

# REMEDIAL INVESTIGATION REPORT AND CLEANUP ACTION PLAN

SHELL-BRANDED WHOLESALE FACILITY 3740 PACIFIC AVENUE TACOMA, WASHINGTON

**SAP CODE** 

121182

INCIDENT NO.

97789101

AGENCY NO.

17847919

**Prepared For:** 

Shell Oil Products US 20945 S. Wilmington Ave Carson, CA 90810

> Prepared by: Conestoga-Rovers & Associates

20818 44<sup>th</sup> Avenue W, Suite 190 Lynnwood, Washington U.S.A. 98036

Office: 425-563-6500 Fax: 425-563-6599

web: http:\\www.CRAworld.com

JULY 29, 2011 REF. NO. 241876 (3) This report is printed on recycled paper.



# REMEDIAL INVESTIGATION REPORT AND CLEANUP ACTION PLAN

SHELL-BRANDED WHOLESALE FACILITY 3740 PACIFIC AVENUE TACOMA, WASHINGTON

SAP CODE

121182

INCIDENT NO.

97789101

AGENCY NO.

17847919

**Prepared For:** 

Shell Oil Products US 20945 S. Wilmington Ave Carson, CA 90810

Brian Peters, LG

Brian Richardson, LG

2577
Brien A. Richardson

Prepared by: Conestoga-Rovers & Associates

20818 44<sup>th</sup> Avenue W, Suite 190 Lynnwood, Washington U.S.A. 98036

Office: 425-563-6500 Fax: 425-563-6599

web: http:\\www.CRAworld.com

JULY 29, 2011 Ref. no. 241876 (3)

This report is printed on recycled paper.

# TABLE OF CONTENTS

|     |         |                                                   | Page |
|-----|---------|---------------------------------------------------|------|
| 1.0 | INTRO   | DDUCTION                                          | 1    |
| 1.0 | 1.1     | SITE INFORMATION                                  |      |
|     | 1.2     | PURPOSE                                           |      |
| 2.0 | SITE II | DENTIFICATION AND DESCRIPTION                     | 1    |
|     | 2.1     | SITE DISCOVERY AND REGULATORY STATUS              |      |
|     | 2.2     | SITE AND PROPERTY LOCATION/DEFINITION             | 2    |
|     | 2.3     | NEIGHBORHOOD SETTING                              |      |
|     | 2.4     | PHYSIOGRAPHIC SETTING/TOPOGRAPHY                  |      |
| 3.0 | PROPE   | ERTY DEVELOPMENT AND HISTORY                      | 3    |
|     | 3.1     | PAST PROPERTY USES AND FACILITIES                 | 3    |
|     | 3.2     | CURRENT PROPERTY USE AND FACILITIES               | 4    |
|     | 3.3     | PROPOSED OR POTENTIAL FUTURE SITE USES            | 4    |
|     | 3.4     | ZONING                                            | 4    |
|     | 3.5     | TRANSPORTATION AND ROADS                          |      |
|     | 3.6     | UTILITIES AND WATER SUPPLY                        | 4    |
|     | 3.7     | POTENTIAL SOURCES OF SITE CONTAMINATION           |      |
| 4.0 | ENVIR   | CONMENTAL INVESTIGATION AND INTERIM ACTION SUMMAR | Y5   |
|     | 4.1     | CONSTITUENTS OF CONCERN                           | 5    |
|     | 4.2     | SOIL                                              | 6    |
|     | 4.3     | SURFACE WATER                                     | 7    |
|     | 4.4     | GROUNDWATER                                       |      |
|     | 4.5     | SEDIMENT                                          | 7    |
|     | 4.6     | AIR/SOIL VAPOR                                    | 7    |
|     | 4.7     | NATURAL RESOURCES/WILDLIFE                        |      |
|     | 4.8     | CULTURAL HISTORY/ARCHAEOLOGY                      |      |
|     | 4.9     | INTERIM ACTIONS                                   |      |
|     | 4.10    | 2010 SITE INVESTIGATION                           |      |
| 5.0 | NATU    | RAL CONDITIONS                                    | 8    |
|     | 5.1     | GEOLOGY                                           | 8    |
|     | 5.2     | SURFACE WATER                                     | 9    |
|     | 5.3     | GROUNDWATER                                       | 9    |
|     | 5.4     | NATURAL RESOURCES AND ECOLOGICAL RECEPTORS        | 9    |
| 6.0 | CONT    | AMINANT OCCURRENCE AND MOVEMENT                   | 10   |
|     | 6.1     | WASTE MATERIAL                                    | 10   |
|     | 6.2     | SOIL                                              | 10   |
|     | 6.3     | SURFACE WATER                                     | 10   |
|     | 6.4     | GROUNDWATER                                       | 10   |
|     | 6.5     | SEDIMENT                                          | 11   |
|     | 6.6     | AIR/SOIL VAPOR                                    | 11   |
| 7.0 | CONC    | EPTUAL MODEL                                      | 11   |

| 8.0  | CLEAN               | UP STANDARDS – SOIL AND GROUNDWATER         | 12 |  |  |  |  |  |  |
|------|---------------------|---------------------------------------------|----|--|--|--|--|--|--|
|      | 8.1                 | GROUNDWATER CLEANUP LEVELS                  | 12 |  |  |  |  |  |  |
|      | 8.2                 | SOIL CLEANUP LEVELS                         | 12 |  |  |  |  |  |  |
| 9.0  | AREAS               | REQUIRING FUTURE MANAGEMENT AND CONCLUSIONS | 13 |  |  |  |  |  |  |
|      | 9.1                 | CONSTITUENTS OF CONCERN                     |    |  |  |  |  |  |  |
|      | 9.2                 | SOIL - VERTICAL AND LATERAL                 | 13 |  |  |  |  |  |  |
|      | 9.3                 | GROUNDWATER - VERTICAL AND LATERAL          | 13 |  |  |  |  |  |  |
|      | 9.4                 | SEDIMENT                                    | 13 |  |  |  |  |  |  |
|      | 9.5                 | SURFACE WATER                               | 13 |  |  |  |  |  |  |
|      | 9.6                 | SOIL VAPOR/AIR                              | 14 |  |  |  |  |  |  |
| 10.0 | CLEANUP ACTION PLAN |                                             |    |  |  |  |  |  |  |
|      | 10.1                | SCOPE OF WORK                               |    |  |  |  |  |  |  |
|      | 10.2                | SOIL EXCAVATION                             | 14 |  |  |  |  |  |  |
|      | 10.3                | STANDARD OPERATING PROCEDURES               | 15 |  |  |  |  |  |  |
|      | 10.3.1              | HEALTH AND SAFETY PLAN                      | 15 |  |  |  |  |  |  |
|      | 10.3.2              | UTILITY CLEARANCE                           | 15 |  |  |  |  |  |  |
|      | 10.3.3              | INVESTIGATION-DERIVED WASTE                 | 15 |  |  |  |  |  |  |
|      | 10.3.4              | CERTIFICATION                               | 15 |  |  |  |  |  |  |
| 11.0 | REFERE              | NCES                                        | 16 |  |  |  |  |  |  |

# LIST OF FIGURES (Following Text)

| FIGURE 1  | VICINITY MAP                                        |
|-----------|-----------------------------------------------------|
| FIGURE 2  | SITE PLAN                                           |
| FIGURE 3  | AREA MAP                                            |
| FIGURE 4A | SOIL INVESTIGATION DATA MAP                         |
| FIGURE 4B | SOIL INVESTIGATION DATA MAP - FORMER UST EXCAVATION |
| FIGURE 5  | GEOLOGIC CROSS SECTION A-A'                         |
| FIGURE 6  | GEOLOGIC CROSS SECTION B-B'                         |
| FIGURE 7  | PROPOSED EXCAVATION EXTENT                          |

# LIST OF TABLES

TABLE 1 SUMMARY OF SOIL ANALYTICAL DATA

# LIST OF APPENDICES

| APPENDIX A | ENVIRONMENTAL DOCUMENT LIST                                |
|------------|------------------------------------------------------------|
| APPENDIX B | SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES |
| APPENDIX C | AVAILABLE HISTORICAL SOIL BORING LOGS                      |
| APPENDIX D | BORING LOGS FOR SB-8 THROUGH SB-12                         |
| APPENDIX E | LABORATORY ANALYTICAL REPORTS                              |
| APPENDIX F | TERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION FORM           |
| APPENDIX G | MTCA METHOD B SOIL CLEANUP LEVEL CALCULATION               |

APPENDIX H SHELL OIL BACKFILL SPECIFICATIONS

APPENDIX I STANDARD OPERATING PROCEDURE SPECIFIC FOR EXCAVATION

AND CONFIRMATORY SAMPLING

#### 1.0 INTRODUCTION

#### 1.1 SITE INFORMATION

Site Name: Shell-Branded Wholesale Facility

Site Address: 3740 Pacific Avenue, Tacoma, WA

Voluntary Cleanup Program Number: Not Active

Project Consultant: Conestoga-Rovers & Associates

Project Consultant Contact Information: Brian Richardson, LG

20818 44<sup>th</sup> Avenue West, Suite 190 Lynnwood, Washington 98036

Office - 425.563-6500 Direct - 425.563-6511

Current Owner/Operator: PacWest Energy LLC/Jackson's Food Stores

#### 1.2 PURPOSE

Conestoga-Rovers & Associates (CRA) prepared this Remedial Investigation (RI) report and cleanup action plan (CAP) on behalf of Equilon Enterprises, LLC. (Equilon) dba Shell Oil Products US (SOPUS) for the Shell-branded service station located at the northeast corner of the intersection of Pacific Avenue and South 38th Street with the address 3740 Pacific Avenue, Tacoma, Pierce County, Washington (Property; Figure 1).

This RI /CAP was prepared to satisfy the items required by Washington Administrative Code (WAC) 173-340-350 through -390 and summarizes environmental investigation findings for the petroleum hydrocarbon release associated with the property. The background and previous investigations and remediation activities described in this report are a summary of historical investigations and documents prepared by CRA and previous consultants. A list of historical documents associated with this release is included as Appendix A.

#### 2.0 SITE IDENTIFICATION AND DESCRIPTION

#### 2.1 SITE DISCOVERY AND REGULATORY STATUS

Six steel previously unknown underground storage tanks (USTs), ranging in volume from 550-gallons to 3,200-gallons were discovered during trenching activities for a Stage II vapor recovery system upgrade in March 1995. The consultant performing the recovery system upgrade was not aware of the presence of the abandoned USTs and

assumed them to be associated with the original gasoline service station dating back to approximately 1970. The removal of the USTs was added to the scope of work in March 1995. The tanks were documented in good condition, with no apparent pitting or holes. The product conveyance piping was still attached, but had been cut and capped at the edge of the UST basin. Soil samples collected during UST removal and vapor recovery system upgrade activities contained petroleum hydrocarbon compounds exceeding Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A cleanup levels in the vicinity of the USTs and dispenser islands. No specific equipment failure was identified at the time of discovery.

A petroleum release impacting soil was reported to Ecology in March 1993 and the Site was listed with Ecology's leaking UST (LUST) program (ID #4434). The current status with Ecology is "Cleanup Started" for soil and groundwater as of June 1995.

MTCA Method A cleanup levels will be used as screening levels for purposes of discussion of investigation results. Cleanup standards are more fully developed in Section 8 of this report.

#### 2.2 <u>SITE AND PROPERTY LOCATION/DEFINITION</u>

The Property is an active Shell-branded wholesale facility located at the northwest corner of the intersection of Pacific Avenue and South 38th Street (Figure 1). The MTCA site (Site) is defined as all affected areas from the petroleum release associated with the Property and any potentially impacted adjacent parcels. The MTCA site boundary is presented in Figure 2.

#### 2.3 NEIGHBORHOOD SETTING

The Property is zoned commercial. Residential and commercial properties are located in the immediate vicinity of the Property. The nearest residential properties are located approximately 150 feet west and 100 feet north of the Property. Surrounding properties are a residence to the north, South 38th Street and a retail building across South 38th Street to the south, Pacific Avenue and a drugstore to the east, and a vacant lot and residence to the west (Figure 3). Lincoln High School is located approximately 1,600 feet to the northwest.

#### 2.4 PHYSIOGRAPHIC SETTING/TOPOGRAPHY

The Property is located at approximately 340 feet above mean sea level (msl; Figure 1). Topography in the vicinity of the Property slopes down to the north toward Interstate 5

and ultimately to the Thea Foss Waterway and Puget Sound located approximately 1.75 miles to the north.. Hood Street Reservoir is located approximately ½ mile to the northwest, and the Portland Avenue reservoir is located approximately 1 mile to the east. No other surface water is located within 1 mile of the Property. Surface cover at the Property is primarily asphalt and concrete pavement.

#### 3.0 PROPERTY DEVELOPMENT AND HISTORY

#### 3.1 PAST PROPERTY USES AND FACILITIES

Based on available historical aerial photographs, the Property was developed as an automotive service and fueling station by at least 1968. An internet search yielded a 1968 aerial photograph which depicted the station building and dispenser islands in approximately the present-day configuration. According to the Pierce County Assessor's office, a service station was built on the Property in 1970. Texaco Refining and Marketing, Inc. (TRMI) owned the Property prior to 1995, and was sold to Equilon in 1998. In December 2009, Equilon sold the Property to PacWest Energy LLC/Jackson's Food Stores, Inc.

Original facilities on the Property included six steel USTs, including two 3,200-gallon UST, one 2,100-gallon USTs, two 1,000-gallon USTs, and one 550-gallon UST. During the decommissioning of the steel USTs in 1995, Groundwater Technology, Inc. (GTI) reported that the contents of the USTs were unknown, but that the USTs likely contained petroleum hydrocarbons used in the fueling of automobiles. The current USTs at the Property were installed in 1985. A 550-gallon steel waste oil UST that was installed in 1985 south of the station building was removed in 2006. Ecology records identified a heating oil UST associated with the Property, but the dates of installation and decommissioning, type, size, and exact on-Property location of the UST were not reported. The former UST system configuration is presented in Figure 2. A list of the former USTs at the Property, the contents, and the date of installation and decommission is presented below.

| Tank Type & Volume<br>(quantity) | Content   | Date Installed | Date Decommissioned |
|----------------------------------|-----------|----------------|---------------------|
| 3,200-gallon UST (2)             | Unknown*  | Unknown        | 1995                |
| 2,100-gallon UST                 | Unknown*  | Unknown        | 1995                |
| 1,000-gallon UST (2)             | Unknown*  | Unknown        | 1995                |
| 550-gallon UST                   | Unknown*  | Unknown        | 1995                |
| 550-gallon UST                   | Waste Oil | 1985           | 2006                |

<sup>\*</sup> GTI (1995) reported that the former USTs were used for storage and dispensing of fuel hydrocarbons.

3

241876 (3)

#### 3.2 CURRENT PROPERTY USE AND FACILITIES

The Property currently includes an operating Shell-branded wholesale facility. Facilities on the Property currently include a station building, two dispenser islands, one 12,000-gallon fiberglass unleaded gasoline UST, two 10,000-gallon fiberglass unleaded gasoline USTs, and one 8,000-gallon fiberglass diesel UST. The USTs are located within a common excavation in the southern portion of the Property (Figure 2).

#### 3.3 PROPOSED OR POTENTIAL FUTURE SITE USES

Planned use for the Property is uncertain; however, due to it location, it will likely continue as a commercial-use property.

#### 3.4 ZONING

The Property is zoned commercial according to the City of Tacoma zoning map.

### 3.5 TRANSPORTATION AND ROADS

The Property is located on the northwestern corner of the intersection of Pacific Avenue and South 38th Street. Pacific Avenue is a major north-south arterial which stretches several miles, connecting with Interstate 5 to the north and provides access to local residential areas south of Interstate 5 with mixed light industrial and residential neighborhoods north of Interstate 5.

#### 3.6 UTILITIES AND WATER SUPPLY

According to the Tacoma Public Utilities (TPU), water for the Property is sourced by blending water from water supply wells and the Green River via the Second Supply Project Pipeline (TPU, 2010). Electric lines run from the sidewalk along South 38<sup>th</sup> Street to the southeast side of the station building.

#### 3.7 POTENTIAL SOURCES OF SITE CONTAMINATION

Potential on-Property sources of contamination include the current USTs located in the eastern portion of the Property, the former USTs located in southeastern portion of the Property, the current dispenser islands and conveyance piping, located in the southern

and eastern portions of the Property. The likely sources of the original release of petroleum hydrocarbons were the former USTs and the former conveyance system.

#### 4.0 <u>ENVIRONMENTAL INVESTIGATION AND INTERIM ACTION SUMMARY</u>

A total of eighteen soil borings have been completed at the Site to date. Additionally, 21 compliance soil samples have been collected related to UST closure at the Site (Figure 4a; Table 1). During the discovery and removal of the six steel USTs and the Stage II vapor recovery system upgrade, approximately 200 cubic yards of petroleum hydrocarbon impacted soil was removed and transported off-Property for disposal. No additional interim actions have occurred at the Site. The following investigations were completed:

- 1995 Report of UST Decommissioning and Stage II Compliance Sampling, Groundwater Technology, Inc. (GTI)
- 1995 Report of Environmental Site Assessment, GTI
- 2006 Underground Storage Tank Removal and Compliance Sampling Report, Cambria Environmental Technology (Cambria)
- 2007 Site Investigation Report, Conestoga-Rovers & Associates (CRA)
- 2010 Site Investigation, CRA (data included herein)

A release for the Site was reported to Ecology on June 23, 1995. A complete chronological summary of work completed during the investigations listed above at the Site is included as Appendix B. Reports summarized in Appendix B represent all available investigation reports obtained by or provided to CRA. A summary of historical soil analytical data is presented in Table 1. All available historical boring logs for the previous investigations are included in Appendix C. Soil boring logs from CRA's 2010 investigation are included in Appendix D. Laboratory analytical reports for soil samples collected in association with CRA's 2010 investigation are included as Appendix E.

#### 4.1 CONSTITUENTS OF CONCERN

Potential constituents of concern (COCs), based on current and past use of the Property, include the compounds listed in MTCA 173-340-900 Table 830-1 Required Testing for Petroleum Releases. Potential COCs associated with historical and current USTs at the Site are:

| Potential Source                                             | Potential COCs                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Historical and current gasoline USTs and distribution system | <ul> <li>Total petroleum hydrocarbons (TPH) as gasoline (TPHg)</li> <li>Benzene, toluene, ethylbenzene, xylenes (BTEX)</li> <li>1,2-dichloroethane (EDC)</li> <li>1,2-dibromoethane (EDB)</li> <li>Methyl tertiary butyl ether (MTBE)</li> <li>Total lead</li> </ul>         |
| Historical and current diesel UST and distribution system    | <ul> <li>TPH as diesel (TPHd) and TPH as oil (TPHo)</li> <li>BTEX</li> </ul>                                                                                                                                                                                                 |
| Historical waste oil<br>USTs and<br>distribution system      | <ul> <li>TPHg</li> <li>TPHd and TPHo</li> <li>BTEX</li> <li>EDB</li> <li>EDC</li> <li>MTBE</li> <li>Halogenated volatile organic compounds (HVOCs)</li> <li>Polycyclic aromatic hydrocarbons (PAHs)</li> <li>Polychlorinated biphenyls (PCBs)</li> <li>Total lead</li> </ul> |

TPHg, TPHd, TPHo, BTEX, and naphthalene were detected in soil above MTCA Method A screening levels during environmental investigations at the Site, and therefore, are considered potential COCs requiring further evaluation. The remaining potential COCs have been sampled and have not been detected or have been reported at concentrations below MTCA Method A screening levels.

#### 4.2 SOIL

Multiple soil investigations have been conducted at the Site from 1995 through 2010. Figures 4a and 4b presents the locations of all soil samples collected during the investigation activities conducted at the Site. A summary of all soil samples submitted for analysis, including the date of the sample, depth, consultant performing sampling, and analytical methods and results are presented in Table 1. The majority of the soil sampling has been conducted in the vicinity of the former and current USTs, dispenser islands, and product conveyance system. The depths of soil samples collected range from 2 to 35 feet bgs.

#### 4.3 SURFACE WATER

No surface water has been sampled as there has been no indication that surface water has been impacted from the Site.

#### 4.4 GROUNDWATER

Two UST excavation water samples have been collected at the Site, one in March 1995 during the former steel USTs removal, and one in November 2006 during the waste oil UST removal. The likely source of this water was surface water during rain events. No other groundwater has been encountered at the Site to a depth of 35 feet bgs during drilling activities. A temporary monitoring well installed to a depth of 30 feet bgs in soil boring SB-8 was dry.

#### 4.5 SEDIMENT

No indication of surface water impact has been identified in association with the Site, therefore, no sediment sampling has been conducted.

# 4.6 <u>AIR/SOIL VAPOR</u>

There have been no investigations of soil vapor at the Site. Based on the concentrations remaining in soil, and current and future use of the site, potential impact to the Site from soil vapor is unlikely.

#### 4.7 NATURAL RESOURCES/WILDLIFE

A Terrestrial Ecological Evaluation (TEE) Exclusion Form is included in this report (see Section 5.4 below).

#### 4.8 CULTURAL HISTORY/ARCHAEOLOGY

No prior information or results of historical investigation have indicated a need for additional investigation of Site cultural history or archaeology.

#### 4.9 INTERIM ACTIONS

In 1995, during the removal of the former USTs, approximately 150 cubic yards of petroleum hydrocarbon soil was removed and disposed of offsite. Also in 1995, an additional 50 cubic yards was removed and disposed of offsite during the installation of a Stage II vapor recovery system. During the removal of a 550-gallon steel waste oil UST in 2006, 6 cubic yards of pea gravel was removed and stockpiled on Site and sampled for analysis. Analytical results reported that the pea gravel was not impacted by petroleum hydrocarbons, and pea gravel combined with clean imported fill was used to backfill the waste oil UST excavation. No additional interim actions have occurred at the Site.

#### 4.10 <u>2010 SITE INVESTIGATION</u>

In August 2010, CRA completed five soil borings (SB-8 through SB-12) and installed a temporary monitoring well in soil boring SB-8, in order to assess site soil conditions and determine if perched groundwater is present at the Site. The borings were advanced to a maximum depth of 30 feet. Table 1 presents the date sampled, depth, and analytical methods and results for all soil samples collected during this investigation. Soil boring locations are presented in Figures 4a and 4b and boring logs for borings SB-8 through SB-12 are included in Appendix E. The laboratory reports for the soil samples collected during this investigation are included in Appendix F.

#### 5.0 NATURAL CONDITIONS

#### 5.1 GEOLOGY

The regional geological setting and property geological conditions are summarized below:

Regional Geological Setting: The Site is located in the Puget Lowland which is generally comprised of hundreds of feet of Pleistocene age undivided glacial and non-glacial deposits overlain by a thin layer of glacial till and outwash deposits. In many areas, most commonly along river valleys, recent alluvial deposits of Holocene age are present. The undivided glacial and non-glacial deposits consist of clay, silt, sand, gravel, till, and peat. The till portion consists of a compact mixture of clay, silt, sand, and gravel. The outwash portion consists of sand and gravel. The alluvial deposits consist of clay, silt, sand, gravel and peat (Richardson, 1968).

*Site Geological Conditions:* The Site is underlain predominantly with silts, silty sands, and sands with varying amounts of silt, clay, and gravels. When subsurface lithology is

reviewed in conjunction with the high blow counts recorded for Site subsurface soils, it can be suggested that the Site is underlain by till which increases in density with depth to the maximum explored depth of 36 feet below ground surface.

Cross sections depicting subsurface soil conditions are included as Figures 5 and 6.

#### 5.2 SURFACE WATER

The nearest surface water is Hood Street Reservoir, which is located approximately ½ mile to the northwest. No other surface water is located within 1 mile of the Property. Other surface water bodies are located approximately 1 to 1.75 miles away include Portland Avenue Reservoir, the Thea Foss Waterway, and Swan Creek.

#### 5.3 GROUNDWATER

Regional and local groundwater conditions are summarized below:

Regional Groundwater Conditions: Tacoma, Washington is located in the Puget-Willamette Trough lowland regional aquifer between the Cascade and Olympic Mountain ranges in Washington. According to Tacoma Public Utilities, water for the City of Tacoma is sourced from the Green River watershed near its source waters in the Cascade Mountains, and from local groundwater wells. The groundwater wells nearest to the Property, according to Tacoma Public Utilities, draw from an aquifer at approximately 462-643 feet bgs.

*Site Groundwater Conditions:* Groundwater has not been observed at the Site to a depth of 36 feet bgs. GTI (1995) reported that Pierce County Water Resources Department estimated that saturated subsurface conditions in the area of the Property are first observed at 80 to 100 feet bgs.

## 5.4 <u>NATURAL RESOURCES AND ECOLOGICAL RECEPTORS</u>

A TEE Exclusion Form was completed for the Site indicating that a TEE is not required for the Site and is included as Appendix F, in addition to an aerial map depicting a 500-foot radius around the Site.

#### 6.0 CONTAMINANT OCCURRENCE AND MOVEMENT

MTCA Method A screening levels for soil will be used for purposes of discussion of investigation results. Cleanup standards are more fully developed and discussed in Section 8.

#### 6.1 WASTE MATERIAL

There is no waste material present on the surface or in the subsurface of the Site. Investigative-derived waste is transported from the Site and disposed of properly.

#### 6.2 SOIL

Table 1 summarizes soil analytical data for the Site. Figures 4a and 4b depict soil sampling locations and their analytical results in comparison to Site-specific cleanup levels developed in Section 8 of this report. Concentrations of TPHg, TPHd, benzene, and total xylenes in soil sampled from beneath the southern dispenser island and concentrations of TPHg, benzene, and total xylenes in soil sampled from beneath the northern dispenser island were detected above the MTCA Method A screening levels. Concentrations of TPHg, TPHd, and BTEX in soil sampled in association with the former UST removal in March 1995 and subsequent investigations exceed MTCA Method A screening levels.

Three soil samples (OTP-4-10, 0TP-6-10, and OTP-12-12) collected in March 1995 that had petroleum hydrocarbon concentrations above the Site-specific cleanup levels developed in Section 8 of this report were confirmed below the Site-specific cleanup levels by soil samples collected during the March 2007 and August 2010 site investigations (Table 1; Figure 4b).

#### 6.3 **SURFACE WATER**

Based on the distance to the nearest surface water, discussion of movement and occurrence of surface water is not necessary at this time.

#### 6.4 GROUNDWATER

Groundwater has not been encountered at the Site to a total explored depth of 36 feet bgs. First encountered regional groundwater is anticipated at approximately 80 to

100 feet bgs. Based on this information, it is unlikely that groundwater has been adversely impacted from this release.

Standing water has been observed during Site excavation activities, however, due to the absence of water in all Site investigations conducted to date, the water in the excavation is attributed to surface runoff from precipitation. During the March 2007 investigation, separate phase hydrocarbons (SPH) were erroneously reported as being present in boring SB-3 at a depth of 10 feet bgs in the former UST excavation footprint. Based on field screening and analytical results from the soil sample collected at 10 feet bgs in boring SB-3, the liquid encountered in this boring was likely stagnant water with significant biogrowth that was trapped in the bottom of the excavation at the time of UST removal.

#### 6.5 <u>SEDIMENT</u>

No discussion of the occurrence or movement of contaminants in this media is necessary.

#### 6.6 AIR/SOIL VAPOR

Based on the concentrations present in soil at the Site and current and future Property use, it is unlikely that soil vapor poses a risk to air quality.

#### 7.0 CONCEPTUAL MODEL

Petroleum was released into soil at the service station sometime prior to 1995. It is not certain when or how the release occurred, but based on environmental investigations the release likely occurred from the former gasoline USTs and the former product conveyance system. Based on the environmental sampling at the Site, the extent of petroleum hydrocarbon impact to subsurface soils above MTCA Method A screening levels was limited to areas around the former USTs and dispenser islands. Subsequent sampling has been conducted and no further impact has been detected at the Site above MTCA Method A screening levels. The vertical migration of contaminant has been defined and has likely been limited by the relatively impermeable glacial till present in the subsurface at the Site.

The Site has been capped by asphalt and concrete since the Property was developed and therefore has not been exposed to infiltrating surface water. No groundwater has been observed to the maximum depth explored of 36 feet bgs. The till has been observed to extend to a depth of over 150 feet bgs in the vicinity of the Site associated with water

wells near the Portland Avenue Reservoir located approximately 1 mile to the east. Static water in this well was reported at a depth of 98 feet bgs according to the well drillers log. Other resource protection wells within 1 mile of the Site indicate that discontinuous perched water may be present in other areas, however, based on previous reports and discussions with Tacoma Public Utilities, water is likely present at the Site at a depth of over 80 feet bgs.

No surface water receptors are located in close proximity to the Site and will likely not be affected from this release. Based on current soil quality at the site, and the commercial use of the Property, soil vapor concentrations of petroleum hydrocarbon compounds are not likely to be a potential risk to human health.

#### 8.0 CLEANUP STANDARDS - SOIL AND GROUNDWATER

In accordance with MTCA, development of cleanup levels includes identifying potential exposure pathways for humans and environmental impacts based on the planned land use. The Property is currently zoned for commercial use and future zoning is not anticipated to change. As previously noted, the Property is currently used as a gasoline service station.

#### 8.1 GROUNDWATER CLEANUP LEVELS

No investigation of groundwater quality has been conducted at the Site. Based on presence of low permeable glacial till from the ground surface to at least 36 feet bgs and the vertical delineation of impacted soils above MTCA Method A screening levels, groundwater has not been impacted by this release. Therefore, no discussion of groundwater cleanup levels is necessary for this Site.

#### 8.2 SOIL CLEANUP LEVELS

Since groundwater is not present at this Site to a depth of at least 36 feet bgs and likely is not present to a depth of 80 feet bgs, soil cleanup levels are based on protection of the direct contact pathway. The points of compliance for this Site are all soil throughout the Site from the ground surface to a maximum depth of 15 feet bgs.

The Site-specific soil cleanup levels for the COCs are presented in Table 1. MTCA Method B cleanup levels were developed for soil protective of the direct contact pathway using the standard Cleanup Level and Risk Calculations (CLARC) values. The MTCA Method B cleanup level for TPH was calculated using the MTCATPH workbook and hydrocarbon fractionation (EPH/VPH) data obtained by CRA in 2010 from the

241876 (3)

sample collected in the vicinity of the former USTs (sample SB8-5). The cleanup level calculation table is included as Appendix G.

### 9.0 AREAS REQUIRING FUTURE MANAGEMENT AND CONCLUSIONS

#### 9.1 <u>CONSTITUENTS OF CONCERN</u>

Based on the Site-specific cleanup levels established for the Site, the only COC remaining at the Site is TPHd in soil.

## 9.2 <u>SOIL - VERTICAL AND LATERAL</u>

Figures 4a and 4b identify soil sample locations containing petroleum hydrocarbon concentrations greater than the MTCA Method B cleanup levels. The areas requiring future management of petroleum hydrocarbons are limited to the vicinity of the former USTs. Results of CRA's 2007 and 2010 Site investigation activities confirm that soil impacts are limited vertically to less than 10 feet bgs and laterally in the vicinity of boring SB-8 in the northeast corner of the former UST basin.

## 9.3 GROUNDWATER - VERTICAL AND LATERAL

Groundwater is not present at the Site to a depth of at least 36 feet bgs. Groundwater is expected to be first encountered at greater than 80 feet bgs. Groundwater quality has not been adversely impacted at this Site.

#### 9.4 SEDIMENT

No areas of impacted sediment exist at the Site nor require any future management.

#### 9.5 SURFACE WATER

Based on distance to the nearest surface water body, surface water quality has not been adversely impacted from this release.

13

#### 9.6 SOIL VAPOR/AIR

Based on concentrations of petroleum compounds in soil, and the anticipated continued use of the facility as a service station, future management of soil vapor impact is not required.

#### 10.0 <u>CLEANUP ACTION PLAN</u>

Soil in the vicinity of the northeastern sidewall of former UST basin contain petroleum hydrocarbons exceeding Site-specific soil cleanup levels that are protective of the direct contact pathway. Excavation of the impacted soil in this area is required to achieve compliance with soil cleanup levels.

#### 10.1 <u>SCOPE OF WORK</u>

All work will be conducted according to the Standard Operating Procedures in Section 10.2 of this section and the Draft Shell Sampling and Analysis Plan. The scope of work may be amended based on observations during field work indicating the need to further advance locations beyond the anticipated depth and/or add additional locations to define impacts associated with the Site. If impacts are observed using field screening techniques at the specified sample depths and locations noted below, field staff will contact the Project Manager to coordinate additional actions.

The proposed scope of work outlined in the following section of this work plan has been developed using the rationale discussed in this report.

#### 10.2 SOIL EXCAVATION

Based on the investigation activities conducted to date, CRA estimates that the maximum volume of soil removal will be approximately 6 cubic yards. The extent of the proposed excavation is presented on Figure 7.

Confirmation soil samples will be collected once the anticipated excavation vertical and lateral extents are achieved. Confirmation samples will be collected from the bottom of the excavation and along the sidewalls at the anticipated depths ranging from approximately 5 to 8 feet bgs, based upon the results of previous sampling.

Upon completion of confirmation sampling, the excavation will be backfilled with clean fill material and compacted in lifts to surface grade in accordance with Shell specifications (Appendix H).

#### 10.3 STANDARD OPERATING PROCEDURES

A detailed standard operating procedure specific for excavation and confirmatory sampling is attached as Appendix I.

#### 10.3.1 HEALTH AND SAFETY PLAN

CRA will prepare a comprehensive Site-Specific Health and Safety Plan to protect Site workers. The plan will be reviewed and signed by each Site worker and kept on the Site during field activities.

### 10.3.2 <u>UTILITY CLEARANCE</u>

The excavation extents will be cleared through the Washington Utilities Coordinating Council (WUCC) prior to any excavation activities. A private utility locating service will also be used to verify clearance excavation extents from subsurface utilities or other obstructions. The final excavation extents will be based on the clearance of utilities.

#### 10.3.3 INVESTIGATION-DERIVED WASTE

IDW will include personal protective equipment, decontamination fluids, and petroleum hydrocarbon contaminated soil from the excavation. Personal protective equipment and decontamination fluids will be placed in properly labeled 55-gallon drums and stored on-Site pending analyses. The excavated soil will be direct loaded into a roll off bin, profiled and disposed of at a state certified landfill. The IDW will be transported and disposed of according to SOPUS procedures and applicable regulatory requirements.

#### 10.3.4 CERTIFICATION

The scope of work described in this work plan will be performed under the supervision of a Washington state licensed professional.

# 11.0 <u>REFERENCES</u>

Report of UST Decommissioning and Stage II Compliance Sampling, GTI, 1995

Report of Environmental Site Assessment, GTI, 1995

Underground Storage Tank Removal and Compliance Sampling Report, Cambria, 2006

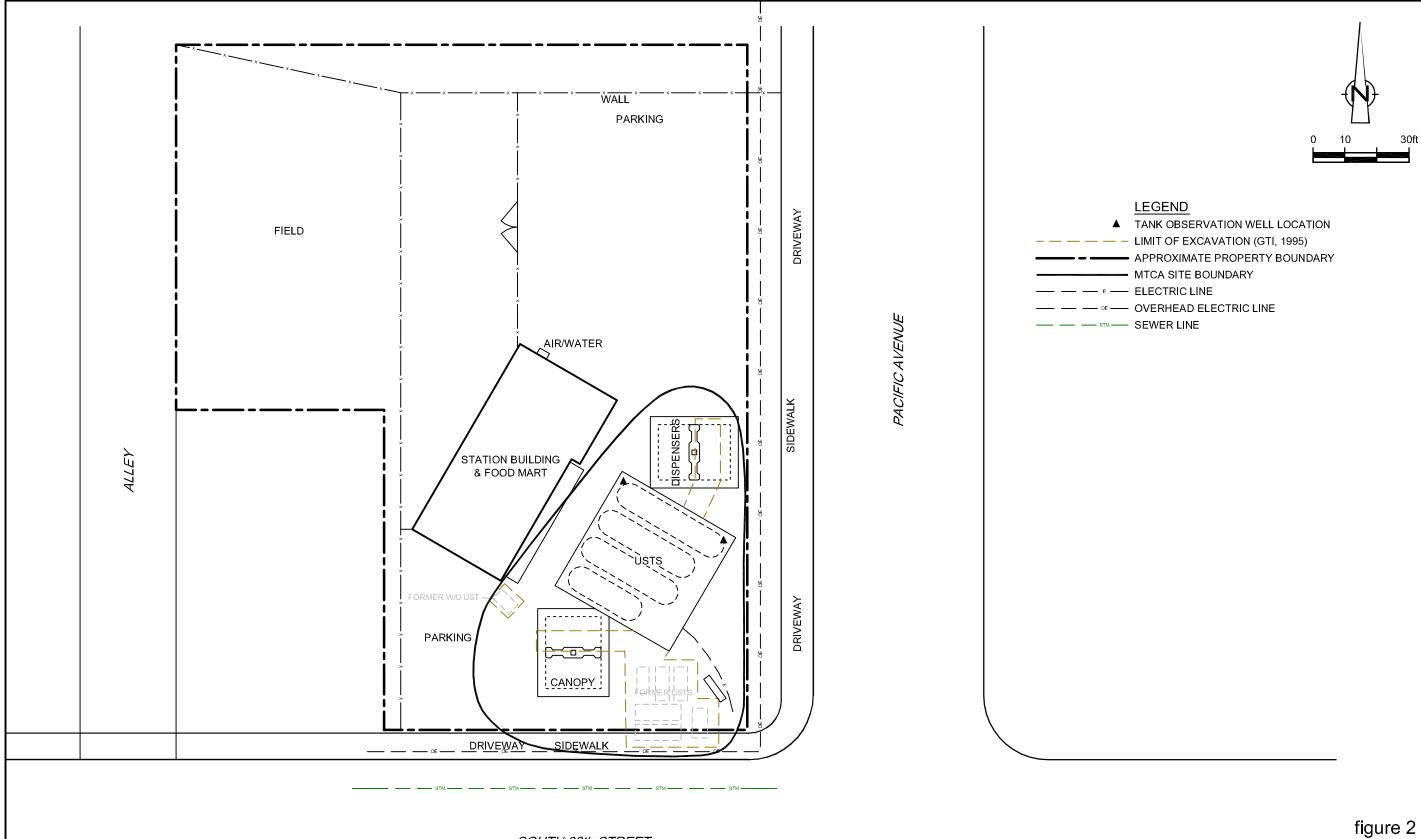
Site Investigation Report, Conestoga-Rovers & Associates (CRA), 2007

Water Resources of King County, Washington: U.S., Richardson and others, 1968

Geological Survey Water Supply Paper 1858

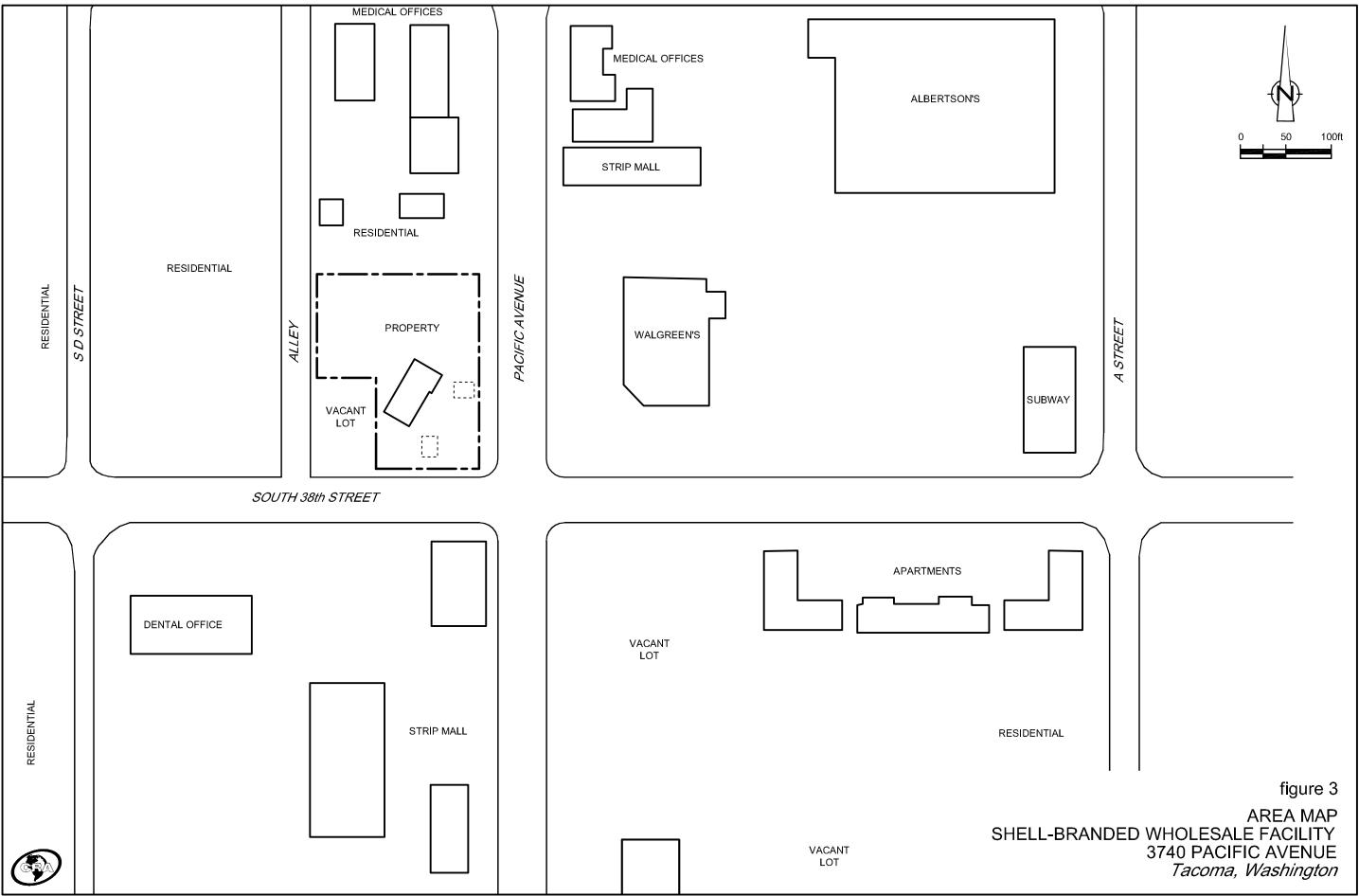
241876 (3)

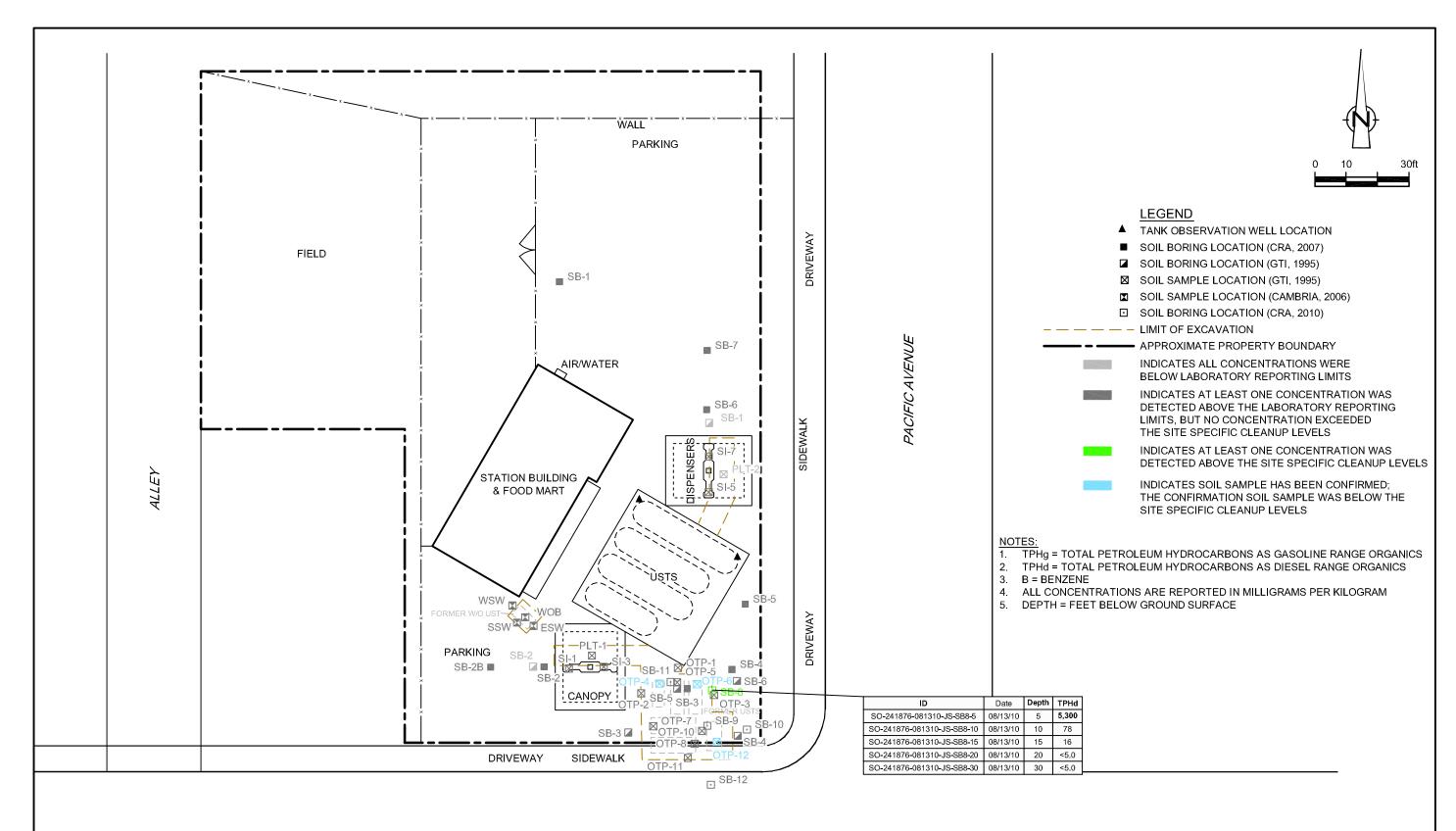
**FIGURES** 




SOURCE: TOPO! MAPS.

figure 1

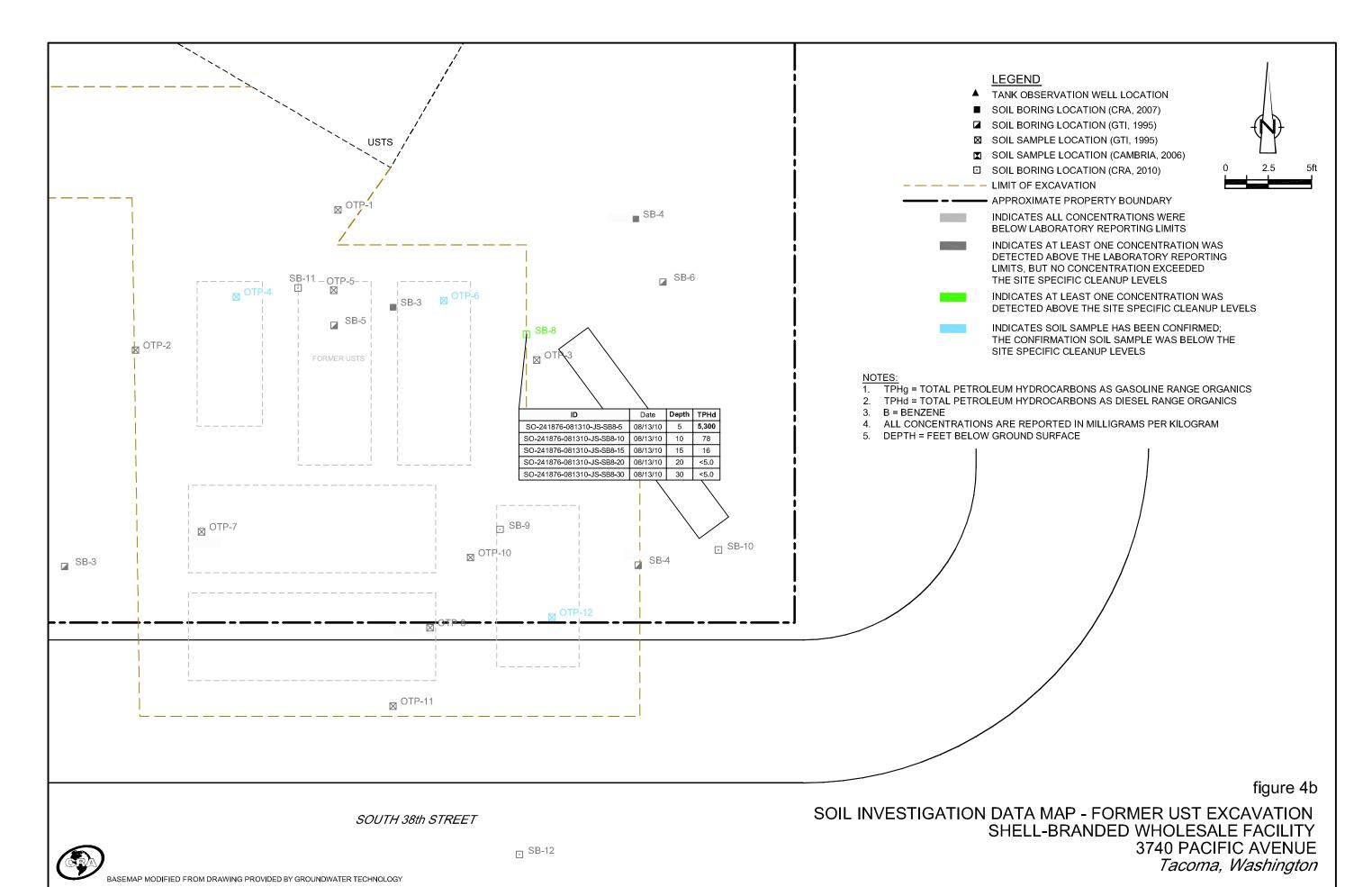

VICINITY MAP SHELL-BRANDED WHOLESALE FACILITY 3740 PACIFIC AVENUE SOUTH Tacoma, Washington

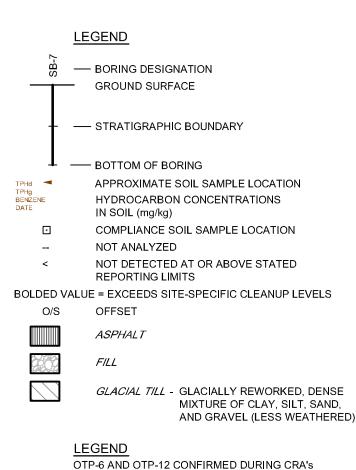




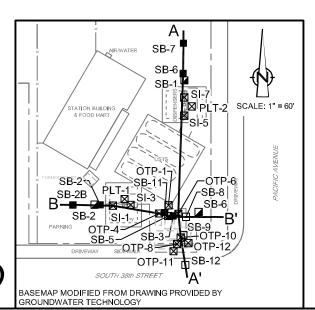

SOUTH 38th STREET

BASEMAP MODIFIED FROM DRAWING PROVIDED BY GROUNDWATER TECHNOLOGY




SOUTH 38th STREET


figure 4a

SOIL INVESTIGATION DATA MAP SHELL-BRANDED WHOLESALE FACILITY 3740 PACIFIC AVENUE \_\_\_\_\_ Tacoma, Washington





OTP-6 AND OTP-12 CONFIRMED DURING CRA'S 2007 AND 2010 ASSESSMENTS, RESPECTIVLEY. SOIL SAMPLE ANALYTICAL CONCENTRATIONS OF CONFIRMATION SAMPLE WERE LESS THAN THE SITE-SPECIFIC CLEANUP LEVELS.



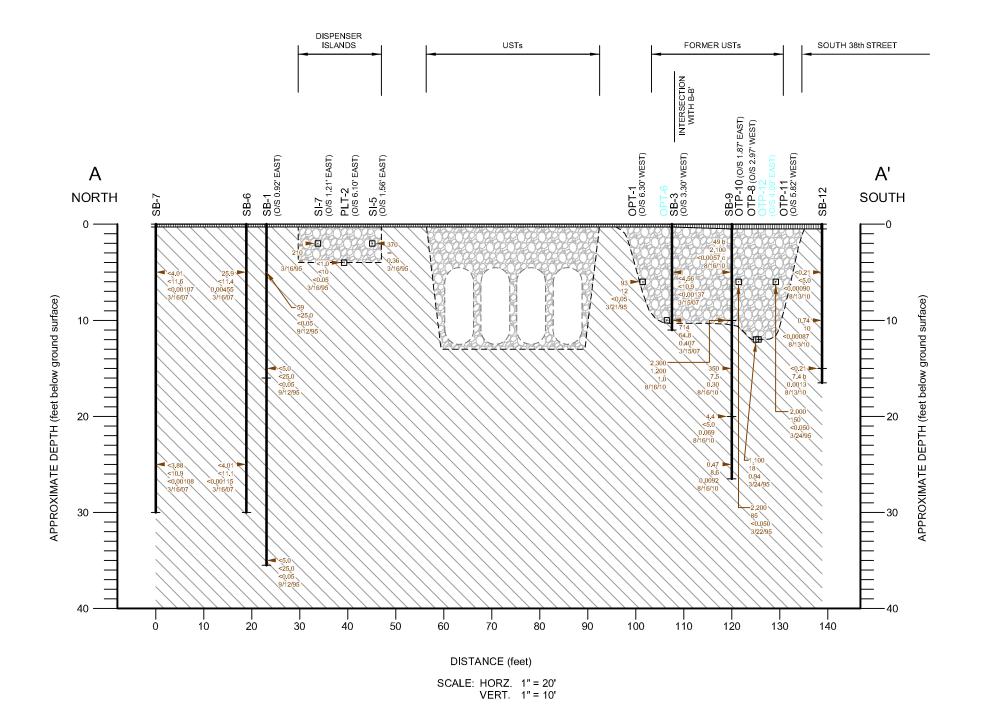
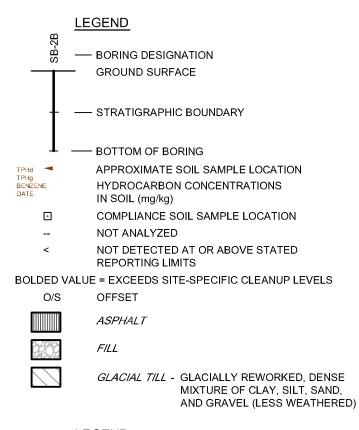
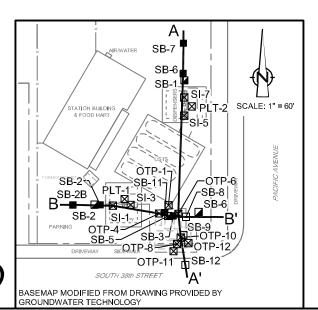





figure 5
GEOLOGIC CROSS SECTION A-A'
SHELL-BRANDED WHOLESALE FACILITY
3740 PACIFIC AVENUE
Tacoma, Washington



#### LEGEND

OTP-4 CONFIRMED DURING CRA's 2010
ASSESSMENT. SOIL SAMPLE ANALYTICAL
RESULTS OF CONFIRMATION SAMPLE WERE
BELOW THE SITE-SPECIFIC CLEANUP LEVELS.



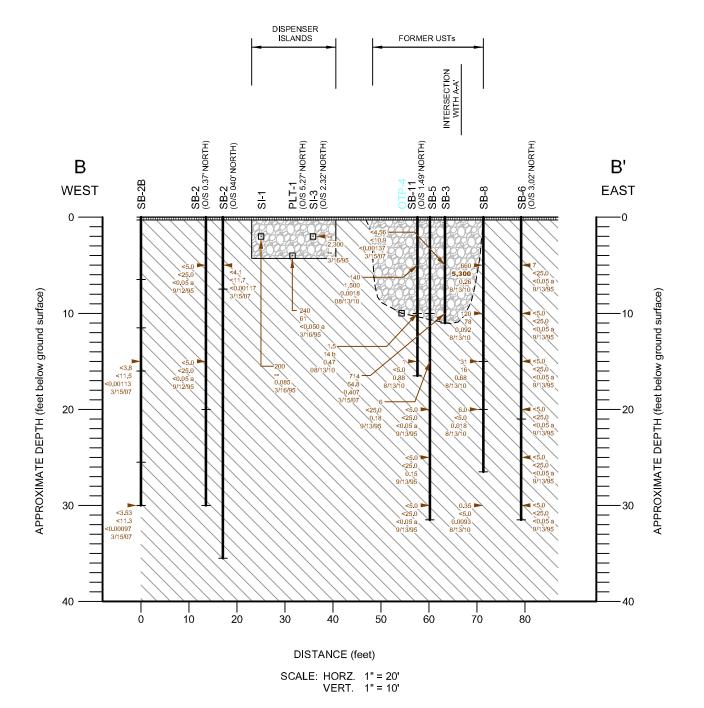
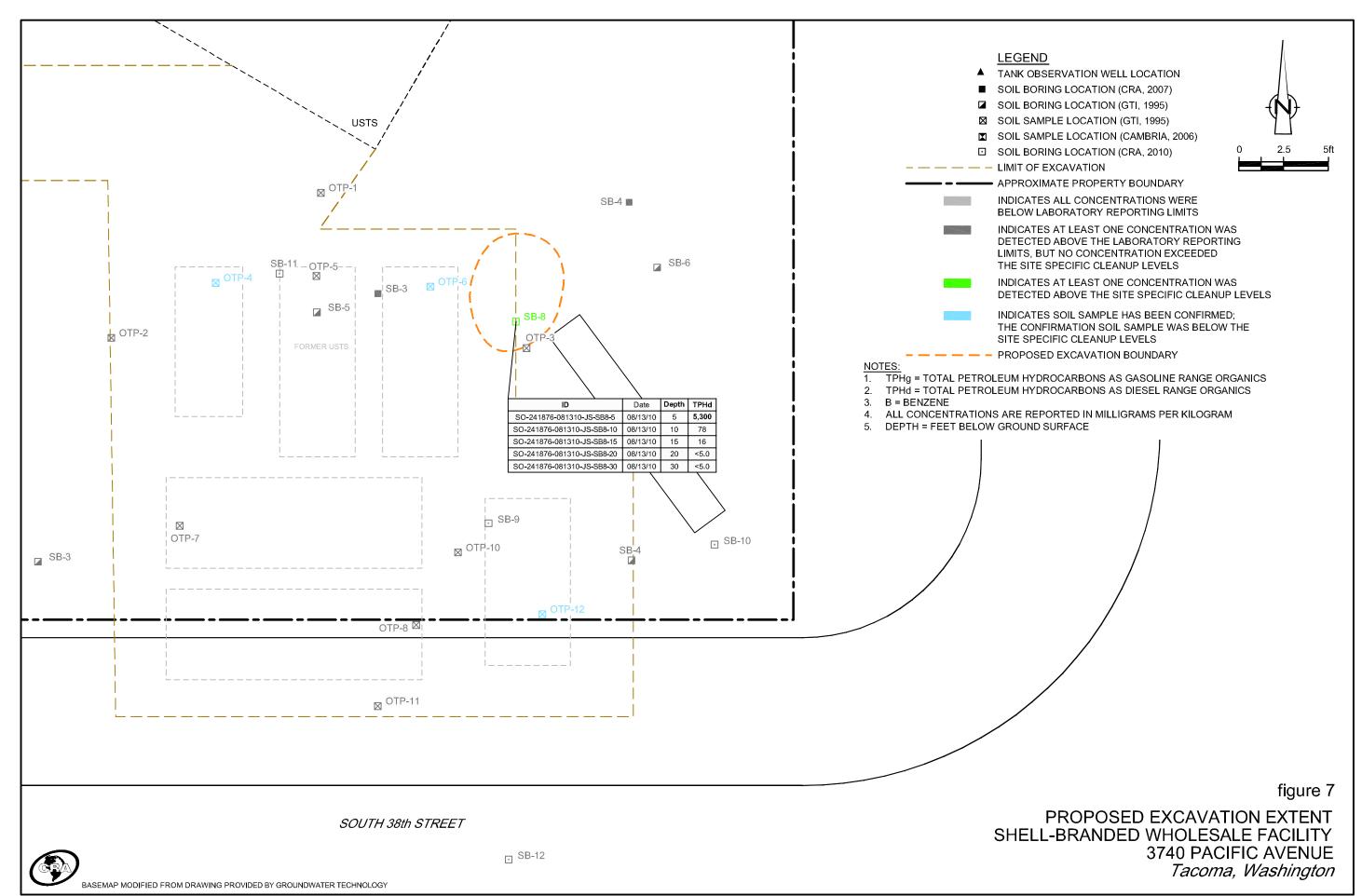




figure 6
GEOLOGIC CROSS SECTION B-B'
SHELL-BRANDED WHOLESALE FACILITY
3740 PACIFIC AVENUE
Tacoma, Washington



**TABLES** 

# SUMMARY OF SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 3740 PACIFIC AVENUE TACOMA, WASHINGTON

|                  | НҮІ                      | OROCAR                   | BONS                                  |         |              | PRIMA        | RY VOCs      |              |              |              | XYGENAT      | ES           | LEAD         | PCBs         | PAHs         |              |              |              |                                       |                                       |
|------------------|--------------------------|--------------------------|---------------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------------------------|---------------------------------------|
| Sample ID        | Referenced               | Sample Date Sample       |                                       |         | ТРНо         | В            | T            | E            | X            | EDB          | EDC          | MTBE         | TBA          | DIPE         | ETBE         | TAME         | Total        | Total        |                                       | Total cPAHs                           |
| ,                | ,                        | CA Method A Cleanup I    | , .                                   |         | 2,000        | 0.03         | 7            | 6            | 9            | 0.005        | NE           | 0.1          | NE           | NE           | NE           | NE           | 250          | 1            | 5                                     | 0.1                                   |
|                  |                          | te-Specific Cleanup Leve |                                       | 3,154   | 3,154        | 18           | 6,400        | 8,000        | 16,000       | NE           | 1,600                                 | NE                                    |
|                  |                          | ft                       |                                       | (mg/kg) | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)      | (mg/kg)                               | (mg/kg)                               |
|                  |                          | ,                        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | . 8 8   | · <i>G G</i> | · <i>G G</i> | · <i>O O</i> | · <i>G G</i> | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | · · · · · · · · · · · · · · · · · · · |
| SI-1-2           | GTI (1995)               | 03/16/95 2               | 200                                   |         |              | 0.085        | 1.4          | 1 5          | 15           |              |              |              |              |              |              |              |              |              |                                       |                                       |
|                  | , ,                      |                          |                                       | 2 200   |              |              |              | 1.5          | 15           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| SI-3-2<br>SI-5-2 | GTI (1995)               | 03/16/95 2<br>03/16/95 2 | 370                                   | 2,300   |              | 0.26         | <0.050       | 2.2          | 26           |              |              |              |              |              |              |              |              |              |                                       |                                       |
|                  | GTI (1995)               | , ,                      |                                       | 210     |              | 0.36         |              | 2.3          | 26           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| SI-7-2           | GTI (1995)               | 03/16/95 2               | 240                                   | 210     |              |              | 0.00         | 2.4          | <br>15       |              |              |              |              |              |              |              |              |              |                                       |                                       |
| PLT-1-4          | GTI (1995)               | 03/16/95 4               | 240                                   | 61      |              | <0.050 a     | 0.83         | 2.4          | 15           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| PLT-2-4          | GTI (1995)               | 03/16/95 4               | <1.0                                  | <10     |              | <0.050 a     | <0.050       | <0.050       | <0.10        |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-1-6          | GTI (1995)               | 03/21/95 6               |                                       | 12      |              | <0.050 a     | 0.054        | 0.13         | 0.18         |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-2-6          | GTI (1995)               | 03/21/95 6               |                                       | 21      |              | <0.050 a     | < 0.050      | < 0.050      | 0.11         |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-3-6          | GTI (1995)               | 03/21/95 6               | ,                                     | 19      |              | <0.050 a     | 0.83         | 3.8          | 25           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-4-10         | GTI (1995)               | 03/21/95 10              |                                       | 260     |              | 11           | 80           | 31           | 200          |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-5-10         | GTI (1995)               | 03/21/95 10              |                                       | 51      |              | 1.0          | 6.0          | 5.4          | 42           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-6-10         | GTI (1995)               | 03/21/95 10              |                                       |         |              | 58           | 540          | 220          | 1,200        |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-7-12         | GTI (1995)               | 03/22/95 12              | 1,400                                 | 17      |              | 3.2          | 27           | 17           | 100          |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-8-12         | GTI (1995)               | 03/24/95 12              | 1,100                                 | 18      |              | 0.94         | 3.1          | 4.5          | 29           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-10-6         | GTI (1995)               | 03/22/95 6               | 2,200                                 | 85      |              | < 0.050      | 5.4          | 4.0          | 49           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-11-6         | GTI (1995)               | 03/24/95 6               | 2,000                                 | 150     |              | < 0.050      | 24           | 14           | 91           |              |              |              |              |              |              |              |              |              |                                       |                                       |
| OTP-12-12        | GTI (1995)               | 03/24/95 12              | 8300 e                                | 310     |              | 9.9          | 190          | 86           | 510          |              |              |              |              |              |              |              |              |              |                                       |                                       |
| SB1-5            | GTI (1995)               | 09/12/95 5               | 59                                    | <25.0   | <100.0       | <0.05 a      | <0.1         | 0.2          | 1.3          |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB1-15           | GTI (1995)               | 09/12/95 15              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB1-35           | GTI (1995)               | 09/12/95 35              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB2-5            | GTI (1995)               | 09/12/95 5               | <5.0                                  | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB2-10           | GTI (1995)               | 09/12/95 10              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB3-5            | GTI (1995)               | 09/12/95 5               | <5.0                                  | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | 13           |              |                                       |                                       |
| SB3-15           | GTI (1995)               | 09/12/95 15              |                                       | <25.0   | <100.0       | 0.03 a       | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB4-4.5          | GTI (1995)<br>GTI (1995) | 09/12/95 15              |                                       | 40      | 160.0        | 0.2          | <0.1         | 1.3          | 2.2          |              |              |              |              |              |              |              | 10.0         |              |                                       |                                       |
| SB4-13.5         | GTI (1995)               | 09/13/95 4.5             |                                       | 227     | 660          | 0.00         | 6.9          | 13.1         | 70.6         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB4-30           | GTI (1995)<br>GTI (1995) |                          |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB5-15           | ` ,                      |                          |                                       | <25.0   | <100.0       | 0.03 a       | 0.2          |              |              |              |              |              |              |              |              |              |              |              |                                       |                                       |
| SB5-20           | GTI (1995)               |                          |                                       | <25.0   | <100.0       |              | <0.1         | 0.5<br><0.1  | 1.3          |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
|                  | GTI (1995)               |                          |                                       |         |              | <0.05 a      |              |              | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB5-25           | GTI (1995)               | 09/13/95 25              |                                       | <25.0   | <100.0       | 0.15         | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB5-30           | GTI (1995)               | 09/13/95 30              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB6-5            | GTI (1995)               | 09/13/95 5               |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | 0.2          |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB6-10           | GTI (1995)               | 09/13/95 10              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | 0.1          |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB6-15           | GTI (1995)               | 09/13/95 15              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB6-20           | GTI (1995)               | 09/13/95 20              |                                       | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |
| SB6-25           | GTI (1995)               | 09/13/95 25              | <5.0                                  | <25.0   | <100.0       | <0.05 a      | <0.1         | <0.1         | <0.1         |              |              |              |              |              |              |              | <10.0        |              |                                       |                                       |

