Data Memorandum

January 8, 2019

To: Mike Brose and Bryan Lust, Kimberly-Clark Corporation

From: Nathan Soccorsy and Clay Patmont, Anchor QEA, LLC

cc: Steve Germiat, Aspect Consulting

Re: Everett East Waterway Combined Sewer Overflow Solids Sampling Data Memorandum

This data memorandum summarizes sampling and analysis of combined sewer overflow (CSO) conveyance solids in the lower portion of the City of Everett (City) CSO Puget Sound Outfall Number 4 (PSO4) conveyance system. Prior to fall 2018, PSO4 wastewaters were routed under the Kimberly-Clark Worldwide, Inc. (KC), property and into the Everett East Waterway (Figure 1). The City recently decommissioned the KC conveyance, rerouting PSO4 wastewaters south along an alignment west of the railroad right-of-way into the adjacent PSO5 system.

The data summarized in this memorandum were obtained as part of the remedial investigation/feasibility study (RI/FS) of the East Waterway Site in Everett, Washington, under Agreed Order DE 11350 between the Washington State Department of Ecology (Ecology), KC, and other potentially liable parties. All activities were performed in accordance with the Ecology-approved Sampling and Quality Assurance Project Plan (SQAPP; Anchor QEA 2018).

Sampling of PS04 conveyance solids was conducted on September 26, 2018, during relatively low-tide conditions in accordance with the SQAPP, as modified in the field following Ecology consultation. The sampling team was composed of Anchor QEA and KC staff with oversight from Ecology and support from the City. The City's consultant, Floyd|Snider, observed the sampling and collected split samples for separate physical and chemical testing that are not included in this data memorandum. All sample collection was conducted from the surface with a decontaminated stainless-steel container attached to a telescoping rod.

Following a review of health, safety, and sampling procedures, the sampling team mobilized to the first sampling station SMHQ03, located within the railroad right-of-way (Figure 1). City staff opened the bolted structure cover. The approximately 12-foot-deep structure was half filled with water. Probing with the telescoping rod revealed the structure did not contain significant accumulation of sediments suitable for sampling.

In accordance with the SQAPP, the sampling team re-mobilized to the next downgradient structure on the KC property, station SMHQ01 (Figure 1). While the conveyance channel did not contain sediment accumulations, sandy sediments suitable for sampling were identified on the southern ledge of the structure. Similar granular material was found on ledges in the two, additional accessible

downgradient structures, SMHQ16 and SMHP02. While it had not rained for several days prior to the sampling event, the SMHQ16 structure was partially filled with water. Evaluation of the upgradient and downgradient structures suggested that there was an obstruction in the downgradient pipe that impeded flow. The observation is consistent with historical City notations of solids accumulation in that pipe segment. Observations during sampling are summarized in Figure 1 from field forms included in Attachment 1.

The samples were submitted for physical and chemical testing in accordance with the SQAPP. Laboratory reports and data validation reports are included as Attachments 2 and 3, respectively. All data are suitable for use as qualified by the validator.

Validated PS04 conveyance solid data are summarized in Table 1. In general, the samples did not contain any measurable fines (clay and silt fractions) and were classified as gravelly sands with relatively low total organic carbon content (less than 0.5% by dry weight). While these coarse-grained sediment data are not representative of characteristic organic-rich wastewater solids transported through the CSO conveyance system(s), these data may nevertheless be useful for source control and recontamination assessments when used in combination with other information to be collected during the RI/FS (e.g., wastewater suspended sediments collected during overflow events). The details of future data collection efforts will be developed as part of the forthcoming Everett East Waterway RI/FS Work Plan.

References

Anchor QEA (Anchor QEA, LLC), 2018. Sampling and Quality Assurance Project Plan. Everett East Waterway PSO4 Combined Sewer Overflow Characterization. Prepared for Kimberly-Clark Corporation. August 2018.

Table

Table 1
Everett East Waterway PSO4 Solids Results

	•	EEW2018 SMHPO2_2018 KC-S-SMHP02-180926		EEW2018 SMHQ16_2018 KC-S-SMHQ116-180926	EEW2018 SMHQ16_2018 KC-S-SMHQ16-180926
	Sample Date Sample Type Matrix X		9/26/2018 N CSO Solids 1301930.414	9/26/2018 FD CSO Solids 1301701.454	9/26/2018 N CSO Solids 1301701.454
Conventional Parameters (pct)	Y	362175.789	362184.828	362127.123	362127.123
Total organic carbon	SW9060A	0.45	0.17		0.28
Total Solids	SM2540G	74.83	82.7		73.51
Grain Size (pct)					
Gravel	PSEP-PS	15.9	23.4		2.7
Sand, very coarse	PSEP-PS	10.3	14.1		9.9
Sand, coarse Sand, medium	PSEP-PS PSEP-PS	25.5 29.4	23.8 27.8		31.7 43.7
Sand, fine	PSEP-PS	12.5	9.3		10.2
Sand, very fine	PSEP-PS	4.2	1		1.1
Silt, coarse	PSEP-PS	2.2 U	0.6 U		0.7 U
Silt, medium	PSEP-PS	2.2 U	0.6 U		0.7 U
Silt, fine	PSEP-PS	2.2 U	0.6 U		0.7 U
Silt, very fine	PSEP-PS	2.2 U	0.6 U		0.7 U
Clay, coarse	PSEP-PS	2.2 U	0.6 U		0.7 U
Clay, medium	PSEP-PS	2.2 U	0.6 U		0.7 U
Clay, fine Wetals (mg/kg)	PSEP-PS	2.2 U	0.6 U		0.7 U
Arsenic	SW6020A	5.86	3.45		2.95
Cadmium	SW6020A	0.09 J	0.1 J		0.09 J
Chromium	SW6020A	40.7	24.5 J		36.7 J
Lead	SW6020A	25.9	697		11.5
Mercury	SW7471B	0.0587	0.103		0.0265 U
Silver	SW6020A	0.04 J	0.07 J		0.04 J
Zinc	SW6020A	84.4	101		65
Semivolatile Organics (μg/kg)					
1,2,4-Trichlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
1,2,4-Trichlorobenzene	SW8270DSIM	4.9 U	4.9 U 19.5 U	4.8 U 19.4 U	4.8 U
1,2-Dichlorobenzene 1,2-Dichlorobenzene	SW8270D SW8270DSIM	19.4 U 4.9 U	4.9 U	4.8 U	19.3 U 4.8 U
1,3-Dichlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
1,3-Dichlorobenzene	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
1,4-Dichlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
1,4-Dichlorobenzene	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
2,2'-Oxybis (1-chloropropane)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
2,4,5-Trichlorophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,4,6-Trichlorophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,4-Dichlorophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,4-Dimethylphenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
2,4-Dimethylphenol 2,4-Dinitrophenol	SW8270DSIM SW8270D	24.3 U 194 UJ	24.4 U 195 UJ	24.2 U 194 UJ	24.1 UJ 193 UJ
2,4-Dinitrophenoi 2,4-Dinitrotoluene	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,6-Dinitrotoluene	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2-Chloronaphthalene	SW8270DSIM	0.5 U	4.89 U	0.47 U	0.47 U
2-Chlorophenol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
2-Methylphenol (o-Cresol)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
2-Methylphenol (o-Cresol)	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
2-Nitroaniline	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2-Nitrophenol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
3,3'-Dichlorobenzidine	SW8270D	97.1 U	97.7 UJ	96.9 U	96.5 UJ
3-Nitroaniline	SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
4-Bromophenyl-phenyl ether 4-Chloro-3-methylphenol	SW8270D SW8270D	19.4 U 97.1 U	19.5 U 97.7 U	19.4 U 96.9 U	19.3 U 96.5 U
4-Chloroaniline	SW8270D SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
4-Chlorophenyl phenyl ether	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
4-Methylphenol (p-Cresol)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
4-Methylphenol (p-Cresol)	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
4-Nitroaniline	SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
4-Nitrophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
	SW8270D	194 U	195 U	194 U	193 U
Benzoic acid		66.7 J	55.9 J	58 J	37.5 J
Benzoic acid	SW8270DSIM				
Benzoic acid Benzyl alcohol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Benzoic acid Benzyl alcohol Benzyl alcohol	SW8270D SW8270DSIM	19.4 U 19.4 U	19.5 U	19.4 U	19.3 U
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane	SW8270D SW8270DSIM SW8270D	19.4 U 19.4 U 19.4 U	19.5 U 19.5 U	19.4 U 19.4 U	19.3 U 19.3 U
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	SW8270D SW8270DSIM SW8270D SW8270D	19.4 U 19.4 U 19.4 U 19.4 U	19.5 U 19.5 U 19.5 U	19.4 U 19.4 U 19.4 U	19.3 U 19.3 U 19.3 U
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	SW8270D SW8270DSIM SW8270D SW8270D SW8270D	19.4 U 19.4 U 19.4 U 19.4 U 108	19.5 U 19.5 U 19.5 U 52.8	19.4 U 19.4 U 19.4 U 80.6	19.3 U 19.3 U 19.3 U 96
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate Butylbenzyl phthalate	SW8270D SW8270DSIM SW8270D SW8270D SW8270D SW8270D	19.4 U 19.4 U 19.4 U 19.4 U 108 17.9 J	19.5 U 19.5 U 19.5 U 52.8 19.5 U	19.4 U 19.4 U 19.4 U 80.6 9.4 J	19.3 U 19.3 U 19.3 U 96 8.3 J
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	SW8270D SW8270DSIM SW8270D SW8270D SW8270D	19.4 U 19.4 U 19.4 U 19.4 U 108	19.5 U 19.5 U 19.5 U 52.8	19.4 U 19.4 U 19.4 U 80.6	19.3 U 19.3 U 19.3 U 96
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate Butylbenzyl phthalate Butylbenzyl phthalate	SW8270D SW8270DSIM SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270DSIM	19.4 U 19.4 U 19.4 U 19.4 U 108 17.9 J	19.5 U 19.5 U 19.5 U 52.8 19.5 U 5.4	19.4 U 19.4 U 19.4 U 80.6 9.4 J 6.3	19.3 U 19.3 U 19.3 U 96 8.3 J 6.2
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate Butylbenzyl phthalate Butylbenzyl phthalate Dibenzofuran	SW8270D SW8270DSIM SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270DSIM SW8270DD	19.4 U 19.4 U 19.4 U 19.4 U 19.5 U 108 17.9 J 15.2 19.4 U	19.5 U 19.5 U 19.5 U 52.8 19.5 U 5.4 19.5 U	19.4 U 19.4 U 19.4 U 80.6 9.4 J 6.3 19.4 U	19.3 U 19.3 U 19.3 U 96 8.3 J 6.2 19.3 U
Benzoic acid Benzyl alcohol Benzyl alcohol bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate Butylbenzyl phthalate Butylbenzyl phthalate Dibenzofuran Diethyl phthalate	SW8270D SW8270DSIM SW8270D SW8270D SW8270D SW8270D SW8270D SW8270D SW8270DSIM SW8270D SW8270D SW8270D	19.4 U 19.4 U 19.4 U 19.4 U 19.8 17.9 J 15.2 19.4 U 19.4 U	19.5 U 19.5 U 19.5 U 52.8 19.5 U 5.4 19.5 U 19.5 U	19.4 U 19.4 U 19.4 U 80.6 9.4 J 6.3 19.4 U	19.3 U 19.3 U 19.3 U 96 8.3 J 6.2 19.3 U

