

Spring 2018 Groundwater and Surface Water Monitoring

PACCAR Renton Site Renton, Washington

Prepared for **PACCAR**

February 26, 2019 1639-74

Spring 2018 Groundwater and Surface Water Monitoring

PACCAR Renton Site

Renton, Washington

Prepared for

PACCAR

February 26, 2019 1639-74

Prepared by

Hart Crowser, Inc.

Roy E. Jensen, LG, LHG

Senior Associate Hydrogeologist

Roy.jensen@hartcrower.com

Michael W. Ehlebracht, LG, LHG

Mile Ellehacht

Principal

Geochemist

Mike.ehlebracht@hartcrowser.com

Tel 206.324.9530

Contents

SECTION 1	
GROUNDWATER MONITORING	1-1
Introduction	1-1
Groundwater Monitoring	1-1
Future Monitoring	1-2
Electronic Groundwater Quality Data	1-2
References	1-3
TABLES	
1-1 Groundwater Monitoring Program in April 2018	
1-2 Groundwater Elevation Data, April 2018	
1-3 Summary of Groundwater Analytical Data	
1-4 Groundwater Monitoring Program for Spring 2018 and 2019	
FIGURES	
1-1 Groundwater Elevation Contour Map, Shallow Wells – April 2018	
1-2 Groundwater Elevation Contour Map, Lower Sand Unit – April 2018	
SECTION 2 SURFACE WATER MONITORING	2-1
SORFACE WATER MONITORING	2-1
TABLE	
2-1 Analytical Results for Surface Water Samples, April 2018	
FIGURE	
2-1 Surface Water Sampling Location Plan	
SECTION 3	
PACCAR STRUCTURAL FILL COVER MONITORING	
FIELD INSPECTION AND OBSERVATION FORM	3-1
Field Inspection Observations	3-1
Recommended Actions and Follow-Up	3-1
Areas Needing Repair	3-1
Documentation of Repair Completion	3-1

ii | Contents

APPENDIX A

Data Validation Summary for Groundwater Samples

APPENDIX B

Data Validation Summary for Surface Water Samples

APPENDIX C

Laboratory Report

APPENDIX D

Groundwater Quality Summary Charts

Spring 2018 Groundwater and Surface Water Monitoring

PACCAR Renton Site

Renton, Washington

This report provides the Spring 2018 groundwater and surface water monitoring results for the PACCAR Renton National Priorities List (NPL) Site. This monitoring report contains the elements described in the Confirmational Monitoring and Inspection Plan (CMIP; DOF 1997) and the Periodic Review (Ecology 2014) and presents the results of the groundwater, surface water, and structural fill cover monitoring conducted at the site in April 2018.

This report is divided into three sections:

- **Section 1.** Groundwater Monitoring
- Section 2. Surface Water Monitoring
- **Section 3.** PACCAR Structural Fill Cover Monitoring Field Inspection and Observation Form

The information in these sections is supplemented by tables and figures presented at the end of the respective sections. In addition, Appendices A and B presents the chemical data quality review for groundwater and surface water, respectively. Appendix C provides the laboratory report, and Appendix D presents groundwater quality summary charts.

SECTION 1 Groundwater Monitoring

SECTION 1 GROUNDWATER MONITORING

Introduction

This section presents the results of the groundwater monitoring event conducted in April 2018. Specifically, it includes a tabulation of water level and groundwater quality data, groundwater flow maps, and an assessment of results relative to cleanup levels (CULs) for developing sampling and analysis recommendations consistent with the CMIP and Periodic Review (Ecology 2014).

Groundwater Monitoring

Groundwater monitoring was completed on April 17, 2018, in accordance with the planned elements described by the Periodic Review (Ecology 2014). The groundwater elevation and chemical test results obtained from this event are compiled in this section.

The CMIP provides compound-specific CULs and hot spot action levels (HSALs) for comparison with the site data. The CULs represent the groundwater remediation goals at the site, while HSALs for groundwater are based on drinking water standards. Planned actions described in this report are based on an interpretation of the updated data relative to the decision-making processes outlined in the CMIP.

Data presented in this report are organized as follows:

- Monitoring Summary. An overview of the data collected from each monitoring well is given in Table 1-1. This table lists the wells sampled and identifies the chemicals analyzed in each well.
- **Groundwater Elevation.** Groundwater elevation measurements are compiled in Table 1-2 and contoured on Figures 1-1 and 1-2 for the Upper Sand and Lower Sand units, respectively.
- Chemical Result Summary. A summary of groundwater analytical results is provided in Table 1-3. All groundwater samples were analyzed for arsenic and/or vinyl chloride (Table 1-1). Field parameter measurements including turbidity, temperature, pH, dissolved oxygen, redox potential, and conductivity are also included in Table 1-3.
- Purge Water Sampling. Groundwater collected during well purging (before sampling) was analyzed for arsenic, chromium, lead, diesel- and heavy-oil-range hydrocarbons, and volatile organic compounds (VOCs). These data are necessary for future disposal documentation and are presented in Table A-2.
- Chemical Data Compilation. Appendix A includes a data validation summary for the groundwater quality results and a compilation of the April 2018 groundwater data (Table A-1) and purge water data (Table A-2). The laboratory report is provided in Appendix C.

■ **Groundwater Quality Summary Charts.** Appendix D includes groundwater quality summary charts for each well sampled as part of the April 2018 sampling program. The charts summarize the historical sampling results for these wells.

Future Monitoring

The Periodic Review establishes the groundwater sampling program (Table 1-4) for the site, which consists of:

- Sample groundwater in Spring 2019 for arsenic in wells LW-6D, LW-9D, CW-1S, CW-1D, LW-9S, and MW-3I. Groundwater elevations and field parameters will also be measured in these wells.
- Sample groundwater in Spring 2019 for vinyl chloride in wells CW-1S and LW-9D.
- Sample groundwater in Spring 2019 in wells SC-1S and SC-2S for arsenic, lead, and chromium. Groundwater elevations and field parameters will also be measured.
- Groundwater elevations will be measured in the PACCAR monitoring well network in Spring 2019.

Electronic Groundwater Quality Data

An electronic copy of the complete groundwater quality database is submitted on CD-ROM with this report for reference and further evaluation, if warranted. The CD contains a Microsoft Access data file in addition to a program that can be used as a viewer to create monitoring summary reports for any well or analyte. Instructions for viewing the data and generating the monitoring summary reports follow.

Instructions for Printing "Monitoring Summary Report" from PACCAR Database.

- 1. Open ACCESS 2000
- 2. Select File

Open database

CD Drive:\PACCAR Apr-18.mdb

- 3. The message, "The database 'PACCAR Apr-18' is read-only" will appear. Click the OK button.
- 4. The Reports Menu will appear.
- 5. Double click on "Monitoring Summary"
- 6. The Enter Parameter Value box will appear with the prompt, "Enter Well"

Type in the well name (such as LW-09D).

7. Another Parameter Value box will appear with the prompt, "Enter CAS or Analyte Code"

Type in analyte name (such as Vinyl Chloride).

- 8. The report will be displayed on screen.
- 9. To print, select the print icon.

If an error message appears, you may have entered a well location or analyte name that doesn't exist in the database. Click OK, select "Well Water Level Analyte Summary" and re-enter the well name and analyte name as indicated above.

References

Dalton, Olmstead & Fluglevand. 1997. Confirmational Monitoring and Inspections Plans, Former PACCAR Defense Systems Site, Renton, Washington. November 1997.

Washington State Department of Ecology. 2014. Periodic Review. PACCAR, Facility Site ID#: 2065, ISIS Cleanup Site ID# 788. July 2014.

Table 1-1 – Groundwater Monitoring Program in April 2018

	Well	VOCa	Arsenic
Confirmat	ion Lower San	d/Delta Deposi	its
	CW-1D		Х
	LW-6D		Х
	LW-9D	Х	Х
Confirmat	on Upper San	d/Aquitard We	ls
	CW-1S	Χ	X
	LW-9S		X
	MW-3I		Х
Quality Co	ntrol Samples		
		X	X
Purge Wat	er Samples		
		X	X

^a VOC is vinyl chloride.

Water elevations measured at approximately 33 wells.

All wells with samples submitted for laboratory analysis have the following parameters measured: temperature, pH, conductivity, turbidity, dissolved oxygen, and redox potential.

Purge water samples analyzed for VOCs, arsenic, lead, total chromium, and TPH.

Table 1-2 – Groundwater Elevation Data, April 2018

	Depth to	Reference	Water
	Water	Elevation	Elevation
Well	in Feet	in Feet	in Feet
CW-1D	3.07	26.18	23.11
CW-1S	3.01	26.14	23.13
CW-3D	7.54	31.39	23.85
CW-3S	5.55	32.04	26.49
DM-2D	5.70	28.40	22.70
DM-5D	8.41	40.13	31.72
LW-14S	19.68	45.37	25.69
LW-1D	2.74	25.98	23.24
LW-1S	1.72	25.84	24.12
LW-2D	4.43	28.78	24.35
LW-2S	4.45	28.98	24.53
LW-4S	6.46	39.87	33.41
LW-6D	6.52	30.58	24.06
LW-6S	5.70	29.70	24.00
LW-7S	5.45	33.74	28.29
LW-9D	8.61	31.95	23.34
LW-9S	8.09	32.12	24.03
MW-1S(N)	3.81	26.56	22.75
MW-2D(R)	5.94	29.43	23.49
MW-2S(W)		28.85	Dry
MW-3I(N)	7.85	34.39	26.54
MW-3S(S)		34.39	Dry
OSP-10D	11.72	40.74	29.02
OSP-1D	11.31	41.51	30.20
OSP-1S	6.23	41.44	35.21
OW-4D	19.95	43.48	23.53
OW-4S	18.31	43.49	25.18
R-10D	9.83	35.15	25.32
R-10S	9.05	36.24	27.19
SC-1S	4.78	37.78	33.00
SC-2S	13.35	40.52	27.17
U-1D	7.99	30.29	22.30
U-1S	5.35	29.86	24.51

NL = Not located. NM = Not measured.

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 1 of 7

CUL: 55 HSAL: 50 Confirmation Lower Sand/De CW-01D 3/24/98 4.1 10/20/98 2 3/4/99 3.2 10/19/99 6.3 5/18/00 6.3 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2	4.1 - 2 U - 3.2 + -	μg/L in μg/L 5 80 50 100 sits 1 U 10 U	5 5 5 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.2 U	Vinyl Chloride in μg/L 0.4 2 0.13 U 0.12 J 0.039 U 0.2	Total cPAHs ^a in µg/L 0.1 NE	PCP * in µg/L	Diesel in mg/L 1 NE 0.24 U 0.24 U	Heavy Oil in mg/L 1 NE 0.71 U	Ferrous Iron ^b in mg/L NE NE	Temp. in ℃ NE NE	NE NE	Diss. Oxygen in mg/L NE NE	Cond. in µmhos /cm NE NE	Redox Potential in Eh NE NE	Turbidity in NTU NE NE	TSS in mg/L NE NE
CUL: 55 HSAL: 50 Confirmation Lower Sand/De CW-01D 3/24/98 4.1 10/20/98 2 3/4/99 3.2 10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	5 5 5 50 50 Delta Deposits 4.1 - 2 U - 3.2 + - 6.3 1 U 6 - 5.8 -	5 80 50 100 sits 1 U 10 U 	5 5 0.5 U 0.5 U 0.5 U 0.5 U	in μg/L 0.4 2 0.13 U 0.12 J 0.039 U	in μg/L 0.1		1 NE 0.24 U	1 NE	in mg/L NE	NE	NE	in mg/L	/cm	in Eh NE	NE	mg/L NE
HSAL: 50 Confirmation Lower Sand/De CW-01D 3/24/98 4.1 10/20/98 2 3/4/99 3.2 10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	50 50 Delta Deposits 4.1 - 2 U - 3.2 + - 6.3 1 U 6 - 5.8 -	50 100 sits 1 U 10 U	0.5 U 0.5 U 0.5 U 0.5 U	0.4 2 0.13 U 0.12 J 0.039 U	0.1	in μg/L - -	0.24 U		NE		NE	NE	NE	NE		NE
HSAL: 50 Confirmation Lower Sand/De CW-01D 3/24/98 4.1 10/20/98 2 3/4/99 3.2 10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	50 50 Delta Deposits 4.1 - 2 U - 3.2 + - 6.3 1 U 6 - 5.8 -	50 100 sits 1 U 10 U	0.5 U 0.5 U 0.5 U 0.5 U	0.13 U 0.12 J 0.039 U		-	0.24 U									
Confirmation Lower Sand/Dec CW-01D 3/24/98 4.1 10/20/98 2 3/4/99 3.2 10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	Delta Deposits 4.1 - 2 U - 3.2 + - 6.3 1 U 6 - 5.8 -	1 U 10 U	0.5 U 0.5 U 0.5 U 0.5 U	0.13 U 0.12 J 0.039 U	NE - - -	-	0.24 U		NE -	NE -	NE	NE -	NE -	NE	NE	NE
CW-01D 3/24/98 4.1 10/20/98 2 3/4/99 3.2 10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	4.1 - 2 U - 3.2 + - 6.3 1 U 6 - 5.8		0.5 U 0.5 U 0.5 U	0.12 J 0.039 U	- - -	-		0.71 U	-	-	-	_	_	_		
10/20/98 3/4/99 3.2 10/19/99 5/18/00 3/19/01 3/25/02 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	2 U - 3.2 + - 6.3 1 U 6 - 5.8 -		0.5 U 0.5 U 0.5 U	0.12 J 0.039 U		-		0.71 U	-	-	-	-	_	_		
3/4/99 3.2 10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	3.2 + - 6.3 1 U 6 - 5.8 -		0.5 U 0.5 U	0.039 U	-	-	0.24.11							_	-	-
10/19/99 6.3 5/18/00 6 3/19/01 5.8 3/25/02 7.9 10/16/02 6.7 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	6.3 1 U 6 - 5.8 -		0.5 U		-		0.24 0	0.48 U	-	-	-	-	-	-	-	-
5/18/00 66 3/19/01 5.8 3/25/02 7.9 10/16/02 6.7 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	6 - 5.8 -			0.2		-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
3/19/01 5.8 3/25/02 7.9 10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	5.8 -		0.2 U		-	-	0.24 U	0.71 U	-	14	6.8	-	580	-	-	-
3/25/02 7.5 10/16/02				0.4	-	-	0.25 U	0.5 U	-	14	6.8	-	560	-	-	-
10/16/02 4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	7.9 -		0.2 U	0.2	-	-	0.25 U	0.5 U	-	-	-	-	-	-	-	-
4/2/03 6.7 3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6		- -	0.2 U	0.6	-	-	0.25 U	0.5 U	-	12	7.1	-	780	-	0.08	-
3/31/04 8.2 4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6			-	-	-	-	-	-	-	15.8	6.7	-	760	-	0.18	-
4/13/05 6.1 3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	6.7 1 U	1 U 1 U	0.2 U	0.2	0.15 U	-	0.25 U	0.5 U	4	13.2	6.8	1.18	442	-	28	-
3/28/06 5.1 3/27/07 6.2 4/1/10 5.6	8.2 -		0.2 U	0.3	-	-	-	-	55.5	13.4	6.2	0.01	496	-34	12	74.5
3/27/07 6.2 4/1/10 5.6	6.1 -		-	-	-	-	-	-	46.4	14.4	6.5	0.1	283	18	0	31.5
4/1/10 5.6	5.1 -		-	-	-	-	-	-	52.5	13.9	6.2	0.26	448	25	0	51.9
	6.2 -		-	-	-	-	-	-	45.2	13.3	5.2	0.11	417	62	0	31.6
3/29/11 5.7	5.6 -		-	-	-	-	-	-	52	13.1	7.1	0.26	-	-100	293	54.4
	5.7 -		-	-	-	-	-	-	43.8	12.8	6.4	< 0.01	270	-	10	48.2
3/22/12 5.5	5.5 -		-	-	-	-	-	-	46.4	12.9	6.1	< 0.01	727	-165	16.3	40
11/15/12			_	0.14	-	-	-	-	48.4	13.9	6.3	1.15	332	-132	21	85.4
3/12/13 5.4	5.4 0.3).3 1 U	0.02 U	0.1	0.2 U	0.25 U	0.1 U	0.2 U	55	13.1	9.9	< 0.01	423	-13	24.9	80
	5.8 -	_	_	0.1	-	-	_	-	49.8	12.91	6.3	< 0.01	410	-80	76.2	76.2
	5.4 -	_	_	-	-	-	-	-	-	13.99	6.2	<0.01	433	-88	13.9	-
	0.4 -	_ _	_	0.02 U	_	_	_	_	-	13.61	6.6	0.01	797	-8	1.4	_
4/11/17 6.29	-	_	_	-	_	_	_	_	_	13.55	6.2	<0.01	c	-79	21	1 - 1
4/17/18 5.16	29 -		_	-	_	-	_	_	-	13.6	5.99	0.09	477.1	0	220	_

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 2 of 7

Well	Date	Arsenic	Lead	Chromium	Benzene	Vinyl	Total		Diesel	Heavy Oil	Ferrous	Temp.	рН	Diss.	Cond.	Redox	Turbidity	TSS
		in μg/L	in μg/L	in μg/L	in μg/L	Chloride	cPAHs ^a	PCP *	in mg/L	in mg/L	Iron b	in ℃	P		in µmhos	Potential	in NTU	in
						in μg/L	in μg/L	in μg/L			in mg/L			in mg/L	/cm	in Eh		mg/L
С	UL:	5	5	80	5	0.4	0.1		1	1	NE	NE	NE	NE	NE	NE	NE	NE
HS	SAL:	50	50	100	5	2	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
LW-06D	3/26/98	11	-	-	0.5 U	0.13 U	-		0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/22/98	12	-	-	0.5 U	0.08 J	-	-	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/5/99	3.1	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	10	1 U	10 U	0.5 U	0.099 J	-	-	0.24 U	0.71 U	-	14.1	6.4	-	530	-	-	-
	5/23/00	9	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	13	7.2	-	690	-	-	-
	3/16/01	10.8	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	14	7.1	-	900	-	0.14	-
	3/21/02	8.8	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	13	7.1	-	860	-	0.08	-
	4/3/03	3.3	1 U	1	0.2 U	0.2 U	0.15 U	-	0.25 U	0.5 U	4	11.4	6.9	1.25	454	-	18	-
	3/31/04	14.2	-	-	-	-	-	-	-	-	56.0	13.0	6.1	0.02	524	-2	27	93.0
	4/12/05	10.2	-	-	-	-	-	-	-	-	59.5	13.2	6.3	0.08	548	-15	0	38.9
	3/31/06	11.2	-	-	-	-	-	-	-	-	62.5	13.7	6.2	0.16	459	-10	0	20.3
	3/29/07	11.1	-	-	-	-	-	-	-	-	58.0	14.0	5.8	0.11	554	107	0	40.8
	3/26/08	9.8	-	-	-	-	-	-	-	-	49.6	11.1	6.7	0.52	436	-35	0	-
	3/26/09	10.4	-	-	-	-	-	-	-	-	63	13.36	5.6	2.64	764	-118	32	55
	4/2/10	10.4	-	-	-	-	-	-	-	-	62	12.5	7.1	<0.01	445	-83	160	58.4
	3/31/11	9.7	-	-	-	-	-	-	-	-	63	13	6.1	0.05	382	-61	10	70
	3/23/12	9.1	-	-	-	-	-	-	-	-	61.5	13.3	6.0	<0.01	724	-160	6.2	54.2
	3/13/13	9.1	0.1 U	1 U	0.025	0.14	0.2 U	-	0.1 U	0.2 U	65	13.18	8.6	<0.01	508	57	9.9	67.8
	4/2/14	7.8	-	-	-	-	-	-	-	-	56.5	14.01	6.3	0.01	527	-102	115.5	34.6
	4/15/15	7.8	-	-	-	-	-	-	-	-	-	14.05	6.2	<0.01	529	-189	25.4	-
	3/10/16	8.0	-	-	-	0.24	-	-	-	-	-	13.72	6.2	<0.01	533.9	-11	10.9	-
	4/11/17	10.0	-	-	-	-	-	-	-	-	-	13.71	6.1	<0.01	С	-101	4.0	-
	4/17/18	9.2	-	-	-	-	-	-	-	-	-	13.7	6.21	0.14	682	0	378	-