# SUMMARY OF SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 3740 PACIFIC AVENUE TACOMA, WASHINGTON

|                              |                |                            | HYD      | ROCARI  | BONS    |            |           | PRIMAI      | RY VOCs   |            |             |          | O       | XYGENAT   | ES        |           | LEAD    | PCBs     | PA          | AHs         |
|------------------------------|----------------|----------------------------|----------|---------|---------|------------|-----------|-------------|-----------|------------|-------------|----------|---------|-----------|-----------|-----------|---------|----------|-------------|-------------|
| Sample ID                    | Referenced     | Sample Date Sample Depti   | h TPHg   | TPHd    | ТРНо    | В          | T         | E           | X         | EDB        | EDC         | MTBE     | TBA     | DIPE      | ETBE      | TAME      | Total   | Total    | Naphthalene | Total cPAHs |
|                              | MTC            | CA Method A Cleanup Levels | s 30/100 | 2,000   | 2,000   | 0.03       | 7         | 6           | 9         | 0.005      | NE          | 0.1      | NE      | NE        | NE        | NE        | 250     | 1        | 5           | 0.1         |
|                              | Site           | e-Specific Cleanup Levels  | 3,154    | 3,154   | 3,154   | 18         | 6,400     | 8,000       | 16,000    | NE         | NE          | NE       | NE      | NE        | NE        | NE        | NE      | NE       | 1,600       | NE          |
|                              |                | ft                         | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)    | (mg/kg)   | (mg/kg)     | (mg/kg)   | (mg/kg)    | (mg/kg)     | (mg/kg)  | (mg/kg) | (mg/kg)   | (mg/kg)   | (mg/kg)   | (mg/kg) | (mg/kg)  | (mg/kg)     | (mg/kg)     |
| SB6-30                       | GTI (1995)     | 09/13/95 30                | <5.0     | <25.0   | <100.0  | <0.05 a    | <0.1      | <0.1        | <0.1      |            |             |          |         |           |           |           | <10.0   |          |             |             |
| ESW                          | Cambria (2006) | ) 11/28/06                 | <12.5    | <11.9   | <29.8   | < 0.02     | 0.08      | < 0.02      | 0.14      |            | < 0.00535   | <0.02    |         |           |           |           | 3.98    | <0.0596  |             | < 0.0101    |
| SSW                          | Cambria (2006) | ) 11/28/06                 | <3.96    | <11.8   | <29.5   | <0.05 a    | < 0.005   | < 0.007     | < 0.02    |            | < 0.00450   | < 0.005  |         |           |           |           | 2.48    | < 0.0593 |             | < 0.0119    |
| WOB                          | Cambria (2006) | ) 11/28/06                 | <4.55    | <11.6   | <28.9   | <0.05 a    | < 0.005   | < 0.008     | < 0.02    |            | < 0.00455   | < 0.005  |         |           |           |           | 3.86    | < 0.0575 |             | < 0.0115    |
| WSW                          | Cambria (2006) | ) 11/28/06                 | <4.20    | <12.0   | <30.1   | <0.05 a    | < 0.005   | < 0.008     | < 0.02    |            | < 0.00431   | < 0.005  |         |           |           |           | 3.33    | < 0.0598 |             | < 0.0119    |
|                              |                |                            |          |         |         |            |           |             |           |            |             |          |         |           |           |           |         |          |             |             |
| SB-1-5                       | CRA (2007)     | 03/16/07 5                 | <4.08    | <11.9   | 44.7    | < 0.00113  | < 0.00113 | < 0.003     | < 0.0075  | <0.000938  | 3 < 0.00375 | < 0.41   |         |           |           |           | 3.54    |          |             | < 0.0121    |
| SB-1-25                      | CRA (2007)     | 03/16/07 25                | <3.98    | <11     | <27.5   | < 0.00103  | < 0.00103 | < 0.00275   | < 0.00689 | < 0.000861 | < 0.00344   | < 0.4    |         |           |           |           | 2.71    |          |             | < 0.0107    |
| SB-2-5                       | CRA (2007)     | 03/15/07 5                 | <4.1     | <11.7   | <29.3   | < 0.00117  | < 0.00117 | <0.00313    | < 0.00783 | < 0.000979 | 0.00392     | < 0.41   |         |           |           |           | 2.85    |          |             | < 0.0115    |
| SB2B-15                      | CRA (2007)     | 03/15/07 15                | <3.8     | <11.5   | <28.8   | < 0.00113  | < 0.00113 | < 0.00301   | < 0.00752 | < 0.00094  | < 0.00376   | < 0.38   |         |           |           |           | 2.61    |          |             | < 0.0114    |
| SB-2B-30                     | CRA (2007)     | 03/15/07 30                | <3.53    | <11.3   | <28.2   | < 0.00097  | < 0.00097 | < 0.0026    | < 0.0065  | < 0.000812 | 2 < 0.00325 | < 0.35   |         |           |           |           | 2.30    |          |             | < 0.0112    |
| SB-3-5                       | CRA (2007)     | 03/15/07 5                 | <4.56    | <10.9   | <27.2   | < 0.00137  | < 0.00317 | <0.00365    | < 0.00911 | < 0.00114  | < 0.00456   | < 0.46   |         |           |           |           | 2.37    |          |             | < 0.0108    |
| SB-3-10                      | CRA (2007)     | 03/15/07 10                | 714      | 64.8    | 65.8    | 0.407      | 2.13      | 4.09        | 19.7      | < 0.377    | < 0.377     | < 0.38   |         |           |           |           | 7.48    |          |             | < 0.0567    |
| SB-4-5                       | CRA (2007)     | 03/16/07 5                 | 80.2     | 14.3    | <26.8   | 0.00345    | 0.00115   | 0.00115     | 0.0339    | < 0.00089  | < 0.00356   | < 0.4    |         |           |           |           | 3.28    |          |             | < 0.0109    |
| SB-4-7.5                     | CRA (2007)     | 03/16/07 7.5               | <4.04    | <11.3   | <28.3   | 0.0127     | < 0.00107 | <0.00285    | < 0.00713 | < 0.000891 | < 0.00356   | < 0.4    |         |           |           |           | 2.55    |          |             | < 0.0115    |
| SB-5-5                       | CRA (2007)     | 03/15/07 5                 | 9.84     | <11.1   | <27.8   | < 0.00104  | < 0.00104 | 0.00563     | < 0.00696 | < 0.00087  | < 0.00348   | < 0.37   |         |           |           |           | 2.89    |          |             | < 0.0113    |
| SB-5-30                      | CRA (2007)     | 03/15/07 30                | 10.2     | <11     | <27.4   | < 0.000958 | <0.000958 | 3 < 0.00256 | < 0.00639 | < 0.000799 | 0.00319     | < 0.37   |         |           |           |           | 2.31    |          |             | < 0.0107    |
| SB-6-5                       | CRA (2007)     | 03/16/07 5                 | 25.9     | <11.4   | <28.4   | 0.00455    | 0.661     | 0.172       | 2.33      | <0.000976  | 5 < 0.0039  | < 0.38   |         |           |           |           | 2.33    |          |             | < 0.0113    |
| SB-6-25                      | CRA (2007)     | 03/16/07 25                | <4.01    | <11.1   | <27.8   | < 0.00115  | 0.00189   | < 0.00307   | 0.0169    | < 0.000959 | 0.00384     | < 0.4    |         |           |           |           | 2.11    |          |             | < 0.0108    |
| SB-7-5                       | CRA (2007)     | 03/16/07 5                 | <4.01    | <11.6   | <28.9   | < 0.00107  | < 0.00107 | <0.00285    | < 0.00712 | < 0.00089  | < 0.00356   | < 0.4    |         |           |           |           | 2.52    |          |             | < 0.0116    |
| SB-7-25                      | CRA (2007)     | 03/16/07 25                | <3.88    | <10.9   | <27.4   | <0.00108   | <0.00108  | <0.00287    | <0.00718  | <0.000897  | 7 < 0.00359 | < 0.39   |         |           |           |           | 2.22    |          |             | < 0.0111    |
| SO-241876-081310-JS-SB8-5 *  | CRA (2010)     | 08/13/10 5                 | 660      | 5,300   | 2,100   | 0.26       | 0.45 J    | 6.8         | < 0.96    |            | <0.48       | <0.064 c | <9.6    | <0.48     | < 0.48    | <0.48     |         | < 0.050  | 2.7 J       |             |
| SO-241876-081310-JS-SB8-10 * | CRA (2010)     | 08/13/10 10                | 120      | 78      | 28      | 0.092      | 0.016     | 0.11        | 0.072     |            | < 0.00094   | < 0.0019 | < 0.019 | < 0.00094 | < 0.00094 | < 0.00094 |         | < 0.050  | 0.054       |             |
| SO-241876-081310-JS-SB8-15 * | CRA (2010)     | 08/13/10 15                | 31       | 16      | < 5.0   | 0.68       | 0.059     | 0.81        | 4.4       |            | < 0.039     | < 0.077  | < 0.77  | < 0.039   | < 0.039   | < 0.039   |         | < 0.050  | 0.59 d      |             |
| SO-241876-081310-JS-SB8-20 * | CRA (2010)     | 08/13/10 20                | 6.0      | < 5.0   | < 5.0   | 0.018      | 0.0016    | 0.034       | 0.15      |            | 0.0025      | < 0.0016 | < 0.016 | < 0.00081 | < 0.00081 | < 0.00081 |         | < 0.050  | 0.023       |             |
| SO-241876-081310-JS-SB8-30 * | CRA (2010)     | 08/13/10 30                | 0.35     | < 5.0   | < 5.0   | 0.0093     | 0.0016    | 0.0047      | 0.024     |            | 0.0018      | < 0.0016 | 0.020   | < 0.00078 | < 0.00078 | < 0.00078 |         | < 0.050  | < 0.0078    |             |
| SO-241876-081610-JS-SB9-5 *  | CRA (2010)     | 08/16/10 5                 | 49 b     | 2,100   | 1,200   | <0.0057 c  | < 0.042   | 0.02        | < 0.085   |            | < 0.042     | < 0.085  | < 0.85  | < 0.042   | < 0.042   | < 0.042   |         | < 0.050  | 0.039 d, J  |             |
| SO-241876-081610-JS-SB9-10 * | CRA (2010)     | 08/16/10 10                | 2,300    | 1,200   | 220     | 1.0        | 8.8       | 19          | 100       |            | < 0.40      | < 0.80   | <8.0    | < 0.40    | < 0.40    | < 0.40    |         | < 0.050  | 6.8         |             |
| SO-241876-081610-JS-SB9-15 * | CRA (2010)     | 08/16/10 15                | 350      | 7.5     | < 5.0   | 0.30       | 0.75      | 1.8         | 7.5       |            | < 0.036     | < 0.072  | < 0.72  | < 0.036   | < 0.036   | < 0.036   |         | < 0.050  | 0.47 d      |             |
| SO-241876-081610-JS-SB9-20 * | CRA (2010)     | 08/16/10 20                | 4.4      | < 5.0   | < 5.0   | 0.069      | 0.0048    | 0.029       | 0.12      |            | < 0.00091   | < 0.0018 | < 0.018 | < 0.00091 | < 0.00091 | < 0.00091 |         | < 0.050  | 0.044       |             |
| SO-241876-081610-JS-SB9-25 * | CRA (2010)     | 08/16/10 25                | 0.47     | 8.6     | < 5.0   | 0.0092     | 0.0096    | 0.03        | 0.077     |            | < 0.00075   | < 0.0015 | < 0.015 | < 0.00075 | < 0.00075 | < 0.00075 |         | < 0.050  | < 0.0075    |             |
| SO-241876-081610-JS-SB10-5 * | CRA (2010)     | 08/16/10 5                 | 0.86     | 610     | 280     | < 0.00090  | 0.0028    | 0.0062      | 0.025     |            | < 0.00090   | < 0.0018 | < 0.018 | < 0.00090 | < 0.00090 | < 0.00090 |         | < 0.050  | 0.013       |             |
| SO-241876-081610-JS-SB10-10  | * CRA (2010)   | 08/16/10 10                | 1.2      | < 5.0   | 7.4     | 0.0094     | 0.0071    | 0.18        | 0.091     |            | < 0.0010    | < 0.0020 | < 0.020 | < 0.0010  | < 0.0010  | < 0.0010  |         | < 0.050  | 0.13        |             |
| SO-241876-081610-JS-SB10-15  | * CRA (2010)   | 08/16/10 15                | 120      | 340     | 310     | 0.0068     | 0.018     | 0.34        | 0.26      |            | < 0.00076   | < 0.0015 | < 0.015 | < 0.00076 | < 0.00076 | < 0.00076 |         | < 0.050  | 0.14        |             |
| SO-241876-081310-JS-SB11-5 * | CRA (2010)     | 08/13/10 5                 | 140 b    | 1,500   | 620     | 0.0018     | 0.0076    | 0.014       | 0.080     |            | < 0.00096   | < 0.0019 | < 0.019 | < 0.00096 | < 0.00096 | < 0.00096 |         | < 0.050  | 0.030       |             |
| SO-241876-081310-JS-SB11-10  | * CRA (2010)   | 08/13/10 10                | 1.5      | 14 b    | 16 b    | 0.47       | 0.11      | 0.91        | 1.6       |            | < 0.043     | < 0.085  | < 0.85  | < 0.043   | < 0.043   | < 0.043   |         | < 0.050  | 0.45 d      |             |
| SO-241876-081310-JS-SB11-15  | * CRA (2010)   | 08/13/10 15                | 1.0 b    | <5.0    | < 5.0   | 0.88       | 0.0036    | 0.32        | 0.0019    |            | < 0.00076   | 0.0022   | 0.029   | < 0.00076 | < 0.00076 | < 0.00076 |         | < 0.050  | < 0.0076    |             |

Page 2 of 3

CRA 241876 (3)

# SUMMARY OF SOIL ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 3740 PACIFIC AVENUE TACOMA, WASHINGTON

|                               |                              |                |             | HYD     | ROCARI  | BONS    |           |           | PRIMAI       | RY VOCs  |         |           |          | O       | XYGENAT   | ES        |           | LEAD    | PCBs    | PAHs        |             |
|-------------------------------|------------------------------|----------------|-------------|---------|---------|---------|-----------|-----------|--------------|----------|---------|-----------|----------|---------|-----------|-----------|-----------|---------|---------|-------------|-------------|
| Sample ID                     | Referenced                   | Sample Date Si | ample Depth | ТРНд    | TPHd    | ТРНо    | В         | T         | Е            | X        | EDB     | EDC       | MTBE     | TBA     | DIPE      | ETBE      | TAME      | Total   | Total   | Naphthalene | Total cPAHs |
|                               | MTCA Method A Cleanup Levels |                | 30/100      | 2,000   | 2,000   | 0.03    | 7         | 6         | 9            | 0.005    | NE      | 0.1       | NE       | NE      | NE        | NE        | 250       | 1       | 5       | 0.1         |             |
|                               | Site-Specific Cleanup Levels |                |             | 3,154   | 3,154   | 3,154   | 18        | 6,400     | <i>8,000</i> | 16,000   | NE      | NE        | NE       | NE      | NE        | NE        | NE        | NE      | NE      | 1,600       | NE          |
|                               |                              |                | ft          | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/kg)   | (mg/kg)      | (mg/kg)  | (mg/kg) | (mg/kg)   | (mg/kg)  | (mg/kg) | (mg/kg)   | (mg/kg)   | (mg/kg)   | (mg/kg) | (mg/kg) | (mg/kg)     | (mg/kg)     |
| SO-241876-081310-JS-SB12-5 *  | CRA (2010)                   | 08/13/10       | 5           | <0.21   | < 5.0   | < 5.0   | <0.00090  | <0.00090  | <0.00090     | <0.0018  |         | <0.00090  | < 0.0018 | < 0.018 | <0.00090  | <0.00090  | <0.00090  |         | < 0.050 | < 0.0092    |             |
| SO-241876-081310-JS-SB12-10 * | CRA (2010)                   | 08/13/10       | 10          | 0.74    | 10      | < 5.0   | < 0.00087 | < 0.00087 | < 0.00087    | 0.0035   |         | < 0.00087 | < 0.0017 | < 0.017 | < 0.00087 | < 0.00087 | < 0.00087 |         | < 0.050 | < 0.0087    |             |
| SO-241876-081310-JS-SB12-15 * | CRA (2010)                   | 08/13/10       | 15          | < 0.21  | 7.4 b   | < 5.0   | 0.0013    | < 0.00082 | < 0.00082    | < 0.0016 |         | < 0.00082 | < 0.0016 | < 0.016 | < 0.00082 | < 0.00082 | < 0.00082 |         | < 0.050 | < 0.0082    |             |

#### Notes:

MTCA = Model Toxics Control Act

Results in bold indicate an analyte was detected above the MTCA Method A cleanup level.

bgs = below ground surface (in feet)

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHo = Total petroleum hydrocarbons as motor oil

BTEX = Benzene, toluene, ethylbenzene, and xylenes

EDB = 1,2 Dibromoethane

EDC = 1,2 Dichloroethane

MTBE = Methyl tertiary-butyl ether

VOCs = Volatile organic compounds

PCB = Polychlorinated biphenyls

PAHs = Polycyclic aromatic hydrocarbons

cPAHs = Carcinogenic PAHs

<x = Not detected at reporting limit x

-- = Not analyzed

ft = Feet below ground surface

NE = Not established

- a = Indicates analytes were not detected above the laboratory detection limits. However, the laboratory detection limits were above the MTCA Method A cleanup levels.
- b = The sample chromatographic pattern for TPH does not match the specified standard. Quantitation of the unknown hydrocarbons was based on the specified standard.
- c = Method detection limits are used since reporting limits are above the MTCA Method A cleanup levels.
- d = The trace level of naphthalene found in the method blank may have a bias high impact on the sample data.
- e = Sample concentrations were confirmed to be below the Site-specific cleanup levels based on the results of CRA's August 2010 site investigation.
- f = Sample concentrations were confirmed to be below the Site-specific cleanup levels based on the results of CRA's March 2007 site investigation.
- J = Results were evaluated to method detection limits. Concentrations >= method detection limits but < reporting limits, if found, are qualified with a "J" flag.

Page 3 of 3

<sup>\*</sup> Indicate the samples were additionally analyzed for PCBs by EPA Method 8082 and full set of VOCs by EPA Method 8260B. Analyte concentrations are either below laboratory reporting limits or MTCA Method A cleanup levels.

# APPENDIX A

ENVIRONMENTAL DOCUMENT LIST

| Environmental Document List: 3740 Pacific Avenue, Tacoma, Washington |                                  |            |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------|------------|--|--|--|--|--|--|
| Title                                                                | Author                           | Date       |  |  |  |  |  |  |
| Report of UST Decommissioning and Stage II Compliance Sampling       | Groundwater Technology, Inc.     | 6/19/1995  |  |  |  |  |  |  |
| Report of Environmental Site Assessment                              | Groundwater Technology, Inc.     | 11/9/1995  |  |  |  |  |  |  |
| Underground Storage Tank Removal and Compliance Sampling Report      | Cambria Environmental Technology | 12/28/2006 |  |  |  |  |  |  |
| Site Investigation Report                                            | Conestoga-Rovers & Associates    | 5/3/2007   |  |  |  |  |  |  |

#### APPENDIX B

SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIVITIES

#### SITE ACTIVITIES HISTORY

1995 Report of UST Decommissioning and Stage II Compliance Sampling: Groundwater Technology Inc. (GTI) oversaw removal of six underground storage tanks (USTs) from the Site and sampled soil during a Stage II vapor recovery system installation. Six single-walled, steel USTs were removed, ranging in size from 550 gallons to 3,200 gallons. GTI indicated that the original contents of the USTs and the dates of installation and abandonment of the USTs were unknown. Approximately 150 cubic yards of petroleum hydrocarbon impacted soil were removed from the former UST cavity. An additional 50 cubic yards of soil was removed during the Stage II Vapor Recovery System upgrades. GTI reported concentrations of total petroleum hydrocarbons (TPH) as gasoline (TPHg), benzene, and total xylenes in excess of the Washington State Department of Ecology's Model Toxics Control Act (MTCA) Method A cleanup levels in soil associated with the northern and southern dispenser islands. TPH as diesel (TPHd) was also reported above the MTCA Method A cleanup level in soil sampled at the southern dispenser island. Concentrations of TPHg and various benzene, toluene, ethylbenzene, and total xylenes (BTEX) constituents were above the MTCA Method A cleanup levels. Petroleum hydrocarbon impacted soil extended to a depth of approximately 10 feet below ground surface (bgs) at a maximum concentration of 19,000 milligrams per kilogram (mg/kg) for TPHg and 58 mg/kg for benzene. GTI reported concentrations of water sampled from the discovered USTs excavation in excess of the MTCA Method A cleanup levels for TPHg, TPHd, and BTEX. More information is available in GTI's Report of UST Decommissioning and Stage II Compliance Sampling, dated June 19, 1995.

1995 Environmental Site Assessment: In September 1995, GTI drilled six soil borings (SB-1 through SB-6) to assess subsurface conditions associated with the former UST field. Moist soil conditions were encountered in soil boring SB-5 at 10 feet bgs, advanced in the former UST field, at the interface of the UST backfill and native soil. However, a sample collected in SB-5 at 11.5 feet bgs, in native soil underlying the former UST cavity, was dry. Concentrations of TPHg in soil sampled from soil boring SB-4 at 4.5 feet bgs and 13.5 feet bgs, were above the MTCA Method A cleanup levels. Concentrations of benzene in soil sampled from SB-3 at 15 feet bgs, SB-4 at 4.5 and 13.5 feet bgs, and SB-5 at 15 and 25 feet bgs were above the MTCA Method A cleanup level. More information is available in GTI's Report of Environmental Site Assessment, dated November 20, 1995.

2006 Underground Storage Tank Removal: In November 2006, Cambria Environmental Technology (Cambria) oversaw removal and excavation of a 550-gallon waste oil UST. The 6 cubic yards of pea gravel removed from the excavation was field screened for petroleum hydrocarbons, did not have detectable levels of petroleum hydrocarbon constituents, and, along with clean imported fill, was used as backfill for the excavation. All analyte concentrations in sidewall and bottom soil samples collected were below the MTCA Method A cleanup levels or laboratory reporting limits. A grab excavation water sample was collected, and exceeded the MTCA Method A cleanup levels for TPH as heavy oil (TPHo) and total lead. Cambria suggested that the constituent concentrations above MTCA Method A cleanup levels in excavation water sampled, was the result of surface runoff. More information is available in Cambria's Underground Storage Tank Removal and Compliance Sampling Report, dated December 28, 2006.

2007 Subsurface Investigation: In March 2007, Conestoga-Rovers & Associates (CRA) drilled eight soil borings (SB-1 through SB-7; SB-2B), to a maximum depth of 30.5 feet bgs in order to assess soil conditions associated with the current dispenser islands, and current and former UST fields. CRA removed approximately 1-2 liters of liquid reported as separate phase hydrocarbons (SPH) from soil boring SB-3 at a depth of 10 feet bgs. Wet soil conditions were reported in soil boring SB-3 at the same depth as the SPH, but all other soil sampled in soil boring SB-3 and all other soil borings drilled were dry. Concentrations of TPHg, benzene, and total xylenes in soil boring SB-3 at 10 feet bgs exceeded the MTCA Method A cleanup levels. Concentrations of TPHg in soil sampled in soil boring SB-4 at 5 feet bgs were above the MTCA Method A cleanup level. More information is available in CRA's Site Investigation Report, dated May 3, 2007.

2010 Site Investigation: In August 2010, CRA completed five soil borings (SB-8 through SB-12) and installed a temporary monitoring well in soil boring SB-8, in order to assess site soil conditions and confirm or deny the presence of perched groundwater at the Site. CRA advanced the borings to a maximum depth of 30 feet. Concentrations of TPHg in soil sampled from soil boring SB-8 at 5 and 10 feet bgs, soil boring SB-9 at 10 and 15 feet bgs, soil boring SB-10 at 15 feet bgs, and soil boring SB-11 at 5 feet bgs, were above the MTCA Method A cleanup levels. Soil sampled from soil boring SB-8 at 5 feet bgs was above the MTCA Method A cleanup levels for concentrations of TPHd and TPHo, as was the concentration of TPHd in soil sampled from soil boring SB-9 at 5 feet bgs. Various concentrations of BTEX constituents exceeded the MTCA Method A cleanup levels to 15 feet bgs in soil boring SB-8, to 20 feet bgs in soil boring SB-9,

and to 15 feet bgs in soil boring SB-11. The concentration of naphthalene in soil sampled from SB-9 at 10 feet bgs was also above the MTCA Method A cleanup level. CRA did not observe any groundwater in the temporary well installed in soil boring SB-8.

## APPENDIX C

AVAILABLE HISTORICAL SOIL BORING LOGS



|                                     | OO91 Owner Texaco Refining and Marketing Inc.  a, Washington Proj. No. 020600172  See Site Map For Boring Location |                |                                                                                         |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|
|                                     |                                                                                                                    |                | epth 35.5 ft. Diameter 6.5 in. COMMENTS:                                                |
|                                     |                                                                                                                    |                | Initial Static                                                                          |
|                                     |                                                                                                                    |                | Type/Size Soil samples submitted for laboratory analysis are identified by a black box. |
|                                     |                                                                                                                    |                | Type analysis are identified by a black box.                                            |
| Fill Material                       |                                                                                                                    |                | Rig/Core                                                                                |
| Drill Co. Holt Drilling             | Co.                                                                                                                | Meth           | d HSA                                                                                   |
| Driller Clyde Moore                 | Log                                                                                                                | By Tim         | <u>Lewallen</u> Date <u>09/12/95</u> Permit #                                           |
| Checked By Steve                    | Hartman                                                                                                            |                | License No.                                                                             |
| Depth (ft.) PID (ppm) Sample ID     | Blow Count/<br>% Recovery                                                                                          | Graphic<br>Log | Description                                                                             |
| 2-<br>- 0 -                         |                                                                                                                    | <u>A</u> 5     | 4" asphalt.<br>Brown, fine-grained SAND, little silt, trace clay, trace gravel          |
| - 2 -                               |                                                                                                                    |                | (dense, dry, slight odor)                                                               |
|                                     |                                                                                                                    |                |                                                                                         |
| - 4 -                               |                                                                                                                    |                | (grades little clay)                                                                    |
| 95 -5                               | 12 🔳 .                                                                                                             | 1.1.11         |                                                                                         |
| - 6 -                               | 20 🗖 .                                                                                                             | 1.111          |                                                                                         |
|                                     | 22                                                                                                                 | 1.111          |                                                                                         |
|                                     |                                                                                                                    | 1.1:11         |                                                                                         |
| - 8 -                               | .                                                                                                                  | 1.111          | (grades trace clay)                                                                     |
|                                     | -                                                                                                                  | SM             | (grades trace clay)                                                                     |
| - 10 - <sub>80</sub> <sub>-10</sub> | 7 [                                                                                                                |                | (grades gray, medium dense, moist)                                                      |
|                                     | 7 🗐 .                                                                                                              | .              |                                                                                         |
| 40                                  | 10 🔲 ].                                                                                                            |                |                                                                                         |
| - 12 -                              | -                                                                                                                  | []-[]          |                                                                                         |
| 4 1                                 | .  ·                                                                                                               | 1.1:111        |                                                                                         |
| - 14 -                              | .                                                                                                                  | 1.[1]          |                                                                                         |
|                                     |                                                                                                                    | - - -          |                                                                                         |
| 8 -15                               | 17                                                                                                                 | 1-1:11         | (grades brown, very dense, dry, no odor)                                                |
| - 16 -   5                          | 23 <b>     </b><br>0-2"     •                                                                                      | Ш              | Gray-brown, medium-grained SAND, trace fine-grained sand,                               |
|                                     | ັ' ¦∷                                                                                                              |                | trace gravel                                                                            |
| 7                                   |                                                                                                                    |                | (very dense, moist, no odor)                                                            |
| 18 -                                |                                                                                                                    |                |                                                                                         |
| 4 1                                 |                                                                                                                    |                |                                                                                         |
| 20                                  |                                                                                                                    |                |                                                                                         |
| 20 - 3.5 -20 50                     | )-6 🏻 ∷:                                                                                                           | SP             |                                                                                         |
| -                                   | :::                                                                                                                |                |                                                                                         |
| 22 –                                | :::                                                                                                                |                | (grades gray trace graye))                                                              |
| .                                   | <b> </b>  :::                                                                                                      |                | (grades gray, trace gravel)                                                             |
| 1                                   |                                                                                                                    | ∷:             |                                                                                         |
| 24 –                                | <u>:::</u>                                                                                                         | ╧╢┤┤           |                                                                                         |



Soil Boring SB-1

Project Texaco Facility No. 63-232-0091 Owner Texaco Refining and Marketing Inc.

Location 3740 Pacific Avenue, Tacoma, Washington Proj. No. 020600172

|   | Location 3740 Pacific Avenue, Tacoma, Washington Proj. No. 020600172 |              |           |             |         |             |                                                                                                               |  |  |  |
|---|----------------------------------------------------------------------|--------------|-----------|-------------|---------|-------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
|   | Depth<br>(ft.)                                                       | PIO<br>(mad) | Sample ID | Blow Count/ | Graphic | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |  |  |  |
|   | -24 -<br>26 -                                                        | 2.5          | -25       | 50-2"       | C       |             |                                                                                                               |  |  |  |
|   | - 28 -<br>-<br>- 30 -                                                | 2.5          | -30       | 49<br>50-5" | E       | SP          |                                                                                                               |  |  |  |
| - | - 32 –<br>-<br>- 34 –                                                |              |           |             |         |             | (grades little gravel)                                                                                        |  |  |  |
| - | - 36 -<br>- 38 -                                                     | 2            | -35<br>!  | 17<br>50-4" |         |             | End of borehole. Backfilled with bentonite and capped with concrete.                                          |  |  |  |
|   | -<br>- 40 <del>-</del><br>-                                          |              |           |             |         |             |                                                                                                               |  |  |  |
| - | 42-                                                                  |              |           |             |         |             |                                                                                                               |  |  |  |
| - | 46 –                                                                 |              |           |             |         | ,           |                                                                                                               |  |  |  |
| ŀ | 50 -                                                                 |              |           |             |         |             |                                                                                                               |  |  |  |
| ŀ | 54 –                                                                 |              |           |             |         |             |                                                                                                               |  |  |  |
| + | 56 –                                                                 |              |           |             |         |             |                                                                                                               |  |  |  |



|                |          |                |                           |                  |             | 091 Owner <u>Texaco Refining and Marketing Inc.</u>                     | See Site Map<br>For Boring Location                                           |
|----------------|----------|----------------|---------------------------|------------------|-------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                |          |                |                           |                  |             |                                                                         |                                                                               |
|                |          |                |                           |                  |             | epth <u>20 ft.</u> Diameter <u>6.5 in.</u>                              | COMMENTS:                                                                     |
|                |          |                |                           |                  |             | nitial Static                                                           |                                                                               |
|                |          |                |                           |                  |             | Type/Size                                                               | Soil samples submitted for laboratory analysis are identified by a black box. |
|                |          |                |                           |                  |             | Type                                                                    |                                                                               |
| Fill Mat       | terial _ | 0              |                           |                  |             | Rig/Core                                                                |                                                                               |
| Drill Co       | Holt     | <u>Drillin</u> | g Lo.                     | ·M               | letho       | 1 HSA                                                                   |                                                                               |
|                |          |                |                           |                  |             | ewallen Date 09/12/95 Permit #                                          |                                                                               |
| Checke         | ed By .  | Steve          | e Hartma                  | <u>n</u>         |             | License No                                                              |                                                                               |
| Depth<br>(ft.) | PID      | Sample 10      | Blow Count/<br>% Recovery | Graphic          | USCS Class. | Descripti<br>(Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some | Structure)                                                                    |
| 2              |          |                |                           |                  |             |                                                                         |                                                                               |
| t              | 1        | SB-            | -2                        |                  |             |                                                                         | •                                                                             |
| L 0 .          | 4        |                |                           |                  |             | 3" asphalt.                                                             |                                                                               |
|                |          |                |                           |                  | ASD         | Brown, fine-grained SAND, little silt, trace c                          | lay trace grayet                                                              |
| - 2 -          |          |                |                           |                  |             | (very dense, dry, no odor)                                              | ay, trace graves                                                              |
| -              | 1        |                |                           |                  |             | (grades slight odor)                                                    |                                                                               |
| - 4 -          | 1        |                |                           |                  |             |                                                                         |                                                                               |
|                | 3.2      | -5             | · 17                      |                  |             |                                                                         |                                                                               |
| - 6 -          | 4        |                | 23<br>42                  |                  |             |                                                                         | ·                                                                             |
|                | .        | 1              | 42 L                      | $\  \  \  \  \ $ |             |                                                                         |                                                                               |
| <u>-</u> .     | 1        |                |                           |                  |             |                                                                         |                                                                               |
| - 8 -          | -        |                |                           |                  |             | (grades some silt)                                                      |                                                                               |
| _              | ╝        |                |                           |                  |             |                                                                         |                                                                               |
|                |          |                |                           |                  |             |                                                                         | ·                                                                             |
| - 10 -         | 1.7      | -10            | 8                         |                  | SM          | (grades dense, little silt, no odor)                                    |                                                                               |
| -              | -11      |                | 18<br>23                  | .  .             |             | ·                                                                       |                                                                               |
| - 12 -         | 1        |                | ۳۰ ۲                      |                  |             |                                                                         |                                                                               |
| - 12 -         | 1        |                |                           |                  |             |                                                                         |                                                                               |
| -              | 1        | 1              | •                         |                  |             |                                                                         |                                                                               |
| - 14 –         | 4        |                |                           |                  |             | (grades gray, moist)                                                    |                                                                               |
| • •            |          |                |                           |                  |             |                                                                         |                                                                               |
|                | 2.0      | -15            | 4 [                       |                  |             | (grades loose)                                                          | <i>'</i>                                                                      |
| - 16 -         |          |                | 2 3                       |                  | 11 11       |                                                                         |                                                                               |
| _              |          |                | _                         |                  |             |                                                                         |                                                                               |
|                |          |                |                           | [.[:]:]          |             |                                                                         |                                                                               |
| - 18 –         |          |                | l                         |                  |             |                                                                         |                                                                               |
|                |          |                |                           | . : . :          |             |                                                                         | · · · · · ·                                                                   |
| - 20 –         |          |                |                           |                  |             | End of horoholo - Bookfilled with hortesite a                           | nd cannad with concrete                                                       |
| 207            | 1.7      | -20            | 50-5" <b>[</b>            |                  |             | End of borehole. Backfilled with bentonite a                            | — — — — — — — — — — — — — — — — — — —                                         |
| 4              |          | 1              |                           |                  |             |                                                                         |                                                                               |
| 22 –           |          |                | l                         |                  |             |                                                                         |                                                                               |
|                |          |                |                           |                  |             |                                                                         |                                                                               |
| 1              | İ        |                |                           |                  |             |                                                                         |                                                                               |
| 24 –           |          |                |                           |                  |             |                                                                         |                                                                               |



| Project .               | Project <u>Texaco Facility No. 63-232-0091</u> Owner <u>Texaco Refining and Marketing Inc.</u> Location <u>3740 Pacific Avenue, Tacoma, Washington</u> Proj. No. <u>020600172</u> |                          |                 |                 |                                                            |                                                                               |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-----------------|------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Location                |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 | pth <u>20 ft.</u> Diameter <u>6.5 in.</u>                  | COMMENTS:                                                                     |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 | nitial Static                                              |                                                                               |  |  |
| Screen:                 | Dia                                                                                                                                                                               |                          | Length _        |                 | Type/Size                                                  | Soil samples submitted for laboratory analysis are identified by a black box. |  |  |
| Casing: Dia Length Type |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
| Fill Mate               | ill Material Rig/Core<br>rill Co. <u>Holt Drilling Co.</u> Method <u>HSA</u>                                                                                                      |                          |                 |                 |                                                            |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 | ewallen Date <u>09/12/95</u> Permit #                      |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 | License No                                                 |                                                                               |  |  |
| Checked                 | <u>Бу У</u>                                                                                                                                                                       |                          |                 |                 | License No.                                                |                                                                               |  |  |
|                         | _                                                                                                                                                                                 | Sample ID<br>Blow Count/ | ဲ့ ပု           | ass             | Descripti                                                  | on                                                                            |  |  |
| Depth<br>(ft.)          | PID<br>mdd)                                                                                                                                                                       | 9 0 0 0                  | Graphic         | ō               | ·                                                          |                                                                               |  |  |
| ا مق                    | g G                                                                                                                                                                               | E 3 6                    | 9.6             | SCS             | (Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some | 20% to 35% And 35% to 50%                                                     |  |  |
|                         |                                                                                                                                                                                   | ω m ×                    |                 | SS              | Trace \ 10%, Ettile 10% to 20%, 30me                       | 20% (0 30%, Alia 30% (0 30%                                                   |  |  |
| -2-                     |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
| 1                       |                                                                                                                                                                                   | SB-3                     |                 |                 |                                                            | •                                                                             |  |  |
| $\vdash 0 \dashv$       |                                                                                                                                                                                   |                          | -               | ASD             | 3" asphalt.                                                |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 | Brown, fine—grained SAND, little silt, trace cl            | ay .                                                                          |  |  |
| - 2 -                   |                                                                                                                                                                                   | -                        |                 | $\ $            | (dense, dry, no odor)                                      | •                                                                             |  |  |
| F 2 7                   |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
| F -                     |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
| 4 -                     |                                                                                                                                                                                   |                          | [[].[].         |                 | (grades gray-brown, trace gravel)                          |                                                                               |  |  |
|                         | _                                                                                                                                                                                 |                          |                 | 1               |                                                            |                                                                               |  |  |
|                         | 5                                                                                                                                                                                 | -5 12<br>17              | <b>.</b>        |                 |                                                            |                                                                               |  |  |
| - 6 -                   |                                                                                                                                                                                   | 18                       | <u> </u>        |                 |                                                            |                                                                               |  |  |
| <b>├</b> -∥             |                                                                                                                                                                                   |                          |                 | 1               |                                                            |                                                                               |  |  |
| 8 –                     | İ                                                                                                                                                                                 | -                        |                 | 1               |                                                            |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 | SM              | •                                                          |                                                                               |  |  |
| 1                       |                                                                                                                                                                                   |                          |                 | 1               |                                                            | ·                                                                             |  |  |
| <b>-</b> 10 →           | 15                                                                                                                                                                                | -10 12                   | d]:[]:[         |                 |                                                            |                                                                               |  |  |
| <b>.</b> ↓              |                                                                                                                                                                                   | 13<br>24                 |                 |                 |                                                            |                                                                               |  |  |
| 12                      |                                                                                                                                                                                   | . 27                     | 41.111.11       |                 |                                                            |                                                                               |  |  |
| - 12 -                  |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
| + $+$                   |                                                                                                                                                                                   |                          |                 |                 | (grades gray)                                              |                                                                               |  |  |
| - 14 -                  |                                                                                                                                                                                   |                          |                 | 1               |                                                            |                                                                               |  |  |
| 1                       |                                                                                                                                                                                   |                          |                 |                 | (aradas maist madium dansa)                                |                                                                               |  |  |
| · ` 1                   | 6                                                                                                                                                                                 | -15 3<br>5               |                 |                 | (grades moist, medium dense)                               |                                                                               |  |  |
| - 16 -                  | 1                                                                                                                                                                                 | 7                        | ]]]]]]]         |                 |                                                            |                                                                               |  |  |
| 1                       |                                                                                                                                                                                   |                          |                 |                 | Gray, fine to medium-grained SAND, trac                    | ce gravel                                                                     |  |  |
| - 18 -                  |                                                                                                                                                                                   |                          |                 |                 | (very dense, dry, no odor)                                 |                                                                               |  |  |
|                         | - 1                                                                                                                                                                               |                          |                 | SP              | •                                                          |                                                                               |  |  |
| + 1                     | .                                                                                                                                                                                 |                          |                 |                 |                                                            |                                                                               |  |  |
| - 20 -                  | 1.4                                                                                                                                                                               | -20 50-4"                | <b>∦</b> ······ | $\vdash \vdash$ | ¬ (grades very dense)                                      |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          | 1 1             |                 | End of borehole. Backfilled with bentonite a               | nd capped-with concrete.                                                      |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 |                                                            | •                                                                             |  |  |
| - 22 -                  |                                                                                                                                                                                   |                          | ] [             |                 |                                                            |                                                                               |  |  |
| _ 4                     | .                                                                                                                                                                                 |                          |                 |                 |                                                            |                                                                               |  |  |
| -24-                    |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |
|                         |                                                                                                                                                                                   |                          |                 |                 |                                                            |                                                                               |  |  |



| Projec         | Project <u>Texaco Facility No. 63-232-0091</u> Owner <u>Texaco Refining and Marketing Inc.</u> See Site Map For Boring Location       |          |                           |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|--------------------|---------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Location       | Location 3740 Pacific Avenue, Tacoma, Washington Proj. No. 020600172  Surface Elev Total Hole Depth 30 ft. Diameter 6.5 in. COMMENTS: |          |                           |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                |                                                                                                                                       |          |                           |                    |         |                                                   | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                |                                                                                                                                       |          |                           |                    |         | Initial Static                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Screen         | ı: Dia _                                                                                                                              |          | L                         | .ength             |         | Type/Size                                         | Soil samples submitted for laboratory analysis are identified by a black box.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Casing:        | . Dia                                                                                                                                 |          | L                         | ength              |         | Type                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Fill Mat       | eriai _<br>Holt i                                                                                                                     | Drilling | <u></u>                   |                    |         | Rig/Core                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                |                                                                                                                                       |          |                           |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Ormer 3        | d Du                                                                                                                                  | Steve    | L<br>Hartma               | og By              | 11111   | ewallen Date 09/13/95 Permit #                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Спеске         | Checked By Steve Hartman License No                                                                                                   |          |                           |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 1              | -                                                                                                                                     |          | Blow Count/<br>% Recovery | O                  | 988     | Descripti                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Depth<br>(ft.) | OIA                                                                                                                                   |          | ဂ္ဂ်                      | ٩                  | 3∥0     | Description                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| <u>~</u>       | ا مر                                                                                                                                  | ample    | .¥ an                     | Graphic            | SCS     | (Color, Texture, S                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                |                                                                                                                                       | Ŋ        | % @                       |                    | S       | Trace < 10%, Little 10% to 20%, Some              | 20% to 35%, And 35% to 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| -2-            | _                                                                                                                                     |          |                           |                    | -       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| -              |                                                                                                                                       |          |                           |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| <b>†</b>       | 1                                                                                                                                     | SB-4     | 1                         |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| <b>-</b> 0-    | -                                                                                                                                     |          |                           | щи                 | 4       | 3" asphalt.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| L .            | 4                                                                                                                                     |          |                           |                    | Ast     | Gray, fine-grained SAND, little silt, trace clay  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                |                                                                                                                                       |          |                           |                    | -       | (dense, dry, moderate odor)                       | <b>'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| - 2 -          | 1                                                                                                                                     |          |                           |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| F .            | 90                                                                                                                                    | -3       | ] ڌ                       | $- \  \  \  \  \ $ | 11      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| L 4 -          | 4                                                                                                                                     |          | 15                        | 1111               | Ш       | ·                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                | 700                                                                                                                                   | -4.5     | 13.1                      |                    | Ш       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| [              | ]                                                                                                                                     |          | 29<br>36                  | ][].               | Ш       | (grades trace silt, trace gravel)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 6 -          | 100                                                                                                                                   | -6       | 11                        | $\  \  \ $         | Ш       | (grades very dense, strong odor)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| -              |                                                                                                                                       | l        | i5<br>24                  | $\ \ \ $           | SM      | (grades dense) (grades gray-brown, moderate odor) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 8 -          | NR                                                                                                                                    | -7.5     | 15                        |                    |         | (grades very dense)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Ų              |                                                                                                                                       | .        | 30<br>32                  |                    | H       | (grades little silt, strong odor)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                | 25                                                                                                                                    | -9       | 15                        |                    |         | (grades moist)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 10 -         |                                                                                                                                       |          | 20<br>19                  |                    |         | (grades dense)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                | 35                                                                                                                                    | -10.5    | 12                        |                    |         | (grades dry, trace silt)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                |                                                                                                                                       |          | 22<br>14                  |                    | 1       | (3                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 12 -         | 10                                                                                                                                    | -12      | 12 H                      | . : . :            | 1       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 4            |                                                                                                                                       |          | 15<br>24                  | ببببا              |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 14 -         | 1300                                                                                                                                  | -13.5    | 13                        |                    |         | Gray fine to medium-grained SAND, trace gr        | avel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                |                                                                                                                                       |          | 38<br>14                  |                    |         | (very dense, dry, slight odor)                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| ·              | 1100                                                                                                                                  |          | 12 H                      |                    | ]       | (grades dense)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 16 -         |                                                                                                                                       |          | 21<br>21                  |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| _              | NR                                                                                                                                    | -16.5    | 24                        |                    |         | (grades very dense)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 40             |                                                                                                                                       |          | 36<br>48                  |                    |         |                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| - 18 -         | 100                                                                                                                                   | -18      | 24 H                      |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4              |                                                                                                                                       | 50       | 38<br>3" H                |                    | SP      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 20 -           | 100                                                                                                                                   | -19.5    | 37                        |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 20             |                                                                                                                                       | 50       | 47<br>1-3" H              |                    |         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| -              | 90                                                                                                                                    | -21      | 24 H                      |                    |         | (grades moist)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 22 –           |                                                                                                                                       | 50       | )-5" <b> </b>             |                    |         | (grades trace silt, trace gravel, dry)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                | 50                                                                                                                                    | -22.5    | 38                        |                    |         | 3 = -, -, ,                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                | - 1                                                                                                                                   | 50       | -5"                       |                    | .       |                                                   | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 24             | 40                                                                                                                                    | -24      | 42                        |                    | SM      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                |                                                                                                                                       |          |                           |                    | <u></u> | •                                                 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |  |  |  |



Soil Boring SB-4

Project Texaco Facility No. 63-232-0091 Owner Texaco Refining and Marketing Inc.
Location 3740 Pacific Avenue, Tacoma, Washington Proj. No. 020600172

| Location       | 3740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pacific Av               | enue, Tad        | coma,       | Washington Proj. No. <u>020600172</u>                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-------------|-------------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.) | PIO<br>(maa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample ID<br>Blow Count/ | Graphic Log      | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%     |
| -24-           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -24 42<br>50-4           | ? FI             |             | Gray fine—grained SAND and SILT, trace gravel<br>(very dense, dry, slight odor)                                   |
| -26 -          | NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.5 50-4                | · <b>a</b> llill | SM          |                                                                                                                   |
| - 28 -         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -27 50-4 <sup>.</sup>    |                  |             |                                                                                                                   |
| 1              | NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -28.5 47<br>50-4"        | B                | 50          | Brown fine— to medium—grained SAND, trace gravel<br>(very dense, dry, no odor)                                    |
| - 30 -         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -30 50-5"                |                  | SP          | (300 lb hammer was used to collect sample<br>End of borehole. Backfilled with bentonite and capped with concrete. |
| - 32 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| 34-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| - 36 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| - 38 -<br>     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |             |                                                                                                                   |
| - 40 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| - 42 -         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |             |                                                                                                                   |
| -44-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| $\mathbf{l}$   | en e manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manuel manu |                          |                  |             |                                                                                                                   |
| - 46 -<br>     | often and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                  |             |                                                                                                                   |
| - 48 -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| -50-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| - °52 –        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • .                      | -                |             |                                                                                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| -54-           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |             |                                                                                                                   |
| - 56 -         | period and period and income                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                  |             |                                                                                                                   |



| Project           | 374                                                                     | For Boring Location |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
|-------------------|-------------------------------------------------------------------------|---------------------|---------------------------|------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|--|--|--|
| Location          | n <u>3/40</u>                                                           | Tac                 | IIIC AVE                  | nue, rac         | COME                                                                            | n, Washington Proj. No. <u>020600172</u>                                            |                            |  |  |  |
|                   |                                                                         |                     |                           |                  |                                                                                 | e Depth 31.5 ft. Diameter 6.5 in. COMMENTS:                                         |                            |  |  |  |
|                   |                                                                         |                     |                           |                  | evel Initial Static                                                             |                                                                                     |                            |  |  |  |
| Screen.           | Dia                                                                     |                     | L                         | engtn _          | gth Soil samples submitted for laboratory analysis are identified by a black bo |                                                                                     |                            |  |  |  |
| Casing: 1         | uld                                                                     |                     | L                         | engtn _          |                                                                                 | Type                                                                                |                            |  |  |  |
| Drill Co          | Holt D                                                                  | rillina             | Co                        | Me               |                                                                                 | Rig/Core                                                                            |                            |  |  |  |
| Driller C         | Ivde M                                                                  | oore                | 1.                        | ME               | eunoc<br>Fim 1                                                                  | ewallen Dota (19/13/95 Domition                                                     |                            |  |  |  |
| Checked           | hecked By <u>Steve Hartman</u> License No Date <u>09/13/95</u> Permit # |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| CITCONEG          |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| حہ ا              | -                                                                       |                     | Blow Count/<br>% Recovery | ပ္               | ass                                                                             | Dosorint                                                                            | ion                        |  |  |  |
| Depth<br>(ft.)    | PIO<br>(maa)                                                            | ample II            | ទី ទី                     | Graphic<br>Log   | ō                                                                               | Descript                                                                            |                            |  |  |  |
| ے م               | 1                                                                       | E                   | 9 6<br>20 0               | Gra              | SCS                                                                             | (Color, Texture, S                                                                  |                            |  |  |  |
|                   |                                                                         | S                   | <u> </u>                  |                  | 3                                                                               | Trace < 10%, Little 10% to 20%, Some                                                | 20% to 35%, And 35% to 50% |  |  |  |
| -2-               |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| _                 |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| 7                 |                                                                         | SB-5                | ;                         |                  |                                                                                 |                                                                                     |                            |  |  |  |
| $\vdash 0 \dashv$ |                                                                         |                     |                           | <del>munit</del> | ASD                                                                             | 3" asphalt.                                                                         |                            |  |  |  |
| 4                 |                                                                         |                     |                           |                  | (3)                                                                             | Brown, medium-grained SAND, trace gravel                                            |                            |  |  |  |
| - 2 -             |                                                                         |                     |                           |                  |                                                                                 | (medium dense, dry, no odor)                                                        |                            |  |  |  |
| - 2 -             | '                                                                       | ŀ                   |                           |                  |                                                                                 | (imported backfill)                                                                 |                            |  |  |  |
| ├ ╢               |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| - 4 -             |                                                                         |                     |                           | .:::::           |                                                                                 |                                                                                     |                            |  |  |  |
|                   |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| _ ]               |                                                                         |                     |                           |                  | SP                                                                              |                                                                                     |                            |  |  |  |
| - 6 -             |                                                                         |                     |                           |                  | or                                                                              |                                                                                     |                            |  |  |  |
| . 4               |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| - 8 -             |                                                                         |                     |                           | ::::::           |                                                                                 |                                                                                     |                            |  |  |  |
|                   | - 1                                                                     |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| 1                 | 1                                                                       |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| - 10 -            | 600                                                                     | -10                 | 4 円                       |                  |                                                                                 | (grades wet, strong odor, sheen)                                                    |                            |  |  |  |
| 1                 |                                                                         | -                   | 6 H                       |                  |                                                                                 | _                                                                                   |                            |  |  |  |
| 40                |                                                                         |                     | 16 🗍                      |                  |                                                                                 | Gray, fine-grained SAND, little silt, trace cla (medium dense, dry, strong odor)    | y, trace gravei            |  |  |  |
| - 12 -            |                                                                         |                     |                           |                  |                                                                                 | , and a second second                                                               |                            |  |  |  |
|                   | - 1                                                                     |                     | - 1                       | 11.111           | -                                                                               |                                                                                     | ·                          |  |  |  |
| - 14 🚽            |                                                                         |                     | - 1                       | .   -            | .                                                                               |                                                                                     |                            |  |  |  |
| 1                 |                                                                         |                     | 1                         | 11111            |                                                                                 |                                                                                     |                            |  |  |  |
| 1                 | 400  -                                                                  | 15                  | 3                         | 11111.           |                                                                                 | (Blows were counted with a 300 lb hamn                                              | ner)                       |  |  |  |
| 16 -              |                                                                         |                     | 4 H                       | 1.11.11          | SM                                                                              |                                                                                     |                            |  |  |  |
| 4                 |                                                                         |                     | <u> </u>                  | 1.1111           |                                                                                 |                                                                                     |                            |  |  |  |
| 40                |                                                                         |                     | -                         | 11111            |                                                                                 |                                                                                     |                            |  |  |  |
| 18 –              |                                                                         |                     | II.                       | 11111            |                                                                                 |                                                                                     |                            |  |  |  |
| 4                 |                                                                         |                     | .                         |                  |                                                                                 |                                                                                     |                            |  |  |  |
| 20 –              |                                                                         |                     | <u>l</u> .                |                  |                                                                                 | Proun fine-grained CAND trace all trace                                             |                            |  |  |  |
| 20                | 80  -                                                                   | 20 50               | -4"                       | ::::]            |                                                                                 | Brown fine-grained SAND, trace silt, trace grained (very dense, dry, moderate odor) | avei                       |  |  |  |
| 1                 |                                                                         |                     | 1                         |                  |                                                                                 | 2 2 3 2 3 3 10 30 30 30 30 30 30 30 30 30 30 30 30 30                               | <del>-</del>               |  |  |  |
| 22 –              |                                                                         |                     | #:                        | ∷∷ s             | Р                                                                               |                                                                                     |                            |  |  |  |
| _                 |                                                                         |                     | <b> </b> :                |                  |                                                                                 |                                                                                     |                            |  |  |  |
| 24                |                                                                         |                     |                           |                  |                                                                                 |                                                                                     |                            |  |  |  |
| 24 –              |                                                                         |                     | .                         |                  | $\exists$                                                                       |                                                                                     |                            |  |  |  |
|                   |                                                                         |                     | 11                        |                  | . 11                                                                            |                                                                                     |                            |  |  |  |



Soil Boring SB-5

Project <u>Texaco Facility No. 63–232–0091</u> Owner <u>Texaco Refining and Marketing Inc.</u>

| Location                 | Location 3740 Pacific Avenue, Tacoma, Washington Proj. No. 020600172 |                                        |                |             |                                                                                                               |  |  |  |
|--------------------------|----------------------------------------------------------------------|----------------------------------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Depth<br>(ft.)           | PID<br>(ppm)                                                         | Sample ID<br>Blow Count/<br>% Recovery | Graphic<br>Log | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |  |  |  |
| - 24 -<br>26 -<br>       | 20                                                                   | -25 50-3"                              |                |             | (slight odor)                                                                                                 |  |  |  |
| - 28 -<br>- 30 -<br>     | 5                                                                    | -30 35<br>31<br>42                     |                | SP          | (grades no silt)                                                                                              |  |  |  |
| - 32 -<br><br>- 34 -<br> |                                                                      | _                                      |                |             | End of borehole. Backfilled with bentonite and capped with concrete.                                          |  |  |  |
| - 36 -<br>-<br>- 38 -    |                                                                      |                                        |                |             |                                                                                                               |  |  |  |
| - 40 -<br>- 42 -         |                                                                      |                                        |                |             |                                                                                                               |  |  |  |
| -44-<br>-46-             |                                                                      |                                        |                |             |                                                                                                               |  |  |  |
| - 48 -<br>- 50 -         |                                                                      |                                        |                |             |                                                                                                               |  |  |  |
| - 52 -<br>- 54 -         |                                                                      |                                        |                |             |                                                                                                               |  |  |  |
| -56 -                    |                                                                      |                                        |                |             |                                                                                                               |  |  |  |



|                                                                                    |               |           |                           |            |                                                                                  | O91 Owner <u>Texaco Refining and Marketing Inc.</u>                                 | See Site Map<br>For Boring Location   |
|------------------------------------------------------------------------------------|---------------|-----------|---------------------------|------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------|
| Location                                                                           | n <u>3/40</u> | ) Paci    | IIC AVE                   | nue, T     | acoma                                                                            | n, Washington Proj. No. <u>020600172</u>                                            |                                       |
|                                                                                    |               |           |                           |            |                                                                                  | pth <u>31.5 ft.</u> Diameter <u>6.5 in.</u>                                         | COMMENTS:                             |
|                                                                                    |               |           |                           |            |                                                                                  | nitial Static                                                                       |                                       |
| Screen: Dia Length Type/Size Soil samples submitted for analysis are identified by |               |           |                           |            | Soil samples submitted for laboratory<br>analysis are identified by a black box. |                                                                                     |                                       |
| Casing: Dia Length Type                                                            |               |           |                           |            | Type                                                                             |                                                                                     |                                       |
| Fill Mate                                                                          | erial         | ****      |                           |            |                                                                                  | Rig/Core                                                                            |                                       |
| Drill Co.                                                                          |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| Driller 4                                                                          | .iyae M       | oore      | L                         | og By      | / IM L                                                                           | <u>ewallen</u> Date <u>09/13/95</u> Permit #                                        |                                       |
| Checked                                                                            | By S          | teve F    | artma.                    | n          |                                                                                  | License No                                                                          | · ·                                   |
| Depth<br>(ft.)                                                                     | PID<br>(mqq)  | Sample ID | Blow Count/<br>% Recovery | Graphic    | USCS Class.                                                                      | Descript<br>(Color, Texture, S<br>Trace < 10%, Little 10% to 20%, Some              | Structure)                            |
| 2-                                                                                 |               |           |                           | 1          |                                                                                  |                                                                                     |                                       |
|                                                                                    |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| -                                                                                  |               | SB-6      |                           |            |                                                                                  |                                                                                     | · · · · · · · · · · · · · · · · · · · |
| L 0 -                                                                              |               |           |                           |            |                                                                                  | 3" asphalt.                                                                         |                                       |
|                                                                                    |               |           |                           |            | Asp                                                                              |                                                                                     |                                       |
|                                                                                    |               |           |                           |            |                                                                                  | Gray, fine grained SAND, little silt, trace gra<br>(medium dense, dry, strong odor) | vei                                   |
| - 2 -                                                                              |               |           |                           | ]  ]       |                                                                                  | time areas control, on any occurry                                                  |                                       |
| 1                                                                                  |               |           |                           | .  :  .  : |                                                                                  |                                                                                     |                                       |
| 4 -                                                                                |               |           |                           | 11:11:     |                                                                                  |                                                                                     |                                       |
| Γ 4 7                                                                              |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| F -                                                                                | >2500         | -5        | 10                        |            | H                                                                                |                                                                                     |                                       |
| - 6 -                                                                              |               |           | 11 F                      |            |                                                                                  |                                                                                     |                                       |
|                                                                                    |               |           | ''' L                     |            |                                                                                  |                                                                                     |                                       |
|                                                                                    |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| - 8 -                                                                              | 1             |           |                           |            |                                                                                  |                                                                                     |                                       |
| - 4                                                                                | - 1           |           |                           |            |                                                                                  |                                                                                     |                                       |
| - 10 -                                                                             |               |           |                           |            | $\  \ \ $                                                                        |                                                                                     |                                       |
| - 10 7                                                                             | 1000          | -10       | 16<br>18                  |            |                                                                                  | (grades dense)                                                                      |                                       |
|                                                                                    |               |           | 25                        |            | SM                                                                               |                                                                                     |                                       |
| - 12 -                                                                             | 1             |           | · ٦                       |            | 1 1                                                                              |                                                                                     |                                       |
|                                                                                    |               |           |                           |            | 11 11                                                                            |                                                                                     |                                       |
| 1                                                                                  | - 1           |           |                           |            |                                                                                  |                                                                                     |                                       |
| - 14 -                                                                             |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| . 4                                                                                | 160           | -15       | 2F _                      |            |                                                                                  | (grades very dense, moderate odor)                                                  |                                       |
| 10                                                                                 | 100           | 13        | 35<br>30                  | [.[+].]+[  |                                                                                  | (grodes very dense, moderate oddi)                                                  |                                       |
| - 16 -                                                                             |               |           | 33                        |            |                                                                                  |                                                                                     | <u> </u>                              |
| . 4                                                                                |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| - 18 -                                                                             |               |           |                           |            |                                                                                  |                                                                                     |                                       |
|                                                                                    |               |           |                           | 1.11.11    |                                                                                  |                                                                                     |                                       |
| 1                                                                                  |               |           |                           | 1.11.11    |                                                                                  |                                                                                     |                                       |
| - 20 –                                                                             | 125 -         | 20        | 14                        | 1.11.11    |                                                                                  |                                                                                     | 1                                     |
|                                                                                    |               |           | 18<br>39                  |            |                                                                                  | Crow fine to modium analysis of CAND                                                | -                                     |
| . 7                                                                                |               |           | 39 🗍                      |            |                                                                                  | Gray, fine to medium grained SAND, trace gra<br>(very dense, dry, no odor)          | avei                                  |
| - 22 –                                                                             |               |           | lE                        | :::::      |                                                                                  | (very derise, dry, no oddry                                                         | · 1                                   |
| 4                                                                                  |               |           | #                         | :::::      | SP                                                                               |                                                                                     | *                                     |
| 24                                                                                 |               |           |                           |            |                                                                                  |                                                                                     |                                       |
| 24 –                                                                               |               |           |                           |            |                                                                                  |                                                                                     |                                       |



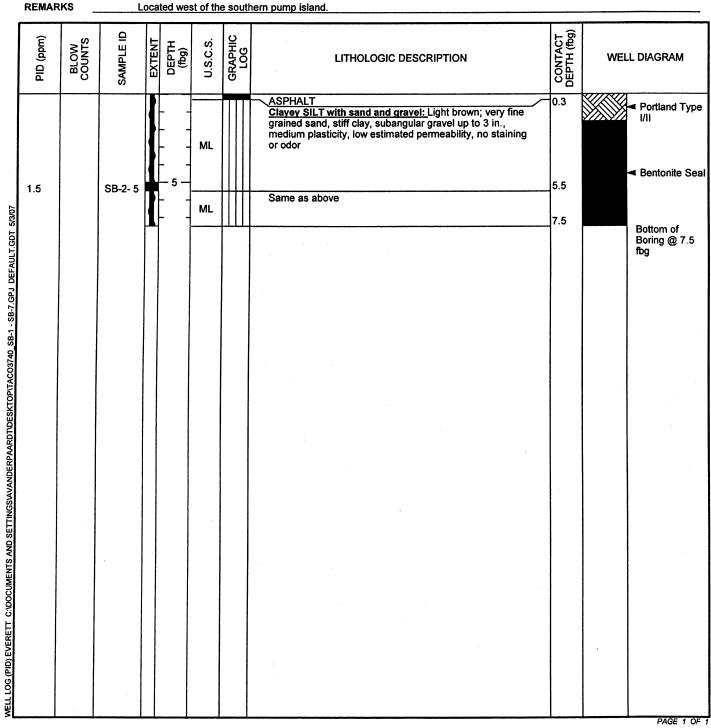
Soil Boring SB-6

Project Texaco Facility No. 63-232-0091 Owner Texaco Refining and Marketing Inc.

Location 3740 Pacific Avenue, Tacoma, Washington Proj. No. 020600172

| Location             |               | Proj. No. <u>0206001/2</u> |             |             |                |             |                                                                                                               |
|----------------------|---------------|----------------------------|-------------|-------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|
| Depth<br>(ft.)       | OI 9<br>(mqq) | Sample ID                  | Blow Count/ | % Recovery  | Graphic<br>Log | USCS Class. | Description<br>(Color, Texture, Structure)<br>Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% |
| - 24 -<br><br>- 26 - | 135           | -25                        | 50-3        | 3" <b>.</b> |                |             |                                                                                                               |
| - 28 -               |               |                            |             |             |                | SP          |                                                                                                               |
| 30 –                 | 5             | -30                        | · 23        | 5 2 5       |                |             | (Blows were counted with a 300 lb hammer)                                                                     |
| - 32 -               |               |                            | 21          | ) <b>()</b> |                |             | End of borehole. Backfilled with bentonite and capped with concrete.                                          |
| - 34 -               |               |                            |             |             |                |             |                                                                                                               |
| - 36 -               |               |                            |             |             |                |             |                                                                                                               |
| - 38 -               |               |                            |             |             |                |             |                                                                                                               |
| - 40 -               |               |                            |             |             |                |             |                                                                                                               |
| - 42 -<br>-          |               |                            |             |             |                |             |                                                                                                               |
| - 44-                |               |                            |             |             |                |             |                                                                                                               |
| - 46 -<br>-          |               |                            |             |             |                |             |                                                                                                               |
| - 48 -               |               | •                          |             |             |                |             |                                                                                                               |
| - 50 -<br>-          | -             |                            |             |             |                |             |                                                                                                               |
| - 52 <del>-</del>    |               |                            |             |             |                |             | ——————————————————————————————————————                                                                        |
| - 54 -               |               |                            |             |             |                |             |                                                                                                               |
| - 56 –               |               |                            |             |             |                |             |                                                                                                               |




Conestoga-Rovers & Associates 8620 Holly Drive, Suite 210 Everett, WA 98208 Telephone: (425) 212-5100 Fax: (425) 212-5199

| CLIENT NAME       | Shell Oil Products US                             | BORING/WELL NAME SB-1              |              |                |
|-------------------|---------------------------------------------------|------------------------------------|--------------|----------------|
| JOB/SITE NAME _   | Taco3740                                          | DRILLING STARTED 15-Mar-07         |              |                |
| LOCATION          | 3740 Pacific Avenue, Tacoma, Washington           | DRILLING COMPLETED 16-Mar-07       |              |                |
| PROJECT NUMBER    | 249-1876                                          | WELL DEVELOPMENT DATE (YIELD)      | NA           |                |
| DRILLER           | Cascade Drilling, Inc.                            | GROUND SURFACE ELEVATION           | Not Surveyed |                |
| DRILLING METHOD _ | Hollow-stem auger                                 | TOP OF CASING ELEVATION Not Surve  | eyed         |                |
| BORING DIAMETER   | 8 In.                                             | SCREENED INTERVAL NA               |              |                |
| LOGGED BY         | E. Blakemore                                      | DEPTH TO WATER (First Encountered) | NA           | $\bar{\Sigma}$ |
| REVIEWED BY       | T. Crotwell, LG # 2331                            | DEPTH TO WATER (Static)            | NA           | Ţ              |
| REMARKS           | Located north of building on west side of site ne | <br>ar the fence                   |              |                |

CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW COUNTS U.S.C.S. **EXTENT** DEPTH (fbg) LITHOLOGIC DESCRIPTION **WELL DIAGRAM** ASPHALT 0.3 ■ Portland Type Clayey SILT with sand and gravel: Grayish brown; fine grained sand, subrounded gravel up to 1 in., wet, medium plasticity, low estimated permeability, no staining or odor ML 5.5 0.2 SB-1-5 Clayey SILT with sand: Grayish brown; very fine grained sand, damp, medium plasticity, low estimated permeability, no staining or odor WELL LOG (PID) EVERETT C:DOCUMENTS AND SETTINGSIAVANDERPAARDTIDESKTOPITACO3740\_SB-1 - SB-7.GP.J DEFAULT.GDT ML 39 50/6 0 11.0 Sandy SILT with gravel: Gray; fine to coarse grained sand, angular gravel up to 1 in., dry, low plasticity, medium estimated permeability, no staining or odor SM 50/6 15.5 0 Sandy SILT with gravel: Brown; fine to coarse grained sand, angular to rounded gravel up to 1 in., dry, low plasticity, medium estimated permeability, no staining or SM 50/6 20.5 0 SAND with gravel: Brown; medium to coarse grained sand, subrounded gravel up to 2 in., dry, low plasticity, high estimated permeability, no staining or odor SP 50/6 25.5 0.6 SB-1-25 Same as above; moist SP 50/6 30.5 0.3 Bottom of Boring @ 30.5 fbg PAGE 1 OF 1

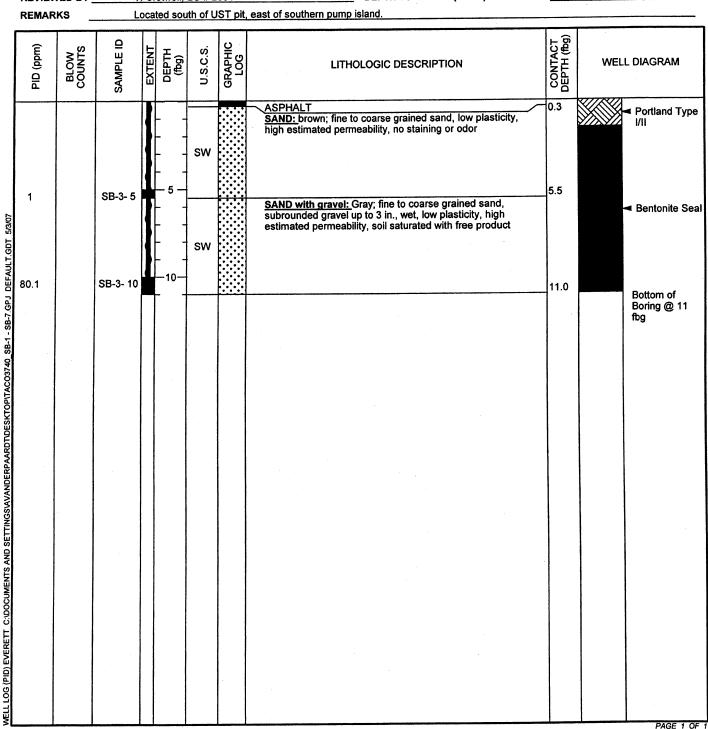


| CLIENT NAME       | Shell Oil Products US                     | BORING/WELL NAME SB-2              |              |
|-------------------|-------------------------------------------|------------------------------------|--------------|
| JOB/SITE NAME     | Taco3740                                  | DRILLING STARTED 15-Mar-07         |              |
| LOCATION          | 3740 Pacific Avenue, Tacoma, Washington   | DRILLING COMPLETED 15-Mar-07       |              |
| PROJECT NUMBER _  | 249-1876                                  | WELL DEVELOPMENT DATE (YIELD)      | NA           |
| DRILLER _         | Cascade Drilling, Inc.                    | GROUND SURFACE ELEVATION           | Not Surveyed |
| DRILLING METHOD _ | Hollow-stem auger                         | TOP OF CASING ELEVATIONNot Surve   | eyed         |
| BORING DIAMETER _ | 8 In.                                     | SCREENED INTERVAL NA               |              |
| LOGGED BY         | E. Blakemore                              | DEPTH TO WATER (First Encountered) | NA ∑         |
| REVIEWED BY       | T. Crotwell, LG # 2331                    | DEPTH TO WATER (Static)            | NA <u>Y</u>  |
| REMARKS           | I ocated west of the southern numn island |                                    |              |





Conestoga-Rovers & Associates 8620 Holly Drive, Suite 210 Everett, WA 98208 Telephone: (425) 212-5100 Fax: (425) 212-5199


| CLIENT NAME     | Shell Oil Products US                           | BORING/WELL NAME SB-2B                    |              |                     |
|-----------------|-------------------------------------------------|-------------------------------------------|--------------|---------------------|
| JOB/SITE NAME   | Taco3740                                        | DRILLING STARTED 15-Mar-07                |              |                     |
| LOCATION        | 3740 Pacific Avenue, Tacoma, Washington         | DRILLING COMPLETED 15-Mar-07              |              |                     |
| PROJECT NUMBER  | 249-1876                                        | WELL DEVELOPMENT DATE (YIELD)             | NA           |                     |
| DRILLER _       | Cascade Drilling, Inc.                          | GROUND SURFACE ELEVATION                  | Not Surveyed |                     |
| DRILLING METHOD | Hollow-stem auger                               | TOP OF CASING ELEVATION Not Sur           | veyed        |                     |
| BORING DIAMETER | 8 In.                                           | SCREENED INTERVAL NA                      |              |                     |
| LOGGED BY       | E. Blakemore                                    | DEPTH TO WATER (First Encountered)        | NA           | $\overline{\Sigma}$ |
| REVIEWED BY     | T. Crotwell, LG # 2331                          | DEPTH TO WATER (Static)                   | NA           | Y                   |
| DEMARKS         | Located west of the southern numericland approx | rimetaly 20 feet west of soil boring SB-2 |              |                     |

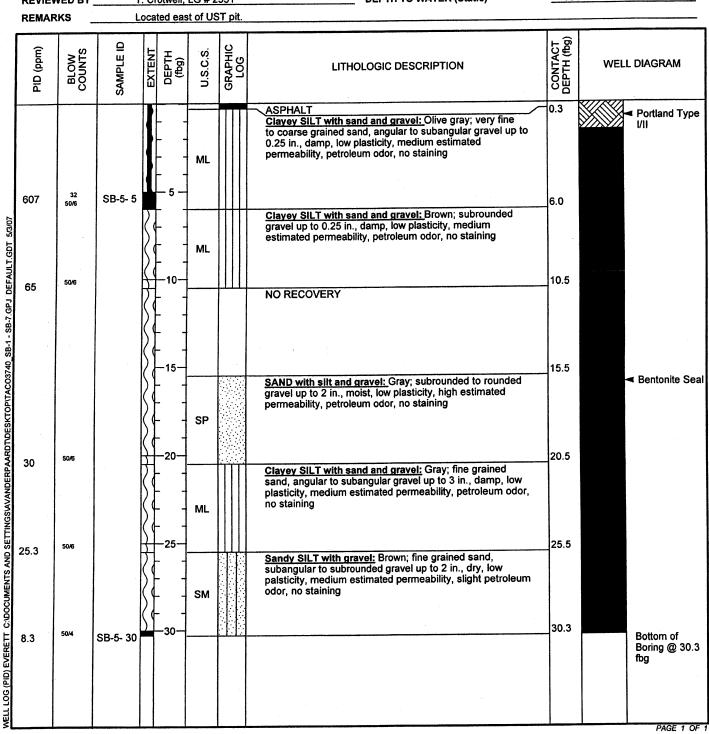
REMARKS <u>Located west of the southern pump island, approximately 20 feet west of soil boring SB-2</u> CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW U.S.C.S. DEPTH (fbg) EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION 0.3 ASPHALT Portland Type <u>SILT with gravel:</u> Brown; subangular to subrounded gravel up to 1 in., dry, low plasticity, low estimated permeability, no staining or odor 1/11 ML 22 20 0 20 6.5 Silty SAND with clay: Brown; very fine to fine grained sand, loose, dry, low plasticity, medium estimated permeability, no staining or odor SM 17 30 32 0.1 11.5 C:\DOCUMENTS AND SETTINGS\AVANDERPAARDT\DESKTOP\TACO3740\_SB-1 - SB-7.GPJ Sandy SILT with clay: Gray, very fine to fine grained sand, loose, moist, medium plasticity, low estimated permeability, no staining or odor ML 36 50/6 8.2 16.0 SB-2B ■ Bentonite Seal Silty SAND with gravel: Dark brown; fine to medium -15 grained sand, subangular to subrounded gravel up to 1 in., dry, low plasticity, high estimated permeability, no staining SP or odor 20.5 50/6 0.5 Same as above; moist SP 50/4 25.5 8.0 SB-2B GRAVEL with sand and silt: Olive gray, fine to coarse grained sand, subrounded gravel up to 2 in., moist, low -25 plasticity, high estimated permeability, no staining or odor GM 30.3 50/4 WELL LOG (PID) EVERETT 1.2 Bottom of Boring @ 30.3 fbg PAGE 1 OF



Conestoga-Rovers & Associates 8620 Holly Drive, Suite 210 Everett, WA 98208 Telephone: (425) 212-5100 Fax: (425) 212-5199