Table 1
Everett East Waterway PSO4 Solids Results

	Task Location ID	EEW2018 SMHPO2_2018	EEW2018 SMHQ01_2018	EEW2018 SMHQ16_2018	EEW2018 SMHQ16_2018
	Sample ID Sample Date	KC-S-SMHP02-180926 9/26/2018	KC-S-SMHQ01-180926 9/26/2018	KC-S-SMHQ116-180926 9/26/2018	9/26/2018
	Sample Type Matrix	N CSO Solids	N CSO Solids	FD CSO Solids	N CSO Solids
	X		1301930.414	1301701.454	1301701.454
Di a hasad ahahalasa	CW0270D	362175.789	362184.828	362127.123	362127.123
Di-n-butyl phthalate Dinitro-o-cresol (4,6-Dinitro-2-methylphenol)	SW8270D SW8270D	9.9 J 194 U	16.3 J 195 U	11.2 J 194 U	13.8 J 193 U
Di-n-octyl phthalate	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Hexachlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Hexachlorocyclopentadiene	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
Hexachloroethane Isophorone	SW8270D SW8270D	19.4 U 19.4 U	19.5 U 19.5 U	19.4 U 19.4 U	19.3 U 19.3 U
Nitrobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodimethylamine	SW8270D	38.8 U	39.1 U	38.7 U	38.6 UJ
n-Nitrosodimethylamine	SW8270DSIM	24.3 U	24.4 U	24.2 U	24.1 U
n-Nitrosodi-n-propylamine	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodi-n-propylamine	SW8270DSIM	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodiphenylamine	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodiphenylamine Pentachlorophenol	SW8270DSIM SW8270D	4.9 U 97.1 UJ	4.9 U 97.7 UJ	4.8 U 96.9 UJ	4.8 UJ 96.5 UJ
Pentachlorophenol	SW8270DSIM	5.7 J	4.4 J	6.3 J	3.9 J
Phenol	SW8270D3IM	19.4 U	19.5 U	19.4 U	19.3 U
Phenol	SW8270DSIM	5.4	5.9	5.6	6.3
Polycyclic Aromatic Hydrocarbons (μg/kg)					
1-Methylnaphthalene	SW8270DSIM	1.3	2.48 J	0.71	1.05
1-Methylphenanthrene	SW8270DSIM	1.91	5.53	1.29	1.69
2,3,5-Trimethylnaphthalene (1,6,7-Trimethylnaphthalene) 2,6-Dimethylnaphthalene	SW8270DSIM SW8270DSIM	0.37 J 1.42	4.89 U 4.89 U	0.18 J 0.56	0.59 0.99
2-Methylnaphthalene	SW8270DSIM		4.52 J	1.32	1.65
Acenaphthene	SW8270DSIM	0.5	4.16 J	0.47 J	1.49
Acenaphthylene	SW8270DSIM	1.36	4.89 U	0.75	0.81
Anthracene	SW8270DSIM	2.18	12.7	2.37	2.49
Benzo(a)anthracene	SW8270DSIM	6	39.6	11.4	3.78
Benzo(a)pyrene	SW8270DSIM	8.04	36.6	9.12	3.21
Benzo(b)fluoranthene Benzo(e)pyrene	SW8270DSIM SW8270DSIM	8.85 10.2	23.4	9.83 8.58	4.59 4.83
Benzo(g,h,i)perylene	SW8270DSIM	14.7	23.6	9.78	7.09
Benzo(j)fluoranthene	SW8270DSIM	3.31	16.2	4.26	1.65
Benzo(k)fluoranthene	SW8270DSIM	3.8	17.5	5.03	1.87
Biphenyl (1,1'-Biphenyl)	SW8270DSIM	0.92	4.89 U	0.42 J	0.6
Carbazole	SW8270DSIM	1.22	5.29	1.3	0.85
Chrysene	SW8270DSIM	9.76	43.1	13.1	7.18
Dibenzo(a,h)anthracene	SW8270DSIM SW8270DSIM	1.92 0.75	4.56 J 10.4	1.75 0.58	0.75 0.9
Dibenzothiophene Fluoranthene	SW8270DSIM	13.4	70.8	20.2	16
Fluorene	SW8270DSIM	1.17	3.21 J	0.72	1.9
Indeno(1,2,3-c,d)pyrene	SW8270DSIM	6.56	17.7	5.45	2.77
Naphthalene	SW8270DSIM	7.11	5 J	2.62	3.28
Phenanthrene	SW8270DSIM	11.3	40.9	8.58	11.3 J
Pyrene	SW8270DSIM	13.3	69	17.2	13.5
Total CPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)		10.8506	47.307 J	12.597	4.6578
Total Benzofluoranthenes (b,j,k) (U = 0) Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)		15.96 10.8506	57.1 47.307 J	19.12 12.597	8.11 4.6578
Total HPAH (SMS) (U = 0)		89.64	362.06 J	107.12	62.39
Total LPAH (SMS) (U = 0)		23.62	65.97 J	15.51 J	21.27 J
Pesticides (µg/kg)					
Hexachlorobenzene	SW8081B	0.5 U	0.49 U	0.48 U	0.48 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8081B	0.5 U	0.49 U	0.48 U	0.48 U
Dioxin Furans (ng/kg)	E1612B			0.047.11	2 4 2 2 1
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) 1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B E1613B	0.275 J 1.25	0.157 J 0.378 J	0.047 U 0.587 J	0.188 J 0.494 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	1.74	0.486 J	0.587 J	0.494 J 0.898 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	3.77	1.95	1.51	2.55 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	3.37	1.15	1.5	1.73
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	90	39.3	39.5	74.3 J
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B	741	169	302	790 J
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	8.9	2.64	2.85	5.82 J
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	8.44	2.47	3.6	5.71 J
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	34.5	14.3	13	25.6 J
Total Heptachlorodibenzo-p-dioxin (HpCDD) 2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B E1613B	7.27	64.4 0.414 J	62.3 0.261 J	120 J 0.23 J
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	1.94	0.414 J 0.318 J	0.261 J 0.997 U	0.23 J 0.996 UJ
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	0.791 J	0.176 J	0.997 U	0.998 UJ
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	1.52	0.409 J	0.396 J	0.505 J
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.821 J	0.153 J	0.397 J	0.411 J
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B	0.289 J	0.198 J	0.126 J	0.307 J
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	1.19	0.206 J	0.567 J	0.674 J

Table 1
Everett East Waterway PSO4 Solids Results

	Task	EEW2018	EEW2018	EEW2018	EEW2018
	Location ID	SMHPO2_2018	SMHQ01_2018	SMHQ16_2018	SMHQ16_2018
	Sample Date	9/26/2018	9/26/2018	KC-S-SMHQ116-180926 9/26/2018	9/26/2018
	Sample Type	N	N	FD	N
	Matrix		CSO Solids	CSO Solids	CSO Solids
	X Y		1301930.414	1301701.454	1301701.454
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B	362175.789 19.4	362184.828 3.31	362127.123 8.63	362127.123 13.1 J
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B	1.41	0.173 J	0.506 J	0.75 J
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B	77	8.5	30.6	58.9 J
Total Tetrachlorodibenzofuran (TCDF)	E1613B	18.2	4.01	2.96	2.77 J
Total Pentachlorodibenzofuran (PeCDF) Total Hexachlorodibenzofuran (HxCDF)	E1613B E1613B	10.9 22.1	3.7 5.98	3.81 10	3.96 13.6 J
Total Heptachlorodibenzofuran (HpCDF)	E1613B	59.3	9.51	24.7	45.2 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		5.171 J	1.57502 J	1.804795 J	2.61551 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		5.171 J	1.57502 J	1.76634 J	2.60057 J
PCB Congeners (ng/kg) PCB-001	E1668A	0.807 J	1.84	0.503 U	0.39 U
PCB-002	E1668A	0.866 J	1.17 J	0.664 J	0.363 U
PCB-003	E1668A	1.34 U	2.44 U	1.41 U	0.385 U
PCB-004	E1668A	0.507 J	3.43	2.21	2.33
PCB-005 PCB-006	E1668A E1668A	0.378 U 0.312 U	0.441 U 0.954	1.31 U 1.08 U	0.423 U 0.349 U
PCB-000	E1668A	0.368 U	0.428 U	1.27 U	0.411 U
PCB-008	E1668A	0.927	4.54	0.978	0.656 J
PCB-009	E1668A	0.338 U	0.388 U	1.15 U	0.373 U
PCB-010	E1668A	0.362 U	0.42 U	0.595 U	0.369 U
PCB-011 PCB-012/013	E1668A E1668A	32.5 0.378 U	91.1 0.434 U	27.6 1.29 U	26.9 0.417 U
PCB-014	E1668A	0.374 U	0.437 U	1.3 U	0.42 U
PCB-015	E1668A	5.39	5.76	2.43	2.26
PCB-016	E1668A	0.6 U	4.91	1.04 U	0.78 U
PCB-017 PCB-018/030	E1668A E1668A	0.957 J 1.36 J	4.67 8.63	1 U 2.88 J	1.61 J 2.79
PCB-019	E1668A	1.72	2.1 J	1.81	1.05 J
PCB-020/028	E1668A	4.68	11.7	4.47 J	4.18 J
PCB-021/033	E1668A	1.26 J	6.87	1.43 U	1.32 J
PCB-022	E1668A	1.18	3.63 J	1.36 U	0.995 J
PCB-023 PCB-024	E1668A E1668A	0.493 U 0.423 U	0.821 U 0.69 U	1.55 U 0.69 U	0.711 U 0.518 U
PCB-025	E1668A	0.407 U	0.65 U	1.22 U	0.563 U
PCB-026/029	E1668A	0.497 U	2.01	1.52 U	0.699 U
PCB-027	E1668A	0.881 J	0.727 U	0.726 U	0.545 U
PCB-031 PCB-032	E1668A E1668A	2.58 2.24	9.46 3.76	2.8	2.54 1.94
PCB-034	E1668A	0.495 U	0.817 U	1.54 U	0.707 U
PCB-035	E1668A	0.98 J	0.824 U	1.55 U	0.714 U
PCB-036	E1668A	0.417 U	0.695 U	1.31 U	0.601 U
PCB-037 PCB-038	E1668A E1668A	2.51 J 0.457 U	4.84 0.783 U	2.36 1.47 U	2.02 0.677 U
PCB-039	E1668A	0.458 U	0.775 U	1.46 U	0.671 U
PCB-040/071	E1668A	5.86	7.55 J	4.55	3.92
PCB-041	E1668A	0.666 U	0.691 U	1.15 U	0.603 U
PCB-042	E1668A	2.85	0.406.11	2.67	2.13 J
PCB-043 PCB-044/047/065	E1668A E1668A	0.513 U 13.9	0.486 U 16.3	0.812 U 10.9	0.424 U 11.3
PCB-045	E1668A	5.32	5.22	1.09 J	1.92 J
PCB-046	E1668A	2.99	2.19 J	0.998 U	0.668 J
PCB-048	E1668A	0.548 U	2.59 J	0.855 U	0.447 U
PCB-049/069 PCB-050/053	E1668A E1668A	7.22 8.02 J	9.22 5.03	5.74 J 3.08	5.55 J 2.97
PCB-050/053	E1668A	2.42 J	0.512 J	0.813 J	0.798 J
PCB-052	E1668A	30.1	29	19.6	18.8
PCB-054	E1668A	0.265 U	0.342 U	0.47 U	0.29 U
PCB-055	E1668A	0.478 U	0.411 U	0.664 U	0.386 U
PCB-056 PCB-057	E1668A E1668A	4.3 J 0.52 U	5.32 0.445 U	4.22 0.719 U	4.73 J 0.418 U
PCB-058	E1668A	0.466 U	0.391 U	0.632 U	0.367 U
PCB-059/062/075	E1668A	2.92	1.87 J	1.48 J	0.823 J
PCB-060	E1668A	2.55	2.43	2.39	2.24 J
PCB-061/070/074/076 PCB-063	E1668A E1668A	21.5 0.573 U	25.1 0.479 U	16.3 0.774 U	17.8 0.45 U
PCB-063 PCB-064	E1668A	7.83	9.95	6.19	4.93
PCB-066	E1668A	10.4	11.4	7.3	8.78
PCB-067	E1668A	0.46 U	0.38 U	0.615 U	0.357 U
PCB-068	E1668A	0.525 U	0.449 U	0.726 U	0.422 U
PCB-072	E1668A	0.491 U	0.407 U	0.657 U	0.382 U
	F1668^	N 37 II	0.35.11	0 585 11	0.306.11
PCB-073 PCB-077	E1668A E1668A	0.37 U 3.64	0.35 U 2.31 J	0.585 U 2.94	0.306 U 3.01