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 3 of 7

Well	Date	Arsenic	Lead	Chromium	Benzene	Vinyl	Total		Diesel	Heavy Oil	Ferrous	Temp.	рН	Diss.	Cond.	Redox	Turbidity	TSS
Well	Date	in μg/L	in μg/L	in μg/L	in µg/L	Chloride	cPAHs ^a	PCP *	in mg/L	in mg/L	Iron b	in ℃	Pii	Oxygen		Potential	in NTU	in
		,-	p.g/ =	F9/ =	9/ -	in μg/L	in μg/L	in μg/L			in mg/L	•		in mg/L	/cm	in Eh		mg/L
CI	UL:	5	5	80	5	0.4	0.1	1.2	1	1	NE	NE	NE	NE	NE	NE	NE	NE
HS	SAL:	50	50	100	5	2	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
LW-09D	3/26/98	9.5	-	-	0.5 U	0.97 J	-	0.82 U	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/21/98	7.6	-	-	0.5 U	0.7 J	-	0.8 U	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/7/99	7.9	-	-	0.5 U	0.86	-	0.9 U	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	3.3	1 U	10 U	0.5 U	0.4 J	-	-	0.32	0.71 U	-	14.6	7.4	-	450	-	-	-
	5/24/00	9	-	-	0.2 U	0.3	-	-	0.25 U	0.5 U	-	14	6.7	-	740	-	-	-
	10/12/00	-	-	-	0.2 U	0.9	-	-	-	-	-	14	7.2	-	640	-	-	-
	3/15/01	9.4	-	-	0.2 U	0.9	-	-	0.25 U	0.5 U	-	14	6.8	-	590	-	0.14	-
	10/31/01	-	-	-	0.2 U	0.5	-	-	-	-	-	14	6.8	-	560	-	0.14	-
	3/20/02	11.4	-	-	0.2 U	1.6	-	-	0.25 U	0.5 U	-	13	8.0	-	910	-	0.11	-
	10/16/02	-	-	-	0.2 U	0.9	-	-	-	-	5.8	14.1	6.9	1.1	510	-	0.14	-
	4/4/03	0.9	1 U	1 U	0.2 U	0.2 U	0.15 U	0.25 U	0.25 U	0.5 U	3.4	12.6	7.3	0.71	389	-	12	-
	10/7/03	-	-	-	0.2 U	0.7	-	-	-	-	-	13	7.3	-	680	-	0.18	-
	3/31/04	12.2	-	-	0.2 U	1.1	-	-	-	-	54.5	12.2	6.2	0.22	523	-22	13	77.5
	10/20/04	-	-	-	0.2 U	1.0	-	-	-	-	52	12.6	6.2	0	528	-28	0	41.5
	4/12/05	8	-	-	0.2 U	1.3 J	-	-	-	-	54	12.5	6.4	0.05	540	-24	1	37.5
	11/3/05	-	-	-	0.2 U	8.0	-	-	-	-	52	12	6.7	0.32	517	-42	7	33.4
	3/31/06	7.7	-	-	0.2 U	0.8	-	-	-	-	53.5	12.6	6.3	0.12	433	-20	0	18.2
	3/27/07	8.5	-	-	0.2 U	0.9	-	-	-	-	-	12.2	6.0	0.19	541	54	0	-
	3/26/08	8.3	-	-	-	1.2	-	-	-	-	46.7	11.7	6.8	0.48	427	-15	0	-
	3/26/09	8.4	-	-	-	1.2	-	-	-	-	55.5	12.24	5.7	2.56	729	-129	48	36.4
	10/27/09	8	-	-	-	0.71	-	-	-	-	52.7	12.44	9.3	3.33	617	-146	20	51.1
	4/2/10	8.4	-	-	-	0.5	-	-	-	-	55	11.5	7.2	0	428	-90	242	41.2
	3/29/11	8.5	-	-	-	0.5	-	-	-	-	51.5	12	6.4	0.11	441	-	10	54.8
	3/23/12	7.5	-	-	-	0.32	-	-	-	-	51	11.9	6.0	0	666	-155	2.9	40
	3/15/13	8	0.1 U	0.7	0.02 U	0.41	0.2 U	0.25 U	0.1 U	0.2 U	54	12.31	7.2	0.02	491	235	59.8	62.2
	4/2/14	8.2	-	-	-	0.41	-	-	-	-	63	12.16	6.3	0.01	499.8	-65	27.6	27.7
	4/15/15	7.7	-	-	-	0.7	-	-	-	-	-	12.41	6.2	0.07	481	-192	164.8	-
	3/10/16	9.0	-	-	-	0.44	-	-	-	-	-	12.42	6.2	<0.01	478	-50	6	-
	4/11/17	8.5	-	-	-	0.35	-	-	-	-	-	12.45	6.2	<0.01	С	-73	17.4	-
	4/17/18	9.16	-	-	-	0.35	-	-	-	-	-	12.5	6.26	0.14	639	0	-	-

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 4 of 7

Well	Date	Arsenic in μg/L	Lead in µg/L	Chromium in µg/L	Benzene in μg/L	Vinyl Chloride	Total cPAHs ^a	PCP *	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b	Temp. in ℃	pН	Diss. Oxygen	Cond. in µmhos	Redox Potential	Turbidity in NTU	TSS in
						in μg/L	in μg/L	in μg/L			in mg/L			in mg/L	/cm	in Eh		mg/L
	JL:	5	5	80	5	0.4	0.1		1	1	NE	NE	NE	NE	NE	NE	NE	NE
	SAL:	50	50	100	5	2	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	on Upper S	and/Aquita	rd Wells												_			
CW-01S	3/24/98	8.7	-	-	0.5 U	0.38 J	-	-	0.3	0.71 U	-	-	-	-	-	-	-	-
	10/20/98	6.6	-	-	0.62	0.86 J	-	-	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/4/99	4.9	-	-	0.5 U	0.53	-	-	0.24 U	0.72 U	-	-	-	-	-	-	-	-
	10/19/99	7.1	1 U	10 U	0.53	0.63 J	-	-	0.24 U	0.71 U	-	14.9	6.6	-	550	-	-	-
	5/18/00	9	-	-	0.6	0.9	-	-	0.25 U	0.5 U	-	15	7.0	-	810	-	-	-
	3/19/01	8.7	-	-	0.7	1.3	-	-	0.25 U	0.5 U	-	-	-	-	-	-	-	-
	3/25/02	11.5	-	-	0.7	2.4	-	-	0.27	0.5 U	-	12	7.1	-	820	-	0.06	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	16.1	6.6	-	580	-	0.14	-
	4/2/03	8.7	1 U	1	0.4	0.9	0.26 U	-	0.25 U	0.5 U	4	13.9	6.8	1.51	408	-	29	-
	10/7/03	-	-	-	0.2 U	0.6	-	-	-	-	-	14	6.9	-	770	-	0.09	-
	3/31/04	12.0	-	-	0.2	0.9	-	-	-	-	48.2	13.5	6.2	0.06	484	-7	30	72.5
	4/13/05	8.7	-	-	0.2 U	0.9	-	-	-	-	48.4	14.8	6.4	0.1	480	5	2	34.4
	3/28/06	8.1	-	-	0.2 U	0.9	-	-	-	-	46.6	14.2	6.5	0.2	524	9	0	33.5
	3/27/07	8.2	-	-	0.2 U	0.7	-	-	-	-	46.2	13.1	5.8	0.02	398	72	0	32.8
	3/27/08	8.1	-	-	-	0.63	-	-	-	-	37.6	12.3	6.6	0.67	379	-7	0	-
	3/24/09	8	-	-	-	0.54	-	-	-	-	0.999	12.83	5.8	2.2	665	-135	10	40.7
	4/1/10	8.1	-	-	0.2 U	0.4	-	-	-	-	49.7	13.1	7.0	<0.01	-	-94	333	69.6
	3/29/11	8.1	-	-		0.64	-	-	-	-	50.5	13.2	6.4	<0.01	440	-	10	48.7
	3/22/12	4.7	-	-	-	0.3	-	-	-	-	22.6	13.3	6.0	<0.01	441	-113	4.6	13.7
	3/12/13	7	0.2	1 U	0.023	0.62	0.2 U	-	0.16	0.2 U	52.5	13.01	9.9	0.01	464.3	3	1.2	48.3
	4/2/14	1.8	-	-	-	0.11	-	-	-	-	5.95	12.99	6.1	0.08	95.65	36	18	7
	4/15/15	3.6	-	-	-	0.46	-	-	-	-	-	14.4	5.9	0.08	237.5	-117	42.4	-
	3/10/16	0.4	-	-	-	0.02 U	-	-	-	-	-	13.13	6.6	6.4	163	71	18.1	-
	4/11/17	4.39	-	-	-	0.244	-	-	-	-	-	13.96	5.9	<0.01	374.9	7	3.6	-
	4/17/18	0.884	-	-	-	0.0243 J	-	-	-	-	-	13.8	5.69	1.83	37.3	321	10	-

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 5 of 7

Well	Date	Arsenic in µg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride	Total cPAHs ^a	PCP *	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b	Temp. in ℃	pН	Diss. Oxygen	Cond. in µmhos	Redox Potential	Turbidity in NTU	TSS in
						in μg/L	in μg/L	in μg/L			in mg/L			in mg/L	/cm	in Eh		mg/L
	JL:	5	5	80	5	0.4	0.1		1	1	NE	NE	NE	NE	NE	NE	NE	NE
	AL:	50	50	100	5	2	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
LW-09S	3/26/98	21	-	-	0.5 U	0.13 U	-	-	0.32	0.71 U	-	-	-	-	-	-	-	-
	10/21/98	17	-	-	0.5 U	0.31 J	-	-	0.36	0.47 U	-	-	-	-	-	-	-	-
	3/7/99	10 S	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/19/99	18	1 U	10 U	0.5 U	0.22 J	-	-	0.56	0.71 U	-	13.6	6.7	-	810	-	-	-
	5/24/00	14	-	-	0.2 U	0.2 U	-	-	0.25 U	0.5 U	-	13	7.2	-	860	-	-	-
	3/15/01	19.2	-	-	0.2 U	0.2 U	-	-	0.25	0.5 U	-	14	6.3	-	720	-	0.11	-
	3/20/02	19.9	-	-	0.2 U	0.2 U	-	-	0.38	0.5 U	-	13	7.4	-	660	-	0.08	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	14.1	7.0	-	600	-	0.1	-
	4/4/03	13.4	1 U	2	0.2 U	0.2 U	0.15 U	-	0.4	0.5 U	3.8	11.5	7.5	1.12	268	-	16	-
	3/30/04	17.7	-	-	-	-	-	-	-	-	61.5	11.1	5.9	0.39	420	-12	49	89.0
	4/12/05	11.6	-	-	-	-	-	-	-	-	48.8	11.4	6.6	0.07	418	-37	10	48.4
	3/30/06	8.5	-	-	-	-	-	-	-	-	36.2	11.9	6.5	0.3	299	-15	0	43.6
	3/28/07	14.8	-	-	-	-	-	-	-	-	61	10.7	6.6	0.03	367	92	46	68.2
	3/25/08	12.8	-	-	-	-	-	-	-	-	39	10	6.4	1.08	343	-140	62	-
	3/26/09	13.3	-	-	-	-	-	-	-	-	57.5	11.86	6.0	2.4	612	-127	81	46.7
	4/2/10	18.3	-	-	-	-	-	-	-	-	65	10.4	7.6	<0.01	361	-124	77	56.4
	3/31/11	17.3	-	-	-	-	-	-	-	-	61	10.6	6.4	<0.01	322	-152	10	76 J
	3/23/12	14.1	-	-	-	-	-	-	-	-	54	10.5	6.2	<0.01	570	-190	9.2	68.1
	3/15/13	13.6	0.1 U	1.8	0.02 U	0.039	0.2 U	-	0.2	0.25	50	11.46	7.5	0.03	360.1	201	42	79.3
	4/2/14	14.6	-	-	-	-	-	-	-	-	61	11.03	6.7	0.07	417	-118	33.1	76.5
	4/15/15	19.2	-	-	-	-	-	-	-	-	-	11.72	6.5	0.01	410.5	-95	47.3	-
	3/10/16	14.8	-	-	-	0.027	-	-	-	-	-	11.59	6.4	<0.01	421.6	-74	27.6	-
	4/11/17	15.3	-	-	-	-	-	-	-	-	-	11.45	6.5	<0.01		-111	26.8	-
	4/17/18	7.31	-	-	-		-	-	-	-	-	11.3	6.49	0.16	523	0	57.2	-

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 6 of 7

Well	Date	Arsenic in μg/L	Lead in μg/L	Chromium in μg/L	Benzene in μg/L	Vinyl Chloride in μg/L	Total cPAHs ^a in μg/L	PCP *	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b in mg/L	Temp. in ℃	pН	Diss. Oxygen in mg/L	Cond. in µmhos /cm	Redox Potential in Eh	Turbidity in NTU	TSS in mg/L
CI	UL:	5	5	80	5	0.4	0.1	μ9/ =	1	1	NE	NE	NE	NE	NE	NE	NE	NE
HS	SAL:	50	50	100	5	2	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MW-03I	3/27/98	17	-	-	0.5 U	0.13 U	-		0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/22/98	15	-	-	0.5 U	0.15 J	-	-	0.24 U	0.47 U	-	-	-	-	-	-	-	-
	3/5/99	10	-	-	0.5 U	0.039 U	-	-	0.24 U	0.71 U	-	-	-	-	-	-	-	-
	10/20/99	19	1 U	10 U	0.5 U	0.14 J	-	-	0.34	0.71 U	-	15.7	7.3	-	430	-	-	-
	5/23/00	14	-	-	0.2 U	0.2	-	-	0.25 U	0.5 U	-	13	7.1	-	620	-	-	-
	3/16/01	18	-	-	0.2 U	0.3	-	-	0.25 U	0.5 U	-	14	7.1	-	810	-	0.19	-
	3/25/02	19.4	-	-	0.2 U	0.5	-	-	0.28	0.5 U	-	13	7.4	-	940	-	0.13	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	15.4	6.9	-	410	-	0.08	-
	4/1/03	37.4	1 U	1	0.2 U	0.2 U	0.15 U	-	0.29	0.5 U	5.5	13.2	6.9	0.86	268	-	35	-
	3/30/04	18.2	-	-	0.2 U	0.2 J	-	-	-	-	49.9	13	6.0	0.35	382	-33	19	79.5
	10/20/04	19.4	-	-	-	-	-	-	-	-	50.5	15.4	6.4	0.01	404	-26	1	43.5
	4/12/05	14.9	-	-	-	-	-	-	-	-	50.5	12.8	6.5	0.16	386	-41	0	35.2
	11/2/05	17.5	-	-	-	-	-	-	-	-	49.3	15	6.9	0.36	449	-40	7	30
	3/30/06	12.8	-	-	-	-	-	-	-	-	51.5	13.8	6.3	0.14	316	-11	0	51.4
	3/28/07	12.9	1 U	1 U	0.2 U	0.2 U	0.1 U	0.25 U	0.25 U	0.5 U	46	12.6	5.7	0.1	339	103	0	47.7
	3/25/08	18.6	-	-	-	-	-	-	-	-	37	11.1	6.9	8.0	320	-31	0	-
	3/26/09	13	-	-	-	-	-	-	-	-	48	11.94	5.8	2.11	504	-119	12	27.2
	4/2/10	13.8	-	-	-	-	-	-	-	-	50	11.5	7.4	0.15	320	-92	33	60.5
	3/31/11	14.9	-	-	-	-	-	-	-	-	51	12.2	6.2	0.08	265	-	10	98.8
	3/23/12	14.7	-	-	-	-	-	-	-	-	54.5	12	6.0	<0.01	547	-148	3	45.1
	11/15/12	-	-	-	-	0.029	-	-	-	-	46.2 J	12.9	6.3	2.29	284	-105	2.6	54
	3/14/13	10.9	0.1 U	0.5	0.02 U	0.066	0.2 U	-	0.1 U	0.2 U	52.0	12.35	8.4	<0.01	343	77	7.1	58
	4/2/14	13.2	-	-	-	-	-	-	-	-	56.0	12.53	6.5	0.02	407.5	-100	3.9	33.4
	4/15/15	13.5	-	-	-	-	-	-	-	-	-	12.6	6.4	0.1	388.6	-85	5.6	-
	3/10/16	16.9	-	-	-	0.077	-	-	-	-	-	11.72	6.4	<0.01	385.3	-36	9.2	-
	4/11/17	14.7	-	-	-	-	-	-	-	-	-	12.59	6.3	<0.01	c 	-67	8.1	-
	4/17/18	13.9	-	-	-	-	-	-	-	-	-	12.2	6.38	0.14	501	0	30	-

Table 1-3 - Summary of Groundwater Analytical Data

Sheet 7 of 7

Well	Date	Arsenic in μg/L	Lead in µg/L	Chromium in µg/L	Benzene in µg/L	Vinyl Chloride	Total cPAHs ^a	PCP *	Diesel in mg/L	Heavy Oil in mg/L	Ferrous Iron ^b	Temp. in ℃	рН	Diss. Oxygen	Cond. in µmhos	Redox Potential	Turbidity in NTU	TSS in
						in μg/L	in μg/L	in μg/L			in mg/L			in mg/L	/cm	in Eh		mg/L
	JL:	5	5	80	5	0.4	0.1		1	1	NE	NE	NE	NE	NE	NE	NE	NE
	AL:	50	50	100	5	2	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Stabilized		1			1	1	7				1					1	1	_
SC-01S	3/25/98	4.4	2.2	10 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/21/98	3.4	1.4	5 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3/7/99	4.7	1 U	10 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/19/99	5.8	1 U	10 U	-	-	-	-	-	-	-	17.2	8.2	-	190	-	-	-
	5/24/00	5	1 U	0.5 U	-	-	-	-	-	-	-	13	7.0	-	740	-	-	-
	3/15/01	5.2	1 U	0.5 U	-	-	-	-	-	-	-	13	6.8	-	620	-	0.13	-
	3/20/02	5.8	1 U	0.5 U	-	-	-	-	-	-	-	12	7.2	-	860	-	0.15	-
	10/16/02	-	-	-	-	-	-	-	-	-	-	15.1	7.1	-	610	-	0.11	-
	4/4/03	4.9	1 U	0.5 U	-	-	-	-	-	-	0.6	13.8	8.1	2.6	107	-	26	-
	4/1/04	5.4	-	-	-	-	-	-	-	-	0.043	12.4	8.2	0.19	119	162	13	4.9
	4/12/05	5.1	-	-	-	-	-	-	-	-	0.04 U	12.7	8.0	0.15	123	-42	1	1.9
	3/29/06	4.7	-	-	-	-	-	-	-	-	0.04 U	12.8	7.7	0.32	97	-49	0	1.8
	3/29/07	4.6	-	-	-	-	-	-	-	-	0.04 U	12.9	7.1	0.2	118	93	0	2.9
	3/13/13	4.6	0.1 U	1 U	-	-	-	-	-	-	0.046	11.72	8.7	0.09	105.7	70	9.3	3.3
SC-02S	3/26/98	4.5	1 U	10 U	-	-	-		-	-	-	-	-	-	-	-	-	-
	10/21/98	4	1 U	5 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3/7/99	2.6	1 U	10 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/19/99	4.7	1 U	10 U	-	-	-	-	-	-	-	16.5	-	-	-	-	-	-
	5/24/00	4	1 U	2 U	-	-	-	-	-	-	-	14	7.1	-	610	-	- 0.47	-
	3/15/01	4.1	1 U	2	-	-	-	-	-	-	-	13	6.3	-	810	-	0.17	-
	3/20/02	5.7	1 U	3.9	-	-	-	-	-	-	-	12	6.7	-	790 500	-	0.13	-
	10/16/02	-	- 1	-	-	-	-	-	-	-	4.0	13.4	6.5	- 1.04	560	-	0.09	_
	4/4/03	3.2	1 U	2	-	-	-	-	-	-	4.2	13	7.3	1.04	340	-	21	- 00.0
	4/1/04 3/13/13	4.9 3.3	- 0.1 U	2	-	-	-	-	-	-	36.5 34.8	12.7 12.85	6.2 8.6	0.03 0.05	386 361	66 115	18 22.5	23.2 1.4
	3/13/13	5.5	0.1 0	۷	_	-	-	_	_		54.0	12.00	0.0	0.03	301	113	22.5	1.4

Notes:

NE = Not established.

See pages A-3 explanation of data qualifiers.