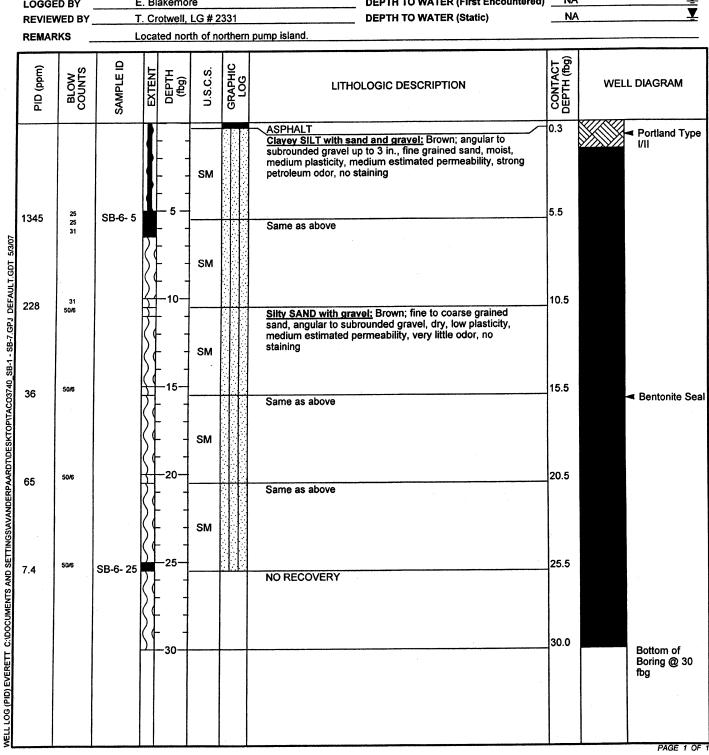
SB-3 **BORING/WELL NAME** Shell Oil Products US **CLIENT NAME** JOB/SITE NAME Taco3740 **DRILLING STARTED** 15-Mar-07 DRILLING COMPLETED \_\_\_\_15-Mar-07 LOCATION 3740 Pacific Avenue, Tacoma, Washington NA WELL DEVELOPMENT DATE (YIELD)\_ 249-1876 **PROJECT NUMBER** Not Surveyed **GROUND SURFACE ELEVATION** Cascade Drilling, Inc. DRILLER TOP OF CASING ELEVATION Not Surveyed **DRILLING METHOD** Hollow-stem auger SCREENED INTERVAL **BORING DIAMETER** NA E. Blakemore **DEPTH TO WATER (First Encountered) LOGGED BY DEPTH TO WATER (Static)** NA T. Crotwell, LG # 2331 **REVIEWED BY** 





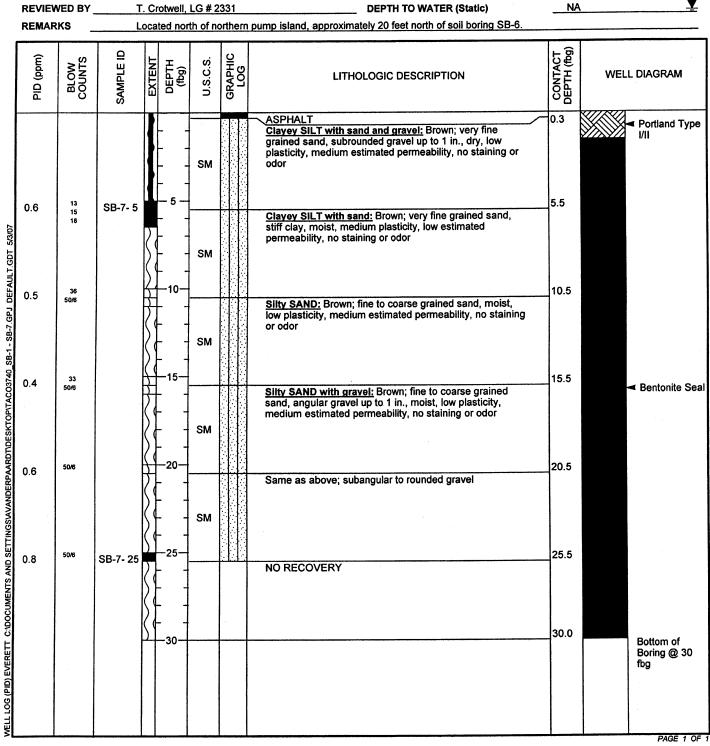

| CLIENT NAME     | Shell Oil Products US                   | BORING/WELL NAME SB-4              | _            |                     |
|-----------------|-----------------------------------------|------------------------------------|--------------|---------------------|
| JOB/SITE NAME   | Taco3740                                | DRILLING STARTED 16-Mar-07         |              |                     |
| LOCATION        | 3740 Pacific Avenue, Tacoma, Washington | DRILLING COMPLETED 16-Mar-07       |              |                     |
| PROJECT NUMBER  | 249-1876                                | WELL DEVELOPMENT DATE (YIELD)      | NA           |                     |
| DRILLER _       | Cascade Drilling, Inc.                  | GROUND SURFACE ELEVATION           | Not Surveyed |                     |
| DRILLING METHOD | Hollow-stem auger                       | TOP OF CASING ELEVATION Not Surve  | eyed         |                     |
| BORING DIAMETER | 8 In.                                   | SCREENED INTERVAL NA               |              |                     |
| LOGGED BY       | E. Blakemore                            | DEPTH TO WATER (First Encountered) | NA           | $\overline{\Sigma}$ |
| REVIEWED BY     | T. Crotwell, LG # 2331                  | DEPTH TO WATER (Static)            | NA           | ¥                   |
| DEMARKS         | Located southeast of LIST nit           | <del></del>                        |              |                     |

| PID (ppm) BLOW COUNTS |   | SAMPLE ID | EXTENT | DEPTH<br>(fbg) | U.S.C.S. | GRAPHIC | LITHOLOGIC DESCRIPTION                                                                                                                                                                     | CONTACT<br>DEPTH (fbg) | WEI | LL DIAGRAM                           |
|-----------------------|---|-----------|--------|----------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|--------------------------------------|
|                       |   |           |        |                | ML       |         | ASPHALT <u>Clayey SILT with gravel:</u> Grayish brown; soft clay, subrounded gravel up to 2 in., dry, medium plasticity, medium estimated permeability, strong petroleum odor, no staining | 0.3                    |     | ✓ Portland Type I/II ✓ Bentonite Sea |
| 522                   |   | SB-4- 5   |        |                | SM       |         | <u>Silty SAND:</u> Grayish brown; fine grained sand, dry, low plasticity, medium estimated permeability, strong petroleum odor, no staining                                                | 5.5<br>7.5             |     |                                      |
| 12.1                  |   | SB-4- 7.5 |        |                | -        | Alter-  | petroleum odor, no stammy                                                                                                                                                                  | 7.5                    |     | Bottom of<br>Boring @ 7.5<br>fbg     |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                | -        |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   | -         |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       | - |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |
|                       |   |           |        |                |          |         |                                                                                                                                                                                            |                        |     |                                      |




| CLIENT NAME     | Shell Oil Products US                   | BORING/WELL NAME SB-5                 |
|-----------------|-----------------------------------------|---------------------------------------|
| JOB/SITE NAME   | Taco3740                                | DRILLING STARTED 15-Mar-07            |
| LOCATION        | 3740 Pacific Avenue, Tacoma, Washington | DRILLING COMPLETED 15-Mar-07          |
| PROJECT NUMBER  | 249-1876                                | WELL DEVELOPMENT DATE (YIELD) NA      |
| DRILLER         | Cascade Drilling, Inc.                  | GROUND SURFACE ELEVATION Not Surveyed |
| DRILLING METHOD | Hollow-stem auger                       | TOP OF CASING ELEVATION Not Surveyed  |
| BORING DIAMETER | 8 In.                                   | SCREENED INTERVAL NA                  |
| LOGGED BY       | E. Blakemore                            | DEPTH TO WATER (First Encountered) NA |
| REVIEWED BY     | T. Crotwell, LG # 2331                  | DEPTH TO WATER (Static) NA            |
| DEMARKS         | Located east of LIST nit                |                                       |






| CLIENT NAME     | Shell Oil Products US                   | BORING/WELL NAME SB-6              |              |          |
|-----------------|-----------------------------------------|------------------------------------|--------------|----------|
| JOB/SITE NAME   | Taco3740                                | DRILLING STARTED 16-Mar-07         |              |          |
| LOCATION        | 3740 Pacific Avenue, Tacoma, Washington | DRILLING COMPLETED 16-Mar-07       |              |          |
| PROJECT NUMBER  | 249-1876                                | WELL DEVELOPMENT DATE (YIELD)      | NA           |          |
| DRILLER         | Cascade Drilling, Inc.                  | GROUND SURFACE ELEVATION!          | Not Surveyed |          |
| DRILLING METHOD | Hollow-stem auger                       | TOP OF CASING ELEVATION Not Surve  | eyed         |          |
| BORING DIAMETER | 8 In.                                   | SCREENED INTERVAL NA               |              |          |
| LOGGED BY       | E. Blakemore                            | DEPTH TO WATER (First Encountered) | NA           | <u>¥</u> |
| REVIEWED BY     | T. Crotwell, LG # 2331                  | DEPTH TO WATER (Static)            | NA           | <u>¥</u> |
| DEMARKS         | Located north of northern numn island   |                                    |              |          |





| CLIENT NAME       | Shell Oil Products US                          | BORING/WELL NAME SB-7                     |              |   |
|-------------------|------------------------------------------------|-------------------------------------------|--------------|---|
| -                 |                                                |                                           |              |   |
| JOB/SITE NAME _   | Taco3740                                       | DRILLING STARTED16-Mar-07                 |              |   |
| LOCATION _        | 3740 Pacific Avenue, Tacoma, Washington        | DRILLING COMPLETED 16-Mar-07              |              |   |
| PROJECT NUMBER    | 249-1876                                       | WELL DEVELOPMENT DATE (YIELD) N           | IA           |   |
| DRILLER           | Cascade Drilling, Inc.                         | GROUND SURFACE ELEVATIONN                 | lot Surveyed |   |
| DRILLING METHOD _ | Hollow-stem auger                              | TOP OF CASING ELEVATION Not Survey        | yed          |   |
| BORING DIAMETER _ | 8 In.                                          | SCREENED INTERVAL NA                      |              |   |
| LOGGED BY         | E. Blakemore                                   | _ DEPTH TO WATER (First Encountered) _    | NA           | ¥ |
| REVIEWED BY       | T. Crotwell, LG # 2331                         | _ DEPTH TO WATER (Static)                 | NA           | Y |
| REMARKS           | Located north of northern nump island approxin | nately 20 feet north of soil boring SB-6. |              |   |



#### APPENDIX D

BORING LOGS FOR SB-8 THROUGH SB-12



Page 1 of 1

PROJECT NAME: 3740 TACO
PROJECT NUMBER: 241876

HOLE DESIGNATION: SB-10
DATE COMPLETED: August 16, 2010

CLIENT: Shell Oil Products USA

LOCATION: 3740 Pacific Avenue, Tacoma, WA

DRILLING METHOD: HSA

FIELD PERSONNEL: J. Song

| DEPTH<br>ft BGS | STRATIGRAPHIC DESCRIPTION & REMARKS                                                                                                     | DEPTH<br>ft BGS | BOREHOLE                        | SAMPLE  |          |         |                   |           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|---------|----------|---------|-------------------|-----------|
| II BGS          |                                                                                                                                         | II BGS          |                                 | NUMBER  | INTERVAL | REC (%) | 'N' VALUE         | PID (ppm) |
|                 | ASPHALT                                                                                                                                 | 0.50            | CONCRETE                        |         |          |         |                   |           |
| -2              | SM-SILTY SAND, with gravel, dense, well<br>graded, fine to medium grained, brown, dry, no<br>odor                                       |                 |                                 |         |          |         |                   |           |
| - 6             | SM-SILTY SAND, with clay, dense, well graded, fine to medium grained, dark grayish brown (10YR 4/2), dry, hydrocarbon staining and odor | 5.00            | BACKFILLED WITH BENTONITE CHIPS | SB10-5  | X        | 50      | 21<br>50-6"       | 48        |
| -8              | and oddi                                                                                                                                |                 |                                 |         |          |         |                   |           |
| - 10 —<br>- 12  | SC-CLAYEY SAND, fine grained, dense, dark grayish brown (10YR 4/2), dry, no odor                                                        | 10.00           |                                 | SB10-10 |          | 75      | 15<br>21<br>50-6" | 23        |
| -14             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| - 16            | SC-CLAYEY SAND, fine grained, dark grayish brown (10YR 4/2), dry, no odor  END OF BOREHOLE @ 16.5ft BGS                                 | 15.00<br>16.50  |                                 | SB10-15 | X        | 20      | 50-6"             | 10        |
| - 18            |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -20             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| - 22            |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -24             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -26             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -28             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -30             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -32             |                                                                                                                                         |                 |                                 |         |          |         |                   |           |
| -34             | OTEO. MEAGUIDING DOINT ELEVATIONS MAY CONTROL                                                                                           | DEEED TO C.     | IDDENT ELEVATION TARIS          |         |          |         |                   |           |
| <u>NC</u>       | OTES: MEASURING POINT ELEVATIONS MAY CHANGE; F                                                                                          | KEFER TO CU     | RRENT ELEVATION TABLE           |         |          |         |                   |           |
|                 | CHEMICAL ANALYSIS                                                                                                                       |                 |                                 |         |          |         |                   |           |



Page 1 of 1

PROJECT NAME: 3740 TACO PROJECT NUMBER: 241876 CLIENT: Shell Oil Products USA HOLE DESIGNATION: SB-11
DATE COMPLETED: August 13, 2010

LOCATION: 3740 Pacific Avenue, Tacoma, WA

DRILLING METHOD: HSA
FIELD PERSONNEL: J. Song

| DEPTH      | STRATIGRAPHIC DESCRIPTION & REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEPTH        | BOREHOLE                        |         |          | SAMI    | PLE           |           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|---------|----------|---------|---------------|-----------|
| ft BGS     | STIVATIONAL FILE DESCRIPTION & REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft BGS       | BONLHOLE                        | NUMBER  | INTERVAL | REC (%) | 'N' VALUE     | PID (ppm) |
|            | ASPHALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50         | CONCRETE                        |         |          |         |               |           |
| -2         | SW-SAND, with 10% gravel, well graded, fine to medium grained, loose, brown, dry, no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *            |                                 |         |          |         |               |           |
| -6         | SW-SAND, with gravel, well graded, fine to coarse grained, olive brown (2.5Y 4/3), dry, no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00         | BACKFILLED WITH BENTONITE CHIPS | SB11-5  | X        | 75      | 24<br>8<br>14 | 11.4      |
| -8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Gi iii G                        |         |          |         |               |           |
| -10<br>-12 | SC-CLAYEY SAND, fine grained, medium stiff, olive gray (5Y 5/2), dry, no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.00        |                                 | SB11-10 | X        | 75      | 8<br>16<br>30 | 48        |
| -14        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.00        |                                 |         |          |         |               |           |
| -16        | SC-CLAYEY SAND, fine grained, medium stiff, olive gray (5Y 5/3), moist, no odor  END OF BOREHOLE @ 16.5ft BGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.50        |                                 | SB11-15 | X        | 75      | 9<br>18<br>40 | 1.5       |
| - 18       | O CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |              |                                 |         |          | 4       | 40            |           |
| -20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| -22        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| -24        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| -26        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| -28        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| -30        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| -32        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| - 34       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |         |          |         |               |           |
| N          | OTES: MEASURING POINT ELEVATIONS MAY CHANGE;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REFER TO CUF | RRENT ELEVATION TABLE           |         |          |         |               |           |
|            | CHEMICAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                 |         |          |         |               |           |



Page 1 of 1

PROJECT NAME: 3740 TACO
PROJECT NUMBER: 241876

HOLE DESIGNATION: SB-12
DATE COMPLETED: August 13, 2010

CLIENT: Shell Oil Products USA

LOCATION: 3740 Pacific Avenue, Tacoma, WA

DRILLING METHOD: HSA

FIELD PERSONNEL: J. Song

SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS **BOREHOLE** ft BGS ft BGS INTERVAL 'N' VALUE PID (ppm) REC ( **ASPHALT** ASPHALT 0.50 SM-SILTY SAND, with gravel, dense, well graded, fine to medium grained, brown, no 2 CEMENT - 4 5.00 21 SM-SILTY SAND, with trace clay, poorly SB12-5 50 0.0 graded, fine grained, very dense, minor plasticity, brown (10YR 5/3), no odor 50-6" -6 8 23 - 10 - more clayey at 10.0ft BGS SB12-10 75 30 4.5 50-4' BENTONITE - 12 - 14 15.00 SC-CLAYEY SAND, stiff, fine grained, poorly graded, olive (5Y 5/3), moist, no odor - 16 16.50 (SB12-15) 75 0.0 END OF BOREHOLE @ 16.5ft BGS 50-6' - 18 - 20 22 9/17/10 -24 CORP-SPANISH.GDT -26 -28 CRA -30 241876WIN.GPJ -32 OVERBURDEN LOG NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE CHEMICAL ANALYSIS



Page 1 of 1

PROJECT NAME: 3740 TACO
PROJECT NUMBER: 241876
CLIENT: Shell Oil Products USA

HOLE DESIGNATION: SB-8

DATE COMPLETED: August 13, 2010

LOCATION: 3740 Pacific Avenue, Tacoma, WA

FIELD PERSONNEL: J. Song

DRILLING METHOD: HSA

| DEPTH      | STRATIGRAPHIC DESCRIPTION & REMARKS                                                                                                  |         | DEPTH    | TEMP MONITORING WELL                                     |                                            | SAMPLE |          |         |             |           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------------------------------------------------------|--------------------------------------------|--------|----------|---------|-------------|-----------|
| ft BGS     | CITATIONAL TILO DECOME FICH A REMARKS                                                                                                |         | ft BGS   | TEWN WICHTON                                             | TAINO WELL                                 | NUMBER | INTERVAL | REC (%) | 'N' VALUE   | PID (ppm) |
| 2          | ASPHALT  SM-SILTY SAND, with gravel, dense, well graded, fine to medium grained, gray, dry, no odor                                  |         | 0.50     |                                                          | - CONCRETE                                 |        |          |         |             |           |
| 6 8        | SM-SILTY SAND, with coarse gravel, well graded, fine to medium grained, very dense, brown (10yr 5/3) staining, dry, hydrocarbon odor |         | 5.00     |                                                          |                                            | SB8-5  |          | 25      | 50-6"       | 450       |
| 10         | SM-SILTY AND, with coarse clay, well graded, fine to medium grained, very dense, brown (10yr 5/3), moist, hydrocarbon odor           |         | 10.00    |                                                          |                                            | SB8-10 | X        | 50      | 27<br>50-6" | 30        |
| 16         | SC-CLAYEY SAND, fine grained, stiff, dark greenish gray (5BG 4/1), moist, hydrocarbon odor                                           |         | 15.00    |                                                          | - BACKFILLED<br>WITH<br>BENTONITE<br>CHIPS | SB8-15 |          | 25      |             | 12.0      |
| 18<br>20 – | SM-SILTY SAND, well graded, fine to medium grained, very dense, brown (10yr 5/3), dry, minor hydrocarbon odor                        |         | 20.00    |                                                          |                                            | SB8-20 | X        | 25      | 50-6"       | 6.0       |
| 24         |                                                                                                                                      |         |          |                                                          |                                            |        |          | 7       |             |           |
| 26         | SM-SILTY SAND, with gravel, well graded, fine to medium grained, very dark greenish gray (5BG 4/1), dry, minor hydrocarbon odor      |         | 25.00    |                                                          |                                            |        | X        | 25      | 50-6"       | 1.0       |
| 30         |                                                                                                                                      |         |          | WELL DETAILS                                             |                                            | SB8-30 |          |         |             |           |
| 32         | END OF BOREHOLE @ 31.5ft BGS                                                                                                         |         | 31.50    | Screened Interval:<br>10.00 to 30.00ft I<br>Length: 20ft | BGS                                        |        |          |         |             |           |
| 34 N       | IOTES: MEASUIDING DOINT ELEVATIONS MANY OLIAN                                                                                        | ICE: DE | EED TO O | LIDDENT CLCVAT                                           | ION TARLE                                  |        |          |         |             |           |
| <u>N</u>   | IOTES: MEASURING POINT ELEVATIONS MAY CHAN                                                                                           | NGE, KE | FERIOU   | ORKEINI ELEVAT                                           | ION TABLE                                  |        |          |         |             |           |



Page 1 of 1

PROJECT NAME: 3740 TACO
PROJECT NUMBER: 241876

HOLE DESIGNATION: SB-9
DATE COMPLETED: August 16, 2010

CLIENT: Shell Oil Products USA

LOCATION: 3740 Pacific Avenue, Tacoma, WA

DRILLING METHOD: HSA

FIELD PERSONNEL: J. Song

| DEPTH     | STRATIGRAPHIC DESCRIPTION & REMARKS                                                                                                           | DEPTH        | BOREHOLE                        | SAMPLE   |          |         |                   |           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|----------|----------|---------|-------------------|-----------|
| ft BGS    |                                                                                                                                               | ft BGS       |                                 | NUMBER   | INTERVAL | REC (%) | 'N' VALUE         | PID (ppm) |
|           | ASPHALT                                                                                                                                       | 0.50         |                                 |          |          |         |                   |           |
| -2        | SM-SILTY SAND, with gravel, well graded, fine to medium grained, dense, brown, dry, no odor                                                   |              |                                 |          |          |         |                   |           |
| -6        | SM-SILTY SAND, with clay, very dense, well graded, fine to medium grained, dark grayish brown (10R 4/2), dry, minor hydrocarbon odor          | 5.00         | BACKFILLED WITH BENTONITE CHIPS | SB9-5    | X        | 25      | 50-6"             | 25        |
| -8        |                                                                                                                                               |              |                                 |          |          |         | 18                |           |
| -10 -12   | SC-CLAYEY SAND, fine grained, dense, dark grayish brown (10R 4/2), moist, strong hydrocarbon odor                                             | 10.00        |                                 | SB9-10   | X        | 75      | 50-6"             | 80        |
| - 14      |                                                                                                                                               | 15.00        |                                 |          |          |         |                   |           |
| - 16      | SC-CLAYEY SAND, with silt, dense, fine grained, dark grayish brown (10R 4/2), dry, minor hydrocarbon odor                                     |              |                                 | SB9-15   | X        | 75      | 10<br>17<br>50-6" | 9         |
| - 18      | CM CILTY CAND with access gravel year                                                                                                         | 20.00        |                                 |          |          |         |                   |           |
| - 22      | SM-SILTY SAND, with coarse gravel, very dense, well graded, fine to medium grained, dark grayish brown (10R 4/2), dry, minor hydrocarbon odor |              |                                 | (SB9-20) |          | 25      | 50-6"             | 2.        |
| - 24      |                                                                                                                                               |              |                                 | ODO OF   |          | 25      | 50.6"             | 2         |
| -26       | END OF BOREHOLE @ 26.5ft BGS                                                                                                                  | 26.50        |                                 | (SB9-25) |          | 25      | 50-6"             | 2.        |
| -28       |                                                                                                                                               |              |                                 |          |          |         |                   |           |
| -30       |                                                                                                                                               |              |                                 |          |          |         | 30                |           |
| -32       |                                                                                                                                               |              |                                 |          |          |         |                   |           |
| -34       | OTEC. MEAGUIDING DOINT ELEVATIONS MAY SUANOS                                                                                                  | DECED TO CUI | DDENT ELEVATION TARI E          |          |          |         |                   |           |
| <u>NC</u> | <u>DTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE;                                                                                           | REFER TO CU  | RRENT ELEVATION TABLE           |          |          |         |                   |           |
|           | CHEMICAL ANALYSIS                                                                                                                             |              |                                 |          |          |         |                   |           |

## APPENDIX E

LABORATORY ANALYTICAL REPORTS



CLIENT: DATE: Calscience Environmental Laboratories, Inc. 8/25/2010

7440 Lincoln Way

ALS JOB#: 1008076 Garden Grove, CA 92841-1427 DATE RECEIVED: 8/16/2010

WDOE ACCREDITATION #: C1336

**CLIENT CONTACT:** Xuan Dang

CLIENT PROJECT ID: 3740 Pacific Ave - Tacoma, WA

CLIENT SAMPLE ID: 8/13/2010 SO-241876-081310-JS-SB8-5

ALS SAMPLE #: -01

| DATA RESULTS        |        |          |                     |                    |         |                  |                |  |  |  |
|---------------------|--------|----------|---------------------|--------------------|---------|------------------|----------------|--|--|--|
| ANALYTE             | METHOD | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |  |  |  |
| C5-C6 Aliphatics    | NWVPH  | ND       | 25                  | 5                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| >C6-C8 Aliphatics   | NWVPH  | 230      | 25                  | 5                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| >C8-C10 Aliphatics  | NWVPH  | 100      | 25                  | 5                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| >C8-C10 Aromatics   | NWVPH  | 270      | 25                  | 5                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| Total Aliphatics    | NWVPH  | 350      | 25                  | 5                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| Total Aromatics     | NWVPH  | 270      | 25                  | 5                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| Hexane              | NWVPH  | 6.5      | 0.20                | 1                  | MG/KG   | 8/20/2010        | DLC            |  |  |  |
| >C10-C12 Aliphatics | NWEPH  | 280      | 5.0                 | 1                  | MG/KG   | 8/19/2010        | EBS            |  |  |  |
| >C12-C16 Aliphatics | NWEPH  | 790      | 5.0                 | 1                  | MG/KG   | 8/19/2010        | EBS            |  |  |  |
| >C16-C21 Aliphatics | NWEPH  | 720      | 5.0                 | 1                  | MG/KG   | 8/19/2010        | EBS            |  |  |  |
| >C21-C34 Aliphatics | NWEPH  | 530      | 5.0                 | 1                  | MG/KG   | 8/19/2010        | EBS            |  |  |  |
| >C10-C12 Aromatics  | NWEPH  | 70       | 25                  | 5                  | MG/KG   | 8/24/2010        | EBS            |  |  |  |
| >C12-C16 Aromatics  | NWEPH  | 310      | 25                  | 5                  | MG/KG   | 8/24/2010        | EBS            |  |  |  |
| >C16-C21 Aromatics  | NWEPH  | 490      | 25                  | 5                  | MG/KG   | 8/24/2010        | EBS            |  |  |  |
| >C21-C34 Aromatics  | NWEPH  | 410      | 25                  | 5                  | MG/KG   | 8/24/2010        | EBS            |  |  |  |
| Total Aliphatics    | NWEPH  | 2,300    | 10                  | 1                  | MG/KG   | 8/19/2010        | EBS            |  |  |  |
| Total Aromatics     | NWEPH  | 1,300    | 50                  | 5                  | MG/KG   | 8/24/2010        | EBS            |  |  |  |

<sup>\* &</sup>quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

<sup>\*\*</sup> UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.



CLIENT: DATE: Calscience Environmental Laboratories, Inc. 8/25/2010

7440 Lincoln Way

ALS JOB#: 1008076 Garden Grove, CA 92841-1427 DATE RECEIVED: 8/16/2010

> WDOE ACCREDITATION #: C1336

Xuan Dang **CLIENT CONTACT:** 

3740 Pacific Ave - Tacoma, WA CLIENT PROJECT ID:

### QUALITY CONTROL RESULTS

#### **SURROGATE RECOVERY**

| ALS SAMPLE ID          | METHOD | SUR ID          | % RECV |
|------------------------|--------|-----------------|--------|
| 1008076-01             | NWVPH  | TFT - Hexane    | 89%    |
| 1008076-01 5X Dilution | NWVPH  | TFT - Aliphatic | 82%    |
| 1008076-01 5X Dilution | NWVPH  | TFT - Aromatic  | 85%    |
| 1008076-01             | NWEPH  | C25             | 103%   |
| 1008076-01 5X Dilution | NWEPH  | p-Terphenyl     | 115%   |



CLIENT: DATE: Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

ALS JOB#: 1008076 Garden Grove, CA 92841-1427 DATE RECEIVED: 8/16/2010

WDOE ACCREDITATION #: C1336

8/25/2010

**CLIENT CONTACT:** Xuan Dang

3740 Pacific Ave - Tacoma, WA CLIENT PROJECT ID:

#### **QUALITY CONTROL RESULTS**

#### **BLANK RESULTS**

| QC SAMPLE ID | MATRIX | METHOD | ANALYTE             | RESULT    | UNITS |
|--------------|--------|--------|---------------------|-----------|-------|
| MBLK-8202010 | Soil   | NWVPH  | C5-C6 Aliphatics    | ND(<5.0)  | MG/KG |
| MBLK-8202010 | Soil   | NWVPH  | >C6-C8 Aliphatics   | ND(<5.0)  | MG/KG |
| MBLK-8202010 | Soil   | NWVPH  | >C8-C10 Aliphatics  | ND(<5.0)  | MG/KG |
| MBLK-8202010 | Soil   | NWVPH  | >C8-C10 Aromatics   | ND(<5.0)  | MG/KG |
| MBLK-8202010 | Soil   | NWVPH  | Total Aliphatics    | ND(<5.0)  | MG/KG |
| MBLK-8202010 | Soil   | NWVPH  | Total Aromatics     | ND(<5.0)  | MG/KG |
| MBLK-8202010 | Soil   | NWVPH  | Hexane              | ND(<0.20) | MG/KG |
| MBLK-8192010 | Soil   | NWEPH  | >C10-C12 Aliphatics | ND(<5.0)  | MG/KG |
| MBLK-8192010 | Soil   | NWEPH  | >C12-C16 Aliphatics | ND(<5.0)  | MG/KG |
| MBLK-8192010 | Soil   | NWEPH  | >C16-C21 Aliphatics | ND(<5.0)  | MG/KG |
| MBLK-8192010 | Soil   | NWEPH  | >C21-C34 Aliphatics | ND(<5.0)  | MG/KG |
| MBLK-8192010 | Soil   | NWEPH  | Total Aliphatics    | ND(<10)   | MG/KG |
| MBLK-8242010 | Soil   | NWEPH  | >C10-C12 Aromatics  | ND(<5.0)  | MG/KG |
| MBLK-8242010 | Soil   | NWEPH  | >C12-C16 Aromatics  | ND(<5.0)  | MG/KG |
| MBLK-8242010 | Soil   | NWEPH  | >C16-C21 Aromatics  | ND(<5.0)  | MG/KG |
| MBLK-8242010 | Soil   | NWEPH  | >C21-C34 Aromatics  | ND(<5.0)  | MG/KG |
| MBLK-8242010 | Soil   | NWEPH  | Total Aromatics     | ND(<10)   | MG/KG |



CLIENT: DATE: Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

ALS JOB#: 1008076 Garden Grove, CA 92841-1427 DATE RECEIVED: 8/16/2010

WDOE ACCREDITATION #: C1336

8/25/2010

DI ANK CDIKE

**CLIENT CONTACT:** Xuan Dang

3740 Pacific Ave - Tacoma, WA CLIENT PROJECT ID:

### QUALITY CONTROL RESULTS

#### **BLANK SPIKE/BLANK SPIKE DUPLICATE RESULTS**

| QC BATCH ID | MATRIX | METHOD | ANALYTE             | SPIKE<br>AMOUNT | BLANK SPIKE<br>RECOVERY | DUPLICATE<br>RECOVERY | RPD |
|-------------|--------|--------|---------------------|-----------------|-------------------------|-----------------------|-----|
| R70236      | Soil   | NWVPH  | C5-C6 Aliphatics    | 100             | 94%                     | 89%                   | 5   |
| R70236      | Soil   | NWVPH  | >C6-C8 Aliphatics   | 100             | 103%                    | 98%                   | 5   |
| R70236      | Soil   | NWVPH  | >C8-C10 Aliphatics  | 100             | 103%                    | 101%                  | 2   |
| R70236      | Soil   | NWVPH  | >C8-C10 Aromatics   | 100             | 106%                    | 101%                  | 5   |
| R70238      | Soil   | NWVPH  | Hexane              | 100             | 91%                     | 96%                   | 5   |
| R70234      | Soil   | NWEPH  | >C10-C12 Aliphatics | 100             | 92%                     | 91%                   | 1   |
| R70234      | Soil   | NWEPH  | >C12-C16 Aliphatics | 100             | 94%                     | 93%                   | 1   |
| R70234      | Soil   | NWEPH  | >C16-C21 Aliphatics | 100             | 94%                     | 93%                   | 1   |
| R70234      | Soil   | NWEPH  | >C21-C34 Aliphatics | 100             | 101%                    | 105%                  | 4   |
| R70235      | Soil   | NWEPH  | >C10-C12 Aromatics  | 100             | 91%                     | 93%                   | 2   |
| R70235      | Soil   | NWEPH  | >C12-C16 Aromatics  | 100             | 92%                     | 94%                   | 2   |
| R70235      | Soil   | NWEPH  | >C16-C21 Aromatics  | 100             | 93%                     | 95%                   | 2   |
| R70235      | Soil   | NWEPH  | >C21-C34 Aromatics  | 100             | 105%                    | 107%                  | 2   |





August 31, 2010

Justin Foslien Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Calscience Work Order No.: 10-08-1402

Client Reference: 3740 Pacific Avenue, Tacoma, WA

#### Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/18/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Xuan H. Dang Project Manager

NELAP ID: 03220CA

**CSDLAC ID: 10109** 

SCAQMD ID: 93LA0830





#### CASE NARRATIVE

Calscience Work Order No.: 10-08-1402

#### **EPA 8260 - Contamination of the Method Blank**

#### Naphthalene - Batch # 100827L01 GC/MS Z

**Samples #6, 10, 17:** The levels of Naphthalene found in these samples are much greater than the blank contamination. The trace level found in the method blank is not expected to have any significant impact on the samples data.

**Sample #15:** The on column trace level of Naphthalene found in the sample is almost 2x the blank contaminations. The trace level found in the method blank may have a bias high impact on the sample data.

#### Bromomethane - Batch # 100827L01 GC/MS Z

**Samples #6, 10, 15, 17:** Trace level of Bromomethane was identified and reported in the method blank. Since all associated samples were non-detect for this compound, the data was reported without further clarification.

#### **EPA 8260 – Internal Standards Recoveries**

**Samples #2 and 7:** Recovery for internal standard TBA-d9 was biased high, possibly due to sample matrix interference. Since the associated compounds were non-detect in the samples, the data was reported without further clarification.







Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method: Units:

08/18/10 10-08-1402 **EPA 3550B NWTPH-Dx** mg/kg

Project: 3740 Pacific Avenue Tacoma WA

Page 1 of 5

<u>DF</u>

20

Qual

Result

2100

RL

100

| Project: 3740 Pacific Aven                                                              | ue, Tac       | oma, V            | VA                      |                    |                        |             |            |                  |           | Pa               | ge 1 of 5   |
|-----------------------------------------------------------------------------------------|---------------|-------------------|-------------------------|--------------------|------------------------|-------------|------------|------------------|-----------|------------------|-------------|
| Client Sample Number                                                                    |               |                   |                         | b Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared |           | e/Time<br>alyzed | QC Batch ID |
| SO-241876-081310-JS-SB-12-5                                                             |               |                   | 10-08-1                 | 402-1-A            | 08/13/10<br>09:20      | Solid       | GC 47      | 08/20/10         |           | 20/10<br>9:47    | 100820B14S  |
| Comment(s): -The sample extract wa                                                      | s subjected   | l to Silica (     | Gel treatr              | ment prior         | to analysis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                                                                        | Result        | <u>RL</u>         | <u>DF</u>               | <u>Qual</u>        | <u>Parameter</u>       |             |            | Result           | RL        | DF               | Qual        |
| TPH as Diesel Range                                                                     | ND            | 5.0               | 1                       |                    | TPH as Motor           | r Oil Range |            | ND               | 5.0       | 1                |             |
| Surrogates:                                                                             | REC (%)       | Control<br>Limits | <u>Qua</u>              | <u>l</u>           |                        |             |            |                  |           |                  |             |
| Decachlorobiphenyl                                                                      | 115           | 61-145            |                         |                    |                        |             |            |                  |           |                  |             |
| SO-241876-081310-JS-SB-12-10                                                            |               |                   | 10-08-1                 | 402-2-A            | 08/13/10<br>09:30      | Solid       | GC 47      | 08/20/10         |           | 20/10<br>0:03    | 100820B14S  |
| Comment(s): -The sample extract wa<br>Parameter                                         | <u>Result</u> | <u>RL</u>         | Gel treatr<br><u>DF</u> | ment prior<br>Qual | <u>Parameter</u>       |             |            | Result           | <u>RL</u> | <u>DF</u>        | <u>Qual</u> |
| TPH as Diesel Range                                                                     | 10            | 5.0               | 1                       |                    | TPH as Motor           | r Oil Range |            | ND               | 5.0       | 1                |             |
| Surrogates:                                                                             | REC (%)       | <u>Limits</u>     | <u>Qua</u>              | <u>l</u>           |                        |             |            |                  |           |                  |             |
| Decachlorobiphenyl                                                                      | 120           | 61-145            |                         |                    |                        |             |            |                  |           |                  |             |
| SO-241876-081310-JS-SB-12-15                                                            |               |                   | 10-08-1                 | 402-3-A            | 08/13/10<br>09:45      | Solid       | GC 47      | 08/20/10         |           | 20/10<br>0:18    | 100820B14S  |
| Comment(s): -The sample chromatog<br>Quantitation of the unkr<br>-The sample extract wa | own hydrod    | carbon(s)         | in the sa               | mple was l         | pased upon the         |             |            | ied standar      | d.        |                  |             |
| <u>Parameter</u>                                                                        | Result        | <u>RL</u>         | <u>DF</u>               | <u>Qual</u>        | <u>Parameter</u>       |             |            | Result           | <u>RL</u> | DF               | <u>Qual</u> |
| TPH as Diesel Range                                                                     | 7.4           | 5.0               | 1                       |                    | TPH as Motor           | r Oil Range |            | ND               | 5.0       | 1                |             |
| Surrogates:                                                                             | REC (%)       | Control<br>Limits | Qua                     | <u>l</u>           |                        |             |            |                  |           |                  |             |
| Decachlorobiphenyl                                                                      | 118           | 61-145            |                         |                    |                        |             |            |                  |           |                  |             |
| SO-241876-081310-JS-SB8-5                                                               |               |                   | 10-08-1                 | 402-4-A            | 08/13/10<br>11:00      | Solid       | GC 47      | 08/20/10         |           | 20/10<br>0:33    | 100820B14S  |

RL - Reporting Limit ,

<u>Parameter</u>

Surrogates:

TPH as Diesel Range

Decachlorobiphenyl

DF - Dilution Factor

Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis.

**REC (%)** 

RL

100

Control

Limits

61-145

20

Qual

Result

5300

140

Qual - Qualifiers

Qual

TPH as Motor Oil Range





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

08/18/10 Date Received: Work Order No: 10-08-1402 Preparation: **EPA 3550B** Method: **NWTPH-Dx** Units: mg/kg Page 2 of 5

Project: 3740 Pacific Avenue, Tacoma, WA

| Client Sample Number           |                 |                   |            | b Sample<br>Number | Date/Time<br>Collected | Matrix    | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|--------------------------------|-----------------|-------------------|------------|--------------------|------------------------|-----------|------------|------------------|-----------------------|-------------|
| SO-241876-081310-JS-SB8-10     |                 |                   | 10-08-1    | 402-5-A            | 08/13/10<br>11:05      | Solid     | GC 47      | 08/20/10         | 08/20/10<br>20:48     | 100820B14S  |
| Comment(s): -The sample extrac | t was subjected | to Silica         | Gel treatr | ment prior         | to analysis.           |           |            |                  |                       |             |
| <u>Parameter</u>               | <u>Result</u>   | <u>RL</u>         | <u>DF</u>  | <u>Qual</u>        | <u>Parameter</u>       |           |            | Result           | <u>RL</u> <u>DF</u>   | <u>Qual</u> |
| TPH as Diesel Range            | 78              | 5.0               | 1          |                    | TPH as Motor           | Oil Range |            | 28               | 5.0 1                 |             |
| Surrogates:                    | REC (%)         | Control<br>Limits | <u>Qua</u> | <u>l</u>           |                        |           |            |                  |                       |             |
| Decachlorobiphenyl             | 125             | 61-145            |            |                    |                        |           |            |                  |                       |             |
| SO-241876-081310-JS-SB8-15     |                 |                   | 10-08-1    | 402-6-A            | 08/13/10<br>11:15      | Solid     | GC 47      | 08/20/10         | 08/20/10<br>21:04     | 100820B14S  |

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Comment(s):

Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

-The sample extract was subjected to Silica Gel treatment prior to analysis.

**Parameter** Result RL DF Qual <u>Parameter</u> Result RL DF Qual TPH as Diesel Range 16 5.0 TPH as Motor Oil Range ND 5.0 1 1 Qual

**REC (%)** Control Surrogates: Limits

121 61-145 Decachlorobiphenyl

08/20/10 SO-241876-081310-JS-SB8-20 10-08-1402-7-A 08/13/10 Solid GC 47 08/20/10 100820B14S 11:20 21:19

Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis.

<u>Parameter</u> Result RLDF Qual Parameter Result RL DF Qual TPH as Diesel Range ND 5.0 TPH as Motor Oil Range ND 5.0 1

Surrogates: **REC (%)** <u>Control</u> Qual **Limits** 

123 61-145 Decachlorobiphenyl

08/20/10 SO-241876-081310-JS-SB8-30 10-08-1402-8-A 08/13/10 Solid GC 47 08/20/10 100820B14S 11:40 21:34

Comment(s): -The sample extract was subjected to Silica Gel treatment prior to analysis.

<u>Parameter</u> RL DF <u>RL</u> <u>DF</u> Qual Result Qual <u>Parameter</u> Result TPH as Diesel Range ND 5.0 TPH as Motor Oil Range ND 5.0 1 1

Qual **REC (%)** Control Surrogates: **Limits** 

Decachlorobiphenyl 114 61-145

> RL - Reporting Limit DF - Dilution Factor Qual - Qualifiers





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: Units: 08/18/10 10-08-1402 EPA 3550B NWTPH-Dx mg/kg

Project: 3740 Pacific Avenue, Tacoma, WA

| Page 3 of |
|-----------|
|-----------|

| Project: 3740 Pacific Ave                               | nue, rac      | oma, v            | VA                   |                          |                |            |                  | Pa                    | age 3 of 5  |
|---------------------------------------------------------|---------------|-------------------|----------------------|--------------------------|----------------|------------|------------------|-----------------------|-------------|
| Client Sample Number                                    |               |                   | Lab Sample<br>Number | e Date/Time<br>Collected | Matrix         | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| SO-241876-081310-JS-SB11-5                              |               |                   | 10-08-1402-9-A       | 08/13/10<br>13:05        | Solid          | GC 47      | 08/20/10         | 08/20/10<br>21:49     | 100820B14S  |
| Comment(s): -The sample extract w                       | as subjected  | d to Silica       | Gel treatment pric   | or to analysis.          |                |            |                  |                       |             |
| <u>Parameter</u>                                        | <u>Result</u> | <u>RL</u>         | DF Qual              | <u>Parameter</u>         |                |            | Result           | RL DF                 | Qual        |
| TPH as Diesel Range                                     | 1500          | 25                | 5                    | TPH as Mot               | or Oil Range   |            | 620              | 25 5                  |             |
| Surrogates:                                             | REC (%)       | Control<br>Limits | <u>Qual</u>          |                          |                |            |                  |                       |             |
| Decachlorobiphenyl                                      | 137           | 61-145            |                      |                          |                |            |                  |                       |             |
| SO-241876-081310-JS-SB11-10                             |               |                   | 10-08-1402-10-       | A 08/13/10<br>13:10      | Solid          | GC 47      | 08/20/10         | 08/20/10<br>22:05     | 100820B14S  |
| Quantitation of the unl -The sample extract w Parameter | •             | . ,               | •                    | •                        | e specified st | andard.    | Result           | <u>RL</u> <u>DF</u>   | Qual        |
| TPH as Diesel Range                                     | 14            | 5.0               | 1                    | TPH as Moto              | or Oil Range   |            | 16               | 5.0 1                 | . <u></u>   |
| Surrogates:                                             | REC (%)       |                   | Qual                 |                          |                |            |                  | 0.0                   |             |
| Decachlorobiphenyl                                      | 131           | 61-145            |                      |                          |                |            |                  |                       |             |
| SO-241876-081310-JS-SB11-15                             |               |                   | 10-08-1402-11-       | A 08/13/10<br>13:20      | Solid          | GC 47      | 08/20/10         | 08/20/10<br>22:35     | 100820B14S  |
| Comment(s): -The sample extract w                       | as subjected  | to Silica         | Gel treatment pric   | or to analysis.          |                |            |                  |                       |             |
| Parameter                                               | Result        | RL                | DF Qual              | Parameter                |                |            | Result           | RL DF                 | Qual        |
| TPH as Diesel Range                                     | ND            | 5.0               | 1                    | TPH as Moto              | or Oil Range   |            | ND               | 5.0 1                 | · <u></u>   |
| Surrogates:                                             | REC (%)       | Control<br>Limits | <u>Qual</u>          |                          | · ·            |            |                  |                       |             |
| Decachlorobiphenyl                                      | 124           | 61-145            |                      |                          |                |            |                  |                       |             |
| SO-241876-081610-JS-SB10-5                              |               |                   | 10-08-1402-12-       | A 08/16/10<br>07:55      | Solid          | GC 47      | 08/20/10         | 08/20/10<br>22:50     | 100820B14S  |
| Comment(s): -The sample extract w                       | as subjected  | to Silica         | Gel treatment pric   | or to analysis           |                |            |                  |                       |             |
| Parameter                                               | Result        | RL                | DF Qual              | Parameter                |                |            | Result           | RL DF                 | Qual        |
| TPH as Diesel Range                                     | 610           | 15                | 3                    | TPH as Moto              | or Oil Range   |            | 280              | 15 3                  | · <u></u>   |
| Surrogates:                                             | REC (%)       |                   | <u>Qual</u>          |                          | 3-             |            |                  | , 0                   |             |
| Decachlorobiphenyl                                      | 127           | 61-145            |                      |                          |                |            |                  |                       |             |

DF - Dilution Factor





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: Units:

10-08-1402 EPA 3550B NWTPH-Dx mg/kg

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 4 of 5

| 1 Tojoot: Of To T domo 7 tvo                                                  | ,             | , , ,             |            |                    |                        |             |            |                  |           |                  | 90 1 01 0   |
|-------------------------------------------------------------------------------|---------------|-------------------|------------|--------------------|------------------------|-------------|------------|------------------|-----------|------------------|-------------|
| Client Sample Number                                                          |               |                   |            | b Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared |           | e/Time<br>alyzed | QC Batch ID |
| SO-241876-081610-JS-SB10-10                                                   |               |                   | 10-08-     | 1402-13-A          | 08/16/10<br>08:00      | Solid       | GC 47      | 08/20/10         |           | /20/10<br>3:06   | 100820B14S  |
| Comment(s): -The sample extract w                                             | as subjected  | d to Silica       | Gel treat  | ment prior         | to analysis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                                                              | Result        | <u>RL</u>         | <u>DF</u>  | <u>Qual</u>        | <u>Parameter</u>       |             |            | Result           | <u>RL</u> | <u>DF</u>        | <u>Qual</u> |
| TPH as Diesel Range                                                           | ND            | 5.0               | 1          |                    | TPH as Moto            | r Oil Range |            | 7.4              | 5.0       | 1                |             |
| Surrogates:                                                                   | REC (%)       | Control<br>Limits | <u>Qua</u> | <u>al</u>          |                        |             |            |                  |           |                  |             |
| Decachlorobiphenyl                                                            | 117           | 61-145            |            |                    |                        |             |            |                  |           |                  |             |
| SO-241876-081610-JS-SB10-15                                                   |               |                   | 10-08-     | 1402-14-A          | 08/16/10<br>08:10      | Solid       | GC 47      | 08/20/10         |           | /20/10<br>3:21   | 100820B14S  |
| Comment(s): -The sample extract w                                             | as subjected  | d to Silica       | Gel treat  | ment prior         | to analysis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                                                              | <u>Result</u> | <u>RL</u>         | <u>DF</u>  | Qual               | Parameter              |             |            | Result           | RL        | <u>DF</u>        | Qual        |
| TPH as Diesel Range                                                           | 340           | 10                | 2          |                    | TPH as Moto            | r Oil Range |            | 310              | 10        | 2                |             |
| Surrogates:                                                                   | REC (%)       | Control<br>Limits | Qua        | <u>al</u>          |                        | J           |            |                  |           |                  |             |
| Decachlorobiphenyl                                                            | 116           | 61-145            |            |                    |                        |             |            |                  |           |                  |             |
| SO-241876-081610-JS-SB9-5                                                     |               |                   | 10-08-     | 1402-15-A          | 08/16/10<br>08:45      | Solid       | GC 47      | 08/20/10         |           | /20/10<br>3:36   | 100820B145  |
| Comment(s): -The sample extract w                                             | as subjected  | d to Silica       | Gel treat  | ment prior         | to analysis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                                                              | Result        | <u>RL</u>         | <u>DF</u>  | <u>Qual</u>        | <u>Parameter</u>       |             |            | Result           | RL        | <u>DF</u>        | Qual        |
| TPH as Diesel Range                                                           | 2100          | 40                | 8          |                    | TPH as Moto            | r Oil Range |            | 1200             | 40        | 8                |             |
| Surrogates:                                                                   | REC (%)       | Control<br>Limits | Qua        | <u>al</u>          |                        | J           |            |                  |           |                  |             |
| Decachlorobiphenyl                                                            | 143           | 61-145            |            |                    |                        |             |            |                  |           |                  |             |
| SO-241876-081610-JS-SB9-10                                                    |               |                   | 10-08-     | 1402-16-A          | 08/16/10<br>08:50      | Solid       | GC 47      | 08/20/10         |           | /21/10<br>9:23   | 100820B145  |
| Comment(s): -The sample chromate Quantitation of the un -The sample extract w | known hydro   | carbon(s)         | in the sa  | mple was l         | pased upon the         |             |            | ied standar      | d.        |                  |             |
| Parameter                                                                     | Result        | RL                | DF         | Qual               | Parameter              |             |            | Result           | <u>RL</u> | <u>DF</u>        | <u>Qual</u> |

MANA RE-REF

TPH as Diesel Range

Decachlorobiphenyl

Surrogates:

DF - Dilution Factor

1200

120

**REC (%)** 

25

Control

**Limits** 

61-145

5

Qual

Qual - Qualifiers

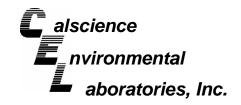
TPH as Motor Oil Range

220

25

5






Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: Units: 08/18/10 10-08-1402 EPA 3550B NWTPH-Dx mg/kg

Project: 3740 Pacific Avenue, Tacoma, WA

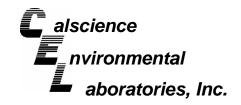
| Project: 3/40 Pacific Ave         | enue, rac      | oma, v            | VΑ             |                     |                        |             |            |                  |           | Pa               | ge 5 of 5   |
|-----------------------------------|----------------|-------------------|----------------|---------------------|------------------------|-------------|------------|------------------|-----------|------------------|-------------|
| Client Sample Number              |                |                   | L              | ab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared |           | e/Time<br>alyzed | QC Batch ID |
| SO-241876-081610-JS-SB9-15        |                |                   | 10-08          | -1402-17-A          | 08/16/10<br>08:55      | Solid       | GC 47      | 08/20/10         |           | 21/10<br>):07    | 100820B14S  |
| Comment(s): -The sample extract v | vas subjected  | l to Silica       | Gel trea       | atment prior t      | to analysis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                  | Result         | <u>RL</u>         | <u>DF</u>      | <u>Qual</u>         | <u>Parameter</u>       |             |            | Result           | <u>RL</u> | DF               | <u>Qual</u> |
| TPH as Diesel Range               | 7.5            | 5.0               | 1              |                     | TPH as Moto            | r Oil Range |            | ND               | 5.0       | 1                |             |
| Surrogates:                       | REC (%)        | Control<br>Limits | Qu             | ı <u>al</u>         |                        |             |            |                  |           |                  |             |
| Decachlorobiphenyl                | 119            | 61-145            |                |                     |                        |             |            |                  |           |                  |             |
| SO-241876-081610-JS-SB9-20        |                |                   | 10-08          | -1402-18-A          | 08/16/10<br>09:15      | Solid       | GC 47      | 08/20/10         |           | 21/10<br>):22    | 100820B14S  |
| Comment(s): -The sample extract v | vas subjected  | l to Silica       | Gel trea       | atment prior t      | to analysis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                  | Result         | <u>RL</u>         | <u>DF</u>      | Qual                | Parameter              |             |            | Result           | <u>RL</u> | <u>DF</u>        | <u>Qual</u> |
| TPH as Diesel Range               | ND             | 5.0               | 1              |                     | TPH as Moto            | r Oil Range |            | ND               | 5.0       | 1                |             |
| Surrogates:                       | REC (%)        | Control<br>Limits | Qu             | ı <u>al</u>         |                        | -           |            |                  |           |                  |             |
| Decachlorobiphenyl                | 123            | 61-145            |                |                     |                        |             |            |                  |           |                  |             |
| SO-241876-081610-JS-SB9-25        |                |                   | 10-08          | -1402-19-A          | 08/16/10<br>09:25      | Solid       | GC 47      | 08/20/10         |           | 21/10<br>):37    | 100820B14S  |
| Comment(s): -The sample extract v | vas subiected  | l to Silica       | Gel trea       | atment prior t      | to analvsis.           |             |            |                  |           |                  |             |
| <u>Parameter</u>                  | Result         | RL                | DF             | Qual                | Parameter              |             |            | Result           | <u>RL</u> | <u>DF</u>        | Qual        |
| TPH as Diesel Range               | 8.6            | 5.0               | 1              |                     | TPH as Moto            | r Oil Range |            | ND               | 5.0       | 1                |             |
| Surrogates:                       | REC (%)        | Control<br>Limits | Qu             | <u>ıal</u>          |                        | J           |            |                  |           |                  |             |
| Decachlorobiphenyl                | 122            | 61-145            |                |                     |                        |             |            |                  |           |                  |             |
| Method Blank                      |                |                   | 099-1          | 2-838-99            | N/A                    | Solid       | GC 47      | 08/20/10         |           | 20/10<br>3:31    | 100820B14S  |
| Dorometer                         | Dogult         | DI                | DE             | Ougl                |                        |             |            |                  |           |                  |             |
| Parameter TRU Pinnel Parame       | Result         | <u>RL</u>         | <u>DF</u>      | <u>Qual</u>         |                        |             |            |                  |           |                  |             |
| TPH as Diesel Range               | ND<br>BEC (%/) | 5.0<br>Control    | 1<br><u>Qu</u> | ıal                 |                        |             |            |                  |           |                  |             |
| Surrogates:                       | REC (%)        | Limits            | <u> </u>       | <u>ıaı</u>          |                        |             |            |                  |           |                  |             |
| Decachlorobiphenyl                | 104            | 61-145            |                |                     |                        |             |            |                  |           |                  |             |
|                                   |                |                   |                |                     |                        |             |            |                  |           |                  |             |

Muhama





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: 08/18/10 10-08-1402 EPA 5035 NWTPH-Gx


Project: 3740 Pacific Avenue, Tacoma, WA

Page 1 of 7

| 1 10,0001 01 10 1 00110 7 17 01100 | , racema,     | • • • • • • • • • • • • • • • • • • • • |                        |             |              |                  |                       | <del>190 1 01 1</del> |
|------------------------------------|---------------|-----------------------------------------|------------------------|-------------|--------------|------------------|-----------------------|-----------------------|
| Client Sample Number               |               | Lab Sample<br>Number                    | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID           |
| SO-241876-081310-JS-SB-12-5        |               | 10-08-1402-1-F                          | 08/13/10<br>09:20      | Solid       | GC 22        | 08/13/10         | 08/20/10<br>16:58     | 100819B02             |
| <u>Parameter</u>                   | Result        | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |                       |
| TPH as Gasoline                    | ND            | 0.21                                    | 0.832                  |             | mg/kg        |                  |                       |                       |
| Surrogates:                        | REC (%)       | Control Limits                          |                        | Qual        |              |                  |                       |                       |
| 1,4-Bromofluorobenzene             | 87            | 60-126                                  |                        |             |              |                  |                       |                       |
| SO-241876-081310-JS-SB-12-10       |               | 10-08-1402-2-F                          | 08/13/10<br>09:30      | Solid       | GC 22        | 08/13/10         | 08/21/10<br>07:40     | 100819B03             |
| <u>Parameter</u>                   | <u>Result</u> | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |                       |
| TPH as Gasoline                    | 0.74          | 0.21                                    | 0.855                  |             | mg/kg        |                  |                       |                       |
| Surrogates:                        | REC (%)       | Control Limits                          |                        | <u>Qual</u> |              |                  |                       |                       |
| 1,4-Bromofluorobenzene             | 90            | 60-126                                  |                        |             |              |                  |                       |                       |
| SO-241876-081310-JS-SB-12-15       |               | 10-08-1402-3-F                          | 08/13/10<br>09:45      | Solid       | GC 22        | 08/13/10         | 08/20/10<br>17:31     | 100819B02             |
| <u>Parameter</u>                   | Result        | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |                       |
| TPH as Gasoline                    | ND            | 0.21                                    | 0.833                  |             | mg/kg        |                  |                       |                       |
| Surrogates:                        | REC (%)       | Control Limits                          |                        | <u>Qual</u> |              |                  |                       |                       |
| 1,4-Bromofluorobenzene             | 85            | 60-126                                  |                        |             |              |                  |                       |                       |
| SO-241876-081310-JS-SB8-5          |               | 10-08-1402-4-E                          | 08/13/10<br>11:00      | Solid       | GC 22        | 08/13/10         | 08/25/10<br>23:35     | 100825B03             |
| <u>Parameter</u>                   | Result        | <u>RL</u>                               | <u>DF</u>              | Qual        | <u>Units</u> |                  |                       |                       |
| TPH as Gasoline                    | 660           | 100                                     | 413                    |             | mg/kg        |                  |                       |                       |
| Surrogates:                        | REC (%)       | Control Limits                          |                        | Qual        |              |                  |                       |                       |
| 1,4-Bromofluorobenzene             | 98            | 60-126                                  |                        |             |              |                  |                       |                       |
|                                    |               |                                         |                        |             |              |                  |                       |                       |

RL - Reporting Limit

DF - Dilution Factor





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: 08/18/10 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

Page 2 of 7

| Trojecti or re r delite riveria | io, raccina,   | • • • • • • • • • • • • • • • • • • • • |                        |             |              |                  |                       | xg0 = 0     |
|---------------------------------|----------------|-----------------------------------------|------------------------|-------------|--------------|------------------|-----------------------|-------------|
| Client Sample Number            |                | Lab Sample<br>Number                    | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| SO-241876-081310-JS-SB8-10      |                | 10-08-1402-5-E                          | 08/13/10<br>11:05      | Solid       | GC 22        | 08/13/10         | 08/26/10<br>00:07     | 100825B03   |
| <u>Parameter</u>                | Result         | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline                 | 120            | 8.0                                     | 32                     |             | mg/kg        |                  |                       |             |
| Surrogates:                     | <u>REC (%)</u> | Control Limits                          |                        | Qual        |              |                  |                       |             |
| 1,4-Bromofluorobenzene          | 117            | 60-126                                  |                        |             |              |                  |                       |             |
| SO-241876-081310-JS-SB8-15      |                | 10-08-1402-6-E                          | 08/13/10<br>11:15      | Solid       | GC 22        | 08/13/10         | 08/27/10<br>01:54     | 100826B02   |
| <u>Parameter</u>                | <u>Result</u>  | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline                 | 31             | 19                                      | 77                     |             | mg/kg        |                  |                       |             |
| Surrogates:                     | <u>REC (%)</u> | Control Limits                          |                        | Qual        |              |                  |                       |             |
| 1,4-Bromofluorobenzene          | 93             | 60-126                                  |                        |             |              |                  |                       |             |
| SO-241876-081310-JS-SB8-20      |                | 10-08-1402-7-F                          | 08/13/10<br>11:20      | Solid       | GC 22        | 08/13/10         | 08/20/10<br>19:41     | 100819B02   |
| <u>Parameter</u>                | Result         | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline                 | 6.0            | 0.21                                    | 0.85                   |             | mg/kg        |                  |                       |             |
| Surrogates:                     | <u>REC (%)</u> | Control Limits                          |                        | <u>Qual</u> |              |                  |                       |             |
| 1,4-Bromofluorobenzene          | 137            | 60-126                                  |                        | 2           |              |                  |                       |             |
| SO-241876-081310-JS-SB8-30      |                | 10-08-1402-8-G                          | 08/13/10<br>11:40      | Solid       | GC 22        | 08/13/10         | 08/21/10<br>23:36     | 100821B02   |
| <u>Parameter</u>                | Result         | <u>RL</u>                               | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline                 | 0.35           | 0.20                                    | 0.791                  |             | mg/kg        |                  |                       |             |
| Surrogates:                     | <u>REC (%)</u> | Control Limits                          |                        | Qual        |              |                  |                       |             |
| 1,4-Bromofluorobenzene          | 84             | 60-126                                  |                        |             |              |                  |                       |             |
|                                 |                |                                         |                        |             |              |                  |                       |             |

RL - Reporting Limit

DF - Dilution Factor





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

10-08-1402 **EPA 5035 NWTPH-Gx** 

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 3 of 7

| ( | Client Sample Numbe | er                                                                       | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument     | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|---|---------------------|--------------------------------------------------------------------------|----------------------|------------------------|--------|----------------|------------------|-----------------------|-------------|
|   | SO-241876-081310    | 0-JS-SB11-5                                                              | 10-08-1402-9-E       | 08/13/10<br>13:05      | Solid  | GC 22          | 08/13/10         | 08/26/10<br>01:45     | 100825B03   |
| • | Comment(s):         | -The sample chromatographic pattern of the unknown hydrocarbon(s) in the |                      |                        |        | e specified st | andard. Qua      | ntitation             |             |

<u>Parameter</u> <u>DF</u> Qual **Units** Result RL

TPH as Gasoline 140 13 52 mg/kg Surrogates: **REC (%) Control Limits** Qual

1,4-Bromofluorobenzene 93 60-126

| SO-241876-081310-JS-SB11-10 |        | 10-08-1402-10-F | 08/13/10<br>13:10 | Solid | GC 22 | 08/13/10 | 08/21/10<br>08:13 | 100819B03 |
|-----------------------------|--------|-----------------|-------------------|-------|-------|----------|-------------------|-----------|
| Parameter                   | Result | RI              | DF                | Qual  | Units |          |                   |           |

1.5 0.21 0.859 TPH as Gasoline mg/kg

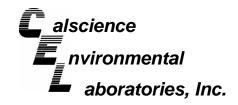
Surrogates: **REC (%) Control Limits** Qual 105

| SO-241876-081310-JS-SB11-15 | 10-08-1402-11-F | 08/13/10<br>13:20 | Solid | GC 22 | 08/13/10 | 08/21/10<br>08:45 | 100819B03 |  |
|-----------------------------|-----------------|-------------------|-------|-------|----------|-------------------|-----------|--|
|                             |                 |                   |       |       |          |                   |           |  |

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

60-126


<u>Parameter</u> Result RL **Units** TPH as Gasoline 1.0 0.19 0.745 mg/kg

**REC (%) Control Limits** Surrogates: Qual

1,4-Bromofluorobenzene 60-126 94



1,4-Bromofluorobenzene





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 5035 NWTPH-Gx

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 4 of 7

| 1 Toject. 37 40 Tacine F  | Avenue, racoma,            | VVA                  |                        |             |              |                  | 1 0                   | age + or r  |
|---------------------------|----------------------------|----------------------|------------------------|-------------|--------------|------------------|-----------------------|-------------|
| Client Sample Number      |                            | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| SO-241876-081610-JS-SB10- | 5                          | 10-08-1402-12-F      | 08/16/10<br>07:55      | Solid       | GC 22        | 08/16/10         | 08/21/10<br>09:18     | 100819B03   |
| <u>Parameter</u>          | <u>Result</u>              | <u>RL</u>            | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline           | 0.86                       | 0.20                 | 0.799                  |             | mg/kg        |                  |                       |             |
| Surrogates:               | REC (%)                    | Control Limits       |                        | Qual        |              |                  |                       |             |
| 1,4-Bromofluorobenzene    | 99                         | 60-126               |                        |             |              |                  |                       |             |
| SO-241876-081610-JS-SB10- | 10                         | 10-08-1402-13-F      | 08/16/10<br>08:00      | Solid       | GC 22        | 08/16/10         | 08/21/10<br>09:51     | 100819B03   |
| <u>Parameter</u>          | <u>Result</u>              | <u>RL</u>            | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline           | 1.2                        | 0.19                 | 0.779                  |             | mg/kg        |                  |                       |             |
| Surrogates:               | <u>REC (%)</u>             | Control Limits       |                        | <u>Qual</u> |              |                  |                       |             |
| 1,4-Bromofluorobenzene    | 94                         | 60-126               |                        |             |              |                  |                       |             |
| SO-241876-081610-JS-SB10- | 15                         | 10-08-1402-14-E      | 08/16/10<br>08:10      | Solid       | GC 22        | 08/16/10         | 08/26/10<br>03:23     | 100825B03   |
| <u>Parameter</u>          | <u>Result</u>              | <u>RL</u>            | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline           | 120                        | 9.2                  | 37                     |             | mg/kg        |                  |                       |             |
| Surrogates:               | REC (%)                    | Control Limits       |                        | <u>Qual</u> |              |                  |                       |             |
| 1,4-Bromofluorobenzene    | 100                        | 60-126               |                        |             |              |                  |                       |             |
| SO-241876-081610-JS-SB9-5 |                            | 10-08-1402-15-E      | 08/16/10<br>08:45      | Solid       | GC 22        | 08/16/10         | 08/27/10<br>00:16     | 100826B02   |
|                           | ole chromatographic patter |                      |                        |             |              | specified st     | tandard. Qua          | antitation  |
| Parameter Parameter       | Result                     | RL                   | DF                     | Qual        | Units        |                  |                       |             |
| TPH as Gasoline           | 49                         | 21                   | 85                     |             | mg/kg        |                  |                       |             |
| Surrogates:               | <u>REC (%)</u>             | Control Limits       |                        | Qual        |              |                  |                       |             |
|                           |                            | 00.400               |                        |             |              |                  |                       |             |

RL - Reporting Limit

DF - Dilution Factor

88

Qual - Qualifiers

60-126

1,4-Bromofluorobenzene





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: 08/18/10 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

Page 5 of 7

| Client Sample Number       |         | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------------|---------|----------------------|------------------------|--------|--------------|------------------|-----------------------|-------------|
| SO-241876-081610-JS-SB9-10 |         | 10-08-1402-16-E      | 08/16/10<br>08:50      | Solid  | GC 22        | 08/16/10         | 08/26/10<br>04:28     | 100825B03   |
| <u>Parameter</u>           | Result  | <u>RL</u>            | <u>DF</u>              | Qual   | <u>Units</u> |                  |                       |             |
| TPH as Gasoline            | 2300    | 100                  | 399                    |        | mg/kg        |                  |                       |             |
| Surrogates:                | REC (%) | Control Limits       |                        | Qual   |              |                  |                       |             |
| 1,4-Bromofluorobenzene     | 118     | 60-126               |                        |        |              |                  |                       |             |
| SO-241876-081610-JS-SB9-15 |         | 10-08-1402-17-E      | 08/16/10<br>08:55      | Solid  | GC 22        | 08/16/10         | 08/26/10<br>05:01     | 100825B03   |
| <u>Parameter</u>           | Result  | <u>RL</u>            | <u>DF</u>              | Qual   | <u>Units</u> |                  |                       |             |
| TPH as Gasoline            | 350     | 110                  | 439                    |        | mg/kg        |                  |                       |             |
| Surrogates:                | REC (%) | Control Limits       |                        | Qual   |              |                  |                       |             |
| 1,4-Bromofluorobenzene     | 91      | 60-126               |                        |        |              |                  |                       |             |
| SO-241876-081610-JS-SB9-20 |         | 10-08-1402-18-G      | 08/16/10<br>09:15      | Solid  | GC 22        | 08/16/10         | 08/22/10<br>00:42     | 100821B02   |
| <u>Parameter</u>           | Result  | <u>RL</u>            | <u>DF</u>              | Qual   | <u>Units</u> |                  |                       |             |
| TPH as Gasoline            | 4.4     | 0.21                 | 0.829                  |        | mg/kg        |                  |                       |             |
| Surrogates:                | REC (%) | Control Limits       |                        | Qual   |              |                  |                       |             |
| 1,4-Bromofluorobenzene     | 115     | 60-126               |                        |        |              |                  |                       |             |
| SO-241876-081610-JS-SB9-25 |         | 10-08-1402-19-G      | 08/16/10<br>09:25      | Solid  | GC 22        | 08/16/10         | 08/22/10<br>01:47     | 100821B02   |
| <u>Parameter</u>           | Result  | <u>RL</u>            | <u>DF</u>              | Qual   | <u>Units</u> |                  |                       |             |
| TPH as Gasoline            | 0.47    | 0.25                 | 1.01                   |        | mg/kg        |                  |                       |             |
| Surrogates:                | REC (%) | Control Limits       |                        | Qual   |              |                  |                       |             |
| 1,4-Bromofluorobenzene     | 92      | 60-126               |                        |        |              |                  |                       |             |







Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: 08/18/10 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

Page 6 of 7

|         | Lab Sample                                             | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time                                           | 00 Part   15                                                   |
|---------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
|         | Number                                                 | Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                   | QC Batch ID                                                    |
|         | 099-12-848-145                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GC 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/19/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05:32                                               | 100819B02                                                      |
| Result  | <u>RL</u>                                              | <u>DF</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Qual</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>Units</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| ND      | 0.25                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| REC (%) | Control Limits                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| 89      | 60-126                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
|         | 099-12-848-146                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GC 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/19/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/21/10<br>06:02                                   | 100819B03                                                      |
| Result  | <u>RL</u>                                              | <u>DF</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Qual</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>Units</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| ND      | 0.25                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| REC (%) | Control Limits                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>Qual</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| 87      | 60-126                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
|         | 099-12-848-147                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GC 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/21/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/21/10<br>20:20                                   | 100821B02                                                      |
| Result  | <u>RL</u>                                              | <u>DF</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>Units</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| ND      | 0.25                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| REC (%) | Control Limits                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>Qual</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| 83      | 60-126                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
|         | 099-12-848-149                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GC 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 08/25/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/25/10<br>17:36                                   | 100825B03                                                      |
| Result  | <u>RL</u>                                              | <u>DF</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Qual</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>Units</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| ND      | 10                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
|         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
| REC (%) | Control Limits                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>Qual</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                |
|         | REC (%) 89  Result ND REC (%) 87  Result ND REC (%) 83 | Result         RL           ND         0.25           REC (%)         Control Limits           89         60-126           Result         RL           ND         0.25           REC (%)         Control Limits           87         60-126           Result         RL           ND         0.25           REC (%)         Control Limits           ND         0.25           REC (%)         Control Limits           83         60-126           Result           Result         RL           ND         0.25           REC (%)         Control Limits           83         60-126           Result         RL           ND         REC | Number         Collected           099-12-848-145         N/A           Result         RL         DF           ND         0.25         1           REC (%)         Control Limits         89           89         60-126         N/A           Result         RL         DF           ND         0.25         1           REC (%)         Control Limits         7           87         60-126         N/A           Result         RL         DF           ND         0.25         1           ND         0.25         1           REC (%)         Control Limits         1           REC (%)         Control Limits         3           83         60-126         N/A           Result         R         DF           N/A         DF         N/A | Number         Collected         Matrix           099-12-848-145         N/A         Solid           Result         RL         DF         Qual           ND         0.25         1         Qual           89         60-126         N/A         Solid           Result         RL         DF         Qual           ND         0.25         1         Qual           ND         0.25         1         Qual           87         60-126         Qual         Qual           Result         RL         DF         Qual           ND         0.25         1         Qual           ND         0.25         1         Qual           ND         0.25         1         Qual           ND         0.25         1         Qual           REC (%)         Control Limits         Qual           83         60-126         Qual           099-12-848-149         N/A         Solid           Result         R         Qual           R         Qual         Qual | Number         Collected         Matrix         Instrument           099-12-848-145         N/A         Solid         GC 22           Result         RL         DF         Qual         Units           ND         0.25         1         mg/kg           REC (%)         Control Limits         Qual         Units           89         60-126         N/A         Solid         GC 22           Result         RL         DF         Qual         Units           ND         0.25         1         mg/kg           REC (%)         Control Limits         Qual         Qual           Result         RL         DF         Qual         Units           ND         0.25         1         mg/kg           REC (%)         Control Limits         Qual         Qual           REC (%)         Control Limits         Qual         Qual           83         60-126         Qual         GC 22           Result         RL         DF         Qual         Units           Result         RL         DF         Qual         Units | Number   Collected   Matrix   Instrument   Prepared | Number   Collected   Matrix   Instrument   Prepared   Analyzed |



