

T-91 SUBMERGED LANDS AREA PRELIMINARY INVESTIGATION

SURFACE SEDIMENT CHARACTERIZATION RESULTS

January 2018

Prepared by:

200 West Mercer Street, Suite 401 Seattle, Washington **\$** 98119

Table of Contents

Та	bles	5		i
Ma	aps			ii
Ac	ron	iyms		iii
1		Introduc	ction	1
2		Method	S	3
	2.1	Field	METHODS	3
	2.2	Field	DEVIATIONS	3
	2.3	ANA	lytical Methods	3
3		Results		5
	3.1	LOCA	ATIONS	5
	3.2	CHEN	MISTRY RESULTS	6
		3.2.1	Metals	6
		3.2.2	Organic chemicals (PAHs, phthalates, other SVOCs, and PCBs)	7
		3.2.3	Conventionals	13
4		Data Qu	ality Review	15
5		Referen	Ces	17
Ap	per	ndix A.	Data Management	
Ap	oper	ndix B.	Data Tables	
Ap	oper	ndix C.	Field Forms, Photographs, Collection Forms, and COCs	
Ap	oper	ndix D.	Laboratory Reports and Data Validation Report	

Tables

Table 1.	Analytical methods	3
Table 2.	Sampling coordinates	5
Table 3.	Metals data summary	6
Table 4.	Organic chemicals data summary (samples with 0.5 to 3.5% TOC)	8
Table 5.	Organic chemicals data summary (for samples with < 0.5 or > 3.5% TOC)	10
Table 6.	Summary of SMS exceedances for organic chemicals	12
Table 7.	Conventionals data (% dw)	14

MapsMap 1.T-91 proposed and actual surface sediment sampling locationsMap 2.T-91 sampling results – mercuryMap 3.T-91 sampling results – PAHs and SVOCsMap 4.T-91 sampling results – total PCBs

Acronyms

2LAET	second lowest apparent effects threshold
ARI	Analytical Resources, Inc.
COC	chain of custody
CSL	cleanup screening level
dw	dry weight
Ecology	Washington State Department of Ecology
EPA	US Environmental Protection Agency
НРАН	high-molecular-weight polycyclic aromatic hydrocarbon
ID	identification
НРАН	high-molecular-weight polycyclic aromatic hydrocarbon
LAET	lowest apparent effects threshold
LPAH	low-molecular-weight polycyclic aromatic hydrocarbon
MLLW	mean lower low water
NAD83	North American Datum of 1983
00	organic carbon
РАН	polycyclic aromatic hydrocarbon
РСВ	polychlorinated biphenyl
Port	Port of Seattle
PSEP	Puget Sound Estuary Program
RL	reporting limit
SAP	sampling and analysis plan
SCO	sediment cleanup objective
SIM	selected ion monitoring
SM	standard method
SMS	Washington State Sediment Management Standards
SVOC	semivolatile organic compound
T-91	Terminal 91
тос	total organic carbon

1 Introduction

This surface sediment data report for the Port of Seattle's (Port's) Terminal 91 (T-91) is required under Section VII(B) Task 2 of Amendment 1 to Washington State Department of Ecology (Ecology)/Port Agreed Order No. DE8938. The data presented herein were collected following the T-91 sediment sampling and analysis plan (SAP) (Windward 2017).

Data management procedures are described in Appendix A. Data tables are provided in Appendix B. Field notes, sample photographs, sample collection forms, and chain of custody (COC) forms are provided in Appendix C. Laboratory reports and the data validation report are provided in Appendix D.

2 **Methods**

2.1 **FIELD METHODS**

Surface sediment grabs were collected from 28 sampling locations using a pneumatic power grab sampler from a sampling vessel, in accordance with the SAP (Windward 2017).

Sediment samples were evaluated using the following sediment acceptance criteria:

- Sediment did not extrude from the upper face of the sampler.
- Overlying water was present (indicating minimal leakage).
- The sediment surface was relatively flat (indicating minimal disturbance or u winnowing).
- **u** A penetration depth of at least 11 cm was achieved.

2.2 **FIELD DEVIATIONS**

No field deviations from the SAP (Windward 2017) occurred during sampling activities.