^a cPAHs are benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene (WAC 173-340-200). Total cPAH values presented are based on toxicity equivalency quotient (TEQ) calculation.

^b Ferrous iron collected in October 2002 and April 2003 were field measurements using HACH kit. Other samples were analyzed in the laboratory using EPA Method SM 3500.

^c Instrument error - no data

^{*} PCP = Pentachlorophenol

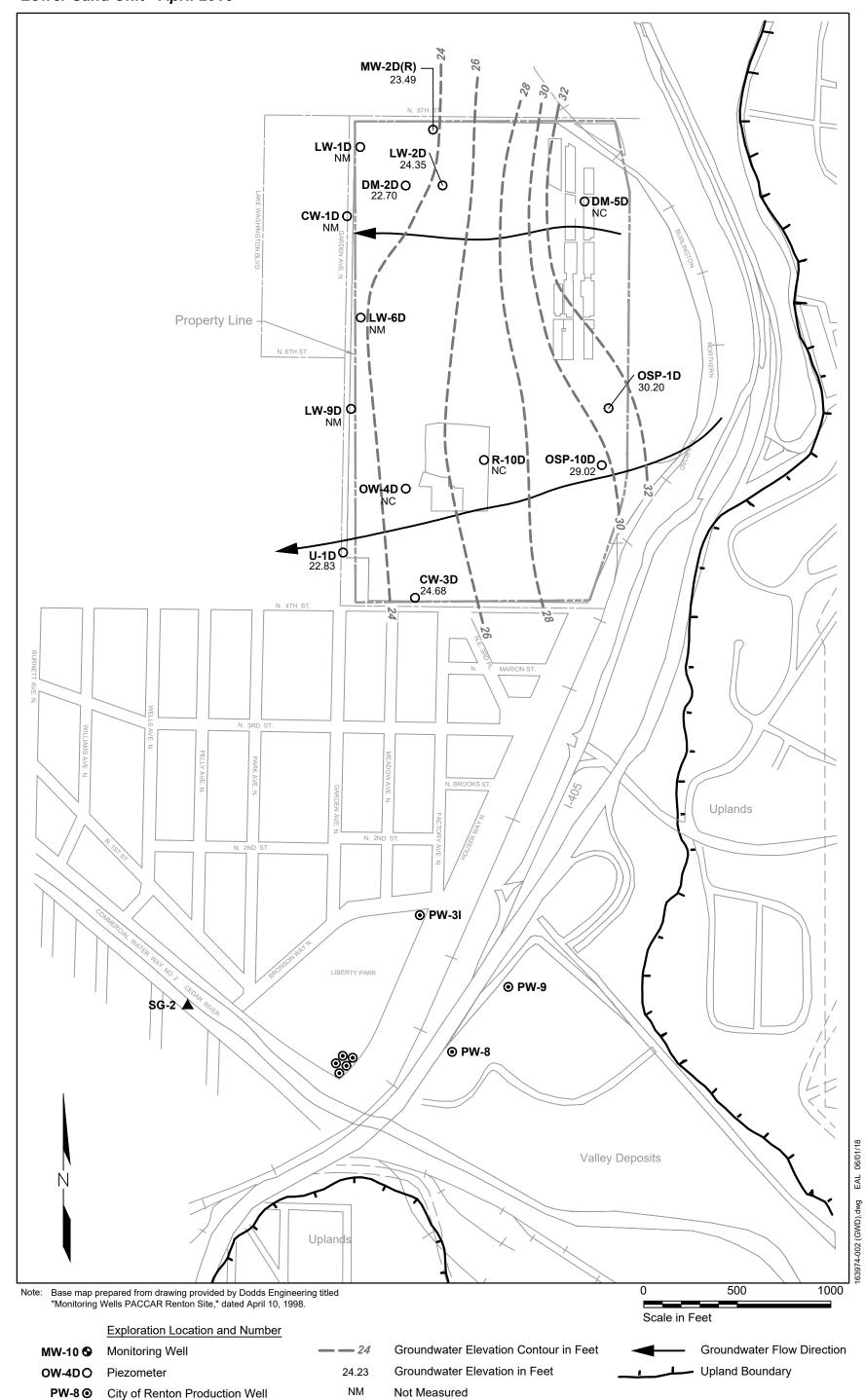
^{- =} Sample not analyzed for specific analyte.

J = Estimated value.

U = Not selected at the detection limit noted.

Table 1-4 – Groundwater Monitoring Program for Spring 2019

	20	19
Well	VOCa	Arsenic
Confirmation Lower San	d/Delta De _l	osits
CW-1D		Χ
LW-6D		Χ
LW-9D	Х	Χ
Confirmation Upper San	d/Aquitard	Wells
CW-1S	X	X
LW-9S		Χ
MW-3I		Χ
Stabilized Cell Wells		
SC-1S		X_p
SC-2S		X^b
Quality Control Samples		
	X	X
Purge Water Samples		
	X	X


^a VOC is vinyl chloride.

Water elevations will be measured at approximately 33 wells.

All wells with samples submitted for laboratory analysis will have the following parameters measured: temperature, pH, conductivity, turbidity, dissolved oxygen, and redox potential.

Purge water samples wil be analyzed for VOCs, arsenic, lead, total chromium, and TPH.

^b Samples will also be analyzed for lead and total chromium

NC

River Staff Gage

SG-2▲

Not Calculated

SECTION 2 Surface Water Monitoring

SECTION 2 SURFACE WATER MONITORING

This section presents the results of the surface water monitoring event conducted in accordance with the CMIP and the Periodic Review. Samples were collected from five storm sewer manholes on April 18, 2018. Chemical test results are compiled in Table 2-1, and the sampling locations are shown with the generalized storm sewer configuration on Figure 2-1. The data quality review and laboratory report are provided in Appendices B and C, respectively.

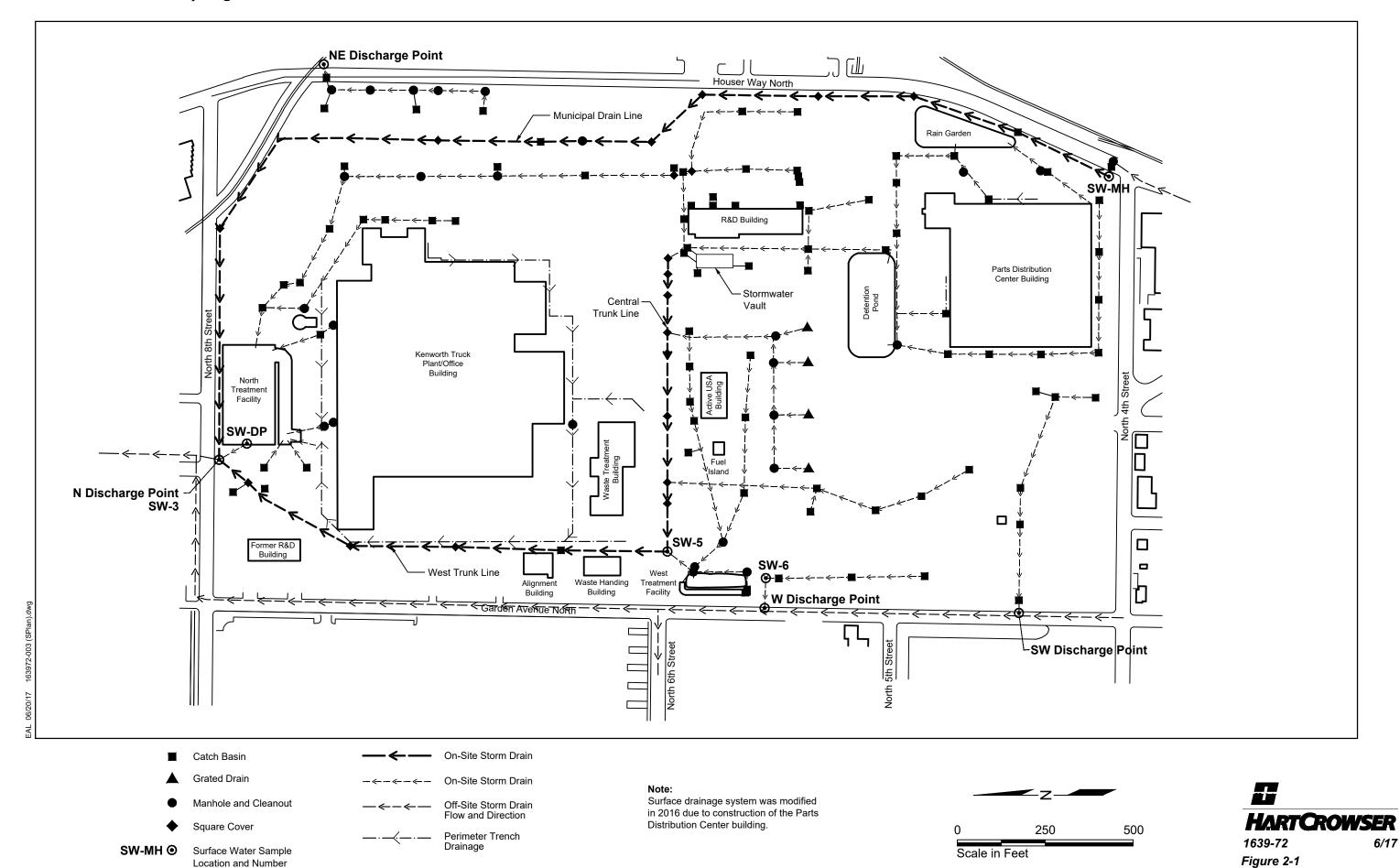
The Periodic Review specifies annual surface water monitoring. Surface water monitoring was conducted in April 18, 2018 for metals (total copper, lead and zinc, and hexavalent chromium) at the five locations identified in the CMIP to assess whether any long-term changes are occurring.

The following notes apply to this monitoring event:

- Off-Site Conditions. Monitoring point SW-MH was used to evaluate the quality of stormwater generated off site and upstream of the PACCAR site. As summarized in Table 2-1, metal concentrations detected in the sample from SW-MH are higher or similar to those detected in the sample from SW-3, which is the PACCAR property discharge point located downstream of SW-MH (Figure 2-1).
- Cleanup Level Compliance at SW-5. The CMIP specifies that water quality from SW-5 will be compared with CULs for compliance purposes. The detected copper (0.00279 mg/L), lead (0.000265 mg/L) and zinc (0.00972 mg/L) concentrations in the sample from SW-5 did not exceed the CULs.

Table 2-1 - Analytical Results for Surface Water Samples, April 2018

Sample ID		SW-3	SW-5	SW-6	SW-DP	SW-MD	SW-MH
Sample Date	CUL ^a	4/18/18	4/18/18	4/18/18	4/18/18	4/18/18	4/18/18
Total Metals in mg/L							
Copper	0.007	0.00184	0.00279	0.00431	0.00171	0.00742	0.00314
Hexavalent chromium	0.011	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Lead	0.001	0.000075 J	0.000265	0.000181	0.000085 J	0.000224	0.000295
Zinc	0.047	0.0123	0.00972	0.00217 J	0.0657	0.0134	0.0151


^a Cleanup levels from CMIP (DOF 1997).

Notes:

See page B-3 for definition of data qualifiers.

SW-MD is a duplicate sample of SW-MH.

Surface Water Sampling Location Plan

SECTION 3 PACCAR Structural Fill Cover Monitoring Field Inspection and Observation Form

SECTION 3 PACCAR STRUCTURAL FILL COVER MONITORING FIELD INSPECTION AND OBSERVATION FORM

The structural fill and pavement covers are monitored annually to document their condition and note areas where repair or maintenance is necessary. An engineer or technician conducted a site walk to observe and document the following:

- Conditions of paved area (settlement, ruts, cracks, other) and
- Disturbance in areas of planted cover (erosion, excavation, vegetation, other).

Field Inspection Observations

Date of Field Inspection: April 18, 2018

Weather Conditions: <u>Cloudy, Temperature = 50 °F</u>

Inspection Personnel: <u>Keylin Huddleston</u>

Staff Environmental Scientist

Construction was completed and a new building and soil stockpiles are present. Areas around the building appear to be in good condition, with no obvious signs of settlement or cracking in asphalt cover. The new stockpile area has a planted cover with good development of grass and show no signs of settlement or erosion.

Recommended Actions and Follow-Up

Areas Needing Repair

Review site conditions in the Spring 2019.

Documentation of Repair Completion

None.

APPENDIX A Data Validation Summary for Groundwater Samples

APPENDIX A DATA VALIDATION SUMMARY FOR GROUNDWATER SAMPLES

Summary of Data Validation Effort

This appendix provides the quality assurance (QA) review of six groundwater samples, one purge water sample, and one field duplicate collected in accordance with the PACCAR CMIP (DOF 1997) and Periodic Review (Ecology 2014) for the Spring 2018 sampling event. The samples were submitted to Analytical Resources, Inc., (ARI) in Tukwila, Washington, for chemical analysis. The laboratory reported results as ARI Job No. 18D0266 (See Appendix C). The samples were analyzed for one or more of the following:

- Diesel and heavy oil by Ecology Method NWTPH-Dx;
- Total metals (arsenic, chromium, and lead) by EPA Method 200.8; and
- Vinyl chloride by EPA Method 8260C-SIM; and volatile organic compounds (VOCs) by EPA Method 8260C.

The laboratory performed ongoing quality assurance/quality control (QA/QC) reviews of laboratory procedures. Hart Crowser performed the data review, using laboratory quality control results summary sheets, to check that the data met data quality objectives for the project. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) recoveries and relative percent differences (RPDs);
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries and RPDs;
- Laboratory and field duplicate RPDs;
- Calibration criteria (if reported); and
- Reporting limits (RL).

Overall Data Quality

The overall data quality objectives (DQOs) as set forth in the quality assurance project plan (QAPP) were met, and the data for this site are acceptable for use as qualified. The completeness for the associated data is 100 percent. Detailed discussions are presented in the following pages.

Quality Assurance Objectives

Precision. Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared with their average values. Precision is generally evaluated using LCS/LCSD, MS/MSD, lab duplicate results,

A-2 | PACCAR Renton Site

and field duplicate results. The LCS/LCSD, MS/MSD, and lab duplicate results provide information on laboratory (only) precision, while field duplicates provide information on field and laboratory precision combined.

Analytical precision is generally measured through LCS/LCSD and MS/MSD samples for organic analysis, and through laboratory duplicate samples for metals and other inorganic analysis. Analytical precision is quantitatively expressed as the RPD between the LCS/LCSD, MS/MSD, or laboratory duplicates. Analytical precision measurements were carried out on project groundwater samples at a minimum frequency of one in 20 samples. The analytical precision for all analytes was acceptable.

Accuracy. Accuracy measures the closeness of the measured value to the true value. The accuracy of chemical test results was assessed by analyzing standard reference materials or by "spiking" samples with known standards (surrogates, LCS, and/or MS) and measuring the percent recovery.

Accuracy measurements for all fractions were carried out in accordance with method requirements for organic and inorganic analyses and at a minimum frequency of one in 20 samples. The analytical accuracy for analytes was acceptable.

Completeness. Completeness is defined as the percentage of measurements made that are judged to be valid measurements. The completeness of the data is the ratio of acceptable data points to the total number of data points (expressed as a percent). The target completeness goal for this work was 100 percent. The completeness of the data for this project was 100 percent.

Comparability. Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Because standard techniques were used for both sample collection and laboratory analysis, the data collected from the same sampling locations and depths should be comparable to both internal data and other data generated.

No Major Problems Encountered

No major problems were encountered.

Minor Problems Encountered

No problems were encountered.

Data Qualifier Definitions

The following data qualifiers are used in the text and tables according to a quality assurance review of the laboratory procedures and results:

U Indicates the compound or analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.

- UJ Indicates the compound or analyte was analyzed for and not detected. Because of quality control deficiencies identified during data validation, the value reported may not accurately reflect the sample quantitation limit.
- J Indicates the compound or analyte was analyzed for and detected. The associated value is estimated, but the data are usable for decision making processes.

Table A-1 – Compilation of Chemical Analytical Data for Groundwater Samples

Sample ID Sampling Date	Cleanup Level	CW-1D 4/17/2018	CW-1S 4/17/2018	CW-100S 4/17/2018	LW-6D 4/17/2018	LW-9D 4/17/2018	LW-9S 4/17/2018	MW-3I 4/17/2018
Metals in mg/L Arsenic	0.005 ^a	0.00516	0.000884	0.000938	0.00918	0.00916	0.00731	0.0139
Volatiles in µg/L Vinyl chloride	0.4 ^b		0.0243 J	0.0251 J		0.346 J		

Notes:

Blank indicates sample not analyzed for specific analyte.

See page A-3 for explanation of data qualifiers.

CW-100S is a duplicate sample from CW-1S.

^a HSAL for arsenic is 0.05 mg/L.

^b HSAL for vinyl chloride is 2 μg/L.

Table A-2 – Analytical Results for Purge Water

Sample ID	KW Tank
Sampling Date	4/17/2018
Sampling Date	4/11/2010
Metals in μg/L	
Arsenic	1.82
Chromium	0.5 U
Lead	0.343
TPH in mg/L	0.040
Diesel Range Organics	0.1 U
Lube Oil	0.2 U
Volatiles in µg/L	0.2 0
1,1,1,2-Tetrachloroethane	0.2 U
1,1,1-Trichloroethane	0.2 U
1,1,2,2-Tetrachloroethane	0.2 U
1,1,2-Trichloroethane	0.2 U
1,1-Dichloroethane	0.2 U
1,1-Dichloroethene	0.2 U 0.2 U
1,1-Dichloropropene	0.2 U 0.5 U
1,2,3-Trichlorobenzene	
1,2,3-Trichloropropane	0.5 U
1,2,4-Trichlorobenzene	0.5 U
1,2,4-Trimethylbenzene	0.11 J
1,2-Dibromo-3-Chloropropane	0.5 U
1,2-Dichlorobenzene	0.2 U
1,2-Dichloroethane	0.2 U
1,2-Dichloropropane	0.2 U
1,3,5-Trimethylbenzene	0.2 U
1,3-Dichlorobenzene	0.2 U
1,3-Dichloropropane	0.2 U
1,4-Dichlorobenzene	0.2 U
2,2-Dichloropropane	0.2 U
2-Chloroethyl vinyl ether	1 U
2-Chlorotoluene	0.2 U
2-Hexanone	5 U
2-Pentanone	5 U
4-Chlorotoluene	0.2 U
4-Isopropyl Toluene	0.2 U
Acetone	27.3
Acrolein	5 U
Acrylonitrile	1 U
Benzene	0.2 U
Bromobenzene	0.2 U
Bromochloromethane	0.2 U
Bromoethane	0.2 U
Bromoform	0.2 U
Bromomethane	1 U
Carbon Disulfide	0.2 U
Carbon Tetrachloride	0.2 U
CFC-11	0.2 U
CFC-113	0.2 U
Chlorobenzene	0.2 U
Chlorodibromomethane	0.2 U

Sample ID	KW Tank
Sampling Date	4/17/2018
Volatiles in μg/L	
Chloroethane	0.2 U
Chloroform	0.2 U
Chloromethane	0.5 U
Cis-1,2-Dichloroethene	0.2 U
Cis-1,3-Dichloropropene	0.2 U
Dibromomethane	0.2 U
Dichlorobromomethane	0.2 U
Dichlorodifluoromethane	0.2 U
Ethylbenzene	0.06 J
Ethylene Dibromide	0.2 U
Hexachlorobutadiene	0.5 U
lodomethane	1 U
Isopropyl Benzene	0.2 U
m, p-Xylene	0.16 J
methyl ethyl ketone	5 U
Methyl isobutyl ketone	5 U
Methyl t-butyl ether	0.5 U
Methylene Chloride	1 U
Naphthalene	0.5 U
n-Butylbenzene	0.2 U
n-Propylbenzene	0.2 U
o-Xylene	0.2 U
Sec-Butylbenzene	0.2 U
Styrene	0.2 U
tert-butylbenzene	0.2 U
Tetrachloroethene	0.2 U
Toluene	0.2 U
Total Xylenes	0.16 J
Trans-1,2-Dichloroethene	0.2 U
Trans-1,3-Dichloropropene	0.2 U
Trans-1,4-Dichloro-2-butene	1 U
Trichloroethene	0.07 J
Vinyl Acetate	0.2 U
Vinyl Chloride	0.2 U

See page A-3 for explanation of data qualifiers.