Table 1
Everett East Waterway PSO4 Solids Results

	Task Location ID	EEW2018 SMHPO2_2018	EEW2018 SMHQ01_2018	EEW2018 SMHQ16_2018	EEW2018 SMHQ16_2018
		KC-S-SMHP02-180926		KC-S-SMHQ116-180926	KC-S-SMHQ16-180926
	Sample Date	9/26/2018	9/26/2018	9/26/2018	9/26/2018
	Sample Type	N	N	FD	N
	Matrix	CSO Solids	CSO Solids	CSO Solids	CSO Solids
	х	1301136.943	1301930.414	1301701.454	1301701.454
	Υ	362175.789	362184.828	362127.123	362127.123
PCB-079	E1668A	2.5 J	2.29	0.614 U	0.357 U
PCB-080	E1668A	0.502 U	0.422 U	0.682 U	0.396 U
PCB-081	E1668A	0.559 U	0.51 U	0.824 U	0.479 U
PCB-082	E1668A	20	11.3	8.5	6.91
PCB-083	E1668A	11.5	6.34	2.04 J	2.63 J
PCB-084	E1668A	78.2	35.4	20.6	18.1
PCB-085/116	E1668A	23.4	11.9 J	8.72 J	9.11 J
PCB-086/087/097/108/119/125	E1668A	90.5	54.2	34	33.1
PCB-088	E1668A	0.781 U	0.854 U	1.48 U	0.711 U
PCB-089	E1668A	1.59 J	0.726 U	1.26 U	0.605 U
PCB-090/101/113	E1668A	128	83	46.1	49.1
PCB-091	E1668A	41.1	12.3	7.8	8.36
PCB-092	E1668A	34	17.3	10.3	10.4
PCB-093/100	E1668A	0.777 U	0.803 U	1.39 U	0.669 U
PCB-094	E1668A	0.881 U	0.833 U	1.45 U	0.694 U
PCB-095	E1668A	240	97.8	50.7	54.5
PCB-096	E1668A	1.43	0.42 U	0.595 U	0.364 U
PCB-098	E1668A	0.702 U	0.754 U	1.31 U	0.628 U
PCB-099	E1668A	57	29.1	19.2	19.4
PCB-102	E1668A	4.14 J	2.01 J	0.956 U	1.23 J
PCB-103	E1668A	1.97	0.694 U	1.21 U	0.578 U
PCB-104	E1668A	0.245 U	0.343 U	0.486 U	0.297 U
PCB-105	E1668A	45.4	33.2	21.6	21.8
PCB-106	E1668A	0.524 U	0.523 U	0.908 U	0.435 U
PCB-107/124	E1668A	4.36 J	3.31 J	2.54	2.38
PCB-109	E1668A	8.43 J	5.29	3.76	4.05
PCB-110	E1668A	262	132	79.8	75.7
PCB-111	E1668A	0.548 U	0.554 U	0.962 U	0.461 U
PCB-112	E1668A	0.468 U	0.461 U	0.8 U	0.384 U
PCB-114	E1668A	1.75 J	1.39 J	1.19 U	0.487 U
PCB-115	E1668A	0.505 U	0.46 U	0.799 U	0.383 U
PCB-117	E1668A	3.79	2.06 J	1.02 U	1.21
PCB-118	E1668A	93.4	62.6	42.3	41.8
PCB-120	E1668A	0.449 U	0.462 U	0.803 U	0.385 U
PCB-121	E1668A	0.504 U	0.494 U	0.857 U	0.411 U
PCB-122	E1668A	2.63 J	1.85	1.48 U	0.603 U
PCB-123	E1668A	1.75 J	1.57	0.897 U	1.41
PCB-126	E1668A	1.02 U	0.923 U	1.17 U	0.636 U
PCB-127	E1668A	0.499 U	0.538 U	1.01 U	0.476 U
PCB-128/166	E1668A	70.2	30.4	17.1 J	19.2
PCB-129/138/163	E1668A	306	170	98.4	93.6
PCB-130	E1668A	22.7	12.9	8.57	7.67
PCB-131	E1668A	4.85	0.482 U	0.828 U	1.6
PCB-132	E1668A	114	60.8	32.4	32.7
PCB-133	E1668A	4.43	2.16	0.718 U	1.02 J
PCB-134	E1668A	25.1	10.5 J	5.26 J	7.29
PCB-135/151	E1668A	106	50.8	22.5 J	24.5
PCB-136	E1668A	39.2	23.7	11.3	11.7
PCB-137	E1668A	15.2	9.09	5.28	4.98
PCB-139/140	E1668A	5.87	3.43 J	0.699 U	1.73 J
PCB-141	E1668A	51.1	30.3	12.9 J	15.7
PCB-142	E1668A	0.545 U	0.487 U	0.835 U	0.406 U
	E1668A	0.459 U	0.419 U	0.719 U	0.35 U
PCB-143		16.3	7.44 J	4.4 J	4.45
PCB-143 PCB-144	E1668A		-		0.263 U
	E1668A E1668A	0.277 U	0.295 U	0.54 U	0.203 0
PCB-144			0.295 U 17.6	0.54 U 11.6	10.5
PCB-144 PCB-145	E1668A	0.277 U			
PCB-144 PCB-145 PCB-146	E1668A E1668A	0.277 U 38.8	17.6	11.6	10.5
PCB-144 PCB-145 PCB-146 PCB-147/149	E1668A E1668A E1668A	0.277 U 38.8 248	17.6 121	11.6 65.6	10.5 63.7
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148	E1668A E1668A E1668A E1668A	0.277 U 38.8 248 0.487 U	17.6 121 0.421 U	11.6 65.6 0.723 U	10.5 63.7 0.352 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150	E1668A E1668A E1668A E1668A	0.277 U 38.8 248 0.487 U 0.303 U	17.6 121 0.421 U 0.314 U	11.6 65.6 0.723 U 0.575 U	10.5 63.7 0.352 U 0.28 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152	E1668A E1668A E1668A E1668A E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U	17.6 121 0.421 U 0.314 U 0.274 U	11.6 65.6 0.723 U 0.575 U 0.501 U	10.5 63.7 0.352 U 0.28 U 0.244 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168	E1668A E1668A E1668A E1668A E1668A E1668A E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-155	E1668A E1668A E1668A E1668A E1668A E1668A E1668A E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-154 PCB-155 PCB-155	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-154 PCB-155 PCB-155	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-155 PCB-154 PCB-155 PCB-155 PCB-156/157 PCB-158 PCB-159	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5 1.02 U	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1 0.622 U	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J 1.07 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-155 PCB-155 PCB-155 PCB-156/157 PCB-158 PCB-159 PCB-160	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5 1.02 U 0.414 U	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1 0.622 U 0.368 U	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J 1.07 U 0.631 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J 0.638 U 0.307 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-154 PCB-155 PCB-155 PCB-156/157 PCB-158 PCB-159 PCB-160 PCB-161	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5 1.02 U 0.414 U 0.343 U	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1 0.622 U 0.368 U 0.31 U	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J 1.07 U 0.631 U 0.532 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J 0.638 U 0.307 U 0.259 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-155 PCB-154 PCB-155 PCB-156/157 PCB-158 PCB-159 PCB-160 PCB-161 PCB-162	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5 1.02 U 0.414 U 0.343 U 1.22 U	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1 0.622 U 0.368 U 0.31 U 0.704 U	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J 1.07 U 0.631 U 0.532 U 1.22 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J 0.638 U 0.307 U 0.259 U 0.722 U
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-155 PCB-155 PCB-156/157 PCB-156 PCB-158 PCB-159 PCB-160 PCB-161 PCB-162 PCB-164	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5 1.02 U 0.414 U 0.343 U 1.22 U 22.7	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1 0.622 U 0.368 U 0.31 U 0.704 U 11.9	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J 1.07 U 0.631 U 0.532 U 1.22 U 7.7	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J 0.638 U 0.307 U 0.259 U 0.722 U 6.81
PCB-144 PCB-145 PCB-146 PCB-147/149 PCB-148 PCB-150 PCB-152 PCB-153/168 PCB-155 PCB-154 PCB-155 PCB-156/157 PCB-158 PCB-159 PCB-160 PCB-161 PCB-162	E1668A	0.277 U 38.8 248 0.487 U 0.303 U 0.263 U 207 3.18 0.272 U 26.3 32.5 1.02 U 0.414 U 0.343 U 1.22 U	17.6 121 0.421 U 0.314 U 0.274 U 110 1.16 J 0.274 U 17.5 17.1 0.622 U 0.368 U 0.31 U 0.704 U	11.6 65.6 0.723 U 0.575 U 0.501 U 58.9 0.667 U 0.502 U 10.6 8.46 J 1.07 U 0.631 U 0.532 U 1.22 U	10.5 63.7 0.352 U 0.28 U 0.244 U 61.7 0.639 J 0.245 U 10.6 8.75 J 0.638 U 0.307 U 0.259 U 0.722 U

Table 1
Everett East Waterway PSO4 Solids Results

	Task	EEW2018	EEW2018	EEW2018	EEW2018
	Location ID	SMHPO2_2018	SMHQ01_2018	SMHQ16 2018	SMHQ16 2018
		KC-S-SMHP02-180926		KC-S-SMHQ116-180926	KC-S-SMHQ16-180926
	Sample Date	9/26/2018	9/26/2018	9/26/2018	9/26/2018
	Sample Type	N	N	FD	N
	Matrix	CSO Solids	CSO Solids	CSO Solids	CSO Solids
	X		1301930.414	1301701.454	1301701.454
	Ŷ	362175.789	362184.828	362127.123	362127.123
PCB-170	E1668A	60.6	32.2	26.7	25.5
PCB-171/173	E1668A	21.9	9.26	6.76 J	7.2
PCB-172	E1668A	10.8 J	4.93	5.78	3.66
PCB-174	E1668A	70.1	35.6	26	22.6
PCB-175	E1668A	3.19 J	1.01 U	1.15 U	0.488 U
PCB-176	E1668A	10.2	5.56	2.31	2.18 J
PCB-177	E1668A	37.1	18 J	13.8	14.2
PCB-177	E1668A	14	7.24	5.35	4.77 J
PCB-179	E1668A	29.1	17.2	8.93	9.59
PCB-180/193	E1668A	141	67.3	52.4	47.2
PCB-181	E1668A	0.809 U	0.895 U	1.01 U	0.432 U
PCB-182	E1668A	0.766 U	0.835 U	0.947 U	0.404 U
PCB-183	E1668A	43.3	23.2	15.7	12.8
PCB-184	E1668A	0.346 U	0.357 U	0.555 U	0.328 U
PCB-185	E1668A	6.56	1 U	1.13 U	2.71 J
PCB-186	E1668A	0.309 U	0.334 U	0.518 U	0.306 U
PCB-187	E1668A	96.4	44.8	34.6	30.3
PCB-188	E1668A	0.325 U	0.318 U	0.493 U	0.291 U
PCB-189	E1668A	0.769 U	0.566 U	1 U	0.666 U
PCB-190	E1668A	11.2	4.1 J	3.53 J	3.87 J
PCB-191	E1668A	2.18	0.819 U	0.929 U	0.874 J
PCB-192	E1668A	0.634 U	0.707 U	0.802 U	0.341 U
PCB-194	E1668A	31.5	11.6 J	14.9	13.5
PCB-195	E1668A	11.7	5.24	4.1 J	3.34 J
PCB-196	E1668A	19.3	8.88	5.45 J	5.8 J
PCB-197	E1668A	1.4	0.444 U	1.24 U	0.439 U
PCB-198/199	E1668A	43.2	17.7 J	18.8	15.2
PCB-200	E1668A	5.7	2.29	2.82 J	2.04
PCB-201	E1668A	7.87	2.84 J	2.4	1.84 J
PCB-202	E1668A	11.3	6.67	4.87 J	4.24
PCB-203	E1668A	27.4	11.7 J	9.06 J	7.78
PCB-204	E1668A	0.42 U	0.439 U	1.23 U	0.434 U
PCB-205	E1668A	0.795 U	0.861 U	1.95 U	0.908 U
PCB-206	E1668A	25.3	12.6	11.5 J	11
PCB-207	E1668A	3.16	1.64	0.864 U	0.589 U
PCB-208	E1668A	8.29	4.14	4.81	3.22
PCB-209	E1668A	11.4	5.03	6.64	7.22
Total PCB Congener (U = 1/2)		3505.906 J	2012.886 J	1215.1 J	1176.959 J
Total PCB Congener (U = 0)		3487.685 J	1991.456 J	1170.655 J	1157.933 J
Total PCB Congener TEQ 2005 (Mammal) (U = 1/2)		0.08370039 J	0.06663199 J	0.08158541	0.05318775
Total PCB Congener TEQ 2005 (Mammal) (U = 0)		0.005755 J	0.003897 J	0.0026655	0.0026986
Notes:					

Bold: detected result

Data Qualifiers:

J: estimated value

U: Compound analyzed, but not detected above detection limit

UJ: Compound analyzed, but not detected above estimated detection limit

Abbreviations:

μg/kg: micrograms per kilogram

CAEPA: California Environmental Protection Agency

cPAH: carcinogenic polycyclic aromatic hydrocarbons

CSO: combined sewer overflow

FD: field duplicate

 $\label{thm:high-molecular-weight polycyclic} \ aromatic\ hydrocarbons$

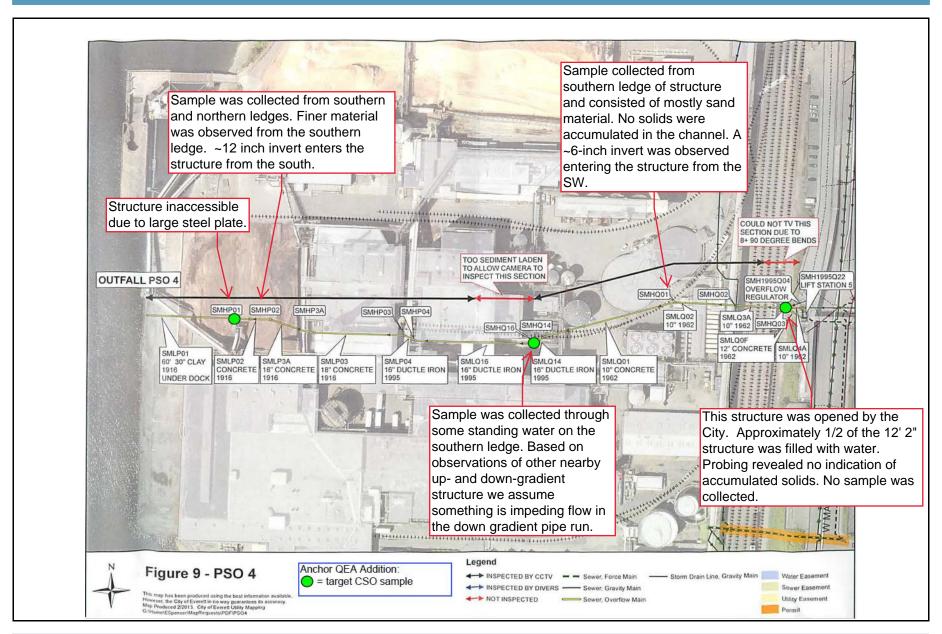
LPAH: low-molecular-weight polycyclic aromatic hydrocarbons

