptable
- 4. Blanks Acceptable
- 5. Laboratory Control Samples Acceptable
- 6. Matrix Spike Samples Acceptable

A matrix spike and post-spike were performed on 0397-021. Results were acceptable.

7. Laboratory Duplicates – Acceptable

A laboratory duplicate was performed on 0397-021. Results were acceptable.

8. Reporting Limits – Acceptable except as noted below:

The results for barium and/or chromium in 0397-021 and 0397-022 were assigned a 'J' qualifier by the laboratory to indicate that the reported concentrations are above the MDL, but below the laboratory reporting limit. All J-flagged results are considered estimated.

General Chemistry Parameter

Samples were analyzed for total solids by the method identified in the introduction to this report.

- 1. Holding Times Acceptable
- 2. Laboratory Duplicates Acceptable

Laboratory duplicates were performed on 0397-010 and 0397-025. Results were acceptable.

3. Reporting Limits – Acceptable

Quality Assurance Review
IP Longview – Treatibility Study
Soil Samples – Initial Mixes
CAS SDGs K1110402, K120448, K1200585, K1200691, K1201445, K1201477, K1201540, and K1201617

Overall Assessment

The data reported in this SDG, as qualified, are considered to be usable for meeting project objectives. The completeness for SDG K1110402 is greater than 99%.

Data Qualifier Definitions:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Table 1. Summary of Qualified Data

Sample ID	Laboratory ID	Analyte	Lab Result	Unit	Final Result
0397-011	K1110402-002	Benzo(b)fluoranthene	0.046 J	ug/L	0.046 J
0397-013	K1110402-003	Benzo(b)fluoranthene	0.037 J	ug/L	0.037 J
0397-016	K1110402-004	Benzo(b)fluoranthene	0.062 J	ug/L	0.062 J
		Benzo(k)fluoranthene	0.037 J	ug/L	0.037 J
		Indeno(1,2,3-cd)pyrene	0.031 J	ug/L	0.031 J
0397-017	K1110402-005	Benzo(b)fluoranthene	0.026 J	ug/L	0.026 J
0397-019	K1110402-006	Benzo(b)fluoranthene	0.030 J	ug/L	0.030 J
0397-021	K1110402-007	Chromium	0.004 J	mg/L	0.004 J
0397-022	K1110402-008	Benzo(b)fluoranthene	0.030 J	ug/L	0.030 J
		Barium	0.3 J	mg/L	0.3 J
0397-023	K1110402-009	Benzo(b)fluoranthene	0.034 J	ug/L	0.034 J
0397-024	K1110402-010	Benzo(b)fluoranthene	0.044 J	ug/L	0.044 J
0397-025	K1110402-011	Benzo(b)fluoranthene	0.024 J	ug/L	0.024 J
0397-017 (24 hour)	K1200448-003	Dibenz(a,h)anthracene	0.00032 J	ug/L	0.00032 J
0397-017 (2 Day)	K1200585-001	Benzo(b)fluoranthene	0.014 J	ug/L	0.014 J
		Benzo(k)fluoranthene	0.0060 J	ug/L	0.0060 J
		Benzo(a)pyrene	0.0062 J	ug/L	0.0062 J
		Indeno(1,2,3-cd)pyrene	0.0045 J	ug/L	0.0045 J
		Benzo(g,h,i)perylene	0.0066 J	ug/L	0.0066 J
		Residual Range Organics (RRO)	75 J	ug/L	75 J

Table 1. Summary of Qualified Data (continued)

Sample ID	Laboratory ID	Analyte	Lab Result	Unit	Final Result
0397-017 (3 Day)	K1200585-002	Benzo(b)fluoranthene	0.014 J	ug/L	0.014 J
		Benzo(k)fluoranthene	0.0048 J	ug/L	0.0048 J
		Benzo(a)pyrene	0.0069 J	ug/L	0.0069 J
		Residual Range Organics (RRO)	53 J	ug/L	53 J
0397-017 (4 Day)	K1200585-003	Benzo(b)fluoranthene	0.015 J	ug/L	0.015 J
		Benzo(k)fluoranthene	0.0055 J	ug/L	0.0055 J
		Benzo(a)pyrene	0.0066 J	ug/L	0.0066 J
		Residual Range Organics (RRO)	55 J	ug/L	55 J
0397-017 (5 Day)	K1200691-001	Benzo(b)fluoranthene	0.040 J	ug/L	0.040 J
		Benzo(a)pyrene	0.012 J	ug/L	0.012 J
		Indeno(1,2,3-cd)pyrene	0.0088 J	ug/L	0.0088 J
		Benzo(g,h,i)perylene	0.0065 J	ug/L	0.0065 J
0397-017A (2hr)	K1201445-001	Residual Range Organics (RRO)	35 J	ug/L	35 J
		Benzo(k)fluoranthene	0.0034 J	ug/L	0.0034 J
		Indeno(1,2,3-cd)pyrene	0.00078 J	ug/L	0.00078 J
		Benzo(g,h,i)perylene	0.00068 J	ug/L	0.00068 J
0397-017A (7 hr)	K1201445-002	Residual Range Organics (RRO)	33 J	ug/L	33 J
		Indeno(1,2,3-cd)pyrene	0.0036 J	ug/L	0.0036 J
		Dibenz(a,h)anthracene	0.0011 J	ug/L	0.0011 J
		Benzo(g,h,i)perylene	0.0029 J	ug/L	0.0029 J
0397-017A (24 hr)	K1201445-003	Residual Range Organics (RRO)	53 J	ug/L	53 J
		Indeno(1,2,3-cd)pyrene	0.0030 J	ug/L	0.0030 J
		Dibenz(a,h)anthracene	0.0012 J	ug/L	0.0012 J
		Benzo(g,h,i)perylene	0.0026 J	ug/L	0.0026 J
0397-017A (48 hr)	K1201445-004	Residual Range Organics (RRO)	56 J	ug/L	56 J
		Indeno(1,2,3-cd)pyrene	0.0017 J	ug/L	0.0017 J
		Dibenz(a,h)anthracene	0.00063 J	ug/L	0.00063 J
		Benzo(g,h,i)perylene	0.0014 J	ug/L	0.0014 J
0397-017A (28 day)	K1201445-005	SPLP Dibenzofuran	97	ug/L	97 J
		SPLP Fluorene	99	ug/L	99 J
		SPLP Benzo(b)fluoranthene	0.046 J	ug/L	0.046 J
		SPLP Indeno(1,2,3-cd)pyrene	0.031 J	ug/L	0.031 J
		SPLP Benzo(g,h,i)perylene	0.040 J	ug/L	0.040 J
0397-017DUP (28 day)	K1201445-006	SPLP Benzo(b)fluoranthene	0.045 J	ug/L	0.045 J
BV-13	K1201477-0001	Benzo(k)fluoranthene	3.8 J	ug/L	3.8 J
		Benzo(a)pyrene	3.6 J	ug/L	3.6 J
		Indeno(1,2,3-cd)pyrene	1.5 J	ug/L	1.5 J
		Dibenz(a,h)anthracene	0.72 J	ug/L	0.72 J
		Benzo(g,h,i)perylene	1.5 J	ug/L	1.5 J

Table 1. Summary of Qualified Data (continued)

Sample ID	Laboratory ID	Analyte	Lab Result	Unit	Final Result
0397-017A (3 day)	K1201540-001	Benzo(b)fluoranthene	0.018 J	ug/L	0.018 J
		Benzo(k)fluoranthene	0.0065 J	ug/L	0.0065 J
		Benzo(a)pyrene	0.0081 J	ug/L	0.0081 J
0397-017A (4 day)	K1201540-002	Benzo(b)fluoranthene	0.026 J	ug/L	0.026 J
		Benzo(k)fluoranthene	0.0083 J	ug/L	0.0083 J
		Benzo(a)pyrene	0.012 J	ug/L	0.012 J
0397-016 (5 day)	K1201617-001	Benzo(k)fluoranthene	0.0040 J	ug/L	0.0040 J
		Indeno(1,2,3-cd)pyrene	0.0015 J	ug/L	0.0015 J
		Dibenz(a,h)anthracene	0.00086 J	ug/L	0.00086 J
		Benzo(g,h,i)perylene	0.0019 J	ug/L	0.0019 J
0397-017A (5 day)	K1201617-002	Fluoranthene	3.5	ug/L	3.5 J
		Indeno(1,2,3-cd)pyrene	0.0013 J	ug/L	0.0013 J
		Dibenz(a,h)anthracene	0.00053 J	ug/L	0.00053 J
		Benzo(g,h,i)perylene	0.0010 J	ug/L	0.0010 J
0397-017DUP (5 day)	K1201617-003	Fluoranthene	2.1	ug/L	2.1 J
		Benzo(k)fluoranthene	0.0036 J	ug/L	0.0036 J
		Indeno(1,2,3-cd)pyrene	0.00086 J	ug/L	0.00086 J
		Benzo(g,h,i)perylene	0.00076 J	ug/L	0.00076 J

Memo

1501 4th Avenue, Suite 1400 Seattle, WA 98101-1616 206-438-2700 Telephone 406-438-2699 Fax

To: Paul Kalina, Project Manager Info: FINAL

From: Christine T. Gebel, Chemist Jennifer B. Garner, Chemist Date: August 27, 2012

Quality Assurance Review

RE: IP Longview – Treatibility Study

Soil Samples – Mixes 26 & 28

CAS SDGs K1206162, K1206824, K1206890

The summary data quality review of 8 leachates, 1 soil, and 1 wipe collected between June 23, 2012 and July 14, 2012 has been completed. The samples were submitted to Columbia Analytical Services (CAS), a Washington State Department of Ecology (Ecology) accredited laboratory, located in Kelso, Washington. Samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) by Environmental Protection Agency (EPA) Method 8270C modified by select ion monitoring (SIM) and total petroleum hydrocarbons (TPH-diesel range and oil range) by Ecology Method NWTPH-Dx. PAHs and TPHs in one sample were also extracted and analyzed using Toxicity Characteristic Leaching Procedure (TCLP) prepared by EPA Method 1311 and Synthetic Precipitation Leaching Procedure (SPLP) prepared by EPA Method 1312. The soil samples were submitted to Kemron Environmental Services, located in Atlanta, Georgia, for leaching tests. The sample ID includes the length of time leached. These leachates were sent to CAS for analysis. The analyses were performed in general accordance with methods specified in EPA's *Test Methods for Evaluating Solid Waste (SW-846) Update IIIB*, June 2005 and Ecology's Analytical *Methods for Petroleum Hydrocarbons*, June 1997. The following samples are associated with CAS sample delivery groups (SDGs) K1206162, K1206824, and K1206890.

Sample ID	CAS ID	Matrix	Parameters
0397-026 (5 day)	K1206162-001	Leachate	TPH-Dx, PAHs, TCLP TPH-Dx, TCLP
0207 020	V120(024 001	Soil	PAHs, SPLP TPH-Dx, SPLP PAHs
0397-028	K1206824-001		TPH-Dx, PAHs
0397-028 (2 hr)	K1206824-002	Leachate	TPH-Dx, PAHs
0397-028 (7 hr)	K1206824-003	Leachate	TPH-Dx, PAHs
0397-028 (24 hr)	K1206824-004	Leachate	TPH-Dx, PAHs
0397-028 (48 hr)	K1206824-005	Leachate	TPH-Dx, PAHs
0397-028 (wipe)	K1206824-006	Wipe	TPH-Dx, PAHs
0397-028 (3 day)	K1206890-001	Leachate	TPH-Dx, PAHs
0397-028 (4 day)	K1206890-002	Leachate	TPH-Dx, PAHs
0397-028 (5 day)	K1206890-003	Leachate	TPH-Dx, PAHs

Upon receipt by CAS, the sample jar information was compared to the associated chain-of-custody (COC). No discrepancies relating to sample identification were noted by the laboratory. Two coolers were received below the EPA-recommended temperature limits of $4^{\circ}\text{C}\pm2^{\circ}\text{C}$ at -0.3 °C and 1.8 °C. Data were not qualified based on the cooler temperatures.

The samples in SDG K1206890 were received by the laboratory without preservation. The laboratory preserved these samples with hydrochloric acid upon receipt.

Data validation is based on method performance criteria and QC criteria as documented in the *Agency Draft Quality Assurance Project Plan (QAPP)*, *Appendix A of the Performance and Compliance Monitoring Plan, Former Treated Wood Products Area, International Paper Facility / Longview, Washington* (Woodward Clyde, 1997). The laboratory provided EPA Contract Laboratory Program-equivalent validatable data packages. The data review conducted on these SDGs included a review of summarized results and QA/QC data, per the requirements set forth in Section A.10 of the QAPP. Hold times, initial and continuing calibrations, method blanks, surrogate recoveries, laboratory control sample (LCS) results, matrix duplicate results, matrix spike/matrix spike duplicate (MS/MSD) results, field duplicates, and reporting limits were reviewed to assess compliance with applicable methods. Calculation checks and review of the raw data were not included in the data review. If data qualification was required, data were qualified in accordance with *USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review*, June 2008.

Organic Analyses

Samples were analyzed for PAHs and TPHs by the methods identified in the introduction to this report.

1. Holding Times – Acceptable except as noted below:

<u>TPH by NWTPH-Dx</u> – The SPLP and TCLP leachates of 0397-028 were not initially extracted for TPH analysis correctly. SPLP and TCLP analyses for this sample were performed again and these SPLP and TCLP leachates were extracted 5 days past the method-recommended holding time. The results for SPLP and TCLP TPH in this sample are qualified as estimated and flagged 'J' or 'UJ' based on the holding time exceedance.

- 2. Instrument Performance (Tunes applicable to PAHs only) Acceptable
- 3. Initial Calibrations Acceptable
- 4. Continuing Calibrations Acceptable
- 5. Blanks Acceptable except as noted below:

PAHs by Method 8270D-SIM – Several PAHs were detected in several method blanks as noted below.

Method Blank ID	Analyte	Concentration (ug/kg)
MB (soil)	Naphthalene	0.26 J
	2-Methylnaphthalene	0.24 J
	Acenaphthene	0.28 J
	Dibenzofuran	0.19 J
	Fluorene	0.2 J
	Phenanthrene	0.51
	Anthracene	0.097 J
	Fluoranthene	0.23 J
	Pyrene	0.15 J
	Benz(a)anthracene	0.057 J
	Chrysene	0.034 J

J – result reported between the method detection limit (MDL) and the reporting limit

Method Blank ID	Analyte	Concentration (ug/L)
MB (water, SDG K1206824)	Naphthalene	0.0017 J
	2-Methylnaphthalene	0.0003 J
	Dibenzofuran	0.00052 J
	Phenanthrene	0.0027 J
	Fluoranthene	0.00088 J
	Pyrene	0.0011 J
	Benz(a)anthracene	0.00076 J
	Benzo(b)fluoranthene	0.0005 J
	Benzo(k)fluoranthene	0.00042 J
	Benzo(a)pyrene	0.0014 J
	Indeno(1,2,3-cd)pyrene	0.00094 J
	Dibenz(a,h)anthracene	0.00059 J
	Benzo(g,h,i)perylene	0.0013 J
MB (water, SDG K1206890)	Naphthalene	0.0012 J
	2-Methylnaphthalene	0.00042 J
	Phenanthrene	0.0013 J
	Fluoranthene	0.00054 J
	Benz(a)anthracene	0.00058 J
	Benzo(b)fluoranthene	0.00035 J
	Benzo(a)pyrene	0.00042 J
	Indeno(1,2,3-cd)pyrene	0.0010 J
	Dibenz(a,h)anthracene	0.00060 J
	Benzo(g,h,i)perylene	0.0013 J

J – result reported between the MDL and the reporting limit

Method Blank ID	Analyte	Concentration (ug/wipe)
MB (wipe)	Naphthalene	0.068
	2-Methylnaphthalene	0.032
	Acenaphthene	0.017
	Dibenzofuran	0.0094
	Fluorene	0.0079
	Phenanthrene	0.0076
	Anthracene	0.0019 J
	Fluoranthene	0.0013 J

J – result reported between the MDL and the reporting limit

The concentrations for the above-noted analytes in the samples associated with the method blanks for the soil sample and the wipe sample were more than the method blanks concentrations or were not detected; therefore, data were not qualified based on these method blank results.

Dibenz(a,h)anthracene and benzo(g,h,i)perylene were detected in the method blank for water associated with SDG K1206824 at concentrations greater than the method detection limits (MDLs) and less than the reporting limits. Dibenz(a,h)anthracene was detected in 0397-028(2 hr), 0397-028(7 hr), 0397-028(24 hr), and 0397-028(48 hr) at concentrations less than the reporting limits but above the MDLs; therefore, the results for dibenz(a,h)anthracene in these samples are qualified as not detected and flagged 'U' at the reporting limits based on the method blank result. Benzo(g,h,i)perylene was detected in 0397-028(48 hr) at a concentration less than the reporting limit but above the MDL; therefore, the result for benzo(g,h,i)perylene in this sample is qualified as not detected and flagged 'U' at the reporting limit based on the method blank result.

<u>TCLP PAHs by Method 8270D-SIM</u> – Several PAHs were detected in the TCLP method blank as noted below.

Analyte	Concentration (ug/L)
Naphthalene	0.0012
2-Methylnaphthalene	0.00038
Acenaphthene	0.000056
Dibenzofuran	0.00034
Fluorene	0.00014
Phenanthrene	0.00023
Anthracene	0.0000066 J
Fluoranthene	0.0000096 J
Pyrene	0.0000045 J
Benz(a)anthracene	0.0000038 J
Indeno(1,2,3-cd)pyrene	0.0000037 J
Benzo(g,h,i)perylene	0.0000037 J

J – result reported between the MDL and the reporting limit

The concentrations for the above-noted analytes in the sample associated with this method blank were more than the method blank concentration; therefore, data were not qualified based on these method blank results.

<u>SPLP PAHs by Method 8270D-SIM</u> – Several PAHs were detected in the SPLP method blank as noted below.

Analyte	Concentration (ug/L)
Naphthalene	0.029
2-Methylnaphthalene	0.0068
Acenaphthalene	0.000094
Acenaphthene	0.0044
Dibenzofuran	0.0031
Fluorene	0.0029
Phenanthrene	0.0032
Anthracene	0.00031
Fluoranthene	0.00032
Pyrene	0.00017
Benz(a)anthracene	0.0000089 J
Chrysene	0.0000074 J

J – result reported between the MDL and the reporting limit

The concentrations for the above-noted analytes in the sample associated with this method blank were more than the method blank concentration; therefore, data were not qualified based on these method blank results.

6. Surrogates – Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – The percent recoveries for d10-fluorene, d10-fluoranthene, and/or d14-terphenyl were outside the control limits in several samples as noted below.

Sample ID	d10-Fluorene		d10-Fluoranthene		d14-Terphenyl	
•	%R	CLs	%R	CLs	%R	CLs
0397-028	112%	17-104%	117%	27-106%	215%	35-109%
0397-028 MS	311%	17-104%	ok	27-106%	218%	35-109%
0397-028 MSD	308%	17-104%	119%	27-106%	227%	35-109%
0397-028 SPLP	ok	17-104%	237%	27-106%	ok	35-109%
0397-028 (wipe)	7%	17-104%	ok	27-106%	ok	35-109%
Method Blank (wipe)	5%	17-104%	ok	27-106%	ok	35-109%

%R – percent recovery

CL – control limit

ok - result acceptable

The results for PAHs reported as detected in 0397-028 are qualified as estimated and flagged with a 'J' based on the elevated surrogate recoveries.

As only one surrogate is out of control for 0397-028 SPLP and 0397-028 (wipe), data are not qualified in these samples based on the surrogate recoveries.

The matrix spike and matrix spike duplicate for 0397-028 and the method blank for 0397-028 (wipe) are QC samples; therefore data were not qualified based on the surrogate recoveries. The laboratory noted that a re-extraction of the wipe was not performed due to insufficient sample volume.

- 7. Internal Standards (applicable to GC/MS only) Acceptable
- 8. Laboratory Control/ Laboratory Control Duplicate Samples (LCS/LCSD) Acceptable except as noted below:

<u>PAHs by Method 8270D-SIM</u> – The percent recoveries for the following compounds in LCS/LCSD extracted on July 20, 2012 and associated with the wipe sample were below the control limits as described below.

Analyte	LCS	LCSD	CLs	RPD (CL 40%)
Naphthalene	22%	3%	32-124%	150%
2-Methylnaphthalene	21%	5%	27-126%	119%
Acenaphthylene	19%	7%	38-126%	94%
Acenaphthene	24%	8%	39-124%	100%
Dibenzofuran	26%	15%	41-130%	56%
Fluorene	37%	31%	39-129%	ok

CL – control limit

RPD – relative percent difference

ok - result acceptable

The results for naphthalene, 2-methylnaphthalene, acenaphthylene, acenaphthene, dibenzofuran, and fluorene in 0397-028 (wipe) are qualified as estimated and flagged 'J' based on the LCS/LCSD results.

9. Matrix Spike/Matrix Spike Duplicate (MS/MSD) – Acceptable except as noted below:

<u>TPH by NWTPH-Dx</u> – A MS/MSD was not performed in association with the TPH analyses. Accuracy and precision were assessed using the LCS/LCSD.

<u>PAHs by Method 8270D-SIM</u> – A MS/MSD was performed on 0397-028. The percent recoveries for several compounds were outside the control limits as noted below:

Analyte	MS	MSD	CLs
Naphthalene	-36,143%	-25,402%	23-114%
2-Methylnaphthalene	-8,530%	-3,168%	24-115%
Acenaphthalene	281%	237%	32-117%
Acenaphthene	-20,032%	-18,453%	33-118%
Dibenzofuran	-15,368%	-14,680%	34-131%
Fluorene	-16,417%	-17,815%	33-125%
Phenanthrene	-70,840%	-69,285%	29-125%
Anthracene	-5,429%	-2,848%	30-127%
Fluoranthene	-7,634%	-9,370%	35-139%
Pyrene	8,107%	4,700%	27-134%
Benz(a)anthracene	6,426%	5,598%	35-122%
Chrysene	1,662%	1,475%	36-126%
Benzo(b)fluoranthene	1,011%	514%	35-124%
Benzo(k)fluoranthene	248%	ok	38-124%
Benzo(a)pyrene	649%	475%	37-123%
Indeno(1,2,3-cd)pyrene	279%	212%	28-133%
Dibenz(a,h)anthracene	132%	ok	32-125%
Benzo(g,h,i)perylene	220%	168%	33-128%

CL – control limit

ok - result acceptable

The results for PAHs in 0397-028 were previously qualified as described in Section 6 and no further qualification based on the MS/MSD is required.

10. Laboratory Duplicates – Acceptable

<u>TPH by NWTPH-Dx</u> – A laboratory duplicate was performed for soil on an unrelated project. Results were acceptable.

<u>PAHs by Method 8270D-SIM</u> – Laboratory duplicates were not performed in association with the PAH analyses. Accuracy and precision were assessed using the LCS/LCSD.

11. Reporting Limits – Acceptable except as noted below:

<u>TPH by NWTPH-Dx</u> – The results for diesel-range and/or residual-range hydrocarbons in several samples were assigned a 'Z' qualifier by the laboratory to indicate that the chromatographic fingerprint does not resemble a petroleum product. No additional qualifier was necessary based on this qualifier assigned by the laboratory.

The reporting limits for residual-range hydrocarbons in 0397-026(5day), 0397-028(2 hr), 0397-028(7 hr), 0397-028 48 hr), 0397-028 TCLP, 0397-028(3 day), 0397-028(4 day), and 0397-028(5 day) were elevated due to the lower sample volume used.

<u>PAHs by Method 8270D-SIM</u> – The results for one or more analytes in several samples were assigned a 'D' qualifier by the laboratory to indicate the results were reported from a dilution of the samples. No additional qualifiers were necessary based on the 'D' qualifiers assigned by the laboratory.

The reporting limits for one or more PAHs were elevated in 0397-026(5day), 0397-028 TCLP, 0397-028 SPLP, and 0397-028(5day) due to the dilutions necessary to quantitate high concentrations of target analytes present in these samples.

The result for benzo(a)pyrene in 0397-028 (wipe) was flagged 'X' by the laboratory to indicate matrix interference. The result for benzo(a)pyrene in this sample is qualified as estimated and flagged with a 'J' based on the matrix interference.

One or more PAHs were flagged 'J' by the laboratory to indicate the result was greater than the MDL and less than the reporting limit. Laboratory 'J'-flagged results are considered estimated results. As the result is between the method detection limit and the reporting limit, there is a greater level of uncertainty associated with the numerical result.

Overall Assessment

The data reported in these SDGs, as qualified, are considered to be usable for meeting project objectives. The completeness for SDGs K1206162, K1206824, and K1206890 is 100%.

Data Qualifier Definitions:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Table 1. Summary of Qualified Data

Sample ID	Laboratory ID	Analyte	Lab Result	Unit	Final Result
0397-028	K1206824-001	Naphthalene	150,000	ug/kg	150,000 J
		2-Methylnaphthalene	84,000	ug/kg	84,000 J
		Acenaphthalene	1,300	ug/kg	1,300 J
		Acenaphthene	91,000	ug/kg	91,000 J
		Dibenzofuran	67,000	ug/kg	67,000 J
		Fluorene	86,000	ug/kg	86,000 J
		Phenanthrene	250,000	ug/kg	250,000 J
		Anthracene	48,000	ug/kg	48,000 J
		Fluoranthene	110,000	ug/kg	110,000 J
		Pyrene	74,000	ug/kg	74,000 J
		Benz(a)anthracene	17,000	ug/kg	17,000 J
		Chrysene	19,000	ug/kg	19,000 J
		Benzo(b)fluoranthene	9,600	ug/kg	9,600 J
		Benzo(k)fluoranthene	3,600	ug/kg	3,600 J
		Benzo(a)pyrene	6,100	ug/kg	6,100 J
		Indeno(1,2,3-cd)pyrene	2,000	ug/kg	2,000 J
		Dibenz(a,h)anthracene	510	ug/kg	510 J
		Benzo(g,h,i)perylene	1,600	ug/kg	1,600 J
0397-028 (2 hr)	K1206824-002	Dibenz(a,h)anthracene	0.0015 J	ug/L	0.0034 U
0397-028 (7 hr)	K1206824-003	Dibenz(a,h)anthracene	0.0013 J	ug/L	0.0034 U
0397-028 (24 hr)	K1206824-004	Dibenz(a,h)anthracene	0.0025 J	ug/L	0.0038 U
0397-028 (48 hr)	K1206824-005	Dibenz(a,h)anthracene	0.0012 J	ug/L	0.0034 U
		Benzo(g,h,i)perylene	0.0032 J	ug/L	0.0034 U
0397-028 TCLP	K1206824-007	Diesel Range Organics (RRO)	15,000	ug/L	15,000 J
		Residual Range Organics (RRO)	540 U	ug/L	540 UJ
		Benzo(b)fluoranthene	0.063 J	ug/L	0.063 J
		Benzo(k)fluoranthene	0.034 J	ug/L	0.034 J
0397-028 SPLP	K1206824-001	Diesel Range Organics (RRO)	17,000	ug/L	17,000 J
		Residual Range Organics (RRO)	920	ug/L	920 J
		Benzo(b)fluoranthene	0.049 J	ug/L	0.049 J
		Benzo(k)fluoranthene	0.028 J	ug/L	0.028 J
0397-028 (wipe)	K1206824-006	Naphthalene	0.48	ug/wipe	0.48 J
		2-Methylnaphthalene	0.18	ug/wipe	0.18 J
		Acenaphthylene	0.010	ug/wipe	0.010 J
		Acenaphthene	0.26	ug/wipe	0.26 J
		Dibenzofuran	0.20	ug/wipe	0.20 J
		Fluorene	0.28	ug/wipe	0.28 J
		Benzo(a)pyrene	0.090 X	ug/wipe	0.090 J

Table 1. Summary of Qualified Data (continued)

Sample ID	Laboratory ID	Analyte	Lab Result	Unit	Final Result
0397-028 (3 day)	K1206890-001	Benzo(k)fluoranthene	26 J	ng/L	26 J
		Indeno(1,2,3-cd)pyrene	20 J	ng/L	20 J
		Dibenz(a,h)anthracene	11 J	ng/L	11 J
		Benzo(g,h,i)perylene	23 J	ng/L	23 J
0397-028 (4 day)	K1206890-002	Benzo(k)fluoranthene	22 J	ng/L	22 J
		Benzo(a)pyrene	23 J	ng/L	23 J
		Indeno(1,2,3-cd)pyrene	9.6 J	ng/L	9.6 J
		Dibenz(a,h)anthracene	5.9 J	ng/L	5.9 J
		Benzo(g,h,i)perylene	9.7 J	ng/L	9.7 J
0397-028 (4 day)	K1206890-002	Benzo(k)fluoranthene	25 J	ng/L	25 J
		Benzo(a)pyrene	29 J	ng/L	29 J
		Indeno(1,2,3-cd)pyrene	8.1 J	ng/L	8.1 J
		Benzo(g,h,i)perylene	8.8 J	ng/L	8.8 J

Appendix G **ISS Treatability Study Laboratory Report – Kemron Environmental Services**

LONGVIEW SITE TREATABILITY STUDY REVISED FINAL REPORT

KEMRON Project Number: SE0397

April 12, 2013

Prepared for:

URS 1501 Fourth Avenue, Suite 1400 Seattle Washington 98101

Prepared by:

1359-A Ellsworth Industrial Blvd Atlanta, GA 30318 404-636-0928 (Phone) 404-636-7162 (Fax)

Submitted By:

Mark Clark

Reviewed By:

Tommy A. Jordan, P.G.

Technical Manager

Program

Program Manager

3.0 STABILIZATION EVALUATIONS4
4.0 CONCLUSIONS
List Of Tables
Γable 1 – Untreated Material Physical Properties Characterization
Γable 2 – Untreated Material Analytical Results
Γable 3 – Preliminary Stabilization Evaluations – Mixture Designs and Penetrometer Testing
Γable 4 – Preliminary Stabilization Evaluations – Mixture Designs and UCS Testing
Γable 5 – Preliminary Stabilization Evaluations – Mixture Designs and Permeability Testing
Γable 6 – Preliminary Stabilization Evaluations – SPLP PAH and TPH Results
Γable 7 – Mixture 016 5-Day Interval ANS 16.1 Leachability Results
Γable 8 – Mixture 017 5-Day Modified ANS 16.1 Leachability Results
Гable 8A – Mixture 017A and 017Dup 28-Day Analytical Results
Γable 9 – Optimization Stabilization Evaluations – UCS, Permeability and VE Testing
Γable 10 – Optimization Stabilization Evaluations – SPLP PAH and TPH Results
Γable 11 – Mixture 017Dup and 026 5-Day Interval ANS 16.1 Leachability Results
Γable 12 – Mixture 017A 5-Day Modified ANS 16.1 Leachability Results
Γable 13 – Mixture 028 5-Day Modified ANS 16.1 Leachability Results
Γable 14 – Mixture 028 SPLP PAH and TPH Results

List Of Attachments

- Appendix A Untreated Physical Properties Testing
- Appendix B Untreated Analytical Reports
- Appendix C Mixture Development Sheets
- Appendix D Unconfined Compressive Strength Data Sheets
- Appendix E Permeability Data Sheets
- Appendix F ANS 16.1 Leachability Data Sheets
- Appendix G Analytical Reports
 - Mixture 017 2, 7, 24 Hour ANS Analytical
 - Mixture 017 2, 3, 4 Day ANS Analytical
 - Mixture 017 5 Day ANS Analytical

Acronyms

ASTM American Society of Testing and Materials

°C Degrees Celsius

cm/sec Centimeters per second COC Contaminants of Concern

DI De-ionized

EPA U.S. Environmental Protection Agency

KEMRON Kemron Environmental Services

PAH Polycyclic Aromatic Hydrocarbon

psi Pounds per square inch ANS American Nuclear Society

SVOCs Semi-volatile organic compounds

SPLP Synthetic Precipitation Leaching Procedure TCLP Toxicity Characteristic Leaching Procedure

TPH Total Petroleum Hydrocarbon

μg/L Micrograms per liter

UCS Unconfined Compressive Strength

1.0 INTRODUCTION

KEMRON Environmental Services, Inc. (KEMRON) has developed the Longview Site Bench-Scale Treatability Study Final Report to summarize the results of testing performed on materials from the site, and to present the protocols used in testing of the site materials. All testing performed during the study were conducted in accordance with the Study Work Plan, and subsequent telephone conferences and communications between KEMRON and URS.

All treatability testing was conducted at KEMRON's facilities located in Atlanta, Georgia. Throughout the study, analytical testing was performed by Columbia Analytical Services located in Kelso, Washington. Columbia was contracted directly by URS for this study.

Solidification is the process of encapsulating contaminants and reducing the mobility of contaminant constituents in a treated material. Stabilization is the process of chemically changing a hazardous waste material into a less soluble or less toxic form. For the purposes of this report the terms Solidification and Stabilization (S/S) may be used interchangeably.

The bench-scale testing was performed in a phased approach and included untreated material characterization, and stabilization evaluations. Throughout the study, KEMRON and URS were in frequent communication, and the progression of the study was relatively fluid. That is changes were made to the original work plan, and testing was altered or added at different stages of the study which were not necessarily originally planned. As such, this report may not be in the order that events took place, but rather has been organized in a way to show the effectiveness of treatments evaluated and results of testing performed on those treated materials.

The untreated material testing was performed to provide information on the physical and chemical properties of the site materials. Untreated material characterization is important to the success of the study by providing a baseline of contaminant concentration to evaluate the effectiveness of treatment as well as ensuring that the materials provided for the study were similar to those anticipated at the site.

The primary objective of the bench-scale study was to evaluate the reduction of leachable COCs from the site soils, and the improvement of physical properties including UCS and permeability of the treated materials. The following discussions summarize the various treatment alternatives and methods.

2.0 MATERIAL RECIEPT, HOMOGENIZATION, AND CHARACTERIZATION

On August 24, 2011, KEMRON received two distinct materials from the site labeled "TP-01", and "TP-02". Immediately following the receipt of the site materials, KEMRON logged the materials into a sample tracking database and placed them in a 4-degree-Celsius (°C) walk-in cooler for storage.

KEMRON individually homogenized TP-01 and TP-02 by placing the contents from the shipping containers into a pre-cleaned plastic mixing pan and gently blending by hand using a stainless steel spoon until visually homogenous. At this time aliquots of both site materials were removed for particle size analysis testing in accordance with the American Society of Testing and Materials (ASTM) Method 422. The remaining soil was further homogenized, and any particles measuring greater than 0.5 inches in diameter were removed in order to facilitate bench-scale treatment and adhere to particle-size limits outlined in certain ASTM and EPA test methods. KEMRON performed homogenization activities on the chilled samples to minimize volatilization of organic contaminants of concern.

To characterize each the physical properties of each site material, KEMRON performed the following testing on aliquots of each untreated material:

<u>PARAMETER</u>	<u>METHOD</u>
Moisture Content	ASTM D2216
Loss on Ignition (Organic Content)	ASTM D2974
Soil Classification	USCS D2487
Particle Size Analysis with Hydrometer	ASTM D422

A summary of the results of the physical properties testing are provided on Table 1, and physical properties data sheets for the untreated materials are included in Appendix A. The following is a summary of the data presented in Table 1:

Table 1 – Untreated Material Physical Properties Testing

TESTING	TEST		TP-01 (2-7.5)	TP-02
PARAMETER	METHOD	UNIT	RESULTS	RESULTS
Moisture Content ASTM Moisture Content Percent Solids	ASTM D2216	% %	31.85 75.85	24.72 80.18
Loss on Ignition	ASTM D2974	%	1.93	1.16
Particle Size Distribution Gravel Sand Silt Clay	ASTM D422/D854	% % %	1.0 76.5 21.3 1.2	0.0 91.0 8.3 0.3
Sample Description	USCS (D2487)		Dark grey silty sand	V. Dk Grey poorly graded sand with silt
Sample Classification	USCS (D2487)		SM	SP-SM

<u>Notes</u>

% = Percent

Sample descriptions based on the Unified Classification System. Where atterberg limits were not tested, the description is based on an assumed PI < 4.

Sample color determined by the Munsell Soil Color Charts.

The results presented in Table 1 indicate that the TP-01 material was slightly more moist, and exhibited a higher percentage of fines than the TP-02 material.

In addition to physical properties testing, aliquots of each untreated site material were subjected to the following analytical tests in accordance with the outlined testing methods;

PARAMETER

Total PAHs SPLP PAHs Total TPH (DRO, RRO) SPLP TPH (DRO, RRO)

METHOD

EPA Method 8270 EPA Methods 1312/8270 EPA Method EPA Methods

		TP-01	TP-02
TESTING PARAMETER	UNIT	RESULTS	
Total PAH's			
Naphthalene	ug/kg dry	140	420,000
2-Methylnaphthalene	ug/kg dry	92	140,000
Acenaphthylene	ug/kg dry	11	1,800
Acenaphthene	ug/kg dry	220	110,000
Fluorene	ug/kg dry	84	97,000
Dibenzofuran	ug/kg dry	110	73,000
Phenanthrene	ug/kg dry	100	260,000
Anthracene	ug/kg dry	39	49,000
Fluoranthene	ug/kg dry	100	130,000
Pyrene	ug/kg dry	80	74,000
Benzo(b)fluoranthene	ug/kg dry	290	9,300
Benzo(k)fluoranthene	ug/kg dry	49	3,300
Benz(a)anthracene	ug/kg dry	29	20,000
Chrysene	ug/kg dry	59	17,000
Benzo(a)pyrene	ug/kg dry	300	5,500
Indeno(1,2,3-cd)pyrene	ug/kg dry	300	1,700
Dibenz(a,h)anthracene	ug/kg dry	40	410
Benzo(g,h,i)perylene	ug/kg dry	260	1,400
SPLP PAH's			
Naphthalene	ug/L	0.49	12,000
2-Methylnaphthalene	ug/L	< 0.20	1,200
Acenaphthylene	ug/L	< 0.20	12
Acenaphthene	ug/L	1.3	540

		TP-01	TP-02		
TESTING PARAMETER	UNIT	RESULTS			
Total PAH's					
Fluorene	ug/L	0.50	320		
Dibenzofuran	ug/L	0.39	300		
Phenanthrene	ug/L	0.21	360		
Anthracene	ug/L	< 0.20	51		
Fluoranthene	ug/L	< 0.20	73		
Pyrene	ug/L	< 0.20	42		
Benzo(b)fluoranthene	ug/L	< 0.20	7.9		
Benzo(k)fluoranthene	ug/L	< 0.20	7.1		
Benz(a)anthracene	ug/L	< 0.20	3.3		
Chrysene	ug/L	< 0.20	1.0		
Benzo(a)pyrene	ug/L	< 0.20	1.8		
Indeno(1,2,3-cd)pyrene	ug/L	< 0.20	0.38		
Dibenz(a,h)anthracene	ug/L	< 0.20	< 0.20		
Benzo(g,h,i)perylene	ug/L	< 0.20	0.36		
TOTAL TPH					
Diesel Range Organics (DRO)	mg/kg dry	42	8,500 Z		
Residual Range Organics (RRO)	mg/kg dry	120 J	1,600 J		
SPLP TPH					
Diesel Range Organics (DRO)	ug/L	< 280	26,000 Z		
Residual Range Organics (RRO)	ug/L	< 560	< 560		

Notes:

ug/kg = micrograms per kilogram

ug/L = micrograms per liter

mg/kg = milligrams per kilogram

QUAL = Qualifier

J = The result is an estimated value.

Z = The chromatographic fingerprint does not resemble a petroleum product.

Analytical results indicate that the untreated TP-02 site material is significantly more impacted than the TP-01 sample.

3.0 STABILIZATION EVALUATIONS

KEMRON prepared a total of nine mixture designs using the TP-01 site material. These mixtures were prepared between October 5 and October 7, 2011. Below is a summary of the mixtures prepared using the TP-01 untreated site material.

KEMRON	UNTREATED		Reagent Addition %	Water Addition %
SAMPLE	MATERIAL	REAGENT	by	by
No.	TYPE	TYPE	wet soil wt.	Reagent wt.
0397-001	TP-01	Portland Cement	7.5	50
0397-002	TP-01	Portland Cement	12.5	50
0397-003	TP-01	Portland Cement / Bentonite	12.5 / 2	150
0397-004	TP-01	Portland Cement / Hydrated Lime	7.5 / 7.5	77
0397-005	TP-01	Portland Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 0.5	150
0397-006	TP-01	Portland Cement / Class "C" Flyash	7.5 / 7.5	50
0397-007	TP-01	NewCem Slag Cement / Bentonite	15 / 2	132
0397-008	TP-01	50:50 TerraCem	12.5	50
0397-009	TP-01	50:50 TerraCem / Bentonite	15 / 2	135

Note that the reagents or reagent blends were added to the untreated material as a pumpable slurry using potable tap water. In mixtures where bentonite was included, the bentonite was hydrated with water overnight before blending with the other reagent materials and subsequent mixing with the untreated material.

The reagent additions were calculated on a by-weight basis according to the quantity of untreated material utilized. The water used in each mixture was based on the total weight of the reagents utilized in the mixture. For example in a mixture with 7.5 percent (%) Portland cement, and 7.5% hydrated lime with a 77% water addition, for every 100g of untreated material, 7.5 grams (g) of Portland cement was blended with 7.5g of hydrated lime and then slurried with 11.6g of water.

All mixtures were prepared using a Hobart-type kitchen mixer with a paddle-type mixing arm. Mixtures were prepared by placing an aliquot of the untreated material into the mixing chamber. The appropriate reagents were then added dry to the untreated material while mixing. Each mixture was blended for a period of approximately 60 to 90 seconds at a rate of approximately 60 revolutions per minute (rpm). Treatment utilizing this mixer is intended to simulate potential full-scale remediation options, to the extent possible on the bench-scale. This approach is routinely utilized to simulate a wide range of potential full-scale remediation approaches, including both in-situ and ex-situ applications.

KEMRON originally prepared 16 mixtures (0397-010 through 0397-025) between the dates of October 5 through October 7, 2011 using the untreated TP-02 site material. The following is a summary of these mixture designs. Note that all mixtures were prepared using the previously outlined protocol.

KEMRON SAMPLE	UNTREATED MATERIAL	REAGENT	Reagent Addition % by	Water Addition % by
No.	TYPE	TYPE	wet soil wt.	Reagent wt.
0397-010	TP-02	Portland Cement	12.5	50
0397-011	TP-02	Portland Cement / Bentonite	12.5 / 2	150
0397-012	TP-02	Portland Cement / Bentonite	17.5 / 2	125
0397-013	TP-02	Portland Cement / Hydrated Lime	7.5 / 7.5	75
0397-014	TP-02	Portland Cement / Hydrated Lime	7.5 / 12.5	75
0397-015	TP-02	Portland Cement / Hydrated Lime	10 / 12.5	75
0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 0.5	150
0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 2	150
0397-018	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	17.5 / 2 / 0.5	150
0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	10 / 2 / 0.5	150
0397-020	TP-02	Portland Cement / Bentonite / Organoclay SS 199	15 / 2 / 0.5	150
0397-021	TP-02	Portland Cement / Class "C" Flyash	10 / 10	50
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	10 / 10	50
0397-023	TP-02	NewCem Slag Cement / Bentonite	15 / 2	132
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	15 / 2 / 0.5	135
0397-025	TP-02	50:50 TerraCem / Bentonite	15 / 2	135

Reagent Selection

Throughout the treatability study, KEMRON utilized additives which are commonly utilized in solidification treatment of organic containing soils. These additives are readily accessible and have proven effective at treating similar materials to those from the site. The following discussions are generalizations regarding the selection of these materials for evaluation in this study.

Type I Portland cement (PC) – Used in solidification / stabilization to provide strength and bind contaminants through macro and micro encapsulation. Portland cement typically provides relatively quick curing strengths. Ultimate final strength as well as setting properties can be affected by certain contaminants, and other additives.

NewCem Slag cement – Slag cements are often used in conjunction with or as an alternative to Portland cement. Slag cements can often achieve similar strengths as PC but may provide a more cost effective alternative. Typically, slag cements cure more slowly than Portland cements but may continue to provide increasing strengths long after PC has reached its ultimate final strength.

<u>Hydrated Lime</u> – KEMRON typically uses hydrated lime as a conditioning agent to absorb excess moisture or to bind organic contaminants through adsorption. The use of hydrated lime can often reduce the leachability of organic contaminants.

<u>50:50 TerraCem</u> – This product is a blend of Cement Kiln Dust and Portland Cement combined at a 1:1 ratio. This material was considered as an alternative to straight Type I Portland cement, and was requested by URS.

<u>Class "C" Fly Ash</u> – Fly ashes are often used in combination with a cement additive to reduce the amount of cement necessary in a treatment mixture. Fly ashes can be used as a bulking agent to reduce excessive moisture and help to bind organic contaminants. Class "C" fly ash can contain higher amounts of calcium oxide and calcium hydroxide which can also provide an increase in treated material strength.

<u>Bentonite</u> – Bentonite is typically utilized to reduce the permeability of a soil during remediation. Bentonite may also be used to adsorb organic contaminants providing further leachability reduction. Bentonite used in combination with cementitious additives can reduce the ultimate final strength of the treated material over cement alone.

<u>Organoclay</u> – Organoclays can often be used to reduce the leachability of organic constituents by binding contaminants. Organoclay such as that utilized in this study (CETCO SS199) can be manufactured to actually attract organic molecules.

<u>Caustic Soda</u> – Caustic soda is not typically utilized by KEMRON during solidification treatability studies, however KEMRON was requested to evaluate the ability of caustic soda to alter the setting properties of selected mixture designs.

As outlined above the additives were typically used in different combinations to take advantage of different benefits provided by the different additives. Following the preparation of each mixture design, the treated materials were placed into cylindrical plastic molds for curing. Throughout the curing process KEMRON evaluated the potential setting properties of each mixture through pocket penetrometer testing. The results of penetrometer testing are presented in Table 3. The following is a summary of the data presented in Table 3:

TABLE 3 – Preliminary Mixture Designs Pocket Penetrometer Testing Results

KEMRON	UNTREATED		Penet	rometer	Testing	
SAMPLE	MATERIAL			(tons/ft	²)	
No.	TYPE	1 Day	3 Day	5 Day	7 Day	14 Day
0397-001	TP-01	>4.5	>4.5	>4.5	>4.5	>4.5
0397-002	TP-01	>4.5	>4.5	>4.5	>4.5	>4.5
0397-003	TP-01	3.5	4.5	>4.5	>4.5	>4.5
0397-004	TP-01	1.5	3.25	3.75	3.75	3.75
0397-005	TP-01	>4.5	>4.5	>4.5	>4.5	>4.5
0397-006	TP-01	3.75	>4.5	>4.5	>4.5	>4.5
0397-007	TP-01	0.0	0.0	0.0	0.0	0.25
0397-008	TP-01	4.25	>4.5	>4.5	>4.5	>4.5
0397-009	TP-01	1.25	3.50	4.25	>4.5	>4.5
0397-010	TP-02	>4.5	>4.5	>4.5	>4.5	>4.5
0397-011	TP-02	3.25	>4.5	>4.5	>4.5	>4.5
0397-012	TP-02	>4.5	>4.5	>4.5	>4.5	>4.5
0397-013	TP-02	3.25	>4.5	>4.5	>4.5	>4.5
0397-014	TP-02	1.25	2.5	3.0	3.75	4.25
0397-015	TP-02	2.5	3.75	>4.5	>4.5	>4.5
0397-016	TP-02	0.0	0.0	2.5	4.25	>4.5
0397-017	TP-02	0.0	0.0	1.25	3.0	>4.5
0397-018	TP-02	0.5	3.75	>4.5	>4.5	>4.5
0397-019	TP-02	3.25	4.5	>4.5	>4.5	>4.5
0397-020	TP-02	3.25	>4.5	>4.5	>4.5	>4.5
0397-021	TP-02	>4.5	>4.5	>4.5	>4.5	>4.5
0397-022	TP-02	1.0	1.75	3.25	3.75	3.75
0397-023	TP-02	0.0	3.25	4.5	>4.5	>4.5
0397-024	TP-02	2.75	3.25	4.25	>4.5	>4.5
0397-025	TP-02	1.25	2.5	4.0	4.5	>4.5

Review of the test data presented in Table 3 indicates that the majority of treated materials achieved a penetrometer strength in excess of 4.5 tons per square foot within 14 days of curing.

In addition to penetrometer testing KEMRON performed Unconfined Compressive Strength (UCS) testing to evaluate the strengths of each treated material at different curing periods. The results of UCS testing are presented in Table 4. The following is a summary of the data presented in Table 4:

TABLE 4 – Preliminary Mixture Designs Unconfined Compressive Strength Results

KEMRON	Untreated		Reagent	Water		
SAMPLE	Material	REAGENT	Addition % by wet soil	Addition % by Reagent	Cure	ucs
No.	Туре	TYPE	wet son	wt.	Days	(lb/in²)
0397-001	TP-01	Portland Cement	7.5	50	9	69.2
0397-002	TP-01	Portland Cement	12.5	50	9	169.3
0397-003	TP-01	Portland Cement / Bentonite	12.5 / 2	150	8	44.9
0397-004	TP-01	Portland Cement / Hydrated Lime	7.5 / 7.5	77	9	27.1
0397-005	TP-01	Portland Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 0.5	150	8	70.3
0397-006	TP-01	Portland Cement / Class "C" Flyash	7.5 / 7.5	50	8	64.5
0397-007	TP-01	NewCem Slag Cement / Bentonite	15 / 2	132	NT	NT
0397-008	TP-01	50:50 TerraCem	12.5	50	9	58.7
0397-009	TP-01	50:50 TerraCem / Bentonite	15 / 2	135	8	29.4
0397-010	TP-02	Portland Cement	12.5	50	9	285.0
	-				69	306.2
0397-011	TP-02	Portland Cement / Bentonite	12.5 / 2	150	8	47.6
0397-012	TP-02	Portland Cement / Bentonite	17.5 / 2	125	8	78.1
0397-013	TP-02	Portland Cement / Hydrated Lime	7.5 / 7.5	75	9	32.4
0397-014	TP-02	Portland Cement / Hydrated Lime	7.5 / 12.5	75	NT	NT
0397-015	TP-02	Portland Cement / Hydrated Lime	10 / 12.5	75	9	31.9
0397-016	TP-02	NewCem Slag Cement / Bentonite /	12.5 / 2 /	150	8	36.4
	0_	Organoclay SS 199	0.5		67	321.5
		NewCem Slag Cement / Bentonite /			8	31.7
0397-017	TP-02	Organoclay SS 199	12.5 / 2 / 2	150	67	326.0
			1==		101	443.7
0397-018	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	17.5 / 2 / 0.5	150	8	76.6
0397-019	TP-02	Portland Cement / Bentonite /	10/2/0.5	150.0	8	35.2
	0_	Organoclay SS 199			67	57.9
0397-020	TP-02	Portland Cement / Bentonite / Organoclay SS 199	15 / 2 / 0.5	150.0	8	60.8
0397-021	TP-02	Portland Cement / Class "C" Flyash	10 / 10	50.0	8	143.6
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	10 / 10	50.0	8	15.2
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	10 / 10	50.0	17	14.1
0397-023	TP-02	NewCem Slag Cement / Bentonite	15 / 2	132	8	61.3
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	15 / 2 / 0.5	135	8	37.7
0007.005	TD 00	·	45.40	405	67	87.7
0397-025	TP-02	50:50 TerraCem / Bentonite	15 / 2	135	8	32.4

Table 4 shows that of the 9 mixtures prepared using the TP-01 material, 8 of the materials achieved a UCS strength in excess of 25 psi within 9 days of mixture

October 8, 2012

preparation. Of the original 16 mixtures prepared using the TP-02 material, 15 of these mixtures evaluated achieved UCS strengths in excess of 30 psi within ten days of material preparation, with a number of the mixtures exhibiting UCS strengths greater than 100 psi.

Additional UCS testing was performed on candidate mixtures at later curing intervals to evaluate continued strength gain. Table 4 also shows that many of the mixtures continued to gain significant strength with extended curing. At approximately 67 days into the curing process KEMRON and URS selected five of the treated TP-02 materials for additional UCS and permeability testing. Permeability testing was conducted in accordance with ASTM Method D5084. The results of the 67 day UCS tests are presented in Table 4, and permeability testing results are presented in Table 5.

KEMRON	UNTREATED		Reagent	Water		
SAMPLE No.	MATERIAL TYPE	REAGENT TYPE	Addition % by wet soil wt.	Addition % by Reagent wt.	Cure Days	Perm (cm/sec)
0397-010	TP-02	Portland Cement	12.5	50	69	7.1E-07
0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 0.5	150	67	3.2E-08
0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 2	150	67	3.0E-08
0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	10 / 2 / 0.5	150	67	7.4E-07
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	15 / 2 / 0.5	135	67	3.0E-07

TABLE 5 – Preliminary Mixture Design Permeability Results

Review of the data presented in Table 5 indicates that the lowest permeability values were achieved in mixtures 016 and 017 which were developed using the NewCem slag cement in combination with bentonite and organoclay. Because only selected mixture designs were chosen for permeability testing it is difficult to determine the exact effect that the individual additives has on permeability reduction. However, it is apparent that:

- A higher addition rate of organoclay, as shown in mixtures 016 and 017, does not have a beneficial result on the permeability.
- A lower addition of cement when combined with bentonite and organoclay resulted in relatively similar permeability results as using a higher addition rate of Portland cement alone as indicated in mixtures 010 and 019

Comparing the effectiveness between mixes using slag cement to Portland cement is also difficult because of the use of a higher addition of slag compared to cement. It is unclear if the more favorable permeability results exhibited in mixtures 016 and 017 are due to the use of slag cement or if it is a result of a higher addition of the cementitious reagent compared to mixture 019 which was developed with Portland cement.

In addition to physical testing of the preliminary mixture designs, URS requested that candidate mixtures be forwarded to Columbia Analytical Services (CAS) for analytical testing. These candidate mixtures were selected based on their physical performance.

The results of leachable PAHs and TPHs as determined by the Synthetic Precipitation Leaching Procedure are included in Table 6.

TABLE 6 – Preliminary Mixture Evaluations SPLP PAHs and TPHs

Testing											
Parameter	0397- 010	0397- 011	0397- 013	0397- 016	0397- 017	0397- 019	0397- 021	0397- 022	0397- 023	0397- 024	0397- 025
SPLP PAHs (ug/L)											
Naphthalene	7,500	7,400	7,700	6,800	4,400	6,400	7,000	7,900	7,300	6,500	9,400
Acenaphthylene	9.5	9.1	8.5	7.3	3.6	7.1	8.6	8.7	8.7	7.2	8.1
Acenaphthene	420	430	380	400	260	380	420	380	390	400	380
Fluorene	240	240	210	210	92	180	230	210	190	220	210
Phenanthrene	240	250	210	210	15	210	240	220	210	220	210
Anthracene	35	33	29	30	12	30	31	30	34	28	31
Fluoranthene	22	20	19	22	6.6	20	19	20	23	22	18
Pyrene	11	10	9.1	11	0.30	10	9.2	9.3	11	11	8.2
Benz(a) anthracene	0.42	0.57	0.36	0.47	0.23	0.40	0.32	0.35	0.41	0.41	0.29
Chrysene	0.40	0.28	0.31	0.38	0.026 J	0.35	0.32	0.34	0.40	0.40	0.29
Benzo(b) fluoranthene	< 0.20	0.046 J	0.037 J	0.062 J	< 0.20	0.03 J	< 0.20	0.03 J	0.034 J	0.044 J	0.024 J
Benzo(k) fluoranthene	< 0.20	< 0.20	< 0.20	0.037 J	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Indeno(1,2,3-cd) pyrene	< 0.20	< 0.20	< 0.20	0.031 J	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
2 –Methyl naphthalene	840	890	820	780	460	740	860	770	760	860	800
Dibenzofuran	270	270	240	230	98	210	260	240	220	250	240
SPLP TPH (ug/L)									•		
DRO	19,000	20,000	20,000	18,000	11,000	17,000	19,000	20,000	18,000	18,000	23,000
RRO	< 550	570	610	< 500	< 500	< 500	510	660	540	< 500	580

Note that in this summary table the values represented as "<" (less than) indicate that the compound was not detected at a concentration above the listed detection limit. The "J" qualifier indicates that the compound was detected at the estimated concentration which was between the analytical reporting limit and the method detection limit.

Review of the data presented in Table 6 shows that naphthalene was detected in the SPLP leachate of all mixtures tested at higher concentrations than any other PAH tested. Several other compounds were detected at lower concentrations including acenaphthene, 2-methylnaphthalene, fluorene, phenanthrene, and dibenzofuran. TPHs in the diesel range were detected at relatively high concentrations in the SPLP fluid while oil range organics were detected in some of the mixtures above the analytical detection limit. A comparison between reagent types and addition rates with the SPLP results indicate that the use of Portland cement may be slightly more effective than the slag cement. Additionally, an increase in the addition of organoclay showed lower concentrations of PAHs in the SPLP leachate.

In addition to SPLP analyses, the preliminary mixtures 016 and 017 were subjected to the American Nuclear Society (ANS) 5-day modified 16.1 leaching procedure. This leaching procedure is often utilized to evaluate the leaching of contaminants over time from a solidified monolithic sample. Specifically, a sample of the treated test material is suspended in a bath of de-ionized (DI) water. At different time intervals, the test

October 8, 2012

specimen is removed from the leaching bath. The resulting leach water is then analyzed for the contaminants of concern and the solidified test specimen is placed into a new bath of clean DI water. The 5-day modified ANS 16.1 typically utilizes 7 leaching intervals including cumulative times of 2, 7, and 24 hours, 2, 3, 4, and 5 days. In order to evaluate and compare the ANS results with the SPLP analytical results, only the 5- day leaching interval for mixture 016 was analyzed. For mixture 017, URS requested that all 7 of the leachates be analyzed. The results of testing performed on the ANS leachates for mixtures 016 and 017 are presented in Tables 7 and 8. The table below summarizes the data presented in Tables 7 and 8;

	Sample 0397-016			SAN	MPLE 0397	-017					
	5-DAY	2-Hour	7- Hour	24- Hour	2-DAY	3-DAY	4-DAY	5-DAY			
Testing Parameter	Results (ug/L)	Results (ug/L)									
ТРН											
DRO	500	< 260	< 300	500 Z	550 Z	600 Z	660 Z	420 Z			
RRO	< 520	< 520	< 600	< 570	75 J	53 J	55 J	< 560			
PAH's	PAH's										
Naphthalene	100	7 D	23 D	84 D	110 D	150 D	140 D	68 D			
2-Methylnaphthalene	780	0.890	3.1 D	11 D	13 D	19 D	19 D	8.9			
Acenaphthylene	0.13	0.040	0.057	0.130	0.19	0.23	0.22	0.13			
Acenaphthene	10	1.200	3.1 D	8.9 D	11 D	15 D	14 D	8.3			
Dibenzofuran	6.7	0.840	1.7	5.4 D	6.3	8.0	7.7	5 D			
Fluorene	6.8	0.670	1.3	3.4 D	4.6	5.5	5.0	3.5			
Phenanthrene	17	4.20 D	4.5 D	9.0 D	11 D	13 D	12 D	10			
Anthracene	1.7	0.590	0.540	1.1	1.2	1.4	1.2	0.30			
Fluoranthene	4.0	2.40 D	1.1	1.7	2.0	2.2	2.0	2.1			
Pyrene	1.7	1.300	0.690	1.1	1.3	1.3	1.3	1.1			
Benz(a)anthracene	0.1	0.390	0.120	0.140	0.092	0.091	0.079	0.12			
Chrysene	0.1	0.360	0.120	0.120	0.052	0.058	0.056	0.092			
Benzo(b)fluoranthene	0.013	0.200	0.055	0.052	0.014 J	0.014 J	0.015 J	0.04			
Benzo(k)fluoranthene	0.004 J	0.078	0.019	0.02	0.006 J	0.0048 J	0.0055 J	< 0.0027			
Benzo(a)pyrene	0.0062	0.100	0.031	0.03	0.0062 J	0.0069 J	0.0066 J	0.012 J			
Indeno(1,2,3-cd)pyrene	0.0015 J	0.050	0.010	0.01	0.0045 J	< 0.0030	< 0.0027	0.0088 J			
Dibenz(a,h)anthracene	0.00086 J	0.021	0.0034	0.0032 J	< 0.0027	< 0.0029	< 0.0026	< 0.0027			
Benzo(g,h,i)perylene	0.0019 J	0.041	0.0088	0.009	0.0066 J	< 0.0033	< 0.0030	0.0065 J			

Note that in this summary table the values represented as "<" (less than) indicate that the compound was not detected at a concentration above the listed detection limit. The "J" qualifier indicates that the compound was detected at the estimated concentration which was between the analytical reporting limit and the method detection limit. The "Z" qualifier indicates that the chromatographic fingerprint does not represent a petroleum product, and the "D" qualifier shows that the value was a result of a dilution.

October 8, 2012

The results of ANS leachability testing indicates that mixture 017 provided much less contaminant in the 5-day ANS leachate than the 016 material. The contaminant leaching trend seen with mixture 017 where the contaminant concentrations increase during the middle of the test and then begin to reduce at the later leaching intervals is often seen using this leaching method. Furthermore, in many cases the contaminant concentrations continue to reduce with extended leaching intervals.

OPTIMIZATION MIXTURE EVALUATIONS

Based on the results of testing on the initial 25 mixture designs, KEMRON and URS selected to perform additional testing on mixture 017, and 6 additional optimized mixture designs for treatment of the SP-02 site material. The 6 additional optimized mixture designs were primarily developed to reduce the potential ultimate strengths of the treated site material. KEMRON also prepared two additional versions of mixture 017 which include 017A, and 017 Duplicate (DUP). Mixture 017A was prepared based on discussions with CETCO which manufactures the Organoclay SS199. Specifically mixture 017A was developed using a water addition which was solely based on the quantity of slag cement utilized, while mixture 017 DUP was prepared where the water addition was based on the total weight of all of the reagents combined, an exact duplicate of the original mixture 017. To further clarify, for mixture 017A the 150% water addition rate was calculated based on a 12.5% slag addition rate, which is equivalent to a 113.6% water addition rate based on the total 16.5% reagent addition. Mixtures 017 and 017DUP contained a water addition rate of 150% based on the total 16.5% reagent addition rate. The optimization mixture designs are outlined below;

KEMRON SAMPLE	UNTREATED MATERIAL	REAGENT	Reagent Addition % By	Water Addition % by
No.	TYPE	TYPE	wet soil wt.	Reagent wt.
0397-017A	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 2	150* (113.6**)
0397-017 DUP	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 2	150
0397-026	TP-02	Portland Cement / Bentonite	8/2	150
0397-027	TP-02	NewCem Slag Cement / Portland Cement / Bentonite	6/2/2	150
0397-028	TP-02	NewCem Slag Cement / Bentonite / Caustic Soda	8/2/0.5	175
0397-029	TP-02	NewCem Slag Cement/Bentonite / Organoclay SS 199 / Caustic Soda	8 / 2 / 0.5 / 0.5	175
0397-030	TP-02	NewCem Slag Cement/Bentonite / Caustic Soda	10 / 2 / 0.5	175
0397-031	TP-02	NewCem Slag Cement / Bentonite / OrganoClay SS199 / Caustic Soda	10 / 2 / 0.5 / 0.5	175

^{*}The water addition rate was calculated based only on the quantity of slag cement utilized.

The optimized mixtures were developed in accordance with the previously discussed mixture preparation protocol. Once prepared each treated material was

^{**}The water addition rate was calculated on the total weight of the reagents utilized.

placed into plastic molds for curing. Penetrometer testing performed on mixtures 026 through 031 are presented in Table 3. Review of these results show that all of the additional test mixtures achieved UCS strengths in excess of 4.5 TSF by day 5.

KEMRON	UNTREATED	Penetrometer Testing (tons/ft²)					
SAMPLE	MATERIAL		İ	(tons/ft	,)	I	
No.	TYPE	1 Day	3 Day	5 Day	7 Day	14 Day	
0397-026	TP-02	4.50	-	>4.5	-	-	
0397-027	TP-02	4.25	-	>4.5	-	-	
0397-028	TP-02	0.75	-	>4.5	-	-	
0397-029	TP-02	0.75	-	>4.5	-	-	
0397-030	TP-02	1.25	_	>4.5	-	-	
0397-031	TP-02	2.00	_	>4.5	_	-	

TABLE 3 – Pocket Penetrometer Testing Results

Not Tested

To evaluate the potential increase in soil volume produced from each treatment option, KEMRON performed volumetric expansion testing at various cure intervals to evaluate the potential for volume change with increased curing. Volumetric expansion was performed by placing a 100g aliquot of the untreated soil material into a cylindrical curing mold measuring 2 inches in diameter and 4 inches in height. The untreated material was then lightly compacted to remove any air voids and simulate potential field conditions, and the height of the soil within the mold was recorded. The 100g soil aliquot was then removed from the mold and subjected to the appropriate mixture design application. The treated material was then returned to the curing mold and any air voids present were removed by tapping the mold on a hard surface. At the outlined cure date KEMRON measured the height of the treated material inside the mold and the volumetric expansion was calculated using the following formula;

(Final Ht. – Initial Ht. / Initial Ht.) x 100%

In addition to volumetric expansion testing, KEMRON performed UCS testing at various curing intervals. The results of volumetric expansion testing as well as UCS testing are presented in Table 9. The following is a summary of the volumetric expansion and UCS results presented in Table 9.

TABLE 9 - Optimization Mixtures Volumetric Expansion and UCS Results

KEMRON SAMPLE NO.	UNTREATED MATERIAL TYPE	REAGENT TYPE	Reagent Addition % by Wet Soil wt.	Water Addition % by Reagent wt.	Cure Days	Volumetric Expansion (%)	UCS (lb/in²)
0397-017A	TP-02	NewCem Slag Cement / Bentonite /	12.5 / 2 / 2	150* (113.6**)	7	NT	23.7
		Organoclay SS 199		(1 1)	28	30.36	184.5
0007		NewCem Slag Cement /			3	48.21	NT
0397- 017DUP	TP-02	Bentonite /	12.5 / 2 / 2	150	7	42.86	NT
		Organoclay SS 199			28	42.86	180.2
					7	28.57	31.9
0397-026	0397-026 TP-02 Portland Cement		8/2	150	14	NT	44.9
0007-020	11 -02	#842/Bentonite	8/2	150	28	31.25	243.3***
					56	27.55	77.7
					7	25.80	68.8
0397-027	TP-02	NewCem Slag Cement/ Portland Cement/Bentonite 6	6/2/2	150	14	NT	127.7
0007-027	11 -02		0.2.2	150	28	29.64	239.8
					56	31.21	333.1
			8/2/0.5		7	36.61	91.7
		NewCem Slag Cement/Bentonite/Caustic		175	14	NT	119.1
0397-028	TP-02				28	34.82	245.5
		Soda			56	36.07	383.5
					86	25.51	355.3
					7	35.71	44.8
0397-029	TP-02	NewCem Slag Cement/Bentonite/Organo	8/2/0.5/0.5	175	14	NT	117.7
0397-029	17-02	clay SS 199/Caustic Soda	87270.570.5	175	28	37.86	NT
					56	38.21	358.3
					7	40.18	120.8
0207 020	TP-02	NewCem Slag	10 / 2 / 2 5	175	14	NT	192.0
0397-030	1 P-U2	Cement/Bentonite/Caustic Soda	10 / 2 / 0.5	175	28	40.80	NT
					56	40.09	341.1
					7	40.18	127.1
0007.004	TD 00	NewCem Slag	10 / 2 / 0.5 / 0.5	475	14	NT	221.5
0397-031	TP-02	Cement/Bentonite/Organo Clay SS199 /Caustic Soda		175	28	40.45	NT
					56	42.59	433.9

^{*}The water addition rate was calculated based only on the quantity of slag cement utilized.

Table 9 indicates that the two versions of mixture 017, mixtures 017A and 017 DUP, had very similar UCS strengths at the 28 day cure interval. The volumetric expansion values for these two mixtures are significantly different and representative of the increased water content in the 017 DUP material. To reiterate, the preparation of the 017A material was performed using information provided by CETCO and included a 150% water addition rate which was based solely on the amount of slag cement utilized in the mixture. The water addition in

^{**}The water addition rate was calculated on the total weight of the reagents utilized.

^{***} This result was determined to be inaccurate.

Longview Site SE0397

October 8, 2012

this mixture was equivalent to a 113.6% addition rate if based on the total reagent combination utilized. Mixture 017 DUP was prepared using KEMRON's standard protocol where the water addition rate is based on the total weight of the reagents used. A review of the 017 UCS strengths and that determined for the 017A and 017 DUP materials at the 28 day cure interval indicates that all three materials are very comparable.

In general Table 9 also indicates that mixtures containing the slag cement show significant strength increases with extended curing. Mixture 026, containing Type I Portland cement and bentonite only, exhibited a more modest strength gain with increased curing time. Note that the 28 day curing interval result for mixture 026 indicated a strength value in excess of 200 psi. This value was determined to be caused by an error in the UCS Load cell equipment, as the treated material was relatively easily broken apart by hand, and not consistent with a high UCS value. The volumetric expansion results range from approximately 28% to 42% and as would be expected are dependent on the reagent addition rates and the quantity of water utilized in the mixtures.

Following 28 days of curing KEMRON and URS selected 4 of the optimized mixtures for permeability testing. These candidate mixtures were selected based on review of the UCS testing results and information collected throughout the study. The results of permeability testing are also presented in Table 9 and are summarized below.

TABLE 9 - Continued

KEMRON Sample No.	Untreated Material Type	Reagent Type	Reagent Addition % by Wet Soil wt.	Water Addition % by Reagent wt.	Cure Days	Perm (cm/sec)
0397-017A	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	12.5 / 2 / 2	150* (113.6**)	28	5.5E-07
0397-026	TP-02	Portland Cement / Bentonite	8/2	150	28	2.6E -07
0397-027	TP-02	NewCem Slag Cement / Portland Cement / Bentonite	6/2/2	150	28	3.3E-07
0397-028	TP-02	NewCem Slag Cement / Bentonite / Caustic Soda	8/2/0.5	175	28	1.9E-07

^{*}The water addition rate was calculated based only on the quantity of slag cement utilized.

Review of the permeability data presented in Table 9 shows relatively similar results for the treated materials tested.

After review of the physical data collected from testing performed on the Optimized

^{**}The water addition rate was calculated on the total weight of the reagents utilized.

mixture designs, KEMRON submitted aliquots of mixtures 017A, and 017 DUP for SPLP PAHs and TPHs analyses, at the request of URS. The results of these tests are presented in Table 10. The following is a summary of this data.

TABLE 10 – Optimization Mixture Evaluations Summary of SPLP TPH, PAH Analyses

		0397-02	17A	0397-017 DUP		
TESTING PARAMETER	UNIT	Results	Qual	Results	Qual	
SPLP PAH's						
Naphthalene	ug/L	1,800		1,700		
Acenaphthylene	ug/L	3.4		3.6		
Acenaphthene	ug/L	280		250		
Fluorene	ug/L	99	J	94		
Phenanthrene	ug/L	140		140		
Anthracene	ug/L	17		18		
Fluoranthene	ug/L	16		16		
Pyrene	ug/L	9.3		9.4		
Benz(a)anthracene	ug/L	0.43		0.43		
Chrysene	ug/L	0.35		0.38		
Benzo(b)fluoranthene	ug/L	0.046	J	0.045	J	
Benzo(k)fluoranthene	ug/L	< 0.20		< 0.20		
Benzo(a)pyrene	ug/L	< 0.20		< 0.20		
Indeno(1,2,3-cd)pyrene	ug/L	0.031	J	< 0.20		
Dibenz(a,h)anthracene	ug/L	< 0.20		< 0.20		
Benzo(g,h,i)perylene	ug/L	0.040	J	< 0.20		
2-Methylnaphthalene	ug/L	380		340		
Dibenzofuran	ug/L	97	J	95		
SPLP TPH						
DRO	ug/L	6,700		6,900		
RRO	ug/L	< 520		< 510		

As seen in the preliminary mixture designs subjected to SPLP analyses, these optimized mixtures exhibited naphthalene at the highest concentrations of the PAHs analyzed. Similarly TPHs in the diesel range were also detected at relatively high concentrations. A comparison of Mixtures 017A and 017 DUP shows almost identical results were reported.

In addition to SPLP leach analyses, candidate mixtures were selected for ANS 16.1 modified leach testing. Specifically, mixtures 017 Dup, and 026 were subjected to the 5-day ANS 16.1 test with only the 5-Day leachate being analyzed. Mixtures 017A, and 028 were also subjected to the 5-Day ANS 16.1 test with all leaching intervals being analyzed.

The following is a presentation of Table 11 which summarizes the results of analyses performed on the 5-day ANS leachates from testing of the optimized candidate mixtures 017 DUP and 026;

TABLE 11 – Optimization Mixture Evaluations Day 5 ANS 16.1 Leach Results

	SAMPLE 0397-017 DUP	SAMPLE 0397-026	
	5-DAY	5-DAY	
TESTING PARAMETER	RESULTS (ug/L)	RESULTS (ug/L)	
ТРН			
Diesel Range Organics (DRO)	500	1,300	
Residual Range Organics (RRO)	< 550	< 560	
PAH's			
Naphthalene	81 D	170	
2-Methylnaphthalene	15 D	0.54	
Acenaphthylene	0.20	21	
Acenaphthene	15 D	16	
Dibenzofuran	8.2 D	44	
Fluorene	9.3 D	5.7	
Phenanthrene	15 D	11	
Anthracene	1.6	5.9	
Fluoranthene	2.1	0.56	
Pyrene	1.3	0.47	
Benz(a)anthracene	0.830	0.085	
Chrysene	0.0700	< 0.039	
Benzo(b)fluoranthene	0.0120	< 0.039	
Benzo(k)fluoranthene	0.0036 J	< 0.039	
Benzo(a)pyrene	0.0055	< 0.039	
Indeno(1,2,3-cd)pyrene	0.0086 J	< 0.039	
Dibenz(a,h)anthracene	< 0.0037	30	
Benzo(g,h,i)perylene	0.0076 J	15	

Review of the results show that mixture 017 DUP generally exhibited lower contaminant concentrations in the Day 5 ANS 16.1 leachate than mixture 026. This is most prevalent in the DRO TPH analyses.