APPENDIX B Data Validation Summary for Surface Water Samples

APPENDIX B DATA VALIDATION SUMMARY FOR SURFACE WATER SAMPLES

Summary of Data Validation Effort

This appendix provides the quality assurance (QA) review of five surface water samples and one field duplicate, collected in accordance with the PACCAR CMIP (DOF 1997) and Periodic Review (Ecology 2014) for the Spring 2018 sampling event. The samples were submitted to Analytical Resources, Inc., (ARI) in Tukwila, Washington, for chemical analysis. The laboratory reported results as ARI Job No. 18D0282 (See Appendix C). The samples were analyzed for the following:

- Total metals (copper, lead, and zinc) by EPA Method 200.8; and
- Hexavalent chromium by SM 3500-Cr B.

The laboratory performed ongoing quality assurance/quality control (QA/QC) reviews of laboratory procedures. Hart Crowser performed the data review using laboratory quality control results summary sheets to ensure the data met data quality objectives for the project. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Laboratory control sample (LCS) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries and relative percent differences (RPDs);
- Standard reference material (SRM) recoveries;
- Laboratory and field duplicate RPDs; and
- Reporting limits (RL).

Overall Data Quality

The overall data quality objectives (DQOs) as set forth in the quality assurance project plan (QAPP) were met, and the data for this site are acceptable for use as qualified. The completeness for the associated data is 100 percent. Detailed discussions are presented in the following pages.

Quality Assurance Objectives

Precision. Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared with their average values. Precision is generally evaluated using LCS/LCSD, MS/MSD, lab duplicate, and field duplicate results. The LCS/LCSD, MS/MSD, and lab duplicate results provide information on laboratory (only) precision, while field duplicates provide information on field and laboratory precision combined.

Analytical precision is generally measured through LCS/LCSD and MS/MSD samples for organic analysis, and through lab duplicate samples for metals and other inorganic analysis. Analytical precision is quantitatively expressed as the RPD between the MS/MSD or duplicates. Analytical

B-2 | PACCAR Renton Site

precision measurements were carried out on project surface water samples at a minimum frequency of one in 20 samples. The analytical precision for all analytes was acceptable or not applicable when the sample and duplicate results were less than five times the RL.

Accuracy. Accuracy measures the closeness of the measured value to the true value. The accuracy of chemical test results was assessed by analyzing standard reference materials or by "spiking" samples with known standards (surrogates, LCS, SRM, and/or MS) and measuring the percent recovery.

Accuracy measurements for all fractions were carried out in accordance with method requirements for organic and inorganic analyses and at a minimum frequency of one in 20 samples. The analytical accuracy for all analytes was acceptable.

Completeness. Completeness is defined as the percentage of measurements made that are judged to be valid measurements. The completeness of the data is the ratio of acceptable data points to the total number of data points (expressed as a percent). The target completeness goal for this work was 100 percent. The completeness of the data for this project was 100 percent.

Comparability. Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Because standard techniques were used for both sample collection and laboratory analysis, the data collected from the same sampling locations and depths should be comparable to both internal and other data generated.

No Major Problems Encountered

No major problems were encountered.

Minor Problems Encountered

No minor problems were encountered.

Data Qualifier Definitions

The following data qualifiers are used in the text and tables according to a quality assurance review of the laboratory procedures and results:

- Indicates the compound or analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for sample dilution by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected. Because of quality control deficiencies identified during data validation, the value reported may not accurately reflect the sample quantitation limit.

APPENDIX C LABORATORY REPORT Analytical Resources, Incorporated

26 April 2018

Roy Jensen Hart Crowser 3131 Elliott Ave Suite 600 Seattle, WA 98121

RE: Paccar

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

18D0266

Associated SDG ID(s)

N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Sel Both

Sample Custody Record

Samples Shipped to:

1800266

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581

William Control of the Control of th											OTTICE: 200.324.3330 * Tax 200.320.3301
JOB_1639-74	I AR NI	UMBER					W.		REQUESTED ANALYSIS)	
			Samol	`na	×		B		*		OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS
PROJECT NAME PACE	TO T	16 Shind	- Sump	1119	-Dx		M.	×	×		OBSERVATIONS/COMMENTS/
HART CROWSER CONTACT	404 SI	ensen			Hd		etal	A A	lete		
					F	5	X	S	2		<u> </u>
SAMPLED BY: Keyli	n Hu	ddlestor)		NWTPH	5 <i>70</i> 0	Total Metals	VOCs	Total Metal XXX		Ö
	DESCRIPTION		TIME	MATRIX							
Parged water		4 17 2018	18:24	water	X	X	×				6
LW-9D			16:00					X	X		4
LW-6D			14:59						×		
CW-15			13:15					X	×		4
MW-3I			17:07						×		3
CW-100S			13:00					X	*		24
LW-95								~	×		4
CW-ID			17:37								1
CW-ID			-12:05						×		
RELINQUISHED BY, Muy and John Mary Signature Signature Keylin Huddleston PRINT NAME	DATE	RECEIVED BY	/	DATE					NT HANDLING OR		TOTAL NUMBER OF CONTAINERS
hughi Holdtu	4 17 2018	alle	7	04/17/18	STC	RAG	E RE	QUIF N	REMENTS:		SAMPLE RECEIPT INFORMATION
Keylin Huddleston	TIME	SIGNATURE NG	He	TIME	MA	1	5/4	D,	chloride only		CUSTODY SEALS: □YES □NO □N/A
HART Crowser 1	19:31	PRINT NAME		10-1	AND MA	S V	·γη.		alu		GOOD CONDITION
COMPANY		COMPANY	7.78	1931	- West	150	175	OV	1119		□YES □NO TEMPERATURE
RELINQUISHED BY	DATE	RECEIVED BY	(/- <u>- </u>	DATE							SHIPMENT METHOD: □HAND □COURIER □OVERNIGHT
					CO	OLER	NO.		STORA	GE LOCATION:	TURNAROUND TIME:
SIGNATURE	TIME	SIGNATURE	-	TIME							□ 24 HOURS □ 1 WEEK
PRINT NAME		PRINT NAME		111111	See	Lah	Worl	Orc	der No		□48 HOURS □STANDARD
COMPANY		COMPANY							t Requirements		□72 HOURS OTHER

Hart CrowserProject: Paccar3131 Elliott Ave Suite 600Project Number: [none]Reported:Seattle WA, 98121Project Manager: Roy Jensen26-Apr-2018 12:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Purged Water	18D0266-01	Water	17-Apr-2018 18:24	17-Apr-2018 19:31
LW-9D	18D0266-02	Water	17-Apr-2018 16:00	17-Apr-2018 19:31
LW-6D	18D0266-03	Water	17-Apr-2018 14:59	17-Apr-2018 19:31
CW-1S	18D0266-04	Water	17-Apr-2018 13:15	17-Apr-2018 19:31
MW-3I	18D0266-05	Water	17-Apr-2018 17:07	17-Apr-2018 19:31
CW-100S	18D0266-06	Water	17-Apr-2018 13:00	17-Apr-2018 19:31
LW-9S	18D0266-07	Water	17-Apr-2018 17:37	17-Apr-2018 19:31
CW-1D	18D0266-08	Water	17-Apr-2018 12:05	17-Apr-2018 19:31

Analytical Resources, Inc.

Reported:

26-Apr-2018 12:02

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: [none]
Seattle WA, 98121 Project Manager: Roy Jensen

Case Narrative

Volatiles - EPA Method SW8260C

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements with the exception of all associated "Q" flagged analytes which are out of control low in the associated CCAL. All associated samples that contain analyte have been flagged with a "Q" qualifier.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

The vials used did not contain air bubbles.

Volatiles - EPA Method 8260C-SIM (Selected Ion Monitoring)

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

The vials used did not contain air bubbles.

Total Metals - EPA Method 200.8

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

Analytical Resources, Inc.

The LCS percent recoveries were within control limits.

<u>Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx</u>

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

Printed: 4/18/2018 9:34:23AM

WORK ORDER

18D0266

Client: Hart Crowser			Project Manager	r: Kelly Bottem			
Project: Paccar			Project Number:	· · · · · · · · · · · · · · · · · · ·			
Report To:			Invoice To:				
Hart Crowser			Hart Crowser				
Roy Jensen			Accounts Payable	7			
3131 Elliott Ave Suite 600			3131 Elliott Ave S				
Seattle, WA 98121			Seattle, WA 9812				
Phone: (206) 324-9530			Phone :(206) 324-				
Fax: -			Fax: -				
Date Due: 02-May-2018 1	8:00 (10 day TAT)						
Received By: Jacob Walter			Date Received:	17-Apr-2018 19:31			
Logged In By: Jacob Walter			Date Logged In:	18-Apr-2018 09:29			
Samples Received at: 2.2°C							
Intact, properly signed and dated custody Custody papers properly filled out (in, si Was sufficient ice used (if appropriate)	gned, analyses requested, e	tc)	Yes Was a tempe	ers included with the coolerersture blank included in the coolerealed in individual plastic bags	No		
All bottles arrived in good condition (un	broken)		Yes All bottle lab	pels complete and legible	Yes		
Number of containers listed on COC ma Correct bottles used for the requested an				and tags agree with COCls free of air bubbles			
Analyses/bottles require preservation (at				nount of sample sent in each bottle			
Sample split at ARI			No	-			
18D0266-01 Purged Water Water	er Sampled 17-Apr-	-2018 18:	24				
8260C VOA	05/02/2018	10	5/1/2018				
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
Met 200.8 - Cr	05/02/2018	10	10/14/2018				
Met 200.8 - Pb	05/02/2018	10	10/14/2018				
TPH NW (Extractables) low level	05/02/2018	10	4/24/2018				
18D0266-02 LW-9D [Water] San	npled 17-Apr-2018 1	6:00					
8260C-SIM VOC	05/02/2018	10	5/1/2018				
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
18D0266-03 LW-6D [Water] San	npled 17-Apr-2018 1	4:59					
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
18D0266-04 CW-1S [Water] San	npled 17-Apr-2018 1	3:15					
8260C-SIM VOC	05/02/2018	10	5/1/2018				
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
18D0266-05 MW-31 [Water] Sar	npled 17-Apr-2018 1	7:07					
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
18D0266-06 CW-100S [Water] S	ampled 17-Apr-2018	3 13:00					
8260C-SIM VOC	05/02/2018	10	5/1/2018				
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
18D0266-07 LW-9S [Water] Sam	pled 17-Apr-2018 1	7:37			**************************************		
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				
18D0266-08 CW-1D [Water] Sai	npled 17-Apr-2018 1	2:05					
Met 200.8 - As UCT	05/02/2018	10	10/14/2018				

Printed: 4/18/2018 9:34:23AM

WORK ORDER

1000066	
18D0266	

Client: Hart Crowser

Project: Paccar

Project Number: [none]

Project Manager: Kelly Bottem

Preservation Confirmation

Container ID	Container Type	рН	200
18D0266-01 A	HDPE NM, 500 mL, 1:1 HNO3	4	Pass
18D0266-01 B	VOA Vial, Clear, 40 mL, HCL		
18D0266-01 C	VOA Vial, Clear, 40 mL, HCL		
18D0266-01 D	VOA Vial, Clear, 40 mL, HCL		
18D0266-01 E	Glass NM, Amber, 500 mL		
18D0266-01 F	Glass NM, Amber, 500 mL		
18D0266-02 A	HDPE NM, 500 mL, 1:1 HNO3	CJ.	Pass
18D0266-02 B	VOA Vial, Clear, 40 mL, HCL	Bubble	
18D0266-02 C	VOA Vial, Clear, 40 mL, HCL	Rubble	
18D0266-02 D	VOA Vial, Clear, 40 mL, HCL	Bubble	
18D0266-03 A	HDPE NM, 500 mL, 1:1 HNO3	4	Pass
18D0266-04 A	HDPE NM, 500 mL, 1:1 HNO3	67	Pass
18D0266-04 B	VOA Vial, Clear, 40 mL, HCL		, 3
18D0266-04 C	VOA Vial, Clear, 40 mL, HCL		
18D0266-04 D	VOA Vial, Clear, 40 mL, HCL		
18D0266-05 A	HDPE NM, 500 mL, 1:1 HNO3	62	Puss
18D0266-06 A	HDPE NM, 500 mL, 1:1 HNO3	4	Pass
18D0266-06 B	VOA Vial, Clear, 40 mL, HCL		
18D0266-06 C	VOA Vial, Clear, 40 mL, HCL		
18D0266-06 D	VOA Vial, Clear, 40 mL, HCL		
18D0266-07 A	HDPE NM, 500 mL, 1:1 HNO3	62	Plas s
18D0266-08 A	HDPE NM, 500 mL, 1:1 HNO3	67	Poss
18D0266-04 C 18D0266-04 D 18D0266-05 A 18D0266-06 A 18D0266-06 B 18D0266-06 C 18D0266-06 D 18D0266-07 A	VOA Vial, Clear, 40 mL, HCL VOA Vial, Clear, 40 mL, HCL HDPE NM, 500 mL, 1:1 HNO3 HDPE NM, 500 mL, 1:1 HNO3 VOA Vial, Clear, 40 mL, HCL VOA Vial, Clear, 40 mL, HCL VOA Vial, Clear, 40 mL, HCL HDPE NM, 500 mL, 1:1 HNO3	<i>(</i>)	Pass Pass

Jow	04/18/18
Preservation Confirmed By	Date

last Course	
	tical Resources, Incorporated tical Chemists and Consultant

Cooler Receipt Form

ARI Client: Wat Crawsl	Project Name:			
COC No(s):NA	Delivered by: Fed-Ex UPS Cour	ier Hand Deli	Vesed Other:	
Assigned ARI Job No: 1800766	Tracking No:		Land of the second	NA
Preliminary Examination Phase:				
Were intact, properly signed and dated custody seals attached	to the outside of to cooler?		YES	(NO)
Were custody papers included with the cooler?	***************************************		YES	NO
Were custody papers properly filled out (ink, signed, etc.)			VES	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for charmer:				NO
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID)#: poo.	5206
Cooler Accepted by:	Date: 09/17/8 Time:	1931		
Complete custody forms	and attach all shipping documents			
Log-In Phase:		to the same with the said a second and same	9	THE PERSON NAMED IN COLUMN
Was a temperature blank included in the cooler?			YES	4
	p Wellce Gel Packs Baggies Foam I	Plack Paper (400
Was sufficient ice used (if appropriate)?				NO
Were all bottles sealed in individual plastic bags?		NA	WES	NO
			YES	NO
Did all bottles arrive in good condition (unbroken)?			YES	NO
Were all bottle labels complete and legible?			CES	NO
Did the number of containers listed on COC match with the num			YES	NO
Did all bottle labels and tags agree with custody papers?			XES	NO
Were all bottles used correct for the requested analyses?			YES	NO
Do any of the analyses (bottles) require preservation? (attach pr	reservation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bubbles?		NA	YES	NO
Was sufficient amount of sample sent in each bottle?		08084,187	YES	NO
Date VOC Trip Blank was made at ARI		1105	(L)	NO
Was Sample Split by ARI : NA YES Date/Time:		MAS	Split by:	
71.	194/11/11	0745	Split by	
Samples Logged by:Date		014)		
Notify Project Manage	er of discrepancies or concerns **			
Samula ID as Battle				
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Samp	ole ID on CO	OC
		-		
			Marie Control	
Additional Notes, Discrepancies, & Resolutions:		11	-	7
LW-90, all vials have a vbubbles, preservations Leet	lasto determine size,	will be	maker	das
By: JBV Date: 04/18/18				
Small Air Bubbles Peabubbles LARGE Air Bubbles	Small → "sm" (<2 mm)			
- 2mm 2-4 mm > 4 mm	Peabubbles → "pb" (2 to < 4 mm)	227		
	Large > "lg" (4 to < 6 mm)	200		
	Headspace → "hs" (>6 mm)			

0016F 3/2/10

Cooler Receipt Form

Revision 014

Reported: 26-Apr-2018 12:02

Purged Water 18D0266-01 (Water)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 04/17/2018 18:24

Instrument: NT2 Analyzed: 18-Apr-2018 15:21

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BGD0391 Prepared: 18-Apr-2018 Sample Size: 10 mL Final Volume: 10 mL

Detection

Reporting

Analyte CAS Number Dilution Limit Limit Result Units Notes Chloromethane 74-87-3 1 0.09 0.50 ND U ug/L Vinyl Chloride 75-01-4 0.06 0.20 ND ug/L U Bromomethane 74-83-9 1 0.25 1.00 ND ug/L U 75-00-3 U Chloroethane 1 0.09 0.20 ND ug/L U Trichlorofluoromethane 75-69-4 0.04 0.20 ND ug/L Acrolein 107-02-8 1 2.48 5.00 ND ug/L U U 1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-1 0.04 0.20 ND ug/L Acetone 67-64-1 2.06 27.3 1 5.00 ug/L 1,1-Dichloroethene 75-35-4 0.05 0.20 ND ug/L U Bromoethane 74-96-4 0.04 0.20 ND U ug/L Iodomethane U 74-88-4 1.00 ND ug/L 0.23 75-09-2 ND U Methylene Chloride 0.49 1.00 ug/L 107-13-1 Acrylonitrile ND U 0.60 1.00 ug/L Carbon Disulfide 75-15-0 ND U 0.04 0.20 ug/L U trans-1,2-Dichloroethene 156-60-5 0.05 0.20 ND ug/L ND IJ Vinvl Acetate 108-05-4 0.07 0.20 ug/L 1,1-Dichloroethane ND IJ 75-34-3 0.05 0.20 ug/L 2-Butanone 78-93-3 П 0.81 5.00 ND ug/L 2,2-Dichloropropane 594-20-7 U 1 0.05 0.20 ND ug/L cis-1,2-Dichloroethene 156-59-2 1 0.04 0.20 ND ug/L U Chloroform U 67-66-3 1 0.03 0.20 ND ug/L Bromochloromethane 74-97-5 1 0.06 0.20 ND ug/L U 1,1,1-Trichloroethane 71-55-6 1 0.04 0.20 ND ug/L U 1,1-Dichloropropene 563-58-6 1 0.03 0.20 ND ug/L U Carbon tetrachloride 56-23-5 1 0.040.20 ND ug/L U ug/L 1,2-Dichloroethane 107-06-2 0.07 0.20 ND U Benzene 71-43-2 0.03 0.20 ND ug/L U Trichloroethene 79-01-6 0.05 0.20 0.07 ug/L J 1,2-Dichloropropane 78-87-5 0.20 ND U 0.04 ug/L Bromodichloromethane 75-27-4 0.05 0.20 ND U ug/L Dibromomethane 74-95-3 0.20 ND U 0.15 ug/L 2-Chloroethyl vinyl ether 110-75-8 ND U 0.25 1.00 ug/L 4-Methyl-2-Pentanone 108-10-1 0.97 5.00 ND ug/L U

Analytical Resources, Inc.