2.3 **ANALYTICAL METHODS**

The sediment samples were analyzed for Washington State Sediment Management Standards (SMS) chemicals, total organic carbon (TOC), total solids, and grain size, as shown in Table 1.

Table 1.	Analytical	methods

Parameter Group	Method	Laboratory
Total metals	EPA 6020A/7471B	ARI
SVOCs	EPA 8270D/8270D-SIM/8081B	ARI
PCB Aroclors	EPA 8082A	ARI
TOC	PSEP (1986)	ARI
Total solids	SM 2540-G	ARI
Grain size	PSEP (1986)	MTC

ARI – Analytical Resources, Inc.

SIM - selected ion monitoring

EPA – US Environmental Protection Agency

MTC – Materials Testing and Consulting, Inc.

PCB – polychlorinated biphenyl

PSEP – Puget Sound Estuary Program

SM - standard method SVOC - semi-volatile organic compound

TOC - total organic carbon

3 Results

3.1 LOCATIONS

Sediment grabs were collected on November 1 and 2, 2017. Samples were collected from all 28 targeted sampling locations. One field duplicate was also collected from location T91-2017-SS-12. Acceptable samples were collected after one or two sampling attempts, except at locations where rocks or riprap slopes were encountered (i.e., T91-2017-SS-07, T91-2017-SS-09, T91-2017-SS-10, and T91-2017-SS-25).

The sampling locations—provided in Table 2 and on Map 1—are consistent with the target coordinates specified in the SAP (Windward 2017) for all locations except the six following locations that were relocated:

- u T91-2017-SS-11 and T91-2017-SS-15: not accessible due to boats in the vicinity
- **u** T91-2017-SS-02: moved 16 ft off target and sampled during the flood tide to avoid shallow water
- T91-2017-SS-09, T91-2017-SS-10, and T91-2017-SS-25: moved approximately 10 ft off target to avoid rocks

Sample ID	Easting (ft) ^a	Northing (ft) ^a	Latitude (°N) ^b	Longitude (°W) ^b	Distance to Target (ft)	Depth (ft MLLW)
T91-2017-SS-01	1258107	234795	47.63312	-122.384021	0.3	-18
T91-2017-SS-02	1257891	234588	47.632524	-122.38494	16.1	-13
T91-2017-SS-03	1257991	234372	47.631947	-122.384467	3.8	-21
T91-2017-SS-04	1257764	233850	47.63052	-122.385336	3.3	-2
T91-2017-SS-05	1258131	233775	47.630332	-122.38384	2	-14
T91-2017-SS-06	1258095	233072	47.628399	-122.383929	0.5	-38
T91-2017-SS-07	1257718	232828	47.627707	-122.38544	0.7	-23
T91-2017-SS-08	1258101	232706	47.627398	-122.383867	2.3	-35
T91-2017-SS-09	1258629	234241	47.631658	-122.381869	10	-29
T91-2017-SS-10	1258850	234222	47.631615	-122.380947	9.4	-38
T91-2017-SS-11	1258579	233945	47.63051	-122.382063	112.1	-41
T91-2017-SS-12	1258856	233824	47.630493	-122.380906	2.9	-33
T91-2017-SS-13	1258709	233548	47.629744	-122.381481	3.2	-41
T91-2017-SS-14	1258554	233416	47.629365	-122.382094	0.6	-42
T91-2017-SS-15	1258834	233131	47.628798	-122.380896	72.8	-38
T91-2017-SS-16	1258825	232596	47.627128	-122.38092	3.1	-9
T91-2017-SS-17	1259224	234682	47.632879	-122.379479	2.5	-5
T91-2017-SS-18	1259409	234503	47.632399	-122.378715	2.7	0

Table 2. Sampling coordinates

Sample ID	Easting (ft) ^a	Northing (ft) ^a	Latitude (°N) ^b	Longitude (°W) ^b	Distance to Target (ft)	Depth (ft MLLW)
T91-2017-SS-19	1259264	234418	47.632149	-122.379302	1.1	-36
T91-2017-SS-20	1259511	234110	47.631327	-122.378276	2.4	0
T91-2017-SS-21	1259250	234041	47.631114	-122.379328	1.4	-34
T91-2017-SS-22	1259528	233691	47.630178	-122.378177	2.6	1
T91-2017-SS-23	1259380	233498	47.629634	-122.378749	1.3	-10
T91-2017-SS-24	1259223	233230	47.628895	-122.379376	2.3	-37
T91-2017-SS-25	1259513	233084	47.628483	-122.378159	10.8	3
T91-2017-SS-26	1259385	232818	47.627771	-122.37868	0.8	-7
T91-2017-SS-27	1259455	232485	47.626867	-122.378364	1.5	-5
T91-2017-SS-28	1259205	232536	47.626988	-122.379385	0.7	-38

^a NAD83 Washington State Plane North coordinates – US survey feet.