mg/kg: milligrams per kilogram

N: normal sample

ng/kg: nanograms per kilogram

PCB: polychlorinated biphenyl


pct: percent

PSEP: Puget Sound Estuary Program

SMS: Sediment Management Standards

TEQ: toxic equivalency

Figure

Attachment 1 Field Forms

Daily Log

Anchor QEA, LLC

720 Olive Way, Suite 1900

Seattle, WA 98101

Phone 206.287.9130 Fax 206.287.9131

PROJECT NAM	1E: EEN 2504 Sampling DATE: 9/26/18
SITE ADDRESS	
WEATHER:	WIND FROM: N NE E SE S SW W NW LIGHT MEDIUM HEAVY SUNNY CLOUDY RAIN ? TEMPERATURE: ° F . ° C [Circle appropriate units]
TIME	COMMENTS
9-	Arrive ms He, prop for sompling
9:45	HES meeting (see daily HAS ISM)
10-	City arrived
10:05	Access paradient structure. City renured
	builts and opened water was studily to appare 6
	depth to bottom 12.2". Proper of supplying aparers
	reverted hard bottom. Hard bottom concincerage by
	Ecology Discossed saughter forsibility and
	agreed no collection is possible. Potential to
10 11	ce-evaluate when the structure is devalued.
10:27	Mobilized to upgradient over if KC Property SALOOZ "Suffa DI
10:32	Bryonk. Oss'cribed pipe configuration and above
1020	ground DWO and gres lines enthring KC tropperty
10:49	Sumple collected from bench of SM HQDI Structure
	Charnel had no accountation, typood 6" pipe invert from
11:08	the south just into structule. Sample consisted up Soud
11:18	Sample processing complete.
11:22	Checked down gradient MH - Sin HPDY. No Stan Dicart
11.	
[]:50	Observed 5mHQ14 - Groing to a flengt to singule
70	Sm Holl
11:56	
	sample Collected - limited sintancy required of overlying
11:44	Spample Daessing
11:55	Homogarphe diplicate taken SMHQ116 (2-402\$ 1402)
12:17	Starte Simpling SMHPOZ - Sample from Nas Sides
	somewhat mole warse GS on North shelf
12:46	Sounding Complete - De in OD

Signature:

Daily Safety Briefing Form

Project Name: 9 26 1 170 170 Everell En	8 092-01.01 st Waterway PS04	-
Person Conducting Meeting: N. Backer	Health & Safety Officer: C. Torell	Project Manager: N. Sciences
TOPICS COVERED:		(
Emergency Procedures and Evacuation Route Directions to Hospital HASP Review and Location Safety Equipment Location Proper Safety Equipment Use Employee Right-to-Know/ SDS Location Fire Extinguisher Location Eye Wash Station Location Buddy System Self and Coworker Monitoring Field Team Medical Conditions fo	☐ Communication ☐ Site Security ☐ Vessel Safety Protocols ☐ Work Zones ☐ Vehicle Safety and Driving/ Road Conditions ☐ Equipment Safety and Operation ☐ Proper Use of PPE ☐ Decontamination Procedures ☐ Near Miss Reporting Procedures r Emergency Purposes (Confidential):	 ✓ Lifting Techniques ✓ Slips, Trips, and Falls ☐ Hazard Exposure Routes ✓ Heat and Cold Stress ✓ Overhead and Underfoot Hazards ✓ Chemical Hazards ☐ Flammable Hazards ✓ Biological Hazards ☐ Eating/Drinking/Smoking ☐ Reviewed Prior Lessons Learned
Weather Conditions: O Ver C	ast, 50s	<u>Attendees</u>
Daily Work Scope: _collect from manhales		Vilson Vallys lexentalles LUST Brut
Site-specific Hazards: Working Manholes, uneven go heavy lifting tra	and,	nd of Day Wellness Check
when working near many holes.	open	

ANCHOR QEA ****	Storm Drain Solids Collection Log
Project Name: EEW PSOY Samply Project	No: 160105-02.02 Station ID: 5M HQ Ø 1 Sampling Method: SS canister on extended po
Sample Date: 9 26 18	Catchment Type:
Station Coordinates: N/Lat.	Weather: Overzast, 505
Horizontal Datum:	
Sample ID: KC-S-SMHQØ1-19 Analyses:	80926 Sample Location: 5MHQ Ø1
Depth of CB: ~ 8' DTW: N/A	Grab Recovery:N/A
Time: 1054 Stormwater Observations (e.g., color, clarity, sheen, odor):	Sample Interval: Not measured, 5 ampled material available on structure
Ho solids collected in chance	el. 3
No appreciable flow observed	
11	
Solids (Sediment) Description:	mner 51/4 (< 10%)
gray, moist, medium to coarse	e sand w/ scattered gravel up to 3/4".
tew glass shards. no oder n	e sand w/ scattered graved up to 3/4".
Additional Observations/Comments:	
1	in tedge of structure
No solids observed in the	
•	
	N-16-16

	\wedge	
	11. 12. 1.	
Recorded by:	Str Dallis	
Recorded by:	1 ortification	

QEA SS	R			
V QEA :			Storm Draii	n Solids Collection Log
Project Name: EEW	PSO4 Sampline			Station ID: SMHQ16 S5 canister on extended pol
Field Personnel:	MRING J	Frojectivo: (p)/	mulium Mathada	Station ib: 31-11 & 1
Sample Date:	9/26/18	sa	mpling Method:	DS canister on extended pol
Station Coordinates:	N/Lat		Weather:	Over cust, 50s
	E/Long.		weather.	0.04 5031 303
Horizontal Datum:				
Sample ID: _ Analyses:	KC-S-SMHQ	16-180926	Sample Location:	SMHQ16
Allalyses.				
Depth of CB: ~ 8	DTW: N/A		Grab Recovery:	N/A Not measured
	Time:1144		Sample Interval:	Not measured
Stormwater Observations	(o.g. color alarity above	n adad.		
Some stagna	ut water M	1 bottom of	Starture	1)
flow observe	ed.	()	J (Martier E.	No appreciable
Solids (Sediment) Descript	tion:			
gray, wet, med	ium sand u	- trace silt,	few grave	l up to 3/4".
no war no sh	een,	,		•
	=			
Additional Observations/Co	omments:			
		this station.		
Sample collec	ted through	SOM B Star	udnia wa	ter on southern
ledge of s	itricture.		ı	
J				

Recorded by: Kally

QEA SEE	\ -	Storm Drai	n Solids Collection Log
Project Name: EEW	PS04 Sampling Project No: 160	105-02-02	Station ID: SM HP Ø 2
Field Personnel:	NB, NS	Sampling Method:	: 55 canister on extended pol
Sample Date:	NB, NS	_ Catchment Type:	
Station Coordinates:	, ,	Weather:	Overlash 50s
1 -	E/Long.	_	
Horizontal Datum:			_
	KC-S-SMH702-180926	Sample Location:	SMHP02
Analyses:			
Depth of CB: ~ 7.5	DTW: N/A	Grah Recovery:	N/A
Depui of ob.	1226	Grab Necovery.	N/A Not measured
	Time: 1226	Sample Interval	- Rot measures
Stormwater Observations	(e.g., color, clarity, sheen, odor):		
No apprecial	ole flow observed.		
11			
Solids (Sediment) Descrip	tion:	/ +0/1 - 1	6 - 0 - 1364
gray, wet, med	tion: lim to coarse gand ry sheen	11902 5117	tow graves up to 74
10 000 1 / 10	3		4
		1600	3
Additional Observations/C			
Sample was		en & south	rem ledges of
the structu	re.		•
		, <u>, , , , , , , , , , , , , , , , , , </u>	·
	Participant of the second of t		

Recorded by:	Un Balm	

Chain of Custody Record & Laboratory Analysis Request

	Analytical Resources, Incorporated	4611 South 134th Place, Suite 100 Tikwila WA 98168	206-695-6200 206-695-6201 (fax)	www.arilabs.com	Notes/Comments			le may		far M3 (M3D.								Received by: (Signature)	Printed Name:	Company:	Date & Time:
)		ited	3861 3861 3219 WIS	#784 0352 0478	×	< ×		×					/	/	1			
	u-mase	lce Present?	coolin:	Temps:	Analysis Requested	S. S. S.	2015 391 27878	×	×	×	×	/	/				/	Relinquished by: (Signature)	Printed Name:	Company:	Date & Time:
	Page: of	Date: 10 10	2 . 07	-	+	A CONTROL	141FIF 5000	×	×	×	×××			/	/			CUNIC FISHOR	Davie Howa		500
Rednest				S	Location L.	Soccors	No. Containers	Sed.	Sed.	Sed.	Sed.	/			/			5	£ (Company: 1	Date & Time:
tory Analysis	questedi	206-287-9130			PSOU / CO TIMES	2		七 1601	1144 8	1158 3	1226 7						/	M	Bacher	~	1009
id & Labora	Turn-around Requested	202		Cheiro		S	Date	81/92/18	Commence of the Commence of th		A							(Signature) (Pu	Ca da la	AG	27 K
Significations record a Laboratory Analysis Request	Ani Assigned Number:	ARI Client Company:		Chargena	Evered Erist Waterway	Client Project #: 70092-01.01	Sample ID	KC-5-5MHQ001-180926	KC-5-5M#1016-180926	KC-5-5MHQ116-180726	KC-5-5MHPO2-130972						. I I i i o o O lo do o o o o o o o o o o o o o o o o o	Comments/opecial instructions			

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate

Attachment 2 Laboratory Reports

Attachment 3 Data Validation Reports

Anchor QEA, LLC 720 Olive Way, Suite 900

Seattle, WA 98101 ATTN: Ms. Cindy Fields

SUBJECT: REVISED Everett East Waterway, Data Validation

Dear Ms. Fields,

Enclosed are the revised validation reports for the fractions listed below. This SDG was received on October 30, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

Added the MS/MSD outlier.

LDC Project #43524_RV1:

SDG #	<u>Fraction</u>
18I0403/B2663	Semivolatiles, Polynuclear Aromatic Hydrocarbons, Chlorinated Pesticides, Metals, Polychlorinated Dioxins/Dibenzofurans, Polychlorinated Biphenyls as Congeners

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combine Sewer Overflow Characterization; August 2018
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review;
 January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review;
 January 2017
- USEPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins and Chlorinated Dibenzofurans Data Review; September 2011
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink

Project Manager/Senior Chemist

November 21, 2018

Attachment 1 3,988 pages-ADV LDC #43524 (Anchor Environmental-Seattle WA / Everett East Waterway) EDD Stage 2B PAHs **PAHs** PCB as Total Part. SVOA (8270D-(8270D-Cong. Solids TOC DATE DATE Pest. Metals Hg Dioxins Size LDC SDG# REC'D DUE (8270D) SIM/DSL) SIM/LL) (8081B) (1668A) (6020A) (7471B) (1613B) (2540G) (9060A) (PSEP) w s w s w s w s ws W S S S w s w s w s w s w s w s W w s W W S Matrix: Water/Sediment 18I0403/B2663 10/30/18 0 4 0 4 0 5 4 4 3 0 3 0 4 0 3 0 3 0 11/20/18 3 3 0 0 3 0 0 3 0 0 J/CR Total

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 9, 2018

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
09/21/18	2,4-Dinitrophenol Pentachlorophenol	45.6 30.5	All samples in SDG 18I0403	UJ (all non-detects) UJ (all non-detects)	А

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/08/18	3,3'-Dichlorobenzidine	28.0	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	UJ (all non-detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	4-Chloroaniline 3-Nitroaniline 4-Nitroaniline 3,3'-Dichlorobenzidine 2,4-Dimethylphenol N-Nitrosodimethylamine	26.6 (50-150) 38.9 (50-150) 40.9 (50-150) 30.8 (50-150) -	27.4 (50-150) 39.3 (50-150) - 33.8 (50-150) 43.6 (50-150) 49.5 (50-150)	UJ (all non-detects)	Α

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra				
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)		
Di-n-butylphthalate	13.8	11.2	21 (≤50)		
Butylbenzylphthalate	8.3	9.4	12 (≤50)		
Bis(2-ethylhexyl)phthalate	96.0	80.6	17 (≤50)		

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and MS/MSD %R, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Semivolatiles - Data Qualification Summary - SDG 18I0403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926 KC-S-SMHQ116-180926 KC-S-SMHP02-180926	2,4-Dinitrophenol Pentachlorophenol	UJ (all non-detects) UJ (all non-detects)	А	Initial calibration verification (%D)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	3,3'-Dichlorobenzidine	UJ (all non-detects)	Α	Continuing calibration (%D)
KC-S-SMHQ016-180926	4-Chloroaniline 3-Nitroaniline 4-Nitroaniline 3,3'-Dichlorobenzidine 2,4-Dimethylphenol N-Nitrosodimethylamine	UJ (all non-detects)	А	Matrix spike/Matrix spike duplicate (%R)

Everett East Waterway Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

LDC #: 43524A2a	VALIDATION COMPLETENESS WORKSHEET
SDG #: 18I0403	Stage 2B

Stage 2B

Reviewer: 2nd Reviewer

Laboratory: Analytical Resources, Inc.