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

0.20

0.20

0.20

ND

ND

ND

ug/L

ug/L

ug/L

U

U

U

0.06

0.04

0.08

10061-01-5

108-88-3

10061-02-6

Reported: 26-Apr-2018 12:02

Purged Water 18D0266-01 (Water)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 04/17/2018 18:24

Instrument: NT2 Analyzed: 18-Apr-2018 15:21

			Detection	Reporting		,	.pr 2010 15.21
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
2-Hexanone	591-78-6	1	0.90	5.00	ND	ug/L	U
1,1,2-Trichloroethane	79-00-5	1	0.13	0.20	ND	ug/L ug/L	U
1,3-Dichloropropane	142-28-9	1	0.13	0.20	ND	ug/L ug/L	U
Tetrachloroethene	127-18-4	1	0.05	0.20	ND	ug/L ug/L	U
Dibromochloromethane	124-48-1	1	0.05	0.20	ND ND	ug/L ug/L	U
1.2-Dibromoethane	106-93-4	1	0.03	0.20	ND	ug/L ug/L	U
Chlorobenzene	108-90-7	1	0.07	0.20	ND	ug/L ug/L	U
Ethylbenzene	100-41-4	1	0.02	0.20	0.06	ug/L ug/L	J
1,1,1,2-Tetrachloroethane	630-20-6	1	0.04	0.20	0.00 ND	ug/L ug/L	U
m,p-Xylene	179601-23-1	1	0.04	0.40	0.16	ug/L ug/L	J
o-Xylene	95-47-6	1	0.03	0.40	0.16 ND	-	J U
Xylenes, total	1330-20-7	1	0.03	0.20		ug/L	J
		1			0.16	ug/L	U
Styrene Bromoform	100-42-5	-	0.05	0.20	ND	ug/L	
	75-25-2 79-34-5	1	0.06	0.20	ND	ug/L	U U
1,1,2,2-Tetrachloroethane	/9-34-3 96-18-4	1 1	0.06	0.20	ND	ug/L	U
1,2,3-Trichloropropane		-	0.13	0.50	ND	ug/L	
trans-1,4-Dichloro 2-Butene	110-57-6	1	0.32	1.00	ND	ug/L	U
n-Propylbenzene	103-65-1	1	0.02	0.20	ND	ug/L	U
Bromobenzene	108-86-1	1	0.06	0.20	ND	ug/L	U
Isopropyl Benzene	98-82-8	1	0.02	0.20	ND	ug/L	U
2-Chlorotoluene	95-49-8	1	0.02	0.20	ND	ug/L	U
4-Chlorotoluene	106-43-4	1	0.02	0.20	ND	ug/L	U
t-Butylbenzene	98-06-6	1	0.03	0.20	ND	ug/L	U
1,3,5-Trimethylbenzene	108-67-8	1	0.02	0.20	ND	ug/L	U
1,2,4-Trimethylbenzene	95-63-6	1	0.02	0.20	0.11	ug/L	J
s-Butylbenzene	135-98-8	1	0.02	0.20	ND	ug/L	U
4-Isopropyl Toluene	99-87-6	1	0.03	0.20	ND	ug/L	U
1,3-Dichlorobenzene	541-73-1	1	0.04	0.20	ND	ug/L	U
1,4-Dichlorobenzene	106-46-7	1	0.04	0.20	ND	ug/L	U
n-Butylbenzene	104-51-8	1	0.02	0.20	ND	ug/L	U
1,2-Dichlorobenzene	95-50-1	1	0.04	0.20	ND	ug/L	U
1,2-Dibromo-3-chloropropane	96-12-8	1	0.37	0.50	ND	ug/L	U
1,2,4-Trichlorobenzene	120-82-1	1	0.11	0.50	ND	ug/L	U
Hexachloro-1,3-Butadiene	87-68-3	1	0.07	0.50	ND	ug/L	U
Naphthalene	91-20-3	1	0.12	0.50	ND	ug/L	U
1,2,3-Trichlorobenzene	87-61-6	1	0.11	0.50	ND	ug/L	U
Dichlorodifluoromethane	75-71-8	1	0.05	0.20	ND	ug/L	U
Methyl tert-butyl Ether	1634-04-4	1	0.07	0.50	ND	ug/L	U
2-Pentanone	107-87-9	1	5.00	5.00	ND	ug/L	U

Analytical Resources, Inc.

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: [none] Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 26-Apr-2018 12:02

Purged Water 18D0266-01 (Water)

Volatile Organic Compounds

Method: EPA 8260C Sampled: 04/17/2018 18:24

Instrument: NT2 Analyzed: 18-Apr-2018 15:21

		Recovery			
Analyte	CAS Number	Limits	Recovery	Units	Notes
Surrogate: 1,2-Dichloroethane-d4		80-129 %	104	%	
Surrogate: Toluene-d8		80-120 %	96.6	%	
Surrogate: 4-Bromofluorobenzene		80-120 %	97.6	%	
Surrogate: 1,2-Dichlorobenzene-d4		80-120 %	103	%	

Hart CrowserProject: Paccar3131 Elliott Ave Suite 600Project Number: [none]Reported:Seattle WA, 98121Project Manager: Roy Jensen26-Apr-2018 12:02

Purged Water 18D0266-01 (Water)

Petroleum Hydrocarbons

Method: NWTPH-Dx Sampled: 04/17/2018 18:24

Instrument: FID4 Analyzed: 25-Apr-2018 04:04

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BGD0404 Prepared: 19-Apr-2018 Sample Size: 500 mL Final Volume: 1 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Diesel Range Organics (C12-C24)		1	0.100	ND	mg/L	U
Motor Oil Range Organics (C24-C38)		1	0.200	ND	mg/L	U
Surrogate: o-Terphenyl			50-150 %	70.5	%	

Analytical Resources, Inc.

Hart CrowserProject: Paccar3131 Elliott Ave Suite 600Project Number: [none]Reported:Seattle WA, 98121Project Manager: Roy Jensen26-Apr-2018 12:02

Purged Water 18D0266-01 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/17/2018 18:24

Instrument: ICPMS2 Analyzed: 19-Apr-2018 12:21

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Reporting Detection CAS Number Dilution Limit Analyte Limit Result Units Notes 7440-47-3 Chromium 0.500 ND U 0.130 ug/L 7439-92-1 0.0680 0.100 Lead 1 0.343 ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: [none] Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 26-Apr-2018 12:02

Purged Water 18D0266-01 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 18:24

Instrument: ICPMS2 Analyzed: 19-Apr-2018 12:21

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution CAS Number Limit Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 1.82 Arsenic ug/L

Analytical Resources, Inc.

Hart CrowserProject:Paccar3131 Elliott Ave Suite 600Project Number:[none]Reported:Seattle WA, 98121Project Manager:Roy Jensen26-Apr-2018 12:02

LW-9D 18D0266-02 (Water)

Volatile Organic Compounds - SIM

Surrogate: 4-Bromofluorobenzene

Method: EPA 8260C-SIM Sampled: 04/17/2018 16:00

Instrument: NT16 Analyzed: 19-Apr-2018 17:34

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BGD0466 Prepared: 19-Apr-2018 Sample Size: 10 mL Final Volume: 10 mL

Reporting CAS Number Dilution Limit Analyte Result Units Notes Vinyl chloride 75-01-4 1 20.0 346 ng/L M Surrogate: 1,2-Dichloroethane-d4 80-129 % % 107 Surrogate: Toluene-d8 % 80-120 % 95.6

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

75-125 %

96.9

%

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: [none] Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 26-Apr-2018 12:02

LW-9D 18D0266-02 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 16:00

Instrument: ICPMS2 Analyzed: 19-Apr-2018 14:58

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 9.16 Arsenic ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: [none]

Reported: 26-Apr-2018 12:02

LW-6D 18D0266-03 (Water)

Project Manager: Roy Jensen

Metals and Metallic Compounds

Seattle WA, 98121

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 14:59

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:02

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 9.18 Arsenic ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar 3131 Elliott Ave Suite 600 Project Number: [none] Reported: Seattle WA, 98121 Project Manager: Roy Jensen 26-Apr-2018 12:02

CW-1S 18D0266-04 (Water)

Volatile Organic Compounds - SIM

Method: EPA 8260C-SIM Sampled: 04/17/2018 13:15

Instrument: NT16 Analyzed: 19-Apr-2018 19:21

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BGD0466

Sample Size: 10 mL

Final Volume: 10 mL Prepared: 19-Apr-2018

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Vinyl chloride	75-01-4	1	20.0	24.3	ng/L	M
Surrogate: 1,2-Dichloroethane-d4			80-129 %	105	%	
Surrogate: Toluene-d8			80-120 %	96.7	%	
Surrogate: 4-Bromofluorobenzene			75-125 %	96.2	%	

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: [none]
Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 26-Apr-2018 12:02

CW-1S 18D0266-04 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 13:15

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:07

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 0.884 Arsenic ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: [none] Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 26-Apr-2018 12:02

MW-3I 18D0266-05 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 17:07

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:12

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Analyte Limit Result Units Notes 7440-38-2 0.0220 0.200 13.9 Arsenic ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar 3131 Elliott Ave Suite 600 Project Number: [none] Reported: Seattle WA, 98121 Project Manager: Roy Jensen 26-Apr-2018 12:02

CW-100S 18D0266-06 (Water)

Volatile Organic Compounds - SIM

Method: EPA 8260C-SIM Sampled: 04/17/2018 13:00

Instrument: NT16 Analyzed: 19-Apr-2018 19:41

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BGD0466

Sample Size: 10 mL

Final Volume: 10 mL Prepared: 19-Apr-2018

		Reporting			
CAS Number	Dilution	Limit	Result	Units	Notes
75-01-4	1	20.0	25.1	ng/L	M
		80-129 %	106	%	
		80-120 %	96.1	%	
		75-125 %	97.2	%	
			CAS Number Dilution Limit 75-01-4 1 20.0 80-129 % 80-120 %	CAS Number Dilution Limit Result 75-01-4 1 20.0 25.1 80-129 % 106 80-120 % 96.1	CAS Number Dilution Limit Result Units 75-01-4 1 20.0 25.1 ng/L 80-129 % 106 % 80-120 % 96.1 %

Analytical Resources, Inc.

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: [none]
Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 26-Apr-2018 12:02

CW-100S 18D0266-06 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 13:00

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:16

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 0.938 Arsenic ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: [none]
Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 26-Apr-2018 12:02

LW-9S

18D0266-07 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 17:37

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:21

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 7.31 Arsenic ug/L

Analytical Resources, Inc.

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: [none]

Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 26-Apr-2018 12:02

CW-1D 18D0266-08 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/17/2018 12:05

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:26

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Units Analyte Limit Result Notes 7440-38-2 0.0220 0.200 5.16 Arsenic ug/L

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BGD0391-BLK2)				Prepa	red: 18-Apr	r-2018 Ana	lyzed: 18-A	pr-2018 09	1:14		
Chloromethane	ND	0.09	0.50	ug/L			·				U
Vinyl Chloride	ND	0.06	0.20	ug/L							U
Bromomethane	ND	0.25	1.00	ug/L							U
Chloroethane	ND	0.09	0.20	ug/L							U
Trichlorofluoromethane	ND	0.04	0.20	ug/L							U
Acrolein	ND	2.48	5.00	ug/L							U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.04	0.20	ug/L							U
Acetone	ND	2.06	5.00	ug/L							U
1,1-Dichloroethene	ND	0.05	0.20	ug/L							U
Bromoethane	ND	0.04	0.20	ug/L							U
Iodomethane	ND	0.23	1.00	ug/L							U
Methylene Chloride	ND	0.49	1.00	ug/L							U
Acrylonitrile	ND	0.60	1.00	ug/L							U
Carbon Disulfide	ND	0.04	0.20	ug/L							U
trans-1,2-Dichloroethene	ND	0.05	0.20	ug/L							U
Vinyl Acetate	ND	0.07	0.20	ug/L							U
1,1-Dichloroethane	ND	0.05	0.20	ug/L							U
2-Butanone	ND	0.81	5.00	ug/L							U
2,2-Dichloropropane	ND	0.05	0.20	ug/L							U
cis-1,2-Dichloroethene	ND	0.04	0.20	ug/L							U
Chloroform	ND	0.03	0.20	ug/L							U
Bromochloromethane	ND	0.06	0.20	ug/L							U
1,1,1-Trichloroethane	ND	0.04	0.20	ug/L							U
1,1-Dichloropropene	ND	0.03	0.20	ug/L							U
Carbon tetrachloride	ND	0.04	0.20	ug/L							U
1,2-Dichloroethane	ND	0.07	0.20	ug/L							U
Benzene	ND	0.03	0.20	ug/L							U
Trichloroethene	ND	0.05	0.20	ug/L							U
1,2-Dichloropropane	ND	0.04	0.20	ug/L							U
Bromodichloromethane	ND	0.05	0.20	ug/L							U
Dibromomethane	ND	0.15	0.20	ug/L							U
2-Chloroethyl vinyl ether	ND	0.25	1.00	ug/L							U
4-Methyl-2-Pentanone	ND	0.97	5.00	ug/L							U
cis-1,3-Dichloropropene	ND	0.06	0.20	ug/L							U
Toluene	ND	0.04	0.20	ug/L							U

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

Prepared: 18-Apr-2018 Analyzed: 18-Apr-2018 Op: 14	QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
rams-1,3-Dichloropropene ND 0.08 0.20 ug/L Lilexanone ND 0.90 5.00 ug/L Lilexanone ND 0.90 5.00 ug/L Lilexanone ND 0.05 0.20 ug/L Lilexanone ND 0.06 0.20 ug/L Lilexanone ND 0.05 0.20 ug/L Uchronochlorophane ND 0.05 0.20 ug/L Dibromochlorophane ND 0.07 0.20 ug/L Lilexoberazee ND 0.07 0.20 ug/L Lilexoberazee ND 0.04 0.20 ug/L Lilexoberazee ND 0.04 0.20 ug/L Lilexoberazee ND 0.04 0.20 ug/L Sylene ND 0.05 0.40 ug/L Sylene ND 0.05 0.20 ug/L Sylenes, total ND 0.05 0.20 ug/L					Prena	red: 18-Apr		lyzed: 18-A		1:14		
Part	trans-1,3-Dichloropropene	ND	0.08	0.20		10 /1p.		, 10 T	r- 2010 0.			U
1,1,2-Trichlorochane ND	2-Hexanone											
1. 1. 1. 1. 1. 1. 1. 1.	1,1,2-Trichloroethane											U
Remachloroethene ND 0.05 0.20 ug/L Otheromethane ND 0.05 0.20 ug/L Call-Debromethane ND 0.07 0.20 ug/L Call-Debromethane ND 0.02 0.20 ug/L Call-Incordenace ND 0.04 0.20 ug/L L1,1,2-Tetrachloroethane ND 0.05 0.40 ug/L L1,1,2-Tetrachloroethane ND 0.05 0.40 ug/L L1,1,2-Tetrachloroethane ND 0.05 0.20 ug/L Sylene ND 0.06 0.20 ug/L <t< td=""><td>1,3-Dichloropropane</td><td>ND</td><td></td><td>0.20</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td></t<>	1,3-Dichloropropane	ND		0.20	-							U
Dibromochloromethane ND 0.05 0.20 ug/L 1,2-Dibromochlane ND 0.07 0.20 ug/L Chlybonzene ND 0.02 0.20 ug/L Chlybonzene ND 0.04 0.20 ug/L Chlybonzene ND 0.04 0.20 ug/L Chlybonzene ND 0.04 0.20 ug/L Cylene ND 0.03 0.20 ug/L Cylenes, total ND 0.05 0.20 ug/L Cylenes, total ND 0.06 0.20 ug/L Cylenes, total ND 0.06 0.20 ug/L	Tetrachloroethene	ND			_							U
Ehlorobenzene ND 0.02 0.20 ug/L 2thylbenzene ND 0.04 0.20 ug/L 1,1,1,2-Tetrachlorochane ND 0.04 0.20 ug/L mp-Xylene ND 0.05 0.40 ug/L yklenes, total ND 0.09 0.60 ug/L kylene ND 0.05 0.20 ug/L kyrene ND 0.05 0.20 ug/L kyrene ND 0.06 0.20 ug/L kyrene ND 0.03 0.20 ug/L kyrene ND 0.03 0.20 ug/L kyrene ND 0.	Dibromochloromethane	ND	0.05	0.20								U
Chlorobenzene ND 0.02 0.20 ug/L Zibtybenzene ND 0.04 0.20 ug/L Li, 1, 2-Tetrachloroethane ND 0.04 0.20 ug/L m.pXylene ND 0.05 0.40 ug/L Vylenes, total ND 0.03 0.20 ug/L Syrene ND 0.05 0.20 ug/L Gromoform ND 0.06 0.20 ug/L L1, 2, 2-Tetrachloroethane ND 0.06 0.20 ug/L L1, 2, 2-Tetrachloroethane ND 0.13 0.50 ug/L L1, 2, 2-Tetrachloroethane ND 0.06 0.20 ug/L L1, 2, 2-Tetrachloroethane ND 0.13 0.50 ug/L L2, 2-Tetrachloroethane ND 0.02 ug/L L3, 2-Tetrachloroethane ND 0.03 0.20 ug/L L4-Chloroethane ND 0.02 ug/L C-Propylbenzene ND 0.02 ug/L	1,2-Dibromoethane	ND	0.07	0.20	-							U
	Chlorobenzene	ND	0.02	0.20	ug/L							U
n.pXylene ND 0.05 0.40 ug/L 0-Xylene ND 0.03 0.20 ug/L Xylenes, total ND 0.09 0.60 ug/L Xyrene ND 0.05 0.20 ug/L 3romoform ND 0.06 0.20 ug/L 1,1,2,2-Tetrachloroethane ND 0.06 0.20 ug/L 1,2,2-Tetrachloroethane ND 0.13 0.50 ug/L 1,2,2-Tetrachloroethane ND 0.02 0.20 ug/L 1,2,2-Tetrachloroethane ND 0.02 0.20 ug/L 2-Chloridochane ND 0.02 0.20 ug/L 2-Chloridochune ND 0.02 0.20 ug/L 2-Bulylbenzene ND 0.02 <td>Ethylbenzene</td> <td>ND</td> <td>0.04</td> <td>0.20</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td>	Ethylbenzene	ND	0.04	0.20	ug/L							U
n.pXylene ND 0.05 0.40 ug/L 0-Xylene ND 0.03 0.20 ug/L Xylenes, total ND 0.09 0.60 ug/L Xyrene ND 0.05 0.20 ug/L 3romoform ND 0.06 0.20 ug/L 1,1,2,2-Tetrachloroethane ND 0.06 0.20 ug/L 1,2,2-Tetrachloroethane ND 0.13 0.50 ug/L 1,2,2-Tetrachloroethane ND 0.02 0.20 ug/L 1,2,2-Tetrachloroethane ND 0.02 0.20 ug/L 2-Chloridochane ND 0.02 0.20 ug/L 2-Chloridochune ND 0.02 0.20 ug/L 2-Bulylbenzene ND 0.02 <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>0.04</td> <td>0.20</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td>	1,1,1,2-Tetrachloroethane	ND	0.04	0.20	ug/L							U
Kylenes, total ND 0.09 0.60 ug/L Styrene ND 0.05 0.20 ug/L Gromoform ND 0.06 0.20 ug/L L1,2,2-Tetrachlorochane ND 0.06 0.20 ug/L L1,2,3-Trichloropropane ND 0.13 0.50 ug/L U L1,2,3-Trichlorocy-Butene ND 0.32 1.00 ug/L U Propylbenzene ND 0.02 0.20 ug/L U U Publybenzene ND	m,p-Xylene	ND	0.05	0.40								U
Skyrene ND 0.05 0.20 ug/L U Bromoform ND 0.06 0.20 ug/L U 1,1,2,2-Tetrachloroethane ND 0.06 0.20 ug/L U 1,2,3-Trichloropropane ND 0.13 0.50 ug/L U Propryblenzene ND 0.32 1.00 ug/L U Propryblenzene ND 0.02 ug/L U Bromobenzene ND 0.06 0.20 ug/L U Portpryblenzene ND 0.02 0.20 ug/L U Portpr	o-Xylene	ND	0.03	0.20	ug/L							U
Bromoform ND 0.06 0.20 ug/L 1,1,2,2-Tetrachloroethane ND 0.06 0.20 ug/L 1,2,3-Trichloropropane ND 0.13 0.50 ug/L crans-1,4-Dichloro 2-Butene ND 0.32 1.00 ug/L d-Propylbenzene ND 0.02 0.20 ug/L d-Romobenzene ND 0.02 0.20 ug/L d-Romobenzene ND 0.02 0.20 ug/L d-Chlorotoluene ND 0.02 0.20 ug/L d-Lys-Trimethylbenzene ND 0.02 0.20 ug/L d-Butylbenzene ND 0.02 0.20 ug/L d-Butylbenzene ND 0.04	Xylenes, total	ND	0.09	0.60	ug/L							U
1,1,2,2-Tetrachloroethane	Styrene	ND	0.05	0.20	ug/L							U
ND 0.13 0.50 ug/L U U U U U U U U U	Bromoform	ND	0.06	0.20	ug/L							U
Tans-1,4-Dichloro 2-Butene ND 0.32 1.00 ug/L U U U U U U U U U	1,1,2,2-Tetrachloroethane	ND	0.06	0.20	ug/L							U
ND 0.02 0.20 ug/L U U U U U U U U U	1,2,3-Trichloropropane	ND	0.13	0.50	ug/L							U
ND 0.06 0.20 ug/L U	trans-1,4-Dichloro 2-Butene	ND	0.32	1.00	ug/L							U
ND ND ND ND ND ND ND ND	n-Propylbenzene	ND	0.02	0.20	ug/L							U
ND 0.02 0.20 ug/L U -Butylbenzene ND 0.02 0.20 ug/L U -Butylbenzene ND 0.03 0.20 ug/L U -Butylbenzene ND 0.02 0.20 ug/L U -Butylbenzene ND 0.03 0.20 ug/L U -Butylbenzene ND 0.04 0.20 ug/L U -Butylbenzene ND 0.20 ug/L U -Butylbe	Bromobenzene	ND	0.06	0.20	ug/L							U
A-Chlorotoluene	Isopropyl Benzene	ND	0.02	0.20	ug/L							U
ND 0.03 0.20 ug/L U U U U U U U U U	2-Chlorotoluene	ND	0.02	0.20	ug/L							U
1,3,5-Trimethylbenzene ND 0.02 0.20 ug/L U 1,2,4-Trimethylbenzene ND 0.02 0.20 ug/L U 2-Butylbenzene ND 0.02 0.20 ug/L U 4-Isopropyl Toluene ND 0.03 0.20 ug/L U 1,3-Dichlorobenzene ND 0.04 0.20 ug/L U 1,4-Dichlorobenzene ND 0.04 0.20 ug/L U 1,2-Dichlorobenzene ND 0.04 0.20 ug/L U 1,2-Dichlorobenzene ND 0.04 0.20 ug/L U 1,2-Dichlorobenzene ND 0.37 0.50 ug/L U 1,2-Dibromo-3-chloropropane ND 0.37 0.50 ug/L U 1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	4-Chlorotoluene	ND	0.02	0.20	ug/L							U
1,2,4-Trimethylbenzene	t-Butylbenzene	ND	0.03	0.20	ug/L							U
A-Butylbenzene ND 0.02 0.20 ug/L U 4-Isopropyl Toluene ND 0.03 0.20 ug/L U 1,3-Dichlorobenzene ND 0.04 0.20 ug/L U 1,4-Dichlorobenzene ND 0.04 0.20 ug/L U a-Butylbenzene 0.03 0.02 0.20 ug/L J 1,2-Dichlorobenzene ND 0.04 0.20 ug/L U 1,2-Dibromo-3-chloropropane ND 0.37 0.50 ug/L U 1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	1,3,5-Trimethylbenzene	ND	0.02	0.20	ug/L							U
1-Isopropyl Toluene ND 0.03 0.20 ug/L Ug/L Ug/L 1,3-Dichlorobenzene ND 0.04 0.20 ug/L Ug/L 1,4-Dichlorobenzene ND 0.04 0.20 ug/L Ug/L 1-Butylbenzene 0.03 0.02 0.20 ug/L Ug/L 1,2-Dichlorobenzene ND 0.04 0.20 ug/L Ug/L 1,2-Dichlorobenzene ND 0.37 0.50 ug/L Ug/L 1,2-Diromo-3-chloropropane ND 0.37 0.50 ug/L Ug/L 1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L	1,2,4-Trimethylbenzene	ND	0.02	0.20	ug/L							U
1,3-Dichlorobenzene	s-Butylbenzene	ND	0.02	0.20	ug/L							U
1,4-Dichlorobenzene ND 0.04 0.20 ug/L U n-Butylbenzene 0.03 0.02 0.20 ug/L J 1,2-Dichlorobenzene ND 0.04 0.20 ug/L U 1,2-Dibromo-3-chloropropane ND 0.37 0.50 ug/L U 1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	4-Isopropyl Toluene	ND	0.03	0.20	ug/L							U
n-Butylbenzene 0.03 0.02 0.20 ug/L J.,2-Dichlorobenzene ND 0.04 0.20 ug/L U U.,2-Dibromo-3-chloropropane ND 0.37 0.50 ug/L U U.,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	1,3-Dichlorobenzene	ND	0.04	0.20								U
1,2-Dichlorobenzene ND 0.04 0.20 ug/L U 1,2-Dibromo-3-chloropropane ND 0.37 0.50 ug/L U 1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	1,4-Dichlorobenzene	ND	0.04	0.20	ug/L							U
1,2-Dibromo-3-chloropropane ND 0.37 0.50 ug/L U 1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	n-Butylbenzene	0.03	0.02	0.20	ug/L							J
1,2,4-Trichlorobenzene ND 0.11 0.50 ug/L U	1,2-Dichlorobenzene	ND	0.04	0.20	ug/L							
•	1,2-Dibromo-3-chloropropane	ND	0.37	0.50	ug/L							U
Hexachloro-1,3-Butadiene 0.08 0.07 0.50 ug/L	1,2,4-Trichlorobenzene	ND	0.11	0.50	ug/L							U
	Hexachloro-1,3-Butadiene	0.08	0.07	0.50	ug/L							J