Mixture 017A was also subjected to a 5-day ANS 16.1 leach test, however each of the ANS leachates were analyzed for the constituents of concern. The results of analyses are presented in Table 12 which is summarized below;

Table 12 – Optimization Mixture 017A Complete 5-Day ANS 16.1 Leach Results

			SAI	MPLE 0397-0	17A		
	2-Hour	7-Hour	24-Hour	2-DAY	3-DAY	4-DAY	5-DAY
Testing Parameter	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)
ТРН							
DRO	390 Z	710 Z	1,600 Z	1,600 Z	1,100 Z	1,100 Z	570 Z
RRO	35 J	33 J	53 J	56 J	< 540	< 540	< 570
PAH's							
Naphthalene	71 D	130 D	340 D	310 D	270 D	310 D	100 D
2-Methylnaphthalene	13 D	22 D	57 D	55 D	48 D	56 D	17 D
Acenaphthylene	0.16	0.22	0.40	0.37	0.57 D	0.63 D	0.23
Acenaphthene	12 D	16 D	41 D	38 D	36 D	42 D	16 D
Dibenzofuran	6.5 D	8.4 D	21 D	20 D	17 D	19 D	9.2 D
Fluorene	8.2 D	10 D	25 D	23 D	20 D	22 D	11 D
Phenanthrene	13 D	12 D	28 D	28 D	29 D	31 D	18 D
Anthracene	1.7	1.5	4.3 D	4.2 D	3.8 D	4.1 D	2.00
Fluoranthene	2.7 D	1.8	4.1 D	4.2 D	4.5 D	4.7 D	3.5 D
Pyrene	1.6	1.0	2 D	2.2 D	2.6 D	2.8 D	1.7
Benz(a)anthracene	0.13	0.10	0.18	0.180	0.15 D	0.17 D	0.11
Chrysene	0.064	0.055	0.085	0.080	0.087 D	0.1 D	0.088
Benzo(b)fluoranthene	0.011	0.019	0.023	0.018	0.018 J,D	0.026 J,D	0.015
Benzo(k)fluoranthene	0.0034 J	0.0079	0.0078	0.0048	0.0065 J,D	0.0083 J,D	0.0047
Benzo(a)pyrene	0.0066	0.013	0.013	0.0098	0.0081 J,D	0.012 J,D	0.008
Indeno(1,2,3-cd)pyrene	0.00078 J	0.0036 J	0.003 J	0.0017 J	< 0.040	< 0.039	0.0013 J
Dibenz(a,h)anthracene	< 0.00047	0.0011 J	0.0012 J	0.00063 J	< 0.040	< 0.039	0.00053 J
Benzo(g,h,i)perylene	0.00068 J	0.0029 J	0.0026 J	0.0014 J	< 0.040	< 0.039	0.001 J

The results of ANS 16.1 leach testing performed on the 017A material show that TPH DRO concentrations remained relatively high at the 5-day leaching period. However, the general trend of the results indicated a reduction in DRO concentrations from earlier leaching intervals. Additionally, Naphthalene was the compound detected at the highest concentration in the PAH analyses. Naphthalene also showed a decrease in concentration at the 5-day interval compared to earlier samples.

The results of ANS 16.1 testing performed on the 028 sample are presented in Table 13 and are summarized below. Review of this data indicates relatively similar results to the 017A material. At the 5-day leaching interval the concentration of DROs was slightly higher than that seen in the 017A sample, as were certain PAH compounds.

Table 13 – Optimization Mixture Evaluations 028 Complete 5-Day ANS 16.1 Leach Results

			SA	MPLE 0397-	028		
	2-Hour	7-Hour	24-Hour	2-DAY	3-DAY	4-DAY	5-DAY
Testing Parameter	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)	Results (ug/L)
ТРН							
DRO	520 Z	570 Z	930 Z	910 Z	920 Z	1,000 Z	860 Z
RRO	< 540	< 550	< 500	< 550	< 610	< 610	< 580
PAH's							
Naphthalene	30 D	64 D	170 D	120 D	140 D	120 D	100 D
2-Methylnaphthalene	61 D	12 D	34 D	23 D	29 D	26 D	22 D
Acenaphthylene	0.12	0.19	0.41	0.30	0.44 D	0.390 D	0.34 D
Acenaphthene	6.0 D	11 D	29 D	20 D	24 D	19 D	17 D
Dibenzofuran	4.1 D	6.6 D	19 D	14 D	14 D	12 D	11 D
Fluorene	4.6 D	8.3 D	22 D	16 D	16 D	14 D	13 D
Phenanthrene	7.2 D	13 D	42 D	35 D	41 D	35 D	31 D
Anthracene	0.980 D	1.4	5.6 D	5.4 D	5.3 D	4.7 D	4.4 D
Fluoranthene	1.0	1.7	6.9 D	7.0 D	8.2 D	7.3 D	7.7 D
Pyrene	0.660	1.1	4.3 D	4.3 D	4.8 D	4.2 D	4.5 D
Benz(a)anthracene	0.094	0.12	0.33	0.350	0.390 D	0.330 D	0.380 D
Chrysene	0.071	0.100	0.270	0.270	0.390 D	0.320 D	0.380 D
Benzo(b)fluoranthene	0.027	0.030	0.068	0.052	0.0065 D	0.048 D	0.058 D
Benzo(k)fluoranthene	0.012	0.0110	0.0230	0.0160	0.0026 JD	0.022 JD	0.025 JD
Benzo(a)pyrene	0.019	0.017	0.034	0.0240	0.0034 D	0.023 JD	0.029 JD
Indeno(1,2,3-cd)pyrene	0.0057	0.0045	0.0095	0.0047	0.0020 JD	0.0096 JD	0.0081 JD
Dibenz(a,h)anthracene	0.0015 J	0.0013 J	0.0025 J	0.0012 J	0.0011 JD	0.0059 JD	< 0.0045
Benzo(g,h,i)perylene	0.0052	0.0041	0.0074	0.0032 J	0.0023 JD	0.0097JD	0.0088 JD

Notes:

MDL = Method Detection Limit

MRL = Method Reporting Limit

PAH's = Polynuclear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

ND = Not Detected

D = The reported result is from a dilution.

J = The result is an estimated value.

Z = The chromatographic fingerprint does not resemble a petroleum product.

Following the review of all test data, URS requested that additional testing be performed on the 028 treated materials. Specifically, KEMRON performed wipe sampling as well

as leachability testing in accordance with the SPLP and Toxicity Characteristic Leaching Procedure (TCLP) for PAHs and THPs Diesel and Oil Range Organics.

Wipe sampling was performed on a 100 cubic centimeter area of the solidified sample 0397-028. KEMRON used one single wipe across the sample using the subcontract analytical laboratory (CAS) wipe.

The results of the wipe, TCLP and SPLP analyses performed on the treated 028 material are presented in Table 14. The following is a summary of the data found in Table 14

Table 14 – Optimization Mixture 028 Summary of Additional Analyses

				039	7-028			
TESTING PARAMETER	WIPE Results (ug/Wipe)	Qual	Total Results (mg/kg)	Qual	TCLP Results (ug/L)	Qual	SPLP Results (ug/L)	Qual
PAHs								
Naphthalene	0.48	J	150,000	J	5,100	J	5,400	J
Acenaphthylene	0.010		1,300	J	8.4	J	9.0	J
Acenaphthene	0.26	J	91,000	J	420	J	440	J
Fluorene	0.28		86,000	J	230	J	250	J
Phenanthrene	1.1		250,000	J	260	J	270	J
Anthracene	0.21		48,000	J	31	J	36	J
Fluoranthene	0.62		110,000	J	22	J	24	J
Pyrene	0.44		74,000	J	13	J	13	J
Benz(a)anthracene	0.13		17,000	J	0.58	J	0.71	J
Chrysene	0.12		19,000	J	0.48	J	0.46	J
Benzo(b)fluoranthene	0.085		9,600	J	0.063	J	0.049	J
Benzo(k)fluoranthene	0.033		3,600	J	0.034	J	0.028	J
Benzo(a)pyrene	0.090	J	6,100	J	0.22	U	0.21	U
Indeno(1,2,3-cd)pyrene	0.024		2,000	J	0.22	U	0.21	U
Dibenz(a,h)anthracene	0.0065		510	J	0.22	U	0.21	U
Benzo(g,h,i)perylene	0.022		1,600	J	0.22	U	0.21	U
2-Methylnaphthalene	0.18	J	84,000	J	750	J	790	J
Dibenzofuran	0.20		67,000	J	260	J	290	J
TPHs								
Diesel Range Organics (DRO)	500	U	4,300	J	15,000	J	17,000	J
Residual Range Organics (RRO)	560	J	1,000	J	540	U	920	J

4.0 CONCLUSIONS

A tremendous amount of data was generated throughout the course of the Longview Woodtreater Site Study. Review of the results of testing indicated that for the TP-01 material, meeting the project objectives of a material exhibiting a treated strength ranging from 50 to 200 psi, a permeability slower than 1x10-6 cm/sec, and having leachable concentrations of contaminants below the Model Toxics Control Act (MTCA) Cleanup Regulations may be easily achieved with the use of Type I Portland cement alone. Results of physical testing performed on the TP-01 material show that the application of PC at an addition rate of 7.5% yielded a treated material with a UCS strength of approximately 70 psi in only 9 days of curing. Note that no analytical testing were performed on the treated TP-01 materials, however review of the untreated characterization testing indicate that very little contaminant leaching was observed in the TP-01 sample.

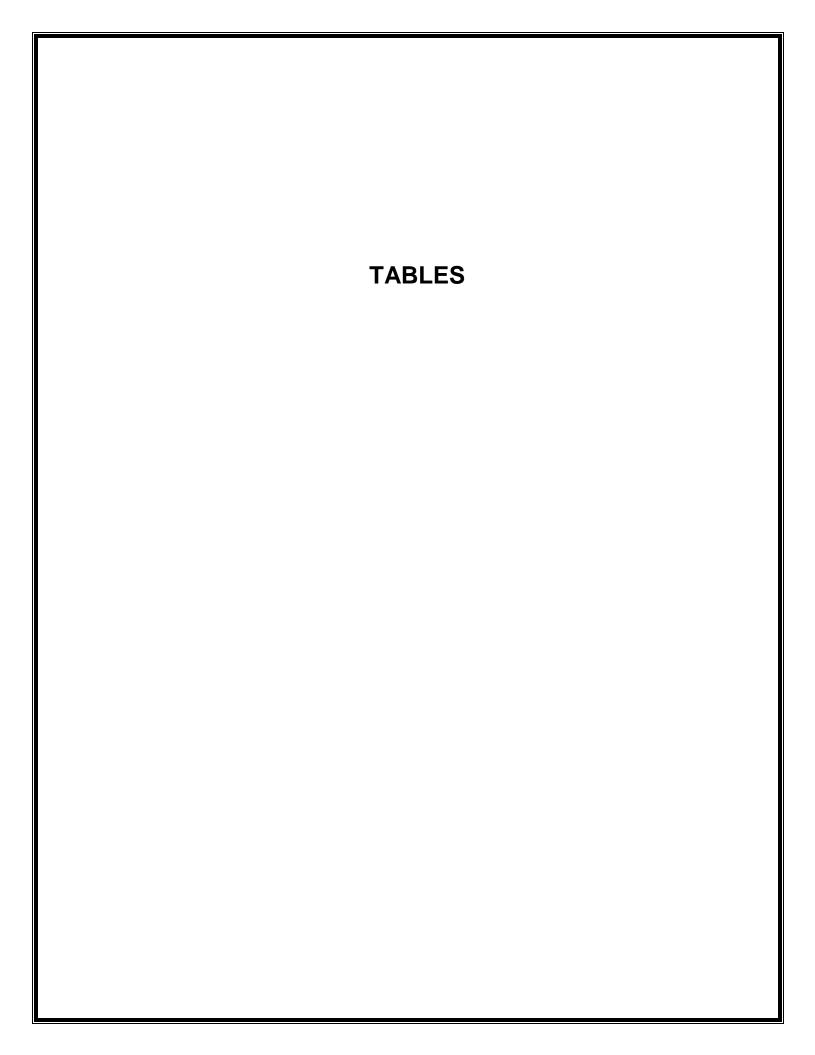
The evaluation of the TP-02 material was the primary focus of the treatability study. Mixture designs were developed to produce a treated material with a limited strength gain in order to maintain a material that would be easily workable in post-treatment activities in the field, while reducing moderately high concentrations of leachable contaminants to below groundwater treatment standards. Detailed testing was performed on three mixture designs including mixture 016 which was developed using NewCem Slag Cement at a 12.5% addition rate, sodium bentonite at a 2% addition, and CETCO Organoclay SS199 at a 0.5% addition, versions of mixture 017 containing NewCem Slag Cement at a 12.5% addition, sodium bentonite at a 2% addition, and CETCO Organoclay SS199 at a 2% addition, and mixture 028 which contained an 8% addition of NewCem Slag cement, 2% sodium bentonite, and 0.5% caustic soda. In all three mixtures the bentonite was first hydrated with water for approximately 16 hours prior to mixing with the other additives. Mixture 016 had a 150% water addition, mixture 017 utilized between 113 and 150% water addition based on the total weight of the reagents utilized, and mixture 028 had a water addition rate of 175%.

A review of testing performed on mixture 016 showed that the treated sample exhibited a maximum UCS value of 321 psi after 67 days of testing and a permeability of 3.2 x 10-8 cm/sec.

Mixture 017 or versions of mixture 017 were evaluated in both the preliminary and optimization phase of testing. Review of the results of testing performed on the 017 based materials indicate that this treated material achieved significant strength gain at the 28 day cure interval, approximately 180 psi. Testing conducted on the 017 mixture developed during the preliminary phase of testing indicated that continued strength gain should be expected with longer cure times. Specifically, this material achieved a UCS value of approximately 443 psi at the 101 day cure interval. Permeability testing was performed on the initial 017 mixture which resulted in a value of 3.0 x 10⁻⁸ cm/sec at the 67 day cure interval. Permeability testing on mixture 017A, which was developed using the design preparation suggested by CETCO was modified from the original procedure in that the water addition rate of 150% was based only on the slag addition

Longview Site SE0397 October 8, 2012

rate. This converts to a water addition rate of 113.6% based on the total weight of the complete reagent combination. At a 28 day cure period mixture 017A achieved a permeability value of 5.5 x10⁻⁷ cm/sec. The differences in the permeability results shown in mixtures 017 and 017A is likely due to the extended curing interval prior to testing of the 017 test material. Analytical testing performed on mixtures, 017, 017A, and 017 DUP appear relatively similar indicating a reproducible treatment application.


Mixture 028 also underwent significant testing during the study. Mixture 028 achieved a UCS result of approximately 383 psi with extended curing and a permeability in the 10-7 cm/sec range. Mixtures 016, 017 and 028 indicated relatively low concentrations of PAHs in the ANS 16.1 leachate, however, mixture 017 exhibited the lowest ANS 16.1 leachable contaminant concentrations at the 5-day leaching interval.

Of the three mixtures which underwent extensive testing during this study, all three of the treated materials exhibited relative high UCS values, and permeability values of 1.9 x 10⁻⁷ cm/sec or slower. The UCS values indicate continued curing over time when slag cement was utilized.

The volume increase due to the treatment processes indicate that of the three candidate mixtures, sample 028 exhibited the lowest volume expansion. This is due to the fact that this material contained the lowest reagent addition rate. While no volumetric expansion testing was performed on mixture 016, it is anticipated that this material would exhibit a slightly lower increase than mixture 017 due to the slightly lower amount of organoclay utilized in mixture 016. Of the three mixtures prepared based on sample 017, the 017A sample exhibited a lower volume increase than the 017DUP material. This is due to the difference in actual water addition utilized in mixture 017A.

Review of the TCLP and SPLP test results performed on mixture 028 show significantly higher leachable contaminant concentrations than were seen in the ANS 16.1 testing. This is likely due to the fact that the TCLP and SPLP methods require crushing of the treated material in order to reduce the size of the test specimen to less than 0.5 inches in diameter. Additionally, during the TCLP and SPLP testing the treated materials are actively tumbled in the presence of the appropriate acidic leaching fluid.

KEMRON understands the TP-02 material represented a highly impacted site material which comprises a minority of the material anticipated in the field. While no single mixture achieved all of the site goals for the study, KEMRON believes that the application of mixture 016, 017 or 028 may likely be sufficient at segregating the contaminated area from uncontaminated soils at the site, and limiting the release of contaminated groundwater from the treated site. At this time KEMRON would recommend a small pilot scale test application with corresponding sample confirmation testing to evaluate the reduction of leachable contaminant migration from the impacted area.

URS CORPORATION LONGVIEW TREATABILITY STUDY KEMRON PROJECT No: SE-0397

TABLE 1

UNTREATED PHYSICAL PROPERTIES TESTING

TESTING	TEST		TP-01 (2-7.5)	TP-02
PARAMETER	METHOD	UNIT	RESULTS	RESULTS
Moisture Content ASTM Moisture Content Percent Solids	ASTM D2216	% %	31.85 75.85	24.72 80.18
Loss on Ignition	ASTM D2974	%	1.93	1.16
Particle Size Distribution Gravel Sand Silt Clay	ASTM D422/D854	% % %	1.0 76.5 21.3 1.2	0.0 91.0 8.3 0.3
Sample Description	USCS (D2487)		Dark grey silty sand	V. Dk Grey poorly graded sand with silt
Sample Classification	USCS (D2487)		SM	SP-SM

Notes

% = Percent

Sample descriptions based on the Unified Classification System. Where atterberg limits were not tested, the description is based on an assumed PI < 4.

Sample color determined by the Munsell Soil Color Charts.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397 TABLE # 2

UNTREATED MATERIAL ANALYTICAL RESULTS

			TP-0	1			TP-0	2	
TESTING PARAMETER	UNIT	RESULTS	QUAL	MRL	MDL	RESULTS	QUAL	MRL	MDL
Total PAH's									
Naphthalene	ug/kg dry	140		3.3	0.60	420,000	D	2,600	310
2-Methylnaphthalene	ug/kg dry	92		3.3	0.46	140,000	D	2,600	240
Acenaphthylene	ug/kg dry	11		3.3	0.59	1,800	D	130	16
Acenaphthene	ug/kg dry	220		3.3	0.76	110,000	D	2,600	400
Fluorene	ug/kg dry	84		3.3	0.61	97,000	D	2,600	320
Dibenzofuran	ug/kg dry	110		3.3	0.63	73,000	D	2,600	330
Phenanthrene	ug/kg dry	100		3.3	1.4	260,000	D	2,600	720
Anthracene	ug/kg dry	39		3.3	0.58	49,000	D	2,600	300
Fluoranthene	ug/kg dry	100		3.3	0.98	130,000	D	2,600	510
Pyrene	ug/kg dry	80		3.3	0.76	74,000	D	2,600	400
Benzo(b)fluoranthene	ug/kg dry	290		3.3	0.92	9,300	D	130	24
Benzo(k)fluoranthene	ug/kg dry	49		3.3	0.87	3,300	D	130	23
Benz(a)anthracene	ug/kg dry	29		3.3	0.72	20,000	D	130	19
Chrysene	ug/kg dry	59		3.3	0.80	17,000	D	130	21
Benzo(a)pyrene	ug/kg dry	300		3.3	0.76	5,500	D	130	20
Indeno(1,2,3-cd)pyrene	ug/kg dry	300		3.3	0.87	1,700	D	130	23
Dibenz(a,h)anthracene	ug/kg dry	40		3.3	0.80	410	D	130	21
Benzo(g,h,i)perylene	ug/kg dry	260		3.3	0.85	1,400	D	130	22
SPLP PAH's									
Naphthalene	ug/L	0.49		0.20		12,000	D	40	
2-Methylnaphthalene	ug/L	ND	U	0.20		1,200	D	40	
Acenaphthylene	ug/L	ND	U	0.20		12		0.20	
Acenaphthene	ug/L	1.3		0.20		540	D	2.0	
Fluorene	ug/L	0.50		0.20		320	D	2.0	
Dibenzofuran	ug/L	0.39		0.20		300	D	2.0	
Phenanthrene	ug/L	0.21		0.20		360	D	2.0	
Anthracene	ug/L	ND	U	0.20		51		0.20	
Fluoranthene	ug/L	ND	U	0.20		73		0.20	
Pyrene	ug/L	ND	U	0.20		42		0.20	
Benzo(b)fluoranthene	ug/L	ND	U	0.20		7.9		0.20	
Benzo(k)fluoranthene	ug/L	ND	U	0.20		7.1		0.20	
Benz(a)anthracene	ug/L	ND	U	0.20		3.3		0.20	
Chrysene	ug/L	ND	U	0.20		1.0		0.20	
Benzo(a)pyrene	ug/L	ND	U	0.20		1.8		0.20	
Indeno(1,2,3-cd)pyrene	ug/L	ND	U	0.20		0.38		0.20	
Dibenz(a,h)anthracene	ug/L	ND	U	0.20		ND	U	0.20	
Benzo(g,h,i)perylene	ug/L	ND	U	0.20		0.36		0.20	
TOTAL TPH	<u> </u>								
Diesel Range Organics (DRO)	mg/kg dry	42		33	1.6	8,500	DZ	640	31
Residual Range Organics (RRO)	mg/kg dry	120	J	140	3.8	1,600	JD	2,600	75
SPLP TPH	mg/ng dry	120		140	3.0	1,000	, ,,,	2,000	
Diesel Range Organics (DRO)	ug/L	ND	U	280	280	26,000	Z	280	280
Residual Range Organics (DRO)	ug/L	ND ND	U	560	560	26,000 ND	U	560	560
nesiduai natige Organics (KKO)	ug/L	עא	U	300	500	עא	ı u	200	300

Notes:

MRL = Method Reporting Limit

MDL = Method Detection Limit

PAH's = Polynuclear Aromatic Hydrocarbons SPLP = Synthetic Precipitation Leaching Procedure

TPH = Total Petroleum Hydrocarbons

ug/kg = micrograms per kilogram

ug/L = micrograms per liter

mg/kg = milligrams per kilogram

ND = Not detected

QUAL = Qualifier

D = The reported result is from a dilution

J = The result is an estimated value. U = The analyte was analyzed for, but was not detected at or above the MRL/MDL.

 ${\bf Z}$ = The chromatographic fingerprint does not resemble a petroleum product.

LONGVIEW WOOD TREATING SITE KEMRON PROJECT # SE-0397

TABLE 3

PRELIMINARY STABILIZATION EVALUATIONS

Mixture Designs and Penetrometer Testing

KEMRON	UNTREATED					Reagent	Water			ometer T	-	
SAMPLE	MATERIAL	REAGENT	_		_	Addition % by	Addition % by			(tons/ft ²)		
No.	TYPE	TYPE	R	eagent	ID	wet soil wt.	Reagent wt.	1 Day	3 Day	5 Day	7 Day	14 Day
0397-001	TP-01	Portland Cement	842	-	-	7.5	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-002	TP-01	Portland Cement	842	-	-	12.5	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-003	TP-01	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	3.5	4.5	>4.5	>4.5	>4.5
0397-004	TP-01	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	77	1.5	3.25	3.75	3.75	3.75
0397-005	TP-01	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	12.5 / 2 / 0.5	150	>4.5	>4.5	>4.5	>4.5	>4.5
0397-006	TP-01	Portland Cement / Class "C" Flyash	842	921	-	7.5 / 7.5	50	3.75	>4.5	>4.5	>4.5	>4.5
0397-007	TP-01	NewCem Slag Cement / Bentonite	920	807	-	15 / 2	132	0.0	0.0	0.0	0.0	0.25
0397-008	TP-01	50:50 TerraCem	916	-	-	12.5	50	4.25	>4.5	>4.5	>4.5	>4.5
0397-009	TP-01	50:50 TerraCem / Bentonite	916	807	-	15 / 2	135	1.25	3.50	4.25	>4.5	>4.5
0397-010	TP-02	Portland Cement	842	-	-	12.5	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-011	TP-02	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	3.25	>4.5	>4.5	>4.5	>4.5
0397-012	TP-02	Portland Cement / Bentonite	842	807	-	17.5 / 2	125	>4.5	>4.5	>4.5	>4.5	>4.5
0397-013	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	75	3.25	>4.5	>4.5	>4.5	>4.5
0397-014	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 12.5	75	1.25	2.5	3.0	3.75	4.25
0397-015	TP-02	Portland Cement / Hydrated Lime	842	917	-	10 / 12.5	75	2.5	3.75	>4.5	>4.5	>4.5
0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 0.5	150	0.0	0.0	2.5	4.25	>4.5
0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	0.0	0.0	1.25	3.0	>4.5
0397-018	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	17.5 / 2 / 0.5	150	0.5	3.75	>4.5	>4.5	>4.5
0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	10 / 2 / 0.5	150	3.25	4.5	>4.5	>4.5	>4.5
0397-020	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	15 / 2 / 0.5	150	3.25	>4.5	>4.5	>4.5	>4.5
0397-021	TP-02	Portland Cement / Class "C" Flyash	842	921	-	10 / 10	50	>4.5	>4.5	>4.5	>4.5	>4.5
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	920	921	-	10 / 10	50	1.0	1.75	3.25	3.75	3.75
0397-023	TP-02	NewCem Slag Cement / Bentonite	920	807	-	15 / 2	132	0.0	3.25	4.5	>4.5	>4.5
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	916	807	922	15 / 2 / 0.5	135	2.75	3.25	4.25	>4.5	>4.5
0397-025	TP-02	50:50 TerraCem / Bentonite	916	807	-	15 / 2	135	1.25	2.5	4.0	4.5	>4.5

Notes:

^{*} Mixes 003, 005, 007, 009, 011, 012, 016, 017, 018, 019, 020, 023, 024, and 025 were subjected to an initial bentonite slurry where water was added to bentonite and allowed to hydrate under continuous stirring overnight. The additional reagents were added the next day to the hydrated bentonite with the water additions to make a pumpable slurry.

LONGVIEW WOOD TREATING SITE KEMRON PROJECT # SE-0397

TABLE 4

PRELIMINARY STABILIZATION EVALUATIONS Mixture Designs and UCS Testing

KEMRON	UNTREATED					Reagent	Water			Unconfined Cor	mpressive Streng	th
SAMPLE	MATERIAL	REAGENT				Addition % by	Addition % by	Cure		(to	ns/ft²)	
								Days	Moisture	Bulk	Dry	UCS
No.	TYPE	TYPE	R	eagent	ID	wet soil wt.	Reagent wt.		Content (%)	Density (lb/ft³)	Density (lb/ft³)	(lb/in²)
0397-001	TP-01	Portland Cement	842	-	-	7.5	50	9	32.7	111.6	84.1	69.2
0397-002	TP-01	Portland Cement	842	-	-	12.5	50	9	31.7	114.4	86.9	169.3
0397-003	TP-01	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	8	47.4	107.9	73.2	44.9
0397-004	TP-01	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	77	9	39.3	111.5	80.0	27.1
0397-005	TP-01	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	12.5 / 2 / 0.5	150	8	44.4	108.6	75.2	70.3
0397-006	TP-01	Portland Cement / Class "C" Flyash	842	921	-	7.5 / 7.5	50	8	32.3	117.3	88.7	64.5
0397-007	TP-01	NewCem Slag Cement / Bentonite	920	807	-	15/2	132	NT	NT	NT	NT	NT
0397-008	TP-01	50:50 TerraCem	916	-	-	12.5	50	9	34.2	113.8	84.8	58.7
0397-009	TP-01	50:50 TerraCem / Bentonite	916	807	-	15/2	135	8	48.8	105.6	71.0	29.4
0397-010	TP-02	Portland Cement	842			12.5	50	9	24.1	127.1	102.4	285.0
0397-010	TP-02	Portiand Cement	842	-	-	12.5	50	69	23.2	122.8	99.7	306.2
0397-011	TP-02	Portland Cement / Bentonite	842	807	-	12.5 / 2	150	8	39.1	110.7	79.6	47.6
0397-012	TP-02	Portland Cement / Bentonite	842	807	-	17.5 / 2	125	8	41.4	108.8	77.0	78.1
0397-013	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 7.5	75	9	30.8	115.1	88.0	32.4
0397-014	TP-02	Portland Cement / Hydrated Lime	842	917	-	7.5 / 12.5	75	9	34.2	110.6	82.4	14.9
0397-015	TP-02	Portland Cement / Hydrated Lime	842	917	-	10 / 12.5	75	9	34.3	110.8	82.5	31.9
0207.040	TD 00	New Com Clas Compat / Bostonita / Organization CC 100	000	007	000	405/0/05	450	8	44.5	108.7	75.2	36.4
0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 0.5	150	67	38.7	91.7	66.1	321.5
								8	42.5	107.7	75.6	31.7
0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	67	41.3	106.6	75.5	326.0
								101	38.3	106.1	76.7	443.7
0397-018	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	17.5 / 2 / 0.5	150	8	42.7	109.0	76.4	76.6
0007.040	TD 00	Deviled A Consent / Deviled its / Occasional conference	0.40	007	000	40 /0 /0 5	450.0	8	40.3	109.1	77.8	35.2
0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	10 / 2 / 0.5	150.0	67	38.5	100.9	72.8	57.9
0397-020	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	15 / 2 / 0.5	150.0	8	43.1	106.1	74.2	60.8
0397-021	TP-02	Portland Cement / Class "C" Flyash	842	921	-	10 / 10	50.0	8	24.9	121.0	96.9	143.6
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	920	921	-	10 / 10	50.0	8	29.6	118.4	91.3	15.2
0397-022	TP-02	NewCem Slag Cement / Class "C" Flyash	920	921	-	10 / 10	50.0	17	30.0	122.0	93.8	14.1
0397-023	TP-02	NewCem Slag Cement / Bentonite	920	807	-	15/2	132	8	41.1	107.9	76.5	61.3
0207.024	TD 00	FO-FO Town Com / Pontonite / Ornancella CO 100	916	007	000	45 /0 /0 5	405	8	38.4	108.6	78.5	37.7
0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199		807	922	15 / 2 / 0.5	135	67	36.6	105.4	77.2	87.7
0397-025	TP-02	50:50 TerraCem / Bentonite	916	807	-	15/2	135	8	39.4	110.7	79.4	32.4

Notes:

NT = Not Tested

^{*} Mixes 008, 009, 017, and 018 were subjected to an initial bentonite slurry where water was added to bentonite and allowed to hydrate under continuous stirring overnight. The additional reagents were added the next day to the hydrated bentonite with the water additions to make a pumpable slurry.

LONGVIEW WOOD TREATING SITE KEMRON PROJECT # SE-0397

TABLE 5

PRELIMINARY STABILIZATION EVALUATIONS MIXTURE DESIGNS AND PERMEABILITY RESULTS

KEMRON SAMPLE	UNTREATED MATERIAL	REAGENT				Reagent Addition % by	Water Addition % by	Cure			ability (k) n/sec)	
No.	TYPE	ТҮРЕ	R	eagent	ID	wet soil wt.	Reagent wt.	Days	Moisture Content (%)	Bulk Density (lb/ft³)	Dry Density (lb/ft³)	Perm (cm/sec)
0397-010	TP-02	Portland Cement	842	-	-	12.5	50	69	25.2	123.9	98.9	7.1E-07
*0397-016	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 0.5	150	67	39.3	110.2	79.1	3.2E-08
*0397-017	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	67	42.6	105.4	73.9	3.0E-08
*0397-019	TP-02	Portland Cement / Bentonite / Organoclay SS 199	842	807	922	10 / 2 / 0.5	150	67	40.2	108.9	77.7	7.4E-07
*0397-024	TP-02	50:50 TerraCem / Bentonite / Organoclay SS 199	916	807	922	15 / 2 / 0.5	135	67	38.7	106.6	76.9	3.0E-07

Notes:

^{*} Mixes 016, 017, 019, and 024 were subjected to an initial bentonite slurry where water was added to bentonite and allowed to hydrate under continuous stirring overnight. The additional reagents were added the next day to the hydrated bentonite with the water additions to make a pumpable slurry.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 6

PRELIMINARY MIXTURE DESIGNS Summary of SPLP PAH and TPH Results

								Summa	1 y 01 5	PLP PAH	and 11	11 Kcsuits											
		0397-0	10	0397-01	11	0397-0	13	0397-0	16	0397-0	17	0397-0	19	0397-	021	0397-0	22	0397-0	23	0397-0	24	0397-0	25
TESTING PARAMETER	UNIT	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
SPLP PAH's																							
Naphthalene	ug/L	7,500		7,400		7,700		6,800		4,400		6,400		7,00	0	7,900)	7,300		6,500		9,400	1
Acenaphthylene	ug/L	9.5		9.1		8.5		7.3		3.6		7.1		8.	6	8.7		8.7		7.2		8.1	
Acenaphthene	ug/L	420		430		380		400		260		380		42	0	380)	390		400		380	i
Fluorene	ug/L	240		240		210		210		92		180		23	0	210)	190	1	220		210	ı
Phenanthrene	ug/L	240		250		210		210		15		210		24	0	220)	210		220		210	1
Anthracene	ug/L	35		33		29		30		12		30		3	1	30)	34		28		31	
Fluoranthene	ug/L	22		20		19		22		6.6		20		1	9	20)	23		22		18	i
Pyrene	ug/L	11		10		9.1		11		0.30		10		9.	2	9.3		11		11		8.2	
Benz(a)anthracene	ug/L	0.42		0.57		0.36		0.47		0.23		0.40		0.3	2	0.35		0.41		0.41		0.29	
Chrysene	ug/L	0.40		0.28		0.31		0.38		0.026	J	0.35		0.3	2	0.34		0.40		0.40		0.29	,
Benzo(b)fluoranthene	ug/L	0.20	U	0.046	J	0.037	J	0.062	J	0.20	U	0.030	J	0.2	0 U	0.030	J	0.034	J	0.044	J	0.024	J
Benzo(k)fluoranthene	ug/L	0.20	U	0.20	U	0.20	U	0.037	J	0.20	Ω	0.20	U	0.2	0 U	0.20	U	0.20	U	0.20	U	0.20	U
Benzo(a)pyrene	ug/L	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.2	0 U	0.20	U	0.20	U	0.20	U	0.20	U
Indeno(1,2,3-cd)pyrene	ug/L	0.20	U	0.20	U	0.20	U	0.031	J	0.20	U	0.20	U	0.2	0 U	0.20	U	0.20	U	0.20	U	0.20	U
Dibenz(a,h)anthracene	ug/L	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.2	0 U	0.20	U	0.20	U	0.20	U	0.20	U
Benzo(g,h,i)perylene	ug/L	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.2	0 U	0.20	U	0.20	U	0.20	U	0.20	U
2-Methylnaphthalene	ug/L	840		890		820		780		460		740		86	0	770)	760	1	860		800	ı
Dibenzofuran	ug/L	270		270		240		230		98		210		26	0	240)	220	1	250		240	ı
SPLP TPH																							
Diesel Range Organics (DRO)	ug/L	19,000		20,000		20,000		18,000		11,000		17,000		19,00	0	20,000)	18,000		18,000		23,000)
Residual Range Organics (RRO)	ug/L	550	U	570		610		500 U		500	U	500	U	51	0	660	١	540		500	U	580)

Notes:

PAH's = Polynuclear Aromatic Hydrocarbons SPLP = Synthetic Precipitation Leaching Procedure

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

QUAL = Qualifier

J = The result is an estimated value.

U = The analyte was analyzed for, but was not detected at or above the outlined value.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 7

SUMMARY OF ANS 16.1 LEACHABILITY RESULTS

	SAMP	PLE 0397-016	5
		5-DAY	
TESTING PARAMETER	RESULTS (ug/L)	MRL	MDL
ТРН			
Diesel Range Organics (DRO)	500 Z	260	-
Residual Range Organics (RRO)	< 520	520	-
PAH's			
Naphthalene	100 D	1800	370
2-Methylnaphthalene	780 D	89.0	11.0
Acenaphthylene	0.13	4.50	0.490
Acenaphthene	10 D	89.0	9.40
Dibenzofuran	6.7 D	89.0	11.0
Fluorene	6.8 D	89.0	11.0
Phenanthrene	17 D	89.0	19.0
Anthracene	1.7	4.50	0.380
Fluoranthene	4 D	89.0	12.0
Pyrene	1.7	4.50	1.10
Benz(a)anthracene	0.1	4.50	0.450
Chrysene	0.1	4.50	0.850
Benzo(b)fluoranthene	0.013	4.50	0.330
Benzo(k)fluoranthene	0.004 J	4.50	0.540
Benzo(a)pyrene	0.0062	4.50	0.540
Indeno(1,2,3-cd)pyrene	0.0015 J	4.50	0.580
Dibenz(a,h)anthracene	0.00086 J	4.50	0.590
Benzo(g,h,i)perylene	0.0019 J	4.50	0.470

Notes:

MRL = Method Reporting Limit

MDL = Method Detection Limit

PAH's = Polynuclear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

D = The reported result is from a dilution.

J = The result is an estimated value.

Z = The chromatographic fingerprint does not resemble a petroleum product.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMBON PROJECT No: SEG397 TABLE #8 SUMMARY OF ANS 16.1 LEACHABILITY RESULTS

		SAMPLE 0397-017																			
		2-HOUR			7-HOUR			24-HOUR			2-DAY			3-DAY			4-DAY			5-DAY	
TESTING PARAMETER	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)	MRL	MDL
TPH																					
Diesel Range Organics (DRO)	ND	260		ND	300		500 Z	290		550 Z	280	12	600 Z	280	12	660 Z	270	12.00	420 Z	280	
Residual Range Organics (RRO)	ND	520		ND	600		ND	570		75 J	550	21	53 J	550	21	55 J	530	20.00	ND	560	
PAH's																					
Naphthalene	7 D	0.036	0.0074	23 D	0.068	0.015	84 D	0.180	0.037	110 D	0.44	0.065	150 D	0.46	0.069	140 D	0.42	0.062	68 D	0.43	0.064
2-Methylnaphthalene	0.890	0.0036	0.00042	3.1 D	0.068	0.008	11 D	0.180	0.021	13 D	0.44	0.050	19 D	0.46	0.053	19 D	0.42	0.048	8.9	0.022	0.0025
Acenaphthylene	0.040	0.0036	0.00039	0.057	0.0034	0.00037	0.130	0.004	0.00039	0.19	0.022	0.0037	0.23	0.023	0.0039	0.22	0.021	0.0036	0.13	0.022	0.0037
Acenaphthene	1.200	0.0036	0.00038	3.1 D	0.068	0.0072	8.9 D	0.180	0.019	11 D	0.44	0.095	15 D	0.46	0.10	14 D	0.42	0.091	8.3	0.022	0.0047
Dibenzofuran	0.840	0.0036	0.00044	1.7	0.0034	0.00042	5.4 D	0.180	0.022	6.3	0.022	0.0050	8.0	0.023	0.0053	7.7	0.021	0.0048	5 D	0.43	0.098
Fluorene	0.670	0.0036	0.00044	1.3	0.0034	0.00042	3.4 D	0.180	0.022	4.6	0.022	0.0041	5.5	0.023	0.0044	5.0	0.021	0.0040	3.5	0.022	0.0041
Phenanthrene	4.20 D	0.036	0.0075	4.5 D	0.068	0.015	9.0 D	0.180	0.038	11 D	0.44	0.11	13 D	0.46	0.12	12 D	0.420	0.11	10	0.022	0.0054
Anthracene	0.590	0.0036	0.0003	0.540	0.0034	0.00029	1.1	0.0036	0.0003	1.2	0.022	0.0039	1.4	0.023	0.0041	1.2	0.021	0.0038	0.30	0.022	0.0039
Fluoranthene	2.40 D	0.036	0.0048	1.1	0.0034	0.00046	1.7	0.0036	0.00048	2.0	0.022	0.0048	2.2	0.023	0.0050	2.0	0.021	0.0046	2.1	0.022	0.0047
Pyrene	1.300	0.0036	0.00081	0.690	0.0034	0.00078	1.1	0.0036	0.00081	1.3	0.022	0.0038	1.3	0.023	0.0040	1.3	0.021	0.0037	1.1	0.022	0.0038
Benz(a)anthracene	0.390	0.0036	0.00036	0.120	0.0034	0.00034	0.140	0.0036	0.00036	0.092	0.022	0.0028	0.091	0.023	0.0030	0.079	0.021	0.0027	0.12	0.022	0.0028
Chrysene	0.360	0.0036	0.00068	0.120	0.0034	0.00065	0.120	0.0036	0.00068	0.052	0.022	0.0037	0.058	0.023	0.0039	0.056	0.021	0.0036	0.092	0.022	0.0037
Benzo(b)fluoranthene	0.200	0.0036	0.00026	0.055	0.0034	0.00025	0.052	0.0036	0.00026	0.014 J	0.022	0.0025	0.014 J	0.023	0.0027	0.015 J	0.021	0.0024	0.04 X	0.022	0.0025
Benzo(k)fluoranthene	0.078	0.0036	0.00043	0.019	0.0034	0.00041	0	0.0036	0.00043	0.006 J	0.022	0.0027	0.0048 J	0.023	0.0029	0.0055 J	0.021	0.0026	ND X	0.022	0.0027
Benzo(a)pyrene	0.100	0.0036	0.00043	0.031	0.0034	0.00041	0	0.0036	0.00043	0.0062 J	0.022	0.0047	0.0069 J	0.023	0.0049	0.0066 J	0.021	0.0045	0.012 J	0.022	0.0046
Indeno(1,2,3-cd)pyrene	0.050	0.0036	0.00046	0.010	0.0034	0.00044	0	0.0036	0.00046	0.0045 J	0.022	0.0028	ND	0.023	0.0030	ND	0.021	0.0027	0.0088 J	0.022	0.0028
Dibenz(a,h)anthracene	0.021	0.0036	0.00047	0.0034	0.0034	0.00045	0.0032 J	0.0036	0.00047	ND	0.022	0.0027	ND	0.023	0.0029	ND	0.021	0.0026	ND	0.022	0.0027
Benzo(g,h,i)perylene	0.041	0.0036	0.00038	0.0088	0.0034	0.00036	0.009	0.0036	0.00038	0.0066 J	0.022	0.0032	ND	0.023	0.0033	ND	0.021	0.0030	0.0065 J	0.022	0.0031

Notes:

MRL = Method Reporting Limit

MDL = Method Detection Limit

PAH's = Polynulear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

ugl. = micrograms per liter

ND = Not Detected

D = The reported result is from a dilution.
J = The result is an estimated value.

U = The analyte was analyzed for, but was not detected at or above the MRL/MDL.

X = Sec case narrative.

Z = The chromatographic fingerprint does not resemble a petroleum product.

KEMRON Environmental Services, Inc. Table 8 - 017 ANS Analytical Results Page 1 of 1 Applied Technologies Group

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 8A 28-DAY TREATED MATERIAL ANALYTICAL RESULTS

		0	397-017A		03	97-017 DUP	
TESTING PARAMETER	UNIT	RESULTS	QUAL	MDL	RESULTS	QUAL	MDL
SPLP PAH's							
Naphthalene	ug/L	1800	D	0.6	1,700	D	0.6
2-Methylnaphthalene	ug/L	380	D	0.46	340	D	0.46
Acenaphthylene	ug/L	3.4		0.034	4		0.034
Acenaphthene	ug/L	280	D	0.88	250	D	0.88
Dibenzofuran	ug/L	97.00		0.046	95		0.046
Fluorene	ug/L	99		0.038	94		0.038
Phenanthrene	ug/L	140	D	1	140	D	1
Anthracene	ug/L	17		0.036	18		0.036
Fluoranthene	ug/L	16		0.044	16		0.044
Pyrene	ug/L	9.3		0.034	9		0.034
Benz(a)anthracene	ug/L	0.43		0.026	0.4		0.026
Chrysene	ug/L	0.35		0.034	0.4		0.034
Benzo(b)fluoranthene	ug/L	0.046	J	0.023	0.0	J	0.023
Benzo(k)fluoranthene	ug/L	ND	U	0.025	ND	U	0.025
Benzo(a)pyrene	ug/L	ND	U	0.043	ND	U	0.043
Indeno(1,2,3-cd)pyrene	ug/L	0.031	J	0.026	ND	U	0.026
Dibenz(a,h)anthracene	ug/L	ND	U	0.025	ND	U	0.025
Benzo(g,h,i)perylene	ug/L	0.04	J	0.029	ND	U	0.029
SPLP TPH							
Diesel Range Organics (DRO)	ug/L	6,700	Z	260	6,900	Z	260
Residual Range Organics (RRO)	ug/L	ND	U	520	ND	U	510

Notes:

MDL = Method Detection Limit

PAH's = Polynuclear Aromatic Hydrocarbons

SPLP = Synthetic Precipitation Leaching Procedure

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

ND = Not detected QUAL = Qualifier

- D = The reported result is from a dilution
 J = The result is an estimated value.
- U = The analyte was analyzed for, but was not detected at or above the MRL/MDL.
 Z = The chromatographic fingerprint does not resemble a petroleum product.

LONGVIEW WOOD TREATING SITE KEMRON PROJECT # SE-0397

TABLE 9

OPTIMIZATION EVALUATIONS

Mixture Designs, UCS, Permeability, and Volumetric Expansion Testing

KEMRON	UNTREATED	REAGENT				Reagent	Water Addition %		Volumetric	U	nconfined Com	pressive Strengt	h		Permea	bilty (k)	
SAMPLE NO.	MATERIAL TYPE	TYPE		Reager	nt ID	Addition % by Wet Soil wt.	by Reagent wt.	Cure Days	Expansion (%)	Moisture Content (%)	Bulk Density (lb/ft³)	Dry Density (lb/ft³)	UCS (lb/in²)	Moisture Content (%)	Bulk Density (lb/ft³)	Dry Density (lb/ft³)	Perm (cm/sec)
0397-017A	TP-02	NewCem Slag Cement / Bentonite /	920	807	922	12.5 / 2 / 2	150* (113.6**)	7		32.3	117.5	88.9	23.7				
0337-01774	11 -02	Organoclay SS 199	320	007	522	12.57272	150 (115.0)	28	30.36	33.2	115.5	86.8	184.5	34.9	105.2	78.0	5.5E-07
								3	48.21								
0397-017DUP	TP-02	NewCem Slag Cement / Bentonite / Organoclay SS 199	920	807	922	12.5 / 2 / 2	150	7	42.86								
								28	42.86	36.4	106.1	77.8	180.2				
								7	28.57	33.8	103.3	77.2	31.9				
0397-026	TP-02	Portland Cement #842/Bentonite	842	807	_	8/2	150	14		33.0	105.6	79.4	44.9				
0001 020	02	r drawing demone no 12/2 dinternite	0.2	00.		0.2		28	31.25	33.2	106.8	80.2	243.3***	30.2	102.0	78.0	2.6E -07
								56	27.55	32.7	104.2	78.5	77.7				
								7	25.80	34.1	106.1	79.1	68.8				
0397-027	TP-02	NewCem Slag Cement/ Portland	920	842	807	6/2/2	150	14		34.1	106.1	79.2	127.7				
0001 021	02	Cement/Bentonite	020	0.2	00.	07272		28	29.64	34.6	104.9	78.0	239.8	33.4	106.0	79.5	3.3E-07
					56	31.21	32.7	105.6	79.6	333.1							
								7	36.61	39.7	100.7	72.1	91.7				
								14		37.9	102.7	74.5	119.1				
0397-028	TP-02	NewCem Slag Cement/Bentonite/Caustic Soda	920	807	926	8/2/0.5	175	28	34.82	37.6	103.0	74.8	245.5	38.0	102.0	74.1	1.9E-07
								56	36.07	36.0	102.6	75.4	383.5				
								86	25.51	34.9	102.1	75.7	355.3				
								7	35.71	39.7	105.1	75.2	44.8				
0397-029	TP-02	NewCem Slag Cement/Bentonite/Organoclay SS	920	807	922/926	8/2/0.5/0.5	175	14		38.3	106.3	76.8	117.7				
0001 020	02	199/Caustic Soda	020	00.	022,020	07270.070.0		28	37.86								
								56	38.21	35.1	103.5	76.6	358.3				
								7	40.18	39.3	106.1	76.2	120.8				
0397-030	TP-02	NewCem Slag	920	807	926	10 / 2 / 0.5	175	14		37.9	104.1	75.5	192.0				
		Cement/Bentonite/Caustic Soda						28	40.80								
								56	40.09	35.8	100.9	74.3	341.1				
								7	40.18	38.6	106.6	76.9	127.1				
0397-031	TP-02	NewCem Slag Cement/Bentonite/OrganoClay	920	807	922/926	10 / 2 / 0.5 / 0.5	175	14		37.8	105.5	76.5	221.5				
0007 001	11 02	SS199 /Caustic Soda	020	00,	322/320	.57275.070.5	170	28	40.45								
								56	42.59	35.5	104.6	77.2	433.9				

^{*}For Mix 0397-017A, the mixing procedure used by CETCO was replicated. Cetco based on a 150% water addition by Slag Cement weight only. This resulted in a 113.6% water addition rate by total reagent weight

*The water addition rate was calculated on the total weight of the reagents utilized

= Not Tested

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 10

OPTIMIZATION MIXTURE EVALUATIONS Summary of SPLP Results

	Jumn	ary or St Li	110,00					
		0397-01	7A	0397-017	DUP	0397-028		
TESTING PARAMETER	UNIT	Results	Qual	Results	Qual	Results	Qual	
SPLP PAH's								
Naphthalene	ug/L	1,800		1,700		5,400	J	
Acenaphthylene	ug/L	3.4		3.6		9.0	J	
Acenaphthene	ug/L	280		250		440 J		
Fluorene	ug/L	99	J	94		250	J	
Phenanthrene	ug/L	140		140		270 J		
Anthracene	ug/L	17		18		36 J		
Fluoranthene	ug/L	16		16		24	J	
Pyrene	ug/L	9.3		9.4		13 J		
Benz(a)anthracene	ug/L	0.43		0.43		0.71 J		
Chrysene	ug/L	0.35		0.38		0.46 J		
Benzo(b)fluoranthene	ug/L	0.046	J	0.045 J		0.049 J		
Benzo(k)fluoranthene	ug/L	0.20	U	0.20 U		0.028	J	
Benzo(a)pyrene	ug/L	0.20	U	0.20 U		0.21	U	
Indeno(1,2,3-cd)pyrene	ug/L	0.031	J	0.20 U		0.21 U		
Dibenz(a,h)anthracene	ug/L	0.20	U	0.20	U	0.21 U		
Benzo(g,h,i)perylene	ug/L	0.040	J	0.20 U		0.21	U	
2-Methylnaphthalene	ug/L	380		340		790	J	
Dibenzofuran	ug/L	97	J	95		290	J	
SPLP TPH								
Diesel Range Organics (DRO)	ug/L	6,700		6,900		17,000	J	
Residual Range Organics (RRO)	ug/L	520	U	510	U	920	J	

PAH's = Polynuclear Aromatic Hydrocarbons

SPLP = Synthetic Precipitation Leaching Procedure

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

QUAL = Qualifier

J = The result is an estimated value.

U = The analyte was analyzed for, but was not detected at or above the outlined value.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 11

SUMMARY OF ANS 16.1 LEACHABILITY RESULTS

	SAMPLI	SAMPLE 0397-017 DUP							
	:	5-DAY		5-DAY					
TESTING PARAMETER	RESULTS (ug/L)	MRL	MDL	RESULTS (ug/L)					
ТРН									
Diesel Range Organics (DRO)	500	260	-	1,300					
Residual Range Organics (RRO)	ND	550	-	< 560					
PAH's									
Naphthalene	81 D	1.5	0.31	170					
2-Methylnaphthalene	15 D	0.07	0.0087	0.54					
Acenaphthylene	0.20	0.0037	0.00041	21					
Acenaphthene	15 D	0.074	0.0079	16					
Dibenzofuran	8.2 D	0.074	0.0092	44					
Fluorene	9.3 D	0.074	0.0092	5.7					
Phenanthrene	15 D	0.074	0.016	11					
Anthracene	1.6	0.0037	0.00032	5.9					
Fluoranthene	2.1	0.0037	0.0005	0.56					
Pyrene	1.3	0.0037	0.00085	0.47					
Benz(a)anthracene	0.830	0.0037	0.00037	0.085					
Chrysene	0.0700	0.0037	0.00071	< 0.039					
Benzo(b)fluoranthene	0.0120	0.0037	0.00028	< 0.039					
Benzo(k)fluoranthene	0.0036 J	0.0037	0.00045	< 0.039					
Benzo(a)pyrene	0.0055	0.0037	0.00045	< 0.039					
Indeno(1,2,3-cd)pyrene	0.0086 J	0.0037	0.00048	< 0.039					
Dibenz(a,h)anthracene	ND	0.0037	0.00049	30					
Benzo(g,h,i)perylene	0.0076 J	0.0037	0.00040	15					

Notes:

MRL = Method Reporting Limit

MDL = Method Detection Limit

PAH's = Polynuclear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

D = The reported result is from a dilution.

J = The result is an estimated value.

"<" indicates that the compound was not detected above the value presented.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397 TABLE # 12 SUMMARY OF ANS 16.1 LEACHABILITY RESULTS

		SAMPLE 0397-017A												
	2-НО	UR	7-HOUR		24-НО	24-HOUR		2-DAY		3-DAY		4-DAY		Υ
TESTING PARAMETER	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MRL	RESULTS (ug/L)	MRL	RESULTS (ug/L)	MRL
TPH														
Diesel Range Organics (DRO)	390 Z	12.00	710 Z	12	1,600 Z	12	1,600 Z	12	1,100 Z	270	1,100 Z	270	570 Z	290
Residual Range Organics (RRO)	35 J	21.00	33 J	20	53 J	21	56 J	20	ND	540	ND	540	ND	570
PAH's														
Naphthalene	71 D	0.15	130 D	0.15	340 D	0.29	310 D	0.30	270 D	0.8	310 D	0.77	100 D	1.5
2-Methylnaphthalene	13 D	0.0042	22 D	0.0840	57 D	0.1700	55 D	0.1700	48 D	0.8	56 D	0.77	17 D	0.074
Acenaphthylene	0.16	0.00039	0.22	0.00039	0.40	0.00038	0.37	0.00039	0.57 D	0.040	0.63 D	0.039	0.23	0.0037
Acenaphthene	12 D	0.0038	16 D	0.0038	41 D	0.150	38 D	0.0076	36 D	0.80	42 D	0.77	16 D	0.074
Dibenzofuran	6.5 D	0.0044	8.4 D	0.0044	21 D	0.0086	20 D	0.0089	17 D	0.040	19 D	0.039	9.2 D	0.074
Fluorene	8.2 D	0.0044	10 D	0.0044	25 D	0.0086	23 D	0.0089	20 D	0.040	22 D	0.039	11 D	0.074
Phenanthrene	13 D	0.0075	12 D	0.0076	28 D	0.015	28 D	0.016	29 D	0.80	31 D	0.77	18 D	0.074
Anthracene	1.7	0.0003	1.5	0.00031	4.3 D	0.006	4.2 D	0.0062	3.8 D	0.040	4.1 D	0.039	2.00	0.0037
Fluoranthene	2.7 D	0.0048	1.8	0.00048	4.1 D	0.0094	4.2 D	0.0097	4.5 D	0.040	4.7 D	0.039	3.5 D	0.074
Pyrene	1.6	0.00081	1.0	0.00082	2 D	0.016	2.2 D	0.017	2.6 D	0.040	2.8 D	0.039	1.7	0.0037
Benz(a)anthracene	0.13	0.00036	0.10	0.00036	0.18	0.00035	0.180	0.00036	0.15 D	0.040	0.17 D	0.039	0.11	0.0037
Chrysene	0.064	0.00068	0.055	0.00068	0.085	0.00067	0.080	0.00069	0.087 D	0.040	0.1 D	0.039	0.088	0.0037
Benzo(b)fluoranthene	0.011	0.00026	0.019	0.00027	0.023	0.00026	0.018	0.00027	0.018 J,D	0.040	0.026 J,D	0.039	0.015	0.0037
Benzo(k)fluoranthene	0.0034 J	0.00043	0.0079	0.00043	0.0078	0.00042	0.0048	0.00044	0.0065 J,D	0.040	0.0083 J,D	0.039	0.0047	0.0037
Benzo(a)pyrene	0.0066	0.00043	0.013	0.00043	0.013	0.00042	0.0098	0.00044	0.0081 J,D	0.040	0.012 J,D	0.039	0.008	0.0037
Indeno(1,2,3-cd)pyrene	0.00078 J	0.00046	0.0036 J	0.00046	0.003 J	0.00045	0.0017 J	0.00047	ND	0.040	ND	0.039	0.0013 J	0.0037
Dibenz(a,h)anthracene	ND	0.00047	0.0011 J	0.00047	0.0012 J	0.00046	0.00063 J	0.00048	ND	0.040	ND	0.039	0.00053 J	0.0037
Benzo(g,h,i)perylene	0.00068 J	0.00038	0.0029 J	0.00038	0.0026 J	0.00037	0.0014 J	0.00038	ND	0.040	ND	0.039	0.001 J	0.0037

Notes: MDL = Method Detection Limit MRL = Method Reporting Limit PAH's = Polynuclear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter ND = Not Detected

D = The reported result is from a dilution.

J = The result is an estimated value.
Z = The chromatographic fingerprint does not resemble a petroleum product.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 13

SUMMARY OF ANS 16.1 LEACHABILITY RESULTS

		SAMPLE 0397-028												
	2-НО	UR	7-но	7-HOUR		24-HOUR		2-DAY		3-DAY		4-DAY		Υ
TESTING PARAMETER	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MDL	RESULTS (ug/L)	MRL	RESULTS (ug/L)	MRL	RESULTS (ug/L)	MRL
TPH														
Diesel Range Organics (DRO)	520 Z	270	570 Z	280	930 Z	250	910 Z	280	920 Z	310	1,000 Z	310	860 Z	290
Residual Range Organics (RRO)	ND	540	ND	550	ND	500	ND	550	ND	610	ND	610	ND	580
PAH's														
Naphthalene	30 D	0.015	64 D	0.071	170 D	0.079	120 D	0.071	140 D	0.071	120 D	0.071	100 D	0.071
2-Methylnaphthalene	61 D	0.008	12 D	0.0400	34 D	0.0440	23 D	0.0400	29 D	0.04	26 D	0.04	22 D	0.04
Acenaphthylene	0.12	0.00037	0.19	0.00037	0.41	0.00041	0.30	0.00037	0.44 D	0.0037	0.390 D	0.0037	0.34 D	0.0037
Acenaphthene	6.0 D	0.0072	11 D	0.036	29 D	0.040	20 D	0.036	24 D	0.0360	19 D	0.0360	17 D	0.0360
Dibenzofuran	4.1 D	0.0084	6.6 D	0.042	19 D	0.047	14 D	0.042	14 D	0.0042	12 D	0.0042	11 D	0.0042
Fluorene	4.6 D	0.0084	8.3 D	0.042	22 D	0.047	16 D	0.042	16 D	0.0042	14 D	0.0042	13 D	0.0042
Phenanthrene	7.2 D	0.015	13 D	0.072	42 D	0.08	35 D	0.072	41 D	0.072	35 D	0.072	31 D	0.072
Anthracene	0.980 D	0.00029	1.4	0.00029	5.6 D	0.032	5.4 D	0.029	5.3 D	0.0029	4.7 D	0.0029	4.4 D	0.0029
Fluoranthene	1.0	0.00046	1.7	0.00046	6.9 D	0.051	7.0 D	0.046	8.2 D	0.0046	7.3 D	0.0046	7.7 D	0.0046
Pyrene	0.660	0.00078	1.1	0.00078	4.3 D	0.086	4.3 D	0.078	4.8 D	0.0078	4.2 D	0.0078	4.5 D	0.0078
Benz(a)anthracene	0.094	0.00034	0.12	0.00034	0.33	0.00038	0.350	0.00034	0.390 D	0.0034	0.330 D	0.0034	0.380 D	0.0034
Chrysene	0.071	0.00027	0.100	0.00027	0.270	0.000372	0.270	0.00027	0.390 D	0.0065	0.320 D	0.0065	0.380 D	0.0065
Benzo(b)fluoranthene	0.027	0.00025	0.030	0.00025	0.068	0.00028	0.052	0.00025	0.0065 D	0.0025	0.048 D	0.0025	0.058 D	0.0025
Benzo(k)fluoranthene	0.012	0.00041	0.0110	0.00041	0.0230	0.00046	0.0160	0.00041	0.0026 JD	0.0041	0.022 JD	0.0041	0.025 JD	0.0041
Benzo(a)pyrene	0.019	0.00041	0.017	0.00041	0.034	0.00046	0.0240	0.00041	0.0034 D	0.0041	0.023 JD	0.0041	0.029 JD	0.0041
Indeno(1,2,3-cd)pyrene	0.0057	0.00044	0.0045	0.00044	0.0095	0.00049	0.0047	0.00044	0.0020 JD	0.0044	0.0096 JD	0.0044	0.0081 JD	0.0044
Dibenz(a,h)anthracene	0.0015 J	0.00045	0.0013 J	0.00045	0.0025 J	0.0005	0.0012 J	0.00045	0.0011 JD	0.0045	0.0059 JD	0.0045	ND	0.0045
Benzo(g,h,i)perylene	0.0052	0.00036	0.0041	0.00036	0.0074	0.0004	0.0032 J	0.00036	0.0023 JD	0.0036	0.0097JD	0.0036	0.0088 JD	0.0036

Notes: MDL = Method Detection Limit

MRL = Method Reporting Limit
PAH's = Polynuclear Aromatic Hydrocarbons

TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter
ND = Not Detected
D = The reported result is from a dilution.
J = The result is an estimated value.

Z = The chromatographic fingerprint does not resemble a petroleum product.

URS CORPORATION LONGVIEW SOLIDIFICATION KEMRON PROJECT No: SE0397

TABLE 14

OPTIMIZATION MIXTURE EVALUATIONS Summary of Wipe, Total, TCLP, and SPLP Results

Summary of wipe, Total, TCLT, and STLT Results										
	0397-028									
	WIPE		Total		TCLP		SPLP			
TESTING PARAMETER	Results	Qual	Results	Qual	Results	Qual	Results	Qual		
	(ug/Wipe)		(mg/kg)		(ug/L)		(ng/L)			
PAHs										
Naphthalene	0.48	J	150,000		5,100	J	5,400	J		
Acenaphthylene	0.010		1,300	J	8.4	J	9.0	J		
Acenaphthene	0.26	J	91,000	J	420	J	440	J		
Fluorene	0.28		86,000	J	230	J	250	J		
Phenanthrene	1.1		250,000	J	260	J	270	J		
Anthracene	0.21		48,000	J	31	J	36	J		
Fluoranthene	0.62		110,000	J	22	J	24	J		
Pyrene	0.44		74,000	J	13	J	13	J		
Benz(a)anthracene	0.13		17,000	J	0.58	J	0.71	J		
Chrysene	0.12		19,000	J	0.48	J	0.46	J		
Benzo(b)fluoranthene	0.085		9,600	J	0.063	J	0.049	J		
Benzo(k)fluoranthene	0.033		3,600	J	0.034	J	0.028	J		
Benzo(a)pyrene	0.090	J	6,100	J	0.22	U	0.21	U		
Indeno(1,2,3-cd)pyrene	0.024		2,000	J	0.22	U	0.21	U		
Dibenz(a,h)anthracene	0.0065		510	J	0.22	U	0.21	U		
Benzo(g,h,i)perylene	0.022		1,600	J	0.22	U	0.21	U		
2-Methylnaphthalene	0.18	J	84,000	J	750	J	790	J		
Dibenzofuran	0.20		67,000	J	260	J	290	J		
TPHs										
Diesel Range Organics (DRO)	500	U	4,300	J	15,000	J	17,000	J		
Residual Range Organics (RRO)	560	J	1,000	J	540	U	920	J		

Notes:

PAH's = Polynuclear Aromatic Hydrocarbons

SPLP = Synthetic Precipitation Leaching Procedure

TCLP = Toxicity Characteristic Leaching Procedure TPH = Total Petroleum Hydrocarbons

ug/L = micrograms per liter

QUAL = Qualifier

J = The result is an estimated value.

U = The analyte was analyzed for, but was not detected at or above the outlined value.

APPENDIX A UNTREATED PHYSICAL PROPERTIES TESTING	

MOISTURE CONTENT DETERMINATION

REPORT FORM ASTM D 2216

 PROJECT:
 URS Longview Treatability Study

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 TP-01 (2-7.5)

 TESTING DATE:
 08/29/11

 TESTED BY:
 SEM

 TRACKING CODE:
 7471_MC

MOISTURE CONTENT (Dry & Wet Basis)											
1. MOISTURE TIN NO.	А		В		С						
2. WT MOISTURE TIN (tare weight)	52.25	g	53.16	g	59.21	g					
3. WT WET SOIL + TARE	112.89	g	119.28	g	114.79	g					
4. WT DRY SOIL + TARE	98.31	g	103.04	g	101.53	g					
5. WT WATER, Ww	14.58	g	16.25	g	13.25	g					
6. WT DRY SOIL, Ws	46.06	g	49.88	g	42.32	g					
7. ASTM MOISTURE CONTENT	31.65	%	32.57	%	31.32	%					
8. PERCENT SOLIDS	75.96	%	75.43	%	76.15	%					
9. AVERAGE ASTM MOISTURE CONTENT	31.85	%									
10. AVERAGE PERCENT SOLIDS	75.85	%									

MOISTURE CONTENT DETERMINATION

REPORT FORM ASTM D 2216

 PROJECT:
 URS Longview Treatability Study

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 TP-02

 TESTING DATE:
 08/29/11

 TESTED BY:
 SEM

 TRACKING CODE:
 7472_MC

MOISTURE CONTENT (Dry & Wet Basis)									
1. MOISTURE TIN NO.	А		В		С				
2. WT MOISTURE TIN (tare weight)	57.00	g	46.89	g	53.55	g			
3. WT WET SOIL + TARE	111.14	g	108.05	g	116.38	g			
4. WT DRY SOIL + TARE	100.52	g	95.58	g	104.16	g			
5. WT WATER, Ww	10.62	g	12.47	g	12.22	g			
6. WT DRY SOIL, Ws	43.52	g	48.69	g	50.60	g			
7. ASTM MOISTURE CONTENT	24.40	%	25.62	%	24.15	%			
8. PERCENT SOLIDS	80.39	%	79.61	%	80.55	%			
9. AVERAGE ASTM MOISTURE CONTENT	24.72	%							
10. AVERAGE PERCENT SOLIDS	80.18	%							

LOSS ON IGNITION

(ORGANIC CONTENT) ASTM D2974

 PROJECT:
 URS Longview Treatability Study

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 TP-01 (2-7.5)

 TESTING DATE:
 8/29/2011

 TESTED BY:
 SEM

 TRACKING CODE:
 7471_LI

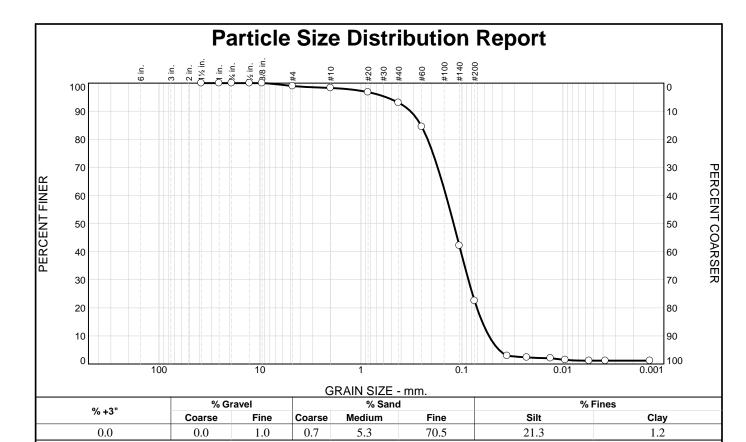
MOISTURE CONTENT / LOSS ON IGNITION								
1. MOISTURE TIN NO.	Α		В		С			
2. WT MOISTURE TIN (tare weight)	52.251	g	53.160	g	59.214	g		
3. WT WET SOIL + TARE	112.895	g	119.284	g	114.786	g		
4. WT DRY SOIL + TARE	98.314	g	103.039	g	101.533	g		
5. WT WATER, Ww	14.581	g	16.245	g	13.254	g		
6. WT DRY SOIL, Ws	46.064	g	49.879	g	42.319	g		
7. WT FINAL SOIL + TARE	97.377	g	102.029	g	100.801	g		
8. WT FINAL SOIL, Wf	45.126	g	48.869	g	41.587	g		
9. WT ORGANICS, Wo	0.937	g	1.010	g	0.731	g		
10. MOISTURE CONTENT(ASTM)	31.65	%	32.57	%	31.32	%		
11. LOSS ON IGNITION	2.03	%	2.02	%	1.73	%		
12. AVERAGE MOISTURE CONTENT	31.85	%						
13. AVERAGE LOSS ON IGNITION	1.93	%						

LOSS ON IGNITION

(ORGANIC CONTENT) ASTM D2974

 PROJECT:
 URS Longview Treatability Study

 PROJECT No.:
 SE-0397


 SAMPLE No.:
 TP-02

 TESTING DATE:
 8/29/2011

 TESTED BY:
 SEM

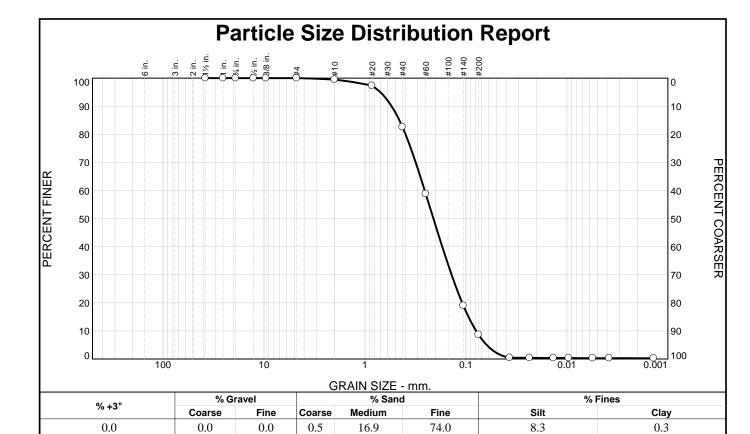
 TRACKING CODE:
 7472_LI

MOISTURE CONTENT / LOSS ON IGNITION								
1. MOISTURE TIN NO.	А		В		С			
2. WT MOISTURE TIN (tare weight)	56.999	g	46.894	g	53.553	g		
3. WT WET SOIL + TARE	111.135	g	108.052	g	116.378	g		
4. WT DRY SOIL + TARE	100.518	g	95.581	g	104.157	g		
5. WT WATER, Ww	10.617	g	12.472	g	12.221	g		
6. WT DRY SOIL, Ws	43.520	g	48.686	g	50.603	g		
7. WT FINAL SOIL + TARE	100.049	g	94.941	g	103.611	g		
8. WT FINAL SOIL, Wf	43.051	g	48.047	g	50.057	g		
9. WT ORGANICS, Wo	0.469	g	0.640	g	0.546	g		
10. MOISTURE CONTENT(ASTM)	24.40	%	25.62	%	24.15	%		
11. LOSS ON IGNITION	1.08	%	1.31	%	1.08	%		
12. AVERAGE MOISTURE CONTENT	24.72	%						
13. AVERAGE LOSS ON IGNITION	1.16	%						

Test R	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5	100.0		
1.0	100.0		
.75	100.0		
.5	100.0		
.375	100.0		
#4	99.0		
#10	98.3		
#20	96.8		
#40	93.0		
#60	84.5		
#140	42.2		
#200	22.5		
0.0357 mm.	2.9		
0.0228 mm.	2.4		
0.0133 mm.	2.1		
0.0095 mm.	1.5		
0.0055 mm.	1.2		
0.0038 mm.	1.2		
0.0014 mm.	1.2		
* (no eno	cification provided	1)	

Material Description					
Dark grey silty sar	nd				
Λ44.	ubora Limito (ACTIV	4 D 4240)			
PL=	erberg Limits (ASTN LL=	Pl=			
	Classification				
USCS (D 2487)=					
	Coefficients				
D ₉₀ =	Dez=	D₆₀= 0.1438			
D₅₀= 0.1208 D₁₀= 0.0540	D₃₀= 0.0863 C_u= 2.66	D ₁₅ = 0.0629 C _c = 0.96			
D10= 0.0340		0c- 0.50			
F.M.=0.59	Remarks				
1					
Date Received:	8/24/2011 Date	Tested: 9/2/2011			
Tested By:	SEM				
Checked By:					
-					
ı itle:	Program Manager				

* (no specification provided)


Sample Number: TP-01 (2-7.5) **Date Sampled:** 8/22/2011

KEMRON Environmental
Services Inc.
Atlanta, Georgia

Client: URS

Project: URS Longview Solidification

Project No: SE 0397 **Lab ID** 7471 GR

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5	100.0		
1.0	100.0		
.75	100.0		
.5	100.0		
.375	100.0		
#4	100.0		
#10	99.5		
#20	97.3		
#40	82.6		
#60	58.8		
#140	19.0		
#200	8.6		
0.0369 mm.	0.5		
0.0234 mm.	0.4		
0.0136 mm.	0.4		
0.0096 mm.	0.4		
0.0055 mm.	0.3		
0.0038 mm.	0.3		
0.0014 mm.	0.3		

Material Description

Very dark grey poorly graded sand with silt

Atterberg Limits (ASTM D 4318)

 $\begin{array}{cc} & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \mathrm{SP\text{-}SM} & \text{AASHTO (M 145)=} \end{array}$

Coefficients

Remarks

F.M.=1.09

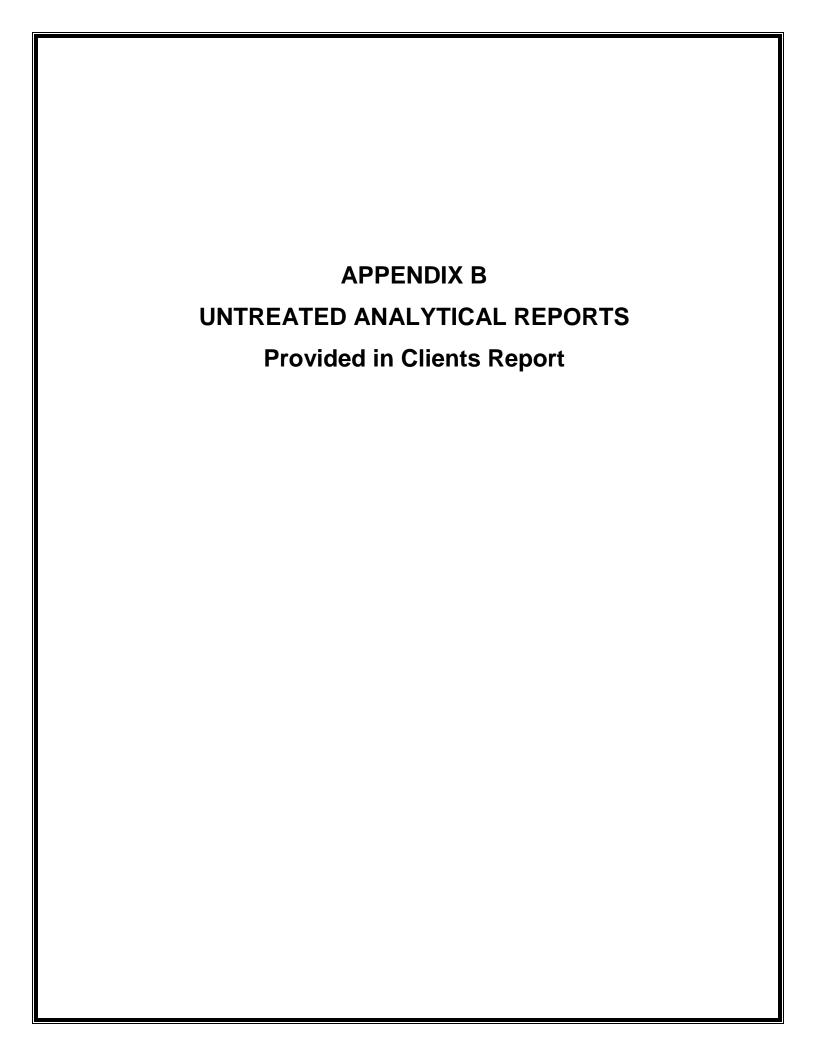
PL=

Date Received: 8/24/2011 Date Tested: 9/2/2011

Tested By: SEM

Checked By: TAJ

Title: Program Manager


* (no specification provided)

Sample Number: TP-02 Date Sampled: 8/22/2011

KEMRON Environmental Services Inc. Atlanta, Georgia Client: URS

Project: URS Longview Solidification

 Project No:
 SE 0397
 Lab ID
 7472_GR

APPENDIX C MIXTURE DEVELOPMENT SHEETS	

PROJECT:	Longview Wood Treating Site	MIX No.
PROJECT No.:	SE-0397	SE0397-001
MIXING DATE:	5-Oct-11	MIXED BY: SEM/JGS
UNTREATED MATERIAL T	YPE	TP-01
·	-	

UNTREATED MATERIAL TYPE		TP-01
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	7.50 %	142.5 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	50 %	71.3 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

	MONIT	ORING ACT	TVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
_	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	>4.5	>4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

PROJECT:	Longview Wood Treating Site			MIX No.	
PROJECT No.:	SE-0397			SE03	397-002
MIXING DATE:	5-Oct-11			MIXED BY:	SEM/JGS
UNTREATED MATERIAL	ТҮРЕ			T	P-01
WEIGHT OF UNTREATED	MATERIAL			1,900	g
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT
Portland Cement #842		12.50	%	237.5	g
			%	0.0	
			%	0.0	
			%	0.0	g
			%	0.0	g
Water Addition (water:reagent))	50	%	118.8	g
*Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study The water addition will be adju	isted to create a p	oumpable reager	nt slurry.		
	MONIT	ORING ACT	IVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES					1
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETRO	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	>4.5	>4.5	>4.5	>4.5	>4.5

VOLUMETRIC EXPANSION

#DIV/0!