^b NAD83 Geographic coordinates – decimal degrees.

ID - identification

MLLW – mean lower low water

NAD83 – North American Datum of 1983

3.2 CHEMISTRY RESULTS

Metals and organic chemicals (i.e., polycyclic aromatic hydrocarbons [PAHs], semivolatile organic compounds [SVOCs], and polychlorinated biphenyls [PCBs]) data are summarized in Tables 3 through 5 and on Maps 2 through 4. Conventionals data (i.e., total solids, TOC, and grain size) are presented in Table 7. Appendix B includes metals, organics, and conventionals results for all samples (Table B1), as well as tables comparing each sample to appropriate SMS criteria (Tables B2 through B4).

3.2.1 Metals

Metals data are summarized in Table 3. Metals results for each sample were compared to SMS criteria (i.e., sediment cleanup objectives [SCOs] and cleanup screening levels [CSLs]) on a dry weight basis (Appendix B, Table B2). Mercury was the only metal with SMS criteria exceedances, which occurred at four sampling locations in the submerged lands area between Pier 90 and Pier 91 (Map 2).

Chemical		ction uency	Det	tected Res	ults	R	La	SMS (Criteria
(mg/kg dw)	Ratio	%	Min.	Max.	Mean ^b	Min.	Max.	SCO	CSL
Arsenic	29/29	100	1.64 J	29.9 J	7.15	na	na	57	93
Cadmium	29/29	100	0.03 J	1.44	0.38	na	na	5.1	6.7
Chromium	29/29	100	11.6	43.3	25.6	na	na	260	270
Copper	29/29	100	5.45 J	174 J	43.9	na	na	390	390
Lead	29/29	100	3.20 J	101 J	37.1	na	na	450	530

Table 3. Metals data summary

Chemical (mg/kg dw)		ction uency	Det	ected Res	ults	R	La	SMS C	Criteria
	Ratio	%	Min.	Max.	Mean ^b	Min.	Max.	SCO	CSL
Mercury	26/29	90	0.0214 J	2.89 J	0.351	0.0261	0.0304	0.41	0.59
Silver	29/29	100	0.040 J	1.08	0.34	na	na	6.1	6.1
Zinc	29/29	100	19.0	335 J	98.6	na	na	410	960

^a RL range for non-detect samples.

^b Reported mean concentration is the average of the detected concentrations only; RLs were not included in the calculation of the mean concentration.

CSL - cleanup screening level

dw - dry weight

J - estimated concentration

na – not applicable (detection frequency is 100%)

RL – reporting limit SCO – sediment cleanup objective SMS – Washington State Sediment Management Standards

3.2.2 Organic chemicals (PAHs, phthalates, other SVOCs, and PCBs)

Sediment concentrations of the organic chemicals (PAHs, phthalates, other SVOCs, and PCBs) are summarized in Tables 4 and 5. The SMS criteria for many of these chemicals are organic carbon (OC) normalized when the sediment TOC values are between 0.5 and 3.5%. Seventeen samples had TOC values between 0.5 and 3.5%; results for these samples were OC normalized and compared to OC-normalized SMS criteria (i.e., SCOs and CSLs) (Table 4). Eleven samples had TOC values less than 0.5%, and one sample had a TOC value greater than 3.5%. The results for these samples were compared to dry weight criteria values (i.e., lowest apparent effects threshold [LAET] and second lowest apparent effects threshold [2LAET]) (Table 5). Results for all samples are presented on a dry weight basis in Appendix B (Table B1).