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	A KW	(20 ≤ 20/0. Y) (eV = 30/0)
IV.	Continuing calibration	w	àc1 ≤ 28/0
V.	Laboratory Blanks	4	1
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	W	
IX.	Laboratory control samples	\triangle	105
X.	Field duplicates	W	0=263
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
6	KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18
7				
8				

Notes:

HB_B4T0007B4			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WILTHOD. GC/WIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2.Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2.Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2.Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

2nd Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

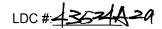
Was an initial calibration verification standard analyzed after each ICAL for each instrument? Y/N N/A

Were all %D within the validation criteria of <30 %D?

	N M/A Were all %D within the validation criteria of ≤30 %D?							
#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications		
	9/2/18	56J039-5CV)	HH	45.6	A11 (ND)	VIVIA		
	7 7 1		11	30.5				
l								
-								
-								
 								
 -								
ļ								
<u> </u>								
<u> </u>								
 								
 						<u> </u>		
 -					<u> </u>	 		
	According to the							
 -								
<u> </u>				<u> </u>		<u> </u>		

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: _/ of /_ Reviewer: ______ 2nd Reviewer: ______


METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

YN N/A Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	10/8/18	NTT018100802	BBB	28.0		Associated Samples 1-2.5-6.MB (ND)	YUY K
	/ /					(ND)	
				The state of the s			
				AND			

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	<u>/</u> of/
Reviewer:	4
2nd Reviewer:_	2

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		5/6	T -	26.50-150	≥T.4 (50-150)	()	2 (ND)	1/W/A
			FF	138.9 (,)	39.3(1)	()		
			00	40.9 ()	()	()		
			BBB	30.8 (V)	≥≥.8 ()	()		
			0	()	, , , , , , , , , , , , , , , , , , , ,	()		
			000	()	495()	()		
				()	()	()		
		w		()	()	()		
			<u> </u>	()	()			
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
			ļ	()	()	()		
ļ				()	()	()		
				()	()	()		
	-			()	()	()		
			<u> </u>	()	()			
		-	 	()	()	()		
	_			()	()	()		
				()	()	()		
			<u> </u>	()	()	()		
			<u> </u>	()	()	()		
\vdash				()	()	()		
				()	()	()		
				()	()	()		
	1		<u> </u>	()		()		

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: of Page: 2nd Reviewer: 2nd Reviewer:

METHOD: GCMS SVOA 8270D

	Concentrat	(≤50)	
Compound	2	3	RPD
xx	13.8	11.2	21
AAA	8.3	9.4	12
EEE	96.0	80.6	17

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A2a.wpd

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 20, 2018

Parameters:

Semivolatiles

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode Dual Scan List

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/08/18	Pentachlorophenol	37.7	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	J (all detects)	А
10/09/18	Benzoic acid Pentachlorophenol	25.6 33.7	KC-S-SMHQ116-180926 KC-S-SMHP02-180926	J (all detects) J (all detects)	А

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date Compound		Concentration	Associated Samples
BGJ0007-BLK2	10/02/18	Diethylphthalate	5.5 ug/Kg	All samples in SDG 18I0403

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
KC-S-SMHQ01-180926	Diethylphthalate	6.5 ug/Kg	19.5U ug/Kg
KC-S-SMHQ016-180926	Diethylphthalate	7.3 ug/Kg	19.4U ug/Kg
KC-S-SMHQ116-180926	Diethylphthalate	10.5 ug/Kg	19.4U ug/Kg
KC-S-SMHP02-180926	Diethylphthalate	7.1 ug/Kg	19.3U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	2,4-Dimethylphenol N-Nitrosodiphenylamine	-	45.5 (50-150) 49.8 (50-150)	UJ (all non-detects) UJ (all non-detects)	А

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Phenol	6.3	5.6	12 (≤50)
Benzoic acid	37.5	58.0	43 (≤50)
Diethylphthalate	7.1	7.3	3 (≤50)
Pentachlorophenol	3.9	6.3	47 (≤50)
Butylbenzylphthalate	6.2	6.3	2 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D and MS/MSD %R, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Semivolatiles - Data Qualification Summary - SDG 18I0403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Pentachlorophenol	J (all detects)	Α	Continuing calibration (%D)
KC-S-SMHQ116-180926 KC-S-SMHP02-180926	Benzoic acid Pentachlorophenol	J (all detects) J (all detects)	Α	Continuing calibration (%D)
KC-S-SMHQ016-180926	2,4-Dimethylphenol N-Nitrosodiphenylamine	UJ (all non-detects) UJ (all non-detects)	Α	Matrix spike/Matrix spike duplicate (%R)

Everett East Waterway Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 18I0403

Sample	Compound	Modified Final Concentration	A or P
KC-S-SMHQ01-180926	Diethylphthalate	19.5U ug/Kg	Α
KC-S-SMHQ016-180926	Diethylphthalate	19.4U ug/Kg	Α
KC-S-SMHQ116-180926	Diethylphthalate	19.4U ug/Kg	Α
KC-S-SMHP02-180926	Diethylphthalate	19.3U ug/Kg	Α

SDG #Labora METH The sa	validation	St. drocarbons (El	age 2B PA SW 846 N		P Revi 2nd Revi ual Scan List)	U
	Validation Area			Comme	nts	
1.	Sample receipt/Technical holding times	1				
11.	GC/MS Instrument performance check	4		_		
111.	Initial calibration/ICV	AAG	te the	1670 Y =		= 30%
IV.	Continuing calibration	Aw				
V.	Laboratory Blanks	MI				
VI.	Field blanks	N				
VII.	Surrogate spikes	A	1		14	
VIII.	Matrix spike/Matrix spike duplicates	AG	W	AND THE PARTY OF T		***
IX.	Laboratory control samples	47	105			
X.	Field duplicates	an/	B=3	++		
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.	Target compound identification	N	· · · · · · · · · · · · · · · · · · ·			
XIV.	System performance	N				
XV.	Overall assessment of data	1				
Note:	N = Not provided/applicable R =	= No compounds Rinsate = Field blank	detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1 k	(C-S-SMHQ01-180926			1810403-01	Sediment	09/26/18
2-1	(C-3-3MHQ01-180928RE			1810403-01RE	Sediment	09/26/18
3 , H	KC-S-SMHQ016-180926			1810403-02	Sediment	09/26/18
4 I	(C-S-SMHQ116-180926			1810403-03	Sediment	09/26/18
5 I	(C-S-SMHP02-180926		1810403-04	Sediment	09/26/18	
6 I	C-S-SMHQ016-180926MS			18I0403-02MS	Sediment	09/26/18
7 H	C-S-SMHQ016-180926MSD			1810403-02MSD	Sediment	09/26/18
					<u> </u>	
Notes:						

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD. COMIC STOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl aicohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2.Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2.Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	l2.Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	IZ Benzoci Hubrant

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

Page: ____of ___ Reviewer: _____ 2nd Reviewer: ____

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y N N/A

Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

#	Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
	10/8/8	NT1018(008035	· TT	37.7		1.3 6-7112	
	, ,					(lets)	/ /
	.0/0/0	A The 12 Marks	12P P	~ 6		* - 10 h- 1	
	(0)4/18	NT10181009065	147	25.6 33.7		4-5 (det3)	The state of the s
ļ							
 			·				

VALIDATION FINDINGS WORKSHEET Blanks

Page:_	of
Reviewer:	9
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level?

N/A Was a method blank associated with every sample?

Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 19518 Blank analysis date: 19518

Conc. units:

Associated Samples: 9711									
Compound	Blank ID				S	ample Identifica	ation_		
	WT-BA	2 (5x)	1	3	4	5			
Bis(2-ethylhexyl)phthalate									
Lot	55	27.5)	6.5/Q.5U	73/9.4	10.5/944	T. 1934			
					/				

411

Blank extraction date: Conc. units:	Blank analy	sis date:	 Associa	ited Samples:					
Compound	Blank ID				s	ample Identific	ation		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

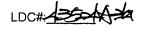
LDC#: 43524 AZD

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: of Reviewer: Older

METHOD: GC/MS SVOA (EPA SW 846 Method 8270D-DIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


Y N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Y N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
- 17	Date	6/7	О	/art (Ellints)	45.5 (50-150)	()	3	J/UJ/A (ND)
		0,1	QQ	()	49.8 (50-150)	()		U/OU/Y (NE)
				()	()	()		
				()	()	()		·
				()	()	()		
				()	()			
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	(:)	()		
				()	()	()		
		·.·		()	()	()		
				()	()	(
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
			1.	()	()			

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: of Reviewer: 2nd Reviewer:

METHOD: GCMS SVOA 8270D-SIM

	Concentration	Concentration (ug/KG)		
Compound	3 4		RPD	
А	6.3	5.6	12	
PPP	37.5	58.0	43	
LL	7.1	7.3	3	
тт	3.9	6.3	47	
AAA	6.2	6.3	2	

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A2a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 14, 2018

Parameters:

Polynuclear Aromatic Hydrocarbons

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ01-180926DL	18I0403-01DL	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode Low Level

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r²) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BGJ0028-BLK1	10/04/18	Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(g,h,i)perylene	0.07 ug/Kg 0.12 ug/Kg 0.09 ug/Kg 0.27 ug/Kg 0.30 ug/Kg 0.15 ug/Kg 0.16 ug/Kg 0.12 ug/Kg 0.11 ug/Kg 0.12 ug/Kg 0.33 ug/Kg	All samples in SDG 18I0403

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	Phenanthrene	37.3 (≤35)	J (all detects)	А

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Naphthalene	3.28	2.62	22 (≤50)
2-Methylnaphthalene	1.65	1.32	22 (≤50)
Acenaphthylene	0.81	0.75	8 (≤50)
Acenaphthene	1.49	0.47	104 (≤50)
Biphenyl	0.60	0.42	35 (≤50)
2,6-Dimethylnaphthalene	0.99	0.56	55 (≤50)
Fluorene	1.90	0.72	90 (≤50)
Phenanthrene	11.3	8.58	27 (≤50)
Anthracene	2.49	2.37	5 (≤50)
2,3,5-Trimethylnaphthalene	0.59	0.18	106 (≤50)
Fluoranthene	16.0	20.2	23 (≤50)
Pyrene	13.5	17.2	24 (≤50)
Benzo(a)anthracene	3.78	11.4	100 (≤50)
Dibenzothiophene	0.90	0.58	43 (≤50)
Chrysene	7.18	13.1	58 (≤50)
Benzo(b)fluoranthene	4.59	9.83	73 (≤50)
Benzo(k)fluoranthene	1.87	5.03	92 (≤50)
Carbazole	0.85	1.30	42 (≤50)
1-Methylphenanthrene	1.69	1.29	27 (≤50)

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Benzo(j)fluoranthene	1.65	4.26	88 (≤50)
Benzo(a)pyrene	3.21	9.12	96 (≤50)
Indeno(1,2,3-cd)pyrene	2.77	5.45	65 (≤50)
Dibenzo(a,h)anthracene	0.75	1.75	80 (≤50)
Benzo(g,h,i)perylene	7.09	9.78	32 (≤50)
1-Methylnaphthalene	1.05	0.71	39 (≤50)
Benzo(e)pyrene	4.83	8.58	56 (≤50)
Benzofluoranthenes, total	8.12	19.1	81 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
KC-S-SMHQ01-180926	Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
KC-S-SMHQ01-180926DL	All compounds except Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-

Due to MS/MSD RPD, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 1810403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ016-180926	Phenanthrene	J (all detects)	Α	Matrix spike/Matrix spike duplicate (RPD)
KC-S-SMHQ01-180926	Fluoranthene Pyrene	Not reportable	· <u>-</u>	Overall assessment of data
KC-S-SMHQ01-180926DL	All compounds except Fluoranthene Pyrene	Not reportable	-	Overall assessment of data

Everett East Waterway Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification **Summary - SDG 1810403**

No Sample Data Qualified in this SDG

SDG	#:43524A2c VALIDATIC #:_18I0403 ratory:_Analytical Resources, Inc.		LETENESS tage 2B	WORKSHEE	R	Date: ///// Page:ofeviewer:eviewer:
METH	HOD: GC/MS Polynuclear Aromatic Hydr	ocarbons (E	EPA SW 846 N	/lethod 8270D-SI	M Low Level)	eviewer.
	amples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	tion areas. Valida	tion findings are n	oted in attached
	Validation Area			Com	ments	
1.	Sample receipt/Technical holding times	A		/		
II.	GC/MS Instrument performance check	\triangleleft				
III.	Initial calibration/ICV	AM	******	每70.73		30/0
IV.	Continuing calibration	Agut	CCV	2070	•	
V.	Laboratory Blanks	<u></u>				
VI.	Field blanks	N				
VII.	Surrogate spikes	A				
VIII.	Matrix spike/Matrix spike duplicates	W/				
IX.	Laboratory control samples	4/	209			
X.	Field duplicates	\m/	70=2	+3		
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	N				
XIII.	Target compound identification	N			· · · · · · · · · · · · · · · · · · ·	
XIV.		N ,				
XV.	Overall assessment of data	MA				· · · · · · · · · · · · · · · · · · ·
Note:	A = Acceptable ND = NN = Not provided/applicable R = Ri	No compounds nsate Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment bl	SB=Sourc OTHER: ank	e blank
	Client ID			Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926			1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926			1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926			1810403-03	Sediment	09/26/18
		····				

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3 1	KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
6	KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18
7	#104	-01DL		1
8			`	·

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

IVIETHOD. GC/IVIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2.Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2.Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2.Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	

VALIDATION FINDINGS WORKSHEET **Blanks**

	Page:_	L_{of}	
	Reviewer:	Ď,	'
2nd	Reviewer:	0	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank analyzed for each matrix? X/N N/A

Was a method blank analyzed for each concentration preparation level?