INITIAL HEIGHT (in):

VOLUMETRIC EXPANSION (%):

FINAL HEIGHT (in):

PROJECT:	Longview Wood Treating Site	MIX	K No.		
PROJECT No.:	SE-0397		SE03	397-003	
MIXING DATE:	6-Oct-11	MIX	ED BY:	SEM/JGS	

UNTREATED MATERIAL TYPE	TP-01		
WEIGHT OF UNTREATED MATERIAL		1,900 g	
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT	
Portland Cement #842	12.50 %	237.5 g	
Bentonite #807	2.00 %	38.0 g	
	%	0.0 g	
	%	0.0 g	
	%	0.0 g	
Water Addition (water:reagent)	150 %	413.3 g	

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

MONITORING ACTIVITIES					
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	3.5	4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

PROJECT:	Longview Wood Treating Site	MIX No.
PROJECT No.:	SE-0397	SE0397-004
MIXING DATE:	5-Oct-11	MIXED BY: SEM/JGS

UNTREATED MATERIAL TYPE	TP-01		
WEIGHT OF UNTREATED MATERIAL		1,900 g	
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT	
Portland Cement #842	7.50 %	142.5 g	
Hydrated Lime #917	7.50 %	142.5 g	
	%	0.0 g	
	%	0.0 g	
	%	0.0 g	
Water Addition (water:reagent)	77 %	219.5 g	

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

	MONITORING ACTIVITIES				
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETRO	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	1.5	3.25	3.75	3.75	3.75
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

PROJECT:	Longview Wo	od Treating Site	_	MIX No.	
PROJECT No.:	SE-0397		SE03	97-005	
MIXING DATE:	7-Oct-11		<u>.</u>	MIXED BY:	SEM/JGS
UNTREATED MATERIAL	ТҮРЕ			TI	P-01
WEIGHT OF UNTREATED	WEIGHT OF UNTREATED MATERIAL			1,900	g
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT
Portland Cement #842		12.50	%	237.5	g
Bentonite #807		2.00	%	38.0	
Organoclay SS 199 #922		0.50	%	9.5	
			%	0.0	g
			%	0.0	g
Water Addition (water:reagent)		150	%	427.5	g
*ANS 16.1 *= Potential Testing for study 250 g of water added to bentoni The water addition will be adjust	sted to create a p				
	MONIT	ORING ACT			
MONITORING ACTIVITIES		T	TIME PERIOD) 	
MAXIMUM PID (ppm)					
Notes / Observations:					
110tes / Observations.					
_	PENETR	OMETER A	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	>4.5	>4.5	>4.5	>4.5	>4.5
	VOLUM	METRIC EXP	ANSION		
INITIAL HEIGHT (in):		FINAL HEIG			
VOLUMETRIC EXPANSION	I (%):	#DIV/0!	. ,		

PROJECT:	Longview Wood Treating Site	_	MIX No.		
PROJECT No.:	SE-0397		SE039	97-006	
MIXING DATE:	6-Oct-11		MIXED BY:	SEM/JGS	

UNTREATED MATERIAL TYPE		TP-01
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	7.50 %	142.5 g
Class "C" Flyash #921	7.50 %	142.5 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	50 %	142.5 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

MONITORING ACTIVITIES					
MONITORING			TIME PERIOD	١	
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	3.75	>4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

PROJECT:	Longview Wood Treating Site	MIX No.	
PROJECT No.:	SE-0397	SE0397-007	
MIXING DATE:	6-Oct-11	MIXED BY: SEM/JGS	

UNTREATED MATERIAL TYPE	TP-01		
WEIGHT OF UNTREATED MATERIAL		1,900 g	
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT	
NewCem Slag Cement # 920	15.00 %	285.0 g	
Bentonite #807	2.00 %	38.0 g	
	%	0.0 g	
	%	0.0 g	
	%	0.0 g	
Water Addition (water:reagent)	132 %	426.4 g	

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

MONITORING ACTIVITIES					
MONITORING			TIME PERIOD	ı	
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETRO	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	0.0	0.0	0.0	0.0	0.25
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in):	_	FINAL HEIG	HT (in):	_	
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

PROJECT:	Longview Wood Treating Site	MIX No.	
PROJECT No.:	SE-0397	SE0397-007 A	
MIXING DATE:	18-Oct-11	MIXED BY: SEM/JGS	

UNTREATED MATERIAL TYPE		TP-01
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
NewCem Slag Cement # 920	15.00 %	285.0 g
Bentonite #807	2.00 %	38.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	%	0.0 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

VOLUMETRIC EXPANSION (%):

The water addition will be adjusted to create a pumpable reagent slurry.

MONITORING ACTIVITIES						
MONITORING			TIME PERIOD			
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETR	OMETER AN	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	0.0	0.0	0.0			
VOLUMETRIC EXPANSION						
INITIAL HEIGHT (in):		FINAL HEIG	HT (in):			

#DIV/0!

PROJECT:	Longview Wood Treating Site	MIX No.
PROJECT No.:	SE-0397	SE0397-008
MIXING DATE:	5-Oct-11	MIXED BY: SEM/JGS

UNTREATED MATERIAL TYPE	TP-01		
WEIGHT OF UNTREATED MATERIAL		1,900 g	
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT	
50:50 TerraCem #916	12.50 %	237.5 g	
	%	0.0 g	
	%	0.0 g	
	%	0.0 g	
	%	0.0 g	
Water Addition (water:reagent)	50 %	118.8 g	

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

MONITORING ACTIVITIES					
MONITORING	MONITORING TIME PERIOD				
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETRO	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	4.25	>4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in):		FINAL HEIG	HT (in):		_
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

PROJECT:	Longview Wood Treating Site	MIX No.	
PROJECT No.:	SE-0397	SE0397-009	
MIXING DATE:	6-Oct-11	MIXED BY: SEM/JGS	

UNTREATED MATERIAL TYPE		TP-01
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
50:50 TerraCem # 916	15.00 %	285.0 g
Bentonite #807	2.00 %	38.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	135 %	436.1 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

MONITORING ACTIVITIES					
MONITORING TIME PERIOD					
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	1.25	3.5	4.25	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

PROJECT:	Longview Woo	od Treating Site		MIX No.	
PROJECT No.:	SE-0	SE-0397		SE03	397-010
MIXING DATE:	5-Oc	5-Oct-11		MIXED BY:	SEM/JGS
UNTREATED MATERIAL	_ TYPE			T	P-02
WEIGHT OF UNTREATED MATERIAL				1,900	g
REAGENT TYPE AND LO	T NUMBER	ADDITIO	ON RATE	WE	IGHT
Portland Cement #842		12.50	%	237.5	g
			%	0.0	
			%	0.0	
			%	0.0	
			%	0.0	g
Water Addition (water:reagen	it)	50	%	118.8	g
Pocket Penetrometer @ Days UCS @ 7 Day or 28 Day *Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study The water addition will be adj	justed to create a p	oumpable reager	·		
	MONITO	ORING ACT	IVITIES		
MONITORING			TIME PERIOD		_
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETRO	OMETER AN	IALYSES		
CURE TIME (Days)					
	1	3	5	7	14

VOLUMETRIC EXPANSION

#DIV/0!

INITIAL HEIGHT (in):

VOLUMETRIC EXPANSION (%):

FINAL HEIGHT (in):

PROJECT:	Longview Wood Treating Site	_	MIX No.		
PROJECT No.:	SE-0397		SE039	97-011	
MIXING DATE:	6-Oct-11		MIXED BY:	SEM/JGS	

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	12.50 %	237.5 g
Bentonite #807	2.00 %	38.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	150 %	413.3 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

	MONIT	ORING ACT	TVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	3.25	>4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

PROJECT:	Longview Wood Treating Site	_	MIX No.		
PROJECT No.:	SE-0397		SE039	97-012	
MIXING DATE:	7-Oct-11		MIXED BY:	SEM/JGS	

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	17.50 %	332.5 g
Bentonite #807	2.00 %	38.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	125 %	463.1 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

MONITORING ACTIVITIES					
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	>4.5	>4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

PROJECT:	Longview Wood Treating Site	MIX No.
PROJECT No.:	SE-0397	SE0397-013
MIXING DATE:	5-Oct-11	MIXED BY: SEM/JGS

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	7.50 %	142.5 g
Hydrated Lime #917	7.50 %	142.5 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	75 %	213.8 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

MONITORING ACTIVITIES					
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
-	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	3.25	>4.5	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

PROJECT:	Longview Wood Treating Site	MIX No.	
PROJECT No.:	SE-0397	SE0397-014	
MIXING DATE:	5-Oct-11	MIXED BY: SEM/JGS	

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	7.50 %	142.5 g
Hydrated Lime #917	12.50 %	237.5 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	75 %	285.0 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

	MONIT	ORING ACT	IVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	1.25	2.5	3.0	3.75	4.25
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

		TTD 0.4
MIXING DATE:	5-Oct-11	MIXED BY: SEM/JGS
PROJECT No.:	SE-0397	SE0397-015
PROJECT:	Longview Wood Treating Site	MIX No.

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
Portland Cement #842	10.00 %	190.0 g
Hydrated Lime #917	12.50 %	237.5 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	75 %	320.6 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

MONITORING ACTIVITIES					
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	2.5	3.75	>4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in):		FINAL HEIG	HT (in):		_
VOLUMETRIC EXPANSION	(%):	#DIV/0!			

^{*=} Potential Testing for study

PROJECT:	Longview Wood Treating Site			MIX No.		
PROJECT No.:	SE-0397			SE039	97-016	
MIXING DATE:	7-O	ct-11		MIXED BY:	SEM/JGS	
UNTREATED MATERIAL	ГҮРЕ			TF	P-02	
WEIGHT OF UNTREATED	MATERIAL			1,900	g	
REAGENT TYPE AND LOT NUMBER		ADDITIO	ON RATE	WEI	IGHT	
NewCem Slag Cement #920		12.50	%	237.5	g	
Bentonite #807		2.00	%	38.0		
Organoclay SS 199 #922		0.50	%	9.5		
-			%	0.0	g	
			%	0.0	g	
Water Addition (water:reagent)		150	%	427.5	g	
*ANS 16.1 *= Potential Testing for study 250 g of water added to bentoni The water addition will be adjus	•	umpable reagent	slurry.			
	MONIT	ORING ACT	TIVITIES			
MONITORING			TIME PERIO)		
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETRO	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	0.0	0.0	2.5	4.25	>4.5	
				•	·	
	VOLUM	ETRIC EXP	ANSION			
INITIAL HEIGHT (in):		FINAL HEIGH	HT (in):			

#DIV/0!

VOLUMETRIC EXPANSION (%):

PROJECT:	Longview Wood Treating Site			MIX No.		
PROJECT No.:	SE-0)397	_	SE03	97-017	
MIXING DATE:	7-O	ct-11		MIXED BY:	SEM/JGS	
UNTREATED MATERIAL	ГҮРЕ			TF	P-02	
WEIGHT OF UNTREATED	MATERIAL			1,900	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT	
NewCem Slag Cement #920		12.50	%	237.5	g	
Bentonite #807		2.00	%	38.0		
Organoclay SS 199 #922		2.00	%	38.0		
			%	0.0	g	
			%	0.0	g	
Water Addition (water:reagent)		150	%	470.3	g	
UCS @ 7 Day or 28 Day *Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study 250 g of water added to bentoning The water addition will be adjust	ited to create a pi		·			
	MONITO	ORING ACT				
MONITORING			TIME PERIOD	<u>'</u>	T	
ACTIVITIES				<u> </u>		
MAXIMUM PID (ppm)				 		
Notes / Observations:						
	PENETRO	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	0.0	0.0	1.25	3.0	>4.5	
	VOLUM	ETRIC EXP	ANSION			
INITIAL HEIGHT (in):		FINAL HEIGI				
VOLUMETRIC EXPANSION	(%):	#DIV/0!				

PROJECT:	Longview Wood Treating Site	MIX No.
PROJECT No.:	SE-0397	SE0397-017A
MIXING DATE:	17-Jan-12	MIXED BY: SEM

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,700 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
NewCem Slag Cement #920	12.50 %	212.5 g
Bentonite #807	2.00 %	34.0 g
Organoclay SS 199 #922	2.00 %	34.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:NewCem Slag Cement)	150 %	318.8 g

OBSERVATIONS / NOTES

UCS @ 7 Day and 28 Day

*Perm @ 28 Day

*Analytical Testing for DRO and PAH @ 28 days

VE @ 28 days

Full ANS 16.1 5-day

Using the following Procedure replicating CETCO:

Organoclay added to the soil and mixed by hand, then allowed to sit for 2 hours. Then the Cement and bentonite were mixed together and added to the soil/organoclay mix. Water was added and mixed with blender Water addtion rate by total reagent weight is 113.6%.

MONITORING ACTIVITIES						
MONITORING		TIME PERIOD				
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETR	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)						
VOLUMETRIC EXPANSION						
INITIAL HEIGHT (in):	1.12	FINAL HEIGHT (in): 1.46			1.46	
28 DAY VOLUMETRIC EXPA	NSION (%):	30.36				

PROJECT:	Longview Wood Treating Site SE-0397 17-Jan-12		2	MIX No.		
PROJECT No.:			SE0397	7-017 Dup		
MIXING DATE:			MIXED BY:	SEM		
UNTREATED MATERIAL	TVPF			T	P-02	
WEIGHT OF UNTREATED				950		
REAGENT TYPE AND LOT	NUMBER	ADDIT	ION RATE	WE	EIGHT	
NewCem Slag Cement #920		12.50) %	118.8	g	
Bentonite #807		2.00) %	19.0	g	
Organoclay SS 199 #922		2.00) %	19.0	g	
			%	0.0	g	
			%	0.0	g	
Water Addition (water:reagent)		15	0 %	235.1	g	
OBSERVATIONS / NOTES						
VE @ 3 Day, 7 Day, and 28 Day SPLP Analysis @ 28 day- 1 wee 5 Day ANS 16.1 144 g of water added to bentoni The water addition will be adjust	ek TAT	umpable reagei	nt slurry.			
	MONIT	ORING AC	TIVITIES			
MONITORING			TIME PERIO	D	_	
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETR	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)						
	VOLUM	ETRIC EX	PANSION			
INITIAL HEIGHT (in):	1.12	FINAL HEIO	GHT AT 3 DAYS	S (in):	1.66	
3-DAY VOLUMETRIC EXPA	ANSION (%):	48.2	1			
		FINAL HEIO	GHT AT 7 DAYS	S (in):	1.60	
7- DAY VOLUMETRIC EXP.	ANSION (%):	42.8	6			
		FINAL HEIO	GHT AT 28 DAY	YS (in):	1.60	
28- DAY VOLUMETRIC EXI	PANSION (%):	42.8	6			

PROJECT:	Longview Wood Treating Site			MIX No.		
PROJECT No.:	SE-0)397	_	SE039	97-018	
MIXING DATE:	7-O	ct-11	<u>.</u>	MIXED BY:	SEM/JGS	
UNTREATED MATERIAL	ГҮРЕ			TF	P-02	
WEIGHT OF UNTREATED	MATERIAL			1,900	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT	
NewCem Slag Cement #920		17.50	%	332.5	g	
Bentonite #807		2.00	%	38.0	_	
Organoclay SS 199 #922		0.50	%	9.5		
			%	0.0	_	
			%	0.0	g	
Water Addition (water:reagent)		150	%	570.0	g	
Pocket Penetrometer @ Days 1, UCS @ 7 Day or 28 Day *Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study 250 g of water added to bentonit The water addition will be adjus	e initially	umpable reagent	slurry.			
	MONITO	ORING ACT	TIVITIES			
MONITORING			TIME PERIOD	1		
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETRO	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	0.5	3.75	>4.5	>4.5	>4.5	
	VOLUM	ETRIC EXP	PANSION			
INITIAL HEIGHT (in):	, 02011	FINAL HEIGH				
VOLUMETRIC EXPANSION	(%):	#DIV/0!	X //			

PROJECT:	Longview Wood Treating Site			MIX No.		
PROJECT No.:	SE-0)397	_	SE03	97-019	
MIXING DATE:	7-O	ct-11		MIXED BY:	SEM/JGS	
UNTREATED MATERIAL	ГҮРЕ			TF	P-02	
WEIGHT OF UNTREATED	MATERIAL			1,900	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE!	IGHT	
Portland Cement #842		10.00	%	190.0	g	
Bentonite #807		2.00	%	38.0	_	
Organoclay SS 199 #922		0.50	%	9.5		
			%	0.0	g	
			%	0.0	g	
Water Addition (water:reagent)		150	%	356.3	g	
Pocket Penetrometer @ Days 1, UCS @ 7 Day or 28 Day *Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study 250 g of water added to bentoning The water addition will be adjust	te initially	umpable reagent	slurry.			
-	MONITO	ORING ACT	TIVITIES			
MONITORING			TIME PERIOD	1		
ACTIVITIES				<u> </u>	<u> </u>	
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETRO	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	3.25	4.5	>4.5	>4.5	>4.5	
	VOLUM	ETRIC EXP	ANSION			
INITIAL HEIGHT (in):		FINAL HEIGH				
VOLUMETRIC EXPANSION	(%):	#DIV/0!				

PROJECT:	Longview Wood Treating Site			MIX No.		
PROJECT No.:	SE-0)397	_	SE039	97-020	
MIXING DATE:	7-Oc	ct-11	•	MIXED BY:	SEM/JGS	
UNTREATED MATERIAL	ГҮРЕ			TF	P-02	
WEIGHT OF UNTREATED	MATERIAL			1,900	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WEI	IGHT	
Portland Cement #842		15.00	%	285.0	g	
Bentonite #807		2.00		38.0	_	
Organoclay SS 199 #922		0.50	%	9.5		
,			%	0.0	_	
			%	0.0		
Water Addition (water:reagent)		150	%	498.8	g	
Pocket Penetrometer @ Days 1, UCS @ 7 Day or 28 Day *Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study 250 g of water added to bentoning The water addition will be adjust	e initially	umpable reagent	slurry.			
	MONITO	ORING ACT	TIVITIES			
MONITORING			TIME PERIOD	1	_	
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETRO	OMETER A	NALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	3.25	>4.5	>4.5	>4.5	>4.5	
	VOLUM	ETRIC EXP	PANSION			
INITIAL HEIGHT (in):	, SECTI	FINAL HEIGI				
VOLUMETRIC EXPANSION	(%):	#DIV/0!	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

PROJECT:	Longview Wood Treating Site MIX No.					
PROJECT No.:	SE-0397			SE0397-021		
MIXING DATE:	6-Oc	ct-11		MIXED BY:	SEM/JGS	
UNTREATED MATERIAL	ГҮРЕ			TF	P-02	
WEIGHT OF UNTREATED	MATERIAL			1,900	g	
REAGENT TYPE AND LOT	NUMBER	ADDITI(ON RATE	WE	IGHT	
Daylor J. Carray 14 40 42		10.00	0/	100.0	_	
Portland Cement #842		10.00		190.0		
Class "C" Flyash #921		10.00	%	190.0		
			%	0.0		
			%	0.0		
	er Addition (water:reagent)		%	0.0		
water Addition (water:reagent)		50	%	190.0	g	
*ANS 16.1 *= Potential Testing for study The water addition will be adju	sted to create a p	oumpable reagei	nt slurry.			
	MONIT	ORING ACT	IVITIES			
MONITORING			TIME PERIOI)		
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	PENETRO	OMETER AN	JALYSES			
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	>4.5	>4.5	>4.5	>4.5	>4.5	
	VOLUM	ETRIC EXP	ANSION			

FINAL HEIGHT (in):

#DIV/0!

INITIAL HEIGHT (in):

VOLUMETRIC EXPANSION (%):

SE-C 7-OC PE IATERIAL UMBER		ON PATE	MIXED BY:	97-022 SEM/JGS 2-02
PE IATERIAL		ON PATE	TF	2-02
ATERIAL	ADDITIO	ON RATE		
	ADDITIO	N RATE	1,900	g
UMBER	ADDITIO	N RATE		8
		JI KAIL	WE	GHT
	10.00	%	190.0	σ
	10.00			
		, -		
		%		
	50	%		
d to create a p	oumpable reager	nt slurry.		
MONITO	ORING ACT	IVITIES		
		TIME PERIOD		1
PENETRO	OMETER AN	JALYSES		
1			7	14
1.0	1.75	3.25	3.75	3.75
	d to create a p MONITO PENETRO		d to create a pumpable reagent slurry. MONITORING ACTIVITIES TIME PERIOD PENETROMETER ANALYSES 1 3 5	10.00 % 190.0

VOLUMETRIC EXPANSION

#DIV/0!

INITIAL HEIGHT (in):

VOLUMETRIC EXPANSION (%):

FINAL HEIGHT (in):

PROJECT:	Longview Wood Treating Site	_	MIX No.		
PROJECT No.:	SE-0397		SE039	97-023	
MIXING DATE:	6-Oct-11		MIXED BY:	SEM/JGS	

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
NewCem Slag Cement #920	15.00 %	285.0 g
Bentonite #807	2.00 %	38.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	132 %	426.4 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

MONITORING ACTIVITIES					
MONITORING		TIME PERIOD			
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	0.0	3.25	4.5	>4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION (%): #DIV/0!					

PROJECT:	Longview Woo	od Treating Site	_	MIX No.	
PROJECT No.:	SE-0397			SE03	397-024
MIXING DATE:	7-Oct-11		MIXED BY:	SEM/JGS	
UNTREATED MATERIAL TYPE TP-02					P-02
WEIGHT OF UNTREATED	MATERIAL			1,900	g
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT
50:50 TerraCem #916		15.00	0/-	285.0	σ.
Bentonite #807		2.00		38.0	
Organoclay SS 199 #922		0.50		9.5	
Organiociay BB 177 11722		0.50	%	0.0	
			%	0.0	
Water Addition (water:reagent)		135		448.9	
UCS @ 7 Day or 28 Day *Perm @ 28 Day *Analytical Testing *ANS 16.1 *= Potential Testing for study 250 g of water added to bentoni The water addition will be adjust		umpable reagent	slurry.		
	MONIT	ORING ACT	TIVITIES		
MONITORING			TIME PERIO	<u> </u>	
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
_	PENETR	OMETER A	NALVSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	2.75	3.25	4.25	>4.5	>4.5
== (2110112121C (tollo) Ity)		2.20	20	,	, 1.0
	VOLUM	ETRIC EXP	ANSION		
INITIAL HEIGHT (in):		FINAL HEIGH	HT (in):		

#DIV/0!

VOLUMETRIC EXPANSION (%):

PROJECT:	Longview Wood Treating Site	MIX No.
PROJECT No.:	SE-0397	SE0397-025
MIXING DATE:	6-Oct-11	MIXED BY: SEM/JGS

UNTREATED MATERIAL TYPE		TP-02
WEIGHT OF UNTREATED MATERIAL		1,900 g
REAGENT TYPE AND LOT NUMBER	ADDITION RATE	WEIGHT
50:50 TerraCem #916	15.00 %	285.0 g
Bentonite #807	2.00 %	38.0 g
	%	0.0 g
	%	0.0 g
	%	0.0 g
Water Addition (water:reagent)	135 %	436.1 g

OBSERVATIONS / NOTES

Pocket Penetrometer @ Days 1,3,5,7,14, and 28

UCS @ 7 Day or 28 Day

*Perm @ 28 Day

*Analytical Testing

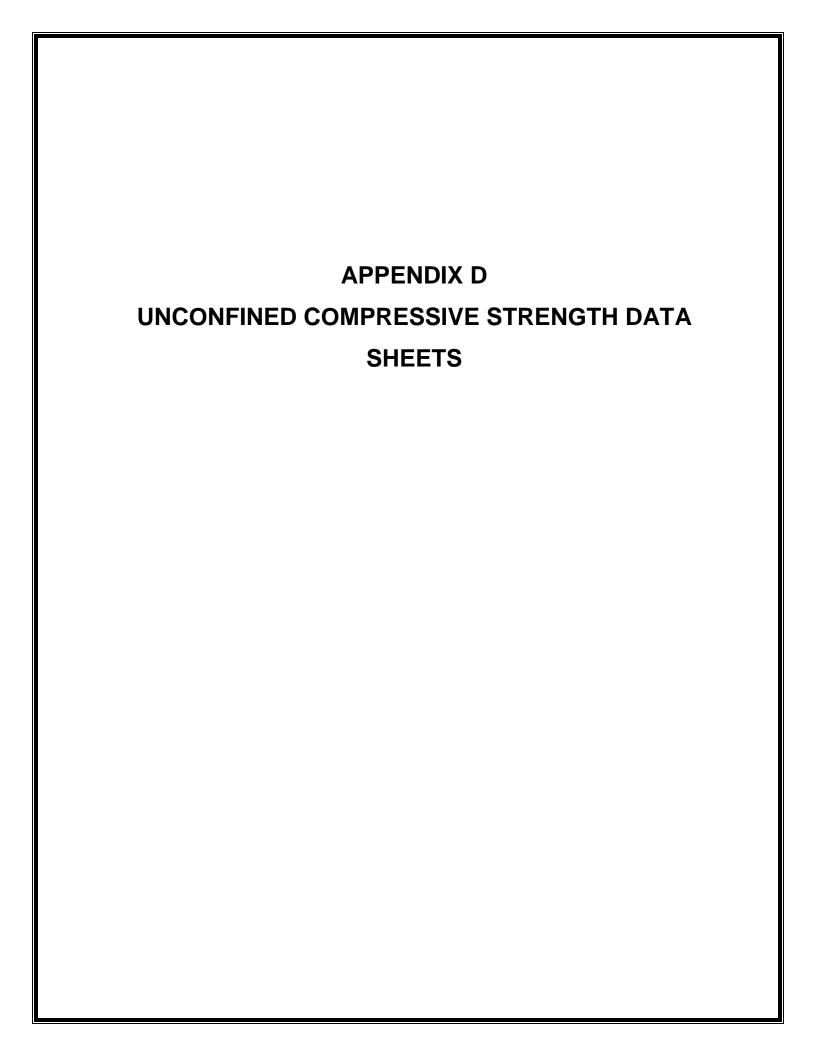
*ANS 16.1

*= Potential Testing for study

250 g of water added to bentonite initially

MONITORING ACTIVITIES					
MONITORING	TIME PERIOD				
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
_	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	1.25	2.5	4.0	4.5	>4.5
VOLUMETRIC EXPANSION					
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSION (%): #DIV/0!					

PROJECT:	Longview Woo	od Treating Site		MIX No.		
PROJECT No.:	SE-0397			SE0397-026		
MIXING DATE:	11-Apr-12			MIXED BY: JGS		
UNTREATED MATERIAL 7	ГҮРЕ			TI	P-02	
WEIGHT OF UNTREATED		I		2,500		
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT	
Portland Cement #842		8.00	%	200.0	_	
Bentonite #807		2.00	%	50.0	g	
			%	0.0	g	
			%	0.0	g	
			%	0.0	g	
Water Addition (water:reagent)		150	%	375.0	g	
OBSERVATIONS / NOTES						
VE @ 7 and 28 Days SPLP and TCLP Analysis @ 28 5 Day ANS 16.1 Permeability Test The water addition will be adjust		ımpable reagent	slurry.			
	MONITO	ORING ACT	TVITIES			
MONITORING			TIME PERIOD			
ACTIVITIES						
MAXIMUM PID (ppm)						
Notes / Observations:						
	DENETD	OMETED A	NIA I WOTO			
CUIDE TINKE (D.		OMETER A	Ī	7	1.4	
CURE TIME (Days)	1	3	5	7	14	
PENETROMETER (tons/ftý)	4.5		>4.5	>4.5		
	VOLUM	ETRIC EXP	ANSION			
INITIAL HEIGHT (in):	1.12	12 FINAL HEIGHT AT 7 DAYS (in): 1.44			1.44	
7- DAY VOLUMETRIC EXPANSION (%): 28.57						
		FINAL HEIGI	HT AT 28 DAYS	S (in):	1.47	
28- DAY VOLUMETRIC EXP	'ANSION (%):	31.25				
		FINAL HEIGI	HT AT 56 DAYS	S (in):	1.43	
56- DAY VOLUMETRIC EXP	66- DAY VOLUMETRIC EXPANSION (%): 27.55					


PROJECT:	Longview Wo	od Treating Site		MIX No.	
PROJECT No.:	SE-	0397		SE0397-027	
MIXING DATE:	11-A	.pr-12	-	MIXED BY: JGS	
UNTREATED MATERIAL	ГҮРЕ			TI	P-02
WEIGHT OF UNTREATED		l		2,500	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT
NewCem Slag Cement #920		6.00	%	150.0	_
Portland Cement #842		2.00	%	50.0	
Bentonite #807		2.00	%	50.0	g
			%	0.0	g
			%	0.0	g
Water Addition (water:reagent)		150	%	375.0	g
OBSERVATIONS / NOTES					
VE @ 7 and 28 Days SPLP and TCLP Analysis @ 28 5 Day ANS 16.1 Permeability Test The water addition will be adjust	·	ımpable reagent	slurry.		
	MONIT	ORING ACT	TVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	DENETD	OMETED A	NIA I WOTO		
CVIDE TINKE (D	3	OMETER A	Ī	7	1.4
CURE TIME (Days)	1 25	3	5	7	14
PENETROMETER (tons/ftý)	4.25		>4.5	>4.5	
	VOLUM	ETRIC EXP	ANSION		
INITIAL HEIGHT (in):	1.12	FINAL HEIGI	HT AT 7 DAYS	(in):	1.41
7- DAY VOLUMETRIC EXPA	ANSION (%):	25.80			
		FINAL HEIGI	HT AT 28 DAYS	S (in):	1.45
28- DAY VOLUMETRIC EXP	PANSION (%):	29.64			
		FINAL HEIGI	HT AT 56 DAYS	S (in):	1.47
56- DAY VOLUMETRIC EXP	PANSION (%):	31.21			

PROJECT:	Longview Woo	od Treating Site		MIX No.	
PROJECT No.:	SE-0)397	•	SE0397-028	
MIXING DATE:	11-A	pr-12		MIXED BY:	JGS
UNTREATED MATERIAL 7	ГҮРЕ			TI	P-02
WEIGHT OF UNTREATED	MATERIAL			2,500	g
REAGENT TYPE AND LOT N	NUMBER	ADDITIO	ON RATE	WE	IGHT
NewCem Slag Cement #920		8.00	%	200.0	g
Bentonite #807		2.00	%	50.0	g
Caustic Soda Beads #926		0.50	%	12.5	g
			%	0.0	g
			%	0.0	g
Water Addition (water:reagent)		175	%	459.4	g
OBSERVATIONS / NOTES					
UCS @ 7, 14, 28, and 49 Days					
VE @ 7 and 28 Days SPLP and TCLP Analysis @ 28	dove				
5 Day ANS 16.1	uays				
Permeability Test					
,					
The water addition will be adjust	ted to create a pu	mpable reagent	slurry.		
	MONITO	ORING ACT	TWITTES		
MONITORING	MONITO	JKING ACT	TIME PERIOD		
ACTIVITIES			TIME FERIOD		
MAXIMUM PID (ppm)				<u> </u>	<u> </u>
Notes / Observations:					
rotes / Observations.					
_	PENETR(OMETER A	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	0.75		>4.5	>4.5	
	VOLUM	ETRIC EXP	ANSION		
INITIAL HEIGHT (in):	1.12		HT AT 7 DAYS	(in):	1.53
7- DAY VOLUMETRIC EXPA		36.61		().	1.00
			HT AT 28 DAYS	S (in):	1.51
28- DAY VOLUMETRIC EXP	ANSION (%):	34.82			
	(1.7)		HT AT 56 DAYS	S (in):	1.52
56- DAY VOLUMETRIC EXP	ANSION (%):	36.07		. ,	
			HT AT 56 DAYS	S (in):	1.41
86- DAY VOLUMETRIC EXP	ANSION (%):	25.51		` /	

MIXING DATE: 11-Apr-12 MIXED BY: UNTREATED MATERIAL TYPE WEIGHT OF UNTREATED MATERIAL 1,30 REAGENT TYPE AND LOT NUMBER ADDITION RATE W NewCem Slag Cement #920 8.00 % 104 Bentonite #807 2.00 % 26 Organoclay #922 0.50 % 6	JGS TP-02 00 g VEIGHT 0.0 g 0.5 g 0.5 g 0.5 g 0.8 g 0.9 g
UNTREATED MATERIAL TYPE	TP-02 00 g VEIGHT 0.0 g 0.0 g 0.5 g 0.5 g 0.0 g
WEIGHT OF UNTREATED MATERIAL 1,30 REAGENT TYPE AND LOT NUMBER ADDITION RATE W NewCem Slag Cement #920 8.00 % 104 Bentonite #807 2.00 % 26 Organoclay #922 0.50 % 6	00 g VEIGHT .0 g i.0 g i.5 g i.5 g i.0 g
WEIGHT OF UNTREATED MATERIAL 1,30 REAGENT TYPE AND LOT NUMBER ADDITION RATE W NewCem Slag Cement #920 8.00 % 104 Bentonite #807 2.00 % 26 Organoclay #922 0.50 % 6	00 g VEIGHT .0 g i.0 g i.5 g i.5 g i.0 g
NewCem Slag Cement #920 8.00 % 104 Bentonite #807 2.00 % 26 Organoclay #922 0.50 % 6	6.0 g 6.0 g 6.5 g 6.5 g
Bentonite #807 2.00 % 26 Organoclay #922 0.50 % 6	6.0 g 6.5 g 6.5 g 6.0 g
Bentonite #807 2.00 % 26 Organoclay #922 0.50 % 6	6.0 g 6.5 g 6.5 g 6.0 g
Organoclay #922 0.50 % 6	6.5 g 6.5 g 6.0 g
	6.5 g 0.0 g
Caustic Soda Beads #926 0.50 % 6	0.0 g
% 0	
	5
OBSERVATIONS / NOTES UCS @ 7, 14, 28, and 49 Days VE @ 7 and 28 Days SPLP and TCLP Analysis @ 28 days 5 Day ANS 16.1	
The water addition will be adjusted to create a pumpable reagent slurry.	
MONITORING ACTIVITIES	
MONITORING TIME PERIOD ACTIVITIES	
MAXIMUM PID (ppm)	
Notes / Observations:	
PENETROMETER ANALYSES	
CURE TIME (Days) 1 3 5 7	14
PENETROMETER (tons/ftý) 0.75 >4.5 >4.5	17
VOLUMETRIC EXPANSION	
INITIAL HEIGHT (in): 1.12 FINAL HEIGHT AT 7 DAYS (in):	1.52
7- DAY VOLUMETRIC EXPANSION (%): 35.71	
FINAL HEIGHT AT 28 DAYS (in):	1.54
28- DAY VOLUMETRIC EXPANSION (%): 37.86	
FINAL HEIGHT AT 56 DAYS (in):	1.55
56- DAY VOLUMETRIC EXPANSION (%): 38.21	

PROJECT:	Longview Woo	od Treating Site		MIX No.	
PROJECT No.:	SE-0	0397		SE0397-030	
MIXING DATE:	11-A	.pr-12	-	MIXED BY: JGS	
UNTREATED MATERIAL				TI	P-02
WEIGHT OF UNTREATED		l		1,300	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	IGHT
NewCem Slag Cement #920		10.00	%	130.0	g
Bentonite #807		2.00	%	26.0	g
Caustic Soda Beads #926		0.50	%	6.5	g
			%	0.0	g
			%	0.0	g
Water Addition (water:reagent)		175	%	284.4	g
OBSERVATIONS / NOTES					
VE @ 7 and 28 Days SPLP and TCLP Analysis @ 28 5 Day ANS 16.1 Permeability Test The water addition will be adjust	·	ımpable reagent	slurry.		
	MONITO	ORING ACT	TIVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	DENETD	OMETED A	NIA I WOTO		
CVIDE TINKE (D		OMETER A	Ī	7	1.4
CURE TIME (Days)	1 25	3	5	7	14
PENETROMETER (tons/ftý)	1.25		>4.5	>4.5	
	VOLUM	ETRIC EXP	PANSION		
INITIAL HEIGHT (in):	1.12	FINAL HEIGI	HT AT 7 DAYS	(in):	1.57
7- DAY VOLUMETRIC EXPA	ANSION (%):	40.18			
		FINAL HEIGI	HT AT 28 DAYS	S (in):	1.58
28- DAY VOLUMETRIC EXP	ANSION (%):	40.80			
		FINAL HEIGI	HT AT 56 DAYS	S (in):	1.57
56- DAY VOLUMETRIC EXP	ANSION (%):	40.09			

PROJECT:	Longview Woo	od Treating Site	_	MIX No.	
PROJECT No.:	SE-0	0397		SE0397-031	
MIXING DATE:	11-A	pr-12	_	MIXED BY: JGS	
UNTREATED MATERIAL T	ГҮРЕ			T	P-02
WEIGHT OF UNTREATED				1,300	
REAGENT TYPE AND LOT	NUMBER	ADDITI	ON RATE	WE	IGHT
NewCem Slag Cement #920		10.00		130.0	
Bentonite #807		2.00		26.0	
Organoclay #922		0.50		6.5	
Caustic Soda Beads #926		0.50		6.5	
			%	0.0	
Water Addition (water:reagent)		175	%	295.8	g
OBSERVATIONS / NOTES					
UCS @ 7, 14, 28, and 49 Days VE @ 7 and 28 Days SPLP and TCLP Analysis @ 28 5 Day ANS 16.1 Permeability Test The water addition will be adjust		ımpable reagent	slurry.		
	MONITO	ORING ACT	TIVITIES		
MONITORING			TIME PERIOD)	_
ACTIVITIES					
MAXIMUM PID (ppm)					
Notes / Observations:					
	PENETRO	OMETER A	NALYSES		
CURE TIME (Days)	1	3	5	7	14
PENETROMETER (tons/ftý)	2.0		>4.5	>4.5	14
TENETROWETER (tolls/ity)	2.0		74.5	74.5	
	VOLUM	ETRIC EXP	PANSION		
INITIAL HEIGHT (in):	1.12	FINAL HEIG	HT AT 7 DAYS	(in):	1.57
7- DAY VOLUMETRIC EXPA	ANSION (%):	40.18			
		FINAL HEIG	HT AT 28 DAY	S (in):	1.57
28- DAY VOLUMETRIC EXP	'ANSION (%):	40.45			
		FINAL HEIG	HT AT 56 DAY	S (in):	1.60
56- DAY VOLUMETRIC EXP	ANSION (%):	42.59			

ASTM D 2166

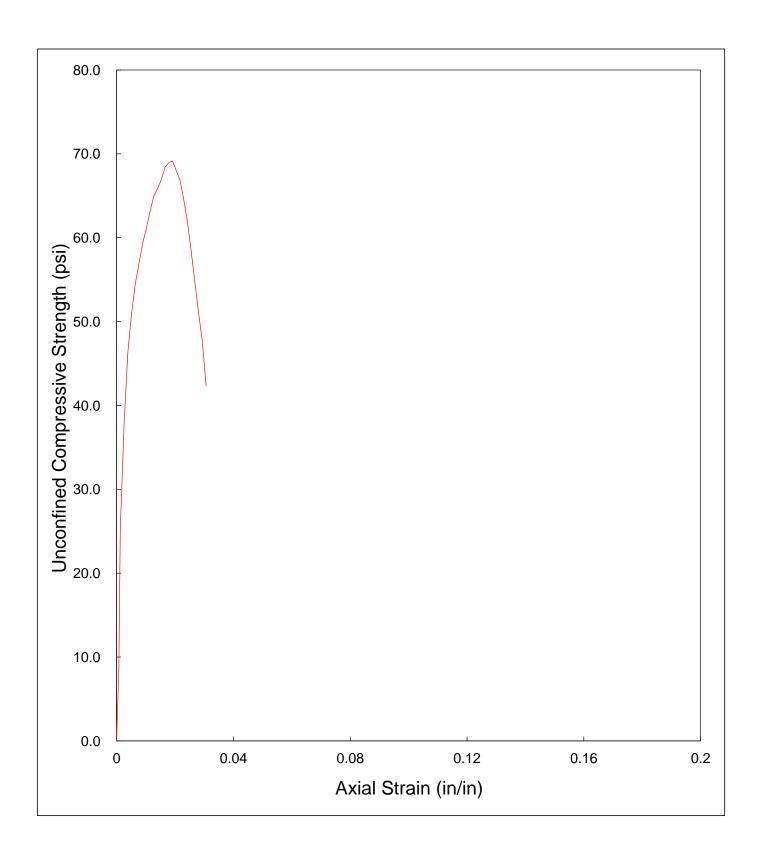
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-001 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7604_US


MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-001 (9 day)						
2. WT MOISTURE TIN (tare weight)	67.30 g						
3. WT WET SOIL + TARE	157.63 g						
4. WT DRY SOIL + TARE	135.39 g						
5. WT WATER, Ww	22.24 g						
6. WT DRY SOIL, Ws	68.09 g						
7. MOISTURE CONTENT, W	32.66 %						

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.01	in.	3.91	in.	
No. 2	2.02	in.	3.92	in.	
No. 3	2.03	in.	3.92	in.	
Average	2.02	in.	3.92	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	367.63	g			
Initial Area, Ao	3.20	in²			
Initial Volume, Vo	12.55	in³			
Initial Bulk Unit Weight,	111.6	lb/ft³			
Initial Dry Unit Weight	84.1	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	69.2	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.205	0.0000	0.0
29	0.003	0.003	3.207	0.0008	9.0
82	0.005	0.005	3.209	0.0013	25.6
98	0.007	0.007	3.210	0.0018	30.5
122	0.010	0.010	3.213	0.0026	38.0
149	0.015	0.015	3.217	0.0038	46.3
164	0.020	0.020	3.221	0.0051	50.9
176	0.025	0.025	3.225	0.0064	54.6
184	0.030	0.030	3.229	0.0077	57.0
192	0.035	0.035	3.234	0.0089	59.4
198	0.040	0.040	3.238	0.0102	61.2
205	0.045	0.045	3.242	0.0115	63.2
211	0.050	0.050	3.246	0.0128	65.0
214	0.055	0.055	3.250	0.0140	65.8
218	0.060	0.060	3.255	0.0153	67.0
223	0.065	0.065	3.259	0.0166	68.4
225	0.070	0.070	3.263	0.0179	69.0
226	0.075	0.075	3.267	0.0191	69.2
219	0.085	0.085	3.276	0.0217	66.9
212	0.090	0.090	3.280	0.0230	64.6
203	0.095	0.095	3.284	0.0243	61.8
192	0.100	0.100	3.289	0.0255	58.4
180	0.105	0.105	3.293	0.0268	54.7
168	0.110	0.110	3.297	0.0281	51.0
157	0.115	0.115	3.302	0.0294	47.6
140	0.120	0.120	3.306	0.0306	42.3

UNCONFINED COMPRESSION TESTING Sample No. 0397-001 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-001 (9 day)

 TESTING DATE:
 10/14/2011

TESTED BY:

 E:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7604_US

TESTING PARAMETER AND RESULTS						
MOISTURE CONTENT	32.7 %					
BULK UNIT WEIGHT	111.6 lb/ft ³					
DRY UNIT WEIGHT	84.1 lb/ft ³					
UCS *	69.2 lb/in ²					

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

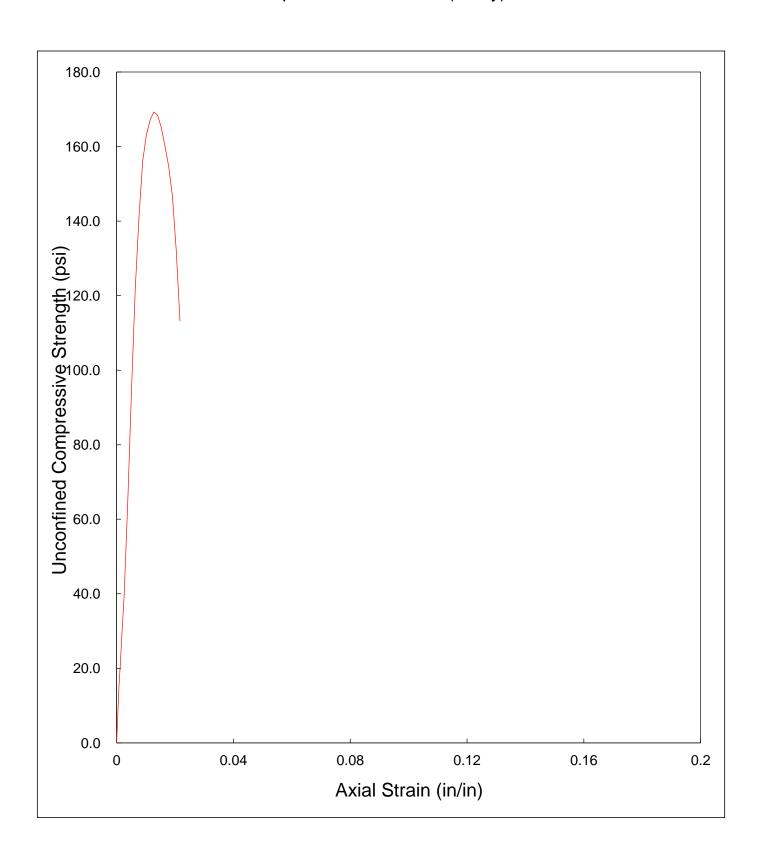
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-002 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7605_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-002 (9 day)					
2. WT MOISTURE TIN (tare weight)	67.01 g					
3. WT WET SOIL + TARE	179.94 g					
4. WT DRY SOIL + TARE	152.76 g					
5. WT WATER, Ww	27.18 g					
6. WT DRY SOIL, Ws	85.75 g					
7. MOISTURE CONTENT, W	31.70 %					

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.01	in.	3.92	in.	
No. 2	2.01	in.	3.92	in.	
No. 3	2.01	in.	3.92	in.	
Average	2.01	in.	3.92	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	373.58	g		
Initial Area, Ao	3.17	in²		
Initial Volume, Vo	12.44	in³		
Initial Bulk Unit Weight,	114.4	lb/ft³		
Initial Dry Unit Weight	86.9	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	169.3	lb/in²		

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
LOAD	READING	DEFORMATION		STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
(103.)	0.000	0.000	3.173	0.0000	0.0
47	0.000	0.000	3.173	0.0008	14.8
67	0.005	0.005	3.176	0.0008	21.1
93	0.007	0.007	3.177	0.0013	29.3
126	0.010	0.010	3.181	0.0016	39.6
208	0.015	0.015	3.185	0.0038	65.3
302	0.020	0.020	3.189	0.0051	94.7
388	0.025	0.025	3.193	0.0064	121.5
452	0.030	0.030	3.198	0.0077	141.4
500	0.035	0.035	3.202	0.0089	156.2
523	0.040	0.040	3.206	0.0102	163.1
537	0.045	0.045	3.210	0.0115	167.3
544	0.050	0.050	3.214	0.0128	169.3
542	0.055	0.055	3.218	0.0140	168.4
532	0.060	0.060	3.222	0.0153	165.1
516	0.065	0.065	3.227	0.0166	159.9
499	0.070	0.070	3.231	0.0179	154.5
474	0.075	0.075	3.235	0.0191	146.5
429	0.080	0.080	3.239	0.0204	132.4
367	0.085	0.085	3.243	0.0217	113.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-002 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-002 (9 day)

 TESTING DATE:
 10/14/2011

TESTED BY:

 :
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7605_US

MOISTURE CONTENT BULK UNIT WEIGHT DRY UNIT WEIGHT UCS * 169.3 | b/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

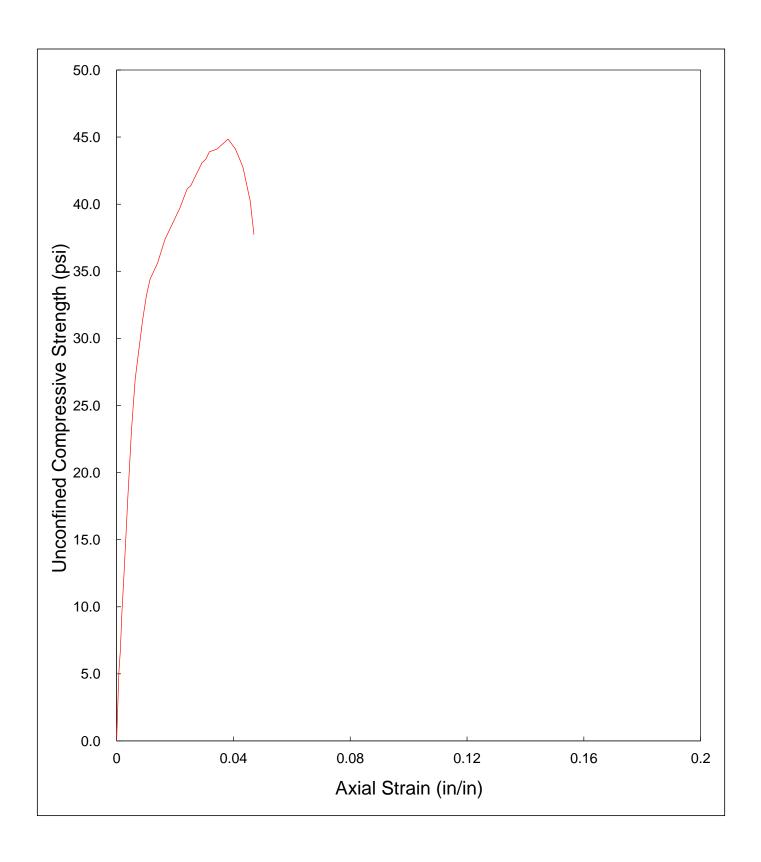
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-003 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7606_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-003 (8 day)				
2. WT MOISTURE TIN (tare weight)	68.86 g				
3. WT WET SOIL + TARE	145.15 g				
4. WT DRY SOIL + TARE	120.60 g				
5. WT WATER, Ww	24.55 g				
6. WT DRY SOIL, Ws	51.74 g				
7. MOISTURE CONTENT, W	47.45 %				

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENGT	ГН
No. 1	1.99	in.	3.94	in.
No. 2	2.00	in.	3.94	in.
No. 3	2.00	in.	3.92	in.
Average	2.00	in.	3.93	in.

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	348.87	g			
Initial Area, Ao	3.13	in²			
Initial Volume, Vo	12.32	in³			
Initial Bulk Unit Weight,	107.9	lb/ft³			
Initial Dry Unit Weight	73.2	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	44.9	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.131	0.0000	0.0
16	0.003	0.003	3.134	0.0008	5.1
21	0.005	0.005	3.135	0.0013	6.7
30	0.007	0.007	3.137	0.0018	9.6
39	0.010	0.010	3.139	0.0025	12.4
57	0.015	0.015	3.143	0.0038	18.1
73	0.020	0.020	3.147	0.0051	23.2
85	0.025	0.025	3.151	0.0064	27.0
99	0.035	0.035	3.159	0.0089	31.3
105	0.040	0.040	3.163	0.0102	33.2
109	0.045	0.045	3.167	0.0114	34.4
113	0.055	0.055	3.176	0.0140	35.6
119	0.065	0.065	3.184	0.0165	37.4
123	0.075	0.075	3.192	0.0191	38.5
127	0.085	0.085	3.200	0.0216	39.7
132	0.095	0.095	3.209	0.0242	41.1
133	0.100	0.100	3.213	0.0254	41.4
135	0.105	0.105	3.217	0.0267	42.0
139	0.115	0.115	3.225	0.0292	43.1
140	0.120	0.120	3.230	0.0305	43.3
142	0.125	0.125	3.234	0.0318	43.9
143	0.135	0.135	3.242	0.0343	44.1
145	0.145	0.145	3.251	0.0369	44.6
146	0.150	0.150	3.255	0.0381	44.9
144	0.160	0.160	3.264	0.0407	44.1
142	0.165	0.165	3.268	0.0419	43.4
140	0.170	0.170	3.273	0.0432	42.8
136	0.175	0.175	3.277	0.0445	41.5
132	0.180	0.180	3.281	0.0458	40.2
124	0.185	0.185	3.286	0.0470	37.7

UNCONFINED COMPRESSION TESTING Sample No. 0397-003 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-003 (8 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7606_US

MOISTURE CONTENT 47.4 %
BULK UNIT WEIGHT 107.9 lb/ft³
DRY UNIT WEIGHT 73.2 lb/ft³
UCS * 44.9 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

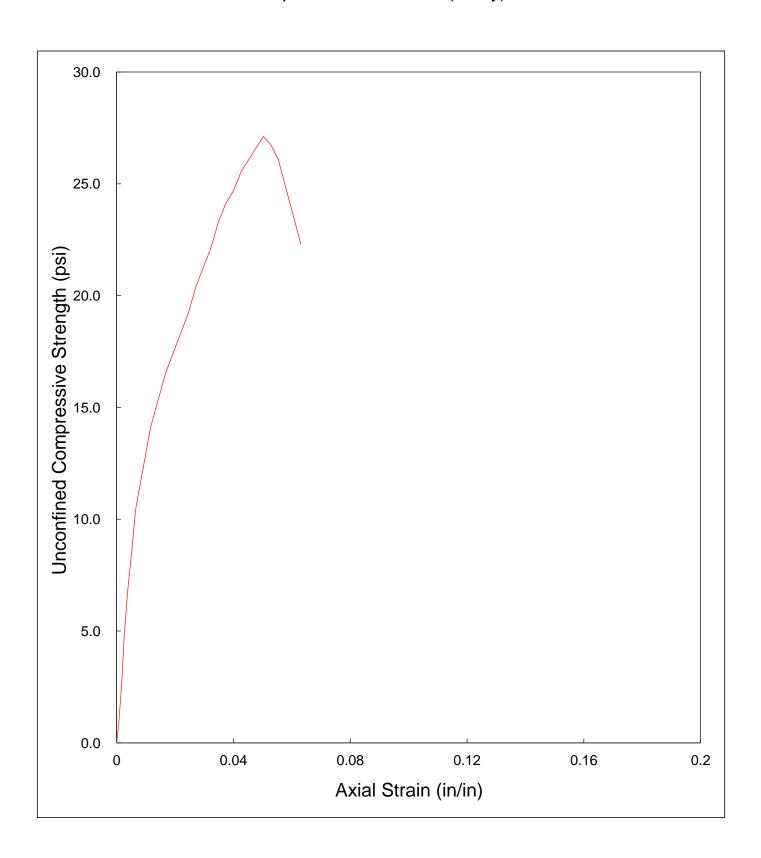
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-004 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7607_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-004 (9 day)				
2. WT MOISTURE TIN (tare weight)	66.40 g				
3. WT WET SOIL + TARE	165.80 g				
4. WT DRY SOIL + TARE	137.76 g				
5. WT WATER, Ww	28.04 g				
6. WT DRY SOIL, Ws	71.36 g				
7. MOISTURE CONTENT, W	39.29 %				

SOIL SPECIMEN DIMENSIONS				
	DIAMETI	ER	LENG1	ТН
No. 1	2.00	in.	3.88	in.
No. 2	2.00	in.	3.88	in.
No. 3	2.01	in.	3.88	in.
Average	2.00	in.	3.88	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	357.82	g		
Initial Area, Ao	3.15	in²		
Initial Volume, Vo	12.23	in³		
Initial Bulk Unit Weight,	111.5	lb/ft³		
Initial Dry Unit Weight	80.0	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	27.1	lb/in²		

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.152	0.0000	0.0
3	0.003	0.003	3.155	0.0008	1.0
6	0.005	0.005	3.156	0.0013	1.9
9	0.007	0.007	3.158	0.0018	2.9
15	0.010	0.010	3.160	0.0026	4.7
22	0.015	0.015	3.164	0.0039	7.0
27	0.020	0.020	3.168	0.0052	8.5
33	0.025	0.025	3.173	0.0064	10.4
36	0.030	0.030	3.177	0.0077	11.3
39	0.035	0.035	3.181	0.0090	12.3
45	0.045	0.045	3.189	0.0116	14.1
49	0.055	0.055	3.197	0.0142	15.3
53	0.065	0.065	3.206	0.0168	16.5
56	0.075	0.075	3.214	0.0193	17.4
59	0.085	0.085	3.223	0.0219	18.3
62	0.095	0.095	3.231	0.0245	19.2
66	0.105	0.105	3.240	0.0271	20.4
69	0.115	0.115	3.248	0.0296	21.2
72	0.125	0.125	3.257	0.0322	22.1
76	0.135	0.135	3.266	0.0348	23.3
79	0.145	0.145	3.274	0.0374	24.1
81	0.155	0.155	3.283	0.0399	24.7
84	0.165	0.165	3.292	0.0425	25.5
86	0.175	0.175	3.301	0.0451	26.1
88	0.185	0.185	3.310	0.0477	26.6
90	0.195	0.195	3.319	0.0503	27.1
89	0.205	0.205	3.328	0.0528	26.7
87	0.215	0.215	3.337	0.0554	26.1
83	0.225	0.225	3.346	0.0580	24.8
79	0.235	0.235	3.355	0.0606	23.5
75	0.245	0.245	3.365	0.0631	22.3

UNCONFINED COMPRESSION TESTING Sample No. 0397-004 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-004 (9 day)

 TESTING DATE:
 10/14/2011

TESTED BY:

 10/14/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7607_US

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	39.3 %			
BULK UNIT WEIGHT	111.5 lb/ft ³			
DRY UNIT WEIGHT	80.0 lb/ft ³			
UCS *	27.1 lb/in²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

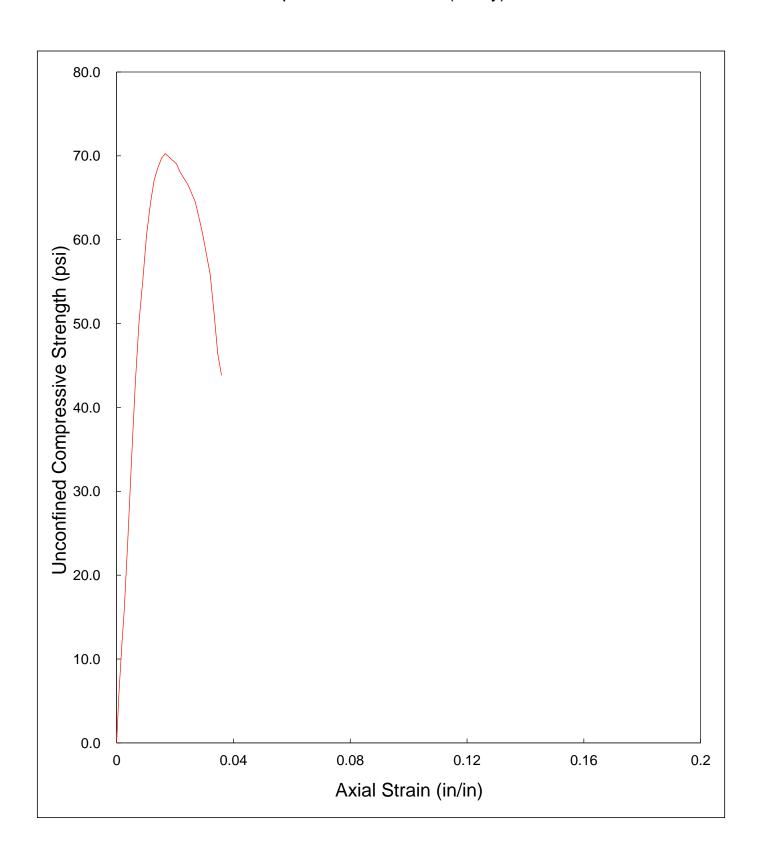
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-005 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7608_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-005 (8 day)				
2. WT MOISTURE TIN (tare weight)	50.97 g				
3. WT WET SOIL + TARE	136.48 g				
4. WT DRY SOIL + TARE	110.20 g				
5. WT WATER, Ww	26.28 g				
6. WT DRY SOIL, Ws	59.23 g				
7. MOISTURE CONTENT, W	44.37 %				

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH			ГН
No. 1	1.98	in.	3.90	in.
No. 2	1.99	in.	3.90	in.
No. 3	2.01	in.	3.90	in.
Average	1.99	in.	3.90	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	347.02	g		
Initial Area, Ao	3.12	in²		
Initial Volume, Vo	12.17	in³		
Initial Bulk Unit Weight,	108.6	lb/ft³		
Initial Dry Unit Weight	75.2	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	70.3	lb/in²		

COMPRESSIVE LOAD	DIAL GAGE READING	SPECIMEN DEFORMATION	CORRECTED AREA	AXIAL STRAIN	UNCONFINED COMPRESSIVE STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.121	0.0000	0.0
18	0.003	0.003	3.123	0.0008	5.8
27	0.005	0.005	3.125	0.0013	8.6
37	0.007	0.007	3.126	0.0018	11.8
49	0.010	0.010	3.129	0.0026	15.7
76	0.015	0.015	3.133	0.0038	24.3
107	0.020	0.020	3.137	0.0051	34.1
135	0.025	0.025	3.141	0.0064	43.0
158	0.030	0.030	3.145	0.0077	50.2
174	0.035	0.035	3.149	0.0090	55.3
191	0.040	0.040	3.153	0.0103	60.6
203	0.045	0.045	3.157	0.0115	64.3
212	0.050	0.050	3.161	0.0128	67.1
217	0.055	0.055	3.165	0.0141	68.6
221	0.060	0.060	3.169	0.0154	69.7
223	0.065	0.065	3.174	0.0167	70.3
221	0.075	0.075	3.182	0.0192	69.5
220	0.080	0.080	3.186	0.0205	69.1
217	0.085	0.085	3.190	0.0218	68.0
215	0.090	0.090	3.194	0.0231	67.3
213	0.095	0.095	3.199	0.0244	66.6
210	0.100	0.100	3.203	0.0256	65.6
207	0.105	0.105	3.207	0.0269	64.5
201	0.110	0.110	3.211	0.0282	62.6
195	0.115	0.115	3.215	0.0295	60.6
180	0.125	0.125	3.224	0.0321	55.8
166	0.130	0.130	3.228	0.0333	51.4
150	0.135	0.135	3.233	0.0346	46.4
142	0.140	0.140	3.237	0.0359	43.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-005 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-005 (8 day)

 TESTING DATE:
 10/15/2011

 TESTING DATE:
 10/15/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7608_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	44.4	%	
BULK UNIT WEIGHT	108.6	lb/ft³	
DRY UNIT WEIGHT	75.2	lb/ft³	
UCS *	70.3	lb/in²	

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

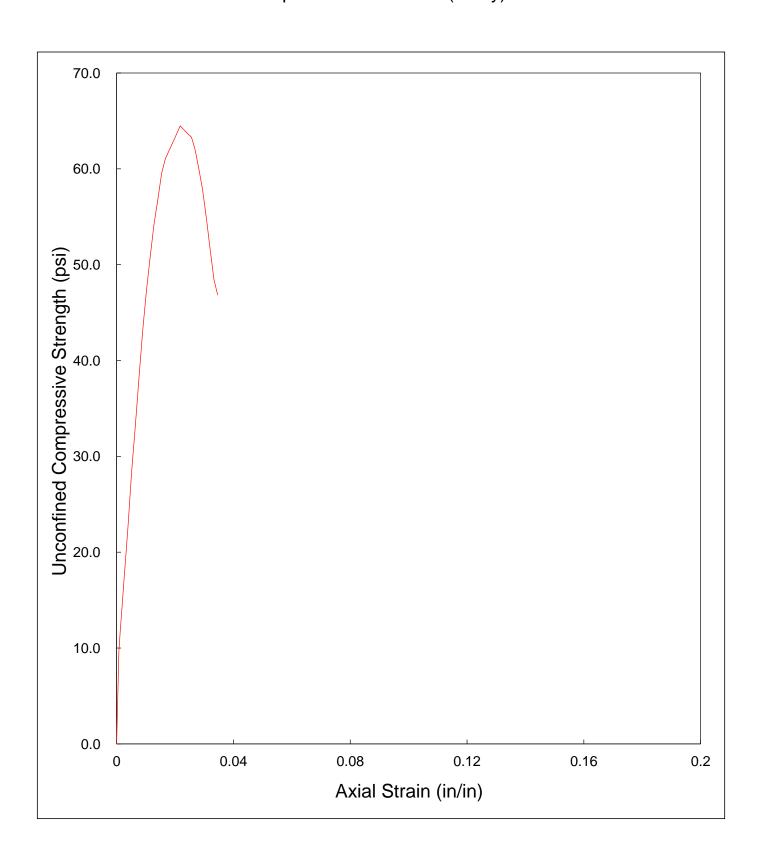
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-006 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7609_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO. 0397-006 (8 day)				
2. WT MOISTURE TIN (tare weight)	233.02 g			
3. WT WET SOIL + TARE	354.66 g			
4. WT DRY SOIL + TARE	324.97 g			
5. WT WATER, Ww	29.69 g			
6. WT DRY SOIL, Ws	91.95 g			
7. MOISTURE CONTENT, W	32.29 %			

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH			ГН
No. 1	1.99	in.	3.90	in.
No. 2	1.99	in.	3.91	in.
No. 3	1.99	in.	3.90	in.
Average	1.99	in.	3.90	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	373.95	g	
Initial Area, Ao	3.11	in²	
Initial Volume, Vo	12.14	in³	
Initial Bulk Unit Weight,	117.3	lb/ft³	
Initial Dry Unit Weight	88.7	lb/ft³	
15 % Strain (0.15 Lo)	0.59	in.	
UCS	64.5	lb/in²	

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.110	0.0000	0.0
30	0.003	0.003	3.113	0.0008	9.6
37	0.005	0.005	3.114	0.0013	11.9
44	0.007	0.007	3.116	0.0018	14.1
54	0.010	0.010	3.118	0.0026	17.3
70	0.015	0.015	3.122	0.0038	22.4
89	0.020	0.020	3.126	0.0051	28.5
104	0.025	0.025	3.130	0.0064	33.2
120	0.030	0.030	3.134	0.0077	38.3
136	0.035	0.035	3.138	0.0090	43.3
149	0.040	0.040	3.142	0.0102	47.4
160	0.045	0.045	3.147	0.0115	50.8
171	0.050	0.050	3.151	0.0128	54.3
179	0.055	0.055	3.155	0.0141	56.7
188	0.060	0.060	3.159	0.0154	59.5
193	0.065	0.065	3.163	0.0167	61.0
196	0.070	0.070	3.167	0.0179	61.9
199	0.075	0.075	3.171	0.0192	62.8
202	0.080	0.080	3.175	0.0205	63.6
205	0.085	0.085	3.179	0.0218	64.5
203	0.095	0.095	3.188	0.0243	63.7
202	0.100	0.100	3.192	0.0256	63.3
198	0.105	0.105	3.196	0.0269	61.9
192	0.110	0.110	3.200	0.0282	60.0
185	0.115	0.115	3.205	0.0295	57.7
176	0.120	0.120	3.209	0.0307	54.8
166	0.125	0.125	3.213	0.0320	51.7
156	0.130	0.130	3.217	0.0333	48.5
151	0.135	0.135	3.222	0.0346	46.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-006 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-006 (8 day)

 TESTING DATE:
 10(14/2011)

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7609_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	32.3 %		
BULK UNIT WEIGHT	117.3 lb/ft ³		
DRY UNIT WEIGHT	88.7 lb/ft ³		
UCS *	64.5 lb/in ²		

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

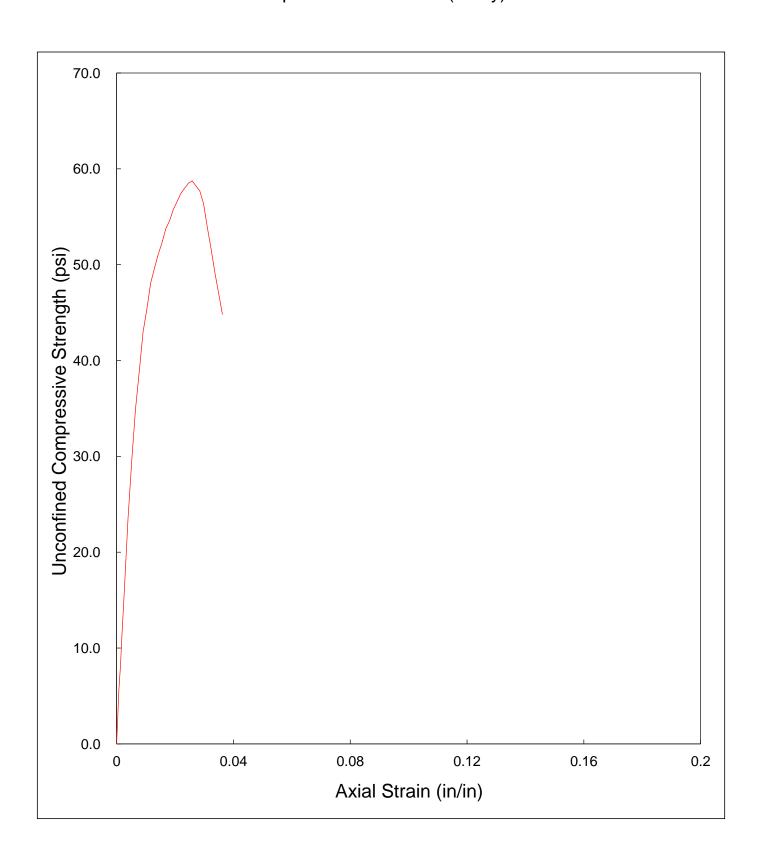
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-008 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7610_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-008 (9 day)			
2. WT MOISTURE TIN (tare weight)	63.54 g			
3. WT WET SOIL + TARE	152.51 g			
4. WT DRY SOIL + TARE	129.83 g			
5. WT WATER, Ww	22.68 g			
6. WT DRY SOIL, Ws	66.29 g			
7. MOISTURE CONTENT, W	34.21 %			

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH			ГН
No. 1	2.00	in.	3.86	in.
No. 2	2.01	in.	3.86	in.
No. 3	2.03	in.	3.87	in.
Average 2.01 in. 3.86 in.				

