

August 2017 Millennium Bulk Terminals – Longview

Former Reynolds Metals Reduction Plant Sediment Interim Action Completion Report

Prepared for

Washington Department of Ecology 300 Desmond Drive Lacey, Washington 98503

On Behalf of

Northwest Alloys, Inc. Millennium Bulk Terminals – Longview, LLC August 2017 Millennium Bulk Terminals – Longview

Former Reynolds Metals Reduction Plant Sediment Interim Action Completion Report

Prepared for

Washington Department of Ecology 300 Desmond Drive Lacey, Washington 98503

On Behalf of

Northwest Alloys, Inc.
Millennium Bulk Terminals – Longview, LLC

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

TABLE OF CONTENTS

1	Intr	oduction	1
	1.1	Purpose and Scope	1
	1.2	Site Description	2
	1.3	Report Organization	2
2	Con	struction Activities	3
	2.1	Mobilization	3
	2.2	Dredging	3
	2.3	Dewatering	4
	2.4	Backfill	5
	2.5	Offloading	5
3	Con	struction Monitoring	7
	3.1	Water Quality Monitoring	7
	3.2	As-Built Surveys	7
4	Con	firmational Sampling Results	9
	4.1	Confirmational Sampling Procedures	9
	4.2	Results	9
5	Dev	riations	10
6	Opi	nion of the Engineer	11
7	Ref	erences	12

i

TABLE

Table 1 Summary of Confirmational Sample Results

FIGURES

Figure 1 Vicinity Map

Figure 2 Confirmation Sample Locations (November 11, 2016)

APPENDICES

Appendix A Inspector's Daily Reports

Appendix B Surveys

Appendix C Photographs

Appendix D Water Quality Report

Appendix E Confirmation Sampling Data Report

ABBREVIATIONS

AO Agreed Order cy cubic yard

DO dissolved oxygen

Ecology Washington State Department of Ecology

EDR Engineering Design Report

Former Reynolds Plant former Reynolds Metals Reduction Plant

HME Hickey Marine Enterprises

hp horsepower
IA Interim Action

IA Work Plan Interim Action Work Plan

MBTL Millennium Bulk Terminals – Longview, LLC

mg/kg milligrams per kilogram
mg/L milligrams per liter

MTCA Model Toxics Control Act
Northwest Alloys Northwest Alloys, Inc.

NTU nephelometric turbidity units

RI/FS Remedial Investigation/Feasibility Study

RMC residual management cover SCO sediment cleanup objectives

SMS Sediment Management Standard

Solmar Solmar Hydro, Inc.

WAC Washington Administrative Code

WDNR Washington State Department of Natural Resources

1 Introduction

Millennium Bulk Terminals – Longview, LLC (MBTL) and Northwest Alloys, Inc. (Northwest Alloys) performed an Interim Action (IA) in the Columbia River adjacent to the former Reynolds Metals Reduction Plant (Former Reynolds Plant) in Longview, Washington, (see Figure 1) to remediate a localized area of impacted sediments. The IA was conducted under Model Toxics Control Act (MTCA) Agreed Order (AO) No. DE-8940, as amended on June 2, 2014, among MBTL, Northwest Alloys, and the Washington State Department of Ecology (Ecology). This Completion Report has been prepared in accordance with MTCA (Washington Administrative Code [WAC] 173-340-400 (6)(b)(ii)) to document the remedial activities performed and the engineer's opinion that, based on the testing results and inspections, the interim cleanup action was performed in substantial compliance with the *Interim Action Work Plan* (IA Work Plan; Anchor QEA 2014a), permits, plans, specifications, the *Engineering Design Report* (EDR; Anchor QEA 2014b), and the November 3, 2016 Addendum to the EDR (Anchor QEA 2016).¹

1.1 Purpose and Scope

Under Ecology's oversight, MBTL and Northwest Alloys prepared a Final Remedial Investigation/Feasibility Study (RI/FS; Anchor QEA 2015) for remediation of the Former Reynolds Plant. A sediment remediation area was delineated based on sediment sampling, and four remedial alternatives were developed to meet site-specific cleanup standards based on the Sediment Management Standards (SMS; Chapter 173-204 WAC). The alternatives were then compared based on the considerations in SMS (WAC 173-204-570(3)), and a preferred alternative was selected that is permanent to the maximum extent practicable. This IA was based on the preferred alternative described in RI/FS Appendix J.² The IA Work Plan (Anchor QEA 2014a) was developed and included as Exhibit E to the June 2, 2014, amendment to the AO. The EDR (Anchor QEA 2014b) was prepared in August 2014 in general conformance with WAC 173-340-400 and was approved by Ecology in October 17, 2016 (Ecology 2016).

The remedy required the dredging of a minimum of 2 feet across the entire area identified for remediation (125 feet by 250 feet around Outfall 02A). The remediation area excluded an area that was 20 feet from the centerline of the outfall to prevent damaging it. A 2-foot allowable overdredge was included to allow for equipment tolerances. The IA Work Plan allowed for several transload options, including use of an off-site transload facility. Consistent with the Nationwide Permit 38 authorization from the Department of the Army, Seattle District, Corps of Engineers dated August 31, 2016, dredged sediments were transported by barge upriver to the The Dalles, Oregon, for disposal at the Subtitle D Wasco Landfill in Wasco County in Eastern Oregon.

¹ The addendum was also approved by Ecology on November 3, 2016, via email from Guy Barrett to Halah Voges at 1:10 PM.

² RI/FS Appendix J: Evaluation of Alternatives and Costs for Additional Management of Sediments Located Near Outfall 002A.

1.2 Site Description

The Former Reynolds Plant is located at 4029 Industrial Way, along the Columbia River just outside the city limits of Longview, Washington 98632 (see Figure 1). The Former Reynolds Plant includes Tax Parcels 6195302, 61950, and 61953, which are owned by Northwest Alloys. MBTL has been the owner of the plant assets and a tenant on the property since January 2011.

The Northwest Alloys-owned property extends to the extreme low water mark of the Columbia River. The aquatic lands located offshore of this point are owned by the state of Washington and are managed by the Washington State Department of Natural Resources (WDNR). The sediment remediation area is located on land leased to Northwest Alloys by WDNR (WDNR Aquatic Lands Lease 20-B09222).

1.3 Report Organization

The report was completed in general conformance with WAC 173-340-400 (6)(b)(ii). The report is organized in the following sections:

- **Section 2 Construction Activities.** This section presents a summary of the construction activities performed for the IA, including dredging, dewatering, backfilling, and offloading of the sediments.
- **Section 3 Construction Monitoring.** This section presents the monitoring activities that occurred during construction, including real-time water quality monitoring, daily surveys, and as-built surveys of the dredging and backfilling work.
- **Section 4 Confirmational Sampling Results.** This section presents a summary of the procedures used to sample the backfilled materials and the results of the chemical testing of that sampling.
- **Section 5 Deviations.** This section provides a summary of any deviations from the approved work plans that occurred during the IA.
- **Section 6 Opinion of the Engineer.** This section summarizes construction oversight, protection monitoring, and performance monitoring activities performed for the IA.
- Section 7 References.

Appendices to this document include the following:

- Appendix A Inspector's Daily Reports
- Appendix B Surveys
- Appendix C Photographs
- Appendix D Water Quality Report
- Appendix E Confirmation Sampling Data Report

2 Construction Activities

This section summarizes the construction activities performed to implement the IA. Inspector's Daily Reports are included in Appendix A that document construction activities, site conditions, and visitors and equipment present on the site daily. These reports also include photo documentation of these activities.

2.1 Mobilization

Northwest Alloys and MBTL selected Hickey Marine Enterprises (HME) of Vancouver, Washington, to perform the IA work. HME hired Solmar Hydro, Inc. (Solmar) out of Portland, Oregon, to perform multibeam surveys for the project. Solmar performed the pre-dredge survey on October 24, 2016 (Appendix B).

HME hired Cascade Dive Co. with offices in Vancouver, Washington, to place floats along the alignment of Outfall 002A to provide a visual aide for the dredge operator so that the dredge operator would not accidentally dig too close to the outfall and diffuser, which could potentially undermine the stability of the pipe or possibly damage it. These floats were placed by a three-person dive crew on October 26, 2016.

HME mobilized the derrick and barges to the site on October 29, 2016. This included the derrick barge *Sea Vulture* with a 12-cubic-yard (cy) rehandling bucket, an 8-cy digging bucket, and a 14-cy cable arm bucket; haul barge *Scow 6*; haul barge *Reedsport*; haul barge *Umpqua*; 4-unit water management barge; derrick barge *Sea Lion* (used as a spud barge to hold the idle material barges); tug boat *Nova* with twin 400 horsepower (hp) engines; crew boat with twin 125 hp Mercury outboard motors; and crew boat with twin 200 hp Mercury outboard motors.

All haul barges were water tight and equipped with sumps in the corners of the barge to allow for easy pumping of free liquids.

2.2 Dredging

The dredge design required a minimum of 2 feet of sediment to be removed over the entire dredge prism with an allowable (payable) 2-foot over dredge. Dredging operations began on Monday, October 31, 2016, at about noon. The derrick began filling *Scow 6* using the 12-cy rehandling bucket.

Horizontal and vertical control was maintained using HYPACK 2013 DREDGEPACK software. Horizontal positioning was accomplished using a Hemisphere VS110 vector antenna and a Differential Global Positioning System beacon receiver. The vector antenna was located on the stern of the derrick, and the Trimble SPS 461 GPS/beacon receiver was located in the crane cab. Horizontal accuracy was less than 0.6 meter; 95 percent confidence level. Vertical control was maintained with

the use of a TideTrac electronic tide gauge located on the MBTL pier that provided water level readings every 3 minutes and markings on the mainline cable.

HME began at the upstream and inshore corner of the site and worked from inshore to offshore. It encountered a fair amount of debris while working on the upstream side of the outfall, which resulted in buckets that were only partially full (see photographs in Appendix C). Free water that accumulated in the haul barges was pumped into the water management barge (Section 2.3). Daily progress surveys were performed (Section 3.2). On November 1, 2016, it was determined that the rehandling bucket was not able to dig efficiently into the native sediments, so HME switched to the 8-cy digging bucket to achieve the required dredge depth.

Dredging continued through the week (October 31 to November 4, 2016), working from inshore to offshore in 50-foot-wide strips and upstream to downstream. Approximately 3,900 cy of sediments were dredged during this time. The post dredge multi-beam survey performed on November 4, 2014, showed there were some high spots remaining. These high spots were removed on Monday, November 7, 2016, prior to placing backfill. A total of 3,968 cy were removed.

Of the 3,968 cy removed, there were 234 cy of sediment removed that were below the 2-foot allowable overdredge depth. Throughout the dredge prism, there were 3.2 cy of material (less than 0.2 percent of the total required dredge volume) left above the minimum required dredge depth, which was considered negligible and acceptable because this material was generally located at the upstream limit of the dredge prism.

2.3 Dewatering

During dredging operations, free water was collected from the haul barges. This water was pumped from sumps in the haul barges to the water management barge for settling and subsequent pumping to the water treatment facility on the upland portion of the site. The water was pumped through a carbon filter system prior to entering the MBTL clarifiers of the treatment system. The discharge line was a 1.5-inch cam lock hose. A total of 261,200 gallons were offloaded and treated during the interim action.

At the offloading facility, approximately 26,300 gallons of free water that drained from the dredged sediments during transport was pumped off of the haul barges. This water was collected in a tank at the offloading facility, transferred to 120-barrel (5,280 gallons) vacuum tanker trucks, and hauled to the Wasco Landfill for disposal by Pacific Power Vacuum from Portland, Oregon. There were six tanker truck loads of water disposed.

4

2.4 Backfill

On November 7, 2016, and following confirmation via single beam survey that sediment removal to the required extents had been completed and approval to begin backfilling, HME moved the derrick barge *Sea Vulture* into position with material barge 7. Material barges 7 and 31 were filled with sand procured from Knife River Corporation. The sand was originally obtained from the Dibley Beach Pit and delivered to Knife River's Waterview Facility in Columbia City, Oregon, where it was stockpiled prior to loading it onto the barges. Stockpiling of the 7,420 tons of material occurred between October 25 and November 9, 2016. Physical and chemical test results of the backfill material are included in Table 1.

The general pattern for backfill was to fill the two supply barges on one day and place that material the following day. The material barges were filled on November 5, November 8, and November 10, 2016. Placement occurred on November 7, November 9, and November 11, 2016. Placement occurred from offshore moving inshore and from upstream moving downstream. The backfill material was placed by positioning the bucket just below the surface of the water and then opening the bucket, allowing the sand to fall through the water column and disperse during process. Backfill placement began on November 11, 2016, at 5:00 am and continued until approximately 6:30 am, when the placement of the residual management cover (RMC) downstream of the site began. This allowed the multibeam survey to be performed on the dredge/backfill site. This survey showed that there were a few low spots. These low spots were addressed and the placement of RMC continued. A total of 3,315 cy of backfill material was placed. A total of 60 cy was placed that exceeded the predredge surface elevations with only 1 cy of that being greater than 1 foot over the pre-dredge surface.

2.5 Offloading

The three barges that were loaded with dredged material were held at the dredge site during backfilling activities, tied up to the spud barge *Sea Lion*. The *Sea Vulture*, and haul barges 6, *Reedsport*, and *Umpqua* were transported up river to an offloading facility in The Dalles, Oregon, during the weekend of November 12 and 13, 2016. On Monday, November 14, 2016, the offloading facility was constructed. It included two barges put in place to capture any spillage during offloading, several drip plates and splash guards that were placed between all barges so there were no gaps where sediment could fall into the river, a sediment bin for mixing offloaded sediment with a drying agent, and a bin to hold the drying agent. A water storage tank was also placed on one of the barges to pump any free water into prior to disposing of that water in the Wasco Landfill. On November 11, 2016, 20 cy of drying agent was delivered by Waste Connections.

Offloading of the barges began on November 15, 2016, and continued until November 18, 2016. The dredged material was either loaded directly into lined trucks or placed into a bin for amendment

with a drying agent. The material was then transported via truck to the Wasco Landfill for disposal. Spot checks were made to ensure there was no leakage from the trucks during transport. On November 18, 2016, the oversized debris was offloaded for disposal and the loading ramps, catwalks, spill plates, and barges were swept clean. The residuals were loaded into the final lined truck and taken to the landfill for disposal. All equipment was demobilized from the site.

Based on the scale tickets, a total of 131.86 tons of liquid and 6,408.5 tons of solids were disposed in the Wasco Landfill.

3 Construction Monitoring

3.1 Water Quality Monitoring

During dredging and backfilling operations water quality monitoring for turbidity and dissolved oxygen (DO) was performed. The permit requirements were that these parameters be measured throughout the water column. The sample depths were dependent on water depth; in water depths of greater than approximately 25 feet, samples were collected 10 feet below the surface, 10 feet above the bottom, and in the middle of the water column. The sample depths were adjusted for shallower water depths. The compliance criterion for turbidity was 5 nephelometric turbidity units (NTU) above background levels if background was below 50 NTU (background plus 10 percent if background was greater than 50 NTU). The compliance criterion for DO was greater than 10 milligrams per liter (mg/L). Samples were to be collected after operations had been underway for at least an hour and then again every 4 hours while operations continued, unless exceedances were observed. This would occur for 3 consecutive days as long as no exceedances were observed and then once a week following the initial period. If exceedances were observed then construction methods would need to be modified by implementing various best management practices such that the exceedances were no longer observed. See Appendix D for details.

During dredging operations, there were no observed exceedances of either turbidity or DO. Since dredging operations began late on Monday, October 31, 2016, only one sampling event occurred on that date. Therefore, monitoring activities were also performed on the fourth day of dredging operations (November 3, 2016), to ensure that it was well documented that there was no harm to the environment during this operation.

During backfill operations on the first day of operations (November 7, 2016), an exceedance of turbidity was observed in the bottom sample during the second sampling round of the day. HME doubled its cycle times to reduce turbidity impacts. Two follow-up measurements were collected, and the exceedances were still observed. It was hypothesized that because of the incoming tide, the river flows were reduced and, therefore, any incidental turbidity was not dispersed as it is in a higher river flow. Operations were ended for the day and placement procedures were modified for the future placement by continuing the longer cycle times and placing smaller quantities per bucket. No turbidity exceedances were observed on the final 2 days of backfill placement. There were no exceedances of the DO criterion.

3.2 As-Built Surveys

Daily progress surveys were performed at the end of each day's operations (dredging and backfilling). The daily surveys were performed using single beam bathymetric survey equipment.

Final surveys were performed using multi-beam surveys. The multi-beam surveys are included in Appendix B.

4 Confirmational Sampling Results

4.1 Confirmational Sampling Procedures

Confirmational samples of the in-place backfill were collected on November 11, 2016. Five samples and one duplicate sample were collected from the surface sediments (Figure 2). The samples were analyzed for grain size distribution, total organic carbon content, metals, semi-volatile organic compounds, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and total petroleum hydrocarbons.

4.2 Results

The test results are included in Appendix E and are summarized in Table 1. No samples had detected chemical concentrations that exceeded the SMS freshwater Sediment Cleanup Objective (SCO). However, the laboratory detection limit for silver was slightly greater than the SCO (0.58 milligrams per kilogram [mg/kg] to 0.65mg/kg versus the SCO of 0.57mg/kg).

5 Deviations

The work was generally performed in compliance with the approved work plan. There were no deviations from the work plan; however, the following variations, which were corrected in accordance with the work plan, were noted:

- Approximately 234 cy of sediment were removed below the allowable overdredge limit.
- A water quality exceedance for turbidity was observed during backfilling operations at the
 end of the first day of work. Additional testing protocols were implemented and placement
 methods were modified that day, per the Water Quality Certification. With no appreciable
 effect on the turbidity levels, placement was halted for the day. Operational procedures were
 further modified for the remaining days of backfilling and no additional exceedances were
 observed.

6 Opinion of the Engineer

The IA cleanup of contaminated sediments at the Former Reynolds Metals Reduction Plant in the Columbia River at Longview, Washington, has been completed in substantial compliance with the *Interim Action Work Plan* dated June 2014.

Halah M. Voges, PE

Principal Engineer

Anchor QEA, LLC

7 References

- Anchor QEA (Anchor QEA, LLC), 2014a. *Interim Action Work Plan*. Former Reynolds Metals Reduction Plant Longview. Prepared for: Washington Department of Ecology on Behalf of: Northwest Alloys, Inc. and Millennium Bulk Terminals Longview, LLC. June 2014.
- Anchor QEA, 2014b. Engineering Design Report, Remediation of Sediments in the Columbia River. Former Reynolds Metals Reduction Plan Interim Action. August 2014.
- Anchor QEA, 2015. *Remedial Investigation and Feasibility Study*. Former Reynolds Metals Reduction Plant Longview. On Behalf of: Northwest Alloys, Inc. and Millennium Bulk Terminals Longview, LLC.
- Anchor QEA, 2016. Memorandum to: Guy Barrett, Department of Ecology. Memorandum from: Halah Voges, Anchor QEA. Regarding: Addendum to Engineering Design Report Remediation of Sediments in the Columbia River (August 2014). November 3, 2016.
- Ecology (Washington Department of Ecology), 2016. Letter to: Mark Larsen, Anchor QEA. Letter from: Guy Barrett, Washington Department of Ecology. Regarding: Ecology Approval of the Former Reynolds Metals Reduction Plant Interim Action Engineering Design Report.

 October 17, 2016.

Table

Table 1
Summary of Confirmational Sample Results

FINAL VALIDATED DATA	- 1	MTCA InteriorActi	MTCA Interior Acti	MTCA Interior Acti	MTCA Interior Acti	NATCA Interior Acti	MTCA Interior Acti	NATCA Industria
	Location ID Sample Date Sample ID Depth	MTCA_InterimAction Backfill Material 10/11/2016 Dibblee-101116	MTCA_InterimAction CS-01 11/11/2016 CS-01-0-6-11112016 0 - 6 cm	MTCA_InterimAction CS-01 11/11/2016 CS-101-0-6-11112016 0 - 6 cm	MTCA_InterimAction CS-02 11/11/2016 CS-02-0-6-11112016 0 - 6 cm	MTCA_InterimAction CS-03 11/11/2016 CS-03-0-6-11112016 0 - 6 cm	CS-04 11/11/2016	MTCA_InterimAction CS-05 11/11/2016 CS-05-0-6-11112016 0 - 6 cm
	Sample Type	N	N	FD	N	N	N	N
	SMS Freshwater SCO							
Conventional Parameters (mg/kg)								
Ammonia as nitrogen	230	1.76 J	0.34 J	0.42 J	0.36 J	0.5 U	0.18 J	0.36 J
Sulfide	39	0.532 U	0.197 U	0.3 U	0.196 U	0.263 U	1.24 U	1.3 U
Conventional Parameters (pct)								
Total organic carbon		0.22 J	0.071 J	0.099 J	0.032 J	0.033 J	0.032 J	0.1 J
Total solids		92.8	79.4	82.5	75.5	84.9	83	78
Total volatile solids		1 U						
Grain Size (pct)								
Gravel (>2mm)		6.08	8.85	11.6	1.66	29.6	15.5	1.4
Sand (2.0mm – 0.063mm)		91.1	89.1	86.7	97.1	66.9	81.7	97.6
Silt, 5-63 micron		1.7	1.7	1.3	0.8	2.7	2.4	1
Clay, <5 micron		1.1	0.3	0.6	0.4	0.8	0.4	0.2
Percent retained 63 micron sieve (#230)		0.16	0.18	0.14	0.08	0.18	0.19	0.16
Percent retained 75 micron sieve (#200)		0.55	0.63	0.58	0.35	0.62	0.76	0.95
Percent retained 106 micron sieve (#140)		1.23	1.42	1.37	0.98	1.08	1.57	2.91
Percent retained 150 micron sieve (#100)		15.9	18.4	17.2	16.8	8.42	16.7	29.4
Percent retained 250 micron sieve (#60)		41.2	40.6	41.9	50.6	22.7	36	50.6
Percent retained 425 micron sieve (#40)		22.6	19.6	18.7	23	20.5	19.7	11.7
Percent retained 850 micron sieve (#20)		9.43	8.24	6.82	5.24	13.4	6.77	1.87
Percent retained 2000 micron sieve (#10)		3.59	4.31	2.86	1.37	17.6	5.89	0.44
Percent retained 4750 micron sieve (#4)		2.49	4.54	8.78	0.29	12	9.59	0.96
Metals (mg/kg)								
Antimony		0.534 U	0.61 U	0.584 U	0.654 U	0.58 U	0.602 U	0.617 U
Arsenic	14	1.69	1.56	1.38	2.05	1.51	1.74	1.92
Cadmium	2.1	0.534 U	0.61 U	0.584 U	0.654 U	0.58 U	0.602 U	0.617 U
Chromium	72	6.82	4.77	4.03	5.4	5.38	5.95	6
Copper	400	8.73	6.23	4.9	8.07	23.1	7.19	7.58
Lead	360	2.21	2.12	1.84	2.14	2	2.35	2.44
Mercury	0.66	0.0428 U	0.0286 J	0.0467 U	0.0523 U	0.0464 U	0.0482 U	0.0493 U
Nickel	26	8.42	6.55	5.67	7.28	7.49	7.64	9.66
Selenium	11	1.07 U	1.22 U	1.17 U	1.31 U	1.16 U	1.2 U	1.23 U
Silver	0.57	0.534 U	0.61 U	0.584 U	0.654 U	0.58 U	0.602 U	0.617 U
Zinc	3200	36	31.7	28.6	31.9	31.7	32.7	38.1
Organometallic Compounds (µg/kg)	3200		1		1 02.0	1	1 0=11	3312
Butyltin (ion)	540	3.63 U						
Dibutyltin (ion)	910	5.15 U						
Tetrabutyltin	97	4.45 U						
Tributyltin (ion)	47	3.44 U						
Semivolatile Organics (µg/kg)	7/	J. TT U	<u></u>			<u> </u>	<u> </u>	
1,2,4-Trichlorobenzene		6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
1,2-Dichlorobenzene		6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
1,4-Dichlorobenzene		6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
1-Methylnaphthalene		5.58 U	6.52 U	6.22 U	6.73 U	6.07 U	6.07 U	6.42 U
2,4-Dimethylphenol		13.9 U	16.3 U	15.5 U	16.8 U	15.1 U	15.2 U	16 U

Table 1
Summary of Confirmational Sample Results

FINAL VALIDATED DATA	Tack	MTCA_InterimAction	MTCA InterimAction	MTCA_InterimAction	MTCA InterimAction	MTCA_InterimAction	MTCA_InterimAction	MTCA InterimAction
	Location ID Sample Date Sample ID Depth Sample Type	Backfill Material 10/11/2016 Dibblee-101116 N	CS-01 11/11/2016 CS-01-0-6-11112016 0 - 6 cm N	CS-01 11/11/2016 CS-101-0-6-11112016 0 - 6 cm FD	CS-02 11/11/2016 CS-02-0-6-11112016 0 - 6 cm N	CS-03 11/11/2016 CS-03-0-6-11112016 0 - 6 cm N	CS-04 11/11/2016 CS-04-0-6-11112016 0 - 6 cm N	CS-05 11/11/2016 CS-05-0-6-11112016 0 - 6 cm N
	SMS Freshwater SCO							
2-Methylnaphthalene		5.58 U	6.52 U	6.22 U	6.73 U	6.07 U	6.07 U	6.42 U
2-Methylphenol (o-Cresol)		6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
3-Methylphenol & 4-Methylphenol (m&p-Cresol)	260	6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
Acenaphthene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Acenaphthylene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Anthracene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Benzo(a)anthracene		2.79 U	3.27 U	3.12 U	2.74 J	3.04 U	3.04 U	3.22 U
		4.19 U	4.89 U	4.67 U	2.74 J 2.96 J	2.3 J	4.56 U	4.82 U
Benzo(a)pyrene					5.29			
Benzo(b)fluoranthene		4.19 U	4.89 U	4.67 U		2.47 J	4.56 U	4.82 U
Benzo(g,h,i)perylene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Benzo(k)fluoranthene		4.19 U	4.89 U	4.67 U	5.05 U	4.55 U	4.56 U	4.82 U
Benzoic acid	2900	349 UJ	407 UJ	389 UJ	421 UJ	379 UJ	380 UJ	401 UJ
Benzyl alcohol		13.9 U	16.3 U	15.5 U	16.8 U	15.1 U	15.2 U	16 U
bis(2-Ethylhexyl)phthalate	500	41.9 U	48.9 U	46.7 U	50.5 U	45.5 U	45.6 U	48.2 U
Butylbenzyl phthalate		27.9 U	32.7 U	31.2 U	33.7 U	30.4 U	30.4 U	32.2 U
Carbazole	900	4.19 U	4.89 U	4.67 U	5.05 U	4.55 U	4.56 U	4.82 U
Chrysene		2.79 U	3.27 U	3.12 U	5.86	3.04 U	3.04 U	3.22 U
Dibenzo(a,h)anthracene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Dibenzofuran	200	2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Diethyl phthalate		27.9 U	32.7 U	31.2 U	33.7 U	30.4 U	30.4 U	32.2 U
Dimethyl phthalate		27.9 U	32.7 U	31.2 U	33.7 U	30.4 U	30.4 U	32.2 U
Di-n-butyl phthalate	380	27.9 U	16.3 U	15.5 U	16.8 U	15.1 U	15.2 U	16 U
Di-n-octyl phthalate	39	27.9 U	32.7 U	31.2 U	33.7 U	30.4 U	30.4 U	32.2 U
Fluoranthene		2.79 U	3.27 U	3.12 U	6.09	3.04 U	3.04 U	3.22 U
Fluorene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Hexachlorobenzene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)		6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
Indeno(1,2,3-c,d)pyrene		2.79 U	3.27 U	3.12 U	3.37 U	3.04 U	3.04 U	3.22 U
Naphthalene		5.58 U	6.52 U	6.22 U	6.73 U	6.07 U	6.07 U	6.42 U
n-Nitrosodiphenylamine		6.98 U	8.16 U	7.79 U	8.42 U	7.59 U	7.6 U	8.04 U
Pentachlorophenol	1200	27.9 UJ	65.2 U	62.2 U	67.3 U	60.7 U	60.7 U	64.2 U
Phenanthrene		2.79 U	3.27 U	3.12 U	3.42	3.04 U	3.04 U	3.22 U
Phenol	120	5.58 U	6.52 U	6.22 U	6.73 U	6.07 U	6.07 U	6.42 U
Pyrene		2.79 U	3.27 U	3.12 U	5.65	3.04 U	3.04 U	3.22 U
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)		4.19 U	4.89 U	4.67 U	4.4111 J	3.2457 J	4.56 U	4.82 U
Total HPAH (SMS) (U = $1/2$)		4.19 U	4.89 U	4.67 U	36.17 J	3.2457 J 17.69 J	4.56 U	4.82 U
Total LPAH (SMS) (U = 1/2)		5.58 U	6.52 U	6.22 U	13.53	6.07 U	6.07 U	6.42 U
Total PAH (SMS) (U = 1/2)		5.58 U	6.52 U	6.22 U	49.7 J	28.32 J	6.07 U	6.42 U
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)		4.19 U	4.89 U	4.67 U	3.8216 J	2.547 J	4.56 U	4.82 U
Total HPAH (SMS) (U = 0)		4.19 U	4.89 U	4.67 U	28.59 J	4.77 J	4.56 U	4.82 U
Total LPAH (SMS) (U = 0)		5.58 U	6.52 U	6.22 U	3.42	6.07 U	6.07 U	6.42 U
Total PAH (SMS Freshwater 2013) (U = 0)	17000	5.58 U	6.52 U	6.22 U	32.01 J	4.77 J	6.07 U	6.42 U
Total PAH (SMS) (U = 0)		5.58 U	6.52 U	6.22 U	32.01 J	4.77 J	6.07 U	6.42 U
Pesticides (µg/kg)								

Table 1
Summary of Confirmational Sample Results

	Task	MTCA_InterimAction	MTCA_InterimAction	MTCA_InterimAction	MTCA InterimAction	MTCA_InterimAction	MTCA InterimAction	MTCA_InterimAction
	Location ID	Backfill Material	CS-01	CS-01	CS-02	CS-03	CS-04	CS-05
	Sample Date	10/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016
	Sample ID	Dibblee-101116	CS-01-0-6-11112016	CS-101-0-6-11112016		CS-03-0-6-11112016	CS-04-0-6-11112016	CS-05-0-6-11112016
	Depth		0 - 6 cm	0 - 6 cm	0 - 6 cm	0 - 6 cm	0 - 6 cm	0 - 6 cm
	Sample Type	N	N N	FD	N N	N N	N N	N N
		14	IN .	l lo	IN IN	IN .	IN IN	14
	SMS Freshwater SCO							
2,4'-DDD (o,p'-DDD)		1.05 U						
2,4'-DDE (o,p'-DDE)		1.05 U						
2,4'-DDT (o,p'-DDT)		1.05 U						
4,4'-DDD (p,p'-DDD)		1.05 U						
4,4'-DDE (p,p'-DDE)		1.05 U						
4,4'-DDT (p,p'-DDT)		1.05 U						
Aldrin		1.05 U						
Chlordane, alpha- (Chlordane, cis-)		1.05 U						
Chlordane, beta- (Chlordane, trans-)		1.05 U						
Dieldrin	4.9	1.05 U						
Endrin ketone	8.5	1.05 U						
Heptachlor		1.05 U						
Hexachlorobenzene		2.63 U						
Hexachlorocyclohexane (BHC), beta-	7.2	1.05 U						
Nonachlor, cis-		1.05 U						
Nonachlor, trans-		1.05 U						
Oxychlordane		1.05 U						
Sum DDD (U = 1/2)		1.05 U						
Sum DDE (U = 1/2)		1.05 U						
Sum DDT (U = 1/2)		1.05 U						
Total Chlordane (U = 1/2)		1.05 U						
Total DDx (U = 1/2)		1.05 U						
Sum DDD (U = 0)	310	1.05 U						
Sum DDE (U = 0)	21	1.05 U						
Sum DDT (U = 0)	100	1.05 U						
Total Chlordane (U = 0)		1.05 U						
Total DDx (U = 0)		1.05 U						
Dioxin Furans (ng/kg)	<u> </u>			l .	l		l .	
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)		0.18 U						
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)		0.102 U						
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)		0.0715 U						
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)		0.0975 U						
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)		0.0753 U						
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)		0.741 U						
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)		2.79 J						
Total Tetrachlorodibenzo-p-dioxin (TCDD)		0.18 U						
Total Pentachlorodibenzo-p-dioxin (PeCDD)		0.12 J						
Total Hexachlorodibenzo-p-dioxin (HxCDD)		0.0715 U						
Total Heptachlorodibenzo-p-dioxin (HpCDD)		0.689 J						
2,3,7,8-Tetrachlorodibenzofuran (TCDF)		0.239 J						
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)		0.239 J 0.0582 U						
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)		0.0582 U						
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)		0.0538 U 0.0941 U						
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)		0.0611 U						

Table 1
Summary of Confirmational Sample Results

	Task	MTCA_InterimAction	MTCA_InterimAction	MTCA_InterimAction	MTCA_InterimAction	MTCA_InterimAction	MTCA_InterimAction	MTCA_InterimAction
	Location ID	Backfill Material	CS-01	CS-01	CS-02	CS-03	CS-04	CS-05
	Sample Date	10/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016	11/11/2016
	Sample ID	Dibblee-101116	CS-01-0-6-11112016	CS-101-0-6-11112016	CS-02-0-6-11112016	CS-03-0-6-11112016	CS-04-0-6-11112016	CS-05-0-6-11112016
	Depth		0 - 6 cm	0 - 6 cm	0 - 6 cm	0 - 6 cm	0 - 6 cm	0 - 6 cm
	Sample Type	N	N	FD	N	N	N	N
	SMS Freshwater SCO							
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)		0.0901 U						
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)		0.066 U	-				-	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)		0.298 J	-				-	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)		0.101 U	-				-	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)		0.354 U						
Total Tetrachlorodibenzofuran (TCDF)		0.549 J						
Total Pentachlorodibenzofuran (PeCDF)		0.14 J	-				-	
Total Hexachlorodibenzofuran (HxCDF)		0.0718 J	-				-	
Total Heptachlorodibenzofuran (HpCDF)		0.298 J	-				-	
Total Dioxin/Furan (U = 1/2)		4.4008 J						
Total Dioxin/Furan (U = 0)		3.327 J	-				-	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		0.2100031 J						
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		0.027717 J						
PCB Aroclors (μg/kg)								
Aroclor 1016		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Aroclor 1221		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Aroclor 1232		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Aroclor 1242		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Aroclor 1248		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Aroclor 1254		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Aroclor 1260		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Total PCB Aroclors (U = 1/2)		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Total PCB Aroclors (SMS Freshwater 2013) (U = 0)	110	9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Total PCB Aroclors (U = 0)		9.22 U	4.78 U	4.55 U	4.92 U	4.59 U	4.56 U	4.86 U
Total Petroleum Hydrocarbons (mg/kg)	•				•	-		
Diesel range hydrocarbons	340	18.8 U	30.2 U	29.1 U	32.3 U	28.5 U	28.5 U	31.4 U
Oil range organics	3,600	37.5 U	60.5 U	58.3 U	64.6 U	56.9 U	57 U	62.8 U

Table 1

Summary of Confirmational Sample Results

Notes

Detected concentration is greater than SMS Freshwater Sediment Cleanup Objective (2013)
Non-detected concentration is above one or more identified screening levels

Bold = Detected result

-- = Results not reported or not applicable

J = Estimated value

U = Compound analyzed, but not detected above detection limit

UJ = Compound analyzed, but not detected above estimated detection limit

μg/kg = microgram per kilogram

CAEPA = California U.S. Environmental Protection Agency

cm = centimeter

cPAH = cacogenic polycyclic aromatic hydrocarbon

FD = field duplicate sample

FS = Feasibility Study

HPAH = high-molecular-weight polycyclic aromatic hydrocarbon

LPAH = low-molecular-weight polycyclic aromatic hydrocarbon

mg/kg = milligram per kilogram

N = normal sample

ng/kg = nanogram per kilogram

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

pct = percent

RI = Remedial Investigation

SMS = Sediment Management Standards

SCO = Sediment Cleanup Objective

TEQ = toxic equivalency

USEPA = U.S. Environmental Protection Agency

Totals are calculated as the sum of all detected results (U=0). If all results are not detected, the highest reporting limit value is reported as the sum.

Totals are calculated as the sum of all detected results and half of the reporting limit of undetected results (U=1/2). If all results are not detected, the highest reporting limit value is reported as the sum.

Total cPAH TEQ (7 minimum CAEPA 2005) calculation includes benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene,

Total LPAH (SMS) are the total of acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene. 2-Methylnapthalene is not included in the sum of LPAHs.

Total HPAH (SMS) are the total of benzo(a)anthracene, benzo(a)pyrene, benzo(x)fluoranthenes, benzo(q,h,i)perylene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-c,d)pyrene, and pyrene.

Total PAH (SMS) are the total of acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene,

Sum DDD is the sum of 4,4'-DDD and 2,4'-DDD.

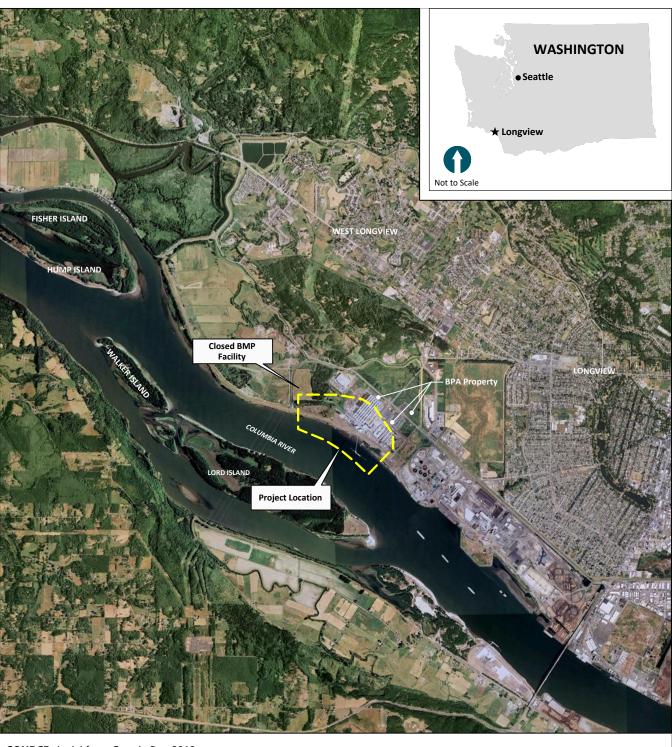
Sum DDE is the sum of 4,4'-DDE and 2,4'-DDE.

Sum DDT is the sum of 4,4'-DDT and 2,4'-DDT.

Total DDx is the sum of 4,4'-DDD, 4,4'-DDE, 4,4'-DDT 2,4'-DDD, 2,4'-DDE, and 2,4'-DDT if measured.

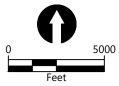
Total chlordane is the sum of cis-chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor, and oxychlordane.

Dioxin/furan TEQ values were calculated with 2005 World Health Organization (WHO) TEF values for mammals.

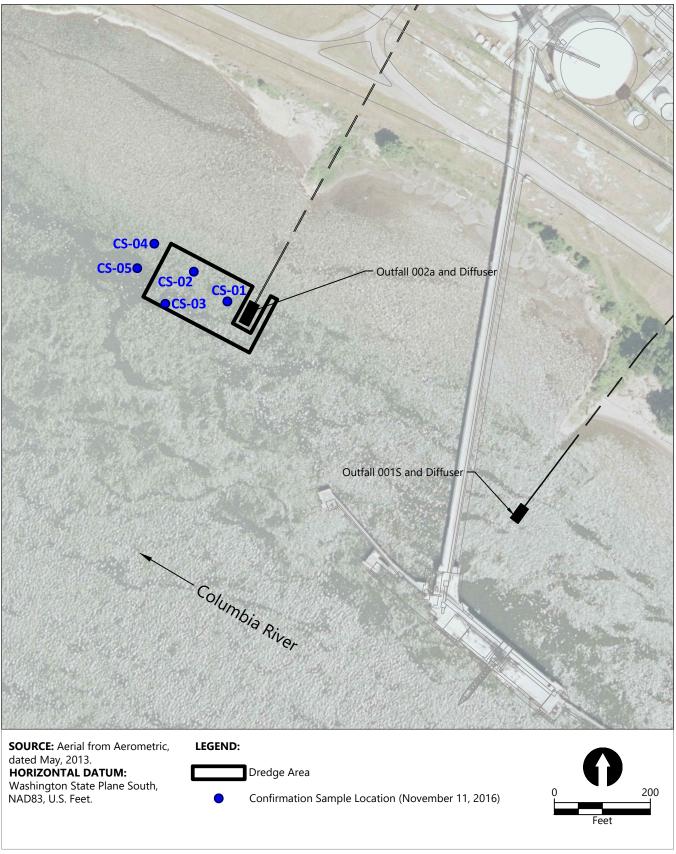

Total PCB Aroclors is the total of all PCB Aroclors listed in this table.