	Detectio	on Frequency	D	Detected Concentration			RLª		SMS	
Chemical	Ratio	%	Min.	Max.	Mean ^b	Min.	Max.	SCO	CSL	
PAHs (mg/kg OC)										
2-Methylnaphthalene	15/17	88	0.982 J	8.32	4.07	3.50	7.70	38	64	
Acenaphthene	14/17	82	0.994 J	13.0	6.62	4.39	7.70	16	57	
Acenaphthylene	16/17	94	2.30 J	34.6	13.7	3.50	3.50	66	66	
Anthracene	17/17	100	5.10 J	1,010 J	105	na	na	220	1,200	
Benzo(a)anthracene	17/17	100	11.2	1210	132	na	na	110	270	
Benzo(a)pyrene	17/17	100	24.0 J	862 J	150	na	na	99	210	
Benzo(g,h,i)perylene	17/17	100	16.0	314	63.3	na	na	31	78	
Total benzofluoranthenes	17/17	100	56.3	1,800	313	na	na	230	450	
Chrysene	16/17	94	24.7	1,570	221	1.06	1.06	110	460	
Dibenzo(a,h)anthracene	17/17	100	5.20	178	29.2	na	na	12	33	
Dibenzofuran	16/17	94	1.39	13.8	5.83	7.70	7.70	15	58	
Fluoranthene	17/17	100	16.0	2,990	283	na	na	160	1,200	
Fluorene	16/17	94	2.20	37.8	11.7	7.70	7.70	23	79	
Indeno(1,2,3-cd)pyrene	16/17	94	15.0	344	65.4	1.12	1.12	34	88	
Naphthalene	17/17	100	2.10 J	26.1	11.0	na	na	99	170	
Phenanthrene	17/17	100	10.2	178	58.5	na	na	100	480	
Pyrene	17/17	100	20.4	1270	258	na	na	1,000	1,400	
Total HPAHs	17/17	100	180.0 J	10,500 J	1490	na	na	960	5,300	
Total LPAHs	17/17	100	25.0 J	1,270 J	204	na	na	370	780	
Phthalates (mg/kg OC)										
Bis(2-ethylhexyl)phthalate	15/17	88	5.82	350	58.9	9.93	19.0	47	78	
Butyl benzyl phthalate	4/17	24	1.70	11.0 J	4.98	1.12	7.70	4.9	64	
Diethyl phthalate	5/17	29	2.30 J	3.00	2.62	1.06	13.0	61	110	
Dimethyl phthalate	0/17	0	nd	nd	nd	1.06	13.0	53	53	
Di-n-butyl phthalate	4/17	24	0.51 J	10.0 J	3.3	1.06	7.70	220	1,700	

Table 4. Organic chemicals data summary (samples with 0.5 to 3.5% TOC)

	Detectio	on Frequency	D	etected Cond	entration		RLª		SMS
Chemical	Ratio	%	Min.	Max.	Mean ^b	Min.	Max.	SCO	CSL
Di-n-octyl phthalate	3/17	18	1.18	34.0	12.3	1.12	7.70	58	4,500
Other SVOCs (mg/kg OC)									
1,2,4-Trichlorobenzene	0/17	0	nd	nd	nd	0.27	3.40	0.81	1.8
1,2-Dichlorobenzene	0/17	0	nd	nd	nd	1.06	13.0	2.3	2.3
1,4-Dichlorobenzene	9/17	53	0.940 J	3.91	2.66	1.12	13.0	3.1	9
2,4-Dimethylphenol ^c	11/17	65	4.9 J	56.6 J	14	23.7	124	29 ^c	29 ^c
2-Methylphenol ^c	3/17	18	18.6 J	60.9	32.8	19.0	99.5	63°	63°
4-Methylphenol ^c	9/17	53	17.1 J	190	50.9	19.0	99.5	670 °	670 °
Benzoic acid ^c	1/17	6	189 J	189 J	na	19.0	995	650 °	650 °
Benzyl alcohol ^c	0/17	0	nd	nd	nd	18.9	99.5	57 °	73 °
Hexachlorobenzene	0/17	0	nd	nd	nd	0.027	0.092	0.38	2.3
Hexachlorobutadiene	0/17	0	nd	nd	nd	1.06	13.0	3.9	6.2
n-Nitrosodiphenylamine	0/17	0	nd	nd	nd	1.06	13.0	11	11
Pentachlorophenolc	1/17	6	94.7 J	94.7 J	na	95.1	498	360 °	690 °
Phenol ^c	15/17	88	11.0 J	163 J	52.0	56.9	58.8	420 °	1,200 °
PCBs (mg/kg OC)									
Total PCB Aroclors	17/17	100	2.10 J	33.7 J	16	na	na	12	65

^a RL range for non-detect samples.