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	367.30	g	
Initial Area, Ao	3.18	in²	
Initial Volume, Vo	12.30	in³	
Initial Bulk Unit Weight,	113.8	lb/ft³	
Initial Dry Unit Weight	84.8	lb/ft³	
15 % Strain (0.15 Lo)	0.58	in.	
UCS	58.7	lb/in²	

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.184	0.0000	0.0
18	0.003	0.003	3.186	0.0008	5.6
26	0.005	0.005	3.188	0.0013	8.2
36	0.007	0.007	3.189	0.0018	11.3
50	0.010	0.010	3.192	0.0026	15.7
75	0.015	0.015	3.196	0.0039	23.5
95	0.020	0.020	3.200	0.0052	29.7
112	0.025	0.025	3.204	0.0065	35.0
125	0.030	0.030	3.209	0.0078	39.0
138	0.035	0.035	3.213	0.0091	43.0
146	0.040	0.040	3.217	0.0104	45.4
155	0.045	0.045	3.221	0.0116	48.1
160	0.050	0.050	3.225	0.0129	49.6
165	0.055	0.055	3.230	0.0142	51.1
169	0.060	0.060	3.234	0.0155	52.3
174	0.065	0.065	3.238	0.0168	53.7
177	0.070	0.070	3.242	0.0181	54.6
181	0.075	0.075	3.247	0.0194	55.7
184	0.080	0.080	3.251	0.0207	56.6
187	0.085	0.085	3.255	0.0220	57.4
189	0.090	0.090	3.260	0.0233	58.0
191	0.095	0.095	3.264	0.0246	58.5
192	0.100	0.100	3.268	0.0259	58.7
189	0.110	0.110	3.277	0.0285	57.7
185	0.115	0.115	3.281	0.0298	56.4
177	0.120	0.120	3.286	0.0311	53.9
170	0.125	0.125	3.290	0.0324	51.7
162	0.130	0.130	3.294	0.0336	49.2
155	0.135	0.135	3.299	0.0349	47.0
148	0.140	0.140	3.303	0.0362	44.8
	·				

UNCONFINED COMPRESSION TESTING Sample No. 0397-008 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-008 (9 day)

 TESTING DATE:
 10/14/2011

TESTED BY:

 10/14/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7610_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	34.2	%	
BULK UNIT WEIGHT	113.8	lb/ft³	
DRY UNIT WEIGHT	84.8	lb/ft³	
UCS *	58.7	lb/in²	

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

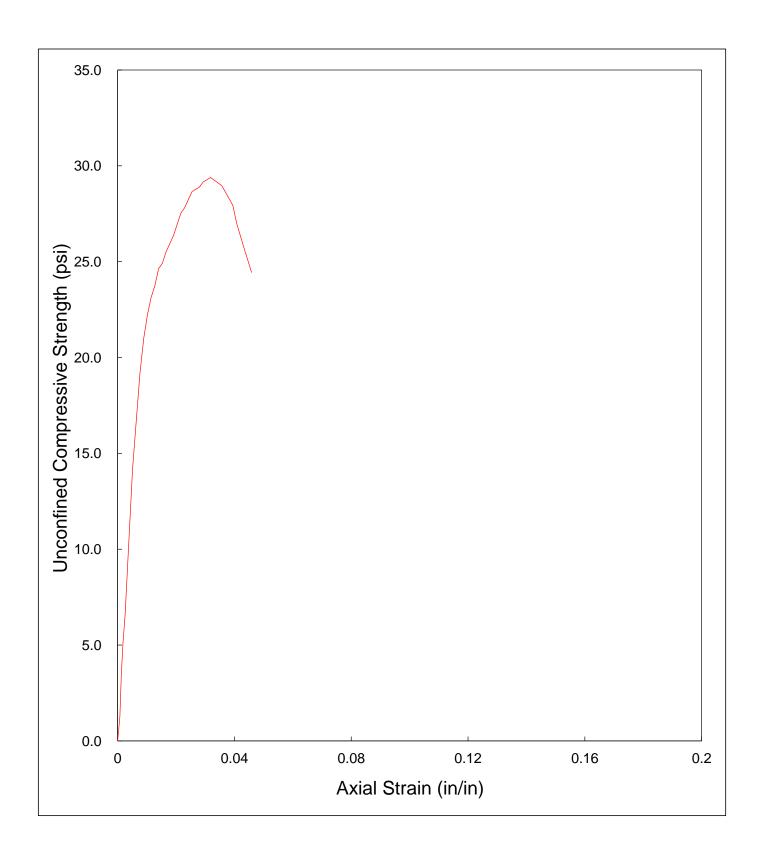
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-009 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7611_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-009 (8 day)			
2. WT MOISTURE TIN (tare weight)	88.28 g			
3. WT WET SOIL + TARE	167.92 g			
4. WT DRY SOIL + TARE	141.81 g			
5. WT WATER, Ww	26.11 g			
6. WT DRY SOIL, Ws	53.53 g			
7. MOISTURE CONTENT, W	48.78 %			

SOIL SPECIMEN DIMENSIONS				
DIAMETER LENGTH				
No. 1	2.00	in.	3.92	in.
No. 2	2.01	in.	3.93	in.
No. 3	2.01	in.	3.93	in.
Average	2.01	in.	3.93	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	344.20	g	
Initial Area, Ao	3.16	in²	
Initial Volume, Vo	12.42	in³	
Initial Bulk Unit Weight,	105.6	lb/ft³	
Initial Dry Unit Weight	71.0	lb/ft³	
15 % Strain (0.15 Lo)	0.59	in.	
UCS	29.4	lb/in²	

0014555000/5	5141 6465	00500450	000050750	A > (1 A 1	UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
4	0.003	0.003	3.165	0.0008	1.3
11	0.005	0.005	3.167	0.0013	3.5
16	0.007	0.007	3.168	0.0018	5.1
21	0.010	0.010	3.171	0.0025	6.6
33	0.015	0.015	3.175	0.0038	10.4
45	0.020	0.020	3.179	0.0051	14.2
53	0.025	0.025	3.183	0.0064	16.7
61	0.030	0.030	3.187	0.0076	19.1
67	0.035	0.035	3.191	0.0089	21.0
71	0.040	0.040	3.195	0.0102	22.2
74	0.045	0.045	3.199	0.0115	23.1
76	0.050	0.050	3.203	0.0127	23.7
79	0.055	0.055	3.207	0.0140	24.6
80	0.060	0.060	3.212	0.0153	24.9
82	0.065	0.065	3.216	0.0166	25.5
85	0.075	0.075	3.224	0.0191	26.4
87	0.080	0.080	3.228	0.0204	26.9
89	0.085	0.085	3.233	0.0216	27.5
90	0.090	0.090	3.237	0.0229	27.8
93	0.100	0.100	3.245	0.0255	28.7
94	0.110	0.110	3.254	0.0280	28.9
95	0.115	0.115	3.258	0.0293	29.2
96	0.125	0.125	3.267	0.0318	29.4
95	0.140	0.140	3.279	0.0357	29.0
94	0.145	0.145	3.284	0.0369	28.6
93	0.150	0.150	3.288	0.0382	28.3
92	0.155	0.155	3.293	0.0395	27.9
89	0.160	0.160	3.297	0.0407	27.0
85	0.170	0.170	3.306	0.0433	25.7
81	0.180	0.180	3.315	0.0458	24.4

UNCONFINED COMPRESSION TESTING Sample No. 0397-009 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-009 (8 day)

 TESTING DATE:
 10/14/2011

JGS/SEM

TESTED BY:

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7611_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	48.8 %		
BULK UNIT WEIGHT	105.6 lb/ft ³		
DRY UNIT WEIGHT	71.0 lb/ft ³		
UCS *	29.4 lb/in²		

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

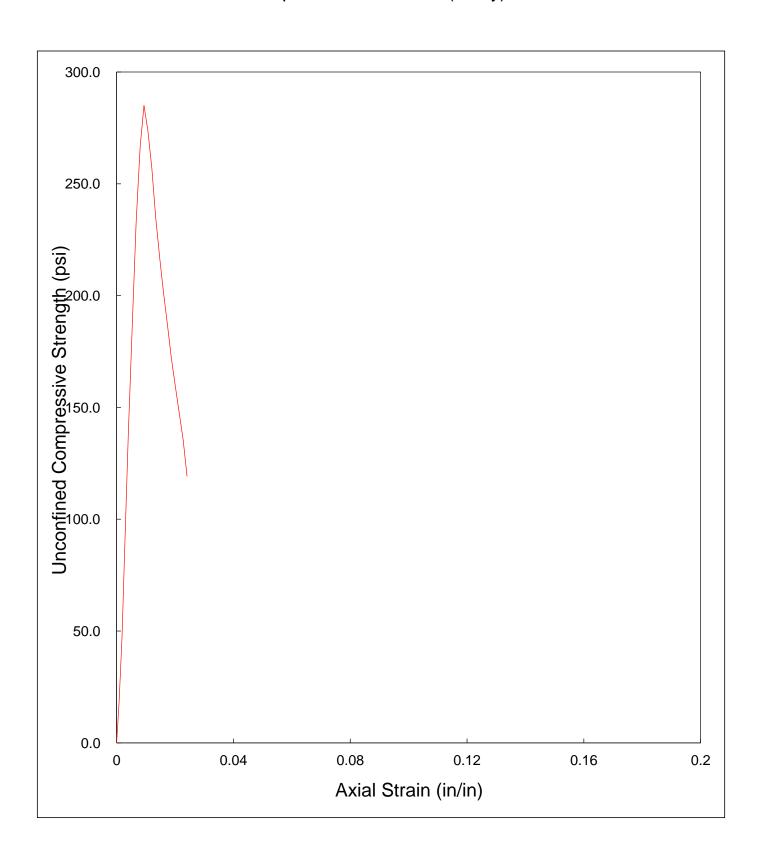
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-010 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7612_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-010 (9 day)			
2. WT MOISTURE TIN (tare weight)	63.35 g			
3. WT WET SOIL + TARE	117.91 g			
4. WT DRY SOIL + TARE	107.33 g			
5. WT WATER, Ww	10.58 g			
6. WT DRY SOIL, Ws	43.98 g			
7. MOISTURE CONTENT, W	24.06 %			

SOIL SPECIMEN DIMENSIONS				
	DIAMETI	ΞR	LENGT	ГН
No. 1	1.98	in.	3.73	in.
No. 2	1.97	in.	3.73	in.
No. 3	1.98	in.	3.74	in.
Average	1.98	in.	3.73	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	382.14	g	
Initial Area, Ao	3.07	in²	
Initial Volume, Vo	11.46	in³	
Initial Bulk Unit Weight,	127.1	lb/ft³	
Initial Dry Unit Weight	102.4	lb/ft³	
15 % Strain (0.15 Lo)	0.56	in.	
UCS	285.0	lb/in²	

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.069	0.0000	0.0
55	0.003	0.003	3.071	0.0008	17.9
98	0.005	0.005	3.073	0.0013	31.9
148	0.007	0.007	3.074	0.0019	48.1
257	0.010	0.010	3.077	0.0027	83.5
426	0.015	0.015	3.081	0.0040	138.3
578	0.020	0.020	3.085	0.0054	187.3
720	0.025	0.025	3.089	0.0067	233.1
825	0.030	0.030	3.094	0.0080	266.7
883	0.035	0.035	3.098	0.0094	285.0
848	0.040	0.040	3.102	0.0107	273.4
798	0.045	0.045	3.106	0.0121	256.9
731	0.050	0.050	3.110	0.0134	235.0
676	0.055	0.055	3.115	0.0147	217.0
628	0.060	0.060	3.119	0.0161	201.4
583	0.065	0.065	3.123	0.0174	186.7
538	0.070	0.070	3.127	0.0188	172.0
499	0.075	0.075	3.132	0.0201	159.3
463	0.080	0.080	3.136	0.0214	147.6
425	0.085	0.085	3.140	0.0228	135.3
375	0.090	0.090	3.145	0.0241	119.3

UNCONFINED COMPRESSION TESTING Sample No. 0397-010 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-010 (9 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7612_US

MOISTURE CONTENT BULK UNIT WEIGHT DRY UNIT WEIGHT UCS * 24.1 % 127.1 lb/ft³ 102.4 lb/ft³ 285.0 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

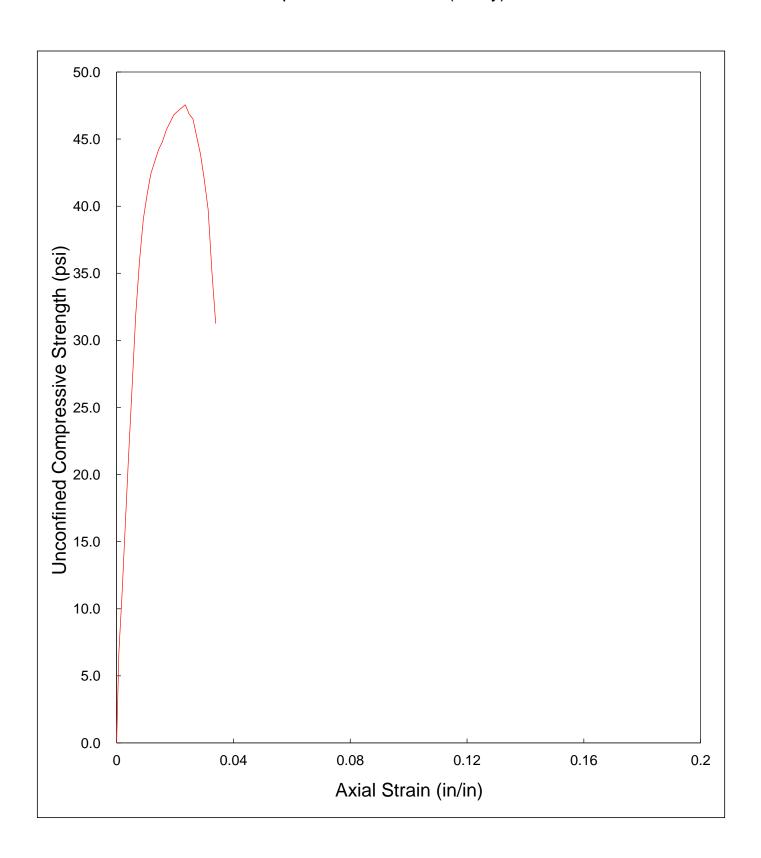
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-011 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7613_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-011 (8 day)			
2. WT MOISTURE TIN (tare weight)	69.75 g			
3. WT WET SOIL + TARE	145.63 g			
4. WT DRY SOIL + TARE	124.32 g			
5. WT WATER, Ww	21.31 g			
6. WT DRY SOIL, Ws	54.57 g			
7. MOISTURE CONTENT, W	39.05 %			

SOIL SPECIMEN DIMENSIONS						
	DIAMET	DIAMETER		LENGTH		
No. 1	1.99	in.	3.82	in.		
No. 2	1.99	in.	3.83	in.		
No. 3	2.00	in.	3.84	in.		
Average	1.99	in.	3.83	in.		

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	347.17	g			
Initial Area, Ao	3.12	in²			
Initial Volume, Vo	11.95	in³			
Initial Bulk Unit Weight,	110.7	lb/ft³			
Initial Dry Unit Weight	79.6	lb/ft³			
15 % Strain (0.15 Lo)	0.57	in.			
UCS	47.6	lb/in²			

				UNCONFINED
				COMPRESSIVE
_			_	STRENGTH
(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0.000	0.000	3.121	0.0000	0.0
0.003	0.003	3.123	0.0008	6.7
0.005	0.005	3.125	0.0013	9.0
0.007	0.007	3.126	0.0018	10.9
0.010	0.010	3.129	0.0026	14.7
0.015	0.015	3.133	0.0039	20.7
0.020	0.020	3.137	0.0052	26.1
0.025	0.025	3.141	0.0065	31.8
0.030	0.030	3.145	0.0078	35.9
0.035	0.035	3.149	0.0091	39.1
0.040	0.040	3.154	0.0104	40.9
0.045	0.045	3.158	0.0117	42.4
0.050	0.050	3.162	0.0131	43.3
0.055	0.055	3.166	0.0144	44.2
0.060	0.060	3.170	0.0157	44.8
0.065	0.065	3.175	0.0170	45.7
0.070	0.070	3.179	0.0183	46.2
0.075	0.075	3.183	0.0196	46.8
0.080	0.080	3.187	0.0209	47.1
0.085	0.085	3.192	0.0222	47.3
0.090	0.090	3.196	0.0235	47.6
0.095	0.095	3.200	0.0248	46.9
0.100	0.100	3.204	0.0261	46.5
0.105	0.105	3.209	0.0274	45.2
0.110	0.110	3.213	0.0287	43.9
0.115	0.115	3.217	0.0300	42.0
0.120	0.120	3.222	0.0313	39.7
0.125	0.125	3.226	0.0326	35.0
0.130	0.130	3.230	0.0339	31.3
	0.003 0.005 0.007 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125	READING (in.) DEFORMATION (in.) 0.000 0.000 0.003 0.005 0.007 0.007 0.010 0.010 0.020 0.020 0.035 0.030 0.030 0.030 0.035 0.035 0.040 0.044 0.050 0.050 0.055 0.055 0.060 0.065 0.070 0.070 0.075 0.075 0.080 0.085 0.095 0.095 0.100 0.100 0.110 0.110 0.115 0.115 0.120 0.125	READING (in.) DEFORMATION (in.) AREA (in²) 0.000 0.000 3.121 0.003 0.003 3.123 0.005 0.005 3.125 0.007 0.007 3.126 0.010 0.010 3.129 0.015 0.015 3.133 0.020 0.020 3.137 0.025 0.025 3.141 0.030 0.030 3.145 0.035 0.035 3.149 0.040 0.040 3.154 0.045 0.045 3.158 0.050 0.050 3.162 0.055 0.055 3.166 0.060 0.060 3.170 0.065 0.065 3.175 0.070 0.070 3.183 0.080 0.080 3.187 0.085 0.085 3.192 0.090 0.090 3.196 0.095 0.095 3.200 0.100 0.100 3.204 <	READING (in.) DEFORMATION (in.) AREA (in²) STRAIN (in/in) 0.000 0.000 3.121 0.0000 0.003 0.003 3.123 0.0008 0.005 0.005 3.125 0.0013 0.007 0.007 3.126 0.0018 0.010 0.010 3.129 0.0026 0.015 0.015 3.133 0.0039 0.020 0.020 3.137 0.0052 0.025 0.025 3.141 0.0065 0.030 0.030 3.145 0.0078 0.035 0.035 3.149 0.0091 0.040 0.040 3.154 0.0104 0.045 3.158 0.0117 0.050 3.162 0.0131 0.055 0.050 3.162 0.0131 0.055 0.055 3.166 0.0144 0.060 0.060 3.170 0.0157 0.065 0.065 3.175 0.0170 0.070 <

UNCONFINED COMPRESSION TESTING Sample No. 0397-011 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-011 (8 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7613_US

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	39.1 %			
BULK UNIT WEIGHT	110.7 lb/ft ³			
DRY UNIT WEIGHT	79.6 lb/ft ³			
UCS *	47.6 lb/in ²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

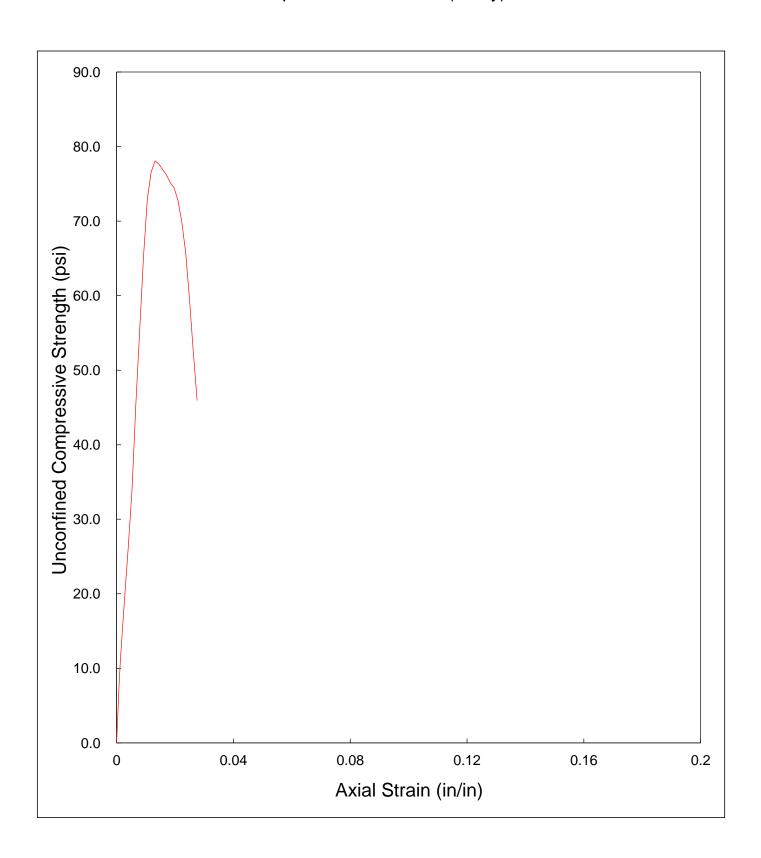
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-012 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7614_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO. 0397-012 (8 day)					
2. WT MOISTURE TIN (tare weight)	66.97 g				
3. WT WET SOIL + TARE	170.51 g				
4. WT DRY SOIL + TARE	140.20 g				
5. WT WATER, Ww	30.31 g				
6. WT DRY SOIL, Ws	73.23 g				
7. MOISTURE CONTENT, W	41.39 %				

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH			ГН
No. 1	2.00	in.	3.80	in.
No. 2	2.01	in.	3.81	in.
No. 3	2.02	in.	3.82	in.
Average	2.01	in.	3.81	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo 345.37				
Initial Area, Ao	3.17	in²		
Initial Volume, Vo	12.09	in³		
Initial Bulk Unit Weight,	108.8	lb/ft³		
Initial Dry Unit Weight	77.0	lb/ft³		
15 % Strain (0.15 Lo)	0.57	in.		
UCS	78.1	lb/in²		

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.173	0.0000	0.0
23	0.003	0.003	3.176	0.0008	7.2
36	0.005	0.005	3.177	0.0013	11.3
46	0.007	0.007	3.179	0.0018	14.5
60	0.010	0.010	3.181	0.0026	18.9
83	0.015	0.015	3.186	0.0039	26.1
108	0.020	0.020	3.190	0.0052	33.9
145	0.025	0.025	3.194	0.0066	45.4
177	0.030	0.030	3.198	0.0079	55.3
209	0.035	0.035	3.203	0.0092	65.3
234	0.040	0.040	3.207	0.0105	73.0
246	0.045	0.045	3.211	0.0118	76.6
251	0.050	0.050	3.215	0.0131	78.1
250	0.055	0.055	3.220	0.0144	77.7
248	0.060	0.060	3.224	0.0157	76.9
246	0.065	0.065	3.228	0.0171	76.2
243	0.070	0.070	3.232	0.0184	75.2
241	0.075	0.075	3.237	0.0197	74.5
236	0.080	0.080	3.241	0.0210	72.8
227	0.085	0.085	3.245	0.0223	69.9
214	0.090	0.090	3.250	0.0236	65.8
194	0.095	0.095	3.254	0.0249	59.6
171	0.100	0.100	3.259	0.0262	52.5
150	0.105	0.105	3.263	0.0276	46.0

UNCONFINED COMPRESSION TESTING Sample No. 0397-012 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 \$E0397

 SAMPLE No.:
 0397-012 (8 day)

 TESTING DATE:
 10/15/2011

 TESTING DATE:
 10/15/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7614_US

MOISTURE CONTENT 41.4 % BULK UNIT WEIGHT 108.8 lb/ft³ DRY UNIT WEIGHT 77.0 lb/ft³ UCS * 78.1 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

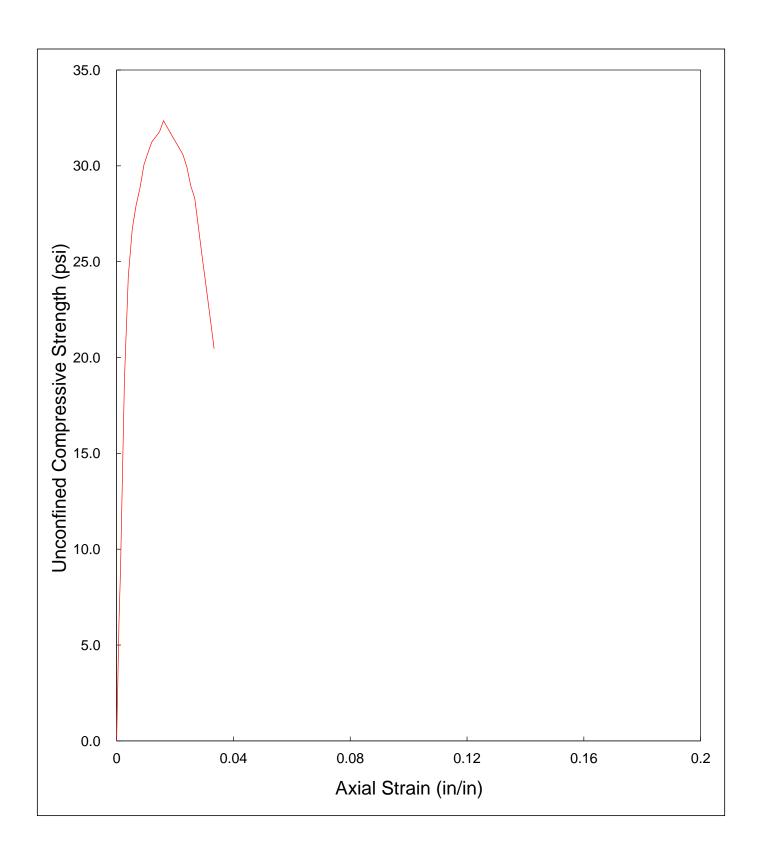
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-013 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7615_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-013 (9 day)				
2. WT MOISTURE TIN (tare weight)	63.77 g				
3. WT WET SOIL + TARE	155.32 g				
4. WT DRY SOIL + TARE	133.78 g				
5. WT WATER, Ww	21.54 g				
6. WT DRY SOIL, Ws	70.01 g				
7. MOISTURE CONTENT, W	30.77 %				

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH			ТН	
No. 1	2.01	in.	3.76	in.	
No. 2	2.01	in.	3.72	in.	
No. 3	2.00	in.	3.75	in.	
Average 2.01 in. 3.74 in.					

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo 357.81				
Initial Area, Ao	3.16	in²		
Initial Volume, Vo	11.84	in³		
Initial Bulk Unit Weight,	115.1	lb/ft³		
Initial Dry Unit Weight	88.0	lb/ft³		
15 % Strain (0.15 Lo)	0.56	in.		
UCS	32.4	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
20	0.003	0.003	3.165	0.0008	6.3
28	0.005	0.005	3.167	0.0013	8.8
41	0.007	0.007	3.168	0.0019	12.9
60	0.010	0.010	3.171	0.0027	18.9
77	0.015	0.015	3.175	0.0040	24.2
85	0.020	0.020	3.180	0.0053	26.7
89	0.025	0.025	3.184	0.0067	28.0
92	0.030	0.030	3.188	0.0080	28.9
96	0.035	0.035	3.192	0.0093	30.1
98	0.040	0.040	3.197	0.0107	30.7
100	0.045	0.045	3.201	0.0120	31.2
101	0.050	0.050	3.205	0.0134	31.5
102	0.055	0.055	3.210	0.0147	31.8
104	0.060	0.060	3.214	0.0160	32.4
102	0.070	0.070	3.223	0.0187	31.6
100	0.080	0.080	3.232	0.0214	30.9
99	0.085	0.085	3.236	0.0227	30.6
97	0.090	0.090	3.240	0.0240	29.9
94	0.095	0.095	3.245	0.0254	29.0
92	0.100	0.100	3.249	0.0267	28.3
87	0.105	0.105	3.254	0.0280	26.7
82	0.110	0.110	3.258	0.0294	25.2
77	0.115	0.115	3.263	0.0307	23.6
72	0.120	0.120	3.267	0.0321	22.0
67	0.125	0.125	3.272	0.0334	20.5
	·				

UNCONFINED COMPRESSION TESTING Sample No. 0397-013 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-013 (9 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7615_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	30.8	%	
BULK UNIT WEIGHT	115.1	lb/ft³	
DRY UNIT WEIGHT	88.0	lb/ft³	
UCS *	32.4	lb/in²	

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

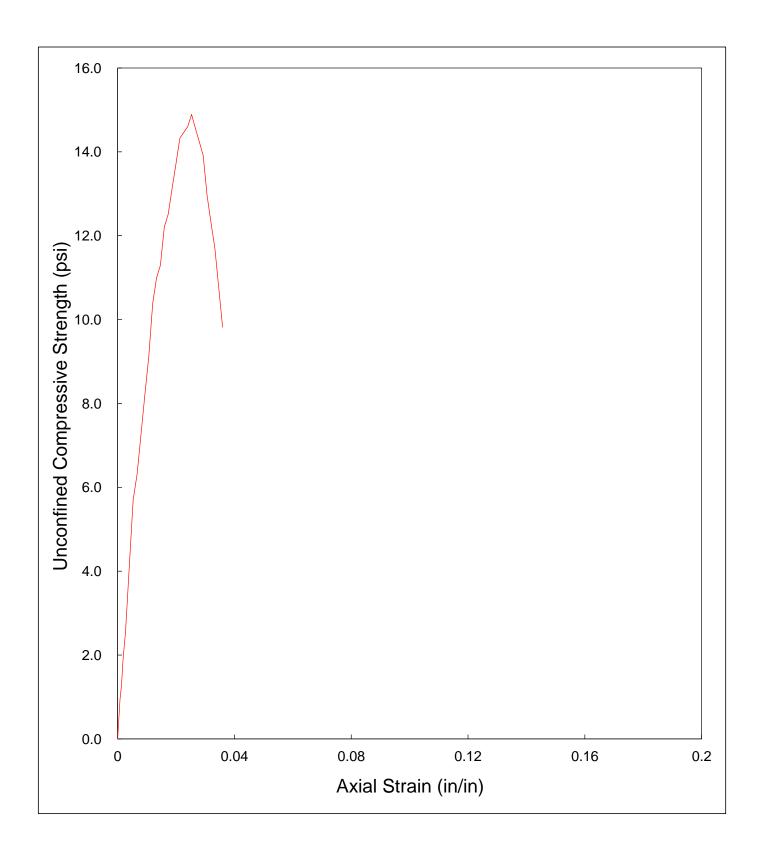
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-014 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7616_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO. 0397-014 (9 day)					
2. WT MOISTURE TIN (tare weight)	66.10 g				
3. WT WET SOIL + TARE	170.64 g				
4. WT DRY SOIL + TARE	144.02 g				
5. WT WATER, Ww	26.62 g				
6. WT DRY SOIL, Ws	77.92 g				
7. MOISTURE CONTENT, W	34.16 %				

SOIL SPECIMEN DIMENSIONS						
	DIAMETER LENGTH			ГН		
No. 1	1.99	in.	3.75	in.		
No. 2	2.00	in.	3.75	in.		
No. 3	2.01	in.	3.76	in.		
Average	ge 2.00 in. 3.75 in.					

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo 342.34				
Initial Area, Ao	3.14	in²		
Initial Volume, Vo	11.79	in³		
Initial Bulk Unit Weight,	110.6	lb/ft³		
Initial Dry Unit Weight	82.4	lb/ft³		
15 % Strain (0.15 Lo)	0.56	in.		
UCS	14.9	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.142	0.0000	0.0
3	0.003	0.003	3.144	0.0008	1.0
4	0.005	0.005	3.146	0.0013	1.3
6	0.007	0.007	3.147	0.0019	1.9
8	0.010	0.010	3.150	0.0027	2.5
13	0.015	0.015	3.154	0.0040	4.1
18	0.020	0.020	3.158	0.0053	5.7
20	0.025	0.025	3.163	0.0067	6.3
23	0.030	0.030	3.167	0.0080	7.3
26	0.035	0.035	3.171	0.0093	8.2
29	0.040	0.040	3.175	0.0107	9.1
33	0.045	0.045	3.180	0.0120	10.4
35	0.050	0.050	3.184	0.0133	11.0
36	0.055	0.055	3.188	0.0147	11.3
39	0.060	0.060	3.193	0.0160	12.2
40	0.065	0.065	3.197	0.0173	12.5
42	0.070	0.070	3.201	0.0187	13.1
44	0.075	0.075	3.206	0.0200	13.7
46	0.080	0.080	3.210	0.0213	14.3
47	0.090	0.090	3.219	0.0240	14.6
48	0.095	0.095	3.223	0.0253	14.9
47	0.100	0.100	3.228	0.0266	14.6
46	0.105	0.105	3.232	0.0280	14.2
45	0.110	0.110	3.236	0.0293	13.9
42	0.115	0.115	3.241	0.0306	13.0
40	0.120	0.120	3.245	0.0320	12.3
38	0.125	0.125	3.250	0.0333	11.7
35	0.130	0.130	3.254	0.0346	10.8
32	0.135	0.135	3.259	0.0360	9.8

UNCONFINED COMPRESSION TESTING Sample No. 0397-014 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-014 (9 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7616_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	34.2	%	
BULK UNIT WEIGHT	110.6	lb/ft³	
DRY UNIT WEIGHT	82.4	lb/ft³	
UCS *	14.9	lb/in²	

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

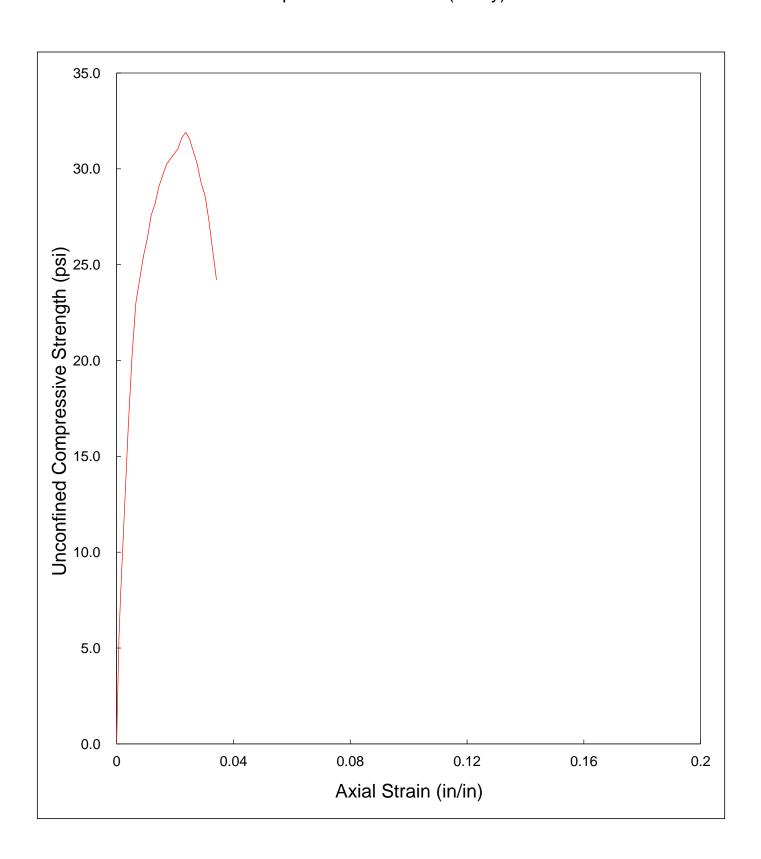
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-015 (9 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7617_US


MOISTURE CONTENT (Dry Basis)			
1. MOISTURE TIN NO.	0397-015 (9 day)		
2. WT MOISTURE TIN (tare weight)	69.19 g		
3. WT WET SOIL + TARE	163.49 g		
4. WT DRY SOIL + TARE	139.41 g		
5. WT WATER, Ww	24.08 g		
6. WT DRY SOIL, Ws	70.22 g		
7. MOISTURE CONTENT, W	34.29 %		

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENGT	ГН
No. 1	2.00	in.	3.80	in.
No. 2	2.00	in.	3.80	in.
No. 3	2.01	in.	3.80	in.
Average	2.00	in.	3.80	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	348.29	g	
Initial Area, Ao	3.15	in²	
Initial Volume, Vo	11.98	in³	
Initial Bulk Unit Weight,	110.8	lb/ft³	
Initial Dry Unit Weight	82.5	lb/ft³	
15 % Strain (0.15 Lo)	0.57	in.	
UCS	31.9	lb/in²	

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.152	0.0000	0.0
17	0.003	0.003	3.155	0.0008	5.4
24	0.005	0.005	3.156	0.0013	7.6
30	0.007	0.007	3.158	0.0018	9.5
38	0.010	0.010	3.160	0.0026	12.0
52	0.015	0.015	3.165	0.0039	16.4
64	0.020	0.020	3.169	0.0053	20.2
73	0.025	0.025	3.173	0.0066	23.0
77	0.030	0.030	3.177	0.0079	24.2
81	0.035	0.035	3.181	0.0092	25.5
84	0.040	0.040	3.186	0.0105	26.4
88	0.045	0.045	3.190	0.0118	27.6
90	0.050	0.050	3.194	0.0132	28.2
93	0.055	0.055	3.198	0.0145	29.1
95	0.060	0.060	3.203	0.0158	29.7
97	0.065	0.065	3.207	0.0171	30.2
98	0.070	0.070	3.211	0.0184	30.5
99	0.075	0.075	3.216	0.0197	30.8
100	0.080	0.080	3.220	0.0211	31.1
102	0.085	0.085	3.224	0.0224	31.6
103	0.090	0.090	3.229	0.0237	31.9
102	0.095	0.095	3.233	0.0250	31.6
100	0.100	0.100	3.237	0.0263	30.9
98	0.105	0.105	3.242	0.0276	30.2
95	0.110	0.110	3.246	0.0289	29.3
93	0.115	0.115	3.250	0.0303	28.6
89	0.120	0.120	3.255	0.0316	27.3
84	0.125	0.125	3.259	0.0329	25.8
79	0.130	0.130	3.264	0.0342	24.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-015 (9 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-015 (9 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7617_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	34.3	%	
BULK UNIT WEIGHT	110.8	lb/ft³	
DRY UNIT WEIGHT	82.5	lb/ft³	
UCS *	31.9	lb/in²	

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

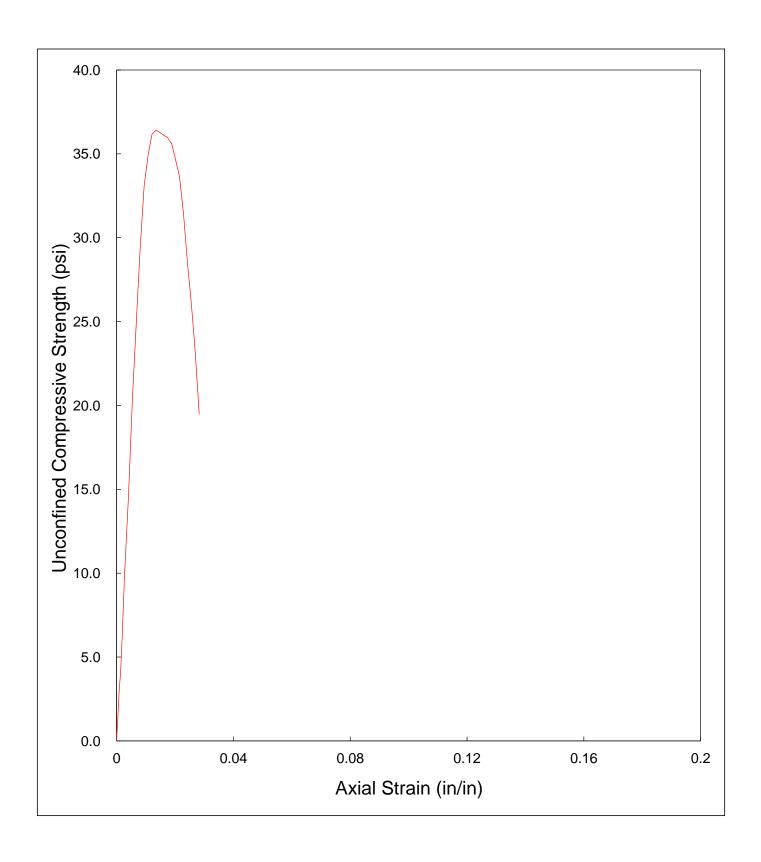
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-016 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7618_US


MOISTURE CONTENT (Dry Basis)			
1. MOISTURE TIN NO.	0397-016 (8 day)		
2. WT MOISTURE TIN (tare weight)	69.70 g		
3. WT WET SOIL + TARE	157.98 g		
4. WT DRY SOIL + TARE	130.81 g		
5. WT WATER, Ww	27.17 g		
6. WT DRY SOIL, Ws	61.11 g		
7. MOISTURE CONTENT, W	44.46 %		

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENG1	ГН
No. 1	1.98	in.	3.71	in.
No. 2	2.00	in.	3.71	in.
No. 3	2.02	in.	3.72	in.
Average	2.00	in.	3.71	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	332.80	g	
Initial Area, Ao	3.14	in²	
Initial Volume, Vo	11.67	in³	
Initial Bulk Unit Weight,	108.7	lb/ft³	
Initial Dry Unit Weight	75.2	lb/ft³	
15 % Strain (0.15 Lo)	0.56	in.	
UCS	36.4	lb/in²	

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.142	0.0000	0.0
9	0.003	0.003	3.144	0.0008	2.9
13	0.005	0.005	3.146	0.0013	4.1
19	0.007	0.007	3.148	0.0019	6.0
31	0.010	0.010	3.150	0.0027	9.8
46	0.015	0.015	3.154	0.0040	14.6
64	0.020	0.020	3.159	0.0054	20.3
79	0.025	0.025	3.163	0.0067	25.0
93	0.030	0.030	3.167	0.0081	29.4
105	0.035	0.035	3.171	0.0094	33.1
111	0.040	0.040	3.176	0.0108	35.0
115	0.045	0.045	3.180	0.0121	36.2
116	0.050	0.050	3.184	0.0135	36.4
115	0.065	0.065	3.198	0.0175	36.0
114	0.070	0.070	3.202	0.0189	35.6
111	0.075	0.075	3.206	0.0202	34.6
108	0.080	0.080	3.211	0.0215	33.6
101	0.085	0.085	3.215	0.0229	31.4
92	0.090	0.090	3.220	0.0242	28.6
84	0.095	0.095	3.224	0.0256	26.1
75	0.100	0.100	3.229	0.0269	23.2
63	0.105	0.105	3.233	0.0283	19.5

UNCONFINED COMPRESSION TESTING Sample No. 0397-016 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-016 (8 day)

 TESTING DATE:
 10/15/2011

TESTING DATE: 10/15/2011 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7618_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	44.5 %		
BULK UNIT WEIGHT	108.7 lb/ft ³		
DRY UNIT WEIGHT	75.2 lb/ft ³		
UCS *	36.4 lb/in²		

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

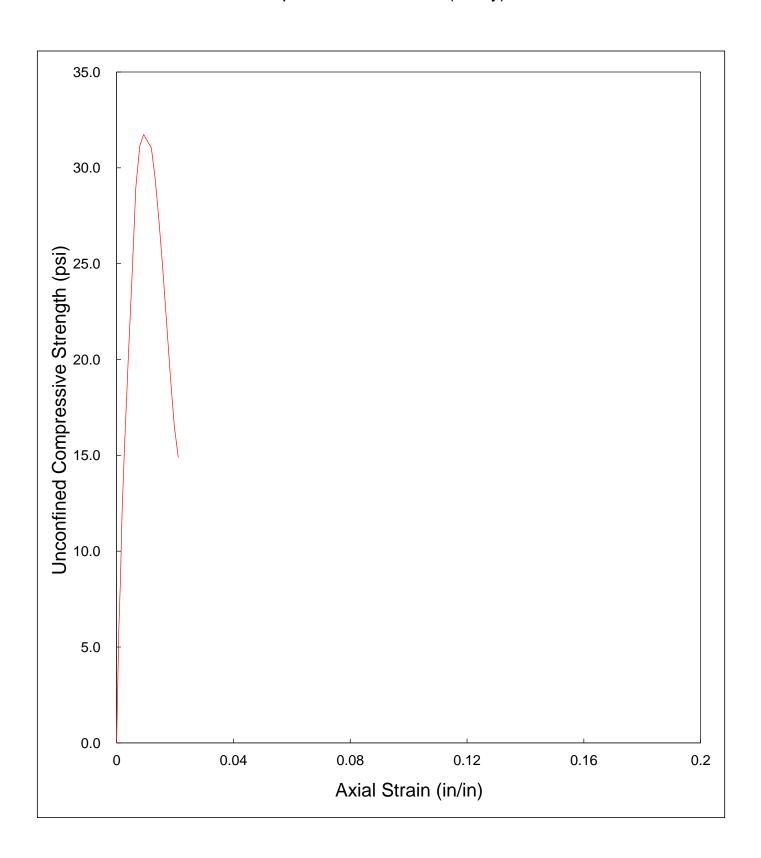
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-017 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7619_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-017 (8 day)					
2. WT MOISTURE TIN (tare weight)	52.77 g					
3. WT WET SOIL + TARE	134.66 g					
4. WT DRY SOIL + TARE	110.25 g					
5. WT WATER, Ww	24.41 g					
6. WT DRY SOIL, Ws	57.48 g					
7. MOISTURE CONTENT, W	42.47 %					

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH				Ή	
No. 1	2.00	in.	3.78	in.	
No. 2	2.00	in.	3.79	in.	
No. 3	2.01	in.	3.80	in.	
Average	2.00	in.	3.79	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	337.66	g			
Initial Area, Ao	3.15	in²			
Initial Volume, Vo	11.95	in³			
Initial Bulk Unit Weight,	107.7	lb/ft³			
Initial Dry Unit Weight	75.6	lb/ft³			
15 % Strain (0.15 Lo)	0.57	in.			
UCS	31.7	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.152	0.0000	0.0
19	0.003	0.003	3.155	0.0008	6.0
27	0.005	0.005	3.156	0.0013	8.6
38	0.007	0.007	3.158	0.0018	12.0
48	0.010	0.010	3.160	0.0026	15.2
63	0.015	0.015	3.165	0.0040	19.9
77	0.020	0.020	3.169	0.0053	24.3
92	0.025	0.025	3.173	0.0066	29.0
99	0.030	0.030	3.177	0.0079	31.2
101	0.035	0.035	3.181	0.0092	31.7
100	0.040	0.040	3.186	0.0106	31.4
99	0.045	0.045	3.190	0.0119	31.0
94	0.050	0.050	3.194	0.0132	29.4
87	0.055	0.055	3.198	0.0145	27.2
79	0.060	0.060	3.203	0.0158	24.7
70	0.065	0.065	3.207	0.0172	21.8
61	0.070	0.070	3.211	0.0185	19.0
53	0.075	0.075	3.216	0.0198	16.5
48	0.080	0.080	3.220	0.0211	14.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-017 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-017 (8 day)

 TESTING DATE:
 10/15/2011

 TESTING DATE:
 10/15/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7619_US

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	42.5 %			
BULK UNIT WEIGHT	107.7 lb/ft ³			
DRY UNIT WEIGHT	75.6 lb/ft ³			
UCS *	31.7 lb/in²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

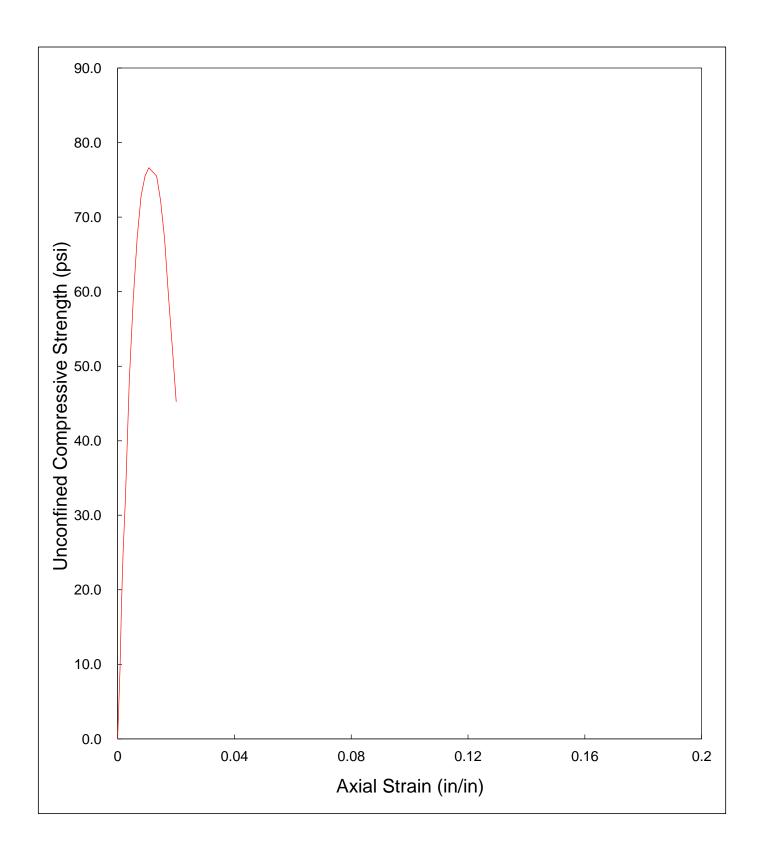
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-018 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7620_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-018 (8 day)					
2. WT MOISTURE TIN (tare weight)	63.93 g					
3. WT WET SOIL + TARE	148.82 g					
4. WT DRY SOIL + TARE	123.42 g					
5. WT WATER, Ww	25.40 g					
6. WT DRY SOIL, Ws	59.49 g					
7. MOISTURE CONTENT, W	42.70 %					

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH				ГН	
No. 1	2.00	in.	3.74	in.	
No. 2	2.01	in.	3.74	in.	
No. 3	2.01	in.	3.74	in.	
Average	2.01	in.	3.74	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	338.31	g			
Initial Area, Ao	3.16	in²			
Initial Volume, Vo	11.83	in³			
Initial Bulk Unit Weight,	109.0	lb/ft³			
Initial Dry Unit Weight	76.4	lb/ft³			
15 % Strain (0.15 Lo)	0.56	in.			
UCS	76.6	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
30	0.003	0.003	3.165	0.0008	9.5
57	0.005	0.005	3.167	0.0013	18.0
79	0.007	0.007	3.169	0.0019	24.9
103	0.010	0.010	3.171	0.0027	32.5
153	0.015	0.015	3.175	0.0040	48.2
188	0.020	0.020	3.180	0.0053	59.1
214	0.025	0.025	3.184	0.0067	67.2
232	0.030	0.030	3.188	0.0080	72.8
241	0.035	0.035	3.192	0.0094	75.5
245	0.040	0.040	3.197	0.0107	76.6
242	0.050	0.050	3.205	0.0134	75.5
232	0.055	0.055	3.210	0.0147	72.3
216	0.060	0.060	3.214	0.0160	67.2
192	0.065	0.065	3.219	0.0174	59.7
169	0.070	0.070	3.223	0.0187	52.4
146	0.075	0.075	3.227	0.0201	45.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-018 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-018 (8 day)

 TESTING DATE:
 10/15/2011

TESTING DATE: 10/15/2011 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7620_US

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	42.7 %			
BULK UNIT WEIGHT	109.0 lb/ft ³			
DRY UNIT WEIGHT	76.4 lb/ft ³			
UCS *	76.6 lb/in ²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

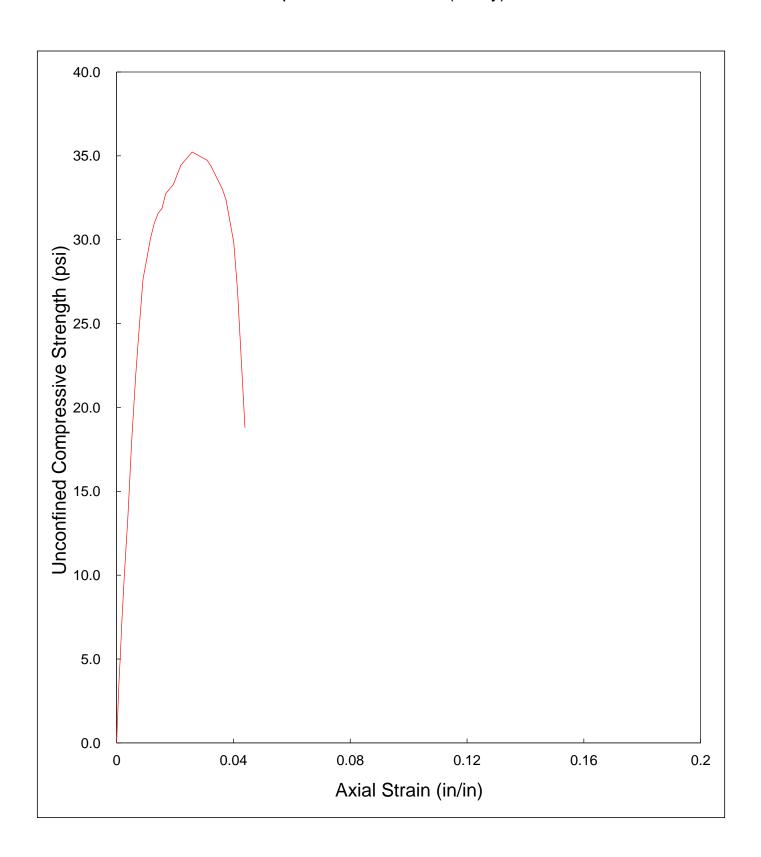
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-019 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7621_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-019 (8 day)					
2. WT MOISTURE TIN (tare weight)	66.24 g					
3. WT WET SOIL + TARE	177.00 g					
4. WT DRY SOIL + TARE	145.17 g					
5. WT WATER, Ww	31.83 g					
6. WT DRY SOIL, Ws	78.93 g					
7. MOISTURE CONTENT, W	40.33 %					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.00	in.	3.86	in.		
No. 2	2.00	in.	3.87	in.		
No. 3	2.01	in.	3.87	in.		
Average 2.00 in. 3.87 in.						

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	349.13	g		
Initial Area, Ao	3.15	in²		
Initial Volume, Vo	12.19	in³		
Initial Bulk Unit Weight,	109.1	lb/ft³		
Initial Dry Unit Weight	77.8	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	35.2	lb/in²		

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.152	0.0000	0.0
11	0.003	0.003	3.155	0.0008	3.5
17	0.005	0.005	3.156	0.0013	5.4
23	0.007	0.007	3.158	0.0018	7.3
31	0.010	0.010	3.160	0.0026	9.8
43	0.015	0.015	3.164	0.0039	13.6
57	0.020	0.020	3.168	0.0052	18.0
69	0.025	0.025	3.173	0.0065	21.7
79	0.030	0.030	3.177	0.0078	24.9
88	0.035	0.035	3.181	0.0091	27.7
92	0.040	0.040	3.185	0.0103	28.9
96	0.045	0.045	3.189	0.0116	30.1
99	0.050	0.050	3.193	0.0129	31.0
101	0.055	0.055	3.198	0.0142	31.6
102	0.060	0.060	3.202	0.0155	31.9
105	0.065	0.065	3.206	0.0168	32.8
106	0.070	0.070	3.210	0.0181	33.0
107	0.075	0.075	3.214	0.0194	33.3
109	0.080	0.080	3.219	0.0207	33.9
111	0.085	0.085	3.223	0.0220	34.4
112	0.090	0.090	3.227	0.0233	34.7
113	0.095	0.095	3.231	0.0246	35.0
114	0.100	0.100	3.236	0.0259	35.2
113	0.120	0.120	3.253	0.0310	34.7
112	0.125	0.125	3.257	0.0323	34.4
108	0.140	0.140	3.270	0.0362	33.0
106	0.145	0.145	3.275	0.0375	32.4
102	0.150	0.150	3.279	0.0388	31.1
98	0.155	0.155	3.284	0.0401	29.8
89	0.160	0.160	3.288	0.0414	27.1
62	0.170	0.170	3.297	0.0440	18.8

UNCONFINED COMPRESSION TESTING Sample No. 0397-019 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-019 (8 day)

 TESTING DATE:
 10/15/2011

TESTED BY:

 10/15/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7621_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	40.3	%	
BULK UNIT WEIGHT	109.1	lb/ft³	
DRY UNIT WEIGHT	77.8	lb/ft³	
UCS *	35.2	lb/in²	

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

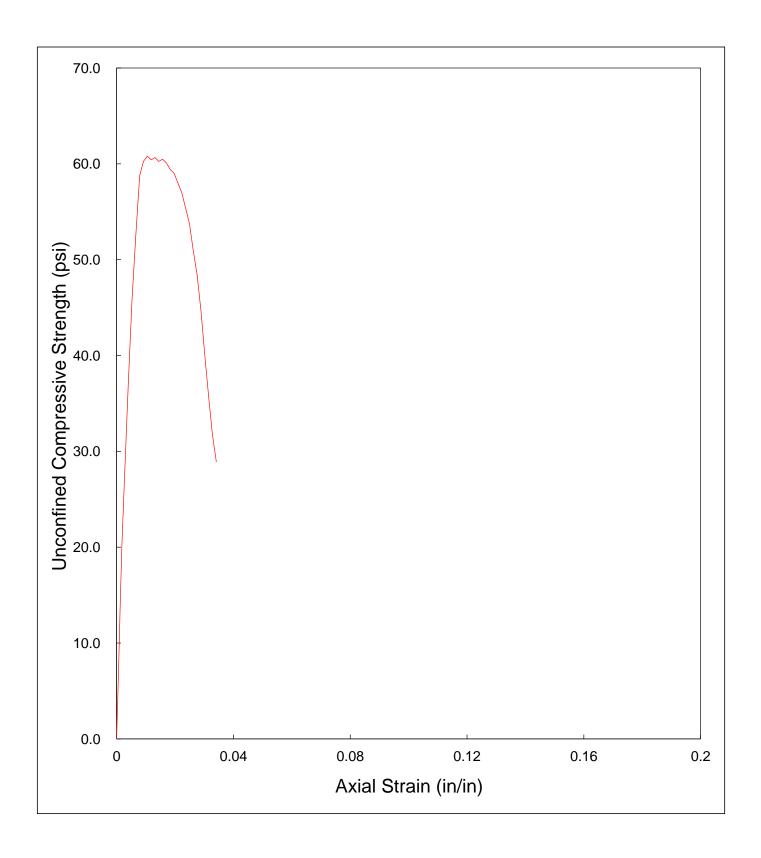
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-020 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7622_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-020 (8 day)					
2. WT MOISTURE TIN (tare weight)	69.39 g					
3. WT WET SOIL + TARE	160.56 g					
4. WT DRY SOIL + TARE	133.12 g					
5. WT WATER, Ww	27.44 g					
6. WT DRY SOIL, Ws	63.73 g					
7. MOISTURE CONTENT, W	43.06 %					

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENG1	ГН	
No. 1	2.00	in.	3.80	in.	
No. 2	2.01	in.	3.81	in.	
No. 3	2.02	in.	3.82	in.	
Average	2.01	in.	3.81	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	336.71	g		
Initial Area, Ao	3.17	in²		
Initial Volume, Vo	12.09	in³		
Initial Bulk Unit Weight,	106.1	lb/ft³		
Initial Dry Unit Weight	74.2	lb/ft³		
15 % Strain (0.15 Lo)	0.57	in.		
UCS	60.8	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
	` /	0.000	· /		
0	0.000		3.173	0.0000	0.0
27	0.003 0.005	0.003 0.005	3.176 3.177	0.0008	8.5 15.1
66	0.003	0.003	3.177	0.0013	20.8
85	0.007	0.007	3.179	0.0018	26.7
117	0.010	0.010	3.186	0.0026	36.7
117	0.013	0.013	3.190	0.0059	45.8
168	0.025	0.025	3.194	0.0032	52.6
188	0.023	0.023	3.194	0.0000	58.8
193	0.035	0.035	3.203	0.0079	60.3
195	0.040	0.040	3.207	0.0105	60.8
194	0.045	0.045	3.211	0.0118	60.4
195	0.050	0.050	3.215	0.0131	60.6
194	0.055	0.055	3.220	0.0144	60.3
195	0.060	0.060	3.224	0.0157	60.5
194	0.065	0.065	3.228	0.0171	60.1
192	0.070	0.070	3.232	0.0184	59.4
191	0.075	0.075	3.237	0.0197	59.0
188	0.080	0.080	3.241	0.0210	58.0
185	0.085	0.085	3.245	0.0223	57.0
180	0.090	0.090	3.250	0.0236	55.4
175	0.095	0.095	3.254	0.0249	53.8
166	0.100	0.100	3.259	0.0262	50.9
158	0.105	0.105	3.263	0.0276	48.4
146	0.110	0.110	3.267	0.0289	44.7
131	0.115	0.115	3.272	0.0302	40.0
117	0.120	0.120	3.276	0.0315	35.7
104	0.125	0.125	3.281	0.0328	31.7
95	0.130	0.130	3.285	0.0341	28.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-020 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-020 (8 day)

 TESTING DATE:
 10/15/2011

JGS/SEM

TESTED BY:

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7622_US

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	43.1	%		
BULK UNIT WEIGHT	106.1	lb/ft³		
DRY UNIT WEIGHT	74.2	lb/ft³		
UCS *	60.8	lb/in²		

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

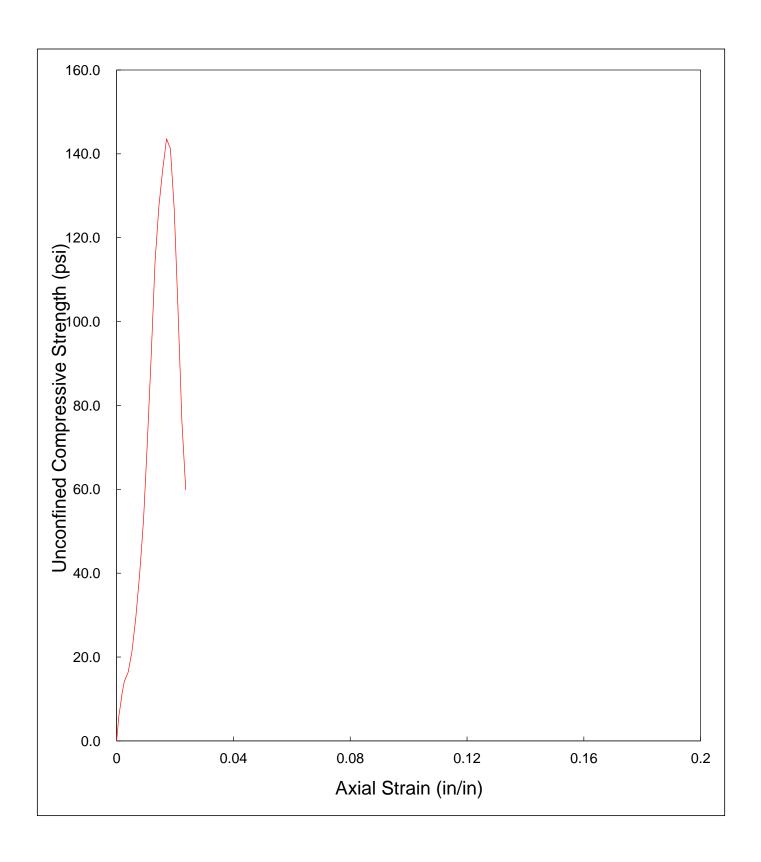
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-021 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7623_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-021 (8 day)					
2. WT MOISTURE TIN (tare weight)	62.34 g					
3. WT WET SOIL + TARE	161.63 g					
4. WT DRY SOIL + TARE	141.82 g					
5. WT WATER, Ww	19.81 g					
6. WT DRY SOIL, Ws	79.48 g					
7. MOISTURE CONTENT, W	24.92 %					

SOIL SPECIMEN DIMENSIONS					
	DIAMETE	R	LENGTI	H	
No. 1	1.97	in.	3.79	in.	
No. 2	2.01	in.	3.80	in.	
No. 3	2.04	in.	3.81	in.	
Average	2.01	in.	3.80	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	381.69	g		
Initial Area, Ao	3.16	in²		
Initial Volume, Vo	12.02	in³		
Initial Bulk Unit Weight,	121.0	lb/ft³		
Initial Dry Unit Weight	96.9	lb/ft³		
15 % Strain (0.15 Lo)	0.57	in.		
UCS	143.6	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
19	0.003	0.003	3.165	0.0008	6.0
27	0.005	0.005	3.167	0.0013	8.5
36	0.007	0.007	3.168	0.0018	11.4
45	0.010	0.010	3.171	0.0026	14.2
52	0.015	0.015	3.175	0.0039	16.4
68	0.020	0.020	3.179	0.0053	21.4
94	0.025	0.025	3.184	0.0066	29.5
127	0.030	0.030	3.188	0.0079	39.8
168	0.035	0.035	3.192	0.0092	52.6
228	0.040	0.040	3.196	0.0105	71.3
294	0.045	0.045	3.200	0.0118	91.9
366	0.050	0.050	3.205	0.0132	114.2
409	0.055	0.055	3.209	0.0145	127.5
438	0.060	0.060	3.213	0.0158	136.3
462	0.065	0.065	3.218	0.0171	143.6
455	0.070	0.070	3.222	0.0184	141.2
409	0.075	0.075	3.226	0.0197	126.8
331	0.080	0.080	3.231	0.0211	102.5
246	0.085	0.085	3.235	0.0224	76.0
194	0.090	0.090	3.239	0.0237	59.9
	·	-		·	

UNCONFINED COMPRESSION TESTING Sample No. 0397-021 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-021 (8 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7623_US

MOISTURE CONTENT BULK UNIT WEIGHT DRY UNIT WEIGHT UCS * 143.6 | bb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

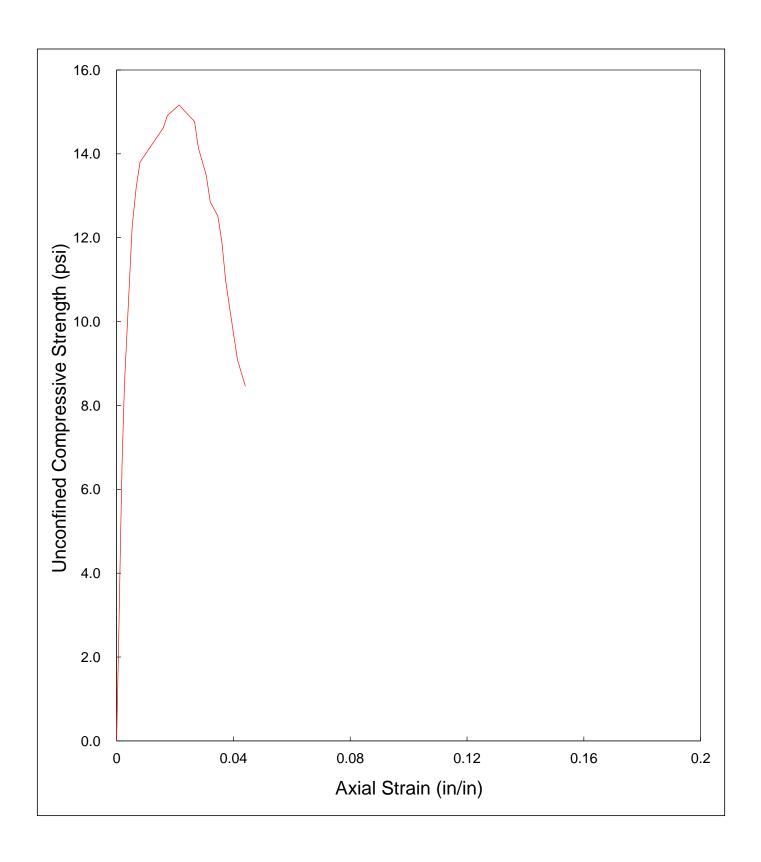
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-022 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7624_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-022 (8 day)					
2. WT MOISTURE TIN (tare weight)	63.92 g					
3. WT WET SOIL + TARE	167.25 g					
4. WT DRY SOIL + TARE	143.63 g					
5. WT WATER, Ww	23.62 g					
6. WT DRY SOIL, Ws	79.71 g					
7. MOISTURE CONTENT, W	29.63 %					

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.00	in.	3.75	in.	
No. 2	2.01	in.	3.75	in.	
No. 3	2.01	in.	3.74	in.	
Average	2.01	in.	3.75	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	368.21	g		
Initial Area, Ao	3.16	in²		
Initial Volume, Vo	11.85	in³		
Initial Bulk Unit Weight,	118.4	lb/ft³		
Initial Dry Unit Weight	91.3	lb/ft³		
15 % Strain (0.15 Lo)	0.56	in.		
UCS	15.2	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
9	0.003	0.003	3.165	0.0008	2.8
15	0.005	0.005	3.167	0.0013	4.7
21	0.007	0.007	3.168	0.0019	6.6
27	0.010	0.010	3.171	0.0027	8.5
33	0.015	0.015	3.175	0.0040	10.4
39	0.020	0.020	3.180	0.0053	12.3
42	0.025	0.025	3.184	0.0067	13.2
44	0.030	0.030	3.188	0.0080	13.8
45	0.040	0.040	3.197	0.0107	14.1
46	0.050	0.050	3.205	0.0133	14.4
47	0.060	0.060	3.214	0.0160	14.6
48	0.065	0.065	3.218	0.0173	14.9
49	0.080	0.080	3.232	0.0214	15.2
48	0.100	0.100	3.249	0.0267	14.8
46	0.105	0.105	3.254	0.0280	14.1
45	0.110	0.110	3.258	0.0294	13.8
44	0.115	0.115	3.263	0.0307	13.5
42	0.120	0.120	3.267	0.0320	12.9
41	0.130	0.130	3.276	0.0347	12.5
39	0.135	0.135	3.281	0.0360	11.9
36	0.140	0.140	3.285	0.0374	11.0
34	0.145	0.145	3.290	0.0387	10.3
30	0.155	0.155	3.299	0.0414	9.1
28	0.165	0.165	3.308	0.0440	8.5

UNCONFINED COMPRESSION TESTING Sample No. 0397-022 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-022 (8 day)

 TESTING DATE:
 10/15/2011

 TESTING DATE:
 10/15/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7624_US

TESTING PARAMETER AND RESULTS				
_				
MOISTURE CONTENT	29.6 %			
BULK UNIT WEIGHT	118.4 lb/ft ³			
DRY UNIT WEIGHT	91.3 lb/ft ³			
UCS *	15.2 lb/in²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

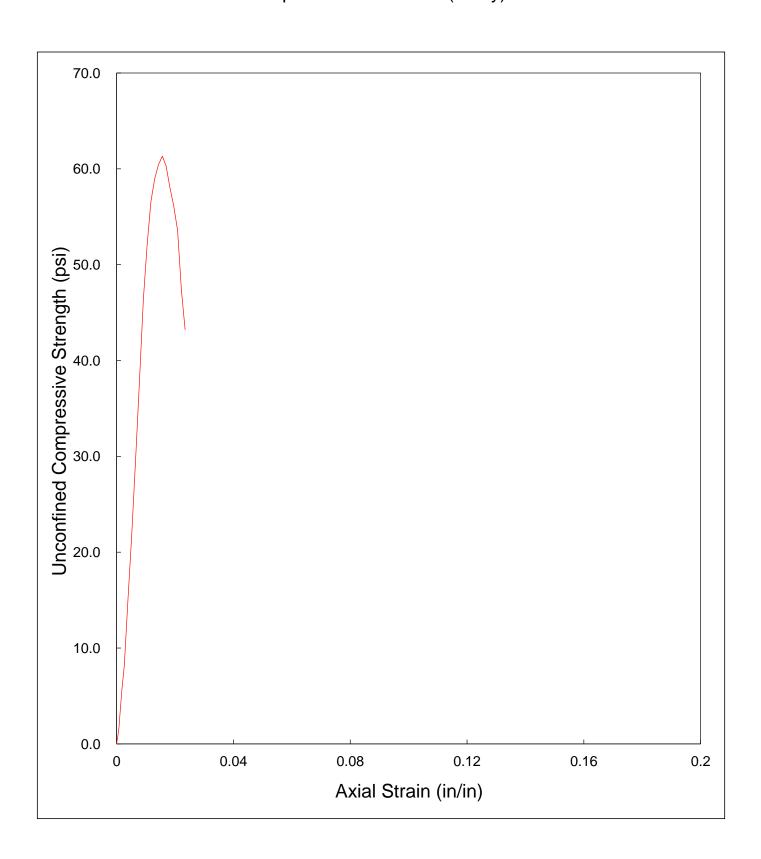
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-023 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7625_US


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO. 0397-023 (8 day)					
2. WT MOISTURE TIN (tare weight)	66.49 g				
3. WT WET SOIL + TARE	146.67 g				
4. WT DRY SOIL + TARE	123.33 g				
5. WT WATER, Ww	23.34 g				
6. WT DRY SOIL, Ws	56.84 g				
7. MOISTURE CONTENT, W	41.06 %				

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENGT	ГН	
No. 1	2.00	in.	3.83	in.	
No. 2	2.00	in.	3.83	in.	
No. 3	2.02	in.	3.84	in.	
Average 2.01 in. 3.83 in.					

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	343.23	g		
Initial Area, Ao	3.16	in²		
Initial Volume, Vo	12.12	in³		
Initial Bulk Unit Weight,	107.9	lb/ft³		
Initial Dry Unit Weight	76.5	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	61.3	lb/in²		

COMPRESSIVE LOAD	DIAL GAGE READING	SPECIMEN DEFORMATION	CORRECTED AREA	AXIAL STRAIN	UNCONFINED COMPRESSIVE STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
5	0.003	0.003	3.165	0.0008	1.6
12	0.005	0.005	3.167	0.0013	3.8
18	0.007	0.007	3.168	0.0018	5.7
26	0.010	0.010	3.171	0.0026	8.2
48	0.015	0.015	3.175	0.0039	15.1
70	0.020	0.020	3.179	0.0052	22.0
95	0.025	0.025	3.183	0.0065	29.8
121	0.030	0.030	3.188	0.0078	38.0
148	0.035	0.035	3.192	0.0091	46.4
166	0.040	0.040	3.196	0.0104	51.9
181	0.045	0.045	3.200	0.0117	56.6
189	0.050	0.050	3.204	0.0130	59.0
194	0.055	0.055	3.209	0.0143	60.5
197	0.060	0.060	3.213	0.0157	61.3
194	0.065	0.065	3.217	0.0170	60.3
187	0.070	0.070	3.221	0.0183	58.0
181	0.075	0.075	3.226	0.0196	56.1
173	0.080	0.080	3.230	0.0209	53.6
153	0.085	0.085	3.234	0.0222	47.3
140	0.090	0.090	3.239	0.0235	43.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-023 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-023 (8 day)

 TESTING DATE:
 10/14/2011

TESTED BY:

 10/14/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7625_US

MOISTURE CONTENT 41.1 % BULK UNIT WEIGHT 107.9 lb/ft³ DRY UNIT WEIGHT 76.5 lb/ft³ UCS * 61.3 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

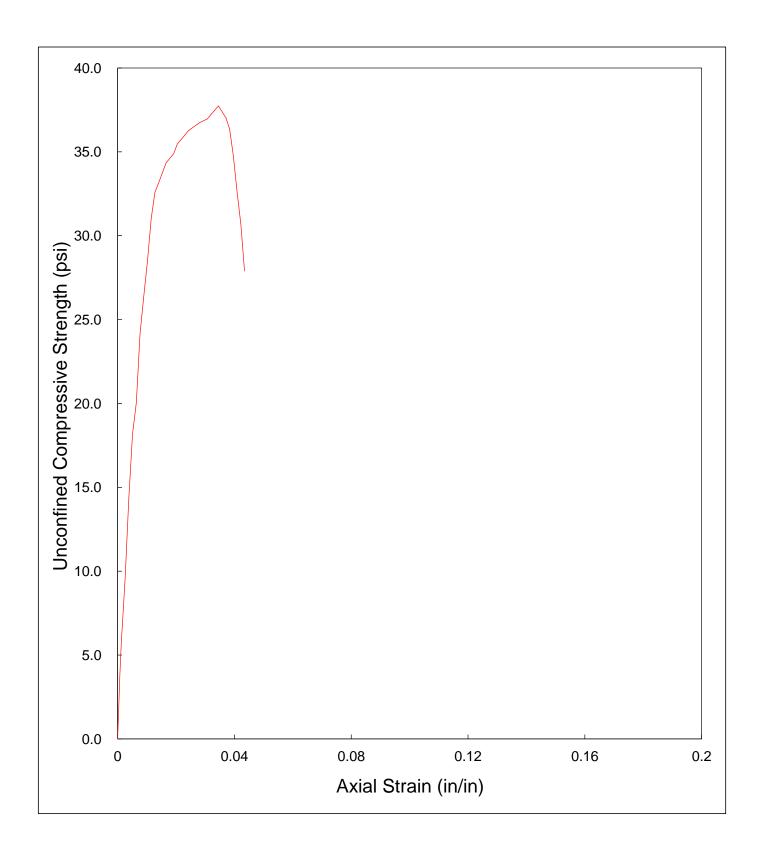
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-024 (8 day)

 TESTING DATE:
 15-Oct-11

TESTING DATE: 15-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7626_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO. 0397-024 (8 day)						
2. WT MOISTURE TIN (tare weight)	70.20 g					
3. WT WET SOIL + TARE	166.57 g					
4. WT DRY SOIL + TARE	139.84 g					
5. WT WATER, Ww	26.73 g					
6. WT DRY SOIL, Ws	69.64 g					
7. MOISTURE CONTENT, W	38.38 %					

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	1.97	in.	3.90	in.	
No. 2	2.00	in.	3.91	in.	
No. 3	2.01	in.	3.92	in.	
Average	1.99	in.	3.91	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	347.92	g			
Initial Area, Ao	3.12	in²			
Initial Volume, Vo	12.20	in³			
Initial Bulk Unit Weight,	108.6	lb/ft³			
Initial Dry Unit Weight	78.5	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	37.7	lb/in²			

COMPRESSIVE LOAD	DIAL GAGE READING	SPECIMEN DEFORMATION	CORRECTED AREA	AXIAL STRAIN	UNCONFINED COMPRESSIVE STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.121	0.0000	0.0
12	0.003	0.003	3.123	0.0008	3.8
18	0.005	0.005	3.125	0.0013	5.8
23	0.007	0.007	3.126	0.0018	7.4
30	0.010	0.010	3.129	0.0026	9.6
45	0.015	0.015	3.133	0.0038	14.4
57	0.020	0.020	3.137	0.0051	18.2
63	0.025	0.025	3.141	0.0064	20.1
76	0.030	0.030	3.145	0.0077	24.2
83	0.035	0.035	3.149	0.0090	26.4
90	0.040	0.040	3.153	0.0102	28.5
98	0.045	0.045	3.157	0.0115	31.0
103	0.050	0.050	3.161	0.0128	32.6
105	0.055	0.055	3.165	0.0141	33.2
107	0.060	0.060	3.169	0.0153	33.8
109	0.065	0.065	3.173	0.0166	34.3
111	0.075	0.075	3.182	0.0192	34.9
113	0.080	0.080	3.186	0.0205	35.5
114	0.085	0.085	3.190	0.0217	35.7
115	0.090	0.090	3.194	0.0230	36.0
116	0.095	0.095	3.198	0.0243	36.3
118	0.110	0.110	3.211	0.0281	36.7
119	0.120	0.120	3.219	0.0307	37.0
120	0.125	0.125	3.224	0.0320	37.2
122	0.135	0.135	3.232	0.0345	37.7
120	0.145	0.145	3.241	0.0371	37.0
118	0.150	0.150	3.245	0.0384	36.4
113	0.155	0.155	3.250	0.0396	34.8
106	0.160	0.160	3.254	0.0409	32.6
100	0.165	0.165	3.258	0.0422	30.7
91	0.170	0.170	3.263	0.0435	27.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-024 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-024 (8 day)

 TESTING DATE:
 10/15/2011

TESTED BY:

 10/15/2011
 LOADING RATE:
 0.04 in./min.