USEPA Stage 2B data validation was completed by Laboratory Data Consultants (LDC).

Results are reported in dry weight basis.


All non-detect results are reported at the reporting limit.

Figures


SOURCE: Aerial from Google Pro, 2010.

HORIZONTAL DATUM: Washington State Plane South, NAD83, U.S. Feet.

 $Publish\ Date:\ 2017/06/21\ 9:02\ AM\ |\ User:\ chewett$ $Filepath:\ K:\ Projects\ O730-MBT-Longview\ 01-C-03\ (Implementation)\ 0730-WK-020\ (2017Feb\ Sampling).dwg\ F1$

 $Publish\ Date:\ 2017/06/21\ 9:03\ AM\ |\ User:\ chewett$ $Filepath:\ K:\ Projects\ O730-MBT-Longview\ 01-C-03\ (Implementation)\ 0730-WK-020\ (2017Feb\ Sampling).dwg\ F2$

Appendix A Inspector's Daily Reports

INSPECTOR'S DAILY REPORT

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 10/31/2016

REPORT NO.: 01

ANCHOR QEA FIELD REP.:	Bruce McDonald
------------------------	----------------

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND	O PRECIPITATION	
Client:	Trevor Simmons	General:	HME	AM:		
CC:	Halah Voges	Subs:		PM: Cloudy, Showers, 55 degrees		
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION	
				From: 1430	To: 1730	

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Dredging	Upstream of Outfall 02	Worked the whole area upstream of the outfall to the end of it (not offshore of the ourfall) and a single pass downstream of the outfall.

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Philllip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason	Prime	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 12 CY rehandling bucket.	4			6
Prime		Barge #6	4			6
Prime		Water management barge	4			6
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards	10			
Prime		Tug Nova. Twin 400 hp engines.	10			
Prime		Material Barge Umpqua		8		
Prime		Material Barge Reedsport		8		
Prime		Derrick Barge Sea Lion (used as a spud barge for material barges		8		

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current f	lagging car	d? □Yes	⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No Subject: Dre	edging and Water Management Operations
--	--

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field act.	REVIEWED BY: (PM initial/date)	
our client informed of the progress and quality of the work. The presence and activities of the Anchor	· QEA field representative and our	, , ,
acceptance of any non-conforming work does not relieve the contractor from complying with its con-	tract documents. Anchor QEA does not	
have the authority to direct the contractor's work. Any information provided by the Anchor QEA fie.	ld representative is intended solely to advise	
the contractor of the technical requirements of the plans and specifications and/or design concept. The	e contractor is solely responsible for its	
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence t		
FIELD REP. SIGNATURE: Buse medonal	DATE: 10/31/2016	Page 1 of 3
	10/31/2010	1 280 - 21 2

INSPECTOR'S DAILY REPORT

(IDR)

CONTRACT NO.: <u>160730-01.02</u>

REPORT DATE: <u>10/31/2016</u>

REPORT NO.: 01

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

TIME	DISCUSSION
1200	Depart Tacoma
1415	Arrive Millennium Security Gate
1430	Met Sheri of HME at the dock. She called Justin Bay (the Barge Captain) and he sent a boat to pick me up.
1440	On the derrick barge Sea Vulture. Material barge #6 is being loaded and a water management barge is being filled with water from #6. There was also the derrick barge Sea Lion and two material barges on site (Upmqua and Reedsport) which were not involved in today's activities.
1520	I was told that dredging began a little after noon by HME. There is a fair amount of debris being removed. They are averaging about 5-6 cy per bucket load. Debris includes stumps, logs and wood debris.
~1600	Finish digging upstream of the outfall footprint. Repositioning downstream of the outfall.
1610	Begin digging inshore and downstram of the outfall.
1620	HME is running single beam daily survey.
1635	Done digging for the day. Pumping water from scow #6 to the water management barge.
1700	At dock and off site.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)
Notified by Grette representatives that they performed two different water quality monitoring events with no
exceedances.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION

DAILY PROGRESS SURVEYS

PROGRESS SURVEY RECEIVED TODAY?	FOR WHICH DATE(S)?
☐ Yes	First day of work. A survey was performed, but hasn't been received.

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field active	REVIEWED BY:	(PM initial/date)	
our client informed of the progress and quality of the work. The presence and activities of the Anchor C	QEA field representative and our		
acceptance of any non-conforming work does not relieve the contractor from complying with its contra	act documents. Anchor QEA does not		
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field	l representative is intended solely to advise		
the contractor of the technical requirements of the plans and specifications and/or design concept. The	contractor is solely responsible for its		
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to			
FIELD REP. SIGNATURE: Buce modernal	DATE: 10/31/2016	Page 2	2 of 3

INSPECTOR'S DAILY REPORT (IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 10/31/2016

REPORT NO.: 01

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL

PHOTOS

Comment: Derrick Barge Sea Vulture dredging sediments.

Comment: Large wood and root structures removed from site and crew addressing dewatering hoses to water management barge.

Comment: Dredge material and debris in Scow #6.

Comment: Removing piling from dredge prism.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

REVIEWED BY: (PM initial/date)

FIELD REP. SIGNATURE:

Buce modernald

DATE: 10/31/2016

Page 3 of 3

INSPECTOR'S DAILY REPORT

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/01/2016</u>

REPORT NO.: 02

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND	PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Cloudy Showers	, 50 degrees
CC:	Halah Voges	Subs:		PM: Cloudy, 58 degre	ees
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION
				From: 0630	To: 1630

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Dredging		Also did some cleanup work upstream on outfall 02A

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Philllip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand
Russ Tayllor	Prime	Deck hand
Mark Rien	Prime	Project Manager

EQUIPMENT ON SITE

			HOURS			
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 12 CY rehandling bucket. Switched to 8 CY digging bucket	10	10		
Prime		Barge #6	5			5
Prime		Water management barge	10			
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards	10			
Prime		Tug Nova. Twin 400 hp engines.	10			
Prime		Material Barge Umpqua	5			5
Prime		Material Barge Reedsport				8
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges				8

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current flagging card? Yes			⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken to	oday? ⊠Yes □No	Subject: Dredgin	g and Water Management O	perations	
LIMITATIONS: The Anchor QEA field re	presentative is present on site so	lely to observe the field activ	vities of the contractor identified and keep	REVIEWED BY:	(PM initial/date)
our client informed of the progress and qu	ality of the work. The presence a	and activities of the Anchor	QEA field representative and our	,	, ,
acceptance of any non-conforming work of	loes not relieve the contractor fr	om complying with its conti	ract documents. Anchor QEA does not		
have the authority to direct the contractor	's work. Any information provid	ded by the Anchor QEA field	d representative is intended solely to advise		
the contractor of the technical requirement	nts of the plans and specification	s and/or design concept. The	contractor is solely responsible for its		
means, methods, sequences, procedures, co	onstruction site safety, quality of	f the work, and adherence to	the contract documents.		
FIELD REP. SIGNATURE:	Buce me	Donald	DATE: 11/01/2016	Page 1	of 3
			, - ,	1	

INSPECTOR'S DAILY REPORT

(IDR)

CONTRACT NO.: <u>160730-01.02</u>

REPORT DATE: <u>11/01/2016</u> REPORT NO.: 02

ANCHOR QEA FIELD REP.:

Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

TIME	DISCUSSION
0615	Depart motel.
0630	Arrive Millennium Security Gate
0645	Arrive DB Sea Vulture.
0700	Held daily safety meeting.
0715	Begin dredging downsteam of Outfall 02 using the 12 cy rehandling bucket. Getting full buckets on the first cut, but the second cut (two cuts per Hypack location) isn't getting good penetration
0800	Switch to 8 CY digging bucket.
0900	Resume digging with new bucket. Working offshore of the outfall and doing a cleanup pass upstream of the outfall.
1145	Barge #6 is full. Repositioning derrick; moving Barge #6 away and bringing in the Umpqua; performing maintenance on the digging bucket; resenting the boom.
1315	Resume dredging.
1545	Surveying today's work
1550	Last bucket load of the day excavated.
1615	Off barge and on dock.
1630	Off site.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)
Notified by Grette representatives that they performed two different water quality monitoring events with no
exceedances. See their data for details.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION

DAILY PROGRESS SURVEYS

PROGRESS SURVEY	'RECEIVED TODAY?	FOR WHICH DATE(S)?
	□ No	10/31/2016

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field acti	vities of the contractor identified and keep	REVIEWED BY:	(PM initial/date)			
our client informed of the progress and quality of the work. The presence and activities of the Anchor	QEA field representative and our					
acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not						
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise						
the contractor of the technical requirements of the plans and specifications and/or design concept. The	e contractor is solely responsible for its					
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to	the contract documents.					
FIELD REP. SIGNATURE:	DATE: 11/01/2016	Page 2	2 of 3			

INSPECTOR'S DAILY REPORT (IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/01/2016

REPORT NO.: 02

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL

PHOTOS

Comment: Placing sediments in Scow #6 with rehandling bucket.

Comment: Digging bucket.

Comment: Dredge material in Scow #6 (near full).

Comment: Dewatering activities from Umpqua barge. Note that every corner of the barge has this screening fixture.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

REVIEWED BY: (PM initial/date)

FIELD REP. SIGNATURE:

Buce modernald

DATE: 11/01/2016

Page 3 of 3

INSPECTOR'S DAILY REPORT

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/02/2016</u>

REPORT NO.: 03

ANCHOR QEA FIELD REP.: Bru	uce McDonald
----------------------------	--------------

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPORT SUBMITTED TO		CONTRACTOR NAME AND CONTACT		WEATHER TEMP. AND PRECIPITATION		
Client:	Trevor Simmons	General:	HME	AM: Cloudy, 53 degr	ees	
CC:	Halah Voges	Subs:		PM: Cloudy, 60 degr	ees	
	Mark Larsen			TIME OF SITE VISIT/OBSERVATION		
				From: 0700	To: 1700	

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Dredging	Downstream and offshore of Outfall 02A	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Phillip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand
Russ Taylor	Prime	Deck hand

EQUIPMENT ON SITE

			HOURS			
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 8 CY digging bucket	10			
Prime		Barge #6				8
Prime		Water management barge	10			
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards	10			
Prime		Tug Nova. Twin 400 hp engines.	10			
Prime		Material Barge Umpqua	10			
Prime		Material Barge Reedsport				8
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges				8

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	\square No
Do all Flaggers/Spotters have current flagging card? ☐Yes		⊠No	Comments:			

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No	Subject: Dredging and Water Management Operations

		1	
LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field act.	vities of the contractor identified and keep	REVIEWED BY:	(PM initial/date
our client informed of the progress and quality of the work. The presence and activities of the Anchor		(
acceptance of any non-conforming work does not relieve the contractor from complying with its con-	ract documents. Anchor QEA does not		
have the authority to direct the contractor's work. Any information provided by the Anchor QEA fie.	ld representative is intended solely to advise		
the contractor of the technical requirements of the plans and specifications and/or design concept. The	e contractor is solely responsible for its		
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence t			
Buce modernal	DATE: 11/02/2016	Da = - 1	-4.3
FIELD REP. SIGNATURE:	DATE: 11/02/2016	Page 1	. 01 3
	1		

INSPECTOR'S DAILY REPORT (IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/02/2016 REPORT NO.: 03

ANCHOR QEA FIELD REP.: **Bruce McDonald**

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

TIME	DISCUSSION
0630	Depart motel.
0645	Arrive Millennium Security Gate
0700	Arrive DB Sea Vulture. Held safety meeting.
0715	Water management and maintenance on the derrick (Manitowoc 4600).
0755	Begin dredging downstream of Outfall 02 using the 8 CY digging bucket.
1200	Repositioning barge. There is a large group of people on shore and then on the dock. Initially thought they were
	from Ecology, who were expected between 1300 and 1400.
1215	Resume dredging.
1240	Crane and bucket lubrication activity.
1305	Resume dredging.
1345	Ecology group on site to observe operations from the shoreline.
1445	Break from dredging to pump water off the haul barge.
1520	Resume dredging.
1615	Barge Umpqua is full. Dredging operations are complete for the day. Pumping water off the haul barge.
1645	Crew departs derrick barge.
1700	Off site.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)
Notified by Grette representatives that they performed two different water quality monitoring events with no
exceedances. See their data for details.
Displacement calculations were shared from Barge #6. Based on a conversion factor of 1.4 ton per CY, it is estimated that
Barge #6 had 1161 cubic yards in it.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

	(· · · · · · · · · · · · · · · · · · ·
TIME	DISCUSSION

DAILY PROGRESS SURVEYS

PROGRESS SURVEY RECEIVED TODAY?		FOR WHICH DATE(S)?
⊠ Yes	□ No	11/01/2016

VISITORS

TIME	NAME	REPRESENTING	COMMENT		
	None on the derrick; Ecology observed from the shoreline	WSDOE			
LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep REVIEWED BY: (PM initial/date					

LIIV	111A FIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep	IREVIEWED BY:	(PM initial/date
our	client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
acco	eptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not		
hav	e the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise		
the	contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its		
mea	ns, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.		
FIE	ELD REP. SIGNATURE: Buce mederald DATE: 11/02/2016	Page 2	2 of 3
		1	

INSPECTOR'S DAILY REPORT (IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/02/2016

REPORT NO.: 03

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL

PHOTOS

Comment: Full bucket of sediment with water draining back to dredge area.

Comment: Barge nearly full and pumping free water from the barge into the water management barge.

Comment: Another photo of the scow. Panorama from above.

FIELD REP. SIGNATURE:

Comment: Another photo of the scow. Panorama from left.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

Bute motoral

DATE: 11/02/2016

Page 3 of 3

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/03/2016</u>

REPORT NO.: 04

	ANCHOR QEA	FIELD REP.:	Bruce McDonald
--	------------	-------------	----------------

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND	O PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Cloudy, 53 degr	ees
CC:	Halah Voges	Subs:		PM: Cloudy, 64 degr	ees
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION
	Nicole LaFranchise			From: 0700	To: 1700

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Dredging	Downstream and offshore of Outfall 02A	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Phillip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand
Russ Taylor	Prime	Deck hand

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 8 CY digging bucket	10			
Prime		Barge #6				8
Prime		Water management barge	10			
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards	10			
Prime		Tug Nova. Twin 400 hp engines.	10			
Prime		Material Barge Umpqua				8
Prime		Material Barge Reedsport	10			
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges				8

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current f	lagging car	rd? □Yes	⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No	Subject: Dredging and Water Management Operations

LIMITATIONS: The Anchor QEA field re	epresentative is present on site solely to observe the field acti	vities of the contractor identified and keep	REVIEWED BY:	(PM initial/date)
our client informed of the progress and q	uality of the work. The presence and activities of the Anchor	QEA field representative and our		
acceptance of any non-conforming work	does not relieve the contractor from complying with its cont	ract documents. Anchor QEA does not		
have the authority to direct the contracto	or's work. Any information provided by the Anchor QEA fiel	d representative is intended solely to advise		
the contractor of the technical requireme	e contractor is solely responsible for its			
means, methods, sequences, procedures, o	construction site safety, quality of the work, and adherence to	the contract documents.		
FIELD DED. CICNATURE	Buxa modernald	DATE: 11/03/2016	Page 1	1 of 2
FIELD REP. SIGNATURE:		DATE: 11/03/2016	Page .	1 01 3

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/03/2016</u> REPORT NO.: 04

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

	DIAN
TIME	DISCUSSION
0645	Depart motel.
0700	Arrive Millennium Security Gate
0720	Arrive DB Sea Vulture with Mark Reid. Safety meeting was previously held.
0725	Reedsport haul barge is being loaded. The HME crew arrived at 0600. Dredging began at 0725. Standing water (likely rainwater) in the Readsport was pumped out between 0640 and 0725.
0830	Depart the derrick for the weekly MTCA meeting.
1000	Return to Sea Vulture. Take videos for MBT as requested. Dredging continues. The Umpqua was filled yesterday and HME reported that it contained 1568 CY based on displacement method and a 1.5 CY/ton. HME has revised their conversion factor to 1.5 CY/ton; based on that the volume in Scow #6 is 1084 CY.
1230	HME greasing the bucket and performing servicing.
1310	Resume dredging.
1600	Begin surveying the whole site with single beam hydrography.
1630	Dredging complete. Moving derrick out of the way so bathy can get whole area.
1645	Depart Sea Vulture
1700	Off site.

OTHER OBSERVATIONS

	•
	(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)
ſ	Notified by Grette representatives that they performed two different water quality monitoring events with no
l	exceedances. See their data for details.
	Displacement calculations modified for Barge #6. Based on a conversion factor of 1.5 ton per CY, it is estimated that Barge #6 had 1084 cubic yards in it. The Umpqua had 1568 CY in it based on displacement measurements and a 1.5 ton per CY conversion.
L	
l	

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION

DAILY PROGRESS SURVEYS

PROGRESS SURV	VEY RECEIVED TODAY?	FOR WHICH DATE(S)?
⊠ Yes	□ No	11/02/2016

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field ac	tivities of the contractor identified and keep	REVIEWED BY: (PM initial	/date
our client informed of the progress and quality of the work. The presence and activities of the Ancho	or QEA field representative and our		
acceptance of any non-conforming work does not relieve the contractor from complying with its con-	ntract documents. Anchor QEA does not		
have the authority to direct the contractor's work. Any information provided by the Anchor QEA file	eld representative is intended solely to advise		
the contractor of the technical requirements of the plans and specifications and/or design concept. The	he contractor is solely responsible for its		
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence	to the contract documents.		
FIELD REP. SIGNATURE: Buce medenald	DATE: 11/03/2016	Page 2 of 3	

CONTRACT NO.: 160730-01.02

REPORT NO.: 04

REPORT DATE: 11/03/2016

ANCHOR QEA FIELD REP.: Br

Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL


PHOTOS

Comment: Sediment in the haul barge Reedsport.

Comment: Sediment in the Reedsport late in the day.

Comment: Water management personnel pumping water from Reedsport to water management barge.

Comment: Scow #6 and Umpqua barges tied off to the derrick Sea

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

REVIEWED BY: (PM initial/date)

FIELD REP. SIGNATURE:

Buce modernald

DATE: 11/03/2016

Page 3 of 3

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/04/2016</u>

REPORT NO.: 05

ANCHOR QEA FIELD REP.:	Bruce McDonald
------------------------	----------------

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPORT SUBMITTED TO		CONTRACTOR NAME AND CONTACT		WEATHER TEMP. AND PRECIPITATION		
Client:	Trevor Simmons	General:	HME	AM: Foggy, 47 degre	es	
CC:	Halah Voges	Subs: PM: Clear, 64 degrees		es .		
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION	
	Nicole LaFranchise			From: 0600	To: 1615	

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Dredging	Downstream and offshore of Outfall 02A	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Phillip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand

EQUIPMENT ON SITE

			HOURS			
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 8 CY digging bucket	10			
Prime		Barge #6				8
Prime		Water management barge	10			
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards	10			
Prime		Tug Nova. Twin 400 hp engines.	10			
Prime		Material Barge Umpqua	1			8
Prime		Material Barge Reedsport	10			
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges				8

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes □	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current f	lagging card	? □Yes	⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No Subject: Dredging and Water Management Operations

DIARY

TIME	DISCUSSION		
0530	Depart motel.		
our client infor acceptance of a have the autho the contractor	The Anchor QEA field representative is present on site solely to observe the field act med of the progress and quality of the work. The presence and activities of the Anchony non-conforming work does not relieve the contractor from complying with its contrict to direct the contractor's work. Any information provided by the Anchor QEA fies of the technical requirements of the plans and specifications and/or design concept. The sequences, procedures, construction site safety, quality of the work, and adherence to the sequences.	r QEA field representative and our tract documents. Anchor QEA does not ld representative is intended solely to advise e contractor is solely responsible for its	
FIELD REP	. SIGNATURE: Buce mcDonald	DATE: <u>11/06/2016</u>	Page 1 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/04/2016</u> REPORT NO.: 05

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

TIME	DISCUSSION
0545	Arrive Millennium Security Gate
0610	Arrive DB Sea Vulture. Safety meeting held.
0630	Shifting derrick into position for dredging cleanup locations.
0710	Begin cleanup passes.
0915	Multibeam surveyers on site
1000	Finish cleanup passes.
1045	Servicing water pumps and taiting on multibeam results.
1200	Move onto site for cleanup passes
1345	Finish dredging high spots. Move Reedsport alongside the Umpqua to transload sediment because the Reesport has only about 2" of freeboard.
1545	Survey shows a few high spots are left but of minimal volume. I forwarded the survey and a recommendation to pick up several high spots that are downstream of the outfall on to Halah and Tom for their concurrence. HME decides to wait for final direction from us to get the last of the dredging on Monday morning prior to beginning backfill placement.
1605	Depart Sea Vulture
1615	Off site.
1830	Arrive Tacoma.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)
Notified by Grette representatives that they performed two different water quality monitoring events with no
exceedances. See their data for details.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

		(Note disputes, questionable items, unsutisfuetory work, sujety, permit compilative, etc.)
TIME	DISCUSSION	

DAILY PROGRESS SURVEYS

PROGRESS SURVEY RECEIVED TODAY?		FOR WHICH DATE(S)?
⊠ Yes	□ No	11/03/2016, 11/04/2016

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the co our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field rep	REVIEWED BY: (PM initial/date)
acceptance of any non-conforming work does not relieve the contractor from complying with its contract document.	
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative	*
the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is	*
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract of	documents.
FIELD REP. SIGNATURE: Buce modernald DATE: 1	11/06/2016 Page 2 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/04/2016

REPORT NO.: 05

ANCHOR QEA FIELD REP.: Bruce McDonald

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep REVIEWED BY: (PM initial/date) our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

Page 3 of 3

FIELD REP. SIGNATURE:

CM-18

DATE: 11/06/2016

(Rev. 12/13)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/07/2016

REPORT NO.: 06

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Cloudy, 54 degrees
CC:	Halah Voges	Subs:		PM: Cloudy, 62 degrees
	Mark Larsen			TIME OF SITE VISIT/OBSERVATION
	Nicole LaFranchise			From: 0630 To: 1730

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES		
Dredging	Downstream and offshore of Outfall	Clean up three small high spots as		
	02A	indicated by 11/4/16 multi beam survey		
Backfilling	Channelward of 20-foot contour line	Upriver extent of dredge prism		

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Phillip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 8 CY digging bucket	2			
Prime		Derrick Barge Sea Vulture with 10 CY cleanup bucket	8			
Prime		Dredged Material Barge #6	2			8
Prime		Water management barge				10
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards	10			
Prime	ne Tug Nova. Twin 400 hp engines.		6	4		
Prime		Backfill material Barge #7 10				
Prime Backfill material Barge #31 10						
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges	parge for idle 1		10	
Prime		Two diesel loaders (used to manage backfill on barges)	10			

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current	flagging card	? □Yes	⊠No	Comments:		

PHOTOS AND VIDEO

l	Were photos/video taken today? ⊠Yes □No	Subject: Dredging and backfill placement

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its			(PM initial/date
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.			
FIELD REP. SIGNATURE: Timothy J. Stone	DATE: <u>11/07/2016</u>	Page 1	of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/07/2016</u> REPORT NO.: 06

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

TIME	DISCUSSION
0530	Depart Portland.
0630	Arrive Millennium Security Gate/safety orientation for Stone
0700	Arrive DB Sea Vulture. Safety meeting held.
0740	Shifting derrick and Barge #6 into position for dredging cleanup locations.
0810	Begin cleanup passes.
0830	Single beam survey of cleanup areas by Jason Meyer
0930	Grette Water Quality Monitoring team on site, begin background measurements
0930	Set up for sand placement from Barge #7 (approx. 1300 tons on barge)
0950-	Place sand backfill from 20-foot contour channelward to dredge prism extent (starting at upriver extent, moving
1315	down river)
1130	Grette completes first water quality monitoring event of day
1315	Barge #7 empty. Replace with Barge #31 (approx. 1400 tons on barge)
1330	Interim progress single beam survey by Jason Meyer
1415	Resume backfill placement from 20-foot contour channelward to dredge prism extent (continuing to downriver
	extent of prism)
1500-	Grette conducts second round of water quality monitoring for the day and conducts two follow up events.
1645	
1715	Offload of backfill sand from Barge #31 completed. End backfill placement activities.
1730	Return to Millennium ship dock/leave site.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Notified by Grette representatives that they performed one water quality monitoring event #9 at 11:32 with no exceedances. Water quality monitoring event #10 was completed at 15:21 with an exceedance in the deep interval at the mixing boundary. A follow up event (#11) was conducted at 15:58 and an exceedance was measured in the deep interval at the mixing boundary. Event #12 was conducted at 16:36 with a measured exceedance in the deep interval at the mixing boundary. See Grette data for further details.

Event #9: 1132 Event #10: 1521 Event #11 (follow up): 1558 Event #12(follow up): 1636

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION
	Exceedance of turbidity guidelines at the mixing boundary and early warning water quality monitoring stations were measured. HME reduced backfill placement cycle times in an attempt to reduce turbidity downstream of operations. Increased turbidity measurements were hypothesized to be the result of an incoming tide and significantly reduced river velocity. Reduced cycle times did not result in lowering the turbidity as shown by follow up measurements (see Grette data for events 11 and 12). HME will modify procedures for 11/9/16 to better manage turbidity during the remaining duration of the work.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contract of solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.		
FIELD REP. SIGNATURE: Timothy). Stone	DATE: 11/07/2016	Page 2 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/07/2016

REPORT NO.: 06

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DAILY PROGRESS SURVEYS

PROGRESS SURVEY RECEIVED TODAY?		FOR WHICH DATE(S)?
☐ Yes	⊠ No	Survey of backfill placement on 11/7/16 will be conducted on 11/8/16.

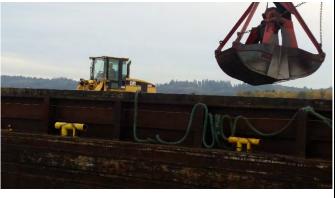
VISITORS

TIME	NAME	REPRESENTING	COMMENT

MATERIALS TESTING

MATERIAL	TERIAL DESCRIPTION OF TEST (location, type of test, and general findings)	

PHOTOS



Comment: Loading final cleanup sediments onto Barge #6.

Comment: Configuration of oil boom downstream of operations.

Comment: 10 CY Atlas cleanup bucke placing backfill sand.

Comment: Management of backfill sand with loader on barge.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy). Stone DATE: 11/07/2016 Page 3 of 3

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/09/2016

REPORT NO.: 07

ANCHOR QEA	FIELD REP.:	Tim Stone
------------	-------------	-----------

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPORT SUBMITTED TO		CONTRACTOR NAME AND CONTACT		WEATHER TEMP. AND PRECIPITATION			
Client:	Trevor Simmons	General:	HME	AM: Clear, 60 degrees			
CC:	Halah Voges	Subs: PM: Clear, 66 degrees			es		
	Mark Larsen			TIME OF SITE VISIT/OBSERVATION			
	Nicole LaFranchise			From: 0700 To: 1730			

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Backfilling	Shoreward of 20' Contour line	Moving channelward to shoreward

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER NOTES (quantity, apprentice, traini	
Justin Bay	Prime	Barge Captain
Phillip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand

EQUIPMENT ON SITE

			HOURS			
PRIME/SUB	EQUIP ID	D EQUIPMENT DESCRIPTION		Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 10 CY cleanup bucket	10			
Prime		Dredged Material Barge #6				10
Prime		Water management barge				10
Prime		Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin	10			
		150 Mercury outboards				
Prime		Tug Nova. Twin 400 hp engines.	6	4		
Prime		Backfill material Barge #7	10			
Prime		Backfill material Barge #31	10			
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges			10	
Prime		Two diesel loaders (used to manage backfill on barges)	10			

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current f	lagging card	l? □Yes	⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No Subject: Dredging and backfill placement

DIARY

TIME	DISCUSSION
0530	Depart Portland.
0630	Arrive Millennium Security Gate

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE:

| Timothy | Stowe | DATE: 11/09/2016 | Page 1 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/09/2016</u> REPORT NO.: 07

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

TIME	DISCUSSION
0700	Arrive DB Sea Vulture (SV). Safety meeting held. Discuss strategy to address WQ improvement by slowing
	placement and reducing volume in material buckets
0725	Set up for backfill placement. Navigate vessels into position
0740	Begin placing backfill shoreward of 20' contour line. Placing material above outfall. Offloading Barge #7 (approx.
	1300 tons)
0745	Grette WQ team setting up at background station
0805	Grette WQ team setting up at downriver station
0840	Placement paused to repair cable brake on SV. Notified by Grette WQ team that there were no exceedances
	measured during event #13
0905	HME relocates SV to downriver of outfall. Resume placement shoreward of 20' contour line moving downriver
	from outfall
1045	Relocating SV downriver and continuing placement shoreward of 20' contour. Placing upriver to downriver.
1130	Barge #7 empty. Replace with Barge #31 (approx. 1400 tons on barge)
1230	Grette WQ team on site, setting up for second daily measurement
1315	Resume backfill placement within channelward pass from downriver dredge prism extent and moving upriver.
	HME conducting progress survey using RTK to improve accuracy
1345-	Grette conducts second round of water quality monitoring for the day (WQ #14). Notified AQ that no
1415	exceedances were measured.
1500	Relocate SV and Barge 31 to immediately downriver of outfall. Begin placement on shoreward pass and moving
	downriver.
1700	Barge 31 emptied. Less than 15 buckets to place on inside pass.
1715	Disembark SV offload at MBTL dock.
1730	Sign out. Travel to Portland.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Additional BMPs employed in an attempt to reduce downriver turbidity. HME slowing cycle times and dispensing less-full buckets. No WQ exceedances in AM or PM. AM=incoming tide, slow river velocity. PM=outgoing tide, increased river velocity.

Event #13: completed at 0820—no exceedance Event #14: completed at 1405—no exceedance

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION
0700	Discussion with HME team regarding methodology for reducing downriver turbidity
0840	Notified by Philip (SV operator) that cable brake replacement would be required. Repair completed.

DAILY PROGRESS SURVEYS

PROGRESS SURVEY RECEIVED TODAY?		FOR WHICH DATE(S)?
	⊠ No	Progress survey of backfill placement using RTK for work completed through
		13:30.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its			(PM initial/date)
FIELD REP. SIGNATURE: Timothy J. Stone	DATE: 11/09/2016	Page 2	2 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/09/2016

REPORT NO.: 07

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

VISITORS

TIME	NAME	REPRESENTING	COMMENT

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL

PHOTOS

Comment: Oflloading backfill material from clean fill Barge #7.

Comment: Placement of backfill material above outfall in dredge prism.

Comment: Grette Water Quality crew conduction second monitoring event (#13).

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy). Stone

DATE: 11/09/2016

Page 3 of 3

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/11/2016</u> REPORT NO.: 08

ANCHOR	QEA FIELD	REP.:	Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND	PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Clear, 58 degree	es .
CC:	Halah Voges	Subs:		PM: Clear, 66 degree	es .
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION
	Nicole LaFranchise			From: 0500	To: 1900

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Backfilling within dredge prism	Shoreward Pass	Small nearshore section of dredge prism
Place Residual Management Cover	Area designated immediately downriver	
	of dredge prism	
Collect post backfill sampling	5 locations shown in EDR	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Justin Bay	Prime	Barge Captain
Phillip Stacey	Prime	Operator
Vincent Stacey	Prime	Pile Buck
Jason Meyer	Prime/Sub	Hydrographic surveyor
Dennis Forsberg	Prime	Deck hand
Matt and Brent	Sub	Solmar (multi beam survey/sample
		collection)

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture with 10 CY cleanup bucket	10			
Prime		Dredged Material Barge #6				
Prime		Water management barge				10
Prime Two crew boats. One with twin 225 Mercury outboards (this one is also a hydrographic vessel) and one with twin 150 Mercury outboards		10				
Prime		Tug Nova. Twin 400 hp engines.	8	2		
Prime		Backfill material Barge #7	10			
Prime		Backfill material Barge #31	10			
Prime		Derrick Barge Sea Lion (used as a spud barge for idle material barges				10
Prime		Two diesel loaders (used to manage backfill on barges)	10			
Sub		Solmar survey vessel/sampling platform (24' foot)	6	4		

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved TCP?	□Yes	□No
Do all Flaggers/Spotters have current f	lagging card	d? □Yes	⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No Subject: Dredging	g and backfill placement					
LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field active	vities of the contractor identified and keep	REVIEWED BY: (PM initial/date)				
our client informed of the progress and quality of the work. The presence and activities of the Anchor	QEA field representative and our	(, , , , , , , , , , , , , , , , , , ,				
acceptance of any non-conforming work does not relieve the contractor from complying with its contr	ract documents. Anchor QEA does not					
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field	have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise					
he contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its						
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.						
FIELD REP. SIGNATURE: Timothy J. Stone	DATE: 11/11/2016	Page 1 of 4				

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/11/2016</u> REPORT NO.: 08

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

	la resultation de la constantia del constantia della constantia della constantia della constantia della cons
TIME	DISCUSSION
0330	Depart Portland
0430	Arrive Millennium Security Gate
0445	Arrive DB Sea Vulture (SV). Safety meeting held. Discuss strategy to complete backfill and Residual Management
	Cover (RMC) placement
0500	Set up for backfill placement. Navigate vessels into position
0625	Begin placing backfill in small nearshore area down river of outfall from Barge #31(approx. 1400 ton)
0650	First pass placement within dredge prism completed. Relocate SV and Barge #31 to RMC area
0700	Begin placing cover sand in RMC area
0900	Grette WQ team completed with Round 1. No exceedance.
0945	First pass placement within RMC area completed
0950	HME relocates SV and Barge #31 off project area in preparation for survey. Approx. 75 CY remaining on Barge
	#31 (approx. 1200 ton placed)
0955	Solmar begins final survey of backfill and RMC coverage
1010	Solmar survey completed. Begin processing data transmit to AQ Seattle for plotting
1130	Survey plots indicate need for additional backfill and RMC placement
1215	Resume backfill placement in dredge prism and RMC area. Placing material from Barge #7 (600 ton)
1320	Grette completes second round of water quality monitoring for the day. No exceedances measured
1530	Barge #7 empty (approx. 600 ton placed)
1600	Switch Barge #31 into place with SV. Begin placement of remaining 75 CY
1645	End cleanup placement, Barge #31 empty
1645	Move SV off of project area. Solmar begins survey.
1655	Solmar final survey completed.
1655	Anchor QEA boards Solmar vessel to collect samples of post cover placement surface sediment
1700	Anchor QEA collects post fill placement samples
1930	Anchor QEA signs off site. Travel to Rainier, Oregon to load samples from Solmar vessel and demobilize
1940	Depart for Portland. Transport samples under sampler custody for deliver to Apex Labs on 11/14/16

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Additional BMPs employed in an attempt to reduce downriver turbidity. HME slowing cycle times and dispensing less-full buckets. "Sprinkling" backfill at surface. No WQ exceedances in AM or PM.

Event #15: completed at 0900—no exceedance Event #16: completed at 1320—no exceedance

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION
1230	Discuss areas to prioritize for additional placement (Jason, Mark, Greg, Philip). HME will offload remainder of
	material on Barge #7 and Barge #31 and mobilize SV and support to The Dalles. If additional backfill or RMC
	placement is required, HME will return after offload of dredge spoils has been completed.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field acti	REVIEWED BY:	(PM initial/date)	
our client informed of the progress and quality of the work. The presence and activities of the Anchor acceptance of any non-conforming work does not relieve the contractor from complying with its cont.			
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field			
the contractor of the technical requirements of the plans and specifications and/or design concept. The			
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to			
FIELD REP. SIGNATURE: Timothy J. Stone	DATE: <u>11/11/2016</u>	Page 2	2 of 4

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/11/2016

REPORT NO.: 08

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals - Longview; MTCA Interim Action Project

DAILY PROGRESS SURVEYS

PROGRESS SURVEY RECEIVED TODAY?		FOR WHICH DATE(S)?
	□ No	Solmar multi beam survey #1 at 0955.
		Solmar multi beam survey #2 at 1645

VISITORS

TIME	NAME	REPRESENTING	COMMENT

MATERIALS TESTING

MATERIAL	DESCRIPTION OF TEST (location, type of test, and general findings)	PASS/FAIL

PHOTOS

Comment: Offloading backfill material from clean fill Barge #31 and Comment: HME using surface sprinkling/spreading technique to placing on shoreward edge of dredge prism.

place material within the RMC area.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep REVIEWED BY: (PM initial/date) our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy J. Stone

DATE: 11/11/2016

Page 3 of 4

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/11/2016

REPORT NO.: 08

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

Comment: HME using surface sprinkling/spreading technique to place material within the RMC area.

Comment: Offloading fill material from Barge #31.

Comment: Moving clean fill Barge #7 in to position to place material within the RMC area.

Comment: Solmar conducting multi-beam survey of dredge prism and RMC area.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

REVIEWED BY: (PM initial/date)

FIELD REP. SIGNATURE: Timothy). Stone

DATE: 11/11/2016 Page 4 of 4

CONTRACT NO.: 160730-01.02 (IDR)

REPORT DATE: 11/14/2016 REPORT NO.: 09

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND	PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Clear, 61 degree	es
CC:	Halah Voges	Subs:		PM: Cloudy, light rain	n, 60 degrees
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION
	Nicole LaFranchise			From: 1530	To: 1900

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Prepare for offloading	The Dalles offload site	
Mobilize Barge Umpqua	The Dalles offload site	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Darrel Ivy	Prime	Superintendent
Casey Cox	Prime	Operator (Sea Vulture)
Vincent Stacey	Prime	Laborer/operator
Jeff Oaks	Prime	Laborer/operator
Dennis Forsberg	Prime	Laborer/operator
Russell Taylor	Prime	Laborer
Sheri Bremer	Prime	Safety

EQUIPMENT ON SITE

			HOURS			
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture	12			
Prime		Tug Nova. Twin 400 hp engines.	4	8		
Prime Case skid steer loader (used to manage sediment on barges)			12			
Prime		John Deere 225C excavator	12			
Prime		Cat IT28F Loader	12			
Prime		Snorkelift Model 80				12
Prime		Sediment haul barge UMPQUA	2	10		
Prime Sediment transfer barge #47		12				
Prime		Sediment transfer/water management barge #BK5	12			
Prime		Tenant lot sweeper (rider)	2	10		

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was WZTC according to approved TCP?		□Yes	□No
Do all Flaggers/Spotters have current flagging card? Yes			⊠No	Comments:		

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes ☐No Subject: Dredging and backfill placement	
LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep	REVIEWED BY: (PM initial/date)
our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not	
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise	
the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.	
	-
FIELD REP. SIGNATURE: Timothy J. Stone DATE: 11/14/2016	Page 1 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/14/2016</u> REPORT NO.: 09

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

DIARY

TIME	DISCUSSION
0600	HME on site, conduct daily tailgate safety meeting
0615	HME begins setup of offload site in The Dalles, OR
0615-	HME moves Sea Vulture(SV) derrick into place at offload site
1530	
	Position transfer barge #47 and water management/transfer barge #BK5 at offload site
	Install sediment bin and drying agent bin on land in sediment management area
	HME offloads approx. 12,000 gallons of water recovered from dredged material barges that had been
	accumultated in tank on barge #BK5
	Position excavator for loading from sediment bin to trucks
1530	Anchor QEA on site
1600	HME receives approx. 20 CY of drying agent from Waste Connections
1600-	HME making final preparations and installing final BMPs including splash guards, transfer plates, etc. Haul Barge
1900	UMPQUA moved from moorage into position for offloading
1900	End of day

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Site preparation was completed. HME to be on site at 0500 on 11/15 with offload to trucks starting at approx. 0600

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

	(rece disputes) questionable items) ansatisfactory word, sujectly permit compilation, etc.,
TIME	DISCUSSION

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field acti	LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our			
acceptance of any non-conforming work does not relieve the contractor from complying with its cont				
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field				
the contractor of the technical requirements of the plans and specifications and/or design concept. The means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to				
FIELD REP. SIGNATURE: Timothy). Stone	DATE: <u>11/14/2016</u>	Page 2	of 3	

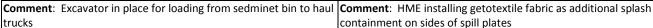
CONTRACT NO.: 160730-01.02

REPORT DATE: 11/14/2016

REPORT NO.: 09

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project


PHOTOS

Comment: Installing drip plates between dock structure and Barge | Comment: Water storage tank positioned on Barge #BK5 #BK5

containment on sides of spill plates

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy J. Stone

REVIEWED BY: (PM initial/date)

Page 3 of 3

CM-18 (Rev. 12/13)

DATE: 11/14/2016

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/15/2016

REPORT NO.: 10

ANCHOR QEA FIELD REP.:	Tim Stone
------------------------	-----------

Was Traffic Control Required Today?