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

OC Sample/Analyte	P.ogul+	Detection	Reporting	Unite	Spike	Source	%REC	%REC	DDD	RPD Limit	Notes
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%KEC	Limits	RPD	Limit	Notes
Blank (BGD0391-BLK2)					ared: 18-Apı	r-2018 Ana	lyzed: 18-A	Apr-2018 09	9:14		
Naphthalene	ND	0.12	0.50	ug/L							U
1,2,3-Trichlorobenzene	ND	0.11	0.50	ug/L							U
Dichlorodifluoromethane	ND	0.05	0.20	ug/L							U
Methyl tert-butyl Ether	ND	0.07	0.50	ug/L							U
2-Pentanone	ND	5.00	5.00	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	5.18			ug/L	5.00	<u> </u>	104	81-118			<u> </u>
Surrogate: Toluene-d8	4.77			ug/L	5.00		95.4	89-112			
Surrogate: 4-Bromofluorobenzene	4.83			ug/L	5.00		96.5	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	5.07			ug/L	5.00		101	80-120			
LCS (BGD0391-BS2)				Prepa	ared: 18-Apı	r-2018 Ana	lyzed: 18-A	Apr-2018 07	7:52		
Chloromethane	7.35			ug/L	10.0		73.5	60-138			Q
Vinyl Chloride	8.91			ug/L	10.0		89.1	66-133			
Bromomethane	9.32			ug/L	10.0		93.2	72-131			
Chloroethane	12.0			ug/L	10.0		120	60-155			
Trichlorofluoromethane	9.47			ug/L	10.0		94.7	80-129			
Acrolein	46.0			ug/L	50.0		92.0	52-144			
1,1,2-Trichloro-1,2,2-Trifluoroethane	10.9			ug/L	10.0		109	76-129			
Acetone	43.0			ug/L	50.0		86.0	58-142			
1,1-Dichloroethene	9.90			ug/L	10.0		99.0	71-131			
Bromoethane	8.99			ug/L	10.0		89.9	78-128			
Iodomethane	10.4			ug/L	10.0		104	56-147			
Methylene Chloride	9.09			ug/L	10.0		90.9	65-135			
Acrylonitrile	8.79			ug/L	10.0		87.9	64-134			
Carbon Disulfide	9.33			ug/L	10.0		93.3	78-125			
trans-1,2-Dichloroethene	9.44			ug/L	10.0		94.4	78-128			
Vinyl Acetate	8.72			ug/L	10.0		87.2	55-138			
1,1-Dichloroethane	10.1			ug/L	10.0		101	76-124			
2-Butanone	44.5			ug/L	50.0		89.1	61-140			
2,2-Dichloropropane	9.15			ug/L	10.0		91.5	78-125			
cis-1,2-Dichloroethene	9.55			ug/L	10.0		95.5	80-121			
Chloroform	10.3			ug/L	10.0		103	80-122			
Bromochloromethane	10.3			ug/L	10.0		103	80-121			
1,1,1-Trichloroethane	10.2			ug/L	10.0		102	79-123			
1,1-Dichloropropene	10.5			ug/L	10.0		105	80-120			

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

Completanalyte Comp	Notes
Carbon tetrachloride 10.0 ug/L 10.0 100 \$3-137 1,2-Dichloroethane 10.8 ug/L 10.0 108 75-123 Benzene 9.99 ug/L 10.0 99.9 80-120 Trichloroethene 10.5 ug/L 10.0 105 80-120 12-Dichloropropane 9.73 ug/L 10.0 97.3 80-120 Bromodichloromethane 10.1 ug/L 10.0 102 80-121 Dibromomethane 10.1 ug/L 10.0 101 80-120 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 3cs-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 10.1 71-127 2-Hexanone 44.5	
1.2-Dichloroethane 10.8 ug/L 10.0 10.8 75-123 Benzene 9.99 ug/L 10.0 99.9 80-120 Trichloroethene 10.5 ug/L 10.0 105 80-120 1,2-Dichloropropane 9.73 ug/L 10.0 97.3 80-120 Bromodichloromethane 10.1 ug/L 10.0 102 80-121 Dibromomethane 10.1 ug/L 10.0 101 80-120 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 97.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 10.1 71-127 2-Hexanone 44.5 ug/L 10.0 10.0 88.9 69-133 1,1,2-Tichloroethane	
Benzene 9.99 ug/L 10.0 99.9 80-120 Trichloroethene 10.5 ug/L 10.0 10.5 80-120 1,2-Dichloropropane 9.73 ug/L 10.0 97.3 80-120 Bromodichloromethane 10.2 ug/L 10.0 102 80-121 Dibromomethane 10.1 ug/L 10.0 93.2 74-127 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 10.0 97.8 80-124 4-Methyl-2-Pentanone 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 10.1 80-120 1,2-Trichloroethane 10.0 ug/L 10.0 10.1 80-120 Dibromochloromethane	
Trichloroethene 10.5 ug/L 10.0 105 80-120 1,2-Dichloropropane 9.73 ug/L 10.0 97.3 80-120 Bromodichloromethane 10.2 ug/L 10.0 102 80-121 Dibromomethane 10.1 ug/L 10.0 101 80-120 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 cis-1,3-Dichloropropene 9.68 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 97.8 80-124 1-1,2-Trichloropropene 10.1 ug/L 10.0 96.8 80-120 1-1,2-Trichloroethane 10.0 ug/L 10.0 101 71-127 2-Hexanone 9.93 ug/L 10.0 100 80-13 1,2-Trichloroethane 10.0 ug/L 10.0 101 80-120 Ethyloroethane	
1,2-Dichloropropane 9.73 ug/L 10.0 97.3 80-120 Bromodichloromethane 10.2 ug/L 10.0 102 80-121 Dibromomethane 10.1 ug/L 10.0 101 80-120 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 cis-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 97.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 10.1 71-127 2-Hexanone 44.5 ug/L 10.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 99.3 80-120 1,3-Dichloropropane 10.3 ug/L 10.0 10.1 80-120 Dibromochlaroethane 10.1 ug/L 10.0 10.1 80-120 Chlorobenzene </th <th></th>	
Bromodichloromethane 10.2 ug/L 10.0 102 80-121 Dibromomethane 10.1 ug/L 10.0 101 80-120 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 cis-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 10.0 100 80-133 1,1,2-Trichloropthane 10.0 ug/L 10.0 100 80-119 1,3-Dichloroptopane 10.3 ug/L 10.0 103 80-120 Pibromochloromethane 10.1 ug/L 10.0 101 85-135 1,2-Dibromochlane 10.1 ug/L 10.0 101 80-121 Chlorobenzene	
Dibromomethane 10.1 ug/L 10.0 101 80-120 2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 cis-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 103 80-120 Etrachloroethane 10.1 ug/L 10.0 101 85-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 101 80-120 thylbenzene 20.6	
2-Chloroethyl vinyl ether 9.32 ug/L 10.0 93.2 74-127 4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 cis-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethane 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 101 80-120 I,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 mp-	
4-Methyl-2-Pentanone 47.2 ug/L 50.0 94.5 67-133 cis-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 103 80-120 Tetrachloroethane 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 98.3 80-120 np-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0<	
cis-1,3-Dichloropropene 9.78 ug/L 10.0 97.8 80-124 Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethene 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 85-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 100 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 103 80-120 m,p-Xylene 20.6 </td <td></td>	
Toluene 9.68 ug/L 10.0 96.8 80-120 trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethene 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.0 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 98.3 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 <t< td=""><td></td></t<>	
trans-1,3-Dichloropropene 10.1 ug/L 10.0 101 71-127 2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethane 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 98.3 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 10.0 100 80-121	
2-Hexanone 44.5 ug/L 50.0 88.9 69-133 1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethene 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 100 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 mp-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
1,1,2-Trichloroethane 10.0 ug/L 10.0 100 80-119 1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethene 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 98.3 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
1,3-Dichloropropane 9.93 ug/L 10.0 99.3 80-120 Tetrachloroethene 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 98.3 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
Tetrachloroethene 10.3 ug/L 10.0 103 80-120 Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 98.3 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
Dibromochloromethane 10.1 ug/L 10.0 101 65-135 1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 100 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 80-121	
1,2-Dibromoethane 10.1 ug/L 10.0 101 80-121 Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 100 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
Chlorobenzene 10.1 ug/L 10.0 101 80-120 Ethylbenzene 10.0 ug/L 10.0 100 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
Ethylbenzene 10.0 ug/L 10.0 100 80-120 1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
1,1,1,2-Tetrachloroethane 9.83 ug/L 10.0 98.3 80-120 m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
m,p-Xylene 20.6 ug/L 20.0 103 80-121 o-Xylene 10.0 ug/L 10.0 100 80-121	
o-Xylene 10.0 ug/L 10.0 100 80-121	
Xylenes, total 30.6 ug/L 30.0 102 76-127	
Styrene 10.4 ug/L 10.0 104 80-124	
Bromoform 9.48 ug/L 10.0 94.8 51-134	
1,1,2,2-Tetrachloroethane 9.28 ug/L 10.0 92.8 77-123	
1,2,3-Trichloropropane 9.67 ug/L 10.0 96.7 76-125	
trans-1,4-Dichloro 2-Butene 8.38 ug/L 10.0 83.8 55-129	
n-Propylbenzene 10.3 ug/L 10.0 103 $78-130$	
Bromobenzene 10.1 ug/L 10.0 101 80-120	
Isopropyl Benzene 10.1 ug/L 10.0 101 80-128	
2-Chlorotoluene 9.93 ug/L 10.0 99.3 78-122	
4-Chlorotoluene 10.2 ug/L 10.0 102 80-121	
t-Butylbenzene 10.0 ug/L 10.0 100 78-125	

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	result	Liiiit	Dimit							Dillit	110103
LCS (BGD0391-BS2)						-2018 A	nalyzed: 18-	•	7:52		
1,3,5-Trimethylbenzene	10.2			ug/L	10.0		102	80-129			
1,2,4-Trimethylbenzene	10.2			ug/L	10.0		102	80-127			
s-Butylbenzene	10.3			ug/L	10.0		103	78-129			
4-Isopropyl Toluene	10.5			ug/L	10.0		105	79-130			
1,3-Dichlorobenzene	10.5			ug/L	10.0		105	80-120			
1,4-Dichlorobenzene	10.1			ug/L	10.0		101	80-120			
n-Butylbenzene	10.7			ug/L	10.0		107	74-129			
1,2-Dichlorobenzene	9.92			ug/L	10.0		99.2	80-120			
1,2-Dibromo-3-chloropropane	9.25			ug/L	10.0		92.5	62-123			
1,2,4-Trichlorobenzene	10.7			ug/L	10.0		107	64-124			
Hexachloro-1,3-Butadiene	10.5			ug/L	10.0		105	58-123			
Naphthalene	9.52			ug/L	10.0		95.2	50-134			
1,2,3-Trichlorobenzene	10.5			ug/L	10.0		105	49-133			
Dichlorodifluoromethane	9.05			ug/L	10.0		90.5	48-147			
Methyl tert-butyl Ether	9.27			ug/L	10.0		92.7	71-132			
2-Pentanone	45.4			ug/L	50.0		90.9	69-134			
Surrogate: 1,2-Dichloroethane-d4	5.17			ug/L	5.00		103	81-118			
Surrogate: Toluene-d8	4.91			ug/L	5.00		98.2	89-112			
Surrogate: 4-Bromofluorobenzene	5.19			ug/L	5.00		104	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	4.94			ug/L	5.00		98.8	80-120			
LCS Dup (BGD0391-BSD2)				Prepa	red: 18-Apr	-2018 A	nalyzed: 18-	Apr-2018 08	3:33		
Chloromethane	8.11			ug/L	10.0		81.1	60-138	9.84	30	Q
Vinyl Chloride	9.48			ug/L	10.0		94.8	66-133	6.21	20	
Bromomethane	9.66			ug/L	10.0		96.6	72-131	3.59	30	
Chloroethane	12.4			ug/L	10.0		124	60-155	2.99	30	
Trichlorofluoromethane	9.89			ug/L	10.0		98.9	80-129	4.32	30	
Acrolein	48.7			ug/L	50.0		97.3	52-144	5.58	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	11.4			ug/L	10.0		114	76-129	4.68	30	
Acetone	46.0			ug/L	50.0		92.0	58-142	6.73	30	
1,1-Dichloroethene	10.4			ug/L	10.0		104	71-131	4.51	20	
Bromoethane	9.88			ug/L	10.0		98.8	78-128	9.44	30	
odomethane	10.8			ug/L	10.0		108	56-147	4.06	30	
Methylene Chloride	9.48			ug/L	10.0		94.8	65-135	4.28	30	
Acrylonitrile	8.91			ug/L	10.0		89.1	64-134	1.35	30	

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BGD0391-BSD2)				Prepa	ared: 18-Apr	-2018 Ana	ılyzed: 18-A	Apr-2018 08	3:33		
Carbon Disulfide	9.64			ug/L	10.0		96.4	78-125	3.24	30	
trans-1,2-Dichloroethene	9.76			ug/L	10.0		97.6	78-128	3.37	30	
Vinyl Acetate	9.47			ug/L	10.0		94.7	55-138	8.21	30	
1,1-Dichloroethane	10.7			ug/L	10.0		107	76-124	6.12	30	
2-Butanone	47.7			ug/L	50.0		95.3	61-140	6.79	30	
2,2-Dichloropropane	9.19			ug/L	10.0		91.9	78-125	0.40	30	
cis-1,2-Dichloroethene	9.95			ug/L	10.0		99.5	80-121	4.08	30	
Chloroform	10.8			ug/L	10.0		108	80-122	4.26	30	
Bromochloromethane	10.9			ug/L	10.0		109	80-121	6.08	30	
1,1,1-Trichloroethane	10.4			ug/L	10.0		104	79-123	1.66	30	
1,1-Dichloropropene	10.5			ug/L	10.0		105	80-120	0.21	30	
Carbon tetrachloride	9.91			ug/L	10.0		99.1	53-137	0.90	30	
1,2-Dichloroethane	10.8			ug/L	10.0		108	75-123	0.00		
Benzene	10.3			ug/L	10.0		103	80-120	3.00	20	
Trichloroethene	10.6			ug/L	10.0		106	80-120	0.94	30	
1,2-Dichloropropane	10.1			ug/L	10.0		101	80-120	4.04	20	
Bromodichloromethane	10.3			ug/L	10.0		103	80-121	0.36	30	
Dibromomethane	10.2			ug/L	10.0		102	80-120	1.48	30	
2-Chloroethyl vinyl ether	9.68			ug/L	10.0		96.8	74-127	3.82	30	
4-Methyl-2-Pentanone	49.7			ug/L	50.0		99.3	67-133	4.96	30	
cis-1,3-Dichloropropene	10.1			ug/L	10.0		101	80-124	3.39	30	
Toluene	9.94			ug/L	10.0		99.4	80-120	2.63	20	
trans-1,3-Dichloropropene	10.2			ug/L	10.0		102	71-127	0.99	30	
2-Hexanone	46.5			ug/L	50.0		92.9	69-133	4.42	30	
1,1,2-Trichloroethane	10.2			ug/L	10.0		102	80-119	1.99	20	
1,3-Dichloropropane	10.1			ug/L	10.0		101	80-120	1.69	30	
Tetrachloroethene	10.5			ug/L	10.0		105	80-120	1.48	30	
Dibromochloromethane	10.4			ug/L	10.0		104	65-135	2.77	30	
1,2-Dibromoethane	10.3			ug/L	10.0		103	80-121	1.90	20	
Chlorobenzene	10.2			ug/L	10.0		102	80-120	1.56	30	
Ethylbenzene	10.0			ug/L	10.0		100	80-120	0.12	20	
1,1,1,2-Tetrachloroethane	9.74			ug/L	10.0		97.4	80-120	0.92	30	
m,p-Xylene	20.6			ug/L	20.0		103	80-121	0.07	20	
o-Xylene	10.0			ug/L	10.0		100	80-121	0.05	20	
Xylenes, total	30.6			ug/L	30.0		102	76-127	0.07	30	