 JGS/SEM
 TRACKING CODE:
 7626_US

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	38.4	%			
BULK UNIT WEIGHT	108.6	lb/ft³			
DRY UNIT WEIGHT	78.5	lb/ft³			
UCS *	37.7	lb/in²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

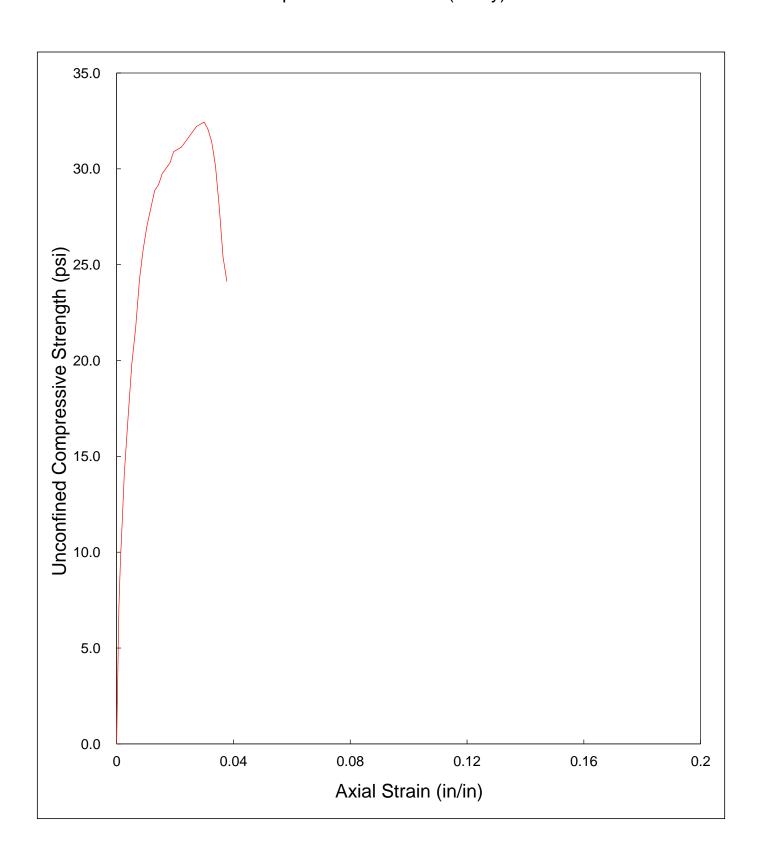
 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-025 (8 day)

 TESTING DATE:
 14-Oct-11

TESTING DATE: 14-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS/SEM TRACKING CODE: 7627_US


MOIOTURE CONTENT (D D :-)							
MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-025 (8 day)						
2. WT MOISTURE TIN (tare weight)	63.70 g						
3. WT WET SOIL + TARE	165.25 g						
4. WT DRY SOIL + TARE	136.53 g						
5. WT WATER, Ww	28.72 g						
6. WT DRY SOIL, Ws	72.83 g						
7. MOISTURE CONTENT, W	39.43 %						

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.00	in.	3.82	in.		
No. 2	1.99	in.	3.88	in.		
No. 3	1.98	in.	3.82	in.		
Average 1.99 in. 3.84 in.						

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	g				
Initial Area, Ao	3.11	in²			
Initial Volume, Vo	11.94	in³			
Initial Bulk Unit Weight,	110.7	lb/ft³			
Initial Dry Unit Weight	79.4	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	32.4	lb/in²			

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.110	0.0000	0.0
22	0.003	0.003	3.113	0.0008	7.1
30	0.005	0.005	3.114	0.0013	9.6
35	0.007	0.007	3.116	0.0018	11.2
44	0.010	0.010	3.118	0.0026	14.1
53	0.015	0.015	3.122	0.0039	17.0
62	0.020	0.020	3.127	0.0052	19.8
68	0.025	0.025	3.131	0.0065	21.7
76	0.030	0.030	3.135	0.0078	24.2
81	0.035	0.035	3.139	0.0091	25.8
85	0.040	0.040	3.143	0.0104	27.0
88	0.045	0.045	3.147	0.0117	28.0
91	0.050	0.050	3.151	0.0130	28.9
92	0.055	0.055	3.155	0.0143	29.2
94	0.060	0.060	3.160	0.0156	29.8
95	0.065	0.065	3.164	0.0169	30.0
96	0.070	0.070	3.168	0.0182	30.3
98	0.075	0.075	3.172	0.0195	30.9
99	0.085	0.085	3.181	0.0221	31.1
100	0.090	0.090	3.185	0.0234	31.4
101	0.095	0.095	3.189	0.0247	31.7
103	0.105	0.105	3.198	0.0273	32.2
104	0.115	0.115	3.206	0.0299	32.4
103	0.120	0.120	3.211	0.0313	32.1
101	0.125	0.125	3.215	0.0326	31.4
97	0.130	0.130	3.219	0.0339	30.1
90	0.135	0.135	3.224	0.0352	27.9
82	0.140	0.140	3.228	0.0365	25.4
78	0.145	0.145	3.232	0.0378	24.1

UNCONFINED COMPRESSION TESTING Sample No. 0397-025 (8 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-025 (8 day)

 TESTING DATE:
 10/14/2011

 TESTING DATE:
 10/14/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS/SEM
 TRACKING CODE:
 7627_US

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	39.4 %				
BULK UNIT WEIGHT	110.7 lb/ft ³				
DRY UNIT WEIGHT	79.4 lb/ft ³				
UCS *	32.4 lb/in²				

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-022 (17 day)

 TESTING DATE:
 24-Oct-11

TESTING DATE: 24-Oct-11 LOADING RATE: 0.04 in./min.
TESTED BY: JGS TRACKING CODE: 7677_US

MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO. 0397-022 (17 day)						
2. WT MOISTURE TIN (tare weight)	230.74 g					
3. WT WET SOIL + TARE	364.75 g					
4. WT DRY SOIL + TARE	333.82 g					
5. WT WATER, Ww	30.93 g					
6. WT DRY SOIL, Ws	103.08 g					
7. MOISTURE CONTENT, W	30.01 %					

SOIL SPECIMEN DIMENSIONS				
DIAMETER LENGTH				
No. 1	1.98	in.	3.52	in.
No. 2	1.99	in.	3.52	in.
No. 3	1.96	in.	3.48	in.
Average	1.98	in.	3.51	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	344.60	g		
Initial Area, Ao	3.07	in²		
Initial Volume, Vo	10.76	in³		
Initial Bulk Unit Weight,	122.0	lb/ft³		
Initial Dry Unit Weight	93.8	lb/ft³		
15 % Strain (0.15 Lo)	0.53	in.		
UCS	14.1	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.069	0.0000	0.0
6	0.003	0.003	3.071	0.0009	2.0
8	0.005	0.005	3.073	0.0014	2.6
12	0.007	0.007	3.075	0.0020	3.9
15	0.010	0.010	3.077	0.0029	4.9
23	0.015	0.015	3.082	0.0043	7.5
31	0.020	0.020	3.086	0.0057	10.0
38	0.025	0.025	3.091	0.0071	12.3
41	0.030	0.030	3.095	0.0086	13.2
43	0.035	0.035	3.100	0.0100	13.9
44	0.055	0.055	3.118	0.0157	14.1
43	0.060	0.060	3.122	0.0171	13.8
42	0.075	0.075	3.136	0.0214	13.4
41	0.080	0.080	3.140	0.0228	13.1
40	0.085	0.085	3.145	0.0242	12.7
38	0.090	0.090	3.150	0.0257	12.1
36	0.095	0.095	3.154	0.0271	11.4
33	0.100	0.100	3.159	0.0285	10.4
32	0.105	0.105	3.163	0.0299	10.1
30	0.110	0.110	3.168	0.0314	9.5

UNCONFINED COMPRESSION TESTING Sample No. 0397-022 (17 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating Site

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-022 (17 day)

 TESTING DATE:
 10/24/2011
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 JGS
 TRACKING CODE:
 7677_US

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	30.0 %			
BULK UNIT WEIGHT	122.0 lb/ft ³			
DRY UNIT WEIGHT	93.8 lb/ft³			
UCS *	14.1 lb/in²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

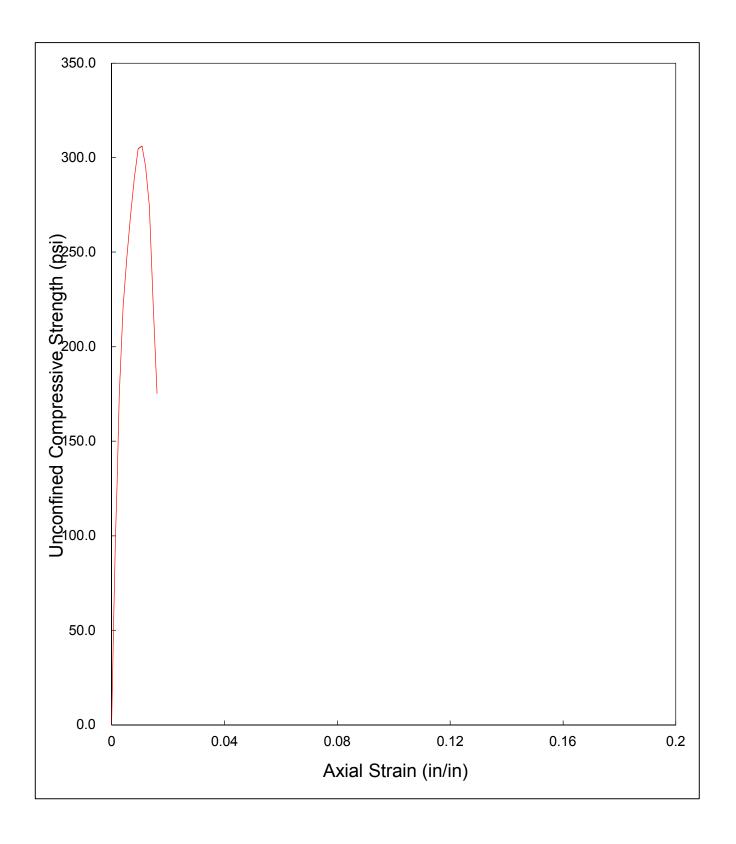
 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-010 69Day

 TESTING DATE:
 13-Dec-11

 IDM

TESTING DATE: 13-Dec-11 LOADING RATE: 0.04 in./min.
TESTED BY: JPM TRACKING CODE: 7794


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-010			
2. WT MOISTURE TIN (tare weight)	109.96	g		
3. WT WET SOIL + TARE	215.47	g		
4. WT DRY SOIL + TARE	195.61	g		
5. WT WATER, Ww	19.86	g		
6. WT DRY SOIL, Ws	85.65	g		
7. MOISTURE CONTENT, W	23.19	%		

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENG1	ТН
No. 1	2.01	in.	3.75	in.
No. 2	1.99	in.	3.74	in.
No. 3	1.99	in.	3.75	in.
Average	2.00	in.	3.75	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	378.28	g		
Initial Area, Ao	3.13	in²		
Initial Volume, Vo	11.73	in³		
Initial Bulk Unit Weight,	122.8	lb/ft³		
Initial Dry Unit Weight	99.7	lb/ft³		
15 % Strain (0.15 Lo)	0.56	in.		
UCS	306.2	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(155.)	0.000	0.000	3.131	0.0000	0.0
186	0.003	0.003	3.134	0.0008	59.4
310	0.005	0.005	3.135	0.0003	98.9
397	0.007	0.007	3.137	0.0019	126.6
548	0.010	0.010	3.140	0.0027	174.5
696	0.015	0.015	3.144	0.0040	221.4
774	0.020	0.020	3.148	0.0053	245.9
848	0.025	0.025	3.152	0.0067	269.0
913	0.030	0.030	3.156	0.0080	289.3
963	0.035	0.035	3.161	0.0093	304.7
969	0.040	0.040	3.165	0.0107	306.2
937	0.045	0.045	3.169	0.0120	295.7
871	0.050	0.050	3.173	0.0133	274.5
706	0.055	0.055	3.178	0.0147	222.2
558	0.060	0.060	3.182	0.0160	175.4

UNCONFINED COMPRESSION TESTING Sample No. 0397-010 69Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-010 69Day

 TESTING DATE:
 12/13/2011

JPM

TESTED BY:

LUADING RATE: 0.04 in./min.
TRACKING CODE: 7794

MOISTURE CONTENT BULK UNIT WEIGHT DRY UNIT WEIGHT UCS * 306.2 | b/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

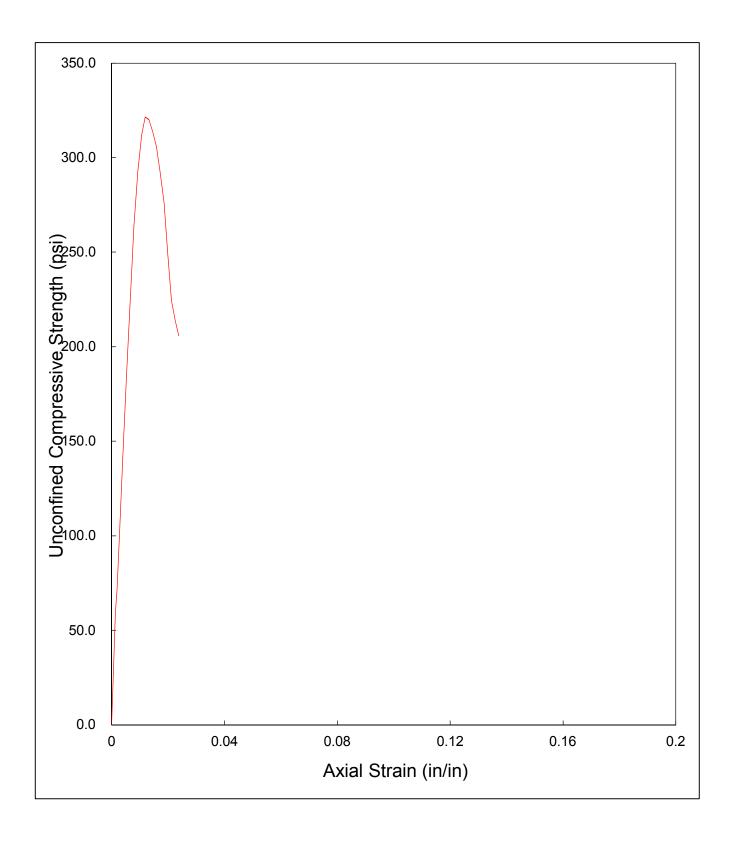
 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 \$E0397

 SAMPLE No.:
 0397-016 67 Day

 TESTING DATE:
 13-Dec-11

TESTING DATE: 13-Dec-11 LOADING RATE: 0.04 in./min.
TESTED BY: JPM TRACKING CODE: 7795


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-016			
2. WT MOISTURE TIN (tare weight)	114.03	g		
3. WT WET SOIL + TARE	227.86	g		
4. WT DRY SOIL + TARE	196.08	g		
5. WT WATER, Ww	31.78	g		
6. WT DRY SOIL, Ws	82.05	g		
7. MOISTURE CONTENT, W	38.73	%		

SOIL SPECIMEN DIMENSIONS				
	DIAMETER	2	LENGTH	
No. 1	2.17 i	n.	3.77 i	n.
No. 2	2.18 i	n.	3.80 i	n.
No. 3	2.17 i	n.	3.77 i	n.
Average	2.17 i	n.	3.78 i	n.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	337.59	g		
Initial Area, Ao	3.71	in²		
Initial Volume, Vo	14.02	in³		
Initial Bulk Unit Weight,	91.7	lb/ft³		
Initial Dry Unit Weight	66.1	lb/ft³		
15 % Strain (0.15 Lo)	0.57	in.		
UCS	321.5	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(188.)	0.000	0.000	3.710	0.0000	0.0
129	0.003	0.003	3.713	0.0008	34.7
222	0.005	0.005	3.715	0.0013	59.8
265	0.007	0.007	3.717	0.0019	71.3
364	0.010	0.010	3.720	0.0026	97.9
528	0.015	0.015	3.725	0.0040	141.8
694	0.020	0.020	3.729	0.0053	186.1
848	0.025	0.025	3.734	0.0066	227.1
989	0.030	0.030	3.739	0.0079	264.5
1096	0.035	0.035	3.744	0.0093	292.7
1170	0.040	0.040	3.749	0.0106	312.0
1207	0.045	0.045	3.754	0.0119	321.5
1203	0.050	0.050	3.759	0.0132	320.0
1180	0.055	0.055	3.765	0.0146	313.5
1153	0.060	0.060	3.770	0.0159	305.9
1102	0.065	0.065	3.775	0.0172	291.9
1044	0.070	0.070	3.780	0.0185	276.2
947	0.075	0.075	3.785	0.0198	250.2
851	0.080	0.080	3.790	0.0212	224.5
811	0.085	0.085	3.795	0.0225	213.7
782	0.090	0.090	3.800	0.0238	205.8

UNCONFINED COMPRESSION TESTING Sample No. 0397-016 67 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-016 67 Day

 TESTING DATE:
 12/13/2011

JPM

TESTED BY:

LOADING RATE: 0.04 in./min.
TRACKING CODE: 7795

TESTING PARAMETER AND RESULTS				
MOISTURE CONTENT	38.7 %			
BULK UNIT WEIGHT	91.7 lb/ft³			
DRY UNIT WEIGHT	66.1 lb/ft³			
UCS *	321.5 lb/in ²			

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

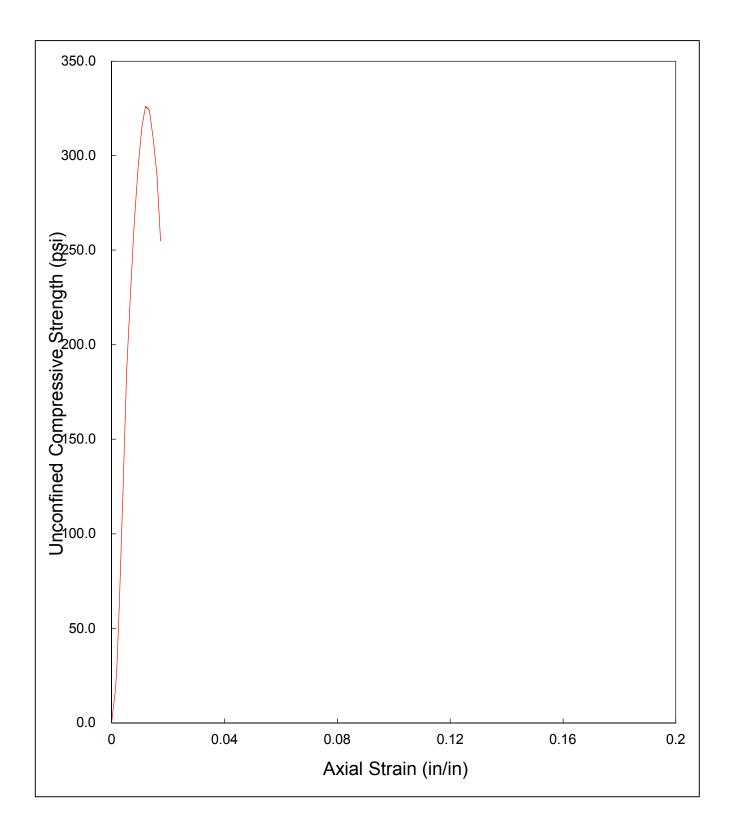
 SAMPLE No.:
 0397-017 67 Day

 TESTING DATE:
 13-Dec-11

 TESTED BY:
 JPM

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7796


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-017					
2. WT MOISTURE TIN (tare weight)	113.55	g				
3. WT WET SOIL + TARE	230.09	g				
4. WT DRY SOIL + TARE	196.04	g				
5. WT WATER, Ww	34.05	g				
6. WT DRY SOIL, Ws	82.49	g				
7. MOISTURE CONTENT, W	41.28	%				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00 in.	3.75 in.			
No. 2	2.02 in.	3.75 in.			
No. 3	2.01 in.	3.74 in.			
Average	2.01 in.	3.75 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	332.76	g		
Initial Area, Ao	3.17	in²		
Initial Volume, Vo	11.89	in³		
Initial Bulk Unit Weight,	106.6	lb/ft³		
Initial Dry Unit Weight	75.5	lb/ft³		
15 % Strain (0.15 Lo)	0.56	in.		
UCS	326.0	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.173	0.0000	0.0
33	0.003	0.003	3.176	0.0008	10.4
55	0.005	0.005	3.177	0.0013	17.3
99	0.007	0.007	3.179	0.0019	31.1
197	0.010	0.010	3.182	0.0027	61.9
397	0.015	0.015	3.186	0.0040	124.6
593	0.020	0.020	3.190	0.0053	185.9
725	0.025	0.025	3.194	0.0067	227.0
848	0.030	0.030	3.199	0.0080	265.1
942	0.035	0.035	3.203	0.0093	294.1
1012	0.040	0.040	3.207	0.0107	315.5
1047	0.045	0.045	3.212	0.0120	326.0
1042	0.050	0.050	3.216	0.0133	324.0
995	0.055	0.055	3.220	0.0147	309.0
933	0.060	0.060	3.225	0.0160	289.3
823	0.065	0.065	3.229	0.0173	254.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-017 67 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-017 67 Day

 TESTING DATE:
 12/13/2011

JPM

TESTED BY:

LOADING RATE: 0.04 in./min.
TRACKING CODE: 7796

MOISTURE CONTENT 41.3 % BULK UNIT WEIGHT 106.6 lb/ft³ DRY UNIT WEIGHT 75.5 lb/ft³ UCS * 326.0 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397

PROJECT:
PROJECT No.:

SE0397

SAMPLE No.:

TESTING DATE:

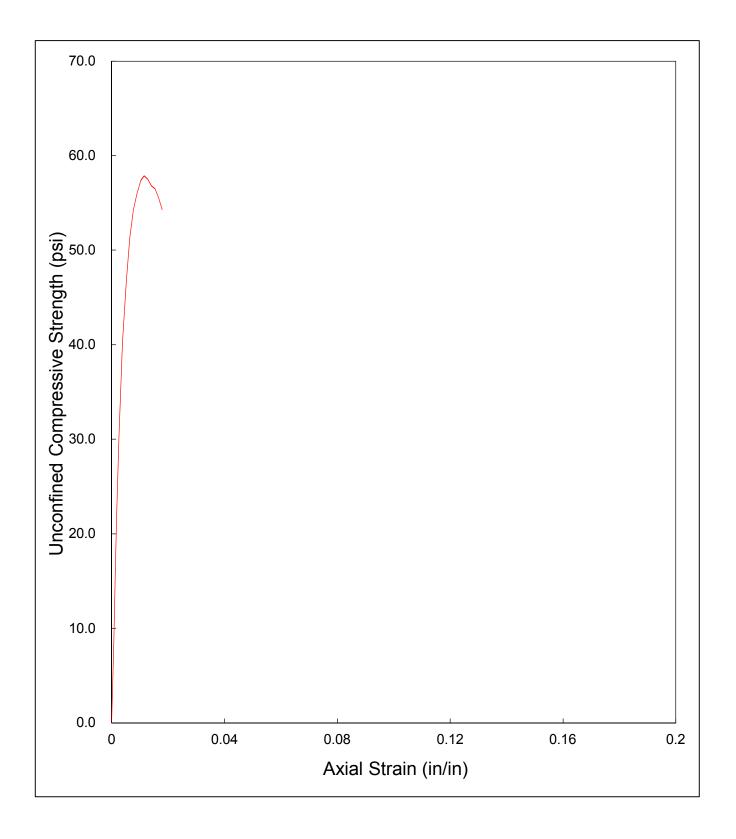
TECTED RY:

SE0397

0397-019 67 Day

13-Dec-11

JPM LOADING RATE: 0.04 in./min.
TRACKING CODE: 7797


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-019					
2. WT MOISTURE TIN (tare weight)	113.14	g				
3. WT WET SOIL + TARE	252.65	g				
4. WT DRY SOIL + TARE	213.87	g				
5. WT WATER, Ww	38.78	g				
6. WT DRY SOIL, Ws	100.73	g				
7. MOISTURE CONTENT, W	38.50	%				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.07 in	i. 3.91 in.			
No. 2	2.08 in	i. 3.92 in.			
No. 3	2.06 in	i. 3.90 in.			
Average	2.07 ir	n. 3.91 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	348.44	g		
Initial Area, Ao	3.37	in²		
Initial Volume, Vo	13.16	in³		
Initial Bulk Unit Weight,	100.9	lb/ft³		
Initial Dry Unit Weight	72.8	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	57.9	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.365	0.0000	0.0
29	0.003	0.003	3.368	0.0008	8.6
56	0.005	0.005	3.370	0.0013	16.6
75	0.007	0.007	3.371	0.0018	22.2
102	0.010	0.010	3.374	0.0026	30.2
136	0.015	0.015	3.378	0.0038	40.3
158	0.020	0.020	3.383	0.0051	46.7
174	0.025	0.025	3.387	0.0064	51.4
184	0.030	0.030	3.391	0.0077	54.3
190	0.035	0.035	3.396	0.0090	56.0
195	0.040	0.040	3.400	0.0102	57.4
197	0.045	0.045	3.405	0.0115	57.9
196	0.050	0.050	3.409	0.0128	57.5
194	0.055	0.055	3.413	0.0141	56.8
193	0.060	0.060	3.418	0.0153	56.5
190	0.065	0.065	3.422	0.0166	55.5
186	0.070	0.070	3.427	0.0179	54.3
				<u> </u>	
				-	

UNCONFINED COMPRESSION TESTING Sample No. 0397-019 67 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-019 67 Day

 TESTING DATE:
 12/13/2011

 TESTED BY:
 JPM

LOADING RATE: 0.04 in./min.
TRACKING CODE: 7797

MOISTURE CONTENT BULK UNIT WEIGHT DRY UNIT WEIGHT TOSA 15.79 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³ 10.9 | 1b/ft³

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

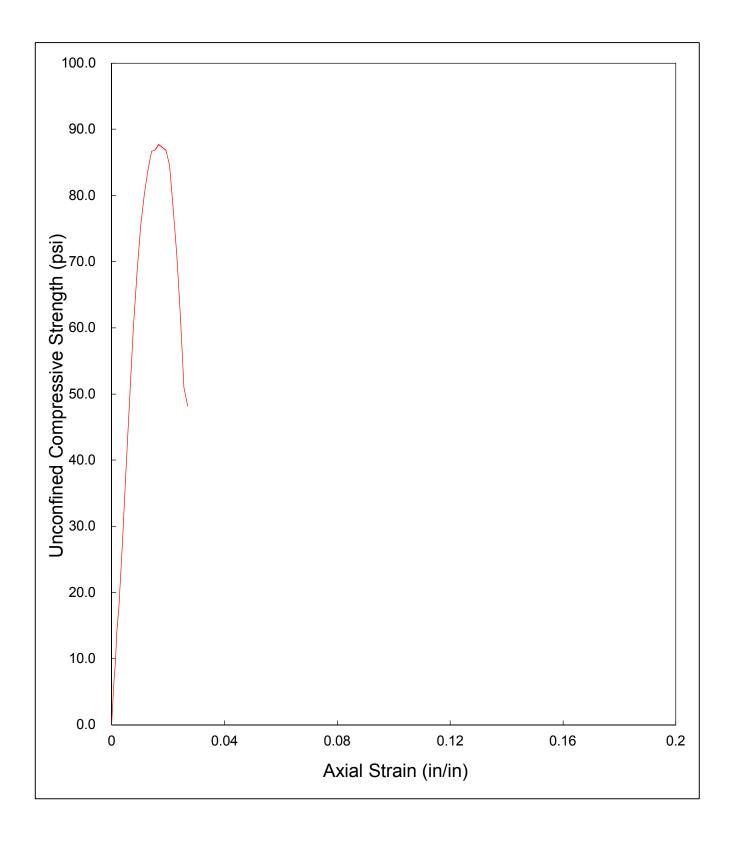
 SAMPLE No.:
 0397-024 67 Day

 TESTING DATE:
 13-Dec-11

 TESTED BY:
 JPM

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7798


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-024					
2. WT MOISTURE TIN (tare weight)	114.15	g				
3. WT WET SOIL + TARE	239.64	g				
4. WT DRY SOIL + TARE	206.03	g				
5. WT WATER, Ww	33.61	g				
6. WT DRY SOIL, Ws	91.88	g				
7. MOISTURE CONTENT, W	36.58	%				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.01	in.	3.91	in.	
No. 2	2.00	in.	3.89	in.	
No. 3	2.02	in.	3.90	in.	
Average	2.01	in.	3.90	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	342.32	g		
Initial Area, Ao	3.17	in²		
Initial Volume, Vo	12.38	in³		
Initial Bulk Unit Weight,	105.4	lb/ft³		
Initial Dry Unit Weight	77.2	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	87.7	lb/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.173	0.0000	0.0
20	0.003	0.003	3.176	0.0008	6.3
30	0.005	0.005	3.177	0.0013	9.4
44	0.007	0.007	3.179	0.0018	13.8
57	0.010	0.010	3.181	0.0026	17.9
88	0.015	0.015	3.185	0.0038	27.6
126	0.020	0.020	3.189	0.0051	39.5
159	0.025	0.025	3.194	0.0064	49.8
192	0.030	0.030	3.198	0.0077	60.0
220	0.035	0.035	3.202	0.0090	68.7
242	0.040	0.040	3.206	0.0103	75.5
257	0.045	0.045	3.210	0.0115	80.1
269	0.050	0.050	3.214	0.0128	83.7
279	0.055	0.055	3.218	0.0141	86.7
280	0.060	0.060	3.223	0.0154	86.9
283	0.065	0.065	3.227	0.0167	87.7
281	0.075	0.075	3.235	0.0192	86.9
274	0.080	0.080	3.240	0.0205	84.6
252	0.085	0.085	3.244	0.0218	77.7
230	0.090	0.090	3.248	0.0231	70.8
201	0.095	0.095	3.252	0.0244	61.8
166	0.100	0.100	3.257	0.0256	51.0
157	0.105	0.105	3.261	0.0269	48.1

UNCONFINED COMPRESSION TESTING Sample No. 0397-024 67 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-024 67 Day

 TESTING DATE:
 12/13/2011

 TESTED BY:
 JPM

LOADING RATE: 0.04 in./min.
TRACKING CODE: 7798

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 36.6 % BULK UNIT WEIGHT 105.4 lb/ft³ DRY UNIT WEIGHT 77.2 lb/ft³ UCS * 87.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

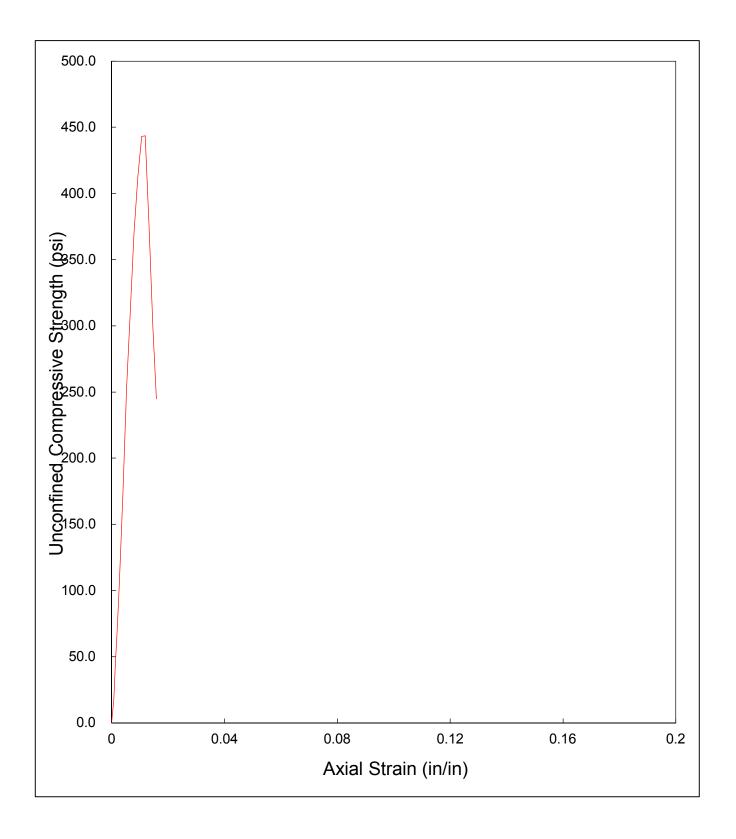
 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-017 (101 day)

 TESTING DATE:
 16-Jan-12

TESTING DATE: 16-Jan-12 LOADING RATE: 0.04 in./min.
TESTED BY: SEM TRACKING CODE: 7830_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-017					
2. WT MOISTURE TIN (tare weight)	114.14	g				
3. WT WET SOIL + TARE	227.24	g				
4. WT DRY SOIL + TARE	195.90	g				
5. WT WATER, Ww	31.34	g				
6. WT DRY SOIL, Ws	81.76	g				
7. MOISTURE CONTENT, W	38.33	%				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00 in	. 3.77 in.			
No. 2	2.00 in	. 3.78 in.			
No. 3	2.02 in	. 3.79 in.			
Average	2.01 in	. 3.78 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	333.02	g		
Initial Area, Ao	3.16	in²		
Initial Volume, Vo	11.95	in³		
Initial Bulk Unit Weight,	106.1	lb/ft³		
Initial Dry Unit Weight	76.7	lb/ft³		
15 % Strain (0.15 Lo)	0.57	in.		
UCS	443.7	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
57	0.003	0.003	3.165	0.0008	18.0
146	0.005	0.005	3.167	0.0013	46.1
215	0.007	0.007	3.168	0.0019	67.9
330	0.010	0.010	3.171	0.0026	104.1
543	0.015	0.015	3.175	0.0040	171.0
808	0.020	0.020	3.179	0.0053	254.1
999	0.025	0.025	3.184	0.0066	313.8
1179	0.030	0.030	3.188	0.0079	369.8
1317	0.035	0.035	3.192	0.0093	412.6
1416	0.040	0.040	3.196	0.0106	443.0
1420	0.045	0.045	3.201	0.0119	443.7
1204	0.050	0.050	3.205	0.0132	375.7
959	0.055	0.055	3.209	0.0146	298.8
787	0.060	0.060	3.214	0.0159	244.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-017 (101 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-017 (101 day)

 TESTING DATE:
 1/16/2012

 TESTED BY:
 SEM

LOADING RATE: 0.04 in./min.
TRACKING CODE: 7830_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 38.3 % BULK UNIT WEIGHT 106.1 lb/ft³ DRY UNIT WEIGHT 76.7 lb/ft³ UCS * 443.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

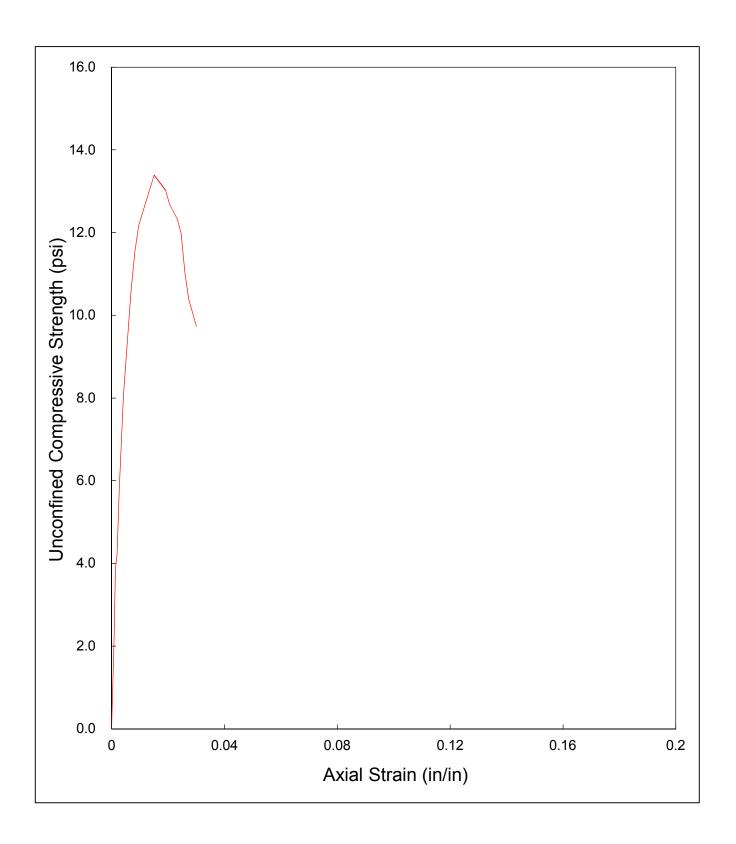
 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017 Dup (7 day)

 TESTING DATE:
 24-Jan-12

TESTING DATE: 24-Jan-12 LOADING RATE: 0.04 in./min.
TESTED BY: JGS TRACKING CODE: 7846_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO. 039	97-017 Dup (7	day				
2. WT MOISTURE TIN (tare weight)	170.45	g				
3. WT WET SOIL + TARE	270.74	g				
4. WT DRY SOIL + TARE	242.45	g				
5. WT WATER, Ww	28.29	g				
6. WT DRY SOIL, Ws	72.00	g				
7. MOISTURE CONTENT, W	39.29	%				

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	1.98 in.	3.64 in.			
No. 2	1.99 in.	3.68 in.			
No. 3	1.98 in.	3.67 in.			
Average	1.98 in.	3.66 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	326.73	g		
Initial Area, Ao	3.09	in²		
Initial Volume, Vo	11.32	in³		
Initial Bulk Unit Weight,	110.0	lb/ft³		
Initial Dry Unit Weight	79.0	lb/ft³		
15 % Strain (0.15 Lo)	0.55	in.		
UCS	13.4	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
	0.000	0.000	3.089	0.0000	,
7	0.003	0.000	3.092	0.0008	0.0 2.3
12	0.005	0.003	3.092	0.0008	3.9
13	0.003	0.003	3.095	0.0014	4.2
18	0.010	0.010	3.098	0.0017	5.8
25	0.015	0.015	3.102	0.0041	8.1
29	0.020	0.020	3.106	0.0055	9.3
33	0.025	0.025	3.111	0.0068	10.6
36	0.030	0.030	3.115	0.0082	11.6
38	0.035	0.035	3.119	0.0096	12.2
39	0.040	0.040	3.124	0.0109	12.5
40	0.045	0.045	3.128	0.0123	12.8
41	0.050	0.050	3.132	0.0136	13.1
42	0.055	0.055	3.137	0.0150	13.4
41	0.070	0.070	3.150	0.0191	13.0
40	0.075	0.075	3.154	0.0205	12.7
39	0.085	0.085	3.163	0.0232	12.3
38	0.090	0.090	3.167	0.0246	12.0
35	0.095	0.095	3.172	0.0259	11.0
33	0.100	0.100	3.176	0.0273	10.4
32	0.105	0.105	3.181	0.0287	10.1
31	0.110	0.110	3.185	0.0300	9.7

UNCONFINED COMPRESSION TESTING Sample No.0397-017 Dup (7 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017 Dup (7 day)

 TESTING DATE:
 1/24/2012

 TESTED BY:
 JGS

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7846_US

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

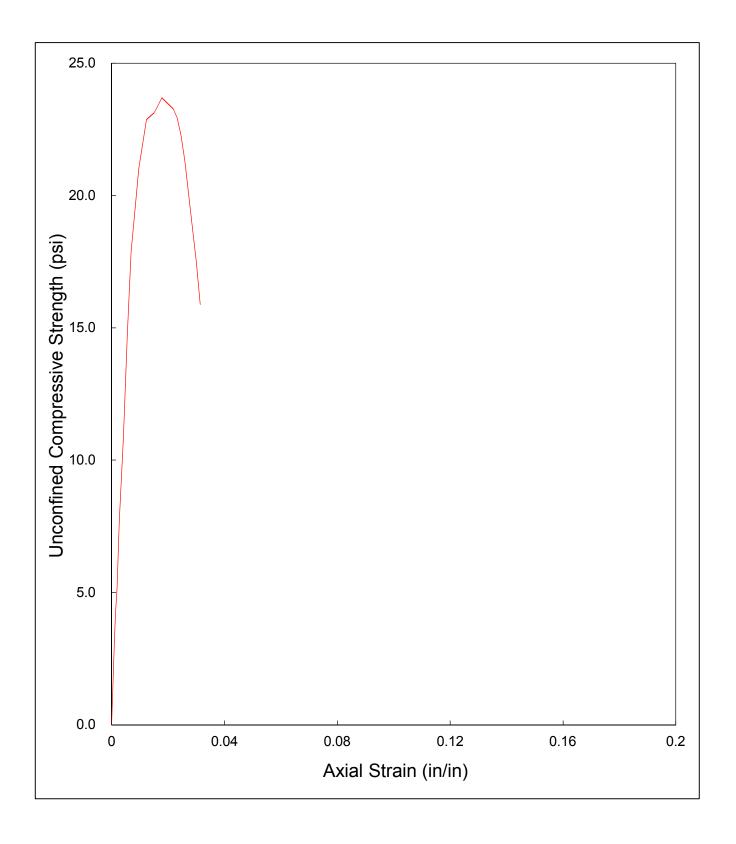
 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017A (7 day)

 TESTING DATE:
 24-Jan-12

TESTING DATE: 24-Jan-12 LOADING RATE: 0.04 in./min.
TESTED BY: JGS TRACKING CODE: 7847_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO. 03	397-017A (7 day)					
2. WT MOISTURE TIN (tare weight)	172.20 g					
3. WT WET SOIL + TARE	312.33 g					
4. WT DRY SOIL + TARE	278.15 g					
5. WT WATER, Ww	34.18 g					
6. WT DRY SOIL, Ws	105.95 g					
7. MOISTURE CONTENT, W	32.26 %					

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00	in.	3.64	in.	
No. 2	1.99	in.	3.68	in.	
No. 3	1.98	in.	3.67	in.	
Average	1.99	in.	3.66	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	351.50	g		
Initial Area, Ao	3.11	in²		
Initial Volume, Vo	11.39	in³		
Initial Bulk Unit Weight,	117.5	lb/ft³		
Initial Dry Unit Weight	88.9	lb/ft³		
15 % Strain (0.15 Lo)	0.55	in.		
UCS	23.7	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
		. ,	/		
9	0.000	0.000 0.003	3.110 3.113	0.0000	0.0 2.9
13	0.003	0.003	3.115	0.0008	4.2
16	0.003	0.003	3.116	0.0014	5.1
24	0.010	0.010	3.119	0.0019	7.7
34	0.015	0.015	3.123	0.0027	10.9
46	0.020	0.020	3.127	0.0055	14.7
56	0.025	0.025	3.132	0.0068	17.9
61	0.030	0.030	3.136	0.0082	19.5
66	0.035	0.035	3.140	0.0096	21.0
69	0.040	0.040	3.145	0.0109	21.9
72	0.045	0.045	3.149	0.0123	22.9
73	0.055	0.055	3.158	0.0150	23.1
74	0.060	0.060	3.162	0.0164	23.4
75	0.065	0.065	3.166	0.0177	23.7
74	0.080	0.080	3.180	0.0218	23.3
73	0.085	0.085	3.184	0.0232	22.9
71	0.090	0.090	3.189	0.0246	22.3
68	0.095	0.095	3.193	0.0259	21.3
64	0.100	0.100	3.198	0.0273	20.0
60	0.105	0.105	3.202	0.0287	18.7
56	0.110	0.110	3.207	0.0300	17.5
51	0.115	0.115	3.211	0.0314	15.9

UNCONFINED COMPRESSION TESTING Sample No. 0397-017A (7 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017A (7 day)

 TESTING DATE:
 1/24/2012

 TESTED BY:
 JGS

LOADING RATE: 0.04 in./min.
TRACKING CODE: 7847_US

MOISTURE CONTENT 32.3 % BULK UNIT WEIGHT 117.5 lb/ft³ DRY UNIT WEIGHT 88.9 lb/ft³ UCS * 23.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

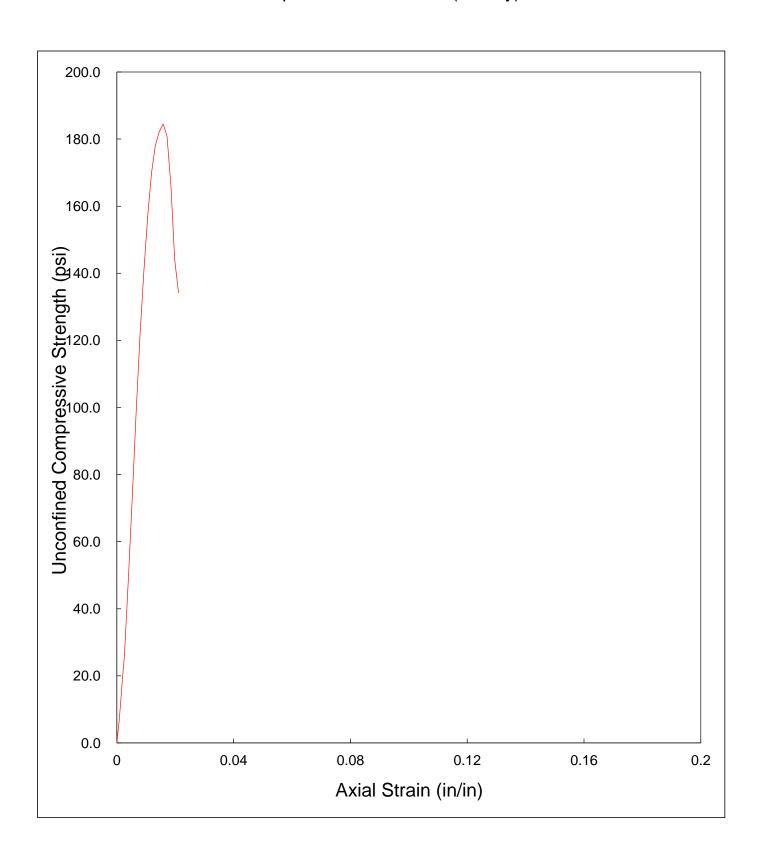
 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017 A (28 day)

 TESTING DATE:
 14-Feb-12

TESTING DATE: 14-Feb-12 LOADING RATE: 0.04 in./min.
TESTED BY: SEM TRACKING CODE: 7901_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-017 A			
2. WT MOISTURE TIN (tare weight)	63.91	g		
3. WT WET SOIL + TARE	118.06	g		
4. WT DRY SOIL + TARE	104.57	g		
5. WT WATER, Ww	13.49	g		
6. WT DRY SOIL, Ws	40.66	g		
7. MOISTURE CONTENT, W	33.18	%		

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH		Ή	
No. 1	2.00	in.	3.78	in.
No. 2	2.00	in.	3.78	in.
No. 3	2.01	in.	3.78	in.
Average	2.00	in.	3.78	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	361.38	g		
Initial Area, Ao	3.15	in²		
Initial Volume, Vo	11.91	in³		
Initial Bulk Unit Weight,	115.5	lb/ft³		
Initial Dry Unit Weight	86.8	lb/ft³		
15 % Strain (0.15 Lo)	0.57	in.		
UCS	184.5	lh/in²		

					UNCONFINED
COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.152	0.0000	0.0
21	0.003	0.003	3.155	0.0008	6.7
38	0.005	0.005	3.156	0.0013	12.0
58	0.007	0.007	3.158	0.0019	18.4
83	0.010	0.010	3.160	0.0026	26.3
154	0.015	0.015	3.165	0.0040	48.7
233	0.020	0.020	3.169	0.0053	73.5
313	0.025	0.025	3.173	0.0066	98.6
386	0.030	0.030	3.177	0.0079	121.5
447	0.035	0.035	3.182	0.0093	140.5
500	0.040	0.040	3.186	0.0106	156.9
542	0.045	0.045	3.190	0.0119	169.9
569	0.050	0.050	3.194	0.0132	178.1
583	0.055	0.055	3.199	0.0146	182.3
591	0.060	0.060	3.203	0.0159	184.5
580	0.065	0.065	3.207	0.0172	180.8
534	0.070	0.070	3.212	0.0185	166.3
463	0.075	0.075	3.216	0.0198	144.0
432	0.080	0.080	3.220	0.0212	134.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-017 A (28 day)

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017 A (28 day)

 TESTING DATE:
 2/14/2012
 LOADING RATE:
 0.04 in./min.

 TESTED BY:
 SEM
 TRACKING CODE:
 7901_US

TESTING PARAMETER AND RESULTS			
MOISTURE CONTENT	33.2 %		
BULK UNIT WEIGHT	115.5 lb/ft ³		
DRY UNIT WEIGHT	86.8 lb/ft ³		
UCS *	184.5 lb/in²		

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

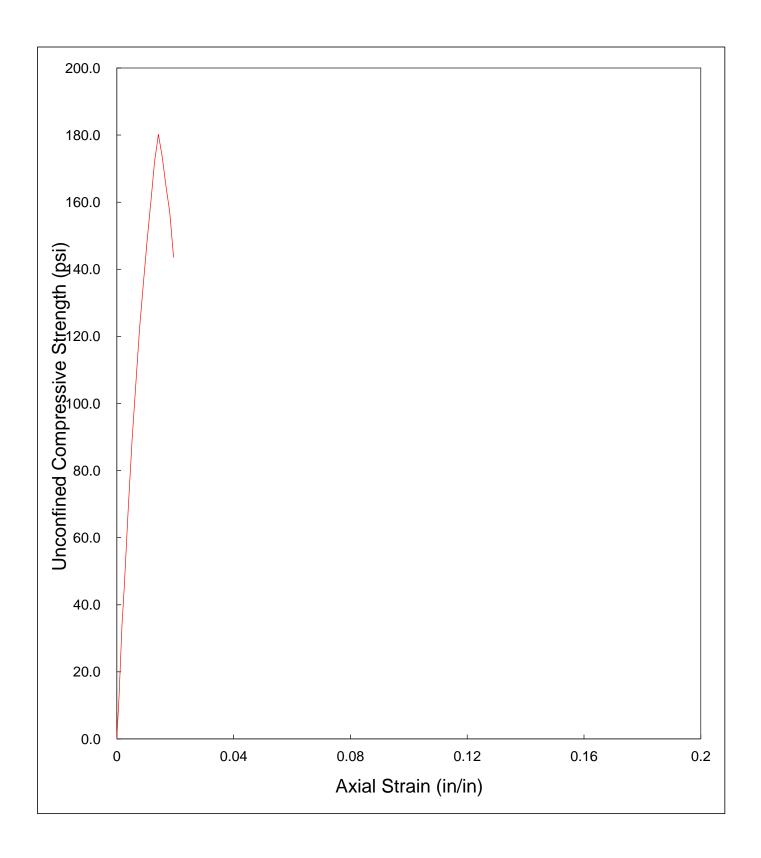
 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017 DUP (28 day)

 TESTING DATE:
 14-Feb-12

TESTING DATE: 14-Feb-12 LOADING RATE: 0.04 in./min.
TESTED BY: SEM TRACKING CODE: 7902_US


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-017 DUP					
2. WT MOISTURE TIN (tare weight)	68.87	g				
3. WT WET SOIL + TARE	119.34	g				
4. WT DRY SOIL + TARE	105.87	g				
5. WT WATER, Ww	13.47	g				
6. WT DRY SOIL, Ws	37.00	g				
7. MOISTURE CONTENT, W	36.41 %	%				

SOIL SPECIMEN DIMENSIONS				
DIAMETER LENGTH				
No. 1	2.01	in.	3.86	in.
No. 2	2.01	in.	3.86	in.
No. 3	2.02	in.	3.86	in.
Average	2.01	in.	3.86	in.

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo 342.26					
Initial Area, Ao	3.18	in²			
Initial Volume, Vo	12.29	in³			
Initial Bulk Unit Weight,	106.1	lb/ft³			
Initial Dry Unit Weight	77.8	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	180.2	lb/in²			

COMPRESSIVE	DIAL GAGE	SPECIMEN	CORRECTED	AXIAL	UNCONFINED COMPRESSIVE
LOAD	READING	DEFORMATION	AREA	STRAIN	STRENGTH
(lbs.)	(in.)	(in.)	(in²)	(in/in)	(lb/in²)
0	0.000	0.000	3.184	0.0000	0.0
40	0.003	0.003	3.186	0.0008	12.6
77	0.005	0.005	3.188	0.0013	24.2
110	0.007	0.007	3.189	0.0018	34.5
145	0.010	0.010	3.192	0.0026	45.4
218	0.015	0.015	3.196	0.0039	68.2
284	0.020	0.020	3.200	0.0052	88.7
337	0.025	0.025	3.204	0.0065	105.2
392	0.030	0.030	3.209	0.0078	122.2
436	0.035	0.035	3.213	0.0091	135.7
477	0.040	0.040	3.217	0.0104	148.3
516	0.045	0.045	3.221	0.0117	160.2
555	0.050	0.050	3.225	0.0130	172.1
582	0.055	0.055	3.230	0.0142	180.2
561	0.060	0.060	3.234	0.0155	173.5
534	0.065	0.065	3.238	0.0168	164.9
509	0.070	0.070	3.242	0.0181	157.0
466	0.075	0.075	3.247	0.0194	143.5
	·			·	
	·			·	·

UNCONFINED COMPRESSION TESTING Sample No0397-017 DUP (28 day)

0.04 in./min.

7902_US

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview

 PROJECT No.:
 SH0397

 SAMPLE No.:
 0397-017 DUP (28 day)

 TESTING DATE:
 2/14/2012
 LOADING RATE:

 TESTED BY:
 SEM
 TRACKING CODE:

TESTING PARAMETER AND RESULTS					
MOISTURE CONTENT	36.4 %				
BULK UNIT WEIGHT	106.1 lb/ft ³				
DRY UNIT WEIGHT	77.8 lb/ft ³				
UCS *	180.2 lb/in ²				

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

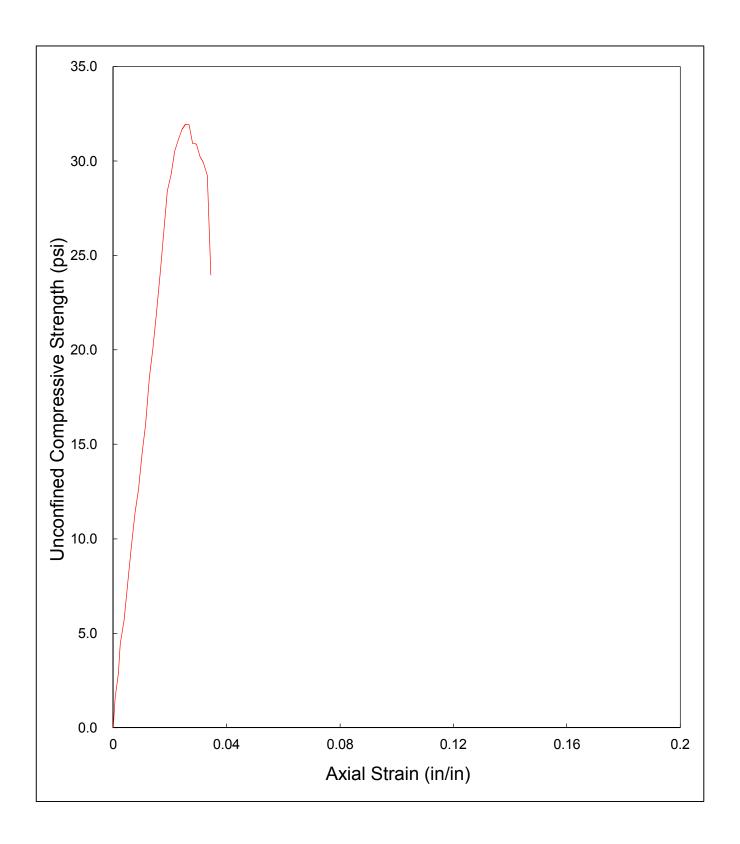
 SAMPLE No.:
 0397-026 7 Day

 TESTING DATE:
 18-Apr-12

 TESTED BY:
 MMP

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7996_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-026				
WT MOISTURE TIN (tare weight)	112.64	g			
3. WT WET SOIL + TARE	169.76	g			
4. WT DRY SOIL + TARE	155.32	g			
5. WT WATER, Ww	14.44	g			
6. WT DRY SOIL, Ws	42.68	g			
7. MOISTURE CONTENT, W	33.83	%			

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00	in.	3.92	in.	
No. 2	2.00	in.	3.92	in.	
No. 3	2.00	in.	3.92	in.	
Average	2.00	in.	3.92	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo 333.86				
Initial Area, Ac	3.14	in²		
Initial Volume, Vc	12.31	in³		
Initial Bulk Unit Weight,	103.3	lb/ft³		
Initial Dry Unit Weight	77.2	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	31.9	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.142	0.0000	0.0
5	0.003	0.003	3.144	0.0008	1.6
7	0.005	0.005	3.146	0.0013	2.2
9	0.007	0.007	3.147	0.0018	2.9
14	0.010	0.010	3.150	0.0026	4.4
18	0.015	0.015	3.154	0.0038	5.7
24	0.020	0.020	3.158	0.0051	7.6
30	0.025	0.025	3.162	0.0064	9.5
36	0.030	0.030	3.166	0.0077	11.4
40	0.035	0.035	3.170	0.0089	12.6
46	0.040	0.040	3.174	0.0102	14.5
51	0.045	0.045	3.178	0.0115	16.0
59	0.050	0.050	3.182	0.0128	18.5
64	0.055	0.055	3.186	0.0140	20.1
70	0.060	0.060	3.190	0.0153	21.9
77	0.065	0.065	3.195	0.0166	24.1
84	0.070	0.070	3.199	0.0179	26.3
91	0.075	0.075	3.203	0.0191	28.4
94	0.080	0.080	3.207	0.0204	29.3
98	0.085	0.085	3.211	0.0217	30.5
100	0.090	0.090	3.215	0.0230	31.1
102	0.095	0.095	3.220	0.0242	31.7
103	0.100	0.100	3.224	0.0255	31.9
103	0.105	0.105	3.228	0.0268	31.9
100	0.110	0.110	3.232	0.0281	30.9
100	0.115	0.115	3.237	0.0293	30.9
98	0.120	0.120	3.241	0.0306	30.2
97	0.125	0.125	3.245	0.0319	29.9
95	0.130	0.130	3.249	0.0332	29.2
78	0.135	0.135	3.254	0.0345	24.0

UNCONFINED COMPRESSION TESTING Sample No. 0397-026 7 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-026 7 Day

 TESTING DATE:
 4/18/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7996_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 33.8 % BULK UNIT WEIGHT 103.3 lb/ft³ DRY UNIT WEIGHT 77.2 lb/ft³ UCS * 31.9 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

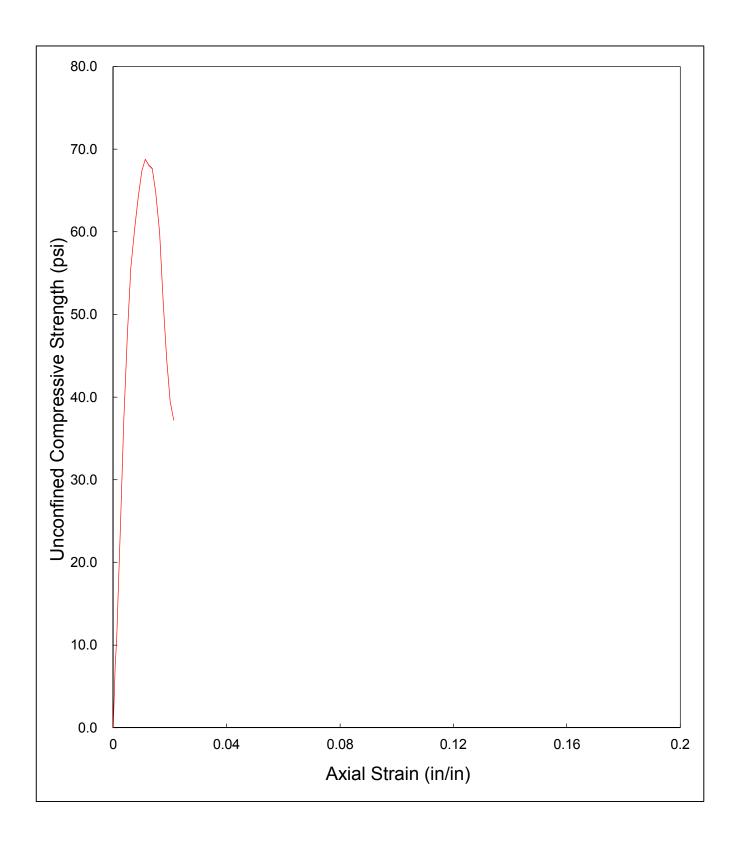
 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-027 7 Day

 TESTING DATE:
 18-Apr-12

 TESTED BY:
 MMR

MOISTURE CONTENT (Dry Basis)						
MOISTURE TIN NO.	0397-027					
WT MOISTURE TIN (tare weight)	66.28	g				
3. WT WET SOIL + TARE	130.15	g				
4. WT DRY SOIL + TARE	113.91	g				
5. WT WATER, Ww	16.24	g				
6. WT DRY SOIL, Ws	47.63	g				
7. MOISTURE CONTENT, W	34.10	%				


LOADING RATE:	0.04 in./min.
TRACKING CODE:	7997_US

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	1.99	in.	3.97	in.	
No. 2	1.99	in.	3.98	in.	
No. 3	1.99	in.	3.97	in.	
Average	1.99	in.	3.98	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	343.85	g		
Initial Area, Ac	3.11	in²		
Initial Volume, Vc	12.35	in³		
Initial Bulk Unit Weight,	106.1	lb/ft³		
Initial Dry Unit Weight	79.1	lb/ft³		
15 % Strain (0.15 Lo)	0.60	in.		
UCS	68.8	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.105	0.0000	0.0
23	0.003	0.003	3.107	0.0008	7.4
34	0.005	0.005	3.109	0.0013	10.9
49	0.007	0.007	3.111	0.0018	15.8
74	0.010	0.010	3.113	0.0025	23.8
116	0.015	0.015	3.117	0.0038	37.2
148	0.020	0.020	3.121	0.0050	47.4
174	0.025	0.025	3.125	0.0063	55.7
189	0.030	0.030	3.129	0.0075	60.4
201	0.035	0.035	3.133	0.0088	64.2
211	0.040	0.040	3.137	0.0101	67.3
216	0.045	0.045	3.141	0.0113	68.8
214	0.050	0.050	3.145	0.0126	68.1
213	0.055	0.055	3.149	0.0138	67.6
204	0.060	0.060	3.153	0.0151	64.7
189	0.065	0.065	3.157	0.0163	59.9
163	0.070	0.070	3.161	0.0176	51.6
141	0.075	0.075	3.165	0.0189	44.6
125	0.080	0.080	3.169	0.0201	39.4
118	0.085	0.085	3.173	0.0214	37.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-027 7 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-027 7 Day

 TESTING DATE:
 4/18/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7997_US

TESTING PARAMETER AND RESULTS

 MOISTURE CONTENT
 34.1
 %

 BULK UNIT WEIGHT
 106.1
 lb/ft³

 DRY UNIT WEIGHT
 79.1
 lb/ft³

 UCS *
 68.8
 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

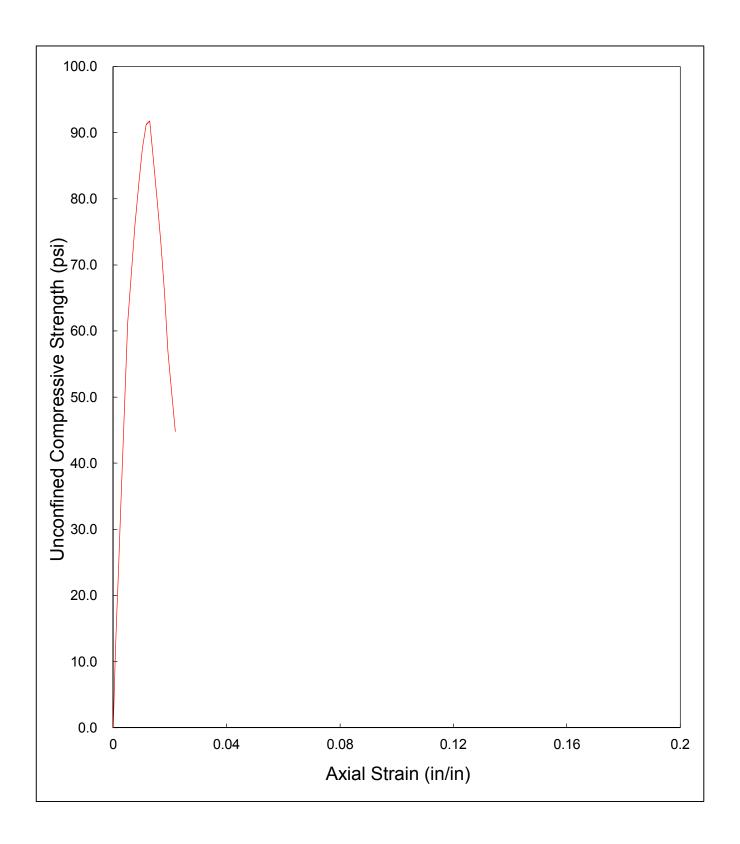
 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-028 7 Day

 TESTING DATE:
 18-Apr-12

 TESTED BY:
 MMR

MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-028			
WT MOISTURE TIN (tare weight)	87.22	g		
3. WT WET SOIL + TARE	146.55	g		
4. WT DRY SOIL + TARE	129.70	g		
5. WT WATER, Ww	16.85	g		
6. WT DRY SOIL, Ws	42.48	g		
7. MOISTURE CONTENT, W	39.67	%		


LOADING RATE:	0.04 in./min.
TRACKING CODE:	7998_US

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH			Ή
No. 1	2.00	in.	3.87	in.
No. 2	2.00	in.	3.86	in.
No. 3	2.00	in.	3.87	in.
Average	2.00	in.	3.87	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	321.35	g		
Initial Area, Ac	3.14	in²		
Initial Volume, Vc	12.16	in³		
Initial Bulk Unit Weight,	100.7	lb/ft³		
Initial Dry Unit Weight	72.1	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	91.7	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(188.)	0.000	0.000	3.142	0.0000	0.0
37	0.003	0.003	3.144	0.0008	11.8
54	0.005	0.005	3.146	0.0003	17.2
73	0.007	0.007	3.147	0.0018	23.2
103	0.010	0.010	3.150	0.0016	32.7
148	0.015	0.015	3.154	0.0039	46.9
193	0.020	0.020	3.158	0.0052	61.1
218	0.025	0.025	3.162	0.0065	68.9
241	0.030	0.030	3.166	0.0078	76.1
261	0.035	0.035	3.170	0.0090	82.3
278	0.040	0.040	3.174	0.0103	87.6
290	0.045	0.045	3.179	0.0116	91.2
292	0.050	0.050	3.183	0.0129	91.7
273	0.055	0.055	3.187	0.0142	85.7
255	0.060	0.060	3.191	0.0155	79.9
234	0.065	0.065	3.195	0.0168	73.2
211	0.070	0.070	3.199	0.0181	65.9
182	0.075	0.075	3.204	0.0194	56.8
162	0.080	0.080	3.208	0.0207	50.5
144	0.085	0.085	3.212	0.0220	44.8
					_

UNCONFINED COMPRESSION TESTING Sample No. 0397-028 7 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-028 7 Day

 TESTING DATE:
 4/18/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7998_US

MOISTURE CONTENT 39.7 % BULK UNIT WEIGHT 100.7 lb/ft³ DRY UNIT WEIGHT 72.1 lb/ft³ UCS * 91.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

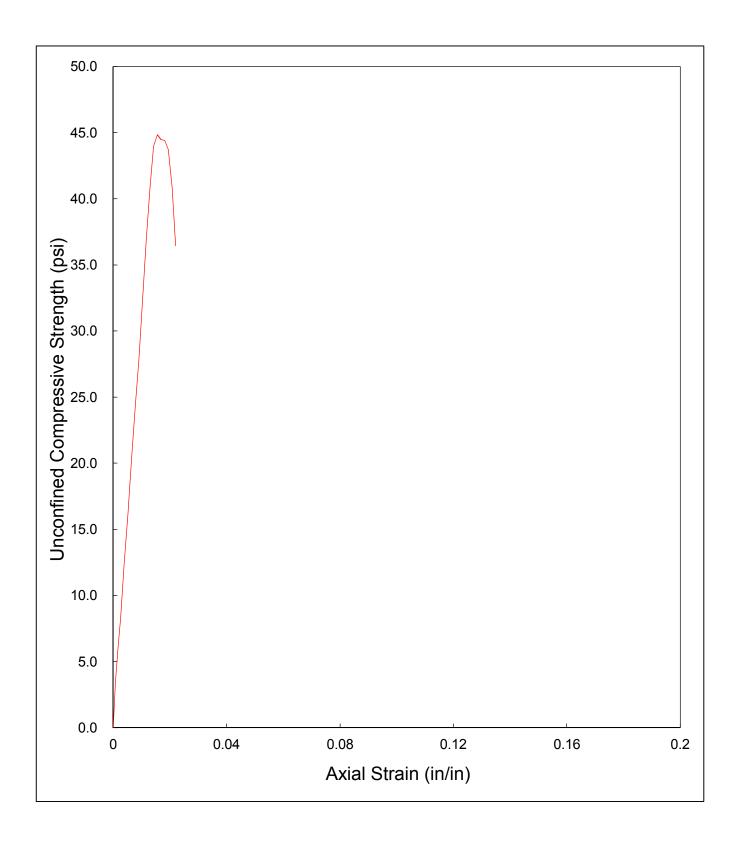
 SAMPLE No.:
 0397-029 7 Day

 TESTING DATE:
 18-Apr-12

 TESTED BY:
 MMAP

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 7999_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-029				
WT MOISTURE TIN (tare weight)	63.72	g			
3. WT WET SOIL + TARE	111.40	g			
4. WT DRY SOIL + TARE	97.85	g			
5. WT WATER, Ww	13.55	g			
6. WT DRY SOIL, Ws	34.13	g			
7. MOISTURE CONTENT, W	39.70	%			

SOIL SPECIMEN DIMENSIONS				
	DIAMETER LENGTH			Ή
No. 1	2.00	in.	3.85	in.
No. 2	2.00	in.	3.85	in.
No. 3	2.00	in.	3.86	in.
Average	2.00	in.	3.85	in.