A/N KINA Was a method blank associated with every sample?

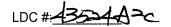
Blank analysis date:

Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 10/4/8 Blank analysis date: 10/9/18

Conc. units: 411

conc. units. 7 7 8			Associated Samples.	4211		 	
Compound	Blank ID			Sampl	le Identification		
.B#0	2028-tz	(5x)					
Bis(2-ethylhexyl)phthalate	0.07	0.35					
ии	0.12	060					
VV	0.09	0.45					
УУ	0.27	1.35					
22	0.30	1.50					
ccc	0.15	0.75					
DDD	0.16	0.80					


Associated Samples: Conc. units: Compound Blank ID Sample Identification 0,60

0.55 0.60 0.33

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

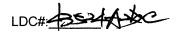
Blank extraction date:

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page	
Reviewer:	9
2nd Reviewe	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated

MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Y, N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
		5/6	uU	()	()	37.3 (5-35)	2 (dets)	Jots A
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		- 11.00 mm		()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		***************************************		()	()	()		
				()	()	()		
					(<u>لـ (</u>			
	:			()	()	()		
				()	()	()		
ļ				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()	()		
	***			()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	(\perp	()		

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: ___ of ___ Reviewer: ____ 2nd Reviewer: ____

METHOD: GCMS PAHs 8270D-SIM

	Concentrat	(≤50)	
Compound	2	3	RPD
S	3.28	2.62	22
w	1.65	1.32	22
DD	0.81	0.75	8
GG	1.49	0.47	104
EEEE	0.60	0.42	35
xxx	0.99	0.56	55
NN	1.90	0.72	90
υυ	11.3	8.58	27
w	2.49	2.37	5
YYY	0.59	0.18	106
YY	16.0	20.2	23
ZZ	13.5	17.2	24
ccc	3.78	11.4	100
AAAA	0.90	0.58	43
DDD	7.18	13.1	58
GGG	4.59	9.83	73
ннн	1.87	5.03	92
ww	0.85	1.30	42
нннн	1.69	1.29	27
J2	1.65	4.26	88
III	3.21	9.12	96
JJJ	2.77	5.45	65
ккк	0.75	1.75	80
LLL	7.09	9.78	32
ттт	1.05	0.71	39
www	4.83	8.58	56
Benzofluoranthenes, Total	8.12	19.1	81

VALIDATION FINDINGS WORKSHEET <u>Overall Assessment of Data</u>

Page: _	/ of
Reviewer:	9
2nd Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N(N/A)

Was the overall quality and usability of the data acceptable?

#	Date	Compound	Finding	Associated Samples	Qualifications
	Date	J	W ZZ Septen	ICM 6.0	WR.
ļ			My. 22 > caleb All except //. 2	maye_	,
		7	All propert VV/ 2	2	
			The contract of the contract o		
	-				:

Comments:						

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 14, 2018

Parameters:

Chlorinated Pesticides

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- (Estimated): The compound or analyte was analyzed for and positively identified J by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
KC-S-SMHP02- 180926	STX-CLP	Tetrachloro-m-xylene	784 (30-160)	All compounds	NA	~

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Everett East Waterway Chlorinated Pesticides - Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

Everett East Waterway Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 1810403

No Sample Data Qualified in this SDG

	#: <u>43524A3a</u> VALIDATI 0 #: 1810403		LETENESS WORKSHEET tage 2B		Date: 4/7/1
	ratory: <u>Analytical Resources, Inc.</u>	J	tage 2D	R	Page: //of L eviewer:
		2140404044	10004B)		eviewer:
MEII	HOD: GC Chlorinated Pesticides (EPA S	SVV846 Meth	od 8081B)		
	amples listed below were reviewed for ention findings worksheets.	each of the fo	ollowing validation areas. Validatio	n findings are r	noted in attache
	Validation Area		Comm	ents	
1.	Sample receipt/Technical holding times	A			
II.	GC Instrument Performance Check	A			
III.	Initial calibration/ICV	AA	70050 × 20/1	10V=	520/
IV.	Continuing calibration	A	acr < 20%		t
V.	Laboratory Blanks	A	/		
VI.	Field blanks	N			
VII.	Surrogate spikes / + S	w/s	4 (IS out - Not	assid to	apol)
VIII.	Matrix spike/Matrix spike duplicates	A			
IX.	Laboratory control samples	A	109		
X.	Field duplicates	ND	0=2+3		
XI.	Compound quantitation/RL/LOQ/LODs	N			
XII.	Target compound identification	N			
XIII.	System Performance	N,			
ΧIV	Overall assessment of data	LA			
Note:	N = Not provided/applicable R = F	No compounds Rinsate Field blank	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Sourc OTHER:	e blank
	Client ID		Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926		1810403-01	Sediment	09/26/18
2 1	KC-S-SMHQ016-180926		1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926	······	1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18	
5	KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18	
6	KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18	
7					
8					
9					
10					
Notes):				

LDC #: 435-4430C

VALIDATION FINDINGS WORKSHEET <u>Surrogate Recovery</u>

Page:_	<u></u>
Reviewer:	<u>a</u>
2nd Reviewer≤	\Rightarrow

	<u> </u>	
/		2nc
METHOD: <u>√</u> (GC HPLC	
Are surrogates re	equired by the method? Yes or No	
Please see qualif	fications below for all questions answered "N". Not applicable questions are identified as "N/A".	
N/A \	Were surrogates spiked into all samples and blanks?	
Y (N)N/A \\ Y (N)N/A	Did all surrogate recoveries (%R) meet the QC limits?	

#	Sample ID	Detector/ Column	Surrogate Compound	%R (Li	mits)	Qualifications
	4	STY-CLD	Y	784 *	(30-160)	Slots & (NO)
		1			()	<i>></i> (
				(Lab uponted		
				vorw data)	culated usig	
				www data)	()	
					(
					()	
					()	
					()	
-					(
					(
H						
					()	
H						
					()	
			····		()	
					()	
					()	
					()	
					()	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	M	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Υ	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	1,2-Dinitrobenzene
С	a,a,a-Trifluorotoluene	ı	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin		
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	İ	
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate		
LE	1.4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	х	Triphenyl Phosphate		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 14, 2018

Parameters:

Metals

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18
KC-S-SMHQ016-180926DUP	18I0403-02DUP	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits with the following exceptions:

ICS ID	Date/ Time	Analyte	%R (Limits)	Associated Samples	Flag	A or P
IFB1	10/09/18 (16:24)	Chromium	134 (80-120)	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	J (all detects)	А

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Chromium	0.07 mg/Kg	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926
ICB/CCB	Chromium	0.138 ug/L	KC-S-SMHQ01-180926

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ01-180926 KC-S-SMHQ016-180926)	Chromium	39.2 (75-125)	62.9 (72-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
KC-S-SMHQ016-180926DUP (KC-S-SMHQ01-180926 KC-S-SMHQ016-180926)	Chromium	45 (≤25)	J (all detects)	А

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ICS %R, MS/MSD %R, and DUP RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Metals - Data Qualification Summary - SDG 18I0403

Sample	Analyte	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Chromium	J (all detects)	А	ICP interference check sample analysis (%R)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Chromium	J (all detects)	Α	Matrix spike/Matrix spike duplicate (%R)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Chromium	J (all detects)	А	Duplicate sample analysis (RPD)

Everett East Waterway Metals - Laboratory Blank Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

LDC #:43524A4a	VALIDATION COMPLETENESS WORKSHEET
	6. 6.

SDG #: 1810403 Laboratory: Analytical Resources, Inc. Stage 2B

Reviewer:__2nd Reviewer:__

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
II.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	SW	
V.	Laboratory Blanks	SW	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	SW	(4,5)
VIII.	Duplicate sample analysis	SW	6
IX.	Serial Dilution	N	
Χ	Laboratory control samples	A	US
XI.	Field Duplicates	Ň	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
XIV	Overall Assessment of Data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
	KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
	KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18
3	KC-S-SMHQ016-180926DUP	18I0403-02DUP	Sediment	09/26/18
		·		
0				
1				
2				

Notes:				

LDC#: 43524A4Q

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-)3	S	Al, Sb As Ba, Be, Cd) Ca Cr Co, Cu, Fe, Pb) Mg, Mn Hg Ni, K, Se Ag Na, Tl, V (Zn) Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
00		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
60 C	\overline{c}	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
4,5,6	S	Al, Sb, As Ba, Be, Cd Ca Co, Co, Cu, Fe Pb Mg, Mn, Hg Ni, K, Se Ag Na, Tl, V, Zn Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
	·	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
	الحجيد	Analysis Method
ICP		All, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET ICP Interference Check Sample

Page: <u>1</u> of <u>1</u>
Reviewer: ATL
2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identifi	ed as "N/A".
---	--------------

Were ICP interference check samples performed as required?

Y (N N/A Were the AB solution percent recoveries (%R) within the control limits of 80-120%?

LEVEL IV ONLY:

Y N(N/A) Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	ICS Identification	Analyte	Finding	Associated Samples	Qualifications
	10/09/18	IFB1 (16:24)	Cr-53	134 (80-120)	1,2	Jdet/A (all detect)
Ш						
					######################################	
Ш						
Ш						
Ш						
Ш						·
Щ						
Ш						
Ш						
Ш						
Ш						
Ш						
Н						
Н						
Н						
Ш						
Ш						
Ш						
Н						
Н						
\Vdash						
\Vdash						
Ш						

Comments:			

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

2nd Reviewer:

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

Sample Concentration units, unless otherwise noted: mg/kg

Soil preparation factor applied: NA Associated Samples: 1,2

		era e e e e e e e e e e e e e e e e e e							
Analyte	Maximum PB ^a (mg/Kg)	PB ^a	ICB/CCB ^a	Action Level					
Cr-53	0.07			0.35				-	

Associated Samples: 1 Sample Concentration units, unless otherwise noted: mg/kg

Analyte	Maximum PB ^a (mg/Kg)	Maximum PB ^a (ug/L)		Action					9 19 19 19
Cr-53			0.138	0.0345					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:	_	1	_of_	1_
Reviewer:	Α	TL		
2nd Review	vе	r:_		

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

	· · · · · · · · · · · · · · · · · · ·	
Diagga coo qualifications below for all a	unotions analysised "N" Not applicable	rupotions are identified as "NI/A"
Please see qualifications below for all o	desilons answered in Inol applicable (duestions are identified as IN/A .

Was a matrix spike analyzed for each matrix in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

of 4 or more, no action was taken. 25Were all duplicate sample relative percent differences (RPD) \leq 20% for samples?

LEVEL_IV ONLY:

Y N (N/A)

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	4/5	S	Cr-53	39.2 (75-125)	62.9 (75-125)		1,2	J/UJ/A (detect)
		:						
		1						
		\						

Comments:_	 		

VALIDATION FINDINGS WORKSHEET <u>Duplicate Analysis</u>

Page:	1	_of_ <u>1</u>	
Reviewer:_	ATI	_	
2nd Review	er:_		

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A Was a duplicate sample analyzed for each matrix in this SDG?

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and < 35% for soil samples? If no, see qualifications below. A control limit of ±R.L. (±2X R.L. for soil) was used for sample values that were <5X the R.L., including the case when only one of the duplicate sample values was

<5X R.L.. If field blanks were used for laboratory duplicates, note in the Overall Assessment.

LEVEL-LY ONLY:

Y(N) N/A

Y N(N/A) Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

Ē		Were recalculated results acceptable? See Level 17 Necalculation Worksheet for recalculations.							
#	Date	Duplicate ID	Matrix	Analyte	RPD (Limits)	Difference (Limits)	Associated Samples	Qualifications	
		6	S	Cr-53	45 (<u><</u> 25%)		1,2	J/UJ/A (all detect)	
L									
\mathbb{L}									
						" " " " " " " " " " " " " " " " " " " "			
				:					
Γ									

Comments:				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 14, 2018

Parameters:

Wet Chemistry

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926DUP1	18I0403-02DUP1	Sediment	09/26/18
KC-S-SMHQ016-180926DUP2	18I0403-02DUP2	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Solids by Standard Method 2540G

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Particle Size by Puget Sound Estuary Protocol (PSEP)

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Standard Reference Materials

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Everett East Waterway Wet Chemistry - Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

Everett East Waterway Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

LDC #: 43524A6	VALIDATION COMPLETENESS WORKSHEET
SDG #: 18I0403	Stage 2B

SDG #: 1810403

	Date:	11	14	118
	Page:_	10	f	
	Reviewer:	1	$\mathbb{T}\mathcal{U}$	
2nd	Reviewer:			

Laboratory: Analytical Resources, Inc.