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - Quality Control

Batch BGD0391 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: LH

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BGD0391-BSD2)				Prena	red: 18-Apr	-2018 Ana	ilvzed: 18-7	Apr-2018 08	₹:33		
Styrene	10.4			ug/L	10.0	2010 11110	104	80-124	0.03	30	
Bromoform	9.89			ug/L	10.0		98.9	51-134	4.25	30	
1,1,2,2-Tetrachloroethane	9.72			ug/L	10.0		97.2	77-123	4.64	30	
1,2,3-Trichloropropane	10.0			ug/L	10.0		100	76-125	3.47	30	
trans-1,4-Dichloro 2-Butene	8.65			ug/L	10.0		86.5	55-129	3.19	30	
n-Propylbenzene	10.4			ug/L	10.0		104	78-130	0.26	30	
Bromobenzene	10.2			ug/L	10.0		102	80-120	1.00	30	
Isopropyl Benzene	10.1			ug/L	10.0		101	80-128	0.03	30	
2-Chlorotoluene	10.0			ug/L	10.0		100	78-122	1.01	30	
4-Chlorotoluene	10.3			ug/L	10.0		103	80-121	0.55	30	
t-Butylbenzene	10.1			ug/L	10.0		101	78-125	0.98	30	
1,3,5-Trimethylbenzene	10.3			ug/L	10.0		103	80-129	0.49	30	
1,2,4-Trimethylbenzene	10.4			ug/L	10.0		104	80-127	1.67	30	
s-Butylbenzene	10.3			ug/L	10.0		103	78-129	0.21	30	
4-Isopropyl Toluene	10.7			ug/L	10.0		107	79-130	1.05	30	
1,3-Dichlorobenzene	10.4			ug/L	10.0		104	80-120	0.53	30	
1,4-Dichlorobenzene	10.1			ug/L	10.0		101	80-120	0.02	30	
n-Butylbenzene	10.6			ug/L	10.0		106	74-129	1.29	30	
1,2-Dichlorobenzene	10.1			ug/L	10.0		101	80-120	1.92	30	
1,2-Dibromo-3-chloropropane	9.78			ug/L	10.0		97.8	62-123	5.59	30	
1,2,4-Trichlorobenzene	10.7			ug/L	10.0		107	64-124	0.47	30	
Hexachloro-1,3-Butadiene	10.5			ug/L	10.0		105	58-123	0.21	30	
Naphthalene	9.91			ug/L	10.0		99.1	50-134	4.02	30	
1,2,3-Trichlorobenzene	10.7			ug/L	10.0		107	49-133	1.83	30	
Dichlorodifluoromethane	9.09			ug/L	10.0		90.9	48-147	0.45	30	
Methyl tert-butyl Ether	9.59			ug/L	10.0		95.9	71-132	3.36	30	
2-Pentanone	49.3			ug/L	50.0		98.7	69-134	8.23	30	
Surrogate: 1,2-Dichloroethane-d4	5.24			ug/L	5.00		105	81-118			
Surrogate: Toluene-d8	4.94			ug/L	5.00		98.8	89-112			
Surrogate: 4-Bromofluorobenzene	5.03			ug/L	5.00		101	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	5.03			ug/L	5.00		101	80-120			

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Volatile Organic Compounds - SIM - Quality Control

Batch BGD0466 - EPA 5030 (Purge and Trap)

Instrument: NT16 Analyst: PB

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BGD0466-BLK1)			Prepa	red: 19-Apı	r-2018 Ana	alyzed: 19-	Apr-2018 15	5:00		
Vinyl chloride	ND	20.0	ng/L	*			•			U
Surrogate: 1,2-Dichloroethane-d4	4910		ng/L	5000		98.2	80-129			
Surrogate: Toluene-d8	5020		ng/L	5000		100	80-120			
Surrogate: 4-Bromofluorobenzene	4870		ng/L	5000		97.3	75-125			
LCS (BGD0466-BS1)			Prepa	ared: 19-Apı	r-2018 Ana	alyzed: 19-	Apr-2018 14	I:03		
Vinyl chloride	1850	20.0	ng/L	2000		92.7	76-120			
Surrogate: 1,2-Dichloroethane-d4	4860		ng/L	5000		97.2	80-129			
Surrogate: Toluene-d8	5060		ng/L	5000		101	80-120			
Surrogate: 4-Bromofluorobenzene	4980		ng/L	5000		99.5	75-125			
LCS Dup (BGD0466-BSD1)			Prepa	ared: 19-Apı	r-2018 Ana	alyzed: 19-	Apr-2018 14	l:39		
Vinyl chloride	1800	20.0	ng/L	2000		89.8	76-120	3.19	30	
Surrogate: 1,2-Dichloroethane-d4	4840		ng/L	5000		96.9	80-129			
Surrogate: Toluene-d8	5060		ng/L	5000		101	80-120			
Surrogate: 4-Bromofluorobenzene	5010		ng/L	5000		100	75-125			

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Petroleum Hydrocarbons - Quality Control

Batch BGD0404 - EPA 3510C SepF

Instrument: FID4 Analyst: JGR

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BGD0404-BLK1)			Prepa	ared: 19-Apr	-2018 Ana	ılyzed: 25-	Apr-2018 00):56		
Diesel Range Organics (C12-C24)	ND	0.100	mg/L							U
Motor Oil Range Organics (C24-C38)	ND	0.200	mg/L							U
Surrogate: o-Terphenyl	0.433		mg/L	0.450		96.3	50-150			
LCS (BGD0404-BS1)			Prepa	ared: 19-Apr	-2018 Ana	ılyzed: 25-	Apr-2018 01	:16		
Diesel Range Organics (C12-C24)	2.66	0.100	mg/L	3.00		88.7	56-120			
Surrogate: o-Terphenyl	0.404		mg/L	0.450		89.8	50-150			

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Metals and Metallic Compounds - Quality Control

Batch BGD0434 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: TCH

			Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Isotope	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BGD0434-BLK1)					Prepa	ared: 19-Apı	r-2018 Ana	lyzed: 19	Apr-2018 11	:57		
Chromium	52	ND	0.130	0.500	ug/L							U
Chromium	53	ND	0.0700	0.500	ug/L							U
Lead	208	ND	0.0680	0.100	ug/L							U
Arsenic	75a	ND	0.0220	0.200	ug/L							U
LCS (BGD0434-BS1)					Prepa	ared: 19-Apı	-2018 Ana	lyzed: 19	Apr-2018 12	2:30		
Chromium	52	28.2	0.130	0.500	ug/L	25.0		113	80-120			
Chromium	53	27.7	0.0700	0.500	ug/L	25.0		111	80-120			
Lead	208	27.0	0.0680	0.100	ug/L	25.0		108	80-120			
Arsenic	75a	26.4	0.0220	0.200	ug/L	25.0		105	80-120			
Duplicate (BGD0434-DUP1))	S	ource: 18D	0266-01	Prepa	ared: 19-Apı	:-2018 Ana	lyzed: 19-	Apr-2018 12	2:16		
Chromium	52	ND	0.130	0.500	ug/L		ND					U
Lead	208	0.351	0.0680	0.100	ug/L		0.343			2.31	20	
Arsenic	75a	1.83	0.0220	0.200	ug/L		1.82			0.77	20	
Matrix Spike (BGD0434-MS	S1)	S	ource: 18D	0266-01	Prepa	ared: 19-Apı	-2018 Ana	lyzed: 19-	Apr-2018 12	2:25		
Chromium	52	23.3	0.130	0.500	ug/L	25.0	ND	93.1	75-125			
Lead	208	26.7	0.0680	0.100	ug/L	25.0	0.343	105	75-125			
Arsenic	75a	28.0	0.0220	0.200	ug/L	25.0	1.82	105	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Reported: 26-Apr-2018 12:02

Certified Analyses included in this Report

Analyte	Certifications
EPA 200.8 in Water	
Chromium-52	NELAP,WADOE,WA-DW,DoD-ELAP
Chromium-53	NELAP,WADOE,WA-DW,DoD-ELAP
Lead-208	NELAP,WADOE,WA-DW,DoD-ELAP
EPA 200.8 UCT-KED in Water	
Arsenic-75a	NELAP,WADOE,WA-DW,DoD-ELAP
EPA 8260C in Water	
Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromoethane	DoD-ELAP,NELAP,CALAP,WADOE
Iodomethane	DoD-ELAP,NELAP,CALAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Benzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Trichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE

Analytical Resources, Inc.

Hart Crowser	Project: Paccar	
3131 Elliott Ave Suite 600	Project Number: [none]	Reported:
Seattle WA, 98121	Project Manager: Roy Jensen	26-Apr-2018 12:02

Seattle WA, 98121	Project Manager: Roy Jensen
Bromodichloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Dibromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
2-Chloroethyl vinyl ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
4-Methyl-2-Pentanone	DoD-ELAP,NELAP,CALAP,WADOE
cis-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Toluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
trans-1,3-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
2-Hexanone	DoD-ELAP,NELAP,CALAP,WADOE
1,1,2-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,3-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Tetrachloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Dibromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2-Dibromoethane	DoD-ELAP,NELAP,CALAP,WADOE
Chlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Ethylbenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1,1,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
m,p-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
o-Xylene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Styrene	DoD-ELAP,NELAP,CALAP,WADOE
Bromoform	DoD-ELAP,NELAP,CALAP,WADOE
1,1,2,2-Tetrachloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2,3-Trichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
trans-1,4-Dichloro 2-Butene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
n-Propylbenzene	DoD-ELAP,NELAP,CALAP,WADOE
Bromobenzene	DoD-ELAP,NELAP,CALAP,WADOE
Isopropyl Benzene	DoD-ELAP,NELAP,CALAP,WADOE
2-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
4-Chlorotoluene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
t-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE
1,3,5-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE
1,2,4-Trimethylbenzene	DoD-ELAP,NELAP,CALAP,WADOE
s-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE
4-Isopropyl Toluene	DoD-ELAP,NELAP,CALAP,WADOE
1,3-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,4-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
n-Butylbenzene	DoD-ELAP,NELAP,CALAP,WADOE
1,2-Dichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2-Dibromo-3-chloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2,4-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE

Analytical Resources, Inc.

Hart Crowser	Project: Paccar	
3131 Elliott Ave Suite 600	Project Number: [none]	Reported:
Seattle WA, 98121	Project Manager: Roy Jensen	26-Apr-2018 12:02

NaphthaleneDoD-ELAP,ADEC,NELAP,CALAP,WADOE1,2,3-TrichlorobenzeneDoD-ELAP,ADEC,NELAP,CALAP,WADOEDichlorodifluoromethaneDoD-ELAP,ADEC,NELAP,CALAP,WADOEMethyl tert-butyl EtherDoD-ELAP,ADEC,NELAP,CALAP,WADOE

n-Hexane WADOE 2-Pentanone WADOE

EPA 8260C-SIM in Water

Acrylonitrile NELAP, CALAP, WADOE Vinyl chloride NELAP, CALAP, WADOE 1,1-Dichloroethene NELAP, CALAP, WADOE cis-1,2-Dichloroethene NELAP, CALAP, WADOE trans-1,2-Dichloroethene NELAP, CALAP, WADOE Trichloroethene NELAP, CALAP, WADOE Tetrachloroethene NELAP, CALAP, WADOE 1,1,2,2-Tetrachloroethane NELAP, CALAP, WADOE 1,2-Dichloroethane NELAP, CALAP, WADOE Benzene NELAP, CALAP, WADOE

NWTPH-Dx in Water

Diesel Range Organics (C12-C24) DoD-ELAP, NELAP, WADOE Diesel Range Organics (C10-C25) DoD-ELAP, NELAP, WADOE Diesel Range Organics (Tol-C18) DoD-ELAP, NELAP, WADOE Diesel Range Organics (C10-C24) DoD-ELAP, NELAP, WADOE Diesel Range Organics (C10-C28) DoD-ELAP, NELAP, WADOE Motor Oil Range Organics (C24-C38) DoD-ELAP, NELAP, WADOE Motor Oil Range Organics (C25-C36) DoD-ELAP, NELAP, WADOE Motor Oil Range Organics (C24-C40) DoD-ELAP, NELAP, WADOE Mineral Spirits Range Organics (Tol-C12) DoD-ELAP, NELAP, WADOE Mineral Oil Range Organics (C16-C28) DoD-ELAP, NELAP, WADOE Kerosene Range Organics (Tol-C18) DoD-ELAP, NELAP, WADOE JP8 Range Organics (C8-C18) DoD-ELAP, NELAP, WADOE JP5 Range Organics (C10-C16) DoD-ELAP, NELAP, WADOE JP4 Range Organics (Tol-C14) DoD-ELAP, NELAP, WADOE Jet-A Range Organics (C10-C18) DoD-ELAP, NELAP, WADOE Creosote Range Organics (C12-C22) DoD-ELAP, NELAP, WADOE Bunker C Range Organics (C10-C38) DoD-ELAP, NELAP, WADOE Stoddard Range Organics (C8-C12) DoD-ELAP, NELAP, WADOE Transformer Oil Range Organics (C12-C28) DoD-ELAP, NELAP, WADOE

Analytical Resources, Inc.

Hart CrowserProject: Paccar3131 Elliott Ave Suite 600Project Number: [none]Reported:Seattle WA, 98121Project Manager: Roy Jensen26-Apr-2018 12:02

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/11/2018
CALAP	California Department of Public Health CAELAP	2748	06/30/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	02/07/2019
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2018
WADOE	WA Dept of Ecology	C558	06/30/2018
WA-DW	Ecology - Drinking Water	C558	06/30/2018

Analytical Resources, Inc.

Hart CrowserProject:Paccar3131 Elliott Ave Suite 600Project Number:[none]Reported:Seattle WA, 98121Project Manager:Roy Jensen26-Apr-2018 12:02

Notes and Definitions

	Titles and Definitions
*	Flagged value is not within established control limits.
D	The reported value is from a dilution
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
Н	Hold time violation - Hold time was exceeded.
J	Estimated concentration value detected below the reporting limit.
M	Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
U	This analyte is not detected above the applicable reporting or detection limit.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
[2C]	Indicates this result was quantified on the second column on a dual column analysis.

30 April 2018

Roy Jensen Hart Crowser 3131 Elliott Ave Suite 600 Seattle, WA 98121

RE: Paccar

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

18D0282

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Al Both

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Accreditation # 66169

Sample Custody Record

HARTCROWSER

Hart Crowser, Inc. 3131 Elliott Avenue, Suite 600 Seattle, Washington 98121 Office: 206.324.9530 • Fax 206.328.5581

Samples Shipped to:

IOR \ 6	39-74	LAR	NUMBER							QUEST	ED ANA	LYSIS				S					
PROJECT	39-7-4 NAME <u>РА</u> СІ	AR	NOMBEN.	tr		*		Netals*								CONTAINERS					
HADT CD	OWSER CONTAC	- Roy	Toios	2010				etal								NTA				MMENTS/ RUCTIONS	
HAKT CK	DANZEK COMTAC	109	JEVE	SEV			9									0F C(AVII OSITI	IVO IIVO	NOCHONS	'
SAMPLED	BY: 1/	1. 11	[[]	- 1			L	Total								NO.					
		slin Ho	- T)	12					_								
LAB NO.	SAMPLE ID	DESCRIPTION	-	ATE	TIME	MATRIX															
	SW-6		4/1	18 18	14:14	Water	×	X								2					
	SW-MD		1.0	1	13:30		×	X								2					
	SW-DP				11:14		×	×								2					
	5W-5				08:10		*	×								2					
	SW-MH				13:31		×	×								2					
	sw-3		4	L	12:45	一二	×	X								2					
			*																		
	est																				
RELINQU	SHED BY Lower Bridgeston E	DATE	RECEIVI	ED BY		DATE			AL SHIPMENT			?					TOT	AL NUME	ER OF C	ONTAINER	RS
Kustri 1	doller	4/18/2018 TIME	15	-6	一种土	4/15/18			GE REQUIREN								PLE RECEIPT		TION		
SIGNATURE	Huddleston	TIME	PRINT NA	RE	1 Fisk	TIME	7	× (Cu, Pb, 7	-n						□Y		ONE		I/A	
PRINT NAM	e rowser	15:20	PRINT NA	ME		1500										GO0	D CONDITIO	N ONC			
COMPANY	,	15-20	COMPAN	Ŷ		1520										TEM	PERATURE _				
RELINQU	ISHED BY	DATE	RECEIVI	ED BY		DATE											MENT METH		AND /ERNIGHT		
							CC	OLE	R NO.:		9	STORA	GE LO	CATIO	N:		NAROUND 1				
SIGNATURE		TIME	SIGNATU	RE		TIME										□ 2	4 HOURS	□ 1 V	VEEK		
PRINT NAM	E		PRINT NA	AME			Se	e Lak	b Work Order	No						□48	HOURS	□STA	NDARD		
COMPANY			COMPAN	ΙΥ			for	r Oth	ner Contract R	equire	nents					□72	HOURS	OTHE	₹		

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW-6	18D0282-01	Water	18-Apr-2018 14:14	18-Apr-2018 15:20
SW-MD	18D0282-02	Water	18-Apr-2018 13:30	18-Apr-2018 15:20
SW-DP	18D0282-03	Water	18-Apr-2018 11:14	18-Apr-2018 15:20
SW-5	18D0282-04	Water	18-Apr-2018 08:10	18-Apr-2018 15:20
SW-MH	18D0282-05	Water	18-Apr-2018 13:31	18-Apr-2018 15:20
SW-3	18D0282-06	Water	18-Apr-2018 12:45	18-Apr-2018 15:20

Reported: 30-Apr-2018 15:38

Case Narrative

Total Metals - EPA Method 200.8

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Wet Chemistry

The sample(s) were prepared and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Printed: 4/18/2018 3:43:22PM

WORK ORDER

V. BANKSON FRANKLINGS	
18D0282	
1010/202	

Client: Hart Crowser Project Manager: Kelly Bottem
Project: Paccar Project Number: 1639-74

Preservation Confirmation

Container ID	Container Type	рН
18D0282-01 A	HDPE NM, 500 mL	
18D0282-01 B	HDPE NM, 500 mL, 1:1 HNO3	L2 008
18D0282-02 A	HDPE NM, 500 mL	
18D0282-02 B	HDPE NM, 500 mL, 1:1 HNO3	LZ Dall
18D0282-03 A	HDPE NM, 500 mL	1 / 4
18D0282-03 B	HDPE NM, 500 mL, 1:1 HNO3	LZ Pass
18D0282-04 A	HDPE NM, 500 mL	
18D0282-04 B	HDPE NM, 500 mL, 1:1 HNO3	LZ Dah
18D0282-05 A	HDPE NM, 500 mL	
18D0282-05 B	HDPE NM, 500 mL, 1:1 HNO3	LZ pall
18D0282-06 A	HDPE NM, 500 mL	
18D0282-06 B	HDPE NM, 500 mL, 1:1 HNO3	Cr pass