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	333.62	g		
Initial Area, Ac	3.14	in²		
Initial Volume, Vc	12.09	in³		
Initial Bulk Unit Weight,	105.1	lb/ft³		
Initial Dry Unit Weight	75.2	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	44.8	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.139	0.0000	0.0
11	0.003	0.003	3.142	0.0008	3.5
15	0.005	0.005	3.144	0.0013	4.8
20	0.007	0.007	3.145	0.0018	6.4
26	0.010	0.010	3.148	0.0026	8.3
39	0.015	0.015	3.152	0.0039	12.4
51	0.020	0.020	3.156	0.0052	16.2
64	0.025	0.025	3.160	0.0065	20.3
77	0.030	0.030	3.164	0.0078	24.3
88	0.035	0.035	3.168	0.0091	27.8
103	0.040	0.040	3.172	0.0104	32.5
117	0.045	0.045	3.177	0.0117	36.8
130	0.050	0.050	3.181	0.0130	40.9
140	0.055	0.055	3.185	0.0143	44.0
143	0.060	0.060	3.189	0.0156	44.8
142	0.065	0.065	3.193	0.0169	44.5
142	0.070	0.070	3.198	0.0182	44.4
140	0.075	0.075	3.202	0.0195	43.7
131	0.080	0.080	3.206	0.0208	40.9
117	0.085	0.085	3.210	0.0221	36.4
					_

UNCONFINED COMPRESSION TESTING Sample No. 0397-029 7 Day

44.8 lb/in²

ASTM D 2166 SUMMARY OF RESULTS

Longview Wood Treating PROJECT: PROJECT No.: SE0397 0397-029 7 Day SAMPLE No.: 4/18/2012 TESTING DATE: TESTED BY: MMR

LOADING RATE: 0.04 in./min. TRACKING CODE: 7999_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 39.7 % **BULK UNIT WEIGHT** 105.1 lb/ft³ DRY UNIT WEIGHT 75.2 lb/ft³ UCS *

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

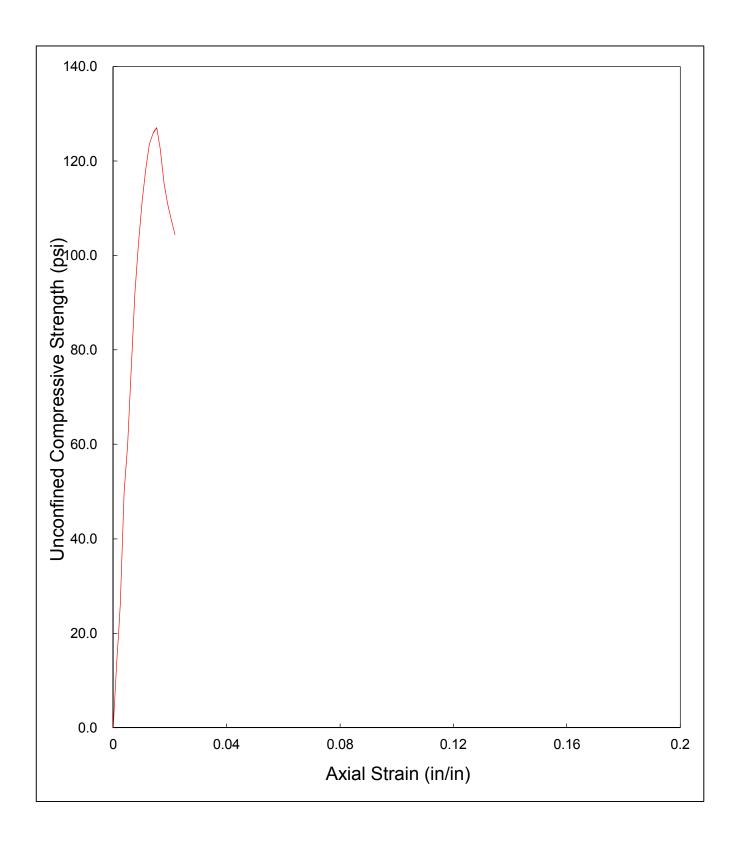
 SAMPLE No.:
 0397-031 7 Day

 TESTING DATE:
 18-Apr-12

 TESTED RY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8000_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
MOISTURE TIN NO.	0397-031				
WT MOISTURE TIN (tare weight)	67.30	g			
3. WT WET SOIL + TARE	105.54	g			
4. WT DRY SOIL + TARE	94.90	g			
5. WT WATER, Ww	10.64	g			
6. WT DRY SOIL, Ws	27.60	g			
7. MOISTURE CONTENT, W	38.55	%			

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.00	in.	3.90	in.	
No. 2	2.00	in.	3.90	in.	
No. 3	2.00	in.	3.90	in.	
Average	2.00	in.	3.90	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	342.51	g		
Initial Area, Ac	3.14	in²		
Initial Volume, Vc	12.25	in³		
Initial Bulk Unit Weight,	106.6	lb/ft³		
Initial Dry Unit Weight	76.9	lb/ft³		
15 % Strain (0.15 Lo)	0.59	in.		
UCS	127.1	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.138	0.0000	0.0
28	0.003	0.003	3.141	0.0008	8.9
44	0.005	0.005	3.142	0.0013	14.0
60	0.007	0.007	3.144	0.0018	19.1
82	0.010	0.010	3.147	0.0026	26.1
157	0.015	0.015	3.151	0.0038	49.8
189	0.020	0.020	3.155	0.0051	59.9
239	0.025	0.025	3.159	0.0064	75.7
292	0.030	0.030	3.163	0.0077	92.3
325	0.035	0.035	3.167	0.0090	102.6
355	0.040	0.040	3.171	0.0103	112.0
376	0.045	0.045	3.175	0.0115	118.4
393	0.050	0.050	3.179	0.0128	123.6
401	0.055	0.055	3.183	0.0141	126.0
405	0.060	0.060	3.187	0.0154	127.1
391	0.065	0.065	3.192	0.0167	122.5
368	0.070	0.070	3.196	0.0179	115.2
355	0.075	0.075	3.200	0.0192	110.9
345	0.080	0.080	3.204	0.0205	107.7
335	0.085	0.085	3.208	0.0218	104.4
					_

UNCONFINED COMPRESSION TESTING Sample No. 0397-031 7 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-031 7 Day

 TESTING DATE:
 4/18/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8000_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 38.6 % BULK UNIT WEIGHT 106.6 lb/ft³ DRY UNIT WEIGHT 76.9 lb/ft³ UCS * 127.1 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

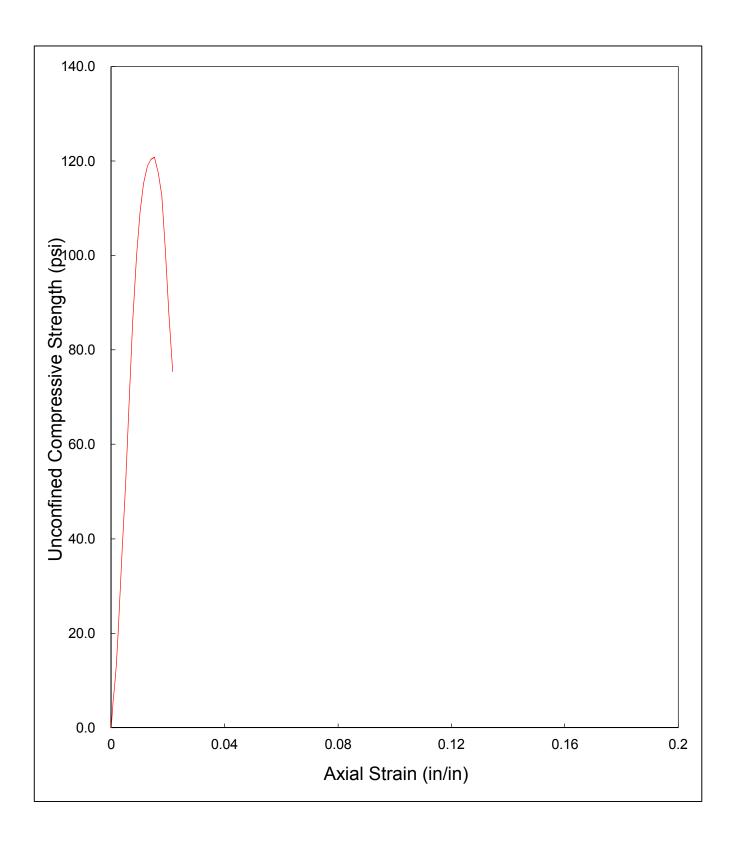
 SAMPLE No.:
 0397-030 7 Day

 TESTING DATE:
 18-Apr-12

 TESTED BY:
 MMAP

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8001_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry	MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-030				
WT MOISTURE TIN (tare weight)	63.56	g			
3. WT WET SOIL + TARE	119.54	g			
4. WT DRY SOIL + TARE	103.76	g			
5. WT WATER, Ww	15.78	g			
6. WT DRY SOIL, Ws	40.20	g			
7. MOISTURE CONTENT, W	39.25	%			

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.00	in.	3.93	in.	
No. 2	2.00	in.	3.92	in.	
No. 3	2.00	in.	3.92	in.	
Average	2.00	in.	3.92	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	342.77	g			
Initial Area, Ac	3.14	in²			
Initial Volume, Vc	12.31	in³			
Initial Bulk Unit Weight,	106.1	lb/ft³			
Initial Dry Unit Weight	76.2	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	120.8	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(105.)	0.000	0.000	3.138	0.0000	(10/111)
18	0.000	0.000	3.141	0.0008	5.7
29	0.003	0.003	3.141	0.0008	9.2
42	0.003	0.003	3.144	0.0013	13.4
65	0.007	0.007	3.146	0.0018	20.7
118	0.010	0.010	3.150	0.0023	37.5
163	0.013	0.013	3.155	0.0051	51.7
218	0.025	0.025	3.159	0.0051	69.0
272	0.030	0.030	3.163	0.0076	86.0
316	0.035	0.035	3.167	0.0070	99.8
346	0.040	0.040	3.171	0.0102	109.1
366	0.045	0.045	3.175	0.0115	115.3
378	0.050	0.050	3.179	0.0127	118.9
383	0.055	0.055	3.183	0.0140	120.3
385	0.060	0.060	3.187	0.0153	120.8
375	0.065	0.065	3.191	0.0166	117.5
360	0.070	0.070	3.195	0.0178	112.7
324	0.075	0.075	3.200	0.0191	101.3
281	0.080	0.080	3.204	0.0204	87.7
242	0.085	0.085	3.208	0.0217	75.4
			_		
	<u> </u>				
		-			

UNCONFINED COMPRESSION TESTING Sample No. 0397-030 7 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-030 7 Day

 TESTING DATE:
 4/18/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8001_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 39.3 % BULK UNIT WEIGHT 106.1 lb/ft³ DRY UNIT WEIGHT 76.2 lb/ft³ UCS * 120.8 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

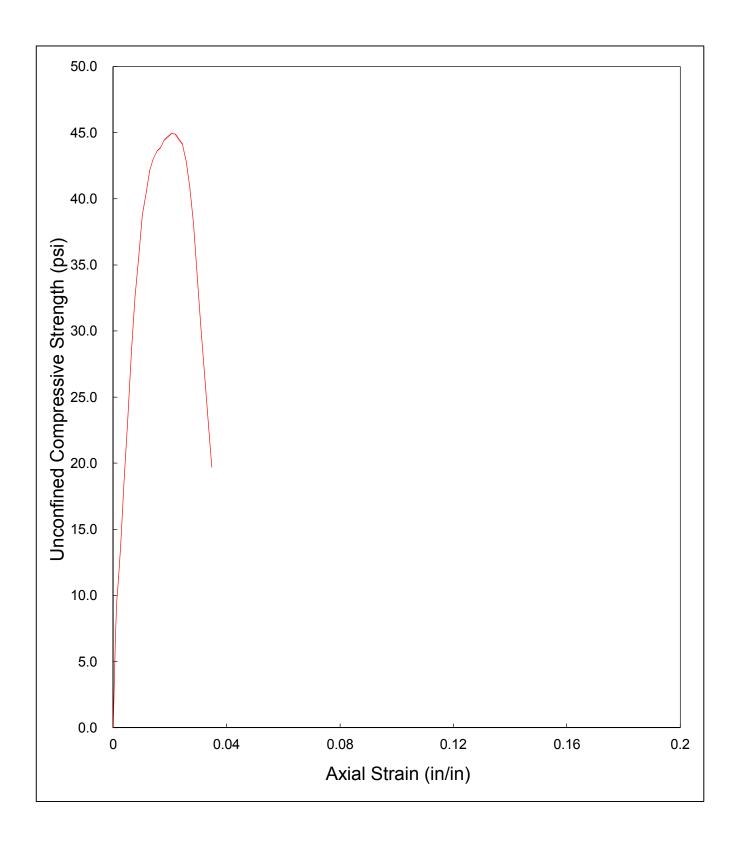
 SAMPLE No.:
 0397-026 14 Day

 TESTING DATE:
 25-Apr-12

 TESTED BY:
 MMAP

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8038_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-026				
WT MOISTURE TIN (tare weight)	52.71	g			
3. WT WET SOIL + TARE	82.00	g			
4. WT DRY SOIL + TARE	74.74	g			
5. WT WATER, Ww	7.26	g			
6. WT DRY SOIL, Ws	22.03	g			
7. MOISTURE CONTENT, W	32.96	%			

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH			Ή	
No. 1	2.00	in.	3.89	in.	
No. 2	2.00	in.	3.88	in.	
No. 3	2.00	in.	3.89	in.	
Average	2.00	in.	3.88	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	337.76	g		
Initial Area, Ac	3.14	in²		
Initial Volume, Vc	12.19	in³		
Initial Bulk Unit Weight,	105.6	lb/ft³		
Initial Dry Unit Weight	79.4	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	44.9	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.138	0.0000	0.0
22	0.003	0.003	3.141	0.0008	7.0
30	0.005	0.005	3.142	0.0013	9.5
35	0.007	0.007	3.144	0.0018	11.1
43	0.010	0.010	3.147	0.0026	13.7
59	0.015	0.015	3.151	0.0039	18.7
73	0.020	0.020	3.155	0.0051	23.1
90	0.025	0.025	3.159	0.0064	28.5
103	0.030	0.030	3.163	0.0077	32.6
113	0.035	0.035	3.167	0.0090	35.7
123	0.040	0.040	3.171	0.0103	38.8
128	0.045	0.045	3.175	0.0116	40.3
134	0.050	0.050	3.179	0.0129	42.1
137	0.055	0.055	3.184	0.0142	43.0
139	0.060	0.060	3.188	0.0154	43.6
140	0.065	0.065	3.192	0.0167	43.9
142	0.070	0.070	3.196	0.0180	44.4
143	0.075	0.075	3.200	0.0193	44.7
144	0.080	0.080	3.204	0.0206	44.9
144	0.085	0.085	3.209	0.0219	44.9
143	0.090	0.090	3.213	0.0232	44.5
142	0.095	0.095	3.217	0.0245	44.1
138	0.100	0.100	3.221	0.0257	42.8
132	0.105	0.105	3.226	0.0270	40.9
123	0.110	0.110	3.230	0.0283	38.1
111	0.115	0.115	3.234	0.0296	34.3
99	0.120	0.120	3.239	0.0309	30.6
87	0.125	0.125	3.243	0.0322	26.8
76	0.130	0.130	3.247	0.0335	23.4
64	0.135	0.135	3.251	0.0348	19.7

UNCONFINED COMPRESSION TESTING Sample No. 0397-026 14 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-026 14 Day

 TESTING DATE:
 4/25/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8038_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 33.0 % BULK UNIT WEIGHT 105.6 lb/ft³ DRY UNIT WEIGHT 79.4 lb/ft³ UCS * 44.9 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

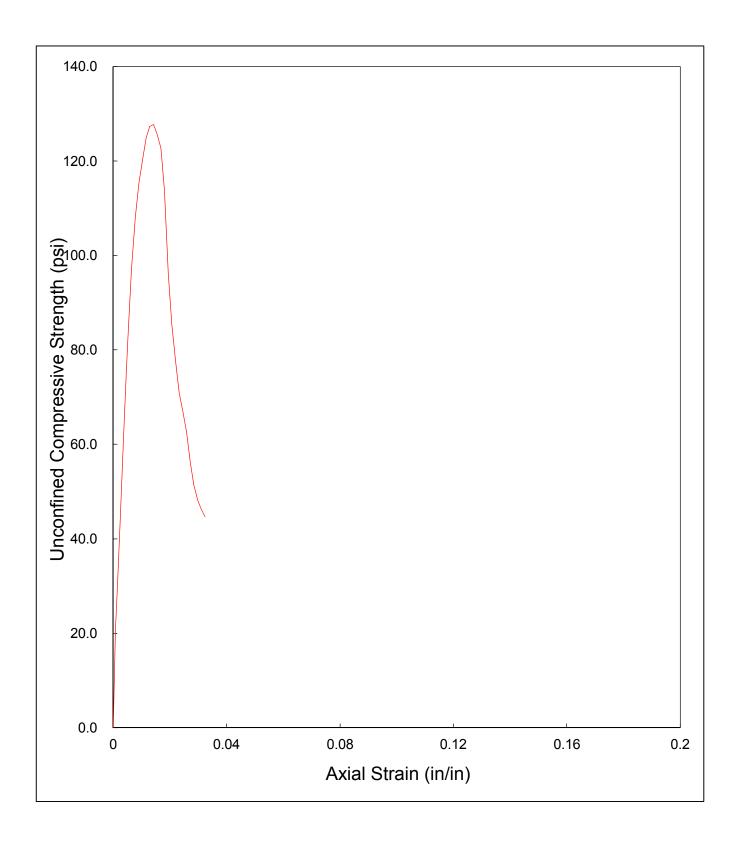
ASTM D 2166

PROJECT:

Longview Wood Treating SE0397 PROJECT No.: SE0397
SAMPLE No.: 0397-027 14 Day
TESTING DATE: 25-Apr-12

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8039_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-027				
WT MOISTURE TIN (tare weight)	69.73	g			
3. WT WET SOIL + TARE	106.85	g			
4. WT DRY SOIL + TARE	97.42	g			
5. WT WATER, Ww	9.43	g			
6. WT DRY SOIL, Ws	27.69	g			
7. MOISTURE CONTENT, W	34.06	%			

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH			Ή	
No. 1	2.00	in.	3.86	in.	
No. 2	2.00	in.	3.86	in.	
No. 3	2.00	in.	3.86	in.	
Average	2.00	in.	3.86	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	337.68	g			
Initial Area, Ac	3.14	in²			
Initial Volume, Vc	12.12	in³			
Initial Bulk Unit Weight,	106.1	lb/ft³			
Initial Dry Unit Weight	79.2	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	127.7	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.141	0.0000	0.0
66	0.003	0.003	3.143	0.0008	21.0
84	0.005	0.005	3.145	0.0013	26.7
107	0.007	0.007	3.146	0.0018	34.0
147	0.010	0.010	3.149	0.0026	46.7
202	0.015	0.015	3.153	0.0039	64.1
261	0.020	0.020	3.157	0.0052	82.7
307	0.025	0.025	3.161	0.0065	97.1
342	0.030	0.030	3.165	0.0078	108.1
365	0.035	0.035	3.169	0.0091	115.2
382	0.040	0.040	3.173	0.0104	120.4
397	0.045	0.045	3.178	0.0117	124.9
405	0.050	0.050	3.182	0.0130	127.3
407	0.055	0.055	3.186	0.0143	127.7
401	0.060	0.060	3.190	0.0155	125.7
392	0.065	0.065	3.194	0.0168	122.7
364	0.070	0.070	3.199	0.0181	113.8
308	0.075	0.075	3.203	0.0194	96.2
274	0.080	0.080	3.207	0.0207	85.4
249	0.085	0.085	3.211	0.0220	77.5
228	0.090	0.090	3.216	0.0233	70.9
215	0.095	0.095	3.220	0.0246	66.8
202	0.100	0.100	3.224	0.0259	62.7
181	0.105	0.105	3.228	0.0272	56.1
166	0.110	0.110	3.233	0.0285	51.4
156	0.115	0.115	3.237	0.0298	48.2
150	0.120	0.120	3.241	0.0311	46.3
145	0.125	0.125	3.246	0.0324	44.7

UNCONFINED COMPRESSION TESTING Sample No. 0397-027 14 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-027 14 Day

 TESTING DATE:
 4/25/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8039_US

TESTING PARAMETER AND RESULTS

 MOISTURE CONTENT
 34.1 %

 BULK UNIT WEIGHT
 106.1 lb/ft³

 DRY UNIT WEIGHT
 79.2 lb/ft³

 UCS *
 127.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

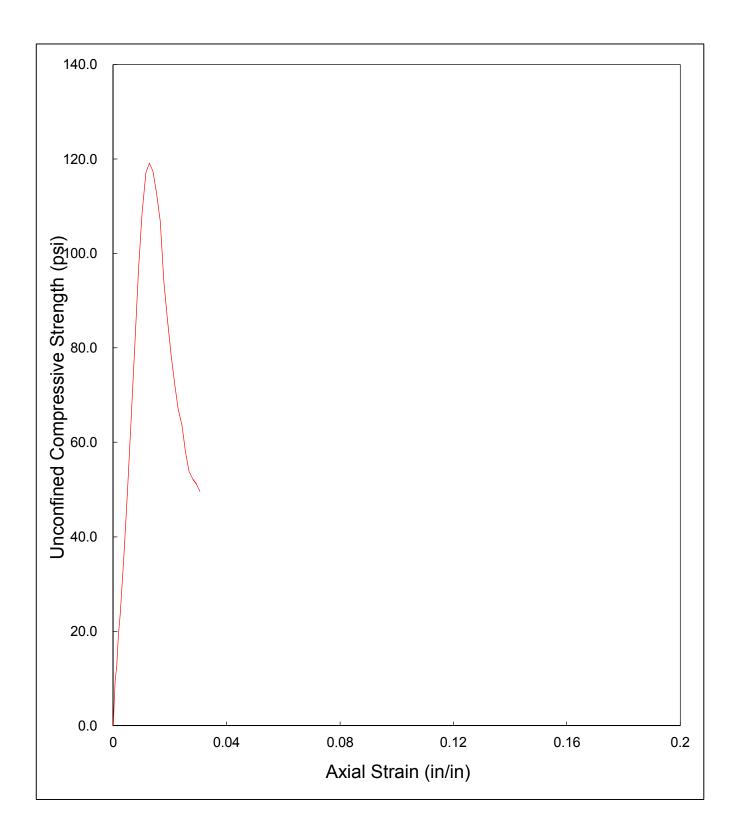
 SAMPLE No.:
 0397-028 14 Day

 TESTING DATE:
 25-Apr-12

 TESTED BY:
 MMAP

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8040_US
 TESTED BY: MMR


	MOISTURE CONTENT (Dry Basis)				
1. MO	ISTURE TIN NO.	0397-028			
2. WT	MOISTURE TIN (tare weight)	63.93	g		
3. WT	WET SOIL + TARE	110.37	g		
4. WT	DRY SOIL + TARE	97.62	g		
	WATER, Ww	12.75	g		
6. WT	DRY SOIL, Ws	33.69	g		
7. MO	ISTURE CONTENT, W	37.85	%		

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH			Ή	
No. 1	2.00	in.	3.91	in.	
No. 2	2.01	in.	3.92	in.	
No. 3	2.00	in.	3.92	in.	
Average	2.00	in.	3.92	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	332.53	g			
Initial Area, Ac	3.15	in²			
Initial Volume, Vc	12.33	in³			
Initial Bulk Unit Weight,	102.7	lb/ft³			
Initial Dry Unit Weight	74.5	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	119.1	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
		0.000	\ /		
0	0.000		3.149	0.0000	0.0
30 40	0.003	0.003 0.005	3.151	0.0008	9.5 12.7
+			3.153		
60 75	0.007	0.007	3.155 3.157	0.0018	19.0
	0.010	0.010			23.8
116	0.015	0.015	3.161	0.0038	36.7
159	0.020	0.020	3.165	0.0051	50.2
206 258	0.025	0.025 0.030	3.169 3.173	0.0064	65.0
	0.030				81.3
307	0.035	0.035	3.177	0.0089	96.6
345	0.040	0.040	3.181	0.0102	108.4
373	0.045	0.045	3.186	0.0115	117.1
380	0.050	0.050	3.190	0.0128	119.1
375	0.055	0.055	3.194	0.0140	117.4
361	0.060	0.060	3.198	0.0153	112.9
342	0.065	0.065	3.202	0.0166	106.8
302	0.070	0.070	3.206	0.0179	94.2
277	0.075	0.075	3.210	0.0192	86.3
252	0.080	0.080	3.215	0.0204	78.4
233	0.085	0.085	3.219	0.0217	72.4
216	0.090	0.090	3.223	0.0230	67.0
205	0.095	0.095	3.227	0.0243	63.5
187	0.100	0.100	3.231	0.0255	57.9
174	0.105	0.105	3.236	0.0268	53.8
169	0.110	0.110	3.240	0.0281	52.2
166	0.115	0.115	3.244	0.0294	51.2
161	0.120	0.120	3.248	0.0306	49.6

UNCONFINED COMPRESSION TESTING Sample No. 0397-028 14 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-028 14 Day

 TESTING DATE:
 4/25/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8040_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 37.8 % BULK UNIT WEIGHT 102.7 lb/ft³ DRY UNIT WEIGHT 74.5 lb/ft³ UCS * 119.1 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

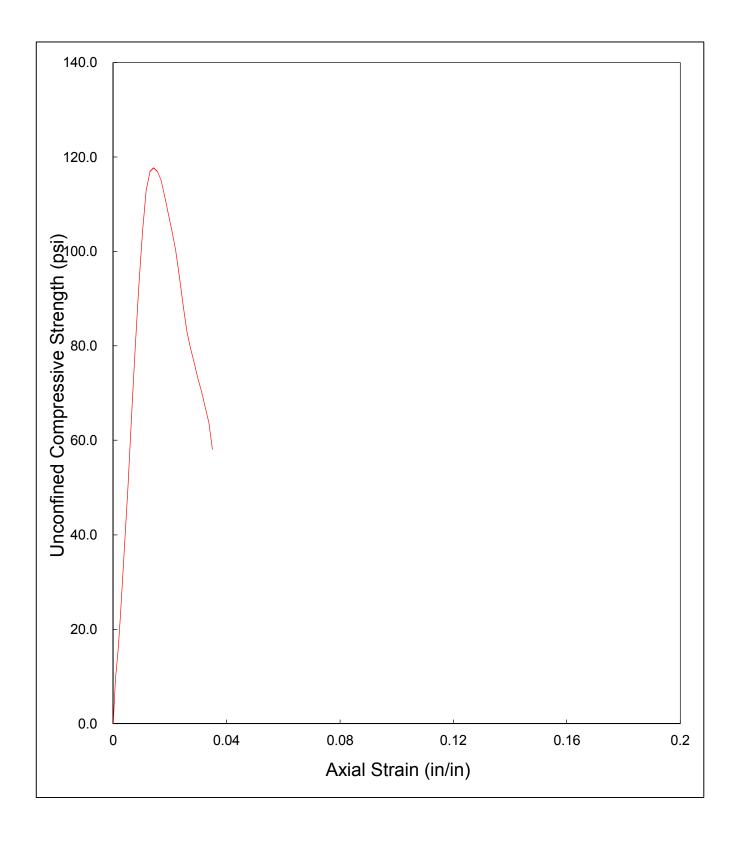
 SAMPLE No.:
 0397-029 14 Day

 TESTING DATE:
 25-Apr-12

 TESTED BY:
 MMAP

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8041_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-029				
WT MOISTURE TIN (tare weight)	63.35	g			
3. WT WET SOIL + TARE	96.98	g			
4. WT DRY SOIL + TARE	87.66	g			
5. WT WATER, Ww	9.32	g			
6. WT DRY SOIL, Ws	24.31	g			
7. MOISTURE CONTENT, W	38.34	%			

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.00	in.	3.85	in.	
No. 2	2.00	in.	3.85	in.	
No. 3	2.00	in.	3.86	in.	
Average	2.00	in.	3.85	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	337.58	g			
Initial Area, Ac	3.14	in²			
Initial Volume, Vc	12.10	in³			
Initial Bulk Unit Weight,	106.3	lb/ft³			
Initial Dry Unit Weight	76.8	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	117.7	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.141	0.0000	0.0
30	0.003	0.003	3.143	0.0008	9.5
39	0.005	0.005	3.145	0.0013	12.4
51	0.007	0.007	3.146	0.0018	16.2
74	0.010	0.010	3.149	0.0026	23.5
114	0.015	0.015	3.153	0.0039	36.2
158	0.020	0.020	3.157	0.0052	50.0
205	0.025	0.025	3.161	0.0065	64.9
253	0.030	0.030	3.165	0.0078	79.9
294	0.035	0.035	3.169	0.0091	92.8
332	0.040	0.040	3.173	0.0104	104.6
359	0.045	0.045	3.178	0.0117	113.0
372	0.050	0.050	3.182	0.0130	116.9
375	0.055	0.055	3.186	0.0143	117.7
373	0.060	0.060	3.190	0.0156	116.9
368	0.065	0.065	3.194	0.0169	115.2
357	0.070	0.070	3.199	0.0182	111.6
346	0.075	0.075	3.203	0.0195	108.0
334	0.080	0.080	3.207	0.0208	104.1
322	0.085	0.085	3.211	0.0221	100.3
304	0.090	0.090	3.216	0.0234	94.5
286	0.095	0.095	3.220	0.0247	88.8
268	0.100	0.100	3.224	0.0260	83.1
257	0.105	0.105	3.229	0.0273	79.6
247	0.110	0.110	3.233	0.0285	76.4
237	0.115	0.115	3.237	0.0298	73.2
228	0.120	0.120	3.242	0.0311	70.3
218	0.125	0.125	3.246	0.0324	67.2
207	0.130	0.130	3.250	0.0337	63.7
189	0.135	0.135	3.255	0.0350	58.1

UNCONFINED COMPRESSION TESTING Sample No. 0397-029 14 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-029 14 Day

 TESTING DATE:
 4/25/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8041_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 38.3 % BULK UNIT WEIGHT 106.3 lb/ft³ DRY UNIT WEIGHT 76.8 lb/ft³ UCS * 117.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397

PROJECT:

PROJECT No.:

SE0397

SAMPLE No.:

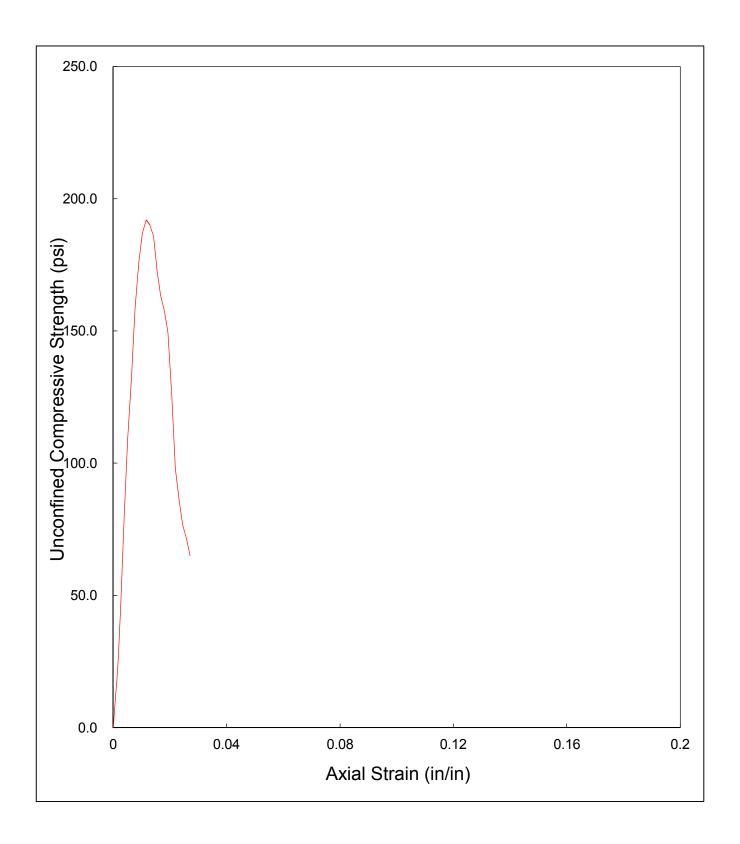
0397-030 14 Day

TESTING DATE:

25-Apr-12

MMR
 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8042_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0397-030				
WT MOISTURE TIN (tare weight)	68.88	g			
3. WT WET SOIL + TARE	98.87	g			
4. WT DRY SOIL + TARE	90.63	g			
5. WT WATER, Ww	8.24	g			
6. WT DRY SOIL, Ws	21.75	g			
7. MOISTURE CONTENT, W	37.89	%			

SOIL SPECIMEN DIMENSIONS							
	DIAMETE	DIAMETER		LENGTH			
No. 1	2.00	in.	3.87	in.			
No. 2	2.00	in.	3.87	in.			
No. 3	2.00	in.	3.87	in.			
Average	2.00	in.	3.87	in.			

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	332.32	g			
Initial Area, Ac	3.14	in²			
Initial Volume, Vc	12.16	in³			
Initial Bulk Unit Weight,	104.1	lb/ft³			
Initial Dry Unit Weight	75.5	lb/ft³			
15 % Strain (0.15 Lo)	0.58	in.			
UCS	192.0	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(188.)	0.000	0.000	3.141	0.0000	0.0
36	0.003	0.003	3.143	0.0008	11.5
54	0.005	0.005	3.145	0.0003	17.2
84	0.007	0.007	3.146	0.0018	26.7
142	0.010	0.010	3.149	0.0016	45.1
250	0.015	0.015	3.153	0.0039	79.3
344	0.020	0.020	3.157	0.0052	109.0
418	0.025	0.025	3.161	0.0065	132.2
501	0.030	0.030	3.165	0.0077	158.3
558	0.035	0.035	3.169	0.0090	176.1
593	0.040	0.040	3.173	0.0103	186.9
610	0.045	0.045	3.177	0.0116	192.0
605	0.050	0.050	3.182	0.0129	190.2
592	0.055	0.055	3.186	0.0142	185.8
551	0.060	0.060	3.190	0.0155	172.7
522	0.065	0.065	3.194	0.0168	163.4
504	0.070	0.070	3.198	0.0181	157.6
478	0.075	0.075	3.203	0.0194	149.3
402	0.080	0.080	3.207	0.0207	125.4
315	0.085	0.085	3.211	0.0220	98.1
276	0.090	0.090	3.215	0.0232	85.8
247	0.095	0.095	3.220	0.0245	76.7
230	0.100	0.100	3.224	0.0258	71.3
210	0.105	0.105	3.228	0.0271	65.1

UNCONFINED COMPRESSION TESTING Sample No. 0397-030 14 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-030 14 Day

 TESTING DATE:
 4/25/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8042_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 37.9 % BULK UNIT WEIGHT 104.1 lb/ft³ DRY UNIT WEIGHT 75.5 lb/ft³ UCS * 192.0 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397 PROJECT:

PROJECT No.:

SE0397

SAMPLE No.:

0397-031 14 Day

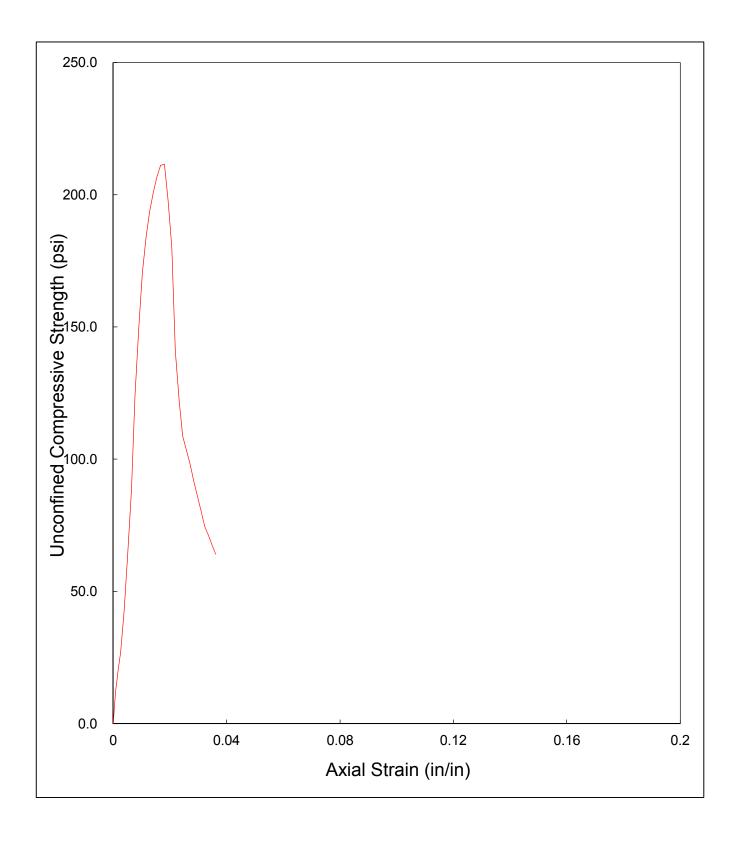
TESTING DATE:

25-Apr-12

MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8043_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-031					
WT MOISTURE TIN (tare weight)	66.05	g				
3. WT WET SOIL + TARE	109.85	g				
4. WT DRY SOIL + TARE	97.83	g				
5. WT WATER, Ww	12.02	g				
6. WT DRY SOIL, Ws	31.78	g				
7. MOISTURE CONTENT, W	37.82	%				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00	in.	3.87	in.	
No. 2	2.01	in.	3.87	in.	
No. 3	2.01	in.	3.88	in.	
Average	2.01	in.	3.87	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	338.58	g		
Initial Area, Ac	3.16	in²		
Initial Volume, Vc	12.23	in³		
Initial Bulk Unit Weight,	105.5	lb/ft³		
Initial Dry Unit Weight	76.5	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	211.5	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(188.)	0.000	0.000	3.158	0.0000	0.0
37	0.003	0.003	3.160	0.0008	11.7
50	0.005	0.005	3.162	0.0003	15.8
66	0.007	0.007	3.163	0.0013	20.9
85	0.010	0.010	3.166	0.0016	26.8
135	0.015	0.015	3.170	0.0020	42.6
202	0.020	0.020	3.174	0.0052	63.6
281	0.025	0.025	3.178	0.0065	88.4
395	0.030	0.030	3.182	0.0077	124.1
478	0.035	0.035	3.186	0.0090	150.0
544	0.040	0.040	3.191	0.0103	170.5
589	0.045	0.045	3.195	0.0116	184.4
620	0.050	0.050	3.199	0.0129	193.8
645	0.055	0.055	3.203	0.0142	201.4
664	0.060	0.060	3.207	0.0155	207.0
678	0.065	0.065	3.212	0.0168	211.1
680	0.070	0.070	3.216	0.0181	211.5
639	0.075	0.075	3.220	0.0194	198.4
581	0.080	0.080	3.224	0.0207	180.2
455	0.085	0.085	3.228	0.0219	140.9
395	0.090	0.090	3.233	0.0232	122.2
352	0.095	0.095	3.237	0.0245	108.7
336	0.100	0.100	3.241	0.0258	103.7
319	0.105	0.105	3.246	0.0271	98.3
299	0.110	0.110	3.250	0.0284	92.0
280	0.115	0.115	3.254	0.0297	86.0
263	0.120	0.120	3.259	0.0310	80.7
243	0.125	0.125	3.263	0.0323	74.5
233	0.130	0.130	3.267	0.0336	71.3
221	0.135	0.135	3.272	0.0349	67.5
210	0.140	0.140	3.276	0.0361	64.1

UNCONFINED COMPRESSION TESTING Sample No. 0397-031 14 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-031 14 Day

 TESTING DATE:
 4/25/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8043_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 37.8 % BULK UNIT WEIGHT 105.5 lb/ft³ DRY UNIT WEIGHT 76.5 lb/ft³ UCS * 211.5 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 \$E0397

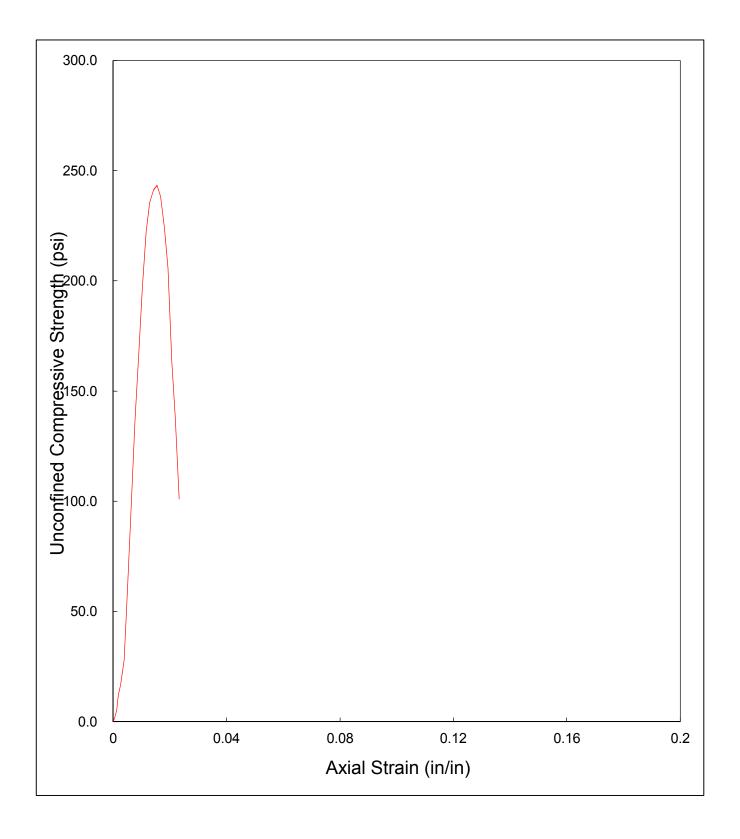
 SAMPLE No.:
 0397-026 21 Day

 TESTING DATE:
 9-May-12

 TESTED BY:
 MMD

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8063_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-026					
WT MOISTURE TIN (tare weight)	114.15	g				
3. WT WET SOIL + TARE	174.05	g				
4. WT DRY SOIL + TARE	159.12	g				
5. WT WATER, Ww	14.93	g				
6. WT DRY SOIL, Ws	44.97	g				
7. MOISTURE CONTENT, W	33.20	%				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	1.99 in	3.86 in.			
No. 2	1.99 in	3.88 in.			
No. 3	1.99 in	3.87 in.			
Average	1.99 in	. 3.87 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	336.91	g		
Initial Area, Ac	3.10	in²		
Initial Volume, Vc	12.02	in³		
Initial Bulk Unit Weight,	106.8	lb/ft³		
Initial Dry Unit Weight	80.2	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	243.3	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
	()	· /	\ /		
0	0.000	0.000	3.104	0.0000	0.0
9	0.003	0.003	3.106	0.0008	2.9
17	0.005	0.005	3.108	0.0013	5.5
38 52	0.007	0.007	3.110	0.0018	12.2
	0.010	0.010	3.112	0.0026	16.7
87 192	0.015	0.015 0.020	3.116	0.0039	27.9
			3.120		61.5
314 428	0.025	0.025 0.030	3.124 3.128	0.0065	100.5 136.8
525	0.030	0.030	3.128	0.0077	167.6
618	0.035	0.035	3.132	0.0090	197.0
699	0.040	0.040	3.141	0.0103	222.6
741	0.043	0.043	3.145	0.0116	235.6
760	0.055	0.055	3.149	0.0129	241.4
767	0.053	0.053	3.153	0.0142	243.3
752	0.065	0.065	3.157	0.0155	238.2
708	0.003	0.070	3.161	0.0108	224.0
652	0.075	0.075	3.165	0.0194	206.0
518	0.080	0.080	3.170	0.0207	163.4
437	0.085	0.085	3.174	0.0220	137.7
321	0.090	0.090	3.174	0.0232	101.0
321	0.070	0.070	3.170	0.0232	101.0
<u> </u>		1	l l		

UNCONFINED COMPRESSION TESTING Sample No. 0397-026 21 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-026 21 Day

 TESTING DATE:
 5/9/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8063_US

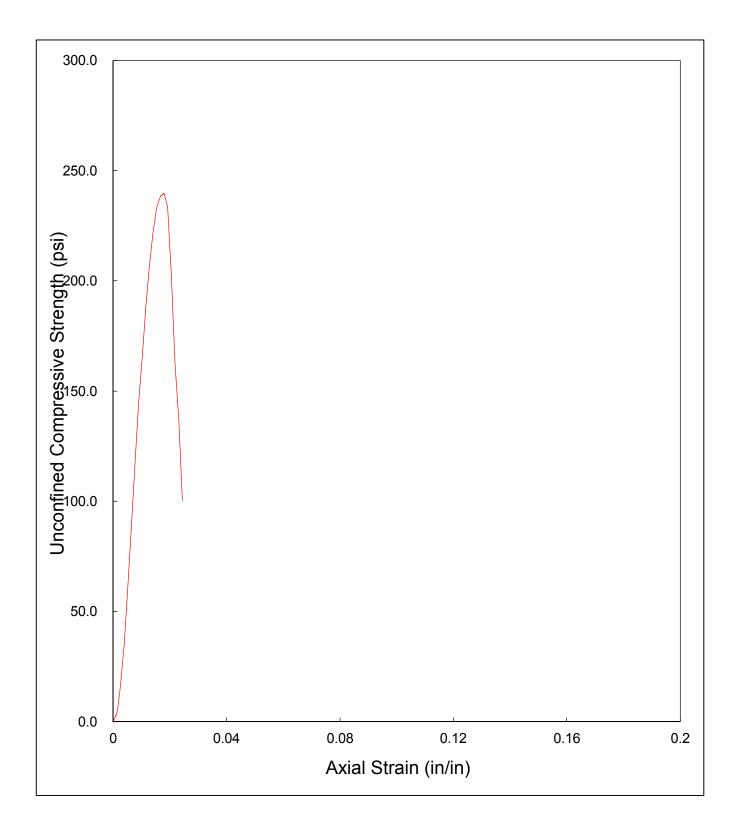
^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397
SAMPLE No.: 0397-027 21 Day
TESTING DATE: P-May-12
TESTED BY: MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8064_US


MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0397-027			
WT MOISTURE TIN (tare weight)	111.27	g		
3. WT WET SOIL + TARE	162.40	g		
4. WT DRY SOIL + TARE	149.26	g		
5. WT WATER, Ww	13.14	g		
6. WT DRY SOIL, Ws	37.99	g		
7. MOISTURE CONTENT, W	34.59	%		

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00	in.	3.89	in.	
No. 2	2.00	in.	3.90	in.	
No. 3	2.00	in.	3.89	in.	
Average	2.00	in.	3.89	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	336.91	g		
Initial Area, Ac	3.14	in²		
Initial Volume, Vc	12.23	in³		
Initial Bulk Unit Weight,	104.9	lb/ft³		
Initial Dry Unit Weight	78.0	lb/ft³		
15 % Strain (0.15 Lo)	0.58	in.		
UCS	239.8	lb/in²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.142	0.0000	0.0
8	0.003	0.003	3.144	0.0008	2.5
11	0.005	0.005	3.146	0.0013	3.5
26	0.007	0.007	3.147	0.0018	8.3
49	0.010	0.010	3.150	0.0026	15.6
109	0.015	0.015	3.154	0.0039	34.6
189	0.020	0.020	3.158	0.0051	59.9
282	0.025	0.025	3.162	0.0064	89.2
371	0.030	0.030	3.166	0.0077	117.2
456	0.035	0.035	3.170	0.0090	143.8
527	0.040	0.040	3.174	0.0103	166.0
599	0.045	0.045	3.178	0.0116	188.5
658	0.050	0.050	3.182	0.0128	206.8
710	0.055	0.055	3.187	0.0141	222.8
745	0.060	0.060	3.191	0.0154	233.5
762	0.065	0.065	3.195	0.0167	238.5
767	0.070	0.070	3.199	0.0180	239.8
748	0.075	0.075	3.203	0.0193	233.5
646	0.080	0.080	3.207	0.0205	201.4
522	0.085	0.085	3.212	0.0218	162.5
440	0.090	0.090	3.216	0.0231	136.8
323	0.095	0.095	3.220	0.0244	100.3

UNCONFINED COMPRESSION TESTING Sample No. 0397-027 21 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-027 21 Day

 TESTING DATE:
 5/9/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8064_US

TESTING PARAMETER AND RESULTS

 MOISTURE CONTENT
 34.6 %

 BULK UNIT WEIGHT
 104.9 lb/ft³

 DRY UNIT WEIGHT
 78.0 lb/ft³

 UCS *
 239.8 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 \$E0397

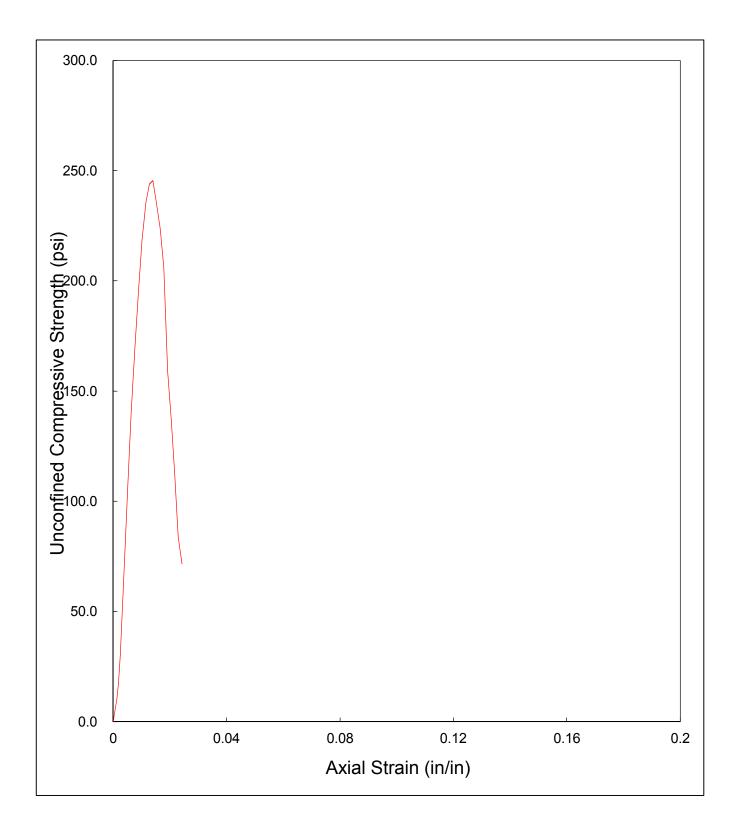
 SAMPLE No.:
 0397-028 21 Day

 TESTING DATE:
 9-May-12

 TESTED BY:
 MMD

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8065_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-028						
WT MOISTURE TIN (tare weight)	113.63	g					
3. WT WET SOIL + TARE	161.03	g					
4. WT DRY SOIL + TARE	148.07	g					
5. WT WATER, Ww	12.96	g					
6. WT DRY SOIL, Ws	34.44	g					
7. MOISTURE CONTENT, W	37.63	%					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.00	in.	3.91	in.		
No. 2	2.01	in.	3.91	in.		
No. 3	2.00	in.	3.92	in.		
Average	2.00	in.	3.91	in.		

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	333.38	g				
Initial Area, Ac	3.15	in²				
Initial Volume, Vc	12.33	in³				
Initial Bulk Unit Weight,	103.0	lb/ft³				
Initial Dry Unit Weight	74.8	lb/ft³				
15 % Strain (0.15 Lo)	0.59	in.				
UCS	245.5	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.152	0.0000	0.0
18	0.003	0.003	3.154	0.0008	5.7
31	0.005	0.005	3.156	0.0013	9.8
53	0.007	0.007	3.158	0.0018	16.8
95	0.010	0.010	3.160	0.0026	30.1
218	0.015	0.015	3.164	0.0038	68.9
334	0.020	0.020	3.168	0.0051	105.4
445	0.025	0.025	3.172	0.0064	140.3
541	0.030	0.030	3.176	0.0077	170.3
622	0.035	0.035	3.181	0.0089	195.6
696	0.040	0.040	3.185	0.0102	218.5
751	0.045	0.045	3.189	0.0115	235.5
779	0.050	0.050	3.193	0.0128	244.0
785	0.055	0.055	3.197	0.0141	245.5
750	0.060	0.060	3.201	0.0153	234.3
716	0.065	0.065	3.205	0.0166	223.4
661	0.070	0.070	3.209	0.0179	206.0
511	0.075	0.075	3.214	0.0192	159.0
443	0.080	0.080	3.218	0.0204	137.7
363	0.085	0.085	3.222	0.0217	112.7
270	0.090	0.090	3.226	0.0230	83.7
231	0.095	0.095	3.231	0.0243	71.5
	·	-			-
	·			·	

UNCONFINED COMPRESSION TESTING Sample No. 0397-028 21 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-028 21 Day

 TESTING DATE:
 5/9/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8065_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 37.6 % BULK UNIT WEIGHT 103.0 lb/ft³ DRY UNIT WEIGHT 74.8 lb/ft³ UCS * 245.5 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397

PROJECT:

PROJECT No.:

SE0397

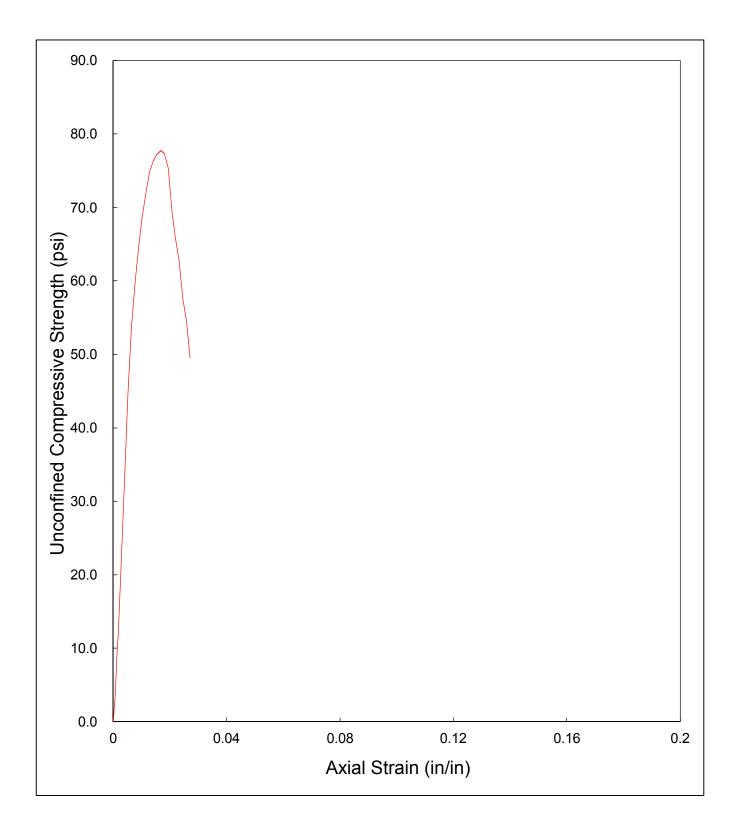
SAMPLE No.:

TESTING DATE:

6-Jun-12

MMR
 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8132_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-026						
WT MOISTURE TIN (tare weight)	66.15	g					
3. WT WET SOIL + TARE	120.01	g					
4. WT DRY SOIL + TARE	106.74	g					
5. WT WATER, Ww	13.27	g					
6. WT DRY SOIL, Ws	40.59	g					
7. MOISTURE CONTENT, W	32.69	%					

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTI							
No. 1	2.02	in.	3.86	in.			
No. 2	2.00	in.	3.87	in.			
No. 3	2.00	in.	3.87	in.			
Average 2.01 in. 3.87 in.							

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	334.34	g				
Initial Area, Ac	3.16	in²				
Initial Volume, Vc	12.23	in³				
Initial Bulk Unit Weight,	104.2	lb/ft³				
Initial Dry Unit Weight	78.5	lb/ft³				
15 % Strain (0.15 Lo)	0.58	in.				
UCS	77.7	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.162	0.0000	0.0
13	0.003	0.003	3.164	0.0008	4.1
27	0.005	0.005	3.166	0.0013	8.5
39	0.007	0.007	3.167	0.0018	12.3
62	0.010	0.010	3.170	0.0026	19.6
100	0.015	0.015	3.174	0.0039	31.5
142	0.020	0.020	3.178	0.0052	44.7
171	0.025	0.025	3.182	0.0065	53.7
190	0.030	0.030	3.186	0.0078	59.6
207	0.035	0.035	3.190	0.0090	64.9
220	0.040	0.040	3.195	0.0103	68.9
231	0.045	0.045	3.199	0.0116	72.2
240	0.050	0.050	3.203	0.0129	74.9
245	0.055	0.055	3.207	0.0142	76.4
248	0.060	0.060	3.211	0.0155	77.2
250	0.065	0.065	3.216	0.0168	77.7
249	0.070	0.070	3.220	0.0181	77.3
243	0.075	0.075	3.224	0.0194	75.4
225	0.080	0.080	3.228	0.0207	69.7
213	0.085	0.085	3.233	0.0220	65.9
203	0.090	0.090	3.237	0.0233	62.7
187	0.095	0.095	3.241	0.0246	57.7
177	0.100	0.100	3.245	0.0259	54.5
161	0.105	0.105	3.250	0.0271	49.5
	· · · · · · · · · · · · · · · · · · ·	,			-

UNCONFINED COMPRESSION TESTING Sample No. 0397-026 56 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-026 56 Day

 TESTING DATE:
 6/6/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8132_US

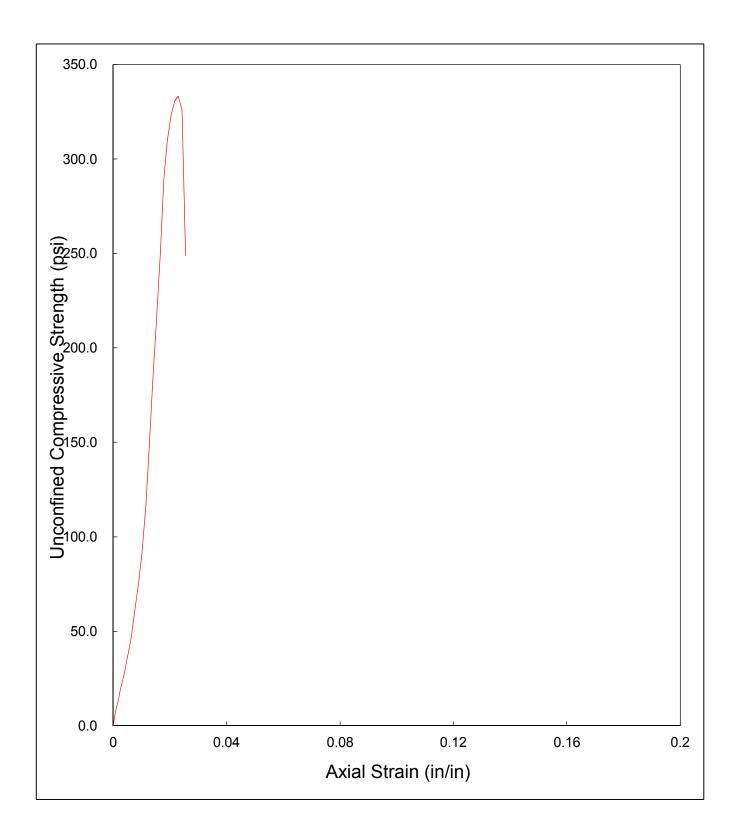
MOISTURE CONTENT 32.7 % BULK UNIT WEIGHT 104.2 lb/ft³ DRY UNIT WEIGHT 78.5 lb/ft³ UCS * 77.7 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397
SAMPLE No.: 0397-027 56 Day
TESTING DATE: 6-Jun-12
TESTED BY: LAM
 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8133_US
 TESTED BY: LAM


MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-027						
WT MOISTURE TIN (tare weight)	87.22	g					
3. WT WET SOIL + TARE	130.28	g					
4. WT DRY SOIL + TARE	119.67	g					
5. WT WATER, Ww	10.61	g					
6. WT DRY SOIL, Ws	32.45	g					
7. MOISTURE CONTENT, W	32.70	%					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.00	in.	3.91	in.		
No. 2	2.01	in.	3.94	in.		
No. 3	2.00	in.	3.90	in.		
Average	2.00	in.	3.92	in.		

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	341.59	g				
Initial Area, Ac	3.15	in²				
Initial Volume, Vc	12.32	in³				
Initial Bulk Unit Weight,	105.6	lb/ft³				
Initial Dry Unit Weight	79.6	lb/ft³				
15 % Strain (0.15 Lo)	0.59	in.				
UCS	333.1	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.147	0.0000	0.0
20	0.003	0.003	3.149	0.0008	6.4
33	0.005	0.005	3.151	0.0013	10.5
42	0.007	0.007	3.152	0.0018	13.3
60	0.010	0.010	3.155	0.0026	19.0
86	0.015	0.015	3.159	0.0038	27.2
116	0.020	0.020	3.163	0.0051	36.7
147	0.025	0.025	3.167	0.0064	46.4
196	0.030	0.030	3.171	0.0077	61.8
239	0.035	0.035	3.175	0.0089	75.3
292	0.040	0.040	3.179	0.0102	91.8
371	0.045	0.045	3.183	0.0115	116.5
475	0.050	0.050	3.188	0.0128	149.0
587	0.055	0.055	3.192	0.0140	183.9
685	0.060	0.060	3.196	0.0153	214.3
798	0.065	0.065	3.200	0.0166	249.4
926	0.070	0.070	3.204	0.0179	289.0
994	0.075	0.075	3.208	0.0192	309.8
1038	0.080	0.080	3.212	0.0204	323.1
1064	0.085	0.085	3.217	0.0217	330.8
1073	0.090	0.090	3.221	0.0230	333.1
1051	0.095	0.095	3.225	0.0243	325.9
804	0.100	0.100	3.229	0.0255	249.0
	· · · · · · · · · · · · · · · · · · ·				-

UNCONFINED COMPRESSION TESTING Sample No. 0397-027 56 Day

333.1 lb/in²

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-027 56 Day

 TESTING DATE:
 6/6/2012

 TESTED BY:
 LAM

UCS *

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8133_US

MOISTURE CONTENT 32.7 % BULK UNIT WEIGHT 105.6 lb/ft³ DRY UNIT WEIGHT 79.6 lb/ft³

* UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397

PROJECT:

PROJECT No.:

SE0397

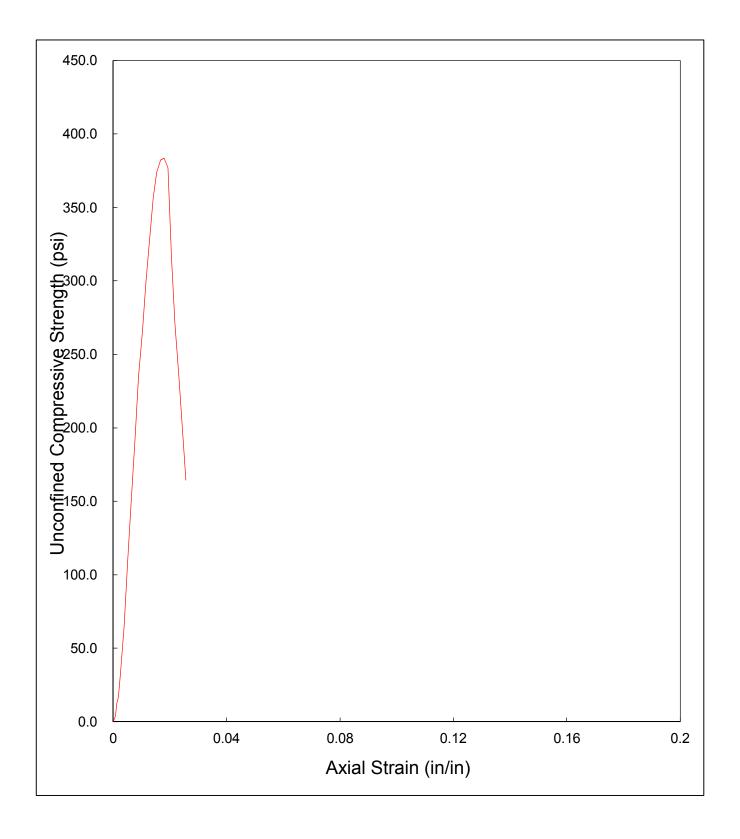
SAMPLE No.:

TESTING DATE:

6-Jun-12

MMR
 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8134_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-028						
WT MOISTURE TIN (tare weight)	68.91	g					
3. WT WET SOIL + TARE	142.05	g					
4. WT DRY SOIL + TARE	122.70	g					
5. WT WATER, Ww	19.35	g					
6. WT DRY SOIL, Ws	53.79	g					
7. MOISTURE CONTENT, W	35.97	%					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.01	in.	3.88	in.		
No. 2	2.01	in.	3.89	in.		
No. 3	2.00	in.	3.90	in.		
Average	2.01	in.	3.89	in.		

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	331.20	g				
Initial Area, Ac	3.16	in²				
Initial Volume, Vc	12.30	in³				
Initial Bulk Unit Weight,	102.6	lb/ft³				
Initial Dry Unit Weight	75.4	lb/ft³				
15 % Strain (0.15 Lo)	0.58	in.				
UCS	383.5	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.163	0.0000	0.0
12	0.003	0.003	3.165	0.0008	3.8
39	0.005	0.005	3.167	0.0013	12.3
52	0.007	0.007	3.168	0.0018	16.4
99	0.010	0.010	3.171	0.0026	31.2
205	0.015	0.015	3.175	0.0039	64.6
346	0.020	0.020	3.179	0.0051	108.8
487	0.025	0.025	3.183	0.0064	153.0
612	0.030	0.030	3.187	0.0077	192.0
750	0.035	0.035	3.191	0.0090	235.0
846	0.040	0.040	3.195	0.0103	264.8
955	0.045	0.045	3.200	0.0116	298.5
1054	0.050	0.050	3.204	0.0129	329.0
1144	0.055	0.055	3.208	0.0141	356.6
1202	0.060	0.060	3.212	0.0154	374.2
1229	0.065	0.065	3.216	0.0167	382.1
1235	0.070	0.070	3.221	0.0180	383.5
1216	0.075	0.075	3.225	0.0193	377.1
1020	0.080	0.080	3.229	0.0206	315.9
873	0.085	0.085	3.233	0.0219	270.0
762	0.090	0.090	3.237	0.0231	235.4
648	0.095	0.095	3.242	0.0244	199.9
534	0.100	0.100	3.246	0.0257	164.5
			_		
	·				-

UNCONFINED COMPRESSION TESTING Sample No. 0397-028 56 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview W

 PROJECT No.:
 SEC

 SAMPLE No.:
 0397-02

 TESTING DATE:
 6/6/

 TESTED BY:
 MI

Longview Wood Treating
SE0397
0397-028 56 Day
6/6/2012
MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8134_US

TESTING PARAMETER AND RESULTS

 MOISTURE CONTENT
 36.0
 %

 BULK UNIT WEIGHT
 102.6
 lb/ft³

 DRY UNIT WEIGHT
 75.4
 lb/ft³

 UCS *
 383.5
 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

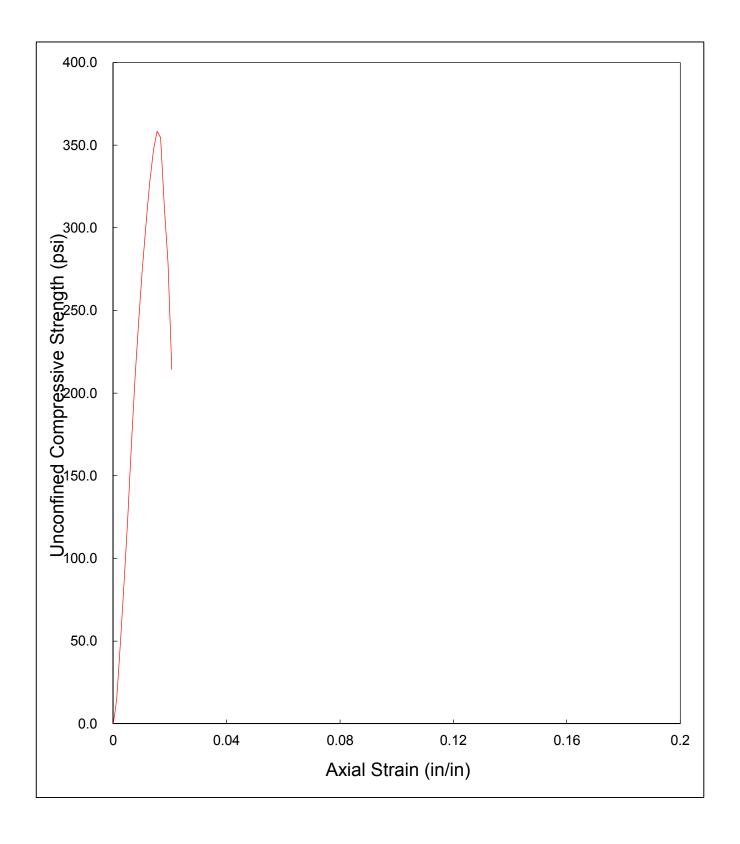
 SAMPLE No.:
 0397-029 56 Day

 TESTING DATE:
 6-Jun-12

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8135_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry	MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-029						
WT MOISTURE TIN (tare weight)	69.76	g					
3. WT WET SOIL + TARE	142.94	g					
4. WT DRY SOIL + TARE	123.92	g					
5. WT WATER, Ww	19.02	g					
6. WT DRY SOIL, Ws	54.16	g					
7. MOISTURE CONTENT, W	35.12	%					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.02	in.	3.87	in.		
No. 2	2.01	in.	3.87	in.		
No. 3	2.01	in.	3.88	in.		
Average	2.01	in.	3.87	in.		

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	335.20	g				
Initial Area, Ac	3.18	in²				
Initial Volume, Vc	12.33	in³				
Initial Bulk Unit Weight,	103.5	lb/ft³				
Initial Dry Unit Weight	76.6	lb/ft³				
15 % Strain (0.15 Lo)	0.58	in.				
UCS	358.3	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
(103.)	0.000	0.000	3.185	0.0000	0.0
28	0.003	0.000	3.187	0.0008	8.8
50	0.005	0.005	3.189	0.0008	15.7
95	0.007	0.007	3.190	0.0013	29.8
162	0.010	0.010	3.193	0.0016	50.7
275	0.015	0.015	3.197	0.0020	86.0
394	0.020	0.020	3.201	0.0052	123.1
543	0.025	0.025	3.205	0.0065	169.4
670	0.030	0.030	3.210	0.0003	208.8
787	0.035	0.035	3.214	0.0090	244.9
886	0.040	0.040	3.218	0.0103	275.3
978	0.045	0.045	3.222	0.0116	303.5
1057	0.050	0.050	3.226	0.0129	327.6
1122	0.055	0.055	3.231	0.0142	347.3
1159	0.060	0.060	3.235	0.0155	358.3
1148	0.065	0.065	3.239	0.0168	354.4
1010	0.070	0.070	3.243	0.0181	311.4
908	0.075	0.075	3.248	0.0194	279.6
697	0.080	0.080	3.252	0.0207	214.3

UNCONFINED COMPRESSION TESTING Sample No. 0397-029 56 Day

ASTM D 2166 SUMMARY OF RESULTS

PROJECT: Long
PROJECT No.:
SAMPLE No.:
TESTING DATE:
TESTED BY:

Longview Wood Treating
SE0397
0397-029 56 Day
6/6/2012
MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8135_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 35.1 % BULK UNIT WEIGHT 103.5 lb/ft³ DRY UNIT WEIGHT 76.6 lb/ft³ UCS * 358.3 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397

PROJECT:

PROJECT No.:

SE0397

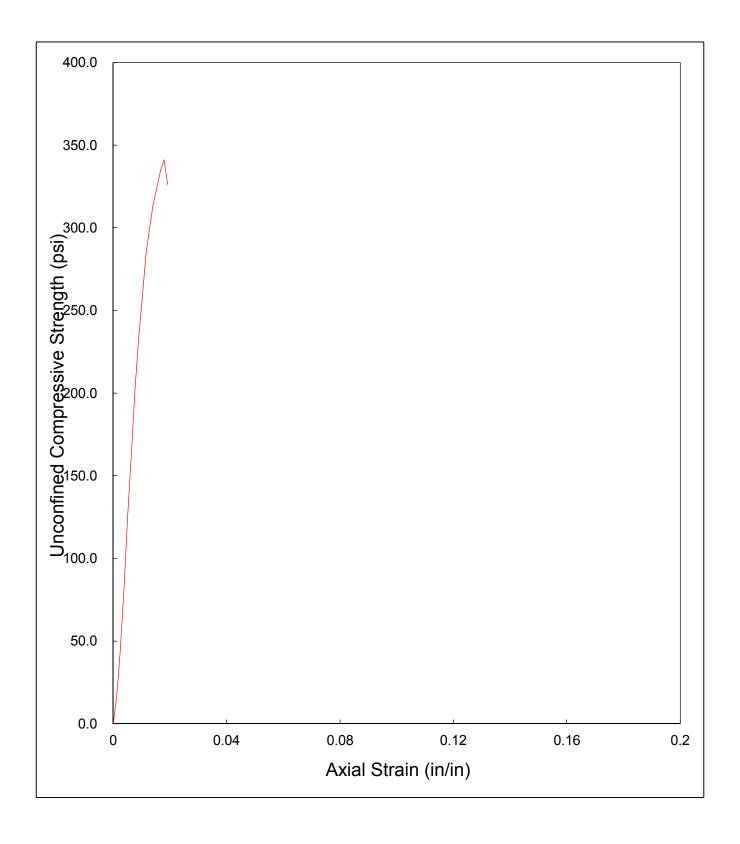
SAMPLE No.:

TESTING DATE:

6-Jun-12

1 AM
 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8136_US
 TESTED BY: LAM


MOISTURE CONTENT (Dry Basis)							
1. MOISTURE TIN NO.	0397-030						
WT MOISTURE TIN (tare weight)	63.59	g					
3. WT WET SOIL + TARE	85.43	g					
4. WT DRY SOIL + TARE	79.67	g					
5. WT WATER, Ww	5.76	g					
6. WT DRY SOIL, Ws	16.08	g					
7. MOISTURE CONTENT, W	35.82	%					

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.07	in.	3.90	in.		
No. 2	2.04	in.	3.90	in.		
No. 3	2.00	in.	3.88	in.		
Average	2.03	in.	3.89	in.		

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	335.03	g				
Initial Area, Ac	3.25	in²				
Initial Volume, Vc	12.65	in³				
Initial Bulk Unit Weight,	100.9	lb/ft³				
Initial Dry Unit Weight	74.3	lb/ft³				
15 % Strain (0.15 Lo)	0.58	in.				
UCS	341.1	lb/in²				

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.250	0.0000	0.0
35	0.003	0.003	3.253	0.0008	10.8
58	0.005	0.005	3.255	0.0013	17.8
94	0.007	0.007	3.256	0.0018	28.9
145	0.010	0.010	3.259	0.0026	44.5
271	0.015	0.015	3.263	0.0039	83.1
410	0.020	0.020	3.267	0.0051	125.5
537	0.025	0.025	3.271	0.0064	164.2
662	0.030	0.030	3.276	0.0077	202.1
761	0.035	0.035	3.280	0.0090	232.0
849	0.040	0.040	3.284	0.0103	258.5
931	0.045	0.045	3.288	0.0116	283.1
989	0.050	0.050	3.293	0.0128	300.4
1037	0.055	0.055	3.297	0.0141	314.5
1069	0.060	0.060	3.301	0.0154	323.8
1107	0.065	0.065	3.306	0.0167	334.9
1129	0.070	0.070	3.310	0.0180	341.1
1081	0.075	0.075	3.314	0.0193	326.2

UNCONFINED COMPRESSION TESTING Sample No. 0397-030 56 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-030 56 Day

 TESTING DATE:
 6/6/2012

 TESTED BY:
 LAM

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8136_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 35.8 % BULK UNIT WEIGHT 100.9 lb/ft³ DRY UNIT WEIGHT 74.3 lb/ft³ UCS * 341.1 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

PROJECT: Longview Wood Treating
PROJECT No.: SE0397 PROJECT:

PROJECT No.:

SE0397

SAMPLE No.:

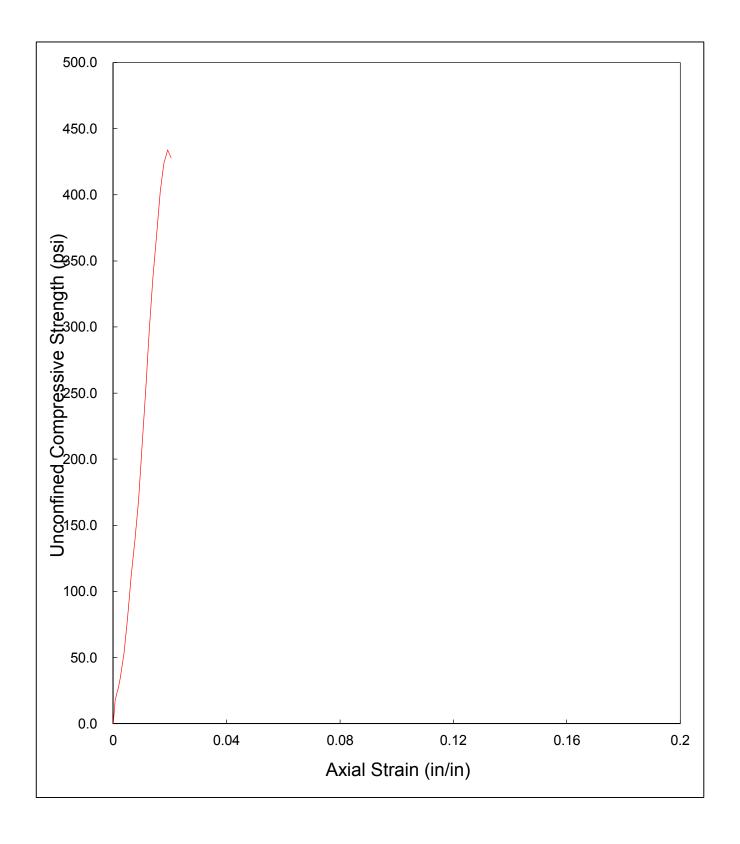
TESTING DATE:

6-Jun-12

MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8137_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)				
MOISTURE TIN NO.	0397-031			
WT MOISTURE TIN (tare weight)	88.32	g		
3. WT WET SOIL + TARE	107.07	g		
4. WT DRY SOIL + TARE	102.16	g		
5. WT WATER, Ww	4.91	g		
6. WT DRY SOIL, Ws	13.84	g		
7. MOISTURE CONTENT, W	35.48	%		

SOIL SPECIMEN DIMENSIONS						
	DIAMETER LENGTH					
No. 1	2.02 i	n.	3.92	in.		
No. 2	2.01 i	in.	3.91	in.		
No. 3	2.01 i	in.	3.91	in.		
Average 2.01 in. 3.91 in.						