DF - Dilution Factor





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

08/18/10 10-08-1402 EPA 5035 **NWTPH-Gx** 

Project: 3740 Pacific Avenue, Tacoma, WA

Page 7 of 7

| Client Sample Number   |         | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|------------------------|---------|----------------------|------------------------|-------------|--------------|------------------|-----------------------|-------------|
| Method Blank           |         | 099-12-848-150       | N/A                    | Solid       | GC 22        | 08/26/10         | 08/26/10<br>23:43     | 100826B02   |
| <u>Parameter</u>       | Result  | <u>RL</u>            | <u>DF</u>              | <u>Qual</u> | <u>Units</u> |                  |                       |             |
| TPH as Gasoline        | ND      | 10                   | 40                     |             | mg/kg        |                  |                       |             |
| Surrogates:            | REC (%) | Control Limits       |                        | Qual        |              |                  |                       |             |
| 1,4-Bromofluorobenzene | 90      | 60-126               |                        |             |              |                  |                       |             |





Units:



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 3545 EPA 8082 mg/kg

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 1 of 5

| Client Sample Number                        |                  |                             |            | b Sample<br>Number | Date/Time<br>Collected         | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed       | QC Batch ID     |
|---------------------------------------------|------------------|-----------------------------|------------|--------------------|--------------------------------|-------------|------------|------------------|-----------------------------|-----------------|
| SO-241876-081310-JS-SB-12-5                 |                  |                             | 10-08-     | 1402-1-A           | 08/13/10<br>09:20              | Solid       | GC 58      | 08/19/10         | 08/20/10<br>23:22           | 100819L14       |
| <u>Parameter</u>                            | Result           | <u>RL</u>                   | <u>DF</u>  | Qual               | <u>Parameter</u>               |             |            | Result           | <u>RL</u> DF                | Qual            |
| Aroclor-1016                                | ND               | 0.050                       | 1          |                    | Aroclor-1248                   |             |            | ND               | 0.050 1                     |                 |
| Aroclor-1221                                | ND               | 0.050                       | 1          |                    | Aroclor-1254                   |             |            | ND               | 0.050 1                     |                 |
| Aroclor-1232                                | ND               | 0.050                       | 1          |                    | Aroclor-1260                   |             |            | ND               | 0.050 1                     |                 |
| Aroclor-1242                                | ND               | 0.050                       | 1          |                    | Aroclor-1262                   |             |            | ND               | 0.050 1                     |                 |
| Surrogates:                                 | REC (%)          | Control<br>Limits           | <u>Qua</u> | <u>l</u>           | Surrogates:                    |             |            | REC (%)          | Control<br>Limits           | <u>Qual</u>     |
| Decachlorobiphenyl                          | 68               | 50-130                      |            |                    | 2,4,5,6-Tetrach                | nloro-m-Xyl | lene       | 71               | 50-130                      |                 |
| SO-241876-081310-JS-SB-12-10                |                  |                             | 10-08-     | 1402-2-A           | 08/13/10<br>09:30              | Solid       | GC 58      | 08/19/10         | 08/20/10<br>23:40           | 100819L14       |
| Parameter Parameter                         | Result           | RL                          | DF         | Qual               | Parameter                      |             |            | Result           | RL DF                       | Qual            |
| Aroclor-1016                                | ND               | 0.050                       | 1          |                    | Aroclor-1248                   |             |            | ND               | 0.050 1                     |                 |
| Aroclor-1221                                | ND               | 0.050                       | 1          |                    | Aroclor-1254                   |             |            | ND               | 0.050                       |                 |
| Aroclor-1232                                | ND               | 0.050                       | 1          |                    | Aroclor-1260                   |             |            | ND               | 0.050                       |                 |
| Aroclor-1242                                | ND               | 0.050                       | 1          |                    | Aroclor-1262                   |             |            | ND               | 0.050 1                     |                 |
| Surrogates:                                 | REC (%)          | Control                     | Qua        | nl                 | Surrogates:                    |             |            | REC (%)          |                             | Qual            |
| Surrogates.                                 | <u>IXEO (70)</u> | Limits                      | <u>Que</u> | <u>u</u>           | <u>ourrogatos.</u>             |             |            | 1120 (70)        | Limits                      | <del>Qual</del> |
| Decachlorobiphenyl                          | 113              | 50-130                      |            |                    | 2,4,5,6-Tetrach                | nloro-m-Xyl | lene       | 107              | 50-130                      |                 |
| SO-241876-081310-JS-SB-12-15                |                  |                             | 10-08-     | 1402-3-A           | 08/13/10<br>09:45              | Solid       | GC 58      | 08/19/10         | 08/20/10<br>23:58           | 100819L14       |
| Parameter                                   | Result           | RL                          | DF         | Qual               | Parameter                      |             |            | Result           | RL DF                       | Qual            |
|                                             | ND               |                             |            | Qual               |                                |             |            |                  |                             | Quai            |
| Aroclor-1016<br>Aroclor-1221                | ND<br>ND         | 0.050                       | 1          |                    | Aroclor-1248<br>Aroclor-1254   |             |            | ND<br>ND         | 0.050 1                     |                 |
| Aroclor-1221<br>Aroclor-1232                | ND<br>ND         | 0.050<br>0.050              | 1<br>1     |                    | Aroclor-1254<br>Aroclor-1260   |             |            | ND<br>ND         | 0.050 1<br>0.050 1          |                 |
| Aroclor-1232<br>Aroclor-1242                | ND               | 0.050                       | 1          |                    | Aroclor-1262                   |             |            | ND               | 0.050 1                     |                 |
|                                             | REC (%)          | Control                     | ı<br>Qua   | اد                 | Surrogates:                    |             |            | REC (%)          |                             | Qual            |
| Surrogates:                                 | KEC (%)          | <u>Limits</u>               | Qua        | <u>u</u>           | Surrogates.                    |             |            | IXEC (70)        | <u>Limits</u>               | Quai            |
| Decachlorobiphenyl                          | 99               | 50-130                      |            |                    | 2,4,5,6-Tetrach                | nloro-m-Xyl | lene       | 94               | 50-130                      |                 |
| SO-241876-081310-JS-SB8-5                   |                  |                             | 10-08-     | 1402-4-A           | 08/13/10<br>11:00              | Solid       | GC 58      | 08/19/10         | 08/21/10<br>00:16           | 100819L14       |
| Daramotor                                   | Pocult           | RL                          | DF         | Oual               | Doromotor                      |             |            | Pocult           | RL DF                       | Qual            |
| Parameter Available 1010                    | Result           |                             |            | <u>Qual</u>        | <u>Parameter</u>               |             |            | Result           |                             | <u>Qual</u>     |
| Aroclor-1016                                | ND               | 0.050                       | 1          |                    | Aroclor-1248                   |             |            | ND               | 0.050 1                     |                 |
| Aroclor-1221                                | ND               | 0.050                       | 1          |                    | Aroclor-1254                   |             |            | ND               | 0.050 1                     |                 |
| Aroclor-1232                                | ND               | 0.050                       | 1          |                    | Aroclor-1260                   |             |            | ND               | 0.050 1                     |                 |
|                                             | ND               | 0.050                       | 1          |                    | Aroclor-1262                   |             |            | ND<br>DEC (%/)   | 0.050 1                     | 01              |
|                                             | DEO (61)         |                             |            |                    |                                |             |            |                  |                             |                 |
| Aroclor-1242 Surrogates: Decachlorobiphenyl | REC (%)<br>118   | Control<br>Limits<br>50-130 | <u>Qua</u> | <u>al</u>          | Surrogates:<br>2,4,5,6-Tetrach |             |            | REC (%)<br>126   | Control<br>Limits<br>50-130 | <u>Qual</u>     |

RL - Reporting Limit

DF - Dilution Factor



Units:



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 3545 EPA 8082 mg/kg

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 2 of 5

| Client Sample Number                                         |                      |                                  |                  | b Sample<br>Number | Date/Time<br>Collected                                       | Matrix      | Instrument | Date<br>Prepared     | Date/Time<br>Analyzed                    | QC Batch ID                |
|--------------------------------------------------------------|----------------------|----------------------------------|------------------|--------------------|--------------------------------------------------------------|-------------|------------|----------------------|------------------------------------------|----------------------------|
| SO-241876-081310-JS-SB8-10                                   |                      |                                  | 10-08-1          | 1402-5-A           | 08/13/10<br>11:05                                            | Solid       | GC 58      | 08/19/10             | 08/21/10<br>00:34                        | 100819L14                  |
| <u>Parameter</u>                                             | Result               | <u>RL</u>                        | <u>DF</u>        | <u>Qual</u>        | <u>Parameter</u>                                             |             |            | Result               | <u>RL</u> <u>DF</u>                      | Qual                       |
| Aroclor-1016                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1248                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1221                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1254                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1232                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1260                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1242                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1262                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Surrogates:                                                  | REC (%)              | Control<br>Limits                | <u>Qua</u>       | <u>ll</u>          | Surrogates:                                                  |             |            | REC (%)              | Control<br>Limits                        | <u>Qual</u>                |
| Decachlorobiphenyl                                           | 82                   | 50-130                           |                  |                    | 2,4,5,6-Tetrach                                              | nloro-m-Xyl | ene        | 74                   | 50-130                                   |                            |
| SO-241876-081310-JS-SB8-15                                   |                      |                                  | 10-08-1          | 1402-6-A           | 08/13/10<br>11:15                                            | Solid       | GC 58      | 08/19/10             | 08/21/10<br>00:52                        | 100819L14                  |
| Parameter                                                    | Result               | <u>RL</u>                        | <u>DF</u>        | Qual               | Parameter                                                    |             |            | Result               | RL DF                                    | <u>Qual</u>                |
| Aroclor-1016                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1248                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1221                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1254                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1232                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1260                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1242                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1262                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Surrogates:                                                  | REC (%)              | Control<br>Limits                | Qua              | <u>ll</u>          | Surrogates:                                                  |             |            | REC (%)              | <u>Control</u><br>Limits                 | <u>Qual</u>                |
| Decachlorobiphenyl                                           | 94                   | 50-130                           |                  |                    | 2,4,5,6-Tetrach                                              | nloro-m-Xyl | ene        | 89                   | 50-130                                   |                            |
| SO-241876-081310-JS-SB8-20                                   |                      |                                  | 10-08-1          | 1402-7-A           | 08/13/10<br>11:20                                            | Solid       | GC 58      | 08/19/10             | 08/21/10<br>01:10                        | 100819L14                  |
| Parameter                                                    | Result               | RL                               | DF               | Qual               | Parameter                                                    |             |            | Result               | RL DF                                    | Qual                       |
| Aroclor-1016                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1248                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1221                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1254                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1232                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1260                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Aroclor-1242                                                 | ND                   | 0.050                            | 1                |                    | Aroclor-1262                                                 |             |            | ND                   | 0.050 1                                  |                            |
| Surrogates:                                                  | REC (%)              |                                  | Qua              | <u>l</u>           | Surrogates:                                                  |             |            | REC (%)              |                                          | <u>Qual</u>                |
| Decachlorobiphenyl                                           | 102                  | 50-130                           |                  |                    | 2,4,5,6-Tetrach                                              | nloro-m-Xyl | ene        | 92                   | 50-130                                   |                            |
| SO-241876-081310-JS-SB8-30                                   |                      |                                  | 10-08-1          | 1402-8-A           | 08/13/10<br>11:40                                            | Solid       | GC 58      | 08/19/10             | 08/21/10<br>01:28                        | 100819L14                  |
|                                                              |                      |                                  |                  |                    |                                                              |             |            |                      |                                          |                            |
| Parameter                                                    | Recult               | RI                               | DE               | Oual               | Darameter                                                    |             |            | Regult               | BI DE                                    | Oual                       |
| Parameter Applies 4046                                       | Result               | <u>RL</u>                        | <u>DF</u>        | <u>Qual</u>        | Parameter                                                    |             |            | Result               | RL DF                                    | <u>Qual</u>                |
| Aroclor-1016                                                 | ND                   | 0.050                            | 1                | <u>Qual</u>        | Aroclor-1248                                                 |             |            | ND                   | 0.050 1                                  | <u>Qual</u>                |
| Aroclor-1016<br>Aroclor-1221                                 | ND<br>ND             | 0.050<br>0.050                   | 1<br>1           | Qual               | Aroclor-1248<br>Aroclor-1254                                 |             |            | ND<br>ND             | 0.050 1<br>0.050 1                       | <u>Qual</u>                |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232                 | ND<br>ND<br>ND       | 0.050<br>0.050<br>0.050          | 1<br>1<br>1      | <u>Qual</u>        | Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                 |             |            | ND<br>ND<br>ND       | 0.050 1<br>0.050 1<br>0.050 1            | <u>Qual</u>                |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242 | ND<br>ND<br>ND<br>ND | 0.050<br>0.050<br>0.050<br>0.050 | 1<br>1<br>1<br>1 |                    | Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Aroclor-1262 |             |            | ND<br>ND<br>ND<br>ND | 0.050 1<br>0.050 1<br>0.050 1<br>0.050 1 | _                          |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232                 | ND<br>ND<br>ND       | 0.050<br>0.050<br>0.050<br>0.050 | 1<br>1<br>1      |                    | Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                 |             |            | ND<br>ND<br>ND       | 0.050 1<br>0.050 1<br>0.050 1<br>0.050 1 | <u>Qual</u><br><u>Qual</u> |

RL - Reporting Limit

DF - Dilution Factor



Units:



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 3545 EPA 8082 mg/kg

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 3 of 5

| FTOJECI. 3740 FACILIC AVE   | nue, rac       | Oma, v                  | ٧٨         |                    |                        |            |            |                  |                          | га        | <del>ge 3 01 3</del> |
|-----------------------------|----------------|-------------------------|------------|--------------------|------------------------|------------|------------|------------------|--------------------------|-----------|----------------------|
| Client Sample Number        |                |                         |            | b Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/<br>Analy           |           | QC Batch ID          |
| SO-241876-081310-JS-SB11-5  |                |                         | 10-08-1    | 1402-9-A           | 08/13/10<br>13:05      | Solid      | GC 58      | 08/19/10         | 08/2 <sup>2</sup><br>01: |           | 100819L14            |
| <u>Parameter</u>            | Result         | <u>RL</u>               | <u>DF</u>  | Qual               | <u>Parameter</u>       |            |            | Result           | <u>RL</u>                | <u>DF</u> | <u>Qual</u>          |
| Aroclor-1016                | ND             | 0.050                   | 1          |                    | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                | ND             | 0.050                   | 1          |                    | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                | ND             | 0.050                   | 1          |                    | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                | ND             | 0.050                   | 1          |                    | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| Surrogates:                 | REC (%)        | Control<br>Limits       | Qua        | <u>al</u>          | Surrogates:            |            |            | REC (%)          | Control<br>Limits        | <u>(</u>  | <u>Qual</u>          |
| Decachlorobiphenyl          | 100            | 50-130                  |            |                    | 2,4,5,6-Tetrach        | nloro-m-Xy | lene       | 95               | 50-130                   |           |                      |
| SO-241876-081310-JS-SB11-10 |                |                         | 10-08-1    | 1402-10-A          | 08/13/10<br>13:10      | Solid      | GC 58      | 08/19/10         | 08/2 <sup>2</sup><br>02: |           | 100819L14            |
| Parameter                   | Result         | RL                      | DF         | Qual               | Parameter              |            |            | Result           | RL                       | DF        | Qual                 |
| Aroclor-1016                | ND             | 0.050                   | 1          |                    | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                | ND             | 0.050                   | 1          |                    | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                | ND             | 0.050                   | 1          |                    | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                | ND             | 0.050                   | 1          |                    | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| Surrogates:                 | REC (%)        |                         | '<br>Qua   | al                 | Surrogates:            |            |            | REC (%)          |                          |           | Qual                 |
| Surrogates.                 | IXEC (70)      | <u>Limits</u>           | Que        | <u>41</u>          | Ourrogates.            |            |            | <u>IXEO (70)</u> | <u>Limits</u>            |           | <u>xuui</u>          |
| Decachlorobiphenyl          | 92             | 50-130                  |            |                    | 2,4,5,6-Tetrach        | nloro-m-Xy | lene       | 82               | 50-130                   |           |                      |
| SO-241876-081310-JS-SB11-15 |                |                         | 10-08-1    | 1402-11-A          | 08/13/10<br>13:20      | Solid      | GC 58      | 08/19/10         | 08/2 <sup>2</sup><br>02: |           | 100819L14            |
| Parameter                   | Result         | DI                      | DF         | Qual               | Doromotor              |            |            | Result           | DI                       | DF        | Qual                 |
|                             |                | <u>RL</u>               |            | <u>Quai</u>        | <u>Parameter</u>       |            |            |                  | <u>RL</u>                |           | Qual                 |
| Aroclor-1016                | ND             | 0.050                   | 1          |                    | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                | ND             | 0.050                   | 1          |                    | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                | ND             | 0.050                   | 1          |                    | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                | ND             | 0.050                   | 1          |                    | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| <u>Surrogates:</u>          | <u>REC (%)</u> |                         | <u>Qua</u> | <u>al</u>          | Surrogates:            |            |            | <u>REC (%)</u>   |                          | <u>(</u>  | <u>Qual</u>          |
| Decachlorobiphenyl          | 112            | <u>Limits</u><br>50-130 |            |                    | 2,4,5,6-Tetrach        | nloro-m-Yv | lene       | 115              | <u>Limits</u><br>50-130  |           |                      |
| SO-241876-081610-JS-SB10-5  |                | 33 .33                  | 10-08-1    | 1402-12-A          | 08/16/10<br>07:55      | Solid      | GC 58      | 08/19/10         | 08/2                     |           | 100819L14            |
|                             |                |                         |            |                    |                        |            |            |                  |                          |           |                      |
| <u>Parameter</u>            | Result         | <u>RL</u>               | <u>DF</u>  | Qual               | <u>Parameter</u>       |            |            | Result           | <u>RL</u>                | <u>DF</u> | <u>Qual</u>          |
| Aroclor-1016                | ND             | 0.050                   | 1          |                    | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                | ND             | 0.050                   | 1          |                    | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                | ND             | 0.050                   | 1          |                    | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                | ND             | 0.050                   | 1          |                    | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| Surrogates:                 | REC (%)        | Control<br>Limits       | Qua        | <u>al</u>          | Surrogates:            |            |            | REC (%)          | Control<br>Limits        | <u>(</u>  | <u>Qual</u>          |
| Decachlorobiphenyl          | 100            | 50-130                  |            |                    | 2,4,5,6-Tetrach        | nloro-m-Xy | lene       | 92               | 50-130                   |           |                      |
|                             |                |                         |            |                    |                        |            |            |                  |                          |           |                      |

RL - Reporting Limit

DF - Dilution Factor



Units:



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 3545 EPA 8082 mg/kg

08/18/10

Project: 3740 Pacific Avenue, Tacoma, WA

Page 4 of 5

| FTOJECI. 3740 FACILIC AVE    | nu <del>e</del> , rac | oma, v                  | ٧٨         |                     |                        |            |            |                  |                          | га        | <del>ye 4 01 3</del> |
|------------------------------|-----------------------|-------------------------|------------|---------------------|------------------------|------------|------------|------------------|--------------------------|-----------|----------------------|
| Client Sample Number         |                       |                         |            | ab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/<br>Analy           |           | QC Batch ID          |
| SO-241876-081610-JS-SB10-10  |                       |                         | 10-08-     | 1402-13-A           | 08/16/10<br>08:00      | Solid      | GC 58      | 08/19/10         | 08/2 <sup>2</sup><br>02: |           | 100819L14            |
| Parameter                    | Result                | <u>RL</u>               | <u>DF</u>  | Qual                | Parameter              |            |            | Result           | <u>RL</u>                | <u>DF</u> | <u>Qual</u>          |
| Aroclor-1016                 | ND                    | 0.050                   | 1          |                     | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                 | ND                    | 0.050                   | 1          |                     | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                 | ND                    | 0.050                   | 1          |                     | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                 | ND                    | 0.050                   | 1          |                     | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| Surrogates:                  | REC (%)               | Control<br>Limits       | Qua        | <u>al</u>           | Surrogates:            |            |            | REC (%)          | Control<br>Limits        | -         | <u>Qual</u>          |
| Decachlorobiphenyl           | 104                   | 50-130                  |            |                     | 2,4,5,6-Tetracl        | hloro-m-Xy | lene       | 109              | 50-130                   |           |                      |
| SO-241876-081610-JS-SB10-15  |                       |                         | 10-08-     | 1402-14-A           | 08/16/10<br>08:10      | Solid      | GC 58      | 08/19/10         | 08/2 <sup>2</sup><br>03: |           | 100819L14            |
| Parameter                    | Result                | RL                      | DF         | Qual                | Parameter              |            |            | Result           | RL                       | DF        | Qual                 |
| Aroclor-1016                 | ND                    |                         | 1          | <u>Quai</u>         | Aroclor-1248           |            |            | ND               |                          |           | <u>Quai</u>          |
| Aroclor-1010<br>Aroclor-1221 | ND                    | 0.050<br>0.050          | 1          |                     | Aroclor-1254           |            |            | ND               | 0.050<br>0.050           | 1<br>1    |                      |
| Aroclor-1221<br>Aroclor-1232 | ND                    |                         | 1          |                     | Aroclor-1260           |            |            | ND<br>ND         |                          | 1         |                      |
| Aroclor-1232<br>Aroclor-1242 | ND                    | 0.050                   | 1          |                     |                        |            |            | ND<br>ND         | 0.050                    | -         |                      |
|                              |                       | 0.050                   | •          | al                  | Aroclor-1262           |            |            | REC (%)          | 0.050                    | 1         | Jual                 |
| <u>Surrogates:</u>           | REC (%)               | Control<br>Limits       | <u>Qua</u> | <u>aı</u>           | Surrogates:            |            |            |                  | <u>Limits</u>            | 7         | <u>Qual</u>          |
| Decachlorobiphenyl           | 95                    | 50-130                  |            |                     | 2,4,5,6-Tetracl        | hloro-m-Xy | lene       | 80               | 50-130                   |           |                      |
| SO-241876-081610-JS-SB9-5    |                       |                         | 10-08-     | 1402-15-A           | 08/16/10<br>08:45      | Solid      | GC 58      | 08/19/10         | 08/2 <sup>2</sup><br>03: |           | 100819L14            |
| D                            | Danult                | DI                      | DE .       | 0                   | D t                    |            |            | Danult           | D.                       |           | Overl                |
| Parameter                    | Result                | <u>RL</u>               | <u>DF</u>  | <u>Qual</u>         | <u>Parameter</u>       |            |            | Result           | <u>RL</u>                | <u>DF</u> | <u>Qual</u>          |
| Aroclor-1016                 | ND                    | 0.050                   | 1          |                     | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                 | ND                    | 0.050                   | 1          |                     | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                 | ND                    | 0.050                   | 1          |                     | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                 | ND                    | 0.050                   | 1          |                     | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| Surrogates:                  | <u>REC (%)</u>        | Control                 | Qua        | <u>al</u>           | Surrogates:            |            |            | REC (%)          | Control                  | <u>(</u>  | <u>Qual</u>          |
| Decachlorobiphenyl           | 100                   | <u>Limits</u><br>50-130 |            |                     | 2,4,5,6-Tetracl        | hloro-m-Yv | lene       | 93               | <u>Limits</u><br>50-130  |           |                      |
| SO-241876-081610-JS-SB9-10   | 100                   | 00 100                  | 10-08-     | 1402-16-A           | 08/16/10               | Solid      | GC 58      | 08/19/10         | 08/2                     |           | 100819L14            |
|                              |                       |                         |            |                     | 08:50                  |            |            |                  | 03:                      | 52        |                      |
| <u>Parameter</u>             | Result                | <u>RL</u>               | <u>DF</u>  | Qual                | <u>Parameter</u>       |            |            | Result           | <u>RL</u>                | <u>DF</u> | Qual                 |
| Aroclor-1016                 | ND                    | 0.050                   | 1          |                     | Aroclor-1248           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1221                 | ND                    | 0.050                   | 1          |                     | Aroclor-1254           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1232                 | ND                    | 0.050                   | 1          |                     | Aroclor-1260           |            |            | ND               | 0.050                    | 1         |                      |
| Aroclor-1242                 | ND                    | 0.050                   | 1          |                     | Aroclor-1262           |            |            | ND               | 0.050                    | 1         |                      |
| Surrogates:                  | REC (%)               | Control<br>Limits       | Qua        | <u>al</u>           | Surrogates:            |            |            | REC (%)          | Control<br>Limits        | -         | <u>Qual</u>          |
| Decachlorobiphenyl           | 113                   | 50-130                  |            |                     | 2,4,5,6-Tetracl        | hloro-m-Xy | lene       | 118              | 50-130                   |           |                      |
|                              |                       |                         |            |                     |                        |            |            |                  |                          |           |                      |

RL - Reporting Limit

DF - Dilution Factor



Units:



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 3545 EPA 8082 mg/kg

08/18/10


Project: 3740 Pacific Avenue, Tacoma, WA

Page 5 of 5

| Floject. 3740 Facilic Ave                                                                         | nuc, rac                                         | oma, v                                                                                              |                          |                      |                                                                                                                                        |                      |              |                                                                         |                                                                                                                   |                                           | <del>ge 5 01 5</del>     |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|
| Client Sample Number                                                                              |                                                  |                                                                                                     |                          | b Sample<br>Number   | Date/Time<br>Collected                                                                                                                 | Matrix               | Instrument   | Date<br>Prepared                                                        | Date/<br>Analy                                                                                                    |                                           | QC Batch ID              |
| SO-241876-081610-JS-SB9-15                                                                        |                                                  |                                                                                                     | 10-08-1                  | 402-17-A             | 08/16/10<br>08:55                                                                                                                      | Solid                | GC 58        | 08/19/10                                                                | 08/21<br>04:                                                                                                      |                                           | 100819L14                |
| <u>Parameter</u>                                                                                  | Result                                           | <u>RL</u>                                                                                           | <u>DF</u>                | Qual                 | <u>Parameter</u>                                                                                                                       |                      |              | Result                                                                  | <u>RL</u>                                                                                                         | <u>DF</u>                                 | Qual                     |
| Aroclor-1016                                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1248                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
| Aroclor-1221                                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1254                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
| Aroclor-1232                                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1260                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
| Aroclor-1242                                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1262                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
| Surrogates:                                                                                       | REC (%)                                          | Control<br>Limits                                                                                   | Qua                      | <u>l</u>             | Surrogates:                                                                                                                            |                      |              | REC (%)                                                                 | Control<br>Limits                                                                                                 | <u>C</u>                                  | <u>Qual</u>              |
| Decachlorobiphenyl                                                                                | 100                                              | 50-130                                                                                              |                          |                      | 2,4,5,6-Tetrach                                                                                                                        | ıloro-m-Xyl          | ene          | 104                                                                     | 50-130                                                                                                            |                                           |                          |
| SO-241876-081610-JS-SB9-20                                                                        |                                                  |                                                                                                     | 10-08-1                  | 402-18-A             | 08/16/10<br>09:15                                                                                                                      | Solid                | GC 58        | 08/19/10                                                                | 08/21<br>04:                                                                                                      |                                           | 100819L14                |
| Parameter                                                                                         | Result                                           | RL                                                                                                  | DF                       | Qual                 | Parameter                                                                                                                              |                      |              | Result                                                                  | RL                                                                                                                | DF                                        | Qual                     |
| Aroclor-1016                                                                                      | ND                                               | 0.050                                                                                               | 1                        | <u> </u>             | Aroclor-1248                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         | <u> </u>                 |
| Aroclor-1010<br>Aroclor-1221                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1254                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
| Aroclor-1232                                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1260                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
| Aroclor-1232<br>Aroclor-1242                                                                      | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1262                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
|                                                                                                   |                                                  | Control                                                                                             | ı<br>Qua                 |                      |                                                                                                                                        |                      |              | REC (%)                                                                 |                                                                                                                   |                                           | <u>Qual</u>              |
| Surrogates:                                                                                       | <u>REC (%)</u>                                   | <u>Limits</u>                                                                                       | Qua                      | <u>!</u>             | Surrogates:                                                                                                                            |                      |              | KEC (76)                                                                | <u>Limits</u>                                                                                                     | _                                         | <u>kuai</u>              |
| Decachlorobiphenyl                                                                                | 123                                              | 50-130                                                                                              |                          |                      | 2,4,5,6-Tetrach                                                                                                                        | ıloro-m-Xyl          | ene          | 130                                                                     | 50-130                                                                                                            |                                           |                          |
| SO-241876-081610-JS-SB9-25                                                                        |                                                  |                                                                                                     | 10-08-1                  | 402-19-A             | 08/16/10<br>09:25                                                                                                                      | Solid                | GC 58        | 08/19/10                                                                | 08/21<br>05:                                                                                                      |                                           | 100819L14                |
| Parameter                                                                                         | Result                                           | RL                                                                                                  | DF                       | Qual                 | Parameter                                                                                                                              |                      |              | Result                                                                  | RL                                                                                                                | DF                                        | Qual                     |
| Aroclor-1016                                                                                      | ND                                               |                                                                                                     |                          | <u>Quui</u>          | Aroclor-1248                                                                                                                           |                      |              |                                                                         | 0.050                                                                                                             |                                           | Qual                     |
|                                                                                                   |                                                  | 0.050                                                                                               | 1                        |                      | AIOCIOI-1/48                                                                                                                           |                      |              | ND                                                                      |                                                                                                                   | 1                                         |                          |
| Aroclor-1221<br>Aroclor-1232                                                                      | ND                                               | 0.050                                                                                               |                          |                      |                                                                                                                                        |                      |              | ND                                                                      |                                                                                                                   | 4                                         |                          |
|                                                                                                   | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1254                                                                                                                           |                      |              | ND                                                                      | 0.050                                                                                                             | 1                                         |                          |
|                                                                                                   | ND                                               | 0.050                                                                                               | 1                        |                      | Aroclor-1254<br>Aroclor-1260                                                                                                           |                      |              | ND                                                                      | 0.050<br>0.050                                                                                                    | 1                                         |                          |
|                                                                                                   | ND                                               | 0.050                                                                                               | 1<br>1                   |                      | Aroclor-1254<br>Aroclor-1260<br>Aroclor-1262                                                                                           |                      |              | ND<br>ND                                                                | 0.050<br>0.050<br>0.050                                                                                           | 1<br>1                                    | ) vol                    |
|                                                                                                   |                                                  | 0.050<br>Control                                                                                    | 1                        | <u>l</u>             | Aroclor-1254<br>Aroclor-1260                                                                                                           |                      |              | ND                                                                      | 0.050<br>0.050<br>0.050<br>Control                                                                                | 1<br>1                                    | Qual                     |
| Surrogates:                                                                                       | ND                                               | 0.050                                                                                               | 1<br>1                   | <u>l</u>             | Aroclor-1254<br>Aroclor-1260<br>Aroclor-1262<br>Surrogates:                                                                            | ıloro-m-Xvl          | ene          | ND<br>ND                                                                | 0.050<br>0.050<br>0.050                                                                                           | 1<br>1                                    | <u>Qual</u>              |
| Aroclor-1242 Surrogates: Decachlorobiphenyl Method Blank                                          | ND<br>REC (%)                                    | 0.050<br>Control<br>Limits                                                                          | 1<br>1<br><u>Qua</u>     | <u> </u><br>-535-989 | Aroclor-1254<br>Aroclor-1260<br>Aroclor-1262                                                                                           | nloro-m-Xyl<br>Solid | ene<br>GC 58 | ND<br>ND<br>REC (%)                                                     | 0.050<br>0.050<br>0.050<br><u>Control</u><br><u>Limits</u>                                                        | 1<br>1<br><u>C</u>                        | <u>Qual</u><br>100819L14 |
| Surrogates:  Decachlorobiphenyl  Method Blank                                                     | ND<br>REC (%)<br>106                             | 0.050<br>Control<br>Limits<br>50-130                                                                | 1<br>1<br>Qua            | -535-989             | Aroclor-1254<br>Aroclor-1260<br>Aroclor-1262<br>Surrogates:<br>2,4,5,6-Tetrach                                                         |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10                                   | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:6                                           | 1<br>1<br><u>C</u><br>0/10<br>04          | 100819L14                |
| Surrogates: Decachlorobiphenyl Method Blank Parameter                                             | ND<br>REC (%)<br>106                             | 0.050<br><u>Control</u><br><u>Limits</u><br>50-130                                                  | 1<br>1<br>Qua<br>099-12- |                      | Aroclor-1254 Aroclor-1260 Aroclor-1262 Surrogates: 2,4,5,6-Tetrach N/A  Parameter                                                      |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10                                   | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:0                                           | 1<br>1<br><u>0</u><br>0/10<br>04<br>DF    |                          |
| Surrogates:  Decachlorobiphenyl  Method Blank  Parameter  Aroclor-1016                            | ND<br>REC (%)<br>106<br>Result<br>ND             | 0.050<br>Control<br>Limits<br>50-130<br>RL<br>0.050                                                 | 1<br>1<br>Qua<br>099-12- | -535-989             | Aroclor-1254 Aroclor-1260 Aroclor-1262 Surrogates:  2,4,5,6-Tetrach N/A  Parameter Aroclor-1248                                        |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10<br>Result<br>ND                   | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:0                                           | 1<br>1<br>0/10<br>04<br>DF<br>1           | 100819L14                |
| Surrogates:  Decachlorobiphenyl  Method Blank  Parameter  Aroclor-1016  Aroclor-1221              | ND<br>REC (%)<br>106<br>Result<br>ND<br>ND       | 0.050<br>Control<br>Limits<br>50-130<br>RL<br>0.050<br>0.050                                        | 1<br>1<br>Qua<br>099-12- | -535-989             | Aroclor-1254 Aroclor-1260 Aroclor-1262 Surrogates:  2,4,5,6-Tetrach N/A  Parameter Aroclor-1248 Aroclor-1254                           |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10<br>Result<br>ND<br>ND             | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:1<br>RL<br>0.050<br>0.050                   | 1<br>1<br>0/10<br>04<br>DF<br>1           | 100819L14                |
| Surrogates: Decachlorobiphenyl  Method Blank  Parameter  Aroclor-1016  Aroclor-1221  Aroclor-1232 | ND<br>REC (%)<br>106<br>Result<br>ND<br>ND<br>ND | 0.050<br><u>Control</u><br><u>Limits</u><br>50-130<br><u>RL</u><br>0.050<br>0.050<br>0.050          | 1<br>1<br>Qua<br>099-12- | -535-989             | Aroclor-1254 Aroclor-1260 Aroclor-1262 Surrogates:  2,4,5,6-Tetrach N/A  Parameter Aroclor-1248 Aroclor-1254 Aroclor-1260              |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10<br>Result<br>ND<br>ND<br>ND       | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:1<br>RL<br>0.050<br>0.050<br>0.050          | 1<br>1<br>0/10<br>04<br>DF<br>1<br>1      | 100819L14                |
| Surrogates: Decachlorobiphenyl  Method Blank  Parameter  Aroclor-1016  Aroclor-1221  Aroclor-1232 | ND REC (%) 106  Result ND ND ND ND ND            | 0.050<br><u>Control</u><br><u>Limits</u><br>50-130<br><u>RL</u><br>0.050<br>0.050<br>0.050<br>0.050 | 1<br>1<br>Qua<br>099-12- | -535-989<br>Qual     | Aroclor-1254 Aroclor-1260 Aroclor-1262 Surrogates:  2,4,5,6-Tetrach N/A  Parameter Aroclor-1248 Aroclor-1254 Aroclor-1260 Aroclor-1262 |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10<br>Result<br>ND<br>ND<br>ND<br>ND | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:1<br>RL<br>0.050<br>0.050<br>0.050<br>0.050 | 1<br>1<br>0/10<br>04<br>DF<br>1<br>1<br>1 | 100819L14                |
| Surrogates: Decachlorobiphenyl                                                                    | ND<br>REC (%)<br>106<br>Result<br>ND<br>ND<br>ND | 0.050<br><u>Control</u><br><u>Limits</u><br>50-130<br><u>RL</u><br>0.050<br>0.050<br>0.050          | 1<br>1<br>Qua<br>099-12- | -535-989<br>Qual     | Aroclor-1254 Aroclor-1260 Aroclor-1262 Surrogates:  2,4,5,6-Tetrach N/A  Parameter Aroclor-1248 Aroclor-1254 Aroclor-1260              |                      |              | ND<br>ND<br>REC (%)<br>96<br>08/19/10<br>Result<br>ND<br>ND<br>ND       | 0.050<br>0.050<br>0.050<br>Control<br>Limits<br>50-130<br>08/20<br>23:1<br>RL<br>0.050<br>0.050<br>0.050          | 1<br>1<br>0/10<br>04<br>DF<br>1<br>1<br>1 | 100819L14                |

RL - Reporting Limit

DF - Dilution Factor



Date/Time

Collected

Lab Sample

Number



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units: mg/kg

Instrument

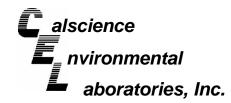
Date

Prepared

Project: 3740 Pacific Avenue, Tacoma, WA

Page 1 of 25

QC Batch ID


Date/Time

Analyzed

|                                |                       |       |             |             | 09:20                                 | 08/13/1 | 10 08/2<br>14     | :15       | 100827             | -01  |
|--------------------------------|-----------------------|-------|-------------|-------------|---------------------------------------|---------|-------------------|-----------|--------------------|------|
| Darameter Beauti               | t DI                  | MDL   | <u>DF</u> ( | Qual        | Parameter                             | Docult. | DI                | MDL       | <u>DF</u>          | Qual |
| Parameter Resul                |                       | IVIDL | 0.896       | <u> udl</u> |                                       | Result  | <u>RL</u>         | IVIDL     | <u>DF</u><br>0.890 |      |
| Acetone ND                     | 0.045                 | ١     | 0.896       |             | 1,1-Dichloropropene                   | ND      | 0.0018            |           | 0.890              |      |
| Benzene ND                     | 0.00090               |       | 0.896       |             | c-1,3-Dichloropropene                 | ND      | 0.00090<br>0.0018 |           | 0.890              |      |
| Bromobenzene ND                |                       | )     | 0.896       |             | t-1,3-Dichloropropene                 | ND      |                   |           | 0.890              |      |
| Bromochloromethane ND          | 0.0018                |       | 0.896       |             | Ethylbenzene                          | ND      | 0.00090           |           | 0.89               |      |
| Bromodichloromethane ND        | 0.00090               | )     |             |             | 2-Hexanone                            | ND      | 0.018             |           |                    |      |
| Bromoform ND                   | 0.0045                |       | 0.896       |             | Isopropylbenzene                      | ND      | 0.00090           |           | 0.890              |      |
| Bromomethane ND                | 0.018                 |       | 0.896       |             | p-Isopropyltoluene                    | ND      | 0.00090           |           | 0.890              |      |
| 2-Butanone ND                  | 0.018                 |       | 0.896       |             | Methylene Chloride                    | ND      | 0.0090            |           | 0.890              |      |
| n-Butylbenzene ND              | 0.00090               |       | 0.896       |             | 4-Methyl-2-Pentanone                  | ND      | 0.018             |           | 0.896              |      |
| sec-Butylbenzene ND            | 0.00090               |       | 0.896       |             | Naphthalene                           | ND      | 0.0090            |           | 0.89               |      |
| tert-Butylbenzene ND           | 0.00090               | )     | 0.896       |             | n-Propylbenzene                       | ND      | 0.0018            |           | 0.896              |      |
| Carbon Disulfide ND            | 0.0090                |       | 0.896       |             | Styrene                               | ND      | 0.00090           |           | 0.89               |      |
| Carbon Tetrachloride ND        | 0.00090               |       | 0.896       |             | 1,1,1,2-Tetrachloroethane             | ND      | 0.00090           |           | 0.890              |      |
| Chlorobenzene ND               | 0.00090               | )     | 0.896       |             | 1,1,2,2-Tetrachloroethane             | ND      | 0.0018            |           | 0.89               |      |
| Chloroethane ND                | 0.0018                |       | 0.896       |             | Tetrachloroethene                     | ND      | 0.00090           |           | 0.89               |      |
| Chloroform ND                  | 0.00090               | )     | 0.896       |             | Toluene                               | ND      | 0.00090           |           | 0.89               |      |
| Chloromethane ND               | 0.018                 |       | 0.896       |             | 1,2,3-Trichlorobenzene                | ND      | 0.0018            |           | 0.89               |      |
| 2-Chlorotoluene ND             | 0.00090               | )     | 0.896       |             | 1,2,4-Trichlorobenzene                | ND      | 0.0018            |           | 0.89               |      |
| 4-Chlorotoluene ND             | 0.00090               | )     | 0.896       |             | 1,1,1-Trichloroethane                 | ND      | 0.00090           |           | 0.89               |      |
| Dibromochloromethane ND        | 0.0018                |       | 0.896       |             | 1,1,2-Trichloroethane                 | ND      | 0.00090           |           | 0.896              | 3    |
| 1,2-Dibromo-3-Chloropropane ND | 0.0045                |       | 0.896       |             | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND      | 0.0090            |           | 0.896              | 6    |
| 1,2-Dibromoethane ND           | 0.00090               | )     | 0.896       |             | Trichloroethene                       | ND      | 0.0018            |           | 0.896              | 3    |
| Dibromomethane ND              | 0.00090               | )     | 0.896       |             | Trichlorofluoromethane                | ND      | 0.0090            |           | 0.89               | 3    |
| 1,2-Dichlorobenzene ND         | 0.00090               | )     | 0.896       |             | 1,2,3-Trichloropropane                | ND      | 0.0018            |           | 0.89               | 3    |
| 1,3-Dichlorobenzene ND         | 0.00090               | )     | 0.896       |             | 1,2,4-Trimethylbenzene                | ND      | 0.0018            |           | 0.896              | 3    |
| 1,4-Dichlorobenzene ND         | 0.00090               | )     | 0.896       |             | 1,3,5-Trimethylbenzene                | ND      | 0.0018            |           | 0.896              | 6    |
| Dichlorodifluoromethane ND     | 0.0018                |       | 0.896       |             | Vinyl Acetate                         | ND      | 0.0090            |           | 0.896              | 6    |
| 1,1-Dichloroethane ND          | 0.00090               | )     | 0.896       |             | Vinyl Chloride                        | ND      | 0.00090           |           | 0.896              | 6    |
| 1,2-Dichloroethane ND          | 0.00090               | )     | 0.896       |             | Xylenes (total)                       | ND      | 0.0018            |           | 0.896              | 3    |
| 1,1-Dichloroethene ND          | 0.00090               | )     | 0.896       |             | Methyl-t-Butyl Ether (MTBE)           | ND      | 0.0018            |           | 0.896              | 6    |
| c-1,2-Dichloroethene ND        | 0.00090               | )     | 0.896       |             | Tert-Butyl Alcohol (TBA)              | ND      | 0.018             |           | 0.896              | 3    |
| t-1,2-Dichloroethene ND        | 0.00090               |       | 0.896       |             | Diisopropyl Ether (DIPE)              | ND      | 0.00090           |           | 0.896              | 3    |
| 1,2-Dichloropropane ND         | 0.00090               |       | 0.896       |             | Ethyl-t-Butyl Ether (ETBE)            | ND      | 0.00090           |           | 0.896              | 6    |
| 1,3-Dichloropropane ND         | 0.00090               |       | 0.896       |             | Tert-Amyl-Methyl Ether (TAME)         | ND      | 0.00090           |           | 0.896              | 6    |
| 2,2-Dichloropropane ND         | 0.0045                |       | 0.896       |             | Ethanol                               | ND      | 0.45              |           | 0.896              | 6    |
| Surrogates: REC                | (%) Control<br>Limits | Qual  |             |             | Surrogates:                           | REC (%) | Control<br>Limits | <u>Qı</u> | <u>ual</u>         |      |
| Dibromofluoromethane 96        | 79-133                |       |             |             | 1,2-Dichloroethane-d4                 | 108     | 71-155            |           |                    |      |
| 1,4-Bromofluorobenzene 94      | 80-120                |       |             |             | Toluene-d8                            | 98      | 80-120            |           |                    |      |



RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

Instrument

10-08-1402 EPA 5035 EPA 8260B mg/kg

08/18/10

QC Batch ID

Lab Sample

Number

Units:

Date/Time

Collected

Project: 3740 Pacific Avenue, Tacoma, WA

Page 2 of 25

Date/Time

Analyzed

Date

Prepared

| SO-241876-081310-JS-SB-12-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       |                   | 10-08-1    | 402-2-             | С           | 08/13/10 Solid GC/MS V<br>09:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 08/13/ <sup>-</sup> | 10 <sup>08/2</sup><br>17 | 6/10<br>:20 | 100826L            | .01  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|-------------|--------------------|------|
| Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Decult  | DI                | MDI        | DE                 | Ougl        | Dorometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Danult                | DI                       | MDi         | DE                 | Ouel |
| Parameter A and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u><br>0.871 | <u>Qual</u> | Parameter 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1.1 Pinkle 1 | Result                | <u>RL</u>                | MDL         | <u>DF</u><br>0.871 | Qual |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      | 0.044             |            |                    |             | 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                    | 0.0017                   |             |                    |      |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      | 0.00087           |            | 0.871              |             | c-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                    | 0.00087                  |             | 0.871              |      |
| Bromobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND      | 0.00087           |            | 0.871              |             | t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                    | 0.0017                   |             | 0.871              |      |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.0017            |            | 0.871              |             | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                    | 0.00087                  |             | 0.871              |      |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND      | 0.00087           |            | 0.871              |             | 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                    | 0.017                    |             | 0.871              |      |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND      | 0.0044            |            | 0.871              |             | Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                    | 0.00087                  |             | 0.871              |      |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND      | 0.017             |            | 0.871              |             | p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                    | 0.00087                  |             | 0.871              |      |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND      | 0.017             |            | 0.871              |             | Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                    | 0.0087                   |             | 0.871              |      |
| n-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0012  | 0.00087           |            | 0.871              |             | 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                    | 0.017                    |             | 0.871              |      |
| sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00098 | 0.00087           |            | 0.871              |             | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                    | 0.0087                   |             | 0.871              |      |
| tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND      | 0.00087           |            | 0.871              |             | n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                    | 0.0017                   |             | 0.871              |      |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND      | 0.0087            |            | 0.871              |             | Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                    | 0.00087                  |             | 0.871              |      |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND      | 0.00087           |            | 0.871              |             | 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                    | 0.00087                  |             | 0.871              |      |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND      | 0.00087           |            | 0.871              |             | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                    | 0.0017                   |             | 0.871              |      |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND      | 0.0017            |            | 0.871              |             | Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                    | 0.00087                  |             | 0.871              |      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND      | 0.00087           |            | 0.871              |             | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                    | 0.00087                  |             | 0.871              |      |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND      | 0.017             |            | 0.871              |             | 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                    | 0.0017                   |             | 0.871              |      |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND      | 0.00087           |            | 0.871              |             | 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                    | 0.0017                   |             | 0.871              |      |
| 4-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND      | 0.00087           |            | 0.871              |             | 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                    | 0.00087                  |             | 0.871              |      |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND      | 0.0017            |            | 0.871              |             | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                    | 0.00087                  |             | 0.871              |      |
| 1,2-Dibromo-3-Chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND      | 0.0044            |            | 0.871              |             | 1,1,2-Trichloro-1,2,2-Trifluoroethan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e ND                  | 0.0087                   |             | 0.871              |      |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND      | 0.00087           |            | 0.871              |             | Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                    | 0.0017                   |             | 0.871              |      |
| Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND      | 0.00087           |            | 0.871              |             | Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                    | 0.0087                   |             | 0.871              |      |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.00087           |            | 0.871              |             | 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                    | 0.0017                   |             | 0.871              |      |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.00087           |            | 0.871              |             | 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0045                | 0.0017                   |             | 0.871              |      |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.00087           |            | 0.871              |             | 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                    | 0.0017                   |             | 0.871              |      |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND      | 0.0017            |            | 0.871              |             | Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                    | 0.0087                   |             | 0.871              |      |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.00087           |            | 0.871              |             | Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                    | 0.00087                  |             | 0.871              |      |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.00087           |            | 0.871              |             | Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0035                | 0.0017                   |             | 0.871              |      |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND      | 0.00087           |            | 0.871              |             | Methyl-t-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                    | 0.0017                   |             | 0.871              |      |
| c-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND      | 0.00087           |            | 0.871              |             | Tert-Butyl Alcohol (TBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                    | 0.017                    |             | 0.871              |      |
| t-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND      | 0.00087           |            | 0.871              |             | Diisopropyl Ether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                    | 0.00087                  |             | 0.871              |      |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.00087           |            | 0.871              |             | Ethyl-t-Butyl Ether (ETBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                    | 0.00087                  |             | 0.871              |      |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.00087           |            | 0.871              |             | Tert-Amyl-Methyl Ether (TAME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                    | 0.00087                  |             | 0.871              |      |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND      | 0.0044            |            | 0.871              |             | Ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                    | 0.44                     |             | 0.871              |      |
| Surrogates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REC (%) | Control<br>Limits | <u>Qua</u> | <u>l</u>           |             | Surrogates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REC (%)               | Control<br>Limits        | Q           | <u>ual</u>         |      |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101     | 79-133            |            |                    |             | 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91                    | 71-155                   |             |                    |      |
| 1,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96      | 80-120            |            |                    |             | Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96                    | 80-120                   |             |                    |      |



DF - Dilution Factor , Qual - Qualifiers



Project: 3740 Pacific Avenue, Tacoma, WA

## **Analytical Report**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units:

mg/kg Page 3 of 25

| SO-241876-081310-JS-SB-12-15 | 10-08-1402-3-D       | 08/13/10<br>09:45      | Solid  | GC/MS UU   | 08/13/10         | 08/27/10<br>15:06     | 100827L01   |
|------------------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| Client Sample Number         | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |

| Parameter                   | Result  | RL                | MDL | DF        | Qual | <u>Parameter</u>                      | Result     | <u>RL</u>         | MDL | DF        | Qual |
|-----------------------------|---------|-------------------|-----|-----------|------|---------------------------------------|------------|-------------------|-----|-----------|------|
| Acetone                     | ND      | 0.041             |     | 0.821     |      | 1,1-Dichloropropene                   | ND         | 0.0016            |     | 0.82      | 1    |
| Benzene                     | 0.0013  | 0.00082           |     | 0.821     |      | c-1,3-Dichloropropene                 | ND         | 0.00082           |     | 0.82      | 1    |
| Bromobenzene                | ND      | 0.00082           |     | 0.821     |      | t-1,3-Dichloropropene                 | ND         | 0.0016            |     | 0.82      | 1    |
| Bromochloromethane          | ND      | 0.0016            |     | 0.821     |      | Ethylbenzene                          | ND         | 0.00082           |     | 0.82      | 1    |
| Bromodichloromethane        | ND      | 0.00082           |     | 0.821     |      | 2-Hexanone                            | ND         | 0.016             |     | 0.82      | 1    |
| Bromoform                   | ND      | 0.0041            |     | 0.821     |      | Isopropylbenzene                      | ND         | 0.00082           |     | 0.82      | 1    |
| Bromomethane                | ND      | 0.016             |     | 0.821     |      | p-Isopropyltoluene                    | ND         | 0.00082           |     | 0.82      | 1    |
| 2-Butanone                  | ND      | 0.016             |     | 0.821     |      | Methylene Chloride                    | ND         | 0.0082            |     | 0.82      | 1    |
| n-Butylbenzene              | ND      | 0.00082           |     | 0.821     |      | 4-Methyl-2-Pentanone                  | ND         | 0.016             |     | 0.82      | 1    |
| sec-Butylbenzene            | ND      | 0.00082           |     | 0.821     |      | Naphthalene                           | ND         | 0.0082            |     | 0.82      | 1    |
| tert-Butylbenzene           | ND      | 0.00082           |     | 0.821     |      | n-Propylbenzene                       | ND         | 0.0016            |     | 0.82      | 1    |
| Carbon Disulfide            | ND      | 0.0082            |     | 0.821     |      | Styrene                               | ND         | 0.00082           |     | 0.82      | 1    |
| Carbon Tetrachloride        | ND      | 0.00082           |     | 0.821     |      | 1,1,1,2-Tetrachloroethane             | ND         | 0.00082           |     | 0.82      | 1    |
| Chlorobenzene               | ND      | 0.00082           |     | 0.821     |      | 1,1,2,2-Tetrachloroethane             | ND         | 0.0016            |     | 0.82      | 1    |
| Chloroethane                | ND      | 0.0016            |     | 0.821     |      | Tetrachloroethene                     | ND         | 0.00082           |     | 0.82      | 1    |
| Chloroform                  | ND      | 0.00082           |     | 0.821     |      | Toluene                               | ND         | 0.00082           |     | 0.82      | 1    |
| Chloromethane               | ND      | 0.016             |     | 0.821     |      | 1,2,3-Trichlorobenzene                | ND         | 0.0016            |     | 0.82      | 1    |
| 2-Chlorotoluene             | ND      | 0.00082           |     | 0.821     |      | 1,2,4-Trichlorobenzene                | ND         | 0.0016            |     | 0.82      | 1    |
| 4-Chlorotoluene             | ND      | 0.00082           |     | 0.821     |      | 1,1,1-Trichloroethane                 | ND         | 0.00082           |     | 0.82      | 1    |
| Dibromochloromethane        | ND      | 0.0016            |     | 0.821     |      | 1,1,2-Trichloroethane                 | ND         | 0.00082           |     | 0.82      | 1    |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0041            |     | 0.821     |      | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND         | 0.0082            |     | 0.82      | 1    |
| 1,2-Dibromoethane           | ND      | 0.00082           |     | 0.821     |      | Trichloroethene                       | ND         | 0.0016            |     | 0.82      | 1    |
| Dibromomethane              | ND      | 0.00082           |     | 0.821     |      | Trichlorofluoromethane                | ND         | 0.0082            |     | 0.82      | 1    |
| 1,2-Dichlorobenzene         | ND      | 0.00082           |     | 0.821     |      | 1,2,3-Trichloropropane                | ND         | 0.0016            |     | 0.82      | 1    |
| 1,3-Dichlorobenzene         | ND      | 0.00082           |     | 0.821     |      | 1,2,4-Trimethylbenzene                | ND         | 0.0016            |     | 0.82      | 1    |
| 1,4-Dichlorobenzene         | ND      | 0.00082           |     | 0.821     |      | 1,3,5-Trimethylbenzene                | ND         | 0.0016            |     | 0.82      |      |
| Dichlorodifluoromethane     | ND      | 0.0016            |     | 0.821     |      | Vinyl Acetate                         | ND         | 0.0082            |     | 0.82      |      |
| 1,1-Dichloroethane          | ND      | 0.00082           |     | 0.821     |      | Vinyl Chloride                        | ND         | 0.00082           |     | 0.82      |      |
| 1,2-Dichloroethane          | ND      | 0.00082           |     | 0.821     |      | Xylenes (total)                       | ND         | 0.0016            |     | 0.82      |      |
| 1,1-Dichloroethene          | ND      | 0.00082           |     | 0.821     |      | Methyl-t-Butyl Ether (MTBE)           | ND         | 0.0016            |     | 0.82      |      |
| c-1,2-Dichloroethene        | ND      | 0.00082           |     | 0.821     |      | Tert-Butyl Alcohol (TBA)              | ND         | 0.016             |     | 0.82      |      |
| t-1,2-Dichloroethene        | ND      | 0.00082           |     | 0.821     |      | Diisopropyl Ether (DIPE)              | ND         | 0.00082           |     | 0.82      |      |
| 1,2-Dichloropropane         | ND      | 0.00082           |     | 0.821     |      | Ethyl-t-Butyl Ether (ETBE)            | ND         | 0.00082           |     | 0.82      |      |
| 1,3-Dichloropropane         | ND      | 0.00082           |     | 0.821     |      | Tert-Amyl-Methyl Ether (TAME)         | ND         | 0.00082           |     | 0.82      |      |
| 2,2-Dichloropropane         | ND      | 0.0041            |     | 0.821     |      | Ethanol                               | ND         | 0.41              |     | 0.82      | 1    |
| Surrogates:                 | REC (%) | Control<br>Limits | Qua | <u>al</u> |      | Surrogates:                           | REC (%)    | Control<br>Limits | Qua | <u>al</u> |      |
| Dibromofluoromethane        | 102     | 79-133            |     |           |      | 1.2-Dichloroethane-d4                 | 106        | 71-155            |     |           |      |
| 1.4-Bromofluorobenzene      | 99      | 80-120            |     |           |      | Toluene-d8                            | 98         | 80-120            |     |           |      |
| i,+-Diomondonenzene         | 99      | 00 120            |     |           |      | i diagne-ad                           | <i>J</i> 0 | 30 120            |     |           |      |

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

10-08-1402 EPA 5035 EPA 8260B

08/18/10

mg/kg

Units:

Project: 3740 Pacific Avenue, Tacoma, WA Page 4 of 25

| Client Sample Number        |                |                   | Lab Sa<br>Numb | •         |          | Date/Time<br>Collected | Matrix        | Instrument      | Date<br>Prepar |                   | te/Time<br>alyzed | QC Bate    | ch ID |
|-----------------------------|----------------|-------------------|----------------|-----------|----------|------------------------|---------------|-----------------|----------------|-------------------|-------------------|------------|-------|
| SO-241876-081310-JS-SB8-5   |                |                   | 10-08-1        | 402-4     | -E       | 08/13/10<br>11:00      | Solid         | GC/MS UU        | 08/13/1        |                   | /26/10<br>17:25   | 100826     | L02   |
| Comment(s): -Results were e | valuated to th | ne MDL, c         | oncentratio    | ns >=     | to the N | /IDL but < RL,         | if found, are | e qualified wit | th a "J" flag  | <b>J</b> .        |                   |            |       |
| <u>Parameter</u>            | Result         | <u>RL</u>         | <u>MDL</u>     | <u>DF</u> | Qual     | <u>Parameter</u>       |               |                 | Result         | <u>RL</u>         | <u>MDL</u>        | <u>DF</u>  | Qual  |
| Acetone                     | ND             | 24                | 3.1            | 481       |          | 1,1-Dichloro           | propene       |                 | ND             | 0.96              | 0.11              | 481        |       |
| Benzene                     | 0.26           | 0.48              | 0.065          | 481       | J        | c-1,3-Dichlo           | ropropene     |                 | ND             | 0.48              | 0.088             | 481        |       |
| Bromobenzene                | ND             | 0.48              | 0.10           | 481       |          | t-1,3-Dichlor          | ropropene     |                 | ND             | 0.96              | 0.92              | 481        |       |
| Bromochloromethane          | ND             | 0.96              | 0.67           | 481       |          | Ethylbenzen            | ie            |                 | 6.8            | 0.48              | 0.075             | 481        |       |
| Bromodichloromethane        | ND             | 0.48              | 0.071          | 481       |          | 2-Hexanone             |               |                 | ND             | 9.6               | 2.7               | 481        |       |
| Bromoform                   | ND             | 2.4               | 0.32           | 481       |          | Isopropylber           | nzene         |                 | 2.6            | 0.48              | 0.057             | 481        |       |
| Bromomethane                | ND             | 9.6               | 0.89           | 481       |          | p-Isopropylto          | oluene        |                 | 2.8            | 0.48              | 0.055             | 481        |       |
| 2-Butanone                  | ND             | 9.6               | 4.6            | 481       |          | Methylene C            | Chloride      |                 | ND             | 4.8               | 2.5               | 481        |       |
| n-Butylbenzene              | 3.3            | 0.48              | 0.11           | 481       |          | 4-Methyl-2-F           | Pentanone     |                 | ND             | 9.6               | 0.98              | 481        |       |
| sec-Butylbenzene            | 1.7            | 0.48              | 0.050          | 481       |          | Naphthalene            | 9             |                 | 2.7            | 4.8               | 0.16              | 481        | J     |
| tert-Butylbenzene           | ND             | 0.48              | 0.059          | 481       |          | n-Propylben            | zene          |                 | 4.0            | 0.96              | 0.49              | 481        |       |
| Carbon Disulfide            | ND             | 4.8               | 0.084          | 481       |          | Styrene                |               |                 | ND             | 0.48              | 0.099             | 481        |       |
| Carbon Tetrachloride        | ND             | 0.48              | 0.15           | 481       |          | 1,1,1,2-Tetra          | achloroethar  | ne              | ND             | 0.48              | 0.16              | 481        |       |
| Chlorobenzene               | ND             | 0.48              | 0.072          | 481       |          | 1,1,2,2-Tetra          | achloroethar  | ne              | ND             | 0.96              | 0.11              | 481        |       |
| Chloroethane                | ND             | 0.96              | 0.20           | 481       |          | Tetrachloroe           | ethene        |                 | ND             | 0.48              | 0.082             | 481        |       |
| Chloroform                  | 0.11           | 0.48              | 0.083          | 481       | J        | Toluene                |               |                 | 0.45           | 0.48              | 0.072             | 481        | J     |
| Chloromethane               | ND             | 9.6               | 1.4            | 481       |          | 1,2,3-Trichlo          | orobenzene    |                 | ND             | 0.96              | 0.098             | 481        |       |
| 2-Chlorotoluene             | ND             | 0.48              | 0.056          | 481       |          | 1,2,4-Trichlo          |               |                 | ND             | 0.96              | 0.088             | 481        |       |
| 4-Chlorotoluene             | ND             | 0.48              | 0.050          | 481       |          | 1,1,1-Trichlo          | oroethane     |                 | ND             | 0.48              | 0.12              | 481        |       |
| Dibromochloromethane        | ND             | 0.96              | 0.096          | 481       |          | 1,1,2-Trichlo          |               |                 | ND             | 0.48              | 0.12              | 481        |       |
| 1,2-Dibromo-3-Chloropropane | ND             | 2.4               | 1.8            | 481       |          | 1,1,2-Trichlo          | oro-1,2,2-Tri | fluoroethane    | ND             | 4.8               | 0.23              | 481        |       |
| 1,2-Dibromoethane           | ND             | 0.48              | 0.22           | 481       |          | Trichloroeth           | ene           |                 | ND             | 0.96              | 0.087             | 481        |       |
| Dibromomethane              | ND             | 0.48              | 0.34           | 481       |          | Trichlorofluc          | romethane     |                 | ND             | 4.8               | 0.075             | 481        |       |
| 1,2-Dichlorobenzene         | ND             | 0.48              | 0.061          | 481       |          | 1,2,3-Trichlo          | oropropane    |                 | ND             | 0.96              | 0.31              | 481        |       |
| 1,3-Dichlorobenzene         | ND             | 0.48              | 0.079          | 481       |          | 1,2,4-Trimet           |               |                 | 14             | 0.96              | 0.056             | 481        |       |
| 1,4-Dichlorobenzene         | ND             | 0.48              | 0.074          | 481       |          | 1,3,5-Trimet           | •             |                 | 7.6            | 0.96              | 0.048             | 481        |       |
| Dichlorodifluoromethane     | ND             | 0.96              | 0.093          | 481       |          | Vinyl Acetate          | •             |                 | ND             | 4.8               | 3.6               | 481        |       |
| 1,1-Dichloroethane          | ND             | 0.48              | 0.076          | 481       |          | Vinyl Chloric          |               |                 | ND             | 0.48              | 0.10              | 481        |       |
| 1,2-Dichloroethane          | ND             | 0.48              | 0.082          | 481       |          | Xylenes (tota          | al)           |                 | ND             | 0.96              | 0.097             | 481        |       |
| 1,1-Dichloroethene          | ND             | 0.48              | 0.067          | 481       |          | Methyl-t-But           | ,             | BE)             | ND             | 0.96              | 0.064             | 481        |       |
| c-1,2-Dichloroethene        | ND             | 0.48              | 0.14           | 481       |          | Tert-Butyl A           | •             | ,               | ND             | 9.6               | 7.3               | 481        |       |
| t-1,2-Dichloroethene        | ND             | 0.48              | 0.12           | 481       |          | Diisopropyl I          | ` '           |                 | ND             | 0.48              | 0.12              | 481        |       |
| 1,2-Dichloropropane         | ND             | 0.48              | 0.13           | 481       |          | Ethyl-t-Butyl          | •             | •               | ND             | 0.48              | 0.10              | 481        |       |
| 1,3-Dichloropropane         | ND             | 0.48              | 0.084          | 481       |          | Tert-Amyl-M            | •             | ,               | ND             | 0.48              | 0.063             | 481        |       |
| 2,2-Dichloropropane         | ND             | 2.4               | 0.22           | 481       |          | Ethanol                | , ,           | ,               | ND             | 240               | 48                | 481        |       |
| Surrogates:                 | REC (%)        | Control<br>Limits | <u>Qua</u>     | <u> </u>  |          | Surrogates:            |               |                 | REC (%)        | Control<br>Limits | <u>Q</u>          | <u>ual</u> |       |
| Dibromofluoromethane        | 94             | 79-133            |                |           |          | 1,2-Dichloro           | ethane-d4     |                 | 95             | 71-155            |                   |            |       |
| 1,4-Bromofluorobenzene      | 107            | 80-120            |                |           |          | Toluene-d8             |               |                 | 109            | 80-120            |                   |            |       |



DF - Dilution Factor , Qual - Qualifiers



Date/Time

Collected

Lab Sample

Number



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units: mg/kg

Instrument

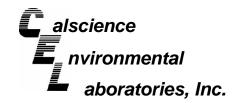
Date

Prepared

Project: 3740 Pacific Avenue, Tacoma, WA

Page 5 of 25

Date/Time


Analyzed

QC Batch ID

| SO-241876-081310-JS-SB8-10  |         |                   | 10-08-14    | 102-5-    | -D   | 08/13/10<br>11:05 | Solid          | GC/MS PP      | 08/13/1 | 0 08/2            | =/4.0     | 100827L    | _01  |
|-----------------------------|---------|-------------------|-------------|-----------|------|-------------------|----------------|---------------|---------|-------------------|-----------|------------|------|
|                             |         |                   |             |           |      | 11.05             |                |               |         | 13                | . 13      |            |      |
| <u>Parameter</u>            | Result  | <u>RL</u>         | <u>MDL</u>  | <u>DF</u> | Qual | <u>Parameter</u>  |                |               | Result  | <u>RL</u>         | MDL       | <u>DF</u>  | Qual |
| Acetone                     | ND      | 0.047             |             | 0.94      |      | 1,1-Dichlorop     | ropene         |               | ND      | 0.0019            |           | 0.94       |      |
| Benzene                     | 0.092   | 0.00094           |             | 0.94      |      | c-1,3-Dichloro    | propene        |               | ND      | 0.00094           |           | 0.94       |      |
| Bromobenzene                | ND      | 0.00094           |             | 0.94      |      | t-1,3-Dichloro    | propene        |               | ND      | 0.0019            |           | 0.94       |      |
| Bromochloromethane          | ND      | 0.0019            |             | 0.94      |      | Ethylbenzene      |                |               | 0.11    | 0.00094           |           | 0.94       |      |
| Bromodichloromethane        | ND      | 0.00094           |             | 0.94      |      | 2-Hexanone        |                |               | ND      | 0.019             |           | 0.94       |      |
| Bromoform                   | ND      | 0.0047            |             | 0.94      |      | Isopropylbenz     | ene            |               | 0.022   | 0.00094           |           | 0.94       |      |
| Bromomethane                | ND      | 0.019             |             | 0.94      |      | p-Isopropyltol    | uene           |               | 0.017   | 0.00094           |           | 0.94       |      |
| 2-Butanone                  | ND      | 0.019             |             | 0.94      |      | Methylene Ch      | loride         |               | ND      | 0.0094            |           | 0.94       |      |
| n-Butylbenzene              | 0.018   | 0.00094           |             | 0.94      |      | 4-Methyl-2-Pe     | entanone       |               | ND      | 0.019             |           | 0.94       |      |
| sec-Butylbenzene            | 0.010   | 0.00094           |             | 0.94      |      | Naphthalene       |                |               | 0.054   | 0.0094            |           | 0.94       |      |
| tert-Butylbenzene           | ND      | 0.00094           |             | 0.94      |      | n-Propylbenze     | ene            |               | 0.033   | 0.0019            |           | 0.94       |      |
| Carbon Disulfide            | ND      | 0.0094            |             | 0.94      |      | Styrene           |                |               | ND      | 0.00094           |           | 0.94       |      |
| Carbon Tetrachloride        | ND      | 0.00094           |             | 0.94      |      | 1,1,1,2-Tetrac    | chloroethai    | ne            | ND      | 0.00094           |           | 0.94       |      |
| Chlorobenzene               | ND      | 0.00094           |             | 0.94      |      | 1,1,2,2-Tetrac    | chloroethai    | ne            | ND      | 0.0019            |           | 0.94       |      |
| Chloroethane                | ND      | 0.0019            |             | 0.94      |      | Tetrachloroeth    | nene           |               | ND      | 0.00094           |           | 0.94       |      |
| Chloroform                  | 0.011   | 0.00094           |             | 0.94      |      | Toluene           |                |               | 0.016   | 0.00094           |           | 0.94       |      |
| Chloromethane               | ND      | 0.019             |             | 0.94      |      | 1,2,3-Trichlor    | obenzene       |               | ND      | 0.0019            |           | 0.94       |      |
| 2-Chlorotoluene             | ND      | 0.00094           |             | 0.94      |      | 1,2,4-Trichlor    | obenzene       |               | ND      | 0.0019            |           | 0.94       |      |
| 4-Chlorotoluene             | ND      | 0.00094           |             | 0.94      |      | 1,1,1-Trichlor    | oethane        |               | ND      | 0.00094           |           | 0.94       |      |
| Dibromochloromethane        | ND      | 0.0019            |             | 0.94      |      | 1,1,2-Trichlor    | oethane        |               | ND      | 0.00094           |           | 0.94       |      |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0047            |             | 0.94      |      | 1,1,2-Trichlor    |                | ifluoroethane | ND      | 0.0094            |           | 0.94       |      |
| 1,2-Dibromoethane           | ND      | 0.00094           |             | 0.94      |      | Trichloroether    | ne             |               | 0.0021  | 0.0019            |           | 0.94       |      |
| Dibromomethane              | ND      | 0.00094           |             | 0.94      |      | Trichlorofluor    | omethane       |               | ND      | 0.0094            |           | 0.94       |      |
| 1,2-Dichlorobenzene         | ND      | 0.00094           |             | 0.94      |      | 1,2,3-Trichlor    | opropane       |               | ND      | 0.0019            |           | 0.94       |      |
| 1,3-Dichlorobenzene         | ND      | 0.00094           |             | 0.94      |      | 1,2,4-Trimeth     |                |               | 0.067   | 0.0019            |           | 0.94       |      |
| 1,4-Dichlorobenzene         | ND      | 0.00094           |             | 0.94      |      | 1,3,5-Trimeth     | ,<br>vlbenzene |               | 0.026   | 0.0019            |           | 0.94       |      |
| Dichlorodifluoromethane     | ND      | 0.0019            |             | 0.94      |      | Vinyl Acetate     | •              |               | ND      | 0.0094            |           | 0.94       |      |
| 1,1-Dichloroethane          | ND      | 0.00094           |             | 0.94      |      | Vinyl Chloride    | )              |               | ND      | 0.00094           |           | 0.94       |      |
| 1,2-Dichloroethane          | ND      | 0.00094           |             | 0.94      |      | Xylenes (total)   | )              |               | 0.072   | 0.0019            |           | 0.94       |      |
| 1,1-Dichloroethene          | ND      | 0.00094           |             | 0.94      |      | Methyl-t-Butyl    |                | ГВЕ)          | ND      | 0.0019            |           | 0.94       |      |
| c-1,2-Dichloroethene        | 0.0026  | 0.00094           |             | 0.94      |      | Tert-Butyl Alc    | •              | •             | ND      | 0.019             |           | 0.94       |      |
| t-1,2-Dichloroethene        | ND      | 0.00094           |             | 0.94      |      | Diisopropyl Et    | ,              | ,             | ND      | 0.00094           |           | 0.94       |      |
| 1,2-Dichloropropane         | ND      | 0.00094           |             | 0.94      |      | Ethyl-t-Butyl E   | •              | •             | ND      | 0.00094           |           | 0.94       |      |
| 1,3-Dichloropropane         | ND      | 0.00094           |             | 0.94      |      | Tert-Amyl-Me      |                |               | ND      | 0.00094           |           | 0.94       |      |
| 2,2-Dichloropropane         | ND      | 0.0047            |             | 0.94      |      | Ethanol           | ,              | , ,           | ND      | 0.47              |           | 0.94       |      |
| Surrogates:                 | REC (%) | Control<br>Limits | <u>Qual</u> |           |      | Surrogates:       |                |               | REC (%) | Control<br>Limits | <u>Qı</u> | <u>ual</u> |      |
| Dibromofluoromethane        | 106     | 79-133            |             |           |      | 1,2-Dichloroe     | thane-d4       |               | 107     | 71-155            |           |            |      |
| 1,4-Bromofluorobenzene      | 108     | 80-120            |             |           |      | Toluene-d8        |                |               | 104     | 80-120            |           |            |      |
| 1,1 2.0110110010001120110   | 100     | 55 120            |             |           |      | . Glaci lo-au     |                |               | 10-1    | 30 .20            |           |            |      |