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPORT SUBMITTED TO		CONTRACTOR NAME AND CONTACT		WEATHER TEMP. AND PRECIPITATION		
Client:	Trevor Simmons	General:	HME	AM: Light rain, light wind, 60 deg F		
CC:	Halah Voges	Subs: PM: Partly cloudy, heavy wind, 55				
	Mark Larsen			TIME OF SITE VISIT/OBSERVATION		
	Nicole LaFranchise			From: 0600	To: 1730	

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Offload sediment from UMPQUA and	The Dalles offload site	
Barge #47		
Transport sediment by truck to disposal	The Dalles offload site/Wasco County	
facility	Landfill	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Darrel Ivy	Prime	Superintendent
Casey Cox	Prime	Operator (Sea Vulture)
Vincent Stacey	Prime	Laborer/operator
Jeff Oaks	Prime	Laborer/operator
Dennis Forsberg	Prime	Laborer/operator
Russell Taylor	Prime	Laborer
Sheri Bremer	Prime	Safety

EQUIPMENT ON SITE

			HOURS			
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture equipped with 14 CY environmental bucket	12			
Prime		Tug Nova. Twin 400 hp engines.	4	8		
Prime		Case skid steer loader (used to manage sediment on barges)	8	4		
Prime		John Deere 225C excavator	12			
Prime		Cat IT28F Loader	8	4		
Prime		Snorkelift Model 80				12
Prime		Sediment haul barge UMPQUA	12			
Prime Sediment transfer barge #47		12				
Prime		Sediment transfer/water management barge #BK5	12			
Prime		Tenant lot sweeper (rider)	4	8		

TRAFFIC CONTROL

 $\boxtimes No$

 \square Yes

Was WZTC according to approved TCP?

 \square Yes

 \square No

means, memous, sequences, procedures, construction site safety, quanty of the work, and aunierence to the contract			
the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contractor			
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representa			
acceptance of any non-conforming work does not relieve the contractor from complying with its contract docume	ents. Anchor QEA does not		
our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field re	representative and our		(i iii iiiiciai) aace)
LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the	contractor identified and keep	REVIEWED BY:	(PM initial/date)

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/15/2016

REPORT NO.: 10

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

Do all Flaggers/Spotters have current flagging card? ☐Yes ☒No Comments:

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No | Subject: Offload sediment from barges/load to truck

DIARY

TIME	DISCUSSION
0500	HME on site, conduct daily tailgate safety meeting
0600	HME begins offload from UMPQUA haul barge and barge #47 to lined trucks
1100	Offload to trucks continues. Approx 1/3 of volume on UMPQUA and #47 has been offloaded
1105-	AQ observes several trucks while in transit to Wasco County landfill facility. Trucks lined and tarped. No signs of
1300	leakage from observed trucks or trailers. Vehicles appear to be leaving site clean with no residual material on
	exterior or tires.
1315	HME shutsdown transloading operation to repair cable-arm on 14 CY transfer bucket
1415	Resume transloading from UMPQUA and #47 to trucks
1730	HME loads final haul truck and preloads bin in preparation for 11/16 startup
1730	Anchor QEA off site/HME continues preparations for 11/16 startup
1900	HME off site

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

None

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION								

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE:

Timothy. Stowe

DATE: 11/15/2016

Page 2 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/15/2016

REPORT NO.: 10

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

PHOTOS

Comment: Loading from sediment bin to truck

Comment: Sea Vulture derrick transferring material from UMPQUA haul barge to sediment bin

Comment: Loading truck from sediment bin with drying agent stockpile in foreground

Comment: Truck loading area. HME staff continuously shoveling and sweeping minor spillage resulting from truck loading

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy J. Stone DATE: 11/15/2016

CM-18 (Rev. 12/13)

REVIEWED BY: (PM initial/date)

Page 3 of 3

CONTRACT NO.: 160730-01.02

REPORT NO.: 11

REPORT DATE: 11/16/2016

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals - Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AN	D PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Light rain, light	wind, 43 deg F
CC:	Halah Voges	Subs:		PM: Partly cloudy, n	nod. wind, 59 deg F
	Mark Larsen			TIME OF SITE VISIT/C	BSERVATION
	Nicole LaFranchise			From: 0600	To: 1700

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Sediment offloading from barge	The Dalles offload site	
Transport to landfill	Wasco County Landfill	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Darrel Ivy	Prime	Superintendent
Casey Cox	Prime	Operator (Sea Vulture)
Vincent Stacey	Prime	Laborer/operator
Jeff Oaks	Prime	Laborer/operator
Dennis Forsberg	Prime	Laborer/operator
Russell Taylor	Prime	Laborer
Sheri Bremer	Prime	Safety

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture equipped with 14 CY environmental bucket	12			
Prime		Tug Nova. Twin 400 hp engines.	4	8		
Prime		Case skid steer loader (used to manage sediment on barges)	8	4		
Prime		John Deere 225C excavator	12			
Prime		Cat IT28F Loader	8	4		
Prime		Snorkelift Model 80				12
Prime		Sediment haul barge Reedsport	7	5		
Prime		Sediment haul barge UMPQUA	5			7
Prime		Sediment transfer barge #47	12			
Prime		Sediment transfer/water management barge #BK5	12			
Prime		Tenant lot sweeper (rider)	4	8		

TRAFFIC CONTROL

Was Traffic Control Required Today?	□Yes	⊠No	Was W	ZTC according to approved	TCP?	□Yes	□No
Do all Flaggers/Spotters have current f	lagging car	d? □Yes	⊠No	Comments:			
LIMITATIONS: The Anchor QEA field representative is pr	esent on site sole	ly to observe the	field activitie	s of the contractor identified and keep	REVIEWED	BY: ((PM initial/date)
our client informed of the progress and quality of the work	The presence an	d activities of the	Anchor QE	A field representative and our			

have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents. FIELD REP. SIGNATURE: Timothy J. Stone Page 1 of 3 DATE: 11/16/2016

acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/16/2016</u>

REPORT NO.: 11

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No	Subject: Sediment offload from barges/load to truck
---	---

DIARY

TIME	DISCUSSION
0500	HME on site, conduct daily tailgate safety meeting
0530	HME continues offload from UMPQUA haul barge and barge #47 into trucks. Trucks transporting material to
	Wasco County Landfill.
0840	Pacific Power Vac offloading residual water collected in tank on Barge #BK5 (120 bbl vacuum trailer). HME
	consolidating remaining sediment on UMPQUA using skid steer loader.
0915	Offload to trucks resumes.
0930-	UMPQUA haul barge emptied/HME moves REEDSPORT and #6 haul barges into place and resumes offloading to
1030	trucks
0930-	Millennium staff (Heather Sievers and Cheryl Vezanni) on site to observe operations. Travel to landfill with Greg
1330	Speyer (HME) and Tim Stone (AQ)
1330	HME continues offload to trucks and hauling to Wasco County landfill
1700	HME loads final haul truck and preloads bin in preparation for 11/17 startup
1730	Anchor QEA off site. HME continues preparations for 11/17 startup
1800	HME off site

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Water transferred from Barge #BK5 tank to Pacific Power Vac 120 bbl vacuum tanker. Water transported to Wasco County landfill for disposal.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION

VISITORS

TIME	NAME	REPRESENTING	COMMENT
0900	Greg Speyer	НМЕ	Observe general operations, environmental compliance, safety compliance, and BMP
			implementation
0900	Cheryl Vezzani	Millennium	Observe general operations, environmental compliance, safety compliance, and BMP implementation
0900	Heather Sievers	Millenniuim	Observe general operations, environmental compliance, safety compliance, and BMP implementation

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activiour client informed of the progress and quality of the work. The presence and activities of the Anchor acceptance of any non-conforming work does not relieve the contractor from complying with its contrave the authority to direct the contractor's work. Any information provided by the Anchor QEA field the contractor of the technical requirements of the plans and specifications and/or design concept. The		(PM initial/date)	
FIELD REP. SIGNATURE: Timothy. Stowe	DATE: 11/16/2016	Page 2	2 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/16/2016

REPORT NO.: 11

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals - Longview; MTCA Interim Action Project

PHOTOS

Comment: Material remaining on UMPQUA and Barge #47 (at start | Comment: Tidewater tug holding haul barges #6 and REEDSPORT of 11/16 transload operations)

while awaiting placement at offload facility.

Comment: Pacific Power Vac. (sub to HME) 120 bbl vacuum tanker transferring water from tank on barge #BK5 for transport and disposal at Wasco County Landfill.

Comment: Tidewater tug moving haul barges REEDSPORT and #6 into place at offload site.

Comment: Wasco County Landfill

Comment: Haul trucks offloading at Wasco County Landfill

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep REVIEWED BY: (PM initial/date) our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy J. Stone DATE: 11/16/2016 Page 3 of 3

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/17/2016</u> REPORT NO.: 12

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AND PRECIPITATION		
Client:	Trevor Simmons	General:	HME	AM: Cloudy, light wi	nd, 36 deg F	
CC:	Halah Voges	Subs:		PM: Clear, 51 deg F		
	Mark Larsen			TIME OF SITE VISIT/O	BSERVATION	
	Nicole LaFranchise			From: 0545	To: 1800	

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Offload sediment from barge	The Dalles offload site	
Transport sediment to landfill	Wasco County Landfill	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)	
Darrel Ivy	Prime	Superintendent	
Casey Cox	Prime	Operator (Sea Vulture)	
Vincent Stacey	Prime	Laborer/operator	
Jeff Oaks	Prime	Laborer/operator	
Dennis Forsberg	Prime	Laborer/operator	
Russell Taylor	Prime	Laborer	

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture equipped with 14 CY environmental bucket	12			
Prime		Tug Nova. Twin 400 hp engines.	4	8		
Prime	Case skid steer loader (used to manage sediment on barges)		8	4		
Prime	Prime John Deere 225C excavator		12			
Prime	Cat IT28F Loader		8	4		
Prime	Prime Snorkelift Model 80					12
Prime	Prime Sediment haul barge #6		4	8		
Prime		Sediment haul barge Reedsport	8			4
Prime	Prime Sediment haul barge UMPQUA					12
Prime	Prime Sediment transfer barge #47		12			
Prime	Prime Sediment transfer/water management barge #BK5		12			
Prime		Tenant lot sweeper (rider)	4	8		

TRAFFIC CONTROL

was frame control Required Today?	□ Yes	△ NO	vvas vv	ZTC according to approved	TICP!	es 🗆 IV	10
Do all Flaggers/Spotters have current fl	agging car	d? □Yes	⊠No	Comments:			
LIMITATIONS: The Anchor OEA field representative is pre	sent on site solei	v to observe the	field activiti	es of the contractor identified and keen	DEVIEWED DV	(DA4:-11-1	1/-14-1

LINITATIONS: The Anchor QEA neid representative is present on site solely to observe the neid acti	REVIEWED BY:	(PM initial/date)	
our client informed of the progress and quality of the work. The presence and activities of the Anchor	· QEA field representative and our		
acceptance of any non-conforming work does not relieve the contractor from complying with its cont	tract documents. Anchor QEA does not		
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field	ld representative is intended solely to advise		
the contractor of the technical requirements of the plans and specifications and/or design concept. Th	e contractor is solely responsible for its		
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to			
FIELD REP. SIGNATURE: Timothy). Stone	DATE: 11/17/2016	Page 1	L of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/17/2016</u>

REPORT NO.: 12

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No	Subject: Offload sediment from barges/load to trucks
---	--

DIARY

TIME	DISCUSSION			
0530	HME on site, conduct daily tailgate safety meeting			
0600 HME resumes offload from Reedsport haul barge and barge #47 into trucks. Trucks transportin				
	Wasco County Landfill.			
-0080	HME dewatering haul barges. Water from haul barges is being collected in tank on Barge #BK5. Contracted 120			
1800	bbl. liquid tankers are pumping water from the tank on Barge BK#5 and transporting to Wasco County landfill			
	an as-needed basis.			
1350	Offload of Reedsport completed.			
1400	HME relocating Reedsport (empty) and moving sediment haul barge #6 into place for offloading.			
1420	HME begins offloading sediment from barge #6, loading to trucks, and transporting to Wasco County Landfill			
1730	HME loads final haul truck and preloads bin in preparation for 11/17 startup			
1800	HME/Anchor QEA off site			

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Water transferred from Barge #BK5 tank to liquid tanker trucks. Water transported to Wasco County landfill for disposal.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

TIME	DISCUSSION

VISITORS

TIME	NAME	REPRESENTING	COMMENT
0900	Greg Speyer		Observe general operations, environmental
			compliance, safety compliance, and BMP
			implementation
0900	Cheryl Vezzani	Millennium	Observe general operations, environmental
			compliance, safety compliance, and BMP
			implementation
0900	Heather Sievers	Millenniuim	Observe general operations, environmental
			compliance, safety compliance, and BMP
			implementation

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field active our client informed of the progress and quality of the work. The presence and activities of the Anchor acceptance of any non-conforming work does not relieve the contractor from complying with its contractor.		M initial/date)	
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field the contractor of the technical requirements of the plans and specifications and/or design concept. The means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to			
FIELD REP. SIGNATURE: Timothy). Stone	DATE: 11/17/2016	Page 2 of	f 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/17/2016

REPORT NO.: 12

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals - Longview; MTCA Interim Action Project

PHOTOS

Comment: Overview of offload setup. Offloading from Reedsport sediment haul barge.

Comment: Dewatering haul barge #6 in preparation for sediment offloading. Pumping to tank on barge #BK5.

Comment: 120 bbl tanker removing water from tank on barge #BKS | Comment: Loading sediment to haul truck. for transport and disposal at Wasco County Landfill.

Comment: HME completing cleanout of Reedsport haul barge.

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy]. Stone Page 3 of 3 DATE: 11/17/2016

CM-18 (Rev. 12/13)

REVIEWED BY: (PM initial/date)

(IDR)

CONTRACT NO.: 160730-01.02

REPORT DATE: <u>11/18/2016</u> REPORT NO.: <u>13</u>

ANCHOR QEA FIELD REP.: Tim Stone

Was Traffic Control Required Today?

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

REPOR	T SUBMITTED TO	CONTRAC	CTOR NAME AND CONTACT	WEATHER TEMP. AN	D PRECIPITATION
Client:	Trevor Simmons	General:	HME	AM: Cloudy, light wi	nd, 36 deg F
CC:	Halah Voges	Subs:		PM: Cloudy, light wi	nd, 44 deg F
	Mark Larsen			TIME OF SITE VISIT/C	BSERVATION
	Nicole LaFranchise			From: 0530	To: 1730

CONSTRUCTION ACTIVITY

CONSTRUCTION TASK	LOCATION OF WORK	COMMENT/NOTES
Offload sediment from barge to	The Dalles offload site/Wasco County	
truck/transport to landfill	Landfill	
Demobilize/cleanup of offload site	The Dalles offload site	

PERSONNEL ON SITE

NAME (or labor category)	PRIME/SUB/OTHER	NOTES (quantity, apprentice, training)
Darrel Ivy	Prime	Superintendent
Casey Cox	Prime	Operator (Sea Vulture)
Vincent Stacey	Prime	Laborer/operator
Jeff Oaks	Prime	Laborer/operator
Dennis Forsberg	Prime	Laborer/operator
Russell Taylor	Prime	Laborer

EQUIPMENT ON SITE

				НО	URS	
PRIME/SUB	EQUIP ID	EQUIPMENT DESCRIPTION	Oper	Stdby	Down	Idle
Prime		Derrick Barge Sea Vulture equipped with 14 CY environmental bucket	12			
Prime		Tug Nova. Twin 400 hp engines.	6	6		
Prime		Case skid steer loader (used to manage sediment on barges)	12			
Prime		John Deere 225C excavator	12			
Prime		Cat IT28F Loader	10	2		
Prime		Snorkelift Model 80				12
Prime		Sediment haul barge Reedsport				12
Prime		Sediment haul barge UMPQUA				12
Prime		Sediment haul barge #6	12			
Prime		Sediment transfer barge #47	12			
Prime		Sediment transfer/water management barge #BK5	12			
Prime		Tenant lot sweeper (rider)	8	4		

TRAFFIC CONTROL

 \boxtimes No

 \square Yes

Was WZTC according to approved TCP?

 \square Yes

 \square No

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field active our client informed of the progress and quality of the work. The presence and activities of the Anchor acceptance of any non-conforming work does not relieve the contractor from complying with its contravents the authority to direct the contractor's work. Any information provided by the Anchor QEA field the contractor of the technical requirements of the plans and specifications and/or design concept. The means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to	QEA field representative and our ract documents. Anchor QEA does not I representative is intended solely to advise o contractor is solely responsible for its	
FIELD REP. SIGNATURE: Timothy J. Stone	DATE: <u>11/18/2016</u>	Page 1 of 3

CONTRACT NO.:	160730-01.02
REPORT DATE:	11/18/2016
REPORT NO.:	13

ANCHOR QEA FIELD REP.: Tim Stone

PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

Do all Flaggers/Spotters have current flagging card? ☐Yes ☒No Comments:

PHOTOS AND VIDEO

Were photos/video taken today? ⊠Yes □No	Subject: Transloading sediment from barges to trucks/demobilize
	transload facility

DIARY

	DIAKY
TIME	DISCUSSION
0530	HME on site, conduct daily tailgate safety meeting
0600	Begin staging and lining haul trucks at sediment transfer site
0615	HME resumes offloading of sediment from barge #6. Loading to trucks and hauling to Wasco County Landfill.
	HME adding drying agent as needed to stabilize barge #6 sediment.
0730-	HME subcontractor offloading residual water collected in tank on Barge #BK5 and transferring 120 bbl tanker
1500	trailer. Liquid transported to Wasco County Landfill for processing and disposal.
0830	HME continues offloading sediment from barge #6. Loading specific trailers with woody debris segregated on
	deck of barge #6.
1130	Full length "side-dump" semi trailer on site and loaded with oversize woody debris for transport to landfill.
1140	HME offloading final bulk material from barges #6 and #47. HME will retain one truck for residuals, final cleanup
	debris, and remaining drying agent.
1200-	HME begins cleanup and demobilization of offload infrastructure. Cleaning residuals from decks and spill plates
1530	of all vessels and transferring to remaining cleanup truck. HME operating lot sweeper to clean pavement of
	entire site. Loading ramps, catwalks, spill plates, etc. onto barges for transport to HME facility in Vancouver.
1530-	HME sends final cleanup truck to landfill with sweepings, remaining drying agent, etc. HME staff completing
1700	final hand cleanup and sweeping. HME and Tidewater lashing and relocating barges for downriver transport.
1730	Site demobilization and cleanup completed. HME staff off site.

OTHER OBSERVATIONS

(Note any force account, changes, material testing, problems encountered, production rates, material delivery, water volume discharged or treated, etc.)

Water transferred from Barge #BK5 120 bbl tanker trucks. Water transported to Wasco County landfill for disposal.

DIFFICULTIES

(Note disputes, questionable items, unsatisfactory work, safety, permit compliance, etc.)

(Note disputes, questionable terms, ansatisfactory work, sujety, permit compilance, etc.)				
TIME	DISCUSSION			

VISITORS

TIME	NAME	REPRESENTING	COMMENT

LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field active in the control of the c	REVIEWED BY: (PM initial/date)	
our client informed of the progress and quality of the work. The presence and activities of the Anchor		
acceptance of any non-conforming work does not relieve the contractor from complying with its cont		
have the authority to direct the contractor's work. Any information provided by the Anchor QEA field	d representative is intended solely to advise	
the contractor of the technical requirements of the plans and specifications and/or design concept. The		
means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to		
FIELD REP. SIGNATURE: Timothy J. Stone	DATE: 11/18/2016	Page 2 of 3

CONTRACT NO.: 160730-01.02

REPORT DATE: 11/18/2016

REPORT NO.: 13

ANCHOR QEA FIELD REP.: Tim Stone

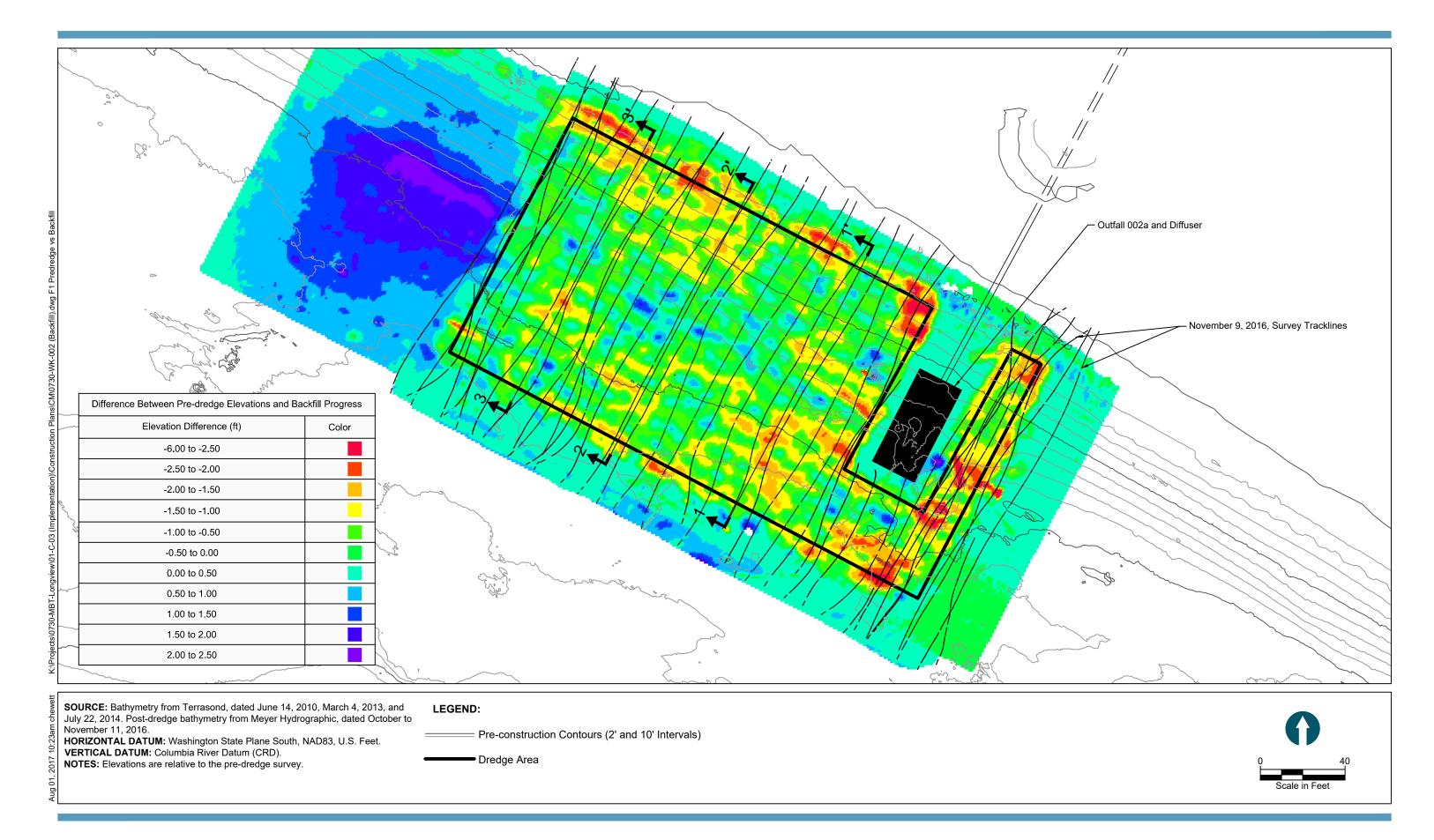
PROJECT NAME/LOCATION: Millennium Bulk Terminals – Longview; MTCA Interim Action Project

PHOTOS

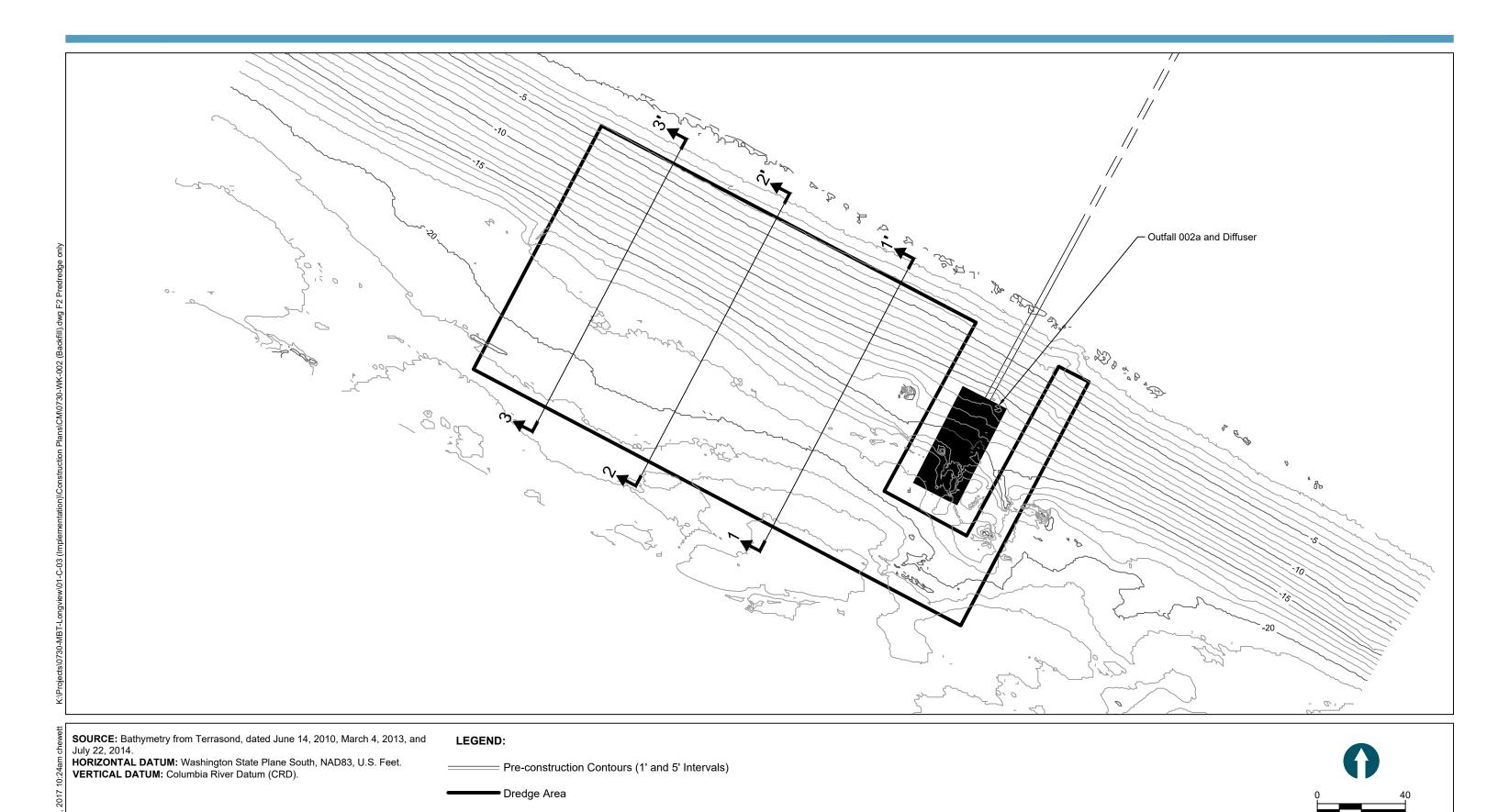
Comment: Consolidating and removing material remaining on

Comment: Addition of dring agent to material in truck loading bin

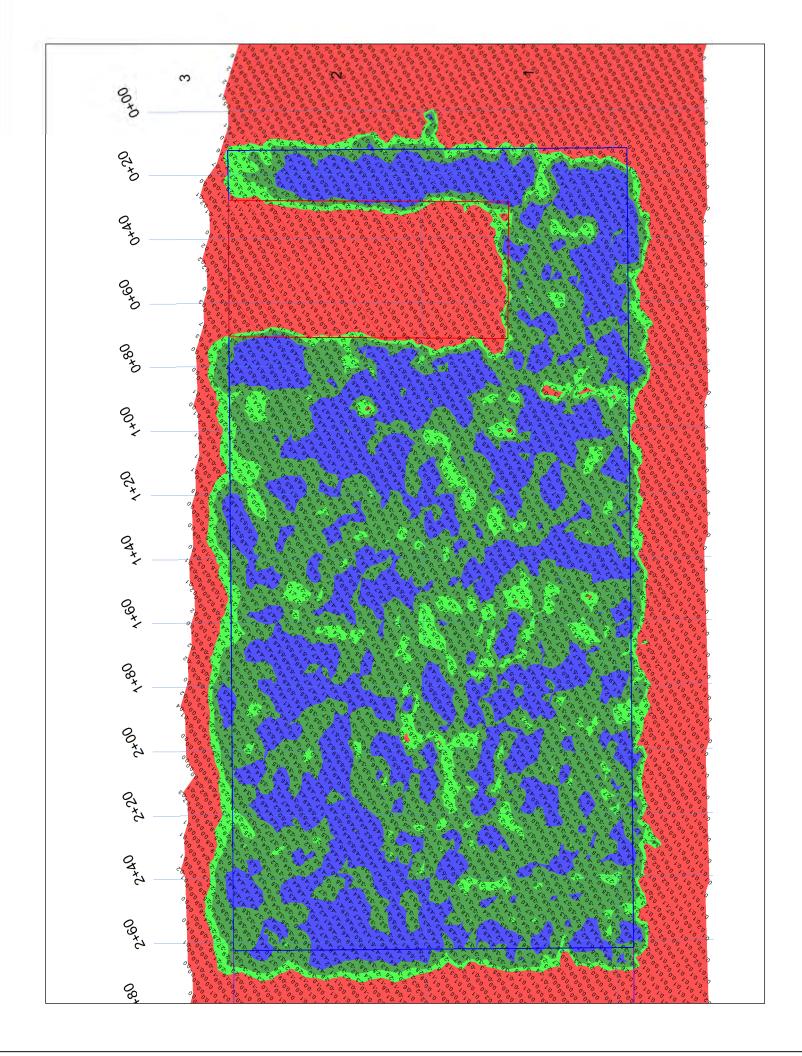
Comment: Oversized woody debris segregated on deck of barge #6 | Comment: Loading oversized woody debris to side dump trailer


Comment: Dismantelling and loading spill plates onto barge

Comment: HME loading cleanup debris and sweeping offload facility pavement


LIMITATIONS: The Anchor QEA field representative is present on site solely to observe the field activities of the contractor identified and keep REVIEWED BY: (PM initial/date) our client informed of the progress and quality of the work. The presence and activities of the Anchor QEA field representative and our acceptance of any non-conforming work does not relieve the contractor from complying with its contract documents. Anchor QEA does not have the authority to direct the contractor's work. Any information provided by the Anchor QEA field representative is intended solely to advise the contractor of the technical requirements of the plans and specifications and/or design concept. The contractor is solely responsible for its means, methods, sequences, procedures, construction site safety, quality of the work, and adherence to the contract documents.

FIELD REP. SIGNATURE: Timothy]. Stone Page 3 of 3 DATE: 11/18/2016


Appendix B Surveys

Appendix C Photographs

Sediment stacked in haul barge.

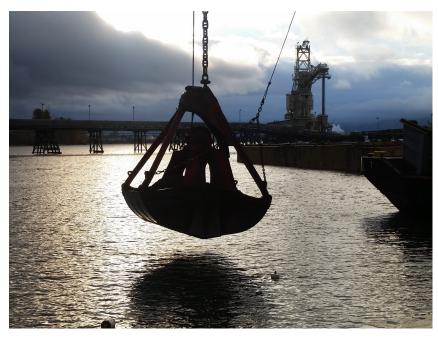
Dredge debris segregated on haul barge.

Dewatering free water off sediment haul barge to water management barge.

Sediment stacked high in the clamshell bucket.

Material stacked in the haul barge *Umpqua*. Note dewatering activities in the stern.

Haul barge *Reedsport* being loaded in the foreground. *Umpqua* tied up in the background.


Multibeam hydrographic survey vessel running transects in the fog.

Placing clean sand backfill on November 7, 2016.

Clamshell bucket getting another load of backfill material.

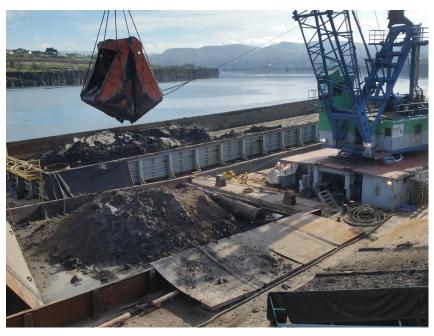
About to open the bucket to spread the backfill. Note the buoys that delineate the outfall's location.

Water quality monitoring vessel deploying instrumentation.

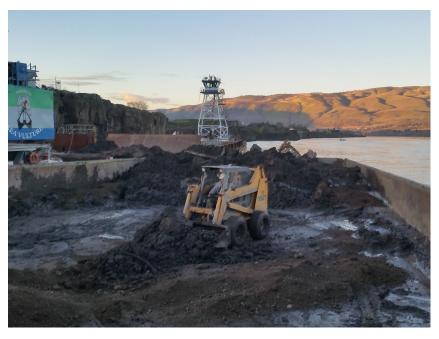
Offloading a haul barge at The Dalles, Oregon. Note the spill apron and fabric to prevent spillage into the river.

Tanker truck being loaded with water for disposal at Wasco County landfill.

Maneuvering Haul Barge No. 6 into place for offloading.



Truck scale and entrance sign at Wasco County landfill.


Loading stabilized sediments into trucks for trip up the hill to the landfill.

Offloading sediments from a haul barge to the sediment mixing bin. Note the spill plates and splash guards to contain any spillage.

Transferring sediment into the sediment mixing bin.

Stacking the last of the sediments on a haul barge to facilitate the removal by the clamshell bucket.

Removing large debris from the barge for disposal.

Demobilizing spill plates.

Final cleanup with a power broom.

Appendix D Water Quality Report

FORMER REYNOLDS REDUCTION PLAN INTERIM ACTION – REMEDIATION OF SEDIMENTS IN THE COLUMBIA RIVER

WATER QUALITY MONITORING WEEKLY REPORT (FINAL)

PREPARED FOR:

MILLENNIUM BULK TERMINALS – LONGVIEW, LLC 4029 INDUSTRIAL WAY LONGVIEW, WA 98638 ATTN: KRISTIN GAINES

PREPARED BY:

GRETTE ASSOCIATES^{LLC} 2102 NORTH 30TH, SUITE A TACOMA, WASHINGTON 98403 (253) 573-9300

151 SOUTH WORTHEN, SUITE 101 WENATCHEE, WASHINGTON 98801 (509) 663-6300

NOVEMBER 14, 2016

TABLE OF CONTENTS

1	INTRODUCTION	2
2	PLAN ELEMENTS	2
3	WATER COLUMN MONITORING	3
	3.1 Monitoring Schedule	
	3.2 Monitoring Results	
	3.3 Reference	4
	TABLES	
Ta	able 1. Water quality parameters and criteria	2
	able 2. Monitoring parameters, schedules, locations, and depths	
Ta	able 3. Turbidity results and compliance	5
	able 4. Dissolved oxygen results and compliance	
	able 5. Field form summary	

1 INTRODUCTION

Water quality monitoring was performed during an interim remedial action (Interim Action) at the Former Reynolds Plant in Longview, Washington. The Interim Action is required by an amendment to Agreed Order No. DE-8940 under the Model Toxic Control Act (MTCA). The former Reynolds Plant is located on the north bank of the Columbia River at 4029 Industrial Way, Longview, Washington, 98632.

A Water Quality Monitoring Plan (WQMP) has been prepared for this action (Anchor 2014). Grette Associates is implementing this plan, as described in this summary report.

2 PLAN ELEMENTS

Reference the WQMP for detailed information including background information, site sediment and water chemistry, monitoring plan details, and contingency response and notification. Table 1 summarizes the applicable water quality standards. Table 2 summarizes the elements of the WQMP (Anchor 2014).

Table 1. Water quality parameters and criteria

Monitoring Parameters	Water Quality Criterion
Dissolved Oxygen	>8.0 milligrams per liter
	If background is less than 50 NTU: Background plus 5 NTU If background is more than 50 NTU: Background plus 10 percent

Note:

NTU = nephelometric turbidity unit

Table 2. Monitoring parameters, schedules, locations, and depths

Parameters	Schedules	Locations	Depths
1. Turbidity (NTU)	Tier 1: Twice per day, daily		Within 3 ft of surface
2. DO (mg/L)	Tier 2: Twice per day, two	(MB).** 300 ft.	Mid-depth of water column
3. Temperature (°C)*	days per week	downstream of dredge/fill	Within 3 feet of bottom
		Early Warning Station (EW). 200 ft. downstream of dredge/fill.	
		Background Station (BG). 300 ft upstream of Outfall -001S.	

Notes:

DO = Dissolved Oxygen

NTU = nephelometric turbidity unit

^{*} For informational purposes

^{**} Point of compliance for water quality criteria

3 WATER COLUMN MONITORING

3.1 MONITORING SCHEDULE

Week 1

Grette Associates conducted Tier 1 sampling during all four days of dredging (October 31 through November 3). Sampling was conducted according to the WQMP except for the following modifications:

- October 31: Dredging started at approximately 14:00 and was scheduled to stop by 17:00.
 The crew waited for one hour to conduct the first sample per the WQMP. The second sample was started approximately one hour later in order to ensure two samples were completed.
- In some cases, sampling at the early warning point was slightly more than 200 feet from dredging in order to avoid the dredge derrick and boom.
- For one sample, EW6, there was no safe access around the boom to collect the early warning sample. Sampling would have required the contractor to stop work in order to provide access. Compliance was already documented at the mixing boundary. In coordination with Anchor, Grette Associates decided to not sample the early warning point during that cycle.
- Water depths at EW8 and MB8 were too shallow to sample at intervals in the WQMP, see notes in Table 5.

Because of the short dredging day on October 31, the Project team decided to conduct Tier 1 sampling on all four days in order to ensure consistency with the WQMP even though monitoring results showed no exceedances during the first three days of dredging.

Week 2

Grette Associates conducted Tier 1 sampling during all three days of sediment backfill (November 7, 9, and 11) and also residuals placement (November 11). Sampling was conducted according to the WQMP. Sample timing on the last day (November 11) was influenced by weather (delayed sampling due to fog in the morning) and work schedule (timing of residuals placement in the afternoon).

3.2 MONITORING RESULTS

This report is submitted to Millennium Bulk Terminals- Longview, LLC (MBT-L) and presents monitoring results for the on-site Interim Action implementation.

Week 1 - Dredging

Dredging occurred on each day during the reporting period. Water quality monitoring was conducted twice daily to record the parameters shown in Table 2 as well as dissolved oxygen in

percent saturation. Dissolved oxygen was recorded in either percent saturation or mg/L during Events 1 through 4, in which case the other metric was calculated using a USGS DO saturation table inclusive of water temperatures (collected) and barometric pressure (observed at NOAA Station 9440422 at Longview), as indicated in the results tables.

Water quality criteria at the mixing boundary were met for both turbidity or dissolved oxygen during all sample events. Turbidity at the early warning station consistently was less than 4 NTU over background. Dissolved oxygen was consistently greater than 10 mg/L.