^b Reported mean concentration is the average of the detected concentrations only; RLs were not included in the calculation of the mean concentration.

^c SMS criteria are in units of µg/kg dw.

CSL – cleanup screening level

dw-dry weight

HPAH – high-molecular-weight polycyclic aromatic hydrocarbon

J - estimated concentration

LPAH - low-molecular-weight polycyclic aromatic hydrocarbon

na – not applicable

nd - not detected

OC – organic carbon

PAH – polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

RL – reporting limit

SCO - sediment cleanup objective

SMS – Washington State Sediment Management Standards

 $\label{eq:svoc-semivolatile} \text{svoc-semivolatile} \ \text{organic} \ \text{compound}$

TOC - total organic carbon

	Detection	Frequency	D	etected Resu	lts		RLª	SMS	
Chemical	Ratio	%	Min.	Max.	Mean ^b	Min.	Max.	LAET	2LAET
PAHs (µg/kg dw)									
2-Methylnaphthalene	2/12	17	19.1 J	60.8	40.0	18.8	19.9	670	670
Acenaphthene	4/12	33	9.0 J	76.3	53	18.8	19.9	500	500
Acenaphthylene	7/12	58	5.9 J	269 J	48	7.5	19.9	1,300	1,300
Anthracene	9/12	75	6.7 J	680 J	120	18.8	19.9	960	960
Benzo(a)anthracene	11/12	92	6.1 J	881	180	19.1	19.1	1,300	1,600
Benzo(a)pyrene	10/12	83	13.6 J	2900 J	450	18.8	19.1	1,600	1,600
Benzo(g,h,i)perylene	10/12	83	12.7 J	1330	233	18.8	19.1	670	720
Total benzofluoranthenes	12/12	100	14.3 J	5500	751	na	na	3,200	3,600
Chrysene	12/12	100	9.2 J	1970	340	na	na	1,400	2,800
Dibenzo(a,h)anthracene	8/12	67	10.4 J	518	110	18.8	19.9	230	230
Dibenzofuran	6/12	50	5.8 J	93.1	30	18.8	19.9	540	540
Fluoranthene	12/12	100	8.4 J	1970 J	330	na	na	1,700	2,500
Fluorene	7/12	58	9.3 J	141	44	18.8	19.9	540	540
Indeno(1,2,3-cd)pyrene	10/12	83	12.0 J	1170	210	18.8	19.1	600	690
Naphthalene	7/12	58	10.0 J	139	34.2	18.8	19.9	2,100	2,100
Phenanthrene	10/12	83	8.1 J	888	270	18.8	19.1	1,500	1,500
Pyrene	12/12	100	7.0 J	2880	490	na	na	2,600	3,300
Total HPAHs	12/12	100	38.9 J	17840 J	2890	na	na	12,000	17,000
Total LPAHs	10/12	83	14.8 J	1930 J	480	18.8	19.1	5,200	5,200
Phthalates (µg/kg dw)									
Bis(2-ethylhexyl)phthalate	3/12	25	35.9 J	222	110	46.9	49.8	1,300	1,900
Butyl benzyl phthalate	2/12	17	10.8 J	12.0 J	11.4	18.8	58.0	63	900
Diethyl phthalate	2/12	17	20.1	21.3	20.7	18.8	58.0	200	1,200
Dimethyl phthalate	1/12	8	44.5 J	44.5 J	na	18.8	19.9	71	160

Table 5. Organic chemicals data summary (for samples with < 0.5 or > 3.5% TOC)

T-91 Submerged Lands Preliminary Investigation Sediment Characterization Results January 2018 Page 10