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	341.82	g			
Initial Area, Ac	3.18	in²			
Initial Volume, Vc	12.45	in³			
Initial Bulk Unit Weight,	104.6	lb/ft³			
Initial Dry Unit Weight	77.2	lb/ft³			
15 % Strain (0.15 Lo)	0.59	in.			
UCS	433.9	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.183	0.0000	0.0
56	0.003	0.003	3.185	0.0008	17.6
72	0.005	0.005	3.187	0.0013	22.6
86	0.007	0.007	3.188	0.0018	27.0
110	0.010	0.010	3.191	0.0026	34.5
172	0.015	0.015	3.195	0.0038	53.8
258	0.020	0.020	3.199	0.0051	80.7
357	0.025	0.025	3.203	0.0064	111.5
447	0.030	0.030	3.207	0.0077	139.4
541	0.035	0.035	3.211	0.0089	168.5
674	0.040	0.040	3.215	0.0102	209.6
819	0.045	0.045	3.220	0.0115	254.4
964	0.050	0.050	3.224	0.0128	299.0
1089	0.055	0.055	3.228	0.0141	337.4
1199	0.060	0.060	3.232	0.0153	371.0
1303	0.065	0.065	3.236	0.0166	402.6
1372	0.070	0.070	3.241	0.0179	423.4
1408	0.075	0.075	3.245	0.0192	433.9
1390	0.080	0.080	3.249	0.0205	427.8

UNCONFINED COMPRESSION TESTING Sample No. 0397-031 56 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treating

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-031 56 Day

 TESTING DATE:
 6/6/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8137_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 35.5 % BULK UNIT WEIGHT 104.6 lb/ft³ DRY UNIT WEIGHT 77.2 lb/ft³ UCS * 433.9 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

ASTM D 2166

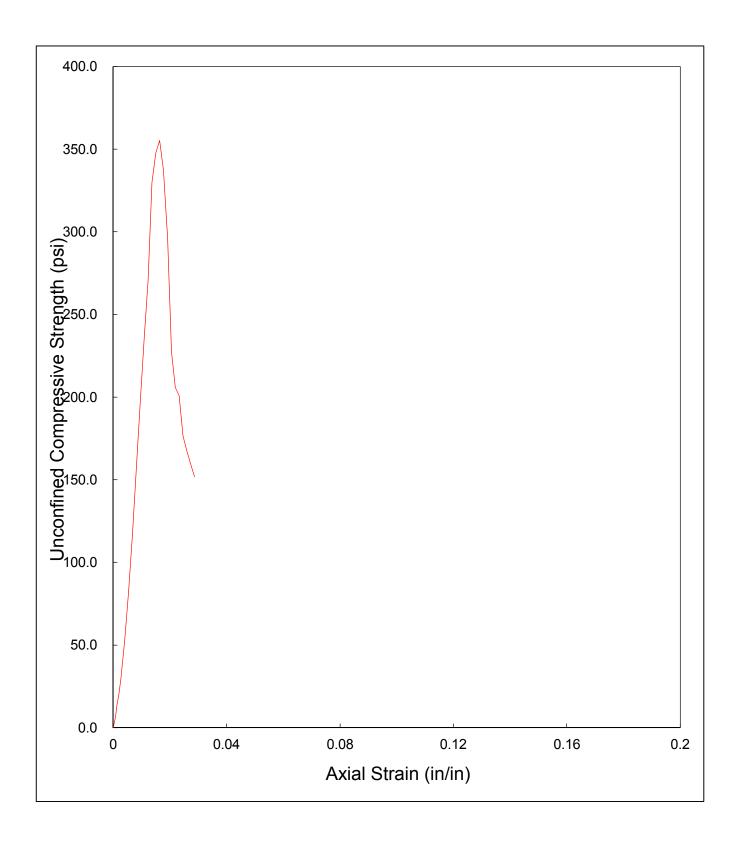
Longview Wood Treating SE0397 PROJECT:

PROJECT No.:

SAMPLE No.: 0397-028 86 Day TESTING DATE: 6-Jul-12

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8230_US
 TESTED BY: MMR


MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	0397-028					
WT MOISTURE TIN (tare weight)	63.71	g				
3. WT WET SOIL + TARE	102.81	g				
4. WT DRY SOIL + TARE	92.70	g				
5. WT WATER, Ww	10.11	g				
6. WT DRY SOIL, Ws	28.99	g				
7. MOISTURE CONTENT, W	34.87	%				

SOIL SPECIMEN DIMENSIONS						
DIAMETER LENGTH						
No. 1	2.01	in.	3.65	in.		
No. 2	2.00	in.	3.64	in.		
No. 3	2.00	in.	3.67	in.		
Average	2.00	in.	3.65	in.		

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	308.23	g			
Initial Area, Ac	3.15	in²			
Initial Volume, Vc	11.50	in³			
Initial Bulk Unit Weight,	102.1	lb/ft³			
Initial Dry Unit Weight	75.7	lb/ft³			
15 % Strain (0.15 Lo)	0.55	in.			
UCS	355.3	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in²)
0	0.000	0.000	3.148	0.0000	0.0
20	0.003	0.003	3.150	0.0008	6.3
45	0.005	0.005	3.152	0.0008	14.3
61	0.007	0.007	3.154	0.0014	19.3
94	0.010	0.010	3.157	0.0017	29.8
168	0.015	0.015	3.161	0.0041	53.2
261	0.020	0.020	3.165	0.0055	82.5
370	0.025	0.025	3.170	0.0068	116.7
496	0.030	0.030	3.174	0.0082	156.3
632	0.035	0.035	3.178	0.0096	198.8
752	0.040	0.040	3.183	0.0110	236.3
863	0.045	0.045	3.187	0.0123	270.8
1053	0.050	0.050	3.192	0.0137	329.9
1111	0.055	0.055	3.196	0.0151	347.6
1137	0.060	0.060	3.200	0.0164	355.3
1081	0.065	0.065	3.205	0.0178	337.3
949	0.070	0.070	3,209	0.0192	295.7
731	0.075	0.075	3.214	0.0205	227.5
662	0.080	0.080	3.218	0.0219	205.7
647	0.085	0.085	3.223	0.0233	200.8
570	0.090	0.090	3.227	0.0246	176.6
541	0.095	0.095	3.232	0.0260	167.4
516	0.100	0.100	3.236	0.0274	159.4
492	0.105	0.105	3.241	0.0287	151.8

UNCONFINED COMPRESSION TESTING Sample No. 0397-028 86 Day

ASTM D 2166 SUMMARY OF RESULTS

 PROJECT:
 Longview Wood Treatinç

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-028 86 Day

 TESTING DATE:
 7/6/2012

 TESTED BY:
 MMR

 LOADING RATE:
 0.04 in./min.

 TRACKING CODE:
 8230_US

TESTING PARAMETER AND RESULTS MOISTURE CONTENT 34.9 % BULK UNIT WEIGHT 102.1 lb/ft³ DRY UNIT WEIGHT 75.7 lb/ft³ UCS * 355.3 lb/in²

^{*} UCS - UNCONFINED COMPRESSIVE STRENGTH

F	APPENDI PERMEABILITY DA	

PERMEABILITY ASTM D5084 SPECIMEN CONDITIONS

Page 1 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7794_PM
SAMPLE No.:	0397-010	EQUIPMENT No.:	7A
TEST DATE:	12/12/2011		

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0397-010		0397-010	
2. WT MOISTURE TIN (tare weight)	0.00	g	182.63	g
3. WT WET SOIL + TARE	366.46	g	549.55	g
4. WT DRY SOIL + TARE	292.73	g	475.36	g
5. WT WATER, Ww	73.73	g	74.19	g
6. WT DRY SOIL, Ws	292.73	g	292.73	g
7. MOISTURE CONTENT, W	25.19	%	25.34	%

SOIL SPECIMEN DIMENSIONS						
TRIPLICATE	E DIAMETER HEIGHT					
ANALYSES	INITIAL	FINAL	INITIAL		FINAL	
No. 1	2.97 in.	2.97 in.	1.62	in.	1.62	in.
No. 2	2.97 in.	2.97 in.	1.62	in.	1.62	in.
No. 3	2.98 in.	2.97 in.	1.63	in.	1.63	in.
Average	2.97 in.	2.97 in.	1.62	in.	1.62	in.

SPECIMEN CONDITIONS	INITIAL	FINAL	
Specimen WT, Wo	366.46 g	366.96 g	
Area, Ao	6.94 in ²	6.93 in ²	
Volume, Vo	11.27 in ³	11.25 in ³	
Bulk Unit Weight	123.9 lb/ft³	124.3 lb/ft ³	
Dry Unit Weight	98.9 lb/ft³	99.2 lb/ft ³	

PERMEABILITY ASTM D5084

BACK-PRESSURE SATURATION

Page 2 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7794_PM
SAMPLE No.:	0397-010	EQUIPMENT No.:	7A
TEST DATE:	12/12/2011		

			TEST PRESSURES (psi)						
TEST	TIME	TESTED	APP	LIED	PORE		PRESSURE CHANGE		ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value
12/13/11	14 : 10	SEM	7.0	5.0	6.2				
12/14/11	9 : 40	SEM	17.0	15.0	16.8	13.3	10.0	7.1	0.71
12/14/11	11 : 52	SEM	27.0	25.0	26.3	24.1	10.0	7.3	0.73
12/14/11	13 : 10	SEM	37.0	35.0	36.2	35.4	10.0	9.1	0.91
12/14/11	15 : 20	SEM	47.0	45.0	46.3	45.5	10.0	9.3	0.93
12/14/11	17 : 8	SEM	57.0	55.0	*	55.9	10.0	9.6	0.96
12/14/11	17 : 9	SEM	47.0	45.0	*	*	*	*	*

^{*} Saturation check - no data available.

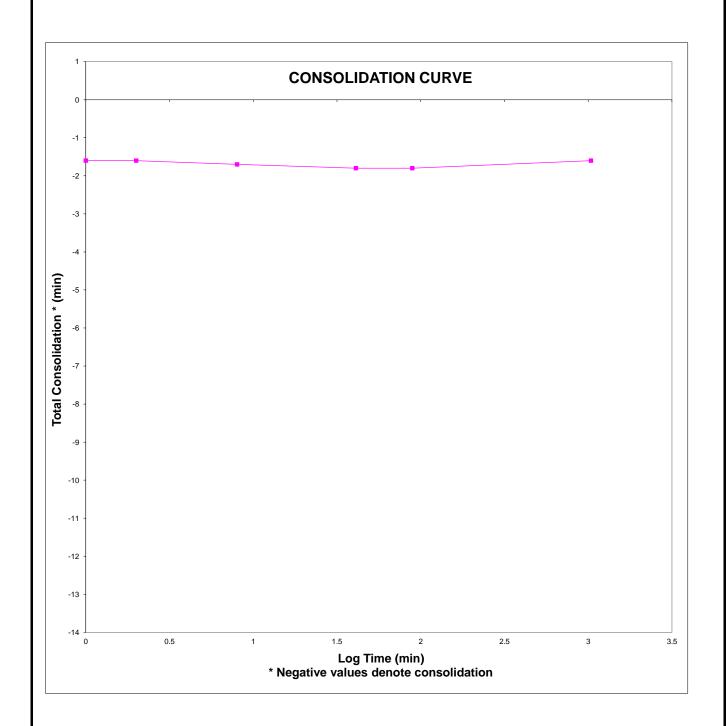
SPECIMEN CONSOLIDATION

Page 3 of 6

PROJECT:	Longview	SEM
PROJECT No.:	SE-0397	7794_PM
SAMPLE No.:	0397-010	7A
TEST DATE:	12/12/2011	

CELL PRESSURE:	55	psi BAC	K PRESSURE:	45	psi	EFFECTIVE STRE	ESS:	10 psi
			ELAPSED	TOTAL	TOTAL	SPECIME	N CONSOLIDA	TION (ML)
TEST	TESTED	TIME	TIME	TIME	TIME	READ	ING	ACTUAL
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	TOP	TOTAL (Ct)
12 / 14 / 2011	SEM	17 : 14				25.0	25.0	0.0
12 / 14 / 2011	SEM	17 : 15	1	1	0.00	24.3	24.1	1.6
12 / 14 / 2011	SEM	17 : 16	1	2	0.30	24.3	24.1	1.6
12 / 14 / 2011	SEM	17 : 22	6	8	0.90	24.3	24.0	1.7
12 / 14 / 2011	SEM	17 : 55	33	41	1.61	24.2	24.0	1.8
12 / 14 / 2011	SEM	18 : 43	48	89	1.95	24.2	24.0	1.8
12 / 15 / 2011	SEM	10 : 33	950	1039	3.02	24.3	24.1	1.6
	l .			ı		l		

CONSOLIDATION CURVE Page 4 of 6


 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-010

 TEST DATE:
 12/12/2011

TESTED BY: SEM
TRACKING CODE: 7794_PM
EQUIPMENT No.: 7A

TEST DATA Page 5 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7794_PM
SAMPLE No.:	0397-010	EQUIPMENT No.:	7A
TEST DATE:	12/12/2011		

			ELAPSED	HYDR	AULIC			GAUGE	
	TESTED	TIME	TIME	HEAL	O (cm)	TEMP.	,	PRESSURE (p	osi)
DATE	BY	(military)	(minutes)		EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
12 / 15 / 11	SEM	11 : 9		0.0	25.0	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	11 : 52	43	0.5	24.5	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	12 : 46	54	1.1	23.9	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	14 : 30	104	2.1	22.9	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	16 : 7	97	3.0	22.0	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	17 : 45	98	3.8	21.2	20.0	55.0	45.0	45.0
12 / 16 / 11	SEM	9 : 42	957	8.8	16.2	20.0	55.0	45.0	45.0

TEST DATA (continued)

Page 6 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7794_PM
SAMPLE No.:	0397-010	EQUIPMENT No.:	7A
TEST DATE:	12/12/2011	_	

ELAPSED	HYDRAU	LIC HEAD	EFFLUENT -	HYDRAULIC	HYDRA	AULIC
TIME	DIFFERE	NCE (cm)	INFLUENT	GRADIENT	CONDUCTIVI	TY (cm/sec)
(minutes)	INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C
RESET				6.063		
43	0.5	0.5	1.00	5.821	7.28E-07	7.32E-07
54	0.6	0.6	1.00	5.530	7.29E-07	7.32E-07
104	1.0	1.0	1.00	5.045	6.77E-07	6.80E-07
97	0.9	0.9	1.00	4.608	7.16E-07	7.19E-07
98	0.8	0.8	1.00	4.220	6.89E-07	6.92E-07
957	5.0	5.0	1.00	1.795	6.85E-07	6.88E-07
					_	
	1	ı	1	1		

SUMMARY OF RESULTS

 PROJECT:
 Longview
 TESTED BY:
 SEM

 PROJECT No.:
 SE-0397
 TRACKING CODE:
 7794_PM

 SAMPLE No.:
 0397-010
 EQUIPMENT No.:
 7A

 TEST DATE:
 12/12/2011
 12/12/2011

TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	123.9 lb/ft ³	124.3 lb/ft ³
DRY UNIT WEIGHT	98.9 lb/ft ³	99.2 lb/ft ³
MOISTURE CONTENT	25.2 %	25.3 %
PERMEABILITY @ 20°C	7.1E-07 cm/se	ec

PERMEABILITY ASTM D5084 SPECIMEN CONDITIONS

Page 1 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7795_PM
SAMPLE No.:	0397-016	EQUIPMENT No.:	7B
TEST DATE:	12/12/2011		

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0397-016		0397-016	
2. WT MOISTURE TIN (tare weight)	0.00	g	231.54	g
3. WT WET SOIL + TARE	531.06	g	767.10	g
4. WT DRY SOIL + TARE	381.16	g	612.70	g
5. WT WATER, Ww	149.90	g	154.40	g
6. WT DRY SOIL, Ws	381.16	g	381.16	g
7. MOISTURE CONTENT, W	39.33	%	40.51	%

SOIL SPECIMEN DIMENSIONS						
TRIPLICATE	DIAM	HEIGHT		IGHT		
ANALYSES	INITIAL	FINAL	INITIAL		FINAL	
No. 1	2.97 in.	2.97 in.	2.64	in.	2.64	in.
No. 2	2.97 in.	2.97 in.	2.65	in.	2.65	in.
No. 3	2.98 in.	2.97 in.	2.64	in.	2.65	in.
Average	2.97 in.	2.97 in.	2.64	in.	2.65	in.

SPECIMEN CONDITIONS	INITIAL	FINAL
Specimen WT, Wo	531.06 g	535.61 g
Area, Ao	6.94 in ²	6.93 in ²
Volume, Vo	18.35 in ³	18.34 in³
Bulk Unit Weight	110.2 lb/ft³	111.3 lb/ft ³
Dry Unit Weight	79.1 lb/ft³	79.2 lb/ft ³

BACK-PRESSURE SATURATION

Page 2 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7795_PM
SAMPLE No.:	0397-016	EQUIPMENT No.:	7B
TEST DATE:	12/12/2011		

			TEST PRESSURES (psi)						
TEST	TIME	TESTED	APP	LIED	PO	RE	PRES	SSURE CH	ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value
12/13/11	14 : 14	SEM	7.0	5.0	6.2				
12/14/11	9 : 45	SEM	17.0	15.0	18.1	12.8	10.0	6.6	0.66
12/14/11	11 : 47	SEM	27.0	25.0	27.2	25.7	10.0	7.6	0.76
12/14/11	13 : 14	SEM	37.0	35.0	36.4	34.4	10.0	7.2	0.72
12/14/11	15 : 17	SEM	47.0	45.0	46.3	45.5	10.0	9.1	0.91
12/14/11	17 : 16	SEM	57.0	55.0	*	55.8	10.0	9.5	0.95
12/14/11	17 : 17	SEM	47.0	45.0	*	*	*	*	*

^{*} Saturation check - no data available.

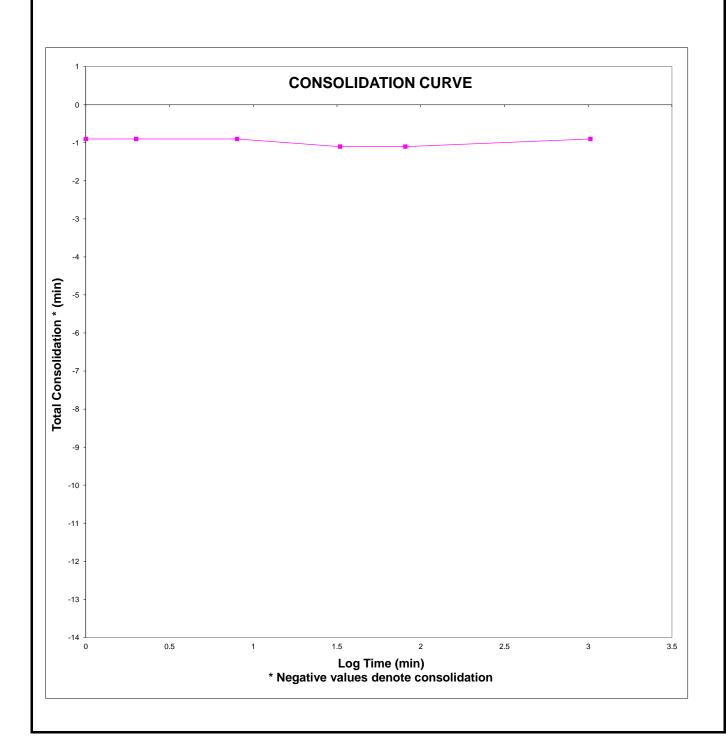
SPECIMEN CONSOLIDATION

Page 3 of 6

PROJECT:	Longview	SEM
PROJECT No.:	SE-0397	7795_PM
SAMPLE No.:	0397-016	7B
TEST DATE:	12/12/2011	

CELL PRESSURE:	55	psi BAC	K PRESSURE:	45	psi	EFFECTIVE STRI	ESS:	10 psi
			ELAPSED	TOTAL	TOTAL	SPECIMEN CONSOLIDA		TION (ML)
TEST	TESTED	TIME	TIME	TIME	TIME	READ	DING	ACTUAL
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	ТОР	TOTAL (Ct)
12 / 14 / 2011	SEM	17 : 22				25.0	25.0	0.0
12 / 14 / 2011	SEM	17 : 23	1	1	0.00	24.6	24.5	0.9
12 / 14 / 2011	SEM	17 : 24	1	2	0.30	24.6	24.5	0.9
12 / 14 / 2011	SEM	17 : 30	6	8	0.90	24.6	24.5	0.9
12 / 14 / 2011	SEM	17 : 55	25	33	1.52	24.5	24.4	1.1
12 / 14 / 2011	SEM	18 : 43	48	81	1.91	24.5	24.4	1.1
12 / 15 / 2011	SEM	10 : 33	950	1031	3.01	24.6	24.5	0.9
		L		1		1	L	1

CONSOLIDATION CURVE Page 4 of 6


 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-016

 TEST DATE:
 12/12/2011

TESTED BY: SEM
TRACKING CODE: 7795_PM
EQUIPMENT No.: 7B

TEST DATA Page 5 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7795_PM
SAMPLE No.:	0397-016	EQUIPMENT No.:	7B
TEST DATE:	12/12/2011		

			ELAPSED	HYDR	AULIC			GAUGE	
	TESTED	TIME	TIME	HEAL) (cm)	TEMP.		PRESSURE (p	osi)
DATE	BY	(military)	(minutes)	INFLUENT	EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
12 / 15 / 11	SEM	11 : 16		0.0	25.0	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	14 : 54	218	0.0	25.0	20.0	55.0	45.0	45.0
12 / 15 / 11	SEM	15 : 0	RESET	0.0	25.0	20.0	55.0	47.0	45.0
12 / 16 / 11	SEM	10 : 6	RESET	0.0	25.0	20.0	55.0	48.0	45.0
12 / 16 / 11	SEM	12 : 40	154	0.5	24.5	20.0	55.0	48.0	45.0
12 / 16 / 11	SEM	15 : 23	163	1.1	23.9	20.0	55.0	48.0	45.0
12 / 17 / 11	SEM	10 : 0	1117	4.2	20.8	20.0	55.0	48.0	45.0
12 / 18 / 11	SEM	7 : 45	1305	7.6	17.4	20.0	55.0	48.0	45.0
12 / 19 / 11	SEM	9 : 23	1538	11.0	14.0	20.0	55.0	48.0	45.0
	<u> </u>								-

TEST DATA (continued)

Page 6 of 6

PROJECT:	Longview
PROJECT No.:	SE-0397
SAMPLE No.:	0397-016
TEST DATE:	12/12/2011

TESTED BY: TRACKING CODE: EQUIPMENT No.: SEM 7795_PM 7B

ELAPSED	HYDRAULIC HEAD		EFFLUENT -	HYDRAULIC	HYDRA	AULIC
TIME	DIFFERE	NCE (cm)	INFLUENT	GRADIENT	CONDUCTIV	TY (cm/sec)
(minutes)	INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C
RESET				3.724		
218	0.0	0.0	#DIV/0!	3.724	0.00E+00	0.00E+00
RESET				24.677		
RESET				35.153		
154	0.5	0.5	1.00	35.004	3.44E-08	3.46E-08
163	0.6	0.6	1.00	34.825	3.92E-08	3.94E-08
1117	3.1	3.1	1.00	33.902	3.00E-08	3.02E-08
1305	3.4	3.4	1.00	32.889	2.90E-08	2.92E-08
1538	3.4	3.4	1.00	31.876	2.54E-08	2.55E-08
				_	_	
	1					

SUMMARY OF RESULTS

 PROJECT:
 Longview
 TESTED BY:
 SEM

 PROJECT No.:
 SE-0397
 TRACKING CODE:
 7795_PM

 SAMPLE No.:
 0397-016
 EQUIPMENT No.:
 7B

 TEST DATE:
 12/12/2011
 12/12/2011

TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	110.2 lb/ft ³	111.3 lb/ft ³
DRY UNIT WEIGHT	79.1 lb/ft³	79.2 lb/ft ³
MOISTURE CONTENT	39.3 %	40.5 %
PERMEABILITY @ 20°C	3.2E-08 cm/se	ec .

SPECIMEN CONDITIONS

Page 1 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7796_PM
SAMPLE No.:	0397-017	EQUIPMENT No.:	7
TEST DATE:	12/12/2011		

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0397-017		0397-017	
2. WT MOISTURE TIN (tare weight)	0.00	g	231.87	g
3. WT WET SOIL + TARE	407.75	g	645.20	g
4. WT DRY SOIL + TARE	285.86	g	517.73	g
5. WT WATER, Ww	121.89	g	127.47	g
6. WT DRY SOIL, Ws	285.86	g	285.86	g
7. MOISTURE CONTENT, W	42.64	%	44.59	%

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAM	ETER	HEIGHT					
ANALYSES	INITIAL	FINAL	INITIAL	FINAL				
No. 1	2.98 in.	2.98 in.	2.09	in. 2.09	in.			
No. 2	2.99 in.	2.99 in.	2.09	in. 2.09	in.			
No. 3	3.01 in.	3.00 in.	2.10	in. 2.09	in.			
Average	2.99 in.	2.99 in.	2.09	in. 2.09	in.			

SPECIMEN CONDITIONS	INITIAL	FINAL
Specimen WT, Wo	407.75 g	413.39 g
Area, Ao	7.04 in ²	7.02 in ²
Volume, Vo	14.73 in ³	14.68 in ³
Bulk Unit Weight	105.4 lb/ft ³	107.3 lb/ft ³
Dry Unit Weight	73.9 lb/ft ³	74.2 lb/ft ³

BACK-PRESSURE SATURATION

Page 2 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7796_PM
SAMPLE No.:	0397-017	EQUIPMENT No.:	7
TEST DATE:	12/12/2011		

			TEST PRESSURES (psi)						
TEST	TIME	TESTED	APP	LIED	PO	RE	PRES	SSURE CH	ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value
12/13/11	14 : 20	SEM	7.0	5.0	5.6				
12/14/11	9 : 48	SEM	17.0	15.0	15.6	10.0	10.0	4.4	0.44
12/14/11	11 : 55	SEM	27.0	25.0	25.7	21.8	10.0	6.2	0.62
12/14/11	13 : 16	SEM	37.0	35.0	35.8	33.5	10.0	7.8	0.78
12/14/11	15 : 23	SEM	47.0	45.0	45.7	44.2	10.0	8.4	0.84
12/14/11	17 : 4	SEM	57.0	55.0	55.7	54.6	10.0	8.9	0.89
12/14/11	18 : 1	SEM	67.0	65.0	65.7	64.9	10.0	9.2	0.92
12/15/11	10 : 45	SEM	77.0	75.0	*	75.3	10.0	9.6	0.96
12/15/11	10 : 46	SEM	67.0	65.0	*	*	*	*	*

^{*} Saturation check - no data available.

SPECIMEN CONSOLIDATION

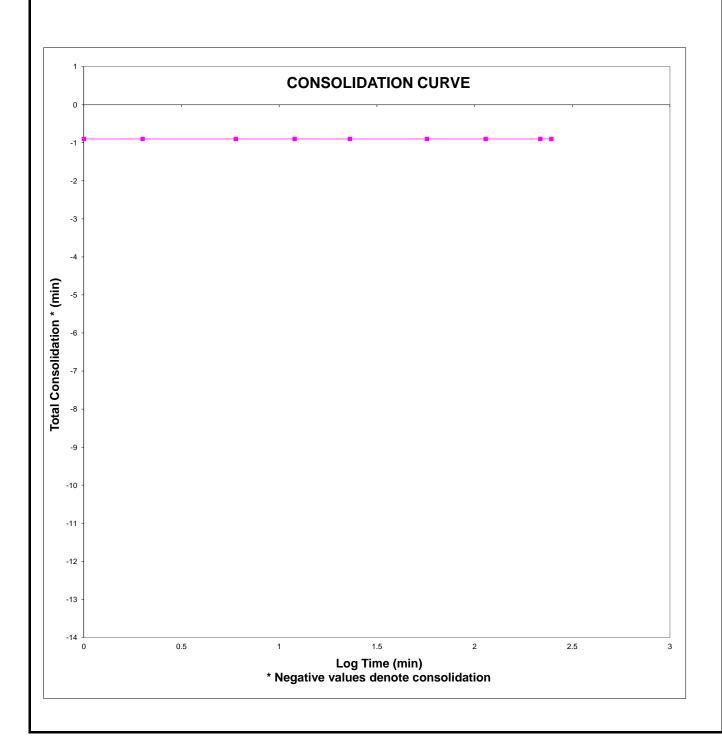
Page 3 of 6

PROJECT:	Longview	SEM
PROJECT No.:	SE-0397	7796_PM
SAMPLE No.:	0397-017	7
TEST DATE:	12/12/2011	

CELL PRESSURE:	75	psi BAC	K PRESSURE:	65	psi	EFFECTIVE STRE	ESS:	10 psi
			ELAPSED	TOTAL	TOTAL	SPECIME	N CONSOLIDA	TION (ML)
TEST	TESTED	TIME	TIME	TIME	TIME	READ	ING	ACTUAL
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	ТОР	TOTAL (Ct)
12 / 15 / 2011	SEM	10 : 53				25.0	25.0	0.0
12 / 15 / 2011	SEM	10 : 54	1	1	0.00	24.6	24.5	0.9
12 / 15 / 2011	SEM	10 : 55	1	2	0.30	24.6	24.5	0.9
12 / 15 / 2011	SEM	10 : 59	4	6	0.78	24.6	24.5	0.9
12 / 15 / 2011	SEM	11 : 5	6	12	1.08	24.6	24.5	0.9
12 / 15 / 2011	SEM	11 : 16	11	23	1.36	24.6	24.5	0.9
12 / 15 / 2011	SEM	11 : 50	34	57	1.76	24.6	24.5	0.9
12 / 15 / 2011	SEM	12 : 47	57	114	2.06	24.6	24.5	0.9
12 / 15 / 2011	SEM	14 : 30	103	217	2.34	24.6	24.5	0.9
12 / 15 / 2011	SEM	15 : 0	30	247	2.39	24.6	24.5	0.9

CONSOLIDATION CURVE

Page 4 of 6


 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-017

 TEST DATE:
 12/12/2011

TESTED BY: SEM
TRACKING CODE: 7796_PM
EQUIPMENT No.: 7

TEST DATA Page 5 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7796_PM
SAMPLE No.:	0397-017	EQUIPMENT No.:	7
TEST DATE:	12/12/2011		

			ELAPSED	HYDR	AULIC			GAUGE	
	TESTED	TIME	TIME	HEAL) (cm)	TEMP.	,	PRESSURE (p	osi)
DATE	BY	(military)	(minutes)		EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
12 / 15 / 11	SEM	15 : 3		0.0	25.0	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	16 : 33	90	0.1	24.9	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	16 : 38	RESET	0.0	25.0	20.0	75.0	67.0	65.0
12 / 15 / 11	SEM	18 : 35	117	0.5	24.5	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	9 : 46	911	3.0	22.0	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	12 : 42	176	3.5	21.5	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	16 : 5	203	4.0	21.0	20.0	75.0	67.0	65.0
12 / 17 / 11	SEM	10 : 0	1075	6.4	18.6	20.0	75.0	67.0	65.0
12 / 18 / 11	SEM	7 : 45	1305	8.8	16.2	20.0	75.0	67.0	65.0

PERMEABILITY ASTM D5084 TEST DATA (continued)

Page 6 of 6

SEM

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7796_PM
SAMPLE No.:	0397-017	EQUIPMENT No.:	7
TEST DATE:	12/12/2011	_	

ELAPSED	HYDRAULIC HEAD		EFFLUENT -	HYDRAULIC	HYDRA	AULIC
TIME	DIFFERE	NCE (cm)	INFLUENT	GRADIENT	CONDUCTIV	TY (cm/sec)
(minutes)	INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C
RESET				4.702		
90	0.1	0.1	1.00	4.664	8.71E-08	8.75E-08
RESET				31.160		
117	0.5	0.5	1.00	30.972	5.05E-08	5.07E-08
911	2.5	2.5	1.00	30.032	3.30E-08	3.32E-08
176	0.5	0.5	1.00	29.844	3.48E-08	3.50E-08
203	0.5	0.5	1.00	29.655	3.04E-08	3.05E-08
1075	2.4	2.4	1.00	28.753	2.81E-08	2.82E-08
1305	2.4	2.4	1.00	27.850	2.39E-08	2.40E-08

SUMMARY OF RESULTS

 PROJECT:
 Longview
 TESTED BY:
 SEM

 PROJECT No.:
 SE-0397
 TRACKING CODE:
 7796_PM

 SAMPLE No.:
 0397-017
 EQUIPMENT No.:
 7

 TEST DATE:
 12/12/2011
 12/12/2011

TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	105.4 lb/ft ³	107.3 lb/ft ³
DRY UNIT WEIGHT	73.9 lb/ft ³	74.2 lb/ft ³
MOISTURE CONTENT	42.6 %	44.6 %
PERMEABILITY @ 20°C	3.0E-08 cm/se	ес

PERMEABILITY ASTM D5084 SPECIMEN CONDITIONS

Page 1 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7797_PM
SAMPLE No.:	0397-019	EQUIPMENT No.:	6A
TEST DATE:	12/12/2011	•	

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0397-019		0397-019	
2. WT MOISTURE TIN (tare weight)	0.00	g	231.88	g
3. WT WET SOIL + TARE	456.98	g	695.20	g
4. WT DRY SOIL + TARE	325.94	g	557.82	g
5. WT WATER, Ww	131.04	g	137.38	g
6. WT DRY SOIL, Ws	325.94	g	325.94	g
7. MOISTURE CONTENT, W	40.20	%	42.15	%

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAM	ETER		HEIGHT				
ANALYSES	INITIAL	FINAL	INITIAL	FINAL				
No. 1	2.97 in.	2.97 in.	2.30 i	n. 2.30 in.				
No. 2	2.98 in.	2.97 in.	2.30 i	n. 2.30 in.				
No. 3	2.98 in.	2.98 in.	2.29 i	n. 2.29 in.				
Average	2.98 in.	2.97 in.	2.30 i	n. 2.30 in.				

SPECIMEN CONDITIONS	INITIAL	FINAL
Specimen WT, Wo	456.98 g	463.41 g
Area, Ao	6.96 in ²	6.94 in ²
Volume, Vo	15.98 in³	15.95 in ³
Bulk Unit Weight	108.9 lb/ft³	110.7 lb/ft ³
Dry Unit Weight	77.7 lb/ft³	77.9 lb/ft ³

BACK-PRESSURE SATURATION

Page 2 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7797_PM
SAMPLE No.:	0397-019	EQUIPMENT No.:	6A
TEST DATE:	12/12/2011		

				TEST PRESSURES (psi)					
TEST	TIME	TESTED	APP	LIED	PO	RE	PRES	SSURE CH	ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value
12/13/11	14 : 26	SEM	7.0	5.0	5.9				
12/14/11	9 : 51	SEM	17.0	15.0	15.8	9.7	10.0	3.8	0.38
12/14/11	12 : 7	SEM	27.0	25.0	25.9	21.2	10.0	5.4	0.54
12/14/11	13 : 18	SEM	37.0	35.0	35.9	33.4	10.0	7.5	0.75
12/14/11	15 : 25	SEM	47.0	45.0	45.9	44.2	10.0	8.3	0.83
12/14/11	17 : 0	SEM	57.0	55.0	55.9	54.8	10.0	8.9	0.89
12/14/11	18 : 4	SEM	67.0	65.0	65.9	65.1	10.0	9.2	0.92
12/15/11	10 : 54	SEM	77.0	75.0	*	75.4	10.0	9.5	0.95
12/15/11	10 : 55	SEM	67.0	65.0	*	*	*	*	*

^{*} Saturation check - no data available.

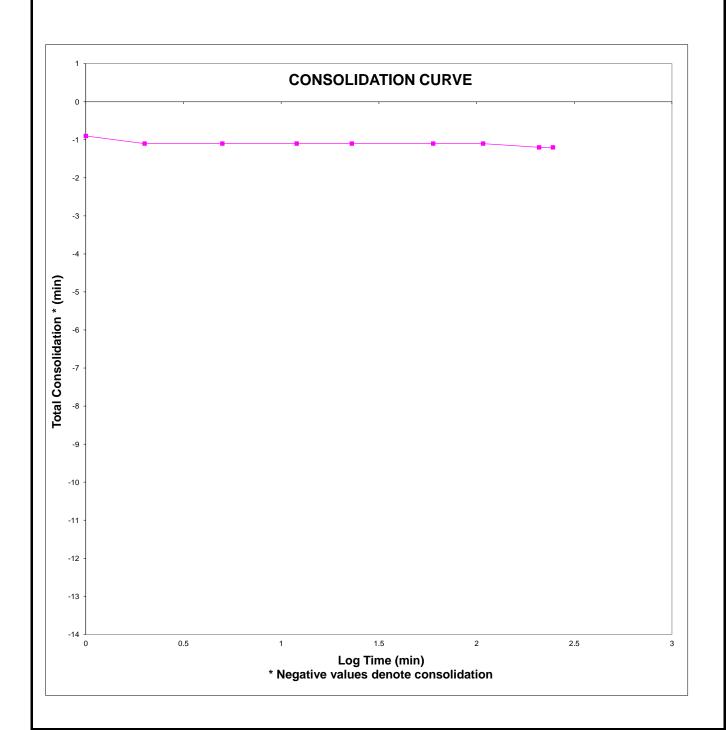
SPECIMEN CONSOLIDATION

Page 3 of 6

PROJECT:	Longview	SEM
PROJECT No.:	SE-0397	7797_PM
SAMPLE No.:	0397-019	6A
TEST DATE:	12/12/2011	<u>-</u>

CELL PRESSURE:	75	psi BAC	K PRESSURE:	65	psi	EFFECTIVE STRE	ESS:	10 psi	
			ELAPSED	TOTAL	TOTAL	SPECIME	SPECIMEN CONSOLIDAT		
TEST	TESTED	TIME	TIME	TIME	TIME	READ	ING	ACTUAL	
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	TOP	TOTAL (Ct)	
12 / 15 / 2011	SEM	10 : 59				25.0	25.0	0.0	
12 / 15 / 2011	SEM	11 : 0	1	1	0.00	24.6	24.5	0.9	
12 / 15 / 2011	SEM	11 : 1	1	2	0.30	24.5	24.4	1.1	
12 / 15 / 2011	SEM	11 : 4	3	5	0.70	24.5	24.4	1.1	
12 / 15 / 2011	SEM	11 : 11	7	12	1.08	24.5	24.4	1.1	
12 / 15 / 2011	SEM	11 : 22	11	23	1.36	24.5	24.4	1.1	
12 / 15 / 2011	SEM	11 : 59	37	60	1.78	24.5	24.4	1.1	
12 / 15 / 2011	SEM	12 : 47	48	108	2.03	24.5	24.4	1.1	
12 / 15 / 2011	SEM	14 : 28	101	209	2.32	24.4	24.4	1.2	
12 / 15 / 2011	SEM	15 : 5	37	246	2.39	24.4	24.4	1.2	

CONSOLIDATION CURVE Page 4 of 6


 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-019

 TEST DATE:
 12/12/2011

TESTED BY: SEM
TRACKING CODE: 7797_PM
EQUIPMENT No.: 6A

TEST DATA Page 5 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7797_PM
SAMPLE No.:	0397-019	EQUIPMENT No.:	6A
TEST DATE:	12/12/2011		

			ELAPSED	HYDR	AULIC			GAUGE	
	TESTED	TIME	TIME		O (cm)	TEMP.	,	PRESSURE (p	nsi)
DATE	BY	(military)	(minutes)		EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
12 / 15 / 11	SEM	15 : 10	· · · · · ·	0.0	25.0	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	16 : 6	56	0.5	24.5	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	17 : 12	66	1.0	24.0	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	18 : 18	66	1.5	23.5	20.0	75.0	65.0	65.0
12 / 16 / 11	SEM	9 : 46	928	6.6	18.4	20.0	75.0	65.0	65.0
12 / 16 / 11	SEM	11 : 58	132	7.1	17.9	20.0	75.0	65.0	65.0
_									

PERMEABILITY ASTM D5084 TEST DATA (continued)

Page 6 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7797_PM
SAMPLE No.:	0397-019	EQUIPMENT No.:	6A
TEST DATE:	12/12/2011		

ELAPSED	HYDRAU	LIC HEAD	EFFLUENT -	HYDRAULIC	HYDRA	AULIC
TIME	DIFFERE	NCE (cm)	INFLUENT	GRADIENT	CONDUCTIV	TY (cm/sec)
(minutes)	INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C
RESET				4.286		
56	0.5	0.5	1.00	4.114	7.89E-07	7.93E-07
66	0.5	0.5	1.00	3.943	6.98E-07	7.01E-07
66	0.5	0.5	1.00	3.771	7.29E-07	7.33E-07
928	5.1	5.1	1.00	2.023	7.27E-07	7.30E-07
132	0.5	0.5	1.00	1.851	7.26E-07	7.30E-07

SUMMARY OF RESULTS

 PROJECT:
 Longview
 TESTED BY:
 SEM

 PROJECT No.:
 SE-0397
 TRACKING CODE:
 7797_PM

 SAMPLE No.:
 0397-019
 EQUIPMENT No.:
 6A

 TEST DATE:
 12/12/2011
 6A

TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	108.9 lb/ft ³	110.7 lb/ft ³
DRY UNIT WEIGHT	77.7 lb/ft³	77.9 lb/ft ³
MOISTURE CONTENT	40.2 %	42.1 %
PERMEABILITY @ 20°C	7.4E-07 cm/se	ec

SPECIMEN CONDITIONS

Page 1 of 6

 PROJECT:
 Longview
 TESTED BY:
 SEM

 PROJECT No.:
 SE-0397
 TRACKING CODE:
 7798_PM

 SAMPLE No.:
 0397-024
 EQUIPMENT No.:
 6B

 TEST DATE:
 12/12/2011
 6B

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0397-024		0397-024	
2. WT MOISTURE TIN (tare weight)	0.00	g	227.73	g
3. WT WET SOIL + TARE	523.91	g	766.90	g
4. WT DRY SOIL + TARE	377.71	g	605.44	g
5. WT WATER, Ww	146.20	g	161.46	g
6. WT DRY SOIL, Ws	377.71	g	377.71	g
7. MOISTURE CONTENT, W	38.71	%	42.75	%

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAMETER			HEIGHT				
ANALYSES	INITIAL	FINAL	INITIAL		FINAL			
No. 1	2.97 in.	2.97 in.	2.68	in.	2.68	in.		
No. 2	2.98 in.	2.98 in.	2.68	in.	2.68	in.		
No. 3	2.99 in.	2.99 in.	2.69	in.	2.69	in.		
Average	2.98 in.	2.98 in.	2.68	in.	2.68	in.		

SPECIMEN CONDITIONS	INITIAL	FINAL
Specimen WT, Wo	523.91 g	539.24 g
Area, Ao	6.97 in ²	6.97 in ²
Volume, Vo	18.72 in ³	18.72 in ³
Bulk Unit Weight	106.6 lb/ft³	109.8 lb/ft ³
Dry Unit Weight	76.9 lb/ft ³	76.9 lb/ft ³

BACK-PRESSURE SATURATION

Page 2 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7798_PM
SAMPLE No.:	0397-024	EQUIPMENT No.:	6B
TEST DATE:	12/12/2011		

			TEST PRESSURES (psi)						
TEST	TIME	TESTED	APP	LIED	PO	RE	PRES	SSURE CH	ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value
12/13/11	14 : 31	SEM	7.0	5.0	5.9				
12/14/11	9 : 55	SEM	17.0	15.0	15.8	8.1	10.0	2.2	0.22
12/14/11	12 : 12	SEM	27.0	25.0	25.9	19.7	10.0	3.9	0.39
12/14/11	13 : 21	SEM	37.0	35.0	35.9	32.1	10.0	6.2	0.62
12/14/11	15 : 27	SEM	47.0	45.0	45.9	42.9	10.0	7.0	0.70
12/14/11	16 : 57	SEM	57.0	55.0	55.9	54.2	10.0	8.3	0.83
12/14/11	18 : 7	SEM	67.0	65.0	65.8	64.8	10.0	8.9	0.89
12/15/11	11 : 1	SEM	77.0	75.0	*	75.4	10.0	9.6	0.96
12/15/11	11 : 2	SEM	67.0	65.0	*	*	*	*	*

^{*} Saturation check - no data available.

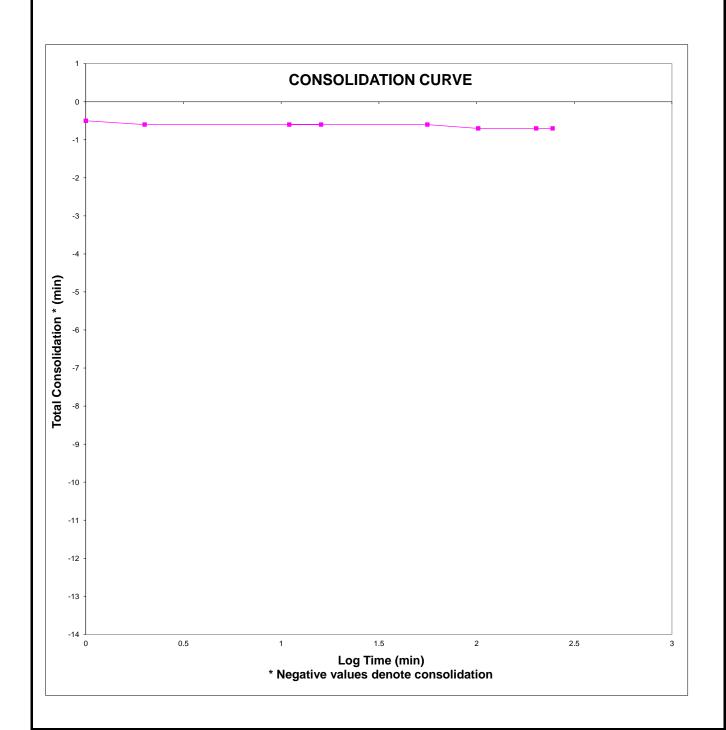
SPECIMEN CONSOLIDATION

Page 3 of 6

PROJECT:	Longview	SEM
PROJECT No.:	SE-0397	7798_PM
SAMPLE No.:	0397-024	6B
TEST DATE:	12/12/2011	

CELL PRESSURE:	75	psi BAC	K PRESSURE:	65	psi	EFFECTIVE STRE	ESS:	10 psi
			ELAPSED	TOTAL	TOTAL	SPECIME	N CONSOLIDA	TION (ML)
TEST	TESTED	TIME	TIME	TIME	TIME	READ	ING	ACTUAL
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	ТОР	TOTAL (Ct)
12 / 15 / 2011	SEM	11 : 5				24.6	25.0	0.0
12 / 15 / 2011	SEM	11 : 6	1	1	0.00	24.5	24.6	0.5
12 / 15 / 2011	SEM	11 : 7	1	2	0.30	24.5	24.5	0.6
12 / 15 / 2011	SEM	11 : 21	14	16	1.20	24.5	24.5	0.6
12 / 15 / 2011	SEM	11 : 16	-5	11	1.04	24.5	24.5	0.6
12 / 15 / 2011	SEM	12 : 1	45	56	1.75	24.5	24.5	0.6
12 / 15 / 2011	SEM	12 : 47	46	102	2.01	24.4	24.5	0.7
12 / 15 / 2011	SEM	14 : 27	100	202	2.31	24.4	24.5	0.7
12 / 15 / 2011	SEM	15 : 10	43	245	2.39	24.4	24.5	0.7

CONSOLIDATION CURVE Page 4 of 6


 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-024

 TEST DATE:
 12/12/2011

TESTED BY: SEM
TRACKING CODE: 7798_PM
EQUIPMENT No.: 6B

TEST DATA Page 5 of 6

PROJECT:	Longview	TESTED BY:	SEM
PROJECT No.:	SE-0397	TRACKING CODE:	7798_PM
SAMPLE No.:	0397-024	EQUIPMENT No.:	6B
TEST DATE:	12/12/2011		

			ELAPSED	HYDR	AULIC			GAUGE	
	TESTED	TIME	TIME	HEAL) (cm)	TEMP.		PRESSURE (p	osi)
DATE	BY	(military)	(minutes)	INFLUENT	EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
12 / 15 / 11	SEM	15 : 13		0.0	25.0	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	16 : 40	87	0.3	24.7	20.0	75.0	65.0	65.0
12 / 15 / 11	SEM	16 : 45	RESET	0.0	25.0	20.0	75.0	67.0	65.0
12 / 15 / 11	SEM	17 : 11	26	0.6	24.4	20.0	75.0	67.0	65.0
12 / 15 / 11	SEM	17 : 43	32	1.3	23.7	20.0	75.0	67.0	65.0
12 / 15 / 11	SEM	18 : 9	26	1.8	23.2	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	9 : 46	937	18.2	6.8	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	9 : 52	RESET	0.0	25.0	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	10 : 19	27	0.5	24.5	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	10 : 46	27	1.0	24.0	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	11 : 30	44	1.8	23.2	20.0	75.0	67.0	65.0
12 / 16 / 11	SEM	12 : 59	89	3.4	21.6	20.0	75.0	67.0	65.0

TEST DATA (continued)

Page 6 of 6

 PROJECT:
 Longview

 PROJECT No.:
 SE-0397

 SAMPLE No.:
 0397-024

 TEST DATE:
 12/12/2011

TESTED BY: TRACKING CODE: EQUIPMENT No.: SEM 7798_PM 6B

ELAPSED	HYDRAULIC HEAD		EFFLUENT -	HYDRAULIC	HYDRA	AULIC
TIME	DIFFERE	NCE (cm)	INFLUENT	GRADIENT	CONDUCTIV	TY (cm/sec)
(minutes)	INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C
RESET				3.668		
87	0.3	0.3	1.00	3.580	3.52E-07	3.54E-07
RESET				24.309		
26	0.6	0.6	1.00	24.133	3.53E-07	3.55E-07
32	0.7	0.7	1.00	23.927	3.37E-07	3.39E-07
26	0.5	0.5	1.00	23.781	2.99E-07	3.00E-07
937	16.4	16.4	1.00	18.968	3.05E-07	3.06E-07
RESET				24.309		
27	0.5	0.5	1.00	24.162	2.83E-07	2.84E-07
27	0.5	0.5	1.00	24.015	2.85E-07	2.86E-07
44	0.8	0.8	1.00	23.781	2.82E-07	2.83E-07
89	1.6	1.6	1.00	23.311	2.83E-07	2.84E-07

SUMMARY OF RESULTS

 PROJECT:
 Longview
 TESTED BY:
 SEM

 PROJECT No.:
 SE-0397
 TRACKING CODE:
 7798_PM

 SAMPLE No.:
 0397-024
 EQUIPMENT No.:
 6B

 TEST DATE:
 12/12/2011
 6B

TESTING BARAMETER		F13.14.1
TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	106.6 lb/ft ³	109.8 lb/ft ³
DRY UNIT WEIGHT	76.9 lb/ft ³	76.9 lb/ft ³
MOISTURE CONTENT	38.7 %	42.7 %
PERMEABILITY @ 20°C	3.0E-07 cm/se	ес

APPENDIX F ANS 16.1 LEACHABILITY DATA SHEETS	

ANS 16.1 LEACHABILITY

SAMPLE PREPARATION

Sheet 1 of 2

 PROJECT:
 Longview

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-016

 TEST DATE:
 2/13/2012

TESTED BY: JGS
TRACKING CODE: 7912_ANS

MOISTURE CONTENT (Dry Basis)	RESULTS
1. MOISTURE TIN NO.	
2. WT MOISTURE TIN (tare weight)	g
3. WT WET SOIL + TARE	g
4. WT DRY SOIL + TARE	g
5. WT WATER, Ww	0.00 g
6. WT DRY SOIL, Ws	0.00 g
7. MOISTURE CONTENT, W	#DIV/0! %

SOIL SPECIMEN DIMENSIONS								
TRIPLICATE	DIAMETER		LENGTH					
ANALYSES	RESULTS		RESULTS					
No. 1	2.00	in.	3.75	in.				
No. 2	2.00	in.	3.78	in.				
No. 3	1.99	in.	3.76	in.				
Average	2.00	in.	3.76	in.				

ODEOMEN CONDITIONS	151171.51
SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	337.32 g
Area, Ao	3.13 in ²
Volume, Vo	11.78 in ³
Bulk Unit Weight	109.1 pcf
Dry Unit Weight	#DIV/0! pcf

ANS 16.1 LEACHABILITY

TESTING DATA

Sheet 2 of 2

 PROJECT:
 Longview

 PROJECT NO.:
 \$E0397

 SAMPLE NO:
 0397-016

 START DATE:
 2/13/2012

 TRACKING CODE:
 7912_ANS

		5.475				VOLUME		l			
LEACH	TESTED		TE		ME	LEACHATE	TEMP	PID	Conduct.	pH (5)	ODOED\/ATIONIC
INTERVAL	BY	IN	OUT	IN	OUT	(ml)	(°C)	(ppm)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	JGS					1930	20.00	-	0.002	6.99	
1	JGS	02/13/12	02/13/12	10:05	12:05	1930	19.29	-	0.057	9.74	2 hour
2	JGS	02/13/12	02/13/12	12:05	17:05	1930	21.15	-	0.065	9.64	7 hour
3	JGS	02/13/12	02/14/12	17:05	10:05	1930	21.17	-	0.092	9.88	24 hour
4	JGS	02/14/12	02/15/12	10:05	10:05	1930	21.44	-	0.111	9.87	48 hour
5	SEM	02/15/12	02/16/12	10:05	10:05	1930	20.44	-	0.113	9.90	3 day
6	JGS	02/16/12	02/17/12	10:05	10:05	1930	20.87	-	0.056	9.50	4 day
7	SEM	02/17/12	02/18/12	10:05	10:05	1930	20.48	-	0.068	9.88	5 day
8											
9											
10											

SAMPLE PREPARATION

Sheet 1 of 2

 PROJECT:
 Longview

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-017A

 TEST DATE:
 2/13/2012

TESTED BY: JGS
TRACKING CODE: 7913_ANS

MOISTURE CONTENT (Dry Basis)	RESULTS
1. MOISTURE TIN NO.	
2. WT MOISTURE TIN (tare weight)	g
3. WT WET SOIL + TARE	g
4. WT DRY SOIL + TARE	g
5. WT WATER, Ww	0.00 g
6. WT DRY SOIL, Ws	0.00 g
7. MOISTURE CONTENT, W	#DIV/0! %

SOIL SPECIMEN DIMENSIONS										
TRIPLICATE	RIPLICATE DIAMETER									
ANALYSES	RESULTS		RESULTS							
No. 1	2.02	in.	3.73	in.						
No. 2	2.01	in.	3.74	in.						
No. 3	1.99	in.	3.71	in.						
Average	2.01	in.	3.73	in.						

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	357.27 g
Area, Ao	3.16 in ²
Volume, Vo	11.79 in ³
Bulk Unit Weight	115.5 pcf
Dry Unit Weight	#DIV/0! pcf

TESTING DATA

Sheet 2 of 2

 PROJECT:
 Longview

 PROJECT NO.:
 SE0397

 SAMPLE NO:
 0397-017A

 START DATE:
 2/13/2012

 TRACKING CODE:
 7913_ANS

LEACH	TESTED	DA	ΛΤΕ	TII	ИE	VOLUME LEACHATE	TEMP	PID	Conduct.	рН	
INTERVAL	BY	IN	OUT	IN	OUT	(ml)	(°C)	(ppm)	(mS/cm ³)	(s.u.)	OBSERVATIONS
Initial	JGS					1929	20.00	ı	0.002	6.99	one end of the sample
1	JGS	02/13/12	02/13/12	10:10	12:10	1929	17.71	-	0.105	9.21	crumbled when it was placed in water*
2	JGS	02/13/12	02/13/12	12:10	17:10	1929	21.07	1	0.059	9.59	7 hour
3	JGS	02/13/12	02/14/12	17:10	10:10	1929	20.93	-	0.156	10.15	24 hour
4	JGS	02/14/12	02/15/12	10:10	10:10	1929	21.28	-	0.158	10.09	48 hour
5	SEM	02/15/12	02/16/12	10:10	10:10	1929	20.29	-	0.193	10.15	3 day
6	JGS	02/16/12	02/17/12	10:10	10:10	1929	20.86	-	0.096	9.82	4 day
7	SEM	02/17/12	02/18/12	10:10	10:10	1929	20.73	-	0.091	9.68	5 day
8											
9											
10											

^{*} filtered leachate through a 0.45-micron filter before sampling for PAH and TPH-DRO

SAMPLE PREPARATION

Sheet 1 of 2

 PROJECT:
 Longview

 PROJECT No.:
 SE0397

 SAMPLE No.:
 0397-017 DUP

 TEST DATE:
 2/13/2012

TESTED BY: JGS
TRACKING CODE: 7914_ANS

MOISTURE CONTENT (Dry Basis)	RESULTS
1. MOISTURE TIN NO.	
2. WT MOISTURE TIN (tare weight)	g
3. WT WET SOIL + TARE	g
4. WT DRY SOIL + TARE	g
5. WT WATER, Ww	0.00 g
6. WT DRY SOIL, Ws	0.00 g
7. MOISTURE CONTENT, W	#DIV/0! %

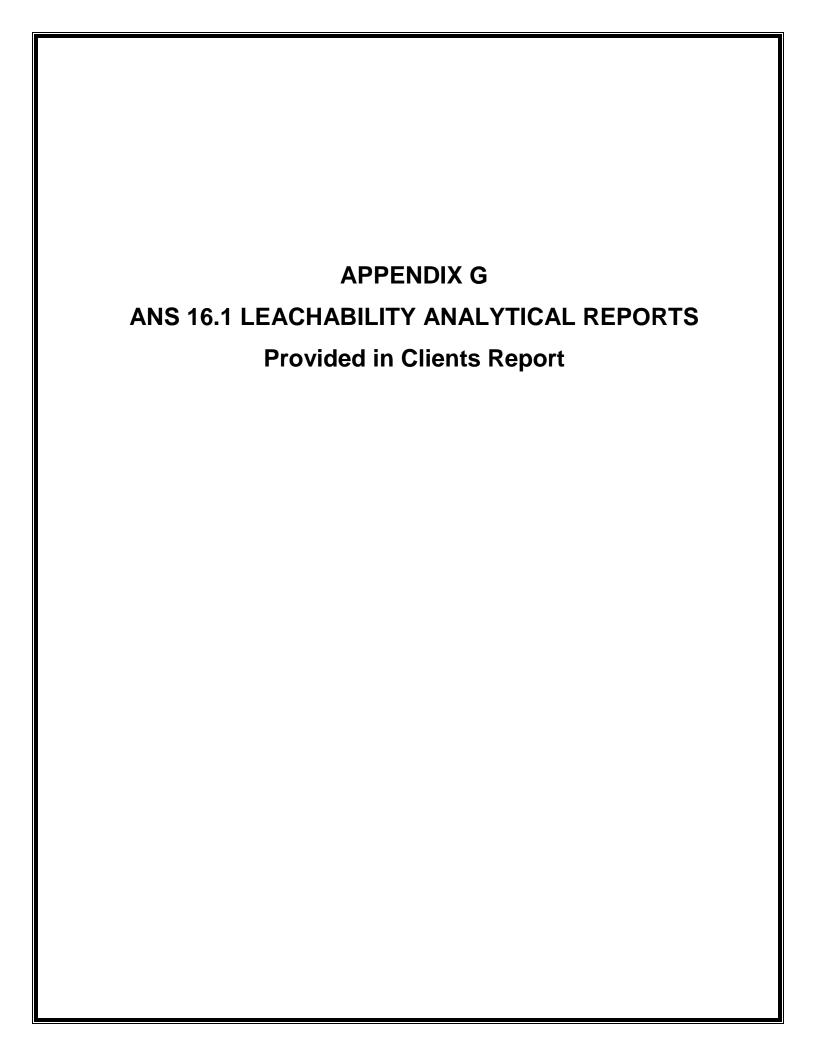
SOIL SPECIMEN DIMENSIONS										
TRIPLICATE	DIAMETER LENGTH									
ANALYSES	RESULTS		RESULTS							
No. 1	2.02	in.	3.84	in.						
No. 2	2.01	in.	3.86	in.						
No. 3	1.99	in.	3.84	in.						
Average	2.01	in.	3.85	in.						

SPECIMEN CONDITIONS	INITIAL
Specimen WT, Wo	341.43 g
Area, Ao	3.16 in ²
Volume, Vo	12.17 in ³
Bulk Unit Weight	106.9 pcf
Dry Unit Weight	#DIV/0! pcf

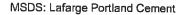
TESTING DATA

Sheet 2 of 2

 PROJECT:
 Longview


 PROJECT NO.:
 SE0397

 SAMPLE NO:
 0397-017 DUP


 START DATE:
 2/13/2012

 TRACKING CODE:
 7914_ANS

						VOLUME					
LEACH	TESTED		TE OUT		ME	LEACHATE	TEMP	PID	Conduct.	pΗ	ODOEDVATIONO
INTERVAL	BY	IN	OUT	IN	OUT	(ml)	(°C)	(ppm)	(mS/cm³)	(s.u.)	OBSERVATIONS
Initial	JGS					1978	20.00	-	0.002	6.99	
1	JGS	02/13/12	02/13/12	10:15	12:15	1978	18.70	-	0.044	8.22	2 hour
2	JGS	02/13/12	02/13/12	12:15	17:15	1978	20.97	-	0.073	9.61	7 hour
3	JGS	02/13/12	02/14/12	17:15	10:15	1978	20.93	-	0.082	9.69	24 hour
4	JGS	02/14/12	02/15/12	10:15	10:15	1978	21.35	-	0.117	9.93	48 hour
5	SEM	02/15/12	02/16/12	10:15	10:15	1978	20.21	-	0.179	10.17	3 day
6	JGS	02/16/12	02/17/12	10:15	10:15	1978	20.86	-	0.067	9.46	4 day
7	SEM	02/17/12	02/18/12	10:15	10:15	1978	20.40	-	0.118	9.78	5 day
8											
9											
10											

Appendix H
Vendor Supplied ISS Material Safety Data Sheets

Section 1: PRODUCT AND COMPANY INFORMATION

Product Name(s):

Lafarge Portland Cement (cement)

Product Identifiers:

Cement, Portland Cement, Hydraulic Cement, Oil Well Cement, Trinity® White Cement, Antique White Cement, Portland Cement Type I, IA, IE, II, I/II, IIA, II L.A., III, IIIA, IV, IVA, V, VA, 10, 20, 30, 40, 50, GU, MS, MH, HE, LH, HS, OWH, OWG

Cement, OW Class G HSR

Manufacturer:

Information Telephone Number:

Lafarge North America Inc. 12950 Worldgate Drive, Suite 500

703-480-3600 (9am to 5pm EST) Emergency Telephone Number:

Herndon, VA 20170

1-800-451-8346 (3E Hotline)

Product Use:

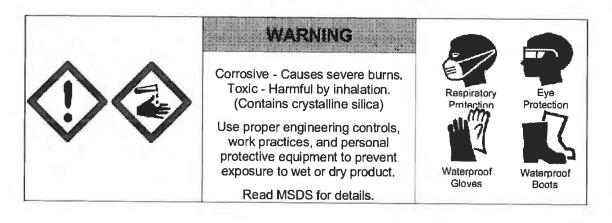
Cement is used as a binder in concrete and mortars that are widely used in

construction. Cement is distributed in bags, totes and bulk shipment.

Note:

This MSDS covers many types of Portland cement. Individual composition of

hazardous constituents will vary between types of Portland cement.


Section 2: COMPOSITION/INFORMATION ON INGREDIENTS


Component	Percent (By Weight)	CAS Number	OSHA PEL -TWA (mg/m³)	ACGIH TLV- TWA (mg/m ³)	LD ₅₀ (mouse, intraperitoneal)	LC ₅₀
Portland Cement*	100	65997-15-1	15 (T); 5 (R)	10 (R)	NA	NA
Calcium Sulfate*	2-10	13397-24-5	15 (T); 5 (R)	10 (T)	NA	NA
Calcium Carbonate*	0-5	1317-65-3	15 (T); 5 (R)	10 (T)	NA	NA
Calcium Oxide	0-5	1305-78-8	5 (T)	2 (T)	3059 mg/kg	NA
Magnesium Oxide	0-4	1309-48-4	15 (T)	10 (T)	NA	NA
Crystalline Silica	0-0.2	14808-60-7	$[(10) / (\%SiO_2+2)] (R);$ $[(30) / (\%SiO_2+2)] (T)$	0.025 (R)	NA	NA

Note: Exposure limits for components noted with an * contain no asbestos and <1% crystalline silica

Cement is made from materials mined from the earth and is processed using energy provided by fuels. Trace amounts of chemicals may be detected during chemical analysis. For example, cement may contain trace amounts of calcium oxide (also known as free lime or quick lime), free magnesium oxide, potassium and sodium sulfate compounds, chromium compounds, nickel compounds, and other trace compounds.

Section 3: HAZARD IDENTIFICATION

Section 1: PRODUCT AND COMPANY INFORMATION

Product Name(s):

Lafarge Blended Cement (cement)

Product Identifiers:

Pozzolan Cement, Sulfate Resistant Cement, MaxCem[®], SFTM Cement, Silica Fume Cement, TerraCemTM, Tercem 3000TM, Performance Cement, Blended Hydraulic Cement, PozzMod PlusTM, Portland Fly Ash Blended Cement, Type IS, S, P, IP, I(PM), I(SM), GUb, HEb, MSb, HSb, MHb, LHb, 10S, 10SM, 10F, 10FM, 50S Cement

Manufacturer:

Information Telephone Number:

Lafarge North America Inc.

703-480-3600 (9am to 5pm EST)

12950 Worldgate Drive, Suite 500

Emergency Telephone Number:

Herndon, VA 20170

1-800-451-8346 (3E Hotline)

Product Use:

Cement is used as a binder in concrete and mortars that are widely used in

construction. Cement is distributed in bags, totes and bulk shipment.

Note:

This MSDS covers many types of Cement. Individual composition of hazardous

constituents will vary between types of Cement.

Section 2: COMPOSITION/INFORMATION ON INGREDIENTS

Component	Percent (By Weight)	CAS Number	OSHA PEL -TWA (mg/m³)	ACGIH TLV- TWA (mg/m ³)	LD ₅₀ (mouse, intraperitoneal)	LC ₅
Portland Cement*	5-95	65997-15-1	15 (T); 5 (R)	10 (R)	NA	NA
Calcium Carbonate* (Limestone)	5-50	1317-65-3	15 (T); 5 (R)	10 (T)	NA	NA
Calcium Oxide	0-30	1305-78-8	5 (T)	2 (T)	3059 mg/kg	NA
Calcium Sulfate* (Gypsum)	1-10	13397-24-5	15 (T); 5 (R)	10 (T)	NA NA	NA
Silica Fume (Amorphous Silica)	0-10	69012-64-2	NA	2 (R)	NA	NA
Magnesium Oxide	0-10	1309-48-4	15 (T)	10 (T)	NA	NA
Crystalline Silica	0-10	14808-60-7	$[(10) / (\%SiO_2+2)] (R);$ $[(30) / (\%SiO_2+2)] (T)$	0.025 (R)	NA	NA

Note: Exposure limits for components noted with an * contain no asbestos and <1% crystalline silica

Cement is made from materials mined from the earth and is processed using energy provided by fuels. Trace amounts of chemicals may be detected during chemical analysis. For example, cement may contain trace amounts of titanium oxide, potassium and sodium sulfate compounds, chromium compounds, nickel compounds, arsenic compounds and other trace compounds.

Section 3: HAZARD IDENTIFICATION

WARNING

Corrosive - Causes severe burns. Toxic - Harmful by inhalation. (Contains crystalline silica)

Use proper engineering controls, work practices, and personal protective equipment to prevent exposure to wet or dry product.

Read MSDS for details.

Respiratory Protection

Waterproof Gloves

Eye Protection

Waterproof Boots

Section 1: PRODUCT AND COMPANY INFORMATION

Product Name(s):

Slag

Product Identifiers:

NewCem®, Ground Granulated Blast Furnace Slag (GGBFS), Blast Furnace Slag,

Steel Slag, Granulated Slag, Pelletized Slag, Metallic Slag, Air Cooled Slag, Non-

metallic Slag, Slag Cement, Hydraulic Slag Cement, Slag

Manufacturer:

Information Telephone Number:

Lafarge North America Inc.

703-480-3600 (9am to 5pm EST)

12950 Worldgate Drive, Suite 500

Emergency Telephone Number:

Herndon, VA 20170

1-800-451-8346 (3E Hotline)

Product Use:

Slag is used as a supplementary cementitious material for cement, concrete and

concrete products. It is also used in soil stabilization and as filler in asphalt and other

products that are widely used in construction.

Note:

This MSDS covers many types of slag. Individual composition of hazardous

constituents will vary between slag types.

Section 2: COMPOSITION/INFORMATION ON INGREDIENTS

Component	Percent (By Weight)	CAS Number	OSHA PEL -TWA (mg/m³)	ACGIH TLV- TWA (mg/m³)	LD ₅₀ (mouse, intraperitoneal)	LC ₅₀
Slag	100	65996-69-2	NA	NA	NA	NA
Calcium Oxide	30-50	1305-78-8	5 (T)	2 (T)	3059 mg/kg	NA
Magnesium Oxide	0-20	1309-48-4	15 (T)	10 (T)	NA	NA
Crystalline Silica	< 1	14808-60-7	$[(10) / (\%SiO_2+2)] (R);$ $[(30) / (\%SiO_2+2)] (T)$	0.025 (R)	NA	NA
Particulate Not Otherwise Regulated	-	NA	5 (R) 15 (T)	3 (R) 10 (T)	NA	NA

Note: Exposure limits for components noted with an * contain no asbestos and <1% crystalline silica

Slag is a nonmetallic byproduct from the production of iron. Trace amounts of chemicals may be detected during chemical analysis. For example, slag may contain trace amounts of manganese oxide, titanium oxide, chromium compounds, sulfur compounds, and other trace compounds.

Section 3: HAZARD IDENTIFICATION

WARNING

Irritant: Causes eye, skin and inhalation irritation

Toxic - Harmful by inhalation. (Contains crystalline silica)

Use proper engineering controls, work practices, and personal protective equipment to prevent exposure to wet or dry product.

Read MSDS for details.

Respiratory Protection

Waterproof Gloves

Eye Protection

Waterproof

Page 1 of 6 Revised: 3/3/05

Section 1: PRODUCT AND COMPANY INFORMATION

Product Name(s): Lafarge Fly Ash and Bottom Ash (Ash)

Coal Fly Ash, Class F Fly Ash, Class C Fly Ash, Type CI Fly Ash, Type CH Fly Ash, **Product Identifiers:**

Type F Fly Ash, Lignite Coal Fly Ash, Subbituminous Coal Fly Ash, Anthracite Coal

Fly Ash, Bituminous Coal Fly Ash, Bottom Ash, Ash

Manufacturer:

Information Telephone Number:

Lafarge North America Inc. 703-480-3600 (9am to 5pm EST)

12950 Worldgate Drive, Suite 500

Emergency Telephone Number:

Herndon, VA 20170

1-800-451-8346 (3E Hotline)

Product Use:

Fly Ash and Bottom Ash are used as a supplementary cementitious or pozzolanic material for cement, concrete and concrete products. It is also used in soil stabilization

and as filler in asphalt and other products that are widely used in construction.

Note:

This MSDS covers many types of ash. Individual composition of hazardous

constituents will vary between types of ash.

Section 2: COMPOSITION/INFORMATION ON INGREDIENTS

Component	Percent (By Weight)	CAS Number	OSHA PEL -TWA (mg/m³)	ACGIH TLV- TWA (mg/m³)		LC ₅₀
Fly Ash	<100	68131-74-8	NA	NA	NA	NA
Crystalline Silica	0-10	14808-60-7	[(10) / (%SiO ₂ +2)] (R); [(30) / (%SiO ₂ +2)] (T)	0.025 (R)	NA	NA
Particulate Not Otherwise Regulated	-	NA	5 (R) 15 (T)	3 (R) 10 (T)	NA	NA

Note: Fly ash and bottom ash are byproducts from the combustion of coal. Trace amounts of chemicals may be detected during chemical analysis. For example the chemicals identified can include carbon and complex silicates or oxides of aluminum (AI), calcium (Ca), magnesium (Mg), sodium (Na), sulfur (S), potassium (K), titanium (Ti), iron (Fe) and phosphorus (P). Chemical identity: M_xO_y •SiO₂ (M = Al, Ca, Mg and other minor metal, with bound silica (SiO₂)).

Chemical analysis of fly ash and bottom ash also indicate the presence of trace amounts of metals, such as: Arsenic (As), Barium (Ba), Beryllium (Be), Cobalt (Co), Lead (Pb), and Manganese (Mn).

Section 3: HAZARD IDENTIFICATION

Irritant: Causes eye, skin and inhalation irritation

> Toxic - Harmful by inhalation. (Contains crystalline silica)

Use proper engineering controls, work practices, and personal protective equipment to prevent exposure to wet or dry product.

Read MSDS for details.