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers



Date/Time

Lab Sample



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

10-08-1402 **EPA 5035 EPA 8260B** 

08/18/10

Units: mg/kg

Date


Project: 3740 Pacific Avenue, Tacoma, WA

Page 6 of 25

Date/Time

| Client Sample Number        | Lab Sample Date/Time<br>lumber Collected Matrix Instrum |                   |             |               | Instrument        | Date<br>Prepar |                 | e/Time<br>alyzed | QC Bato           | h ID       |            |      |
|-----------------------------|---------------------------------------------------------|-------------------|-------------|---------------|-------------------|----------------|-----------------|------------------|-------------------|------------|------------|------|
| SO-241876-081310-JS-SB8-15  |                                                         |                   | 10-08-1     | 402-6-E       | 08/13/10<br>11:15 | Solid          | GC/MS Z         | 08/13/1          | 0 08              |            | 100827L    | L01  |
| Comment(s): -Results were e | valuated to th                                          | e MDL, co         | oncentratio | ons >= to the | MDL but < RL,     | if found, ar   | e qualified wit | th a "J" flag    |                   |            |            |      |
| <u>Parameter</u>            | Result                                                  | <u>RL</u>         | <u>MDL</u>  | DF Qua        | <u>Parameter</u>  |                |                 | Result           | <u>RL</u>         | <u>MDL</u> | <u>DF</u>  | Qual |
| Acetone                     | ND                                                      | 1.9               | 0.25        | 38.7          | 1,1-Dichlorop     | propene        |                 | ND               | 0.077             | 0.0085     | 38.7       |      |
| Benzene                     | 0.68                                                    | 0.039             | 0.0052      | 38.7          | c-1,3-Dichlor     |                |                 | ND               | 0.039             | 0.0071     | 38.7       |      |
| Bromobenzene                | ND                                                      | 0.039             | 0.0081      | 38.7          | t-1,3-Dichloro    | propene        |                 | ND               | 0.077             | 0.074      | 38.7       |      |
| Bromochloromethane          | ND                                                      | 0.077             | 0.054       | 38.7          | Ethylbenzene      | · ·            |                 | 0.81             | 0.039             | 0.0060     | 38.7       |      |
| Bromodichloromethane        | ND                                                      | 0.039             | 0.0057      | 38.7          | 2-Hexanone        |                |                 | ND               | 0.77              | 0.22       | 38.7       |      |
| Bromoform                   | ND                                                      | 0.19              | 0.026       | 38.7          | Isopropylbeni     | zene           |                 | 0.059            | 0.039             | 0.0046     | 38.7       |      |
| Bromomethane                | ND                                                      | 0.77              | 0.071       | 38.7          | p-Isopropylto     | luene          |                 | 0.030            | 0.039             | 0.0045     | 38.7       | J    |
| 2-Butanone                  | ND                                                      | 0.77              | 0.37        | 38.7          | Methylene Ch      |                |                 | ND               | 0.39              | 0.20       | 38.7       |      |
| n-Butylbenzene              | 0.11                                                    | 0.039             | 0.0086      | 38.7          | 4-Methyl-2-P      | entanone       |                 | ND               | 0.77              | 0.079      | 38.7       |      |
| sec-Butylbenzene            | 0.026                                                   | 0.039             | 0.0040      | 38.7 J        | Naphthalene       |                |                 | 0.59             | 0.39              | 0.013      | 38.7       | В    |
| tert-Butylbenzene           | ND                                                      | 0.039             | 0.0048      | 38.7          | n-Propylbenz      |                |                 | 0.28             | 0.077             | 0.040      | 38.7       |      |
| Carbon Disulfide            | ND                                                      | 0.39              | 0.0068      | 38.7          | Styrene           |                |                 | ND               | 0.039             | 0.0080     | 38.7       |      |
| Carbon Tetrachloride        | ND                                                      | 0.039             | 0.012       | 38.7          | 1,1,1,2-Tetra     | chloroetha     | ne              | ND               | 0.039             | 0.013      | 38.7       |      |
| Chlorobenzene               | ND                                                      | 0.039             | 0.0058      | 38.7          | 1,1,2,2-Tetra     |                |                 | ND               | 0.077             | 0.0089     | 38.7       |      |
| Chloroethane                | ND                                                      | 0.077             | 0.016       | 38.7          | Tetrachloroet     |                |                 | ND               | 0.039             | 0.0066     | 38.7       |      |
| Chloroform                  | ND                                                      | 0.039             | 0.0067      | 38.7          | Toluene           |                |                 | 0.059            | 0.039             | 0.0058     | 38.7       |      |
| Chloromethane               | ND                                                      | 0.77              | 0.11        | 38.7          | 1,2,3-Trichlo     | robenzene      |                 | ND               | 0.077             | 0.0079     | 38.7       |      |
| 2-Chlorotoluene             | ND                                                      | 0.039             | 0.0045      | 38.7          | 1,2,4-Trichlo     |                |                 | ND               | 0.077             | 0.0071     | 38.7       |      |
| 4-Chlorotoluene             | ND                                                      | 0.039             | 0.0040      | 38.7          | 1,1,1-Trichlo     |                |                 | ND               | 0.039             | 0.0098     | 38.7       |      |
| Dibromochloromethane        | ND                                                      | 0.077             | 0.0077      | 38.7          | 1,1,2-Trichlo     |                |                 | ND               | 0.039             | 0.0093     | 38.7       |      |
| 1,2-Dibromo-3-Chloropropane | ND                                                      | 0.19              | 0.14        | 38.7          | 1,1,2-Trichlo     |                | ifluoroethane   |                  | 0.39              | 0.018      | 38.7       |      |
| 1,2-Dibromoethane           | ND                                                      | 0.039             | 0.017       | 38.7          | Trichloroethe     |                |                 | ND               | 0.077             | 0.0070     | 38.7       |      |
| Dibromomethane              | ND                                                      | 0.039             | 0.027       | 38.7          | Trichlorofluor    |                |                 | ND               | 0.39              | 0.0061     | 38.7       |      |
| 1,2-Dichlorobenzene         | ND                                                      | 0.039             | 0.0049      | 38.7          | 1,2,3-Trichlo     |                |                 | ND               | 0.077             | 0.025      | 38.7       |      |
| 1,3-Dichlorobenzene         | ND                                                      | 0.039             | 0.0063      | 38.7          | 1,2,4-Trimeth     |                |                 | 2.0              | 0.077             | 0.0045     | 38.7       |      |
| 1,4-Dichlorobenzene         | ND                                                      | 0.039             | 0.0060      | 38.7          | 1,3,5-Trimeth     | •              |                 | 0.59             | 0.077             | 0.0038     | 38.7       |      |
| Dichlorodifluoromethane     | ND                                                      | 0.077             | 0.0075      | 38.7          | Vinyl Acetate     | •              |                 | ND               | 0.39              | 0.29       | 38.7       |      |
| 1,1-Dichloroethane          | ND                                                      | 0.039             | 0.0062      | 38.7          | Vinyl Chloride    |                |                 | ND               | 0.039             | 0.0083     | 38.7       |      |
| 1,2-Dichloroethane          | ND                                                      | 0.039             | 0.0066      | 38.7          | Xylenes (tota     |                |                 | 4.4              | 0.077             | 0.0078     | 38.7       |      |
| 1,1-Dichloroethene          | ND                                                      | 0.039             | 0.0054      | 38.7          | Methyl-t-Buty     | ,              | TRF)            | ND               | 0.077             | 0.0070     | 38.7       |      |
| c-1,2-Dichloroethene        | ND                                                      | 0.039             | 0.011       | 38.7          | Tert-Butyl Ald    | •              | ,               | ND               | 0.77              | 0.59       | 38.7       |      |
| t-1,2-Dichloroethene        | ND                                                      | 0.039             | 0.0098      | 38.7          | Diisopropyl E     | ,              | ,               | ND               | 0.039             | 0.0096     | 38.7       |      |
| 1,2-Dichloropropane         | ND                                                      | 0.039             | 0.0000      | 38.7          | Ethyl-t-Butyl     | •              | •               | ND               | 0.039             | 0.0030     | 38.7       |      |
| 1,3-Dichloropropane         | ND                                                      | 0.039             | 0.016       | 38.7          | Tert-Amyl-Me      | `              | ,               | ND               | 0.039             | 0.0050     | 38.7       |      |
| 2,2-Dichloropropane         | ND                                                      | 0.039             | 0.008       | 38.7          | Ethanol           | Julyi Eulel    | (I AIVIE)       | ND               | 19                | 3.9        | 38.7       |      |
| z,z-Dichioropropane         |                                                         |                   | 0.010       | 50.1          |                   |                |                 |                  |                   |            |            |      |
| <u>Surrogates:</u>          | REC (%)                                                 | Control<br>Limits | <u>Qual</u> |               | Surrogates:       |                |                 | REC (%)          | Control<br>Limits | <u>Qu</u>  | <u>ıal</u> |      |
|                             |                                                         | 70 400            |             |               | 4.0 D'ablance     |                |                 | 444              | 71-155            |            |            |      |
| Dibromofluoromethane        | 103                                                     | 79-133            |             |               | 1,2-Dichloroe     | ethane-d4      |                 | 111              | 11-155            |            |            |      |

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers



Date/Time

Collected

Lab Sample

Number



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units: mg/kg

Instrument

Date

Prepared

Project: 3740 Pacific Avenue, Tacoma, WA

Page 7 of 25

Date/Time

Analyzed

QC Batch ID

| SO-241876-081310-JS-SB8-20  |         |                   | 10-08-     | 1402-7            | -c   | 08/13/10<br>11:20 | Solid       | GC/MS W       | 08/13/1 |                   | 26/10<br>9:20 | 1008261            | _01 |
|-----------------------------|---------|-------------------|------------|-------------------|------|-------------------|-------------|---------------|---------|-------------------|---------------|--------------------|-----|
| D                           | Dogult  | DI                | MDI        | DE                | Ougl | Doromoto:         |             |               | Danult  | DI                | MD            | DE                 | 0   |
| <u>Parameter</u>            | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u><br>0.80 | Qual | <u>Parameter</u>  |             |               | Result  | <u>RL</u>         | <u>MDL</u>    | <u>DF</u><br>0.809 | Qua |
| Acetone                     | ND      | 0.040             |            |                   |      | 1,1-Dichlorop     | •           |               | ND      | 0.0016            |               |                    |     |
| Benzene                     | 0.018   | 0.00081           |            | 0.80              |      | c-1,3-Dichlor     |             |               | ND      | 0.00081           |               | 0.809              |     |
| Bromobenzene .              | ND      | 0.00081           |            | 0.80              |      | t-1,3-Dichlord    |             |               | ND      | 0.0016            |               | 0.809              |     |
| Bromochloromethane          | ND      | 0.0016            |            | 0.80              |      | Ethylbenzene      | 9           |               | 0.034   | 0.00081           |               | 0.809              |     |
| Bromodichloromethane        | ND      | 0.00081           |            | 0.80              |      | 2-Hexanone        |             |               | ND      | 0.016             |               | 0.809              |     |
| Bromoform                   | ND      | 0.0040            |            | 0.80              |      | Isopropylben      |             |               | 0.011   | 0.00081           |               | 0.809              |     |
| Bromomethane                | ND      | 0.016             |            | 0.80              |      | p-Isopropylto     |             |               | 0.0053  | 0.00081           |               | 0.809              |     |
| 2-Butanone                  | ND      | 0.016             |            | 0.80              |      | Methylene Ch      |             |               | ND      | 0.0081            |               | 0.809              |     |
| n-Butylbenzene              | 0.020   | 0.00081           |            | 0.80              |      | 4-Methyl-2-P      | entanone    |               | ND      | 0.016             |               | 0.809              |     |
| sec-Butylbenzene            | 0.0062  | 0.00081           |            | 0.80              | -    | Naphthalene       |             |               | 0.023   | 0.0081            |               | 0.809              |     |
| ert-Butylbenzene            | ND      | 0.00081           |            | 0.80              |      | n-Propylbenz      | ene         |               | 0.028   | 0.0016            |               | 0.809              |     |
| Carbon Disulfide            | ND      | 0.0081            |            | 0.80              |      | Styrene           |             |               | ND      | 0.00081           |               | 0.809              |     |
| Carbon Tetrachloride        | ND      | 0.00081           |            | 0.80              |      | 1,1,1,2-Tetra     | chloroetha  | ne            | ND      | 0.00081           |               | 0.809              |     |
| Chlorobenzene               | ND      | 0.00081           |            | 0.80              |      | 1,1,2,2-Tetra     | chloroetha  | ne            | ND      | 0.0016            |               | 0.809              |     |
| Chloroethane                | ND      | 0.0016            |            | 0.80              |      | Tetrachloroet     | thene       |               | ND      | 0.00081           |               | 0.809              | Э   |
| Chloroform                  | ND      | 0.00081           |            | 0.80              | 9    | Toluene           |             |               | 0.0016  | 0.00081           |               | 0.809              | Э   |
| Chloromethane               | ND      | 0.016             |            | 0.80              | 9    | 1,2,3-Trichlo     | robenzene   |               | ND      | 0.0016            |               | 0.809              | Э   |
| 2-Chlorotoluene             | ND      | 0.00081           |            | 0.80              | 9    | 1,2,4-Trichlo     | robenzene   |               | ND      | 0.0016            |               | 0.809              | Э   |
| 4-Chlorotoluene             | ND      | 0.00081           |            | 0.80              | 9    | 1,1,1-Trichlo     | roethane    |               | ND      | 0.00081           |               | 0.809              | Э   |
| Dibromochloromethane        | ND      | 0.0016            |            | 0.80              | 9    | 1,1,2-Trichlo     | roethane    |               | ND      | 0.00081           |               | 0.809              | Э   |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0040            |            | 0.80              | 9    | 1,1,2-Trichlo     | ro-1,2,2-Tr | ifluoroethane | ND      | 0.0081            |               | 0.809              | Э   |
| 1,2-Dibromoethane           | ND      | 0.00081           |            | 0.80              | 9    | Trichloroethe     | ne          |               | 0.0027  | 0.0016            |               | 0.809              | Э   |
| Dibromomethane              | ND      | 0.00081           |            | 0.80              | 9    | Trichlorofluor    | romethane   |               | ND      | 0.0081            |               | 0.809              | 9   |
| 1,2-Dichlorobenzene         | ND      | 0.00081           |            | 0.80              | 9    | 1,2,3-Trichlo     | ropropane   |               | ND      | 0.0016            |               | 0.809              | 9   |
| 1,3-Dichlorobenzene         | ND      | 0.00081           |            | 0.80              | 9    | 1,2,4-Trimeth     |             |               | 0.13    | 0.0016            |               | 0.809              | Э   |
| ,4-Dichlorobenzene          | ND      | 0.00081           |            | 0.80              | 9    | 1,3,5-Trimeth     | -           |               | 0.054   | 0.0016            |               | 0.809              | Э   |
| Dichlorodifluoromethane     | ND      | 0.0016            |            | 0.80              | 9    | Vinyl Acetate     | :           |               | ND      | 0.0081            |               | 0.809              | Э   |
| 1,1-Dichloroethane          | ND      | 0.00081           |            | 0.80              | 9    | Vinyl Chloride    |             |               | ND      | 0.00081           |               | 0.809              | Э   |
| 1,2-Dichloroethane          | 0.0025  | 0.00081           |            | 0.80              |      | Xylenes (tota     |             |               | 0.15    | 0.0016            |               | 0.809              | Э   |
| 1,1-Dichloroethene          | ND      | 0.00081           |            | 0.80              |      | Methyl-t-Buty     | ,           | ΓBF)          | ND      | 0.0016            |               | 0.809              | Э   |
| c-1,2-Dichloroethene        | 0.0060  | 0.00081           |            | 0.80              |      | Tert-Butyl Ald    | •           | ,             | ND      | 0.016             |               | 0.809              | 9   |
| :-1,2-Dichloroethene        | ND      | 0.00081           |            | 0.80              |      | Diisopropyl E     | •           | •             | ND      | 0.00081           |               | 0.809              |     |
| 1,2-Dichloropropane         | ND      | 0.00081           |            | 0.80              |      | Ethyl-t-Butyl     | ,           | ,             | ND      | 0.00081           |               | 0.809              |     |
| 1,3-Dichloropropane         | ND      | 0.00081           |            | 0.80              |      | Tert-Amyl-Me      | •           | ,             | ND      | 0.00081           |               | 0.809              |     |
| 2,2-Dichloropropane         | ND      | 0.0040            |            | 0.80              |      | Ethanol           | outyl Euloi | (17 uviL)     | ND      | 0.40              |               | 0.809              |     |
| Surrogates:                 | REC (%) | Control<br>Limits | Qua        | <u>al</u>         |      | Surrogates:       |             |               | REC (%) | Control<br>Limits | Qı            | <u>ual</u>         |     |
| Dibromofluoromethane        | 97      | 79-133            |            |                   |      | 1,2-Dichloroe     | ethane-d4   |               | 80      | 71-155            |               |                    |     |
| 1,4-Bromofluorobenzene      | 98      | 80-120            |            |                   |      | Toluene-d8        |             |               | 100     | 80-120            |               |                    |     |

RL - Reporting Limit ,

DF - Dilution Factor , Qual - Qualifiers



Lab Sample

Units:

Date/Time



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

10-08-1402 **EPA 5035 EPA 8260B** 

08/18/10

mg/kg

Date

Project: 3740 Pacific Avenue, Tacoma, WA

Page 8 of 25 Date/Time

| Client Sample Number        |              |                   | Lab Sar<br>Numb |                | Collected                 | Matrix       | Instrument    | Date<br>Prepar |                   | / I ime<br>lyzed | QC Batch ID |
|-----------------------------|--------------|-------------------|-----------------|----------------|---------------------------|--------------|---------------|----------------|-------------------|------------------|-------------|
| SO-241876-081310-JS-SB8-30  |              |                   | 10-08-1         | 402-8-C        | 08/13/10<br>11:40         | Solid        | GC/MS UU      | 08/13/1        |                   | 26/10<br>9:08    | 100826L01   |
| Parameter                   | Result       | <u>RL</u>         | MDL             | <u>DF</u> Qual | <u>Parameter</u>          |              |               | Result         | <u>RL</u>         | MDL              | DF Qual     |
|                             | ND           | 0.039             | IVIDL           | 0.784          | · · ·                     | propopo      |               | ND             | 0.0016            | IVIDE            | 0.784       |
| Acetone                     | 0.0093       | 0.009             |                 | 0.784          | 1,1-Dichloro              |              |               | ND             | 0.0018            |                  | 0.784       |
| Benzene<br>Bromobenzene     | 0.0093<br>ND | 0.00078           |                 | 0.784          | c-1,3-Dichlo              |              |               | ND<br>ND       | 0.00078           |                  | 0.784       |
| Bromochloromethane          | ND<br>ND     | 0.00078           |                 | 0.784          | t-1,3-Dichlor             |              |               | 0.0047         | 0.0018            |                  | 0.784       |
|                             |              | 0.0018            |                 | 0.784          | Ethylbenzen<br>2-Hexanone |              |               | 0.0047<br>ND   | 0.00078           |                  | 0.784       |
| Bromodichloromethane        | ND           | 0.00078           |                 | 0.784          |                           |              |               |                |                   |                  | 0.784       |
| Bromoform                   | ND           |                   |                 | 0.784          | Isopropylber              |              |               | 0.00086        | 0.00078           |                  | 0.784       |
| Bromomethane                | ND           | 0.016             |                 | 0.784          | p-Isopropylto             |              |               | ND             | 0.00078           |                  | 0.784       |
| 2-Butanone                  | ND           | 0.016             |                 | 0.784          | Methylene C               |              |               | ND             | 0.0078            |                  | 0.784       |
| n-Butylbenzene              | 0.0023       | 0.00078           |                 |                | 4-Methyl-2-F              |              |               | ND             | 0.016             |                  |             |
| sec-Butylbenzene            | ND           | 0.00078           |                 | 0.784          | Naphthalene               |              |               | ND             | 0.0078            |                  | 0.784       |
| tert-Butylbenzene           | ND           | 0.00078           |                 | 0.784          | n-Propylben:              | zene         |               | 0.0023         | 0.0016            |                  | 0.784       |
| Carbon Disulfide            | ND           | 0.0078            |                 | 0.784          | Styrene                   |              |               | ND             | 0.00078           |                  | 0.784       |
| Carbon Tetrachloride        | ND           | 0.00078           |                 | 0.784          | 1,1,1,2-Tetra             |              |               | ND             | 0.00078           |                  | 0.784       |
| Chlorobenzene               | ND           | 0.00078           |                 | 0.784          | 1,1,2,2-Tetra             |              | ne            | ND             | 0.0016            |                  | 0.784       |
| Chloroethane                | ND           | 0.0016            |                 | 0.784          | Tetrachloroe              | ethene       |               | 0.0024         | 0.00078           |                  | 0.784       |
| Chloroform                  | ND           | 0.00078           |                 | 0.784          | Toluene                   |              |               | 0.0016         | 0.00078           |                  | 0.784       |
| Chloromethane               | ND           | 0.016             |                 | 0.784          | 1,2,3-Trichlo             |              |               | ND             | 0.0016            |                  | 0.784       |
| 2-Chlorotoluene             | ND           | 0.00078           |                 | 0.784          | 1,2,4-Trichlo             |              |               | ND             | 0.0016            |                  | 0.784       |
| 4-Chlorotoluene             | ND           | 0.00078           |                 | 0.784          | 1,1,1-Trichlo             | roethane     |               | ND             | 0.00078           |                  | 0.784       |
| Dibromochloromethane        | ND           | 0.0016            |                 | 0.784          | 1,1,2-Trichlo             |              |               | ND             | 0.00078           |                  | 0.784       |
| 1,2-Dibromo-3-Chloropropane | ND           | 0.0039            |                 | 0.784          | 1,1,2-Trichlo             | oro-1,2,2-Tr | ifluoroethane | ND             | 0.0078            |                  | 0.784       |
| 1,2-Dibromoethane           | ND           | 0.00078           |                 | 0.784          | Trichloroethe             | ene          |               | ND             | 0.0016            |                  | 0.784       |
| Dibromomethane              | ND           | 0.00078           |                 | 0.784          | Trichlorofluo             | romethane    |               | ND             | 0.0078            |                  | 0.784       |
| 1,2-Dichlorobenzene         | ND           | 0.00078           |                 | 0.784          | 1,2,3-Trichlo             | propropane   |               | ND             | 0.0016            |                  | 0.784       |
| 1,3-Dichlorobenzene         | ND           | 0.00078           |                 | 0.784          | 1,2,4-Trimet              | hylbenzene   |               | 0.018          | 0.0016            |                  | 0.784       |
| 1,4-Dichlorobenzene         | ND           | 0.00078           |                 | 0.784          | 1,3,5-Trimet              | hylbenzene   |               | 0.0054         | 0.0016            |                  | 0.784       |
| Dichlorodifluoromethane     | ND           | 0.0016            |                 | 0.784          | Vinyl Acetate             | е            |               | ND             | 0.0078            |                  | 0.784       |
| 1,1-Dichloroethane          | ND           | 0.00078           |                 | 0.784          | Vinyl Chlorid             | le           |               | ND             | 0.00078           |                  | 0.784       |
| 1,2-Dichloroethane          | 0.0018       | 0.00078           |                 | 0.784          | Xylenes (tota             | al)          |               | 0.024          | 0.0016            |                  | 0.784       |
| 1,1-Dichloroethene          | ND           | 0.00078           |                 | 0.784          | Methyl-t-But              | yl Ether (M  | ГВЕ)          | ND             | 0.0016            |                  | 0.784       |
| c-1,2-Dichloroethene        | 0.0021       | 0.00078           |                 | 0.784          | Tert-Butyl Al             | cohol (TBA   | )             | 0.020          | 0.016             |                  | 0.784       |
| t-1,2-Dichloroethene        | ND           | 0.00078           |                 | 0.784          | Diisopropyl E             | Ether (DIPE  | ()            | ND             | 0.00078           |                  | 0.784       |
| 1,2-Dichloropropane         | ND           | 0.00078           |                 | 0.784          | Ethyl-t-Butyl             | •            |               | ND             | 0.00078           |                  | 0.784       |
| 1,3-Dichloropropane         | ND           | 0.00078           |                 | 0.784          | Tert-Amyl-M               | •            | ,             | ND             | 0.00078           |                  | 0.784       |
| 2,2-Dichloropropane         | ND           | 0.0039            |                 | 0.784          | Ethanol                   | •            | . ,           | ND             | 0.39              |                  | 0.784       |
| Surrogates:                 | REC (%)      | Control<br>Limits | <u>Qual</u>     |                | Surrogates:               |              |               | REC (%)        | Control<br>Limits | Q                | <u>ual</u>  |
| Dibromofluoromethane        | 97           | 79-133            |                 |                | 1,2-Dichloro              | ethane-d4    |               | 100            | 71-155            |                  |             |
| 1,4-Bromofluorobenzene      | 99           | 80-120            |                 |                | Toluene-d8                | Carano a-r   |               | 100            | 80-120            |                  |             |
| 1,4 DIOITIONADIODENZENE     | 99           | 00 120            |                 |                | 1 Oluel IE-uo             |              |               | 100            | 30 120            |                  |             |

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers



Date/Time

Collected

Lab Sample

Number



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

08/18/10 10-08-1402 EPA 5035 EPA 8260B

Units: mg/kg

Instrument

Date

Prepared

Project: 3740 Pacific Avenue, Tacoma, WA


Page 9 of 25

QC Batch ID

Date/Time

Analyzed

| SO-241876-081310-JS-SB11-5  |              |                   | 10-08-1     | 402-9-C |             | 08/13/10<br>13:05 | Solid           | GC/MS UU       | 08/13/      | 10                | 6/10<br>0:34 | 1008261    | L01  |
|-----------------------------|--------------|-------------------|-------------|---------|-------------|-------------------|-----------------|----------------|-------------|-------------------|--------------|------------|------|
| Parameter                   | Result       | <u>RL</u>         | MDL         | DF C    | Qual        | Parameter         |                 |                | Result      | <u>RL</u>         | MDL          | <u>DF</u>  | Qual |
| Acetone                     | ND           | 0.048             | IVIDL       | 0.963   | <u>kuai</u> | 1,1-Dichlorop     | ropene          |                | ND          | 0.0019            | IVIDE        | 0.963      |      |
| Benzene                     | טא<br>0.0018 | 0.048             |             | 0.963   |             | c-1,3-Dichloro    | •               |                | ND          | 0.0019            |              | 0.963      |      |
| Bromobenzene                | 0.0016<br>ND | 0.00096           |             | 0.963   |             | t-1,3-Dichloro    |                 |                | ND          | 0.00090           |              | 0.963      |      |
| Bromochloromethane          | ND           | 0.00090           |             | 0.963   |             | Ethylbenzene      |                 |                | 0.014       | 0.0019            |              | 0.963      |      |
| Bromodichloromethane        | ND           | 0.0019            |             | 0.963   |             | 2-Hexanone        |                 |                | 0.014<br>ND | 0.00090           |              | 0.963      |      |
| Bromoform                   | ND           | 0.00030           |             | 0.963   |             | Isopropylbenz     | zene            |                | 0.0092      | 0.00096           |              | 0.963      |      |
| Bromomethane                | ND           | 0.0048            |             | 0.963   |             | p-Isopropyltol    |                 |                | 0.0092      | 0.00096           |              | 0.963      |      |
| 2-Butanone                  | ND           | 0.019             |             | 0.963   |             | Methylene Ch      |                 |                | ND          | 0.00030           |              | 0.963      |      |
| n-Butylbenzene              | 0.021        | 0.00096           |             | 0.963   |             | 4-Methyl-2-Pe     |                 |                | ND          | 0.0000            |              | 0.963      |      |
| sec-Butylbenzene            | 0.021        | 0.00096           |             | 0.963   |             | Naphthalene       | on itali loi it |                | 0.030       | 0.0096            |              | 0.963      |      |
| tert-Butylbenzene           | ND           | 0.00096           |             | 0.963   |             | n-Propylbenz      | ene             |                | 0.030       | 0.0030            |              | 0.963      |      |
| Carbon Disulfide            | ND           | 0.0096            |             | 0.963   |             | Styrene           | OHO             |                | ND          | 0.00096           |              | 0.963      |      |
| Carbon Tetrachloride        | ND           | 0.00096           |             | 0.963   |             | 1,1,1,2-Tetra     | chloroetha      | ne             | ND          | 0.00096           |              | 0.963      |      |
| Chlorobenzene               | ND           | 0.00096           |             | 0.963   |             | 1,1,2,2-Tetrac    |                 |                | ND          | 0.0019            |              | 0.963      |      |
| Chloroethane                | ND           | 0.0019            |             | 0.963   |             | Tetrachloroet     |                 |                | ND          | 0.00096           |              | 0.963      | 3    |
| Chloroform                  | ND           | 0.00096           |             | 0.963   |             | Toluene           |                 |                | 0.0076      | 0.00096           |              | 0.963      |      |
| Chloromethane               | ND           | 0.019             |             | 0.963   |             | 1,2,3-Trichlor    | obenzene        |                | ND          | 0.0019            |              | 0.963      |      |
| 2-Chlorotoluene             | ND           | 0.00096           |             | 0.963   |             | 1,2,4-Trichlor    |                 |                | ND          | 0.0019            |              | 0.963      | 3    |
| 4-Chlorotoluene             | ND           | 0.00096           |             | 0.963   |             | 1,1,1-Trichlor    |                 |                | ND          | 0.00096           |              | 0.963      |      |
| Dibromochloromethane        | ND           | 0.0019            |             | 0.963   |             | 1,1,2-Trichlor    |                 |                | ND          | 0.00096           |              | 0.963      | 3    |
| 1,2-Dibromo-3-Chloropropane | ND           | 0.0048            |             | 0.963   |             | 1,1,2-Trichlor    |                 | ifluoroethane  |             | 0.0096            |              | 0.963      | 3    |
| 1,2-Dibromoethane           | ND           | 0.00096           |             | 0.963   |             | Trichloroethe     |                 |                | ND          | 0.0019            |              | 0.963      | 3    |
| Dibromomethane              | ND           | 0.00096           |             | 0.963   |             | Trichlorofluor    | omethane        |                | ND          | 0.0096            |              | 0.963      | 3    |
| 1,2-Dichlorobenzene         | ND           | 0.00096           |             | 0.963   |             | 1,2,3-Trichlor    | opropane        |                | ND          | 0.0019            |              | 0.963      | 3    |
| 1,3-Dichlorobenzene         | ND           | 0.00096           |             | 0.963   |             | 1,2,4-Trimeth     |                 |                | 0.12        | 0.0019            |              | 0.963      | 3    |
| 1,4-Dichlorobenzene         | ND           | 0.00096           |             | 0.963   |             | 1,3,5-Trimeth     |                 |                | 0.023       | 0.0019            |              | 0.963      | 3    |
| Dichlorodifluoromethane     | ND           | 0.0019            |             | 0.963   |             | Vinyl Acetate     | -               |                | ND          | 0.0096            |              | 0.963      | 3    |
| 1,1-Dichloroethane          | ND           | 0.00096           |             | 0.963   |             | Vinyl Chloride    | )               |                | ND          | 0.00096           |              | 0.963      | 3    |
| 1,2-Dichloroethane          | ND           | 0.00096           |             | 0.963   |             | Xylenes (total    | )               |                | 0.080       | 0.0019            |              | 0.963      | 3    |
| 1,1-Dichloroethene          | ND           | 0.00096           |             | 0.963   |             | Methyl-t-Buty     | Ether (M        | ГВЕ)           | ND          | 0.0019            |              | 0.963      | 3    |
| c-1,2-Dichloroethene        | ND           | 0.00096           |             | 0.963   |             | Tert-Butyl Alc    | ohol (TBA       | .)             | ND          | 0.019             |              | 0.963      | 3    |
| t-1,2-Dichloroethene        | ND           | 0.00096           |             | 0.963   |             | Diisopropyl E     | ther (DIPE      | <del>.</del> ) | ND          | 0.00096           |              | 0.963      | 3    |
| 1,2-Dichloropropane         | ND           | 0.00096           |             | 0.963   |             | Ethyl-t-Butyl E   | Ether (ETE      | BE)            | ND          | 0.00096           |              | 0.963      |      |
| 1,3-Dichloropropane         | ND           | 0.00096           |             | 0.963   |             | Tert-Amyl-Me      | thyl Ether      | (TAME)         | ND          | 0.00096           |              | 0.963      |      |
| 2,2-Dichloropropane         | ND           | 0.0048            |             | 0.963   |             | Ethanol           | -               | ,              | ND          | 0.48              |              | 0.963      | 3    |
| Surrogates:                 | REC (%)      | Control<br>Limits | <u>Qual</u> |         |             | Surrogates:       |                 |                | REC (%)     | Control<br>Limits | <u>Q</u> ı   | <u>ual</u> |      |
| Dibromofluoromethane        | 104          | 79-133            |             |         |             | 1,2-Dichloroe     | thane-d4        |                | 112         | 71-155            |              |            |      |
| 1,4-Bromofluorobenzene      | 94           | 80-120            |             |         |             | Toluene-d8        |                 |                | 94          | 80-120            |              |            |      |
| 1,7 DIGITIONGOLODGILZGIIG   | J-T          | 00 120            |             |         |             | 1 0100116-00      |                 |                | J-T         | 30 120            |              |            |      |



, DF - Dilution Factor , Qual - Qualifiers



Lab Sample



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units:

Date/Time

mg/kg

Project: 3740 Pacific Avenue, Tacoma, WA

Page 10 of 25

Date/Time

| Client Sample Number        |                 |                   | Numb        | er             | Collected         | Matrix        | Instrument      | Prepar        | ed An             | alyzed          | QC Bato    | ch ID |
|-----------------------------|-----------------|-------------------|-------------|----------------|-------------------|---------------|-----------------|---------------|-------------------|-----------------|------------|-------|
| SO-241876-081310-JS-SB11-1  | 10              |                   | 10-08-1     | 402-10-E       | 08/13/10<br>13:10 | Solid         | GC/MS Z         | 08/13/1       |                   | /27/10<br> 4:45 | 1008271    | L01   |
| Comment(s): -Results were   | evaluated to th | ne MDL, c         | oncentratio | ns >= to the N | MDL but < RL,     | if found, are | e qualified wit | th a "J" flag | J.                |                 |            |       |
| <u>Parameter</u>            | Result          | <u>RL</u>         | <u>MDL</u>  | DF Qual        | <u>Parameter</u>  |               |                 | Result        | <u>RL</u>         | <u>MDL</u>      | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 2.1               | 0.27        | 42.6           | 1,1-Dichloro      | propene       |                 | ND            | 0.085             | 0.0094          | 42.6       |       |
| Benzene                     | 0.47            | 0.043             | 0.0057      | 42.6           | c-1,3-Dichlo      | ropropene     |                 | ND            | 0.043             | 0.0078          | 42.6       |       |
| Bromobenzene                | ND              | 0.043             | 0.0089      | 42.6           | t-1,3-Dichlor     | opropene      |                 | ND            | 0.085             | 0.081           | 42.6       |       |
| Bromochloromethane          | ND              | 0.085             | 0.059       | 42.6           | Ethylbenzen       | е             |                 | 0.91          | 0.043             | 0.0066          | 42.6       |       |
| Bromodichloromethane        | ND              | 0.043             | 0.0063      | 42.6           | 2-Hexanone        |               |                 | ND            | 0.85              | 0.24            | 42.6       |       |
| Bromoform                   | ND              | 0.21              | 0.028       | 42.6           | Isopropylber      | nzene         |                 | 0.074         | 0.043             | 0.0051          | 42.6       |       |
| Bromomethane                | ND              | 0.85              | 0.079       | 42.6           | p-Isopropylto     | oluene        |                 | 0.039         | 0.043             | 0.0049          | 42.6       | J     |
| 2-Butanone                  | ND              | 0.85              | 0.41        | 42.6           | Methylene C       | hloride       |                 | ND            | 0.43              | 0.22            | 42.6       |       |
| n-Butylbenzene              | 0.055           | 0.043             | 0.0095      | 42.6           | 4-Methyl-2-F      | Pentanone     |                 | ND            | 0.85              | 0.087           | 42.6       |       |
| sec-Butylbenzene            | 0.023           | 0.043             | 0.0044      | 42.6 J         | Naphthalene       | )             |                 | 0.45          | 0.43              | 0.014           | 42.6       | В     |
| tert-Butylbenzene           | ND              | 0.043             | 0.0053      | 42.6           | n-Propylben:      | zene          |                 | 0.20          | 0.085             | 0.044           | 42.6       |       |
| Carbon Disulfide            | ND              | 0.43              | 0.0075      | 42.6           | Styrene           |               |                 | ND            | 0.043             | 0.0088          | 42.6       |       |
| Carbon Tetrachloride        | ND              | 0.043             | 0.014       | 42.6           | 1,1,1,2-Tetra     | achloroethar  | ne              | ND            | 0.043             | 0.014           | 42.6       |       |
| Chlorobenzene               | ND              | 0.043             | 0.0064      | 42.6           | 1,1,2,2-Tetra     | achloroethar  | ne              | ND            | 0.085             | 0.0098          | 42.6       |       |
| Chloroethane                | ND              | 0.085             | 0.018       | 42.6           | Tetrachloroe      | ethene        |                 | ND            | 0.043             | 0.0072          | 42.6       |       |
| Chloroform                  | ND              | 0.043             | 0.0074      | 42.6           | Toluene           |               |                 | 0.11          | 0.043             | 0.0064          | 42.6       |       |
| Chloromethane               | ND              | 0.85              | 0.12        | 42.6           | 1,2,3-Trichlo     | robenzene     |                 | ND            | 0.085             | 0.0087          | 42.6       |       |
| 2-Chlorotoluene             | ND              | 0.043             | 0.0050      | 42.6           | 1,2,4-Trichlo     | orobenzene    |                 | ND            | 0.085             | 0.0078          | 42.6       |       |
| 4-Chlorotoluene             | ND              | 0.043             | 0.0044      | 42.6           | 1,1,1-Trichlo     | roethane      |                 | ND            | 0.043             | 0.011           | 42.6       |       |
| Dibromochloromethane        | ND              | 0.085             | 0.0085      | 42.6           | 1,1,2-Trichlo     | roethane      |                 | ND            | 0.043             | 0.010           | 42.6       |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 0.21              | 0.16        | 42.6           | 1,1,2-Trichlo     | oro-1,2,2-Tri | fluoroethane    | ND            | 0.43              | 0.020           | 42.6       |       |
| 1,2-Dibromoethane           | ND              | 0.043             | 0.019       | 42.6           | Trichloroethe     | ene           |                 | 0.059         | 0.085             | 0.0077          | 42.6       | J     |
| Dibromomethane              | ND              | 0.043             | 0.030       | 42.6           | Trichlorofluo     | romethane     |                 | ND            | 0.43              | 0.0067          | 42.6       |       |
| 1,2-Dichlorobenzene         | ND              | 0.043             | 0.0054      | 42.6           | 1,2,3-Trichlo     | propropane    |                 | ND            | 0.085             | 0.028           | 42.6       |       |
| 1,3-Dichlorobenzene         | ND              | 0.043             | 0.0070      | 42.6           | 1,2,4-Trimet      | hylbenzene    |                 | 1.2           | 0.085             | 0.0050          | 42.6       |       |
| 1,4-Dichlorobenzene         | ND              | 0.043             | 0.0066      | 42.6           | 1,3,5-Trimet      | hylbenzene    |                 | 0.40          | 0.085             | 0.0042          | 42.6       |       |
| Dichlorodifluoromethane     | ND              | 0.085             | 0.0082      | 42.6           | Vinyl Acetate     | е             |                 | ND            | 0.43              | 0.32            | 42.6       |       |
| 1,1-Dichloroethane          | ND              | 0.043             | 0.0068      | 42.6           | Vinyl Chlorid     | le            |                 | ND            | 0.043             | 0.0091          | 42.6       |       |
| 1,2-Dichloroethane          | ND              | 0.043             | 0.0073      | 42.6           | Xylenes (tota     | al)           |                 | 1.6           | 0.085             | 0.0086          | 42.6       |       |
| 1,1-Dichloroethene          | ND              | 0.043             | 0.0059      | 42.6           | Methyl-t-But      | yl Ether (M7  | BE)             | ND            | 0.085             | 0.0057          | 42.6       |       |
| c-1,2-Dichloroethene        | 0.019           | 0.043             | 0.012       | 42.6 J         | Tert-Butyl Al     | cohol (TBA    | )               | ND            | 0.85              | 0.65            | 42.6       |       |
| t-1,2-Dichloroethene        | ND              | 0.043             | 0.011       | 42.6           | Diisopropyl E     | Ether (DIPE   | )               | ND            | 0.043             | 0.011           | 42.6       |       |
| 1,2-Dichloropropane         | ND              | 0.043             | 0.011       | 42.6           | Ethyl-t-Butyl     | Ether (ETB    | E)              | ND            | 0.043             | 0.0092          | 42.6       |       |
| 1,3-Dichloropropane         | ND              | 0.043             | 0.0075      | 42.6           | Tert-Amyl-M       | lethyl Ether  | (TAME)          | ND            | 0.043             | 0.0056          | 42.6       |       |
| 2,2-Dichloropropane         | ND              | 0.21              | 0.019       | 42.6           | Ethanol           |               |                 | ND            | 21                | 4.3             | 42.6       |       |
| Surrogates:                 | REC (%)         | Control<br>Limits | <u>Qual</u> |                | Surrogates:       |               |                 | REC (%)       | Control<br>Limits | <u>Qı</u>       | <u>ıal</u> |       |
| Dibromofluoromethane        | 104             | 79-133            |             |                | 1,2-Dichloro      | ethane-d4     |                 | 109           | 71-155            |                 |            |       |
| 1,4-Bromofluorobenzene      | 105             | 80-120            |             |                | Toluene-d8        |               |                 | 100           | 80-120            |                 |            |       |
| 1,1 2.3.110110010001120110  | 100             | 30 .20            |             |                | . Siderie de      |               |                 | . 50          | 30 .20            |                 |            |       |



RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers



Project: 3740 Pacific Avenue, Tacoma, WA

## **Analytical Report**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

EPA 8260B mg/kg

08/18/10

10-08-1402

EPA 5035

Units:

Page 11 of 25

| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| SO-241876-081310-JS-SB11-15 | 10-08-1402-11-C      | 08/13/10<br>13:20      | Solid  | GC/MS UU   | 08/13/10         | 08/26/10<br>20:00     | 100826L01   |

|                             |                |                   |             |       | _                         |                                       |         |                   |            |           |      |
|-----------------------------|----------------|-------------------|-------------|-------|---------------------------|---------------------------------------|---------|-------------------|------------|-----------|------|
| <u>Parameter</u>            | <u>Result</u>  | _                 | <u>MDL</u>  |       | Qual                      | <u>Parameter</u>                      | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u> | Qual |
| Acetone                     | ND             | 0.038             |             | 0.762 |                           | 1,1-Dichloropropene                   | ND      | 0.0015            |            | 0.76      | _    |
| Benzene                     | 0.88           | 0.042             |             | 41.9  |                           | c-1,3-Dichloropropene                 | ND      | 0.00076           |            | 0.76      |      |
| Bromobenzene                | ND             | 0.00076           |             | 0.762 |                           | t-1,3-Dichloropropene                 | ND      | 0.0015            |            | 0.76      |      |
| Bromochloromethane          | ND             | 0.0015            |             | 0.762 |                           | Ethylbenzene                          | 0.32    | 0.042             |            | 41.9      |      |
| Bromodichloromethane        | ND             | 0.00076           |             | 0.762 |                           | 2-Hexanone                            | ND      | 0.015             |            | 0.76      |      |
| Bromoform                   | ND             | 0.0038            |             | 0.762 |                           | Isopropylbenzene                      | 0.012   | 0.00076           |            | 0.76      |      |
| Bromomethane                | ND             | 0.015             |             | 0.762 |                           | p-Isopropyltoluene                    | ND      | 0.00076           |            | 0.76      |      |
| 2-Butanone                  | ND             | 0.015             |             | 0.762 |                           | Methylene Chloride                    | ND      | 0.0076            |            | 0.76      |      |
| n-Butylbenzene              | ND             | 0.00076           |             | 0.762 |                           | 4-Methyl-2-Pentanone                  | ND      | 0.015             |            | 0.76      |      |
| sec-Butylbenzene            | ND             | 0.00076           |             | 0.762 |                           | Naphthalene                           | ND      | 0.0076            |            | 0.76      |      |
| tert-Butylbenzene           | ND             | 0.00076           |             | 0.762 |                           | n-Propylbenzene                       | 0.0029  | 0.0015            |            | 0.76      |      |
| Carbon Disulfide            | ND             | 0.0076            |             | 0.762 |                           | Styrene                               | ND      | 0.00076           |            | 0.76      |      |
| Carbon Tetrachloride        | ND             | 0.00076           |             | 0.762 |                           | 1,1,1,2-Tetrachloroethane             | ND      | 0.00076           |            | 0.76      | 2    |
| Chlorobenzene               | ND             | 0.00076           |             | 0.762 |                           | 1,1,2,2-Tetrachloroethane             | ND      | 0.0015            |            | 0.76      | 2    |
| Chloroethane                | ND             | 0.0015            |             | 0.762 |                           | Tetrachloroethene                     | ND      | 0.00076           |            | 0.76      | 2    |
| Chloroform                  | ND             | 0.00076           |             | 0.762 |                           | Toluene                               | 0.0036  | 0.00076           |            | 0.76      | 2    |
| Chloromethane               | ND             | 0.015             |             | 0.762 |                           | 1,2,3-Trichlorobenzene                | ND      | 0.0015            |            | 0.76      | 2    |
| 2-Chlorotoluene             | ND             | 0.00076           |             | 0.762 | 1,2,0 11.01.00.000.120.10 |                                       | ND      | 0.0015            |            | 0.76      | 2    |
| 4-Chlorotoluene             | ND             | 0.00076           |             | 0.762 |                           | 1,1,1-Trichloroethane                 | ND      | 0.00076           |            | 0.76      | 2    |
| Dibromochloromethane        | ND             | 0.0015            |             | 0.762 |                           | 1,1,2-Trichloroethane                 | ND      | 0.00076           |            | 0.76      | 2    |
| 1,2-Dibromo-3-Chloropropane | ND             | 0.0038            |             | 0.762 |                           | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND      | 0.0076            |            | 0.76      | 2    |
| 1,2-Dibromoethane           | ND             | 0.00076           |             | 0.762 |                           | Trichloroethene                       | 0.022   | 0.0015            |            | 0.76      | 2    |
| Dibromomethane              | ND             | 0.00076           |             | 0.762 |                           | Trichlorofluoromethane                | ND      | 0.0076            |            | 0.76      | 2    |
| 1,2-Dichlorobenzene         | ND             | 0.00076           |             | 0.762 |                           | 1,2,3-Trichloropropane                | ND      | 0.0015            |            | 0.76      | 2    |
| 1,3-Dichlorobenzene         | ND             | 0.00076           |             | 0.762 |                           | 1,2,4-Trimethylbenzene                | ND      | 0.0015            |            | 0.76      | 2    |
| 1,4-Dichlorobenzene         | ND             | 0.00076           |             | 0.762 |                           | 1,3,5-Trimethylbenzene                | ND      | 0.0015            |            | 0.76      | 2    |
| Dichlorodifluoromethane     | ND             | 0.0015            |             | 0.762 |                           | Vinyl Acetate                         | ND      | 0.0076            |            | 0.76      | 2    |
| 1,1-Dichloroethane          | ND             | 0.00076           |             | 0.762 |                           | Vinyl Chloride                        | ND      | 0.00076           |            | 0.76      | 2    |
| 1,2-Dichloroethane          | ND             | 0.00076           |             | 0.762 |                           | Xylenes (total)                       | 0.0019  | 0.0015            |            | 0.76      | 2    |
| 1,1-Dichloroethene          | ND             | 0.00076           |             | 0.762 |                           | Methyl-t-Butyl Ether (MTBE)           | 0.0022  | 0.0015            |            | 0.76      | 2    |
| c-1,2-Dichloroethene        | 0.069          | 0.00076           |             | 0.762 |                           | Tert-Butyl Alcohol (TBA)              | 0.029   | 0.015             |            | 0.76      | 2    |
| t-1,2-Dichloroethene        | ND             | 0.00076           |             | 0.762 |                           | Diisopropyl Ether (DIPE)              | ND      | 0.00076           |            | 0.76      | 2    |
| 1,2-Dichloropropane         | ND             | 0.00076           |             | 0.762 |                           | Ethyl-t-Butyl Ether (ETBE)            | ND      | 0.00076           |            | 0.76      | 2    |
| 1,3-Dichloropropane         | ND             | 0.00076           |             | 0.762 |                           | Tert-Amyl-Methyl Ether (TAME)         | ND      | 0.00076           |            | 0.76      | 2    |
| 2,2-Dichloropropane         | ND             | 0.0038            |             | 0.762 |                           | Ethanol                               | ND      | 0.38              |            | 0.76      | 2    |
| Surrogates:                 | <u>REC (%)</u> | Control<br>Limits | <u>Qual</u> |       |                           | Surrogates:                           | REC (%) | Control<br>Limits | Qua        | <u>al</u> |      |
| Dibromofluoromethane        | 95             | 79-133            |             |       |                           | 1,2-Dichloroethane-d4                 | 97      | 71-155            |            |           |      |
| 1,4-Bromofluorobenzene      | 98             | 80-120            |             |       |                           | Toluene-d8                            | 102     | 80-120            |            |           |      |

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers



Date/Time

Collected



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units: mg/kg

Instrument

Date

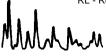
Prepared

Project: 3740 Pacific Avenue, Tacoma, WA

Lab Sample

Number

Page 12 of 25


QC Batch ID

Date/Time

Analyzed

| Dibromochloromethane   ND   0.0018   0.896   1,1,2-Trichloroethane   ND   0.00090   0.896   1,2-Dibromo-3-Chloropropane   ND   0.00090   0.896   1,1,2-Trichloro-1,2,2-Trifluoroethane   ND   0.0090   0.896   1,2-Dibromoethane   ND   0.00090   0.896   Trichlorofluoromethane   ND   0.0018   0.896   Dibromomethane   ND   0.00090   0.896   Trichlorofluoromethane   ND   0.0090   0.896   1,2-Dichlorobenzene   ND   0.00090   0.896   1,2,3-Trichloropropane   ND   0.0018   0.896   1,3-Dichlorobenzene   ND   0.00090   0.896   1,2,4-Trimethylbenzene   0.035   0.0018   0.896   1,4-Dichlorobenzene   ND   0.00090   0.896   1,3,5-Trimethylbenzene   0.0081   0.0018   0.896   1,4-Dichlorodifluoromethane   ND   0.0018   0.896   0.896   0.896   0.896   0.896   1,1-Dichlorodifluoromethane   ND   0.00090   0.896   0.896   0.896   0.896   1,1-Dichloroethane   ND   0.00090   0.896   0.896   0.896   0.0018   0.896   1,1-Dichloroethane   ND   0.00090   0.896   0.896   0.896   0.0018   0.896   1,1-Dichloroethane   ND   0.00090   0.896   0.896   0.896   0.0018   0.0018   0.896   1,1-Dichloroethane   ND   0.00090   0.896   0.896   0.896   0.0018   0.0018   0.896   1,2-Dichloroethene   ND   0.00090   0.896   0.896   0.896   0.0018   0.896   1,2-Dichloroethene   ND   0.00090   0.896   0.896   0.896   0.896   0.896   0.896   0.896   1,2-Dichloroethene   ND   0.00090   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   | SO-241876-081610-JS-SB10-5  |         |         | 10-08-1     | 402-12-I | D           | 08/16/10 Soli<br>07:55 | d GC/MS UU        | 08/16/1  | 0 08/2<br>13 | 7/10<br>:49 | 1008271    | L01 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|---------|-------------|----------|-------------|------------------------|-------------------|----------|--------------|-------------|------------|-----|
| Deciding   No.   Deciding   Dec   | Parameter                   | Pocult  | DI      | MDI         | DE (     | Jual        | Parameter              |                   | Post-lit | DI           | MDI         | DE         | Oug |
| Benzene   ND   0.00090   0.896   c-1,3-Dichloropropene   ND   0.00090   0.896   Bromochorzene   ND   0.00090   0.896   t-1,3-Dichloropropene   ND   0.0018   0.896   t-1,3-Dichloropropene   ND   0.018   0.896   t-1,3-Dichloropropene   0.0031   0.00090   0.896   t-1,3-Dichloropropene   0.0031   0.00990   0.896   t-1,3-Dichloropropene   0.0031   0.00990   0.896   t-1,3-Dichloropropene   ND   0.0034   0.00990   0.896   t-1,3-Dichloropropene   ND   0.00090   0.896   t-1,3-Dichloropropene   ND   0.0018   0.896   t-1,3-Dichloropropene   ND   0.00090   0.896   t-1,3-Dichloropropene   ND     |                             |         |         | IVIDL       |          | <u>Juai</u> |                        | •                 |          |              | IVIDL       |            |     |
| Bromochrozene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |         |         |             |          |             |                        | ne                |          |              |             |            |     |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |         |         |             |          |             | ,                      |                   |          |              |             |            |     |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| 2-Butanone ND 0.018 0.896 Methylené Chloride ND 0.0090 0.896 n-Butylbenzene 0.0065 0.00090 0.896 4-Methyl-2-Pentanone ND 0.013 0.099 0.896 sec-Butylbenzene 0.0055 0.00090 0.896 Naphthalene 0.013 0.0090 0.896 tert-Butylbenzene ND 0.00090 0.896 Naphthalene 0.0055 0.0018 0.896 carbon Disulfide ND 0.00090 0.896 Nphthalene 0.0055 0.0018 0.896 Carbon Disulfide ND 0.00090 0.896 Styrene ND 0.00090 0.896 Chlorobenzene ND 0.00090 0.896 1,1,1,2-Tetrachloroethane ND 0.00090 0.896 Chlorobenzene ND 0.00090 0.896 1,1,1,2-Tetrachloroethane ND 0.00090 0.896 Chlorobenzene ND 0.00090 0.896 Toluene ND 0.00090 0.896 Chlorothane ND 0.00090 0.896 Toluene ND 0.00090 0.896 Chlorothane ND 0.00090 0.896 Toluene 0.0028 0.00090 0.896 Chlorothane ND 0.0018 0.896 Toluene 0.0028 0.00090 0.896 Chlorothane ND 0.018 0.896 Toluene 0.0028 0.00090 0.896 Chlorothane ND 0.00090 0.896 1,2,4-Trichlorothane ND 0.0018 0.896 Chlorothane ND 0.00090 0.896 1,2,4-Trichlorothane ND 0.0018 0.896 Chlorothane ND 0.00090 0.896 1,2,4-Trichlorothane ND 0.00090 0.896 1,2-Dibromochloromethane ND 0.00090 0.896 1,1,1-Trichlorothane ND 0.00090 0.896 1,2-Dibromochloromethane ND 0.00090 0.896 1,2-Dibromochlane ND 0.00090 0.896 1,3-Dibromochlane ND 0 |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| n-Butylbenzene         0.0065         0.00090         0.896         4-Methyl-2-Pentanone         ND         0.018         0.896           sec-Butylbenzene         0.0050         0.00090         0.896         Naphthalene         0.013         0.0090         0.896           Carbon Disulfide         ND         0.0090         0.896         Styrene         ND         0.00090         0.896           Carbon Tetrachloride         ND         0.00090         0.896         1,1,1,2-Tetrachloroethane         ND         0.00090         0.896           Chloroberane         ND         0.00090         0.896         1,1,2-Tetrachloroethane         ND         0.00090         0.896           Chlororethane         ND         0.0018         0.896         Tetrachloroethane         ND         0.0018         0.896           Chlororethane         ND         0.0018         0.896         Tetrachloroethane         ND         0.0099         0.896           Chlororethane         ND         0.0118         0.896         Tetrachloroethane         ND         0.0018         0.896           Chlororotluene         ND         0.00090         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           Dibromochlorom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| sec-Butylbenzene         0.0050         0.00090         0.896         Naphthalene         0.013         0.0090         0.896           teir-Butylbenzene         ND         0.00090         0.896         n-Propylbenzene         0.0055         0.0018         0.896           Carbon Disulfide         ND         0.00090         0.896         Styrene         ND         0.00090         0.896           Carbon Tetrachloride         ND         0.00090         0.896         Styrene         ND         0.00090         0.896           Chlorobenzene         ND         0.00090         0.896         1,1,1,2-Tetrachloroethane         ND         0.0018         0.896           Chloroform         ND         0.00090         0.896         Toluene         ND         0.0018         0.896           Chloroform         ND         0.00090         0.896         Toluene         ND         0.00090         0.896           Chloroform         ND         0.00090         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           Chlororomethane         ND         0.00090         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           1,2-Dibriorobenzene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |         |         |             |          |             | •                      |                   |          |              |             |            |     |
| tert-Buylbenzene         ND         0.00090         0.896         n-Propylbenzene         0.0055         0.0018         0.896           Carbon Disulfide         ND         0.00090         0.896         Styrene         ND         0.00090         0.896           Carbon Tetrachloride         ND         0.00090         0.896         Styrene         ND         0.00090         0.896           Chlorobenzene         ND         0.00090         0.896         1,1,1,2-Tetrachloroethane         ND         0.0018         0.896           Chloroethane         ND         0.00090         0.896         Tetrachloroethane         ND         0.0018         0.896           Chloromethane         ND         0.0018         0.896         Tetrachloroethane         ND         0.0018         0.896           Chlorotoluene         ND         0.018         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           Chlorotoluene         ND         0.00090         0.896         1,2,4-Trichlorobenzene         ND         0.0018         0.896           Chlorotoluene         ND         0.00090         0.896         1,1,1-Trichlorobenzene         ND         0.00090         0.896           Dibromo-Storium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                           |         |         |             |          |             | ,                      | ne                |          |              |             |            |     |
| Carbon Disulfide         ND         0.0090         0.896         Styrene         ND         0.00090         0.896           Carbon Tetrachloride         ND         0.00090         0.896         1,1,1,2-Tetrachloroethane         ND         0.00090         0.896           Chloroebnzene         ND         0.00090         0.896         1,1,2-Tetrachloroethane         ND         0.0018         0.896           Chloroethane         ND         0.00090         0.896         1,1,2-Tetrachloroethane         ND         0.00090         0.896           Chloroform         ND         0.00090         0.896         Toluene         0.0028         0.0009         0.896           Chlorotoluene         ND         0.00090         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           2-Chlorotoluene         ND         0.00090         0.896         1,1,1-Trichloroethane         ND         0.0018         0.896           1-2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1,2-Trichloroethane         ND         0.0090         0.896           1-2-Dibromoethane         ND         0.0045         0.896         1,1,2-Trichloroethane         ND         0.0090         0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           |         |         |             |          |             | •                      |                   |          |              |             |            |     |
| Carbon Tetrachloride         ND         0.00090         0.896         1,1,1,2-Tetrachloroethane         ND         0.00090         0.896           Chlorobenzene         ND         0.00090         0.896         1,1,2,2-Tetrachloroethane         ND         0.0018         0.896           Chloroethane         ND         0.00090         0.896         Tetrachloroethane         ND         0.00090         0.896           Chloromethane         ND         0.00090         0.896         Toluene         0.0028         0.00090         0.896           Chlororotiduene         ND         0.00090         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           2-Chlorotiduene         ND         0.00090         0.896         1,2,4-Trichlorobenzene         ND         0.0018         0.896           4-Chlorotoluene         ND         0.00090         0.896         1,1,2-Trichlorobenzene         ND         0.00090         0.896           Dibromochloromethane         ND         0.0018         0.896         1,1,2-Trichlorobenzene         ND         0.00090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1-Trichloroflucroethane         ND         0.0090         0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                           |         |         |             |          |             | , ,                    |                   |          |              |             |            |     |
| Chlorobenzene         ND         0.00090         0.896         1,1,2,2-Tetrachloroethane         ND         0.0018         0.896           Chloroethane         ND         0.0018         0.896         Tetrachloroethene         ND         0.00090         0.896           Chloroform         ND         0.00090         0.896         Toluene         0.0028         0.00090         0.896           Chlorordulene         ND         0.0018         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           4-Chlorotduene         ND         0.00090         0.896         1,2,4-Trichlorobenzene         ND         0.0018         0.896           4-Chlorotduene         ND         0.00090         0.896         1,1,1-Trichloroethane         ND         0.0018         0.896           Dibromochloromethane         ND         0.0018         0.896         1,1,1-Trichloroethane         ND         0.0090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1-2-Trichloroethane         ND         0.0090         0.896           1,2-Dibromochane         ND         0.00090         0.896         Trichloroethane         ND         0.0018         0.896           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |         |         |             |          |             | •                      |                   |          |              |             |            |     |
| Chloroethane         ND         0.0018         0.896         Tetrachloroethene         ND         0.00090         0.896           Chloroform         ND         0.00090         0.896         Toluene         0.0028         0.00090         0.896           Chloromethane         ND         0.018         0.896         1,2,3-Trichlorobenzene         ND         0.0018         0.896           2-Chlorotduene         ND         0.00090         0.896         1,2,4-Trichlorobenzene         ND         0.0018         0.896           4-Chlorotduene         ND         0.00090         0.896         1,1,1-Trichloroethane         ND         0.00090         0.896           Dibromo-3-Chloropropane         ND         0.0018         0.896         1,1,2-Trichloroethane         ND         0.0090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1,2-Trichloroethane         ND         0.0090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.00090         0.896         Trichloroethane         ND         0.0018         0.896           1,2-Dibrobrobenzene         ND         0.00090         0.896         1,2,3-Trichloropropropane         ND         0.0018         0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| Chloroform   ND   0.00090   0.896   Toluene   0.0028   0.00090   0.896   0.00090   0.896   0.00090   0.896   0.00090   0.896   0.00090   0.896   0.00090   0.00090   0.00090   0.896   0.2,3-Trichlorobenzene   ND   0.0018   0.896   0.00090   0.896   0.2,4-Trichlorobenzene   ND   0.00090   0.896   0.00090   0.896   0.00090   0.896   0.2,2-Trichlorocethane   ND   0.00090   0.896   0.00090   0.896   0.2,2-Dichlorocethane   ND   0.00090   0.896   0.00090   0.896   0.2,2-Dichlorocethane   ND   0.00090   0.896   0.2,2-Dichlorocethane   ND   0.00090   0.896   0.2,2-Trichlorocethane   0.0035   0.0018   0.896   0.2,2-Trichlorocethane   ND   0.00090   0.2,2-Trichlorocethane   ND   0.00090   0.2,2-Trichlorocethane   ND   0.00090   0.2,2-Trichlorocetha   |                             |         |         |             |          |             |                        | ethane            |          |              |             |            |     |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |         |         |             |          |             |                        |                   |          |              |             |            |     |
| 2-Chlorotoluene         ND         0.00090         0.896         1,2,4-Trichlorobenzene         ND         0.0018         0.896           4-Chlorotoluene         ND         0.00090         0.896         1,1,1-Trichloroethane         ND         0.00090         0.896           Dibromochloromethane         ND         0.00090         0.896         1,1,2-Trichloroethane         ND         0.00090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1,2-Trichloro-1,2,2-Trifluoroethane         ND         0.0090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.00090         0.896         1,1,2-Trichloro-1,2,2-Trifluoroethane         ND         0.0018         0.896           1,2-Dibromo-sthane         ND         0.00090         0.896         Trichlorofluoromethane         ND         0.0018         0.896           1,2-Dichlorobenzene         ND         0.00090         0.896         1,2,3-Trichloroffluoromethane         ND         0.0018         0.896           1,4-Dichlorobenzene         ND         0.00090         0.896         1,2,4-Trimethloropropane         ND         0.0018         0.896           1,4-Dichloroethane         ND         0.00090         0.896         1,2,5-Trichloroethyloprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |         |         |             |          |             | Toluene                |                   |          |              |             |            |     |
| 4-Chlorotoluene         ND         0.00090         0.896         1,1,1-Trichloroethane         ND         0.00090         0.896           Dibromochloromethane         ND         0.0018         0.896         1,1,2-Trichloroethane         ND         0.00090         0.896           1,2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1,2-Trichloroethane         ND         0.0090         0.896           1,2-Dibromoethane         ND         0.00090         0.896         Trichloroethene         ND         0.0090         0.896           1,2-Dibromoethane         ND         0.00090         0.896         Trichlorofluoromethane         ND         0.0090         0.896           1,2-Dibromoethane         ND         0.00090         0.896         Trichlorofluoromethane         ND         0.0018         0.896           1,3-Dichlorobenzene         ND         0.00090         0.896         1,2,3-Trichloropethane         ND         0.0018         0.896           1,4-Dichlorobenzene         ND         0.00090         0.896         1,3,5-Trimethylbenzene         0.0081         0.0018         0.896           Dichlorodifluoromethane         ND         0.00090         0.896         Vinyl Acetate         ND         0.0091 <t< td=""><td>Chloromethane</td><td>ND</td><td></td><td></td><td></td><td></td><td>1,2,3-Trichlorobenz</td><td>ene</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chloromethane               | ND      |         |             |          |             | 1,2,3-Trichlorobenz    | ene               |          |              |             |            |     |
| Dibromochloromethane   ND   0.0018   0.896   1,1,2-Trichloroethane   ND   0.00090   0.896   1,2-Dibromoch-3-Chloropropane   ND   0.00090   0.896   1,1,2-Trichloro-1,2,2-Trifluoroethane   ND   0.0090   0.896   1,2-Dibromoethane   ND   0.0090   0.896   1,2-Dibromoethane   ND   0.0090   0.896   1,2-Dibromoethane   ND   0.0090   0.896   1,2-Dichlorobenzene   ND   0.0090   0.896   1,2,3-Trichloropropane   ND   0.0090   0.896   1,2,3-Trichloropropane   ND   0.0018   0.896   1,3-Dichlorobenzene   ND   0.00090   0.896   1,2,4-Trimethylbenzene   0.035   0.0018   0.896   1,4-Dichlorobenzene   ND   0.00090   0.896   1,3,5-Trimethylbenzene   0.0081   0.0018   0.896   0.896   1,1-Dichlorodifluoromethane   ND   0.0018   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896      | 2-Chlorotoluene             | ND      | 0.00090 |             |          |             | 1,2,4-Trichlorobenz    | ene               |          | 0.0018       |             |            |     |
| 1,2-Dibromo-3-Chloropropane         ND         0.0045         0.896         1,1,2-Trichloro-1,2,2-Trifluoroethane         ND         0.0090         0.896           1,2-Dibromoethane         ND         0.00090         0.896         Trichloroethene         ND         0.0090         0.896           Dibromomethane         ND         0.00090         0.896         Trichlorofluoromethane         ND         0.0090         0.896           1,2-Dichlorobenzene         ND         0.00090         0.896         1,2,3-Trichloropropane         ND         0.0018         0.896           1,3-Dichlorobenzene         ND         0.00090         0.896         1,2,4-Trimethylbenzene         0.035         0.0018         0.896           1,4-Dichlorobenzene         ND         0.00090         0.896         1,3,5-Trimethylbenzene         0.0081         0.0018         0.896           Dichlorodifluoromethane         ND         0.00090         0.896         Vinyl Acetate         ND         0.0090         0.896           1,1-Dichloroethane         ND         0.00090         0.896         Vinyl Chloride         ND         0.0090         0.896           1,2-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Chlorotoluene             | ND      |         |             |          |             | 1,1,1-Trichloroetha    | ne                | ND       |              |             |            |     |
| 1,2-Dibromoethane         ND         0.00090         0.896         Trichloroethene         ND         0.0018         0.896           Dibromomethane         ND         0.00090         0.896         Trichlorofluoromethane         ND         0.0090         0.896           1,2-Dichlorobenzene         ND         0.00090         0.896         1,2,3-Trichloropropane         ND         0.0018         0.896           1,3-Dichlorobenzene         ND         0.00090         0.896         1,2,4-Trimethylbenzene         0.035         0.0018         0.896           1,4-Dichlorobenzene         ND         0.00090         0.896         1,3,5-Trimethylbenzene         0.0035         0.0018         0.896           0.ichlorodifluoromethane         ND         0.0018         0.896         Vinyl Acetate         ND         0.0090         0.896           1,1-Dichloroethane         ND         0.00090         0.896         Vinyl Chloride         ND         0.0090         0.896           1,2-Dichloroethane         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.0018         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dibromochloromethane        | ND      | 0.0018  |             |          |             | 1,1,2-Trichloroetha    | ne                | ND       | 0.00090      |             |            |     |
| Dibromomethane   ND   0.00090   0.896   Trichlorofluoromethane   ND   0.0090   0.896   1,2-Dichlorobenzene   ND   0.00090   0.896   1,2,3-Trichloropropane   ND   0.0018   0.896   1,3-Dichlorobenzene   ND   0.00090   0.896   1,2,4-Trimethylbenzene   0.035   0.0018   0.896   1,4-Dichlorobenzene   ND   0.00090   0.896   1,3,5-Trimethylbenzene   0.0081   0.0018   0.896   0.896   1,3,5-Trimethylbenzene   0.0081   0.0018   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896   0.896     | 1,2-Dibromo-3-Chloropropane | ND      | 0.0045  |             |          |             | 1,1,2-Trichloro-1,2,   | 2-Trifluoroethane | ND       | 0.0090       |             |            |     |
| 1,2-Dichlorobenzene         ND         0.00090         0.896         1,2,3-Trichloropropane         ND         0.0018         0.896           1,3-Dichlorobenzene         ND         0.00090         0.896         1,2,4-Trimethylbenzene         0.035         0.0018         0.896           1,4-Dichlorobenzene         ND         0.00090         0.896         1,3,5-Trimethylbenzene         0.0081         0.0018         0.896           Dichlorodifluoromethane         ND         0.0018         0.896         Vinyl Acetate         ND         0.0090         0.896           1,1-Dichloroethane         ND         0.00090         0.896         Vinyl Chloride         ND         0.00090         0.896           1,2-Dichloroethane         ND         0.00090         0.896         Xylenes (total)         0.025         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           c-1,2-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           t-1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090 <td>1,2-Dibromoethane</td> <td>ND</td> <td>0.00090</td> <td></td> <td>0.896</td> <td></td> <td>Trichloroethene</td> <td></td> <td>ND</td> <td>0.0018</td> <td></td> <td>0.896</td> <td>6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-Dibromoethane           | ND      | 0.00090 |             | 0.896    |             | Trichloroethene        |                   | ND       | 0.0018       |             | 0.896      | 6   |
| 1,3-Dichlorobenzene         ND         0.00090         0.896         1,2,4-Trimethylbenzene         0.035         0.0018         0.896           1,4-Dichlorobenzene         ND         0.00090         0.896         1,3,5-Trimethylbenzene         0.0081         0.0018         0.896           Dichlorodifluoromethane         ND         0.0018         0.896         Vinyl Acetate         ND         0.0090         0.896           1,1-Dichloroethane         ND         0.00090         0.896         Vinyl Chloride         ND         0.0090         0.896           1,2-Dichloroethane         ND         0.00090         0.896         Xylenes (total)         0.025         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           c-1,2-Dichloroethene         ND         0.00090         0.896         Diisopropyl Ether (DIPE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (TAME)         ND         0.00090 <td>Dibromomethane</td> <td>ND</td> <td>0.00090</td> <td></td> <td></td> <td></td> <td>Trichlorofluorometh</td> <td>ane</td> <td>ND</td> <td>0.0090</td> <td></td> <td>0.896</td> <td>6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibromomethane              | ND      | 0.00090 |             |          |             | Trichlorofluorometh    | ane               | ND       | 0.0090       |             | 0.896      | 6   |
| 1,4-Dichlorobenzene         ND         0.00090         0.896         1,3,5-Trimethylbenzene         0.0081         0.0018         0.896           Dichlorodifluoromethane         ND         0.0018         0.896         Vinyl Acetate         ND         0.0090         0.896           1,1-Dichloroethane         ND         0.00090         0.896         Vinyl Chloride         ND         0.00090         0.896           1,2-Dichloroethane         ND         0.00090         0.896         Xylenes (total)         0.025         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           t-1,2-Dichloroethene         ND         0.00090         0.896         Diisopropyl Ether (DIPE)         ND         0.00090         0.896           1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichlorobenzene         | ND      | 0.00090 |             | 0.896    |             | 1,2,3-Trichloropropa   | ane               | ND       | 0.0018       |             | 0.896      | 6   |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichlorobenzene         | ND      | 0.00090 |             | 0.896    |             | 1,2,4-Trimethylbenz    | zene              | 0.035    | 0.0018       |             | 0.896      | 6   |
| 1,1-Dichloroethane         ND         0.00090         0.896         Vinyl Chloride         ND         0.00090         0.896           1,2-Dichloroethane         ND         0.00090         0.896         Xylenes (total)         0.025         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           c-1,2-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           t-1,2-Dichloroethene         ND         0.00090         0.896         Diisopropyl Ether (DIPE)         ND         0.00090         0.896           1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Limits         Limits         1,2-Dichloroethane-d4         106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,4-Dichlorobenzene         | ND      | 0.00090 |             | 0.896    |             | 1,3,5-Trimethylbenz    | zene              | 0.0081   | 0.0018       |             | 0.896      | 6   |
| 1,2-Dichloroethane         ND         0.00090         0.896         Xylenes (total)         0.025         0.0018         0.896           1,1-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           c-1,2-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           t-1,2-Dichloroethene         ND         0.00090         0.896         Diisopropyl Ether (DIPE)         ND         0.00090         0.896           1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Limits         Limits         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dichlorodifluoromethane     | ND      | 0.0018  |             | 0.896    |             | Vinyl Acetate          |                   | ND       | 0.0090       |             | 0.896      | 6   |
| 1,1-Dichloroethene         ND         0.00090         0.896         Methyl-t-Butyl Ether (MTBE)         ND         0.0018         0.896           c-1,2-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           t-1,2-Dichloroethene         ND         0.00090         0.896         Diisopropyl Ether (DIPE)         ND         0.00090         0.896           1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Qual Limits         Surrogates:         REC (%)         Control Limits         Qual Limits           Dibromofluoromethane         99         79-133         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1-Dichloroethane          | ND      | 0.00090 |             | 0.896    |             | Vinyl Chloride         |                   | ND       | 0.00090      |             | 0.896      | 6   |
| c-1,2-Dichloroethene         ND         0.00090         0.896         Tert-Butyl Alcohol (TBA)         ND         0.018         0.896           t-1,2-Dichloroethene         ND         0.00090         0.896         Diisopropyl Ether (DIPE)         ND         0.00090         0.896           1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Qual Limits         Surrogates:         REC (%)         Control Limits         Qual Limits           Dibromofluoromethane         99         79-133         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dichloroethane          | ND      | 0.00090 |             | 0.896    |             | Xylenes (total)        |                   | 0.025    | 0.0018       |             | 0.896      | 6   |
| t-1,2-Dichloroethene ND 0.00090 0.896 Diisopropyl Ether (DIPE) ND 0.00090 0.896 1,2-Dichloropropane ND 0.00090 0.896 Ethyl-t-Butyl Ether (ETBE) ND 0.00090 0.896 1,3-Dichloropropane ND 0.00090 0.896 Tert-Amyl-Methyl Ether (TAME) ND 0.00090 0.896 2,2-Dichloropropane ND 0.0045 0.896 Ethanol ND 0.45 0.896  Surrogates: REC (%) Control Limits Dibromofluoromethane 99 79-133 1,2-Dichloroethane-d4 106 71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethene          | ND      | 0.00090 |             | 0.896    |             | Methyl-t-Butyl Ether   | r (MTBE)          | ND       | 0.0018       |             | 0.896      | 6   |
| 1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Qual Limits         Surrogates:         REC (%)         Control Limits         Qual Limits           Dibromofluoromethane         99         79-133         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c-1,2-Dichloroethene        | ND      | 0.00090 |             | 0.896    |             | Tert-Butyl Alcohol (   | TBA)              | ND       | 0.018        |             | 0.896      | 6   |
| 1,2-Dichloropropane         ND         0.00090         0.896         Ethyl-t-Butyl Ether (ETBE)         ND         0.00090         0.896           1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Qual Limits         Control Limits         Qual Limits         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t-1,2-Dichloroethene        | ND      | 0.00090 |             | 0.896    |             | Diisopropyl Ether (E   | OIPE)             | ND       | 0.00090      |             | 0.896      | 6   |
| 1,3-Dichloropropane         ND         0.00090         0.896         Tert-Amyl-Methyl Ether (TAME)         ND         0.00090         0.896           2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%)         Control Limits         Qual Limits         Surrogates:         REC (%)         Control Limits         Qual Limits           Dibromofluoromethane         99         79-133         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichloropropane         | ND      | 0.00090 |             | 0.896    |             |                        |                   | ND       | 0.00090      |             | 0.896      | 6   |
| 2,2-Dichloropropane         ND         0.0045         0.896         Ethanol         ND         0.45         0.896           Surrogates:         REC (%) Limits         Control Limits         Surrogates:         REC (%) Limits         Control Limits         Qual Limits           Dibromofluoromethane         99         79-133         1,2-Dichloroethane-d4         106         71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |         | 0.00090 |             | 0.896    |             |                        | ,                 |          | 0.00090      |             | 0.896      | 6   |
| Limits Limits  Dibromofluoromethane 99 79-133 1,2-Dichloroethane-d4 106 71-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,2-Dichloropropane         | ND      | 0.0045  |             | 0.896    |             |                        | ` ,               | ND       |              |             | 0.896      | 6   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogates:                 | REC (%) |         | <u>Qual</u> |          |             | Surrogates:            |                   | REC (%)  |              | <u>Qı</u>   | <u>ual</u> |     |
| 1,4-Bromofluorobenzene 97 80-120 Toluene-d8 104 80-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dibromofluoromethane        | 99      | 79-133  |             |          |             | 1,2-Dichloroethane-    | -d4               | 106      | 71-155       |             |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,4-Bromofluorobenzene      | 97      | 80-120  |             |          |             | Toluene-d8             |                   | 104      | 80-120       |             |            |     |