Week 2 – Backfill and Residuals Placement

Backfilling occurred on each day during the reporting period. Regular water quality monitoring was conducted twice daily to record the parameters shown in Table 2 as well as dissolved oxygen in percent saturation. Dissolved oxygen was recorded in both percent saturation and mg/L.

During the second sample on November 7, a turbidity exceedance was observed at the deep mixing boundary station (9.6 NTU compared to 2.2 NTU background, Table 3, Event 10). This triggered the exceedance protocol described in WQMP Section 4.2. The exceedance was confirmed at the deep mixing boundary station after resampling background and mixing boundary (Table 3, Event 11); repeated runs at the deep mixing boundary station indicated variable conditions (Table 3, Event 11). Grette Associates staff notified Anchor QEA staff (Site Engineer and Project Manager), at which point the Site Engineer notified the contractor and requested operational modifications during backfilling (slowing placement cycle times). Grette Associates resampled all three stations approximately one half-hour later¹ and observed a continued exceedance at the deep mixing boundary station as well as turbidity above exceedance levels at all depths at the early warning station (Table 3, Event 12).

On November 8, Anchor QEA and Grette Associates MBT-L with a time series report of the sampling results and exceedance to report to Ecology. MBT-L coordinated with Ecology, and with Ecology's approval operations resumed on November 9.

There were no further exceedances during backfill (November 9 and 11) or residuals placement (November 11, Event 16). With the exception of the exceedances described in Events 10-12, water quality criteria at the mixing boundary were met for turbidity during all sample events and turbidity at the early warning station consistently was less than 4 NTU over background.

For all sample events, including 10 through 12, dissolved oxygen was consistently greater than 10 mg/L.

3.3 REFERENCE

Anchor QEA 2014. Water Quality Monitoring Plan: Former Reynolds Metals Reduction Plant Interim Action – Remediation of Sediments in the Columba River. Prepared for Washington Department of Ecology, August 2014.

¹ The WQMP calls for a one hour resample, but in order to complete monitoring before daily operations stopped, resampling was conducted more quickly.

Table 3. Turbidity results and compliance

Date	Sample Event No.	Personnel	Primary Activity	Sample Depth	Mixing Boundary	Early Warning	Background	Compliance Achieved?	Notes
10/31/2016	1	CC/CW	dredging	Shallow	3.8	4.3	4.4	yes	
10/31/2016	1	CC/CW	dredging	Middle	4	4.6	4.5	yes	
10/31/2016	1	CC/CW	dredging	Deep	4.3	4.8	4.6	yes	
10/31/2016	2	CC/CW	dredging	Shallow	2.6	4	4.1	yes	
10/31/2016	2	CC/CW	dredging	Middle	2.5	3.8	4.2	yes	
10/31/2016	2	CC/CW	dredging	Deep	3.1	4.2	4	yes	
11/1/2016	3	CC/CW	dredging	Shallow	7.7	7.5	5.7	yes	
11/1/2016	3	CC/CW	dredging	Middle	7.8	8.4	5.9	yes	
11/1/2016	3	CC/CW	dredging	Deep	7.8	8.1	6.3	yes	
11/1/2016	4	CC/CW	dredging	Shallow	12.8	13.5	12.8	yes	
11/1/2016	4	CC/CW	dredging	Middle	12.6	15.8	13.6	yes	
11/1/2016	4	CC/CW	dredging	Deep	12.2	15.9	14.1	yes	
11/2/2016	5	CC/CW	dredging	Shallow	5.4	7.2	4.3	yes	
11/2/2016	5	CC/CW	dredging	Middle	5.7	7.1	4.4	yes	
11/2/2016	5	CC/CW	dredging	Deep	5.2	8.4	4.5	yes	
11/2/2016	6	CC/CW	dredging	Shallow	2.8	NS	2.6	yes	no safe access for EW
11/2/2016	6	CC/CW	dredging	Middle	3.3	NS	2.6	yes	no safe access for EW
11/2/2016	6	CC/CW	dredging	Deep	3.2	NS	2.7	yes	no safe access for EW
11/3/2016	7	CC/CW	dredging	Shallow	1.9	1.5	1.1	yes	
11/3/2016	7	CC/CW	dredging	Middle	1.8	1.4	1.2	yes	
11/3/2016	7	CC/CW	dredging	Deep	1.8	2.2	1.3	yes	
11/4/2016	8	CC/CW	dredging	Shallow	4.6	2.9	1.9	yes	
11/4/2016	8	CC/CW	dredging	Middle	3.8	NS	2.0	yes	EW too shallow for 3
11/4/2016	8	CC/CW	dredging	Deep	4.7	3.5	2.0	yes	
11/7/2016	9	CC/SM	backfill	Shallow	2	2.0	1.8	yes	
11/7/2016	9	CC/SM	backfill	Middle	2.6	2.0	1.9	yes	
11/7/2016	9	CC/SM	backfill	Deep	2.2	2.2	1.9	yes	
11/7/2016	10	CC/SM	backfill	Shallow	3.7	3.4	2.6	yes	
11/7/2016	10	CC/SM	backfill	Middle	3.6	3.5	2.6	yes	
11/7/2016	10	CC/SM	backfill	Deep	9.6	5.3	2.9	no	exceedance
11/7/2016	11	CC/SM	backfill	Shallow	2.8	-	2.4	yes	

Date	Sample Event No.	Personnel	Primary Activity	Sample Depth	Mixing Boundary	Early Warning	Background	Compliance Achieved?	Notes
11/7/2016	11	CC/SM	backfill	Middle	5.7	-	2.7	yes	
11/7/2016	11	CC/SM	backfill	Deep	8.6	-	2.7	no	exceedance; retake x 3 (~30 sec)
11/7/2016	11	CC/SM	backfill	Deep	7.7	-	2.7	yes	borderline
11/7/2016	11	CC/SM	backfill	Deep	4.7	-	2.7	yes	
11/7/2016	12	CC/SM	backfill	Shallow	3.8	7.7	2.5	yes	EW exceedance level
11/7/2016	12	CC/SM	backfill	Middle	4.4	13.9	2.4	yes	EW exceedance level
11/7/2016	12	CC/SM	backfill	Deep	7.9	22.6	2.6	no	exceedance; EW exceedance level
11/9/2016	13	CC/CW	backfill	Shallow	2.2	1.8	1.3	yes	
11/9/2016	13	CC/CW	backfill	Middle	2.7	2.6	1.5	yes	
11/9/2016	13	CC/CW	backfill	Deep	3.2	4.0	1.4	yes	
11/9/2016	14	CC/CW	backfill	Shallow	2.2	1.8	0.5	yes	
11/9/2016	14	CC/CW	backfill	Middle	2.7	1.6	0.6	yes	
11/9/2016	14	CC/CW	backfill	Deep	3.4	4.3	0.7	yes	
11/9/2016	15	CC/CW	backfill	Shallow	2.8	1.5	1.1	yes	
11/9/2016	15	CC/CW	backfill	Middle	1.8	1.4	1.3	yes	
11/11/2016	15	CC/CW	backfill	Deep	6.1	1.5	1.3	yes	,
11/11/2016	16	CC/CW	backfill	Shallow	0.8	0.9	0.3	yes	
11/11/2016	16	CC/CW	backfill	Middle	0.8	1.0	0.5	yes	
11/11/2016	16	CC/CW	backfill	Deep	1.0	0.9	0.5	yes	

Table 4. Dissolved oxygen results and compliance

Date	Sample Event No.	Personnel	Primary Activity	Sample Depth	Mixing Boundary	Early Warning	Background	Compliance Achieved?	Notes
10/31/2016	1	CC/CW	dredging	Shallow	10.16	10.24	10.17	yes	calculated mg/L
10/31/2016	1	CC/CW	dredging	Middle	10.15	10.15	10.11	yes	calculated mg/L
10/31/2016	1	CC/CW	dredging	Deep	10.15	10.12	10.11	yes	calculated mg/L
10/31/2016	2	CC/CW	dredging	Shallow	10.15	10.16	10.31	yes	calculated mg/L
10/31/2016	2	CC/CW	dredging	Middle	10.11	10.12	10.16	yes	calculated mg/L
10/31/2016	2	CC/CW	dredging	Deep	10.11	10.11	10.13	yes	calculated mg/L
11/1/2016	3	CC/CW	dredging	Shallow	10.16	10.26	10.24	yes	calculated mg/L
11/1/2016	3	CC/CW	dredging	Middle	10.11	10.14	10.13	yes	calculated mg/L
11/1/2016	3	CC/CW	dredging	Deep	10.13	10.10	10.10	yes	calculated mg/L
11/1/2016	4	CC/CW	dredging	Shallow	10.29	10.34	10.31	yes	
11/1/2016	4	CC/CW	dredging	Middle	10.21	10.21	10.19	yes	
11/1/2016	4	CC/CW	dredging	Deep	10.18	10.19	10.18	yes	
11/2/2016	5	CC/CW	dredging	Shallow	10.25	10.21	10.27	yes	
11/2/2016	5	CC/CW	dredging	Middle	10.23	10.29	10.16	yes	
11/2/2016	5	CC/CW	dredging	Deep	10.18	10.16	10.16	yes	
11/2/2016	6	CC/CW	dredging	Shallow	10.29	NS	10.28	yes	no safe access for EW
11/2/2016	6	CC/CW	dredging	Middle	10.22	NS	10.23	yes	no safe access for EW
11/2/2016	6	CC/CW	dredging	Deep	10.21	NS	10.21	yes	no safe access for EW
11/3/2016	7	CC/CW	dredging	Shallow	10.35	10.37	10.33	yes	
11/3/2016	7	CC/CW	dredging	Middle	10.20	10.20	10.20	yes	
11/3/2016	7	CC/CW	dredging	Deep	10.19	10.18	10.18	yes	
11/4/2016	8	CC/CW	dredging	Shallow	10.26	10.29	10.37	yes	
11/4/2016	8	CC/CW	dredging	Middle	10.27	NS	10.30	yes	EW too shallow for 3
11/4/2016	8	CC/CW	dredging	Deep	10.25	10.28	10.28	yes	
11/7/2016	9	CC/SM	backfill	Shallow	10.36	10.34	10.35	yes	
11/7/2016	9	CC/SM	backfill	Middle	10.30	10.30	10.30	yes	
11/7/2016	9	CC/SM	backfill	Deep	10.30	10.29	10.30	yes	
11/7/2016	10	CC/SM	backfill	Shallow	10.39	10.38	10.37	yes	

Date	Sample Event No.	Personnel	Primary Activity	Sample Depth	Mixing Boundary	Early Warning	Background	Compliance Achieved?	Notes
11/7/2016	10	CC/SM	backfill	Middle	10.35	10.33	10.34	yes	
11/7/2016	10	CC/SM	backfill	Deep	10.34	10.33	10.32	yes	
11/7/2016	11	CC/SM	backfill	Shallow	10.38	-	10.35	yes	
11/7/2016	11	CC/SM	backfill	Middle	10.35	-	10.33	yes	
11/7/2016	11	CC/SM	backfill	Deep	10.33	-	10.32	yes	
11/7/2016	11	CC/SM	backfill	Deep	-	-	-	yes	
11/7/2016	11	CC/SM	backfill	Deep	-	-	-	yes	
11/7/2016	12	CC/SM	backfill	Shallow	10.40	10.42	10.38	yes	
11/7/2016	12	CC/SM	backfill	Middle	10.35	10.38	10.34	yes	
11/7/2016	12	CC/SM	backfill	Deep	10.34	10.35	10.33	yes	
11/9/2016	13	CC/CW	backfill	Shallow	10.35	10.34	10.35	yes	
11/9/2016	13	CC/CW	backfill	Middle	10.28	10.28	10.28	yes	
11/9/2016	13	CC/CW	backfill	Deep	10.26	10.28	10.26	yes	
11/9/2016	14	CC/CW	backfill	Shallow	10.31	10.31	10.28	yes	
11/9/2016	14	CC/CW	backfill	Middle	10.27	10.27	10.28	yes	
11/9/2016	14	CC/CW	backfill	Deep	10.27	10.27	10.27	yes	
11/9/2016	15	CC/CW	backfill	Shallow	10.42	10.41	10.37	yes	
11/9/2016	15	CC/CW	backfill	Middle	10.34	10.34	10.33	yes	
11/11/2016	15	CC/CW	backfill	Deep	10.34	10.33	10.32	yes	
11/11/2016	16	CC/CW	backfill	Shallow	10.36	10.31	10.31	yes	
11/11/2016	16	CC/CW	backfill	Middle	10.30	10.28	10.30	yes	
11/11/2016	16	CC/CW	backfill	Deep	10.27	10.28	10.29	yes	

Table 5. Field form summary

														Yes	s/No]
Sta.			Coord (N	Coord (E		Total Water		Water	Turb.	DO	DO	Temp					
ID	Date	Time	[WSPS])	[WSPS])	Weather	Depth (ft)	Sample	Depth (ft)	(NTU)	(%Sat)	(mg/L)	(deg C)	Mtl	Shn	Dsc	Odr	Comments
BG1	10/31/2016	14:45	302610.94	1006594.22	rain	24.8	Shallow	3	4.4	97.1	NR	13.2	N	N	N	N	No exceed.
BG1	10/31/2016	14:45	302610.94	1006594.22	rain	24.8	Middle	12.5	4.5	96.6	NR	13.2	N	N	N	N	No exceed.
BG1	10/31/2016	14:45	302610.94	1006594.22	rain	24.8	Deep	21.5	4.6	96.6	NR	13.2	N	N	N	N	No exceed.
EW1	10/31/2016	15:13	303264.01	1005578.06	rain	22.0	Shallow	3	4.3	97.8	NR	13.2	N	N	N	N	No exceed.
EW1	10/31/2016	15:13	303264.01	1005578.06	rain	22.0	Middle	11	4.6	96.9	NR	13.2	N	N	N	N	No exceed.
EW1	10/31/2016	15:13	303264.01	1005578.06	rain	22.0	Deep	19	4.8	96.7	NR	13.2	N	N	N	N	No exceed.
MB1	10/31/2016	15:22	303392.27	1005474.02	rain	21.1	Shallow	3	3.8	97.0	NR	13.2	N	N	N	N	No exceed.
MB1	10/31/2016	15:22	303392.27	1005474.02	rain	21.1	Middle	10	4.0	96.9	NR	13.2	N	N	N	N	No exceed.
MB1	10/31/2016	15:22	303392.27	1005474.02	rain	21.1	Deep	17.5	4.3	96.9	NR	13.2	N	N	N	N	No exceed.
BG2	10/31/2016	15:42	302513.22	1006586.92	rain/overcast	31.0	Shallow	3	4.1	98.5	NR	13.2	N	N	N	N	No exceed.
BG2	10/31/2016	15:42	302513.22	1006586.92	rain/overcast	31.0	Middle	15.5	4.2	97.0	NR	13.2	N	N	N	N	No exceed.
BG2	10/31/2016	15:42	302513.22	1006586.92	rain/overcast	31.0	Deep	28	4.0	96.8	NR	13.2	N	N	N	N	No exceed.
EW2	10/31/2016	16:10	303330.61	1005520.43	rain/overcast	18.0	Shallow	3	4.0	97.4	NR	13.3	N	N	N	N	No exceed.
EW2	10/31/2016	16:10	303330.61	1005520.43	rain/overcast	18.0	Middle	9	3.8	97.0	NR	13.3	N	N	N	N	No exceed.
EW2	10/31/2016	16:10	303330.61	1005520.43	rain/overcast	18.0	Deep	15	4.2	96.9	NR	13.3	N	N	N	N	No exceed.
MB2	10/31/2016	16:17	303333.75	1005471.57	overcast	20.0	Shallow	3	2.6	97.7	NR	13.5	N	N	N	N	No exceed.
MB2	10/31/2016	16:17	303333.75	1005471.57	overcast	20.0	Middle	10	2.5	97.3	NR	13.5	N	N	N	N	No exceed.
MB2	10/31/2016	16:17	303333.75	1005471.57	overcast	20.0	Deep	17	3.1	97.1	NR	13.4	N	N	N	N	No exceed.
BG3	11/1/2016	8:16	302634.06	1006626.45	overcast	14.8	Shallow	3	5.7	97.1	NR	13.3	N	N	N	N	No exceed.
BG3	11/1/2016	8:16	302634.06	1006626.45	overcast	14.8	Middle	7	5.9	96.7	NR	13.3	N	N	N	N	No exceed.
BG3	11/1/2016	8:16	302634.06	1006626.45	overcast	14.8	Deep	11	6.3	96.6	NR	13.2	N	N	N	N	No exceed.
EW3	11/1/2016	10:11	303278.06	1005564.26	partly cloudy	23.7	Shallow	3	7.5	NR	10.26	13.3	N	N	N	N	No exceed.
EW3	11/1/2016	10:11	303278.06	1005564.26	partly cloudy	23.7	Middle	11.5	8.4	NR	10.14	13.3	N	N	N	N	No exceed.
EW3	11/1/2016	10:11	303278.06	1005564.26	partly cloudy	23.7	Deep	20	8.1	NR	10.10	13.3	N	N	N	N	No exceed.
MB3	11/1/2016	10:18	303315.16	1005524.71	partly cloudy	16.0	Shallow	3	7.7	NR	10.24	13.3	N	N	N	N	No exceed.
MB3	11/1/2016	10:18	303315.16	1005524.71	partly cloudy	16.0	Middle	8	7.8	NR	10.13	13.3	N	N	N	N	No exceed.
MB3	11/1/2016	10:18	303315.16	1005524.71	partly cloudy	16.0	Deep	13	7.8	NR	10.10	13.3	N	N	N	N	No exceed.
BG4	11/1/2016	13:30	302556.30	1006654.01	overcast	18.2	Shallow	3	12.8	97.9	10.31	13.0	N	N	N	N	No exceed.
BG4	11/1/2016	13:30	302556.30	1006654.01	overcast	18.2	Middle	9	13.6	96.8	10.19	13.0	N	N	N	N	No exceed.
BG4	11/1/2016	13:30	302556.30	1006654.01	overcast	18.2	Deep	15	14.1	96.7	10.18	13.0	N	N	N	N	No exceed.
EW4	11/1/2016	13:52	303263.52	1005553.91	overcast/fog	26.2	Shallow	3	13.5	98.1	10.34	13.0	N	N	N	N	No exceed.
EW4	11/1/2016	13:52	303263.52	1005553.91	overcast/fog	26.2	Middle	13	15.8	97.0	10.21	13.0	N	N	N	N	No exceed.
EW4	11/1/2016	13:52	303263.52	1005553.91	overcast/fog	26.2	Deep	23	15.9	96.7	10.19	13.0	N	N	N	N	No exceed.

														Yes	/No		
Sta. ID	Date	Time	Coord (N [WSPS])	Coord (E [WSPS])	Weather	Total Water Depth (ft)	Sample	Water Depth (ft)	Turb. (NTU)	DO (%Sat)	DO (mg/L)	Temp (deg C)	Mtl	Shn	Dsc	Odr	Comments
MB4	11/1/2016	13:59	303368.06	1005392.03	cloudy	23.3	Shallow	3	12.8	97.7	10.29	13.0	N	N	N	N	No exceed.
MB4	11/1/2016	13:59	303368.06	1005392.03	cloudy	23.3	Middle	11.5	12.6	97.0	10.21	13.0	N	N	N	N	No exceed.
MB4	11/1/2016	13:59	303368.06	1005392.03	cloudy	23.3	Deep	20	12.2	96.7	10.18	13.0	N	N	N	N	No exceed.
MB5	11/2/2016	9:00	303390.82	1005349.38	overcast	15.4	Shallow	3	5.4	97.5	10.25	13.1	N	N	N	N	No exceed.
MB5	11/2/2016	9:00	303390.82	1005349.38	overcast	15.4	Middle	7	5.7	97.4	10.23	13.1	N	N	N	N	No exceed.
MB5	11/2/2016	9:00	303390.82	1005349.38	overcast	15.4	Deep	12	5.2	96.9	10.18	13.1	N	N	N	N	No exceed.
EW5	11/2/2016	9:10	303323.54	1005527.38	overcast	18.0	Shallow	3	7.2	97.2	10.21	13.1	N	N	N	N	No exceed.
EW5	11/2/2016	9:10	303323.54	1005527.38	overcast	18.0	Middle	8	7.1	98.0	10.29	13.1	N	N	N	N	No exceed.
EW5	11/2/2016	9:10	303323.54	1005527.38	overcast	18.0	Deep	15	8.4	96.8	10.16	13.1	N	N	N	N	No exceed.
BG5	11/2/2016	9:18	302603.12	1006625.11	overcast	22.7	Shallow	3	4.3	97.7	10.27	13.1	N	N	N	N	No exceed.
BG5	11/2/2016	9:18	302603.12	1006625.11	overcast	22.7	Middle	11	4.4	96.7	10.16	13.1	N	N	N	N	No exceed.
BG5	11/2/2016	9:18	302603.12	1006625.11	overcast	22.7	Deep	19	4.5	96.7	10.16	13.1	N	N	N	N	No exceed.
BG6	11/2/2016	13:04	302559.00	1006607.24	overcast	26.3	Shallow	3	2.6	97.2	10.28	12.8	N	N	N	N	No exceed.
BG6	11/2/2016	13:04	302559.00	1006607.24	overcast	26.3	Middle	13	2.6	96.7	10.23	12.8	N	N	N	N	No exceed.
BG6	11/2/2016	13:04	302559.00	1006607.24	overcast	26.3	Deep	23	2.7	96.5	10.21	12.8	N	N	N	N	No exceed.
MB6	11/2/2016	13:27	303398.67	1005353.13	overcast	20.6	Shallow	3	2.8	97.3	10.29	12.8	N	N	N	N	No exceed.
MB6	11/2/2016	13:27	303398.67	1005353.13	overcast	20.6	Middle	10	3.3	96.7	10.22	12.8	N	N	N	N	No exceed.
MB6	11/2/2016	13:27	303398.67	1005353.13	overcast	20.6	Deep	17	3.2	96.5	10.21	12.8	N	N	N	N	No exceed.
EW6	11/2/2016	NS	NS	NS	overcast	NS	Shallow	NS	NS	NS	NS	NS	NS	NS	NS	NS	1
EW6	11/2/2016	NS	NS	NS	overcast	NS	Middle	NS	NS	NS	NS	NS	NS	NS	NS	NS	1
EW6	11/2/2016	NS	NS	NS	overcast	NS	Deep	NS	NS	NS	NS	NS	NS	NS	NS	NS	1
BG7	11/3/2016	8:12	302542.45	1006552.71	clear/fog	29.0	Shallow	3	1.1	98.1	10.33	13.0	N	N	N	N	No exceed.
BG7	11/3/2016	8:12	302542.45	1006552.71	clear/fog	29.0	Middle	14	1.2	96.9	10.20	13.0	N	N	N	N	No exceed.
BG7	11/3/2016	8:12	302542.45	1006552.71	clear/fog	29.0	Deep	26	1.3	96.7	10.18	13.0	N	N	N	N	No exceed.
EW7	11/3/2016	8:28	303329.70	1005368.41	clear/fog	27.9	Shallow	3	1.5	98.5	10.37	13.0	N	N	N	N	No exceed.
EW7	11/3/2016	8:28	303329.70	1005368.41	clear/fog	27.9	Middle	14	1.4	96.9	10.20	13.0	N	N	N	N	No exceed.
EW7	11/3/2016	8:28	303329.70	1005368.41	clear/fog	27.9	Deep	25	2.2	96.7	10.18	13.0	N	N	N	N	No exceed.
MB7	11/3/2016	8:22	303373.82	1005292.39	clear/fog	29.2	Shallow	3	1.9	98.3	10.35	13.0	N	N	N	N	No exceed.
MB7	11/3/2016	8:22	303373.82	1005292.39	clear/fog	29.2	Middle	14	1.8	96.9	10.20	13.0	N	N	N	N	No exceed.
MB7	11/3/2016	8:22	303373.82	1005292.39	clear/fog	29.2	Deep	26	1.8	96.7	10.19	13.0	N	N	N	N	No exceed.
BG8	11/4/2016	12:55	302542.78	1006663.90	fog/clear	20.7	Shallow	3	1.9	98.1	10.37	12.9	N	N	N	N	No exceed.
BG8	11/4/2016	12:55	302542.78	1006663.90	fog/clear	20.7	Middle	10	2.0	97.4	10.30	12.9	N	N	N	N	No exceed.
BG8	11/4/2016	12:55	302542.78	1006663.90	fog/clear	20.7	Deep	17	2.0	97.3	10.28	12.9	N	N	N	N	No exceed.
EW8	11/4/2016	13:33	303448.41	1005396.41	clear/fog	6.0	Shallow	1	2.9	97.5	10.29	12.9	N	N	N	N	2
EW8	11/4/2016	13:33	303448.41	1005396.41	clear/fog	6.0	Middle	NS	NS	NS	NS	NS	NS	NS	NS	NS	2

														Yes	/No		
Sta. ID	Date	Time	Coord (N [WSPS])	Coord (E [WSPS])	Weather	Total Water Depth (ft)	Sample	Water Depth (ft)	Turb. (NTU)	DO (%Sat)	DO (mg/L)	Temp (deg C)	Mtl	Shn	Dsc	Odr	Comments
EW8	11/4/2016	13:33	303448.41	1005396.41	clear/fog	6.0	Deep	2	3.5	97.4	10.28	12.9	N	N	N	N	2
MB8	11/4/2016	13:24	303466.54	105333.79	clear/fog	4.0	Shallow	2	4.6	97.3	10.26	12.9	N	N	N	N	3
MB8	11/4/2016	13:24	303466.54	105333.79	clear/fog	4.0	Middle	3	3.8	97.3	10.27	12.9	N	N	N	N	3
MB8	11/4/2016	13:24	303466.54	105333.79	clear/fog	4.0	Deep	4	4.7	97.2	10.25	12.9	N	N	N	N	3
BG9	11/7/2016	11:04	302568.89	1006512.34	overcast, no wind	27	Shallow	3	1.8	98.3	10.35	13.0	N	N	N	N	No exceed.
BG9	11/7/2016	11:04	302568.89	1006512.34	overcast, no wind	27	Middle	14	1.9	97.8	10.30	13.0	N	N	N	N	No exceed.
BG9	11/7/2016	11:04	302568.89	1006512.34	overcast, no wind	27	Deep	24	1.9	97.8	10.30	13.0	N	N	N	N	No exceed.
EW9	11/7/2016	11:24	303305.25	1005501.35	mostly cloudy, calm	23	Shallow	3	2.0	98.2	10.34	13.0	N	N	N	N	No exceed.
EW9	11/7/2016	11:24	303305.25	1005501.35	mostly cloudy, calm	23	Middle	12	2.0	97.8	10.30	13.0	N	N	N	N	No exceed.
EW9	11/7/2016	11:24	303305.25	1005501.35	mostly cloudy, calm	23	Deep	20	2.2	97.7	10.29	13.0	N	N	N	N	No exceed.
MB9	11/7/2016	11:32	303392.43	1005368.68	mostly cloudy, calm	21	Shallow	3	2.0	98.4	10.36	13.0	N	N	N	N	No exceed.
MB9	11/7/2016	11:32	303392.43	1005368.68	mostly cloudy, calm	21	Middle	10	2.6	97.8	10.30	13.0	N	N	N	N	No exceed.
MB9	11/7/2016	11:32	303392.43	1005368.68	mostly cloudy, calm	21	Deep	18	2.2	97.8	10.30	13.0	N	N	N	N	No exceed.
BG10	11/7/2016	15:00	302487.66	1006569.68	mostly cloudy, calm	29	Shallow	3	2.6	98.2	10.37	12.9	N	N	N	N	none
BG10	11/7/2016	15:00	302487.66	1006569.68	mostly cloudy, calm	29	Middle	15	2.6	97.9	10.34	12.9	N	N	N	N	none
BG10	11/7/2016	15:00	302487.66	1006569.68	mostly cloudy, calm	29	Deep	26	2.9	97.7	10.32	12.9	N	N	N	N	none
EW10	11/7/2016	15:11	303348.55	1005399.73	mostly cloudy, calm	23	Shallow	3	3.4	98.4	10.38	12.9	Y	N	N	N	4, no exceed.
EW10	11/7/2016	15:11	303348.55	1005399.73	mostly cloudy, calm	23	Middle	11	3.5	97.9	10.33	12.9	Y	N	N	N	4, no exceed.
EW10	11/7/2016	15:11	303348.55	1005399.73	mostly cloudy, calm	23	Deep	20	5.3	97.8	10.33	12.9	Y	N	N	N	4, no exceed.
MB10	11/7/2016	15:21	303394.01	1005364.92	overcast, calm	23	Shallow	3	3.7	98.4	10.39	12.9	Y	N	N	N	4, no exceed.
MB10	11/7/2016	15:21	303394.01	1005364.92	overcast, calm	23	Middle	11	3.6	98.0	10.35	12.9	Y	N	N	N	4, no exceed.
MB10	11/7/2016	15:21	303394.01	1005364.92	overcast, calm	23	Deep	20	9.6	98.0	10.34	12.9	Y	N	N	N	4, exceedance.
BG11	11/7/2016	15:46	302537.78	1006521.48	overcast, calm	26	Shallow	3	2.4	97.9	10.35	12.9	N	N	N	N	none
BG11	11/7/2016	15:46	302537.78	1006521.48	overcast, calm	26	Middle	13	2.7	97.7	10.33	12.8	N	N	N	N	none
BG11	11/7/2016	15:46	302537.78	1006521.48	overcast, calm	26	Deep	23	2.7	97.6	10.32	12.8	N	N	N	N	none
MB11	11/7/2016	15:58	303442.45	1005222.69	overcast, calm	21	Shallow	3	2.8	98.2	10.38	12.9	Y	N	N	N	4, no exceed.
MB11	11/7/2016	15:58	303442.45	1005222.69	overcast, calm	21	Middle	11	5.7	97.9	10.35	12.9	Y	N	N	N	4, no exceed.
MB11	11/7/2016	15:58	303442.45	1005222.69	overcast, calm	21	Deep	18	8.6	97.7	10.33	12.9	Y	N	N	N	4, exceedance.
MB11	11/7/2016	15:58	303442.45	1005222.69	overcast, calm	21	Deep	18	7.7	-	-	-	Y	N	N	N	4, borderline.
MB11	11/7/2016	15:58	303442.45	1005222.69	overcast, calm	21	Deep	18	4.7	-	-	-	Y	N	N	N	4, no exceed.
BG12	11/7/2016	16:23	302521.35	1006542.13	overcast, calm	27	Shallow	3	2.5	98.2	10.38	12.8	N	N	N	N	none
BG12	11/7/2016	16:23	302521.35	1006542.13	overcast, calm	27	Middle	13	2.4	97.8	10.34	12.8	N	N	N	N	none
BG12	11/7/2016	16:23	302521.35	1006542.13	overcast, calm	27	Deep	24	2.6	97.7	10.33	12.8	N	N	N	N	none
EW12	11/7/2016	16:30	303390.95	1005345.54	overcast, calm	23	Shallow	3	7.7	98.6	10.42	12.8	Y	N	N	N	4, exceedance.
EW12	11/7/2016	16:30	303390.95	1005345.54	overcast, calm	23	Middle	11	13.9	98.2	10.38	12.8	Y	N	N	N	4, exceedance.

														Yes	/No		
Sta.			Coord (N	Coord (E		Total Water		Water	Turb.	DO	DO	Temp			_		
ID	Date	Time	[WSPS])	[WSPS])	Weather	Depth (ft)	Sample		(NTU)	(%Sat)	(mg/L)	(deg C)					Comments
EW12	11/7/2016		303390.95	1005345.54	overcast, calm	23	Deep	20	22.6	97.9	10.35	12.8	Y	N	N	N	4, exceedance.
MB12	11/7/2016	16:36	303444.38	1005241.69	overcast, calm	24	Shallow	3	3.8	98.9	10.40	12.8	Y	N	N	N	4, 5, no exceed.
MB12	11/7/2016	-	303444.38	1005241.69	overcast, calm	24	Middle	12	4.4	97.9	10.35	12.8	Y	N	N	N	4, 5, no exceed.
MB12	11/7/2016	16:36	303444.38	1005241.69	overcast, calm	24	Deep	21	7.9	97.8	10.34	12.8	Y	N	N	N	4,5 exceedance.
BG13	11/9/2016	8:00	302532.79	1006645.24	partly cloudy	24.8	Shallow	3	1.3	98.1	10.35	12.9	N	N	N	N	none
BG13	11/9/2016	8:00	302532.79	1006645.24	partly cloudy	24.8	Middle	12	1.5	97.3	10.28	12.9	N	N	N	N	none
BG13	11/9/2016	8:00	302532.79	1006645.24	partly cloudy	24.8	Deep	21	1.4	97.1	10.26	12.9	N	N	N	N	none
EW13	11/9/2016	8:15	302370.35	1005524.30	partly cloudy	24	Shallow	3	1.8	97.9	10.34	12.9	Y	N	N	N	6, no exceed.
EW13	11/9/2016	8:15	302370.35	1005524.30	partly cloudy	24	Middle	12	2.6	97.3	10.28	12.9	Y	N	N	N	6, no exceed.
EW13	11/9/2016	8:15	302370.35	1005524.30	partly cloudy	24	Deep	21	4.0	97.2	10.28	12.8	Y	N	N	N	6, no exceed.
MB13	11/9/2016	8:20	303333.47	1005453.17	partly cloudy	24.7	Shallow	3	2.2	98.0	10.35	12.9	Y	N	N	N	4, no exceed.
MB13	11/9/2016	8:20	303333.47	1005453.17	partly cloudy	24.7	Middle	12	2.7	97.3	10.28	12.9	Y	N	N	N	4, no exceed.
MB13	11/9/2016	8:20	303333.47	1005453.17	partly cloudy	24.7	Deep	21	3.2	97.1	10.26	12.9	Y	N	N	N	4, no exceed.
BG14	11/9/2016	13:45	302535.73	1006657.10	partly cloudy	24.3	Shallow	3	0.5	98.3	10.28	13.3	N	N	N	N	none
BG14	11/9/2016	13:45	302535.73	1006657.10	partly cloudy	24.3	Middle	12	0.6	98.2	10.28	13.3	N	N	N	N	none
BG14	11/9/2016	13:45	302535.73	1006657.10	partly cloudy	24.3	Deep	21	0.7	98.1	10.27	13.3	N	N	N	N	none
EW14	11/9/2016	13:53	303390.50	1005350.89	partly cloudy	23.5	Shallow	3	1.8	98.7	10.31	13.3	Y	N	N	N	7, no exceed.
EW14	11/9/2016	13:53	303390.50	1005350.89	partly cloudy	23.5	Middle	12	1.6	98.2	10.27	13.3	Y	N	N	N	7, no exceed.
EW14	11/9/2016	13:53	303390.50	1005350.89	partly cloudy	23.5	Deep	19	4.3	98.2	10.27	13.3	Y	N	N	N	7, no exceed.
MB14	11/9/2016	14:05	303431.32	1005297.53	overcast	22.5	Shallow	3	2.2	98.7	10.31	13.3	Y	N	N	N	7, no exceed.
MB14	11/9/2016	14:05	303431.32	1005297.53	overcast	22.5	Middle	11	2.7	98.2	10.27	13.3	Y	N	N	N	7, no exceed.
MB14	11/9/2016	14:05	303431.32	1005297.53	overcast	22.5	Deep	19	3.4	98.1	10.27	13.3	Y	N	N	N	7, no exceed.
BG15	11/11/2016	8:34	302561.75	1006578.67	fog	24.7	Shallow	3	1.1	97.9	10.37	12.7	Y	N	Y	N	7, 8, 9, no exceed
BG15	11/11/2016	8:34	302561.75	1006578.67	fog	24.7	Middle	12	1.3	97.5	10.33	12.7	Y	N	Y	N	7, 8, 9, no exceed
BG15	11/11/2016	8:34	302561.75	1006578.67	fog	24.7	Deep	21	1.3	97.4	10.32	12.7	Y	N	Y	N	7, 8, 9, no exceed
EW15	11/11/2016	8:53	303468.75	1005288.08	fog	12	Shallow	3	1.5	98.2	10.41	12.7	Y	N	Y	N	7, 8, 9, no exceed
EW15	11/11/2016	8:53	303468.75	1005288.08	fog	12	Middle	6	1.4	97.5	10.34	12.7	Y	N	Y	N	7, 8, 9, no exceed
EW15	11/11/2016	8:53	303468.75	1005288.08	fog	12	Deep	9	1.5	97.4	10.33	12.7	Y	N	Y	N	7, 8, 10, no exceed
MB15	11/11/2016	8:47	303454.26	1005201.64	fog	22.6	Shallow	3	2.8	98.3	10.42	12.7	Y	N	Y	N	7, 8, 10, no exceed
MB15	11/11/2016	8:47	303454.26	1005201.64	fog	22.6	Middle	11	1.8	97.6	10.34	12.7	Y	N	Y	N	7, 8, 10, no exceed
_	11/11/2016	-	303454.26	1005201.64	fog	22.6	Deep	19	6.1	97.5	10.34	12.7	Y	N	Y		7, 8, 10, no exceed
	11/11/2016		302507.16	1006715.09	overcast	22.5	Shallow	3	0.3	98.2	10.31	13.2	N	N	N	N	slack tide
	11/11/2016		302507.16	1006715.09	overcast	22.5	Middle	11	0.5	97.9	10.30	13.1	N	N	N	N	slack tide
-	11/11/2016	-	302507.16	1006715.09	overcast	22.5	Deep	19	0.5	97.9	10.29	13.1	N	N	N	N	slack tide
	11/11/2016		303299.30	1005713.03	overcast	25.7	Shallow	3	0.9	97.8	10.23	12.9	N	N	N		No exceed.
2,710	11/11/2010	15.07	3032//.30	1002330.43	3. Croust	23.7	Similow	3	0.7	77.0	10.51	12.7	1 1	1.1	- 1	- 1	1.0 CACCCU.

													Yes/No				
Sta. ID	Date	Time	Coord (N [WSPS])	Coord (E [WSPS])	Weather	Total Water Depth (ft)	Sample	Water Depth (ft)	Turb. (NTU)	DO (%Sat)	DO (mg/L)	Temp (deg C)	Mtl	Shn	Dsc	Odr	Comments
EW16	11/11/2016	13:07	303299.30	1005538.43	overcast	25.7	Middle	12	1.0	97.4	10.28	12.9	N	N	N	N	No exceed.
EW16	11/11/2016	13:07	303299.30	1005538.43	overcast	25.7	Deep	22	0.9	97.4	10.28	12.9	N	N	N	N	No exceed.
MB16	11/11/2016	13:11	303363.20	1005388.73	overcast	23.1	Shallow	3	0.8	98.2	10.36	13.0	N	N	N	N	No exceed.
MB16	11/11/2016	13:11	303363.20	1005388.73	overcast	23.1	Middle	11	0.8	97.8	10.30	13.0	N	N	N	N	No exceed.
MB16	11/11/2016	13:11	303363.20	1005388.73	overcast	23.1	Deep	20	1.0	97.4	10.27	12.9	N	N	N	N	No exceed.