Preservation Confirmed By

Date

Reviewed By

Date

Cooler Receipt Form

ARI Client: Havt	Crowser	Proje	ct Name:	PA-CCA	R	
COC No(s):	NA	Deliv	ered by: Fed-Ex UP	S Courier Hand Del	livered Other	r:
Assigned ARI Job No:	0282	Track	king No:			NA NA
Preliminary Examination Phase	:					
Were intact, properly signed and	I dated custody seals attached t	to the outside	of to cooler?		YES	NOT
Were custody papers included v	vith the cooler?	*************	3117.11.11.11.11.11.11.11.11		YES	NO
Were custody papers properly fi	lled out (ink, signed, etc.)			1	YES	NO
Temperature of Cooler(s) (°C) (ecommended 2.0-6.0 °C for che	emistry)	+1			1,0
Time: 1570	empliance fill out form 00070F		511	- <u> </u>		OTAL
If cooler temperature is out of co	~		Hlielie	Temp Gun I	1	2565
Cooler Accepted by:	V	Date:	7/18/10	Time:	20	_
Log In Phase:	Complete custody forms	and attach	all shipping docum	ents		
Log-In Phase:						_
Was a temperature blank include	ed in the cooler?				YES	(NO)
What kind of packing material	was used? Bubble Wra	Wet Ice G	iel Packs Baggies	Foam Block Paper	Other:	
Was sufficient ice used (if appro	oriate)?	*********		NA	YES	NO
Were all bottles sealed in individ	ual plastic bags?		***************************************		YES	(NO)
Did all bottles arrive in good con	dition (unbroken)?				MES	NO
Were all bottle labels complete a				1000	YES	NO
Did the number of containers list	ed on COC match with the num	ber of contain	ners received?	*******	YES	NO
Did all bottle labels and tags agree	5. 51 - 53				YES	NO3
Were all bottles used correct for					YES	NO
Do any of the analyses (bottles)			lii	s) NA	YES	NO
Were all VOC vials free of air but				(NA)	YES	NO
Was sufficient amount of sample					YES	NO
Date VOC Trip Blank was made	NAME OF THE PARTY				·	
Was Sample Split by ARI:	A YES Date/Time:		Equipment:	-t	Split by:_	
Samples Logged by:	St	4119	1185	me: \530	7	
	** Notify Project Manage		1		(
Sample ID on Bottle	Sample ID on COC	Sa	mple ID on Bottle	Sam	ple ID on C	ОС
SW-3	SW-5					
Additional Notes, Discrepancie	s, & Resolutions:	ale to	ne 1415	SIN-MID	Hex	bothe
Enancia ton 1231	a Matric balan	Can	ne time	1327 54	-NO	11040
Sample time 13316 bottle Sample	time 1113 CIN	-5 H	X botters	(352, 800	time C	217
By:SEF Da	HISTIE METALS by		S E C	5000pic	(11.00)	212,
	1 manufactive	Small > "c	m" (<2 mm)	3 6N 1W	2er) 5	ample
Small Air Bubbles Peabubb ~2mm 2-4 mn	1 CALLOT VII DOUGLES		→ "pb" (2 to < 4 m	m)		
	- 1		g" (4 to < 6 mm)	ш)		
time 0,2 (1.)-	ML HOLIG	L	→ "hs" (> 6 mm)			
time 813, SW-	Cooley	r Receipt E	Sample	- time	1335	dele acci
0016F 3/2/10 SW-3 Met	aus haline co	7 . A	+1	12/11	Ke	vision 014
3 (30	SUTTLE SU	unpa	ime	140		

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-6 18D0282-01 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/18/2018 14:14

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:58

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Limit Result Units Analyte Notes 7439-92-1 Lead 0.0680 0.100 0.181 ug/L

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600Project Number: 1639-74Reported:Seattle WA, 98121Project Manager: Roy Jensen30-Apr-2018 15:38

SW-6 18D0282-01 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/18/2018 14:14

Instrument: ICPMS2 Analyzed: 19-Apr-2018 15:58

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Analyte Limit Result Units Notes 7440-50-8 Copper 0.340 0.500 4.31 ug/L 7440-66-6 1 0.820 4.00 Zinc 2.17 ug/L

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: 1639-74
Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 30-Apr-2018 15:38

SW-6 18D0282-01 (Water)

Wet Chemistry

Method: SM 3500-Cr B-09 Sampled: 04/18/2018 14:14

Instrument: UV1800-2 Analyzed: 18-Apr-2018 18:20

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BGD0432 Sample Size: 40 mL Prepared: 18-Apr-2018 Final Volume: 50 mL

Reporting Detection CAS Number Dilution Limit Limit Result Units Analyte Notes Hexavalent Chromium 1854-02-99 1.25 0.013 0.013 ND mg/L U

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-MD 18D0282-02 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/18/2018 13:30

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:03

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Limit Units Analyte Result Notes 7439-92-1 Lead 0.0680 0.100 0.224 ug/L

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-MD 18D0282-02 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/18/2018 13:30

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:03

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Analyte Limit Result Units Notes 7440-50-8 Copper 0.340 0.500 7.42 ug/L 7440-66-6 1 0.820 4.00 Zinc 13.4 ug/L

Hart Crowser Project: Paccar 3131 Elliott Ave Suite 600 Project Number: 1639-74

3131 Elliott Ave Suite 600Project Number: 1639-74Reported:Seattle WA, 98121Project Manager: Roy Jensen30-Apr-2018 15:38

SW-MD 18D0282-02 (Water)

Wet Chemistry

Method: SM 3500-Cr B-09 Sampled: 04/18/2018 13:30

Instrument: UV1800-2 Analyzed: 18-Apr-2018 18:21

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BGD0432 Sample Size: 40 mL Prepared: 18-Apr-2018 Final Volume: 50 mL

Detection Reporting CAS Number Dilution Limit Limit Result Units Analyte Notes Hexavalent Chromium 1854-02-99 1.25 0.013 0.013 ND mg/L U

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-DP 18D0282-03 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/18/2018 11:14

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:07

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Limit Result Units Analyte Notes 7439-92-1 Lead 0.0680 0.100 0.0850 ug/L

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-DP 18D0282-03 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/18/2018 11:14

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:07

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Analyte Limit Result Units Notes 7440-50-8 Copper 0.340 0.500 1.71 ug/L 7440-66-6 1 0.940 4.00 Zinc 65.7 ug/L

Hart CrowserProject:Paccar3131 Elliott Ave Suite 600Project Number:1639-74Reported:Seattle WA, 98121Project Manager:Roy Jensen30-Apr-2018 15:38

SW-DP 18D0282-03 (Water)

Wet Chemistry

Method: SM 3500-Cr B-09 Sampled: 04/18/2018 11:14

Instrument: UV1800-2 Analyzed: 18-Apr-2018 18:21

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BGD0432 Sample Size: 40 mL Prepared: 18-Apr-2018 Final Volume: 50 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Hexavalent Chromium	1854-02-99	1.25	0.013	0.013	ND	mg/L	U

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-5 18D0282-04 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/18/2018 08:10

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:12

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Limit Result Units Analyte Notes 7439-92-1 Lead 0.0680 0.100 0.265 ug/L

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600Project Number: 1639-74Reported:Seattle WA, 98121Project Manager: Roy Jensen30-Apr-2018 15:38

SW-5 18D0282-04 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/18/2018 08:10

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:12

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Analyte Limit Result Units Notes 7440-50-8 Copper 0.340 0.500 2.79 ug/L 7440-66-6 1 0.820 4.00 Zinc 9.72 ug/L

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: 1639-74

Reported: 30-Apr-2018 15:38

SW-5 18D0282-04 (Water)

Project Manager: Roy Jensen

Wet Chemistry

Seattle WA, 98121

Method: SM 3500-Cr B-09 Sampled: 04/18/2018 08:10

Instrument: UV1800-2 Analyzed: 18-Apr-2018 18:21

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BGD0432 Sample Size: 40 mL Prepared: 18-Apr-2018 Final Volume: 50 mL

Reporting Detection CAS Number Dilution Limit Limit Result Units Analyte Notes Hexavalent Chromium 1854-02-99 1.25 0.013 0.013 ND mg/L U

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-MH 18D0282-05 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/18/2018 13:31

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:17

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Limit Units Analyte Result Notes 7439-92-1 Lead 0.0680 0.100 0.295 ug/L

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported: Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-MH 18D0282-05 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/18/2018 13:31

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:17

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

> Preparation Batch: BGD0434 Sample Size: 25 mL

Final Volume: 25 mL Prepared: 19-Apr-2018

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Copper	7440-50-8	1	0.340	0.500	3.14	ug/L	
Zinc	7440-66-6	1	0.820	4.00	15.1	ug/L	

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: 1639-74
Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 30-Apr-2018 15:38

SW-MH

18D0282-05 (Water)

Wet Chemistry

Method: SM 3500-Cr B-09 Sampled: 04/18/2018 13:31

Instrument: UV1800-2 Analyzed: 18-Apr-2018 18:22

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BGD0432 Sample Size: 40 mL Prepared: 18-Apr-2018 Final Volume: 50 mL

Detection Reporting CAS Number Dilution Limit Limit Result Units Analyte Notes Hexavalent Chromium 1854-02-99 1.25 0.013 0.013 ND mg/L U

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-3 18D0282-06 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 Sampled: 04/18/2018 12:45

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:21

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting Dilution Limit CAS Number Limit Result Units Analyte Notes 7439-92-1 Lead 0.0680 0.100 0.0750 ug/L

Hart Crowser Project: Paccar

3131 Elliott Ave Suite 600 Project Number: 1639-74 Reported:
Seattle WA, 98121 Project Manager: Roy Jensen 30-Apr-2018 15:38

SW-3 18D0282-06 (Water)

Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Sampled: 04/18/2018 12:45

Instrument: ICPMS2 Analyzed: 19-Apr-2018 16:21

Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Preparation Batch: BGD0434 Sample Size: 25 mL Prepared: 19-Apr-2018 Final Volume: 25 mL

Detection Reporting CAS Number Dilution Limit Units Analyte Limit Result Notes 7440-50-8 Copper 0.340 0.500 1.84 ug/L 7440-66-6 1 0.820 4.00 Zinc 12.3 ug/L

Hart Crowser Project: Paccar
3131 Elliott Ave Suite 600 Project Number: 1639-74
Seattle WA, 98121 Project Manager: Roy Jensen

Reported: 30-Apr-2018 15:38

SW-3 18D0282-06 (Water)

Wet Chemistry

Method: SM 3500-Cr B-09 Sampled: 04/18/2018 12:45

Instrument: UV1800-2 Analyzed: 18-Apr-2018 18:23

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BGD0432 Sample Size: 40 mL Prepared: 18-Apr-2018 Final Volume: 50 mL

Reporting Detection CAS Number Dilution Limit Limit Result Units Analyte Notes Hexavalent Chromium 1854-02-99 1.25 0.013 0.013 ND mg/L U

Analytical Resources, Inc.

Reported: 30-Apr-2018 15:38

Metals and Metallic Compounds - Quality Control

Batch BGD0434 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: TCH

QC Sample/Analyte	Isotope	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BGD0434-BLK1)					Prepa	ared: 19-Apr	-2018 Ana	alyzed: 19-A	Apr-2018 11	:57		
Lead	208	ND	0.0680	0.100	ug/L							U
Copper	63	ND	0.340	0.500	ug/L							U
Copper	65	ND	0.350	0.500	ug/L							U
Zinc	66	ND	0.820	4.00	ug/L							U
Zinc	67	ND	0.940	4.00	ug/L							U
LCS (BGD0434-BS1)					Prepa	ared: 19-Apr	-2018 Ana	alyzed: 19-A	Apr-2018 12	2:30		
Lead	208	27.0	0.0680	0.100	ug/L	25.0		108	80-120			
Copper	63	26.7	0.340	0.500	ug/L	25.0		107	80-120			
Copper	65	26.4	0.350	0.500	ug/L	25.0		106	80-120			
Zinc	66	86.6	0.820	4.00	ug/L	80.0		108	80-120			
Zinc	67	80.2	0.940	4.00	ug/L	80.0		100	80-120			

Analytical Resources, Inc.

Reported: 30-Apr-2018 15:38

Wet Chemistry - Quality Control

Batch BGD0432 - No Prep Wet Chem

Instrument: UV1800-2 Analyst: KK

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BGD0432-BLK1)				Prepa	ared: 18-Apr	-2018 Ana	alyzed: 18-	Apr-2018 18	3:19		
Hexavalent Chromium	ND	0.013	0.013	mg/L							U
LCS (BGD0432-BS1)				Prepa	ared: 18-Apr	-2018 Ana	alyzed: 18-	Apr-2018 18	3:19		
Hexavalent Chromium	0.618	0.013	0.013	mg/L	0.625		98.8	85-115			D
Duplicate (BGD0432-DUP1)	So	urce: 18D	00282-01	Prepa	ared: 18-Apr	-2018 Ana	alyzed: 18-	Apr-2018 18	3:20		
Hexavalent Chromium	ND	0.013	0.013	mg/L		ND					U
Matrix Spike (BGD0432-MS1)	So	ource: 18D	00282-01	Prepa	ared: 18-Apr	-2018 Ana	alyzed: 18-	Apr-2018 18	3:20		
Hexavalent Chromium	0.056	0.013	0.013	mg/L	0.0625	ND	90.0	85-115			D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Reported: 30-Apr-2018 15:38

Certified Analyses included in this Report

Analyte	Certifications

EPA 200.8 in Water

Lead-208 NELAP,WADOE,WA-DW,DoD-ELAP

EPA 200.8 UCT-KED in Water

Copper-63 NELAP,WADOE,WA-DW,DoD-ELAP
Copper-65 NELAP,WADOE,WA-DW,DoD-ELAP
Zinc-66 NELAP,WADOE,WA-DW,DoD-ELAP
Zinc-67 NELAP,WADOE,WA-DW,DoD-ELAP

SM 3500-Cr B-09 in Water

Hexavalent Chromium WADOE, NELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/11/2018
CALAP	California Department of Public Health CAELAP	2748	06/30/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	02/07/2019
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2018
WADOE	WA Dept of Ecology	C558	06/30/2018
WA-DW	Ecology - Drinking Water	C558	06/30/2018

Hart CrowserProject: Paccar3131 Elliott Ave Suite 600Project Number: 1639-74Reported:Seattle WA, 98121Project Manager: Roy Jensen30-Apr-2018 15:38

Notes and Definitions

D The reported value is from a dilution

J Estimated concentration value detected below the reporting limit.

U This analyte is not detected above the applicable reporting or detection limit.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

APPENDIX D Groundwater Quality Summary Charts

CW-1D	19	98	19	99	20	000	20	001	20	002	20	003	20	04	20	005	20	06	20	07	200	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	201	16	201	17	201	18
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	l	Spring	Fall																														
Arsenic	+	+	+	\	\		\		\		\		\		\		\		/						/		/		1		1		/		/		+		\		/	
Lead				+							+																				+											
Chromium				+							+																															
Benzene	+	+	+	+	+		+		+		+		+																													
VC	+	+	+	+	+		+		\		+		+																	+	+		+				+					
Total cPAHs											+																															
Diesel	+	+	+	+	+		+		+		+																															
Heavy Oil	+	+	+	+	+		+		+		+																															

= Analytical constituent concentration is above the HSAL.
 = Analytical constituent concentration is above the CUL but below the HSAL.
 = Analytical constituent concentration is below the CUL.
 = Not sampled
 VC = Vinyl chloride
 HSAL = Hot spot action level
 CUL = cleanup levels

CW-1S	19	98	19	99	20	000	20	001	20	002	20	03	20	04	20	05	20	006	20	07	200	80	200	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20	17	20	18
Analytical Constitutents	Spring	Fall																																								
Arsenic	\	\	+	\	\		\		\		\		/		\		\		/		\		/		/		/		+		/		+		+		+		+		+	
Lead				+							+																				+											
Chromium				+							+																															
Benzene	+	+	+	+	+		+		+		+	+	+		+		+		+						+						+											
VC	+	\	\	\	\		\		Χ		\	\	/		\		\		/		/		/		+		/		+		/		+		/		+		+		+	
Total cPAHs											+																															
Diesel	+	+	+	+	+		+		+		+																				+											
Heavy Oil	+	+	+	+	+		+		+		+																															

= Analytical constituent concentration is above the HSAL.
= Analytical constituent concentration is above the CUL but below the HSAL.
= Analytical constituent concentration is below the CUL.
= Not sampled

VC = Vinyl chloride

HSAL = Hot spot action level

LW-6D	19	98	19	999	20	000	20	001	20	002	20	003	20	004	20	005	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	201	16	201	17	2018	8
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring	Fall	Spring	l	Spring	_	Spring	Fall																														
Arsenic	\	\	+	/	/		/		/		+		\		/		/		/		/		/		\		/		/		/		/		/		/		\		/	
Lead				+							+																															
Chromium				+							+																															
Benzene	+	+	+	+	+		+		+		+																				+											
VC	+	+	+	+	+		+		+		+																				+						+					
Total cPAHs											+																															
Diesel	+	+	+	+	+		+		+		+																															
Heavy Oil	+	+	+	+	+		+		+		+																															

= Analytical constituent concentration is above the HSAL.
 = Analytical constituent concentration is above the CUL but below the HSAL.
 = Analytical constituent concentration is below the CUL.
 = Not sampled

VC = Vinyl chloride HSAL = Hot spot action level

LW-9D	19	98	19	99	20	000	20	01	20	002	20	03	20	04	20	05	20	006	20	07	200	80	200	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20	17	20	18
Analytical Constitutents	Spring	Fall																																								
Arsenic	\	\	\	+	\		\		\		+		\		\		\		/		\		/	/	/		/		/		\		\		/		/		\		/	
Lead				+							+																															
Chromium				+							+																				+											
Benzene	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+																							
VC	\	\	\	+	+	\	\	\	\	\	+	\	\	\	\	\	\		\		\		\	\	/		/		/		\		\		\		/		+		+	
Total cPAHs											+																															
Diesel	+	+	+	+	+		+		+		+																															
Heavy Oil	+	+	+	+	+		+		+		+																															

= Analytical constituent concentration is above the HSAL.
= Analytical constituent concentration is above the CUL but below the HSAL.
= Analytical constituent concentration is below the CUL.
= Not sampled

VC = Vinyl chloride

HSAL = Hot spot action level

LW-9S	19	98	19	99	20	000	20	001	20	002	20	003	20	004	20	05	20	006	20	07	20	80	200	09	201	10	201	11	201	2	201	3	20	14	20	15	20	16	20	17	20	18
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	<u>=</u>	Spring	Fall	Spring	=																												
Arsenic	\	/	\	\	\		\		\		\		/		\		\		/		/		1		/		1		\		1		/		/		/		/		\	
Lead				+							+																															
Chromium				+							+																				+											
Benzene	+	+	+	+	+		+		+		+																															
VC	+	+	+	+	+		+		+		+																				+						+					
Total cPAHs											+																															
Diesel	+	+	+	+	+		+		+		+																				+											
Heavy Oil	+	+	+	+	+		+		+		+																				+											

= Analytical constituent concentration is above the HSAL.
 = Analytical constituent concentration is above the CUL but below the HSAL.
 = Analytical constituent concentration is below the CUL.
 = Not sampled

VC = Vinyl chloride HSAL = Hot spot action level

MW-3I	19	98	19	99	20	000	20	001	20	002	20	003	20	04	20	05	20	06	200	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20	17	20	18
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring	Fall	Spring	l	Spring	_	Spring	Fall																														
Arsenic	\	\	/	\	\		/		/		/		/	/	/	/	/		/		/		/		/		\		/		/		/		/		/		/		/	
Lead				+							+								+																							
Chromium				+							+								+												+											
Benzene	+	+	+	+	+		+		+		+		+						+																							
VC	+	+	+	+	+		+		\		+		+						+											+	+						+					
Total cPAHs											+								+																							
Diesel	+	+	+	+	+		+		+		+								+																							
Heavy Oil	+	+	+	+	+		+		+		+								+																							

= Analytical constituent concentration is above the HSAL.
 = Analytical constituent concentration is above the CUL but below the HSAL.
 = Analytical constituent concentration is below the CUL.
 = Not sampled

VC = Vinyl chloride

HSAL = Hot spot action level

SC-1S	19	998	19	99	20	000	20	001	20	002	20	003	20	004	20	005	20	006	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20	17	20	18
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring	Fall	Spring		Spring	l _	Spring	Fall	Spring	Fall	Spring	_	Spring	Fall																								
Arsenic	+	+	+	\	+		/		/		+		/		/		+		+												+											
Lead	+	+	+	+	+		+		+		+																															
Chromium	+	+	+	+	+		+		+		+																															
Benzene																																										
VC																																										
Total cPAHs																																										
Diesel																																										
Heavy Oil																																										

= Analytical constituent concentration is above the HSAL.
 = Analytical constituent concentration is above the CUL but below the HSAL.
 = Analytical constituent concentration is below the CUL.
 = Not sampled

VC = Vinyl chloride

HSAL = Hot spot action level

SC-2S	19	998	19	99	20	000	20	001	20	002	20	003	20	004	20	005	20	06	20	07	20	80	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20	17	20	18
Analytical Constitutents	Spring	Fall	Spring	Fall	Spring	Fall	Spring		Spring	_	Spring	Fall	Spring	Fall	Spring	_	Spring	Fall																								
Arsenic	+	+	+	+	+		+		/		+		+																		+											
Lead	+	+	+	+	+		+		+		+																															
Chromium	+	+	+	+	+		+		+		+																				+											\Box
Benzene																																										1
VC																																										1
Total cPAHs																																										1
Diesel																																										1
Heavy Oil																																										1

= Analytical constituent concentration is above the HSAL.
 = Analytical constituent concentration is above the CUL but below the HSAL.
 = Analytical constituent concentration is below the CUL.
 = Not sampled

VC = Vinyl chloride

HSAL = Hot spot action level