METHOD: (Analyte) Total Solids (SM 2540G), TOC EPA SW 846 Method 9060A), Particle Size (PSEP)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	A	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	4
VII.	Duplicate sample analysis	A	5.6
VIII.	Laboratory control samples	A	SRM
IX.	Field duplicates	N	
X.	Sample result verification	N	
ΧI	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
4	KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
5	KC-S-SMHQ016-180926DUP	18I0403-02DUP¶	Sediment	09/26/18
6	KC-S-SMHQ016-180926TRP DUP7	1810403-02TRP DUP	Sediment	09/26/18
7				
8				
9				
10				
11				
12				
13				
14				

NOIES	 	 	 	

DC# 43524AG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATC
2nd reviewer:

Il circled methods are applicable to each sample.

<u>Sample ID</u>	Parameter
1,2,3	pH TDS CI F NO, NO, SO, O-PO, Alk CN NH, TKN TOC Cr6+ CIO, (TS) (TOC) (partide Sije)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
- CHICAGO	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
QC_	pH TDS CI F NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ CIO4
5,6	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (TS)
5,6 4,5,6	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN (FOC) Cr6+ CIO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ CIO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
	pH TDS CLF NO3 NO2 SO4 O-PO4 Alk CN NH3 TKN TOC Cr6+ ClO4
e plant autopara positión en constituín en c	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
ngen lagsakkusssaffi firitalen militatist. Pletta ett suusikuteisistä f	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4
egizineci 2013, Merci (1961). A Paris Carlos (1963). A Salas (2016). Peris Salas (1964). Peris Salas (1964). P	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ ClO4
edwald from all the fill follower common the submitted or the common PAP Common the Common to the company of the common t	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4

Comments				
THE PROPERTY OF THE PROPERTY O	Sa. y Claps was approximated and represent the region was required was an approximate the remaining the selection of the classical construction of the construction const	gright (CCCC Will) gans were in an all the contract of the con	numerion, specific contrator de approvente de l'approvente de	Bit (10 des la computation apprés de la militar region de la "The ("A militar") deposition de la Marine de la

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date:

November 14, 2018

Parameters:

Polychlorinated Dioxins/Dibenzofurans

Validation Level:

Stage 2B

Laboratory:

Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926DUP	18I0403-02DUP	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BGJ0793-BLK1	10/02/18	1,2,3,7,8-PeCDF 1,2,3,4,6,7,8-HpCDF OCDD Total PeCDF Total HpCDF	0.0508 ng/Kg 0.0406 ng/Kg 0.188 ng/Kg 0.0508 ng/Kg 0.0406 ng/Kg	All samples in SDG 18l0403

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
KC-S-SMHQ016-180926	1,2,3,7,8-PeCDF	0.136 ng/Kg	0.996U ng/Kg
KC-S-SMHQ116-180926	1,2,3,7,8-PeCDF	0.121 ng/Kg	0.997U ng/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
KC-S-SMHQ016-180926DUP (KC-S-SMHQ016-180926)	1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDF Total TCDD Total PeCDD Total HxCDF Total HxCDF Total HxCDD Total HyCDD Total HpCDD	43.9 (≤35) 41.8 (≤35) 50.3 (≤35) 82.1 (≤35) 48.5 (≤35) 52.9 (≤35) 76.1 (≤35) 75.5 (≤35) 96.8 (≤35) 35.5 (≤35) 74.4 (≤35) 62.6 (≤35) 37.8 (≤35) 75.8 (≤35) 75.9 (≤35) 75.9 (≤35)	J (all detects)	A

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ng/Kg)		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
2,3,7,8-TCDF	0.230	0.261	13 (≤50)
2,3,7,8-TCDD	0.188	0.997U	Not calculable
1,2,3,7,8-PeCDF	0.136	0.121	12 (≤50)
2,3,4,7,8-PeCDF	0.173	0.150	14 (≤50)
1,2,3,7,8-PeCDD	0.494	0.587	17 (≤50)
1,2,3,4,7,8-HxCDF	0.505	0.396	24 (≤50)
1,2,3,6,7,8-HxCDF	0.411	0.397	3 (≤50)
2,3,4,6,7,8-HxCDF	0.674	0.567	17 (≤50)
1,2,3,7,8,9-HxCDF	0.307	0.126	84 (≤50)
1,2,3,4,7,8-HxCDD	0.898	0.725	21 (≤50)
1,2,3,6,7,8-HxCDD	2.55	1.51	51 (≤50)
1,2,3,7,8,9-HxCDD	1.73	1.50	14 (≤50)
1,2,3,4,6,7,8-HpCDF	13.1	8.63	41 (≤50)
1,2,3,4,7,8,9-HpCDF	0.750	0.506	39 (≤50)
1,2,3,4,6,7,8-HpCDD	74.3	39.5	61 (≤50)
OCDF	58.9	30.6	63 (≤50)
OCDD	790	302	89 (≤50)

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Total TCDF	2.77	2.96	7 (≤50)
Total TCDD	5.82	2.85	69 (≤50)
Total PeCDF	3.96	3.81	4 (≤50)
Total PeCDD	5.71	3.60	45 (≤50)
Total HxCDF	13.6	10.0	31 (≤50)
Total HxCDD	25.6	13.0	65 (≤50)
Total HpCDF	45.2	24.7	59 (≤50)
Total HpCDD	120	62.3	63 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 18l0403	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to DUP RPD and results reported as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 18I0403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ016-180926	1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDF 0CDD Total TCDF Total TCDD Total HxCDD Total HxCDD Total HxCDF Total HxCDD Total HyCDD	J (all detects)	Α	Duplicate sample analysis (RPD)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926 KC-S-SMHQ116-180926 KC-S-SMHP02-180926	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Compound quantitation (EMPC)

Everett East Waterway Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 18I0403

Sample	Compound	Modified Final Concentration	A or P
KC-S-SMHQ016-180926	1,2,3,7,8-PeCDF	0.996U ng/Kg	Α
KC-S-SMHQ116-180926	1,2,3,7,8-PeCDF	0.997U ng/Kg	A

SDG Labo METI The s	#:43524A21VALIDATIO #:18I0403 ratory:_Analytical Resources, Inc. HOD: HRGC/HRMS Polychlorinated Dioxi samples listed below were reviewed for ea	S ns/Dibenzo	tage 2B	ŕ	P Revi 2nd Revi	
	Validation Area			Commer	nts	
1.	Sample receipt/Technical holding times	A				
II.	HRGC/HRMS Instrument performance check	A				
111.	Initial calibration/ICV	AA	\$50<°	20/35/0.	ICV < RO	= limits
IV.	Continuing calibration	\triangle	COVS	ac limits	_	
V.	Laboratory Blanks	au				
VI.	Field blanks	N				
VII.	Matrix spike/Matrix spike duplicates /DUP	NEW				
VIII.		A	105			
IX.	Field duplicates	w	D=at	.3		
X.	Labeled Compounds	4				
XI.	Compound quantitation RL/LOQ/LODs	N	ZMPC	- Jet	/A	
XII.	Target compound identification	N		/		
XIII.		N.				
XIV.	Overall assessment of data	1				
Note:	N = Not provided/applicable R = Rin	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source bl OTHER:	lank
	Client ID			Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926			1810403-01	Sediment	09/26/18
2 ,	KC-S-SMHQ016-180926	·		1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926			1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926			1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926DUP			1810403-02DUP	Sediment	09/26/18
6						
11 1				Ī	i .	1

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:			

VALIDATION FINDINGS WOR/UHEET Blanks

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction date: 10/2/18

Blank analysis date: 10/5/18 Conc. units: ng/kg Associated samples: All qual U

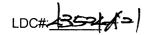
Conc. units. hg/k	3	Associated samples. All qual o									
Compound	Blank ID		Sample Identification								
	BGI0793-BLK1	5X	2	3	,						
	0.0508	0.254	0.136/0.996	0.121/0.997							
0	0.0406	0.203			-			 			
G	0.188	0.94									
w	0.0508	0.254									
Y	0.0406	0.203									

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2nd Reviewer

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA-8W 846 Method 8290A) /6/35)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


Y N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Ovalifications
-	Date	6	2	/// (Lillits)	/// (Lillius)	43.9 (< 35)	Associated Samples	Qualifications
			K	()	()	418 (1)		
			Й	()	()	41.8 ()		
			N	()	()	12-2 ()		
			10	()	()	48.5 ()		
			0	()	()	52.9()		
			F	()	()	76.1 ()		
			R	()	()	75.5		
			4	()	()	96.8 ()		
			<u> </u>	()	()	35.5 ()		
			RV	()	()	74.4 () 62.6 ()		
				()	()	37.8		
			×	()	()	75.8 ()		
			+	()	()	69.2		
			 /u 	()	()	75.9		₩
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

Page: __(of __ Reviewer: ____ 2nd Reviewer: ____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B

	Concentrat	tion (ng/kg)	(≤50)
Compound	2	3	RPD
н	0.230*	0.261	13
А	0.188*	0.997U	NC
I	0.136	0.121	12
J	0.173	0.150	14
В	0.494	0.587*	17
Κ	0.505*	0.396	24
L	0.411	0.397*	3
М	0.674	0.567	17
N	0.307*	0.126*	84
С	0.898	0.725	21
D	2.55	1.51	51
E	1.73	1.50	14
0	13.1	8.63	41
Р	0.750	0.506*	39
F	74.3	39.5	61
Q	58.9	30.6	63
G	790	302	89
V	2.77	2.96	7
R	5.82	2.85	69
W	3.96	3.81	4
S	5.71	3.60	45
x	13.6	10.0	31
Т	25.6	13.0	65
Υ	45.2	24.7	59
U	120	62.3	63

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Everett East Waterway

LDC Report Date: November 14, 2018

Parameters: Polychlorinated Biphenyls as Congeners

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc./SGS North America, Inc.

Sample Delivery Group (SDG): 1810403/B2663

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) as Congeners by Environmental Protection Agency (EPA) Method 1668A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all congeners. The chromatographic resolution between the congeners PCB-23 and PCB-34 and congeners PCB-182 and PCB-187 was resolved with a valley of less than or equal to 40%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% for unlabeled compounds and less than or equal to 50.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB B2663_16243	10/18/18	Monochlorobiphenyl Dichlorobiphenyl Tetrachlorobiphenyl PCB-3 PCB-11 PCB-52	1.25 pg/g 4.24 pg/g 0.888 pg/g 1.25 pg/g 4.24 pg/g 0.888 pg/g	All samples in SDG 18I0403/B2663

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
KC-S-SMHQ01-180926	Monochlorobiphenyl	4.28 pg/g	4.28U pg/g
	PCB-3	2.44 pg/g	2.44U pg/g
KC-S-SMHQ116-180926	Monochlorobiphenyl	1.41 pg/g	1.41U pg/g
	PCB-3	1.41 pg/g	1.41U pg/g
KC-S-SMHP02-180926	Monochlorobiphenyl	3.01 pg/g	3.01U pg/g
	PCB-3	1.34 pg/g	1.34U pg/g

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	PCB-126	153 (50-150)	-	NA	_

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Monochlorobiphenyl	0.388U	1.41	Not calculable
Dichlorobiphenyl	32.1	33.2	3 (≤50)
Trichlorobiphenyl	9.28	9.46	2 (≤50)
Tetrachlorobiphenyl	71.5	81.7	13 (≤50)
Pentachlorobiphenyl	348	347	0 (≤50)
Hexachlorobiphenyl	381	315	19 (≤50)
Heptachlorobiphenyl	173	192	10 (≤50)
Octachlorobiphenyl	42.8	36	17 (≤50)
Nonachlorobiphenyl	14.2	4.81	99 (≤50)
Decachlorobiphenyl	7.22	6.64	8 (≤50)
PCB-2	0.363U	0.664	Not calculable
PCB-3	0.385U	1.41	Not calculable
PCB-4	2.33	2.21	5 (≤50)
PCB-8	0.656	0.978	39 (≤50)
PCB-11	26.9	27.6	3 (≤50)
PCB-15	2.26	2.43	7 (≤50)
PCB-19	1.05	1.81	53 (≤50)
PCB-30/18	2.79	2.88	3 (≤50)
PCB-17	1.61	1U	Not calculable
PCB-32	1.94	2.5	25 (≤50)
PCB-31	2.54	2.8	10 (≤50)
PCB-28/20	4.18	4.47	7 (≤50)