Notes:

NR = not recorded, see DO compliance summary and DO conversion spreadsheet

NS = not sampled, see notes on compliance summary

- 1 = No data taken due to safety concerns (BMPs blocking access), discussed and OK'd by MS/BM.
- 2 = Depths modified to allow for 3 samples in 6 feet of water; no exceedances
- 3 = Too shallow for 3 samples (4 feet), samples at 1 and 2 feet below surface; no exceedances
- 4 = bubbles/foam on surface
- 5 =operations slowed
- 6 = bubbles/foam mostly contained within the boom
- 7 =little foam
- 8 = river appears turbid
- 9 = debris and LWD present throughout area and appears to be coming from upstream visible up to Weyerhaeuser Co.
- 10 = slight delay of backfilling between MB and EW readings

Appendix E Confirmation Sampling Data Report

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Tuesday, February 7, 2017

Cindy Fields Anchor QEA, LLC Tigard 6650 SW Redwood Lane Ste. 333 Portland, OR 97224

RE: MBT-L MTCA INT. Act / 160730-01.02

Enclosed are the results of analyses for work order <u>A6K0424</u>, which was received by the laboratory on 11/14/2016 at 1:17:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Project Number: 160730-01.02 **Reported:**Portland, OR 97224 Project Manager: Cindy Fields 02/07/17 15:06

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMATION	ON	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
CS-01-0-6-11112016	A6K0424-01	Sediment	11/11/16 17:10	11/14/16 13:17
CS-101-0-6-11112016	A6K0424-02	Sediment	11/11/16 17:15	11/14/16 13:17
CS-02-0-6-11112016	A6K0424-03	Sediment	11/11/16 17:40	11/14/16 13:17
CS-03-0-6-11112016	A6K0424-04	Sediment	11/11/16 18:05	11/14/16 13:17
CS-04-0-6-11112016	A6K0424-05	Sediment	11/11/16 18:30	11/14/16 13:17
CS-05-0-6-11112016	A6K0424-06	Sediment	11/11/16 19:00	11/14/16 13:17

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Die	esel and/or	Oil Hydrod	arbons by	NWTPH-Dx wit	h Acid/Sili	ca Gel Cleanup		
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-01-0-6-11112016 (A6K0424-01)			Matrix:	Sediment	Batch: 61	10593		
Diesel	ND	15.1	30.2	mg/kg dry	1	11/16/16 23:03	NWTPH-Dx/SG	
Oil	ND	30.2	60.5	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Reco	overy: 102 %	Limits: 50-150 %	"	"	"	
CS-101-0-6-11112016 (A6K0424-02)			Matrix:	Sediment	Batch: 61	10593		
Diesel	ND	14.6	29.1	mg/kg dry	1	11/16/16 23:45	NWTPH-Dx/SG	
Oil	ND	29.1	58.3	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Reco	overy: 103 %	Limits: 50-150 %	"	"	"	
CS-02-0-6-11112016 (A6K0424-03)			Matrix:	Sediment	Batch: 61	10593		
Diesel	ND	16.1	32.3	mg/kg dry	1	11/17/16 00:05	NWTPH-Dx/SG	
Oil	ND	32.3	64.6	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Reco	overy: 104 %	Limits: 50-150 %	"	"	"	
CS-03-0-6-11112016 (A6K0424-04)			Matrix:	Sediment	Batch: 61	10593		
Diesel	ND	14.2	28.5	mg/kg dry	1	11/17/16 00:26	NWTPH-Dx/SG	
Oil	ND	28.5	56.9	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Reco	overy: 102 %	Limits: 50-150 %	"	"	"	
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: 61	10593		
Diesel	ND	14.2	28.5	mg/kg dry	1	11/17/16 00:47	NWTPH-Dx/SG	
Oil	ND	28.5	57.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Reco	overy: 104 %	Limits: 50-150 %	"	"	"	
CS-05-0-6-11112016 (A6K0424-06)			Matrix:	Sediment	Batch: 61	10593		
Diesel	ND	15.7	31.4	mg/kg dry	1	11/17/16 01:08	NWTPH-Dx/SG	
Oil	ND	31.4	62.8	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rece	overy: 101 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Polych	lorinated	Biphenyls EPA	4 8082A			
			Reporting	5				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-01-0-6-11112016 (A6K0424-01	1)	Matrix: Sediment			Batch: 61	C-0		
Aroclor 1016	ND	2.39	4.78	ug/kg dry	1	11/18/16 09:52	EPA 8082A	
Aroclor 1221	ND	2.39	4.78	"	"	"	"	
Aroclor 1232	ND	2.39	4.78	"	"	"	"	
Aroclor 1242	ND	2.39	4.78	"	"	"	"	
Aroclor 1248	ND	2.39	4.78	"	"	"	"	
Aroclor 1254	ND	2.39	4.78	"	"	"	"	
Aroclor 1260	ND	2.39	4.78	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr	r)	Reco	overy: 101 %	Limits: 44-120 %	"	"	"	
CS-101-0-6-11112016 (A6K0424-0	02)		Matrix:	Sediment	Batch: 61	110683		C-0
Aroclor 1016	ND	2.28	4.55	ug/kg dry	1	11/18/16 11:02	EPA 8082A	
Aroclor 1221	ND	2.28	4.55	"	"	"	"	
Aroclor 1232	ND	2.28	4.55	"	"	"	"	
Aroclor 1242	ND	2.28	4.55	"	"	"	"	
Aroclor 1248	ND	2.28	4.55	"	"	"	"	
Aroclor 1254	ND	2.28	4.55	"	"	"	"	
Aroclor 1260	ND	2.28	4.55	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr	r)	Re	covery: 95 %	Limits: 44-120 %	"	"	"	
CS-02-0-6-11112016 (A6K0424-03	3)		Matrix:	Sediment	Batch: 61	110683		C-0
Aroclor 1016	ND	2.46	4.92	ug/kg dry	1	11/18/16 09:16	EPA 8082A	
Aroclor 1221	ND	2.46	4.92	"	"	"	"	
Aroclor 1232	ND	2.46	4.92	"	"	"	"	
Aroclor 1242	ND	2.46	4.92	"	"	"	"	
Aroclor 1248	ND	2.46	4.92	"	"	"	"	
Aroclor 1254	ND	2.46	4.92	"	"	"	"	
Aroclor 1260	ND	2.46	4.92	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr	r)	Reco	overy: 105 %	Limits: 44-120 %	"	"	"	
CS-03-0-6-11112016 (A6K0424-04	1)		Matrix:	Sediment	Batch: 61	110683		C-0
Aroclor 1016	ND	2.30	4.59	ug/kg dry	1	11/18/16 09:52	EPA 8082A	
Aroclor 1221	ND	2.30	4.59	"	"	"	"	
Aroclor 1232	ND	2.30	4.59	"	"	"	"	
Aroclor 1242	ND	2.30	4.59	"	"	"	"	
Aroclor 1248	ND	2.30	4.59	"	"	"	"	
Aroclor 1254	ND	2.30	4.59	"	"	"	"	
Aroclor 1260	ND	2.30	4.59	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr	r)	Reco	overy: 108 %	Limits: 44-120 %	"	n .	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Day W. Jhum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Polych	niorinated	Biphenyls EP/	4 8082A			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: 61	C-0		
Aroclor 1016	ND	2.28	4.56	ug/kg dry	1	11/18/16 10:27	EPA 8082A	
Aroclor 1221	ND	2.28	4.56	"	"	"	"	
Aroclor 1232	ND	2.28	4.56	"	"	"	"	
Aroclor 1242	ND	2.28	4.56	"	"	"	"	
Aroclor 1248	ND	2.28	4.56	"	"	"	"	
Aroclor 1254	ND	2.28	4.56	"	"	"	"	
Aroclor 1260	ND	2.28	4.56	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		Rec	overy: 106 %	Limits: 44-120 %	"	"	"	
CS-05-0-6-11112016 (A6K0424-06)			Matrix:	Sediment	Batch: 61	10683		C-0
Aroclor 1016	ND	2.43	4.86	ug/kg dry	1	11/18/16 11:02	EPA 8082A	
Aroclor 1221	ND	2.43	4.86	"	"	"	"	
Aroclor 1232	ND	2.43	4.86	"	"	"	"	
Aroclor 1242	ND	2.43	4.86	"	"	"	"	
Aroclor 1248	ND	2.43	4.86	"	"	"	"	
Aroclor 1254	ND	2.43	4.86	"	"	"	"	
Aroclor 1260	ND	2.43	4.86	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		Rec	overy: 110 %	Limits: 44-120 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

			Reporting	_	_			
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-01-0-6-11112016 (A6K0424-01)				Sediment	Batch: 61			
Acenaphthene	ND	1.63	3.27	ug/kg dry	1	11/18/16 13:32	EPA 8270D	
Acenaphthylene	ND	1.63	3.27	"	"	"	"	
Anthracene	ND	1.63	3.27	"	"	"	"	
Benz(a)anthracene	ND	1.63	3.27	"	"	"	"	
Benzo(a)pyrene	ND	2.45	4.89	"	"	"	"	
Benzo(b)fluoranthene	ND	2.45	4.89	"	"	"	"	
Benzo(k)fluoranthene	ND	2.45	4.89	"	"	"	"	
Benzo(g,h,i)perylene	ND	1.63	3.27	"	"	"	"	
Chrysene	ND	1.63	3.27	"	"	"	"	
Dibenz(a,h)anthracene	ND	1.63	3.27	"	"	"	"	
Fluoranthene	ND	1.63	3.27	"	"	"	"	
Fluorene	ND	1.63	3.27	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND	1.63	3.27	"	"	"	"	
l-Methylnaphthalene	ND	3.27	6.52	"	"	m .	"	
2-Methylnaphthalene	ND	3.27	6.52	"	"	m .	"	
Naphthalene	ND	3.27	6.52	"	"	"	"	
Phenanthrene	ND	1.63	3.27	"	"	"	"	
Pyrene	ND	1.63	3.27	"	"	m .	"	
Carbazole	ND	2.45	4.89	"	"	"	"	
1,2-Dichlorobenzene	ND	4.07	8.16	"	"	"	"	
1,4-Dichlorobenzene	ND	4.07	8.16	"	"	"	"	
1,2,4-Trichlorobenzene	ND	4.07	8.16	"	"	"	"	
Dimethylphthalate	ND	16.3	32.7	"	"	"	"	
Diethylphthalate	ND	16.3	32.7	"	"	"	"	
Di-n-butylphthalate	ND	8.17	16.3	"	"	"	"	
Butyl benzyl phthalate	ND	16.3	32.7	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	24.5	48.9	"	"	"	"	
Di-n-octyl phthalate	ND	16.3	32.7	"	"	"	"	
Phenol	ND	3.27	6.52	"	"	"	"	
2-Methylphenol	ND	4.07	8.16	"	"	"	"	
3+4-Methylphenol(s)	ND	4.07	8.16	"	"	"	"	
2,4-Dimethylphenol	ND	8.16	16.3	"	"	"	"	
Pentachlorophenol (PCP)	ND	32.7	65.2	"	"	"	"	
Benzyl alcohol	ND	8.16	16.3	"	"	"	"	
Benzoic acid	ND	204	407	"	"	"	"	
Dibenzofuran	ND	1.63	3.27	"	"	"	"	
N-Nitrosodiphenylamine	ND	4.07	8.16	,,	,,	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Danie June

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D											
			Reporting	}							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
CS-01-0-6-11112016 (A6K0424-01)			Matrix:	Sediment	Batch: 61	10704					
Hexachlorobenzene	ND	1.63	3.27	ug/kg dry	1	"	EPA 8270D				
Surrogate: Nitrobenzene-d5 (Surr)		Re	covery: 80 %	Limits: 37-122 %	"	"	"				
2-Fluorobiphenyl (Surr)			80 %	Limits: 44-115 %	"	"	"				
Phenol-d6 (Surr)			78 %	Limits: 33-122 %	"	"	"				
p-Terphenyl-d14 (Surr)			96 %	Limits: 54-127 %	"	"	"				
2-Fluorophenol (Surr)			75 %	Limits: 35-115 %	"	"	"				
2,4,6-Tribromophenol (Surr)			120 %	Limits: 39-132 %	"	"	"	Q-41			
CS-101-0-6-11112016 (A6K0424-02)			Matrix:	Sediment	Batch: 61	10704					
Acenaphthene	ND	1.55	3.12	ug/kg dry	1	11/18/16 14:44	EPA 8270D				
Acenaphthylene	ND	1.55	3.12	"	"	"	"				
Anthracene	ND	1.55	3.12	"	"	"	"				
Benz(a)anthracene	ND	1.55	3.12	"	"	"	"				
Benzo(a)pyrene	ND	2.34	4.67	"	"	"	"				
Benzo(b)fluoranthene	ND	2.34	4.67	"	"	"	"				
Benzo(k)fluoranthene	ND	2.34	4.67	"	"	"	"				
Benzo(g,h,i)perylene	ND	1.55	3.12	"	"	"	"				
Chrysene	ND	1.55	3.12	"	"	"	"				
Dibenz(a,h)anthracene	ND	1.55	3.12	"	"	"	"				
Fluoranthene	ND	1.55	3.12	"	"	"	"				
Fluorene	ND	1.55	3.12	"	"	"	"				
Indeno(1,2,3-cd)pyrene	ND	1.55	3.12	"	"	"	"				
1-Methylnaphthalene	ND	3.12	6.22	"	"	"	"				
2-Methylnaphthalene	ND	3.12	6.22	"	"	"	"				
Naphthalene	ND	3.12	6.22	"	"	"	"				
Phenanthrene	ND	1.55	3.12	"	"	"	"				
Pyrene	ND	1.55	3.12	"	"	"	"				
Carbazole	ND	2.34	4.67	"	"	"	"				
1,2-Dichlorobenzene	ND	3.89	7.79	"	"	"	"				
1,4-Dichlorobenzene	ND	3.89	7.79	"	"	"	"				
1,2,4-Trichlorobenzene	ND ND	3.89	7.79	"	,,	"	"				
Dimethylphthalate	ND	15.5	31.2	"	"	"	"				
Diethylphthalate	ND ND	15.5	31.2	"	"	"	"				
Di-n-butylphthalate	ND ND	7.80	15.5	"	"	"	"				
J 1				"	,,	"	"				
Butyl benzyl phthalate	ND	15.5	31.2	"	"	"	"				
Bis(2-ethylhexyl)phthalate	ND	23.4	46.7	"	.,	"	"				
Di-n-octyl phthalate	ND ND	15.5 3.12	31.2 6.22	"	"	"	"				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

			Reporting	,				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-101-0-6-11112016 (A6K0424-02)				Sediment	Batch: 61			
2-Methylphenol	ND	3.89	7.79	ug/kg dry	1	"	EPA 8270D	
3+4-Methylphenol(s)	ND	3.89	7.79	"	"	"	"	
2,4-Dimethylphenol	ND	7.79	15.5	"	"	"	"	
Pentachlorophenol (PCP)	ND	31.2	62.2	"	"	"	"	
Benzyl alcohol	ND	7.79	15.5	"	"	"	"	
Benzoic acid	ND	195	389	"	"	"	"	
Dibenzofuran	ND	1.55	3.12	"	"	"	"	
N-Nitrosodiphenylamine	ND	3.89	7.79	"	"	"	"	
Hexachlorobenzene	ND	1.55	3.12	"	"	"	"	
Surrogate: Nitrobenzene-d5 (Surr)			ecovery: 81 %	Limits: 37-122 %	"	"	"	
2-Fluorobiphenyl (Surr)			94 %	Limits: 44-115 %	"	"	"	
Phenol-d6 (Surr)			82 %	Limits: 33-122 %	"	"	"	
p-Terphenyl-d14 (Surr)			97 %	Limits: 54-127 %	"	"	"	
2-Fluorophenol (Surr)			82 %	Limits: 35-115 %	"	"	"	
2,4,6-Tribromophenol (Surr)			132 %	Limits: 39-132 %	"	"	"	Q-41
CS-02-0-6-11112016 (A6K0424-03)			Matrix:	Sediment	Batch: 61	10704		
Acenaphthene	ND	1.68	3.37	ug/kg dry	1	11/18/16 15:20	EPA 8270D	
Acenaphthylene	ND	1.68	3.37	"	"	"	"	
Anthracene	ND	1.68	3.37	"	"	"	"	
Benz(a)anthracene	2.74	1.68	3.37	"	"	"	"	
Benzo(a)pyrene	2.96	2.53	5.05	"	"	"	"	
Benzo(b)fluoranthene	5.29	2.53	5.05	"	"	"	"	M-0
Benzo(k)fluoranthene	ND	2.53	5.05	"	"	"	"	
Benzo(g,h,i)perylene	ND	1.68	3.37	"	"	"	"	
Chrysene	5.86	1.68	3.37	"	"	"	"	M-0
Dibenz(a,h)anthracene	ND	1.68	3.37	"	"	"	"	
Fluoranthene	6.09	1.68	3.37	"	"	"	"	
Fluorene	ND	1.68	3.37	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND	1.68	3.37	"	"	"	"	
1-Methylnaphthalene	ND	3.37	6.73	"	"	"	"	
2-Methylnaphthalene	ND	3.37	6.73	"	"	"	"	
Naphthalene	ND	3.37	6.73	"	"	"	"	
Phenanthrene	3.42	1.68	3.37	"	"	"	"	
Pyrene	5.65	1.68	3.37	"	"	"	"	
Carbazole	ND	2.53	5.05	"	"	"	"	
1,2-Dichlorobenzene	ND	4.21	8.42	"	"	"	"	
1,4-Dichlorobenzene	ND	4.21	8.42	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren June

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D									
			Reporting	5					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
CS-02-0-6-11112016 (A6K0424-03)			Matrix:	Matrix: Sediment		10704			
1,2,4-Trichlorobenzene	ND	4.21	8.42	ug/kg dry	1	"	EPA 8270D		
Dimethylphthalate	ND	16.8	33.7	"	"	"	"		
Diethylphthalate	ND	16.8	33.7	"	"	"	"		
Di-n-butylphthalate	ND	8.44	16.8	"	"	"	"		
Butyl benzyl phthalate	ND	16.8	33.7	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	25.3	50.5	"	"	"	"		
Di-n-octyl phthalate	ND	16.8	33.7	"	"	"	"		
Phenol	ND	3.37	6.73	"	"	"	"		
2-Methylphenol	ND	4.21	8.42	"	"	"	"		
3+4-Methylphenol(s)	ND	4.21	8.42	"	"	"	"		
2,4-Dimethylphenol	ND	8.42	16.8	"	"	"	"		
Pentachlorophenol (PCP)	ND	33.7	67.3	"	"	"	"		
Benzyl alcohol	ND	8.42	16.8	"	"	"	"		
Benzoic acid	ND	211	421	"	"	"	"		
Dibenzofuran	ND	1.68	3.37	"	"	"	"		
N-Nitrosodiphenylamine	ND	4.21	8.42	"	"	"	"		
Hexachlorobenzene	ND	1.68	3.37	"	"	"	"		
Surrogate: Nitrobenzene-d5 (Surr)		Re	covery: 80 %	Limits: 37-122 %	"	"	"		
2-Fluorobiphenyl (Surr)			86 %	Limits: 44-115 %	"	"	"		
Phenol-d6 (Surr)			82 %	Limits: 33-122 %	"	"	"		
p-Terphenyl-d14 (Surr)			92 %	Limits: 54-127 %	"	"	"		
2-Fluorophenol (Surr)			77 %	Limits: 35-115 %	"	"	"		
2,4,6-Tribromophenol (Surr)			129 %	Limits: 39-132 %	"	"	"	Q-41	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Semivolati	le Organic C	Compounds b	y EPA 8270	D		
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-03-0-6-11112016 (A6K0424-04)			Matrix:	Sediment	Batch: 61	10704		
Acenaphthene	ND	1.51	3.04	ug/kg dry	1	11/18/16 15:56	EPA 8270D	
Acenaphthylene	ND	1.51	3.04	"	"	"	"	
Anthracene	ND	1.51	3.04	"	"	"	"	
Benz(a)anthracene	ND	1.51	3.04	"	"	"	"	
Benzo(a)pyrene	2.30	2.28	4.55	"	"	"	"	
Benzo(b)fluoranthene	2.47	2.28	4.55	"	"	"	"	
Benzo(k)fluoranthene	ND	2.28	4.55	"	"	"	"	
Benzo(g,h,i)perylene	ND	1.51	3.04	"	"	"	"	
Chrysene	ND	1.51	3.04	"	"	"	"	
Dibenz(a,h)anthracene	ND	1.51	3.04	"	"	"	"	
Fluoranthene	ND	1.51	3.04	"	"	"	"	
Fluorene	ND	1.51	3.04	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND	1.51	3.04	"	"	"	"	
1-Methylnaphthalene	ND	3.04	6.07	"	"	"	"	
2-Methylnaphthalene	ND	3.04	6.07	"	"	"	"	
Naphthalene	ND	3.04	6.07	"	"	"	"	
Phenanthrene	ND	1.51	3.04	"	"	"	"	
Pyrene	ND	1.51	3.04	"	"	"	"	
Carbazole	ND	2.28	4.55	"	"	"	"	
1,2-Dichlorobenzene	ND	3.79	7.59	"	"	"	"	
1,4-Dichlorobenzene	ND	3.79	7.59	"	"	"	"	
1,2,4-Trichlorobenzene	ND	3.79	7.59	"	"	"	"	
Dimethylphthalate	ND	15.1	30.4	"	"	"	"	
Diethylphthalate	ND	15.1	30.4	"	"	"	"	
Di-n-butylphthalate	ND	7.60	15.1	"	"	"	"	
Butyl benzyl phthalate	ND	15.1	30.4	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	22.8	45.5	"	"	"	"	
Di-n-octyl phthalate	ND	15.1	30.4	"	"	"	"	
Phenol	ND	3.04	6.07	"	"	"	"	
2-Methylphenol	ND	3.79	7.59	"	"	"	"	
3+4-Methylphenol(s)	ND	3.79	7.59	"	"	"	"	
2,4-Dimethylphenol	ND	7.59	15.1	"	"	"	"	
Pentachlorophenol (PCP)	ND	30.4	60.7	"	"	"	"	
Benzyl alcohol	ND	7.59	15.1	"	"	"	"	
Benzoic acid	ND	190	379	"	"	"	"	
Dibenzofuran	ND	1.51	3.04	"	"	"	"	
N-Nitrosodiphenylamine	ND	3.79	7.59	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Danie June

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

	•	Semivoiali	ie Organic	Compounds by	EFA 02/0	עוי		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-03-0-6-11112016 (A6K0424-04)			Matrix:	Sediment	Batch: 61	10704		
Hexachlorobenzene	ND	1.51	3.04	ug/kg dry	1	"	EPA 8270D	
Surrogate: Nitrobenzene-d5 (Surr)		Re	covery: 85 %	Limits: 37-122 %	"	"	"	
2-Fluorobiphenyl (Surr)			99 %	Limits: 44-115 %	"	"	"	
Phenol-d6 (Surr)			84 %	Limits: 33-122 %	"	"	"	
p-Terphenyl-d14 (Surr)			97 %	Limits: 54-127 %	"	"	"	
2-Fluorophenol (Surr)			84 %	Limits: 35-115 %	"	"	"	
2,4,6-Tribromophenol (Surr)			131 %	Limits: 39-132 %	"	"	"	Q-41
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: 61	10704		
Acenaphthene	ND	1.52	3.04	ug/kg dry	1	11/18/16 16:31	EPA 8270D	
Acenaphthylene	ND	1.52	3.04	"	"	"	"	
Anthracene	ND	1.52	3.04	"	"	"	"	
Benz(a)anthracene	ND	1.52	3.04	"	"	"	"	
Benzo(a)pyrene	ND	2.28	4.56	"	"	"	"	
Benzo(b)fluoranthene	ND	2.28	4.56	"	"	"	"	
Benzo(k)fluoranthene	ND	2.28	4.56	"	"	"	"	
Benzo(g,h,i)perylene	ND	1.52	3.04	"	"	"	"	
Chrysene	ND	1.52	3.04	"	"	"	"	
Dibenz(a,h)anthracene	ND	1.52	3.04	"	"	"	"	
Fluoranthene	ND	1.52	3.04	"	"	"	"	
Fluorene	ND	1.52	3.04	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND	1.52	3.04	"	"	"	"	
1-Methylnaphthalene	ND	3.04	6.07	"	"	m .	"	
2-Methylnaphthalene	ND	3.04	6.07	"	"	m .	"	
Naphthalene	ND	3.04	6.07	"	"	"	"	
Phenanthrene	ND	1.52	3.04	"	"	"	"	
Pyrene	ND	1.52	3.04	"	"	"	"	
Carbazole	ND	2.28	4.56	"	"	"	"	
1,2-Dichlorobenzene	ND	3.80	7.60	"	"	"	"	
1,4-Dichlorobenzene	ND	3.80	7.60	"	"	"	"	
1,2,4-Trichlorobenzene	ND	3.80	7.60	"	"	"	"	
Dimethylphthalate	ND	15.2	30.4	"	"	"	"	
Diethylphthalate	ND	15.2	30.4	"	"	"	"	
Di-n-butylphthalate	ND	7.61	15.2	"		"	"	
Butyl benzyl phthalate	ND ND	15.2	30.4	"	,,	"	"	
Bis(2-ethylhexyl)phthalate	ND ND	22.8	45.6	"	,,	"	"	
				"	,,	"	"	
Di-n-octyl phthalate Phenol	ND ND	15.2 3.04	30.4 6.07		,,	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Jun

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Semivolati	le Organic	Compounds by	EPA 8270	D		
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: 61	10704		
2-Methylphenol	ND	3.80	7.60	ug/kg dry	1	"	EPA 8270D	
3+4-Methylphenol(s)	ND	3.80	7.60	"	"	"	"	
2,4-Dimethylphenol	ND	7.60	15.2	"	"	"	"	
Pentachlorophenol (PCP)	ND	30.4	60.7	"	"	"	"	
Benzyl alcohol	ND	7.60	15.2	"	"	"	"	
Benzoic acid	ND	190	380	"	"	"	"	
Dibenzofuran	ND	1.52	3.04	"	"	"	"	
N-Nitrosodiphenylamine	ND	3.80	7.60	"	"	"	"	
Hexachlorobenzene	ND	1.52	3.04	"	"	"	"	
Surrogate: Nitrobenzene-d5 (Surr)		Re	covery: 86 %	Limits: 37-122 %	"	"	"	
2-Fluorobiphenyl (Surr)			91 %	Limits: 44-115 %	"	"	"	
Phenol-d6 (Surr)			86 %	Limits: 33-122 %	"	"	"	
p-Terphenyl-d14 (Surr)			94 %	Limits: 54-127 %	"	"	"	
2-Fluorophenol (Surr)			86 %	Limits: 35-115 %	"	"	"	
2,4,6-Tribromophenol (Surr)			122 %	Limits: 39-132 %	"	"	"	Q-41
S-05-0-6-11112016 (A6K0424-06)			Matrix:	Sediment	Batch: 61	10704		
Acenaphthene	ND	1.60	3.22	ug/kg dry	1	11/18/16 17:07	EPA 8270D	
Acenaphthylene	ND	1.60	3.22	"	"	"	"	
Anthracene	ND	1.60	3.22	"	"	"	"	
Benz(a)anthracene	ND	1.60	3.22	"	"	"	"	
Benzo(a)pyrene	ND	2.41	4.82	"	"	"	"	
Benzo(b)fluoranthene	ND	2.41	4.82	"	"	"	"	
Benzo(k)fluoranthene	ND	2.41	4.82	"	"	"	"	
Benzo(g,h,i)perylene	ND	1.60	3.22	"	"	"	u u	
Chrysene	ND	1.60	3.22	"	"	"	u u	
Dibenz(a,h)anthracene	ND	1.60	3.22	"	"	"	"	
Fluoranthene	ND	1.60	3.22	"	"	"	"	
Fluorene	ND	1.60	3.22	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND	1.60	3.22	"	"	"	"	
1-Methylnaphthalene	ND	3.22	6.42	"	"	"	"	
2-Methylnaphthalene	ND	3.22	6.42	"	"	"	"	
Naphthalene	ND	3.22	6.42	"	"	"	"	
Phenanthrene	ND	1.60	3.22	"	"	"	"	
Pyrene	ND	1.60	3.22	"	"	"	"	
Carbazole	ND	2.41	4.82	"	"	"	"	
1,2-Dichlorobenzene	ND	4.01	8.04	"	"	"	"	
1,4-Dichlorobenzene	ND	4.01	8.04	"	,,	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Ilum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D										
			Reporting	;						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
CS-05-0-6-11112016 (A6K0424-06)			Matrix:	Sediment	Batch: 61	10704				
1,2,4-Trichlorobenzene	ND	4.01	8.04	ug/kg dry	1	"	EPA 8270D			
Dimethylphthalate	ND	16.0	32.2	"	"	"	"			
Diethylphthalate	ND	16.0	32.2	"	"	"	"			
Di-n-butylphthalate	ND	8.05	16.0	"	"	"	"			
Butyl benzyl phthalate	ND	16.0	32.2	"	"	"	"			
Bis(2-ethylhexyl)phthalate	ND	24.1	48.2	"	"	"	"			
Di-n-octyl phthalate	ND	16.0	32.2	"	"	"	"			
Phenol	ND	3.22	6.42	"	"	"	"			
2-Methylphenol	ND	4.01	8.04	"	"	"	"			
3+4-Methylphenol(s)	ND	4.01	8.04	"	"	"	"			
2,4-Dimethylphenol	ND	8.04	16.0	"	"	"	"			
Pentachlorophenol (PCP)	ND	32.2	64.2	"	"	"	"			
Benzyl alcohol	ND	8.04	16.0	"	"	"	"			
Benzoic acid	ND	201	401	"	"	"	"			
Dibenzofuran	ND	1.60	3.22	"	"	"	"			
N-Nitrosodiphenylamine	ND	4.01	8.04	"	"	"	"			
Hexachlorobenzene	ND	1.60	3.22	"	"	"	"			
Surrogate: Nitrobenzene-d5 (Surr)		Red	covery: 72 %	Limits: 37-122 %	"	"	"			
2-Fluorobiphenyl (Surr)			77 %	Limits: 44-115 %	"	"	"			
Phenol-d6 (Surr)			71 %	Limits: 33-122 %	"	"	"			
p-Terphenyl-d14 (Surr)			93 %	Limits: 54-127 %	"	"	"			
2-Fluorophenol (Surr)			71 %	Limits: 35-115 %	"	"	"			
2,4,6-Tribromophenol (Surr)			117 %	Limits: 39-132 %	"	"	"	Q-41		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Tot	al Metals by	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-01-0-6-11112016 (A6K0424-01)			Matrix: S	ediment				
Batch: 6110841								
Antimony	ND	0.305	0.610	mg/kg dry	5	11/30/16 14:45	EPA 6020A	
Arsenic	1.56	0.305	1.22	"	"	"	"	
Cadmium	ND	0.305	0.610	"	"	"	"	
Chromium	4.77	0.610	1.22	"	"	"	"	
Copper	6.23	0.610	1.22	"	"	"	"	
Lead	2.12	0.305	0.610	"	"	"	"	
Mercury	0.0286	0.0244	0.0488	"	"	"	"	
Nickel	6.55	0.610	1.22	"	"	"	"	
Selenium	ND	0.610	1.22	"	"	"	"	
Silver	ND	0.305	0.610	"	"	"	"	
Zinc	31.7	1.22	2.44	"	"	"	"	
CS-101-0-6-11112016 (A6K0424-02)			Matrix: S	ediment				
Batch: 6110841								
Antimony	ND	0.292	0.584	mg/kg dry	5	11/30/16 15:00	EPA 6020A	
Arsenic	1.38	0.292	1.17	"	"	"	"	
Cadmium	ND	0.292	0.584	"	"	"	"	
Chromium	4.03	0.584	1.17	"	"	"	"	
Copper	4.90	0.584	1.17	"	"	"	"	
Lead	1.84	0.292	0.584	"	"	"	"	
Mercury	ND	0.0234	0.0467	"	"	"	"	
Nickel	5.67	0.584	1.17	"	"	"	"	
Selenium	ND	0.584	1.17	"	"	"	"	
Silver	ND	0.292	0.584	"	"	"	"	
Zinc	28.6	1.17	2.34	"	"	"	"	
CS-02-0-6-11112016 (A6K0424-03)			Matrix: S	ediment				
Batch: 6110841								
Antimony	ND	0.327	0.654	mg/kg dry	5	11/30/16 15:04	EPA 6020A	
Arsenic	2.05	0.327	1.31	"	"	"	"	
Cadmium	ND	0.327	0.654	"	"	"	"	
Chromium	5.40	0.654	1.31	"	"	"	"	
Copper	8.07	0.654	1.31	"	"	"	"	
Lead	2.14	0.327	0.654	"	"	"	"	
Mercury	ND	0.0262	0.0523	"	"	"	"	
Nickel	7.28	0.654	1.31	••	"	"	"	
Selenium	ND	0.654	1.31	"	,,	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		<u>Tot</u>	al Metals by	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-02-0-6-11112016 (A6K0424-03)			Matrix: S	ediment				
Silver	ND	0.327	0.654	mg/kg dry	5	"	EPA 6020A	
Zinc	31.9	1.31	2.62	"	"	"	"	
CS-03-0-6-11112016 (A6K0424-04)			Matrix: S	ediment				
Batch: 6110878								
Antimony	ND	0.290	0.580	mg/kg dry	5	11/29/16 12:31	EPA 6020A	
Arsenic	1.51	0.290	1.16	"	"	"	"	
Cadmium	ND	0.290	0.580	"	"	"	"	
Chromium	5.38	0.580	1.16	"	"	"	"	
Copper	23.1	0.580	1.16	**	"	"	"	
Lead	2.00	0.290	0.580	**	"	"	"	
Mercury	ND	0.0232	0.0464	"	"	"	"	
Nickel	7.49	0.580	1.16	"	"	"	"	
Selenium	ND	0.580	1.16	"	"	"	"	
Silver	ND	0.290	0.580	"	"	"	"	
Zinc	31.7	1.16	2.32	"	"	"	"	
CS-04-0-6-11112016 (A6K0424-05)			Matrix: S	ediment				
Batch: 6110878								
Antimony	ND	0.301	0.602	mg/kg dry	5	11/29/16 12:35	EPA 6020A	
Arsenic	1.74	0.301	1.20	"	"	"	"	
Cadmium	ND	0.301	0.602	"	"	"	"	
Chromium	5.95	0.602	1.20	"	"	"	"	
Copper	7.19	0.602	1.20	"	"	"	"	
Lead	2.35	0.301	0.602	"	"	"	"	
Mercury	ND	0.0241	0.0482	"	"	"	"	
Nickel	7.64	0.602	1.20	"	"	"	"	
Selenium	ND	0.602	1.20	"	"	"	"	
Silver	ND	0.301	0.602	"	"	"	"	
Zinc	32.7	1.20	2.41	"	"	"	"	
CS-05-0-6-11112016 (A6K0424-06)			Matrix: S	ediment				
Batch: 6110878								
Antimony	ND	0.308	0.617	mg/kg dry	5	11/29/16 12:42	EPA 6020A	
Arsenic	1.92	0.308	1.23	"	"	"	"	
Cadmium	ND	0.308	0.617	"	"	"	"	
Chromium	6.00	0.617	1.23	"	"	"	"	
Copper	7.58	0.617	1.23	"	"	"	"	
Lead	2.44	0.308	0.617	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)											
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
CS-05-0-6-11112016 (A6K0424-06)			Matrix: \$	Sediment								
Mercury	ND	0.0247	0.0493	mg/kg dry	5	"	EPA 6020A					
Nickel	9.66	0.617	1.23	"	"	"	"					
Selenium	ND	0.617	1.23	"	"	"	"					
Silver	ND	0.308	0.617	"	"	"	"					
Zinc	38.1	1.23	2.47	"	"	"	"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Conventional Chemistry Parameters									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
CS-01-0-6-11112016 (A6K0424-01)			Matrix: S	Sediment					
Batch: 6110623									
Total Organic Carbon	0.071	0.010	0.020	% by Weight	1	11/17/16 13:30	PSEP/SM 5310B MOD		
Batch: 6110628									
Total Solids	79.4	0.100	0.100	"	"	11/17/16 08:10	PSEP 1986		
CS-101-0-6-11112016 (A6K0424-02)			Matrix: S	Sediment					
Batch: 6110623									
Total Organic Carbon	0.099	0.010	0.020	% by Weight	1	11/17/16 13:30	PSEP/SM 5310B MOD		
Batch: 6110628	02.7	0.100	0.100	"	"	11/17/17/00 10	DOED 1007		
Total Solids	82.5	0.100	0.100		"	11/17/16 08:10	PSEP 1986		
CS-02-0-6-11112016 (A6K0424-03)			Matrix: S	Sediment					
Batch: 6110623									
Total Organic Carbon	0.032	0.010	0.020	% by Weight	1	11/17/16 13:30	PSEP/SM 5310B MOD		
Batch: 6110628	75.5	0.100	0.100	"	,,	11/17/17 00.10	DCED 1007		
Total Solids	75.5	0.100				11/17/16 08:10	PSEP 1986		
CS-03-0-6-11112016 (A6K0424-04)			Matrix: S	Sediment					
Batch: 6110623	0.022	0.010	0.020	0/1 33/:14	1	11/17/16 12 20	DCED/GM 5210D		
Total Organic Carbon	0.033	0.010	0.020	% by Weight	1	11/17/16 13:30	PSEP/SM 5310B MOD		
Batch: 6110628 Total Solids	84.9	0.100	0.100	"	"	11/17/16 08:10	PSEP 1986		
	04.7	0.100				11/1//10 00.10	1511 1700		
CS-04-0-6-11112016 (A6K0424-05)			Matrix: S	eaiment					
Batch: 6110623	0.022	0.010	0.020	% by Weight	1	11/17/16 13:30	PSEP/SM 5310B		
Total Organic Carbon Batch: 6110628	0.032	0.010	0.020	% by weight	1	11/1 // 10 13:30	MOD		
Total Solids	83.0	0.100	0.100	,,	"	11/17/16 08:10	PSEP 1986		
	05.0	0.100		adimont		11/1//10 00.10	1021 1700		
CS-05-0-6-11112016 (A6K0424-06)			Matrix: S	euiment					
Batch: 6110623 Total Organic Carbon	0.10	0.010	0.020	% by Weight	1	11/17/16 13:30	PSEP/SM 5310B MOD		
Batch: 6110628									
Total Solids	78.0	0.100	0.100	"	"	11/17/16 08:10	PSEP 1986		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Grain Size by ASTM D 422m/PSET Parameters												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
CS-01-0-6-11112016 (A6K0424-01)			Matrix: S	ediment	Batch: 61	20183						
Gravel (>2.00mm)	8.85			% of Total	1	12/02/16 15:12	ASTM D 422m	GS-01				
Percent Retained 4.75 mm sieve	4.54			"	"	"	"	GS-01				
(#4)				,,	"			~ ~ ~				
Percent Retained 2.00 mm sieve	4.31			"	"	"	"	GS-01				
(#10) Sand (0.063mm - 2.00mm)	89.1			"	"	"	"	GS-01				
Percent Retained 0.85 mm sieve	8.24			"	"	"	"	GS-01 GS-01				
(#20)	0.24							05-01				
Percent Retained 0.425 mm sieve	19.6			•	"	"	"	GS-01				
(#40)												
Percent Retained 0.250 mm sieve	40.6			"	"	"	"	GS-01				
(#60)												
Percent Retained 0.150 mm sieve	18.4			"	"	"	"	GS-01				
(#100) Percent Retained 0.106 mm sieve	1.42			"	,,	"	"	GS-01				
(#140)	1.42							U3-01				
Percent Retained 0.075 mm sieve	0.63			"	"	"	"	GS-01				
(#200)												
Percent Retained 0.063 mm sieve	0.18			"	"	"	"	GS-01				
(#230)												
Silt $(0.005 \text{mm} < 0.063 \text{mm})$	1.70			"	"	"	"	GS-01				
Clay (< 0.005 mm)	0.30			"	"	"	"	GS-01				
CS-101-0-6-11112016 (A6K0424-02)			Matrix: S	ediment	Batch: 61	20183						
Gravel (>2.00mm)	11.6			% of Total	1	12/02/16 15:12	ASTM D 422m	GS-01				
Percent Retained 4.75 mm sieve	8.78			"	"	"	"	GS-01				
(#4)				,,	"	,,	,,					
Percent Retained 2.00 mm sieve	2.86			"	"	"	"	GS-01				
(#10) Sand (0.063mm - 2.00mm)	86.7			"	"	"	"	GS-01				
Percent Retained 0.85 mm sieve	6.82			"	"	"	"	GS-01 GS-01				
(#20)	0.02							05-01				
Percent Retained 0.425 mm sieve	18.7			"	"	"	"	GS-01				
(#40)												
Percent Retained 0.250 mm sieve	41.9			••	"	"	"	GS-01				
(#60)				_			_					
Percent Retained 0.150 mm sieve (#100)	17.2			"	"	"	"	GS-01				
Percent Retained 0.106 mm sieve (#140)	1.37			"	"	"	"	GS-01				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