Page 1 of 6

Revised: 03/01/08

CETCO® SOLIDIFICATION/STABILIZATION PRODUCTS

Additive Product Reference Chart

	Organoclay® PM-199	Organoclay® SS-199	Quik-Solid®	Quik-Solid® 50	Sorbond® UG	Sorbond® UP
Product Use	Organic Adsorption Media	Organic Adsorption Media	Water Super Absorbent	Water and Organic Sorptive Media	S/S Agent	S/S Agent
Composition	Granular Modified Bentonite Clay	Powder - Organoclay	Granular Cross-linked Polyacrylate	Granular - Cross-linked Polyacrylate and Organociay	Granular - Sodium Bentonite	Powder - Sodium Bentonite
Bulk Density	44-56 lbs/ft³	45-60 lb/ft ^a	30-37 lbs/ft³	30-37 lbs/ft³	65 lbs/ft³	54 lbs/ft³
Characteristics	Adsorb:Oils, greases, NAPL, low soluble organics	Adsorb:Oils, greases, NAPL, low soluble organics	Absorb: Water w/ little increase in volume	Absorb: Water, oils, greases, NAPL, low soluble organics	Absorb aqueous matter; low hydraulic conductivity	Absorb aqueous matter; low hydraulic conductivity
Typical Property	Oil ~ 0.5 lb/lb media	Oil ~ 0.5 lb/lb media	Water ~300-350 x weight	Water ~75 x weight Oil ~ 0.35 lb/lb media	Aqueous - 9 x weight k = 5 x 10° cm/s	Aqueous - 9 x weight $k = 5 \times 10^9$ cm/s
Pass Paint Filter			-	-	/	1
Reduce Organic Leaching	×	✓		V		
Reduce Permeability	*	1			/	1
crease Comprehensive Strength	/	1				
Comments	Pretreat to cement S/5 when NAPL/high PAH or allowing organically to adsorb organics for a m		Helps to pass Paint Filter Test, with- out significant change in volume	Helps to pass Paint Filter Test when organics are also present.		iter Test or as admix to rease hydraulic conductivity.

Pre-Blended Product Reference Chart

	Sorbond® LPC II	Sorbond® LOC 20
Product Use	S/S Agent	S/S Agent
Composition	Powder - Proprietary Pozzolanic Formulation	Powder - Proprietary Organociay + Pozzolanic Formulation
Bulk Density	74 lbs/ft³	58 lbs/ft ³
Characteristics	Low hydraulic conductivity; high compressive strength	Adsorb NAPL and organics; low hydraulic conductivity; high compressive strength
Typical Property	k ≤ 10 ⁻⁶ cm/s; UCS ≥ 50 psi	k ≤ 10 ⁶ cm/s; UCS ≥ 50 psi
Pass Paint Filter	1	·
Reduce Organic Leaching		1
Reduce Permeability	/	1
Increase Comprehensive Strength	/	
Comments	Pozzolanic reaction	Premix product for pozzolanic reaction when organics are present

REMEDIATION TECHNOLOGIES 800.527.9948 cetco.com/RTG

*Samples available upon request

© 2010 CETCO The Information contained herein supersedes all previous printed versions, and is believed to be accurate and reliable. CETCO reserves the right to update information without notice

Lime and Limestone products

GRAYMONT Western US INC. 3950 South 700 East, Suite 301, Salt Lake City, UT 84107 (801) 262-3942 Fax: (801) 264-8039

PRODUCT:

HIGH CALCIUM HYDRATED LIME

PRODUCTION FACILITY:

Tacoma Plant - Tacoma, Washington

PRODUCT DESCRIPTION:

A fine white powder made by reacting quicklime with sufficient water to convert the calcium oxide (CaO) to calcium hydroxide (Ca(OH)₂).

COMPOSITION AND TYPICAL CHEMICAL PROPERTIES : (ASTM C	25, C 1271, C 1301)
Available lime index as calcium hydroxide (Ca(OH) ₂), (%)	95.5
Total calcium as calcium oxide (CaO), (%)	73.5
Available lime index as calcium oxide (CaO), (%)	72.3
Magnesium oxide (MgO), (%)	0.8
Silica (SiO ₂), (%)	0.9
Ferric oxide (Fe ₂ O ₃), (%)	0.1
Alumina (Al ₂ O ₃), (%)	0.1
Total sulfur (S), (%)	0.01
Loss on ignition, (%)	24.4
Carbonates, (CaCO ₃), (%)	2.5
Moisture (H ₂ 0), (%)	0.4
Neutralizing value (CaCO ₃ = 100), (%)	132
TYPICAL PHYSICAL PROPERTIES:	
Bulk Density (ASTM C 110), (kg/m³)	430 – 670
(lbs/ft³)	27 – 42

CLASSICAL REFERENCE DATA: (CRC Handbook of Chen	nistry and Physics)
Specific Gravity	2.24
Solubility in Water (0 °C), (g/l)	1.85
pH (saturated solution) (25 °C)	12.454

SIZE DISTRIBUTION:

SIEVE (mm.)	SIEVE (U.S.A.)	% PASSING
0.600	N° 30	97 – 100
0.150	N° 100	90 – 100
0.075	N° 200	75 – 100
0.045	N° 325	70 – 95

NOTICE:

* The test data herein is based on average results on production samples. Product shipments are subject to normal variation. Accordingly, test data can not be taken as establishing maximum or minimum specifications.

ANSI / NSF 60
DRINKING WATER TREATMENT ADDITIVES
< 8 N 63 >
MAXIMUM USE LEVEL: 650 mg/l.

Lime and Limestone products GRAYMONT Western US INC. 3950 South 700 East, Suite 301, Salt Lake City, UT 84107 [801] 262-3942 Fax: [801] 264-8039

PRODUCT:

HIGH CALCIUM LIME KILN DUST

Nominal size: 0 - 1.25 mm

PRODUCTION FACILITY:

Tacoma Plant - Tacoma, Washington

PRODUCT DESCRIPTION:

Co-product from the calcination of high-purity limestone. It is composed essentially of calcium carbonate (CaCO₃), calcium oxide (CaO) and silica (SiO₂).

COMPOSITION AND TYPICAL CHEMICAL PROPERTIES:	
Calcium Carbonate (CaCO ₃), (%)	32.9
Total Calcium as Calcium Oxide (CaO), (%)	69.7
Total Calcium as Calcium (Ca), (%)	49.8
Available Lime Index as Calcium Oxide (CaO), (%)	44.5
Total Magnesium as Magnesium Oxide (MgO), (%)	0.6
Total Magnesium (Mg), (%)	0.4
Silica (SiO ₂), (%)	8.8
Ferric Oxide (Fe ₂ O ₃), (%)	0.8
Alumina (Al ₂ O ₃), (%)	2.4
Total Sulphur (S), (%)	0.5
Total Carbon (C), (%)	4.0
Loss on Ignition, (%)	15.3
Neutralizing Value (CaCO ₃ = 100), (%)	119.4
TYPICAL PHYSICAL PROPERTIES:	
Nominal size (mm)	0 – 1.25
Bulk Density (ASTM C 110), (kg/m³)	1000 – 1400
(lhs/ft ³)	62 - 97

Bulk Density (ASTM C 110),	(kg/m³) (lbs/ft³)	1000 – 1400 62 – 87

CLASSICAL REFERENCE DATA: (CRC Handbook of Che	CLASSICAL REFERENCE DATA: (CRC Handbook of Chemistry and Physics, Lime and Limestone by J.A.H. Oates)				
Specific Gravity	2.7 – 3.4				
Solubility in Water (10 °C), (g/l)	1.31				
pH (saturated solution) (25 °C)	1 2.454				

SIZE DISTRIBUTION:

SIEVE (mm.)	SIEVE (U.S.A.)	<u>% PASSING</u>
2.00	No. 10	100
1.25	No. 16	100
0.600	No. 30	99 – 100
0.150	No. 100	75 – 100
0.075	No. 200	60 – 100
0.045	No. 325	40 – 90

NOTICE:

^{*} The test data herein is based on average results on production samples. Product shipments are subject to normal variation. Accordingly, test data can not be taken as establishing maximum or minimum specifications.

Lime and Limestone products

GRAYMONT Western US INC. 3950 South 700 East, Suite 301, Salt Lake City, UT 84107 (801) 262-3942 Fax: (801) 264-8039

PRODUCT:

HIGH CALCIUM QUICKLIME

Nominal sizes: 0 - 0.150, 0 - 5, 0 - 10 & 5 - 20 mm

PRODUCTION FACILITY:

Tacoma Plant - Tacoma, Washington

PRODUCT DESCRIPTION:

A white porous solid obtained by the calcination of high-purity limestone (CaCO₃) and composed essentially of calcium oxide (CaO).

COMPOSITION AND TYPICAL CHEMICAL PROPERTIES: (ASTM C 25, C 1271, C 1301)			
Total calcium as calcium oxide (CaO), (%)	95.2		
Available lime index as calcium oxide (CaO), (%)	94.2		
Magnesium oxide (MgO), (%)	0.6		
Silica (SiO ₂), (%)	1.4		
Ferric oxide (Fe ₂ O ₃), (%)	0.2		
Alumina (Al_2O_3), (%)	0.2		
Total sulfur (S), (%)	0.02		
Loss on ignition, (%)	1.9		
Carbonates, (CaCO ₂), (%)	3.4		

TYPICAL PHYSICAL PROPERTIES:	Pulverized	Fines	Crushed	Pebble
Bulk Density (ASTM C 110), (kg/m³) (lbs/ft³)	910 – 1010 57 – 63	1135 – 1235 71 – 77	945 – 1040 59 – 65	945 – 1040 59 – 65
Slaking Rate (ASTM C 110, AWWA B202): 1. Temperature Rise in 30 seconds, (°C). 2. Temperature Rise in 3 minutes, (°C).		48 54		
3. Total Temperature Rise, (°C). 4. Total Active Slaking Time, (minutes)		55 3		

CLASSICAL REFERENCE DATA: (CRC Handbook of Chemistry and Physics)

 $\begin{array}{lll} \text{Specific Gravity} & 3.25-3.38 \\ \text{Solubility in Water (10 °C), (g/l)} & 1.31 \\ \text{pH (saturated solution) (25 °C)} & 12.454 \\ \end{array}$

SIZE DISTRIBUTION:		0 – 0.150 mm	0 – 5 mm	0 – 10 mm	5 – 20 mm
SIEVE (mm.) SIEVE (U.S.A.)		% PASSING			
25	1"				100
20	3/4"			100	85 – 100
10	3/8''		100	60 – 90	00 100
5	No. 4		95 – 100		0 – 10
2.5	No. 8		65 – 90		0 10
0.630	No. 30	100			
0.080	No. 200	70 – 100			

NOTICE:

^{*} The test data herein is based on average results on production samples. Product shipments are subject to normal variation. Accordingly, test data can not be taken as establishing maximum or minimum specifications.

ANSI / NSF 60
DRINKING WATER TREATMENT ADDITIVES
< 8 N 63 >

MAXIMUM USE LEVEL: 500 mg/l

FORMOSA PLASTICS CORPORATION

4F,201, TUNG HWA NORTH ROAD, TAIPEI, TAIWAN SALES DEPARTMENT, PLASTICS DIVISION

TEL:886-2-2712-2211 FAX:886-2-2713-7012

99% CAUSTIC SODA MICRO-PEARL SPECIFICATION

ITEM	UNIT	LIMITATION
Appearance	_	White granular
Sodium Hydroxide (NaOH)	%	Min 99.0 %
Sodium Carbonate (Na2CO3)	%	Max 0.7 %
Sodium Chloride (NaCL)	ppm	Max 300 ppm
Sodium Sulfate (Na2SO4)	ppm	Max 60 ppm
Iron (Fe)	ppm	Max 20 ppm
Nickel (Ni)	ppm	Max 10 ppm
Lead (Pb)	ppm	Max 5 ppm
Calcium (Ca)	ppm	Max 5 ppm
Magnesium (Mg)	ppm	Max 5 ppm
Arsenic (As)	ppm	Max 0.4 ppm
Mercury (Hg)	ppm	Max 0.05 ppm
Size(dia.)	mm	0.25~1.3; 0.50~1.10 (70%)

GLOBAL REMEDIATION SOLUTIONS, LLC.

A DIVISION OF PNE CORP.

1081 Columbia Blvd., Longview, WA 98632
(360) 423-2245 / Fax (360) 423-2272 / Toll Free 1-800-533-2867
www.pnecorp.com

May 6, 2013

Confidential and Proprietary

Mr. Paul Kalina URS Corporation 1301 4th Avenue, Suite 1400 Seattle, WA 98101

RE: ISTR Bench Scale Study - Creosote Site in Washington State (Version 2.1)

Dear Paul:

Global Remediation Solutions (GRS) performed a bench scale study on materials from a former wood preservative site in Washington State. Site soil and groundwater are known to be impacted by diesel range organics (DROs) and the polycyclic aromatic hydrocarbons (PAHs) associated with creosote coal-tar. Dense non-aqueous phase liquids (DNAPLs) have been recovered from the subsurface.

The purpose of the study was to evaluate the use of *in situ* thermal remediation (ISTR) to treat site soil and, by reducing contaminant mass in the known source areas, lower impact to site groundwater.

Executive Summary

Tests were conducted to examine the physical characteristics of site materials at boiling temperatures and to measured the reductions in contaminant concentrations achievable by dry heating or steaming site soil over 5, 15 and 25-day periods. The following are key results from the study. The present concentration reductions referenced are averages from dry heating of impacted soil.

- Site DNAPL transitioned to a light non-aqueous phase liquid (LNAPL) upon heating and remained a LNAPL upon cooling. These results indicate that NAPL can be removed from the site subsurface using heat-enhanced multi-phase extraction (MPE).
- Vapors and condensate extracted at temperature did not crystalize or solidify upon cooling, and an ISTR system design for the site will not have to include provisions for these phenomena.
- Average Diesel concentrations decreased by 82% after 25-days of dry heating.
- Average Lube oil concentrations only dropped 27% with 25-days of dry heating.
- Average PAH levels were lowered by 55% in 5-days of dry heating and by 60% after 25-days.
- The average Total Toxicity Equivalent Concentration (TTEC) of PAHs was reduced by 22% after 15-days of dry heating and 23% after 15-days of steaming.
- Average benzo(a)pyrene levels fell by 9% in 5-days of dry heating and by 22% after 25-days.
- The average TTEC of benzo(a)pyrene was reduced by 38% after 15-days of dry heating and by 32% after 15-days of steaming.
- Average Naphthalene levels were reduced by 86% in 5-days of dry heating.

These key results indicate that ISTR coupled with subsurface hydration and multi-phase extraction (MPE) systems is a viable option to meet the proposed cleanup standards for vadose zone soil at the site.

Solutions.

Site Background

The *in situ* remediation of creosote is challenging. Free phase creosote is a viscous liquid that tends to sink and pool below the groundwater table. The chemicals comprising creosote are only moderately soluble and have high vapor pressures, making them difficult to remove from the environment. The more soluble components of creosote often produce downgradient groundwater plumes which significantly enlarge the volume of impacted subsurface. ISTR can remove NAPL, and the more soluble components of creosote coal-tar from the subsurface soil matrix, and these efforts have been shown to significantly reduce groundwater impact at wood preservative sites.

The former wood treatment facility is impacted with PAHs from creosote coal-tar, heavy and diesel range petroleum organics, and naphthalene. Subsurface concentrations of the contaminants of concern (COCs) are summarized in Table 1, which also includes current site-specific target cleanup levels.

Analyte	Impacted Media	Maximum Concentration	Mean Concentration	Expected Cleanup Target ¹
DRO	Soil	26,000 mg/kg	2,638 mg/kg	2,000 mg/kg
Naphthalene	Soil	4,500 mg/kg	446 mg/kg	9,700 μg/kg
PAHs	Soil	19,840 µg/kg	3,561 µg/kg	$2{,}300~\mu g/kg^{2}$
DRO	Groundwater	5,000 μg/L	2,183 μg/L	500 μg/L
Naphthalene	Groundwater	17 μg/L	6 μg/L	350 μg/L
PAH ¹	Groundwater	0.2 μg/L	0.1 μg/L	$0.12~\mu g/L$

Table 1. Soil and Groundwater Contaminant Concentrations

- 1. Based upon Washington State Department of Ecology (WDOE) requirements to be protective of groundwater.
- 2. Total Toxicity Equivalent Concentration (TTEC).

Site soil is described as fine to medium grained sand with traces of silt. The vadose zone (Upper Sand) extends to approximately 10 to 15-feet below grade (bg) where the Upper Silt lens is encountered. The Upper Silts act as a 3 to 5-foot thick confining layer for the underlying Lower Sand Aquifer. Groundwater impact in the Lower Sand Aquifer extends to 34-feet bg. It is estimated that approximately 9,000 cubic yards (yd³) of vadose zone and 77,700 yd³ of saturated zone have been impacted.

The presence of NAPL has been reported only in isolated parts of the vadose zone, which is also known to contain areas of perched groundwater. Historically, NAPL has been seen at thicknesses ranging from sheen to 8-inches in monitoring wells screened in the Upper Sands.

ISTR Test Matrix

The goals of the bench study were to answer basic questions concerning how the subsurface and the COCs will react to *in situ* heating and to provide site-specific insight into the following issues:

- The use of heat-enhanced MPE and bubble floatation as contaminant removal mechanisms.
- The effectiveness of *in situ* heating in reducing contaminant concentrations.
- The physical characteristics that recovered contaminants will display as they are cooled during the removal and treatment process.

The test matrix shown in Table 2 was developed to accomplish the study goals. Test questions 1-4 were developed prior to starting the study, while test questions 5 and 6 were added during the study.

Table 2. ISTR Study - Test Matrix

Test Question	Test Method	Test Goal
1. Will DRO and PAHs transition off the soil matrix during heating?	Heating and visual observations.	Evaluate the effectiveness of bubble flotation and MPE.
2. If so, will a LNAPL or a DNAPL be produced?	Heating and visual observations.	Evaluate design options for contaminate extraction.
3. How much DRO and PAH can be boiled off the soil matrix?	Chemical analysis before and after heating.	Evaluate the effectiveness of steam stripping during ISTR.
4. Will recovered liquids and vapors solidify upon cooling?	Heating, extraction, and visual observations.	Evaluate options for system materials and construction.
5. Is site NAPL primarily lighter or denser than water?	Heating and visual observations.	Evaluate the effectiveness of MPE and bubble flotation.
6. Does the density of site NAPL change upon heating?	Heating and visual observations.	Evaluate the effectiveness of MPE and bubble flotation.

Test Materials

Test materials were produced from site soil, groundwater and NAPL collected during previous site investigation and sampling efforts. Soil used in the study was obtained from two 55-gallon DOT drums containing materials removed from shallow on-site trenches, while groundwater and NAPL represent materials collected over several groundwater sampling events.

To prepare soil for testing, the contents of the drums were emptied into large mixing containers and separated into three categories; soil showing no obvious signs of contaminant impact; soil showing signs of impact; and soil showing signs of impact approaching NAPL concentrations. The separation process relied upon visual examination and volatile organic carbon (VOC) readings obtained using a photo ionization detector (PID).

Examination of site soil revealed it to be predominantly fine to medium grain sand with very small traces of silt. The few small rocks and pieces of wood found were removed. Also, any pea-sized "tar balls" discovered were broken up by hand. No free NAPL was found in the soil samples. However, more impacted soil had noticeably higher moisture content and an obvious surface sheen. It was very easy to separate highly impacted soil from less impacted soil.

Non-impacted soil was re-drummed for proper disposal. Approximately 600 pounds of "Impacted" soil and 75 pounds of "Highly Impacted" soil were each thoroughly homogenized for use in the study. Homogenized materials were sampled for laboratory analysis of baseline conditions and then placed into separate sealed containers. Laboratory analysis consisted of the tests shown in Table 3. All analysis conducted during the study were performed by an independent laboratory.

Table 3. Soil Analytical Parameters and Methods

Analytical Parameter	Analytical Method
Heavy Petroleum Hydrocarbons (DRO)	Method NWTPH-Dx
Polycyclic Aromatic Hydrocarbons (PAHs)	Method EPA 8270M-SIM
Percent Dry Weight (Solids)	ASTM D2216-80

A mixture of approximately 2-gallons of site groundwater and 100 milliliters (ml) of NAPL was also obtained from the site. These materials were separated from each other and stored in sealed containers.

Test Methods - Overview

During ISTR, the removal of organic contaminant mass is accomplished by physical, chemical, and biological mechanisms. Heating can enhance efforts to physically recover NAPL by pumping or MPE. It also removes contaminants through vaporization, boiling, steam distillation, hydrolysis, oxidation, and pyrolysis. Pyrolysis is the thermochemical decomposition of compounds in the absence of oxygen. During site heat-up and cool-down, organic contaminants are often degraded by biological pathways.

To perform the studies, two separate test apparatus were deployed. One consisted of a 500-ml boiling flask with a water-cooled condenser. The second, of cells packed with test soil which could be heated to the boiling point of water. The boiling flask and condenser were used to visually observe the results of heating on the physical properties of site NAPL. The cells were used to study the overall effects of vaporization, boiling, steam distillation, hydrolysis, oxidation, pyrolysis, and biological reactions on impacted site soil without attempting to distinguish the contributions of each removal mechanism on the reduction of COC concentrations.

Test Methods – Boiling Flask Studies

The effects of heating upon site NAPL (Test Questions 1-2 and 4-6) were studied using a 500-ml boiling flask, a hot water bath, and a laboratory hot plate. One part of the study looked at the effects of heating on NAPL viscosity and density, while a second part examined if the vapors recovered from heating NAPL, and Highly Impacted Soil, would solidify or crystalize upon cooling. To observe the physical characterizes of recovered vapors upon cooling, a water-cooled condenser and vacuum source were attached to the boiling flask during an Impacted Soil heat-up and cool-down cycle.

In the first part of the study, the boiling flask was half filled with tap water and then placed in the hot water bath. Next, approximately 50-ml of NAPL was added to the flask and the water bath was brought to a boil. A type T thermocouple was used to monitor water temperature in the boiling flask and the physical characteristics of the NAPL were observed as temperature increased.

In the second half of the study, a layer of clear glass beads was placed in the bottom of the boiling flask and then it was half filled with Highly Impacted Soil. Tap water was added until the soil was saturated and about 1-inch of water was present above the soil line. The water-cooled condenser was attached to the boiling flask and a slight vacuum was applied to the top of the condenser. A Type T thermocouple was used to monitor temperature in the center of the soil layer. Again the hot water bath was brought to boiling and the physical characteristics of the system, including the condensate produced by heating, were observed as the temperature inside the flask was increased.

Test Results – Boiling Flask Studies

The groundwater/NAPL sample obtained from the site contained approximately 2-gallons of groundwater and 100-ml of NAPL in a 5-gallon plastic bucket. Upon opening the bucket, a slight sheen was observed on the groundwater and a black gooey NAPL was found at the bottom of the container. The groundwater was amber in color and the sheen on it was a darker shade of the same color.

In the first study, when site NAPL was added to ambient temperature tap water in the boiling flask, it immediately sank to the bottom of the flask. Within 10-minutes at ambient temperature, the water in the flask began to turn very slightly amber in color and an amber sheen started to develop on the water surface. However, all of the black NAPL remained at the bottom of the flask.

As the boiling flask was heated, the black DNAPL transitioned from a gooey and sticky consistency to a Jell-O like consistency at about 140 °F (60 °C). It was clear that the viscosity of the NAPL was rapidly decreasing. At approximately 190 °F (88 °C), bubble floatation was observed carrying small pieces of DNAPL from the bottom of the flask to the water surface, where they remained as floating solids.

At a temperature just under the boiling point of water, 212 °F (100 °C), all of the DNAPL in the bottom of the flask transitioned to the surface of the water. Until the water in the flask reached boiling, a small amount of this black NAPL transitioned back and forth between the surface of the water and the bottom of the flask. However, once boiling in the flask had been reached, all the NAPL remained on the water surface as a black colored LNAPL.

As the system was allowed to cool back to ambient temperature, the majority of the NAPL remained on the water surface as a black colored LNAPL rather than return to the flask bottom as a DNAPL or float between the water surface and cell bottom as neutral buoyancy NAPL.

In the second study, Highly Impacted Soil was added to the boiling flask on top of a layer of clear glass beads and submerged under tap water. At ambient temperature, a slightly amber discoloring of the water occurred, but no sheen was observed. Upon heating, the water became increasingly amber in color and an amber sheen began to develop on the water surface. At a temperature just under the boiling point of water, a thin (approximately 0.25-inch) layer of amber colored NAPL was observed on the water surface. There were no signs of NAPL migrating downward into the bed of glass beads.

During the second study, a water-cooled condenser was attached to the boiling flask and a vacuum was applied to the condenser. Condensate observed in the condenser was consistently clear and did not leave behind any crystals or other residue upon cooling. Additionally, as the entire system was allowed to cool to ambient temperature, the LNAPL layer on the surface of the water in the flask remained unchanged.

Test Methods – Soil Cell Studies

Soil cell studies were used to determine how much DRO and PAH can be removed from the soil matrix by heating (Test Question No. 3). During the study, twelve (12) cells were used to perform the three types of heating tests summarized in Table 4. Test cells were constructed of heat tolerant materials to allow air or water to be introduced at the bottom of the cell, a vacuum to be applied to the top of the cell, and a thermocouple to be inserted into the center of the cell. A schematic of a typical ISTR Test Cell is shown as Figure 1. Cells were heated using hot-oil baths.

Table 4. Summary of Cell Studies

Cell No.	Test Material	Heating Method	Days of Heating
C6	Impacted Soil	Dry Heating	5
C7	Impacted Soil	Dry Heating	5
C12	Impacted Soil	Dry Heating	5
C1	Impacted Soil	Dry Heating	15
C2	Impacted Soil	Dry Heating	15
C3	Impacted Soil	Dry Heating	25
C4	Impacted Soil	Dry Heating	25
C8	Highly Impacted Soil	Dry Heating	5
С9	Highly Impacted Soil	Dry Heating	5
C5	Highly Impacted Soil	Dry Heating	15
C10	Highly Impacted Soil	Steaming	5
C11	Highly Impacted Soil	Steaming	15

The body of each test cell measured 6-inches (15.2 cm) in length and 3-inches (7.6 cm) in diameter. Slightly concave caps were screwed to both ends of the cells. The concave bottom cap was filled with a layer of clear glass beads and a metal screen separated these beads from the soil filling the cell. The concave portion of the upper cap was not filled with beads or soil. This produced a soil-filled cell volume of approximately 42.4 cubic inches (695 cubic centimeters).

Approximately 1,100-grams of soil were placed into cells filled with Impacted Soil, while about 1,200 grams were placed into the cells filled with Highly Impacted Soil. The Impacted Soil had a starting moisture content of 12.6% on a dry weight basis, while the Highly Impacted Soil had a starting moisture content of 15.2%. This produced average dry weight bulk densities of 1.2 and 1.5 grams/cubic centimeter (g/cc) for the Impacted Soil and Highly Impacted Soil cells, respectively. During the cell filling process, a type T thermocouple was placed in the center of each cell.

Once filled with test materials, each cell was submerged to the bottom of the upper threaded cap in a vegetable-oil bath which had been heated to approximately 104 °C (220 °F). On all test cells, the outlet tube (Tube C on Figure 1) was connected to a vacuum source and subjected to a vacuum of approximately 5-inches of water column (0.4-inches of mercury). On the dry heating cells, the inlet tube (Tube A on Figure 1) was left open to the atmosphere. On the steaming cells, water was introduced to the cell bottom using the inlet tube. On all cells, the thermocouple tube (Tube B on Figure 1) was open to the atmosphere.

The inlet tubes on the steaming cells were connected to hanging water column systems that delivered tap water to the bottom of the cell. The pressure heads applied by the water columns were adjusted so that equilibrium was reached when the water levels in the cells were approximately one-half inch below the bottom of the upper threaded cap. In this manner, moisture content was maintained in the test cell without allowing water to flow through the cell. Moisture could only leave the cells as steam exiting the outlet or thermocouple tubes in the cell cap. The vacuum applied to the outlet tubes prevented steam from traveling up the thermocouple tubes. As steam left the cell top, it was replaced by ambient temperature tap water entering the cell bottom.

By filling from the bottom, it is easier to ensure that each steaming cell was fully and evenly saturated. The outlet tubes on these cells were connected to flasks that collected the steam condensate generated during heating. The volume of condensate was measured and compared to the loss of volume in the hanging water column system. In all cases, there was a match between the volume of water entering the cells and the volume of condensate removed from the cells. Condensate was visually inspected for signs of contaminant impact and sampled for laboratory analysis.

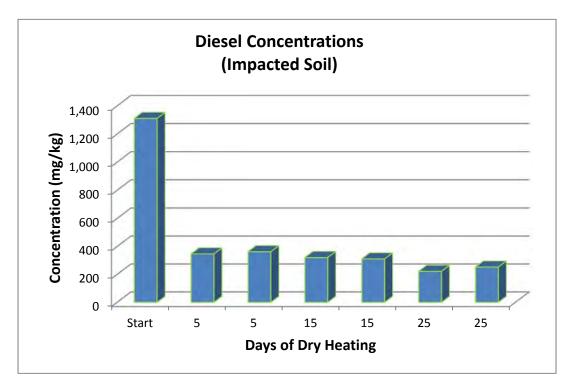
Once a cell had been in a hot-oil bath for the predetermined number of day, it was removed for sampling. Cells were taken from the oil baths and placed into a refrigerator where they were allowed to cool to ambient temperature before being opened. The thermocouples in the cells were used to determine that ambient temperature had been reached. Once a cell had been opened, the soil inside was removed, homogenized, and sampled for laboratory analysis of the parameters in Table 3.

Additionally, a sample of untreated Highly Impacted Soil and subsamples from the two 5-day dry heating studies run with that soil were subjected to the Synthetic Precipitate Leaching Process (SPLP). The SPLP is an EPA SW-846 analytical method (Method 1312) that can be used to quickly and inexpensively help determine the concentration of contaminant that will leach from impacted soil. Results from SPLP testing may be used in developing remediation criteria that will be protective of ground water at a specific site.

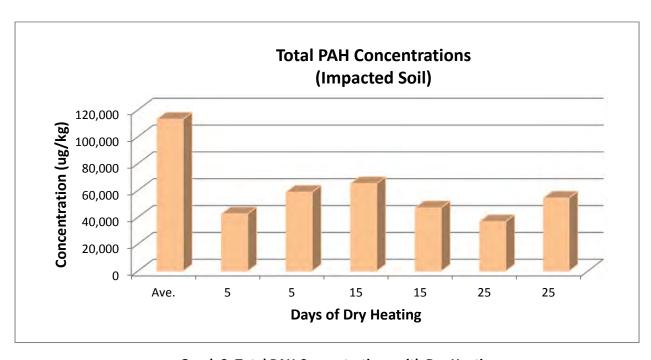
Test Results – Soil Cells and Dry Heating

Temperatures in the two hot-oil baths used to perform the soil cell studies were measured continuously using type T thermocouples and found to be stable over 24-hours to within plus or minus 2 °C of test set points. The low set point used was 104 °C (120 °F), while the high set point was 112 °C (235 °F).

Baseline concentrations of DRO and PAHs in the homogenized Impacted Soil and the results of dry heating that material for 5, 15 and 25-days are presented in Appendix A, Table A-1. Initial baseline sampling and 5-day tests were performed in triplicate, while 15 and 25-day tests were run in duplicate. Average concentrations of diesel, benzo(a)pyrene, naphthalene, and total PAHs after heating are shown in Table 5, and the concentrations of diesel and total PAHs are presented on Graphs 1 and 2, respectively.


Cell C6 results were not used in this report because many post-heating PAH concentrations in that cell were higher than pre-heating baseline concentrations. This was attributed to the presence of a tar ball in Cell C6, which made it non-representative of baseline conditions. A new 5-day dry heating cell (Cell C12) was prepared from baseline soil and testing re-run.

Analyte ¹	Baseline (Ave) ²	5-Days ³	15-Days ⁴	25-Days ⁵
Diesel	1,310 mg/kg	338 mg/kg	317 mg/kg	237 μg/kg
Lube Oil	1,180 mg/kg	845 mg/kg	908 mg/kg	857 mg/kg
Benzo(a)pyrene	4,423µg/kg	4,025 μg/kg	2,620 μg/kg	3,460 µg/kg
Naphthalene	2,810 µg/kg	383 µg/kg	246 μg/kg	375 μg/kg
Total PAHs	113,036 µg/kg	50,578 μg/kg	56,032 μg/kg	45,535 μg/kg


Table 5. Results of Dry Heating Impacted Soil

- 1. Analytical Methods: Diesel = NWTPH-Dx; PAHs = SW8270D.
- 2. Average results from baseline soil samples: BL1, BL2, and BL3.
- 3. Average results from Cells C7 and C12.
- 4. Average results from Cells C1 and C2.
- 5. Average results from Cells C3 and C4.

Graph 1. Diesel Concentrations with Dry Heating

Graph 2. Total PAH Concentrations with Dry Heating

Analytical results from dry heating Impacted Soil for the three time intervals are presented in Table A-3 of Appendix A. TTEC calculations are shown in Table A-4, while percentage reductions in all COCs are shown in Tables A-6 and A-7. Average percent reductions in diesel, lube oil, benzo(a)pyrene, naphthalene, and total PAH concentrations are presented in Table 6 for each dry-heating interval.

Table 6. Average Percent Concentration Reductions: Dry Heating of Impacted Soil

Analyte	5-Days ¹	15-Days ²	25-Days ³
Diesel	74.2%	75.8%	81.9%
Lube Oil	28.4%	23.1%	27.4%
Benzo(a)pyrene	9.0%	40.8%	21.8%
Naphthalene	86.4%	91.2%	86.7%
Total PAHs	55.3%	50.4%	59.7%

- 1. Average results from Cells C7 and C12.
- 2. Average results from Cells C1 and C2.
- 3. Average results from Cells C3 and C4.

Baseline concentrations of DROs and PAHs in the homogenized Highly Impacted Soil, the concentrations of these COCs after dry heating for 5 and 15-days, and the percent COC reductions achieved with heating are shown in Tables B-1 and B-2 of Appendix B. The calculated TTECs achieved at each heating interval are contained in Table B-3, while the results of SPLP testing are shown in Table B-4.

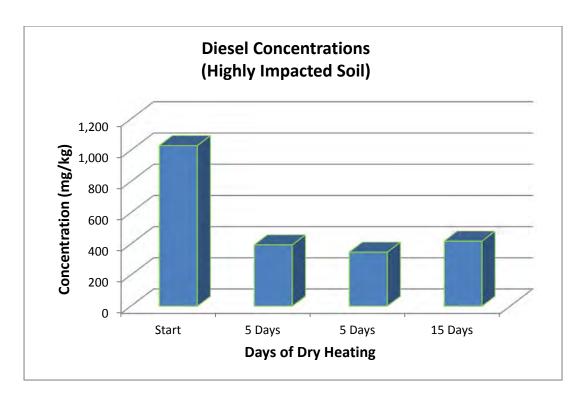
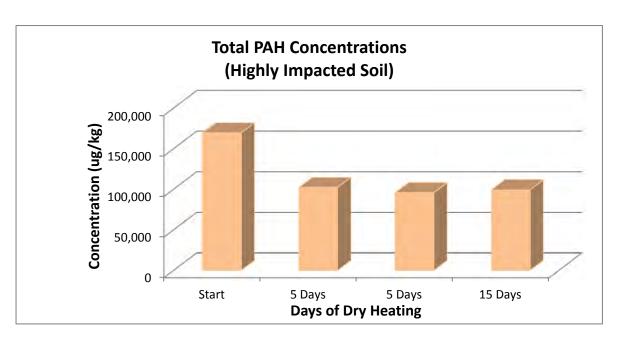

Baseline concentrations and percent reductions in concentrations of diesel, lube oil, benzo(a)pyrene, naphthalene, and total PAHs obtained by dry heating Highly Impacted Soil for 5 and 15-days are presented in Table 7, while Graphs 3 and 4 display diesel and total PAH concentrations as a function of heating time. Baseline concentrations and 15-day heating results represent the analysis of single samples, while 5-day heating results represent the averages obtained from duplicate test cells.

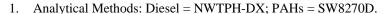
Table 7. Results of Dry Heating Highly Impacted Soil

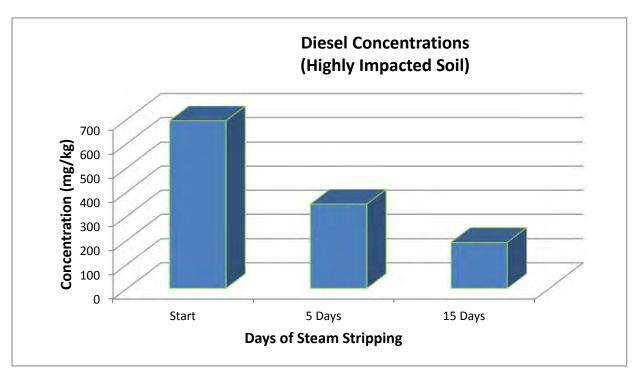

Analyte ¹	Baseline (BL4)	5-Days (Ave. C8 & C9)	5-Days (% Reduction) ³	15-Days (C5)	15-Days (% Reduction) 4
Diesel	1,030 mg/kg	371 mg/kg	64.0%	418 µg/kg	59.4%
Lube Oil	933 mg/kg	855 mg/kg	8.4%	792 mg/kg	15.1%
Benzo(a)pyrene	4,990 μg/kg	3,160 µg/kg	36.7%	2,470 μg/kg	50.5%
Naphthalene	807 μg/kg	257 μg/kg	68.2%	127 μg/kg	84.3%
Total PAHs	169,337 µg/kg	98,907 μg/kg	41.6%	99,170 μg/kg	41.5%

1. Analytical Methods: Diesel = NWTPH-Dx; PAHs = SW8270D.

Graph 3. Diesel Concentrations with Dry Heating

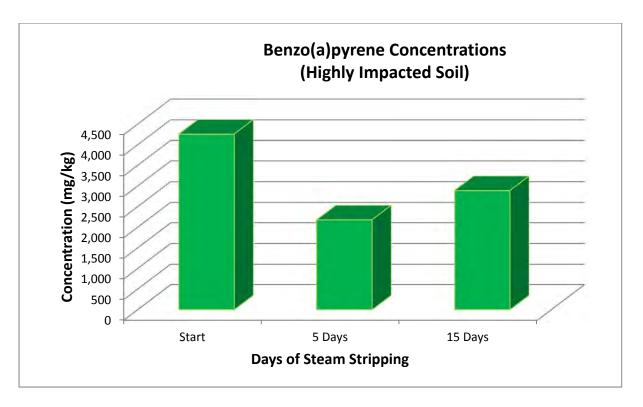
Graph 4. Total PAH Concentrations with Dry Heating

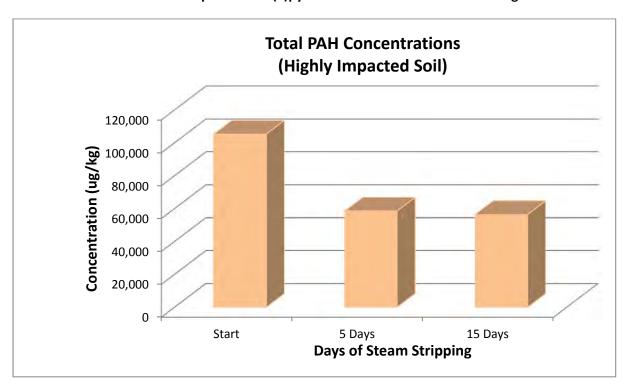

Test Results - Soil Cells and Steaming


Steam heating studies were conducted using a new subset of Highly Impacted Soil, which was analyzed separately from the soil used to conduct the dry heating studies. Baseline COC levels, the resulting concentrations after heating, and the percent concentration reductions achieved after steaming for 5 and 15-days are presented in Table C-1 of Appendix C. The TTEC calculations for pre- and post-steam heating of Highly Impacted Soil are shown in Table C-2.

Analytical results and percent concentration reductions obtained for diesel, benzo(a)pyrene, naphthalene, and Total PAHs as the result of steam heating Highly Impacted Soil for 5 and 15-days are presented in Table 8, while Graphs 5-7 display the results for diesel, benzo(a)pyrene, and Total PAHs, respectively. All baseline and steam heating results represent the analysis of single samples.

Analyte ¹	Baseline (BL5)	5-Days (C10)	5-Days (% Reduction)	15-Days (C11)	15-Days (% Reduction)
Diesel	693 mg/kg	348 mg/kg	49.8%	190 mg/kg	72.6%
Lube Oil	880 mg/kg	806 mg/kg	8.4%	576 mg/kg	34.5%
Benzo(a)pyrene	4,260 µg/kg	2,180 μg/kg	48.8%	2,890 µg/kg	32.2%
Naphthalene	793 µg/kg	61 µg/kg	92.3%	48 μg/kg	93.9%
Total PAHs	105,253 μg/kg	58,394 μg/kg	44.5%	56,342 μg/kg	46.5%


Table 8. Results of Steaming Highly Impacted Soil



Graph 5. Diesel Concentrations with Steaming

Graph 6. Benzo(a)pyrene Concentrations with Steaming

Graph 7. Total PAH Concentrations with Steaming

During the steam heating portion of the study, the condensate from the cells being heated was collected daily for measurement of volume and visual examination. Approximately 100 to 300-ml of condensate was collected from each cell every 24-hours and a good match was observed between the volume of tap water put into the cells and the volume of condensate removed from the cells. Assuming a porosity of 40%, this flux of water through the cells represents about one-third to one pore volume per day.

Daily visual examination of collected condensate showed it to be amber in color with sheen, or measurable thicknesses (0.1 to 0.24-inches) of amber LNAPL present. A condensate sample was obtained on the second day of the 5-day steaming study for laboratory analysis. Results of this analysis are presented in Table D-1 of Appendix D and are summarized in Table 9 for diesel, benzo(a)pyrene, naphthalene, and total PAHs. These results indicate that *in situ* steam stripping is a viable method for the removal of both DROs and PAHs from site soil.

Table 9. Condensate from Steaming Highly Impacted Soil

Diesel	Diesel	Benzo(a)pyrene	Naphthalene	Total PAHs
5.3 mg/L	4.2 mg/L	1.0 μg/L	2.3 μg/L	292 μg/L

Analytical Methods: Diesel = NWTPH-Dx; PAHs = SW8270D

Test Results – Abiotic Reactions

Abiotic degradation pathways are known to be part of the natural contaminant attenuation process at most sites impacted with organic hydrocarbons. Like biological degradation, abiotic reactions tend to be overlooked in evaluating site remediation options because they are typically very slow at ambient temperatures. However, every 10 °C increase in subsurface temperature doubles abiotic reaction rates. Thus, reaction rates that were insignificant at ambient temperature can become measureable at the temperatures achieved by ISTR.

Recently, research at monitored natural attenuation (MNA) and *in situ* heating sites have shown that available ferrous iron sources will act as active reductants for chlorinated volatile organic compounds (COVCs). Field data indicates that ferrous iron reacts with these compounds by mechanisms similar to those observed for zero valent iron (ZVA) based remediation technologies.

To investigate if abiotic reaction were occurring in the bench scale soil studies, samples of Impacted and Highly Impacted soil and a subsample from Cell C11, which was steamed for 15-days, were analyzed for available major anions and cations. The results of these analyses, which are summarized in Table 10, indicate that available iron was consumed during heating.

Table 10. Available Anions and Cations

Soil Type	e NH ₄ -N SO ₄ -S Iron		Iron	Ph Units
Impacted	0.2 (mg/kg)	12 (mg/kg)	34 (mg/kg)	6.3
Highly Impacted	0.2 (mg/kg) 12 (mg/kg) 38		38 (mg/kg)	6.3
15-Days Steaming ¹	5.4 (mg/kg)	1.0 (mg/kg)	5 (mg/kg)	6.8

1. Steaming was performed on Highly Impacted Soil.

Study Conclusions

The following conclusions may be reached from the results of the boiling flask studies:

- NAPL at the site exists primarily as a black viscous DNAPL which upon heating to the boiling point of water (212°F and 100°C) becomes a black LNAPL. While no direct measurements were made, visual observations indicate that the viscosity of this NAPL decreases significantly with increasing temperature.
 - These results indicate that heat enhanced MPE can be used to extract not only liquid phase petroleum hydrocarbons but also liquid phase PAHs from any saturated portion of the site. This includes sections of the vadose zone purposely saturated during the ISTR process. The extraction of liquid phase contaminants from the top of a water table is the most efficient and cost effective way to remove mass from the subsurface of any impacted site.
- Once converted to a LNAPL by heating, site liquid phase PAHs did not revert back to DNAPL, or become a buoyant neutral NAPL, upon returning to ambient temperatures.
 - This observation indicates that it will not be necessary to hold areas of the subsurface at boiling temperatures for prolonged periods of time, or to re-heat them, in order to completely recover creosote tar LNAPL produced by heating.
- Site soil heavily impacted with diesel and PAHs will produce an LNAPL rather than a DNAPL when heated.
 - These results indicate that liquid extraction can be an important remediation mechanism at this site, even within the vadose zone. Highly impacted source areas in the Upper Sands can be saturated and heated to release both diesel and PAHs as LNAPLs, which may then be extracted from the subsurface using MPE. There were no indications that heating PAH impacted soil at this site will produce DNAPLs.
- Volatilization can effectively remove naphthalene and other low boiling point PAHs from subsurface soil.
 - *In situ* volatilization processes dropped the concentrations of several PAHs by over 50%. These included naphthalene, phenanthrene, fluorine, fluoranthene, pyrene, and acenaphthene.
- In situ steam stripping may be used to reduce both DRO and PAH concentrations.
 - Results indicate that *in situ* steam stripping is a viable contaminant removal mechanism at the subject site. *In situ* steam stripping can clearly be used to reduce diesel concentrations in soil to levels approaching 80%. It can also be deployed to lower PAH concentrations, including concentrations of benzo(a)pyrene, beyond what can be achieved by volatilization alone.
- Evidence was generated that in situ abiotic reactions were contributing to reductions in PAH concentrations.
 - It is possible that the closed system nature of the bench studies limited abiotic reactions in the test cells. Early results indicate that available ferrous iron was depleted during testing and that adding iron to the cells may have produced larger PAH concentration reductions

- Condensate and vapors produced from boiling site NAPL and steam stripping highly impacted site soil did not crystalize or solidify upon cooling to ambient temperatures.
 - These results indicate that it will not be necessary to use specialty construction materials and methods in the design of an ISTR system for this site. The headers for condensate and vapor collection systems at the site can be constructed of heat resistant plastics rather than steel and will not have to be heat traced. Additionally, there is not indication that system equipment will become overly fouled by materials extracted from the subsurface.

The cell studies provided data on the amount of COCs that can be removed from site soil by volatilization and steam stripping as well as biological and abiotic reactions. The following conclusions can be drawn from the results of these studies:

- Heating was more effective in reducing average diesel concentrations than lube oil levels. Dry heating lowered average diesel concentrations by over 70%, but only dropped lube oil levels by a maximum of 28%. Steaming removed more lube oil, with a maximum reduction of 34.5% achieved after 15-days of steaming.
 - Using a vadose zone saturation system allows for a robust application of ERH without the worries of electrode dry-out. It also provides a mechanism to physically steam-strip heavier contaminants such as lube oils from the soil matrix in the most impacted portions of the site.
- Dry heating lowered average Total PAH concentrations by about 55% and average naphthalene concentrations by over 80%. Average benzo(a)pyrene concentrations were reduced by 9.0%, 40.8%, and 21.8% with 5, 15 and 25-days of dry heating, respectively.
 - These reductions in contaminant concentrations at creosote sites are often enough to stabilize the remaining constituents, which are composed of higher molecular weight PAHs, and stop them from leaching to groundwater.
- Extended dry heating beyond 5-days did not produce significantly greater percentages of COC concentration reductions..
 - The estimates of design energy and operation periods for the application of ISTR at this site should not overestimate the beneficial effects of continued heating beyond what is necessary to achieve recovery of NAPL from the subsurface and produce initial reductions of COC concentrations. An exception to this conclusion would be the continued use of heating to achieve reductions in naphthalene concentrations greater than 95% to allow the site clean-up goals for this COC to be achieved.
- Continued steaming can produce continued removal of DROs and PAHs.
 - Analysis of the condensate collected during the steaming of Highly Impacted soil, indicated that diesel, benzo(a)pyrene, naphthalene, and Total PAHs were being removed from the test cells as dissolved phase constituents of the condensate. Of the PAHs analyzed, the removal rate for naphthalene was by far the highest. Continued heating should produce continued reductions in naphthalene concentrations.

15

• Evidence exists that abiotic reactions may be assisting COC reduction in the cell studies.

The depletion of available iron in heated site soil indicates that abiotic reactions are occurring at elevated temperature and may be responsible for the destruction of non-volatile site COCs with larger ring structures. It is possible that these reactions can be increased, and used as a remediation polishing mechanism, by ensuring the subsurface has a sufficient source of available iron to maximize all forms of *in situ* dechlorination.

Transferring Lab Results to Field Data

Study results were applied to actual field data from seventeen (17) onsite soil sampling locations. Soil at each of these locations is impacted at levels exceeding at least two of site clean-up criteria presented in Table 1. When the average percent COC reductions obtained during the dry-heating portion of the study are applied to actual site soil data, only four of the 17 site locations had Total PAH concentrations higher than the site clean-up goals. Concentrations of DRO over the clean-up goals would only be found in five of the 17 locations. And while naphthalene concentrations would be over the clean-up goals in 11 of the 17 site locations, increasing average naphthalene reduction from the 95% obtained in the study to 99% leaves only three locations over the clean-up levels.

Recommendations

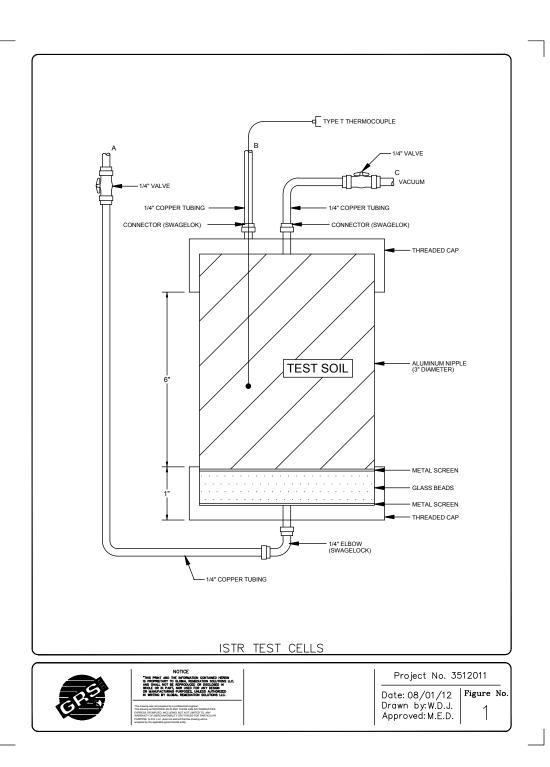
Based upon the data collected during this ISTR Bench Scale Study, we recommend steam heating of the vadose zone to remove the maximum amount of heavy petroleum hydrocarbons and PAHs from the subsurface as possible. Stream heating can be performed by applying ERH combined with both a MPE and a soil saturation system. Together, these systems will remove NAPL from the soil matrix in the most impacted parts of the site and reduce the concentrations of the more soluble PAHs throughout the heated volume. These efforts can significantly reduce groundwater impact at the site.

Use of Report

This report has been prepared to assist in the evaluation of GRS' application of ISTR at the subject site. The results are confidential and proprietary and shall only be used for other purposes with the expressed permission of GRS.

Should you have any questions concerning this bench study report, please do not hesitate to contact us.

Sincerely,


Global Remediation Solutions, LLC

Michael Dodson Vice President

FIGURES

Appendix A

Analytical Results

Dry Heating of Impacted Soil

Table A-1
Analytical Results - Baseline Impacted Soil

Analyte	Units	Baseline (BL1)	Baseline (BL2)	Baseline (BL3)	Average (BL1- BL3)
Percent Moisture	Dry wt%	12.3	12.6	12.8	12.6
Diesel	mg/kg	1,220	1,250	1,460	1,310
Lube Oil	mg/kg	1,100	1,180	1,260	1,180
Acenaphthene	μg/kg	5,020	5,000	5,240	5,087
Acenaphthylene	μg/kg	606	653	383	547
Anthracene	μg/kg	6,330	5,890	6,360	6,193
Benz(a)anthracene	μg/kg	5,060	6,060	3,900	5,007
Benzo(a)pyrene	μg/kg	3,560	4,450	5,260	4,423
Benzo(b)fluoranthene	μg/kg	5,630	4,890	6,350	5,623
Benzo(g,h,i)perylene	μg/kg	1,560	1,980	1,760	1,767
Benzo(k)fluoranthene	μg/kg	1,670	2,580	1,630	1,960
Chrysene	μg/kg	6,250	5,750	6,400	6,133
Dibenz(a,h)anthracene	μg/kg	723	930	823	825
Fluoranthene	μg/kg	34,500	34,100	40,500	36,367
Fluorene	μg/kg	3,600	4,910	3,550	4,020
Indeno(1,2,3-cd)pyrene	μg/kg	1,610	2,010	1,750	1,790
Naphthalene	μg/kg	2,770	3,370	2,290	2,810
Phenanthrene	μg/kg	9,570	9,880	13,800	11,083
Pyrene	μg/kg	18,600	17,700	21,900	19,400
Total PAHs	μg/kg	107,059	110,153	121,896	113,035

Analytical Methods = Percent Moisture (ASTM D2216); Diesel & Lube Oil (NWTPH-Dx); PAHs (SW827D).

 $\label{eq:Table A-2} TTEC \ Calculations - Baseline \ Impacted \ Soil, \ (\mu g/kg)$

Analyte	TTEC Factor	BL1 (µg/kg)	BL2 (µg/kg)	BL3 (µg/kg)	Average BL (µg/kg)	Rings/ Rating
Benz(a)anthracene	0.1	506	606	390	501	4 / C
Benzo(a)pyrene	1.0	3,560	4,450	5,260	4,423	5 / SC
Benzo(b)fluoranthene	0.1	563	489	635	562	5 / C
Benzo(k)fluoranthene	0.1	167	258	163	196	5 / C
Chrysene	0.01	62	58	64	62	4 / WC
Dibenz(a,h)anthracene	0.1	72	93	82	82	5 / C
Indeno(1,2,3-cd)pyrene	0.1	161	201	175	179	6 / C
Total PAH	-	5,091	6,155	6,769	6,005	-

TTEC = Total Toxicity Equivalent Concentration.

Analytical Method = PAHs by SW827D.

Rings: Number of rings in compound structure.

Rating (Cancer): C = Carcinogenic; SC= Strongly Carcinogenic; WC = Weakly Carcinogenic.

Table A-3
Analytical Results - Dry Heating of Impacted Soil

		Average	5-Days	5-Days	5-Days	15-Days	15-Days	25-Days	25-Days
Analyte	Units	(BL1-3)	(C6)	(C7)	(C12)	(C1)	(C2)	(C3)	(C4)
Percent Moisture	Dry wt%	12.6	0.3	0.23	-	-	-	-	-
Diesel	mg/kg	1,310	346	362	313	320	313	221	252
Lube Oil	mg/kg	1,180	777	777	912	918	897	954	759
Acenaphthene	μg/kg	5,087	181	165	43	105	54	37	63
Acenaphthylene	μg/kg	547	1,690	1,370	681	1,160	1,190	837	1,100
Anthracene	μg/kg	6,193	7,250	4,360	3,600	2,910	3,070	2,510	3,490
Benz(a)anthracene	μg/kg	5,007	9,080	2,420	1,550	4,060	2,510	2,060	2,370
Benzo(a)pyrene	μg/kg	4,423	6,680	4,830	3,220	2,730	2,510	2,910	4,010
Benzo(b)fluoranthene	μg/kg	5,623	12,900	9,400	6,280	9,720	8,220	8,250	10,400
Benzo(g,h,i)perylene	μg/kg	1,767	3,600	3,120	1,520	2,730	2,790	2,370	3,000
Benzo(k)fluoranthene	μg/kg	1,960	2,170	1,710	820	2,250	2,110	1,390	1,450
Chrysene	μg/kg	6,133	9,270	2,960	1,750	5,470	3,470	2,370	4,070
Dibenz(a,h)anthracene	μg/kg	825	1,730	1,400	761	1,220	1,260	1,130	1,270
Fluoranthene	μg/kg	36,367	49,000	13,600	9,600	17,000	9,920	6,130	11,700
Fluorene	μg/kg	4,020	883	616	395	926	477	357	451
Indeno(1,2,3-cd)pyrene	μg/kg	1,790	3,530	3,000	1,650	2,620	2,750	2,220	2,470
Naphthalene	μg/kg	2,810	669	629	137	253	239	181	568
Phenanthrene	μg/kg	11,083	3,890	2,560	5,290	2,030	1,850	1,870	2,240
Pyrene	μg/kg	19,400	22,600	6,520	5,200	9,830	4,630	2,110	5,650
Total PAHs	μg/kg	113,036	135,123	58,660	42,497	65,014	47,050	36,768	54,302

Methods: Percent Moisture by ASTM D2216; Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

Table A-4
Average Analytical Results - Dry Heating of Impacted Soil

		Baseline	5-Days	15-Days	25-Days
Analyte	Units	(BL1-3)	(C7 & C12)	(C1 & C2)	(C3 & C4)
Percent Moisture	Dry wt%	12.6	-	-	-
Diesel	mg/kg	1,310	338	317	237
Lube Oil	mg/kg	1,180	845	908	857
Acenaphthene	μg/kg	5,087	104	80	50
Acenaphthylene	μg/kg	547	1,026	1,175	987
Anthracene	μg/kg	6,193	3,980	2,990	3,000
Benz(a)anthracene	μg/kg	5,007	1,985	3,285	2,215
Benzo(a)pyrene	μg/kg	4,423	4,025	2,620	3,460
Benzo(b)fluoranthene	μg/kg	5,623	7,8400	8,970	9,325
Benzo(g,h,i)perylene	μg/kg	1,767	2,320	2,760	2,685
Benzo(k)fluoranthene	μg/kg	1,960	1,265	2,180	1,420
Chrysene	μg/kg	6,133	2,355	4,470	3,220
Dibenz(a,h)anthracene	μg/kg	825	1,081	1,240	1,200
Fluoranthene	μg/kg	36,367	11,600	13,460	8,915
Fluorene	μg/kg	4,020	506	702	404
Indeno(1,2,3-cd)pyrene	μg/kg	1,790	2,325	2,685	2,345
Naphthalene	μg/kg	2,810	383	246	375
Phenanthrene	μg/kg	11,083	3,925	1,940	2,055
Pyrene	μg/kg	19,400	5,860	7,230	3,880
Total PAHs	μg/kg	113,036	50,578	56,032	45,535

Methods: Percent Moisture by ASTM D2216; Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

 $\label{eq:Table A-5} TTEC \ Calculations - Dry \ Heating \ of \ Impacted \ Soil, \ (\mu g/kg)$

Analyte ¹	TTEC Factor ²	Start Ave. ³	5-Days (C6)	5-Days (C7)	5-Days (C12)	15-Days (C1)	15-Days (C2)	25-Days (C3)	25-Days (C4)	Rings/ Rating ⁴
Benz(a)anthracene	0.1	501	908	242	155	406	251	206	237	4 / C
Benzo(a)pyrene	1.0	4,423	6,680	4,830	3,220	2,730	2,730	2,910	4,010	5 / SC
Benzo(b)fluoranthene	0.1	562	1,290	940	628	972	972	822	825	5 / C
Benzo(k)fluoranthene	0.1	196	217	171	82	225	211	139	145	5 / C
Chrysene	0.01	62	93	30	18	55	35	24	41	4 / WC
Dibenz(a,h)anthracene	0.1	82	173	140	76	122	126	113	127	5 / C
Indeno(1,2,3-cd)pyrene	0.1	179	353	300	165	262	275	222	247	6 / C
Total PAH	-	6,005	9,714	6,653	4,344	4,722	4,600	4,436	5,632	-

- 1. Analytical Method: PAHs = SW827D.
- 2. TTEC = Total Toxicity Equivalent Concentration.
- 3. Average of baseline soil samples B1, B2 and B3.
- 4. Rings: Number of rings in compound structure.
 - Rating (Cancer): C = Carcinogenic; SC= Strongly Carcinogenic; WC = Weakly Carcinogenic.

Table A-6
Percent Reductions In Concentrations
Dry Heating of Impacted Soil

	5-Days	5-Days	5-Days	15-Days	15-Days	25-Days	25-Days
Analyte	(C6)	(C7)	(C12)	(C1)	(C2)	(C3)	(C4)
Diesel	73.6%	72.4%	76.1%	75.6%	76.1%	83.1%	80.8%
Lube Oil	34.2%	34.2%	22.7%	22.2%	24.0%	19.2%	35.7%
Acenaphthene	96.4%	96.8%	99.2%	97.9%	98.9%	99.3%	98.8%
Acenaphthylene	-208.8%	-150.3%	-24.4%	-111.9%	-117.4%	-59.5%	-101.0%
Anthracene	-17.1%	29.6%	41.9%	53.0%	50.4%	59.5%	43.6%
Benz(a)anthracene	-81.4%	51.7%	69.0%	18.9%	49.9%	58.9%	52.7%
Benzo(a)pyrene	-51.0%	-9.2%	27.2%	38.3%	43.3%	34.2%	9.3%
Benzo(b)fluoranthene	-129.4%	-67.2%	-11.7%	-72.9%	-46.2%	-46.7%	-84.9%
Benzo(g,h,i)perylene	-103.8%	-76.6%	14.0%	-54.5%	-57.9%	-34.2%	-69.8%
Benzo(k)fluoranthene	-10.7%	12.8%	58.2%	-14.8%	-7.7%	29.1%	26.0%
Chrysene	-51.1%	51.7%	71.5%	10.8%	43.4%	61.4%	33.6%
Dibenz(a,h)anthracene	-109.6%	-69.6%	7.8%	-47.8%	-52.7%	-36.9%	-53.9%
Fluoranthene	-34.7%	62.6%	73.6%	53.3%	72.7%	83.1%	67.8%
Fluorene	78.0%	84.7%	90.2%	77.0%	88.1%	91.1%	88.8%
Indeno(1,2,3-cd)pyrene	-97.2%	-67.6%	7.8%	-46.4%	-53.6%	-24.0%	-38.0%
Naphthalene	76.2%	77.6%	95.1%	91.0%	91.5%	93.6%	79.8%
Phenanthrene	64.9%	76.9%	52.3%	81.7%	83.3%	83.1%	79.8%
Pyrene	-16.5%	66.4%	73.2%	49.3%	76.1%	89.1%	70.9%
Total PAHs	-19.5%	48.1%	62.4%	42.5%	58.4%	67.5%	52.0%

Methods = Percent Moisture by ASTM D2216; Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

Table A-7
Average Percent Reductions In Concentrations
Dry Heating of Impacted Soil

	5-Days	15-Days	25-Days
Analyte	(C7 & C12)	(C1 & C2)	(C3 & C4)
Diesel	74.2%	75.8%	81.9%
Lube Oil	28.4%	23.1%	27.4%
Acenaphthene	98.0%	98.4%	99.0%
Acenaphthylene	-87.4%	-114.7%	-80.2%
Anthracene	35.7%	51.7%	51.6%
Benz(a)anthracene	60.4%	34.4%	55.8%
Benzo(a)pyrene	9.0%	40.8%	21.8%
Benzo(b)fluoranthene	-39.4%	-59.5%	-65.8%
Benzo(g,h,i)perylene	-31.3%	-56.2%	-52.0%
Benzo(k)fluoranthene	35.5%	-11.2%	27.6%
Chrysene	61.6%	27.1%	47.5%
Dibenz(a,h)anthracene	-30.9%	-50.2%	-45.4%
Fluoranthene	68.1%	63.0%	75.5%
Fluorene	87.4%	82.5%	90.0%
Indeno(1,2,3-cd)pyrene	-29.9%	-50.0%	-31.0%
Naphthalene	86.4%	91.2%	86.7%
Phenanthrene	64.6%	82.5%	81.5%
Pyrene	69.8%	62.7%	80.0%
Total PAHs	55.3%	50.4%	59.7%

Methods = Percent Moisture by ASTM D2216; Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

Table A-8
Percent Reduction In TTEC Calculations
Dry Heating of Impacted Soil, (µg/kg)

Analyte ¹	Ave. Baseline ²	Ave. 5-Days ³	% Reduction	Ave. 15-Days ⁴	% Reduction	Ave. 25-Days ⁵	% Reduction
Benz(a)anthracene	501	199	60%	329	34%	222	56%
Benzo(a)pyrene	4,423	4,025	9%	2,730	38%	3,460	22%
Benzo(b)fluoranthene	562	784	-39%	972	-73%	824	-46%
Benzo(k)fluoranthene	196	127	35%	218	-11%	142	28%
Chrysene	62	24	61%	45	27%	32	47%
Dibenz(a,h)anthracene	82	108	-31%	124	-50%	120	-45%
Indeno(1,2,3-cd)pyrene	179	233	-30%	269	-50%	235	-31%
Total PAH	6,005	5,498	8%	4,686	22%	5,034	16%

- 1. Analytical Method: PAHs = SW827D.
- 2. Average of baseline soil samples B1, B2 and B3.
- 3. Average of Cells C7 and C12.
- 4. Average of Cells C1 and C2.
- 5. Average of Cells C3 and C4.

Appendix B

Analytical Results

Dry Heating of Highly Impacted Soil

Table B-1
Analytical Results and Percent Reductions in Concentrations
Dry Heating of Highly Impacted Soil

		Start	5-Days	5-Days	5-Day	%	15-Days	%
Analyte	Units	(BL4)	(C8)	(C9)	Ave.	Reduction	(C5)	Reduction
Diesel	mg/kg	1,030	394	347	371	64.0%	418	59.4%
Lube Oil	mg/kg	933	877	833	855	8.4%	792	15.1%
Acenaphthene	μg/kg	12,100	167	140	154	98.7%	107	99.1%
Acenaphthylene	μg/kg	1,530	833	900	867	43.4%	713	53.4%
Anthracene	μg/kg	13,200	3,500	4,110	3,805	71.2%	2,550	80.7%
Benz(a)anthracene	μg/kg	7,530	5,850	5,680	5,765	23.4%	5,110	32.1%
Benzo(a)pyrene	μg/kg	4,990	3,190	3,130	3,160	36.7%	2,470	50.5%
Benzo(b)fluoranthene	μg/kg	7,530	7,670	7,930	7,800	-3.6%	7,160	4.9%
Benzo(g,h,i)perylene	μg/kg	2,090	2,490	2,500	2,495	-19.4%	2,170	-3.8%
Benzo(k)fluoranthene	μg/kg	2,310	1,910	2,300	2,105	8.9%	1,790	22.5%
Chrysene	μg/kg	7,280	6,550	6,650	6,600	9.3%	5,910	18.8%
Dibenz(a,h)anthracene	μg/kg	1,030	1,110	1,180	1,145	-11.2%	1,050	-1.9%
Fluoranthene	μg/kg	44,800	39,600	37,700	36,650	13.7%	38,900	13.2%
Fluorene	μg/kg	8,790	927	853	890	89.9%	753	91.4%
Indeno(1,2,3-cd)pyrene	μg/kg	2,090	2,260	2,390	2,325	-11.2%	2,060	1.4%
Naphthalene	μg/kg	807	253	260	257	68.2%	127	84.3%
Phenanthrene	μg/kg	26,900	7,090	6,690	6,890	74.4%	10,100	62.5%
Pyrene	μg/kg	26,400	18,700	13,300	16,000	39.4%	18,200	31.1%
Total PAHs	μg/kg	169,377	102,100	95,713	98,907	41.6%	99,170	41.5%

Methods: Percent Moisture by ASTM D2216; Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

 $Table \ B-2$ $TTEC \ Calculations$ $Dry \ Heating \ of \ Highly \ Impacted \ Soil, \ (\mu g/kg)$

	TTEC	Start	5-Days	5-Days	5-Days	15-Days	Rings/
Analyte	Factor	(BL4)	(C8)	(C9)	Ave.	(C5)	Rating
Benz(a)anthracene	0.1	753	585	568	577	511	4 / C
Benzo(a)pyrene	1.0	4,990	3,190	3,130	3,160	2,470	5 / SC
Benzo(b)fluoranthene	0.1	753	767	793	780	716	5 / C
Benzo(k)fluoranthene	0.1	231	191	230	211	179	5 / C
Chrysene	0.01	73	66	67	66	59	4 / WC
Dibenz(a,h)anthracene	0.1	103	111	118	115	105	5 / C
Indeno(1,2,3-cd)pyrene	0.1	209	226	239	233	206	6 / C
Total PAH	-	7,112	5,136	5,145	5,140	4,246	-

TTEC = Total Toxicity Equivalent Concentration.

Analytical Method = PAHs by SW827D.

Rings: Number of rings in compound structure.

Rating (Cancer): C = Carcinogenic; SC= Strongly Carcinogenic; WC = Weakly Carcinogenic.

Table B-3
Percent Reduction In TTEC Calculations
Dry Heating of Highly Impacted Soil

Analyte ¹	5-Days (C8)	5-Days (C9)	15-Days (C15)
Benz(a)anthracene	22%	25%	32%
Benzo(a)pyrene	36%	37%	51%
Benzo(b)fluoranthene	-2%	-5%	5%
Benzo(k)fluoranthene	17%	0%	23%
Chrysene	10%	9%	19%
Dibenz(a,h)anthracene	-8%	-15%	-2%
Indeno(1,2,3-cd)pyrene	-8%	-14%	1%
Total PAH	28%	28%	40%

1. Analytical Method: PAHs = SW827D.

Table B-4
SPLP Results
Dry Heating of Highly Impacted Soil

Analyte	Units	Start (BL4)	5-Days (C8)	5-Days (C9)	15-Days (C5)
Diesel	mg/L	5.9	2.1	1.7	4.3
Lube Oil	mg/L	3.9	1.1	1.2	4.2
Acenaphthene	μg/L	58	2.0	2.0	1.5
Acenaphthylene	μg/L	2.6	0.78	1.4	0.70
Anthracene	μg/L	9.2	5.6	8.1	5.0
Benz(a)anthracene	μg/L	3.5	2.5	4.0	1.0
Benzo(a)pyrene	μg/L	1.9	0.75	1.8	0.2
Benzo(b)fluoranthene	μg/L	3.0	1.7	4.4	0.69
Benzo(g,h,i)perylene	μg/L	0.96	0.35	1.1	0.12
Benzo(k)fluoranthene	μg/L	0.95	0.53	1.1	0.20
Chrysene	μg/L	3.2	2.7	4.4	0.96
Dibenz(a,h)anthracene	μg/L	0.47	0.13	0.58	0.09
Fluoranthene	μg/L	37	34	42	16
Fluorene	μg/L	26	4.7	5.1	4.4
Indeno(1,2,3-cd)pyrene	μg/L	0.89	0.25	1.0	0.12
Naphthalene	μg/L	0.52	0.46	0.58	0.41
Phenanthrene	μg/L	43	15	19	19
Pyrene	μg/L	18	12	16	6.1
Total PAHs	μg/L	209	83	113	56

SPLP = Synthetic Precipitate Leaching Process.

Methods = Percent Moisture (ASTM D2216); Diesel & Lube Oil (NWTPH-Dx); PAHs (SW827D).

Appendix C

Analytical Results

Steaming of Highly Impacted Soil

Table C-1
Analytical Results and Percent Concentration Reductions
Steaming of Highly Impacted Soil

		Start	5-Days	%	15-Days	%
Analyte	Units	(BL5)	(C10)	Reduction	(C11)	Reduction
Percent Moisture	wt%	15.2	4.51	70.3%	9.3	38.6%
Diesel	mg/kg	693	348	49.8%	190	72.6%
Lube Oil	mg/kg	880	806	8.4%	576	34.5%
Acenaphthene	μg/kg	5,340	21	99.6%	35	99.4%
Acenaphthylene	μg/kg	847	561	33.8%	989	-16.8%
Anthracene	μg/kg	4,390	2,720	38.0%	2,390	45.6%
Benz(a)anthracene	μg/kg	6,180	3,660	40.8%	4,370	29.3%
Benzo(a)pyrene	μg/kg	4,260	2,180	48.8%	2,890	32.2%
Benzo(b)fluoranthene	μg/kg	5,900	5,360	9.2%	6,880	-16.6%
Benzo(g,h,i)perylene	μg/kg	1,400	1,170	16.4%	1,720	-22.9%
Benzo(k)fluoranthene	μg/kg	2,070	1,330	35.7%	2,500	-20.8%
Chrysene	μg/kg	7,700	4,620	40.0%	5,470	29.0%
Dibenz(a,h)anthracene	μg/kg	753	659	12.5%	957	-27.1%
Fluoranthene	μg/kg	36,900	21,700	41.2%	16,500	55.3%
Fluorene	μg/kg	1,430	171	88.0%	309	78.4%
Indeno(1,2,3-cd)pyrene	μg/kg	1,540	1,310	14.9%	1,900	-23.4%
Naphthalene	μg/kg	793	61	92.3%	48	93.9%
Phenanthrene	μg/kg	3,550	2,900	18.3%	264	92.6%
Pyrene	μg/kg	22,200	9,970	55.1%	9,120	58.9%
Total PAHs	μg/kg	105,253	58,394	44.5%	56,342	46.5%

Methods = Percent Moisture by ASTM D2216; Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

Table C-2
TTEC Calculations and Percent Reductions
Steaming of Highly Impacted Soil, (µg/kg)

Analyte	TTEC Factor	Start (BL5)	5-Days (C10)	% Reduction	15-Days (C11)	% Reduction	Rings/ Rating
Benz(a)anthracene	0.1	618	366	41%	437	29%	4 / C
Benzo(a)pyrene	1.0	4,260	2,180	49%	2,890	32%	5 / SC
Benzo(b)fluoranthene	0.1	590	536	9%	688	-17%	5 / C
Benzo(k)fluoranthene	0.1	207	133	36%	250	-21%	5 / C
Chrysene	0.01	77	46	40%	55	29%	4 / WC
Dibenz(a,h)anthracene	0.1	75	66	12%	96	-27%	5 / C
Indeno(1,2,3-cd)pyrene	0.1	154	131	15%	190	-23%	6 / C
Total PAH	-	5,981	3,458	42%	4,605	23%	-

TTEC = Total Toxicity Equivalent Concentration. Analytical Method = PAHs by SW827D.

Rings: Number of rings in compound structure.

Rating (Cancer): C = Carcinogenic; SC= Strongly Carcinogenic; WC = Weakly Carcinogenic.

Appendix D

Analytical Results

Condensate from Steaming of Highly Impacted Soil

Table D-1
Analytical Results
Condensate from Steaming of Highly Impacted Soil

Analyte	Units	Concentration		
Diesel	mg/L	5.3		
Lube Oil	mg/L	4.2		
Acenaphthene	μg/L	46.60		
Acenaphthylene	μg/L	2.90		
Anthracene	μg/L	5.96		
Benz(a)anthracene	μg/L	0.99		
Benzo(a)pyrene	μg/L	1.52		
Benzo(b)fluoranthene	μg/L	0.37		
Benzo(g,h,i)perylene	μg/L	0.53		
Benzo(k)fluoranthene	μg/L	1.21		
Chrysene	μg/L	1.30		
Dibenz(a,h)anthracene	μg/L	0.22		
Fluoranthene	μg/L	21.40		
Fluorene	μg/L	6.49		
Indeno(1,2,3-cd)pyrene	μg/L	0.47		
Naphthalene	μg/L	2.27		
Phenanthrene	μg/L	7.27		
Pyrene	μg/L	10.70		
Total PAHs	μg/L	110.20		

Methods: = Diesel & Lube Oil by NWTPH-Dx; PAHs by SW827D.