Chemical	Detection Frequency		Detected Results			RL ^a		SMS	
	Ratio	%	Min.	Max.	Mean ^b	Min.	Max.	LAET	2LAET
Di-n-butyl phthalate	1/12	8	6.2 J	6.2 J	na	18.8	58.0	1,400	1,400
Di-n-octyl phthalate	0/12	0	nd	nd	nd	18.8	58.0	6,200	6,200
Other SVOCs (µg/kg dw)									
1,2,4-Trichlorobenzene	0/12	0	nd	nd	nd	4.7	14.5	31	51
1,2-Dichlorobenzene	0/12	0	nd	nd	nd	18.8	58.0	35	50
1,4-Dichlorobenzene	1/12	8	61.0 J	61.0 J	na	18.8	19.9	110	110
2,4-Dimethylphenol	1/12	8	11.9 J	11.9 J	na	23.5	24.9	29	29
2-Methylphenol	1/12	8	19.1 J	19.1 J	na	18.8	58.0	63	63
4-Methylphenol	1/12	8	19.1 J	19.1 J	na	18.8	58.0	670	670
Benzoic acid	1/12	8	191 J	191 J	na	188	580	650	650
Benzyl alcohol	0/12	0	nd	nd	nd	18.8	58.0	57	73
Hexachlorobenzene	1/12	8	5.74	5.74	na	0.47	0.50	22	70
Hexachlorobutadiene	0/12	0	nd	nd	nd	18.8	58.0	11	120
n-Nitrosodiphenylamine	0/12	0	nd	nd	nd	18.8	58.0	28	40
Pentachlorophenol	1/12	8	95.4 J	95.4 J	na	93.9	290	360	690
Phenol	2/12	17	8.9 J	19.1 J	14	18.8	58.0	420	1,200
PCBs (µg/kg dw)									
Total PCB Aroclors	12/12	100	1.6 J	1031 J	93	na	na	130	1,000

RL range for non-detect samples. а

b Reported mean concentration is the average of the detected concentrations only; RLs were not included in the calculation of the mean concentration.

na – not applicable

nd - not detected

2LAET - second lowest apparent effects threshold

dw-dry weight

HPAH – high-molecular-weight polycyclic aromatic hydrocarbon

J – estimated concentration

LAET - lowest apparent effects threshold

- LPAH low-molecular-weight polycyclic RL reporting limit
 - aromatic hydrocarbon

SMS – Washington State Sediment Management Standards

- SVOC semivolatile organic compound
- PAH polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

TOC – total organic carbon

SMS criteria exceedances are summarized in Table 6. The locations with exceedances for PAHs and SVOCs are shown on Map 3. Locations with exceedances for total PCBs are shown on Map 4. The results for all the individual samples are presented in Appendix B (Table B3 and B4).

Chemical	SCO Exceedances	CSL Exceedances
PAHs		
Anthracene	1	0
Benzo(a)anthracene	2	1
Benzo(a)pyrene	9	3
Benzo(g,h,i)perylene	11	3
Total benzofluoranthenes	9	2
Chrysene	10	1
Dibenzo(a,h)anthracene	12	3
Fluoranthene	6	1
Fluorene	1	0
Indeno(1,2,3-cd)pyrene	10	3
Phenanthrene	3	0
Pyrene	2	0
Total HPAHs	7	2
Total LPAHs	0	1
Phthalates		
Bis(2-ethylhexyl)phthalate	0	2
Butyl benzyl phthalate	1	0
Other SVOCs		
1,4-Dichlorobenzene	4	0
2,4-Dimethylphenol	0	1
PCBs		
Total PCB Aroclors	9	1

Table 6. Summary of SMS exceedances for organic chemicals

CSL - cleanup screening level

HPAH – high-molecular-weight polycyclic aromatic hydrocarbon

LPAH – low-molecular-weight polycyclic aromatic hydrocarbon

PAH – polycyclic aromatic hydrocarbon

PCB – polychlorinated biphenyl

- SCO sediment cleanup objective
- SMS Washington State Sediment Management Standards
- SVOC semi-volatile organic compounds

3.2.3 Conventionals

Total grain size fractions, TOC, and total solids results are presented in Table 7. In general, samples with lower TOC were predominantly composed of sand and contained lower percentages of total fines (i.e., silt and clay), while samples with higher TOC contained more fines and less sand.