The state of the s

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Grain Size	e by ASTM D	422m/PSET	Parameters	5		
	_		Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-101-0-6-11112016 (A6K0424-02)			Matrix: S	ediment	Batch: 6120183			
Percent Retained 0.075 mm sieve (#200)	0.58			% of Total	1	"	ASTM D 422m	GS-01
Percent Retained 0.063 mm sieve (#230)	0.14			"	"	"	"	GS-01
Silt (0.005mm < 0.063mm)	1.30			"	"	"	"	GS-01
Clay (< 0.005 mm)	0.60			"	"	"	"	GS-01
CS-02-0-6-11112016 (A6K0424-03)			Matrix: S	ediment	Batch: 61	20183		
Gravel (>2.00mm)	1.66			% of Total	1	12/02/16 15:12	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	0.29			"	"	"	"	GS-01
Percent Retained 2.00 mm sieve (#10)	1.37			"	"	"	"	GS-01
Sand (0.063mm - 2.00mm)	97.1			"	"	"	"	GS-01
Percent Retained 0.85 mm sieve (#20)	5.24			"	"	"	"	GS-01
Percent Retained 0.425 mm sieve (#40)	23.0			"	"	"	"	GS-01
Percent Retained 0.250 mm sieve (#60)	50.6			"	"	"	"	GS-01
Percent Retained 0.150 mm sieve (#100)	16.8			"	"	"	"	GS-01
Percent Retained 0.106 mm sieve (#140)	0.98			"	"	"	"	GS-01
Percent Retained 0.075 mm sieve (#200)	0.35			"	"	"	"	GS-01
Percent Retained 0.063 mm sieve (#230)	0.08			"	,,	"	"	GS-01
Silt (0.005mm < 0.063mm)	0.80			,,	,,		"	GS-01 GS-01
Clay (< 0.005 mm)	0.40							GS-01
CS-03-0-6-11112016 (A6K0424-04)			Matrix: S		Batch: 61			
Gravel (>2.00mm)	29.6			% of Total	1	12/02/16 15:12	ASTM D 422m	GS-01
Percent Retained 4.75 mm sieve (#4)	12.0			"	"	"	"	GS-01
Percent Retained 2.00 mm sieve (#10)	17.6			"	"	"	"	GS-01
Sand (0.063mm - 2.00mm)	66.9			"	"	"	"	GS-01
Percent Retained 0.85 mm sieve (#20)	13.4			"	"	"	"	GS-01
Percent Retained 0.425 mm sieve (#40)	20.5			"	"	"	"	GS-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem June

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

		Grain Siz	e by ASTM	D 422m/PSET	Parameters	S		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-03-0-6-11112016 (A6K0424-04)			Matrix:	Sediment	Batch: 61	20183		
Percent Retained 0.250 mm sieve	22.7			% of Total	1	"	ASTM D 422m	GS-0
(#60)				,,	,,	"	"	~~ ^
Percent Retained 0.150 mm sieve	8.42			"	"	"	"	GS-0
(#100) Percent Retained 0.106 mm sieve	1.08			"	"	"	"	GS-0
(#140)	1.00							G5 0
Percent Retained 0.075 mm sieve	0.62			"	"	"	"	GS-0
(#200)								
Percent Retained 0.063 mm sieve	0.18			"	"	"	"	GS-0
(#230) Sitt (0.005	2.70			"	"	"	"	GS-0
Silt (0.005mm < 0.063mm)	2.70 0.80			,,	"	"	"	GS-0 GS-0
Clay (< 0.005 mm)	0.00							U3-0
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: 61			
Gravel (>2.00mm)	15.5			% of Total	1	12/02/16 15:12	ASTM D 422m	GS-0
Percent Retained 4.75 mm sieve	9.59			"	"	"	"	GS-0
(#4) Percent Retained 2.00 mm sieve	5.89			,,	"	"	"	GS-0
(#10)	5.09							U3-0
Sand (0.063mm - 2.00mm)	81.7			"	"	"	"	GS-0
Percent Retained 0.85 mm sieve	6.77			"	"	"	"	GS-0
(#20)								
Percent Retained 0.425 mm sieve	19.7			"	"	"	"	GS-0
(#40)				,,	"	"	"	~~ ^
Percent Retained 0.250 mm sieve	36.0			"	"	"	"	GS-0
(#60) Percent Retained 0.150 mm sieve	16.7			"	"	"	"	GS-0
(#100)	10.7							G5-0
Percent Retained 0.106 mm sieve	1.57			"	"	"	"	GS-0
(#140)								
Percent Retained 0.075 mm sieve	0.76			"	"	"	"	GS-0
(#200)	0.10			,,	,,	"	"	66.0
Percent Retained 0.063 mm sieve (#230)	0.19						"	GS-0
Silt (0.005mm < 0.063mm)	2.40			"	"	"	"	GS-0
Clay (< 0.005 mm)	0.40			"	"	"	"	GS-0
CS-05-0-6-11112016 (A6K0424-06)			Matrix	Sediment	Batch: 61	20183		
Gravel (>2.00mm)	1.40		uu.i.x.	% of Total	1	12/02/16 15:12	ASTM D 422m	GS-0
Percent Retained 4.75 mm sieve	0.96			76 01 10tai	1 "	12/02/10 13.12	ASTM D 422III	GS-0 GS-0
(#4)	0.70							05-0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Jun

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

Grain Size by ASTM D 422m/PSET Parameters											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
CS-05-0-6-11112016 (A6K0424-06)				Sediment	Batch: 6120183						
Percent Retained 2.00 mm sieve	0.44			% of Total	1	"	ASTM D 422m	GS-0			
(#10)											
Sand (0.063mm - 2.00mm)	97.6			"	"	"	"	GS-0			
Percent Retained 0.85 mm sieve	1.87			"	"	"	"	GS-0			
(#20)											
Percent Retained 0.425 mm sieve	11.7			"	"	"	"	GS-0			
(#40)											
Percent Retained 0.250 mm sieve	50.6			"	"	"	"	GS-0			
(#60)											
Percent Retained 0.150 mm sieve	29.4			"	"	"	"	GS-0			
(#100)											
Percent Retained 0.106 mm sieve	2.91			"	"	"	"	GS-0			
(#140)											
Percent Retained 0.075 mm sieve	0.95			"	"	"	"	GS-0			
(#200)											
Percent Retained 0.063 mm sieve	0.16			"	"	"	"	GS-0			
(#230)											
Silt $(0.005 \text{mm} < 0.063 \text{mm})$	1.00			"	"	"	"	GS-0			
Clay (< 0.005 mm)	0.20			"	"	"	"	GS-0			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Project Number: 160730-01.02 **Reported:**Portland, OR 97224 Project Manager: Cindy Fields 02/07/17 15:06

ANALYTICAL SAMPLE RESULTS

			Percen	t Dry Weight				Percent Dry Weight														
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes														
CS-01-0-6-11112016 (A6K0424-01)			Matrix:	Sediment	Batch: 61	10628																
% Solids	79.4	1.00	1.00	% by Weight	1	11/17/16 08:10	EPA 8000C															
CS-101-0-6-11112016 (A6K0424-02)			Matrix:	Sediment	Batch: 61	10628																
% Solids	82.5	1.00	1.00	% by Weight	1	11/17/16 08:10	EPA 8000C															
CS-02-0-6-11112016 (A6K0424-03)			Matrix:	Sediment	Batch: 61	10628																
% Solids	75.5	1.00	1.00	% by Weight	1	11/17/16 08:10	EPA 8000C															
CS-03-0-6-11112016 (A6K0424-04)			Matrix:	Sediment	Batch: 61	10628																
% Solids	84.9	1.00	1.00	% by Weight	1	11/17/16 08:10	EPA 8000C															
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: 61	10628																
% Solids	83.0	1.00	1.00	% by Weight	1	11/17/16 08:10	EPA 8000C															
CS-05-0-6-11112016 (A6K0424-06)			Matrix: Sediment		Batch: 61	10628																
% Solids	78.0	1.00	1.00	% by Weight	1	11/17/16 08:10	EPA 8000C															

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

Analytical Resources, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

			Wet	Chemistry				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-01-0-6-11112016 (A6K0424-01)			Matrix:	Sediment	Batch: BE	K0477		
Batch: BEK0477								
Sulfide	ND		1.23	mg/kg dry	1	11/18/16 10:52	SM 4500-S2 D-00	J
Batch: BEK0506								
Ammonia-N	ND		0.49	mg/kg NH3-N dry	, "	11/18/16 13:53	SM 4500-NH3 H-97	Ţ
CS-101-0-6-11112016 (A6K0424-02)			Matrix:	Sediment	Batch: BE	K0477		
Batch: BEK0477								
Sulfide	ND		1.25	mg/kg dry	1	11/18/16 10:53	SM 4500-S2 D-00	U
Batch: BEK0506								
Ammonia-N	ND		0.47	mg/kg NH3-N dry	, "	11/18/16 13:56	SM 4500-NH3 H-97	U
CS-02-0-6-11112016 (A6K0424-03)			Matrix:	Sediment	Batch: BE	K0477		
Batch: BEK0477								
Sulfide	ND		1.22	mg/kg dry	1	11/18/16 10:53	SM 4500-S2 D-00	Ţ
Batch: BEK0506								
Ammonia-N	ND		0.47	mg/kg NH3-N dry	, "	11/18/16 13:57	SM 4500-NH3 H-97	U
CS-03-0-6-11112016 (A6K0424-04)			Matrix:	Sediment	Batch: BE	K0477		
Batch: BEK0477								
Sulfide	ND		1.32	mg/kg dry	1	11/18/16 10:54	SM 4500-S2 D-00	U
Batch: BEK0506								
Ammonia-N	ND		0.50	mg/kg NH3-N dry	, "	11/18/16 13:59	SM 4500-NH3 H-97	Ţ
CS-04-0-6-11112016 (A6K0424-05)			Matrix:	Sediment	Batch: BE	K0477		
Batch: BEK0477								
Sulfide	ND		1.24	mg/kg dry	1	11/18/16 10:54	SM 4500-S2 D-00	U
Batch: BEK0506								
Ammonia-N	ND		0.45	mg/kg NH3-N dry	, "	11/18/16 14:00	SM 4500-NH3 H-97	Ţ
CS-05-0-6-11112016 (A6K0424-06)			Matrix:	Sediment	Batch: BE	K0477		
Batch: BEK0477								
Sulfide	ND		1.30	mg/kg dry	1	11/18/16 10:54	SM 4500-S2 D-00	Ţ
Batch: BEK0506								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

Analytical Resources, Inc.

ANALYTICAL SAMPLE RESULTS (Subcontracted)

			Wet Che	emistry				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CS-05-0-6-11112016 (A6K0424-06)			Matrix: Sec	diment	Batch: BE	K0506		
Ammonia-N	ND		0.49 mg	g/kg NH3-N dry	1	11/18/16 14:12	SM 4500-NH3 H-97	U

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Acid/Silica Gel Cleanup													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 6110593 - EPA 3546	(Fuels) w/	Silica Ge	el+Acid (N\	WTPH)			Sed	iment					
Blank (6110593-BLK1)				Prep	oared: 11/	15/16 16:10	Analyzed:	11/16/16 22	2:22				
NWTPH-Dx/SG													
Diesel	ND	11.4	25.0	mg/kg wet	1								
Oil	ND	22.7	50.0	"	"								
Surr: o-Terphenyl (Surr)	Recovery: 104 % Limits: 50-150 % Dilution: 1x												
LCS (6110593-BS1)	Prepared: 11/15/16 16:10 Analyzed: 11/16/16 22:43												
NWTPH-Dx/SG													
Diesel	112	12.5	25.0	mg/kg wet	1	125		90	76-115%				
Surr: o-Terphenyl (Surr)		Rec	overy: 103 %	Limits: 50-	150 %	Dilı	ıtion: 1x						
Duplicate (6110593-DUP1)				Prep	oared: 11/	15/16 16:10	Analyzed:	11/16/16 23	3:24				
QC Source Sample: CS-01-0-6-111	112016 (A6K04	24-01)											
NWTPH-Dx/SG													
Diesel	ND	15.1	30.2	mg/kg dry	1		ND				30%		
Oil	ND	30.2	60.4	"	"		ND				30%		
Surr: o-Terphenyl (Surr)		Rec	overy: 101 %	Limits: 50-	150 %	Dilı	ıtion: 1x						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	orinated Bi	phenyls	EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110683 - EPA 3546							Sed	iment				
Blank (6110683-BLK1)				Prep	pared: 11/	17/16 13:41	Analyzed:	11/18/16 (09:16			C-07
EPA 8082A												
Aroclor 1016	ND	1.82	3.64	ug/kg wet	1							
Aroclor 1221	ND	1.82	3.64	"	"							
Aroclor 1232	ND	1.82	3.64	"	"							
Aroclor 1242	ND	1.82	3.64	"	"							
Aroclor 1248	ND	1.82	3.64	"	"							
Aroclor 1254	ND	1.82	3.64	"	"							
Aroclor 1260	ND	1.82	3.64	"	"							
Surr: Decachlorobiphenyl (Surr)		R	ecovery: 98 %	Limits: 44-	120 %	Dili	ution: 1x					
LCS (6110683-BS1)				Prep	pared: 11/	17/16 13:41	Analyzed:	11/18/16 (09:34			C-07
EPA 8082A												
Aroclor 1016	173	2.00	4.00	ug/kg wet	1	250		69	47-134%			
Aroclor 1260	203	2.00	4.00	"	"	"		81	53-140%			
Surr: Decachlorobiphenyl (Surr)		R	ecovery: 99 %	Limits: 44-	120 %	Dili	ution: 1x					
Duplicate (6110683-DUP1)				Prep	oared: 11/	17/16 13:41	Analyzed:	11/18/16	10:27			C-07
QC Source Sample: CS-01-0-6-1111	2016 (A6K04	24-01)										
EPA 8082A												
Aroclor 1016	ND	2.35	4.69	ug/kg dry	1		ND				30%	
Aroclor 1221	ND	2.35	4.69	"	"		ND				30%	
Aroclor 1232	ND	2.35	4.69	"	"		ND				30%	
Aroclor 1242	ND	2.35	4.69	"	"		ND				30%	
Aroclor 1248	ND	2.35	4.69	"	"		ND				30%	
Aroclor 1254	ND	2.35	4.69	"	"		ND				30%	
Aroclor 1260	ND	2.35	4.69	"	"		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Red	covery: 101 %	Limits: 44-	120 %	Dill	ution: 1x					
Matrix Spike (6110683-MS1)				Prep	oared: 11/	17/16 13:41	Analyzed:	11/18/16	11:38			C-07
QC Source Sample: CS-05-0-6-1111	2016 (A6K04	24-06)										
EPA 8082A												
Aroclor 1016	203	2.41	4.81	ug/kg dry	1	301	ND	68	47-134%			
Aroclor 1260	238	2.41	4.81	"	"	"	ND	79	53-140%			
Surr: Decachlorobiphenyl (Surr)		Rei	covery: 107 %	Limits: 44-	120 %	Dili	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daum Ilum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Semivolatile	Organic C	ompou	nas by EP/	4 82/UD					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110704 - EPA 3546							Sed	iment				
Blank (6110704-BLK1)				Prej	oared: 11/	18/16 07:09	Analyzed:	11/18/16 12	:20			
EPA 8270D												
Acenaphthene	ND	1.25	2.50	ug/kg wet	1							
Acenaphthylene	ND	1.25	2.50	"	"							
Anthracene	ND	1.25	2.50	"	"							
Benz(a)anthracene	ND	1.25	2.50	"	"							
Benzo(a)pyrene	ND	1.87	3.75	"	"							
Benzo(b)fluoranthene	ND	1.87	3.75	"	"							
Benzo(k)fluoranthene	ND	1.87	3.75	"	"							
Benzo(g,h,i)perylene	ND	1.25	2.50	"	"							
Chrysene	ND	1.25	2.50	"	"							
Dibenz(a,h)anthracene	ND	1.25	2.50	"	"							
Fluoranthene	ND	1.25	2.50	"	"							
Fluorene	ND	1.25	2.50	"	"							
Indeno(1,2,3-cd)pyrene	ND	1.25	2.50	"	"							
1-Methylnaphthalene	ND	2.50	5.00	"	"							
2-Methylnaphthalene	ND	2.50	5.00	"	"							
Naphthalene	ND	2.50	5.00	"	"							
Phenanthrene	ND	1.25	2.50	"	"							
Pyrene	ND	1.25	2.50	"	"							
Carbazole	ND	1.87	3.75	"	"							
1,2-Dichlorobenzene	ND	3.12	6.25	"	"							
1,4-Dichlorobenzene	ND	3.12	6.25	"	"							
1,2,4-Trichlorobenzene	ND	3.12	6.25	"	"							
Dimethylphthalate	ND	12.5	25.0	"	"							
Diethylphthalate	ND	12.5	25.0	"	"							
Di-n-butylphthalate	ND	6.26	12.5	"	"							
Butyl benzyl phthalate	ND	12.5	25.0	"	"							
Bis(2-ethylhexyl)phthalate	ND	18.7	37.5	"	"							
Di-n-octyl phthalate	ND	12.5	25.0	"	"							
Phenol	ND	2.50	5.00	"	"							
2-Methylphenol	ND	3.12	6.25	"	"							
3+4-Methylphenol(s)	ND	3.12	6.25	"	"							
2,4-Dimethylphenol	ND	6.25	12.5	"	"							
Pentachlorophenol (PCP)	ND	25.0	50.0	"	"							
Benzyl alcohol	ND	6.25	12.5	"	,,							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Jun

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Semivolatile	Organic C	ompou	nas by EP/	4 82/UD					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110704 - EPA 3546							Sed	iment				
Blank (6110704-BLK1)				Prep	oared: 11/	18/16 07:09	Analyzed:	11/18/16 12	2:20			
EPA 8270D												
Benzoic acid	ND	157	312	ug/kg wet	"							
Dibenzofuran	ND	1.25	2.50	"	"							
N-Nitrosodiphenylamine	ND	3.12	6.25	"	"							
Hexachlorobenzene	ND	1.25	2.50	"	"							
Surr: Nitrobenzene-d5 (Surr)		R	ecovery: 84 %	Limits: 37-	122 %	Dilı	tion: 1x					
2-Fluorobiphenyl (Surr)			96 %	44-	115 %		"					
Phenol-d6 (Surr)			83 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			99 %	54-	127 %		"					
2-Fluorophenol (Surr)			87 %	35-	115 %		"					
2,4,6-Tribromophenol (Surr)			120 %	39-	132 %		"					Q-4
LCS (6110704-BS1)				Prep	oared: 11/	18/16 07:09	Analyzed:	11/18/16 12	2:56			
EPA 8270D												
Acenaphthene	481	1.33	2.67	ug/kg wet	1	533		90	40-122%			
Acenaphthylene	462	1.33	2.67	"	"	"		87	32-132%			
Anthracene	500	1.33	2.67	"	"	"		94	47-123%			
Benz(a)anthracene	544	1.33	2.67	"	"	"		102	49-126%			
Benzo(a)pyrene	539	2.00	4.00	"	"	"		101	45-129%			
Benzo(b)fluoranthene	553	2.00	4.00	"	"	"		104	45-132%			
Benzo(k)fluoranthene	561	2.00	4.00	"	"	"		105	47-132%			
Benzo(g,h,i)perylene	579	1.33	2.67	"	"	"		109	43-134%			
Chrysene	543	1.33	2.67	"	"	"		102	50-124%			
Dibenz(a,h)anthracene	566	1.33	2.67	"	"	"		106	45-134%			
Fluoranthene	538	1.33	2.67	"	"	"		101	50-127%			
Fluorene	460	1.33	2.67	"	"	"		86	43-125%			
Indeno(1,2,3-cd)pyrene	544	1.33	2.67	"	"	"		102	45-133%			
1-Methylnaphthalene	455	2.67	5.33	"	"	"		85	40-120%			
2-Methylnaphthalene	459	2.67	5.33	"	"	"			38-122%			
Naphthalene	442	2.67	5.33	"	"	"			35-123%			
Phenanthrene	477	1.33	2.67	"	"	"		89	50-121%			
Pyrene	514	1.33	2.67	"	"	"			47-127%			
Carbazole	537	2.00	4.00	"	"	"		101	50-122%			
1,2-Dichlorobenzene	442	3.33	6.67	"	"	"			33-120%			
1,4-Dichlorobenzene	450	3.33	6.67	"	"	"		84	31-120%			
1,2,4-Trichlorobenzene	480	3.33	6.67	,,	,,	,,		90	34-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Ihrm

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Semivolatile	Organic Co	Jiipou	iius by EP/	4 02/00					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110704 - EPA 3546							Sec	liment				
LCS (6110704-BS1)				Prep	ared: 11/	18/16 07:09	Analyzed:	11/18/16 12	2:56			
EPA 8270D												
Dimethylphthalate	514	13.3	26.7	ug/kg wet	"	"		96	48-124%			
Diethylphthalate	504	13.3	26.7	"	"	"		95	50-124%			
Di-n-butylphthalate	540	6.68	13.3	"	"	"		101	51-128%			
Butyl benzyl phthalate	570	13.3	26.7	"	"	"		107	48-132%			
Bis(2-ethylhexyl)phthalate	551	20.0	40.0	"	"	"		103	51-133%			
Di-n-octyl phthalate	548	13.3	26.7	"	"	"		103	44-140%			
Phenol	543	2.67	5.33	"	"	"		102	34-120%			
2-Methylphenol	507	3.33	6.67	"	"	"		95	32-122%			
3+4-Methylphenol(s)	511	3.33	6.67	"	"	"		96	34-120%			
2,4-Dimethylphenol	513	6.67	13.3	"	"	"		96	30-127%			
Pentachlorophenol (PCP)	565	26.7	53.3	"	"	"		106	25-133%			
Benzyl alcohol	497	6.67	13.3	"	"	"		93	29-122%			
Benzoic acid	366	167	333	"	"	1070		34	5-140%			
Dibenzofuran	474	1.33	2.67	"	"	533		89	44-120%			
N-Nitrosodiphenylamine	503	3.33	6.67	"	"	"		94	38-127%			
Hexachlorobenzene	523	1.33	2.67	"	"	"		98	44-122%			
Surr: Nitrobenzene-d5 (Surr)		R	ecovery: 86 %	Limits: 37-1	22 %	Dilı	ıtion: 1x					
2-Fluorobiphenyl (Surr)			91 %	44-1	15 %		"					
Phenol-d6 (Surr)			106 %	33-1	22 %		"					
p-Terphenyl-d14 (Surr)			115 %	54-1	27 %		"					
2-Fluorophenol (Surr)			95 %	35-1	15 %		"					
2,4,6-Tribromophenol (Surr)			125 %	39-1	32 %		"					Q-41
Duplicate (6110704-DUP1)				Prep	ared: 11/	18/16 07:09	Analyzed:	11/18/16 14	4:08			
QC Source Sample: CS-01-0-6-1111	2016 (A6K04	24-01)										
EPA 8270D												
Acenaphthene	ND	1.63	3.27	ug/kg dry	1		ND				30%	
Acenaphthylene	ND	1.63	3.27	"	"		ND				30%	
Anthracene	ND	1.63	3.27	"	"		ND				30%	
Benz(a)anthracene	ND	1.63	3.27	"	"		ND				30%	
Benzo(a)pyrene	2.78	2.45	4.90	"	"		ND				30%	
Benzo(b)fluoranthene	3.01	2.45	4.90	"	"		ND				30%	
Benzo(k)fluoranthene	ND	2.45	4.90	"	"		ND				30%	
Benzo(g,h,i)perylene	ND	1.63	3.27	"	"		ND				30%	
Chrysene	ND	1.63	3.27	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Semivolatile	J								
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110704 - EPA 3546							Sec	liment				
Duplicate (6110704-DUP1)				Pre	pared: 11/	18/16 07:09	Analyzed:	11/18/16 14	:08			
QC Source Sample: CS-01-0-6-11112	016 (A6K04	24-01)										
EPA 8270D												
Dibenz(a,h)anthracene	ND	1.63	3.27	ug/kg dry	"		ND				30%	
Fluoranthene	ND	1.63	3.27	"	"		ND				30%	
Fluorene	ND	1.63	3.27	"	"		ND				30%	
Indeno(1,2,3-cd)pyrene	ND	1.63	3.27	"	"		ND				30%	
1-Methylnaphthalene	ND	3.27	6.53	"	"		ND				30%	
2-Methylnaphthalene	ND	3.27	6.53	"	"		ND				30%	
Naphthalene	ND	3.27	6.53	"	"		ND				30%	
Phenanthrene	ND	1.63	3.27	"	"		ND				30%	
Pyrene	ND	1.63	3.27	"	"		ND				30%	
Carbazole	ND	2.45	4.90	"	"		ND				30%	
1,2-Dichlorobenzene	ND	4.08	8.17	"	"		ND				30%	
1,4-Dichlorobenzene	ND	4.08	8.17	"	"		ND				30%	
1,2,4-Trichlorobenzene	ND	4.08	8.17	"	"		ND				30%	
Dimethylphthalate	ND	16.3	32.7	"	"		ND				30%	
Diethylphthalate	ND	16.3	32.7	"	"		ND				30%	
Di-n-butylphthalate	ND	8.18	16.3	"	"		ND				30%	
Butyl benzyl phthalate	ND	16.3	32.7	**	"		ND				30%	
Bis(2-ethylhexyl)phthalate	ND	24.5	49.0	"	"		ND				30%	
Di-n-octyl phthalate	ND	16.3	32.7	**	"		ND				30%	
Phenol	ND	3.27	6.53	"	"		ND				30%	
2-Methylphenol	ND	4.08	8.17	"	"		ND				30%	
3+4-Methylphenol(s)	ND	4.08	8.17	"	"		ND				30%	
2,4-Dimethylphenol	ND	8.17	16.3	"	"		ND				30%	
Pentachlorophenol (PCP)	ND	32.7	65.3	"	"		ND				30%	
Benzyl alcohol	ND	8.17	16.3	"	"		ND				30%	
Benzoic acid	ND	205	408	"	"		ND				30%	
Dibenzofuran	ND	1.63	3.27	"	"		ND				30%	
N-Nitrosodiphenylamine	ND	4.08	8.17	"	"		ND				30%	
Hexachlorobenzene	ND	1.63	3.27	"	"		ND				30%	
Surr: Nitrobenzene-d5 (Surr)	1110		ecovery: 78 %	Limits: 37	-122 %		ution: Ix				3070	
2-Fluorobiphenyl (Surr)		K	87 %		-122 % -115 %	Dill	uton: 1x					
2-r tuorootphenyt (Surr) Phenol-d6 (Surr)			79 %		-113 %		"					
p-Terphenyl-d14 (Surr)			91 %		-127 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Jum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

		s	emivolatile	Organic C	ompou	nds by EP	A 8270D					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110704 - EPA 3546							Sec	diment				
Duplicate (6110704-DUP1)				Prep	ared: 11/	18/16 07:09	Analyzed:	11/18/16 14	:08			
QC Source Sample: CS-01-0-6-1111	2016 (A6K04	24-01)										
EPA 8270D												
Surr: 2-Fluorophenol (Surr)		Re	covery: 78 %	Limits: 35-	115 %	Dil	lution: 1x					
2,4,6-Tribromophenol (Surr)			122 %	39-1	32 %		"					Q-41
Matrix Spike (6110704-MS1)				Prep	ared: 11/	18/16 07:09	Analyzed:	11/18/16 17	':43			
QC Source Sample: CS-05-0-6-1111	2016 (A6K04	24-06)										
EPA 8270D												
Acenaphthene	558	1.60	3.22	ug/kg dry	1	643	ND	87	40-122%			
Acenaphthylene	541	1.60	3.22	"	"	"	ND	84	32-132%			
Anthracene	588	1.60	3.22	"	"	"	ND	91	47-123%			
Benz(a)anthracene	658	1.60	3.22	"	"	"	ND	102	49-126%			
Benzo(a)pyrene	653	2.41	4.82	"	"	"	ND	102	45-129%			
Benzo(b)fluoranthene	682	2.41	4.82	"	"	"	ND	106	45-132%			
Benzo(k)fluoranthene	667	2.41	4.82	"	"	"	ND	104	47-132%			
Benzo(g,h,i)perylene	712	1.60	3.22	"	"	"	ND	111	43-134%			
Chrysene	661	1.60	3.22	"	"	"	ND	103	50-124%			
Dibenz(a,h)anthracene	699	1.60	3.22	"	"	"	ND	109	45-134%			
Fluoranthene	645	1.60	3.22	"	"	"	ND	100	50-127%			
Fluorene	550	1.60	3.22	"	"	"	ND	86	43-125%			
Indeno(1,2,3-cd)pyrene	664	1.60	3.22	"	"	"	ND	103	45-133%			
1-Methylnaphthalene	530	3.22	6.42	"	"	"	ND	82	40-120%			
2-Methylnaphthalene	544	3.22	6.42	"	"	"	ND	85	38-122%			
Naphthalene	506	3.22	6.42	"	"	"	ND	79	35-123%			
Phenanthrene	540	1.60	3.22	"	"	"	ND	84	50-121%			
Pyrene	627	1.60	3.22	"	"	"	ND	98	47-127%			
Carbazole	653	2.41	4.82	"	"	"	ND	102	50-122%			
1,2-Dichlorobenzene	495	4.01	8.04	"	"	"	ND	77	33-120%			
1,4-Dichlorobenzene	502	4.01	8.04	"	"	"	ND	78	31-120%			
1,2,4-Trichlorobenzene	539	4.01	8.04	"	"	"	ND	84	34-120%			
Dimethylphthalate	604	16.0	32.2	"	"	"	ND	94	48-124%			
Diethylphthalate	598	16.0	32.2	"	"	"	ND	93	50-124%			
Di-n-butylphthalate	648	8.05	16.0	"	"	"	ND	101	51-128%			
Butyl benzyl phthalate	688	16.0	32.2	"	"	"	ND	107	48-132%			
Bis(2-ethylhexyl)phthalate	673	24.1	48.2	"	"	"	ND	105	51-133%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Ihrm

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270D													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 6110704 - EPA 3546							Sed	liment					
Matrix Spike (6110704-MS1)				Prep	oared: 11/	18/16 07:09	Analyzed:	11/18/16 1	7:43				
QC Source Sample: CS-05-0-6-1111	2016 (A6K04	24-06)											
EPA 8270D													
Di-n-octyl phthalate	673	16.0	32.2	ug/kg dry	"	"	ND	105	44-140%				
Phenol	610	3.22	6.42	"	"	"	ND	95	34-120%				
2-Methylphenol	578	4.01	8.04	"	"	"	ND	90	32-122%				
3+4-Methylphenol(s)	586	4.01	8.04	"	"	"	ND	91	34-120%				
2,4-Dimethylphenol	595	8.04	16.0	"	"	"	ND	92	30-127%				
Pentachlorophenol (PCP)	710	32.2	64.2	"	"	"	ND	110	25-133%				
Benzyl alcohol	575	8.04	16.0	"	"	"	ND	89	29-122%				
Benzoic acid	843	201	401	"	"	1290	ND	66	5-140%				
Dibenzofuran	557	1.60	3.22	"	"	643	ND	87	44-120%				
N-Nitrosodiphenylamine	600	4.01	8.04	"	"	"	ND	93	38-127%				
Hexachlorobenzene	628	1.60	3.22	"	"	"	ND	98	44-122%				
Surr: Nitrobenzene-d5 (Surr)		R	ecovery: 80 %	Limits: 37-	122 %	Dilı	ution: 1x						
2-Fluorobiphenyl (Surr)			84 %	44-	115 %		"						
Phenol-d6 (Surr)			97 %	33-	122 %		"						
p-Terphenyl-d14 (Surr)			111 %	54-	127 %		"						
2-Fluorophenol (Surr)			87 %		115 %		"						
2,4,6-Tribromophenol (Surr)			123 %	39-	132 %		"					Q	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Tota	l Metals by	EPA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110841 - EPA 3051	A						Sed	liment				
Blank (6110841-BLK2)				Prep	oared: 11/	23/16 13:08	Analyzed:	11/30/16 15	5:12			
EPA 6020A												
Antimony	ND	0.250	0.500	mg/kg wet	5							Q-1
Arsenic	ND	0.250	1.00	"	"							Q-1
Cadmium	ND	0.250	0.500	"	"							Q-1
Chromium	ND	0.500	1.00	"	"							Q-1
Copper	ND	0.500	1.00	"	"							Q-1
Lead	ND	0.250	0.500	"	"							Q-1
Mercury	ND	0.0200	0.0400	"	"							Q-1
Nickel	ND	0.500	1.00	"	"							Q-1
Selenium	ND	0.500	1.00	"	"							Q-1
Silver	ND	0.250	0.500	"	"							Q-1
Zinc	ND	1.00	2.00	"	"							Q-1
LCS (6110841-BS2)				Prep	oared: 11/2	23/16 13:08	Analyzed:	11/30/16 15	5:16			
EPA 6020A												
Antimony	12.7	0.250	0.500	mg/kg wet	5	12.5		101	80-120%			Q-1
Arsenic	24.5	0.250	1.00	"	"	25.0		98	"			Q-1
Cadmium	24.3	0.250	0.500	"	"	"		97	"			Q-1
Chromium	24.2	0.500	1.00	"	"	"		97	"			Q-1
Copper	24.4	0.500	1.00	"	"	"		98	"			Q-1
Lead	24.3	0.250	0.500	"	"	"		97	"			Q-1
Mercury	0.499	0.0200	0.0400	"	"	0.500		100	"			Q-1
Nickel	24.5	0.500	1.00	"	"	25.0		98	"			Q-1
Selenium	13.6	0.500	1.00	"	"	12.5		109	"			Q-1
Silver	12.2	0.250	0.500	"	"	"		98	"			Q-1
Zinc	24.7	1.00	2.00	"	"	25.0		99	"			Q-1
Duplicate (6110841-DUP1)				Prep	oared: 11/2	23/16 13:08	Analyzed:	11/30/16 22	2:20			
QC Source Sample: Other (A6K0	405-04)											
EPA 6020A												
Antimony	1.44	0.302	0.604	mg/kg dry	5		1.27			13	40%	
Arsenic	8.21	0.302	1.21	"	••		8.96			9	40%	
Cadmium	3.26	0.302	0.604	"	"		3.74			14	40%	
Chromium	57.6	0.604	1.21	"	"		52.4			9	40%	
Copper	99.3	0.604	1.21	"	"		104			5	40%	
Nickel	77.3	0.604	1.21	,,	"		107			32	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110841 - EPA 3051/	Δ						Sed	liment				
Duplicate (6110841-DUP1)				Prep	ared: 11/2	23/16 13:08	Analyzed:	11/30/16 22	2:20			
QC Source Sample: Other (A6K04	05-04)											
EPA 6020A												
Selenium	0.646	0.604	1.21	mg/kg dry	"		0.739			13	40%	
Silver	ND	0.302	0.604	"	"		ND				40%	
Duplicate (6110841-DUP2)				Prep	oared: 11/2	23/16 13:08	Analyzed:	11/30/16 15	5:27			
QC Source Sample: Other (A6K04	05-04RE1)											
EPA 6020A												
Lead	23.1	6.04	12.1	mg/kg dry	100		25.7			11	40%	Q-1
Mercury	ND	0.484	0.967	"	"		ND				40%	Q-1
Zinc	563	24.2	48.4	"	"		646			14	40%	Q-1
Matrix Spike (6110841-MS1)				Prep	ared: 11/2	23/16 13:08	Analyzed:	11/30/16 22	2:35			
QC Source Sample: Other (A6K04	(05-04)											
EPA 6020A												
Antimony	14.2	0.303	0.606	mg/kg dry	5	15.1	1.27	86	75-125%			
Arsenic	33.7	0.303	1.21	"	"	30.3	8.96	82	"			
Cadmium	32.6	0.303	0.606	"	"	"	3.74	95	"			
Chromium	77.4	0.606	1.21	"	"	"	52.4	82	"			
Copper	125	0.606	1.21	"	"	"	104	66	"			Q-0
Nickel	94.7	0.606	1.21	"	"	"	107	-41	"			Q-0
Selenium	14.5	0.606	1.21	"	"	15.1	0.739	91	"			
Silver	14.6	0.303	0.606	"	"	"	ND	97	"			
Matrix Spike (6110841-MS2)				Prep	ared: 11/2	23/16 13:08	Analyzed:	11/30/16 15	5:08			
QC Source Sample: CS-02-0-6-1111	2016 (A6K04	24-03)										
EPA 6020A												
Antimony	14.5	0.328	0.657	mg/kg dry	5	16.4	ND	88	75-125%			
Arsenic	33.4	0.328	1.31	"	"	32.8	2.05	96	"			
Cadmium	31.1	0.328	0.657	"	"	"	ND	95	"			
Chromium	36.9	0.657	1.31	"	"	"	5.40	96	"			
Copper	40.4	0.657	1.31	"	"	"	8.07	98	"			
Lead	33.2	0.328	0.657	"	"	"	2.14	95	"			
Mercury	0.642	0.0263	0.0525	"	"	0.657	ND	98	"			
Nickel	39.7	0.657	1.31	"	"	32.8	7.28	99	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Shim

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 602	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110841 - EPA 3051A							Sed	liment				
Matrix Spike (6110841-MS2)				Prep	oared: 11/2	23/16 13:08	Analyzed:	11/30/16 1	5:08			
QC Source Sample: CS-02-0-6-111120	16 (A6K04	24-03)										
EPA 6020A												
Selenium	17.7	0.657	1.31	mg/kg dry	"	16.4	ND	108	"			
Silver	15.7	0.328	0.657	"	"	"	ND	96	"			
Zinc	62.9	1.31	2.63	"	"	32.8	31.9	95	"			
Matrix Spike (6110841-MS3)				Prep	oared: 11/2	23/16 13:08	Analyzed:	11/30/16 1	5:31			
QC Source Sample: Other (A6K0405	5-04RE1)											
EPA 6020A												
Lead	51.0	6.06	12.1	mg/kg dry	100	30.3	25.7	84	75-125%			Q-1
Mercury	0.613	0.485	0.969	"	"	0.606	ND	101	"			Q-16,
Zinc	628	24.2	48.5	"	"	30.3	646	-59	"			Q-03, Q-1

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110878 - EPA 3051	A						Sec	liment				
Blank (6110878-BLK1)				Prep	oared: 11/	28/16 12:07	Analyzed:	11/29/16 1	2:23			
EPA 6020A												
Antimony	ND	0.250	0.500	mg/kg wet	5							
Arsenic	ND	0.250	1.00	"	"							
Cadmium	ND	0.250	0.500	"	"							
Chromium	ND	0.500	1.00	"	"							
Copper	ND	0.500	1.00	"	"							
Lead	ND	0.250	0.500	"	"							
Mercury	ND	0.0200	0.0400	"	"							
Nickel	ND	0.500	1.00	"	"							
Selenium	ND	0.500	1.00	"	"							
Silver	ND	0.250	0.500	"	"							
Zinc	ND	1.00	2.00	"	"							
LCS (6110878-BS2)				Prep	oared: 11/	28/16 12:07	Analyzed:	11/29/16 1	2:38			
EPA 6020A												
Antimony	13.2	0.250	0.500	mg/kg wet	5	12.5		106	80-120%			Q-1
Arsenic	25.1	0.250	1.00	"	"	25.0		100	"			Q-1
Cadmium	25.4	0.250	0.500	"	"	"		101	"			Q-1
Chromium	25.7	0.500	1.00	"	"	"		103	"			Q-1
Copper	26.6	0.500	1.00	"	"	"		106	"			Q-1
Lead	25.9	0.250	0.500	"	"	"		103	"			Q-1
Mercury	0.521	0.0200	0.0400	"	"	0.500		104	"			Q-1
Nickel	26.4	0.500	1.00	"	"	25.0		106	"			Q-1
Selenium	13.6	0.500	1.00	"	"	12.5		109	"			Q-1
Silver	12.8	0.250	0.500	"	"	"		102	"			Q-1
Zinc	25.8	1.00	2.00	"	"	25.0		103	"			Q-1
Duplicate (6110878-DUP1)				Prep	ared: 11/	28/16 12:07	Analyzed:	11/29/16 1	2:46			
QC Source Sample: CS-05-0-6-111	12016 (A6K04	124-06)										
EPA 6020A	•	-										
Antimony	ND	0.318	0.636	mg/kg dry	5		ND				40%	
Arsenic	1.71	0.318	1.27	"	"		1.92			12	40%	
Cadmium	ND	0.318	0.636	"	"		ND				40%	
Chromium	5.84	0.636	1.27	"	"		6.00			3	40%	
Copper	6.93	0.636	1.27	"	"		7.58			9	40%	
Lead	2.31	0.318	0.636	**	"		2.44			6	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Ihrm