Units:

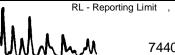


Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

**EPA 8260B** mg/kg

08/18/10


10-08-1402

EPA 5035

Project: 3740 Pacific Avenue, Tacoma, WA

Page 13 of 25

| SO-241876-081610-JS-SB10-10      |          |                   |             |              |      |                   |              |              |          |                   |               |              |      |
|----------------------------------|----------|-------------------|-------------|--------------|------|-------------------|--------------|--------------|----------|-------------------|---------------|--------------|------|
|                                  |          |                   | 10-08-1     | 402-13       | 3-C  | 08/16/10<br>08:00 | Solid        | GC/MS UU     | 08/16/1  |                   | :6/10<br>):52 | 100826L      | .01  |
| Parameter_                       | Result   | <u>RL</u>         | MDL_        | <u>DF</u>    | Qual | <u>Parameter</u>  |              |              | Result   | <u>RL</u>         | MDL           | <u>DF</u>    | Qual |
| Acetone                          | ND       | 0.051             |             | 1.02         |      | 1,1-Dichloro      | propene      |              | ND       | 0.0020            |               | 1.02         |      |
| Benzene                          | 0.0094   | 0.0010            |             | 1.02         |      | c-1,3-Dichlo      | ropropene    |              | ND       | 0.0010            |               | 1.02         |      |
| Bromobenzene                     | ND       | 0.0010            |             | 1.02         |      | t-1,3-Dichlor     | opropene     |              | ND       | 0.0020            |               | 1.02         |      |
| Bromochloromethane               | ND       | 0.0020            |             | 1.02         |      | Ethylbenzen       |              |              | 0.18     | 0.0010            |               | 1.02         |      |
| Bromodichloromethane             | ND       | 0.0010            |             | 1.02         |      | 2-Hexanone        |              |              | ND       | 0.020             |               | 1.02         |      |
| Bromoform                        | ND       | 0.0051            |             | 1.02         |      | Isopropylber      |              |              | 0.0033   | 0.0010            |               | 1.02         |      |
| Bromomethane                     | ND       | 0.020             |             | 1.02         |      | p-Isopropylto     |              |              | ND       | 0.0010            |               | 1.02         |      |
| 2-Butanone                       | ND       | 0.020             |             | 1.02         |      | Methylene C       |              |              | ND       | 0.010             |               | 1.02         |      |
| n-Butylbenzene                   | 0.0057   | 0.0010            |             | 1.02         |      | 4-Methyl-2-F      |              |              | ND       | 0.020             |               | 1.02         |      |
| sec-Butylbenzene                 | ND       | 0.0010            |             | 1.02         |      | Naphthalene       |              |              | 0.13     | 0.010             |               | 1.02         |      |
| tert-Butylbenzene                | ND       | 0.0010            |             | 1.02         |      | n-Propylben       | zene         |              | 0.013    | 0.0020            |               | 1.02         |      |
| Carbon Disulfide                 | ND       | 0.010             |             | 1.02         |      | Styrene           |              |              | ND       | 0.0010            |               | 1.02         |      |
| Carbon Tetrachloride             | ND       | 0.0010            |             | 1.02         |      | 1,1,1,2-Tetra     |              |              | ND       | 0.0010            |               | 1.02         |      |
| Chlorobenzene                    | ND       | 0.0010<br>0.0020  |             | 1.02<br>1.02 |      | 1,1,2,2-Tetra     |              | ne           | ND       | 0.0020<br>0.0010  |               | 1.02<br>1.02 |      |
| Chloroethane                     | ND       |                   |             | 1.02         |      | Tetrachloroe      | etnene       |              | ND       |                   |               | 1.02         |      |
| Chloroform                       | ND       | 0.0010<br>0.020   |             | 1.02         |      | Toluene           |              |              | 0.0071   | 0.0010<br>0.0020  |               | 1.02         |      |
| Chloromethane<br>2-Chlorotoluene | ND<br>ND | 0.020             |             | 1.02         |      | 1,2,3-Trichlo     |              |              | ND<br>ND | 0.0020            |               | 1.02         |      |
| 4-Chlorotoluene                  | ND       | 0.0010            |             | 1.02         |      | 1,1,1-Trichle     |              |              | ND       | 0.0020            |               | 1.02         |      |
| Dibromochloromethane             | ND       | 0.0010            |             | 1.02         |      | 1,1,2-Trichle     |              |              | ND       | 0.0010            |               | 1.02         |      |
| 1,2-Dibromo-3-Chloropropane      | ND       | 0.0020            |             | 1.02         |      |                   |              | fluoroethane |          | 0.0010            |               | 1.02         |      |
| 1,2-Dibromoethane                | ND       | 0.0010            |             | 1.02         |      | Trichloroeth      |              | madrocarano  | ND       | 0.0020            |               | 1.02         |      |
| Dibromomethane                   | ND       | 0.0010            |             | 1.02         |      | Trichlorofluc     |              |              | ND       | 0.010             |               | 1.02         |      |
| 1.2-Dichlorobenzene              | ND       | 0.0010            |             | 1.02         |      | 1,2,3-Trichlo     |              |              | ND       | 0.0020            |               | 1.02         |      |
| 1,3-Dichlorobenzene              | ND       | 0.0010            |             | 1.02         |      | 1,2,4-Trimet      |              |              | 0.089    | 0.0020            |               | 1.02         |      |
| 1,4-Dichlorobenzene              | ND       | 0.0010            |             | 1.02         |      | 1,3,5-Trimet      | -            |              | 0.028    | 0.0020            |               | 1.02         |      |
| Dichlorodifluoromethane          | ND       | 0.0020            |             | 1.02         |      | Vinyl Acetate     | •            |              | ND       | 0.010             |               | 1.02         |      |
| 1,1-Dichloroethane               | ND       | 0.0010            |             | 1.02         |      | Vinyl Chloric     |              |              | ND       | 0.0010            |               | 1.02         |      |
| 1,2-Dichloroethane               | ND       | 0.0010            |             | 1.02         |      | Xylenes (tota     | al)          |              | 0.091    | 0.0020            |               | 1.02         |      |
| 1,1-Dichloroethene               | ND       | 0.0010            |             | 1.02         |      | Methyl-t-But      | yl Ether (M7 | ΓBE)         | ND       | 0.0020            |               | 1.02         |      |
| c-1,2-Dichloroethene             | ND       | 0.0010            |             | 1.02         |      | Tert-Butyl Al     | •            | ,            | ND       | 0.020             |               | 1.02         |      |
| t-1,2-Dichloroethene             | ND       | 0.0010            |             | 1.02         |      | Diisopropyl I     | Ether (DIPE  | )            | ND       | 0.0010            |               | 1.02         |      |
| 1,2-Dichloropropane              | ND       | 0.0010            |             | 1.02         |      | Ethyl-t-Butyl     | Ether (ETE   | BE)          | ND       | 0.0010            |               | 1.02         |      |
| 1,3-Dichloropropane              | ND       | 0.0010            |             | 1.02         |      | Tert-Amyl-M       | lethyl Ether | (TAME)       | ND       | 0.0010            |               | 1.02         |      |
| 2,2-Dichloropropane              | ND       | 0.0051            |             | 1.02         |      | Ethanol           |              |              | ND       | 0.51              |               | 1.02         |      |
| Surrogates:                      | REC (%)  | Control<br>Limits | <u>Qual</u> | l            |      | Surrogates:       |              |              | REC (%)  | Control<br>Limits | <u>Q</u>      | <u>ual</u>   |      |
| Dibromofluoromethane             | 95       | 79-133            |             |              |      | 1,2-Dichloro      | ethane-d4    |              | 97       | 71-155            |               |              |      |
| 1,4-Bromofluorobenzene           | 99       | 80-120            |             |              |      | Toluene-d8        |              |              | 99       | 80-120            |               |              |      |



DF - Dilution Factor , Qual - Qualifiers



Project: 3740 Pacific Avenue, Tacoma, WA

## **Analytical Report**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units:

mg/kg Page 14 of 25

| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| SO-241876-081610-JS-SB10-15 | 10-08-1402-14-C      | 08/16/10<br>08:10      | Solid  | GC/MS UU   | 08/16/10         | 08/26/10<br>21:17     | 100826L01   |

| <u>Parameter</u>                        | Result | <u>RL</u> <u>M</u> | <u>DL</u> <u>DF</u> <u>Qual</u> | <u>Parameter</u>                      | Result            | <u>RL</u> | <u>MDL</u> | <u>DF</u> Qual |
|-----------------------------------------|--------|--------------------|---------------------------------|---------------------------------------|-------------------|-----------|------------|----------------|
| Acetone                                 | ND     | 0.038              | 0.759                           | 1,1-Dichloropropene                   | ND                | 0.0015    |            | 0.759          |
| Benzene                                 | 0.0068 | 0.00076            | 0.759                           | c-1,3-Dichloropropene                 | ND                | 0.00076   |            | 0.759          |
| Bromobenzene                            | ND     | 0.00076            | 0.759                           | t-1,3-Dichloropropene                 | ND                | 0.0015    |            | 0.759          |
| Bromochloromethane                      | ND     | 0.0015             | 0.759                           | Ethylbenzene                          | 0.34              | 0.037     |            | 37.4           |
| Bromodichloromethane                    | ND     | 0.00076            | 0.759                           | 2-Hexanone                            | ND                | 0.015     |            | 0.759          |
| Bromoform                               | ND     | 0.0038             | 0.759                           | Isopropylbenzene                      | 0.026             | 0.00076   |            | 0.759          |
| Bromomethane                            | ND     | 0.015              | 0.759                           | p-Isopropyltoluene                    | 0.019             | 0.00076   |            | 0.759          |
| 2-Butanone                              | ND     | 0.015              | 0.759                           | Methylene Chloride                    | ND                | 0.0076    |            | 0.759          |
| n-Butylbenzene                          | 0.059  | 0.00076            | 0.759                           | 4-Methyl-2-Pentanone                  | ND                | 0.015     |            | 0.759          |
| sec-Butylbenzene                        | 0.029  | 0.00076            | 0.759                           | Naphthalene                           | 0.14              | 0.0076    |            | 0.759          |
| tert-Butylbenzene                       | ND     | 0.00076            | 0.759                           | n-Propylbenzene                       | 0.067             | 0.0015    |            | 0.759          |
| Carbon Disulfide                        | ND     | 0.0076             | 0.759                           | Styrene                               | ND                | 0.00076   |            | 0.759          |
| Carbon Tetrachloride                    | ND     | 0.00076            | 0.759                           | 1,1,1,2-Tetrachloroethane             | ND                | 0.00076   |            | 0.759          |
| Chlorobenzene                           | ND     | 0.00076            | 0.759                           | 1,1,2,2-Tetrachloroethane             | ND                | 0.0015    |            | 0.759          |
| Chloroethane                            | ND     | 0.0015             | 0.759                           | Tetrachloroethene                     | ND                | 0.00076   |            | 0.759          |
| Chloroform ND 0.00076 0.759             |        | Toluene            | 0.018                           | 0.00076                               |                   | 0.759     |            |                |
| Chloromethane                           |        |                    | 1,2,3-Trichlorobenzene          | ND                                    | 0.0015            |           | 0.759      |                |
| 2-Chlorotoluene                         | ND     | 0.00076            | 0.759                           | 1,2,4-Trichlorobenzene                | ND                | 0.0015    |            | 0.759          |
| 4-Chlorotoluene                         | ND     | 0.00076            | 0.759                           | 1,1,1-Trichloroethane                 | ND                | 0.00076   |            | 0.759          |
| Dibromochloromethane                    | ND     | 0.0015             | 0.759                           | 1,1,2-Trichloroethane                 | ND                | 0.00076   |            | 0.759          |
| 1,2-Dibromo-3-Chloropropane             | ND     | 0.0038             | 0.759                           | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND                | 0.0076    |            | 0.759          |
| 1,2-Dibromoethane                       | ND     | 0.00076            | 0.759                           | Trichloroethene                       | ND                | 0.0015    |            | 0.759          |
| Dibromomethane                          | ND     | 0.00076            | 0.759                           | Trichlorofluoromethane                | ND                | 0.0076    |            | 0.759          |
| 1,2-Dichlorobenzene                     | ND     | 0.00076            | 0.759                           | 1,2,3-Trichloropropane                | ND                | 0.0015    |            | 0.759          |
| 1,3-Dichlorobenzene                     | ND     | 0.00076            | 0.759                           | 1,2,4-Trimethylbenzene                | 0.40              | 0.075     |            | 37.4           |
| 1,4-Dichlorobenzene                     | ND     | 0.00076            | 0.759                           | 1,3,5-Trimethylbenzene                | 0.12              | 0.0015    |            | 0.759          |
| Dichlorodifluoromethane                 | ND     | 0.0015             | 0.759                           | Vinyl Acetate                         | ND                | 0.0076    |            | 0.759          |
| 1,1-Dichloroethane                      | ND     | 0.00076            | 0.759                           | Vinyl Chloride                        | ND                | 0.00076   |            | 0.759          |
| 1,2-Dichloroethane                      | ND     | 0.00076            | 0.759                           | Xylenes (total)                       | 0.26              | 0.0015    |            | 0.759          |
| 1,1-Dichloroethene                      | ND     | 0.00076            | 0.759                           | Methyl-t-Butyl Ether (MTBE)           | ND                | 0.0015    |            | 0.759          |
| c-1,2-Dichloroethene                    | ND     | 0.00076            | 0.759                           | Tert-Butyl Alcohol (TBA)              | ND                | 0.015     |            | 0.759          |
| t-1,2-Dichloroethene                    | ND     | 0.00076            | 0.759                           | Diisopropyl Ether (DIPE)              | ND                | 0.00076   |            | 0.759          |
| 1,2-Dichloropropane                     | ND     | 0.00076            | 0.759                           | Ethyl-t-Butyl Ether (ETBE)            | ND                | 0.00076   |            | 0.759          |
| 1,3-Dichloropropane                     | ND     | 0.00076            | 0.759                           | Tert-Amyl-Methyl Ether (TAME)         | ND                | 0.00076   |            | 0.759          |
| 2,2-Dichloropropane                     | ND     | 0.0038             | 0.759                           | Ethanol                               | ND                | 0.38      |            | 0.759          |
| Surrogates: REC (%) Control Qual Limits |        | <u>Qual</u>        | Surrogates:                     | REC (%)                               | Control<br>Limits | Qua       | <u>al</u>  |                |
| Dibromofluoromethane                    | 100    | 79-133             |                                 | 1,2-Dichloroethane-d4                 | 103               | 71-155    |            |                |
| 1,4-Bromofluorobenzene                  | 101    | 80-120             |                                 | Toluene-d8                            | 106               | 80-120    |            |                |

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

10-08-1402 **EPA 5035 EPA 8260B** 

08/18/10

mg/kg

Units:

Page 15 of 25

Project: 3740 Pacific Avenue, Tacoma, WA

| Client Sample Nu | mber             |              |           | Lab Sa<br>Num |           |          | Date/Time<br>Collected | Matrix       | Instrument     | Date<br>Prepare |           | e/Time<br>alyzed | QC Batc   | h ID |
|------------------|------------------|--------------|-----------|---------------|-----------|----------|------------------------|--------------|----------------|-----------------|-----------|------------------|-----------|------|
| SO-241876-08     | 1610-JS-SB9-5    |              |           | 10-08-        | 1402-1    | 5-E      | 08/16/10<br>08:45      | Solid        | GC/MS Z        | 08/16/1         | U         | /27/10<br>3:44   | 100827L   | .01  |
| Comment(s):      | -Results were ev | aluated to t | he MDL, o | concentrati   | ons >=    | to the N | /IDL but < RL,         | if found, ar | e qualified wi | th a "J" flag.  |           |                  |           |      |
| <u>Parameter</u> |                  | Result       | <u>RL</u> | <u>MDL</u>    | <u>DF</u> | Qual     | <u>Parameter</u>       |              |                | Result          | <u>RL</u> | <u>MDL</u>       | <u>DF</u> | Qual |
| Acetone          |                  | ND           | 2.1       | 0.27          | 42.4      |          | 1,1-Dichloro           | propene      |                | ND              | 0.085     | 0.0094           | 42.4      |      |
| Benzene          |                  | ND           | 0.042     | 0.0057        | 42.4      |          | c-1 3-Dichlo           | ronronene    |                | ND              | 0.042     | 0.0077           | 42.4      |      |

|                             |                  |           |             |           |      | 08:45                                     |               | ı         | 3:44       |           |      |
|-----------------------------|------------------|-----------|-------------|-----------|------|-------------------------------------------|---------------|-----------|------------|-----------|------|
| Comment(s): -Results were e |                  |           |             |           |      | IDL but < RL, if found, are qualified wit | th a "J" flag |           |            |           |      |
| <u>Parameter</u>            | Result           | <u>RL</u> | <u>MDL</u>  | <u>DF</u> | Qual | <u>Parameter</u>                          | Result        | <u>RL</u> | <u>MDL</u> | <u>DF</u> | Qual |
| Acetone                     | ND               | 2.1       | 0.27        | 42.4      |      | 1,1-Dichloropropene                       | ND            | 0.085     | 0.0094     | 42.4      |      |
| Benzene                     | ND               | 0.042     | 0.0057      | 42.4      |      | c-1,3-Dichloropropene                     | ND            | 0.042     | 0.0077     | 42.4      |      |
| Bromobenzene                | ND               | 0.042     | 0.0089      | 42.4      |      | t-1,3-Dichloropropene                     | ND            | 0.085     | 0.081      | 42.4      |      |
| Bromochloromethane          | ND               | 0.085     | 0.059       | 42.4      |      | Ethylbenzene                              | 0.020         | 0.042     | 0.0066     | 42.4      | J    |
| Bromodichloromethane        | ND               | 0.042     | 0.0062      | 42.4      |      | 2-Hexanone                                | ND            | 0.85      | 0.24       | 42.4      |      |
| Bromoform                   | ND               | 0.21      | 0.028       | 42.4      |      | Isopropylbenzene                          | 0.028         | 0.042     | 0.0050     | 42.4      | J    |
| Bromomethane                | ND               | 0.85      | 0.078       | 42.4      |      | p-Isopropyltoluene                        | 0.021         | 0.042     | 0.0049     | 42.4      | J    |
| 2-Butanone                  | ND               | 0.85      | 0.41        | 42.4      |      | Methylene Chloride                        | ND            | 0.42      | 0.22       | 42.4      |      |
| n-Butylbenzene              | 0.064            | 0.042     | 0.0094      | 42.4      |      | 4-Methyl-2-Pentanone                      | ND            | 0.85      | 0.086      | 42.4      |      |
| sec-Butylbenzene            | 0.036            | 0.042     | 0.0044      | 42.4      | J    | Naphthalene                               | 0.039         | 0.42      | 0.014      | 42.4      | B,J  |
| tert-Butylbenzene           | ND               | 0.042     | 0.0052      | 42.4      |      | n-Propylbenzene                           | ND            | 0.085     | 0.043      | 42.4      |      |
| Carbon Disulfide            | ND               | 0.42      | 0.0074      | 42.4      |      | Styrene                                   | ND            | 0.042     | 0.0087     | 42.4      |      |
| Carbon Tetrachloride        | ND               | 0.042     | 0.014       | 42.4      |      | 1,1,1,2-Tetrachloroethane                 | ND            | 0.042     | 0.014      | 42.4      |      |
| Chlorobenzene               | ND               | 0.042     | 0.0063      | 42.4      |      | 1,1,2,2-Tetrachloroethane                 | ND            | 0.085     | 0.0098     | 42.4      |      |
| Chloroethane                | ND               | 0.085     | 0.018       | 42.4      |      | Tetrachloroethene                         | ND            | 0.042     | 0.0072     | 42.4      |      |
| Chloroform                  | ND               | 0.042     | 0.0073      | 42.4      |      | Toluene                                   | ND            | 0.042     | 0.0064     | 42.4      |      |
| Chloromethane               | ND               | 0.85      | 0.12        | 42.4      |      | 1,2,3-Trichlorobenzene                    | ND            | 0.085     | 0.0087     | 42.4      |      |
| 2-Chlorotoluene             | ND               | 0.042     | 0.0049      | 42.4      |      | 1,2,4-Trichlorobenzene                    | ND            | 0.085     | 0.0078     | 42.4      |      |
| 4-Chlorotoluene             | ND               | 0.042     | 0.0044      | 42.4      |      | 1,1,1-Trichloroethane                     | ND            | 0.042     | 0.011      | 42.4      |      |
| Dibromochloromethane        | ND               | 0.085     | 0.0085      | 42.4      |      | 1,1,2-Trichloroethane                     | ND            | 0.042     | 0.010      | 42.4      |      |
| 1,2-Dibromo-3-Chloropropane | ND               | 0.21      | 0.16        | 42.4      |      | 1,1,2-Trichloro-1,2,2-Trifluoroethane     | ND            | 0.42      | 0.020      | 42.4      |      |
| 1,2-Dibromoethane           | ND               | 0.042     | 0.019       | 42.4      |      | Trichloroethene                           | ND            | 0.085     | 0.0077     | 42.4      |      |
| Dibromomethane              | ND               | 0.042     | 0.030       | 42.4      |      | Trichlorofluoromethane                    | ND            | 0.42      | 0.0066     | 42.4      |      |
| 1,2-Dichlorobenzene         | ND               | 0.042     | 0.0054      | 42.4      |      | 1,2,3-Trichloropropane                    | ND            | 0.085     | 0.028      | 42.4      |      |
| 1,3-Dichlorobenzene         | ND               | 0.042     | 0.0069      | 42.4      |      | 1,2,4-Trimethylbenzene                    | 0.16          | 0.085     | 0.0049     | 42.4      |      |
| 1,4-Dichlorobenzene         | ND               | 0.042     | 0.0065      | 42.4      |      | 1,3,5-Trimethylbenzene                    | 0.049         | 0.085     | 0.0042     | 42.4      | J    |
| Dichlorodifluoromethane     | ND               | 0.085     | 0.0082      | 42.4      |      | Vinyl Acetate                             | ND            | 0.42      | 0.32       | 42.4      |      |
| 1,1-Dichloroethane          | ND               | 0.042     | 0.0067      | 42.4      |      | Vinyl Chloride                            | ND            | 0.042     | 0.0091     | 42.4      |      |
| 1,2-Dichloroethane          | ND               | 0.042     | 0.0072      | 42.4      |      | Xylenes (total)                           | ND            | 0.085     | 0.0085     | 42.4      |      |
| 1,1-Dichloroethene          | ND               | 0.042     | 0.0059      | 42.4      |      | Methyl-t-Butyl Ether (MTBE)               | ND            | 0.085     | 0.0056     | 42.4      |      |
| c-1,2-Dichloroethene        | ND               | 0.042     | 0.012       | 42.4      |      | Tert-Butyl Alcohol (TBA)                  | ND            | 0.85      | 0.65       | 42.4      |      |
| t-1,2-Dichloroethene        | ND               | 0.042     | 0.011       | 42.4      |      | Diisopropyl Ether (DIPE)                  | ND            | 0.042     | 0.010      | 42.4      |      |
| 1,2-Dichloropropane         | ND               | 0.042     | 0.011       | 42.4      |      | Ethyl-t-Butyl Ether (ETBE)                | ND            | 0.042     | 0.0091     | 42.4      |      |
| 1,3-Dichloropropane         | ND               | 0.042     | 0.0074      | 42.4      |      | Tert-Amyl-Methyl Ether (TAME)             | ND            | 0.042     | 0.0055     | 42.4      |      |
| 2,2-Dichloropropane         | ND               | 0.21      | 0.019       | 42.4      |      | Ethanol                                   | ND            | 21        | 4.2        | 42.4      |      |
| Surrogates:                 | REC (%)          | Control   | Qual        |           |      | Surrogates:                               | REC (%)       | Control   | Qual       |           |      |
| <u>Janogalos.</u>           | <u>IVEO (70)</u> | Limits    | <u>Qual</u> |           |      | <u></u>                                   | 3 (70)        | Limits    | <u> </u>   |           |      |
| Dibromofluoromethane        | 99               | 79-133    |             |           |      | 1,2-Dichloroethane-d4                     | 117           | 71-155    |            |           |      |
| 1.4-Bromofluorobenzene      | 109              | 80-120    |             |           |      | Toluene-d8                                | 101           | 80-120    |            |           |      |
| 1,1 2.0110110010001120110   | 100              | 30 .20    |             |           |      | 1 0140110 40                              |               | 30 .20    |            |           |      |

RL - Reporting Limit , DF - Dilution Factor ,



Date/Time

Lab Sample



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

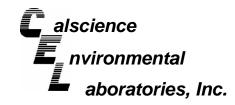
10-08-1402 EPA 5035 EPA 8260B

08/18/10

Units: mg/kg


Date

| Project: 3740 P | acific Avenue, | Tacoma, WA |
|-----------------|----------------|------------|
|-----------------|----------------|------------|


| P | age | 16 | of | 25 |  |
|---|-----|----|----|----|--|
|   |     |    |    |    |  |
|   |     |    |    |    |  |

Date/Time

| Client Sample Number        |                 |                   | Numb        |           |          | Collected         | Matrix       | Instrument      | Prepar       |                  | nalyzed          | QC Bate    | ch ID |
|-----------------------------|-----------------|-------------------|-------------|-----------|----------|-------------------|--------------|-----------------|--------------|------------------|------------------|------------|-------|
| SO-241876-081610-JS-SB9-10  | )               |                   | 10-08-1     | 402-10    | 6-E      | 08/16/10<br>08:50 | Solid        | GC/MS UU        | 08/16/1      | 10 0             | 8/26/10<br>18:43 | 100826     | L02   |
| Comment(s): -Results were e | evaluated to th | e MDL, co         | oncentratio | ns >=     | to the M | 1DL but < RL,     | if found, ar | e qualified wit | h a "J" flag | ) <b>.</b>       |                  |            |       |
| <u>Parameter</u>            | Result          | <u>RL</u>         | <u>MDL</u>  | <u>DF</u> | Qual     | <u>Parameter</u>  |              |                 | Result       | <u>RL</u>        | <u>MDL</u>       | <u>DF</u>  | Qual  |
| Acetone                     | ND              | 20                | 2.6         | 399       |          | 1,1-Dichloro      | propene      |                 | ND           | 0.80             | 0.088            | 399        |       |
| Benzene                     | 1.0             | 0.40              | 0.054       | 399       |          | c-1,3-Dichlo      | ropropene    |                 | ND           | 0.40             | 0.073            | 399        |       |
| Bromobenzene                | ND              | 0.40              | 0.083       | 399       |          | t-1,3-Dichlor     | opropene     |                 | ND           | 0.80             | 0.76             | 399        |       |
| Bromochloromethane          | ND              | 0.80              | 0.55        | 399       |          | Ethylbenzen       | е            |                 | 19           | 0.40             | 0.062            | 399        |       |
| Bromodichloromethane        | ND              | 0.40              | 0.059       | 399       |          | 2-Hexanone        |              |                 | ND           | 8.0              | 2.2              | 399        |       |
| Bromoform                   | ND              | 2.0               | 0.26        | 399       |          | Isopropylber      | nzene        |                 | 1.9          | 0.40             | 0.047            | 399        |       |
| Bromomethane                | ND              | 8.0               | 0.74        | 399       |          | p-Isopropylto     | oluene       |                 | 0.86         | 0.40             | 0.046            | 399        |       |
| 2-Butanone                  | ND              | 8.0               | 3.8         | 399       |          | Methylene C       | hloride      |                 | ND           | 4.0              | 2.1              | 399        |       |
| n-Butylbenzene              | 4.7             | 0.40              | 0.089       | 399       |          | 4-Methyl-2-F      | Pentanone    |                 | ND           | 8.0              | 0.81             | 399        |       |
| sec-Butylbenzene            | 0.85            | 0.40              | 0.041       | 399       |          | Naphthalene       | )            |                 | 6.8          | 4.0              | 0.13             | 399        |       |
| tert-Butylbenzene           | ND              | 0.40              | 0.049       | 399       |          | n-Propylben:      | zene         |                 | 6.7          | 0.80             | 0.41             | 399        |       |
| Carbon Disulfide            | ND              | 4.0               | 0.070       | 399       |          | Styrene           |              |                 | ND           | 0.40             | 0.082            | 399        |       |
| Carbon Tetrachloride        | ND              | 0.40              | 0.13        | 399       |          | 1,1,1,2-Tetra     |              |                 | ND           | 0.40             | 0.13             | 399        |       |
| Chlorobenzene               | ND              | 0.40              | 0.060       | 399       |          | 1,1,2,2-Tetra     | achloroetha  | ne              | ND           | 0.80             | 0.092            | 399        |       |
| Chloroethane                | ND              | 0.80              | 0.17        | 399       |          | Tetrachloroe      | thene        |                 | ND           | 0.40             | 0.068            | 399        |       |
| Chloroform                  | ND              | 0.40              | 0.069       | 399       |          | Toluene           |              |                 | 8.8          | 0.40             | 0.060            | 399        |       |
| Chloromethane               | ND              | 8.0               | 1.2         | 399       |          | 1,2,3-Trichlo     | robenzene    |                 | ND           | 0.80             | 0.082            | 399        |       |
| 2-Chlorotoluene             | ND              | 0.40              | 0.047       | 399       |          | 1,2,4-Trichlo     | robenzene    |                 | ND           | 0.80             | 0.073            | 399        |       |
| 4-Chlorotoluene             | ND              | 0.40              | 0.042       | 399       |          | 1,1,1-Trichlo     | roethane     |                 | ND           | 0.40             | 0.10             | 399        |       |
| Dibromochloromethane        | ND              | 0.80              | 0.080       | 399       |          | 1,1,2-Trichlo     | roethane     |                 | ND           | 0.40             | 0.096            | 399        |       |
| 1,2-Dibromo-3-Chloropropane | ND              | 2.0               | 1.5         | 399       |          | 1,1,2-Trichlo     | ro-1,2,2-Tr  | ifluoroethane   | ND           | 4.0              | 0.19             | 399        |       |
| 1,2-Dibromoethane           | ND              | 0.40              | 0.18        | 399       |          | Trichloroethe     | ene          |                 | ND           | 0.80             | 0.072            | 399        |       |
| Dibromomethane              | ND              | 0.40              | 0.28        | 399       |          | Trichlorofluo     | romethane    |                 | ND           | 4.0              | 0.062            | 399        |       |
| 1,2-Dichlorobenzene         | ND              | 0.40              | 0.051       | 399       |          | 1,2,3-Trichlo     | ropropane    |                 | ND           | 0.80             | 0.26             | 399        |       |
| 1,3-Dichlorobenzene         | ND              | 0.40              | 0.065       | 399       |          | 1,2,4-Trimet      | hylbenzene   | !               | 50           | 0.80             | 0.047            | 399        |       |
| 1,4-Dichlorobenzene         | ND              | 0.40              | 0.062       | 399       |          | 1,3,5-Trimet      | hylbenzene   | !               | 16           | 0.80             | 0.039            | 399        |       |
| Dichlorodifluoromethane     | ND              | 0.80              | 0.077       | 399       |          | Vinyl Acetate     | Э            |                 | ND           | 4.0              | 3.0              | 399        |       |
| 1,1-Dichloroethane          | ND              | 0.40              | 0.063       | 399       |          | Vinyl Chlorid     | le           |                 | ND           | 0.40             | 0.086            | 399        |       |
| 1,2-Dichloroethane          | ND              | 0.40              | 0.068       | 399       |          | Xylenes (tota     | al)          |                 | 100          | 0.80             | 0.080            | 399        |       |
| 1,1-Dichloroethene          | ND              | 0.40              | 0.056       | 399       |          | Methyl-t-But      | yl Ether (M  | ГВЕ)            | ND           | 0.80             | 0.053            | 399        |       |
| c-1,2-Dichloroethene        | ND              | 0.40              | 0.11        | 399       |          | Tert-Butyl Al     | cohol (TBA   | .)              | ND           | 8.0              | 6.1              | 399        |       |
| t-1,2-Dichloroethene        | ND              | 0.40              | 0.10        | 399       |          | Diisopropyl E     | Ether (DIPE  | E)              | ND           | 0.40             | 0.099            | 399        |       |
| 1,2-Dichloropropane         | ND              | 0.40              | 0.11        | 399       |          | Ethyl-t-Butyl     | Ether (ETE   | BE)             | ND           | 0.40             | 0.086            | 399        |       |
| 1,3-Dichloropropane         | ND              | 0.40              | 0.070       | 399       |          | Tert-Amyl-M       | ethyl Ether  | (TAME)          | ND           | 0.40             | 0.052            | 399        |       |
| 2,2-Dichloropropane         | ND              | 2.0               | 0.18        | 399       |          | Ethanol           |              |                 | ND           | 200              | 40               | 399        |       |
| Surrogates:                 | <u>REC (%)</u>  | Control<br>Limits | <u>Qual</u> |           |          | Surrogates:       |              |                 | REC (%)      | Contro<br>Limits | ol Q             | <u>ual</u> |       |
| Dibromofluoromethane        | 93              | 79-133            |             |           |          | 1,2-Dichloro      | ethane-d4    |                 | 92           | 71-15            | 5                |            |       |
| 1,4-Bromofluorobenzene      | 101             | 80-120            |             |           |          | Toluene-d8        |              |                 | 103          | 80-120           | )                |            |       |
| .,                          |                 |                   |             |           |          |                   |              |                 |              |                  |                  |            |       |



, DF - Dilution Factor , Qual - Qualifiers



Lab Sample

Units:

Date/Time

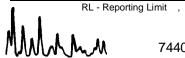


Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

EPA 5035 EPA 8260B mg/kg

08/18/10

10-08-1402


Project: 3740 Pacific Avenue, Tacoma, WA

Page 17 of 25


Date/Time

Date

| Client Sample Number        | Number                     |                   |             | Collected   | Matrix | Instrument        | Prepar        | ed An           | alyzed        | QC Bate           | ch ID             |            |      |
|-----------------------------|----------------------------|-------------------|-------------|-------------|--------|-------------------|---------------|-----------------|---------------|-------------------|-------------------|------------|------|
| SO-241876-081610-JS-SB9-15  | SO-241876-081610-JS-SB9-15 |                   | 10-08-1     | 402-17-E    |        | 08/16/10<br>08:55 | Solid         | GC/MS Z         | 08/16/1       |                   | 08/27/10<br>16:15 |            | L01  |
| Comment(s): -Results were e | evaluated to th            | ne MDL, c         | oncentratio | ons >= to t | the M  | IDL but < RL,     | if found, are | e qualified wit | th a "J" flag | <b>]</b> .        |                   |            |      |
| <u>Parameter</u>            | Result                     | <u>RL</u>         | <u>MDL</u>  | <u>DF</u> Q | ual    | <u>Parameter</u>  |               |                 | Result        | <u>RL</u>         | <u>MDL</u>        | <u>DF</u>  | Qual |
| Acetone                     | ND                         | 1.8               | 0.23        | 36.1        |        | 1,1-Dichloro      | propene       |                 | ND            | 0.072             | 0.0080            | 36.1       |      |
| Benzene                     | 0.30                       | 0.036             | 0.0049      | 36.1        |        | c-1,3-Dichlo      | ropropene     |                 | ND            | 0.036             | 0.0066            | 36.1       |      |
| Bromobenzene                | ND                         | 0.036             | 0.0076      | 36.1        |        | t-1,3-Dichlor     |               |                 | ND            | 0.072             | 0.069             | 36.1       |      |
| Bromochloromethane          | ND                         | 0.072             | 0.050       | 36.1        |        | Ethylbenzen       |               |                 | 1.8           | 0.036             | 0.0056            | 36.1       |      |
| Bromodichloromethane        | ND                         | 0.036             | 0.0053      | 36.1        |        | 2-Hexanone        |               |                 | ND            | 0.72              | 0.20              | 36.1       |      |
| Bromoform                   | ND                         | 0.18              | 0.024       | 36.1        |        | Isopropylber      |               |                 | 0.23          | 0.036             | 0.0043            | 36.1       |      |
| Bromomethane                | ND                         | 0.72              | 0.067       | 36.1        |        | p-Isopropylto     |               |                 | 0.17          | 0.036             | 0.0042            | 36.1       |      |
| 2-Butanone                  | ND                         | 0.72              | 0.35        | 36.1        |        | Methylene C       |               |                 | ND            | 0.36              | 0.19              | 36.1       |      |
| n-Butylbenzene              | 0.55                       | 0.036             | 0.0080      | 36.1        |        | 4-Methyl-2-F      |               |                 | ND            | 0.72              | 0.073             | 36.1       |      |
| sec-Butylbenzene            | 0.20                       | 0.036             | 0.0037      | 36.1        |        | Naphthalene       |               |                 | 0.47          | 0.36              | 0.012             | 36.1       | В    |
| tert-Butylbenzene           | ND                         | 0.036             | 0.0045      | 36.1        |        | n-Propylben:      |               |                 | 0.47          | 0.072             | 0.037             | 36.1       |      |
| Carbon Disulfide            | ND                         | 0.36              | 0.0043      | 36.1        |        | Styrene           | 20110         |                 | ND            | 0.072             | 0.0074            |            |      |
| Carbon Tetrachloride        | ND                         | 0.036             | 0.012       | 36.1        |        | 1,1,1,2-Tetra     | achloroethai  | ne              | ND            | 0.036             | 0.012             | 36.1       |      |
| Chlorobenzene               | ND                         | 0.036             | 0.0054      | 36.1        |        | 1,1,2,2-Tetra     |               |                 | ND            | 0.030             | 0.0083            |            |      |
| Chloroethane                | ND                         | 0.030             | 0.0054      | 36.1        |        | Tetrachloroe      |               | i i C           | ND            | 0.072             | 0.0061            | 36.1       |      |
| Chloroform                  | ND                         | 0.072             | 0.0062      | 36.1        |        | Toluene           | SUI ICI IC    |                 | 0.75          | 0.036             | 0.0054            |            |      |
| Chloromethane               | ND                         | 0.030             | 0.0002      | 36.1        |        |                   | robonzono     |                 | ND            | 0.030             | 0.0034            |            |      |
| 2-Chlorotoluene             |                            | 0.72              | 0.0042      | 36.1        |        | 1,2,3-Trichlo     |               |                 | ND            | 0.072             | 0.0074            |            |      |
|                             | ND                         | 0.036             | 0.0042      | 36.1        |        |                   |               |                 | 0.011         | 0.072             | 0.0000            | 36.1       |      |
| 4-Chlorotoluene             | ND                         | 0.036             | 0.0038      | 36.1        |        | 1,1,1-Trichlo     |               |                 |               | 0.036             | 0.0091            | 36.1       | J    |
| Dibromochloromethane        | ND                         |                   |             | 36.1        |        | 1,1,2-Trichlo     |               | :41             | ND            |                   |                   | 36.1       |      |
| 1,2-Dibromo-3-Chloropropane | ND                         | 0.18              | 0.13        | 36.1        |        |                   |               | ifluoroethane   |               | 0.36              | 0.017             |            |      |
| 1,2-Dibromoethane           | ND                         | 0.036             | 0.016       |             |        | Trichloroethe     |               |                 | ND            | 0.072             | 0.0065            |            |      |
| Dibromomethane              | ND                         | 0.036             | 0.025       | 36.1        |        | Trichlorofluo     |               |                 | ND            | 0.36              | 0.0056            |            |      |
| 1,2-Dichlorobenzene         | ND                         | 0.036             | 0.0046      | 36.1        |        | 1,2,3-Trichlo     |               |                 | ND            | 0.072             | 0.023             | 36.1       |      |
| 1,3-Dichlorobenzene         | ND                         | 0.036             | 0.0059      | 36.1        |        | 1,2,4-Trimet      | -             |                 | 3.7           | 0.072             | 0.0042            |            |      |
| 1,4-Dichlorobenzene         | ND                         | 0.036             | 0.0056      | 36.1        |        | 1,3,5-Trimet      | •             |                 | 1.3           | 0.072             | 0.0036            |            |      |
| Dichlorodifluoromethane     | ND                         | 0.072             | 0.0070      | 36.1        |        | Vinyl Acetate     |               |                 | ND            | 0.36              | 0.27              | 36.1       |      |
| 1,1-Dichloroethane          | ND                         | 0.036             | 0.0057      | 36.1        |        | Vinyl Chlorid     |               |                 | ND            | 0.036             | 0.0078            |            |      |
| 1,2-Dichloroethane          | ND                         | 0.036             | 0.0062      | 36.1        |        | Xylenes (tota     | ,             |                 | 7.5           | 0.072             | 0.0073            |            |      |
| 1,1-Dichloroethene          | ND                         | 0.036             | 0.0050      | 36.1        |        | Methyl-t-But      | ,             | ,               | ND            | 0.072             | 0.0048            |            |      |
| c-1,2-Dichloroethene        | ND                         | 0.036             | 0.010       | 36.1        |        | Tert-Butyl Al     | •             | ,               | ND            | 0.72              | 0.55              | 36.1       |      |
| t-1,2-Dichloroethene        | ND                         | 0.036             | 0.0091      | 36.1        |        | Diisopropyl E     | `             | ,               | ND            | 0.036             | 0.0089            |            |      |
| 1,2-Dichloropropane         | ND                         | 0.036             | 0.0096      | 36.1        |        | Ethyl-t-Butyl     | Ether (ETE    | BE)             | ND            | 0.036             | 0.0078            |            |      |
| 1,3-Dichloropropane         | ND                         | 0.036             | 0.0063      | 36.1        |        | Tert-Amyl-M       | lethyl Ether  | (TAME)          | ND            | 0.036             | 0.0047            |            |      |
| 2,2-Dichloropropane         | ND                         | 0.18              | 0.016       | 36.1        |        | Ethanol           |               |                 | ND            | 18                | 3.6               | 36.1       |      |
| Surrogates:                 | REC (%)                    | Control<br>Limits | <u>Qual</u> | Į.          |        | Surrogates:       |               |                 | REC (%)       | Control<br>Limits | <u>Qı</u>         | <u>ual</u> |      |
| Dibromofluoromethane        | 105                        | 79-133            |             |             |        | 1,2-Dichloro      | ethane-d4     |                 | 106           | 71-155            |                   |            |      |
| 1,4-Bromofluorobenzene      | 109                        | 80-120            |             |             |        | Toluene-d8        |               |                 | 102           | 80-120            |                   |            |      |
| ., . Siomondorosonzono      | 100                        | 33 123            |             |             |        | . Glacile ao      |               |                 | 102           | 55 125            |                   |            |      |



, DF - Dilution Factor , Qual - Qualifiers



Lab Sample

Number

Units:

Date/Time

Collected



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

Instrument

08/18/10 10-08-1402 EPA 5035 EPA 8260B

QC Batch ID

mg/kg

Date

Prepared

Project: 3740 Pacific Avenue, Tacoma, WA

Page 18 of 25

Date/Time

Analyzed

| SO-241876-081610-JS-SB9-20  |         |                   | 10-08-1402-18-D |           |      | 08/16/10 Solid GC/MS PP<br>09:15 |              | 08/16/10 08/27/10<br>14:24 |          |                   | 100827L01  |            |      |
|-----------------------------|---------|-------------------|-----------------|-----------|------|----------------------------------|--------------|----------------------------|----------|-------------------|------------|------------|------|
|                             | D !!    | DI                | MDI             | D.E.      | 0 1  | Danie :                          |              |                            | <b>.</b> | DI                | ME         | D-         |      |
| <u>Parameter</u>            | Result  | <u>RL</u>         | <u>MDL</u>      | <u>DF</u> | Qual | <u>Parameter</u>                 |              |                            | Result   | <u>RL</u>         | <u>MDL</u> | <u>DF</u>  | Qual |
| Acetone                     | ND      | 0.046             |                 | 0.91      |      | 1,1-Dichlorop                    | •            |                            | ND       | 0.0018            |            | 0.914      |      |
| Benzene                     | 0.069   | 0.00091           |                 | 0.91      |      | c-1,3-Dichlor                    |              |                            | ND       | 0.00091           |            | 0.914      |      |
| Bromobenzene                | ND      | 0.00091           |                 | 0.91      |      | t-1,3-Dichlord                   |              |                            | ND       | 0.0018            |            | 0.914      |      |
| Bromochloromethane          | ND      | 0.0018            |                 | 0.91      |      | Ethylbenzene                     | <del>)</del> |                            | 0.029    | 0.00091           |            | 0.914      |      |
| Bromodichloromethane        | ND      | 0.00091           |                 | 0.91      |      | 2-Hexanone                       |              |                            | ND       | 0.018             |            | 0.914      |      |
| Bromoform                   | ND      | 0.0046            |                 | 0.91      |      | Isopropylben                     |              |                            | 0.0064   | 0.00091           |            | 0.914      |      |
| Bromomethane                | ND      | 0.018             |                 | 0.91      |      | p-Isopropylto                    |              |                            | 0.0031   | 0.00091           |            | 0.914      |      |
| 2-Butanone                  | ND      | 0.018             |                 | 0.91      |      | Methylene Ch                     |              |                            | ND       | 0.0091            |            | 0.914      |      |
| n-Butylbenzene              | 0.011   | 0.00091           |                 | 0.91      |      | 4-Methyl-2-P                     | entanone     |                            | ND       | 0.018             |            | 0.914      |      |
| sec-Butylbenzene            | 0.0033  | 0.00091           |                 | 0.91      |      | Naphthalene                      |              |                            | 0.044    | 0.0091            |            | 0.914      |      |
| tert-Butylbenzene           | ND      | 0.00091           |                 | 0.91      |      | n-Propylbenz                     | ene          |                            | 0.015    | 0.0018            |            | 0.914      |      |
| Carbon Disulfide            | ND      | 0.0091            |                 | 0.91      |      | Styrene                          |              |                            | ND       | 0.00091           |            | 0.914      |      |
| Carbon Tetrachloride        | ND      | 0.00091           |                 | 0.91      |      | 1,1,1,2-Tetra                    | chloroethar  | ne                         | ND       | 0.00091           |            | 0.914      |      |
| Chlorobenzene               | ND      | 0.00091           |                 | 0.91      | 4    | 1,1,2,2-Tetra                    | chloroethar  | ne                         | ND       | 0.0018            |            | 0.914      | 4    |
| Chloroethane                | ND      | 0.0018            |                 | 0.91      |      | Tetrachloroet                    | hene         |                            | ND       | 0.00091           |            | 0.914      |      |
| Chloroform                  | 0.0016  | 0.00091           |                 | 0.91      | 4    | Toluene                          |              |                            | 0.0048   | 0.00091           |            | 0.914      | 4    |
| Chloromethane               | ND      | 0.018             |                 | 0.91      | 4    | 1,2,3-Trichlo                    | robenzene    |                            | ND       | 0.0018            |            | 0.914      | 4    |
| 2-Chlorotoluene             | ND      | 0.00091           |                 | 0.91      | 4    | 1,2,4-Trichlo                    | robenzene    |                            | ND       | 0.0018            |            | 0.914      | 4    |
| 4-Chlorotoluene             | ND      | 0.00091           |                 | 0.91      | 4    | 1,1,1-Trichlo                    | roethane     |                            | ND       | 0.00091           |            | 0.914      | 4    |
| Dibromochloromethane        | ND      | 0.0018            |                 | 0.91      | 4    | 1,1,2-Trichlo                    | roethane     |                            | ND       | 0.00091           |            | 0.914      | 4    |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0046            |                 | 0.91      | 4    | 1,1,2-Trichlo                    | ro-1,2,2-Tri | fluoroethane               | ND       | 0.0091            |            | 0.914      | 4    |
| 1,2-Dibromoethane           | ND      | 0.00091           |                 | 0.91      | 4    | Trichloroethe                    | ne           |                            | 0.0025   | 0.0018            |            | 0.914      | 4    |
| Dibromomethane              | ND      | 0.00091           |                 | 0.91      | 4    | Trichlorofluor                   | omethane     |                            | ND       | 0.0091            |            | 0.914      | 4    |
| 1,2-Dichlorobenzene         | ND      | 0.00091           |                 | 0.91      | 4    | 1,2,3-Trichlo                    | ropropane    |                            | ND       | 0.0018            |            | 0.914      | 4    |
| 1,3-Dichlorobenzene         | ND      | 0.00091           |                 | 0.91      | 4    | 1,2,4-Trimeth                    |              |                            | 0.11     | 0.0018            |            | 0.914      | 4    |
| 1,4-Dichlorobenzene         | ND      | 0.00091           |                 | 0.91      | 4    | 1,3,5-Trimeth                    | -            |                            | 0.040    | 0.0018            |            | 0.914      | 4    |
| Dichlorodifluoromethane     | ND      | 0.0018            |                 | 0.91      | 4    | Vinyl Acetate                    | ,            |                            | ND       | 0.0091            |            | 0.914      |      |
| 1,1-Dichloroethane          | ND      | 0.00091           |                 | 0.91      | 4    | Vinyl Chloride                   |              |                            | ND       | 0.00091           |            | 0.914      | 4    |
| 1,2-Dichloroethane          | ND      | 0.00091           |                 | 0.91      | 4    | Xylenes (tota                    |              |                            | 0.12     | 0.0018            |            | 0.914      | 4    |
| 1,1-Dichloroethene          | ND      | 0.00091           |                 | 0.91      | 4    | Methyl-t-Buty                    |              | BE)                        | ND       | 0.0018            |            | 0.914      | 4    |
| c-1,2-Dichloroethene        | 0.0066  | 0.00091           |                 | 0.91      |      | Tert-Butyl Ald                   | •            | ,                          | ND       | 0.018             |            | 0.914      |      |
| t-1,2-Dichloroethene        | ND      | 0.00091           |                 | 0.91      |      | Diisopropyl E                    |              |                            | ND       | 0.00091           |            | 0.914      |      |
| 1,2-Dichloropropane         | ND      | 0.00091           |                 | 0.91      |      | Ethyl-t-Butyl                    |              |                            | ND       | 0.00091           |            | 0.914      |      |
| 1,3-Dichloropropane         | ND      | 0.00091           |                 | 0.91      |      | Tert-Amyl-Me                     |              | •                          | ND       | 0.00091           |            | 0.914      |      |
| 2,2-Dichloropropane         | ND      | 0.0046            |                 | 0.91      |      | Ethanol                          | y. =u.o.     | ( · / ····-/               | ND       | 0.46              |            | 0.914      |      |
| Surrogates:                 | REC (%) | Control<br>Limits | Qua             | <u>l</u>  |      | Surrogates:                      |              |                            | REC (%)  | Control<br>Limits | <u>Qı</u>  | <u>ual</u> |      |
| Dibromofluoromethane        | 102     | 79-133            |                 |           |      | 1,2-Dichloroe                    | thane-d4     |                            | 106      | 71-155            |            |            |      |
| 1,4-Bromofluorobenzene      | 102     | 80-120            |                 |           |      | Toluene-d8                       | a. 16-u4     |                            | 103      | 80-120            |            |            |      |



DF - Dilution Factor ,



Project: 3740 Pacific Avenue, Tacoma, WA

# **Analytical Report**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

EPA 5035 EPA 8260B mg/kg

10-08-1402

08/18/10

Units:

Page 19 of 25

| Client Sample Number       | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| SO-241876-081610-JS-SB9-25 | 10-08-1402-19-D      | 08/16/10<br>09:25      | Solid  | GC/MS PP   | 08/16/10         | 08/27/10<br>14:51     | 100827L01   |

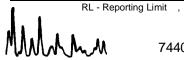
| <u>Parameter</u>            | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u> | Qual | <u>Parameter</u>                      | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u> | Qual |
|-----------------------------|---------|-------------------|------------|-----------|------|---------------------------------------|---------|-------------------|------------|-----------|------|
| Acetone                     | ND      | 0.037             |            | 0.749     | 9    | 1,1-Dichloropropene                   | ND      | 0.0015            |            | 0.74      | 9    |
| Benzene                     | 0.0092  | 0.00075           |            | 0.749     | 9    | c-1,3-Dichloropropene                 | ND      | 0.00075           |            | 0.74      | 9    |
| Bromobenzene                | ND      | 0.00075           |            | 0.749     | 9    | t-1,3-Dichloropropene                 | ND      | 0.0015            |            | 0.74      | 9    |
| Bromochloromethane          | ND      | 0.0015            |            | 0.749     | 9    | Ethylbenzene                          | 0.030   | 0.00075           |            | 0.74      | 9    |
| Bromodichloromethane        | ND      | 0.00075           |            | 0.749     | 9    | 2-Hexanone                            | ND      | 0.015             |            | 0.74      | 9    |
| Bromoform                   | ND      | 0.0037            |            | 0.749     | 9    | Isopropylbenzene                      | 0.0054  | 0.00075           |            | 0.74      | 9    |
| Bromomethane                | ND      | 0.015             |            | 0.749     | 9    | p-Isopropyltoluene                    | 0.0024  | 0.00075           |            | 0.74      | 9    |
| 2-Butanone                  | ND      | 0.015             |            | 0.749     | 9    | Methylene Chloride                    | ND      | 0.0075            |            | 0.74      | 9    |
| n-Butylbenzene              | 0.0057  | 0.00075           |            | 0.749     | 9    | 4-Methyl-2-Pentanone                  | ND      | 0.015             |            | 0.74      | 9    |
| sec-Butylbenzene            | 0.0028  | 0.00075           |            | 0.749     | 9    | Naphthalene                           | ND      | 0.0075            |            | 0.74      | 9    |
| tert-Butylbenzene           | ND      | 0.00075           |            | 0.749     | 9    | n-Propylbenzene                       | 0.011   | 0.0015            |            | 0.74      | 9    |
| Carbon Disulfide            | ND      | 0.0075            |            | 0.749     | 9    | Styrene                               | ND      | 0.00075           |            | 0.74      | 9    |
| Carbon Tetrachloride        | ND      | 0.00075           |            | 0.749     | 9    | 1,1,1,2-Tetrachloroethane             | ND      | 0.00075           |            | 0.74      | 9    |
| Chlorobenzene               | ND      | 0.00075           |            | 0.749     | 9    | 1,1,2,2-Tetrachloroethane             | ND      | 0.0015            |            | 0.74      | 9    |
| Chloroethane                | ND      | 0.0015            |            | 0.749     | 9    | Tetrachloroethene                     | ND      | 0.00075           |            | 0.74      | 9    |
| Chloroform                  | 0.0018  | 0.00075           |            | 0.749     | 9    | Toluene                               | 0.0096  | 0.00075           |            | 0.74      | 9    |
| Chloromethane               | ND      | 0.015             |            | 0.749     | 9    | 1,2,3-Trichlorobenzene                | ND      | 0.0015            |            | 0.74      | 9    |
| 2-Chlorotoluene             | ND      | 0.00075           |            | 0.749     | 9    | 1,2,4-Trichlorobenzene                | ND      | 0.0015            |            | 0.74      | 9    |
| 4-Chlorotoluene             | ND      | 0.00075           |            | 0.749     | 9    | 1,1,1-Trichloroethane                 | ND      | 0.00075           |            | 0.74      | 9    |
| Dibromochloromethane        | ND      | 0.0015            |            | 0.749     | 9    | 1,1,2-Trichloroethane                 | ND      | 0.00075           |            | 0.74      | 9    |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0037            |            | 0.749     | 9    | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND      | 0.0075            |            | 0.74      | 9    |
| 1,2-Dibromoethane           | ND      | 0.00075           |            | 0.749     | 9    | Trichloroethene                       | 0.0017  | 0.0015            |            | 0.74      | 9    |
| Dibromomethane              | ND      | 0.00075           |            | 0.749     | 9    | Trichlorofluoromethane                | ND      | 0.0075            |            | 0.74      | 9    |
| 1,2-Dichlorobenzene         | ND      | 0.00075           |            | 0.749     | 9    | 1,2,3-Trichloropropane                | ND      | 0.0015            |            | 0.74      | 9    |
| 1,3-Dichlorobenzene         | ND      | 0.00075           |            | 0.749     | 9    | 1,2,4-Trimethylbenzene                | 0.042   | 0.0015            |            | 0.74      | 9    |
| 1,4-Dichlorobenzene         | ND      | 0.00075           |            | 0.749     |      | 1,3,5-Trimethylbenzene                | 0.016   | 0.0015            |            | 0.74      | -    |
| Dichlorodifluoromethane     | ND      | 0.0015            |            | 0.749     |      | Vinyl Acetate                         | ND      | 0.0075            |            | 0.74      |      |
| 1,1-Dichloroethane          | ND      | 0.00075           |            | 0.749     | 9    | Vinyl Chloride                        | ND      | 0.00075           |            | 0.74      | 9    |
| 1,2-Dichloroethane          | ND      | 0.00075           |            | 0.749     |      | Xylenes (total)                       | 0.077   | 0.0015            |            | 0.74      |      |
| 1,1-Dichloroethene          | ND      | 0.00075           |            | 0.749     |      | Methyl-t-Butyl Ether (MTBE)           | ND      | 0.0015            |            | 0.74      |      |
| c-1,2-Dichloroethene        | 0.0022  | 0.00075           |            | 0.749     |      | Tert-Butyl Alcohol (TBA)              | ND      | 0.015             |            | 0.74      |      |
| t-1,2-Dichloroethene        | ND      | 0.00075           |            | 0.749     | -    | Diisopropyl Ether (DIPE)              | ND      | 0.00075           |            | 0.74      | -    |
| 1,2-Dichloropropane         | ND      | 0.00075           |            | 0.749     |      | Ethyl-t-Butyl Ether (ETBE)            | ND      | 0.00075           |            | 0.74      |      |
| 1,3-Dichloropropane         | ND      | 0.00075           |            | 0.749     |      | Tert-Amyl-Methyl Ether (TAME)         | ND      | 0.00075           |            | 0.74      |      |
| 2,2-Dichloropropane         | ND      | 0.0037            |            | 0.749     | 9    | Ethanol                               | ND      | 0.37              |            | 0.74      | 9    |
| Surrogates:                 | REC (%) | Control<br>Limits | Qua        | <u>l</u>  |      | Surrogates:                           | REC (%) | Control<br>Limits | <u>Qua</u> | <u>l</u>  |      |
| Dibromofluoromethane        | 101     | 79-133            |            |           |      | 1,2-Dichloroethane-d4                 | 105     | 71-155            |            |           |      |
| 1,4-Bromofluorobenzene      | 99      | 80-120            |            |           |      | Toluene-d8                            | 100     | 80-120            |            |           |      |
|                             |         |                   |            |           |      |                                       |         |                   |            |           |      |

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:
Units:


08/18/10 10-08-1402 EPA 5035 EPA 8260B

mg/kg

Project: 3740 Pacific Avenue, Tacoma, WA

Page 20 of 25

| Client Sample Number        |                |                   | Lab S<br>Nun |           |       | Date/Time<br>Collected | Matrix        | Instrument   | Date<br>Prepar |                   | e/Time<br>alyzed | QC Bato    | ch ID |
|-----------------------------|----------------|-------------------|--------------|-----------|-------|------------------------|---------------|--------------|----------------|-------------------|------------------|------------|-------|
| Method Blank                |                |                   | 095-0        | 1-025-2   | 0,294 | N/A                    | Solid         | GC/MS W      | 08/26/1        |                   | 26/10<br>1:48    | 100826     | L01   |
| Parameter                   | <u>Result</u>  | <u>RL</u>         | <u>MDL</u>   | <u>DF</u> | Qual  | <u>Parameter</u>       |               |              | Result         | <u>RL</u>         | MDL              | <u>DF</u>  | Qual  |
| Acetone                     | ND             | 0.050             |              | 1         |       | 1,1-Dichloro           | propene       |              | ND             | 0.0020            |                  | 1          |       |
| Benzene                     | ND             | 0.0010            |              | 1         |       | c-1,3-Dichlo           |               |              | ND             | 0.0010            |                  | 1          |       |
| Bromobenzene                | ND             | 0.0010            |              | 1         |       | t-1,3-Dichlor          |               |              | ND             | 0.0020            |                  | 1          |       |
| Bromochloromethane          | ND             | 0.0020            |              | 1         |       | Ethylbenzen            | e             |              | ND             | 0.0010            |                  | 1          |       |
| Bromodichloromethane        | ND             | 0.0010            |              | 1         |       | 2-Hexanone             |               |              | ND             | 0.020             |                  | 1          |       |
| Bromoform                   | ND             | 0.0050            |              | 1         |       | Isopropylber           | nzene         |              | ND             | 0.0010            |                  | 1          |       |
| Bromomethane                | ND             | 0.020             |              | 1         |       | p-Isopropylto          |               |              | ND             | 0.0010            |                  | 1          |       |
| 2-Butanone                  | ND             | 0.020             |              | 1         |       | Methylene C            |               |              | ND             | 0.010             |                  | 1          |       |
| n-Butylbenzene              | ND             | 0.0010            |              | 1         |       | 4-Methyl-2-F           |               |              | ND             | 0.020             |                  | 1          |       |
| sec-Butylbenzene            | ND             | 0.0010            |              | 1         |       | Naphthalene            |               |              | ND             | 0.010             |                  | 1          |       |
| tert-Butylbenzene           | ND             | 0.0010            |              | 1         |       | n-Propylben            | zene          |              | ND             | 0.0020            |                  | 1          |       |
| Carbon Disulfide            | ND             | 0.010             |              | 1         |       | Styrene                |               |              | ND             | 0.0010            |                  | 1          |       |
| Carbon Tetrachloride        | ND             | 0.0010            |              | 1         |       | 1,1,1,2-Tetra          | achloroethai  | ne           | ND             | 0.0010            |                  | 1          |       |
| Chlorobenzene               | ND             | 0.0010            |              | 1         |       | 1,1,2,2-Tetra          |               |              | ND             | 0.0020            |                  | 1          |       |
| Chloroethane                | ND             | 0.0020            |              | 1         |       | Tetrachloroe           |               |              | ND             | 0.0010            |                  | 1          |       |
| Chloroform                  | ND             | 0.0010            |              | 1         |       | Toluene                |               |              | ND             | 0.0010            |                  | 1          |       |
| Chloromethane               | ND             | 0.020             |              | 1         |       | 1,2,3-Trichlo          | robenzene     |              | ND             | 0.0020            |                  | 1          |       |
| 2-Chlorotoluene             | ND             | 0.0010            |              | 1         |       | 1,2,4-Trichlo          |               |              | ND             | 0.0020            |                  | 1          |       |
| 4-Chlorotoluene             | ND             | 0.0010            |              | 1         |       | 1,1,1-Trichlo          |               |              | ND             | 0.0010            |                  | 1          |       |
| Dibromochloromethane        | ND             | 0.0020            |              | 1         |       | 1.1.2-Trichlo          |               |              | ND             | 0.0010            |                  | 1          |       |
| 1,2-Dibromo-3-Chloropropane | ND             | 0.0050            |              | 1         |       | , ,                    |               | fluoroethane |                | 0.010             |                  | 1          |       |
| 1,2-Dibromoethane           | ND             | 0.0010            |              | 1         |       | Trichloroeth           |               |              | ND             | 0.0020            |                  | 1          |       |
| Dibromomethane              | ND             | 0.0010            |              | 1         |       | Trichlorofluc          |               |              | ND             | 0.010             |                  | 1          |       |
| 1,2-Dichlorobenzene         | ND             | 0.0010            |              | 1         |       | 1,2,3-Trichlo          |               |              | ND             | 0.0020            |                  | 1          |       |
| 1,3-Dichlorobenzene         | ND             | 0.0010            |              | 1         |       | 1,2,4-Trimet           |               |              | ND             | 0.0020            |                  | 1          |       |
| 1,4-Dichlorobenzene         | ND             | 0.0010            |              | 1         |       | 1,3,5-Trimet           | •             |              | ND             | 0.0020            |                  | 1          |       |
| Dichlorodifluoromethane     | ND             | 0.0010            |              | 1         |       | Vinyl Acetat           | •             |              | ND             | 0.010             |                  | 1          |       |
| 1,1-Dichloroethane          | ND             | 0.0020            |              | 1         |       | Vinyl Chloric          |               |              | ND             | 0.0010            |                  | 1          |       |
| 1,2-Dichloroethane          | ND             | 0.0010            |              | 1         |       | Xylenes (tota          |               |              | ND             | 0.0020            |                  | 1          |       |
| 1,1-Dichloroethene          | ND             | 0.0010            |              | 1         |       | Methyl-t-But           | ,             | TRF)         | ND             | 0.0020            |                  | 1          |       |
| c-1,2-Dichloroethene        | ND             | 0.0010            |              | 1         |       | Tert-Butyl A           | •             |              | ND             | 0.020             |                  | 1          |       |
| t-1,2-Dichloroethene        | ND             | 0.0010            |              | 1         |       | Diisopropyl I          | •             | •            | ND             | 0.020             |                  | 1          |       |
| 1,2-Dichloropropane         | ND             | 0.0010            |              | 1         |       | Ethyl-t-Butyl          | ,             | ,            | ND             | 0.0010            |                  | 1          |       |
| 1,3-Dichloropropane         | ND             | 0.0010            |              | 1         |       | Tert-Amyl-M            | `             | ,            | ND             | 0.0010            |                  | 1          |       |
| 2,2-Dichloropropane         | ND             | 0.0010            |              | 1         |       | Ethanol                | eu iyi Eu lel | (IAIVIE)     | ND             | 0.50              |                  | 1          |       |
| Surrogates:                 | <u>REC (%)</u> | Control<br>Limits | Qu           | <u>al</u> |       | Surrogates:            |               |              | REC (%)        | Control<br>Limits | Q                | <u>ual</u> |       |
| Dibromofluoromethane        | 117            | 79-133            |              |           |       | 1,2-Dichloro           | othano-d4     |              | 115            | 71-155            |                  |            |       |
|                             |                | 80-120            |              |           |       | •                      | cuiane-u4     |              |                | 80-120            |                  |            |       |
| 1,4-Bromofluorobenzene      | 86             | ōU-1∠U            |              |           |       | Toluene-d8             |               |              | 97             | ōU-12U            |                  |            |       |



it , DF - Dilution Factor , Qual - Qualifiers



Project: 3740 Pacific Avenue, Tacoma, WA

# **Analytical Report**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

10-08-1402 EPA 5035 **EPA 8260B** 

08/18/10

Units:


mg/kg Page 21 of 25

| Method Blank         | 095-01-025-20,295    | N/A                    | Solid  | GC/MS UU   | 08/26/10         | 08/26/10              | 100826L01   |
|----------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |

|                             |         |                   |            |            |      |                                       |         | 14                | 4:24       |           |      |
|-----------------------------|---------|-------------------|------------|------------|------|---------------------------------------|---------|-------------------|------------|-----------|------|
|                             |         |                   |            |            |      |                                       |         |                   |            |           |      |
| <u>Parameter</u>            | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u>  | Qual | <u>Parameter</u>                      | Result  | <u>RL</u>         | <u>MDL</u> | <u>DF</u> | Qual |
| Acetone                     | ND      | 0.050             |            | 1          |      | 1,1-Dichloropropene                   | ND      | 0.0020            |            | 1         |      |
| Benzene                     | ND      | 0.0010            |            | 1          |      | c-1,3-Dichloropropene                 | ND      | 0.0010            |            | 1         |      |
| Bromobenzene                | ND      | 0.0010            |            | 1          |      | t-1,3-Dichloropropene                 | ND      | 0.0020            |            | 1         |      |
| Bromochloromethane          | ND      | 0.0020            |            | 1          |      | Ethylbenzene                          | ND      | 0.0010            |            | 1         |      |
| Bromodichloromethane        | ND      | 0.0010            |            | 1          |      | 2-Hexanone                            | ND      | 0.020             |            | 1         |      |
| Bromoform                   | ND      | 0.0050            |            | 1          |      | Isopropylbenzene                      | ND      | 0.0010            |            | 1         |      |
| Bromomethane                | ND      | 0.020             |            | 1          |      | p-Isopropyltoluene                    | ND      | 0.0010            |            | 1         |      |
| 2-Butanone                  | ND      | 0.020             |            | 1          |      | Methylene Chloride                    | ND      | 0.010             |            | 1         |      |
| n-Butylbenzene              | ND      | 0.0010            |            | 1          |      | 4-Methyl-2-Pentanone                  | ND      | 0.020             |            | 1         |      |
| sec-Butylbenzene            | ND      | 0.0010            |            | 1          |      | Naphthalene                           | ND      | 0.010             |            | 1         |      |
| tert-Butylbenzene           | ND      | 0.0010            |            | 1          |      | n-Propylbenzene                       | ND      | 0.0020            |            | 1         |      |
| Carbon Disulfide            | ND      | 0.010             |            | 1          |      | Styrene                               | ND      | 0.0010            |            | 1         |      |
| Carbon Tetrachloride        | ND      | 0.0010            |            | 1          |      | 1,1,1,2-Tetrachloroethane             | ND      | 0.0010            |            | 1         |      |
| Chlorobenzene               | ND      | 0.0010            |            | 1          |      | 1,1,2,2-Tetrachloroethane             | ND      | 0.0020            |            | 1         |      |
| Chloroethane                | ND      | 0.0020            |            | 1          |      | Tetrachloroethene                     | ND      | 0.0010            |            | 1         |      |
| Chloroform                  | ND      | 0.0010            |            | 1          |      | Toluene                               | ND      | 0.0010            |            | 1         |      |
| Chloromethane               | ND      | 0.020             |            | 1          |      | 1,2,3-Trichlorobenzene                | ND      | 0.0020            |            | 1         |      |
| 2-Chlorotoluene             | ND      | 0.0010            |            | 1          |      | 1,2,4-Trichlorobenzene                | ND      | 0.0020            |            | 1         |      |
| 4-Chlorotoluene             | ND      | 0.0010            |            | 1          |      | 1,1,1-Trichloroethane                 | ND      | 0.0010            |            | 1         |      |
| Dibromochloromethane        | ND      | 0.0020            |            | 1          |      | 1,1,2-Trichloroethane                 | ND      | 0.0010            |            | 1         |      |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0050            |            | 1          |      | 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND      | 0.010             |            | 1         |      |
| 1,2-Dibromoethane           | ND      | 0.0010            |            | 1          |      | Trichloroethene                       | ND      | 0.0020            |            | 1         |      |
| Dibromomethane              | ND      | 0.0010            |            | 1          |      | Trichlorofluoromethane                | ND      | 0.010             |            | 1         |      |
| 1,2-Dichlorobenzene         | ND      | 0.0010            |            | 1          |      | 1,2,3-Trichloropropane                | ND      | 0.0020            |            | 1         |      |
| 1,3-Dichlorobenzene         | ND      | 0.0010            |            | 1          |      | 1,2,4-Trimethylbenzene                | ND      | 0.0020            |            | 1         |      |
| 1,4-Dichlorobenzene         | ND      | 0.0010            |            | 1          |      | 1,3,5-Trimethylbenzene                | ND      | 0.0020            |            | 1         |      |
| Dichlorodifluoromethane     | ND      | 0.0020            |            | 1          |      | Vinyl Acetate                         | ND      | 0.010             |            | 1         |      |
| 1,1-Dichloroethane          | ND      | 0.0010            |            | 1          |      | Vinyl Chloride                        | ND      | 0.0010            |            | 1         |      |
| 1,2-Dichloroethane          | ND      | 0.0010            |            | 1          |      | Xylenes (total)                       | ND      | 0.0020            |            | 1         |      |
| 1,1-Dichloroethene          | ND      | 0.0010            |            | 1          |      | Methyl-t-Butyl Ether (MTBE)           | ND      | 0.0020            |            | 1         |      |
| c-1,2-Dichloroethene        | ND      | 0.0010            |            | 1          |      | Tert-Butyl Alcohol (TBA)              | ND      | 0.020             |            | 1         |      |
| t-1,2-Dichloroethene        | ND      | 0.0010            |            | 1          |      | Diisopropyl Ether (DIPE)              | ND      | 0.0010            |            | 1         |      |
| 1,2-Dichloropropane         | ND      | 0.0010            |            | 1          |      | Ethyl-t-Butyl Ether (ETBE)            | ND      | 0.0010            |            | 1         |      |
| 1,3-Dichloropropane         | ND      | 0.0010            |            | 1          |      | Tert-Amyl-Methyl Ether (TAME)         | ND      | 0.0010            |            | 1         |      |
| 2,2-Dichloropropane         | ND      | 0.0050            |            | 1          |      | Ethanol                               | ND      | 0.50              |            | 1         |      |
| Surrogates:                 | REC (%) | Control<br>Limits | Q          | <u>ual</u> |      | Surrogates:                           | REC (%) | Control<br>Limits | Qu         | <u>al</u> |      |
| Dibromofluoromethane        | 104     | 79-133            |            |            |      | 1,2-Dichloroethane-d4                 | 106     | 71-155            |            |           |      |
| 1,4-Bromofluorobenzene      | 95      | 80-120            |            |            |      | Toluene-d8                            | 97      | 80-120            |            |           |      |
| 1,4-DIOITIOHUOIODEHZEHE     | 90      | 00-120            |            |            |      | i oluene-do                           | זו      | 00-120            |            |           |      |