		Sedim						
Sample Name	Total Gravel	Total Sand	Total Silt	Total Clay	Total Fines ^a	тос	Total Solids	
T91-2017-SS-01	18.8	74.6	5.3	1.3	6.6	0.35 J	80.50	
T91-2017-SS-02	0.1	97.8	2.1 U	2.1 U	2.1 U	0.09	78.90	
T91-2017-SS-03	0.1	65.8	29.4	4.5	33.9	0.74	61.86	
T91-2017-SS-04	0.1 U	98.8	1.1U	1.1 U	1.1 U	0.06	78.17	
T91-2017-SS-05	0.9	33.0	53	13.3	66	1.12 J	56.40	
T91-2017-SS-06	1.6	73.5	18.1	6.8	24.9	0.53 J	71.73	
T91-2017-SS-07	0.1	91.6	6.3	1.9	8.2	0.28	77.55	
T91-2017-SS-08	1.1	95.7	3.1U	3.1U	3.1U	0.11 J	78.88	
T91-2017-SS-09	22.9	54.3	16.7	6.1	22.8	1.69	74.49	
T91-2017-SS-10	38.6	40.3	14.0	7.0	21.0	1.20 J	67.66	
T91-2017-SS-11	8.1	38.8	36.0	17.1	53.1	3.97	55.56	
T91-2017-SS-12	2.0	40.9	39.6	17.4	57.0	1.87 J	52.31	
T91-2017-SS-29 ^b	4.2	38.2	39.9	17.7	57.6	1.05 J	53.56	
T91-2017-SS-13	0.2	54.4	31.5	13.9	45.4	1.34	59.45	
T91-2017-SS-14	9.1	40.4	36.0	14.5	50.5	1.29 J	51.97	
T91-2017-SS-15	21.5	59.2	11.8	7.7	19.5	1.46	71.43	
T91-2017-SS-16	35.1	56.1	4.8	3.9	8.7	0.54 J	76.96	
T91-2017-SS-17	1.9	55.1	33.9	9.2	43.1	0.74 J	33.76	
T91-2017-SS-18	15.3	76.4	6.3	2.0	8.3	0.77 J	68.25	
T91-2017-SS-19	3.6	63.2	27.1	6.2	33.3	1.68 J	49.47	
T91-2017-SS-20	2.9	94.3	2.8U	2.8U	2.8U	0.24 J	76.51	
T91-2017-SS-21	2.0	67.0	21.6	9.6	31.2	0.88 J	64.96	
T91-2017-SS-22	9.3	89.3	1.3U	1.3U	1.3U	0.10 J	78.28	
T91-2017-SS-23	13.9	77.5	6.4	2.2	8.6	0.31 J	75.14	
T91-2017-SS-24	1.0	59.7	27.2	12.1	39.3	1.06 J	60.83	
T91-2017-SS-25	19.5	76.9	3.7U	3.7U	3.7U	0.18 J	81.78	
T91-2017-SS-26	14.1	80.4	3.1	2.3	5.4	0.32 J	76.93	
T91-2017-SS-27	2.0	95.5	2.5U	2.5U	3.7U	0.12 J	77.42	
T91-2017-SS-28	29.5	48.3	15.3	6.9	22.2	1.45	66.06	

Table 7. Conventionals data (% dw)

Note: Total solids data are reported on a wet weight basis. All other data are reported on a dry weight basis.

^a Total fines is the sum of the total silt and total clay fractions.

^b Field duplicate of sample T91-2017-SS-12.

J - estimated concentration

TOC - total organic carbon

U - not detected at given concentration

4 Data Quality Review

Independent data validation was performed on all results by Ecochem. A summary-level validation review was conducted. PCB Aroclor data reporting limits (RLs) were elevated based on non-target background interferences. All data were determined to be acceptable for use as qualified. No data were rejected.

The data validation report, with detailed information regarding every qualified sample, is presented in Appendix B. The qualifiers reported in Table 3 are those assigned in the validation report.

5 References

- PSEP. 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Prepared for the Puget Sound Estuary Program, US Environmental Protection Agency, Region 10. Tetra Tech, Seattle, WA.
- Windward. 2017. Terminal 91: submerged lands area preliminary investigation sampling and analysis plan. Final. Prepared for Port of Seattle for submittal to Washington State Department of Ecology. Windward Environmental LLC, Seattle, WA.