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Tota	Metals by	EPA 602	20 (ICPMS	<u> </u>					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110878 - EPA 3051 <i>A</i>	١						Sec	liment				
Duplicate (6110878-DUP1)				Prep	oared: 11/2	28/16 12:07	Analyzed:	11/29/16 1	2:46			
QC Source Sample: CS-05-0-6-1111	2016 (A6K04	24-06)										
EPA 6020A												
Mercury	ND	0.0254	0.0509	mg/kg dry	"		ND				40%	
Nickel	8.47	0.636	1.27	"	"		9.66			13	40%	
Selenium	ND	0.636	1.27	"	"		ND				40%	
Silver	ND	0.318	0.636	"	"		ND				40%	
Zinc	35.3	1.27	2.54	"	"		38.1			8	40%	
Matrix Spike (6110878-MS1)				Prep	oared: 11/2	28/16 12:07	Analyzed:	11/29/16 1	2:50			
QC Source Sample: CS-05-0-6-1111	2016 (A6K04	24-06)										
EPA 6020A												
Antimony	15.2	0.317	0.634	mg/kg dry	5	15.8	ND	96	75-125%			
Arsenic	33.7	0.317	1.27	"	"	31.7	1.92	100	"			
Cadmium	31.3	0.317	0.634	"	"	"	ND	99	"			
Chromium	38.8	0.634	1.27	"	"	"	6.00	104	"			
Copper	38.7	0.634	1.27	"	"	"	7.58	98	"			
Lead	34.0	0.317	0.634	"	"	"	2.44	100	"			
Mercury	0.637	0.0253	0.0507	"	"	0.634	ND	101	"			
Nickel	40.9	0.634	1.27	"	"	31.7	9.66	98	"			
Selenium	17.2	0.634	1.27	"	"	15.8	ND	109	"			
Silver	15.5	0.317	0.634	"	"	"	ND	98	"			
Zinc	66.6	1.27	2.53	"	"	31.7	38.1	90	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

		Conv	entional Che	emistry	Paramete	rs					
Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
;						Sed	liment				
			Prep	ared: 11	/16/16 11:50	Analyzed:	11/17/16 13	:30			
ND	0.010	0.020	% by Weight	1							
			Prep	ared: 11	/16/16 11:50	Analyzed:	11/17/16 13	:30			
9400			mg/kg	1	10000		94	85-115%			
			Prep	ared: 11	/16/16 11:50	Analyzed:	11/17/16 13	:30			
2016 (A6K04	24-01)										
0.031	0.010	0.020	% by Weight	1		0.071			79	20%	Q-
	9400 2016 (A6K04	9400 2016 (A6K0424-01)	Result MDL Reporting Limit ND 0.010 0.020 9400 2016 (A6K0424-01)	Result MDL Reporting Units	Result MDL Limit Units Dil.	Result MDL Reporting Limit Units Dil. Spike Amount ND 0.010 0.020 % by Weight 1 Prepared: 11/16/16 11:50 9400 mg/kg 1 10000 Prepared: 11/16/16 11:50	Result MDL Limit Units Dil. Amount Result Sec Prepared: 11/16/16 11:50 Analyzed: ND 0.010 0.020 % by Weight 1 Prepared: 11/16/16 11:50 Analyzed: 9400 mg/kg 1 10000 Prepared: 11/16/16 11:50 Analyzed: 2016 (A6K0424-01)	Result MDL Reporting Limit Units Dil. Spike Amount Source Result %REC Sediment Prepared: 11/16/16 11:50 Analyzed: 11/17/16 13 ND 0.010 0.020 % by Weight 1 Prepared: 11/16/16 11:50 Analyzed: 11/17/16 13 9400 mg/kg 1 10000 94 Prepared: 11/16/16 11:50 Analyzed: 11/17/16 13 2016 (A6K0424-01)	Result MDL Reporting Limit Units Dil. Spike Amount Source Result %REC Limits Sediment Prepared: 11/16/16 11:50 Analyzed: 11/17/16 13:30 ND 0.010 0.020 % by Weight 1 94 85-115% 9400 mg/kg 1 10000 94 85-115% Prepared: 11/16/16 11:50 Analyzed: 11/17/16 13:30 2016 (A6K0424-01)	Result MDL Reporting Limit Units Dil. Spike Amount Source Result %REC Limits RPD Sediment ND 0.010 0.020 % by Weight 1	Result MDL Reporting Limit Units Dil. Spike Amount Source Result %REC Limits RPD Limit Sediment Prepared: 11/16/16 11:50 Analyzed: 11/17/16 13:30 ND 0.010 0.020 % by Weight 1 <

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conv	entional Che	emistry	Paramete	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110628 - PSEP So	lids in Soil/	Sedimen	it				Sed	iment				
Duplicate (6110628-DUP1)				Prep	ared: 11/	16/16 11:53	Analyzed:	11/17/16 08	:10			
QC Source Sample: CS-01-0-6-111	112016 (A6K04	24-01)										
PSEP 1986												
Total Solids	79.1	0.100	0.100	% by Weight	1		79.4			0.3	20%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6110628 - PSEP So	lids in Soil/	Sedime	nt				Sed	iment				
Duplicate (6110628-DUP1)				Prep	ared: 11/	16/16 11:53	Analyzed:	11/17/16 08	:10			
QC Source Sample: CS-01-0-6-11	112016 (A6K04	24-01)										
EPA 8000C												
% Solids	79.1	1.00	1.00	% by Weight	"		79.4			0.3	10%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

Analytical Resources, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

Wet Chemistry												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BEK0477 - No Prep V	Vet Chem						Sol	id				
Blank (BEK0477-BLK1)				Prep	oared: 11/	17/16 10:42	Analyzed:	11/18/16 1	0:50			
SM 4500-S2 D-00 Sulfide	ND		1.00	mg/kg wet	1							U
LCS (BEK0477-BS1)				Prep	oared: 11/	17/16 10:42	Analyzed:	11/18/16 1	0:51			
SM 4500-S2 D-00 Sulfide	8.38		0.250	mg/kg wet	10	8.2781		101	90-110%			Б
Duplicate (BEK0477-DUP1)				Prep	oared: 11/	17/16 10:42	Analyzed:	11/18/16 1	0:52			
QC Source Sample: A6K0424-01 (A SM 4500-S2 D-00 Sulfide	A6K0424-01) ND		1.24	mg/kg dry	1		ND				20%	U
Matrix Spike (BEK0477-MS1)				Prep	oared: 11/	17/16 10:42	Analyzed:	11/18/16 1	0:52			
QC Source Sample: A6K0424-01 (A SM 4500-S2 D-00	6K0424-01)											
Sulfide	362		12.4	mg/kg dry	10	410.32	ND	88.2	75-125%			Д

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Portland, OR 97224

Project: MBT-L MTCA INT. Act

6650~SW~Redwood~Lane~Ste.~333

Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

Analytical Resources, Inc.

QUALITY CONTROL (QC) SAMPLE RESULTS

				Wet C	hemistr	у						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BEK0506 - No Prep	Wet Chem						Sol	lid				
Blank (BEK0506-BLK1)				Prep	pared: 11/	18/16 09:33	Analyzed:	11/18/16 13	3:50			
SM 4500-NH3 H-97 Ammonia-N	ND		0.40	mg/kg NH3-N wet	1							U
LCS (BEK0506-BS1)				Prep	oared: 11/	18/16 09:33	Analyzed:	11/18/16 13	3:51			
SM 4500-NH3 H-97 Ammonia-N	101		8.00	mg/kg NH3-N wet	20	100.00		101	90-110%			D
Duplicate (BEK0506-DUP1)				Prep	pared: 11/	18/16 09:33	Analyzed:	11/18/16 13	3:54			
QC Source Sample: A6K0424-01 (SM 4500-NH3 H-97	A6K0424-01)											
Ammonia-N	ND		0.49	mg/kg NH3-N dry	1		ND				20%	U
Matrix Spike (BEK0506-MS1)				Prep	pared: 11/	18/16 09:33	Analyzed:	11/18/16 13	3:55			
QC Source Sample: A6K0424-01 (A6K0424-01)											
SM 4500-NH3 H-97 Ammonia-N	118		9.78	mg/kg NH3-N dry	20	122.27	ND	96.7	75-125%			D

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Project Number: 160730-01.02 **Reported:**Portland, OR 97224 Project Manager: Cindy Fields 02/07/17 15:06

SAMPLE PREPARATION INFORMATION

Prep: EPA 3546	6 (Fuels) w/Silica	Gel+Acid (NWTPH)			Sample	Default	RL Prep
Lab Numbe		Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 6110593		Method	Sumpreu	Tropulou			
A6K0424-01	Sediment	NWTPH-Dx/SG	11/11/16 17:10	11/15/16 16:10	10.41g/5mL	10g/5mL	0.96
A6K0424-02	Sediment	NWTPH-Dx/SG	11/11/16 17:15	11/15/16 16:10	10.4g/5mL	10g/5mL	0.96
A6K0424-03	Sediment	NWTPH-Dx/SG	11/11/16 17:40	11/15/16 16:10	10.25g/5mL	10g/5mL	0.98
A6K0424-04	Sediment	NWTPH-Dx/SG	11/11/16 18:05	11/15/16 16:10	10.35g/5mL	10g/5mL	0.97
A6K0424-05	Sediment	NWTPH-Dx/SG	11/11/16 18:30	11/15/16 16:10	10.57g/5mL	10g/5mL	0.95
A6K0424-06	Sediment	NWTPH-Dx/SG	11/11/16 19:00	11/15/16 16:10	10.21g/5mL	10g/5mL	0.98
		Polyo	chlorinated Bipher	ıyls EPA 8082A			
Prep: EPA 3546	 6				Sample	Default	RL Prep
Lab Numbe	-	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 6110683							
A6K0424-01	Sediment	EPA 8082A	11/11/16 17:10	11/17/16 13:41	10.55g/2mL	10g/2mL	0.95
A6K0424-02	Sediment	EPA 8082A	11/11/16 17:15	11/17/16 13:41	10.65g/2mL	10g/2mL	0.94
A6K0424-03	Sediment	EPA 8082A	11/11/16 17:40	11/17/16 13:41	10.76g/2mL	10g/2mL	0.93
A6K0424-04	Sediment	EPA 8082A	11/11/16 18:05	11/17/16 13:41	10.26g/2mL	10g/2mL	0.98
A6K0424-05	Sediment	EPA 8082A	11/11/16 18:30	11/17/16 13:41	10.56g/2mL	10g/2mL	0.95
A6K0424-06	Sediment	EPA 8082A	11/11/16 19:00	11/17/16 13:41	10.56g/2mL	10g/2mL	0.95
		Semivola	tile Organic Comp	ounds by EPA 8270	D		
Prep: EPA 3546	<u> </u>				Sample	Default	RL Prep
Lab Numbe	er Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 6110704							
A6K0424-01	Sediment	EPA 8270D	11/11/16 17:10	11/18/16 07:09	15.44g/2mL	15g/2mL	0.97
A6K0424-02	Sediment	EPA 8270D	11/11/16 17:15	11/18/16 07:09	15.57g/2mL	15g/2mL	0.96
A6K0424-03	Sediment	EPA 8270D	11/11/16 17:40	11/18/16 07:09	15.73g/2mL	15g/2mL	0.95
A6K0424-04	Sediment	EPA 8270D	11/11/16 18:05	11/18/16 07:09	15.53g/2mL	15g/2mL	0.97
A6K0424-05	Sediment	EPA 8270D	11/11/16 18:30	11/18/16 07:09	15.85g/2mL	15g/2mL	0.95
A6K0424-06	Sediment	EPA 8270D	11/11/16 19:00	11/18/16 07:09	15.96g/2mL	15g/2mL	0.94
		То	tal Metals by EPA	6020 (ICPMS)			
Prep: EPA 305	1 <u>A</u>				Sample	Default	RL Prep
Lab Numbe	r Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Jum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

SAMPLE PREPARATION INFORMATION

		То	tal Metals by EPA	6020 (ICPMS)			
Prep: EPA 305	<u>1A</u>				Sample	Default	RL Prep
Lab Numbe	er Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A6K0424-01	Sediment	EPA 6020A	11/11/16 17:10	11/23/16 13:08	0.516g/50mL	0.5g/50mL	0.97
A6K0424-02	Sediment	EPA 6020A	11/11/16 17:15	11/23/16 13:08	0.519g/50mL	0.5g/50mL	0.96
A6K0424-03	Sediment	EPA 6020A	11/11/16 17:40	11/23/16 13:08	0.506g/50mL	0.5g/50mL	0.99
Batch: 6110878							
A6K0424-04	Sediment	EPA 6020A	11/11/16 18:05	11/28/16 12:07	0.508g/50mL	0.5g/50mL	0.98
A6K0424-05	Sediment	EPA 6020A	11/11/16 18:30	11/28/16 12:07	0.5g/50mL	0.5g/50mL	1.00
A6K0424-06	Sediment	EPA 6020A	11/11/16 19:00	11/28/16 12:07	0.52g/50mL	0.5g/50mL	0.96
		Cor	nventional Chemis	stry Parameters			
Prep: PSEP Sc	olids in Soil/Sedi	ment_			Sample	Default	RL Prep
Lab Numbe	er Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6110628							
A6K0424-01	Sediment	PSEP 1986	11/11/16 17:10	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-02	Sediment	PSEP 1986	11/11/16 17:15	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-03	Sediment	PSEP 1986	11/11/16 17:40	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-04	Sediment	PSEP 1986	11/11/16 18:05	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-05	Sediment	PSEP 1986	11/11/16 18:30	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-06	Sediment	PSEP 1986	11/11/16 19:00	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
Prep: PSEP TO	<u>oc</u>				Sample	Default	RL Prep
Lab Numbe	er Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6110623							
A6K0424-01	Sediment	PSEP/SM 5310B MOD	11/11/16 17:10	11/16/16 11:50	5g/5g	5g/5g	NA
A6K0424-02	Sediment	PSEP/SM 5310B MOD	11/11/16 17:15	11/16/16 11:50	5g/5g	5g/5g	NA
A6K0424-03	Sediment	PSEP/SM 5310B MOD	11/11/16 17:40	11/16/16 11:50	5g/5g	5g/5g	NA
A6K0424-04	Sediment	PSEP/SM 5310B MOD	11/11/16 18:05	11/16/16 11:50	5g/5g	5g/5g	NA
A6K0424-05	Sediment	PSEP/SM 5310B MOD	11/11/16 18:30	11/16/16 11:50	5g/5g	5g/5g	NA
A6K0424-06	Sediment	PSEP/SM 5310B MOD	11/11/16 19:00	11/16/16 11:50	5g/5g	5g/5g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Thursday I would

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

6650 SW Redwood Lane Ste. 333 Project Number: 160730-01.02 **Reported:**Portland, OR 97224 Project Manager: Cindy Fields 02/07/17 15:06

SAMPLE PREPARATION INFORMATION

Project: MBT-L MTCA INT. Act

Grain Size by ASTM D 422m/PSET Parameters												
Prep: ASTM D 4	<u>21</u>				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 6120183												
A6K0424-01	Sediment	ASTM D 422m	11/11/16 17:10	11/22/16 09:28	1N/A/1N/A	1N/A/1N/A	NA					
A6K0424-02	Sediment	ASTM D 422m	11/11/16 17:15	11/22/16 09:38	1N/A/1N/A	1N/A/1N/A	NA					
A6K0424-03	Sediment	ASTM D 422m	11/11/16 17:40	11/22/16 09:49	1N/A/1N/A	1N/A/1N/A	NA					
A6K0424-04	Sediment	ASTM D 422m	11/11/16 18:05	11/22/16 10:10	1N/A/1N/A	1N/A/1N/A	NA					
A6K0424-05	Sediment	ASTM D 422m	11/11/16 18:30	11/22/16 10:20	1N/A/1N/A	1N/A/1N/A	NA					
A6K0424-06	Sediment	ASTM D 422m	11/11/16 19:00	11/22/16 10:36	1N/A/1N/A	1N/A/1N/A	NA					

Percent Dry Weight							
Prep: PSEP Solids in Soil/Sediment					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 6110628							
A6K0424-01	Sediment	EPA 8000C	11/11/16 17:10	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-02	Sediment	EPA 8000C	11/11/16 17:15	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-03	Sediment	EPA 8000C	11/11/16 17:40	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-04	Sediment	EPA 8000C	11/11/16 18:05	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-05	Sediment	EPA 8000C	11/11/16 18:30	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-06	Sediment	EPA 8000C	11/11/16 19:00	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	NA
A6K0424-05	Sediment	EPA 8000C	11/11/16 18:30	11/16/16 11:53	1N/A/1N/A	1N/A/1N/A	4

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jallin James

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Portland, OR 97224 Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

Analytical Resources, Inc.

SAMPLE PREPARATION INFORMATION

			Wet Chem	istry			
Prep: No Prep \	Net Chem				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: BEK0477							
A6K0424-01	Sediment	SM 4500-S2 D-00	11/11/16 17:10	11/17/16 10:44	2.564g/100mL	5g/100mL	1.95
A6K0424-02	Sediment	SM 4500-S2 D-00	11/11/16 17:15	11/17/16 10:44	2.513g/100mL	5g/100mL	1.99
A6K0424-03	Sediment	SM 4500-S2 D-00	11/11/16 17:40	11/17/16 10:44	2.546g/100mL	5g/100mL	1.96
A6K0424-04	Sediment	SM 4500-S2 D-00	11/11/16 18:05	11/17/16 10:44	2.527g/100mL	5g/100mL	1.98
A6K0424-05	Sediment	SM 4500-S2 D-00	11/11/16 18:30	11/17/16 10:44	2.513g/100mL	5g/100mL	1.99
A6K0424-06	Sediment	SM 4500-S2 D-00	11/11/16 19:00	11/17/16 10:44	2.532g/100mL	5g/100mL	1.97
Batch: BEK0506							
A6K0424-01	Sediment	SM 4500-NH3 H-97	11/11/16 17:10	11/18/16 09:33	4.04g/40mL	4g/40mL	0.99
A6K0424-02	Sediment	SM 4500-NH3 H-97	11/11/16 17:15	11/18/16 09:33	4.29g/40mL	4g/40mL	0.93
A6K0424-03	Sediment	SM 4500-NH3 H-97	11/11/16 17:40	11/18/16 09:33	4.19g/40mL	4g/40mL	0.96
A6K0424-04	Sediment	SM 4500-NH3 H-97	11/11/16 18:05	11/18/16 09:33	4.08g/40mL	4g/40mL	0.98
A6K0424-05	Sediment	SM 4500-NH3 H-97	11/11/16 18:30	11/18/16 09:33	4.3g/40mL	4g/40mL	0.93
A6K0424-06	Sediment	SM 4500-NH3 H-97	11/11/16 19:00	11/18/16 08:33	4.18g/40mL	4g/40mL	0.96

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard Project: MBT-L MTCA INT. Act

 6650 SW Redwood Lane Ste. 333
 Project Number: 160730-01.02
 Reported:

 Portland, OR 97224
 Project Manager: Cindy Fields
 02/07/17 15:06

Notes and Definitions

Qualifiers:

C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in
	order to minimize matrix interference.

D The reported value is from a dilution

GS-01 See detailed Particle Size Analysis results, accumulation curves, and Case Narratives at the end of this report.

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

M-02 Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.

Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

Q-16 Reanalysis of an original Batch QC sample.

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely

biased high.

U This analyte is not detected above the applicable reporting or detection limit.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS

QC Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daym I hum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Project Number: 160730-01.02 **Reported:**Portland, OR 97224 Project Manager: Cindy Fields 02/07/17 15:06

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333 Project Number: 160730-01.02 **Reported:**Portland, OR 97224 Project Manager: Cindy Fields 02/07/17 15:06

12232 S.W. Garden Place, Tigard, OR 97223 Ph; 503-718-2323 Fax: 503-718-0333	97223	Ph. 50	3-718-2	323 Fa	х: 503.	718-0	333											PO				
COMPANY: ANCHOR GEA, LLC Project Mgr	17,	Ş	Project N	dgr.						- E	Project Name: 1867-L	**	181	1	M	CA FE	Act	Project	130	MTCA INIACT, Project # 16 0 730 -01.02	-01.0-	1 2
MARINE 6650 SICREDINCED LU, STE333 PORTLAMO 97219 1900 503 475 4186 1900	700	5	633	200	17.4	200	7219	Phoex	3	3.4	125.	1150	ji,			E	Email:					
Sampled by:													V	ALY	SIS RE	ANALYSIS REQUEST				2		500
Site Location: OR WA Other:	# GI 8V7	BATE	ЭМП	XISTAM	# OF CONTAINERS	SWTPH-HCID	30-H4LWX	8500 AOC? L ^a ll Fist	8300 KBD/I AOC?	8390 BLEZ AOC? 8390 HAOC?	SH AT & DOVE HES	SHV4 ISIS 0478	800 LLO	RCRA Mesh (8)	TCLP Metals (8)		201 -E102-984	24707 4000	BEIS WINA	PACULA SULFIN	172	## BVIHDAA
65-01-0-6-11112016		9/11/1	1700	S	10	,	X			_	×		x			χ	×	×	×	×		×
65-101-0-6-11112016		-	145	Ĥ	-		х			-	¥		x	-	-	X	×	×	×	×		×
CS-02-0-6-1112016		_	042)			Ì	x		-	-	٧		γ			×	×	×	×			X
CS-03-0-6-1111 2016			1805				X				Х		х			X	×		×			×
CS - 04 -0-6 -11112016		-	1830				x				×		×	-	_	×	×	×	×	×		×
65 - 05-0-6-1111 2016		-	1900		-		×		_		Х		x			x	×	×	×	×		×
				, i																		
Normal Turn Around Time (TAT) = 10 Business Days	Son Days		!	E)		NO.			Ť	₽₽С!\ *	* BLC C M	5 to	S S	17	7	BUL to MBT-L direct	ła,					
TAT Requested (circle)	4 DAY		S DAY		3 Day Other:		STO	1		*	3	ARCA	1- 1	323	E A	MCT CHON FIELDS to arman	to a	8 3	3 6	COUTHLY CINDUFIELDS to arrange tomored or ARCHIVE EAPPRORMITE LAB.	Cher	
SAMPLES ARE HELD FOR 30 DAYS	SARE	HELD	OR 30 D	SAVS					ñ	11/10	CA	Ĭ,	TER	J.	ACI	MANITCA TRITERIN ACTION (SESSIMENTS)	ER	ME	5,	ଉ		
RELINQUISHED BY:		,	RECEIVED BY	ED BY:	-				8	ELINOR	RELINQUISHED BY:	BY:				IKE	RECEIVED BY:	9.8%				
more forthe I for me Worksman	Date	14/16	Supature	₹	Mark Fred	,	Date	Date: N M 14/16 Signature	9	gratare					Dec		Signature			Date		
Princed State TIMETHY J. SPEAKE Time 1317 Princed State 34 STANTING 1317	200	3.7	Printed Na	3	g	4	Ž	13		Printed Name	100				Title		Printed Name	ž		Time		
				٠					-													

A ¹	nex	La	hora:	tories
	P		0014	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Danie Ilum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anchor QEA, LLC Tigard

Portland, OR 97224

Project: MBT-L MTCA INT. Act

6650 SW Redwood Lane Ste. 333

Project Number: 160730-01.02 Project Manager: Cindy Fields **Reported:** 02/07/17 15:06

	APEX LABS COOLER RECEIPT FORM
Client: Anchol	Element WO#: A6 KO429
Project/Project #:	BT-L MTCA INT. ACT. 160730-01.02
Delivery info:	
	11/14/16@ 1317 By: CFH
	Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection	Inspected by: CFH : 11/14/16 @ 1326
	ded? Yes X No Custody Seals? Yes No
Signed/Dated by Client?	
Signed/Dated by Apex?	
	Cooler#1 Cooler#2 Cooler#3 Cooler#4 Cooler#5 Cooler#6 Cooler#
Temperature (deg. C)	3,77 2,1 4,1
Received on Ice? (N)	
Temp. Blanks? (Y/N)	
Ice Type: (Gel/Real/Othe	
Condition:	Possible reason why:
	✓ No Comments: e? Yes ✓ No Comments:
	cived Appropriate for Analysis? Yes No Comments:
Do VOA Vials have Visib	ole Headspace? Yes No NA
	ked and America (acceptance)
	ked and Appropriate (except VOAs): YesNoNA
Additional Information:	
abeled by: W	itness: Cooler Inspected by: See Project Contact Form: Y
(/ot/	7

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Jun

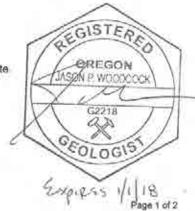
				Apex Labo	oratories, LL	C			
			Particle	Size Analysi	s of Soll by	ASTM D 422	2		
Sample ID:		A6K0424-0)1	Client Sam	ole ID:	CS-01-0-6	6-11112016	Batch Number:	6120183
Data Enter	ed by:	JSJ	Date:	12/02/16	Data Revie	wed by:	JW	Date:	12/05/16
Sample De	scription:	SAND with	trace Gravel	and Silt	Max Partic	le Size:	Gravel		
Particle Sh	nape:	Sub-angula	ar to Rounded		Hardness	Hard and E	Durable		
		Whole Sample			Tare	Air Dry + Tare	Air Dry	Moisture	Dry WL
				*	5.723	249.177	243.45	0.53	242.2
Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Wt. Retained	% Re	etained	% Pas	sing
4	4.75	1.283	12.288	11.01	11:01		1.5	95.	55
10	2.00	1.188	11.623	10.44	21,44	4	1.3	91.	
Pan		6.730	227.534	221.80	243.24	9	1:1		
			Н	ygroscopic M	oisture Corre	ection			
		Hygroscopic C	orrection Factor	Oven Sample	Pan No.	Tare	Air Dry + Tare	Oven Dry + Tare	Moisture
		0.9	948	Over, Sample	K42401	1.195	21.464	21.358	0.53
				Hydrome	ter Analysis				
Start Date/Tim	16		11/22/2016	9:28	Dispersing Ag	ent		NaPo),
Air Dry Sample	e Wt. for Hydrom	eter Test (g)	101.900		G Correction	Factor (a)		1.00)
Percent Passi	ng No.10 Sieve		91	(1)	Specific Gravi	ty (G _i)		2.65	
Dry Weight of Soil Tested (g)		101	1.37	Corrected Dry	Weight of Soil T	ested (g) (W)	111,21		
Elapsed Time (min)	Hydrometer Reading	Temperature (*C)	Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	3 .	ĸ	Particle Diameter (mm)	Percent Passing	
1	7	18.8	0.38	0.3	15	0.01382	0.054	0.31	
2	7	18.8	0.38	0.3	15	0.01382	0.038	0.31	
4	7	18.8	0.38	0.3	15	0.01382	0.027	0.31	
8	7	18.8	0,38	0.3	15	0.01382	0.019	0.31	
15	7	18.8	0.38	0.3	15	0.01382	0.014	0.31	
30	6.5	19		0.0	15	0.01382	0.010	0.00	
60	6.5	19		0.0	15	0.01382	0.007	0.00	
90	6	19.1		0.0	15.2	0.01382	0.006	0.00	
120	6	19.2		0.0	15.2	0.01382	0.005	0.00	
240	6	19.9		0.0	15.2	0.01365	0.003	0.00	
360	5.5	20,4		0.0	15.2	0.01365	0.003	0.00	
000		the second second second			11.011.00	11. EC. W. COCKER, 1	3 5 5 5 5 7 7 7 7	5.959 5	

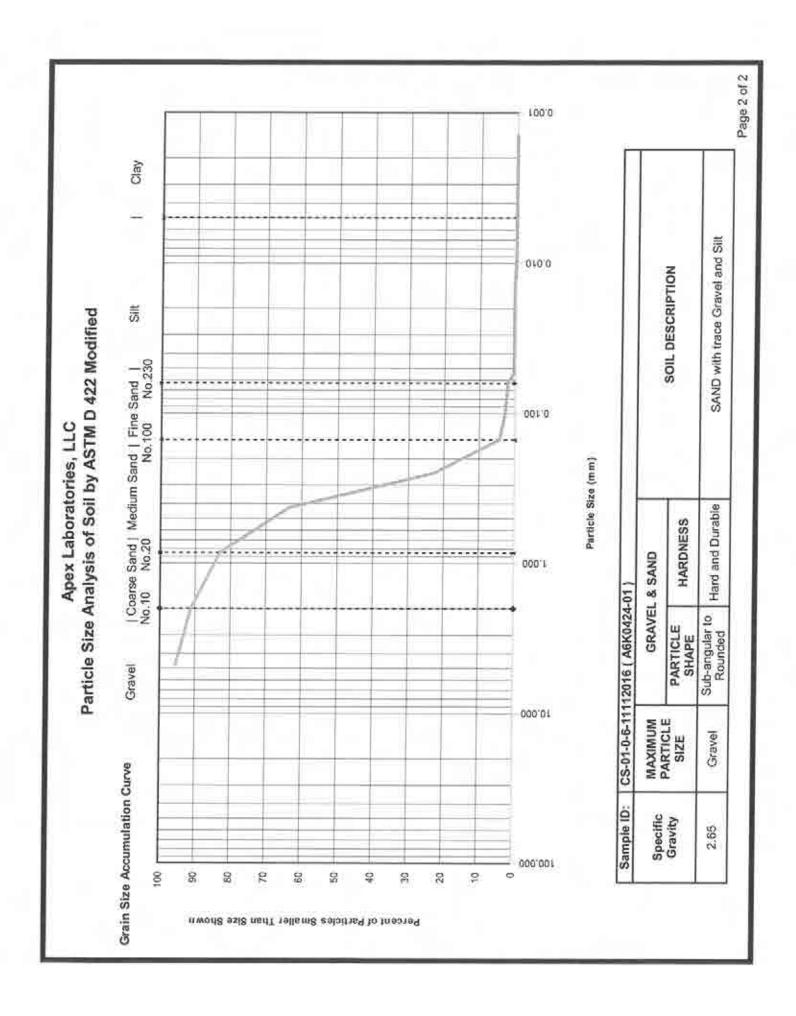
Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Retained	% Retained	% Passing
20	0.850	1.206	10.368	9.16	41.38	8.2	82.9
40	0.425	1.211	22.961	21.75	88.73	19.6	63.4
60	0.250	1.218	46.399	45.18	187.07	40.6	22.7
100	0.150	1.196	21.703	20.51	231.71	18,4	4.3
140	0.105	1.215	2,796	1.58	235.15	1.4	2,9
200	0.075	1.211	1,911	0.70	236.67	0.6	2.2
230	0.063	1 231	1.433	0.20	237.11	0.2	2.1
			Sum	99.08	230 Minus	2.28	

Sample ID: CS-01-0-6-11112016 (A6K0424-01)

Grain Size	e Analysis Summary from Sleving and Hydrometer Testing		Particle Size (mm)	Percent Finer	Total Percent of Sample
Gravel					6.85
	Retained on No. 4 sieve		4,75	95.46	4.54
	Gravel, passing No. 4 sleve and retained on No. 10 sleve		2.00	91.15	4,31
Sand					89.09
	Coarse sand, passing No.10 sieve and retained on No. 20 sieve		0.8500	82.91	8.24
	Medium sand, passing No.20 sieve and retained on No. 40 sieve		0.4250	63.35	19.56
	Medium sand, passing No.40 sieve and retained on No. 60 sieve		0.2500	22.73	40.63
	Medium sand, passing No. 60 sieve and retained on No. 100 sieve		0.1500	4.29	18.44
	Fine sand, passing No. 100 sieve and retained on No.140 sieve		0.1060	2.86	1,42
	Fine sand passing No. 140 sleve and retained on No. 200 sleve		0.0750	2.24	0.63
	Fine sand, passing No. 200 sleve and retained on No. 230 sleve		0.0630	2.05	0.18
Silt and Cla	ay (Measurements in the Clay fraction are noted)				2.05
	Hydrometer Test		0.0535	0.31	:1.74
	Hydrometer Test		0.0378	0.31	0
	Hydrometer Test		0.0268	0.31	0
	Hydrometer Test		0.0189	0.31	0
	Hydrometer Test		0.0138	0.31	0
	Hydrometer Test		0.0098	0.31	0
	Hydrometer Test		0.0069	0.31	0
	Hydrometer Test		0.0057	0.31	00
	Hydrometer Test	Clay	0.0049	0.31	0
	Hydrometer Test	Clay	0.0034	0.31	O
	Hydrometer Test	Clay	0.0028	0.31	o
	Hydrometer Test	Clay	0.0014	0.31	O

Grain Size Summary	Percent of Total Sample
Gravel	8.9
Sand	89.1
Coarse sand	8.2
Medium-sand	78.6
Fine sand	2.2
Sitt	1.7
Clay	0.3


Case Narrative for Sample ID: CS-01-0-6-11112016 (A6K0424-01)


This data is not to be used for engineering purposes.

No difficulty dispersing the fraction passing the No. 10 sieve.

Dispersion device used: Commercial drink mixer operating at least 10,000 rpm for one minute

The assumed specific gravity used in the calculations was 2.65.

				Apex Labo	ratories, LLC	2			
			Particle	Size Analysi	s of Soil by	ASTM D 422	2		
Sample ID:	9	A6K0424-0	2	Client Same	ole ID:	CS-101-0-	6-11112016	Batch Number:	6120183
Data Enter	ed by:	JSJ	Date:	12/02/16	Data Revie	wed by:	JW	Date:	12/05/10
Sample De	scription:	SAND with	trace Gravel,	Silt, and Clay	Max Particle	a Size:	Gravel		
Particle Sh	nape:	Sub-angula	r to Rounded		Hardness	Hard and D	Durable		
		Whole Sample			Tare	Air Dry + Tare	Air Dry	Moisture	Dry WL
					5.682	291.587	285.91	0.53	284.4
Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Wt. Retained	% Re	tained	% Pas	sing
4	4.76	1:200	26.163	24.96	24.96		3.8	91.3	2
10	2.00	1.187	9.334	8.15	33.11	2	2.9	88	1
Pan		5.694	258.140	252.45	285.56	84	8.3		
			H	groscopic M	oisture Corre	ction			
		Hygroscopic Co	orrection Factor	A CONTROL OF	Pan No.	Tare	Air Dry + Tare	Oven Dry + Tare	Moisture
		0.9	948	Oven Sample	K42402	1.202	26.847	26.713	0.63
		h		Hydrome	ter Analysis				
Start Date/Tin	16		11/22/2016	9:38	Dispersing Ag	ent		NaPo),
	a Will for Hudean	eter Test (a)	106.193			1 May 2 A C C C C C C C C C C C C C C C C C C			
Air Dry Sampl	a sar int Lianton				G Correction	Factor (a)		1,00	Ò
Air Dry Sample Percent Passi	ng No.10 Sieve		88	4	G Correction Specific Gravit			1.00	
Percent Passi	The second secon	10/	(D)(01.400.80		Specific Gravit		ested (g) (W)	2000	
Percent Passi Dry Weight of	ng No.10 Sieve	Temperature (°C)	-88		Specific Gravit	y (G.)	Particle Diameter (mm)	2.65	
Percent Passi Dry Weight of Elapsed Time	ng No.10 Sieve Soil Tested (g) Hydrometer	Temperature	105 Corrected Hydrometer	% Finer of Hydrometer	Specific Gravit Corrected Dry	y (G _s) Weight of Soil T K	Particle	2.65 119.5	
Percent Passi Dry Weight of Elapsed Time (min)	ng No.10 Sieve Soil Tested (g) Hydrometer Reading	Temperature (°C)	105 Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	Specific Gravit Corrected Dry	y (G _.) Weight of Soil T	Particle Diameter (mm)	2.65 119.6 Percent Passing	
Percent Passi Dry Weight of Elapsed Time (min)	ng No.10 Sieve Soil Tested (g) Hydrometer Reading	Temperature (°C)	Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	Specific Gravit Corrected Dry L 15.2	y (G _s) Weight of Soil T K 0.01382 0.01382	Particle Diameter (mm) 0.054	2.65 119.6 Percent Passing 0.69	
Percent Passi Dry Weight of Elapsed Time (min) 1	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6	Temperature (°C) 18.9	Corrected Hydrometer Reading [R] 0.93	% Finer of Hydrometer Sample 0.8	Specific Gravit Corrected Dry L 15.2 15.2	y (G _s) Weight of Soil T K 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038	2.65 119.6 Percent Passing 0.69	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6 6	Temperature (°C) 18.9 18.9 18.9	Corrected Hydrometer Reading [R] 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8	Specific Gravit Corrected Dry L 15.2 15.2	y (G _s) Weight of Soil T K 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027	2.65 119.5 Percent Passing 0.69 0.69	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6 6 6	Temperature (°C) 18.9 18.9 18.9 18.9	Corrected Hydrometer Reading [R] 0.93 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8 0.8	Specific Gravit Corrected Dry L 15.2 15.2 15.2 15.2	y (G _s) Weight of Soil T K 0.01382 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027 0.019	2.65 119.6 Percent Passing 0.69 0.69 0.69	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4 8	No.10 Sieve Soil Tested (g) Hydrometer Reading 6 6 6	Temperature (°C) 18.9 18.9 18.9 18.9 18.9	Corrected Hydrometer Reading [R] 0.93 0.93 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8 0.8	Specific Gravit Corrected Dry 1 15.2 15.2 15.2 15.2 15.2 15.2	y (G _s) Weight of Soil T K 0.01382 0.01382 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027 0.019	2.65 119.6 Percent Passing 0.69 0.69 0.69	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4 8 15	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6 6 6 6	Temperature (°C) 18.9 18.9 18.9 18.9 18.9 18.9	0.93 0.93 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Specific Gravit Corrected Dry L 15.2 15.2 15.2 15.2 15.2 15.2	y (G _s) Weight of Soil T K 0.01382 0.01382 0.01382 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027 0.019 0.014	2.65 119.5 Percent Passing 0.69 0.69 0.69 0.69	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4 8 15 30 60	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6 8 6 6 6 6	Temperature (°C) 18.9 18.9 18.9 18.9 18.9 18.9 18.9	0.93 0.93 0.93 0.93 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	Specific Gravit Corrected Dry 1. 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	y (G ₁) Weight of Soil T K 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027 0.019 0.014 0.010	2.65 119.6 Percent Passing 0.69 0.69 0.69 0.69 0.69 0.72	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4 8 15 30 60	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6 6 6 6 6 6 6 5.5	Temperature (°C) 18.9 18.9 18.9 18.9 18.9 18.9 18.9 19.1	0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	Specific Gravit Corrected Dry 1. 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	y (G ₁) Weight of Soil T K 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027 0.019 0.014 0.010 0.007	2.65 119.6 Percent Passing 0.69 0.69 0.69 0.69 0.69 0.72 0.37	
Percent Passi Dry Weight of Elapsed Time (min) 1 2 4 8 15 30 60 90 120	ng No.10 Sieve Soil Tested (g) Hydrometer Reading 6 6 6 6 6 6 5.5	Temperature (°C) 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 19.1	0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	% Finer of Hydrometer Sample 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	Specific Gravit Corrected Dry 1. 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	y (G _i) Weight of Soil T K 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382	Particle Diameter (mm) 0.054 0.038 0.027 0.019 0.014 0.010 0.007 0.006 0.005	2.65 119.6 Percent Passing 0.69 0.69 0.69 0.69 0.69 0.72 0.37 0.04	

Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Retained	% Retained	% Passing
20	0.850	1.210	9.363	8,15	52.49	6.8	81.5
40	0.425	1.190	23.497	22.31	105.52	18.7	62.9
60	0.250	1.201	51.292	50.09	224.60	41.9	21.0
100	0.150	1,208	21.800	20.59	273.55	17.2	3.8
140	0.105	1.214	2.849	1.64	277.44	1.4	2.4
200	0.075	1,193	1.881	0.69	279.07	0.6	1.8
230	0.063	1.193	1.361	0.17	279.47	0:1	1.7
			Sum	103.63	230 Minus	2.00	

Sample ID: CS-101-0-6-11112016 (A6K0424-02)

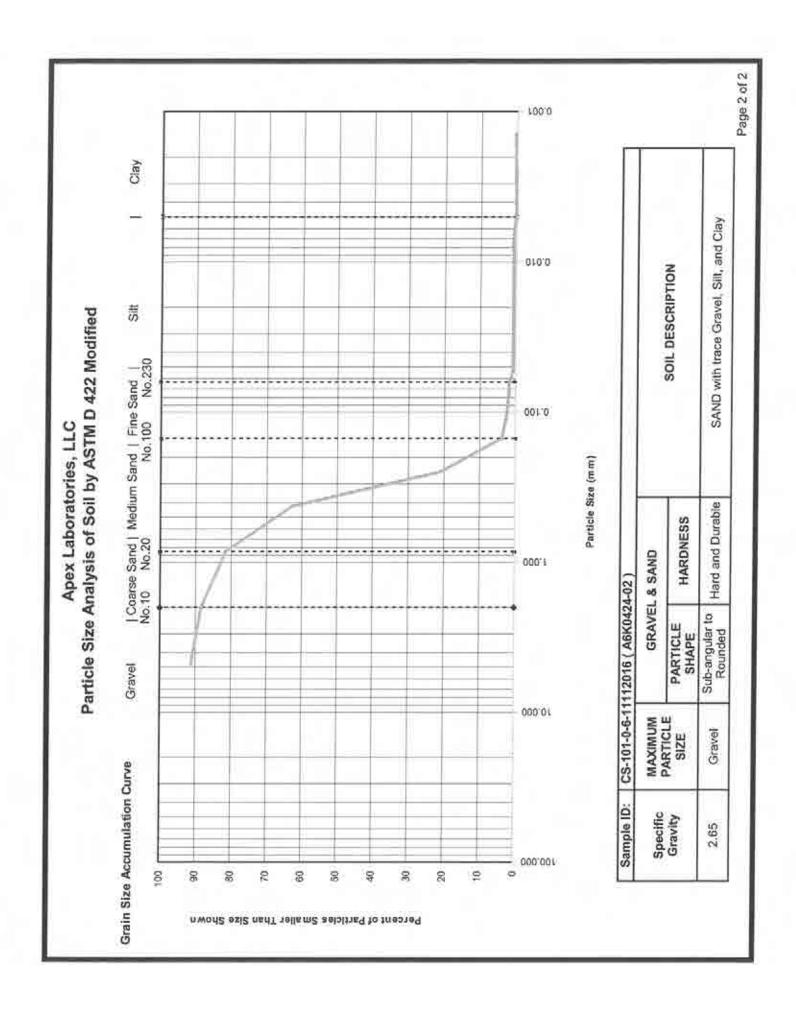
Grain Size	e Analysis Summary from Sieving and Hydrometer Testing	Particle Size (mm)	Percent Finer	Total Percent of Sample
Gravel				11,64
	Retained on No. 4 sieve	4.70	91.22	8.78
	Gravel, passing No. 4 sieve and retained on No. 10 sieve	2.00	88.36	2.86
Sand				86.68
	Coarse sand, passing No.10 sieve and retained on No. 20 sieve	0.8500	81.54	6,82
	Medium sand, passing No.20 sieve and retained on No. 40 sieve	0.4250	62.88	18.66
	Medium sand, passing No.40 sieve and retained on No. 60 sieve	0.2500	20.98	41.9
	Medium sand, passing No. 60 sieve and retained on No. 100 sieve	0.1500	3.76	17.22
	Fine sand, passing No, 100 sieve and retained on No.140 sieve	0.1060	2.39	1,37
	Fine sand passing No. 140 sieve and retained on No. 200 sieve	0.0750	1.82	0.58
	Fine sand, passing No. 200 sieve and retained on No. 230 sieve	0.0630	1.68	0.14
Silt and Ci	ay (Measurements in the Clay fraction are noted)			1.93
	Hydrometer Test	0.0539	0.69	0.99
	Hydrometer Test	0.0381	0.69	0
	Hydrometer Test	0.0269	0.69	0
	Hydrometer Test	0.0190	0.69	0
	Hydrometer Test	0.0139	0.69	0
	Hydrometer Test	0.0098	0.69	
	Hydrometer Test	0.0070	0.72	0
	Hydrometer Test	0.0057	0.37	0.31
	Hydrometer Test C	ay 0.0049	0.04	0.33
	Hydrometer Test CI	9y 0.0034	0.15	- 0
	Hydrometer Test Ci	ay 0.0028	0.23	0
	Hydrometer Test Cl	0.0014	0.3	. 0

Grain Siz	e Summary	Percent of Total Sample
Gravel	C TO THE STATE OF	11:6
Sand		86.7
	Coarse sand	6.8
	Medium sand	77.8
	Fine sand	2.1
SBI		1.3
Clay		0.6

Case Narrative for Sample ID: CS-101-0-6-11112016 (A6K0424-02)

This data is not to be used for engineering purposes.