Qual - Qualifiers

RL - Reporting Limit , DF - Dilution Factor ,



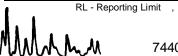
Units:



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

EPA 8260B mg/kg

08/18/10


10-08-1402

**EPA 5035** 


Project: 3740 Pacific Avenue, Tacoma, WA

Page 22 of 25

| Client Sample Number        |                 |                   | Lab San<br>Numb |              | Date/Time<br>Collected | Matrix        | Instrument      | Date<br>Prepar |                  | ate/Time<br>nalyzed | QC Bato    | h ID |
|-----------------------------|-----------------|-------------------|-----------------|--------------|------------------------|---------------|-----------------|----------------|------------------|---------------------|------------|------|
| Method Blank                |                 |                   | 095-01-0        | 025-20,30    | 5 N/A                  | Solid         | GC/MS UU        | 08/26/1        | 10 0             | 8/26/10<br>14:50    | 1008261    | L02  |
| Comment(s): -Results were   | evaluated to th | e MDL, co         | oncentratio     | ns >= to th  | ne MDL but < RL,       | if found, are | e qualified wit | th a "J" flag  | J.               |                     |            |      |
| <u>Parameter</u>            | <u>Result</u>   | <u>RL</u>         | <u>MDL</u>      | <u>DF</u> Qι | ual Parameter          |               |                 | Result         | <u>RL</u>        | <u>MDL</u>          | <u>DF</u>  | Qual |
| Acetone                     | ND              | 5.0               | 0.64            | 100          | 1,1-Dichlord           | propene       |                 | ND             | 0.20             | 0.022               | 100        |      |
| Benzene                     | ND              | 0.10              | 0.013           | 100          | c-1,3-Dichlo           | ropropene     |                 | ND             | 0.10             | 0.018               | 100        |      |
| Bromobenzene                | ND              | 0.10              | 0.021           | 100          | t-1,3-Dichlo           | ropropene     |                 | ND             | 0.20             | 0.19                | 100        |      |
| Bromochloromethane          | ND              | 0.20              | 0.14            | 100          | Ethylbenzer            | ie            |                 | ND             | 0.10             | 0.015               | 100        |      |
| Bromodichloromethane        | ND              | 0.10              | 0.015           | 100          | 2-Hexanone             | <b>:</b>      |                 | ND             | 2.0              | 0.56                | 100        |      |
| Bromoform                   | ND              | 0.50              | 0.066           | 100          | Isopropylbei           | nzene         |                 | ND             | 0.10             | 0.012               | 100        |      |
| Bromomethane                | ND              | 2.0               | 0.18            | 100          | p-Isopropylt           | oluene        |                 | ND             | 0.10             | 0.012               | 100        |      |
| 2-Butanone                  | ND              | 2.0               | 0.96            | 100          | Methylene C            | Chloride      |                 | ND             | 1.0              | 0.52                | 100        |      |
| n-Butylbenzene              | ND              | 0.10              | 0.022           | 100          | 4-Methyl-2-F           | Pentanone     |                 | ND             | 2.0              | 0.20                | 100        |      |
| sec-Butylbenzene            | ND              | 0.10              | 0.010           | 100          | Naphthalene            | Э             |                 | ND             | 1.0              | 0.033               | 100        |      |
| tert-Butylbenzene           | ND              | 0.10              | 0.012           | 100          | n-Propylben            | zene          |                 | ND             | 0.20             | 0.10                | 100        |      |
| Carbon Disulfide            | ND              | 1.0               | 0.018           | 100          | Styrene                |               |                 | ND             | 0.10             | 0.021               | 100        |      |
| Carbon Tetrachloride        | ND              | 0.10              | 0.032           | 100          | 1,1,1,2-Tetr           | achloroethar  | ne              | ND             | 0.10             | 0.033               | 100        |      |
| Chlorobenzene               | ND              | 0.10              | 0.015           | 100          | 1,1,2,2-Tetr           | achloroethar  | ne              | ND             | 0.20             | 0.023               | 100        |      |
| Chloroethane                | ND              | 0.20              | 0.042           | 100          | Tetrachloroe           | ethene        |                 | ND             | 0.10             | 0.017               | 100        |      |
| Chloroform                  | ND              | 0.10              | 0.017           | 100          | Toluene                |               |                 | ND             | 0.10             | 0.015               | 100        |      |
| Chloromethane               | ND              | 2.0               | 0.29            | 100          | 1,2,3-Trichle          | orobenzene    |                 | ND             | 0.20             | 0.020               | 100        |      |
| 2-Chlorotoluene             | ND              | 0.10              | 0.012           | 100          | 1,2,4-Trichle          | orobenzene    |                 | ND             | 0.20             | 0.018               | 100        |      |
| 4-Chlorotoluene             | ND              | 0.10              | 0.010           | 100          | 1,1,1-Trichle          | oroethane     |                 | ND             | 0.10             | 0.025               | 100        |      |
| Dibromochloromethane        | ND              | 0.20              | 0.020           | 100          | 1,1,2-Trichle          | oroethane     |                 | ND             | 0.10             | 0.024               | 100        |      |
| 1,2-Dibromo-3-Chloropropane | ND              | 0.50              | 0.37            | 100          | 1,1,2-Trichle          | oro-1,2,2-Tri | fluoroethane    | ND             | 1.0              | 0.047               | 100        |      |
| 1,2-Dibromoethane           | ND              | 0.10              | 0.045           | 100          | Trichloroeth           | ene           |                 | ND             | 0.20             | 0.018               | 100        |      |
| Dibromomethane              | ND              | 0.10              | 0.070           | 100          | Trichlorofluc          | oromethane    |                 | ND             | 1.0              | 0.016               | 100        |      |
| 1,2-Dichlorobenzene         | ND              | 0.10              | 0.013           | 100          | 1,2,3-Trichle          | oropropane    |                 | ND             | 0.20             | 0.065               | 100        |      |
| 1,3-Dichlorobenzene         | ND              | 0.10              | 0.016           | 100          | 1,2,4-Trime            | thylbenzene   |                 | ND             | 0.20             | 0.012               | 100        |      |
| 1,4-Dichlorobenzene         | ND              | 0.10              | 0.015           | 100          | 1,3,5-Trime            | thylbenzene   |                 | ND             | 0.20             | 0.0099              | 100        |      |
| Dichlorodifluoromethane     | ND              | 0.20              | 0.019           | 100          | Vinyl Acetat           | е             |                 | ND             | 1.0              | 0.75                | 100        |      |
| 1,1-Dichloroethane          | ND              | 0.10              | 0.016           | 100          | Vinyl Chloric          | de            |                 | ND             | 0.10             | 0.021               | 100        |      |
| 1,2-Dichloroethane          | ND              | 0.10              | 0.017           | 100          | Xylenes (total         | al)           |                 | ND             | 0.20             | 0.020               | 100        |      |
| 1,1-Dichloroethene          | ND              | 0.10              | 0.014           | 100          | Methyl-t-But           | tyl Ether (MT | BE)             | ND             | 0.20             | 0.013               | 100        |      |
| c-1,2-Dichloroethene        | ND              | 0.10              | 0.028           | 100          | Tert-Butyl A           | Icohol (TBA)  | )               | ND             | 2.0              | 1.5                 | 100        |      |
| t-1,2-Dichloroethene        | ND              | 0.10              | 0.025           | 100          | Diisopropyl            | Ether (DIPE)  | )               | ND             | 0.10             | 0.025               | 100        |      |
| 1,2-Dichloropropane         | ND              | 0.10              | 0.027           | 100          | Ethyl-t-Butyl          | Ether (ETB    | E)              | ND             | 0.10             | 0.021               | 100        |      |
| 1,3-Dichloropropane         | ND              | 0.10              | 0.018           | 100          | Tert-Amyl-M            | lethyl Ether  | (TAME)          | ND             | 0.10             | 0.013               | 100        |      |
| 2,2-Dichloropropane         | ND              | 0.50              | 0.046           | 100          | Ethanol                |               |                 | ND             | 50               | 10                  | 100        |      |
| Surrogates:                 | REC (%)         | Control<br>Limits | Qual            |              | Surrogates:            |               |                 | REC (%)        | Contro<br>Limits | o <u>l</u> Qu       | <u>ual</u> |      |
| Dibromofluoromethane        | 97              | 79-133            |                 |              | 1,2-Dichlord           | ethane-d4     |                 | 103            | 71-15            | 5                   |            |      |
| 1,4-Bromofluorobenzene      | 94              | 80-120            |                 |              | Toluene-d8             |               |                 | 99             | 80-120           | )                   |            |      |
| .,. 2.3                     | 0.              |                   |                 |              | 10140110 40            |               |                 |                |                  | -                   |            |      |



, DF - Dilution Factor , Qual - Qualifiers



Lab Sample



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

**EPA 5035 EPA 8260B** mg/kg

10-08-1402

08/18/10

Units:

Date/Time

Project: 3740 Pacific Avenue, Tacoma, WA

Page 23 of 25

Date/Time

Date

| Client Sample Number                   |          |                   |           | ample<br>nber |             | Collected     | Matrix              | Instrument          | Date<br>Prepar |                  | ate/Time<br>nalyzed | QC Bat | ch ID      |
|----------------------------------------|----------|-------------------|-----------|---------------|-------------|---------------|---------------------|---------------------|----------------|------------------|---------------------|--------|------------|
| Method Blank                           |          |                   | 095-0     | 1-025-2       | 0,308       | N/A           | Solid               | GC/MS UU            | 08/27/1        | 10 0             | 8/27/10<br>12:57    | 100827 | L01        |
| Parameter                              | Result   | <u>RL</u>         | MDL       | <u>DF</u>     | Qual        | Parameter     |                     |                     | Result         | <u>RL</u>        | MDL                 | DF     | Qual       |
| Acetone                                | ND       | 0.050             | IVIDE     | 1             | <u>Quui</u> | 1,1-Dichloro  | propopo             |                     | ND             | 0.0020           |                     | 1      | <u>Quu</u> |
| Benzene                                | ND       | 0.0010            |           | 1             |             | c-1,3-Dichlo  |                     |                     | ND             | 0.0020           |                     | 1      |            |
| Bromobenzene                           | ND       | 0.0010            |           | 1             |             | t-1,3-Dichlo  |                     |                     | ND             | 0.0010           |                     | 1      |            |
| Bromochloromethane                     | ND       | 0.0020            |           | 1             |             | Ethylbenzer   |                     |                     | ND             | 0.0020           |                     | 1      |            |
| Bromodichloromethane                   | ND       | 0.0020            |           | 1             |             | 2-Hexanone    |                     |                     | ND             | 0.0010           |                     | 1      |            |
| Bromoform                              | ND       | 0.0050            |           | 1             |             | Isopropylbe   |                     |                     | ND             | 0.020            | ı                   | 1      |            |
| Bromomethane                           | ND       | 0.000             |           | 1             |             | p-Isopropylt  |                     |                     | ND             | 0.0010           |                     | 1      |            |
| 2-Butanone                             | ND       | 0.020             |           | 1             |             | Methylene C   |                     |                     | ND             | 0.0010           | '                   | 1      |            |
| z-Butarione<br>n-Butylbenzene          | ND       | 0.020             |           | 1             |             | 4-Methyl-2-I  |                     |                     | ND             | 0.010            |                     | 1      |            |
| sec-Butylbenzene                       | ND       | 0.0010            |           | 1             |             | Naphthalen    |                     |                     | ND             | 0.020            |                     | 1      |            |
| tert-Butylbenzene                      | ND       | 0.0010            |           | 1             |             | n-Propylben   |                     |                     | ND             | 0.0020           |                     | 1      |            |
| Carbon Disulfide                       | ND       | 0.0010            |           | 1             |             | Styrene       | Zerie               |                     | ND             | 0.0020           |                     | 1      |            |
| Carbon Distillide Carbon Tetrachloride | ND       | 0.0010            |           | 1             |             | 1,1,1,2-Tetr  | achlaraatha         | nno.                | ND             | 0.0010           |                     | 1      |            |
| Chlorobenzene                          | ND<br>ND | 0.0010            |           | 1             |             | 1,1,2,2-Tetr  |                     |                     | ND             | 0.0010           |                     | 1      |            |
| Chloroethane                           | ND       | 0.0010            |           | 1             |             | Tetrachloro   |                     | ıı i <del>e</del>   | ND             | 0.0020           |                     | 1      |            |
| Chloroform                             | ND<br>ND | 0.0020            |           | 1             |             | Toluene       | eulene              |                     | ND<br>ND       | 0.0010           |                     | 1      |            |
|                                        |          | 0.0010            |           | 1             |             |               | ~ * ~ h ~ ~ ~ ~ ~ ~ |                     | ND<br>ND       | 0.0010           |                     | 1      |            |
| Chloromethane                          | ND       | 0.020             |           | 1             |             | 1,2,3-Trichle |                     |                     |                | 0.0020           |                     | 1      |            |
| 2-Chlorotoluene                        | ND<br>ND | 0.0010            |           | 1             |             | 1,2,4-Trichle |                     | ,                   | ND<br>ND       | 0.0020           |                     | 1      |            |
| 4-Chlorotoluene                        | ND<br>ND | 0.0010            |           | 1             |             | 1,1,1-Trichle |                     |                     | ND<br>ND       | 0.0010           |                     | 1      |            |
| Dibromochloromethane                   |          |                   |           | 1             |             | 1,1,2-Trichle |                     | rifl a ra ath a a a |                | 0.0010           |                     | 1      |            |
| 1,2-Dibromo-3-Chloropropane            | ND       | 0.0050            |           | 1             |             |               |                     | rifluoroethane      |                |                  |                     | 1      |            |
| 1,2-Dibromoethane                      | ND       | 0.0010<br>0.0010  |           | 1             |             | Trichloroeth  |                     |                     | ND             | 0.0020<br>0.010  |                     | 1      |            |
| Dibromomethane                         | ND       |                   |           | 1             |             | Trichlorofluc |                     |                     | ND             |                  |                     | 1      |            |
| 1,2-Dichlorobenzene                    | ND       | 0.0010            |           | 1             |             | 1,2,3-Trichle |                     |                     | ND             | 0.0020           |                     | 1      |            |
| 1,3-Dichlorobenzene                    | ND       | 0.0010            |           | 1             |             | 1,2,4-Trime   |                     |                     | ND             | 0.0020           |                     | 1      |            |
| 1,4-Dichlorobenzene                    | ND       | 0.0010            |           | 1             |             | 1,3,5-Trime   | ,                   | 9                   | ND             | 0.0020           | 1                   | 1      |            |
| Dichlorodifluoromethane                | ND       | 0.0020            |           | 1             |             | Vinyl Acetat  |                     |                     | ND             | 0.010            |                     | 1      |            |
| 1,1-Dichloroethane                     | ND       | 0.0010            |           |               |             | Vinyl Chloric |                     |                     | ND             | 0.0010           |                     | 1      |            |
| 1,2-Dichloroethane                     | ND       | 0.0010            |           | 1             |             | Xylenes (tot  | ,                   | <b>TDE</b> \        | ND             | 0.0020           |                     | 1      |            |
| 1,1-Dichloroethene                     | ND       | 0.0010            |           | 1             |             | Methyl-t-Bu   | ,                   | ,                   | ND             | 0.0020           |                     |        |            |
| c-1,2-Dichloroethene                   | ND       | 0.0010            |           | 1             |             | Tert-Butyl A  | ,                   | ,                   | ND             | 0.020            |                     | 1      |            |
| t-1,2-Dichloroethene                   | ND       | 0.0010            |           | 1             |             | Diisopropyl   | •                   | ,                   | ND             | 0.0010           |                     | 1      |            |
| 1,2-Dichloropropane                    | ND       | 0.0010            |           | 1             |             | Ethyl-t-Buty  |                     | ,                   | ND             | 0.0010           |                     | 1      |            |
| 1,3-Dichloropropane                    | ND       | 0.0010            |           | 1             |             | Tert-Amyl-N   | lethyl Ether        | ·(IAME)             | ND             | 0.0010           |                     | 1      |            |
| 2,2-Dichloropropane                    | ND       | 0.0050            |           | 1             |             | Ethanol       |                     |                     | ND             | 0.50             |                     | 1      |            |
| Surrogates:                            | REC (%)  | Control<br>Limits | <u>Qu</u> | <u>ıal</u>    |             | Surrogates:   |                     |                     | REC (%)        | Contro<br>Limits | <u>l C</u>          | ual    |            |
| Dibromofluoromethane                   | 95       | 79-133            |           |               |             | 1,2-Dichloro  | ethane-d4           |                     | 106            | 71-155           | 5                   |        |            |
| 1,4-Bromofluorobenzene                 | 93       | 80-120            |           |               |             | Toluene-d8    |                     |                     | 97             | 80-120           | )                   |        |            |

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received:
Work Order No:
Preparation:
Method:

EPA 5035 EPA 8260B

10-08-1402

08/18/10

100

100

100

100

100

100

100

100

100

100

100

100

100

0.016

0.065

0.012

0.0099

0.75

0.021

0.020

0.013

0.025

0.021

0.013

1.5

Units: mg/kg Page 24 of 25

ND

1.0

0.20

0.20

0.20

1.0

0.10

0.20

0.20

2.0

0.10

0.10

0.10

Project: 3740 Pacific Avenue, Tacoma, WA

Lab Sample Date/Time Date Date/Time QC Batch ID Matrix Instrument Collected Client Sample Number Number Prepared Analyzed 08/27/10 Method Blank 095-01-025-20,310 N/A Solid GC/MS Z 08/27/10 100827L01 13:14 Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Result RL MDL DF Qual <u>Parameter</u> MDL DF Qual Parameter 100 100 Acetone ND 5.0 0.64 1.1-Dichloropropene ND 0.20 0.022 Benzene ND 0.10 0.013 100 c-1.3-Dichloropropene ND 0.10 0.018 100 100 100 Bromobenzene ND 0.10 0.021 t-1,3-Dichloropropene ND 0.20 0.19 100 ND 0.015 100 Bromochloromethane 0.20 0.14 Ethylbenzene ND 0.10 100 100 ND 0.10 0.015 2-Hexanone ND 2.0 0.56 Bromodichloromethane Bromoform ND 0.50 0.066 100 Isopropylbenzene ND 0.10 0.012 100 100 100 Bromomethane 1.3 2.0 0.18 J p-Isopropyltoluene ND 0.10 0.012 100 2-Butanone ND 2.0 0.96 Methylene Chloride ND 1.0 0.52 100 0.10 100 100 n-Butylbenzene ND 0.022 4-Methyl-2-Pentanone ND 2.0 0.20 100 0.033 100 Naphthalene sec-Butylbenzene ND 0.10 0.010 0.050 1.0 100 tert-Butylbenzene ND 0.10 0.012 n-Propylbenzene 0.20 100 ND 0.10 100 0.021 100 Carbon Disulfide ND 0.018 0.10 1.0 Styrene ND Carbon Tetrachloride 0.032 100 1,1,1,2-Tetrachloroethane 100 ND 0.10 0.10 0.033 ND Chlorobenzene ND 0.015 100 ND 0.20 100 0.10 1.1.2.2-Tetrachloroethane 0.023 100 Chloroethane ND 0.20 0.042 Tetrachloroethene NΠ 0.10 0.017 100 Chloroform ND 0.10 0.017 100 Toluene ND 0.10 0.015 100 Chloromethane ND 2.0 0.29 100 1.2.3-Trichlorobenzene ND 0.20 0.020 100 100 100 2-Chlorotoluene ND 0.10 0.012 1,2,4-Trichlorobenzene ND 0.20 0.018 100 100 4-Chlorotoluene ND 0.10 0.010 1,1,1-Trichloroethane ND 0.10 0.025 Dibromochloromethane ND 0.20 0.020 100 1,1,2-Trichloroethane ND 0.10 0.024 100 100 1,2-Dibromo-3-Chloropropane 0.50 0.37 1,1,2-Trichloro-1,2,2-Trifluoroethane 0.047 100 ND ND 1.0 100 1,2-Dibromoethane 0.10 0.045 Trichloroethene 0.20 0.018 100 ND ND

2,2-Dichloropropane ND 0.50 0.046 100 Ethanol ND 50 Surrogates: **REC (%)** Qual Surrogates: REC (%) Control Qual Control Limits Limits Dibromofluoromethane 98 79-133 1.2-Dichloroethane-d4 71-155 120 80-120 80-120 105 1,4-Bromofluorobenzene Toluene-d8 101

100

100

100

100

100

100

100

100

100

100

100

100

0.070

0.013

0.016

0.015

0.019

0.016

0.017

0.014

0.028

0.025

0.027

0.018

RL - Reporting Limit ,

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1.1-Dichloroethane

1.2-Dichloroethane

1.1-Dichloroethene

c-1.2-Dichloroethene

t-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

Dichlorodifluoromethane

ND

0.10

0.10

0.10

0.10

0.20

0.10

0.10

0.10

0.10

0.10

0.10

0.10

, DF - Dilution Factor , Qual - Qualifiers

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Vinyl Acetate

Vinyl Chloride

Xylenes (total)



Lab Sample

Number

Units:

Date/Time

Collected



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Client Sample Number

Date Received:
Work Order No:
Preparation:
Method:

Matrix

10-08-1402 EPA 5035 EPA 8260B

mg/kg

QC Batch ID

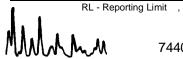
08/18/10

\_

Instrument

Date

Prepared


Project: 3740 Pacific Avenue, Tacoma, WA

Page 25 of 25

Date/Time

Analyzed

|                             |         |                   | Nulliber Collected |            |             |                         | -              |         | 27/40             |               |            |      |
|-----------------------------|---------|-------------------|--------------------|------------|-------------|-------------------------|----------------|---------|-------------------|---------------|------------|------|
| Method Blank                |         |                   | 095-0              | 1-025-2    | 0,311       | N/A Solid               | GC/MS PP       | 08/27/1 |                   | 27/10<br>3:29 | 100827     | L01  |
| Devenuetos                  | Dooult  | DI                | MDI                | DE         | Ougl        | Dorometer               |                | Danult  | DI                | MDI           | DE         | Ouel |
| <u>Parameter</u>            | Result  | <u>RL</u>         | <u>MDL</u>         | <u>DF</u>  | <u>Qual</u> | <u>Parameter</u>        |                | Result  | <u>RL</u>         | <u>MDL</u>    | <u>DF</u>  | Qual |
| Acetone                     | ND      | 0.050             |                    | 1          |             | 1,1-Dichloropropene     |                | ND      | 0.0020            |               | 1          |      |
| Benzene                     | ND      | 0.0010            |                    | 1          |             | c-1,3-Dichloropropene   |                | ND      | 0.0010            |               | 1          |      |
| Bromobenzene                | ND      | 0.0010            |                    | 1          |             | t-1,3-Dichloropropene   |                | ND      | 0.0020            |               | 1          |      |
| Bromochloromethane          | ND      | 0.0020            |                    | 1          |             | Ethylbenzene            |                | ND      | 0.0010            |               | •          |      |
| Bromodichloromethane        | ND      | 0.0010            |                    | 1          |             | 2-Hexanone              |                | ND      | 0.020             |               | 1          |      |
| Bromoform                   | ND      | 0.0050            |                    | 1          |             | Isopropylbenzene        |                | ND      | 0.0010            |               | 1          |      |
| Bromomethane                | ND      | 0.020             |                    | 1          |             | p-Isopropyltoluene      |                | ND      | 0.0010            |               | 1          |      |
| 2-Butanone                  | ND      | 0.020             |                    | 1          |             | Methylene Chloride      |                | ND      | 0.010             |               | 1          |      |
| n-Butylbenzene              | ND      | 0.0010            |                    | 1          |             | 4-Methyl-2-Pentanone    |                | ND      | 0.020             |               | 1          |      |
| sec-Butylbenzene            | ND      | 0.0010            |                    | 1          |             | Naphthalene             |                | ND      | 0.010             |               | 1          |      |
| tert-Butylbenzene           | ND      | 0.0010            |                    | 1          |             | n-Propylbenzene         |                | ND      | 0.0020            |               | 1          |      |
| Carbon Disulfide            | ND      | 0.010             |                    | 1          |             | Styrene                 |                | ND      | 0.0010            |               | 1          |      |
| Carbon Tetrachloride        | ND      | 0.0010            |                    | 1          |             | 1,1,1,2-Tetrachloroetha |                | ND      | 0.0010            |               | 1          |      |
| Chlorobenzene               | ND      | 0.0010            |                    | 1          |             | 1,1,2,2-Tetrachloroetha | ane            | ND      | 0.0020            |               | 1          |      |
| Chloroethane                | ND      | 0.0020            |                    | 1          |             | Tetrachloroethene       |                | ND      | 0.0010            |               | 1          |      |
| Chloroform                  | ND      | 0.0010            |                    | 1          |             | Toluene                 |                | ND      | 0.0010            |               | 1          |      |
| Chloromethane               | ND      | 0.020             |                    | 1          |             | 1,2,3-Trichlorobenzene  | <b>;</b>       | ND      | 0.0020            |               | 1          |      |
| 2-Chlorotoluene             | ND      | 0.0010            |                    | 1          |             | 1,2,4-Trichlorobenzene  | )              | ND      | 0.0020            |               | 1          |      |
| 4-Chlorotoluene             | ND      | 0.0010            |                    | 1          |             | 1,1,1-Trichloroethane   |                | ND      | 0.0010            |               | 1          |      |
| Dibromochloromethane        | ND      | 0.0020            |                    | 1          |             | 1,1,2-Trichloroethane   |                | ND      | 0.0010            |               | 1          |      |
| 1,2-Dibromo-3-Chloropropane | ND      | 0.0050            |                    | 1          |             | 1,1,2-Trichloro-1,2,2-T | rifluoroethane | ND      | 0.010             |               | 1          |      |
| 1,2-Dibromoethane           | ND      | 0.0010            |                    | 1          |             | Trichloroethene         |                | ND      | 0.0020            |               | 1          |      |
| Dibromomethane              | ND      | 0.0010            |                    | 1          |             | Trichlorofluoromethane  | <b>)</b>       | ND      | 0.010             |               | 1          |      |
| 1,2-Dichlorobenzene         | ND      | 0.0010            |                    | 1          |             | 1,2,3-Trichloropropane  |                | ND      | 0.0020            |               | 1          |      |
| 1,3-Dichlorobenzene         | ND      | 0.0010            |                    | 1          |             | 1,2,4-Trimethylbenzene  |                | ND      | 0.0020            |               | 1          |      |
| 1,4-Dichlorobenzene         | ND      | 0.0010            |                    | 1          |             | 1,3,5-Trimethylbenzene  | Э              | ND      | 0.0020            |               | 1          |      |
| Dichlorodifluoromethane     | ND      | 0.0020            |                    | 1          |             | Vinyl Acetate           |                | ND      | 0.010             |               | 1          |      |
| 1,1-Dichloroethane          | ND      | 0.0010            |                    | 1          |             | Vinyl Chloride          |                | ND      | 0.0010            |               | 1          |      |
| 1,2-Dichloroethane          | ND      | 0.0010            |                    | 1          |             | Xylenes (total)         |                | ND      | 0.0020            |               | 1          |      |
| 1,1-Dichloroethene          | ND      | 0.0010            |                    | 1          |             | Methyl-t-Butyl Ether (M | TBE)           | ND      | 0.0020            |               | 1          |      |
| c-1,2-Dichloroethene        | ND      | 0.0010            |                    | 1          |             | Tert-Butyl Alcohol (TB/ | A)             | ND      | 0.020             |               | 1          |      |
| t-1,2-Dichloroethene        | ND      | 0.0010            |                    | 1          |             | Diisopropyl Ether (DIPI | ≣)             | ND      | 0.0010            |               | 1          |      |
| 1,2-Dichloropropane         | ND      | 0.0010            |                    | 1          |             | Ethyl-t-Butyl Ether (ET | BE)            | ND      | 0.0010            |               | 1          |      |
| 1,3-Dichloropropane         | ND      | 0.0010            |                    | 1          |             | Tert-Amyl-Methyl Ether  | (TAME)         | ND      | 0.0010            |               | 1          |      |
| 2,2-Dichloropropane         | ND      | 0.0050            |                    | 1          |             | Ethanol                 |                | ND      | 0.50              |               | 1          |      |
| Surrogates:                 | REC (%) | Control<br>Limits | <u>Q</u> ı         | <u>ual</u> |             | Surrogates:             |                | REC (%) | Control<br>Limits | Q             | <u>ual</u> |      |
| Dibromofluoromethane        | 101     | 79-133            |                    |            |             | 1,2-Dichloroethane-d4   |                | 106     | 71-155            |               |            |      |
|                             | 97      | 80-120            |                    |            |             | Toluene-d8              |                | 99      | 80-120            |               |            |      |



t , DF - Dilution Factor , Qual - Qualifiers



# **Quality Control - Spike/Spike Duplicate**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: 08/18/10 10-08-1402 EPA 3550B NWTPH-Dx

#### Project 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID   | Matrix  | Instrument | Date<br>Prepared | A          | Date<br>nalyzed | MS/MSD Batch<br>Number |
|-----------------------------|---------|------------|------------------|------------|-----------------|------------------------|
| SO-241876-081310-JS-SB-12-5 | Solid   | GC 47      | 08/20/10         | 0          | 8/20/10         | 100820S14              |
| <u>Parameter</u>            | MS %REC | MSD %REC   | %REC CL          | <u>RPD</u> | RPD CL          | <u>Qualifiers</u>      |
| TPH as Diesel Range         | 96      | 95         | 64-130           | 1          | 0-15            |                        |

MMM\_

RPD - Relative Percent Difference , CL - Control Limit



# **Quality Control - Spike/Spike Duplicate**



Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: 08/18/10 10-08-1402 EPA 3545 EPA 8082

#### Project 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID    | Matrix   | Instrument | Date<br>Prepared |        | Date<br>Analyzed | MS/MSD Batch<br>Number |
|------------------------------|----------|------------|------------------|--------|------------------|------------------------|
| SO-241876-081310-JS-SB-12-5  | Solid    | GC 58      | 08/19/10         |        | 08/21/10         | 100819S14              |
| <u>Parameter</u>             | MS %REC  | MSD %REC   | %REC CL          | RPD    | RPD CL           | Qualifiers             |
| Aroclor-1016<br>Aroclor-1260 | 99<br>94 | 100<br>98  | 50-135<br>50-135 | 1<br>5 | 0-20<br>0-25     |                        |

RPD - Relative Percent Difference ,
7440 Lincoln

nce, CL - Control Limit





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 3550B NWTPH-Dx

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared       | Date<br>Analyze |            | LCS/LCSD Batc<br>Number | h          |
|---------------------------|--------|------------|------------------------|-----------------|------------|-------------------------|------------|
| 099-12-838-99             | Solid  | GC 47      | 08/20/10               | 08/20/1         | 0          | 100820B14S              |            |
|                           |        |            |                        |                 |            |                         |            |
| <u>Parameter</u>          | LCS %  | 6REC LCSD  | <u>%REC</u> <u>%</u> I | REC CL          | <u>RPD</u> | RPD CL                  | Qualifiers |
| TPH as Diesel Range       | 91     | 96         |                        | 75-123          | 6          | 0-12                    |            |

MMM\_





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared | Date<br>Analyz |     | LCS/LCSD Batc<br>Number | h          |
|---------------------------|--------|------------|------------------|----------------|-----|-------------------------|------------|
| 099-12-848-145            | Solid  | GC 22      | 08/19/10         | 08/20/         | 10  | 100819B02               |            |
|                           |        |            |                  |                |     |                         |            |
| <u>Parameter</u>          | LCS %  | 6REC LCSD  | %REC %           | REC CL         | RPD | RPD CL                  | Qualifiers |
| TPH as Gasoline           | 94     | 95         |                  | 55-139         | 1   | 0-18                    |            |

MMM\_





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared     | Date<br>Analy: |            | LCS/LCSD Batcl<br>Number | n          |
|---------------------------|--------|------------|----------------------|----------------|------------|--------------------------|------------|
| 099-12-848-146            | Solid  | GC 22      | 08/19/10             | 08/21/         | 10         | 100819B03                |            |
|                           |        |            |                      |                |            |                          |            |
| <u>Parameter</u>          | LCS %  | REC LCSD   | <u>%REC</u> <u>%</u> | REC CL         | <u>RPD</u> | RPD CL                   | Qualifiers |
| TPH as Gasoline           | 88     | 89         |                      | 55-139         | 0          | 0-18                     |            |

RPD - Rel





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared     | Date<br>Analyz |            | LCS/LCSD Batc<br>Number | h          |
|---------------------------|--------|------------|----------------------|----------------|------------|-------------------------|------------|
| 099-12-848-147            | Solid  | GC 22      | 08/21/10             | 08/21/         | 10         | 100821B02               |            |
|                           |        |            |                      |                |            |                         |            |
| <u>Parameter</u>          | LCS %  | 6REC LCSD  | <u>%REC</u> <u>%</u> | REC CL         | <u>RPD</u> | RPD CL                  | Qualifiers |
| TPH as Gasoline           | 91     | 92         |                      | 55-139         | 2          | 0-18                    |            |

MANA\_





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared     | Date<br>Analyz |            | LCS/LCSD Batcl<br>Number | n          |
|---------------------------|--------|------------|----------------------|----------------|------------|--------------------------|------------|
| 099-12-848-149            | Solid  | GC 22      | 08/25/10             | 08/25/1        | 10         | 100825B03                |            |
|                           |        |            |                      |                |            |                          |            |
| <u>Parameter</u>          | LCS %  | REC LCSD   | <u>%REC</u> <u>%</u> | REC CL         | <u>RPD</u> | RPD CL                   | Qualifiers |
| TPH as Gasoline           | 91     | 88         |                      | 55-139         | 3          | 0-18                     |            |

RPD - Rel





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 NWTPH-Gx

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID | Matrix | Matrix Instrument |          | Date<br>Analyzed | LCS/LCSD Bat<br>Number | ch         |
|---------------------------|--------|-------------------|----------|------------------|------------------------|------------|
| 099-12-848-150            | Solid  | GC 22             | 08/26/10 | 08/26/10         | 100826B02              |            |
|                           |        |                   |          |                  |                        |            |
| <u>Parameter</u>          | LCS %  | REC LCSD          | %REC %F  | REC CL RF        | PD RPD CL              | Qualifiers |
| TPH as Gasoline           | 92     | 92                | 5        | 55-139 1         | 0-18                   |            |

MMM\_





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 3545 EPA 8082

Project: 3740 Pacific Avenue, Tacoma, WA

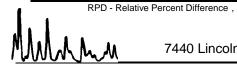
| Quality Control Sample ID | Matrix | Instrument | Date<br>Prepared | Date<br>Analyze | t   | LCS/LCSD Batcl<br>Number | n          |
|---------------------------|--------|------------|------------------|-----------------|-----|--------------------------|------------|
| 099-12-535-989            | Solid  | GC 58      | 08/19/10         | 08/20/10        |     | 100819L14                |            |
|                           |        |            |                  |                 |     |                          |            |
| <u>Parameter</u>          | LCS %  | REC LCSD   | %REC %I          | REC CL          | RPD | RPD CL                   | Qualifiers |
| Aroclor-1016              | 112    | 118        |                  | 50-135          | 5   | 0-20                     |            |
| Aroclor-1260              | 72     | 76         |                  | 50-135          | 5   | 0-25                     |            |

RPD - Relative Percent Difference , CL - Control Limit





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 EPA 8260B


Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared  | Date<br>Analyzed |     | LCS/LCSD I<br>Numbe |            |
|-------------------------------|----------|------------|-------------------|------------------|-----|---------------------|------------|
| 095-01-025-20,294             | Solid    | GC/MS W    | 08/26/10 08/26/10 |                  | /10 | 100826L0            | 01         |
| <u>Parameter</u>              | LCS %REC | LCSD %REC  | %REC CL           | ME CL            | RPD | RPD CL              | Qualifiers |
| Benzene                       | 101      | 100        | 80-120            | 73-127           | 1   | 0-20                |            |
| Carbon Tetrachloride          | 91       | 91         | 65-137            | 53-149           | 0   | 0-20                |            |
| Chlorobenzene                 | 98       | 98         | 80-120            | 73-127           | 0   | 0-20                |            |
| 1,2-Dibromoethane             | 97       | 99         | 80-120            | 73-127           | 2   | 0-20                |            |
| 1,2-Dichlorobenzene           | 96       | 99         | 80-120            | 73-127           | 4   | 0-20                |            |
| 1,2-Dichloroethane            | 94       | 94         | 80-120            | 73-127           | 0   | 0-20                |            |
| 1,1-Dichloroethene            | 101      | 99         | 68-128            | 58-138           | 2   | 0-20                |            |
| Ethylbenzene                  | 108      | 107        | 80-120            | 73-127           | 0   | 0-20                |            |
| Toluene                       | 103      | 103        | 80-120            | 73-127           | 0   | 0-20                |            |
| Trichloroethene               | 99       | 99         | 80-120            | 73-127           | 0   | 0-20                |            |
| Vinyl Chloride                | 88       | 86         | 67-127            | 57-137           | 2   | 0-20                |            |
| Methyl-t-Butyl Ether (MTBE)   | 97       | 98         | 70-124            | 61-133           | 1   | 0-20                |            |
| Tert-Butyl Alcohol (TBA)      | 96       | 99         | 73-121            | 65-129           | 3   | 0-20                |            |
| Diisopropyl Ether (DIPE)      | 106      | 105        | 69-129            | 59-139           | 1   | 0-20                |            |
| Ethyl-t-Butyl Ether (ETBE)    | 102      | 102        | 70-124            | 61-133           | 0   | 0-20                |            |
| Tert-Amyl-Methyl Ether (TAME) | 102      | 102        | 74-122            | 66-130           | 0   | 0-20                |            |
| Ethanol                       | 111      | 97         | 51-135            | 37-149           | 14  | 0-27                |            |

Total number of LCS compounds: 17

Total number of ME compounds: 0

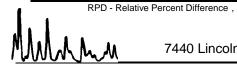
Total number of ME compounds allowed: 1







Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 EPA 8260B


Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared |          | Date LCS/LCSD<br>nalyzed Numb |         |            |
|-------------------------------|----------|------------|------------------|----------|-------------------------------|---------|------------|
| 095-01-025-20,295             | Solid    | GC/MS UU   | 08/26/10         | 08/26/10 |                               | 100826L | 01         |
| Parameter                     | LCS %REC | LCSD %REC  | %REC CL          | ME CL    | RPD                           | RPD CL  | Qualifiers |
| Benzene                       | 97       | 97         | 80-120           | 73-127   | 0                             | 0-20    |            |
| Carbon Tetrachloride          | 96       | 99         | 65-137           | 53-149   | 3                             | 0-20    |            |
| Chlorobenzene                 | 97       | 98         | 80-120           | 73-127   | 0                             | 0-20    |            |
| 1,2-Dibromoethane             | 98       | 99         | 80-120           | 73-127   | 1                             | 0-20    |            |
| 1,2-Dichlorobenzene           | 98       | 98         | 80-120           | 73-127   | 1                             | 0-20    |            |
| 1,2-Dichloroethane            | 94       | 94         | 80-120           | 73-127   | 0                             | 0-20    |            |
| 1,1-Dichloroethene            | 99       | 102        | 68-128           | 58-138   | 4                             | 0-20    |            |
| Ethylbenzene                  | 104      | 104        | 80-120           | 73-127   | 0                             | 0-20    |            |
| Toluene                       | 98       | 99         | 80-120           | 73-127   | 1                             | 0-20    |            |
| Trichloroethene               | 96       | 98         | 80-120           | 73-127   | 2                             | 0-20    |            |
| Vinyl Chloride                | 93       | 91         | 67-127           | 57-137   | 3                             | 0-20    |            |
| Methyl-t-Butyl Ether (MTBE)   | 105      | 103        | 70-124           | 61-133   | 2                             | 0-20    |            |
| Tert-Butyl Alcohol (TBA)      | 96       | 96         | 73-121           | 65-129   | 0                             | 0-20    |            |
| Diisopropyl Ether (DIPE)      | 105      | 106        | 69-129           | 59-139   | 1                             | 0-20    |            |
| Ethyl-t-Butyl Ether (ETBE)    | 110      | 109        | 70-124           | 61-133   | 1                             | 0-20    |            |
| Tert-Amyl-Methyl Ether (TAME) | 109      | 107        | 74-122           | 66-130   | 2                             | 0-20    |            |
| Ethanol                       | 75       | 69         | 51-135           | 37-149   | 8                             | 0-27    |            |

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

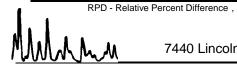






Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 EPA 8260B

Project: 3740 Pacific Avenue, Tacoma, WA


| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared | Date<br>Analyzed |     | LCS/LCSD I<br>Numbe |            |
|-------------------------------|----------|------------|------------------|------------------|-----|---------------------|------------|
| 095-01-025-20,305             | Solid    | GC/MS UU   | 08/26/10         | 08/26            | /10 | 100826L0            | 02         |
| <u>Parameter</u>              | LCS %REC | LCSD %REC  | %REC CL          | ME CL            | RPD | RPD CL              | Qualifiers |
| Benzene                       | 97       | 97         | 80-120           | 73-127           | 0   | 0-20                |            |
| Carbon Tetrachloride          | 96       | 99         | 65-137           | 53-149           | 3   | 0-20                |            |
| Chlorobenzene                 | 97       | 98         | 80-120           | 73-127           | 0   | 0-20                |            |
| 1,2-Dibromoethane             | 98       | 99         | 80-120           | 73-127           | 1   | 0-20                |            |
| 1,2-Dichlorobenzene           | 98       | 98         | 80-120           | 73-127           | 1   | 0-20                |            |
| 1,2-Dichloroethane            | 94       | 94         | 80-120           | 73-127           | 0   | 0-20                |            |
| 1,1-Dichloroethene            | 99       | 102        | 68-128           | 58-138           | 4   | 0-20                |            |
| Ethylbenzene                  | 104      | 104        | 80-120           | 73-127           | 0   | 0-20                |            |
| Toluene                       | 98       | 99         | 80-120           | 73-127           | 1   | 0-20                |            |
| Trichloroethene               | 96       | 98         | 80-120           | 73-127           | 2   | 0-20                |            |
| Vinyl Chloride                | 93       | 91         | 67-127           | 57-137           | 3   | 0-20                |            |
| Methyl-t-Butyl Ether (MTBE)   | 105      | 103        | 70-124           | 61-133           | 2   | 0-20                |            |
| Tert-Butyl Alcohol (TBA)      | 96       | 96         | 73-121           | 65-129           | 0   | 0-20                |            |
| Diisopropyl Ether (DIPE)      | 105      | 106        | 69-129           | 59-139           | 1   | 0-20                |            |
| Ethyl-t-Butyl Ether (ETBE)    | 110      | 109        | 70-124           | 61-133           | 1   | 0-20                |            |
| Tert-Amyl-Methyl Ether (TAME) | 109      | 107        | 74-122           | 66-130           | 2   | 0-20                |            |
| Ethanol                       | 75       | 69         | 51-135           | 37-149           | 8   | 0-27                |            |

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

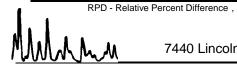


CL - Control Limit





Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248


Date Received: Work Order No: Preparation: Method:

N/A 10-08-1402 EPA 5035 **EPA 8260B** 

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared  | Da<br>Anal |     | LCS/LCSD I<br>Numbe |            |
|-------------------------------|----------|------------|-------------------|------------|-----|---------------------|------------|
| 095-01-025-20,310             | Solid    | GC/MS Z    | 08/27/10 08/27/10 |            | /10 | 100827L0            | 01         |
| <u>Parameter</u>              | LCS %REC | LCSD %REC  | %REC CL           | ME CL      | RPD | RPD CL              | Qualifiers |
| Benzene                       | 91       | 91         | 80-120            | 73-127     | 0   | 0-20                |            |
| Carbon Tetrachloride          | 109      | 109        | 65-137            | 53-149     | 1   | 0-20                |            |
| Chlorobenzene                 | 96       | 97         | 80-120            | 73-127     | 0   | 0-20                |            |
| 1,2-Dibromoethane             | 102      | 101        | 80-120            | 73-127     | 1   | 0-20                |            |
| 1,2-Dichlorobenzene           | 97       | 97         | 80-120            | 73-127     | 0   | 0-20                |            |
| 1,2-Dichloroethane            | 118      | 119        | 80-120            | 73-127     | 2   | 0-20                |            |
| 1,1-Dichloroethene            | 104      | 102        | 68-128            | 58-138     | 2   | 0-20                |            |
| Ethylbenzene                  | 100      | 99         | 80-120            | 73-127     | 1   | 0-20                |            |
| Toluene                       | 92       | 94         | 80-120            | 73-127     | 2   | 0-20                |            |
| Trichloroethene               | 99       | 101        | 80-120            | 73-127     | 2   | 0-20                |            |
| Vinyl Chloride                | 96       | 97         | 67-127            | 57-137     | 1   | 0-20                |            |
| Methyl-t-Butyl Ether (MTBE)   | 99       | 100        | 70-124            | 61-133     | 0   | 0-20                |            |
| Tert-Butyl Alcohol (TBA)      | 92       | 102        | 73-121            | 65-129     | 10  | 0-20                |            |
| Diisopropyl Ether (DIPE)      | 93       | 95         | 69-129            | 59-139     | 2   | 0-20                |            |
| Ethyl-t-Butyl Ether (ETBE)    | 99       | 100        | 70-124            | 61-133     | 1   | 0-20                |            |
| Tert-Amyl-Methyl Ether (TAME) | 103      | 105        | 74-122            | 66-130     | 2   | 0-20                |            |
| Ethanol                       | 76       | 87         | 51-135            | 37-149     | 14  | 0-27                |            |

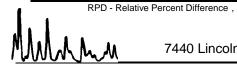
Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed: 1







Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248 Date Received: Work Order No: Preparation: Method: N/A 10-08-1402 EPA 5035 EPA 8260B


Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID     | Matrix                           | Instrument | Date<br>Prepared | Da<br>Anal |     | LCS/LCSD Batch<br>Number |            |
|-------------------------------|----------------------------------|------------|------------------|------------|-----|--------------------------|------------|
| 095-01-025-20,311             | Solid GC/MS PP 08/27/10 08/27/10 |            | /10              | 100827L0   | 01  |                          |            |
| <u>Parameter</u>              | LCS %REC                         | LCSD %REC  | %REC CL          | ME CL      | RPD | RPD CL                   | Qualifiers |
| Benzene                       | 94                               | 92         | 80-120           | 73-127     | 2   | 0-20                     |            |
| Carbon Tetrachloride          | 99                               | 98         | 65-137           | 53-149     | 1   | 0-20                     |            |
| Chlorobenzene                 | 91                               | 91         | 80-120           | 73-127     | 0   | 0-20                     |            |
| 1,2-Dibromoethane             | 93                               | 93         | 80-120           | 73-127     | 1   | 0-20                     |            |
| 1,2-Dichlorobenzene           | 90                               | 90         | 80-120           | 73-127     | 1   | 0-20                     |            |
| 1,2-Dichloroethane            | 96                               | 91         | 80-120           | 73-127     | 6   | 0-20                     |            |
| 1,1-Dichloroethene            | 100                              | 100        | 68-128           | 58-138     | 1   | 0-20                     |            |
| Ethylbenzene                  | 93                               | 93         | 80-120           | 73-127     | 0   | 0-20                     |            |
| Toluene                       | 95                               | 93         | 80-120           | 73-127     | 2   | 0-20                     |            |
| Trichloroethene               | 96                               | 94         | 80-120           | 73-127     | 3   | 0-20                     |            |
| Vinyl Chloride                | 85                               | 86         | 67-127           | 57-137     | 2   | 0-20                     |            |
| Methyl-t-Butyl Ether (MTBE)   | 98                               | 99         | 70-124           | 61-133     | 1   | 0-20                     |            |
| Tert-Butyl Alcohol (TBA)      | 88                               | 83         | 73-121           | 65-129     | 6   | 0-20                     |            |
| Diisopropyl Ether (DIPE)      | 99                               | 98         | 69-129           | 59-139     | 1   | 0-20                     |            |
| Ethyl-t-Butyl Ether (ETBE)    | 99                               | 97         | 70-124           | 61-133     | 2   | 0-20                     |            |
| Tert-Amyl-Methyl Ether (TAME) | 96                               | 93         | 74-122           | 66-130     | 3   | 0-20                     |            |
| Ethanol                       | 83                               | 76         | 51-135           | 37-149     | 8   | 0-27                     |            |

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1







Conestoga-Rovers & Associates 1420 80th St. SW, Suite A Everett, WA 98203-6248

Date Received: Work Order No: Preparation: Method:

N/A 10-08-1402 EPA 5035 **EPA 8260B** 

Project: 3740 Pacific Avenue, Tacoma, WA

| Quality Control Sample ID     | Matrix   | Instrument | Date<br>Prepared | Da<br>Anal |     | LCS/LCSD I<br>Numbe |            |
|-------------------------------|----------|------------|------------------|------------|-----|---------------------|------------|
| 095-01-025-20,308             | Solid    | GC/MS UU   | 08/27/10         | 08/27/10   |     | 100827L0            | 01         |
| <u>Parameter</u>              | LCS %REC | LCSD %REC  | %REC CL          | ME CL      | RPD | RPD CL              | Qualifiers |
| Benzene                       | 97       | 98         | 80-120           | 73-127     | 1   | 0-20                |            |
| Carbon Tetrachloride          | 98       | 99         | 65-137           | 53-149     | 1   | 0-20                |            |
| Chlorobenzene                 | 100      | 99         | 80-120           | 73-127     | 1   | 0-20                |            |
| 1,2-Dibromoethane             | 93       | 99         | 80-120           | 73-127     | 6   | 0-20                |            |
| 1,2-Dichlorobenzene           | 101      | 97         | 80-120           | 73-127     | 5   | 0-20                |            |
| 1,2-Dichloroethane            | 94       | 96         | 80-120           | 73-127     | 2   | 0-20                |            |
| 1,1-Dichloroethene            | 85       | 97         | 68-128           | 58-138     | 13  | 0-20                |            |
| Ethylbenzene                  | 111      | 105        | 80-120           | 73-127     | 6   | 0-20                |            |
| Toluene                       | 89       | 100        | 80-120           | 73-127     | 12  | 0-20                |            |
| Trichloroethene               | 100      | 102        | 80-120           | 73-127     | 2   | 0-20                |            |
| Vinyl Chloride                | 91       | 81         | 67-127           | 57-137     | 12  | 0-20                |            |
| Methyl-t-Butyl Ether (MTBE)   | 101      | 103        | 70-124           | 61-133     | 2   | 0-20                |            |
| Tert-Butyl Alcohol (TBA)      | 95       | 99         | 73-121           | 65-129     | 4   | 0-20                |            |
| Diisopropyl Ether (DIPE)      | 104      | 104        | 69-129           | 59-139     | 0   | 0-20                |            |
| Ethyl-t-Butyl Ether (ETBE)    | 105      | 106        | 70-124           | 61-133     | 0   | 0-20                |            |
| Tert-Amyl-Methyl Ether (TAME) | 101      | 105        | 74-122           | 66-130     | 3   | 0-20                |            |
| Ethanol                       | 85       | 70         | 51-135           | 37-149     | 19  | 0-27                |            |

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed: 1





# **Glossary of Terms and Qualifiers**



Work Order Number: 10-08-1402

| Qualifier | Definition                                                                                                                                                                                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *         | See applicable analysis comment.                                                                                                                                                                                                                       |
| <         | Less than the indicated value.                                                                                                                                                                                                                         |
| >         | Greater than the indicated value.                                                                                                                                                                                                                      |
| 1         | Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.                                                                                               |
| 2         | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                             |
| 3         | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.    |
| 4         | The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.                                                                              |
| 5         | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification. |
| В         | Analyte was present in the associated method blank.                                                                                                                                                                                                    |
| Е         | Concentration exceeds the calibration range.                                                                                                                                                                                                           |
| J         | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                        |
| ME        | LCS Recovery Percentage is within LCS ME Control Limit range.                                                                                                                                                                                          |
| ND        | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                               |
| Q         | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                          |
| X         | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                    |
| Z         | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                 |
|           | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.                                                                                                                                 |

| LAB (LOCATION)                                                                             |               |                                       | 6                   |            |          | Sh       | ell           | Oi                                               | ΙP          | ro              | duc                     | ts            | Ch           | air               | 10                        | of C       | Cus          | sto         | dy I      | ₹e        | cor        | ď        |             |       |          |          |                                             |
|--------------------------------------------------------------------------------------------|---------------|---------------------------------------|---------------------|------------|----------|----------|---------------|--------------------------------------------------|-------------|-----------------|-------------------------|---------------|--------------|-------------------|---------------------------|------------|--------------|-------------|-----------|-----------|------------|----------|-------------|-------|----------|----------|---------------------------------------------|
| ACALSCIENCE (CTOWLEN ETTOVE. CA                                                            | PI            | ease Check                            | ( Appr              | opriate    |          |          |               | Pr                                               | int B       | ill T           | o Cor                   | itact         | Nan          | ne:               |                           |            |              |             | INCII     | DEN       | Γ# (E      | ENV:     | SER         | VICES | S) [     | _        | CK IF NO INCIDENT # APPLIES                 |
| SPL Houston ()                                                                             | ENV. SERVICES | ;                                     | 10TIVA RI           | ETAIL      | s        | HELL RET | AIL           | 70                                               | stīv        | A F             | oslive                  | <i>1</i> /\-  | 41           | 876               | -95                       | 10         | 202          | _           | 9 -       | 7         | 7 /        | /  a     | 4           | 3     | 7        | DAT      | E: 8/16/10                                  |
|                                                                                            | MOTIVA SD&C   | <b>4</b>                              | ONSULTA             | NT         |          | UBES     |               |                                                  |             |                 |                         |               | O #          |                   |                           |            |              |             |           |           | SA         | \P#      |             |       | 1        |          | - 1 . 3                                     |
| OTHER ()                                                                                   | SHELL PIPELIN |                                       | THER                |            |          |          |               | 11                                               | 0           | _               | 4                       | 0             | 9            | j                 | 3                         | i          | 8            |             |           | Π,        | ' la       | 1        | 1           | 8     | 5        | PAG      | SE: of                                      |
| SAMPLING COMPANY:                                                                          | -             |                                       | roe con             |            |          |          |               | SITE                                             | ADDRE       |                 | reet and                | City          |              |                   | •                         |            |              | s           | tate      | <u> </u>  |            | OBAL ID  | NO.:        | 101   | 201      |          | <del></del>                                 |
| Conestoga-Rovers & Associates                                                              |               |                                       | CRAW                | <u> </u>   |          |          |               | 37                                               | 740         | POLC<br>BLE TO  | (Name, Cor              | npany. Ol     | / Plub       | ic)               | Ta                        | 101        | HONE N       | 0.:         | W         | 8         | E-M        | AIL:     |             |       |          |          | CONSULTANT PROJECT NO.:                     |
| 1420 80th St SW, Suite , Everett, WA 98203                                                 |               | · · · · · · · · · · · · · · · · · · · |                     |            |          |          |               |                                                  |             |                 |                         |               |              |                   |                           |            |              | ·           |           |           |            |          |             |       |          |          | 34876-95-1003                               |
| PROJECT CONTACT (Hardcopy or PDF Report to):  Tustin Tozilen, way to sill  TELEPHONE:  FAX | I lab bille   | no 60 Cm                              | uni <del>an</del> d | ld. won    | Α        |          |               | Chri                                             | PLER NAM    | Sch<br>ME(S) (F | velgeri                 | t, CRA        | A, Eve       | erett             |                           |            | 125-21       | 12-51       | 00        | -         | <u> cs</u> | chwei    | gert@       | CRAw  | LAB      | USE OF   | VLÝ                                         |
| TELEPHONE: FAX 425-212-5100 425-212-5199                                                   | E-MAIL:       | ifoslia                               |                     |            |          | (M       |               | 1                                                |             |                 | 小                       | na            | 9            | <u>0</u> 2        | лe                        |            |              |             |           |           |            |          |             |       | ď        | 9¢.      | - 1402                                      |
| TURNAROUND TIME (CALENDAR DAYS):                                                           |               | , .                                   |                     |            | ESULTS N |          | <u>`</u>      | -                                                |             |                 | <del></del>             | $\mathcal{C}$ | <del>-</del> |                   |                           |            |              | PEO         | UESTI     | -D A      | MAIN       | /SIS     |             |       |          |          | 5000012550001 (0000001 600-400mmm1800260000 |
| STANDARD (14 DAY) 5 DAYS 3 DAYS                                                            | 2 DAYS        | 24 HOU                                | JRS                 |            | . 0      | N WEEK   | END           | -                                                | 1 T         |                 |                         |               |              |                   | _                         | _          |              | NE G        | 02311     |           | TAL        | 7        | o           | T [   |          | _        | <del></del>                                 |
| LA - RWQCB REPORT FORMAT UST AGENCY:                                                       |               | Zara                                  | COMPAG              | T RATE APP | N TEC    | -        |               | ł                                                | 합           |                 | OIPE,                   |               |              |                   | 1                         |            |              |             |           |           |            |          | i           |       |          | 1        | TEMPERATURE ON RECEIPT<br>C°                |
| SPECIAL INSTRUCTIONS OR NOTES:                                                             |               |                                       |                     | SEMENT RA  |          | ES       |               |                                                  | Gel Cleanup |                 | TBA, [                  |               |              |                   |                           | ł          |              |             |           | İ         |            |          | :           |       |          |          | -                                           |
| Copy final report to Shell.Lab.Billing@cra                                                 | world.com     | EDD NO                                |                     |            |          |          |               |                                                  | Gel         |                 | 点<br>E                  |               |              |                   |                           |            | <u>g</u>     |             |           |           |            |          | İ           |       |          | L        |                                             |
| See SPL PM for WA Dept. of Ecology MTC                                                     | A Method A    | RECEIF                                | T VERIFI            | CATION REC | QUESTED  | 1        |               |                                                  | Silica      |                 | MTBE,<br>8260B)         |               |              | )<br>(2           |                           | SIM)       | list (8260B) |             |           | -   (     | <u> </u>   |          |             |       |          |          |                                             |
| cleanup levels for minimum detection lim                                                   |               |                                       |                     |            |          |          |               | ×                                                |             | 30B)            | ates,<br>BE (           | <u>6</u>      | _            | 09) F             | ũ                         |            | ist          | ۾           | 뒮         |           | (307.10)   |          |             |       |          |          |                                             |
| Field Sample Identification                                                                | SAMPLING      | MATRIX                                | ┢┯                  | PRESERVA   | ATIVE    | ─┤,      | 10. OF        | Ϋ́                                               | [문          | (826            | gen;                    | 8260          | 8011         | Leac              | 80                        | (80        | ᆵ            | 808         | 구<br>  보  | !         |            |          |             |       |          |          | Container PID Readings                      |
| LAB Field Sample Identification                                                            | DATE TIME     | MATRIA                                | HCL H               | NO3 H2SO4  | NONE     | - 1      | CONT.         | NWTPH-(                                          | NWTPH-Dx    | втех (8260В     | 5 Oxygenat<br>TAME, ETB | EDC (8260B)   | EDC (8011)   | Total Lead (6020) | PCBs (8082)               | PAHs (8070 | VOCs Full 1  | Pest (8080) | NWTPH-VPH | :         | II-DEXAIDE |          | ĺ           | li    | ŀ        |          | or Laboratory Notes                         |
| 95331393339                                                                                | 8/B 0920      | So                                    | IIICE III           | 103 112304 | NONE (   |          | 9             | X                                                | 1 1         |                 | W/ F                    | ┌┈            |              |                   |                           |            |              |             |           | +         |            | $\dashv$ | $\top$      |       | $\neg$   | _        |                                             |
| 866888888                                                                                  |               |                                       |                     |            |          |          | 9             | 1                                                | 1           |                 |                         |               |              |                   | X                         | $\dashv$   | X            | 十           | +         | $\dagger$ | $\top$     | $\top$   | +           |       |          |          |                                             |
| 881918080391<br>881918080301                                                               |               |                                       |                     |            |          | $\dashv$ | $\frac{7}{9}$ | X                                                | 4           |                 |                         |               |              |                   | $\frac{\lambda}{\lambda}$ | 1          |              | +           | +         |           | +          | ╁        | +-          | ╁┈┧   |          | +        |                                             |
| 3 SO-241876-081310-JE-SB-12-LI                                                             | 8/13 0/0      |                                       |                     | _          |          | -+       | #             | <del>                                     </del> | $\cap$      |                 |                         | -             |              | -                 | $\leftarrow$              |            | X            | +           | +         | +         | +          | +-       | +           | +     | $\dashv$ | $\dashv$ |                                             |
| 4 52-241816-081310-75-5128-5                                                               |               | 50                                    |                     |            | -        |          | 4—            | Ϋ́                                               | 1           |                 |                         |               |              |                   | X                         | _          | -+           |             | -         |           | +          | +        |             | -     |          | $\dashv$ | <del></del>                                 |
| 5 SO-241876-087310-IS-5138-10                                                              |               | 50                                    |                     |            |          |          | 9             | X                                                | X           |                 |                         |               |              |                   | <u> </u>                  | _          | X            |             | _         | $\perp$   | _          | $\perp$  | +           |       |          | _ _      |                                             |
| 6 50-241876-081210-JC-508-10                                                               |               | So                                    |                     |            |          | _ .      | 9             | X                                                | X           |                 |                         |               |              |                   | メ                         |            | X            |             |           |           |            |          | $\perp$     |       |          |          | ·                                           |
| 7 Si-24876-08B10-JS-588-20                                                                 | 813 100       | SO                                    |                     |            |          |          | 9             | X                                                | X           |                 |                         |               |              |                   | X                         |            | X            |             |           |           |            |          |             |       |          |          |                                             |
| 8 50-241876-08B10-75-518-30                                                                |               | 50                                    |                     |            |          |          | 9             | lx                                               | X           |                 |                         |               |              |                   | $\star$                   |            | X            |             |           |           |            |          |             |       | 1        |          | Not sufficent sort                          |
| 7-482-2[0130-081310]5-521+5                                                                | 8/13 BOS      | 50                                    |                     |            |          |          | दे            | x                                                | X           |                 |                         |               |              |                   | X                         |            | X            |             |           |           |            |          |             |       |          |          | <del></del>                                 |
| 10 50-141876-08310-55-5811-10                                                              |               | SD                                    |                     |            |          |          | <u> </u>      | X                                                | 11          |                 |                         |               |              |                   | ĸ                         |            | <b>(</b>     |             |           |           |            |          | $\top$      |       |          |          |                                             |
| Relinquished by: (Signature)                                                               |               | Received by: (Sig                     | gnature)            |            | 1 1      |          | -             | <u> </u>                                         |             |                 |                         |               | 1            |                   | • 1                       |            |              |             |           | - 1       | ale:       |          |             |       |          | Time:    | ·                                           |
|                                                                                            |               |                                       | Te                  | dE,        | 6        |          |               |                                                  | 1           | T.              |                         |               |              |                   |                           |            |              |             |           |           | 8          | 116      | 5 (C        | 0     |          |          | 15200                                       |
| Relinquished by: (Signature)                                                               |               | Received by: (Sig                     | nature)             |            |          |          |               |                                                  | -           |                 |                         |               |              |                   | 11                        | 1          |              | L           |           | C         | ate:       | ,        | 1           |       |          | Time:    | 1030 Page                                   |
| ·                                                                                          |               |                                       |                     |            |          |          |               |                                                  |             |                 |                         |               |              |                   |                           |            | Q/K          | Y           |           |           | 8          | 118      | <u>//</u> / | 0     |          | )        | 050                                         |
| Relinquished by: (Signature)                                                               |               | Received by: (Sig                     | gnature)            |            |          |          |               |                                                  |             |                 |                         |               |              | 17                | 10                        | ,          |              | -           |           | 0         | ate: 7     |          | 1           |       |          | Time:    | 61                                          |
|                                                                                            |               |                                       |                     |            |          |          |               |                                                  |             |                 |                         |               |              |                   |                           |            |              |             |           |           |            |          |             |       |          |          | 으 으                                         |
|                                                                                            |               | •                                     |                     |            |          |          |               |                                                  |             |                 |                         |               |              |                   |                           |            |              |             |           |           |            |          |             | -     |          |          | 05/2/06 Revision O                          |