	Concentration (pg/g)		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
PCB-21/33	1.32	1.43U	Not calculable
PCB-22	0.995	1.36U	Not calculable
PCB-37	2.02	2.36	16 (≤50)
PCB-50/53	2.97	3.08	4 (≤50)
PCB-45	1.92	1.09	55 (≤50)
PCB-51	0.798	0.813	2 (≤50)
PCB-52	18.8	19.6	4 (≤50)
PCB-69/49	5.55	5.74	3 (≤50)
PCB-44/47/65	11.3	10.9	4 (≤50)
PCB-59/62/75	0.823	1.48	57 (≤50)
PCB-42	2.13	2.67	23 (≤50)
PCB-71/40	3.92	4.55	15 (≤50)
PCB-64	4.93	6.19	23 (≤50)
PCB-61/70/74/76	17.8	16.3	9 (≤50)
PCB-66	8.78	7.3	18 (≤50)
PCB-56	4.73	4.22	11 (≤50)
PCB-60	2.24	2.39	6 (≤50)
PCB-77	3.01	2.94	2 (≤50)
PCB-95	54.5	50.7	7 (≤50)
PCB-102	1.23	0.956U	Not calculable
PCB-91	8.36	7.8	7 (≤50)
PCB-84	18.1	20.6	13 (≤50)

	Concentr				
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)		
PCB-92	10.4	10.3	1 (≤50)		
PCB-113/90/101	49.1	46.1	6 (≤50)		
PCB-83	2.63	2.04	25 (≤50)		
PCB-99	19.4	19.2	1 (≤50)		
PCB-108/119/86/97/125/87	33.1	34	3 (≤50)		
PCB-117	1.21	1.02U	Not calculable		
PCB-116/85	9.11	8.72	4 (≤50)		
PCB-110	75.7	79.8	5 (≤50)		
PCB-82	6.91	8.5	21 (≤50)		
PCB-107/124	2.38	2.54	7 (≤50)		
PCB-109	4.05	3.76	7 (≤50)		
PCB-123	1.41	0.897U	Not calculable		
PCB-118	41.8	42.3	1 (≤50)		
PCB-105	21.8	21.6	1 (≤50)		
PCB-136	11.7	11.3	3 (≤50)		
PCB-151/135	24.5	22.5	9 (≤50)		
PCB-154	0.639	0.667U	Not calculable		
PCB-144	4.45	4.4	1 (≤50)		
PCB-147/149	63.7	65.6	3 (≤50)		
PCB-134	7.29	5.26	32 (≤50)		
PCB-139/140	1.73	0.699U	Not calculable		
PCB-131	1.6	0.828U	Not calculable		

	Concentr		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
PCB-132	32.7	32.4	1 (≤50)
PCB-133	1.02	0.718U	Not calculable
PCB-146	10.5	11.6	10 (≤50)
PCB-153/168	61.7	58.9	5 (≤50)
PCB-141	15.7	12.9	20 (≤50)
PCB-130	7.67	8.57	11 (≤50)
PCB-137	4.98	5.28	6 (≤50)
PCB-164	6.81	7.7	12 (≤50)
PCB-163/138/129	93.6	98.4	5 (≤50)
PCB-158	8.75	8.46	3 (≤50)
PCB-128/166	19.2	17.1	12 (≤50)
PCB-167	4.31	4.55	5 (≤50)
PCB-156/157	10.6	10.6	0 (≤50)
PCB-179	9.59	8.93	7 (≤50)
PCB-176	2.18	2.31	6 (≤50)
PCB-178	4.77	5.35	11 (≤50)
PCB-187	30.3	34.6	13 (≤50)
PCB-183	12.8	15.7	20 (≤50)
PCB-185	2.71	1.13U	Not calculable
PCB-174	22.6	26	14 (≤50)
PCB-177	14.2	13.8	3 (≤50)
PCB-171/173	7.2	6.76	6 (≤50)

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
PCB-172	3.66	5.78	45 (≤50)
PCB-180/193	47.2	52.4	10 (≤50)
PCB-191	0.874	0.929U	Not calculable
PCB-170	25.5	26.7	5 (≤50)
PCB-190	3.87	3.53	9 (≤50)
PCB-202	4.24	4.87	14 (≤50)
PCB-201	1.84	2.4	26 (≤50)
PCB-200	2.04	2.82	32 (≤50)
PCB-198/199	15.2	18.8	21 (≤50)
PCB-196	5.8	5.45	6 (≤50)
PCB-203	7.78	9.06	15 (≤50)
PCB-195	3.34	4.1	20 (≤50)
PCB-194	13.5	14.9	10 (≤50)
PCB-208	3.22	4.81	40 (≤50)
PCB-206	11	11.5	4 (≤50)
PCB-209	7.22	6.64	8 (≤50)

X. Internal Standards

All internal standard recoveries (%R) were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 18I0403/B2663	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results reported as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 18I0403/B2663

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926 KC-S-SMHQ116-180926 KC-S-SMHP02-180926	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	А	Compound quantitation (EMPC)

Everett East Waterway Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG 18I0403/B2663

Sample	Compound	Modified Final Concentration	A or P
KC-S-SMHQ01-180926	Monochlorobiphenyl PCB-3	4.28U pg/g 2.44U pg/g	А
KC-S-SMHQ116-180926	Monochlorobiphenyl PCB-3	1.41U pg/g 1.41U pg/g	А
KC-S-SMHP02-180926	Monochlorobiphenyl PCB-3	3.01U pg/g 1.34U pg/g	Α

LDC	#:	43524A31	

VALIDATION COMPLETENESS WORKSHEET

SDG #: 18I0403/B2663

Stage 2B

Laboratory: Analytical Resources, Inc./SGS North America, Inc.

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

Page: lof Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	A	
II.	HRGC/HRMS Instrument performance check	A	
III.	Initial calibration/In	A	ts8 < 20/3570
IV.	Continuing calibration	4	(20/3570 cc√ ≤ 30/58/0.
V.	Laboratory Blanks	W	<u> </u>
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	W	
VIII.	Laboratory control samples	4	1CS
IX.	Field duplicates	m/	7=2+3
X.	Labeled Compounds	A	
XI.	Compound quantitation RL/LOQ/LODs	N	EUPCI - Jalots / B
XII.	Target compound identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	A	

Note:

A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

FB = Field blank

R = Rinsate

TB = Trip blank EB = Equipment blank

D = Duplicate

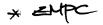
SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
6	KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18
7				
8				
9				

<u>Not</u>	es:	 		

VALIDATION FINDINGS WORKSHEET Blanks


Page: 1 of 1
Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

Blank extraction date: 10/18/18 Blank analysis date: 10/22/18

Conc. units: pg/g Associated samples: All Qual U

Compound	Blank ID					Sa	ımple Identifi	cation		
	MB B2663_16243	5X	1	3	4					
Mono-CB	1.25	6.25	4.28	1.41	3.01*					
Di-CB	4.24	21.2								
Tetra-CB	0.888*	4.44								
PCB-3	1.25	6.25	2.44	1.41	1.34*					
PCB-11	4.24	21.2					,			
PCB-52	0.888*	4.44						<u>.</u>		

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

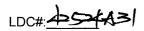
Page:_	of
Reviewer:	9
2nd Reviewer:	

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Was a MS/MSD analyzed every 20 samples of each matrix?


Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	5/6	708-126	153 (50-150)	()	()	= (NB)	Vots A
			()	()	()		
			()	()	()		,
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	(
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
<u> </u>			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
-			()	()	()		
-			()	()	()		
			()	()	()		

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentra	(≤50)		
Compound	2	3	RPD	
Mono-CB	0.388U	1.41	NC	
Di-CB	32.1	33.2	3	
Tri-CB	9.28	9.46	2	
Tetra-CB	71.5	81.7	13	
Penta-CB	348	347	0	
Hexa-CB	381	315	19	
Hepta-CB	173	192	10	
Octa-CB	42.8	36	17	
Nona-CB	14.2	4.81	99	
Deca-CB	7.22	6.64	8	
PCB-2	0.363U	0.664*	NC	
PCB-3	0.385U	1.41	NC	
PCB-4	2.33	2.21	5	
PCB-8	0.656	0.978	39	
PCB-11	26.9	27.6	3	
PCB-15	2.26	2.43	7	
PCB-19	1.05*	1.81	53	
PCB-30/18	2.79	2.88*	3	
PCB-17	1.61*	1U	NC	
PCB-32	1.94	2.5	25	
PCB-31	2.54	2.8	10	
PCB-28/20	4.18*	4.47*	7	
PCB-21/33	1.32*	1.43U	NC	
PCB-22	0.995*	1.36U	NC	
PCB-37	2.02	2.36	16	
PCB-50/53	2.97	3.08	4	
PCB-45	1.92*	1.09*	55	
PCB-51	0.798*	0.813*	2	
PCB-52	18.8	19.6	4	

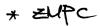
Page: of Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentra	(≤50)	
Compound	2	3	RPD
PCB-69/49	5.55*	5.74*	3
PCB-44/47/65	11.3	10.9	4
PCB-59/62/75	0.823*	1.48	57
PCB-42	2.13*	2.67	23
PCB-71/40	3.92	4.55	15
PCB-64	4.93	6.19	23
PCB-61/70/74/76	17.8	16.3	9
PCB-66	8.78	7.3	18
PCB-56	4.73*	4.22	11
PCB-60	2.24*	2.39	6
PCB-77	3.01	2.94	2
PCB-95	54.5	50.7	7
PCB-102	1.23*	0.956U	NC
PCB-91	8.36	7.8	7
PCB-84	18.1	20.6	13
PCB-92	10.4	10.3	1
PCB-113/90/101	49.1	46.1	6
PCB-83	2.63*	2.04*	25
PCB-99	19.4	19.2	1
PCB-108/119/86/97/125/87	33.1	34	3
PCB-117	1.21	1.02U	NC
PCB-116/85	9.11*	8.72*	4
PCB-110	75.7	79.8	5
PCB-82	6.91	8.5	21
PCB-107/124	2.38	2.54	7
PCB-109	4.05	3.76	7
PCB-123	1.41	0.897U	NC
PCB-118	41.8	42.3	1
PCB-105	21.8	21.6	1

Page: 3 of 4
Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)


	Concentra	(≤50)	
Compound	2	3	RPD
PCB-136	11.7	11.3	3
PCB-151/135	24.5	22.5*	9
PCB-154	0.639*	0.667U	NC
PCB-144	4.45	4.4*	1
PCB-147/149	63.7	65.6	3
PCB-134	7.29	5.26*	32
PCB-139/140	1.73*	0.699U	NC
PCB-131	1.6	0.828U	NC
PCB-132	32.7	32.4	1
PCB-133	1.02*	0.718U	NC
PCB-146	10.5	11.6	10
PCB-153/168	61.7	58.9	5
PCB-141	15.7	12.9*	20
PCB-130	7.67	8.57	11
PCB-137	4.98	5.28	6
PCB-164	6.81	7.7	12
PCB-163/138/129	93.6	98.4	5
PCB-158	8.75*	8.46*	3
PCB-128/166	19.2	17.1*	12
PCB-167	4.31	4.55	5
PCB-156/157	10.6	10.6	0
PCB-179	9.59	8.93	7
PCB-176	2.18*	2.31	6
PCB-178	4.77*	5.35	11
PCB-187	30.3	34.6	13
PCB-183	12.8	15.7	20
PCB-185	2.71*	1.13U	NC
PCB-174	22.6	26	14
PCB-177	14.2	13.8	3

Page: of Pag

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentra	(≤50)	
Compound	2	3	RPD
PCB-171/173	7.2	6.76*	6
PCB-172	3.66	5.78	45
PCB-180/193	47.2	52.4	10
PCB-191	0.874*	0.929U	NC
PCB-170	25.5	26.7	5
PCB-190	3.87*	3.53*	9
PCB-202	4.24	4.87*	14
PCB-201	1.84*	2.4	26
PCB-200	2.04	2.82*	32
PCB-198/199	15.2	18.8	21
PCB-196	5.8*	5.45*	6
PCB-203	7.78	9.06*	15
PCB-195	3.34*	4.1*	20
PCB-194	13.5	14.9	10
PCB-208	3.22	4.81	40
PCB-206	11	11.5*	4
PCB-209	7.22	6.64	8

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A31.wpd

LDC#: 43524

EDD POPULATION COMPLETENESS WORKSHEET

Anchor

The LDC job number listed above was entered by _______.

Entered from Body or Summary

	EDD Process	Y/N	Initial	Comments/Action
Ĭ.	EDD Completeness	4	TM	
Ia.	- All methods present?	4		
Ib.	- All samples present/match report?	Y		
Ic.	- All reported analytes present?	4		
Id.	(10%) or 100% verification of EDD?	4		
II.	EDD Preparation/Entry	4	FM	
IIa.	- QC Level applied? (EPAStage2B or EPAStage4)	Y	1	
IIb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	9		
			100	
III.	Reasonableness Checks	4	FM	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	4		
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	<u> </u>		
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	4		
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	4		
IIIe.	- Is the detect flag set to "N" for all "U" qualified blank results?	4	A CONTRACTOR OF THE CONTRACTOR	
IIIf.	- Were there multiple results due to dilutions/reanalysis? If so, were results qualified appropriately?	y/ng	BEGENERALIS & GLOS OS COMPANIONS	
IIIg.	-Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	V	MONTH TO BE LEVEL OF THE PARTY.	
IIIh.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	NA	Shahopinin auu onleinkeo	
IIIi.	-Are there any discrepancies between the data packet and the EDD?	N		

Notes:	*see discrepancy sheet			