No difficulty dispersing the fraction passing the No. 10 sieve.


Dispersion device used: Commercial drink mixer operating at least 10,000 rpm for one minute.

The assumed specific gravity used in the calculations was 2.65.

Jar was sampled prior to use for grain size.

Organic material (shell fragment) present in +10 fraction.

				Apex Labo	oratories, LL	C			
			Particle	Size Analys	is of Soil by	ASTM D 422	2		
Sample ID:	Ģ.	A6K0424-0	3	Client Sam	ple ID:	CS-02-0-6-11112016		Batch Number:	6120183
Data Enter	ed by:	JSJ	Date:	12/02/16	Data Revie	wed by:	JW	Date:	12/05/10
Sample De	scription.	SAND with	trace Sitt		Max Partic	Particle Size: Gravel			
Particle Sh	ape:	Sub-angula	r to Sub-roun	ded	Hardness	Hard and D	Durable		
		Whole Sample			Tare	Air Dry + Tare	Air Dry	Moisture	Dry Wt.
					5.907	255.227	249.32	0.48	248.1
Sieve Number Opening (mm) Tare Dry + Tare Weight Retained					Cumulative Wt. Retained	% Re	etained	% Pas	sing
4	4.75	1.213	1.922	0.71	0.71		0.3	99	y .
10)	2.00	1.259	4.666	3.41	4.12		.4	98.	3:1
Pan		5.912	251.053	245,14	249.26	- 98	8.3		
			H	ygroscopic M	oisture Corre	ection			
		Hygroscopic Co	orrection Factor	ection Factor Oven Sample Pan No. Tare Air Dry + Tare		Oven Dry + Tare	Moisture		
		0.9	952	Oten sample	K42403	1.206	22.675	22.573	0.48
				Hydrome	ter Analysis				
Start Date/Tin	ne		11/22/2016	9:49	Dispersing Ag	jent		NaPo	ο,
Air Dry Sampi	e Wt. for Hydrom	eter Test (g)	109.149		G Correction	n Factor (a)		1.00	0
Percent Passi	ng No.10 Sieve		98	3.3	Specific Gravi	ty (G _i)		2.65	5
Dry Weight of	Soil Tested (g)		108	3.63	Corrected Dry	Weight of Soil T	ested (g) (W)	110.4	16
Elapsed Time (min)	Hydrometer Reading	Temperature (°C)	Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	Ъ	ĸ	Particle Diameter (mm)	Percent Passing	
1	7	19.1	0.48	0.4	15	0.01382	0.054	0.43	
2	7	19.1	0.48	0.4	15	0.01382	0.038	0.43	
4	6.5	19.1	1000 7	0.0	15	0.01382	0.027	0.00	
8	6	19.1		0.0	15.2	0.01382	0.019	0.00	
15	6	19.2		0.0	15.2	0.01382	0.014	0.00	
30	6	19.2		0.0	15.2	0.01382	0.010	0.00	
60	6	19.2		0.0	15.2	0.01382	0.007	0.00	
90	6	19.3		0.0	15.2	0.01382	0.006	0.00	
120	6	19.4		0.0	15.2	0.01382	0.005	0.00	
240	6	20.1		0.0	15.2	0.01365	0.003	0.00	
360	5	20.4		0.0	15.3	0.01365	0.003	0.00	
	.6	18.8			15.2		0.001	0.00	

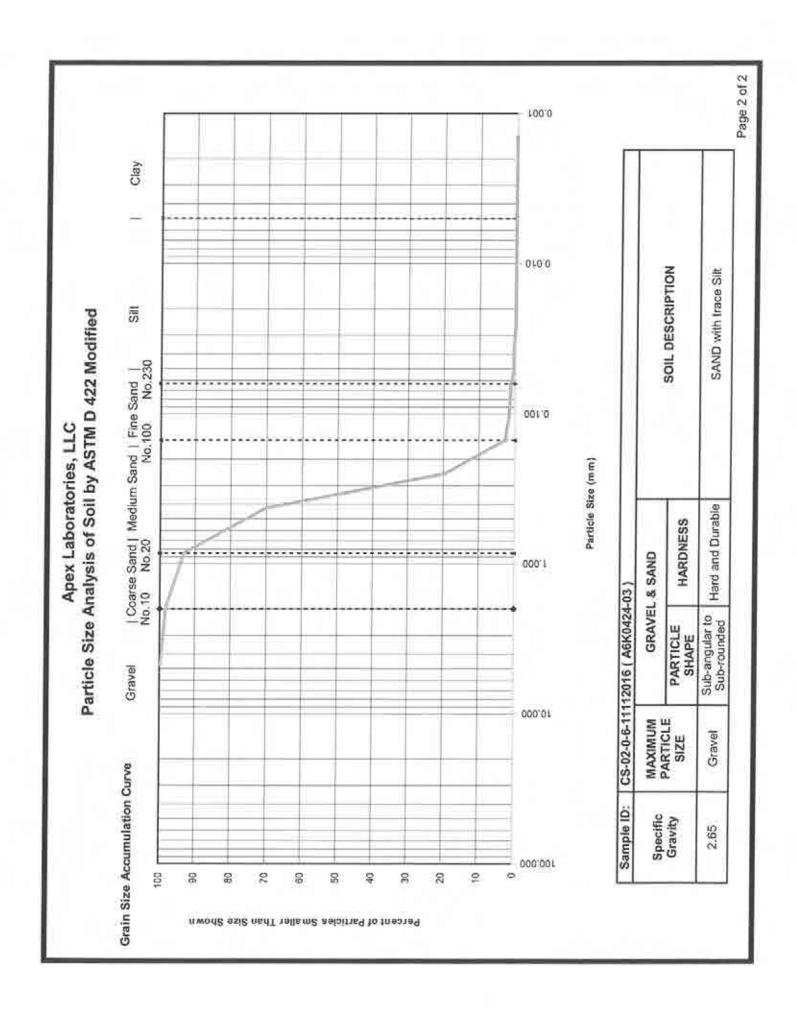
Sleve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Retained	% Retained	% Passing
20	0.850	1.206	6.995	5.79	17.12	5.2	93.1
40	0.425	1.204	26.664	25.48	74.30	23.0	70.1
60	0.250	2,424	58:304	55.88	199,80	50.6	19.5
100	0.150	1.209	19,748	18.54	241,44	16.8	2.7
140	0.105	1.212	2.296	1.08	243.87	1.0	1.7
200	0.075	1.209	1.598	0.39	244.75	0.4	1.3
230	0.063	1.219	1.308	0.09	244.95	0.1	1.3
			Sum	107.23	230 Minus	1.40	

Sample ID: CS-02-0-6-11112016 (A6K0424-03)

Grain Size	a Analysis Summary from Sieving and Hydrometer Testing	Particle Size (mm)	Percent Finer	Total Percent of Sample
Gravel				1.66
	Retained on No. 4 sleve	4.79	99.71	0.29
	Gravel, passing No. 4 sieve and retained on No. 10 sieve	2.00	98.34	1.37
Sand				97.07
	Coarse sand, passing No.10 sleve and retained on No. 20 sleve	0.8500	93.1	5.24
	Medium sand, passing No.20 sleve and retained on No. 40 sleve	0.4250	70.05	23.05
	Medium sand, passing No.40 sieve and retained on No. 60 sieve	0.2500	19.48	50.59
	Medium sand, passing No. 60 sieve and retained on No.100 sieve	0.1500	2.68	16.78
	Fine sand, passing No. 100 sieve and retained on No.140 sieve	0.1060	1.7	0.98
	Fine sand passing No. 140 sieve and retained on No. 200 sieve	0.0750	1.35	0.35
	Fine sand, passing No. 200 sieve and retained on No. 230 sieve	0.0630	1.27	0.08
Silt and Cl	ay (Measurements in the Clay fraction are noted)			1.27
	Hydrometer Test	9.0535	0.43	0.84
	Hydrometer Test	0.0378	0.43	0
	Hydrometer Test	0.0268	0.43	0
	Hydrometer Test	0.0190	0.43	0
	Hydrometer Test	0.0139	0.43	-0
	Hydrometer Test	0.0098	0.43	ō
	Hydrometer Test	0.0070	0.43	-0
	Hydrometer Test	0.0057	0.43	0
	Hydrométer Test	Dlay 0.0049	0.43	0
	Hydrometer Test:	lay 0.0034	0.43	0
	Hydrometer Test	lay 0.0028	0.43	0
	Hydrometer Test	Day 0.0014	0.43	0

Grain Size Summary	Percent of Total Sample
Gravel	1.7
Sand	97.1
Coarse sand	5.2
Medium sand	90.4
Fine sand	1.4
Silt	0.8
Clay	0.4

Case Narrative for Sample ID: CS-02-0-6-11112016 (A6K0424-03)


This data is not to be used for engineering purposes.

No difficulty dispersing the fraction passing the No. 10 sieve.

Dispersion device used: Commercial drink mixer operating at least 10,000 rpm for one minute.

The assumed specific gravity used in the calculations was 2.65:

				Apex Labo	ratories, LL0	C			
		,	Particle	Size Analysi	s of Soll by	ASTM D 42	2		
Sample ID		A6K0424-0	14	Client Samp	ole ID:	CS-03-0-0	6-11112016	Batch Number:	6120183
Data Enter	ed by:	JSJ	Date:	12/02/16	Data Revie	wed by:	JW	Date:	12/05/1
Sample De	scription:	SAND with and Clay	some Gravel	and trace Silt	Max Particl	cle Size: Gravel			
Particle Sh	ape:	Sub-angula	r to Sub-roun	ded	Hardness	Hard and D	Durable		
		Whole Sample			Ture	Air Dry + Tare	Air Dry	Molsture	Dry WL
					5.806	277.822	272.02	0.64	270.3
Sieve Number Opening (mm) Tare Dry + Tare Weight Retained					Cumulative Wt. Retained	% Re	tained	% Pas	sing
(4)	4.75	1.218	33.672	32.45	32.45	1	2.0	88.0)′
10	2.00	1.207	48.859	47,65	80.11	1	7.6	70.4	17
Pan		5.817	196 474	190.66	270.76	7	0.1		
			Hy	groscopic Mo	oisture Corre	ection			
		Hygroscopic C	prrection Factor	Oven Sample	Pan No.	in No. Tare Air Dry + Tare		Oven Dry + Tare	Moisture
		0.9	936	Oven Sample L	K42404 1.192 21,935		21,803	0.64	
				Hydrome	ter Analysis				
Start Date/Tin	16		11/22/2016	10:10	Dispersing Ag	ent		NaPo	0,-
Air Dry Sampl	e Wt. for Hydron	eter Test (g)	101,477		G Correction	Factor (a)		1.00	0
Percent Passi	ng No.10 Sieve	20010110100000	70	.4	Specific Gravit	ty (G,)		2.65	
Dry Weight of	Soil Tested (g)		100	.83	Corrected Dry	Weight of Soil T	ested (g) (W)	143.3	0
Elapsed Time	Hydrometer Reading	Temperature (°C)	Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	Ţ.	К	Particle Diameter (mm)	Percent Passing	
(min)							10.00009000	10000	
	.8	19.2	3	2.1	14.8	0.01382	0.053	1.48	
(min)	8	19.2 19.2	3	2.1	14.8	0.01382	0.053	1.48	
(min)	- 27	0.000			1,7,0,14	0.01382	545555	1999	
(min) 1 2	8	19.2	3	2.1	14.8	0.01382 0.01382	0.038	1.48	
(min) 1 2 4	8 7,5	19.2 19.2	3 2.5	1,7	14.8	0.01382	0.038 0.027	1.48 1.23	
(min) 1 2 4 8	8 7.5 7.5	19.2 19.2 19.2	3 2.5 2.5	2.1 1,7 1,7	14.8 14.8 14.8	0.01382 0.01382 0.01382 0.01382	0.038 0.027 0.019	1.48 1.23 1.23	
(min) 1 2 4 8 15	8 7.5 7.5	19.2 19.2 19.2 19.2	3 2.5 2.5 2	2.1 1.7 1.7 1.4	14.8 14.8 14.8 15	0.01382 0.01382 0.01382	0.038 0.027 0.019 0.014	1.48 1.23 1.23 0.98	
(min) 1 2 4 8 15 30	8 7.5 7.5 7	19.2 19.2 19.2 19.2	3 2.5 2.5 2 2	2.1 1.7 1.7 1.4 1.4	14.8 14.8 14.8 15	0.01382 0.01382 0.01382 0.01382 0.01382	0.038 0.027 0.019 0.014 0.010	1.48 1.23 1.23 0.98 0.98	
(min) 1 2 4 8 15 30 60	8 7.5 7.5 7 7	19.2 19.2 19.2 19.2 19.2 19.3	3 2.5 2.5 2 2 2 2,03	2.1 1.7 1.7 1.4 1.4	14.8 14.8 14.8 15 15	0.01382 0.01382 0.01382 0.01382 0.01382 0.01382	0.038 0.027 0.019 0.014 0.010 0.007	1.48 1.23 1.23 0.98 0.98	
(min) 1 2 4 8 15 30 60 90	8 7.5 7 7 7 7 7 6.5	19.2 19.2 19.2 19.2 19.2 19.3	3 2.5 2.5 2 2 2.03 1.55	2.1 1.7 1.7 1.4 1.4 1.4 1.4	14.8 14.8 14.8 15 15 15	0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382	0.038 0.027 0.019 0.014 0.010 0.007	1.48 1.23 1.23 0.98 0.98 1.00	
(min) 1 2 4 8 15 30 60 90 120	8 7.5 7.5 7 7 7 6.5 6	19.2 19.2 19.2 19.2 19.2 19.3 19.4 19.5	3 2.5 2.5 2 2 2 2.03 1.55 1.08	2.1 1.7 1.7 1.4 1.4 1.4 1.1 0.8	14.8 14.8 14.8 15 15 15 15 15	0.01382 0.01382 0.01382 0.01382 0.01382 0.01382 0.01382	0.038 0.027 0.019 0.014 0.010 0.007 0.006 0.005	1.48 1.23 1.23 0.98 0.98 1.00 0.76 0.53	

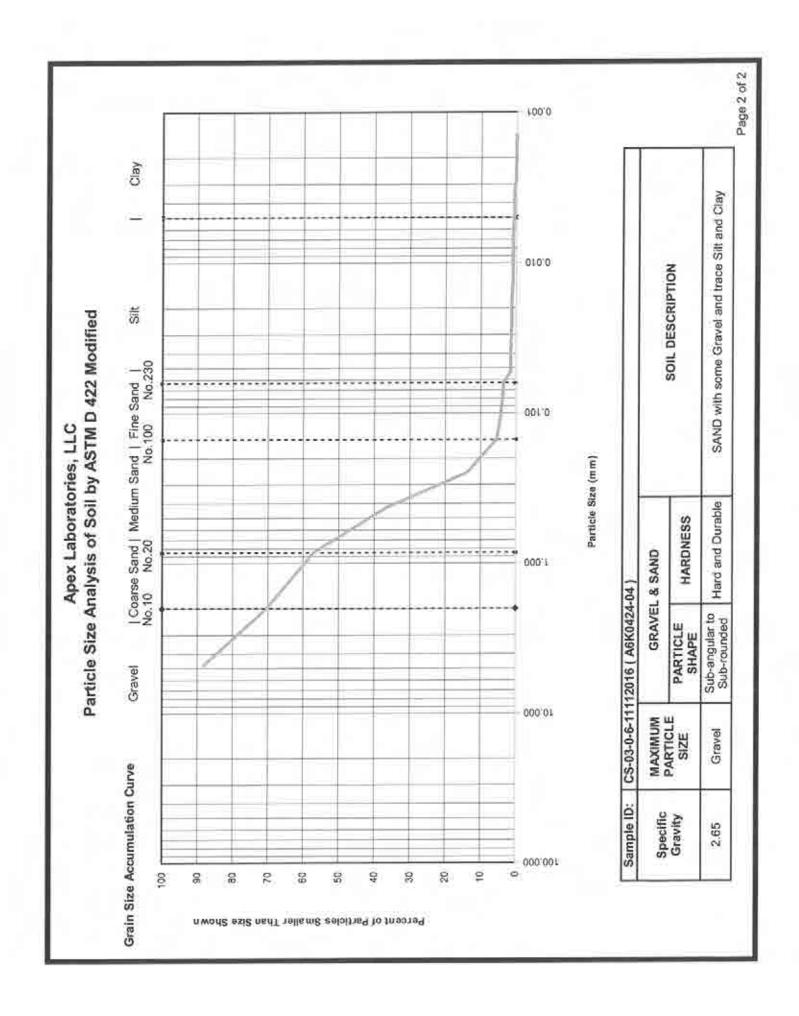
Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Retained	% Retained	% Passing
20	0.850	1,222	20.457	19.24	116.25	13.4	56.9
40	0.425	1.210	30,560	29.35	171,39	20.5	36.5
60	0,250	1.195	33.679	32.48	232.42	22.7	13.8
100	0.150	1.210	13.275	12.07	255.09	8.4	5.4
140	0.105	1.200	2.742	1.54	257.99	1.1	4.3
200	0.075	1.205	2,092	0.89	259.65	0.6	3.7
230	0.063	1.204	1,456	0.25	260.13	0.2	3.5
			Sum	95.82	230 Minus	5.02	

Sample ID: CS-03-0-6-11112016 (A6K0424-04)

Grain Size	Analysis Summary from Sieving and Hydrometer Testing		Particle Size (mm)	Percent Finer	Total Percent of Sample
Gravel					29.64
	Retained on No. 4 sieve		4.75	87.99	12.0
	Gravel, passing No. 4 sieve and retained on No. 10 sieve		2:00	70:36	17.63
Sand					66.86
	Coarse sand, passing No.10 sieve and retained on No. 20 sieve		0.8500	56.94	13.42
	Medium sand, passing No.20 sieve and retained on No. 40 sieve		0.4250	36.46	20.48
	Medium sand, passing No.40 sleve and retained on No. 60 sleve		0.2500	13,79	22.67
	Medium sand, passing No. 60 sieve and retained on No.100 sieve		0.1500	5.37	8.42
	Fine sand, passing No. 100 sleve and retained on No.140 sleve		0.1060	4.3	1.08
	Fine sand passing No. 140 sieve and retained on No. 200 sieve		0.0750	3.68	0.62
	Fine sand, passing No. 200 sieve and retained on No. 230 sieve		0.0630	3.5	0.18
Silt and Cla	ay (Measurements in the Clay fraction are noted)				3.5
	Hydrometer Test		0.0532	1,48	2.03
	Hydrometer Test		0.0376	1.48	
	Hydrometer Test		0.0266	1.23	0.25
	Hydrometer Test		0.0188	1.23	ô
	Hydrometer Test		0.0138	0.98	0.25
	Hydrometer Test		0.0098	0.98	0
	Hydrometer Test		0.0069	3	
	Hydrometer Test		0.0056	0.76	0.22
	Hydrometer Test	Clay	0.0049	0.53	0.23
	Hydrometer Test	Clay	0.0034	0.6	0
	Hydrometer Test	Clay	0.0028	0.16	0.37
	Hydrometer Test	Clay	0.0014	0.16	:0

Grain Size Summary	Percent of Total Sample
Gravel	29.6
Sand	66.9
Coarse sand	13.4
Medium sand	51.8
Fine sand	1.9
Sitt	2.7
Clay	8.0

Case Narrative for Sample ID: CS-03-0-6-11112016 (A6K0424-04)


This data is not to be used for engineering purposes.

No difficulty dispersing the fraction passing the No. 10 sieve.

Dispersion device used: Commercial drink mixer operating at least 10,000 rpm for one minute.

The assumed specific gravity used in the calculations was 2.65.

				Apex Labo	oratories, LL0	0				
			Particle	Size Analysi	is of Soil by	ASTM D 42	2			
Sample ID:		A6K0424-0	15	Client Sam	ple ID:	CS-04-0-6-11112016		Batch Number:	6120183	
Data Enter	ed by:	JSJ	Date:	12/02/16	Data Revie	wed by:	JW	Date:	12/05/10	
Sample De	scription:	SAND with	some Gravel	and trace Silt	Max Particl	le Size: Gravel				
Particle Sh	ape:	Sub-angula	r to Rounded		Hardness	Hard and D	Durable			
		Whole Sample			Tare	Air Dry + Tare	Air Dry	Moisture	Dry Wt.	
					5.818	241.916	236.10	0.55	234.8	
leve Number Opening (mm) Tare Dry + Tare Weight Retained					Cumulative Wt. Retained	% Re	stained	% Pas	sing	
4	4.75	1.205	23.728	22.52	22.52		9.6	90.4		
10	2.00	11191	15.028	13.84	36.36	3	5.9	84.	5	
Pan		5.827	205.156	199.33	235.69	. 8	4.4			
			Н	ygroscopic M	oisture Corre	ction				
		Hygroscopic Co	copic Correction Factor Oven Sample Pan No. Tare Air Dry + Tare		Oven Dry + Tare	Moisture				
		0.9	945	Over cample	K42405	1.221	23.938	23.814	0.55	
				Hydrome	ter Analysis					
Start Date/Tin	16		11/22/2016	10:20	Dispersing Ag	ent		NaPo),	
Air Dry Sample	e Wt. for Hydrom	eter Test (g)	111.946		G, Correction	Factor (a)		1.00	0	
Percent Passi	ng No.10 Sieve		84	.5	Specific Gravit	y (G ₂)		2.65		
Dry Weight of	Soil Tested (g)		111	.33	Corrected Dry	Weight of Soil T	ested (g) (W)	131.7	3	
Elapsed Time (min)	Hydrometer Reading	Temperature (°C)	Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	L	к	Particle Diameter (mm)	Percent Passing		
1	8	19.4	1.58	1.2	14.8	0.01382	0.053	1.01		
2	8	19.4	1,58	1.2	14.8	0.01382	0.038	1.01		
4	8	19.4	1.58	1.2	14.8	0.01382	0.027	1.01		
8	8	19.3	1.55	1.2	14.8	0.01382	0.019	0.99		
:15	7.5	19.3	1.05	0.8	14.8	0.01382	0.014	0.67		
30	7	19.3	0.55	0.4	15	0.01382	0.010	0.35		
60	7	19.4	0.58	0.4	15	0.01382	0.007	0.37		
90	7	19.5	0.61	0.5	15	0.01365	0.006	0.39		
120	6	19.8		0.0	15.2	0.01365	0.005	0.00		
240	6	20,1		0.0	15.2	0.01365	0.003	0.00		
360	6	20.6		0.0	15.2	0.01348	0.003	0.00		
						The second second second				

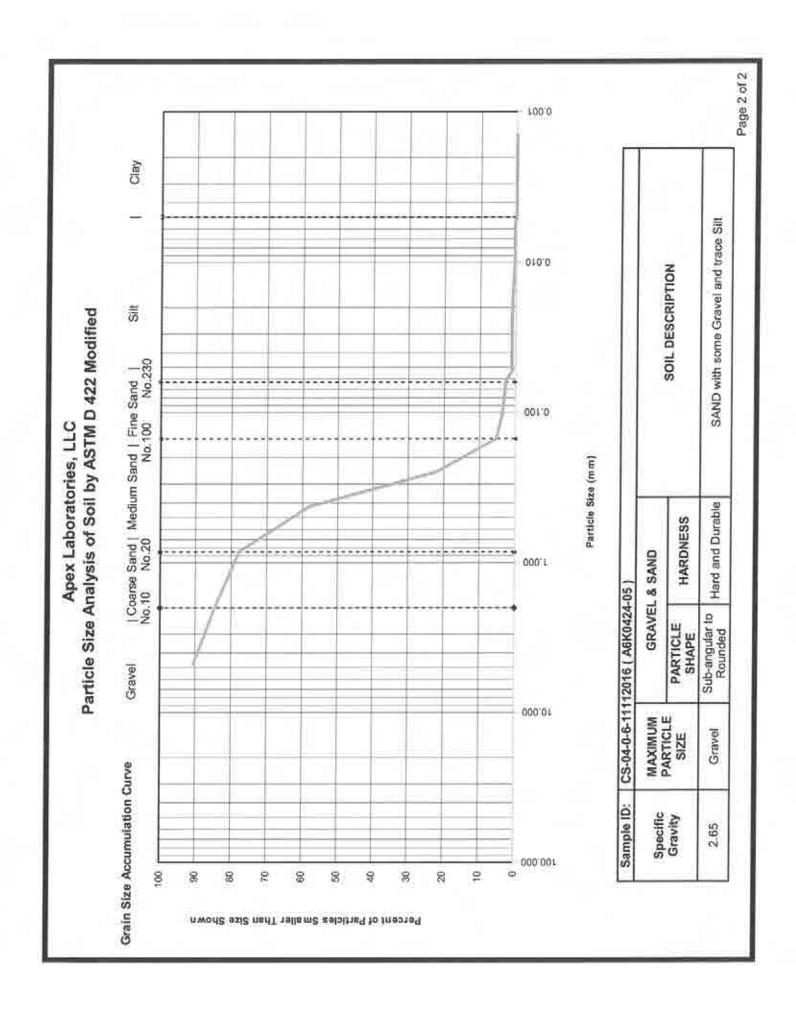
Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Retained	% Retained	% Passing
20	0.850	1.195	10.113	8.92	52.24	6.8	77.7
40	0.425	1.191	27,120	25.93	98.41	19.7	58.1
60	0.250	1.221	48.659	47,44	182.88	36.0	22.1
100	0.150	1.212	23.266	22.05	222.14	16.7	5,3
140	0.105	1,246	3.309	2.06	225.82	1.6	3.7
200	0.075	1,208	2,204	1.00	227.59	0.8	3.0
230	0.063	1.211	1.463	0.25	228.04	0.2	2.8
			Sum	107.65	230 Minus	3.68	

Sample ID: CS-04-0-6-11112016 (A6K0424-05)

Grain Size	Analysis Summary from Sleving and Hydrometer Testing		Particle Size (mm)	Percent Finer	Total Percent of Sample
Gravel					15.48
	Retained on No. 4 sieve		4.75	90.41	9.59
	Gravel, passing No. 4 sieve and retained on No. 10 sieve		2.00	84.52	5.89
Sand					81.72
	Coarse sand, passing No.10 sieve and retained on No. 20 sieve		0.8500	77.75	6.77
	Medium sand, passing No.20 sieve and retained on No. 40 sieve		0.4250	58.06	19.68
	Medium sand, passing No.40 sieve and retained on No. 60 sieve		0,2500	22.05	38.01
	Medium sand, passing No. 60 sieve and retained on No.100 sieve		0.1500	5.31	16.74
	Fine sand, passing No. 100 sieve and retained on No.140 sieve		0.1060	3.74	1.57
	Fine sand passing No. 140 sieve and retained on No. 200 sieve		0.0750	2.99	0.76
	Fine sand, passing No. 200 sieve and retained on No. 230 sieve		0.0630	2.8	0,19
Sitt and Cla	y (Measurements in the Clay fraction are noted)				2.84
	Hydrometer Test		0.0532	1.01	1.78
	Hydrometer Test		0.0376	1.01	0
	Hydrometer Test		0.0266	1.01	0
	Hydrometer Test		0.0188	0.99	0.02
	Hydrometer Test		0.0137	0.67	0.32
	Hydrometer Test		0.0098	0.35	0.32
	Hydrometer Test		0.0069	0.37	0
	Hydrometer Test		0.0056	0.39	.0
	Hydrometer Test	Clay	0.0049	0.39	0
	Hydrometer Test	Clay	0.0034	0.39	0
	Hydrometer Test	Clay	0.0028	0.39	0
	Hydrometer Test	Clay	0.0014	0.39	0

Grain Size Summary	Percent of Total Sample
Gravel	15.5
Sand	81.7
Coarse sand	6.8
Medium sand	72.4
Fine sand	2.5
Silt	2.4
Clay	0.4

Case Narrative for Sample ID: CS-04-0-6-11112016 (A6K0424-05)


This data is not to be used for engineering purposes.

No difficulty dispersing the fraction passing the No. 10 sieve.

Dispersion device used: Commercial drink mixer operating at least 10,000 rpm for one minute.

The assumed specific gravity used in the calculations was 2.65.

				Apex Labo	oratories, LL	С			
			Particle	Size Analysi	s of Soil by	ASTM D 422	2		
Sample ID:	>	A6K0424-0	06	Client Samp	ole ID:	CS-05-0-6	5-11112016	Batch Number:	6120183
Data Enter	ed by:	JSJ	Date:	12/02/16	Data Revie	wed by:	JW	Date:	12/05/1
Sample De	scription:	SAND with	trace Silt		Max Particl	le Size:	Gravel		
Particle Shape. Sub-angular to Sub-rounded			ded	Hardness	Hard and Durable				
		Whole Sample			Tare	Air Dry + Tare	Air Dry	Moisture	Dry Wt
					5.672	252 198	246.53	0.57	245.1
Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Wt. Retained	% Re	rtained.	% Pas	sing
4	4.75	1,188	3.536	2.35	2,35	3	.0	99.)
10	2.00	1.208	2.287	1.08	3.43	.0).4	98.0	5 ::
Pan		5.674	248.558	242.88	246.31	9	9.5		
			H	ygroscopic M	oisture Corre	ection			
		Hygroscopic C	orrection Factor	T T	Pan No.	Tare	Air Dry + Tare	Oven Dry + Tare	Moisture
		0.9	943	Oven Sample:	K42406	1.208	32.190	32.013	0.57
				Hydrome	ter Analysis				
Start Date/Tim	10		11/22/2016	10:36	Dispersing Ag	ent		NaPo) ₁
Air Dry Sample Wt. for Hydrometer Test (g) 104		104.828		G _a Correction Factor (a)			1.000		
Percent Passing No.10 Sieve		98	3.6	Specific Gravity (G _s)		2.65			
Dry Weight of	Soil Tested (g)		104	1,23	Corrected Dry	Weight of Soil T	ested (g) (W)	105.7	9
Elapsed Time (min)	Hydrometer Reading	Temperature (°C)	Corrected Hydrometer Reading [R]	% Finer of Hydrometer Sample	L.	к	Particle Diameter (mm)	Percent Passing	
1	5	19.3	0.03	0.0	15.3	0.01382	0.054	0.03	
2	5	19.3	0.03	0.0	15.3	0.01382	0.038	0.03	
4	5	19.3	0.03	0.0	15.3	0.01382	0.027	0.03	
8	5	19.2	0	0.0	15.3	0.01382	0.019	0.00	
15	5	19.3	0.03	0.0	15.3	0.01382	0.014	0.03	
30	5	19.3	0.03	0.0	15.3	0.01382	0.010	0.03	
60	.5	19.4	0.05	0.1	16.3	0.01382	0.007	0.05	
90	.5	19.5	0.08	0.1	15.3	0.01365	0.006	0.07	
120	5	19.7	0.13	0.1	15.3	0.01365	0.005	0.12	
240	5	20	0.21	0.2	15.3	0.01365	0.003	0.19	
360	4.5	20.5		0.0	15.3	0.01348	0.003	0.00	
1440	5	18.9		0.0	15.3	0.01382	0.001	0.00	

Sieve Number	Opening (mm)	Tare	Dry + Tare	Weight Retained	Cumulative Retained	% Retained	% Passing
20	0.850	1.204	3,177	1.97	8.00	1.9	96.7
40	0.425	1,192	13,591	12.40	36.73	11.7	85.0
60	0.250	1.221	54.704	53.48	160.65	50.6	34.4
100	0.150	1.216	32.277	31.06	232.61	29.4	5.0
140	0.105	1.207	4.286	3.08	239.75	2.9	2.1
200	0.075	1.189	2.192	1.00	242.07	0.9	1,2
230	0.063	1.220	1.390	0.17	242.46	0.2	1.0
			Sum	103.17	230 Minus	1.06	

Sample ID: CS-05-0-6-11112016 (A6K0424-06)

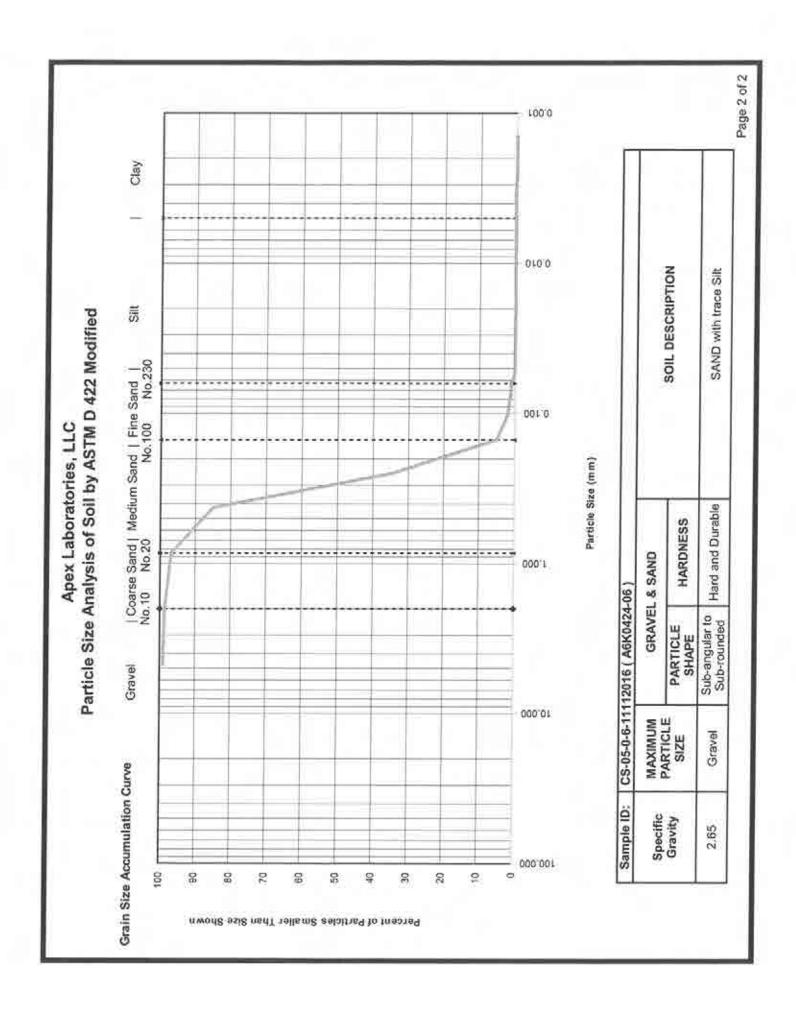
Grain Size	Analysis Summary from Sieving and Hydrometer Testing	Particle Size (mm)	Percent Finer	Total Percent of Sample
Gravel				1.4
	Retained on No. 4 sieve	4.73	99.04	0.96
	Gravet, passing No. 4 sieve and retained on No. 10 sieve	2.00	98.6	0.44
Sand				97.6
	Coarse sand, passing No.10 sieve and retained on No. 20 sieve	0.8500	96.74	1.87
	Medium sand, passing No.20 sieve and retained on No. 40 sieve	0.4250	85.01	11.73
	Medium sand, passing No.40 sieve and retained on No. 60 sieve	0.2500	34,41	50.6
	Medium sand, passing No. 60 sieve and retained on No.100 sieve	0.1500	5.03	29.38
	Fine sand, passing No. 100 sleve and retained on No. 140 sleve	0,1060	2.11	2.91
	Fine sand passing No. 140 sieve and retained on No. 200 sieve	0.0750	1.16	0.95
	Fine sand, passing No. 200 sieve and retained on No. 230 sieve	0.0630	1	0.16
Silt and Cla	sy (Measurements in the Clay fraction are noted)			1.19
	Hydrometer Test	0.0541	0.03	0.98
	Hydrometer Test	0.0382	0.03	.0
	Hydrometer Test	0.0270	0.03	0
	Hydrometer Test	0.0191	o	0.02
	Hydrometer Test	0.0140	0.03	0
	Hydrometer Test	0.0099	0.03	0
	Hydrometer Test	0.0070	0.05	:0
	Hydrometer Test	0.0056	0.07	0
	Hydrometer Test	ay 0.0049	0.12	0
	Hydrometer Test C	o 0.0034	0.19	o
	Hydrometer Test	ay 0.0028	0.19	o
	Hydrometer Test	ay 0.0014	0.19	0

Grain Size Summary	Percent of Total Sample
Gravel	1:4
Sand	97.6
Coarse sand	1.9
Medium sand	91.7
Fine sand	4.0
Sitt	1.0
Clay	0.2

Case Narrative for Sample ID: CS-05-0-6-11112016 (A6K0424-06)

This data is not to be used for engineering purposes.

No difficulty dispersing the fraction passing the No. 10 sieve.


Dispersion device used: Commercial drink mixer operating at least 10,000 rpm for one minute.

The assumed specific gravity used in the calculations was 2.65.

Jar was sampled prior to use for grain size.

Organic material (wood fragment) present in +4 fraction.