| LAB (LOCATION) SACALSCIENCE GONDAL GHOW . CA.)                                          |                |                   |                                         |             |          | Sł       | rell            | Oil                 | ΙP              | ro          | duc                       | ts (        | Ch                  | ain               | 01            | C            | ust          | ody       | y R       | ecc              | ord        |                                              |                                 |             |                                         |                                        |                |
|-----------------------------------------------------------------------------------------|----------------|-------------------|-----------------------------------------|-------------|----------|----------|-----------------|---------------------|-----------------|-------------|---------------------------|-------------|---------------------|-------------------|---------------|--------------|--------------|-----------|-----------|------------------|------------|----------------------------------------------|---------------------------------|-------------|-----------------------------------------|----------------------------------------|----------------|
| •                                                                                       | Pie            | ase Check         | Арр                                     | ropriate    | Box:     |          |                 | Pri                 | nt B            | 3ill T      | o Con                     | tact        | Nam                 | ie:               |               |              |              | IN        | CIDE      | NT#              | (EN\       | / SEF                                        | RVICES                          | ົ           | CHECK                                   | IF NO INCIDENT # A                     | APPLIES        |
| SPL Houston ()                                                                          | ENV. SERVICES  |                   | OTIVA R                                 |             |          | SHELL RI | ETAIL           | Tua                 | ء زاء           | T,          | سأاوا                     | الد-1       | di <del>s </del> 70 | 6-9               | C-1           | 0.0          | ) ,          | 9         | 7         | 7                | /          | J (                                          | 3                               | 7           | DATE:                                   | 8/16/                                  | 'ID            |
|                                                                                         | ☐ MOTIVA SD&CM | তি                | ONSULTA                                 | ANT         |          | LUBES    | 7               | عادل                | -04             |             |                           | VOC 10. 1   | 0 #                 |                   |               |              |              | 1         |           |                  | SAP #      | and the second                               | 1                               |             |                                         | ai .                                   | ``             |
| TEST AMERICA ()                                                                         | SHELL PIPELINE | ====              |                                         |             |          |          |                 | ,                   |                 | T           |                           |             |                     | Τ,                |               | . 0          | 1            | 10000     |           |                  |            | <u>,                                    </u> | , I <sub>O</sub>                |             | PAGE:                                   | - <b></b> of                           | 1_             |
| OTHER ()                                                                                | SHELL PIPELINE |                   | LOG COL                                 |             |          | _        |                 |                     | 0               |             | treet and C               | ٥           | 7                   | Ш                 | 3 1           | 8            | <u> </u>     | State     | L         | (*               | GLOBAL     | ID NO.:                                      | 8                               | <u> 고</u>   |                                         |                                        |                |
| SAMPLING COMPANY: Conestoga-Rovers & Associates                                         |                |                   | CRAV                                    |             |          |          |                 |                     |                 |             | aei                       |             | bre                 | 0 7               | avs           | MO           | Ĺ            | June      | W         | A                |            |                                              |                                 |             |                                         |                                        |                |
| ADDRESS:                                                                                |                |                   |                                         |             | -        |          |                 | EOF DE              | LIVERA          | ABLE TO     | (Name, Con                | pany, Off   | fice Locat          | ion):             |               | PHC          | NE NO.:      | ·         |           |                  | E-MAIL:    |                                              |                                 |             |                                         | CONSULTANT PROJE                       | ECT NO.:       |
| 1420 80th St SW, Suite , Everett, WA 98203 PROJECT CONTACT (Hardcopy or PDF Report to): |                |                   |                                         |             |          |          |                 | Chris               | stine           | Sch         | weigert                   | . CRA       | A. Eve              | rett              |               | 42           | 5-212-       | 5100      |           |                  | cschw      | eiaert@                                      | @CRAwo                          | orld.co     | m                                       | 24876-95                               | -400>          |
| Tueton Freden, com to                                                                   | shell lab.     | billing           | @(                                      | raw         | ronle    | d.cs     | m               | SAMP                | LER NA          | AME(S) (    | Print):                   |             | ,                   |                   |               |              |              |           |           |                  |            |                                              |                                 |             | ISE ONLY                                | y ''                                   |                |
| TELEPHONE: FAX: 425-212-5100 425-212-5199                                               | E-MAIL:        | foste             |                                         | C0911       | ~~/.     | 1.10     |                 |                     |                 |             | 7                         | Mβ          | ,                   | Sa                | M             |              |              |           |           |                  |            |                                              |                                 | 1           | ) B                                     | \\<br>\<br>\ H                         | 02             |
| TURNAROUND TIME (CALENDAR DAYS):                                                        |                |                   |                                         |             | RESULTS  |          |                 | t                   |                 |             |                           | J           | 7                   |                   | $\overline{}$ | )            | DE           | OUE       | STED      | ΔΝΔ              | LYSIS      |                                              |                                 | 888888      | 100000000000000000000000000000000000000 | >1000000000000000000000000000000000000 |                |
| STANDARD (14 DAY) 5 DAYS 3 DAYS                                                         | 2 DAYS         | 24 HOL            | JRS                                     |             |          | ON WEE   | KEND            | ļ                   |                 |             |                           |             |                     | $\overline{}$     |               | -            | 1            | T T       | 1         |                  |            | <u> </u>                                     | <del></del>                     | <del></del> |                                         |                                        |                |
| ☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:                                                |                |                   |                                         |             |          |          |                 | 4                   | ם               |             | P.                        |             |                     |                   |               |              |              |           |           |                  |            |                                              | 1 1                             |             | TE                                      | MPERATURE ON<br>C°                     | N RECEIPT      |
| SPECIAL INSTRUCTIONS OR NOTES:                                                          |                |                   |                                         | CT RATE AF  |          | TEC      |                 |                     | Cleanup         |             | TBA, DIPE                 |             |                     |                   |               |              |              |           |           |                  |            |                                              |                                 |             | ļ                                       | Ū                                      |                |
| Copy final report to Shell.Lab.Billing@cra                                              | world.com      | ☐ STATE           |                                         | RSEMENT R   | ATE APPL | TES      |                 |                     | Gel             |             | ١ .                       |             |                     |                   |               | l a          |              |           |           |                  | الو        | 1                                            |                                 |             |                                         |                                        |                |
| See SPL PM for WA Dept. of Ecology MTC                                                  |                |                   |                                         | FICATION RI | FOLIESTE | D        |                 |                     | Silica          |             | , MTBE,<br>(8260B)        |             |                     |                   |               | U Stirit     |              | İ         |           | <u></u>          | 3          |                                              |                                 |             |                                         | ··                                     |                |
| cleanup levels for minimum detection limit                                              |                |                   | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1011101110  | _QOLD.L  | _        |                 |                     | w/Si            | 6           | \( \frac{1}{2} \)         | ا ي         |                     | 9020              | _   5         | M   5        |              | _         |           | 071              | rej        |                                              |                                 |             |                                         |                                        |                |
|                                                                                         | SAMPLING       |                   |                                         | PRESER      | VATIVE   |          |                 | ŏ                   | ŏ               | 3260        | enates                    | 809Z        | 11)                 | ad (              | 3082          |              | 8            | <u> </u>  | <u>F</u>  | ) eu             | 3          |                                              |                                 | İ           |                                         |                                        |                |
| LAB Field Sample Identification                                                         | DATE TIME      | MATRIX            |                                         |             |          |          | NO. OF<br>CONT. | NWTPH-              | UWTPH-D         | BTEX (8260B | 5 Oxygenate<br>TAME, ETBE | EDC (8260B) | EDC (8011)          | Total Lead (6020) | PCBs (8082)   | VOCS Full II | Pest (8080)  | NWTPH-VPH | NWTPH-EPH | n-Hexane (9071B) | Tombernatu | •                                            |                                 | -           |                                         | Container PID R                        | _              |
| USE<br>ONLY                                                                             | DATE TIME      |                   | HCL F                                   | -NO3 H2SO-  | 4 NONE   | OTHER    |                 | Ž                   | <u>×</u>        | 8           | 0.4<br>₹                  | ü           | <u>=</u>            | <u>10</u>         |               | Š            | 8            | ₹         | ₹         | Έ                | 1          | $\bot$                                       | $\perp \! \! \perp \! \! \perp$ | $\bot$      |                                         | or Laboratory                          | Notes          |
| 11 52-241876-081310-55-5811-15                                                          | 8/13 1370      | So                |                                         |             |          |          | 9               | X                   | X               | X           |                           |             |                     |                   | X             | ۲            |              |           |           |                  |            | -                                            |                                 | .           |                                         |                                        |                |
|                                                                                         | 816 074        |                   |                                         |             |          |          | 9               | X                   | ×               | V           |                           |             |                     |                   | X             | 7            | _            |           |           |                  |            |                                              |                                 |             |                                         |                                        |                |
|                                                                                         |                | 50<br>S0          |                                         | $\dashv$    | +        |          | 9               | 7                   | 7               | \rac{1}{x}  |                           |             |                     | $\neg \uparrow$   | タ             | 7            | +            | †         | ļ         |                  |            |                                              | 11                              | $\neg$      |                                         |                                        |                |
| 13 SO-241816-081610-JS-9810-10                                                          |                |                   |                                         |             | +        |          | - 1             | 13                  | 7               | 1           |                           |             |                     | +                 | /             | /            | <del> </del> | +         |           |                  |            | +                                            | ++                              |             | +                                       |                                        |                |
| 100 (000 000 000 000 000 000 000 000 000                                                | 8114 0810      |                   | $\vdash$                                |             |          |          | 9               | /                   |                 | 1           | <del> </del>              |             |                     | $\dashv$          | <i>7,</i> +   |              | <u>*</u>     | +-        |           |                  |            |                                              | $\dashv \dashv$                 | +           | +                                       |                                        |                |
| 15 50-141876-08161075-5B9-5                                                             | 8116 BUS       |                   |                                         |             | <u> </u> |          | 9               | X                   | <u>X</u>        | X           |                           |             |                     |                   | X             |              |              |           |           |                  |            | $\bot$                                       |                                 |             |                                         |                                        | -              |
| 16 50-141876-08160-15-589-10                                                            | 2116 800       | So                |                                         | ļ           |          |          | 9               | l <sub>x</sub> .    | X               | X           |                           |             |                     |                   | $^{\prime}$   | 2            | <u> </u>     |           |           |                  |            |                                              |                                 |             |                                         |                                        | <u> </u>       |
| 17 50-241876-081610-55-589-15                                                           | 8/16 0855      | So                |                                         |             |          |          | 9               | $ \langle \rangle $ | X               | X           |                           |             |                     |                   | X             | X            |              |           |           |                  |            |                                              |                                 |             |                                         |                                        |                |
| - 「   推選: # 2   1   1   1   1   1   1   1   1   1                                       |                | 50                | 1                                       |             |          |          | 4               | X                   | X               | X           |                           |             |                     |                   | X             | 1            | $\top$       |           |           |                  |            |                                              |                                 |             | $\neg$                                  |                                        |                |
| 18 50-741829-98410-3C-589-20                                                            |                | 70                |                                         |             |          |          | 1               |                     |                 | 1,          |                           |             |                     | +                 | <u>/</u>      |              |              | ├         |           | -                | $\vdash$   |                                              | ++                              | +           |                                         |                                        |                |
| 19 50-24-1876-081610-IG-SE9-X                                                           | 0116815        | SD                |                                         |             |          |          | 9               | X                   | $ \mathcal{Y} $ | lХ          | 1                         |             |                     | - 1               | 1             |              | 4            |           |           |                  |            |                                              |                                 |             |                                         |                                        |                |
| 20 Temp. Blank                                                                          | <b>4</b> 11 -  |                   |                                         |             |          |          |                 |                     |                 |             |                           |             |                     |                   |               |              |              |           |           |                  | X          |                                              |                                 |             |                                         |                                        |                |
| Relinguished by: (Signature)                                                            |                | Received by: (Sig | gnature)                                |             |          |          |                 |                     |                 |             | }                         | اـــا       |                     |                   |               | <u> </u>     | Щ.,          |           | L         | Date:            |            |                                              |                                 | +           | Time:                                   |                                        |                |
| 1                                                                                       |                |                   |                                         | 7           | 1-       |          |                 |                     |                 |             |                           |             |                     |                   |               |              |              |           |           |                  | 21         | 1 <b>5</b>                                   | (2)                             |             |                                         | (101)                                  |                |
| Relinguished by: (Signature)                                                            |                | Received by: (Sig | nature)                                 | Fe          | al G     | <u> </u> |                 |                     |                 |             |                           |             |                     |                   |               |              |              | 7         |           | Date:            | <u> </u>   |                                              | <u> </u>                        | +           | Ime:                                    | 3/-0                                   | <del></del>    |
| Transported by Legindroty                                                               |                |                   | ,                                       |             |          |          |                 |                     |                 |             |                           |             |                     |                   | 1.1           | 1/[          | n I          | <u> </u>  |           | 1                | di         | 1                                            | 10                              |             | / /                                     | のりつ                                    | Page           |
|                                                                                         |                |                   |                                         |             |          | -, -     |                 |                     |                 |             |                           |             |                     |                   |               | <u> [[</u>   | 4/           | 1         |           | Date:            | 5/1        | 8//                                          | <u>U</u>                        |             | 1 <u>C</u>                              |                                        | — <del>О</del> |
| Relinquished by: (Signature)                                                            |                | Received by: (Sig | gnature)                                |             |          |          |                 |                     |                 |             |                           |             |                     |                   |               | -            |              |           |           | D8(6)            |            |                                              |                                 | - [ '       | mile.                                   |                                        | 62             |
|                                                                                         |                |                   |                                         |             |          |          |                 |                     |                 |             |                           |             |                     |                   |               |              |              |           |           |                  |            |                                              |                                 |             |                                         |                                        | 9              |
| <u> </u>                                                                                |                |                   |                                         |             |          |          |                 |                     |                 |             |                           |             |                     |                   |               |              |              |           |           |                  |            |                                              |                                 |             | 0/                                      | 5/2/06 Revision                        | <u> </u>       |

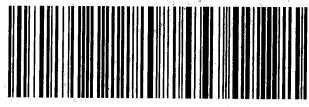
#

MPS FedEx

16AUG

# 156297-435 RIT 07/10
Rt#: BSC Emp#: 2261274

870480947580

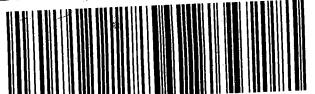

MASTER TRK#: Pkg Trk#'s: 799523577688 799523577699

Recipient Copy

FedEx 1 of 3

Page 63 of 67

TRK# <u>0215</u> 8704 8094 7580 ## MASTER ##




FedEx 3 of 3

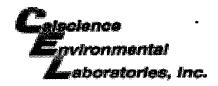
\*\* 2DAY \*\*

Mstr# 8704 8094 7580 0215

92841 CA-US SNA



. .508G4/33D6/9A24


FedEx 2 of 3

WED - 18 AUG \*\* 2DAY

MPS# 0681 7995 2357 7688 Mstr# 8704 8094 7580 0215

928 S





WORK ORDER #: 10-08- [] 四 [2]

# SAMPLE RECEIPT FORM

Cooler  $\underline{/}$  of  $\underline{3}$ 

| CLIENT: CRA                                                                                                                                                                                                                              | DATE:                       | 08/18                    | /10          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|--------------|
| □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same data contacted by:). □ Received at ambient temperature, placed on ice for transport by Co  | Blank  ay of sampli  urier. |                          | 10           |
| Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs (                                                                                                                                                                               | niy                         | Initial: _               | 71           |
| CUSTODY SEALS INTACT:  □ Cooler □ □ No (Not Intact) ✓ Not Present □ Sample □ □ No (Not Intact) ✓ Not Present                                                                                                                             | □ N/A                       | Initial:<br>Initial:     | SP           |
| SAMPLE CONDITION:                                                                                                                                                                                                                        | Yes                         | No                       | N/A          |
| Chain-Of-Custody (COC) document(s) received with samples                                                                                                                                                                                 | . 🗷                         |                          |              |
| COC document(s) received complete                                                                                                                                                                                                        | . 🗹                         |                          |              |
| ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.                                                                                                                                                 |                             |                          |              |
| ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.                                                                                                                                                                |                             | •                        | •            |
| Sampler's name indicated on COC                                                                                                                                                                                                          | Ø                           |                          |              |
| Sample container label(s) consistent with COC                                                                                                                                                                                            | ,                           |                          |              |
| Sample container(s) intact and good condition                                                                                                                                                                                            |                             | <b>Z</b>                 |              |
| Proper containers and sufficient volume for analyses requested                                                                                                                                                                           | /                           |                          |              |
| Analyses received within holding time                                                                                                                                                                                                    |                             |                          |              |
| pH / Residual Chlorine / Dissolved Sulfide received within 24 hours                                                                                                                                                                      |                             |                          |              |
| Proper preservation noted on COC or sample container ☐ Unpreserved vials received for Volatiles analysis                                                                                                                                 | Z                           |                          |              |
| Volatile analysis container(s) free of headspace                                                                                                                                                                                         |                             |                          | $\mathbf{z}$ |
| Tedlar bag(s) free of condensation  CONTAINER TYPE:                                                                                                                                                                                      |                             |                          | <b>∀</b>     |
| Solid: □4ozCGJ ☑8ozCGJ □16ozCGJ □Sleeve () □EnCores                                                                                                                                                                                      | Terra                       | ,<br>Cores® 図20          | 72 PJ        |
| Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp                                                                                                                                                                                      |                             |                          |              |
| □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs                                                                                                                                                                                        |                             |                          |              |
| □250PB □250PBn □125PB □125PB <b>znna</b> □100PJ □100PJ <b>na₂</b> □                                                                                                                                                                      |                             |                          |              |
| Air: ☐Tediar® ☐Summa® Other: ☐Trip Blank Lot#:  Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Zipioc/Resealable Bag E: E  Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAC2+NaOH f: | _ Labeled/C                 | hecked by: _/eviewed by: | Dic          |

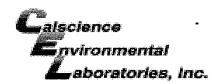


WORK ORDER #: 10-08- 1 4 0 2

# SAMPLE RECEIPT FORM

Cooler  $\frac{2}{2}$  of  $\frac{3}{2}$ 

| CLIENT: CRA DA                                                                                                                                                                                                                                            | TE: <u>08</u>      | /18/10                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|
| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)  Temperature                                                                                                                                                                     | sampling.<br>r.    | ample<br>Initial:          |
| CUSTODY SEALS INTACT:                                                                                                                                                                                                                                     |                    | //                         |
| □ Cooler □ □ No (Not Intact) ☑ Not Present □ □ Sample □ □ No (Not Intact) ☑ Not Present                                                                                                                                                                   |                    | Initial: ##<br>Initial: #C |
| SAMPLE CONDITION: Yes                                                                                                                                                                                                                                     | No                 | N/A                        |
| Chain-Of-Custody (COC) document(s) received with samples                                                                                                                                                                                                  |                    |                            |
| COC document(s) received complete                                                                                                                                                                                                                         |                    |                            |
| ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.                                                                                                                                                                  | _                  | _                          |
|                                                                                                                                                                                                                                                           |                    |                            |
| ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.                                                                                                                                                                                 |                    |                            |
| Sampler's name indicated on COC                                                                                                                                                                                                                           |                    | Ļ.                         |
| Sample container label(s) consistent with COC                                                                                                                                                                                                             |                    |                            |
| Sample container(s) intact and good condition                                                                                                                                                                                                             |                    |                            |
| Proper containers and sufficient volume for analyses requested                                                                                                                                                                                            |                    |                            |
| Analyses received within holding time                                                                                                                                                                                                                     |                    |                            |
| pH / Residual Chlorine / Dissolved Sulfide received within 24 hours                                                                                                                                                                                       |                    | Ø                          |
| Proper preservation noted on COC or sample container                                                                                                                                                                                                      |                    |                            |
| ☐ Unpreserved vials received for Volatiles analysis                                                                                                                                                                                                       |                    |                            |
| Volatile analysis container(s) free of headspace □                                                                                                                                                                                                        |                    | Ø                          |
| Tedlar bag(s) free of condensation                                                                                                                                                                                                                        |                    |                            |
| CONTAINER TYPE: Solid: □4ozCGJ ☑8ozCGJ □16ozCGJ □Sleeve() □EnCores® ☑                                                                                                                                                                                     | , 6                | , 2                        |
|                                                                                                                                                                                                                                                           |                    |                            |
| Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1A                                                                                                                                                                                                   |                    |                            |
| □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1                                                                                                                                                                                                      | IPB □500P          | B □500PB <b>na</b>         |
| □250PB □250PBn □125PB □125PB <b>z</b> nna □100PJ □100PJna₂ □                                                                                                                                                                                              | _ □                | _ □                        |
| Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Lai  Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelo  Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f: Field- | pe <b>Review</b> e | ed by:                     |




WORK ORDER #: 10-08- 4 9 2

# SAMPLE RECEIPT FORM

Cooler  $\frac{3}{2}$  of  $\frac{3}{2}$ 

| CLIENT: DATE:                                                                                                                                                                                                                                                                  | 08/18/10                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C − 6.0 °C, not frozen)  Temperature                                                                                                                                                                                          | □ Sample<br>ling.                                               |
| CUSTODY SEALS INTACT:  □ Cooler □ □ No (Not Intact) ☑ Not Present □ N/A □ Sample □ □ No (Not Intact) ☑ Not Present                                                                                                                                                             | Initial: A                                                      |
| SAMPLE CONDITION:  Chain-Of-Custody (COC) document(s) received with samples                                                                                                                                                                                                    | No N/A                                                          |
| □ No analysis requested. □ Not relinquished. □ No date/time relinquished.  Sampler's name indicated on COC                                                                                                                                                                     |                                                                 |
| Proper containers and sufficient volume for analyses requested                                                                                                                                                                                                                 |                                                                 |
| Proper preservation noted on COC or sample container                                                                                                                                                                                                                           |                                                                 |
| Solid:                                                                                                                                                                                                                                                                         | □1AGB <b>na₂</b> □1AGB <b>s</b><br>□500PB □500PB <b>na</b><br>□ |
| Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Labeled/<br>Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope F<br>Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f: Field-filtered | Reviewed by:                                                    |



WORK ORDER #: 10-08- 1 4 0 2

# SAMPLE ANOMALY FORM

| SAMPL                                          | ES - CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NIATN                                                                             | ERS & L                                                                            | ABELS:                                                                                                                                        |                                                           |                                         | Comm               | ents:             |                                                                     |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------|-------------------|---------------------------------------------------------------------|
| ☐ Sam ☐ Hold ☐ Insur ☐ Impr ☐ No p ☐ Sam ☐ Sam | ple(s)/C<br>ple(s)/C<br>ing time<br>fficient o<br>oper co<br>oper pro<br>reserva<br>ple labe<br>ple labe<br>Sample<br>Date ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ontaine<br>e expired<br>quantitientainer(<br>eservati<br>tive note<br>els illegil | r(s) NOT r(s) received — list sans) used — ve used — ed on CO ole — note not match | RECEIVED I<br>ved but NOT<br>mple ID(s) and<br>alysis – list to<br>list test<br>list test<br>of or label –<br>test/contained<br>of COC – Note | r LISTED  nd test  est  list test a  er type              | O on COC  & notify lab                  | (-16)              | (-14)<br>15tic ja | 1 of 2 2 oz.  ar received empty  6 terracores  -S203) received  en. |
|                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ntainer(                                                                          |                                                                                    |                                                                                                                                               |                                                           |                                         |                    |                   |                                                                     |
| ,                                              | Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                                                                    |                                                                                                                                               |                                                           |                                         |                    |                   |                                                                     |
|                                                | Water process ample of the sample  Label(<br>t Label(<br>containe<br>w in vol<br>g (Not tr<br>g (transi            | in sample s) er(s) com ume ansferred ferred int                                    | mised – Note container Fmpty promised – d - duplicate o Calscienc o Client's Te                                                               | Note in o<br>bag sul<br>e Tedlar<br>edlar <sup>®</sup> Ba | comments<br>bmitted)<br>® Bag*)<br>ag*) |                    |                   |                                                                     |
| Sample #                                       | Container<br>ID(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # of Vials<br>Received                                                            | Sample #                                                                           | Container ID(s)                                                                                                                               | # of Vials<br>Received                                    | Sample #                                | Container<br>ID(s) | # of Cont.        | Analysis                                                            |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                    |                                                                                                                                               |                                                           |                                         |                    |                   |                                                                     |
|                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |                                                                                    |                                                                                                                                               |                                                           | · · · · · ·                             |                    |                   |                                                                     |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                                    |                                                                                                                                               |                                                           |                                         |                    |                   |                                                                     |
| *Transferre                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent's requ                                                                        | est.                                                                               |                                                                                                                                               |                                                           |                                         | lr                 | nitial / Da       | te: AL 08 //8 /10                                                   |
| · · · · · · · · · · · · · · · · · · ·          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                   |                                                                                    |                                                                                                                                               | ······································                    | <del></del>                             | <del></del>        |                   | SOP T100_090 (01/29/10)                                             |

#### APPENDIX F

TERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION FORM



# **Voluntary Cleanup Program**

**Washington State Department of Ecology Toxics Cleanup Program** 

# **ERRESTRIAL ECOLOGICAL EVALUATION EXCLUSION FORM**

Under the Model Toxics Control Act (MTCA), a Terrestrial Ecological Evaluation (TEE) is not required if the Site meets the criteria in WAC 173-340-7491 for an exclusion. If you determine that your Site does not require a TEE, please complete this form and submit it to the Department of Ecology (Ecology) at the appropriate time, either with your VCP Application or with a subsequent request for a written opinion. Please note that exclusion from the TEE does not exclude the Site from an evaluation of aquatic or sediment ecological receptors.

If your Site does not meet the criteria for exclusion under WAC 173-340-7491, then you may have to conduct a simplified TEE in accordance with WAC 173-340-7492 or a site-specific TEE in accordance with WAC 173-340-7493. If you have questions about conducting a simplified or site-specific TEE, please contact the Ecology site manager assigned to your Site or the appropriate Ecology regional office.

| Step 1: IDENTIFY HAZARDOUS WASTE                                                      | SITE AND EVALUATOR                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| Please identify below the hazardous waste conducting a TEE and the name of the person | site for which you are documenting an exclusion from who conducted the evaluation. |  |  |  |  |
| Facility/Site Name: Shell Service Station 121182                                      |                                                                                    |  |  |  |  |
| Facility/Site Address: 3740 Pacific Avenue, Ta                                        | coma, WA                                                                           |  |  |  |  |
| acility/Site No: 17847919 VCP Project No.: Not Active                                 |                                                                                    |  |  |  |  |
| Name of Evaluator: Timothy C. Mullin                                                  |                                                                                    |  |  |  |  |

#### Step 2: DOCUMENT BASIS FOR EXCLUSION

The bases for excluding a site from a terrestrial ecological evaluation are set forth in WAC 173-340-7491(1). Please identify below the basis for excluding your Site from further evaluation. Please check all that apply.

| Poll | NT OF C    | OMPLIANCE - WAC 173-340-7491(1)(A)                                                                                                                                                                                                                                                                               |
|------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1-         | No contamination present at site.                                                                                                                                                                                                                                                                                |
|      | 2-         | All contamination is 15 feet below ground level prior to remedial activities.                                                                                                                                                                                                                                    |
|      | 3-         | All contamination is six feet below ground level and an institutional control has been implemented as required by WAC 173-340-440.                                                                                                                                                                               |
|      | 4-         | All contamination is below a site-specific point of compliance established in compliance with WAC 173-340-7490(4)(b) with an institutional control implemented as required by WAC 173-340-440. <i>Please provide documentation that describes the rationale for setting a site-specific point of compliance.</i> |
| BAF  | RRIERS     | го Exposure – WAC 173-340-7491(1)(b)                                                                                                                                                                                                                                                                             |
|      | <i>-</i> - | All contaminated soil, is or will be, covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife and an institutional control has been                                                                                                                         |

have a completion date for future development that is acceptable to Ecology.

implemented as required by WAC 173-340-440. An exclusion based on future land use must

5-

#### Step 2: DOCUMENT BASIS FOR EXCLUSION continued

#### UNDEVELOPED LAND - WAC 173-340-7491(1)(c)

"Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.

"Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

There is less than one-quarter acre of contiguous undeveloped land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.

7-\overline{\text{N}} For sites not containing any of the chemicals mentioned above, there is less than one-and-a-half acres of contiguous undeveloped land on or within 500 feet of any area of the Site.

#### BACKGROUND CONCENTRATIONS – WAC 173-340-7491(1)(d)

8- Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.

#### Step 3: PROVIDE EXPLANATION FOR EXCLUSION (IF NECESSARY)

| The Site is fully paved with asphalt or concrete. None of the chemicals listed in point 6 (above) are |
|-------------------------------------------------------------------------------------------------------|
| present at the site. Less than 1.5 acres of undeveloped land is on or within 500 feet of any area of  |
| the Site.                                                                                             |
|                                                                                                       |
|                                                                                                       |
| Attach additional pages if necessary.                                                                 |

#### Step 4: SUBMITTAL

Please mail your completed form to Ecology at the appropriate time, either with your VCP Application or with a subsequent request for a written opinion. If you complete the form after you enter the VCP, please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.



# Northwest Region: Attn: Sara Maser 3190 160<sup>th</sup> Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: Scott Rose

P.O. Box 47775 Olympia, WA 98504-7775

#### Central Region:

Attn: Mark Dunbar 15 W. Yakima Ave., Suite 200 Yakima, WA 98902

#### Eastern Region:

Patti Carter N. 4601 Monroe Spokane WA 99205-1295

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

241876(3) – APPENDIX F. Terrestrial Ecological Evaluation aerial.



#### APPENDIX G

MTCA METHOD B SOIL CLEANUP LEVEL CALCULATION

#### A1 Soil Cleanup Levels: Worksheet for Soil Data Entry: Refer to WAC 173-340-720, 740,745, 747, 750

#### 1. Enter Site Information

Date: 09/23/10
Site Name: 3740 Pacific Avenue, Tacoma, WA
Sample Name: SB8 – 5

| <u> 2. Enter Soil Concentrat</u>                    | <u>ion Measured</u>                   |                      |
|-----------------------------------------------------|---------------------------------------|----------------------|
| Chemical of Concern                                 | Measured Soil Conc                    | Composition          |
| or Equivalent Carbon Group                          | dry basis                             | Ratio                |
|                                                     | mg/kg                                 | %                    |
| Petroleum EC Fraction                               |                                       |                      |
| AL_EC >5-6                                          | 2.50                                  | 0.06%                |
| AL_EC >6-8                                          | 230.00                                | 5.45%                |
| AL_EC >8-10                                         | 100.00                                | 2.37%                |
| AL_EC >10-12                                        | 280.00                                | 6.64%                |
| AL_EC >12-16                                        | 790.00                                | 18.72%               |
| AL_EC >16-21                                        | 720.00                                | 17.06%               |
| AL_EC >21-34                                        | 530.00                                | 12.56%               |
| AR_EC >8-10                                         | 270.00                                | 6.40%                |
| AR_EC >10-12                                        | 70.00                                 | 1.66%                |
| AR_EC >12-16                                        | 310.00                                | 7.35%                |
| AR_EC >16-21                                        | 490.00                                | 11.61%               |
| AR_EC >21-34                                        | 410.00                                | 9.72%                |
| Benzene                                             | 0.26                                  | 0.01%                |
| Toluene                                             | 0.45                                  | 0.01%                |
| Ethylbenzene                                        | 6.8                                   | 0.16%                |
| Total Xylenes                                       | 0.48                                  | 0.01%                |
| Naphthalene                                         | 2.7                                   | 0.06%                |
| 1-Methyl Naphthalene                                |                                       | 0.00%                |
| 2-Methyl Naphthalene                                |                                       | 0.00%                |
| n-Hexane                                            | 6.5                                   | 0.15%                |
| MTBE                                                |                                       | 0.00%                |
| Ethylene Dibromide (EDB)                            |                                       | 0.00%                |
| 1,2 Dichloroethane (EDC)                            | · · · · · · · · · · · · · · · · · · · | 0.00%                |
| Benzo(a)anthracene                                  |                                       | 0.00%                |
| Benzo(b)fluoranthene                                |                                       | 0.00%                |
| Benzo(k)fluoranthene                                |                                       | 0.00%                |
| Benzo(a)pyrene                                      |                                       | 0.00%                |
| Chrysene                                            |                                       | 0.00%                |
| Dibenz(a,h)anthracene                               |                                       | 0.00%                |
| Indeno(1,2,3-cd)pyrene                              |                                       | 0.00%                |
| Sum                                                 | 4219.69                               | 100.00%              |
| 3. Enter Site-Specific Hy                           | droggological D                       | rta ·                |
|                                                     | 0.43                                  | Unitless             |
| Total soil porosity:<br>Volumetric water content:   | 0.43                                  | Unitless             |
|                                                     |                                       |                      |
| Volumetric air content: Soil bulk density measured: | 0.13<br>1.5                           | Unitless             |
| •                                                   | 0.003                                 | kg/L<br>Unitless     |
| Fraction Organic Carbon:                            |                                       |                      |
|                                                     | 20                                    | Unitless             |
| Dilution Factor:                                    | 1 C                                   | 26 . 12.             |
| 4. Target TPH Ground Wa                             |                                       | if adjusted)         |
|                                                     |                                       | if adjusted)<br>ug/L |

|             | or Data Entry Set Default Hydrogeology r All Soil Concentration Data Entry Cells |
|-------------|----------------------------------------------------------------------------------|
|             |                                                                                  |
| Kestore A   | All Soil Concentration Data cleared previously                                   |
|             |                                                                                  |
| REMARK:     | specific information here                                                        |
| -inter site | Specific information note                                                        |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
| ř           |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |
|             |                                                                                  |

### A2 Soil Cleanup Levels: Calculation and Summary of Results. Refer to WAC 173-340-720, 740, 745, 747, 750

**Site Information** 

Date: 9/23/2010

Site Name: 3740 Pacific Avenue, Tacoma, WA

Sample Name: SB8-5

Measured Soil TPH Concentration, mg/kg:

4,219.690

#### 1. Summary of Calculation Results

| D. Alexandre                  | Made al/Cool                        | Protective Soil | With Measured Soil Conc |          | Does Measured Soil |
|-------------------------------|-------------------------------------|-----------------|-------------------------|----------|--------------------|
| Exposure Pathway              | Method/Goal                         | TPH Conc, mg/kg | RISK @                  | HI @     | Conc Pass or Fail? |
| Protection of Soil Direct     | Method B                            | 3,154           | 1.43E-08                | 1.34E+00 | Fail               |
| Contact: Human Health         | Method C                            | 40,967          | 1.92E-09                | 1.03E-01 | Pass               |
| Protection of Method B Ground | Potable GW: Human Health Protection | 1,008           | 1.20E-05                | 9.52E-01 | Fail               |
| Water Quality (Leaching)      | Target TPH GW Conc. @ 800 ug/L      | 100% NAPL       | NA                      | NA       | Pass               |

Warning! Check to determine if a simplified or site-specific Terrestrial Ecological Evaluation may be required (Refer to WAC 173-340-7490 through ~7494).

Warning! Check Residual Saturation (WAC340-747(10)).

2. Results for Protection of Soil Direct Contact Pathway: Human Health

|                                          | Method B: Unrestricted Land Use | Method C: Industrial Land Use |
|------------------------------------------|---------------------------------|-------------------------------|
| Protective Soil Concentration, TPH mg/kg | 3,153.69                        | 40,967.49                     |
| Most Stringent Criterion                 | HI =1                           | HI =1                         |

|                             | Pro             | tective Soil Concentr | ation @Method | i B      | Protective S    | oil Concentra      | tion @Met | thod C   |
|-----------------------------|-----------------|-----------------------|---------------|----------|-----------------|--------------------|-----------|----------|
| Soil Criteria               | Most Stringent? | TPH Conc, mg/kg       | RISK @        | ні @     | Most Stringent? | TPH Conc,<br>mg/kg | RISK @    | HI @     |
| HI =1                       | YES             | 3.15E+03              | 1.07E-08      | 1.00E+00 | YES             | 4.10E+04           | 1.86E-08  | 1.00E+00 |
| Total Risk=1E-5             | NO              | 2.95E+06              | 1.00E-05      | 9.35E+02 | NO              | 2.20E+07           | 1.00E-05  | 5.37E+02 |
| Risk of Benzene= 1E-6       | NO              | 2.95E+05              | 1.00E-06      | 9.35E+01 |                 |                    |           |          |
| Risk of cPAHs mixture= 1E-6 | NA              | NA                    | NA            | NA       | :               | NA                 |           | ,        |
| EDB                         | NA              | NA                    | NA            | NA       |                 | INT                |           |          |
| EDC                         | NA              | NA                    | NA            | NA       |                 |                    |           |          |

#### 3. Results for Protection of Ground Water Quality (Leaching Pathway)

3.1. Protection of Potable Ground Water Quality (Method B): Human Health Protection

| Most Stringent Criterion                    | Benzene MCL = 5 ug/L |
|---------------------------------------------|----------------------|
| Protective Ground Water Concentration, ug/L | 349.21               |
| Protective Soil Concentration, mg/kg        | 1008.29              |

| C 1 W-4 C-iti-              | Protective      | Protective Potable Ground Water Concentration @Method B |          |          |             |
|-----------------------------|-----------------|---------------------------------------------------------|----------|----------|-------------|
| Ground Water Criteria       | Most Stringent? | TPH Conc, ug/L                                          | RISK @   | HI @     | Conc, mg/kg |
| HI=1                        | NO              | 4.46E+02                                                | 1.32E-05 | 1.00E+00 | 6.47E+03    |
| Total Risk = 1E-5           | NO              | 4.12E+02                                                | 1.00E-05 | 8.74E-01 | 2.49E+03    |
| Total Risk = 1E-6           | YES             | 1.17E+02                                                | 1.00E-06 | 2.10E-01 | 1.09E+02    |
| Risk of cPAHs mixture= 1E-5 | NA              | NA                                                      | NA       | NA       | NA .        |
| Benzene MCL = 5 ug/L        | YES             | 3.49E+02                                                | 6.29E-06 | 6.94E-01 | 1.01E+03    |
| MTBE = 20 ug/L              | NA              | NA                                                      | NA       | NA       | NA          |

3.2 Protection of Ground Water Quality for TPH Ground Water Concentration previously adjusted and entered

|        | round Water Criteria   | Protective     | Protective Soil |          |             |
|--------|------------------------|----------------|-----------------|----------|-------------|
| 6      | round water Criteria   | TPH Conc, ug/L | Risk@           | HI @     | Conc, mg/kg |
| Target | TPH GW Conc = 800 ug/L | 4.69E+02       | 1.62E-05        | 1.10E+00 | 100% NAPL   |

### APPENDIX H

# SHELL OIL BACKFILL SPECIFICATIONS

# **SECTION 18.0:**

# SOIL EXCAVATION AND CONFIRMATORY SAMPLING STANDARD OPERATING PROCEDURES

(FLD-0107)

(Modified and included as Appendix C -060486(1))

JUNE 2008

REF. NO. 200010 (2)

This report is printed on recycled paper. Revision 0 - June 3, 2008

### TABLE OF CONTENTS

|      |         |                                          | <u>Page</u> |
|------|---------|------------------------------------------|-------------|
| 18.0 | SOIL EX | CAVATION AND CONFIRMATORY SAMPLING       |             |
|      | STANDA  | ARD OPERATING PROCEDURES                 | 1           |
|      | 18.1    | INTRODUCTION                             | 1           |
|      | 18.2    | BACKGROUND                               | 1           |
|      | 18.3    | PLANNING AND PREPARATION                 | 2           |
|      | 18.4    | SAFETY AND HEALTH                        | 4           |
|      | 18.5    | QUALITY ASSURANCE/QUALITY CONTROL        | 5           |
|      | 18.6    | EQUIPMENT DECONTAMINATION                | 5           |
|      | 18.7    | REGULATORY FRAMEWORK                     | 6           |
|      | 18.8    | EXCAVATION ACTIVITIES                    | 6           |
|      | 18.9    | SOIL SCREENING AND CONFIRMATORY SAMPLING | 8           |
|      | 18.9.1  | SOIL SCREENING                           | 8           |
|      | 18.9.2  | CONFIRMATORY SAMPLING                    | 8           |
|      | 18.9.3  | SAMPLE COLLECTION PROCEDURE              | 10          |
|      | 18.10   | BACKFILLING                              | 12          |
|      | 18.11   | WASTE REMOVAL                            | 13          |
|      | 18.12   | FOLLOW-UP ACTIVITIES                     | 14          |

### LIST OF QUALITY SYSTEM FORMS

| QSF-012 | VENDOR EVALUATION FORM                       |
|---------|----------------------------------------------|
| QSF-014 | FIELD EQUIPMENT REQUISITION FORM             |
| QSF-019 | PROPERTY ACCESS/UTILITY CLEARANCE DATA SHEET |
| QSF-021 | FIELD METHOD TRAINING RECORD                 |
| QSF-030 | SAFETY AND HEALTH SCHEDULE (CANADA)          |
| QSF-031 | SAFETY AND HEALTH SCHEDULE (U.S.)            |

# 18.0 SOIL EXCAVATION AND CONFIRMATORY SAMPLING STANDARD OPERATING PROCEDURES

### 18.1 INTRODUCTION

The excavation of drums and contaminated soil is a specialized remedial activity which requires a qualified contractor working under a CRA specification (and contract). The contract will require the contractor to not only direct/conduct the actual field work but may also stipulate the direction/ performance of remedial activities. Requirements may include; field analytical/ screening and completion of required documentation. The primary function of the CRA representative in such a contract will be to observe the activities of the contractor to insure the requirements of the specification are upheld.

The remainder of this section is organized as follows:

| • | Section 18.2  | Background                        |
|---|---------------|-----------------------------------|
| • | Section 18.3  | Planning and Preparation          |
| • | Section 18.4  | Safety and Health                 |
| • | Section 18.5  | Quality Assurance/Quality Control |
| • | Section 18.6  | <b>Equipment Decontamination</b>  |
| • | Section 18.7  | Regulatory Framework              |
| • | Section 18.8  | Excavation Activities             |
| • | Section 18.9  | Confirmatory Soil Sampling        |
| • | Section 18.10 | Backfilling                       |
| • | Section 18.11 | Waste Removal                     |
| • | Section 18.12 | Follow-up Activities              |

### 18.2 <u>BACKGROUND</u>

Excavation activities are governed by the following:

- OSHA Standard (29 CFR 1926.650-652) specifies safety requirements for excavations.
- Complete CRA's ASETS "Excavation Safety for Competent Persons" training course before overseeing any excavation work.

It is important to highlight that CRA does not prescribe its own guidance for remedial excavation or confirmatory soil sampling. Each project should be carried out by regulatory guidance for a state or province.

This Standard Operating Procedure has been modified and included in the Corrective Action Work Plan for Shell Oil Products US (SOPUS) (Reference 060486(1).

### 18.3 PLANNING AND PREPARATION

Prior to undertaking any soil excavation and confirmatory soil sampling:

- Review the Work Plan
- Conduct preliminary site visit if practical to assess logistics for excavation, equipment staging, truck loading, exclusion/econ/support zones, overhead utilities and underground utilities, buildings, etc.
- Review and sign the Health and Safety Plan (HASP)
- Review and modify the Job Safety Analysis specific for the site work
- Complete a Vendor Evaluation Form (QSF-012) and file in the Project file for any vendors that do not have full approval status or are not listed on the Approved Vendor List (QSL-004). Completion of a Safety and Health Schedule (QSF-030 for Canadian work, QSF-031 for U.S. work) is necessary for all vendors who complete field services. Prior to mobilization on site, the vendor must submit the form to the Regional Safety and Health Manager for review and approval (if not already posted on QSL-004).
- Review CRA's Safety & Manual for the specific county for Applied Safety and Environmental Training Solutions (ASETS) guidelines for excavation work
- Review quality assurance/quality control (QA/QC) requirements. See Shell Backfill Specification included in Appendix C to Report 060486(1)
- Review the investigation report for contamination depths, stratigraphy, and groundwater level
- Ensure characterization of contamination as best as possible, if applicable
- Ensure all permits and licenses have been received and reviewed

- Confirm all plans and permits/approvals for transportation and disposal of excavated waste
- Contact CRA's Waste Services Group
- Review provincial or state screening and sampling requirements, if applicable
- Coordinate removal of contaminated soil with the contractor (licensed waste hauler)
- Contact regulatory agency some require 14 days prior notification
- Contact the excavation contractor to verify that equipment meets CRA and OSHA standards, such as backhoe - hydraulic hoses in good condition, chains and cables contain rating tags, trench boxes contain rating specs, ladders are in good condition, etc.
- Complete a Field Requisition Form (QSF-014) and assemble all equipment and personal protective equipment (PPE) [e.g., photoionization detector (PID), oxygen and lower explosive limit (LEL) meter, tape measure, first aid kit, fire extinguishers, cascade air system or self-contained breathing apparatus (SCBA)] if Level B work, spill response equipment, etc.
- Contact CRA chemistry group to arrange:
- SSOW (Simplified Scope of Work)
- Accredited laboratory
- Sample containers
- Coolers
- Shipping details
- Sampling start date
- Expected duration of sampling program
- U.S. laboratories typically need state accreditation
- Arrange access to the site and confirm site contact(s)
- Arrange for confined space entry, if applicable
- Initiate a Property Access/Utility Clearance Data Sheet (Form QSF-019)
- Obtain client sign-off(s). Follow all Shell Permit to Work and MBI procedures
- Verify backfilling (compaction testing), confirmatory sampling, and site restoration requirements in accordance with SOPUS Backfill Specifications

### 18.4 SAFETY AND HEALTH

CRA is committed to conducting field activities in accordance with sound safety and health practices. CRA adheres to high safety standards to protect the safety and health of all employees, subcontractors, customers, and communities in which they work. The safety and health of our employees takes precedence over cost and schedule implications.

Field personnel are required to implement the Safety Means Awareness Responsibility Teamwork (SMART) program as follows:

- Assure the Health and Safety Plan (HASP) is specific to the job and approved by a Regional Safety & Health Manager
- Confirm that all HASP elements have been implemented for the job
- A Job Safety Analysis (JSA) for each task has been reviewed, modified for the specific site conditions and communicated to all appropriate site personnel. The JSAs are a component of the HASP
- Incorporate Stop Work Authority; Stop, Think, Act, Review (STAR) process; Safe Task Evaluation Process (STEP); Observations process; Near Loss and Incident Management process in the day-to-day operations of the job
- Review and implement applicable sections of the CRA Safety & Health Policy Manual
- Confirm that all site personnel have the required training and medical surveillance, as defined in the HASP
- Be prepared for emergency situations, locating safety showers, fire protection equipment, evacuation route, rally point, and first aid equipment before you begin working, and make sure that the equipment is in good working order
- Maintain all required Personal Protective Equipment (PPE), safety equipment, and instrumentation necessary to perform the work effectively, efficiently and safely
- Be prepared to call the CRA Incident Hotline at 1-866-529-4886 for all incidents involving injury/illness, property damage, and vehicle incident and/or significant Near Loss

It is the responsibility of the Project Manager to:

• Ensure that all CRA field personnel have received the appropriate health and safety and field training and are qualified to complete the work

 Provide subcontractors with a Job Hazard Analysis to enable them to develop their own HASP

• Ensure that all subcontractors meet CRA's (and the Client's) safety requirements

### 18.5 QUALITY ASSURANCE/QUALITY CONTROL

A well-designed QA/QC program will:

• ensure that data of sufficient quality are obtained in order to facilitate good site management

• allow for monitoring of staff and contractor performance

• verify the quality of the data for the regulatory agency

The QA/QC program is developed on a site-specific basis. QA/QC requirements are discussed in detail in Section 3.9.

The Draft SOPUS Sampling and Analysis Plan shall be used to complete the confirmation sampling scope of work.

### 18.6 <u>EQUIPMENT DECONTAMINATION</u>

Prior to use and between excavation locations at an environmental site, the excavation and sampling equipment must be decontaminated in accordance with the Work Plan, the Quality Assurance Project Plan (QAPP), or the methods presented in this section.

The minimum was procedures for decontamination of excavating equipment are:

• High pressure, hot water detergent wash (brushing as necessary to remove particulate matter)

Potable, hot water, high pressure rinse

On environmental sites, the soil sampling equipment (trowels, spoons, shovels, and bowls) are typically cleaned as follows:

- Wash with potable water and laboratory detergent, using a brush as necessary to remove particulates.
- Rinse with potable water.
- Rinse with deionized water.
- Air dry for as long as possible.

### 18.7 REGULATORY FRAMEWORK

Excavation and sampling associated to Underground Storage Tanks (USTs) is regulated separately as compared to drum removal, landfill excavation or other remedial excavation. Consequently, all remedial excavations must first be determined to be UST or non-UST related prior to locating the applicable authority.

In the U.S.:

The UST regulatory requirements in the United States are governed on a state-by-state basis. There are a few states that may defer to the USEPA in their region, for a complete directory and link to the requirements for each state, including five US territories use the following web site:

http://www.epa.gov/OUST/states/statcon1.htm

### 18.8 EXCAVATION ACTIVITIES

- Confirm that utility clearance process has been completed.
- Complete SOPUS Permit for excavation activities
- Confirm that an Excavation Competent person is on-site at all times during work activities to assure regulatory compliance.
- No one is allowed to enter an excavation deeper than 4 feet without the specific permission and safety systems confirmed by the Excavation Competent person.

- Locate, isolate, and lock out of all known utility systems such as electrical, water, phone, etc.
- Excavate and stockpile "clean" soil upwind of the excavation at least 2 feet from the edge of the excavation, it can be used for backfill material.
- Excavate contaminated soil and either stockpile for characterization and eventual disposal or for direct load and haul.
- Remove and store contaminated groundwater (Vac truck, lined roll-off box, temporary treatment system).
- Confirmatory soil sampling (including groundwater and/or sediment sampling, if required).
- Characterize for disposal of all waste liquids.
- Site restoration.
- Removal of contaminated soil cannot occur until the appropriate waste classification and disposal facility has been determined.
- Potential asbestos must not be removed unless an abatement container licensed for asbestos removal conducts the work.
- The client is considered the generator of all materials disposed of and will sign all manifests prior to removal of contaminated materials from the site.
- In no case should CRA personnel sign manifest forms on behalf of the client as a generator, unless written authorization is given by a Shareholder.

For reporting purposes, the following must be documented:

- Chronology of events.
- Summary of tank and piping condition findings.
- Soil and groundwater conditions.
- Waste materials generated (soil, groundwater, wash/rinse fluids, tank bottoms).
- Soil sample locations.
- Record waste disposal activities and locations.
- Label photographs.
- Retain all manifests, weigh scale receipts, and other releases.
- Retain all chain-of-custody records.
- Return field equipment and any other supplies, rented or owned.

### 18.9 <u>SOIL SCREENING AND CONFIRMATORY SAMPLING</u>

Confirmatory sampling procedures will vary from project to project due to the different parameters of concern and/or the different regulatory requirements as provided by the state/province/federal jurisdiction, where the site is located. The primary goal of confirmatory sampling is to collect the required number of representative samples for chemical analysis that will be used to document post-excavation conditions relevant to regulatory standards. Confirmation samples will be collected in accordance with SOPUS Draft Sampling and Analysis Plan.

### 18.9.1 <u>SOIL SCREENING</u>

Soil screening is required for any remedial excavation. It is used as a general form of quantitative field determination for contaminated soil. It is also used as a preliminary assessment for clean soil, which must be verified through confirmatory sampling.

Common devices used for screening include photoionization detector, flameionization detector, multi-gas meter, organic vapor analyzer, explosimeter, single or dual gas tube analyzer, or radiological survey instrument. In addition, soil may be monitored visually for discoloration or other signs that could indicate contamination. Backup instruments are recommended, such that they should be available at the site at all times, if approved by the Project Manager.

More advanced screening of the soil may be required to include, but not limited to; hydrogen cyanide gas, mercury vapor, and polychlorinated biphenyl (PCB) screening. These tests may be used for initial segregation of clean soils from contaminated soils as well as to determine the compatibility of mixed soils.

### 18.9.2 <u>CONFIRMATORY SAMPLING</u>

Confirmatory samples are generally collected from the sides and bottom of an excavation to substantiate the screening process as discussed above and to show that contaminated soil has either been removed or if left in-place, to what extent contaminated soil remains. Confirmatory samples may also include "clean soil" that had

been removed from an excavation and stockpiled to access underlying contaminated material. Based on the analytical results, confirmation of "clean soil", may be placed back into the excavation upon completion of the work.

The Work Plan will likely require sampling of both contaminated soil and clean soil associated with and excavation. Analytical results from the contaminated soil will be used for waste characterization/compatibility testing in preparation for treatment or disposal of contaminated soil.

As with drum removal procedures, prior consideration must be given to how a sample will be removed from the base or sidewalls of the excavation. Extended reach sampling equipment or use of the excavating equipment (if properly decontaminated) may be required. See Section 4.13 - Surficial Soil Sampling, for more detailed sampling information.

Random, Biased, and Grid-Based Sampling

Unless there is a strong indication of contaminant presence, such as staining, then soil sample locations should be selected randomly from within the excavation.

If any areas show evidence of contamination, such as staining, biased samples will be collected from those areas to characterize the contamination present or left in place. Background and/or control samples are considered biased, since they are collected in locations that are intended to represent non-site-impacted conditions.

When sampling involves large excavation areas, a grid-based soil sampling program is usually used. There is no single grid size that is appropriate for all excavations. Refer to your state/province/federal guidance for the requirements.

It is also important to consider the presence of structures and preferred pathways that might promote contaminant migration. Stratigraphic contact zones are good sample locations where contaminate accumulation is likely such as sand/clay, sand/silt contacts or fill material/natural material contacts. These areas represent a worst-case scenario when screening and visual determinations indicate no impact.

**Grab Versus Composite Samples** 

A grab sample is collected to identify and quantify compounds at a specific location or interval. The sample is comprised of no more than the minimum amount of soil necessary to fill the sample container. Composite samples are a mixture of a given number of subsamples and are collected to characterize the average composition in a given surface area.

Composite samples with the exception of VOC analyses, should be placed in a stainless steel bowl to be homogenized prior to filling sample containers. This step can be bypassed if only one sample container is required to be filled and the laboratory is instructed to homogenize the sample upon receipt.

It is important that soil samples be mixed thoroughly to ensure that the sample interval or area is adequately represented. Round stainless bowls work best for sample mixing, whereby, mixing involves stirring in a circular motion while occasionally turning the material over. The sample container should be filled completely; no space should remain in the sample containers.

Note that soil collected for VOCs shall not be mixed.

### 18.9.3 SAMPLE COLLECTION PROCEDURE

Sampling techniques are dependent upon the sample interval of interest, the type of soil material to be sampled, and the requirements for handling the sample after retrieval. The most common method for collection of excavation soil samples involves the use of a the backhoe bucket. Soil samples may also be collected with spoons and push tubes. Remember, no one may enter an excavation greater than 4 feet without the specific permission and safety systems confirmed by the Excavation Competent person on site. In each case, the sampling device must be constructed of an inert material with smooth surfaces which can be readily cleaned. The cleaning protocol involves the use of a sequence of cleaning agents and water designed to remove surface contaminants. The sampling equipment is cleaned between sample locations. A typical soil sampling protocol is outlined below:

• Soil samples will be collected using a precleaned stainless steel trowel or other appropriate tool. Each sample will consist of soil from the surface to the depth specified within the Work Plan. Sampling in ditches will be done only when there is no water present.

- A new pair of disposable gloves will be used at each sample location.
- Prior to use, at each sample location, all sampling tools will be decontaminated in accordance with the Work Plan.
- A precleaned sampling tool will be used to remove the sample from the layer of exposed soil. The collected soil will be placed directly in a clean, prelabeled sample jar and sealed with a Teflon-lined cap. Samples to be split for duplicate analyses will first be homogenized in a precleaned stainless steel bowl.
- Samples will be placed in ice or cooler packs in laboratory supplied coolers after collection.

In the event that the soil conditions are not as the sampler was led to believe by the Work Plan or if there are unexpected distinct layers of soil present (e.g., a layer of high organic carbon content overlying a layer of fine grained soil), then the sampling personnel should report the conditions to the Project Coordinator immediately for resolution.

Also, the sampling team members should immediately report any conditions to the Project Coordinator that they believe may have a negative effect on the quality of the results.

Generally it is not advisable to collect samples containing excessive amounts of large particles such as gravel. Gravel presents difficulties for the laboratory in terms of sample preparation and may not be truly representative of contaminant concentrations in nearby soil.

All conditions at the time of sample collection should be properly documented in the field log book. This should include a thorough description of the sample characteristics, including grain size, color, and general appearance, as well as date/time of sampling and labeling information. The location of the sampling point should be described in words and three measurements should be taken to adjacent permanent structures so that the sample location can be readily identified in the field at a future date if necessary. It is often advisable to have a licensed land surveyor accurately survey the locations.

### **VOC Sampling**

In general, most regions or states require soil sampled for VOCs (in the U.S.) to be preserved using US EPA method 5035 (verify with your region or state). This method

consists of three preservation types (depending on site conditions one of these will be used): the Encore sampler, the vial/sodium bisulfate, and the vial/methanol. Each method is specific to site conditions and therefore the sampler and the laboratory needs to discuss the method best suited for the project.

During the sampling program, the sampling team leader should stay in contact with the CRA chemist assigned to the project such that the CRA chemist can properly inform the contract laboratory with the progress of the work. This includes submitting sample summaries and/or copies of completed chain-of-custody forms to the CRA chemist.

Finally, some CRA QAPPs require a designation of a QA/QC officer for field activities. The sampling team leader may be required to conduct certain field audit activities and at minimum, should be familiar with and responsible for completion of all QA/QC sample activities.

### 18.10 BACKFILLING

The excavation may only be backfilled after approval by the site engineer (CRA site representative or responsible contractor). Excavations should be backfilled with approved clean imported fill or native soils previously stockpiled which have been deemed suitable based on screening/testing protocols specified in the Work Plan. Backfilling of the excavation should proceed in lifts of no more than 12 inches, placing material in the opposite order of removal with each lift being compacted to the density specified. The CRA on-site representative should document the volume/weight of material brought on site for backfill as this information will likely be required for payment or other regulatory records.

Note: In deep excavations not meeting entry criteria, equipment used for compacting backfill material will have to be approved in advance. Particular attention to compacting standards must be paid in areas where future settlement could cause damage to surface structures/pavements.

If immediate backfilling is specified and the potential exists for re-excavation in order to remove additional soils, the excavation should be lined with filter fabric or polyethylene sheeting prior to backfilling. This will allow re-excavation to proceed quickly to the limits of the original excavation.

SOPUS Backfill Specifications will be followed for this project.

18.11 WASTE REMOVAL

Waste Manifests

The transportation of contaminated materials to off-site disposal facilities requires documentation on appropriate federal and/or state/provincial manifests, as required. Manifest forms must be consistent with applicable federal and/or state/provincial regulations. Usually, the site contractor will prepare and provide CRA with copies of manifests and/or other records for each shipment of material from the site (or as otherwise required by the project specifications). The site contractor is responsible for maintaining manifests from the time the manifested material leaves the site to the time

of ultimate disposal, unless other specified responsibilities have been established.

For the purpose of transportation and off-site disposal, the Client will be considered the generator of all materials disposed of and will sign all manifests prior to removal of contaminated materials from the site. In no case shall CRA on-site personnel sign manifest forms on behalf of the Client as a generator unless written authorization is

given by the Client and a CRA Shareholder.

Waste Removal

The waste removal activity will be coordinated by the Project Manager such that all disposal facilities are designated and approved prior to commencing any field activities. The contractor is required to load waste into licensed hauling vehicles. The type of vehicle may vary according to the waste classification. Also, more than one disposal facility may be specified for various waste depending on the results of the waste

compatibility and characterization results.

Depending upon site conditions, the contractor will be required to decontaminate the

tires and axles of haulage vehicles upon leaving the site.

The CRA on-site representative is required to collect various documents from the

contractor during the waste removal operation. These include:

manifests, as discussed in the previous section;

Section 18: Soil Excavation and Confirmatory Sampling SOPs Revision 0 - June 3, 2008

18-13

- weigh scale receipts copies of weigh scale receipts must be submitted to CRA on approved forms and must be signed by the weigh scale operator or his designated agent and must include the following:
- location, date and time of weighing,
- measured weights,
- vehicle and container identification,
- shipment identification number, and
- manifest number; and
- certificates of disposal issued by the disposal facility for each shipment delivered to the disposal facility.

### 18.12 FOLLOW-UP ACTIVITIES

Once the excavation and site restoration activities have been substantially completed, the following tasks should be completed:

- All field data and field notes will be submitted to the Project Manager and project file;
- the location of the excavations, including the location of all confirmatory soil sample locations will be plotted on a site plan and submitted to the Project Manager;
- a summary write-up on field activities including such items as: number of excavations, field procedures, waste handling, and confirmation soil sampling procedures, and any problems encountered;
- a photographic log of site activities should be completed (pictures labeled in sequential order) and given to the Project Manager;
- field book or field sheers should be kept at the appropriate CRA office;
- obtain all post excavation submittals required of the subcontractor.

# APPENDIX I

STANDARD OPERATING PROCEDURE SPECIFIC FOR EXCAVATION AND CONFIRMATORY SAMPLING

# **Downstream-One**

# Retail Network Engineering

Backfill Specification for Post Demolition Work at Retail Service Stations

Date: June 11, 2007

Version: 1.2



<sup>&</sup>quot; The requirements and guidelines set by this document shall not be applicable and shall not be implemented where they do not meet minimum requirements of local laws and regulations. In all cases, the minimum requirements set by applicable local laws and regulations must be met when conducting activities associated with this document."

# **Downstream-One**

| 1 | Intr            | ODUCTION                                                                                                                | . 1 |
|---|-----------------|-------------------------------------------------------------------------------------------------------------------------|-----|
|   | 1.1             | Scope                                                                                                                   | 1   |
| 2 | BAC             | KFILL MATERIAL SELECTION                                                                                                | . 1 |
|   | 2.1             | Backfill Material Selection Criteria                                                                                    | . 1 |
|   | 2.2             | Imported Structural Backfill Material Requirement                                                                       | 1   |
|   | 2.3             | Use of onsite excavation or native soils                                                                                | 2   |
|   | 2.4             | Use of Non-Structural Backfill Materials                                                                                | 2   |
| 3 | BAC             | KFILLING REQUIREMENTS                                                                                                   | . 2 |
|   | 3.1             | General                                                                                                                 | 2   |
|   | 3.2             | Compaction                                                                                                              | 3   |
|   | 3.3             | Quality Control                                                                                                         | 3   |
|   | 3.4             | Subsequent UST Installation by a Non-Shell Party                                                                        | 3   |
| 4 | Refi            | ERENCE DOCUMENTS                                                                                                        | . 4 |
|   | 4.1<br>of struc | Standards – for reference in absence of local industry standards for determination soil compaction tural fill materials |     |
| 5 | ACR             | ONYMS                                                                                                                   | . 4 |
| 6 | DEFI            | NITIONS                                                                                                                 | . 4 |
| 7 | Doc             | UMENT PROPERTIES                                                                                                        | . 6 |





# 1 Introduction

### 1.1 Scope

This specification identifies backfill materials and backfilling procedures to be used for excavations resulting from the demolition and removal of buildings and equipment located on a retail site. This specification <u>does not</u> apply to design backfill for site construction projects where buildings, roads, and underground equipment is to be installed. In those cases, backfill requirements are to be engineered within the project construction design scope of work. This specification applies to but is not limited to the following works;

- Removal of Underground Storage Tanks and Pipe-work Systems.
- Removal of Electrical Vaults.
- Removal of basements and building foundations.
- Removal of sign pole and electrical pole foundations.
- Removal of oil water separators, oil pits, and storm basins.
- · Site grading.

# 2 Backfill Material Selection

### 2.1 Backfill Material Selection Criteria

- If the immediate or near future use of the area to be backfilled is required to provide structural support of buildings, foundations, footings, underground storage tanks systems and pipe-work, utilities (vaults, sewer lines), or drive areas, then the use of "structural fill" is required. Otherwise, non-structural backfill that meets the requirements stated in 2.4 below may be used.
- Meets local regulatory definition of clean backfill materials. At minimum backfill material must contains less than 100ppm TPH and less than 10ppm BETX.

### 2.2 Imported Structural Backfill Material Requirement\*

- Structural Backfill Material shall be gravel, sand, clay, or silt, or a
  mixture of these constituents with Plasticity Index between 6 and 20
  (expressed as percent water in soil) and liquid limit maximum of 40
  (expressed as percent water in soil).
- Chemical stabilization is acceptable when approved by the Shell Engineer or Designated Shell Representative, if modification of liquid limit (LL) and plasticity index (PI) are necessary to obtain satisfactory compaction.

**Downstream-One** 

Page: 1

File name: 241796-09-APPI -Backfill Specification v1 2 121108

<sup>\*</sup> Requirements established by PIP CVS02100 Rev May 2001.

- The moisture content of the material being compacted shall be within +/-3% of the optimum moisture content as determined by compaction curves generated by testing of the soil. The Contractor shall condition the moisture content of fill materials as necessary to achieve the required moisture content without additional cost to Shell.
- Material must be of uniform size, not frozen, and not contain any trash or debris.

### 2.3 Use of onsite excavation or native soils

 Onsite excavation soils may be used if the listed general requirements and requirements for the Structural Backfill Material can be met. Backfill materials selected must be certified that requirements in 2.2, are met by a qualified person using industry accepted analyses methods.

### 2.4 Use of Non-Structural Backfill Materials

 Must be comparable to surrounding native soils in cohesiveness, water density, and particulate size.

# 3 Backfilling Requirements

### 3.1 General

- Contractor shall adhere to applicable Shell Permit to Work System requirements.
- Backfilling procedures must be conducted in accordance with local regulatory requirements.
- All existing open excavations are to be appropriately barricaded and fenced.
- All areas shall be maintained using temporary erosion and sediment control measures in accordance with local industry practices and requirements.
- Demolition activities with excavations deeper than 1.5 meters (5 feet) shall be immediately backfilled unless local regulatory requirements prohibit immediate backfilling. In those cases, backfilling shall take place as soon as allowed. The excavation is to remain properly fenced and barricaded until backfilling is complete. Exceptions may be provided by the conditions of section 3.4. These exceptions however, must be reviewed and approved by the Local Engineering Team Lead or Manager.



Page: 2

File name: 241796-09-APPI -Backfill Specification v1 2 121108

### 3.2 Compaction

- Backfill material is to be compacted using no more than 200mm (8") lifts.
- It is the responsibility of the contractor to select a compaction method that is a approved industry method compatible with the selected backfill material.
- Structural Fill that is non-granular shall achieve at least 90% compaction (using ASTM D1557 or equivalent compaction using alternative standard).
- Structural Fill that is granular material shall achieve at least 80% relative density (using ASTM D4253 or equivalent compaction using alternative standard).
- Non-structural Fill, not classified as sand, shall achieve at least 85% compaction (using ASTM D1557 or equivalent compaction using alternative standard).
- If sand is used for non-structural fill (in case surrounding soil is sand), shall achieve at least 70% relative density (using ASTM D4253 or equivalent compaction using alternative standard).
- Compaction by water jetting or flooding is not permitted.

### 3.3 Quality Control

- Compaction shall be measured/determined for each backfill lift.
- Compaction tools/equipment should be instrumented with compaction measuring devices that will determine the compaction achieved or maximum when maximum compaction has been obtained.
- The contractor shall obtain representative sampling of compaction measurements for each lift.
- A tabulation of compaction measurements are to be submitted with the project completion package to the Shell Engineer or Shell Representative at the conclusion of project.

### 3.4 Subsequent UST Installation by a Non-Shell Party

o In cases where underground storage tanks are to be installed by a Non-Shell Party subsequent to demolition of and removal of tanks by Shell and transfer of property title to a Non-Shell party, unless the Non-Shell Party is able to coordinate the simultaneous installation of the new UST System at no additional cost to Shell or delay in the removal of the existing UST System, Shell shall backfill the excavation with uncompacted fill



Page: 3

File name: 241796-09-APPI -Backfill Specification v1 2 121108

# 4 Reference Documents

- 4.1 Standards for reference in absence of local industry standards for determination soil compaction of structural fill materials.
  - ASTM D1557 Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2700 kN-m/m3) – This standard may be referenced for determining optimum moisture density or proctor density for structural fill.
  - ASTM D698 Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort 12,400 ft-lbf/ft3 (600 kN-m/m3) This standard may be referenced for determining optimum moisture density or proctor density for structural fill.
  - ASTM D4253 Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
  - PIP (Process Industry Practices Civil) CVS 02100 Rev. May 2001 Site Preparation, Excavation, and Backfill Specification.

# 5 Acronyms

- TPH Concentration of Total Petroleum Hydrocarbon
- BETX Concentrations of Benzene, Ethylbenzene, Toluene, and Xylenes.
- ASTM American Society of Testing Materials

# 6 Definitions

For the purpose of this specification, the following definitions are provided;

- Shell Engineer A Facility Engineer or Special Projects Engineer employed by Shell.
- Designated Shell Representative A Engineering Consultant or Project Management Contract Firm working under contract by Shell.
- Structural Fill Fill or backfill placed beneath or immediately surrounding footings, grade beams, or mats, or beneath slabs, buildings, roads, paved areas, and parking areas.
- Plasticity Index (PI) a numerical measure of the plasticity of a soil
  which corresponds to the range of moisture contents, expressed as
  percent water by dry weight of soil, within which the soil has plastic
  properties. Soils with a high PI tend to be predominantly clay, those
  with a lower PI tend to be predominantly silt, and those with a PI of 0
  tend to have little or no silt or clay (Definition from Wikipedia
  Encyclopedia).

**Downstream-One** 

Page: 4

File name: 241796-09-APPI -Backfill Specification v1 2 121108

- Liquid Limit (LL) known as the upper plastic limit, is the percent water content at which a soil changes from the liquid to a plastic. (Definition from Wikipedia Encyclopedia).
- Optimum Moisture Content Percent water content in soil in which the soil can be compacted to the maximum dry unit weight. This value is obtained from a generated compaction curve where compaction tests are conducted for soil samples with varying moisture contents.
- Non-Structural fill Material Fill or Backfill materials which do not meet the requirements set out in 2.2 for Structural Fill or there is no documentation that demonstrates the fill material meets the requirements for structural fill material.
- Compaction The measured density of the soil relative to the Modified Proctor Density expressed as a percentage.
- Modified Proctor Density The maximum dry density of a soil.



# 7 Document Properties

| Document Prepared by:                        | Brett Hovland                                |  |
|----------------------------------------------|----------------------------------------------|--|
| Process Owner:                               | Alan McNab                                   |  |
| Contact Information: brett.hovland@shell.com |                                              |  |
| Responsible Team:                            | Design and Construction Centre of Excellence |  |

### Amendment history for document

| Revision<br>No | Revision<br>Date | Author(s)     | Comments/Major Changes                                                      |
|----------------|------------------|---------------|-----------------------------------------------------------------------------|
| 0.1            | 31/8/06          | Brett Hovland | First Draft                                                                 |
| 1.0            | 12/12/06         | Brett Hovland | Final Issue based upon Network<br>Engineering and Environmental<br>Comments |
| 1.1            | 11/06/07         | Brett Hovland | Clarification of Definitions (WCF comments), JRB Comments.                  |
| 1.2            | 11/11/08         | Brett Hovland | Updated language of sec 3.4                                                 |

### Summary of Changes since last revision

| Section / Topic | Short Description of the Change                                                      |
|-----------------|--------------------------------------------------------------------------------------|
| Section 3       | Clarification of conditions and requirements for allowing excavation to remain open. |

### Distribution list / recipients of document

| Recipient       | Role                                                | Level of Involvement                                                                                                                                                                                                                                                              |
|-----------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alan McNab      | General Manager - Network Engineering               | Responsible -<br>Global Sub-<br>process Owner                                                                                                                                                                                                                                     |
| Wong Chee-Foo   | Design & Construction Standards Team<br>Manager     | Accountable,<br>Reviewer                                                                                                                                                                                                                                                          |
| Brett Hovland   | Design & Construction Standards<br>Advisor          | Author                                                                                                                                                                                                                                                                            |
| Neil Moon       | Design & Construction Standards<br>Advisor          | Co-Author                                                                                                                                                                                                                                                                         |
| David Underwood | Environmental Projects Team Leader -<br>Europe      | Reviewer                                                                                                                                                                                                                                                                          |
|                 | Alan McNab  Wong Chee-Foo  Brett Hovland  Neil Moon | Alan McNab  General Manager - Network Engineering  Wong Chee-Foo  Design & Construction Standards Team Manager  Brett Hovland  Design & Construction Standards Advisor  Neil Moon  Design & Construction Standards Advisor  David Underwood  Environmental Projects Team Leader - |

### Approval list

| Name          | Title                                           | Date                  | Signature |
|---------------|-------------------------------------------------|-----------------------|-----------|
| Wong Chee-Foo | Design & Construction<br>Standards Team Manager | UPDATED<br>14/06/2007 |           |



File name: 241796-09-APPI -Backfill Specification v1 2 121108



